RESTORATION AND CH$_4$ DYNAMICS IN A CUTOVER PEATLAND
RESTORATION AND ITS IMPACT ON METHANE DYNAMICS
IN A CUTOVER PEATLAND

By

SARAH DAY, H. B. Sc.

A Thesis

Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Master of Science

McMaster University

© Copyright by Sarah Day, September 2003
MASTER OF SCIENCE (2003) McMaster University
(Geography) Hamilton, Ontario

TITLE: Restoration and Its Impacts on Methane Dynamics in a Cutover Peatland

AUTHOR: Sarah Day, H. B. Sc. (McMaster University)

SUPERVISOR: Professor J.M. Waddington

NUMBER OF PAGES: x, 126
ABSTRACT

Peatlands cover 3% of the earth’s surface, with approximately 110 to 130 million hectares in Canada and are important in terms of the long-term sequestration of atmospheric carbon. In contrast to their removal of CO₂ from the atmosphere, peatlands represent 15 to 30% of the total methane emissions to the atmosphere with Canadian wetlands emitting approximately 0.1 to 1 x 10¹⁰ g yr⁻¹. Drainage and harvesting of peatlands generally reduces CH₄ emissions to the atmosphere and increases CO₂ emissions by up to 400%. However, recent studies have suggested that drained peatlands may represent a larger source of atmospheric CH₄ than undisturbed peatlands.

In the first part of this study, potential CH₄ production and oxidation was determined from natural, harvested and recently restored peat. Total depth integrated CH₄ production decreased with time post harvest where CH₄ production at 2-yr > 7-yr > 20-yr cutover peat. This decrease in CH₄ production was a result of a decreased source of labile carbon, a decrease in the methanogenic population, and an increase in the concentration of alternative electron acceptors. Restoration has altered CH₄ production processes so that total depth integrated CH₄ production was 2-yr > 7-yr > RESTORED > 20-yr cutover peat. Depth dependent trends in potential CH₄ oxidation and production from each peat were dependent on the water table position while substrate quality was the main difference production values between the Lac St. Jean and Bois-des-Bel peat.

Comparison of CH₄ fluxes over the four field seasons showed restored site bare peat and mosses did not play a significant role in CH₄ emissions from the peatland. However, the overall CH₄ function of the peatland was directly related to the increase in
CH₄ emissions from vascular vegetation, remnant ditches and newly constructed ponds which were directly attributed to an increase in labile carbon for methanogenesis provided by vegetation. CH₄ fluxes from ditches and ponds suggest that these features are the largest sources of CH₄ from the peatland. However, when weighting the fluxes to the areal extent of each feature, ditches become secondary to vascular vegetation in total CH₄ emissions while the ponds had a minimal impact on the amount of CH₄ emitted from the peatland. Furthermore, ebullition from ditches and ponds was insignificant in comparison to the diffusive fluxes.

When comparing CH₄ emissions from this site to natural peatland systems (~10 g CH₄ m⁻² a⁻¹), it is evident that the site is still a much smaller source of CH₄ and that the carbon and CH₄ process are still changing as the pool of labile carbon increases (develops). Vegetation succession is still occurring and more time and monitoring is needed in order to determine if this site will return to similar CH₄ functions as natural peatlands.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Dr. Mike Waddington, for allowing me to share in the carbon analyses of Bois-des-Bel, for the unconditional support and guidance when it was needed, the discussions of data, jobs and life, and for allowing me to gain just a bit of his knowledge, including 80’s trivia.

I would also like to thank Rick Bourbonniere and Jon Price for their discussions on peatlands, hydrology, methane, and DOC. Cheers to the 1 am grilling sessions with an ample supply of Scotch of course (they weren’t that bad)!

Many thanks to Karola Toth, Mike Shantz, Chris Selvig, Melissa Greenwood, Melanie Gruneir, and Jana Gillies for all of their help in the field and lab with a special thanks to Mike Shantz for not getting too annoyed with the constant requests for data and for making Bois-des-Bel a little more bearable. And to Steve Kaufman, Karola Toth, and Maria Strack for their willingness to discuss data over and over again.

My gratitude to Barb Crosbie for her support and faith in my abilities, and for being there to just listen.

Finally, I would like to thank my family and friends for all of their support through the chaos and their constant reminders to hurry up and find a job!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DESCRIPTIVE NOTE</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION | 1 |
1.2 PEATLAND ECOSYSTEMS | 2 |
1.3 PEATLAND CARBON CYCLING | 4 |
 1.3.1 Carbon Balance | 4 |
 1.3.2 Controls on CH4 Emissions | 7 |
1.4 PEATLAND EXPLOITATION | 14 |
 1.4.1 Impacts to Hydrology | 15 |
 1.4.2 Carbon Cycling Impacts | 17 |
1.5 PEATLAND RESTORATION | 19 |
 1.5.1 Impacts to Hydrology | 20 |
 1.5.2 Carbon Cycling Impacts | 21 |
1.6 OBJECTIVES | 24 |

CHAPTER 2: STUDY AREA | 26 |

CHAPTER 3: CH4 PRODUCTION AND OXIDATION IN CUTOVER AND RESTORED PEATLANDS

3.1 INTRODUCTION | 31 |
3.2 METHODOLOGY | 33 |
3.3 RESULTS | 35 |
 3.3.1 Potential CH4 Production | 35 |
 3.3.2 Potential CH4 Oxidation | 41 |
3.4 DISCUSSION | 43 |
 3.4.1 Potential CH4 Production | 43 |
 3.4.2 Potential CH4 Oxidation | 48 |
 3.3.3 Q10 Values | 52 |
 3.3.4 Total Depth Integrated CH4 Production and Oxidation | 53 |
3.5 RESTORATION IMPLICATIONS | 55 |

CHAPTER 4: CHANGES IN CH4 STORAGE AND FLUX FROM A RESTORED PEATLAND

4.1 INTRODUCTION | 58 |

4.2 METHODOLOGY...60
 4.2.1 Environmental Variables..60
 4.2.2 Gross Ecosystem Production..61
 4.2.3 CH₄ Flux..62
 4.2.4 CH₄ Storage..63
 4.2.5 CH₄ Analysis..64

4.3 RESULTS ..65
 4.3.1 Environmental Variables..65
 4.3.2 Diffusive CH₄ Emissions...68
 4.3.3 Episodic CH₄ Emissions...75
 4.3.4 Seasonal CH₄ Exchange...75

4.4 DISCUSSION..80
 4.4.1 Relationships to Environmental Variables....................................80
 4.4.2 Bare Peat..84
 4.4.3 Vegetation..87
 4.4.4 Ditches...93
 4.4.5 Ponds..99
 4.4.6 Seasonal CH₄ Exchange..103

4.5 IMPLICATIONS..104

CHAPTER 5: SUMMARY...108
 5.1 CONCLUSIONS..108

CHAPTER 6: REFERENCES..113
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Q<sub>10</sub> ratios for CH<sub>4</sub> production between 4 and 20°C for the BDB and LSJ natural peat, 2-yr, 7-yr and 20-yr cutover peat, and the recently restored peat.</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Q<sub>10</sub> ratios for CH<sub>4</sub> oxidation between 4 and 20°C at the BDB natural peat, 20-yr cutover peat, and the recently restored peat.</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Precipitation as a % of the 30-year mean for each month of the field season and for the total seasonal precipitation (May 1 to August 1).</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>Seasonal CH<sub>4</sub> fluxes from bare peat, mosses, shrubs, vascular vegetation, ditches, and ponds from the restored and cutover sites for the four field seasons.</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Flux and coverage assumptions made in determining total seasonal CH<sub>4</sub> exchange.</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>R<sup>2</sup> (n) values of linear regressions of CH<sub>4</sub> vs. water table (WT), unsaturated zone soil moisture (SM), soil temperature at 2 (T2), 5 (T5), 10 (T10) cm, water temperature (Tw), and gross ecosystem production (GEP).</td>
<td>81</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Location of Bois-des-Bel (BDB) research site in Québec and location of the recently restored and 20-yr cutover sites within the peatland</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Location of Lac St. Jean (LSJ) research site in Québec and location of natural, 2-yr and 7-yr cutover sites within the peatland</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Potential CH₄ production and oxidation at 4°C at the BDB and LSJ natural peat, 2-yr, 7-yr, 20-yr cutover peat and recently restored peat</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Potential CH₄ production and oxidation at 20°C at the BDB and LSJ natural peat, 2-yr, 7-yr, 20-yr cutover peat and recently restored peat</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Total depth integrated CH₄ production rates over 80 cm at 4 and 20°C at the BDB and LSJ natural peat, 2-yr, 7-yr, 20-yr cutover peat and recently restored peat</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Total depth integrated CH₄ oxidation rates over 80 cm at 4 and 20°C at the BDB natural peat, 20-yr cutover peat and recently restored peat</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>BDB potential CH₄ production and oxidation plotted with the water table position exceedence probability</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Daily precipitation (mm) and water table position (cm) for the restored and cutover sites over the four field seasons</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Mean daily CH₄ flux (mg CH₄ m⁻² d⁻¹) of bare peat, mosses, vascular vegetation and shrubs at the restored and cutover sites over the four field seasons</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Mean daily CH₄ flux (mg CH₄ m⁻² d⁻¹) of ponds and ditches at the restored and cutover sites over the four field seasons</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>a) CH₄ ebullition (mg CH₄ m⁻² d⁻¹) for ditches, and b) CH₄ ebullition (mg CH₄ m⁻² d⁻¹) for ponds at the restored site</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>a) Seasonal CH₄ exchange (mg CH₄ m⁻²) for bare peat, mosses, vascular vegetation, shrubs, ditches and ponds at the restored site, b) Seasonal CH₄ exchange (mg CH₄ m⁻²) for bare peat, mosses, vascular vegetation, shrubs and ditches at the cutover site, and c) Total seasonal CH₄ exchange (mg CH₄ m⁻²) for the cutover and restored sites over the four field seasons</td>
</tr>
</tbody>
</table>
Figure 4.6 Mean seasonal CH$_4$ depth profiles of soil gas (ppmv) for the restored site for the 2000 to 2002 field seasons and the cutover site in 2002 86

Figure 4.7 Cumulative seasonal GEP (g CO$_2$ m$^{-2}$) vs. cumulative seasonal CH$_4$ (mg CH$_4$ m$^{-2}$) for cutover and restored vascular vegetation and mosses under wet and dry conditions .. 89

Figure 4.8 Mean seasonal CH$_4$ depth profiles of porewater (mg L$^{-1}$) for 2002 of the restored site mosses and vascular vegetation with cutover peat as a comparison ... 92

Figure 4.9 Time series profile of dissolved CH$_4$ (mg L$^{-1}$) from the ditch and field in 2002 for the restored and cutover site ... 95

Figure 4.10 Time series profiles of redox (mV) from the ditch and field in 2002 for the restored site and cutover site ... 97

Figure 4.11 Dissolved oxygen (mg L$^{-1}$) depth profiles from the water surface for a) zone 2 pool and b) zone 4 pool throughout the 2001 field season 101

Figure 5.1 Conceptual model (adapted from Waddington & Price 2000) illustrating the effects of peatland drainage, harvesting, abandonment and restoration on net CO$_2$ and CH$_4$ exchange a) before this study and b) including this study .. 111
CHAPTER 1

INTRODUCTION

1.1 Introduction

Peatlands cover 3% of the earth’s surface (Clymo 1984), with approximately 110 to 130 million hectares in Canada (Zoltai 1988, National Wetlands Working Group 1988). Northern and temperate peatlands accumulate between \(~20\) g C m\(^{-2}\) yr\(^{-1}\) (Gorham 1991, Clymo et al. 1998, Vitt et al. 2000) and 50 g C m\(^{-2}\) yr\(^{-1}\) (Armentano & Menges 1986) respectively, and therefore are important in terms of the long-term sequestration of atmospheric carbon dioxide (CO\(_2\)) (Gorham 1995). In contrast to their removal of CO\(_2\) from the atmosphere, peatlands represent 15 to 30% of the total methane (CH\(_4\)) emissions to the atmosphere (Matthews & Fung 1987, Cicerone & Oremland 1988, Bartlett & Harriss 1993), with Canadian wetlands emitting approximately 0.1 to 1 \(\times 10^{10}\) g yr\(^{-1}\) (Moore & Knowles 1987).

In southern Quebec and Ontario, 20 to 50% of the wetlands have been drained for agricultural and horticultural purposes (National Wetlands Working Group 1988), generally reducing the emissions of CH\(_4\) to the atmosphere (Roulet et al. 1993, Glenn et al. 1993, Roulet & Moore 1995, Waddington & Price 2000, Sundh et al. 2000) and increasing CO\(_2\) emissions by up to 400% (Nykänen et al. 1995, 1997, Waddington et al. 2002). However, recent studies have suggested that drained peatlands may represent a larger source of atmospheric CH\(_4\) than undisturbed peatlands (Roulet & Moore 1995, Minkkinen et al. 1997). The drainage ditches in these drained peatlands represent areas
with high CH$_4$ fluxes due to their frequently saturated conditions, warm temperatures and supply of labile carbon (Roulet & Moore 1995, Sundh et al. 2000). Moreover, if the ditch area is large then the total CH$_4$ flux to the atmosphere can be significant (Roulet & Moore 1995). In restored peatlands where drainage ditches are blocked, CH$_4$ production and emissions may be enhanced by increasing stagnant, anaerobic conditions and growth of vegetation (Waddington & Price 2000).

Implementation of the Kyoto Protocol and increasing public interest in peatland conservation has created a greater demand for peatland restoration since restoration of these systems is significant in terms of reverting these ecosystems back to net carbon sinks. However, the impact of peatland restoration at a large scale on CH$_4$ fluxes and processes has not been undertaken. Consequently, the goal of this thesis is to determine the effect of restoration on CH$_4$ dynamics in a cutover peatland.

1.2 Peatland Ecosystems

Peatlands make up 85% of Canada’s wetlands (Roulet et al. 1993) and are a contemporary and long-term sink of atmospheric carbon (Gorham 1991) storing 23 g C m$^{-2}$ yr$^{-1}$ (Gorham 1995). The relative strength of these source/sink functions depends, in part, on the type of peatland ecosystem and its chemical and physical properties which are controlled mainly by the hydrological conditions of the wetland (e.g. Devito & Dillon 1993, Waddington & Roulet 1996). Peatlands are transitional zones between terrestrial and aquatic ecosystems and are defined as lands where the water table is close to or at the surface, causing the formation of hydric soils and the dominance of hydrophytic plants (Tarnocai 1988) and possess a peat layer exceeding 40 cm (Zoltai 1988). They are
further classified by the Canadian Wetlands Classification System based on vegetation, hydrology and water chemistry into swamps, fens and bogs (Tarnocai 1988).

Bogs, the focus of this study, are defined as rain-fed, or ombrotrophic, peatlands having low nutrient levels, a high water table and are isolated from regional groundwater. The bog surface may be raised or level with the surrounding terrain, may be treed, and is predominantly covered with *Sphagnum* mosses (Zoltai 1988, Clymo & Hayward 1989). The peat layer in bogs is often divided into two distinct sections: the acrotelm and the catotelm. The acrotelm is the upper section and is composed of living, dead and poorly decomposed mosses typically 0-50 cm thick (Ingram 1992). The acrotelm encompasses the full range of water table fluctuations and is also characterized by high porosity and low bulk density (Schouwenaars 1993) resulting in a relatively high hydraulic conductivity that decreases with depth (Boelter 1965). High specific yields in the acrotelm can range from 0.5 to 0.1 over 50 cm (Price 1992) maintaining a high water table (Price et al. 2003). This zone also accumulates labile carbon from vegetation through root exudates and senescence (Waddington & Price 2000). Aerobic conditions found within this layer enhance decomposition and CO2 production while reducing CH4 emissions through the oxidation of CH4 to CO2. Conversely, the catotelm is a layer of more decomposed peat. This zone is permanently saturated with a lower porosity and a higher bulk density due to shrinkage and compression (Price 1996, Price & Whitehead 2001). It has less variation in hydraulic conductivity with depth; with hydraulic conductivity three to four orders of magnitude lower compared to the acrotelm as a result of the increased friction in the smaller pores (Waddington & Price 2000, Price et al.)
2003). Generally, this zone possesses much more recalcitrant carbon than the acrotelm due to the mineralization of the labile carbon in the acrotelm. As a consequence of the saturated conditions, anaerobic decomposition and methanogenesis are the dominant processes in the catotelm (Clymo, 1984).

1.3 Peatland Carbon Cycling

1.3.1 Carbon Balance

The carbon balance of a peatland (ΔC) is represented as:

$$\Delta C = \text{CO}_2^{\text{GEP}} - \text{CO}_2^{\text{NER}} - \text{CH}_4 - \text{DOC}$$

where CO_2^{GEP} and CO_2^{NER} refer to the gross ecosystem production and net ecosystem respiration of CO_2, respectively. CH_4 refers to methane emission, while DOC is the water borne loss of dissolved organic carbon. The amount of CO_2 fixed by plants through photosynthesis to form organic carbon is a measure of the gross ecosystem production (GEP). GEP is dependent on the amount of photosynthetically active radiation (PAR) (Frohliking et al. 1998, Schlesinger 1997, Joabsson et al. 1999a), temperature (Waddington & Roulet 1996), nutrient supply (Shaver et al. 1998) and plant type and growth (Griffis et al. 2000) where increases in the first three variables generally increase GEP. Mean GEP for wetlands is $\sim 1300 \text{ g } \text{C m}^{-2} \text{ yr}^{-1}$, accumulating $3.8 \times 10^{15} \text{ g yr}^{-1}$ (Schlesinger 1997). However, bogs are known to be less productive systems than other types of wetlands and have a lower GEP. For example, GEP in a Sphagnum bog in Ontario was 30 to 32 g C m$^{-2}$ yr$^{-1}$ (Belyea & Warner 1996) while Sphagnum moss productivity in a forested bog in northern Minnesota was 320 to 380 g C m$^{-2}$ yr$^{-1}$ (Grigal 1985).
Net ecosystem respiration (NER) is the amount of CO₂ released to the atmosphere from plant, root and soil respiration. Respiration is dependent on peat volumetric moisture content (VMC) (Moore & Knowles 1989), the pool of labile carbon available for decomposition (Valentine et al. 1994) and peat temperature (Moore & Dalva 1993). It is estimated that NER represents 50% of gross CO₂ fixation by photosynthesis (Schlesinger 1997) with respiration from live roots accounting for 35-45% of this total (Silvola et al. 1996).

Generally, net ecosystem exchange (NEE) is measured directly and is the sum of GEP and NER. NEE is most sensitive to the pattern and timing of weather events (Griffis et al. 2000). Peatlands act as CO₂ sinks when the beginning of the growing season experiences frequent rain events, high water table positions and warm temperatures which result in early plant leafing whereas net CO₂ source years are experienced when dry conditions occur in early spring (Griffis et al. 2000). This NEE interannual variability is most pronounced during pre-green and post-green periods due to the growth stage and phenology of wetland vegetation (Griffis et al. 2000). Summer NEE values have been found to range from -2 to -12 g CO₂ m⁻² d⁻¹, where a negative flux indicates an uptake of CO₂ to the plant and removal from the atmosphere (Bellisario 1995, Ball 1996, Carroll & Crill 1997, Griffis et al. 2000).

Peatlands are a large source of CH₄, releasing approximately 4.0 g C m⁻² yr⁻¹ globally (Gorham 1991) representing 15 to 30% of the total atmospheric burden of CH₄ (Matthews & Fung 1987, Cicerone & Oremland 1988, Bartlett & Harriss 1993). The net flux of CH₄ to the atmosphere is dependent on the extent of the aerobic and anaerobic
zones with the water table generally representing the division between these two zones. However, the saturated (and therefore generally anoxic) conditions of the capillary fringe can also be significant in extent above the water table within peat. For example, Whitehead (1999) found that the capillary fringe extended ~30 cm above the water table in moderately decomposed peat. Therefore, using the water table position as an indicator between the zones of CH$_4$ production and consumption may underestimate total CH$_4$ production and overestimate total consumption of CH$_4$, possibly attributing to the variability seen when correlating CH$_4$ flux to the water table. Consequently, it may be important to determine the extent of the capillary fringe at a site to determine its areal significance and importance to potential CH$_4$ production. Nevertheless, in general as the water table increases CH$_4$ production increases while CH$_4$ oxidation decreases. The opposite is true for water table declines. CH$_4$ emissions are also dependent on temperature (Dise et al. 1993, Moore & Dalva 1993, Moore et al. 1994) and carbon quality (Crill et al. 1988, Valentine et al. 1994, Chanton et al. 1995). In some vegetative communities, CH$_4$ flux increases with an increase in NEP (Whiting & Chanton 1992, 1993, Chanton et al. 1993, Bellisario 1995, Waddington & Roulet 1996). Findings from Whiting & Chanton (1993) and King et al. (2002) estimate that approximately 1-5% of GEP is emitted back to the atmosphere as CH$_4$.

Dissolved organic carbon (DOC) is produced through the decomposition of plant tissues and soil organic matter. DOC in rainwater is generally <2 mg L$^{-1}$ (Dalva & Moore 1991) whereas concentrations in stream water from natural peatlands range between 20 to 30 mg L$^{-1}$ (Moore et al. 1998). Moore et al. (1998) estimates that DOC
export from peatlands ranges from 5 to 40 g DOC m$^{-2}$ yr$^{-1}$. DOC concentrations follow a seasonal trend where concentrations are highest in the summer due to low flow periods while decreases are seen during high flow periods in the spring and autumn (Bourbonniere 1989, Waddington & Roulet 1996, Tóth 2002). Studies have shown that DOC production is not significantly affected by changes in temperature (Moore et al. 1998, Tóth 2002), however DOC was shown to be released during water table fluctuations or flushing episodes (Moore et al. 1998). As a result, potential global warming causing lower water table levels and higher soil temperature will be unlikely to affect DOC production, although it may influence the export pathways and flux. DOC leached from increased plant production may result in higher porewater DOC concentrations (Moore et al. 1998).

1.3.2 Controls on CH$_4$ Emissions

Studies have determined the flux of CH$_4$ from a wide range of bog sites. Values have been found to range from <1 mg CH$_4$ m$^{-2}$ d$^{-1}$ to over 1300 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Crill et al. 1988, Moore & Knowles 1990, Roulet et al. 1992, Roulet et al. 1994, Waddington & Roulet 1996, Granberg et al. 1997, Hargreaves & Fowler 1998, Bellisario et al. 1999, Fiedler & Sommer 2000). CH$_4$ efflux is extremely variable, both spatially and temporally, due to the multiple factors controlling CH$_4$ production, oxidation and transport. This variability has prevented comparisons between sites as well as causing difficulties when attempting to upscale fluxes from vegetation communities to the landscape scale (Bubier & Moore 1994). This section provides a review of the controls of temperature, water table, carbon quality and vegetation on CH$_4$ emissions.
Temperature is known to control the rate of decomposition, thereby controlling the rate of supply of carbon to methanogens for CH₄ production (Valentine et al. 1994, Updegraff et al. 1998). Some authors suggest that temperature is the main control for CH₄ fluxes (Hargreaves & Fowler 1998, Updegraff et al. 1998); however other authors suggest that temperature becomes the main control of CH₄ flux only when the site is flooded or the water table level is near the surface, thereby eliminating the oxidation of CH₄ (Bubier & Moore 1994, Nykänen et al. 1998). Laboratory studies show an important but weak relationship between temperature and CH₄ flux. Temperature and CH₄ flux relationships in the field also indicate seasonal patterns linked to the thermal regime (Moore & Knowles 1987, Windsor et al. 1992). Crill et al. (1988) found that CH₄ flux increased over 70 fold with a 3 fold increase in soil temperature. However, the strength of the relationships determined in the field are not as strong as those determined in the laboratory due to the in situ variability and complexity of the processes (Segers 1998).

CH$_4$ emissions are best explained by water table position rather than temperature (Moore & Knowles 1989, Moore & Dalva 1993, MacDonald et al. 1998, Waddington & Price 2000) as the water table position controls the extent of the zones of CH$_4$ production and oxidation. Field and laboratory studies have also determined relationships between CH$_4$ flux and water table position (Sundh et al. 1995, 1995, MacDonald et al. 1998, Hargreaves & Fowler 1998, Moore & Roulet 1993, Dise et al. 1993) but these relationships are often weak (Windsor et al. 1992). Highest CH$_4$ emission rates generally occur when the water table is near the vegetation surface which results in minimal CH$_4$ oxidation, thereby allowing more CH$_4$ to escape to the atmosphere (Crill et al. 1988, Sundh et al. 1995). Correspondingly, when the water table is lower more CH$_4$ is oxidized, resulting in a lower net CH$_4$ flux. Other studies found results contrary to this, where increases in CH$_4$ flux were found with decreases in the water table position (Moore et al. 1990, Moore & Dalva 1993, Bubier & Moore 1994). These situations are associated with episodic events where a decrease in the water table increases the total stress of the overlying peat, thereby degassing CH$_4$ bubbles previously trapped within the peat matrix. Conversely, Dise et al. (1993) found that CH$_4$ emission did not increase with an increase in the water table position, but experienced a lag time of approximately three weeks. Reasons for this lag time were not discussed however; possible explanations could be the inhibition of methanogenesis by alternative electron acceptors (such as NO$_3$ and SO$_4$) (Freeman et al. 1994, Granberg et al. 2001) and/or the recovery of the methanogenic population after exposure to oxic conditions (Segers 1998, Whalen & Reeburgh 2000).
Studies of peat CH$_4$ production and oxidation potentials have found that maximum rates of CH$_4$ production occur within 10 cm of the surface in saturated peat or below the mean water table position (Svensson & Sundh 1993, Sundh et al. 1994) while the highest CH$_4$ oxidation rates occur at or just above the mean water table (Sundh et al. 1994, 1995). As a result, water table reductions >20 cm can switch off the zone where most of the CH$_4$ is produced in the peat profile (Sundh et al. 1994).

CH$_4$ production also depends on the rate of supply of carbon to methanogens. The botanical composition of peatlands significantly influences decomposition rates (Nilsson & Bohlin 1993, Sundh et al. 1994) and therefore the quality of available carbon for methanogenesis. Peat containing more woody species (i.e. trees and shrubs) has a much higher lignin to nitrogen (N) ratio and a much lower C:N ratio. As lignin formation requires oxygen, lignified compounds in litter will resist anoxic degradation and are deemed recalcitrant (Svensson & Sundh 1993). The decrease in CH$_4$ production with depth is a direct result of the decrease in substrate quality or increase in lignin (recalcitrant) carbon content (Valentine et al. 1994). Crill et al. (1988) found that bog sites had more humified peat compared to fen sites, indicating that more recalcitrant peat was linked to a lower flux. Dise et al. (1993) noted that peat humification explained only 2% of the CH$_4$ flux. Additions of more easily degradable (labile) carbon has been found to increase CH$_4$ production (Valentine et al. 1994) and is more sensitive to changes in temperature and aeration than recalcitrant carbon (Updegraff et al. 1995). The duration in which litter is under oxic conditions will determine the extent of degradation and the quality of organic matter entering the anoxic zone (Svensson & Sundh 1993). Low water
table levels accelerate the decomposition of labile carbon through aerobic respiration with less labile substrate available for methanogenesis (Chanton et al. 1995). Consequently, zones of higher CH4 production may occur in peat profiles where more labile carbon accumulated under anoxic conditions preventing excessive aerobic decomposition (Sundh et al. 1994).

Studies have shown that vascular plants are responsible for 64 to greater than 90% of CH4 emissions (Whiting & Chanton 1992, Shannon et al. 1996). Increases in GEP and biomass of vascular plants is directly linked to increases in CH4 emission with 1 to 4% of GEP converted to CH4 (Whiting & Chanton 1993, Waddington et al. 1996, Bellisario et al. 1999, King & Reeburgh 2002). Consequently, vascular plants are an important control on CH4 emissions to the atmosphere and stimulate methanogenesis through the supply of labile carbon (e.g. root exudates and senescence) and enhance emissions by the transport of CH4 from the soil to the atmosphere. However, plants can also dampen CH4 emissions through oxidation of the rhizosphere.

Most of the carbon assimilated by plants is allocated to below ground tissue (Joabsson et al. 1999b). Photosynthetic products (root exudates) are secreted from roots, providing a source of labile carbon for methanogenesis (Whiting & Chanton 1993, Waddington et al. 1996, Shannon et al. 1996, Lloyd et al. 1998, Bellisario et al. 1999, Waddington & Price 2000, Joabsson & Christensen 2001). The decay of roots provides an additional source of labile carbon for CH4 production (Shannon et al. 1996). Peatland plants have been found to have high root to shoot ratios (Joabsson et al. 1999b). Consequently, as a plant grows and increases in GEP, below ground biomass and root
Exudates increase concurrently, resulting in more labile carbon for methanogenesis and thereby higher CH\(_4\) emissions (Waddington et al. 1996, Moore et al. 1998, Joabsson et al. 1999b). Waddington et al. (1996) found higher dissolved CH\(_4\) concentrations over 24 hours at sites with fully vegetated plants compared to sites with clipped plants, suggesting that the decrease in CO\(_2\) fixation resulted in a subsequent decrease in root exudates available for methanogenesis. Joabsson et al. (1999b) also found similar results, with dissolved CH\(_4\) concentrations higher at control sites compared to shaded sites at the beginning of the field season. However, at the end of the season, concentrations at the shaded plots became greater than the control plots, suggesting a stronger transport of the dissolved CH\(_4\) through the more vigorous development of the vascular root system of the control site vegetation. In addition, Joabsson et al. (1999b) found higher CH\(_4\) emissions from control monoliths than from shaded monoliths. A decrease in CH\(_4\) emissions was associated with a decrease in easily degradable carbon which was substantiated by lower concentrations of organic acids in the shaded monoliths. Greenup et al. (2000) found that below ground biomass was a better predictor of CH\(_4\) flux than GEP (R\(^2\) = 0.93) and that the long term control of CH\(_4\) flux by plants was through the release of carbon substrates.

Vascular plants have large air spaces or aerenchymous tissue which can act as conduits for CH\(_4\) transport, bypassing the oxidative zone without being oxidized to CO\(_2\) (Whiting & Chanton 1993, Waddington et al. 1996, Daulat & Clymo 1998, Joabsson et al. 1999b, Greenup et al. 2000). Many studies have shown that vascular plants can enhance CH\(_4\) emissions and that the conduit potential increases as the biomass increases (Whiting & Chanton 1993, Waddington et al. 1996, Shannon et al. 1996, Greenup et al.
2000, Frenzel & Karofeld 2000). Roura-Carol & Freeman (1999) found that CH$_4$ flux was higher from *Sphagnum* than from *Juncus*. The result was unexpected and was partially attributed to the low biomass of *Juncus* reducing the CH$_4$ transport capacity of the plant. Waddington et al. (1996) found that *Eriophorum* enhanced the seasonal CH$_4$ flux by 55 to 85%. Furthermore, Shannon et al. (1996) found that clipped plants still had the potential to transport CH$_4$ and showed no significant difference in flux compared to non clipped plants. Greenup et al. (2000) further supported this finding by simulating the conduit effect of vascular plants with glass tubes. Mean CH$_4$ flux values from *Sphagnum* areas was 0.1 ± 0.1 mg CH$_4$ m$^{-2}$ d$^{-1}$ while emissions from *Sphagnum* areas with glass tubes was significantly higher (2.7 ± 1.3 mg CH$_4$ m$^{-2}$ d$^{-1}$) (Greenup et al. 2000). Conversely, Frenzel & Karofeld (2000) found that CH$_4$ emissions ceased after plants were clipped below the water table preventing CH$_4$ to escape to the atmosphere. Greenup et al. (2000) concluded that the conduit mechanism for CH$_4$ emissions of vascular plants was only a short term processes compared to the supply of labile carbon substrates. The degree in which vascular plants can enhance CH$_4$ dynamics likely changes throughout the season and is correlated to the water table position (Waddington et al. 1996). Higher water table levels increase the percent of roots within the saturated zone and the amount of CH$_4$ the plant is able to transport. In addition, it has been shown that, generally, stomatal activity has little effect on CH$_4$ emissions (Whiting & Chanton 1993, Shannon et al. 1996, Joabsson et al. 1999b, Greenup et al. 2000).

Diffusion gradients of O$_2$ from the atmosphere to the peat soil results in the transport of O$_2$ through the aerenchyma into the rhizosphere, enlarging the oxic zone
around roots (Chanton et al. 1992, Lloyd et al. 1998). The enhanced oxidation of previously saturated conditions may decrease CH₄ emissions through the stimulation of methanotrophs converting CH₄ to CO₂ (Chanton et al. 1992, Christenson et al. 1994). However, Frenzel & Rudolph (1998) found very low rates of CH₄ oxidation associated with Eriophorum. As Eriophorum is highly aerenchymateous, this was unexpected. The authors suggest an extremely low pH within the rhizosphere (due to naturally low pH conditions plus H⁺ ions released by the roots) may inhibit methanotrophic bacteria thereby preventing CH₄ oxidation from occurring within this zone. In addition, Roura-Carol & Freeman (1999) found that CH₄ fluxes from Sphagnum were unusually higher compared to Juncus. The authors speculated that the absence of roots for Sphagnum prevented any O₂ to enter the rhizome therefore eliminating any CH₄ oxidation whereas the opposite was true for Juncus. However, the consensus is that the enhanced transport and stimulation of CH₄ by plants is greater than the enhanced oxidation by roots (Gerard & Chanton 1993, Joabsson et al. 1999). Chanton et al. (1992) suggest that the lower importance of enhanced oxidation by plants may be a result of limitations imposed by competition between root respiration, aerobic microbial metabolism and ferrous iron oxidation.

1.4 Peatland Exploitation

The growing demand for horticultural and specialty peat products has led to the growth of the peat industry in Canada, generating $187 million annually (Bergeron 1994). Approximately 12 400 ha of peatlands were actively extracted in 2000 in Canada (Cleary 2003) with harvesting in Québec representing 29% of Canadian extraction.
Thesis Geography and
(Cleary pers. comm.). Over 70% of the peatlands lost have been harvested in the same regions of Québec (Lavoie & Rochefort 1996). The dominant method used for peat extraction in North America is the vacuum harvesting technique. This method begins with the creation of drainage ditches, typically 30 m apart, to lower the water table in order to allow heavy machinery to access the site. The parallel drainage ditches separate individual peat fields. The fields are convex in shape in order to facilitate drainage into the ditches (Rochefort et al. 2003). The surface vegetation is removed and the underlying peat is milled to enhance drying. The surface peat fragments are then vacuumed from the surface using specialized machinery. When the fibrous nature of the peat is no longer suitable, or when the mineral substrate is approached the cutover peatlands are then abandoned (Waddington & Price 2000).

1.4.1 Impacts to Hydrology

The primary impact of peatland drainage and harvesting is a lowering of the water table position from just below the surface to greater than 60 cm (Price 1996, Vompersky & Sirin 1997, Van Seters & Price 2001). Schouwennars (1988) suggests that a mean water table position exceeding 40 cm below the surface is detrimental to the recolonization of Sphagnum species. This is supported by the lack of recolonization of Sphagnum in vacuum harvested sites (Lavoie & Rochefort 1996, Ferland & Rochefort 1997). The lowering of the water table can also result in subsidence of the peat surface through oxidation and shrinkage of the peat above the water table and compression below (Schothorst 1982).
Removal of the acrotelm exposes the more decomposed peat of the catotelm at the surface of the peatland. The higher bulk density of this peat results in a decreased mean saturated hydraulic conductivity and lower specific yield (Sy) as a result of the smaller pores (Price et al. 2003). Van Seters & Price (2002) found saturated hydraulic conductivity to change from 4.1×10^{-5} to 1.3×10^{-5} cm s$^{-1}$ and Sy to change by 50% from 0.14 to 0.07. Price (1997) also found a decrease in Sy of 25 to 33%. As a result of this change in Sy, only a small amount of water needs to be drained to cause a large lowering of the water table and the water table to fluctuate significantly (Price 1996, 1997). Subsidence compounds this effect by further decreasing pore sizes (Price et al. 2003). For example, Van Seters & Price (2002) found that a subsidence of 80 cm resulted in a 67% increase in water table fluctuations.

Drained harvested peatlands experience low evaporative losses due to lower ground temperatures and heat flux resulting in less energy available for convective fluxes (Price 1996, Price et al. 1998, Petrone et al. 2001, Price et al. 2003). In addition, once the water table becomes >50 cm below the surface, groundwater becomes disconnected from the evaporative process, further decreasing evaporative losses, and causing soil moisture to be depleted instead, increasing water tension (Price 1996, Price et al. 1998, 2003). It has been suggested by Price (1996) that water in the unsaturated zone is more relevant to Sphagnum survival than the level of the water table and supports the soil water tension threshold of -100 mb proposed by Hayward and Clymo (1982). In fact, harvested peatlands had no Sphagnum recolonization in areas where water tensions ranged from -156 to -355 mb (Price 1997, Price & Whitehead 2001, Price et al. 2003).
1.4.2 Carbon Cycling Impacts

It has been well documented that peatlands become substantial sources of CO$_2$ to the atmosphere, increasing up to 400%, after drainage and harvesting due to increased respiration and the destruction of carbon fixing vegetation (Silvola 1986, Nykänen et al. 1995, 1997, Minkkinen et al. 1997, Minkkinen & Laine 1998, Warner 1999, Waddington & Warner 2000, Sundh et al. 2000, Waddington et al. 2002, Waddington & McNeil 2002). Total ecosystem respiration is dependent on the water table position for this controls the extent of the oxic zone. However, when water table positions are high, respiration becomes dependent on temperature and substrate quality (Waddington et al. 2002). Waddington & Warner (2001) found that CO$_2$ emissions increased with time post harvest as a result of older sites experiencing drier (lower soil moisture) conditions thereby increasing rates of respiration. Values from Waddington et al. (2002) support this as a 2-year cutover site released 363 g CO$_2$-C m$^{-2}$ compared to the 7-year site of 399 g CO$_2$-C m$^{-2}$. In addition, Waddington & McNeil (2002) found that peat oxidation rates remained high even after two decades of post extraction abandonment. However, Minkkinen & Laine (1998) found that a 34 year drained site lost ~164 to ~218 g CO$_2$-C m$^{-2}$, lower than 2-year and 7-year values reported by Waddington et al. (2002). Gorham (1991) estimates that oxidation of peat on account of long term drainage operations results in a net flux of 8.5 Tg CO$_2$ yr$^{-1}$ to the atmosphere.

Peatland drainage and harvesting can decrease or stop CH$_4$ emissions with values ranging from -0.4 to 33 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Roulet et al. 1993, Roulet & Moore 1995, Minkkinen et al. 1997, Minkkinen & Laine 1998, Komulainen et al. 1998, Alm et al.
1999, Sundh et al. 2000, Freeman et al. 2002). In fact, nutrient rich fens with high CH$_4$ fluxes can experience large reductions (80 to 90%) in CH$_4$ emissions after drainage (Sundh et al. 2000). Komulainen et al. (1998) list several reasons for this decrease in CH$_4$ production: 1) only recalcitrant lignified carbon remains for microbes, thereby limiting production, 2) CH$_4$ is being oxidized in the large oxic zone within the peat profile, and 3) successional change in vegetation towards forest species alters the substrate quality of the litter entering the system and decreases vascular transport of CH$_4$ by shading out ground species coverage. Despite this, drained and cutover peatlands can still act as weak sources of CH$_4$ during periods of high water, increasing CH$_4$ production and limiting CH$_4$ oxidation (Alm et al. 1999). Roulet et al. (1993) and Roulet & Moore (1995) suggest that there is a critical water table level, 20 to 40 cm, in which peatlands convert from a source (0 to 15 mg m$^{-2}$ d$^{-1}$) to net sinks (-0.4 to 0 mg m$^{-2}$ d$^{-1}$) of CH$_4$. However, when considering emissions from harvested peatlands, values from the drainage ditches themselves need to be included. Peatland drainage has the opposite effect on ditches, with CH$_4$ flux increasing (<5 to 595 mg CH$_4$ m$^{-2}$ d$^{-1}$) post drainage (Roulet & Moore 1995, Minkkinen et al. 1997, Sundh et al. 2000). Inclusion of ditch flux values did not significantly change previous estimates of bog emissions determined by Minkkinen et al. (1997) because the proportional area of ditches was small compared to the rest of the peatland. In addition, if CH$_4$ fluxes from a peatland prior to drainage were initially low, then the relative impact of the ditches on CH$_4$ emissions post drainage would be much greater. A model developed by Roulet & Moore (1995) determined that forested bogs with ditches closer than 38 m would experience a net increase in CH$_4$
emissions due to the combination of low antecedent CH$_4$ fluxes from the undrained peatland and moderate fluxes from the ditches.

DOC concentrations from harvested sites have been shown to range from 40 to 625 mg C L$^{-1}$ (Glatzel et al. 2003, Tóth 2002). Concentrations were found to increase immediately during harvesting (up to 188 mg C L$^{-1}$) then decrease due to low dissolved organic matter source remaining (Glatzel et al. 2003). Tóth (2002) found that DOC concentrations and export from a cutover peatland were higher than from a nearby natural site.

1.5 Peatland Restoration

In Canada, some peatlands have not been recolonized by *Sphagna*, even after 30 years of natural succession (Rochefort et al. 2003). As a result, considerable research has focused on the processes of restoration. However, only 2.4% of Canadian cutover peatlands are being actively restored (Cleary 2003). Restoration practices differ between North America and Europe due to the difference in land uses of peatlands, peat extraction methods, and goals for restoring regional biodiversity (Rochefort et al. 2003). The primary long term goal of restoration in Canada is the return to a functional peat accumulating ecosystem within 20 to 30 years. However, the short term goal is to establish a plant cover composed of peat bog species, in particular *Sphagnum*, and to restore hydrological conditions similar to natural bogs (Rochefort et al. 2003). This process can be significantly accelerated through managed rewetting, introduction of plant species, fertilization and mulching (Rochefort et al. 2003).
The first step requires prohibiting drainage and to provide wet conditions suitable for the establishment of *Sphagnum* and other plants. This is completed by the blocking of drainage ditches, construction of dykes, and the creation of open water reservoirs. Diasporas collected from natural bog sites are then reintroduced to the harvested site. Rochefort et al. (2003) suggest that the most successful density of plant reintroduction is 1 ha of diasporas for every 10 ha of harvested peatland. Straw mulch is then applied to reduce harsh microclimatic conditions at a density of 3000 kg ha\(^{-1}\) in order to maximize the success of plant establishment (Rochefort et al. 2003). Finally, phosphate rock fertilizer is added to the restored peat surface. The purpose of this is to increase the establishment of companion species that would in turn facilitate the survival of *Sphagnum* through modification of the microclimate (Tuittila et al. 2000a, Rochefort et al. 2003).

1.5.1 Impacts to Hydrology

An increase in the mean water table position is the dominant change caused by blocking drainage ditches. The construction of dykes also retains water during snowmelt and autumn and early spring rain events which also results in a higher water table position (Price et al. 2003). Moreover, Price et al. (1998) found that water table levels were higher under straw mulch compared to sites with only bare peat. In fact, the water table was greater than 40 cm below the surface 40% of the time under straw mulch and 60% of the time under bare peat. Shantz (2003) also found an increase in water table levels at a recently restored peatland, however the fluctuations in the water table position were still large. The creation of open water reservoirs is often used to increase passive
lateral seepage, limiting the degree of water table fluctuations and improving moisture conditions at the surface through the increase in bulk specific yield (Schlotzhauer & Price 1999).

A straw mulch cover also alters the microclimate to conditions more suitable for *Sphagnum* recolonization, as a result of its effects on the energy balance. Several studies found a decrease in net radiation and evaporation due to the change in albedo (Hares & Novak 1992, Price et al. 1998, Petrone et al. 2001), thus causing the soil to remain cool during the day and warm at night (McDonald & Helgerson 1990). As a result, water tension decreased to levels accessible for *Sphagnum* and increased relative humidity at the soil surface (Price et al. 1998). In fact, Price (1997) found that water tension was between 0 and -100 mb 97% of the time after restoration compared to a drained peatland which experienced water tension less than -100 mb 82% of the time. However, the growth of vascular plants may increase evapotranspiration, negatively impacting the restoration process by lowering water table levels (Ingram 1987, Heathwaite 1994, Petrone et al. 2003).

1.5.2 Carbon Cycling Impacts

Generally, studies have shown that net CO₂ losses decreased with restoration as increased water table levels limited the zone for aerobic decomposition (Tuittila et al. 1999, Komulainen et al. 1999, Waddington & Warner 2001). Waddington & Warner (2001) found the following trend in respiration: cutover (398 g C m⁻²) > restored (169 g C m⁻²) > natural (138 g C m⁻²). In addition to lower total ecosystem respiration, increases in gross photosynthesis resulted in more CO₂ being stored within the ecosystem (Tuittila et
al. 1999, Komulainen et al. 1999) and accounted for 70% of the net CO₂ decrease. Tuittila et al. (1999) found that the seasonal CO₂ balance for a rewetted cutover peatland became a net sink after two years (9.1 g CO₂-C m⁻²) and still greater net sink in the third year (64.5 g CO₂-C m⁻²) due to a dense *Eriophorum* cover sequestering more CO₂ than was respired while Komulainen et al. (1999) found the CO₂ balance was two times lower at a drained site compared to rewetted sites which ranged from 54 to 101 g C m⁻².

Nevertheless, Komulainen et al. (1999), Waddington & Warner (2001) and Petrone et al. (2001) found that restored sites were still a net source of CO₂ to the atmosphere. In the studies by Waddington & Warner (2001) and Komulainen et al. (1999), *Sphagnum* was the dominant plant species which sequestered much lower rates, 2.6 to 5.1 g CO₂ m⁻² d⁻¹ (Waddington et al. 2003), of CO₂ compared to *Eriophorum*, 58.8 g CO₂ m⁻² d⁻¹ the dominant plant species in the Tuittila et al. (1999) study. As fens consist of more vascular plants they may restore faster than bogs which are dominated by bryophytes (Komulainen et al. 1999). In the studies by Waddington & Warner (2001) and Petrone et al. (2001), the seasonal CO₂ balance was determined one year post restoration compared to two and three years in Komulainen et al. (1999) and Tuittila et al. (1999) respectively. In addition, mulch (not used in the other studies) decomposition further enhanced total respiration (Waddington et al. 2003).

Contrary to CO₂, studies have found that CH₄ flux increases after restoration as a result of a higher water table limiting the amount of CH₄ that is oxidized (Komulainen et al. 1998, Tuittila et al. 2000b). Komulainen et al. (1998) found emissions from a bog in southern Finland to increase 5 fold (0.8 to 4.6 g CH₄ m⁻² yr⁻¹) after rewetting. Both
Komulainen et al. (1998) and Tuittila et al. (2000b) found an increase in *Eriophorum* (>1% to 20-70%) after rewetting and that CH$_4$ fluxes were larger at rewetted sites with *Eriophorum* vegetation than rewetted sites without any vegetation, emphasizing the importance of plant species composition on CH$_4$ emissions. Restored bog CH$_4$ emissions became significantly higher than the drained bog two years post restoration while fen CH$_4$ flux experienced a significant increase after only one year post restoration, again suggesting that fens restore faster than bogs (Komulainen et al. 1998). Seasonal CH$_4$ flux was higher after rewetting, however values were lower than emissions from natural peatlands (Tuittila et al. 2000b). The lower values may be attributed to the reduction of the methanogenic population due to persistent aerobic conditions (Segers 1998, Whalen & Reeburgh 2000). In fact, Shannon & White (1994) determined that more than one year was needed to restore CH$_4$ fluxes following drought conditions in a natural peatland. Therefore, the extreme length of aerobiosis at cutover sites may significantly increase the time post restoration for methanogens to recolonize and grow (Tuittila et al. 2000b).

Similar to DOC concentrations after harvesting, DOC has also been found to increase after restoration with concentrations ranging from 30 to 191 mg L$^{-1}$ (Fenner et al. 2001, Glatzel et al. 2003, Tóth 2002). The increase in concentration is a result of the higher water table levels and soil moisture in the unsaturated zone mobilizing and transporting the carbon from oxidized peat and can be influenced by drying and wetting cycles (Glatzel et al. 2003, Tóth 2002). Tóth (2002) found that DOC export from a restored site was lower than an adjacent cutover site, due to changes in the hydrologic conditions, however, DOC concentrations increased each year post restoration and
became higher than the cutover site. Contrary to DOC concentration under harvesting, DOC concentrations during restoration were more strongly related to soil moisture and water table position than peat temperature (Tóth 2002). Tóth (2002) noted that old ditches in the restored peatland had high amounts of hydrophilic DOC indicating a higher carbon quality. This higher carbon quality may lead to greater methanogenesis.

1.6 Objectives

While few studies have shown the effects of harvesting on CH₄ flux (e.g. Glenn et al. 1993, Roulet et al. 1993, Roulet & Moore 1995, Minkkinen et al. 1997, Waddington & Price 2000, Sundh et al. 2000) even fewer have looked at the effects of restoration on CH₄ flux (Komulainen et al. 1998, Tuittila et al. 2000b). The majority of these studies present data from a single field season, discussing the annual variability without considering how the flux changes over a longer (i.e. multi year) time frame. Previous studies have also failed to compare CH₄ processes from a restored site to cutover and natural CH₄ processes and link CO₂ and DOC dynamics. Therefore, the main focus of this research is to determine the effect of peatland restoration on ecosystem scale CH₄ emissions over multiple years. More specifically, the objectives of this research are to (1) determine the impacts of harvesting and restoration on CH₄ production and oxidation rates, (2) determine how water table position in harvested and restored sites affects net CH₄ production and oxidation, (3) determine the impact of restoration on CH₄ fluxes in relation to environmental variables such as water table position, soil temperature and gross ecosystem production, and its influence on changes in subsurface CH₄ storage, and
(4) determine the importance of ditches, pools and ebullition to the flux of CH₄ from cutover and recently restored peatlands.
CHAPTER 2

STUDY AREA

To determine the impacts of harvesting and restoration on CH$_4$ production and oxidation rates and on predicting changes in CH$_4$ production and oxidation based on changes to the water table (see Chapter 3), peat cores were collected from the Bois-des-Bel (BDB) and St. Marguerite Marie (LSJ) peatland. The impact of restoration on CH$_4$ fluxes in relation to environmental variables and its influence on changes in subsurface storage and the importance of ditches, pools and ebullition to the flux of CH$_4$ (see Chapter 4) were tested only at the BDB peatland.

The Bois-des-Bel peatland is located in the Bas-St Laurent region of Québec, approximately 14 km from Rivière-du-Loup (47°58'N, 69°25'W), while the Sainte-Marguerite-Marie peatland is situated in the Lac Saint-Jean region of Québec (48°47'N, 72°10'W). At BDB, the mean annual temperature is 3°C and the mean temperature for the months of January and July are -12°C and 18°C respectively (Environment Canada 1993). The mean annual precipitation is 924 mm, of which 27% falls as snow (Environment Canada 1993). The LSJ peatland experiences a mean annual temperature of 2.2°C and the mean temperature for January and July are -17.1°C and 17.3°C respectively (Environment Canada 1993). The mean annual precipitation is 909 mm, of which 32% falls as snow (Environment Canada 1993).

The BDB peatland is an ~200 ha treed bog of which 11.5 ha was drained in 1972, harvested from 1973-1980 and then abandoned (Figure 2.1). Peat harvesting was
completed using the vacuum harvest method. The top layer of *Sphagnum* moss and ~80 cm of underlying peat were removed. The older peat was not harvested due to its large wood content, making it inadequate for commercial purposes (Campeau & Rochefort 1996). The 11.5 ha cutover portion of the peatland was divided into eleven 30 m x 300 m fields, separated by drainage ditches running from north to south. The drainage ditches increased runoff from the site through the main southern drainage ditch (Figure 2.1). Restoration of the bog (see Rochefort 2000) occurred in the autumn of 1999 for zones 2 to 4 and in the autumn of 2000 for zone 1 (hereafter referred to as the recently restored site) (Figure 2.1). Fields 10 and 11 (hereafter referred to as the 20 year cutover site) were left untouched in order to compare the effects of harvesting to the effects of restoration while field 9 acted as a buffer zone between the cutover and restored sites (Figure 2.1). The average peat depths of the restored and abandoned sites are 1.5 and 1.6 m, respectively. The dominant species found throughout the site are *Polytricum* spp., *Ericaceous* shrubs, *Eriophorum vaginatum*, and *Typha latifolia*. *Sphagnum* spp. are present at the restored site while *Picea mariana* and *Betula* spp. are present at the abandoned site. *Eriophorum, Typha latifolia* and *Betula* spp. are invasive species that appeared after harvesting. The natural site, within the same 200 ha treed bog and located ~2 km NW from the restored and cutover sites, has no surface outflow. The peat depth ranges from 2.1 to 2.4 m (Pellerin & Lavoie 2000). The dominant species at this site consisted of *Picea mariana*, *Larix laricina*, *Sphagnum* spp., mosses, *Ericaceous* shrub, *Ledum groenlandicum*, *Chamaedaphne calyculata*.
Figure 2.1 Location of Bois-des-Bel (BDB) research site in Québec (shown in top insert map), and location of the recently restored and 20-yr cutover sites within the peatland.
Kalmia angustifolia, and *Vaccinium angustifolium* (Pellerin & Lavoie 2000). The mean summer water table position in 2001 for the natural, 20 year cutover and recently restored sites were -22.7, -41.7, and -34.1, respectively (Tóth 2002).

The Lac St. Jean peatland is an ~4315 ha bog-poor fen complex classified as a plateau bog (National Wetlands Working Group 1997) (Figure 2.2). The site overlies a terrace of deltaic sands and iron pan (Price 1996) preventing water drainage and resulting in a high water table. The first site was drained in 1990 and harvested during 1991 with drainage ditches blocked in the spring of 1992 in order to rewet the site. The site was sampled in 1998, seven years after harvesting and is hereafter referred to as the 7-year cutover site. An additional site was drained in 1996 with approximately 80 cm of peat cut before drainage ditches were incompletely filled with peat in 1997. This site was also sampled in 1998, two years after harvesting and is hereafter referred to as the 2-year cutover site. Both the 2-year and 7-year cutover sites were essentially devoid of vegetation (Price 1997). A natural site was also sampled and was dominated by *Sphagnum fuscum*, *S. angustifolium*, *S. magellanicum* and *S. capillifolium* (Campeau & Rochefort 1996). The mean summer water table in 1998 for the natural, 2 year cutover and 7 year cutover sites were -11.7, -30.6 and -35.1 cm, respectively (Waddington et al. 2002).
Figure 2.2 Location of Lac St. Jean (LSJ) research site in Québec (shown in top insert map), and location of the natural, 2-yr and 7-yr cutover sites within the peatland.
CHAPTER 3

CH4 PRODUCTION AND OXIDATION IN CUTOVER AND RESTORED PEATLANDS

3.1 Introduction

The emission of methane (CH4) to the atmosphere from natural peatlands has been estimated at 115 Tg yr\(^{-1}\), representing ~20% of global CH4 emissions (Matthews & Fung 1987, Cicerone & Oremland 1988). Canada is covered by 110 to 115 million ha of peatlands, with the majority located in the boreal zone. Relatively few peatlands are located in the temperate regions of southern Ontario and Québec (National Wetlands Working Group 1988). However, in this temperate region more peatlands have been impacted (such as harvesting and drainage for horticultural purposes) (Rochefort 2000). For example, the St. Lawrence Lowlands of southern Québec have experienced peatland losses of ~70% (Lavoie & Rochefort 1996). Drainage and harvesting reduces CH4 emissions to the atmosphere (Waddington & Price 2000, Sundh et al. 2000) and increases CO2 emissions up to 400% (Nykänen et al. 1995, Waddington et al. 2002), due to a lowering of the water table and an increase in the zone of aerobic decomposition and CH4 oxidation. As a result, active restoration efforts are being undertaken to return the natural carbon sink function of cutover peatlands.

Changes in water table position alter the extent of the oxic and anoxic zones and therefore the rates of CH4 production and oxidation (Sundh et al. 1993, 1994, 1995). Anoxic conditions, or a redox potential below -240 mV, are necessary for the production of CH4. Low redox conditions may have slow rates of decomposition (Valentine et al.
due to the dependence of methanogens on other bacteria to supply them with carbon substrates (such as acetate, CO₂, H₂, and methyl compounds) needed for CH₄ production (Sundh et al. 1994). Whalen & Reeburgh (2000) found that methanogens exposed to oxic conditions were unable to produce CH₄ after 48 hours under anoxic conditions, whereas methanotrophs exposed to anoxic conditions, oxidized CH₄ within 20 hours after a return to oxic conditions. Bacterial biomass (Sundh et al. 1994), alternative electron acceptors (Van Hulzen et al. 1999), and pH (Dunfield et al. 1993, Valentine et al. 1994) can also affect rates of CH₄ production.

Because the distributions of methanotrophic bacteria are dependent upon supplies of CH₄ and O₂, they are most abundant at the zone just above the mean seasonal water table position (Sundh et al. 1994, Granberg et al. 1997). Moreover, because a large proportion of methanotrophic bacteria are attached to peat particles (Sundh et al. 1995) water table position will control the biomass of methanotrophs available to oxidize diffusing CH₄. Studies estimate that 80 to 90% of CH₄ can be oxidized before reaching the peat surface (Oremland & Culbertson 1992, Bubier et al. 1993, Frenzel & Karofeld 2000). Consequently, the oxic layer acts as a strong control on the amount of CH₄ actually emitted to the atmosphere.

Peatland drainage, harvesting and restoration activities result in dramatic changes in the water table position. Harvesting and the subsequent enhanced peat oxidation lowers the quality of carbon in the surface of peatlands (Waddington et al. 2001). Conversely, peatland restoration can increase surface peat quality (Gruneir, 2003). Consequently, changes in potential peat CH₄ production and oxidation are expected,
which will lead to changes in the flux of CH₄. However, no studies have investigated potential CH₄ production and oxidation rates from restored cutover peatlands. The objective of this chapter is to determine in the laboratory under controlled conditions the potential rates of CH₄ production and oxidation in peat from natural, harvested and recently restored peatlands.

3.2 Methodology

Cores were removed from the recently restored, 20-year cutover and natural peats at the BDB peatland and from the 2-year cutover, 7-year cutover and natural peats at the LSJ peatland using a Wardenaar peat corer. All cores were wrapped in plastic and returned immediately to the McMaster Ecohydrology Laboratory where they were frozen until analyzed. Samples from the BDB peat were concentrated near the seasonal mean 2001 water table position. This resulted in 7 depths for the 20-year cutover (centered at 10, 25, 32.5, 37.5, 42.5, 47.5, 65 cm) and natural peats (centered at 5, 15, 22.5, 27.5, 35, 45, 65 cm) and 9 depths (centered at 5, 15, 22.5, 27.5, 32.5, 37.5, 45, 55, 70 cm) for the recently restored peat (due to the larger variance between maximum and minimum water table values). LSJ peat cores were subdivided into 5 cm sections at depths (centered at 2.5, 7.5, 12.5, 22.5, 32.5, 52.5, 77.5 cm) with the exception of the 30 cm section at the natural peat (Waddington et al. 2001).

The experiment was completed under aerobic and anaerobic conditions for the BDB peat and only under anaerobic conditions for the LSJ peat. For the aerobic experiment, approximately ~10 to 20 g wet weight of BDB peat was placed in 250 mL incubation jars and spiked with ~20 mL of a 53 ppmv CH₄ standard. For the anaerobic
experiment, peat slurries of approximately ~15 g wet weight of BDB peat or ~35 g wet weight of LSJ peat were made in 250 mL incubation jars by the addition of distilled water. For the anaerobic experiment, the jars were then flushed with N₂ for 15 minutes to displace air and sealed. Aerobic and anaerobic samples were incubated at 4 and 20°C inside a dark Conviron growth chamber and were sampled initially, then every 12 hours over a 48 hour period. Anaerobic samples were mechanically agitated for 20 minutes prior to sampling to mix the gases within the peat pore spaces and the jar headspace. 3 mL gas samples were collected from the headspace with an equal amount of N₂ backfilled into the jar to ensure constant air volume/pressure.

Gas samples were analyzed using a Varian 3800 gas chromatograph equipped with a flame ionization detector (FID) and Porapak N column to analyze CH₄ concentration. A CH₄ standard gas was used for calibration and analyzed after every 6 to 12 samples.

The mean of three samples was used to calculate concentration values and were corrected for standard pressure and temperature by multiplying by the corrected headspace volume and adjusting for dilution. CH₄ production and oxidation were calculated by dividing the CH₄ flux by the final dry peat weight (g), determined by oven drying the sample at 55°C for 24 to 48 hours at the end of the experiment. Total CH₄ production and oxidation were determined by summing the areal estimates of CH₄ production/oxidation (determined by multiplying the depth-integrated mean CH₄ production/oxidation by the bulk density determined for each depth). The rate of change in CH₄ production and oxidation over a 10°C temperature range (Q₁₀ values) were then
calculated for 4 to 20°C. Statistical analyses were completed for depth integrated CH$_4$ production and oxidation and Q$_{10}$ values using two sample student's t-test assuming equal variance with $\alpha = 0.05$.

3.3 Results

3.3.1 Potential CH$_4$ Production

The average BDB potential CH$_4$ production varied between 0.005 ± 0.004 and $0.048 \pm 0.028 \mu g$ CH$_4$ g$^{-1}$ dry peat d$^{-1}$, and between 0.026 ± 0.014 and $0.046 \pm 0.060 \mu g$ CH$_4$ g$^{-1}$ dry peat d$^{-1}$ for LSJ peat. Generally, potential CH$_4$ production rates at all temperatures were greatest at the LSJ natural peat followed by the 2- and 7-yr cutover peat, the BDB natural peat, and then the recently restored and 20-yr cutover peat (Figure 3.1 and 3.2). However there are exceptions at 20°C, where the recently restored peat was higher than the 7- and 20-yr cutover peat.

Potential CH$_4$ production rates at the natural peat increased with depth at all temperatures until reaching a maximum, at 7.5 and 22.5 to 35 cm for LSJ and BDB respectively, then decreased with depth to reach a minimum in the deeper peat. The 2-yr cutover peat also showed the same pattern, however the depth of maximum production occurred at 32.5 cm. Conversely, both the 7- and 20-yr cutover peat experienced no significant depth dependent trend at 4°C. At 20°C, surface peaks occurred at 2.5 and 10 cm, for the 7- and 20-yr cutover peat, with secondary peaks at 52.5 and 37.5 cm respectively, followed by a decrease in potential CH$_4$ production rates with depth. The potential CH$_4$ production rate vs. depth pattern for the recently restored peat is similar to the natural peat, where potential CH$_4$ production increased with depth to maxima at 32.5
Figure 3.1 Potential CH₄ production and oxidation (ug CH₄ g⁻¹ d⁻¹) at 4°C at the BDB and LSJ natural peat, 2-yr, 7-yr, 20-yr cutover peat and recently restored peat.
Figure 3.2 Potential CH₄ production and oxidation (ug CH₄ g⁻¹ d⁻¹) at 20°C at the BDB and LSJ natural peat, 2-yr, 7-yr, 20-yr cutover peat and recently restored peat.
to 37.5 cm then decreased with depth to a minimum in the deeper peat. However at 20°C, the pattern is more similar to the 7- and 20-yr cutover peat at 20°C with the presence of two peaks in production located at 15 to 22.5 and 37.5 cm. The highest potential CH₄ production rates were measured at 20°C for all peat with production increasing with temperature.

All peats experienced highest Q_{10} CH₄ production values at the surface followed by lowest values at 20-30 cm and then increased with depth (Table 3.1). The BDB natural, 20-yr and recently restored peat Q_{10} values (mean 2.01 to 2.36) were high compared to the LSJ natural, 2- and 7-yr peat (mean 0.44 to 0.70). Recently restored peat Q_{10} values were significantly higher ($p < 0.05$) than the 2- and 7-yr cutover peat at most depths (Table 3.1), but only significantly higher ($p < 0.05$) than the LSJ natural peat at the 0-20 and 40-80 cm depths. The BDB natural, 20-yr cutover and recently restored peat experienced greater temperature dependence than the LSJ natural, 2- and 7-yr cutover peat. Q_{10} production values followed the trend: restored > 20-yr > BDB natural > 7-yr > 2-yr > LSJ natural.

Total depth integrated CH₄ production for the upper 80 cm followed the general trend: 2-yr > LSJ natural > 7-yr > restored > BDB natural > 20-yr at 4°C, with 2-yr and LSJ natural peat values being significantly higher ($p < 0.05$) than recently restored peat values (Figure 3.3). At 20°C, the trend switches to 2-yr > restored > 20-yr > LSJ natural > 7-yr > BDB natural with only the LSJ natural and 7-yr cutover peat significantly different than the recently restored peat. The total depth integrated production at the LSJ natural peat was always significantly greater ($p < 0.05$) than the BDB natural peat except.
Table 3.1 Q_{10} ratios for CH_{4} production between 4 and 20°C for the BDB and LSJ natural peat, 2-yr, 7-yr and 20-yr cutover peat, and the recently restored peat.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>BDB Natural</th>
<th>LSJ Natural</th>
<th>2-Yr Cutover</th>
<th>7-Yr Cutover</th>
<th>20-Yr Cutover</th>
<th>Recently Restored</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>2.6</td>
<td>0.8*</td>
<td>0.6*§†</td>
<td>0.6*§†</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>20-30</td>
<td>2.5</td>
<td>0.3§</td>
<td>0.5§</td>
<td>0.5§</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>30-40</td>
<td>1.4</td>
<td>0.3</td>
<td>0.5*</td>
<td>0.8*</td>
<td>1.88</td>
<td>1.5</td>
</tr>
<tr>
<td>40-80</td>
<td>1.5</td>
<td>0.4*</td>
<td>0.5*</td>
<td>0.8*</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Mean</td>
<td>2.0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>2.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

*Recently restored value significantly higher at α=0.05
†20-yr cutover value significantly higher at α=0.05
§BDB natural value significantly higher at α=0.05
Figure 3.3 Total depth integrated CH$_4$ production rates over 80 cm at 4 and 20°C at the BDB and LSJ natural peat, 2-yr, 7-yr, 20-yr cutover peat and recently restored peat.
at 20°C, while the BDB natural peat, 20-yr cutover and recently restored peat were not significantly different at any temperature.

3.3.2 Potential CH₄ Oxidation

Average potential CH₄ oxidation varied between 0.015 ± 0.008 and 0.074 ± 0.034 μg CH₄ g⁻¹ dry peat d⁻¹ for all peats and depths. All peats exhibited the trend of an increasing potential CH₄ oxidation with depth to a maximum that varied between the peat, followed by a decrease in the deeper layers (Figure 3.1 and 3.2). The BDB natural peat potential CH₄ oxidation peaked at a depth of 27 cm and increased with an increase in temperature. The 20-yr cutover and recently restored peat peaks also increased with an increase in temperature. The maximum potential CH₄ oxidation at the 20-yr cutover peat occurred at 37 and 42 cm depth while the maximum peaks at the recently restored peat occurred at 22.5 and 37.5 cm. The recently restored peat also experienced secondary peaks in oxidation at 4 and 20°C, similar to the pattern with potential CH₄ production. The highest oxidation rates were measured at 20°C for the BDB natural peat with oxidation increasing with an increase in temperature.

Q₁₀ values were also calculated for CH₄ oxidation (Table 3.2). Each peat experienced different trends where the BDB natural peat Q₁₀ ratios decreased with depth until a maximum occurred at 40-80 cm. The 20-yr cutover peat experienced the opposite trend with Q₁₀ ratios increasing with depth until a minimum at 40-80 cm. The recently restored peat did not exhibit any significant depth dependent trends. Overall, the 20-yr cutover peat experienced higher Q₁₀ ratios (mean 1.7) and a greater temperature dependence than the other two peats. The BDB natural and recently restored peat were
Table 3.2 \(Q_{10} \) ratios for CH\(_4\) oxidation between 4 and 20°C at the BDB natural peat, 20-yr cutover peat, and the recently restored peat.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>BDB Natural</th>
<th>20-Yr Cutover</th>
<th>Recently Restored</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>2.0</td>
<td>1.4</td>
<td>0.9</td>
</tr>
<tr>
<td>20-30</td>
<td>1.1</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>30-40</td>
<td>0.7</td>
<td>3.0</td>
<td>0.7†</td>
</tr>
<tr>
<td>40-80</td>
<td>2.0</td>
<td>0.7§*</td>
<td>1.2</td>
</tr>
<tr>
<td>Mean</td>
<td>1.4</td>
<td>1.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Recently restored value significantly higher at \(\alpha=0.05 \)
†20-yr cutover value significantly higher at \(\alpha=0.05 \)
§BDB natural value significantly higher at \(\alpha=0.05 \)
significantly higher than the 20-yr cutover peat at the 40-80 cm depth whereas the 20-yr cutover peat was significantly higher than the recently restored peat at the 30-40 cm depth.

Total depth integrated CH₄ oxidation also showed the trend of increasing with an increase in temperature for the BDB natural peat (Figure 3.4). The 20-yr cutover and recently restored peat also increased with temperature from 4 to 20°C. Generally, restored > 20-yr cutover > BDB natural peat, with the exception at 20°C where the BDB natural peat became larger than the 20-yr cutover peat. However, differences between peats were not significant (p < 0.05).

3.4 Discussion

3.4.1 Potential CH₄ Production

Potential CH₄ production rates for the natural peats were up to three orders of magnitude smaller than values reported for other undisturbed peatlands (range from 0 to 35 µg CH₄ g⁻¹ d⁻¹) (Moore & Knowles 1990, Roulet et al. 1993, Moore & Dalva 1993, Sundh et al. 1993, 1994, Valentine et al. 1994). However, values were similar to those reported by Whalen & Reeburgh (2000) for a temporarily saturated peat (mean < 0.048 µg CH₄ g⁻¹ d⁻¹) and a permanently saturated peat (maximum 0.139 µg CH₄ g⁻¹ d⁻¹) within a boreal bog.

The cutover and recently restored peat results coincided with those found for other harvested peat, specifically from old harvested peat (0.008 to 0.018 µg CH₄ g⁻¹ d⁻¹) and newly harvested peat (0 to 0.11 µg CH₄ g⁻¹ d⁻¹) (Sundh et al. 2000). Conversely,
Figure 3.4 Total depth integrated potential CH$_4$ oxidation rates over 80 cm at 4 and 20°C at the BDB natural peat, 20-yr cutover peat and recently restored peat.
Roulet et al. (1993) found no production of CH$_4$, over a 45 cm depth, from a drained peat while Shannon et al. (1993) determined potential CH$_4$ values one to two orders of magnitude smaller than those determined in this study.

Production was not determined beneath ditches. However, Sundh et al. (2000) found potential CH$_4$ production ditch values of 0.1 to 1.2 and 0.2 to 0.9 μg CH$_4$ g$^{-1}$ d$^{-1}$ at a new and old harvested peat, respectively. Dissolved CH$_4$ concentrations (see Chapter 4) from both the recently restored and 20-yr cutover peat were significantly higher below the ditches compared to where the cores for the experiment were removed. This suggests that potential CH$_4$ production data could, in accordance with Sundh et al. (2000), be higher in peat beneath the ditches. The possibility of a higher potential CH$_4$ production for ditch peat was further substantiated by the significant presence of vascular plants within these ditches which were sources of readily available labile carbon for methanogens. Tóth (2002) found DOC consisted predominantly (31 to 78%) of hydrophilic carbon (highly labile carbon generally produced by fresh vegetation) within the ditches.

Some studies have found highest rates of potential CH$_4$ production in surface layers (0 to 25 cm) of peat compared to intermediate and deeper zones (Moore & Knowles 1990, Shannon et al. 1993, Valentine et al. 1994). Results from this study do not support this and are more similar to the CH$_4$ production/oxidation with depth patterns shown by Roulet et al. (1993), Sundh et al. (1993, 1994, 1995), Frenzel & Karofeld (2000), and Whalen & Reeburgh (2000). These studies determined that the highest rates of CH$_4$ production and oxidation were closely linked to the level of the average water
table position (Roulet et al. 1993, Sundh et al. 1993, 1994, 1995, Whalen & Reeburgh 2000). Sites with low water table levels (i.e. harvested sites) have lower potential CH$_4$ production (as suggested by Figure 3.1 and 3.2) as higher oxidation of organic matter results in less substrate available for methanogens. Conversely, wet sites with high water table levels have limited aerobic degradation, therefore the quantity and quality of substrate matter is much higher (Sundh et al. 1994). Sundh et al. (1994) suggested that a permanent decrease in the water table position of 20 cm is sufficient to switch off most of the CH$_4$ production in the peat profile.

Sundh et al. (1993) found that only a small fraction of CH$_4$ production occurred above the water table while Sundh et al. (1994) found that maximum CH$_4$ production depth was positively correlated to the average water table position ($R^2 = 0.77$) and was generally 10 cm below the average water table position. Results from this study show that the maximum CH$_4$ production was found in peat just above and below the average water table position (Figure 3.1, 3.2) with the average depth of maximum CH$_4$ production at BDB (all peats) of 3.7 to 7.8 cm above the average water table position while LSJ (all peats) was 5.0 to 15.1 cm below the average water table position at 4 and 20°C respectively. Maximum CH$_4$ production occurring higher than the average water table position at BDB may be a result of the greater duration of peat oxidation occurring at the peat compared to LSJ. Oxidation would cause the pores to decrease significantly in size, enlarging the capillary fringe above the water table. Therefore, the depths of maximum CH$_4$ production could still be located within saturated peat despite being higher than the position of the average water table.
Potential CH₄ production generally decreased with depth and is attributed to the recalcitrant nature of deeper peat which have been anaerobically degraded over a long period of time, depleting the pool of labile carbon for methanogens (Sundh et al. 1993, 1994, Valentine et al. 1994, Sundh et al. 2000). As a result, the rate of degradation of this recalcitrant organic matter takes much longer, thereby reducing the amount of CH₄ that can be produced over a short time frame (Sundh et al. 1994). However, these layers can act as long term contributors to dissolved CH₄ and episodic CH₄ releases (Valentine et al. 1994).

Higher potential CH₄ production from the LSJ peat compared to the BDB peat may also be a function of the botanical community composition. Studies have shown that woody plant species have higher C:N and lignin:N ratios, reflecting the resistance of the organic matters to degradation (Svensson & Sundh 1993, Sundh et al. 1994, Valentine et al. 1994). As many of the species at the BDB site are trees/shrubs (e.g. Picea maritana, Larix laricina, Ledum groenlandicum, Chamaedaphne calyculata, Kalmia angustifolia, Vaccinium angustifolium) the peat composition may be very recalcitrant to begin with despite the presence of Sphagnum species. Conversely, the LSJ site is dominated by bryophyte species such as Sphagnum spp., therefore the peat would likely have lower C:N and lignin:N ratios suggesting that the carbon is more available for methanogenesis. The difference in potential CH₄ production between BDB and LSJ peats can also be attributed to the degree of degradation that has occurred at the sites. Rotenberg (1999) found that CO₂ production for peat cores decreased with time post-harvesting (2-yr cutover peat 1.66 µg CO₂ m⁻² d⁻¹ and 7-yr cutover peat 1.28 µg CO₂ m⁻² d⁻¹) suggesting
that substrate quality had decreased. Gruneir (2003) found that the 20-yr cutover peat produced even less CO₂ (0.94 μg CO₂ m⁻² d⁻¹) while the recently restored peat had increased CO₂ production (1.22 μg CO₂ m⁻² d⁻¹) indicating that peat substrate quality has increased post restoration.

3.3.2 Potential CH₄ Oxidation

Potential CH₄ oxidation rates for the BDB natural peat were up to four orders of magnitude smaller than values reported for other undisturbed peatlands (range from 0 to 112 μg CH₄ g⁻¹ d⁻¹) (Moore & Dalva 1993, Shannon et al. 1993, Roulet et al. 1993, Sundh et al. 1993, 1994, 1995). However, values were similar to those reported by Whalen and Reeburgh (2000) of 0.220 to 0.233 μg CH₄ g⁻¹ d⁻¹ for a temporarily saturated peat and 0.498 to 0.650 μg CH₄ g⁻¹ d⁻¹ for permanently saturated peat within a boreal bog. The 20-yr cutover and recently restored peat results are still significantly lower than those determined for other harvested peats where Roulet et al. (1993) found oxidation ranging from 0 to 13 μg CH₄ g⁻¹ d⁻¹ while Shannon et al. (1993) found slightly lower values of 0 to 1 μg CH₄ g⁻¹ d⁻¹ from drained peat.

The highest rate of oxidation occurred close to the average water table position (as in Roulet et al. 1993, Sundh et al. 1993, 1994, 1995, Frenzel & Karofeld 2000, Whalen & Reeburgh 2000) where there is both a source of O₂ and CH₄. Sundh et al. (1994) discovered that aerated peats experienced low oxidation activity from 0 to 5 cm. Potential CH₄ oxidation for the 2-yr, 7-yr, 20-yr cutover and recently restored peat also showed low oxidative activity near the surface. As methanotrophs require CH₄, the highest biomass of methanotrophs is located near a supply of CH₄ (i.e. near the water
table) (Sundh et al. 1994, Granberg et al. 1997), therefore the low activity in the surface layers could be representative of the low methanotrophic population. Sundh et al. (1995) established that drier peats have higher potential CH$_4$ oxidation contrary to the results here which found that the wettest peat (BDB natural) had the highest potential CH$_4$ oxidation while the driest peat (20-yr cutover) had the lowest potential CH$_4$ oxidation. This also can be attributed to the small supply of CH$_4$ from the 20-yr cutover peat limiting the methanotrophic population.

The recently restored peat experienced two peaks in CH$_4$ production and oxidation at generally 22.5 and 37.5 cm depths, contrary to the other peats which had only one maximum close to the average water table position. The CH$_4$ production/oxidation maximum at 37.5 cm coincides with the average water table position and was expected based on the results from other studies. However, the production peak that occurred at 22.5 cm was unexpected. Field observations noted a high *Eriophorum* root density from the surface to ~35 cm depth. Joabsson & Christensen (2001) also noted that potential CH$_4$ production peaked at the same depth as the maximum root density of 5 to 15 cm. Perhaps, the highest density of vascular vegetation roots occurred within the 22.5 cm area, acting as a source zone of labile carbon. However, this peak occurred in the aerobic zone based on the position of the average water table and methanogens have been found to be inhibited under oxic conditions (Whalen & Reeburgh 2000). Because of the highly variable nature of the water table at the restored peat, it is possible that the methanogens have developed a tolerance to brief oxic conditions (Segers 1998) and thereby a more bimodal distribution around this
secondary zone of labile carbon. In addition, it may also be possible that this 22.5 cm depth may be saturated as Whitehead (1999) found that the capillary fringe could extend up to 30 cm above the water table in moderately decomposed peat. However, we have no data to confirm or deny this possibility. Therefore, the main peak in production and oxidation at 37.5 cm is a result of the bacterial biomass while the secondary peak at 22.5 cm is more likely a function of substrate quality.

As the position of the water table is one of the major controls on CH$_4$ production and oxidation, understanding the seasonal movement, and thus the probability of the water table occurring at each depth in the soil profile, would assist in predicting the amount of potential CH$_4$ production and oxidation occurring. Water table position probability of exceedence graphs were created for the BDB natural, 20-yr cutover and recently restored sites (Figure 3.5). Water table values remain shallower for a longer period of time at the BDB natural site followed by the recently restored and 20-yr cutover sites. The depth of the water table at which net CH$_4$ production below exceeds the net CH$_4$ oxidation above was calculated from the total depth integrated CH$_4$ production and oxidation profiles. These depths were at approximately 25 to 30 cm for the BDB natural site and 35 to 40 cm for both the 20-yr cutover and recently restored sites (indicated by the grey line in Figure 3.6). The amount of time that the water table is at or exceeds this depth in the BDB natural peat is ~90% while it is only ~37% and ~63% at the 20-yr cutover and recently restored sites, respectively. Consequently, potential CH$_4$ production is greater than potential CH$_4$ oxidation more often from the restored peat than the 20-yr cutover peat, suggesting CH$_4$ fluxes are increasing from the restored peat.
Figure 3.5 BDB potential CH₄ production and oxidation plotted with the water table position exceedence probability. Grey line indicates the depth at which the potential CH₄ production below the line is greater than the potential CH₄ oxidation above the line.
3.4.3 \(Q_{10} \) Values

Production \(Q_{10} \) values for BDB fall within the range of values found in the literature (1 to 28) (Dunfield et al. 1993, Moore & Dalva 1993, Dise et al. 1993, Valentine et al. 1994, Mikkela et al. 1995, Updegraff et al. 1995, Segers 1998, Daulat & Clymo 1998, Van Hulzen et al. 1999) however production \(Q_{10} \) values for LSJ are close to but slightly lower than literature values. A model proposed by van Hulzen et al. (1999) provides a possible reason for the difference in \(Q_{10} \) values between BDB and LSJ. Van Hulzen et al. (1999) suggest that there are three phases in which different factors control CH\(_4\) production. During phase I, CH\(_4\) production is suppressed by electron acceptors via competition for substrates; during phase II, CH\(_4\) production gradually increases in time which is explained by growth of methanogenic biomass; while during phase III, CH\(_4\) production is directly controlled by anaerobic carbon mineralization. The low sensitivity of LSJ peat to temperature effects could be a result of higher concentrations of alternative electron acceptors (i.e. NO\(_3^-\), Fe\(^{3+}\), SO\(_4^{2-}\)). That is, unsaturated peats have higher amounts of alternative electron acceptors available than saturated peats, resulting in higher \(Q_{10} \) values (van Hulzen et al. 1999). As LSJ has been drained more recently than BDB, it is expected that more alternative electron acceptors would be available, suppressing the production of CH\(_4\) and that an increase in temperature (increasing the mineralization rate and therefore rate of reduction of alternative electron acceptors) did not reduce all of the alternative electron acceptors available, delaying the shift from phase I/II to phase II/III. On the other hand, BDB production \(Q_{10} \) values were much higher suggesting that the reduction of the available alternative electron acceptors occurred...
much quicker (supported by the extremely low porewater concentrations of SO$_4^{2-}$ determined from this peat, data not shown), resulting in a higher CH$_4$ production rate at higher temperature. In comparison with other studies, this experiment was run for a much shorter time scale and may also be responsible for the smaller Q$_{10}$ values. For example, Dunfield et al. (1994), Updegraff et al. (1995) and van Hulzen et al. (1999) ran their experiments for 3 to 9 days, 98 days and 80 weeks, respectively, attaining much higher Q$_{10}$ values (5.3 to 16, 2.9 to 3.6, 16 to 28, respectively) with CH$_4$ production likely controlled by anaerobic carbon mineralization.

Oxidation Q$_{10}$ values fall within the limits determined by other studies of 1.2 to 2.1 (Dunfield et al 1993, Moore & Dalva 1993). Oxidation Q$_{10}$ values are significantly lower (less temperature sensitive) than production Q$_{10}$ values as methanotrophs are less temperature dependent than methanogens (Moore & Dalva 1993, Dunfield et al. 1993, Bubier & Moore 1994, Valentine et al. 1994, Updegraff et al. 1995, Van Hulzen et al. 1999). This is a result of methanogens relying on the rate of carbon mineralization which is controlled by temperature, while methanotrophs rely on the rate of CH$_4$ supply.

3.4.4 Total Depth Integrated CH$_4$ Production and Oxidation

The high total depth integrated CH$_4$ production values for LSJ peat can be attributed to: 1) the higher substrate quality resulting in higher potential CH$_4$ production compared to BDB peat, 2) higher water table levels at the natural, 2-yr and 7-yr cutover sites compared to the BDB natural, and 20-yr cutover sites, and 3) both the larger supply of labile carbon and higher water table levels producing a larger methanogenic biomass.
Both the recently restored and 20-yr cutover peats have higher total depth integrated CH₄ production values than the BDB natural peat. This was unexpected as the natural peat has a much larger supply of labile carbon and higher potential CH₄ production. Bulk densities determined for the peats were used to calculate the total depth integrated CH₄ production. The greater amount of peat per m² over 80 cm and low potential CH₄ production resulted in more total CH₄ than the high potential CH₄ production and smaller amount of peat over 80 cm found for the BDB natural peat. Significant increases, from 4 to 20°C, in the restored and 20-yr cutover peat total depth integrated CH₄ production can be attributed to the significantly higher depth integrated CH₄ production experienced by these two peats. As discussed above, it is suggested that the higher temperature reduced more or all of the alternative electron acceptors thereby producing more CH₄. Generally, depth integrated CH₄ production decreased with time post-harvest, as would be expected, with oxidation and anaerobic respiration depleting the pools of labile carbon and reducing the methanogenic population. Furthermore, it appears that restoration has increased CH₄ production as a result of the higher water table levels and supply of labile carbon.

Unexpectedly, the recently restored peat experienced the greatest total depth integrated CH₄ oxidation compared to the 20-yr cutover and BDB natural peats. It was expected that a higher water table level would result in a smaller oxic zone and thus a smaller methanotrophic population. Whalen & Reebugh (2000) found that methanotrophs were not as sensitive to adverse O₂ conditions, compared to methanogens, therefore it is possible that the highly fluctuating water table at the recently restored peat
may not significantly affect the activity of the methanotrophs. Moreover, the recently restored peat was a larger source of CH₄, therefore a larger biomass of methanotrophs would be able to develop. Conversely, the low production of CH₄ from the 20-yr cutover peat, could limit the growth of methanotrophs despite the highly oxic conditions, thereby reducing the potential of the peat to oxidize CH₄. The BDB natural peat had essentially the same total depth integrated CH₄ oxidation as the 20-yr cutover peat at 4°C however it was greater than the 20-yr cutover peat at 20°C. Again, the larger source of CH₄ available from the BDB natural peat compared to the 20-yr cutover peat could result in the larger biomass of methanotrophs, accounting for its larger depth integrated CH₄ oxidation.

3.5 Restoration Implications

Potential CH₄ production and oxidation values were similar to values reported for other harvested peats however the natural peats were significantly smaller. The trends in potential CH₄ oxidation and production for each peat were dependent on the water table position. That is, the water table position controlled the distribution of the methanogens (just below the average water table) and methanotrophs (just above the average water table) and peaks in CH₄ production and oxidation followed the same trends respectively. The increase in vegetative cover and fluctuating water table has lead to unique CH₄ production and oxidation profiles for the restored peat with two peaks in production due to biomass and a zone of labile carbon and two peaks in oxidation which coincide with the peaks in CH₄ production. Substrate quality was the main difference in production
values between the LSJ and BDB peats as the LSJ peat was composed of more cellulose based vegetation while BDB peat was dominated by woody plant species.

Total depth integrated CH$_4$ production decreased with time post harvest where CH$_4$ production at 2-yr > 7-yr > 20-yr cutover peat. This decrease in CH$_4$ production was a result of a decreased source of labile carbon, a decrease in the methanogenic population, and an increase in the concentration of alternative electron acceptors. Restoration of a portion of the 20-yr cutover peat has altered CH$_4$ production processes, moving this recently restored peat in the opposite direction so that the CH$_4$ production was 2-yr > 7-yr > RESTORED > 20-yr cutover peat. Three years post-restoration has only returned the recently restored peat to a condition in which CH$_4$ production is greater than the 20-yr but less than the 7-yr cutover peat. Therefore, it can be expected that the sooner restoration occurs after harvesting, the sooner the CH$_4$ processes of the carbon cycle will return to that of a natural system.

Restoration has increased the average water table position as well as the substrate quality with the growth of both bryophyte and vascular vegetation. This has resulted in higher potential CH$_4$ production and the amount of time in which total CH$_4$ production is greater than total CH$_4$ oxidation. However, it is expected that CH$_4$ production will be even higher at “hot spot” areas (saturated and vegetated) such as the ditches and ponds and that initially CH$_4$ production will be the dominant process in CH$_4$ emissions but the continually changing conditions of the peat will alter the CH$_4$ processes controlling CH$_4$ emissions. In conclusion, this study has found that restoration has increased CH$_4$
production but to what extent, i.e. of lower, equal or greater magnitude than natural peatlands, is still uncertain.
CHAPTER 4

CHANGES IN CH₄ STORAGE AND FLUX FROM A RESTORED PEATLAND

4.1 Introduction

Peatlands, covering 3% of the earth’s surface (Clymo 1984) with approximately 110-130 million hectares in Canada (Zoltai 1988), are carbon sinks under natural conditions storing approximately 455 Pg carbon (C) but are converted to significant sources of CO₂ through the processes of drainage and harvesting (Nykänen et al. 1995, 1997, Minkkinen et al. 1997, Minkkinen & Laine 1998, Waddington & Warner 2000, Sundh et al. 2000, Waddington et al. 2002). With the implementation of the Kyoto Protocol, more peat industry companies are interested in and attempting to develop methods to reduce their carbon emissions. The expanding knowledge on peatland restoration practices has encouraged the peat horticultural industry, in particular, to restore long abandoned sites which are significant sources of CO₂ and sinks of CH₄ (Roulet et al. 1993, Roulet & Moore 1995, Minkkinen et al. 1997, Komulainen et al. 1998, Minkkinen & Laine 1998, Alm et al. 1999, Sundh et al. 2000, Freeman et al. 2002).

The process of restoration involves blocking drainage ditches in order to raise the position of the water table, increasing saturated conditions. CO₂ emissions decrease post-restoration as an increased water table level limits the depth of the zone of aerobic decomposition (Tuittila et al. 1999, Komulainen et al. 1999, Waddington & Warner 2001). Conversely, CH₄ flux increases post-restoration as a higher water table limits the amount of CH₄ that is oxidized (Komulainen et al. 1998, Tuittila et al. 2000b).
Komulainen et al. (1998) found that emissions increased five fold (2.2 to 12.6 mg CH$_4$ m$^{-2}$ d$^{-1}$) after rewetting but remained below levels typical of natural wetlands (e.g. Waddington & Roulet 1996). The lower than natural site CH$_4$ flux may be due to the incomplete vegetation succession, as vegetation can have a significant impact on carbon dynamics. While CO$_2$ stored within the new vegetative cover through photosynthesis offsets ecosystem respiration (Tuittila et al. 1999, Komulainen et al. 1999), an increase in vascular vegetation has the opposite effect on CH$_4$. Both Komulainen et al. (1998) and Tuittila et al. (2000b) found an increase in the coverage of the vascular plant species *Eriophorum* (from 1% to 20-70%) at rewetted sites and that these *Eriophorum* sites had higher CH$_4$ fluxes compared to rewetted sites without vegetation. Vascular vegetation can enhance CH$_4$ emissions through the transport and supply of labile carbon (Waddington et al. 1996). Seasonal CH$_4$ flux was higher after rewetting, however values were lower than emissions from natural peatlands (Tuittila et al. 2000b). These lower values, therefore are likely attributed to the reduction of the methanogenic population due to many years of persistent aerobic conditions prior to restoration (Segers 1998, Whalen & Reeburgh 2000, Chapter 3).

Because CH$_4$ is 21 times stronger as a greenhouse gas than is CO$_2$ (IPCC, 1996), the increase in emissions from restored peatlands may be of concern for addressing the overall change in global warming potential. Since the long term effects of restoration have yet to be studied, it is expected that the system will become a source of CH$_4$ to the atmosphere of the same magnitude as natural systems, less than 10 g CH$_4$ m$^{-2}$ yr$^{-1}$ (Minkkinen et al. 1997). However, the rate at which this occurs and the processes that
control the storage and flux of CH₄ post peatland restoration remains unknown. Moreover, no studies have examined the processes controlling the flux of CH₄ (diffusion and ebullition) from open water features (e.g. ditches and pools) of restored peatlands. Therefore, the objectives of this research are to (1) determine the impact of restoration on CH₄ fluxes in the first three years post-restoration, (2) determine the processes controlling changes in CH₄ flux and subsurface storage, and (3) determine the importance of ditches, pools and ebullition to the overall flux of CH₄ from cutover and recently restored peatlands.

4.2 Methodology

Data were collected from May to mid October 1999, 2000, 2001, and 2002 from the restored and cutover sites at the Bois-des-Bel peatland. The study years represented a pre-restoration year (1999), and the first three years post-restoration (2000, 2001 and 2002). The 2002 field season was used to undertake experiments designed to examine the processes controlling CO₂ and CH₄ flux. Mean values were calculated from May 1 to August 31 each year to facilitate inter-year comparison.

4.2.1 Environmental Variables

Precipitation, temperature, evapotranspiration, water table position, soil moisture and photosynthetically active radiation (PAR) were measured continuously at two meteorological towers located within the restored and cutover sites (see Figure 2.1). Precipitation was measured every half-hour using a tipping bucket rain gauge connected to a CR 21x datalogger, as well as from two manual rain gauges. The ground thermal regime was measured continuously using thermocouple arrays at 0, 2, 5, 10, 25, 50 and
75 cm depths. Manual measurements of air temperature and peat temperatures (2, 5, and 10 cm) were also made with a portable thermocouple thermometer probe (±0.3°C) during CO₂ production and CH₄ flux sampling. CO₂ and evapotranspiration fluxes were measured continuously with a CSAT-3 3-D sonic anemometer and a LI-7500 open path infrared gas analyzer using the eddy covariance technique. Details of the equipment and analysis approach are outlined in Petrone et al. (2001). Water table levels were monitored hourly using Remote Data System (RDS) wells in addition to manual measurements. Five additional RDS wells were located throughout the peatland during the 2001 and 2002 field seasons. Water level of ponds and ditches were also monitored manually during CH₄ flux sampling. Soil moisture was determined at all collar sites using multiple level Campbell Scientific TDR’s with tensiometer measurements taken throughout the peatland. The TDR was calibrated using peat cores from the site and their volumetric moisture contents used to refine the calibration equation. Photosynthetically active radiation (PAR) was measured continuously using a LI-COR quantum light sensor and manually with a PP Systems PAR sensor during CO₂ production measurements.

4.2.2 Gross Ecosystem Production

Net ecosystem CO₂ exchange (NEE) was measured several times a week at multiple sites representing moss (Sphagnum and Polytricum species) and vascular (Eriophorum) vegetation within the restored and cutover sites. A clear chamber connected to a PP Systems EGM-1 or EGM-2 infrared gas analyzer (IRGA) was used to measure CO₂ concentrations at one minute intervals. A series of shrouds were placed over the clear chamber to measure NEE under low light conditions. Total respiration
(\(R_{\text{tot}}\)) was measured using the same process but with an opaque chamber in place of the clear chamber. Fans inside the chambers ensured the air was well mixed for sampling. In addition, a cooling device was attached to the clear chamber circulating cold water, maintaining constant relative humidity and temperature inside the chamber. Gross ecosystem production (GEP) was determined as the difference between NEE and \(R_{\text{tot}}\). GEP was modelled using the following relationship:

\[
A = \frac{\theta Q + A_{\text{max}} - (\theta Q + A_{\text{max}})^2 - 4\theta QkA_{\text{max}}}{2k}
\]

where \(A\) is the leaf net photosynthesis (\(\mu\)mol \(CO_2\) \(m^{-2} s^{-1}\)), \(Q\) is photosynthetically active radiation (\(\mu\)mol \(m^{-2} s^{-1}\)), \(\theta\) is apparent quantum efficiency (AQE), \(A_{\text{max}}\) is the light saturated maximum, and \(k\) is convexity. \(\theta\), \(k\), and \(A_{\text{max}}\) parameters were determined from field collected GEP and PAR data using the software, Photosyn Assistant Ver 1.1.2 (Dundee Scientific). Continuously modelled GEP was calculated using the following equation:

\[
A = T_w \times \frac{\theta Q + A_{\text{max}} - (\theta Q + A_{\text{max}})^2 - 4\theta QkA_{\text{max}}}{2k}
\]

where \(T_w\) is the 7 day weighted air temperature and \(T_m\) is the mean air temperature and were applied to the half hourly PAR and temperature data recorded at the restored and cutover meteorological towers. Carbon uptake (NEE and GEP) was indicated by a positive value and \(R_{\text{tot}}\) as a negative value.

4.2.3 \(CH_4\) Flux

\(CH_4\) was measured biweekly from 1999-2001 at multiple sites representing ponds, ditches, vegetation, and bare peat located throughout the restored and cutover sites. An
opaque climate controlled chamber was placed over a PVC collar set into the peat. Fans inside the chambers ensured the air was well mixed for sampling. CH$_4$ samples were taken at 10, 20 and 30 min intervals using syringes and were sent to the McMaster Ecohydrology Laboratory for analysis.

In the summer of 2002, CH$_4$ flux was partitioned into diffusive, plant mediated and ebullition components. Diffusive flux was measured as in 1999-2001 but on a weekly basis to better determine temporal variability. Plant mediated CH$_4$ flux was monitored by adding moss (Sphagnum and Polytricum species) and vascular (Eriophorum) vegetation sites and linking CH$_4$ flux to plant production. Ebullition was monitored over pools and ditches using a floating funnel chamber. The floating chambers were sampled and total gas volume recorded weekly. Negative flux values indicate a removal of CH$_4$ from the atmosphere (sink) while positive flux values indicate a source of CH$_4$ to the atmosphere. All collars were referenced to a common datum on July 10, 2002 using standard surveying techniques.

4.2.4 CH$_4$ Storage

Soil gases were sampled biweekly (2000-2002) at the restored and cutover sites with tygon tubing located at 2, 5, 10, 20, 30, 50 and 75 cm depths. An additional site located beneath vascular vegetation was added in 2002. Samples were extracted slowly using syringes which were sent back to the McMaster Ecohydrology Laboratory for analysis.

Piezometer transects installed in both the restored and cutover sites were sampled biweekly in the 2002 field season for porewater concentrations of CO$_2$ and CH$_4$. The
restored and cutover transects contained four and five piezometer nests, respectively located in the west to east direction perpendicular to the ditch in zone 3 and field ten respectively (Figure 2.1). Piezometers, constructed of PVC pipes (2.5 cm ID), had a 10 cm slotted intake covered with nylon mesh. Piezometers were installed at average intake depths of 50, 75, 90, 100, 110 and 150 cm in the restored site and 50, 75, 100, 125, and 150 cm for the cutover site. Two piezometer nests were also located within the restored site under moss and vascular vegetation at average intake depths of 50, 70, 100, 125, and 150 cm. Piezometers were pumped 24 hr before sampling and porewater samples were taken using a modified syringe-tubing apparatus. In the lab, equal amounts of N$_2$ gas were drawn into the porewater syringes and degassing of the sample occurred by shaking of the sample vigorously for 5 min. CO$_2$ and CH$_4$ concentrations in the headspace were sampled and then analyzed. Wells and piezometers were referenced to a common datum on July 10, 2002 using standard surveying techniques.

4.2.5 CH$_4$ Analysis

All CH$_4$ samples were analyzed within 48 hours of sampling on a Varian 3800 Gas Chromatograph equipped with a Porapak N column, flame ionization detector (CH$_4$) and thermal conductivity detector (CO$_2$). A CO$_2$/CH$_4$ standard was used for calibration and a burnoff was executed periodically to ensure moisture was not accumulating within the GC. Statistical analyses were performed using ANOVA within years and student's t-test assuming equal variance between years with a significance level of $\alpha = 0.05$.

64
4.3 Results

4.3.1 Environmental Variables

Total precipitation (May 1 to August 31) was highest in 1999 followed by 2001, 2000 and 2002 (Figure 4.1 and Table 4.1). 1999 experienced few precipitation events during May and August while June, July and September were the only months over the four field seasons in which the total monthly precipitation exceeded the 30-year mean. 2000, 2001 and 2002 experienced low precipitation at the beginning of the field season while mid-season months experienced higher precipitation. August 2002 experienced drought like conditions, receiving only 27% of the normal amount of precipitation for that month.

Water table levels at the restored site ranged between 10 and 69 cm below the surface over the four study periods with the average water table position highest in 2001 (-30.4 cm), followed by 2000 (-31.5 cm), 2002 (-35.9 cm) and 1999 (-54.8 cm) (Figure 4.1). Minimum water table depths occurred at the beginning of each field season while maximum water table depths occurred in late July for 1999 and 2000, early August in 2001 and late August in 2002. In addition, the restored site experienced larger fluctuations in water table positions after rainfall events. The cutover site experienced water table levels ranging from 26 to 67 cm below the surface with the mean water table position highest in 2001 (-39.5 cm), followed by 2002 (-43.8 cm), 2000 (-46.0 cm) and 1999 (-51.4 cm) (Figure 4.1). As with the restored site, minimum water table levels
Figure 4.1 Daily precipitation (mm) and water table position (cm) at the restored and cutover sites over the four field seasons.
Table 4.1 Precipitation as a % of the 30-year mean for each month of the field season and for the total seasonal precipitation (May 1 to August 31).

<table>
<thead>
<tr>
<th>Month</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>NA</td>
<td>100</td>
<td>68</td>
<td>63</td>
</tr>
<tr>
<td>June</td>
<td>110</td>
<td>23</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>July</td>
<td>116</td>
<td>82</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>August</td>
<td>33</td>
<td>91</td>
<td>86</td>
<td>27</td>
</tr>
<tr>
<td>September</td>
<td>104</td>
<td>55</td>
<td>78</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>71</td>
<td>78</td>
<td>61</td>
</tr>
</tbody>
</table>
occurred at the beginning of each field season and maximum depths occurred in late June for 1999, late July in 2000, late September in 2001 and late August in 2002. Water table levels at both sites closely followed the seasonal trend seen in precipitation over the four field seasons.

Air temperature was within 1°C of the 30-year summer mean for all years except 1999 which was 1.3°C warmer. May, June and September 1999, September 2000, May, August, and September 2001 and August 2002 were on average 2.7, 1.2 1.6 and 1.6°C warmer, respectively than the 30-year monthly mean. June 2002 was an exception with a 1.3°C cooler temperature than the 30-year monthly mean (Environment Canada 1993).

Average 10 cm soil temperature was highest in 1999 at 17.7°C compared to the three years post-restoration. Temperatures at the restored and cutover sites were similar in 2000 (13.4 and 13.6°C, respectively) and in 2001 (14.7 and 14.1°C, respectively). However in 2002, the restored site had ~3°C higher soil temperature compared to the cutover site. Maximum 10 cm soil temperatures ranged from 23.5 to 29.1°C and peaked in late July in 1999 and 2001 and in early August in 2000 and 2002.

4.3.2 Diffusive CH₄ Emissions

CH₄ flux from bare peat was fairly uniform during 1999 with both the pre-restored and cutover sites acting as small CH₄ sinks throughout the entire field season (Figure 4.2). Mean daily CH₄ fluxes from the pre-restored and cutover sites (Table 4.2) were not significantly different (p < 0.05), respectively.

Bare peat CH₄ flux in 2000 was more variable than 1999, acting as both a source and sink of CH₄ (Figure 4.2), however the average flux remained small for both the
Figure 4.2 Mean daily CH$_4$ flux (mg CH$_4$ m$^{-2}$ d$^{-1}$) of bare peat, mosses, vasculars and shrubs at the restored and cutover sites over the four field seasons. *Note the change in scale from 1999 and 2000 to 2001 and 2002.
Table 4.2 Seasonal CH$_4$ fluxes from bare peat, mosses, shrubs, vascular vegetation, ditches, and ponds from the restored and cutover sites for the four field seasons.

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Restored</th>
<th>Cutover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td>Peat</td>
<td>64</td>
<td>-16.4</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Ditch</td>
<td>12</td>
<td>-6.2</td>
</tr>
<tr>
<td></td>
<td>Pond</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1999</td>
<td>Peat</td>
<td>50</td>
<td>-6.6</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Ditch</td>
<td>19</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>Pond</td>
<td>23</td>
<td>-2.6</td>
</tr>
<tr>
<td>2000</td>
<td>Peat</td>
<td>48</td>
<td>-5.4</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>32</td>
<td>-5.1</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>11</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Ditch</td>
<td>51</td>
<td>-14.1</td>
</tr>
<tr>
<td></td>
<td>Pond</td>
<td>95</td>
<td>-8.6</td>
</tr>
<tr>
<td>2001</td>
<td>Peat</td>
<td>43</td>
<td>-17.1</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>98</td>
<td>-17.3</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>75</td>
<td>-7.0</td>
</tr>
<tr>
<td></td>
<td>Ditch</td>
<td>65</td>
<td>-14.0</td>
</tr>
<tr>
<td></td>
<td>Pond</td>
<td>49</td>
<td>-3.8</td>
</tr>
</tbody>
</table>
restored and cutover sites (Table 4.2). CH₄ flux was high (source) during the beginning of the season and then decreased (became a sink) during the last half of the study period. Restored and cutover bare peat fluxes were not significantly different (p > 0.05) in 2000 but the 2000 restored site fluxes were significantly larger than 1999 fluxes (p < 0.05).

Vascular, moss and shrub vegetation were also monitored for CH₄ emissions at the cutover site but were absent from the restored site as a result of the restoration process. Vascular, moss and shrub fluxes (Table 4.2) were not significantly different (p > 0.05) from bare peat values but vascular fluxes were significantly higher (p > 0.05) than shrub CH₄ fluxes.

In contrast to the 2000 season data, CH₄ fluxes during 2001 and 2002 became very large and highly variable from the restored site whereas the cutover site was only moderately variable with higher fluxes during 2002 (Figure 4.2). In 2001, bare peat and mosses for the restored and cutover sites were not significantly different (Table 4.2). However, only fluxes from bare peat were significantly higher than 1999 (p < 0.05) and 2000 values (p < 0.05). Fluxes remained low throughout the entire field season at the cutover site while at the restored site they remained low only during the beginning of the field season with high water table conditions. Fluxes from restored site mosses became larger and more variable during the last half of the field season, and as a result, the year was separated into wet (high average water table position from Julian day 121 to 200) and dry (low average water table position from Julian day 200 to 243) conditions and average fluxes were calculated. Bare peat showed no significant difference in mean CH₄ flux between wet and dry conditions whereas mosses had a higher flux under wet
conditions (2.3 ± 2.6 mg CH₄ m⁻² d⁻¹) compared to dry conditions (0.3 ± 1.0 mg CH₄ m⁻² d⁻¹). Cutover shrub mean CH₄ fluxes were 0.1 ± 1.9 mg CH₄ m⁻² d⁻¹ and ranged from -4.1 to 3.3 mg CH₄ m⁻² d⁻¹. Fluxes from shrubs were not significantly different between years or from cutover bare peat and mosses. Due to their minimal influence on CH₄ emissions and their very small areal coverage, measurement of shrub fluxes were omitted in 2002 in order to increase the number of moss and vascular sites measured and to measure ebullition and porewater CH₄ concentrations.

2001 vascular vegetation was significantly different between the restored and cutover sites (Table 4.2). Fluxes from restored site vascular vegetation were also significantly larger than both restored peat and moss fluxes but both sites were not significantly different between years. Breaking average flux values into wet and dry conditions found that restored vascular fluxes were significantly higher (47.9 ± 29.6 mg CH₄ m⁻² d⁻¹) during dry conditions than wet conditions (2.0 ± 1.5 mg CH₄ m⁻² d⁻¹).

In 2002, bare peat and mosses were again not significantly different between the restored and cutover sites or for previous years (Table 4.2). Breaking down the mean seasonal fluxes into wet and dry conditions found that restored and cutover bare peat had a significantly higher CH₄ flux under wet conditions (2.0 ± 4.6 mg CH₄ m⁻² d⁻¹ and 1.3 ± 3.2 mg CH₄ m⁻² d⁻¹, respectively) than dry conditions (-4.4 ± 5.5 and -3.4 ± 5.4 mg CH₄ m⁻² d⁻¹, respectively). Conversely, both restored and cutover mosses were not significantly different between conditions.

The magnitude of restored vascular fluxes was slightly lower (not significant) than 2001 however the variability was much less and became consistent through the last
half of the study period (Figure 4.2 and Table 4.2). Restored vascular fluxes were significantly higher than both restored moss and bare peat values. Cutover vascular fluxes (Table 4.2) were not significantly different than previous years but were significantly lower ($p < 0.05$) than restored vascular fluxes. Breaking down fluxes into wet and dry conditions found cutover vascular vegetation significantly higher (1.3 ± 1.9 mg CH$_4$ m$^{-2}$ d$^{-1}$) under wet conditions while restored vascular vegetation was significantly higher (39.8 ± 14.5 mg CH$_4$ m$^{-2}$ d$^{-1}$) under dry conditions.

Fluxes from both the restored and cutover ditches were highly variable over the entire study (Figure 4.3). During 1999, restored ditch fluxes were significantly higher ($p < 0.05$) than cutover ditch fluxes (Table 4.2).

In 2000, restored ditch fluxes decreased while cutover ditch fluxes increased but were not significantly different to each other (Figure 4.3 and Table 4.2). Restored ponds were small sources of CH$_4$ (Table 4.2) and had minimal variability in emissions (Figure 4.3). 2001 fluxes were generally higher and much more variable from the restored ditches and ponds as well as the cutover ditches (Figure 4.3). Restored and cutover ditches were not significantly different however the restored ditches and pond fluxes were significantly higher than 2000 fluxes (Table 4.2).

Fluxes from restored ditches and ponds were significantly higher in 2002 compared to 2001 and were still highly variable over the season (Figure 4.3). Cutover ditches were higher but not significantly different than 2001, and were also highly variable (Table 4.2).
Figure 4.3 Mean daily CH$_4$ flux (mg CH$_4$ m$^{-2}$ d$^{-1}$) of ponds and ditches at the restored and cutover sites over the four field seasons. *Note the change in scale for each graph.
4.3.3 Episodic CH₄ Emissions

Observations of episodic CH₄ release from restored ponds and ditches in 2001 (and absent in 1999 and 2000) led to the monitoring of ebullition in 2002. Mean ebullition from the restored ponds and ditches were 2.9 ± 2.5 and 10.7 ± 16.9 mg CH₄ m⁻² d⁻¹ respectively and ranged from 0.0 to 12.2 mg CH₄ m⁻² d⁻¹ for the ponds and from 0.0 to 74.3 mg CH₄ m⁻² d⁻¹ for the ditches (Figure 4.4). Ebullition ranged in importance from the ponds with the zone 2 pool having the lowest percent ebullition compared to diffusive CH₄ flux (0.5%) followed by zone 1 (1.6%), zone 4 (1.9%) and zone 3 (1.5%). For the ditches, the zone 1 ditch had the lowest percent ebullition (0.2%) followed by zone 4 (0.6%), zone 3 north (5.6%), zone 2 (4.6%) and zone 3 south (42.4%). Ebullition represented on average 10.6% of the CH₄ flux from the ditches and 1.4% from the ponds.

4.3.4 Seasonal CH₄ Exchange

Total seasonal CH₄ exchange was determined using the average seasonal flux for bare peat, mosses, vascular vegetation, shrubs, ditches and ponds at both the cutover and restored sites, number of days in the field season, and the % coverage of each component to determine the mass of CH₄ released or consumed. These values were summed to determine the total amount of CH₄ released by the peatland. Some assumptions were made for unavailable flux and coverage data and are listed in Table 4.3.

At the cutover site bare peat were net seasonal consumers of CH₄ with the exception of 2001 (Figure 4.5). Mosses were net consumers during 1999 and 2000 and were net producers during 2001 and 2002 while vascular vegetation exhibited the opposite trend. Shrubs were small sources of CH₄ for each year of the study. Restored
Figure 4.4 a) CH$_4$ ebullition (mg CH$_4$ m$^{-2}$ d$^{-1}$) for ditches, and b) CH$_4$ ebullition (mg CH$_4$ m$^{-2}$ d$^{-1}$) for ponds at the restored site. The horizontal lines indicate the temporal range of each ebullition measurement.
Table 4.3 Flux and coverage assumptions made in determining total seasonal \(\text{CH}_4 \) exchange.

<table>
<thead>
<tr>
<th>Year</th>
<th>COMPONENT</th>
<th>ASSUMPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Cutover Moss Flux</td>
<td>Set equal to measured 2000 moss values based on the assumption that the cutover (\text{CH}_4) fluxes were not significantly different between years.</td>
</tr>
<tr>
<td></td>
<td>Cutover Shrub Flux</td>
<td>Set equal to measured 2000 shrub values based on the assumption that the cutover (\text{CH}_4) fluxes were not significantly different between years.</td>
</tr>
<tr>
<td></td>
<td>Cutover Vascular Flux</td>
<td>Set equal to measured 2000 vascular values based on the assumption that the cutover (\text{CH}_4) fluxes were not significantly different between years.</td>
</tr>
<tr>
<td></td>
<td>Restored Moss Flux</td>
<td>Set equal 1999 cutover moss flux as restoration had not yet occurred and it was assumed that the restored site (\text{CH}_4) fluxes were not significantly different than the cutover site (\text{CH}_4) fluxes.</td>
</tr>
<tr>
<td></td>
<td>Restored Shrub Flux</td>
<td>Set equal 1999 cutover shrub flux as restoration had not yet occurred and it was assumed that the restored site (\text{CH}_4) fluxes were not significantly different than the cutover site (\text{CH}_4) fluxes.</td>
</tr>
<tr>
<td></td>
<td>Restored Vascular Flux</td>
<td>Set equal 1999 cutover vascular flux as restoration had not yet occurred and it was assumed that the restored site (\text{CH}_4) fluxes were not significantly different than the cutover site (\text{CH}_4) fluxes.</td>
</tr>
<tr>
<td></td>
<td>Restored Moss Flux</td>
<td>Set equal to the mean of 1999 and measured 2001 moss (\text{CH}_4) flux assuming that restoration is increasing (\text{CH}_4) fluxes each year.</td>
</tr>
<tr>
<td></td>
<td>Restored Vascular Flux</td>
<td>Set equal to the mean of 1999 and measured 2001 vascular (\text{CH}_4) flux assuming that restoration is increasing (\text{CH}_4) fluxes each year.</td>
</tr>
<tr>
<td></td>
<td>Restored Shrub Flux</td>
<td>Set equal to 2000 cutover shrub (\text{CH}_4) flux due to the limitation of the number of sites that could be monitored at the restored site and because shrubs have not been found to be large sources of (\text{CH}_4) as a result of their limited transport capacity. It is expected that this assumption may underestimate (\text{CH}_4) fluxes from restored shrubs but that the error involved is small.</td>
</tr>
<tr>
<td>2000</td>
<td>Restored Shrub Flux</td>
<td>Set equal to 2001 cutover shrub (\text{CH}_4) flux due to the limitation of the number of sites that could be monitored at the restored site and because shrubs have not been found to be large sources of (\text{CH}_4) as a result of their limited transport capacity. It is expected that this</td>
</tr>
</tbody>
</table>
assumption may underestimate CH₄ fluxes from restored shrubs but that the error involved is small.

<table>
<thead>
<tr>
<th>Year</th>
<th>COMPONENT</th>
<th>ASSUMPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Peat, Moss and Vascular Coverages</td>
<td>Calculated based on vegetation surveys conducted at the site (Rochefort, unpublished data).</td>
</tr>
<tr>
<td>2000</td>
<td>Peat Coverage</td>
<td>Estimated based on visual observations converted to mapping estimates of coverage.</td>
</tr>
<tr>
<td></td>
<td>Moss Coverage</td>
<td>Estimated based on visual observations converted to mapping estimates of coverage.</td>
</tr>
<tr>
<td></td>
<td>Vascular Coverage</td>
<td>Equal to the residual of decrease in 20000 peat cover and the increase in 2000 moss cover.</td>
</tr>
<tr>
<td></td>
<td>Shrub Coverage</td>
<td>Based on visual observations, areal coverage did not appear to change so the coverage was set to equal 1999 shrub coverage.</td>
</tr>
<tr>
<td>2001</td>
<td>Peat, Moss and Vascular Coverages</td>
<td>Calculated based on vegetation surveys conducted at the site (Rochefort, unpublished data).</td>
</tr>
<tr>
<td>2002</td>
<td>Peat Coverage</td>
<td>Estimated based on visual observations converted to mapping estimates of coverage.</td>
</tr>
<tr>
<td></td>
<td>Moss Coverage</td>
<td>Estimated based on visual observations converted to mapping estimates of coverage.</td>
</tr>
<tr>
<td></td>
<td>Vascular Coverage</td>
<td>Estimated based on visual observations converted to mapping estimates of coverage.</td>
</tr>
<tr>
<td></td>
<td>Shrub Coverage</td>
<td>Based on visual observations, areal coverage did not appear to change so the coverage was set to equal 1999 shrub coverage.</td>
</tr>
<tr>
<td>All Years</td>
<td>Ditch and Pond Coverages</td>
<td>Total areas of ditches and ponds were calculated by determining the length and widths of each individual ditch and pond from a GIS theme of the site.</td>
</tr>
</tbody>
</table>
Figure 4.5 a) Seasonal CH$_4$ exchange (mg CH$_4$ m$^{-2}$) for bare peat, mosses, vascular vegetation, shrubs, ditches and ponds at the restored site, b) Seasonal CH$_4$ exchange (mg CH$_4$ m$^{-2}$) for bare peat, mosses, vascular vegetation, shrubs and ditches at the cutover site, and c) total seasonal CH$_4$ exchange (g CH$_4$ m$^{-2}$) for the cutover and restored sites over the four field seasons.
site bare peat and mosses were only net seasonal consumer of CH$_4$ during 1999 and 2002. Conversely to the cutover site, vascular vegetation were large net producers of CH$_4$ for each year of the study, while shrubs were again only small sources of CH$_4$.

Ditches at both the restored and cutover sites were net seasonal CH$_4$ producers however their patterns of seasonal CH$_4$ exchange were quite different. Restored site ditches increased in net seasonal CH$_4$ emission with each year post-restoration while fluxes from the cutover site showed no specific trend. In both cases, ditches were one of the major sources of total CH$_4$ released from each site.

Ponds created at the restored site were net seasonal CH$_4$ producers for each year with total seasonal CH$_4$ exchange increasing every year post-restoration, however values were not as significant as ditches or vascular vegetation. (0.3 g CH$_4$ m$^{-2}$). Conversely, total seasonal CH$_4$ exchange increased exponentially at the restored site from a net release (0.1 g CH$_4$ m$^{-2}$) in 1999 to a large CH$_4$ source (4.2 g CH$_4$ m$^{-2}$) in 2002 which was significantly larger (~122% higher) than the cutover site.

4.4 Discussion

4.4.1 Relationships to Environmental Variables

Regression analyses found that both the pre-restored and cutover site fluxes in 1999 were poorly correlated to water table position while a stronger relationship was found with the 10 cm soil temperature at the cutover site which was nonexistent at the pre-restored site (Table 4.4).

No strong relationships in 2000 were found with any environmental variables for either the restored or cutover peat fluxes. However, cutover shrubs and vascular
Table 4.4 R^2 (n) values of linear regressions of CH$_4$ vs. water table (WT), unsaturated zone soil moisture (SM), soil temperature at 2 (T2), 5 (T5), 10 (T10) cm, water temperature (Tw) and gross ecosystem production (GEP).

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>WT</th>
<th>SM</th>
<th>T2</th>
<th>T5</th>
<th>T10</th>
<th>Tw</th>
<th>GEP</th>
<th>WT</th>
<th>SM</th>
<th>T2</th>
<th>T5</th>
<th>T10</th>
<th>Tw</th>
<th>GEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Peat</td>
<td>0.21</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
<td>0.29</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.54</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Ditch</td>
<td>0.30</td>
<td>NA</td>
<td>0.19</td>
<td>NA</td>
<td>0.21</td>
<td>NA</td>
<td>NA</td>
<td>0.42</td>
<td>NA</td>
<td>0.20</td>
<td>0.14</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Pond</td>
<td>NA</td>
</tr>
<tr>
<td>2000</td>
<td>Peat</td>
<td>0.01</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
<td>0.00</td>
<td>NA</td>
<td>NA</td>
<td>0.02</td>
<td>NA</td>
<td>0.04</td>
<td>0.00</td>
<td>0.06</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.14</td>
<td>0.03</td>
<td>0.01</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.00</td>
<td>0.88</td>
<td>0.04</td>
<td>0.04</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Ditch</td>
<td>NA</td>
<td>NA</td>
<td>0.02</td>
<td>NA</td>
<td>0.06</td>
<td>NA</td>
<td>NA</td>
<td>0.67</td>
<td>NA</td>
<td>0.64</td>
<td>0.90</td>
<td>0.80</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Pond</td>
<td>NA</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
<td>0.20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.07</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2001</td>
<td>Peat</td>
<td>0.00</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
<td>0.05</td>
<td>NA</td>
<td>NA</td>
<td>0.02</td>
<td>NA</td>
<td>0.21</td>
<td>0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Moss</td>
<td>0.09</td>
<td>NA</td>
<td>0.00</td>
<td>NA</td>
<td>0.07</td>
<td>NA</td>
<td>NA</td>
<td>0.07</td>
<td>NA</td>
<td>0.05</td>
<td>0.21</td>
<td>0.34</td>
<td>0.46</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.09</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>Ditch</td>
<td>Pond</td>
<td>2002 Peat</td>
<td>Moss</td>
<td>Shrub</td>
<td>Vascular</td>
<td>Ditch</td>
<td>Pond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25 (11)</td>
<td>0.05 (7)</td>
<td>0.15 (11)</td>
<td>0.23 (11)</td>
<td>0.20 (11)</td>
<td>NA</td>
<td>0.00 (10)</td>
<td>0.02 (10)</td>
<td>0.62 (6)</td>
<td>0.00 (10)</td>
<td>0.00 (10)</td>
<td>NA</td>
<td>0.14 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.03 (37)</td>
<td>0.01 (25)</td>
<td>0.03 (27)</td>
<td>0.09 (51)</td>
<td>0.00 (27)</td>
<td>NA</td>
<td>0.08 (22)</td>
<td>0.11 (10)</td>
<td>0.00 (10)</td>
<td>0.00 (10)</td>
<td>0.22 (22)</td>
<td>0.73 (10)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.11 (80)</td>
<td>0.03 (94)</td>
<td>NA</td>
<td>0.00 (111)</td>
<td>0.01 (93)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>0.00 (42)</td>
<td>0.02 (43)</td>
<td>0.00 (43)</td>
<td>0.01 (43)</td>
<td>0.02 (43)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.04 (98)</td>
<td>0.07 (98)</td>
<td>0.01 (98)</td>
<td>0.02 (98)</td>
<td>NA</td>
<td>0.06 (68)</td>
<td>NA</td>
<td>0.04 (29)</td>
<td>0.05 (29)</td>
<td>0.04 (29)</td>
<td>0.10 (29)</td>
<td>0.21 (29)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04 (37)</td>
<td>0.04 (37)</td>
<td>0.04 (37)</td>
<td>NA</td>
<td>0.03 (42)</td>
<td>NA</td>
<td>0.02 (37)</td>
<td>0.02 (42)</td>
<td>0.16 (42)</td>
<td>0.20 (42)</td>
<td>0.33 (42)</td>
<td>NA</td>
<td>0.21 (41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01 (56)</td>
<td>0.02 (51)</td>
<td>0.02 (47)</td>
<td>0.03 (47)</td>
<td>NA</td>
<td>0.01 (47)</td>
<td>NA</td>
<td>0.01 (25)</td>
<td>0.01 (16)</td>
<td>0.20 (16)</td>
<td>0.22 (16)</td>
<td>0.22 (16)</td>
<td>0.11 (16)</td>
<td>0.10 (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 (46)</td>
<td>0.14 (49)</td>
<td>0.11 (49)</td>
<td>0.14 (49)</td>
<td>NA</td>
<td>0.11 (49)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table shows the percentage of each category in different years and locations.
vegetation were found to be strongly correlated to 2 cm and 5 cm soil temperature, respectively. Cutover vascular vegetation was also found to be related to the water table position.

In 2001 restored and cutover bare peat, restored moss and cutover shrub fluxes were not significantly correlated to soil temperature, unsaturated zone soil moisture or water table position but cutover moss flux was correlated to the 10 cm soil temperature and GEP. Even when separating the data into wet and dry conditions (defined previously) no good relationships were observed. Cutover vascular vegetation was correlated to unsaturated zone soil moisture while restored vascular vegetation was only weakly correlated. When breaking the study period into wet and dry conditions, the restored vascular vegetation was correlated to GEP under both wet and dry ($R^2 = 0.42$ and 0.61, respectively, $n = 5$).

2002 correlations showed no strong relationships for restored peat and mosses when determined over the entire study periods nor when separated into wet and dry conditions. Conversely, cutover mosses showed a weak correlation to GEP ($R^2 = 0.43$, $n = 18$) under wet. 2002 cutover vascular fluxes were correlated to 10 cm soil temperature flux over the entire season and under wet conditions ($R^2 = 0.30$, $n = 20$) but showed no strong correlations under dry conditions.

1999 restored ditches were weakly correlated to water table position while cutover ditches had a slightly stronger relationship. No significant correlations were found for 2000 for either restored ponds and ditches or cutover ditches.
2001 cutover ditches had a strong relationship to water temperature. However, when separating the season into wet and dry conditions, cutover ditches were correlated to 10 cm soil temperature ($R^2 = 0.30, n = 14$), water temperature ($R^2 = 0.49, n = 9$) and water table position ($R^2 = 0.30, n = 14$) under wet conditions.

Coinciding with 2001, no strong relationships were determined for restored ditches and ponds in 2002 while cutover ditches were correlated to 5 cm soil temperature under dry conditions ($R^2 = 0.24, n = 10$) and to 10 cm soil temperature under wet conditions ($R^2 = 0.28, n = 13$).

4.4.2 Bare Peat

Mean daily CH$_4$ emissions from bare peat at the restored and cutover sites fall within the low end of emissions determined for peat from natural peatlands 2.0×10^2 to 1.3×10^3 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Glenn et al. 1993, Moore & Dalva 1993, Whalen & Reeburgh 2000, Frenzel & Karofeld 2000, Waddington & Price 2000). Mean daily CH$_4$ emissions were also similar to newly harvested sites 0.2 to 24.0 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Sundh et al. 2000, Waddington & Price 2000), however the bare peat also experienced net CH$_4$ consumption, which was noted at an old harvested peatland site -2.4 to 7.2 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Sundh et al. 2000, Tuittila et al. 2000c).

As in other studies (e.g. Glenn et al. 1993, Sundh et al. 2000), CH$_4$ emissions from bare peat experienced no strong seasonal patterns. As the rate of CH$_4$ production and oxidation are most likely the dominant processes controlling CH$_4$ emissions from peat, soil temperature influences the rate of CH$_4$ production and is reflected in the moderately strong correlations with CH$_4$ flux for restored and cutover peat. The rate of
CH$_4$ production could also explain the generally higher CH$_4$ flux at the restored site compared to the cutover site. Moreover, potential CH$_4$ production was higher at the restored site (0.03 ug g$^{-1}$ d$^{-1}$) than the cutover site (0.02 ug g$^{-1}$ d$^{-1}$) (see Chapter 3).

CH$_4$ fluxes increased with each year post-restoration at the restored site and each year, with the exception of 2002 at the cutover site. Mean seasonal CH$_4$ soil gas profiles for the restored and cutover sites (Figure 4.6) also show an increasing CH$_4$ concentration with each year post-restoration, including 2002, supporting the increase in the rate of CH$_4$ production with each year post-restoration due to: 1) a larger anoxic zone, 2) an increase in the methanogenic biomass, 3) warmer temperatures, and 4) a supply of labile carbon from the new vegetation. In 2000 and 2001 both the restored and cutover sites had surface soil gas concentrations less than atmospheric (~2 ppmv), with concentrations increasing with depth, but in 2001 concentrations equaled or exceeded atmospheric at 30 and 75 cm in the restored (3.1 ppmv) and cutover (2.1 ppmv) sites respectively. Concentrations less than atmospheric indicate that consumption of atmospheric CH$_4$ was occurring, supporting the consumptive CH$_4$ fluxes observed in 2000 for the cutover but not the restored site. The greater than atmospheric concentrations with depth in 2001 resulted in the small but positive CH$_4$ flux seen from both the restored and cutover sites. In 2002, soil gas concentrations ranged from 2.8 to 6.0 and from 4.5 to 16.9 ppmv for the cutover and restored sites, respectively, yet CH$_4$ fluxes from both sites were consumptive of atmospheric CH$_4$. In 2002, water table levels were significantly lower than previous years. This could potentially have limited the rate of CH$_4$ production by decreasing the anoxic zone to a depth in which no labile carbon was available and by increasing the zone
Figure 4.6 Mean seasonal CH$_4$ depth profiles of soil gas (ppmv) for the restored site, site for each season and for the cutover site.
in which CH$_4$ oxidation could occur. Using the water table position probability of exceedence graphs discussed in Chapter 3, and with an average water table position in 2002 for the cutover and restored sites of -44.4 and -37.5 cm, respectively, it can be estimated that the cutover site water table was lower than the depth in which CH$_4$ production is greater than oxidation (see Chapter 3) while the restored site was on the border but most likely also exceeding this boundary. Therefore, the low water table levels experienced in 2002 was responsible for the net CH$_4$ consumption emission for bare peat at both the restored and cutover sites.

4.4.3 Vegetation

Mean daily CH$_4$ fluxes from the moss vegetation fall within the range from natural moss dominated peatlands ~-2 to 40 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Whalen & Reeburgh 1988, Moore & Knowles 1989, Moore & Knowles 1990, Bartlett et al. 1992, Bubier et al. 1993, Savage et al. 1997, Granberg et al. 1997, Bellisario et al. 1999). Fluxes from drained/harvested sites were lower than those from natural sites for both this and other studies which ranged from -0.3 to 2 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Roulet et al. 1993, Roulet & Moore 1995) and slightly higher from rewetted sites -2.4 to 4.8 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Tuittila et al. 2000c).

CH$_4$ fluxes from vascular vegetation from this study fall within the range from natural sites with vascular vegetation of -73.6 to 2240 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Whalen & Reeburgh 1988, Bartlett et al. 1992, Yavitt et al. 1993, Waddington et al. 1996, Komulainen et al. 1998, Frenzel & Karofeld 2000) but were more consistent with values from vascular vegetation at drained sites, 0 to 20 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Tuittila et al. 2000b).
and followed the same pattern of an increase in CH₄ flux after rewetting, 6.4 to 75 mg CH₄ m⁻² d⁻¹ (Komulainen et al. 1998, Tuittila et al. 2000b).

Many studies have shown that vascular plants can enhance CH₄ emissions through the supply of labile carbon and transport of CH₄ to the atmosphere (Chanton et al. 1992, 1993, Waddington et al. 1996, Shannon et al. 1996, Joabsson et al. 1999ab, Greenup et al. 2000, Joabsson & Christensen 2001, King & Reeburgh 2002, King et al. 2002) resulting in higher CH₄ fluxes than from natural moss dominated bog peatlands. However, few studies have looked at the impacts of peatland drainage and harvesting (Tuittila et al. 2000b) or restoration (Komulainen et al. 1998, Tuittila et al. 2000b) on vascular control of CH₄ emissions.

Restoration did not appear to have a significant effect on CH₄ emissions from mosses and showed no temporal pattern that could be significantly related to water table or peat temperature as in other studies (e.g. Roulet et al. 1993, Roulet & Moore 1995, Savage et al. 1997). CH₄ emissions from restored site vascular vegetation plots were 23 to 57 times higher than emissions from vascular vegetation plots at the cutover site. Fluxes from vascular vegetation plots at both the restored and cutover sites increased significantly after mid-June (Figure 4.2) when the vegetation began to grow. Strong positive correlations have been found between GEP and CH₄ flux (e.g. Whiting & Chanton 1993, Waddington et al. 1996) since higher vegetation GEP increases CH₄ flux through the larger aerenchyma and transport of CH₄ and the higher supply of labile carbon for methanogenesis. Restored site vascular vegetation had higher seasonal GEP than cutover site vascular vegetation (Figure 4.7), suggesting that the larger GEP of the
Figure 4.7 Cumulative seasonal GEP (g CO₂ m⁻² d⁻¹) vs. cumulative seasonal CH₄ (mg CH₄ m⁻² d⁻¹) for cutover and restored vasculars and mosses under wet and dry conditions.
restored vascular vegetation caused an increase in the supply of root exudates for CH$_4$ production and the ability of the plant to transport CH$_4$. Water is an essential component in photosynthesis, therefore the higher water table position in 2001 resulted in higher GEP and therefore larger CH$_4$ fluxes post-restoration. Furthermore, the higher water table allows more of the vascular roots to be within the zone of CH$_4$ production, thereby permitting more CH$_4$ to be transported and root exudates to be utilized for methanogenesis (Waddington et al. 1996). Tuittila et al. (2000b) also found that low water table levels resulted in low CH$_4$ emission from *Eriophorum* and that CH$_4$ emissions increased with an increase in water table levels.

However, differences in cumulative CH$_4$ emissions and GEP within years can not be explained by water table position alone as mean water table position was similar between the restored and cutover sites over the growing season (Julian day 200 to 243). Yet, when comparing the mean seasonal volumetric moisture content between the restored and cutover vascular sites, 66.9 and 40.6% respectively, the cutover site was much drier, indicating that a deficit of soil moisture can significantly impact the growth of the vascular vegetation and therefore its ability to provide root exudates and transport CH$_4$. Similar results were found by Joabsson et al. (1996b) where a decrease in GEP caused by shading (mimicking the results of the dry conditions at the cutover site), resulted in decreased dissolved organic acids and carbon flow from the roots and lower CH$_4$ emissions.

The areal coverage of vascular vegetation has increased consistently post-restoration and as a result has increased CH$_4$ fluxes from the site. The influence of
vegetation on supplying labile carbon for methanogenesis and transport of CH$_4$ past the oxic zone are the primary processes increasing CH$_4$ production and emissions. Moss and vascular vegetation release carbon into the peat profile, either through root exudates or senescence, which is used by methanogens. Seasonal porewater CH$_4$ concentrations beneath restored site mosses (Figure 4.8) were higher than beneath cutover peat (mean 0.98 and 0.02 mg L$^{-1}$, respectively) indicating that mosses also potentially increased the amount of available labile carbon which increased CH$_4$ production and dissolved CH$_4$ concentrations. Yet dissolved CH$_4$ beneath the restored mosses was lower compared to literature values for natural moss peatland (0.0 to 19.3 mg L$^{-1}$) (Nilsson & Bohlin 1993, Lloyd et al. 1998, Frenzel & Karofeld 2000). Seasonal porewater CH$_4$ beneath restored site vascular vegetation was higher than mosses (mean 1.2 mg L$^{-1}$) suggesting that it has a stronger influence on carbon supply and CH$_4$ production. Similarly, dissolved CH$_4$ beneath restored vascular vegetation was smaller than literature values (0.0 to 32.1 mg L$^{-1}$) (Waddington et al. 1996, King & Reeburgh 2000) indicating that restoration has not yet returned CH$_4$ dynamics to the same magnitude as natural peatlands.

The GEP of restored mosses was higher in 2001 compared to 2002 due to higher water table levels (discussed above) and as such had higher CH$_4$ emissions. However, when separating GEP and CH$_4$ into wet and dry conditions, GEP was not significantly different but CH$_4$ fluxes were higher under wet conditions, suggesting that GEP of mosses does not affect CH$_4$ emissions. Therefore, CH$_4$ transport was not occurring through mosses. This is not surprising as mosses have no roots or aerenchymous tissue to act as conduits (Greenup et al. 2000). Similarly, GEP and CH$_4$ emissions of restored
Figure 4.8 Mean seasonal CH₄ depth profiles of porewater (mg L⁻¹) for 2002 of the restored site mosses and vasculars with cutover peat as a comparison.
vascular vegetation was highest in 2001, however GEP and CH$_4$ from vascular vegetation was greater under dry conditions than wet conditions indicating that increases in vascular GEP increased the conduit potential of the plant to transport CH$_4$, thereby increasing CH$_4$ emissions. Similar results from a two-year post-restoration vascular site were found by Komulainen et al. (1998) where CH$_4$ emissions increased five to ten times after the wet season. The influence of vascular transport of CH$_4$ is further substantiated by the changes in dissolved CH$_4$ through the season. During the beginning of the season dissolved CH$_4$ concentrations were moderately high (mean 1.2 mg L$^{-1}$), peaking at the beginning of June (mean 1.6 mg L$^{-1}$) and began to decrease around early to mid July, remaining low throughout the rest of the field season (mean 0.9 mg L$^{-1}$), similar to results found by Waddington et al. (1996). The lower dissolved CH$_4$ at the end of July, when soil temperatures were warmest and carbon supply from plant growth was larger, resulted from the removal of CH$_4$ by plant transport being greater than the rate of CH$_4$ production. Minkkinen et al. (1997) and Frenzel & Karofeld (2000) attributed the absence of ebullition from vascular vegetation to the transport mechanism depleting CH$_4$ concentrations within the peat and preventing bubble formation and release. The lack of observations of episodic events from vascular vegetation plots at the restored site is also likely due to the depletion of dissolved CH$_4$ by vegetation.

4.4.4 Ditches

The mean daily CH$_4$ flux from ditches was similar to that reported in the literature for drained peatlands (0.0 to 595.0 mg CH$_4$ m$^{-2}$ d$^{-1}$) (Roulet & Moore 1995, Minkkinen et
al. 1997, Sundh et al. 2000) for 1999 to 2001 but 2002 CH₄ flux values exceeded this range by up to ~400%.

CH₄ fluxes from ditches were consistently higher than the adjacent peat in all years. Time series profiles of dissolved porewater CH₄ (Figure 4.9) at ~100 cm beneath the peat surface, from the ditch and field, show that concentrations are much higher beneath the ditches compared to peat located 2.5 m from the ditch at both the restored and cutover sites. This suggests that there is a larger supply of labile carbon for methanogenesis within the ditches and therefore a larger rate of CH₄ production, resulting in the larger fluxes from the ditches compared to the adjacent peat. Furthermore, the concentrations of dissolved CH₄ at the restored site changed throughout the field season with highest concentrations at the end of May/beginning of June, coinciding with wet conditions, warm temperatures and high rates of CH₄ production. CH₄ concentrations then decreased to the lowest values measured on the 26 July due to large ebullition events (Figure 4.4a), large CH₄ fluxes (Figure 4.3), and vegetative transport depleting the pool of dissolved CH₄. Dissolved CH₄ increased in concentration until the end of the season despite the low water table conditions and was much lower than at the beginning of the season. These lower concentrations may have resulted in the lower CH₄ fluxes from the ditches near the end of the season. Concentrations of dissolved CH₄ were significantly lower at the cutover site than the restored site (Figure 4.9) with the highest concentrations occurring on 12 July while all other dates were very similar in their profiles with extremely low (0 to 0.23 mg L⁻¹ beneath the peat and 0 to 0.43 mg L⁻¹ beneath the ditch) concentrations.
Figure 4.9 Time series profiles of dissolved CH$_4$ (mg L$^{-1}$) from the ditch and field in 2002 for the restored site and cutover site.
Time series profiles of redox (Figure 4.10) ~60 cm beneath the peat surface, from the ditch and field, show that redox gradients generally increased with depth and were the same beneath the ditch and 2.5 m from the ditch at both the restored and cutover sites. In fact, redox conditions not suitable for methanogenesis were found beneath the restored site ditch yet still had high concentrations of dissolved CH$_4$ and high CH$_4$ emissions. Conversely, redox conditions suitable for methanogenesis were found within the peat at 2.5 m from the ditch on 26 July, suggesting that CH$_4$ production from the peat at 2.5 m should be similar to the ditch, which was not observed. Consequently, CH$_4$ flux at 2.5 m from the ditch is likely limited by a supply of labile carbon (Figure 4.9) and not redox conditions. In addition, at 2.5 m from the ditch, the amount of oxic peat above the water table is larger than at the ditch which generally remained saturated. Therefore, CH$_4$ that is produced at depth at 2.5 m from the ditch would be oxidized as it diffused through the oxic peat layer resulting in the smaller CH$_4$ flux, whereas the oxic layer at the ditch only occurred at the end of the season causing a decrease in the CH$_4$ flux from the ditch (Figure 4.3).

Similar processes occurred at the cutover site with the exception of carbon supply being more recalcitrant within the ditches and peat than at the restored site, resulting in the lower concentrations of dissolved CH$_4$ and thereby lower CH$_4$ fluxes.

CH$_4$ flux from the ditches generally increased with each year post-restoration with the exception of 2000, the first year after the restoration process. Prior to restoration, the ditches were similar to that of the cutover site, that is, they were contributing water to the outflow and were vegetated mainly with shrubs and some Typha. After restoration, the
Figure 4.10 Time series profiles of redox (mV) from the ditch and field in 2002 for the restored site and cutover site. *Note -240 mV is the redox value in which methanogenesis occurs.
ditches were partially filled in with brush (shrubs and trees) removed from the fields and covered over with peat removed through the construction of the ponds. The ditches were no longer visible and stagnant pools of water were not present. Accordingly, it can be assumed that the same processes discussed for the peat 2.5 m from the ditch were also present in the ditches in 2000 and produced the low CH$_4$ fluxes observed. Significant peat slumping occurred over the end of the 2000 field season and at the beginning of 2001, changing the profile of the ditches to a concave feature which possessed stagnant pools of water without an overlying oxic layer of peat. This change in ditch morphology likely resulted in higher CH$_4$ fluxes in 2001 during May and beginning of June of the field season compared to 2000.

During 2001 and 2002, CH$_4$ fluxes increased significantly around mid-June, coinciding with the start of significant vegetation growth. An increase in vegetation growth within the ditches enhanced the supply of labile carbon for methanogenesis (Figure 4.9), increasing CH$_4$ production, thereby increasing porewater CH$_4$ concentrations and CH$_4$ fluxes. Measurements of CH$_4$ fluxes from the ditches did not include plants (due to size constraints with the static chambers used) therefore estimates for flux from the ditches could be underestimated as transport by vascular vegetation, such as Typha, was not determined. To further support the influence of vegetation on CH$_4$ fluxes from ditches, 2002 fluxes were highest from the zone 4 ditch (data not shown) and occurred when a mat of algae was present at this site. Algae was not observed in the other ditches. Minkkinen et al. (1997) and Sundh et al. (2000) also found that high
emissions were correlated with the presence of green algae and attributed the large fluxes to the supply of labile carbon provided by the growth of the algae.

Bubble fluxes from the ditches were within the range reported by Minkkinen et al. (1997) of 3.0 to 37.0 mg CH$_4$ m$^{-2}$ d$^{-1}$ for drained peatland ditches. Ebullition accounted for 10.6% of CH$_4$ fluxes while other studies found ebullition to account for <10% of CH$_4$ fluxes (Minkkinen et al. 1997). Total mean daily flux from ditches (diffusive + bubbles) was ~500 mg CH$_4$ m$^{-2}$ d$^{-1}$ (with bubbles accounting for 2.1% of the total flux), ~1.7 times larger than that reported for a boreal beaver pond ~300 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Dove et al. 1999).

4.4.5 Ponds

Fluxes from the ponds in 2000 and 2001 were similar to values found for other pool and wetland ponds of 5.6 to 74.0 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Bartlett et al. 1988, Harriss et al. 1988, Moore et al. 1990, Waddington & Roulet 1996, MacDonald et al. 1998, Frenzel & Karofeld 2000) with the exception of Dove et al. (1999) which found a higher mean flux, 139.2 mg CH$_4$ m$^{-2}$ d$^{-1}$, at a beaver pond. In 2002, pond fluxes were much higher and closer to the values found for vegetated sites of a beaver pond (187.45 mg CH$_4$ m$^{-2}$ d$^{-1}$) by Dove et al. (1999) compared to open water sites.

Low CH$_4$ fluxes in the first two study seasons may have been a result of the limited carbon supply for methanogens as degradation of peat at the bottom of the pond was the main carbon supply process. Foster et al. (1983) found that CH$_4$ formed at the peat-water interface of a pond was from very old peat and was dated at 2700 years B.P. As the peat in BDB ponds are ~2 m below the original bog surface, it is expected that the
peat would be very recalcitrant in nature and therefore the rate of CH$_4$ production would be limited by the rate of peat degradation. Therefore, low CH$_4$ production in the ponds in 1999 and 2000 would result in low dissolved CH$_4$ concentrations and thus low CH$_4$ fluxes and minimal to no ebullition.

Water column profiles of dissolved oxygen (O$_2$) (Figure 4.11) indicate that the ponds had no gradient and low concentrations of O$_2$ at the beginning of the season but quickly became stratified and depleted in O$_2$ at depth by the end of May. These low O$_2$ levels were probably caused by consumption of O$_2$ by decomposers and the slow rate of O$_2$ diffusion through water (Dove et al. 1999). Low O$_2$ levels can limit CH$_4$ oxidation within the water column thereby resulting in larger fluxes from these sites. Consequently, the lower O$_2$ concentrations in the zone 2 pool may be responsible for the larger fluxes from this pond compared to that of the zone 4 pool (data not shown), while the low fluxes from the ponds at the beginning of the season (Figure 4.3) may be a result of low temperatures limiting CH$_4$ production as O$_2$ conditions were also low within the water column.

An increase in the presence of *Sphagnum* within the ponds in 2002 could be responsible for the higher fluxes during this study season. Increased plant growth within the pond would result in a supply of labile carbon for methanogenesis. This is supported by the large proportion (48 to 83%) of highly labile dissolved organic carbon within the ponds during 2001 (Toth 2002), increasing CH$_4$ production and dissolved CH$_4$ concentrations. Furthermore, the mean CH$_4$ flux measured at the peat-water interface in 2001 was 2.2 mg CH$_4$ m$^{-2}$ d$^{-1}$ while at the water-air interface it was 14.4 mg CH$_4$ m$^{-2}$ d$^{-1}$,
Figure 4.11 Dissolved oxygen (mg L\(^{-1}\)) depth profiles from the water surface for a) zone 2 pool and b) zone 4 pool throughout the 2001 field season.
suggesting that CH$_4$ is being produced from sources (labile DOC) other than pond bottom peat.

Profiles of dissolved CH$_4$ indicate that dissolved CH$_4$ concentrations changed significantly through the 2002 season and generally peaked at depths closest to the peat-water interface. Profiles for both ponds had low concentrations on July 9 (0.4 to 6.3 and 0.4 to 2.8 mg L$^{-1}$ for zone 2 and zone 4 pools respectively), which increased significantly on August 20 (1.9 to 40.2 and 163.1 to 301.9 mg L$^{-1}$ respectively) and then decreased again to their lowest levels on August 29 (0.00 to 0.02 and 0.1 to 0.3 mg L$^{-1}$ respectively). CH$_4$ fluxes from the ponds were high prior to July 9, possibly depleting dissolved CH$_4$ concentrations, resulting in the low to moderate fluxes from the ponds on this day. CH$_4$ emissions remained low, allowing dissolved CH$_4$ to increase, resulting in a large episodic event on August 20 coinciding with the lowest water levels observed the ponds. Continued large flux events further depleted dissolved CH$_4$ concentrations, resulting in the lowest dissolved CH$_4$ concentrations observed on August 29 and the low CH$_4$ fluxes observed just prior to this date.

Bubble fluxes from the ponds fall within the range of values reported in other studies 0.3 to 226.4 mg CH$_4$ m$^{-2}$ d$^{-1}$ (Dove et al. 1999, Frenzel & Karofeld 2000). Ebullition equalled 1.4% of CH$_4$ fluxes while other studies found ebullition to account for 20 to 65% of CH$_4$ fluxes (Chanton et al. 1989, Weyhenmeyer 1992, Dove et al. 1999). Large ebullition events rarely occurred on days with large CH$_4$ fluxes. The majority of CH$_4$ fluxes measured the same time as large ebullition events were omitted due to their poor R2 values and may be a result of the episodic event altering the general linear
relationship of CH₄ diffusion. Total mean daily flux from ponds (diffusive + bubbles) was ~304 mg CH₄ m⁻² d⁻¹ (with bubbles accounting for 1.0% of the total flux), similar to results found by Dove et al. (1999) which reported 320 mg CH₄ m⁻² d⁻¹ for open water sites.

4.4.6 Seasonal CH₄ Exchange

The cutover site experienced an increase in CH₄ flux from the site, with the exception of 2002, and experienced a net consumption of CH₄ in 1999 (Figure 4.5c). Restored site seasonal CH₄ fluxes were significantly larger (4 to 150 times greater) than the cutover site, with the exception of 2000, and increased exponentially from 1999 to 2002. Changes in the ecohydrological conditions at the restored site provide partial explanations for this trend. Water table levels were lowest in 1999 followed by 2002, leading to greater CH₄ oxidation and a lower mass of CH₄ lost in 1999 but not in 2002. Conversely, the water table position was highest in 2000 and 2001, suggesting that more CH₄ would be produced and less oxidized, thereby increasing the mass of CH₄ lost. Furthermore, from 1999 to 2002, peat coverage decreased while moss and vascular areal coverages increased. Other studies (e.g. Waddington et al. 1996) suggest that vascular plants can enhance CH₄ flux to the atmosphere through 1) supply of labile C and 2) transport of CH₄ to the atmosphere, bypassing the aerobic zone in the peat. Consequently, vascular plants likely enhanced the mass of CH₄ lost in 2001 and 2002, despite the dry conditions in 2002.

Mean seasonal CH₄ flux increased with time post-restoration from the ponds and ditches; however the flux remained fairly constant from vascular, moss and peat. The
increase in flux from ponds and ditches is mainly a function of changes in the saturated/anoxic conditions and the supply of labile carbon. During the restoration process, dead vegetation was pushed into the ditches providing a “hot spot” for CH$_4$ production. In addition, the emergence of new vegetation within and around the ponds increased dissolved CH$_4$ concentrations in the ponds (2.8 mg L$^{-1}$ early July to 301.9 mg L$^{-1}$ late August) as well as the quantity and quality of DOC (Tóth 2002). Although the ditches (2.6 to 49.1 mg CH$_4$ m$^{-2}$ d$^{-1}$) and ponds (0.2 to 45.2 mg CH$_4$ m$^{-2}$ d$^{-1}$) are significant sources of CH$_4$, when weighting fluxes to their areal coverage, vascular plants exerted the strongest influence (23.4 to 93.5%) on CH$_4$ flux from the site, followed by ditches (-0.2 to 70.6%), ponds (2.2 to 7.6%), mosses (-1.2 to 5.8%), and peat (-0.3 to 1.9%).

4.5 Implications

The process of restoration has changed the Bois-des-Bel peatland from a small CH$_4$ sink and/or source, depending on climatic conditions, to a large source of CH$_4$. The change in the overall CH$_4$ function of the peatland was directly related to the increase in CH$_4$ emissions from vascular vegetation, remnant ditches and newly constructed ponds. Restoration significantly altered the carbon processes at the peatland, changing the dominant CH$_4$ controls under harvested conditions from temperature and hydrology, to more ecohydrological (i.e. vegetation and hydrology). When comparing CH$_4$ emissions from this site (~4 g CH$_4$ m$^{-2}$ a$^{-1}$) to natural peatland systems (~10 g CH$_4$ m$^{-2}$ a$^{-1}$), it is evident that the site is still a much smaller source of CH$_4$ and only represents ~1% of the total carbon emissions. However, in terms of global warming potential, CH$_4$ represents
14% of the total CO₂-equivalent losses from the site. It is evident that carbon and CH₄ process are still changing as the pool of labile carbon increases (develops). Vegetation succession is still occurring and more time and monitoring is needed in order to determine if this site will return to similar CH₄ functions as natural peatlands.

The goal for the restoration of peatlands differs and is dependent on the needs of the industry/organization. If a site is being restored with the establishment and increase in cover of Sphagnum mosses as the goal, then monitoring of carbon dynamics (DOC, CO₂ and CH₄) are unnecessary, however, if the purpose of restoration is to return the natural carbon sink function, then the carbon processes and dynamics altered by the restoration process need to be understood for appropriate peatland restoration management and assessment.

The main goals for restoration of Bois-des-Bel were both the establishment and growth of Sphagnum mosses and the return of the natural carbon sink function. This study has determined that in order to reduce carbon emissions from the site in the form of CH₄, removal of vegetation from and/or completely filling in of the ditches would reduce and possibly eliminate the “hot spot” potential for CH₄ production at these locations. Ponds were created in order to retain meltwater and maintain water levels. The need for creating ponds as part of the restoration process has to be carefully considered as they were the third largest source of CH₄. In order to reduce the potential of CH₄ emissions from ponds, it is suggested that they are kept small in areal extent (as in the BDB peatland) so that their contribution to the total CH₄ emission is minimal. They should also be shallow in depth to maintain high dissolved oxygen concentrations in the water.
column which oxidizes CH$_4$ before it is emitted to the atmosphere. As a result of their areal extent, vascular vegetation was the largest source of CH$_4$ from the peatland. However, measures taken to control the growth of vascular vegetation may be detrimental to the establishment for *Sphagnum*. Studies have shown that vascular vegetation such as *Eriophorum*, can alter microclimatological conditions to those favourable for Sphagnum growth (Tuittila et al. 2000b, Rochefort et al. 2003). Furthermore, with time, *Sphagnum* establishment causes changes in the geochemical conditions within the peat (Rochefort et al. 2003), making it intolerable for vascular vegetation, resulting in a successional change to a *Sphagnum* moss dominated ecosystem. Thus, the long-term best course of action is likely no action.

As CH$_4$ fluxes from mosses were not significantly different between the restored and cutover sites two and three years post-restoration, but were smaller than values observed at natural peatlands, perhaps moss plots on restored sites can be used as indicators of when peatland processes and conditions are similar to natural systems. For example, continued monitoring of mosses until a significant difference in CH$_4$ fluxes between the restored and cutover sites and insignificant differences between restored and natural site moss CH$_4$ fluxes occur, could be used to estimate the sites’ progress back to a natural CH$_4$ source. This in turn would reduce the costs and time incurred by monitoring, providing a valuable management tool. However, it is likely that a return to natural CH$_4$ dynamics at this site will not occur until water table fluctuations are constrained to the upper levels of the peatland (i.e. in the acrotelm). For this to occur the peatland requires a sufficiently thick acrotelm (moss thickness). Once this occurs it is likely that
subsurface CH$_4$ dynamics that regulate water loss and surface levels (e.g. Price 2003) will help regulate restored peatland hydrology.
CHAPTER 5

SUMMARY

5.1 Conclusions

Ratification of the Kyoto Protocol and increasing public interest in peatland conservation has created a demand for peatland restoration to reduce CO₂ emissions. Peatlands are important in terms of their long-term sequestration of atmospheric carbon (Gorham 1995), and human induced changes such as harvesting and drainage for horticultural purposes can significantly alter a peatland’s role from a net accumulation of atmospheric carbon to a net source of carbon. The expanding knowledge on peatland restoration practices has encouraged the peat horticultural industry, in particular, to restore long abandoned sites which are significant sources of CO₂. The impact of peatland restoration at a large scale on CH₄ fluxes and processes is not well understood. Consequently, the main focus of this research was to determine the effect of peatland restoration on ecosystem scale CH₄ emissions from a cutover peatland.

Results from a potential CH₄ production experiment (in Chapter 3) found that harvesting and drainage reduced potential CH₄ production and total depth integrated CH₄ production and that these factors continued to decrease with time post harvest. This was likely the result of respiration depleting the pool of labile carbon and oxic conditions reducing the methanogenic biomass. Conversely, restoration increased potential and total depth integrated CH₄ production by increasing anoxic conditions, and likely the methanogenic biomass, and producing a source of labile carbon from the growth of
bryophyte and vascular vegetation. Water table position probability exceedence graphs showed that the water table position was higher for a longer period of time at the restored site compared to the 20-yr cutover site. The critical water table depth at which net CH$_4$ production below exceeded net CH$_4$ oxidation above was the same at both the restored and 20-yr cutover sites. However, the restored site exceeded this depth about two times more often than the 20-yr cutover site, indicating that CH$_4$ fluxes would likely be higher from the restored peatlands.

Field measurements (Chapter 4) found that CH$_4$ fluxes from bare peat and mosses were not significantly different three years post-restoration compared to pre-restored and cutover conditions. Conversely, fluxes from vascular vegetation, ditches and ponds increased significantly with each successive year post-restoration. Porewater concentrations beneath vascular vegetation plots and ditches were higher compared to bare peat while the ponds had predominantly highly labile carbon generally produced by fresh vegetation. Therefore, higher fluxes from these sites were directly attributed to an increase in methanogenesis provided by labile carbon from vegetation. As a result of the high fluxes from the vascular vegetation, ditches and ponds, the total seasonal CH$_4$ exchange from the restored site increased with each successive year while the cutover site fluctuated between a small net sink and a small net source of CH$_4$ as a direct result of the variability in annual climatic conditions. CH$_4$ fluxes in 1999 and 2000 were correlated to soil temperature while water table position, pond water levels, unsaturated soil moisture and GEP had stronger relationships with CH$_4$ flux in 2001 and 2002, switching CH$_4$ emissions from temperature to more ecohydrologically dependent.
CH$_4$ fluxes from ditches and ponds suggest that these features are the largest sources of CH$_4$ from the peatland. However, when weighting the fluxes to the areal extent of each feature, ditches become secondary to vascular vegetation in total CH$_4$ emissions while the ponds had a minimal impact on the amount of CH$_4$ emitted from the peatland. Furthermore, ebullition from ditches and ponds were insignificant in comparison to the diffusive fluxes.

As mentioned above, vegetation was found to have significant impacts on the subsurface storage of CH$_4$. Both moss and vascular vegetation had higher porewater concentrations than bare peat, indicating that vegetation was increasing labile carbon supply and thereby the rate of CH$_4$ production. However, vascular vegetation also had a negative effect on dissolved CH$_4$ concentrations. Time series profiles of dissolved CH$_4$ showed a distinct decreasing trend in concentration after mid July. Higher rates of CH$_4$ transport by vascular vegetation than CH$_4$ production likely caused the low concentrations near the end of the season. The absence of CH$_4$ ebullition was directly linked to vascular vegetation as the low concentrations of dissolved CH$_4$ prevented the formation of CH$_4$ bubbles.

Applying the data from this study to a conceptual model of changes in hydroclimate and carbon cycling conditions pre- and post-peatland restoration (see Waddington & Price for details) (Figure 5.1) indicates that the effect of restoration on CH$_4$ emissions was previously underestimated. Indeed, CH$_4$ emissions increased quicker post restoration than Waddington & Price (2000) hypothesized, however fluxes are not
Figure 5.1 Conceptual model (adapted from Waddington & Price 2000) illustrating the effects of peatland drainage, harvesting, abandonment and restoration on net CO₂ and CH₄ exchange a) before this study and b) including this study.
yet as large as those from natural peatlands. Assuming total seasonal CH$_4$ exchange continues on the current increasing exponential trend observed, we can expect CH$_4$ emissions from the Bois-des-Bel peatland to equal natural peatlands approximately five years post-restoration.

It remains to be seen whether the restoration of CH$_4$ dynamics within restored peatlands will begin to alter peatland hydrology (e.g. compressibility, buoyancy, and hydraulic conductivity). It is hypothesized that as the acrotelm continues to develop and quality of carbon continues to increase, hydrology and CH$_4$ dynamics will become more coupled at Bois-des-Bel, as is common in natural systems. This coupling may help regulate water retention and enhance plant productivity.
CHAPTER 6
REFERENCES

Gorham, E. 1995. The biogeochemistry of northern peatlands and its possible response to
global warming. In Biotic Processes and Potential Feedbacks, G.M. Woodwell

Gorham, E. 1991. Northern Peatlands: Role in the carbon cycle and probable response to

from 1980 to 1997 on simulated methane emission from a boreal mixed mire in

Spatial Variation in Methane Emissions from Mires in Northern Sweden – A
11(2): 135-150.

of *Eriophorum vaginatum* in CH₄ flux from an ombrotrophic peatland. Plant and

349-357.

temperature under strip tillage 2. Field test. Soil Science Society of America

Hargreaves, K.J. and D. Fowler. 1998. Quantifying the Effects of Water Table and Soil
Temperature on the Emissions of Methane from Peat Wetland at the Field Scale.

Harris, R.C., Sebacher, D.I., Bartlett, K.B., Bartlett, D.S. and P.M. Crill. 1988. Sources of
atmospheric methane in the South Florida environment. Global Biogeochemical
Cycles. 2(3): 231-243.

Schouwenaars, J.M. 1988. Hydrological research in disturbed bogs and its role in
decisions on water management in the Netherlands. Proceedings of International
Symposium on the Hydrology of Wetlands in Temperate and Cold Regions,
Joensuu, Finland, 170-177.

Shantz, M. 2003. Hydrological Management for Site Scale Peatland Restoration:
understanding changes in a dynamic system. M.Sc. Thesis, University of
Waterloo, Waterloo, Canada.

from peat in boreal mires under varying temperature and moisture conditions.

Silvola, J. 1986. Carbon dioxide dynamics in mires reclaimed for forestry in eastern

methane and carbon dioxide on peat-mining areas in Sweden. Ambio. 29(8): 499-
503.

oxidation in a Sphagnum-dominated peatland – controlling factors and relation to
methane emission. Soil Biology and Biochemistry. 27(6): 829-837.

microbial production and oxidation of methane in northern boreal peatlands.
Microbial Ecology. 27: 253-265.

