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Abstract

Lattice reduction aided techniques have been successfully applied to a wide range of

applications. Efficient and robust lattice basis reduction algorithms are valuable. In this

thesis, we present an O(n4 logB) hybrid Jacobi method for lattice basis reduction, where

n is the dimension of the lattice and B is the maximum length of the input lattice basis

vectors. Building upon a generic Jacobi method for lattice basis reduction, we integrate

the size reduction into the algorithm to improve its performance. To ensure the con-

vergence and the efficiency of the algorithm, we introduce a parameter to the Lagrange

reduction. To improve the quality of the computed bases, we impose a condition on

the size reduction, delay the structure restoration, and include a postprocessing in the

hybrid method.

Our experiments on random matrices show that the proposed algorithm produces

better reduced bases than the well-known LLL algorithm and BKZ 2.0 algorithm, mea-

sured by both the orthogonality defect and the condition number of the basis matrix.

Moreover, our hybrid method consistently runs faster than the LLL algorithm, although
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they have the same theoretical complexity. We have also investigated two potential

applications of the hybrid method. The application simulations show that the hybrid

method can improve the stability of the communication channels for Multi-Input Multi-

Output systems, and can partially discover the plain text when attacking the GGH cryp-

tosystem.
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Chapter 1

Introduction
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Lattice technique plays an increasingly important role in a wide range of applica-

tions in mathematics, engineering and computer science. It has been successfully ap-

plied to numerous fields including cryptography, signal processing, wireless commu-

nication, materials science, solid-state physics, integer linear programming and num-

ber theory [21, 44, 55, 67, 90, 103]. In cryptography, lattice technique is deeply in-

volved in designing lattice-based cryptography systems, such as GGH and NTRU, and

attacking many other public-key cryptography systems, for example, RSA and knap-

sack [13, 27, 41]. In signal processing and wireless communication, lattice technique

can be used to optimize the communication channels for a variety of applications such

as global positioning systems, frequency estimation, multi-input multi-output (MIMO)

systems, and many data decoding systems [42, 95, 105, 106].

A lattice consists of periodic arrangement of discrete points. Lattice reduction is to

find improved representations of a given lattice, depending on the notions of reduction.

Various notions of lattice reduction have been introduced, such as the Lagrange reduc-

tion, the Minkowski reduction, the Hermite reduction, the Hermite-Korkine-Zolotareff

(HKZ) reduction, the Blockwise Korkine-Zolotareff (BKZ) reduction, the Gaussian reduc-

tion, the Seysen reduction, and the Lenstra-Lenstra-Lovász (LLL) reduction [49, 52, 68,

85].

A major lattice-related problem is to find a shortest non-zero vector in a lattice. The

problem is known to be NP-complete in high dimensions [3, 22]. The Minkowski re-

duction or the HKZ reduction requires the search for shortest lattice vectors. Thus, the
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algorithms for the Minkowski reduction or the HKZ reduction are non-polynomial, for

example, the Kannan’s algorithm, the Helfrich’s algorithm [22, 43, 48, 49, 108], and the

algorithm introduced by W. Zhang and S. Qiao [108].

There are also polynomial time algorithms for lattice reduction, such as algorithms

for the Seysen reduction [53, 83]. In 1982, A. Lenstra, W. Lenstra, and L. Lovász presented

a polynomial time lattice reduction algorithm of complexity O(n4 logB), where n is the

dimension of the lattice and B is the maximum Euclidean length of the basis vectors to

be reduced [54]. This algorithm has been widely used and known as the LLL algorithm,

because it is very efficient and produces good results in practice [75, 100].

There are improvements on the LLL algorithm. For example, the deep insertion LLL

algorithm [71, 75] and the Blockwise Korkine-Zolotarev reduction algorithm presented

by C. Schnorr and M. Euchner [82]. The deep insertion LLL, whose complexity is un-

known, is a floating-point variant of the original LLL algorithm. The BKZ reduction al-

gorithm can be viewed as another variant of the LLL algorithm, implemented in NTL

using floating-point operations [86], and further improved to BKZ 2.0 by Y. Chen and P.

Nguyen in 2011 [20]. It has been proven that the BKZ admits a polynomial time com-

plexity bound with respect to the call times of the enumeration subroutine for a fixed

block size [40]. Since the enumeration subroutine is exponential to the size of the block,

there is no polynomial time implementation of the BKZ reduction algorithm in high

dimension lattices. Despite that the complexities of the BKZ reduction algorithms are

non-polynomial, BKZ 2.0 is a popular technique in many fields because it finds relatively
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high quality bases with flexible block sizes in relatively short time in practice [28, 40, 70].

The complexities of some well-known lattice reduction algorithms remain unknown.

For example, the complexity of the algorithms for Gaussian reduction is unknown in

high dimensions [72, 84]. The complexity of the LLL algorithm is also unclear when the

Lovász condition parameter δ equals 1 [54, 75, 100].

The above notions are introduced to describe the properties of lattice reduction in

terms of the lengths of lattice basis vectors. In 2012, S. Qiao proposed a generic Jacobi

method [78] for lattice basis reduction based on improving the orthogonality between

the basis vectors. Despite its unknown complexity, empirically it runs faster than the

LLL algorithm. Then in 2012, an O(n4 logB) quasi-Jacobi method was proposed [94],

whose complexity is the same as that of the original LLL algorithm. However, the con-

dition numbers of the basis matrices, which highly influence the performance of the

applications in signal processing and communication [6, 45, 102], produced by the Ja-

cobi method and the quasi-Jacobi method are not as small as those produced by the LLL

algorithm. In 2013, an enhanced Jacobi method is presented [95]. It computes better

reduced basis than the LLL algorithm measured by either orthogonality defect or con-

dition number. However, its convergence is unproven. By integrating the size reduction

into the Jacobi method, a polynomial time enhanced Jacobi method [96] is introduced.

Whereas, its complexity is O(n5 logB), worse than that of the original LLL algorithm.

In this thesis, we present an O(n4 logB) hybrid method for lattice basis reduction,

which improves both the output quality and the complexity of the enhanced Jacobi

4
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method. To ensure fast convergence, we modify the condition for the Lagrange reduc-

tion embedded in the generic Jacobi method, and push shorter vectors to the front. To

improve the conditioning the computed lattice basis matrices, we integrate the size re-

duction into the algorithm. To lower the complexity, we delay the restoration of the

upper triangular structure. To further enhance our algorithm, especially the quality of

the computed basis matrix, we also include a postprocessing.

Our experiments on random matrices show that the hybrid method produces better

reduced bases than the well-known LLL algorithm and the BKZ 2.0 algorithm, measured

by both the orthogonality defect and the condition number of the computed basis ma-

trix. Moreover, our algorithm requires less cpu time than the LLL algorithm, although

they have the same complexity. Our simulations of the GGH cryptosystem show that the

hybrid method discovered more information from the plain text than the LLL algorithm

and the BKZ 2.0 algorithm when attacking the GGH cryptosystem. In the simulations

of MIMO systems, the communication channels improved by the new hybrid method

resulted lower bit error rate than the channels improved by the LLL algorithm and the

BKZ 2.0 algorithm.

5
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1.1 Thesis Outline and Notations

The rest of the thesis is organized as follows. In Chapter 2, we briefly introduce the

background knowledge of the lattice and basis. We also review some lattice-based al-

gorithms, including the Gaussian algorithm, the Lagrange algorithm and the generic

Jacobi method.

The three algorithms introduced in Chapter 2 can be regarded as the basis for the

conditional Jacobi method presented in Chapter 3. We also show the complexity of the

conditional Jacobi method in the chapter.

In Chapter 4, after introducing a commonly used lattice reduction technique called

the size reduction, we propose the main algorithm of this thesis, a hybrid Jacobi method

for lattice basis reduction and perform its complexity analysis.

Chapter 5 shows some applications of the proposed algorithm. We show that the hy-

brid Jacobi method can benefit applications in cryptography and signal processing. We

also demonstrate the experimental results of the comparison among the hybrid method,

the widely-used LLL algorithm and the BKZ 2.0 algorithm.

The thesis concludes in Chapter 6, where we propose potential improvements and

future work.

Notations: We choose column-version representation for matrices and vectors. Ma-

trices and vectors are denoted respectively by uppercase and lowercase boldface letters.

For example, a matrix B ∈ Rm×n represents [b1,b2, . . . ,bn]. The determinant and trans-

pose of a square matrix A are denoted by det(A) and AT , respectively. We use A(a : b,c : d)

6
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to denote a submatrix of A with elements from rows a to b and from columns c to d of A.

The symbol “:” in subscript denotes a complete row or column of a matrix, for example,

A1,: is the first row of a matrix A. The identity matrix of order n is denoted by In . The

length of a vector v is measured by the Euclidean norm, ‖v‖2 or simply ‖v‖. For the sake

of simplicity, when we say that a vector is shorter than another vector, we mean the Eu-

clidean length of a vector is less than that of another vector, when there is no confusion.

1.2 Thesis Contributions

This thesis presents a novel polynomial time algorithm for lattice basis reduction, the

hybrid Jacobi method. The original LLL algorithm proposed in 1982 is the first poly-

nomial time lattice reduction algorithm. Other polynomial time lattice reduction algo-

rithms have been introduced since 1982. To our best knowledge, most of the polynomial

time lattice reduction algorithms are the variants of the LLL algorithm. They improve

the original LLL algorithm either on efficiency or output quality. The LLL algorithm and

its variants are designed to shorten the lengths of basis vectors. In contrast, the hybrid

method in this thesis focuses on improving the orthogonality of the basis vectors. Thus,

the hybrid method proposed in this thesis is essentially different from the LLL algorithm

and its variants.

Our hybrid Jacobi method has the same computational complexity, O(n4 logB), as

the LLL algorithm, where n is the dimension of the lattice and B is the Euclidean length

7
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of the longest basis vector. Our experimental results show that the hybrid method pro-

duces better reduced bases than the LLL algorithm and the BKZ 2.0 algorithm, mea-

sured by both the orthogonality defect and the condition number of the basis matrices.

Despite the same theoretical complexity, experimentally, the hybrid method is approxi-

mately twice as fast as the LLL algorithm.

The thesis also illustrates two potential applications in signal processing and cryp-

tography. In the signal processing simulations, the hybrid method can improve the bit

error rate for MIMO systems. In our 8×8 MIMO system, the communication channel

improved by the hybrid method results lower bit error rate than the LLL algorithm in

both Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) estimations. For

lattice-based cryptography, when attacking a GGH cryptosystem, the hybrid method

can discover more information from the plain text than the widely used LLL algorithm

and the BKZ 2.0 algorithm.

8
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Preliminaries
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In this chapter, we first give some background knowledge of lattice and bases. Then,

we review three lattice basis reduction algorithms: Gaussian algorithm, Lagrange algo-

rithm and a generic Jacobi algorithm.

2.1 Basic Concepts of Lattice Theory

A lattice is a set of periodically distributed discrete points in Euclidean space, defined as

follows.

Definition 2.1.1 (Lattice and Basis [27, 70]). Let A = [a1,a2, . . . ,an] ∈ Rm×n (m ≥ n) be of

full-column rank. The lattice L generated by A is the infinite set of linear combinations

of column vectors a1,a2, . . . ,an with integer coefficients, denoted by

L(A) = { A z | z ∈Zn },

where Zn is the set of all integer n-vectors. The vectors a1,a2, . . . ,an form a basis for

lattice L. We call integers n and m the dimension and rank of L(A), respectively. When

n = m, L(A) is called a full rank lattice.

We call matrix A a generator matrix or a basis matrix for the lattice L(A). There are

infinitely many bases for a lattice of dimension at least two [44]. Those bases share the

property that the volumes of the parallelepipeds they generate are equal [44, 59]. We call

the volume of those parallelepipeds the determinant of the lattice L, denoted by det(L),

10
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a1

a2

b1

b2

Figure 2.1: Two bases {a1,a2} and {b1,b2} for a same lattice.

which equals
√

det(ATA) in terms of the basis matrix. Figure 2.1 shows two bases {a1,a2}

and {b1,b2} for a two dimensional lattice L.

If A and B are two basis matrices for a same lattice L, then they are related by B = AZ,

for some integer matrix Z, called unimodular matrix, whose determinant det(Z) equals

±1. Consequently, det(ATA) = det(BTB). Indeed, since B is also a basis matrix for L, each

column of A can be represented as an integer linear combination of the columns of B.

Hence, there exists another integer coefficient matrix Z̄ such that A = BZ̄. Obviously, Z̄

is the inverse of Z. Since det(ATA) = det(BTB), we know that det(Z) =±1. To compute a

new basis for a lattice, we only need to find a unimodular matrix and multiply it by the

given basis matrix.

11
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Various metrics are used to measure the quality of a lattice basis, for example, the or-

thogonality defect [44], the Hermite factor and the condition number [37]. The Hermite

factor, popularized by Gama and Nguyen [29], assesses the length of the shortest vector

in a basis. The orthogonality defect measures the geometric mean of the lengths of the

basis vectors, defined as follows.

Definition 2.1.2 (Orthogonality defect [44]). Given a basis matrix A for a lattice L, the

orthogonality defect δ(A) of A is defined by

δn(A) = Πi‖ai‖2√
det(AT A)

. (2.1.1)

The orthogonality defect is also called the Hadamard Ratio [44, 47, 64]. From the

Hadamard’s Inequality [62], δ(A) ≥ 1, where the equality holds if and only if the columns

ai are orthogonal to each other. The closer δ(A) is to 1, the smaller the geometric mean

of the lengths of the columns is, and the columns are considered being more orthogonal

to each other.

The Hermite factor is another commonly used criterion for the quality of a basis.

Since it is similar to the orthogonality defect, in that they both measure the basis vector

lengths, we do not include the Hermite factor as a measurement in our experiments.

Different from the orthogonality defect, the condition number describes the non-

singularity of a matrix [37]. Therefore, in MIMO detection, the condition number of

the channel matrix characterizes the quality and stability of the signal transformation

12
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channel. The condition number used in the thesis is defined as follows.

Definition 2.1.3 (Condition number [37]). Given a matrix A, we define the condition

number of A as

κ(A) = σmax

σmi n
, (2.1.2)

where σmax and σmi n are respectively the maximum and minimum singular values of

A.

Let A be a channel matrix of a MIMO system, then κ(A) measures the impact of the

channel realization on the noise influence of signal decoding schemes [6, 104]. A chan-

nel matrix with a smaller κ(A) achieves better performance as the impact of noise en-

hancement is reduced.

For example, let

A =


1 4

2 5

3 6


be a basis matrix and

Z =

1 −2

0 1

 .

13
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We can verify that |det(Z)| = 1, thus Z is a unimodular matrix. So

B = AZ =


1 2

2 1

3 0


is another basis matrix for the lattice L(A). For the two basis matrices, we have δ(A) ≈
2.1138 and δ(B) ≈ 1.0670. Based on the orthogonality defect, we can say that B is a bet-

ter basis than A for the lattice. On the other hand, their condition numbers are approx-

imately κ(A) ≈ 12.3022 and κ(B) ≈ 2.1121. Based on the condition numbers, we may

say that B is better than A for the lattice. However, it should be noted that a smaller

orthogonality defect does not always imply a smaller condition number. For example,

considering

C =



2 0 0 0 1

0 2 0 0 1

0 0 2 0 1

0 0 0 2 1

0 0 0 0 1


and D =



2 0 1 −1 −1

0 2 1 −1 −1

0 0 1 1 −1

0 0 1 −1 1

0 0 1 −1 −1


,

we have δ(C) ≈ 1.1746 and δ(D) ≈ 1.2282, whereas κ(C) ≈ 4.2656 and κ(D) ≈ 4.0872.

The lattice reduction problem is to find a unimodular matrix Z for a given lattice

basis matrix A, such that AZ is reduced, or "better", with respect to some measurement.

14
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2.2 Gaussian Algorithm

The Gaussian elimination [32, 37] method is used for solving systems of linear equations.

Likewise, a similar Gaussian algorithm [61] acts as a fundamental technique to shorten

the length of one of the two given vectors.

The Gaussian algorithm is a greedy algorithm [16]. Given two m-entry vectors a1

and a2, it finds an integer scalar q that locally minimizes ‖a1−qa2‖2 and replaces vector

a1 with â1 = a1 − qa2. Thus the length of a1 is reduced. Specifically, without loss of

generality, we assume that ‖a1‖ ≥ ‖a2‖. The integer q that locally minimizes ‖a1 −qa2‖2

is given by q = baT
1 a2/‖a2‖2e, the integer closest to aT

1 a2/‖a2‖2, where b·e represents the

nearest integer rounding. Intuitively, â1 is a lattice vector closest to

a1 −
aT

1 a2

‖a2‖2
a2,

which is orthogonal to a2. Thus

âT
1 a2 = (a1 −qa2)T a2 = aT

1 a2 −q ‖a2‖2.

Since q = baT
1 a2/‖a2‖2e, that is, |aT

1 a2/‖a2‖2−q | ≤ 1/2, we have |aT
1 a2−q ‖a2‖2| ≤ ‖a2‖2/2.

It then follows that

|âT
1 a2| ≤ 1

2
‖a2‖2.

In general, we have the following procedure.

15
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Procedure Gauss(a1,a2)
Input : Two vectors a1,a2

Output: overwritten a1 and a2, so that |aT
1 a2| ≤ 1

2 max(‖a1‖2
2,‖a2‖2

2)

1 if ‖a1‖2 > ‖a2‖2 then
2 s = 2, l = 1 ;
3 else
4 s = 1, l = 2 ;

5 q = baT
1 a2/‖as‖2

2e ;
6 al ← al −qas ;

As shown in the above Procedure Gauss, it first finds the shorter one as of the two

given vectors, then shortens the longer vector al using an integral scalar q of the shorter

vector as . The output vectors a1 and a2 satisfy |aT
1 a2| ≤ 1

2 max(‖a1‖2
2,‖a2‖2

2).

2.3 Lagrange Reduction Algorithm

Based on the key idea of the Gaussian algorithm, we have the following notion of re-

duced basis for a two dimensional lattice.

Definition 2.3.1 (Lagrange reduced [78, 100]). An m ×2, m ≥ 2, lattice basis matrix A =
[a1,a2] is said to be Lagrange reduced (short as L-reduced ), if

|aT
1 a2| ≤ 1

2
‖a1‖2

2 and ‖a1‖2 ≤ ‖a2‖2. (2.3.1)

Denoting θ the angle between a1 and a2, we have |cos(θ)| = |aT
1 a2|/(‖a1‖2 ‖a2‖2) ≤

16
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|aT
1 a2|/‖a1‖2

2 ≤ 1/2, which implies that θ ∈ [π/3, 2π/3]. Thus, we may say that a1 and

a2 are close to being orthogonal to each other. In dimension two, a Lagrange reduced

basis is Minkowski reduced [27, 72], which is the strongest among all notions of lattice

reduction.

Algorithm 1: Lagrange Algorithm Lagrange(a1,a2)

Input : Two basis vectors a1,a2

Output: Overwritten a1,a2, so that [a1,a2] is Lagrange-reduced

1 if ‖a1‖2 < ‖a2‖2 then
2 Swap a1 and a2 ;

3 repeat
4 [a1 a2] ← Gauss(a1 a2) ;
5 Swap a1 and a2;
6 until ‖a1‖2 ≤ ‖a2‖2;

The Lagrange reduction Algorithm 1 [72, 94, 99], computes an L-reduced basis. In

each Lagrange iteration, lines 4 to 5, we reduce the length of the longer one of a1 and a2

by calling procedure Gauss(a1,a2).

Let A = [a1,a2, . . . ,an] be a basis matrix for lattice L(A), and A′ = [a′
1,a′

2, . . . ,a′
n] be a

reduced basis matrix for the same lattice produced by a lattice reduction procedure. We

define the ratio

τ= ‖a′
1‖2 ‖a′

2‖2 · · ·‖a′
n‖2

‖a1‖2 ‖a2‖2 · · ·‖an‖2

the reduction factor of the procedure.

Consider the Lagrange reduction algorithm. It is proved that the reduction factor of

17
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a single Lagrange iteration is less than or equal to 1/
p

3, except that in the first or the

last iteration the reduction factor can be arbitrarily close to 1 [72, 94]. Thus, we can

prove that the Lagrange algorithm terminates in polynomial time with respect to the

maximum length of the input vectors [27, 70].

2.4 A Generic Jacobi Method

Nguyen introduced a greedy algorithm for lattice basis reduction which generalizes the

two-dimensional Lagrange reduction algorithm to dimensions higher than two in 2009

[72]. The greedy algorithm is an iterative algorithm. It is proved that up to dimension

four, the greedy algorithm can compute a Minkowski reduced basis and also terminates

in polynomial time w.r.t. the big-lengths of the input basis vectors. Nevertheless, for

lattices of dimension greater than four, the greedy algorithm is not optimal and expo-

nential, since the computation is dominated by solving the closest vector problem.

A Jacobi method has a two dimensional workhorse. In the Jacobi method for the

symmetric eigenvalue problem proposed by Jacobi in 1846, the workhorse is two di-

mensional eigenvalue decomposition [37]. In 2012, using the two dimensional Lagrange

reduction, S. Qiao presented a generic Jacobi method for lattice basis reduction [78]. It

repeatedly applies the Lagrange algorithm to every pair of the basis vectors for an n di-

mensional lattice, until every pair is L-reduced. The generic Jacobi method produces a

reduced basis defined as follows.
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Definition 2.4.1 (Jacobi reduced). An m×n basis matrix A = [a1, a2, . . . , an] is said to be

Jacobi reduced, if

|aT
i a j | ≤ 1

2
‖ai‖2

2 and ‖ai‖2 ≤ ‖a j‖2, (2.4.1)

for all 1 ≤ i < j ≤ n.

Algorithm 2 shows the row-cyclic version of the generic Jacobi method [78].

Algorithm 2: Generic Jacobi Method

Input : A basis matrix A = [a1,a2, . . . ,an]
Output: An overwritten reduced basis matrix A defined by Definition 2.4.1

1 while not all pairs (ai ,a j ) satisfy (2.4.1) do
2 for i = 1 to n −1 do
3 for j = i +1 to n do
4 [ai ,a j ] ← Lagrange(ai ,a j) ;

Despite that experiments have shown that Algorithm 2 typically terminates within

10 sweeps of the while loop for random basis matrices of dimension less than 300, its

convergence and complexity remain unknown.
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A Conditional Jacobi Method
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To ensure the termination of the generic Jacobi method presented in Section 2.4,

in this section, we present a conditional Jacobi method using the Lagrange iteration in

Section 2 with a modified condition and show that its time complexity is O(n4 logB) for

an integer basis of full rank, where n is the dimension of the input lattice basis, and B is

the maximum length of the input basis vectors.

3.1 A Conditional Lagrange Reduction

Consider the Lagrange reduction algorithm in Section 2, we know that the reduction

factor τ can be arbitrarily close to 1 in the first or the last iteration [72, 94]. To ensure

that the reduction factor of every Lagrange iteration is strictly smaller than 1, that is, the

basis vector length is strictly reduced, we modify the Lagrange reduced definition (2.3.1)

by introducing a condition with a parameter ω.

Definition 3.1.1 (ω-Lagrange reduced). We say that a two dimensional lattice basis ma-

trix Am×2 = [a1,a2] is ω-Lagrange reduced (short as ωL reduced), if

∣∣∣∣∣
⌊

aT
1 a2

‖as‖2
2

⌉∣∣∣∣∣≤ 1, (3.1a)

and

ω‖al‖2 < ‖al −ζas‖2, (3.1b)

where 1/
p

3 ≤ω< 1, ζ=±1 denotes the sign of aT
1 a2, as and al represent the shorter and
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the longer of a1 and a2, respectively.

Since the reduction factors of the Lagrange iterations, except the first or the last iter-

ation, are less than or equal to 1/
p

3 [94], to ensure the strict length reduction, we only

need to inspect the first and the last iterations. For these two iterations, only two values

±1 of the integral scalar q on line 5 of Procedure Gauss can cause the reduction factor

τ of the iteration to be greater than 1/
p

3 [64, 94]. Note that al − ζas in the condition

(3.1b) is the same as al −qas in line 6 of Procedure Gauss when q =±1, where al is up-

dated. The condition (3.1b) ensures that the reduction factor of every Lagrange iteration

satisfying the condition (3.1b) is at most ω< 1.

Let Am×n be a basis matrix, the gram matrix Gn×n = AT A is used for computational

efficiency in [78]. Applying the QR decomposition [37], we can decompose A into two

matrices, the orthonormal matrix Qm×n , that is, the columns qi are orthogonal to each

other and ‖qi‖ = 1 (for all 1 ≤ i ≤ n), and an upper triangular matrix Rn×n . Then, we have

G = (RT QT )QR = RT R. In addition, we have gi j = aT
i a j = rT

i r j and g j j = ‖a j‖2
2 = ‖r j‖2

2 ≥
0, for all 1 ≤ i , j ≤ n. Thus, condition (2.4.1) is equivalent to

|gi j | ≤ 1

2
gi i and gi i ≤ g j j , (3.1.1)

for all 1 ≤ i < j ≤ n.

Procedure LagrangeIT performs a Lagrange iteration on the gram matrix. Given a

basis matrix A of dimension n, the corresponding gram matrix G, the optional upper
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triangular matrix R in the QR-decomposition of A, and an initial unimodular matrix Z,

Procedure LagrangeIT(G,Z,R, i , j ) performs one iteration of the Lagrange reduction al-

gorithm on the i th and j th basis vectors using G. Also, the unimodular Z and the op-

tional R is updated accordingly if R is present. From the procedure, we can see that the

larger of the output gi i and g j j equals the smaller of the input gi i and g j j .

Procedure LagrangeIT(G,Z,R, i , j )

Input : The matrices G, Z , optional R and a pair of indices (i , j ), i < j
Output: The input matrices are updated, so that one Lagrange iteration is

performed on the i th and j th (i < j ) basis vectors

1 if gi i > g j j then
2 s = j , l = i ;
3 else
4 s = i , l = j ;

5 q =
⌊

gi j

gss

⌉
;

6 Set Zi j = In except zsl =−q ;

7 G ← ZT
i j GZi j ;

8 Z ← ZZi j ;
9 if R is present then

10 R ← RZi j ;

The procedure LagrangeIT(G,Z,R, i , j ) costs O(n) operations (additions or multipli-

cations), since it operates on two rows and two columns of G, two columns of Z, and two

columns of R if R is present. Note that matrix R is no longer upper triangular after ap-

plying Zi j . We will introduce a procedure to restore the upper triangular structure of R

in Section 4.2.
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Algorithm 3 performs the generic Jacobi method using the gram matrix G. It is an

improvement over Algorithm 2.

Algorithm 3: Gram Jacobi method

Input : A basis matrix A = [a1,a2, . . . ,an]
Output: A unimodular matrix Z, so that AZ is reduced by Definition 2.4.1

1 G = AT A, Z = In ;
2 while not all elements gi j satisfy (3.1.1) do
3 for i = 1 to n −1 do
4 for j = i +1 to n do
5 if condition (3.1.1) is not satisfied then
6 [G,Z] ← LagrangeIT(G,Z, i , j) ;
7 Swap the i th and j th columns in Z ;
8 Swap the i th and j th columns, and the i th and j th rows in G ;

3.2 A Conditional Jacobi Method

Based on the definition of ω-Lagrange reduction, we can define an ω-reduced basis for

n-dimensional lattices.

Definition 3.2.1 (ω-Jacobi-reduced). We say that an n-dimensional basis matrix Am×n =
[a1,a2, . . . ,an] isω-Jacobi-reduced, short asω-reduced, if each pair of basis vectors (ai , a j )

satisfies ∣∣∣∣∣
⌊

aT
i a j

‖as‖2
2

⌉∣∣∣∣∣ ≤ 1, (3.2a)
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and

ω‖al‖2 < ‖al −ζas‖2, (3.2b)

for all 1 ≤ i < j ≤ n, where 1/
p

3 ≤ ω < 1, ζ = ±1 denotes the sign of aT
i a j , as and al are

the shorter vector and the longer vector of ai and a j , respectively.

In terms of the gram matrix G, we have |ζaT
l as | = |gi j | for subscripts i , j , l and s de-

fined above. Then, the above inequalities (3.2a) and (3.2b) are equivalent to

∣∣∣∣⌊gi j

gss

⌉∣∣∣∣ ≤ 1, (3.3a)

and

ω2gl l < gi i + g j j −2 |gi j |. (3.3b)

Introducing the above ω-reduced conditions into the generic Jacobi method, we

have the following Algorithm 4, the conditional Jacobi method [96].

In Algorithm 4, line 5 checks the ω-reduced conditions on gi j , ensuring that the re-

duction factor of every Lagrange iteration is less than or equal to ω. The situation is

twofold. Firstly, for the Lagrange iterations other than the first or the last, the integral

scalar q in line 4 of procedure LagrangeIT satisfies |q| ≥ 2 [94]. Thus, condition (3.3a)

does not hold. Under this situation, it is proved that the reduction factor τ≤ 1/
p

3, im-

plying τ ≤ ω. Secondly, in the first or the last Lagrange iterations, |q | = 1 or q = 0 [94].

Then, the condition (3.3b) holds if and only if τ>ω. Hence, if LagrangeIT(G,Z, i , j) is
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Algorithm 4: Conditional Jacobi method

Input : A basis matrix A and ω (1/
p

3 ≤ω< 1)
Output: A unimodular matrix Z, so that AZ is ω-reduced

1 G = AT A, Z = In ;
2 while not all elements gi j satisfy (3.3a) and (3.3b) do
3 for i = 1 to n −1 do
4 for j = i +1 to n do
5 if gi j does not satisfy (3.3a) and (3.3b) then
6 [G,Z] ← LagrangeIT(G,Z, i , j) ;
7 Swap the i th and j th columns in Z ;
8 Swap the i th and j th columns, and the i th and j th rows in G ;

executed in this situation, we also have τ≤ω. Therefore, the reduction factor τ of each

Lagrange iteration in line 6 is less than or equal toω< 1. When the algorithm terminates,

the computed basis is ω-reduced defined by (3.2a) and (3.2b).

The generic Jacobi method Algorithm 2 is a special case of Algorithm 4 when ω= 1.

Theorem 3.2.2. Given an integer basis matrix Am×n , the time complexity of the condi-

tional Jacobi method is O(mn2+n4 logB), where n is the dimension of the input lattice ba-

sis, and B is the maximum length of the input basis vectors. In particular, if A is a full rank

basis matrix, then the time complexity of the conditional Jacobi method is O(n4 logB).

Proof. Calculating G costs O(mn2) in line 1. Denote D = ∏n
i=1 gi i = ∏n

i=1 ‖ai‖2
2, and let

B be the maximum Euclidean length of the input basis vectors, then B 2n is an upper

bound for D .
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Let λ1 be the first Minkowski minima of the lattice L(A) [43, 68], which is the length

of a shortest nonzero lattice vector. Then, D has a lower bound
∏n

i=1 (λ2
1) = λ2n

1 . Each

iteration on line 6 of Algorithm 4 reduces gl l for some l by a factor of τ2 ≤ω2 < 1, while

keeping gkk , k 6= l , unchanged. Thus, each iteration reduces D by a factor of at least

ω2 < 1. Therefore, after a maximum number log1/ω2
B 2n

λ2n
1

of iterations, we reduce D to the

lower bound λ2n
1 . Since A is an integer matrix, λ1 has a trivial lower bound 1. Hence, the

algorithm terminates after performing the Lagrange iteration at most O(n logB) times.

Since the complexity of LagrangeIT(G,Z, i , j ) is O(n), the complexity of Algorithm 4, the

conditional Jacobi method, is O(mn2 +n4 logB). In particular, if m = n, the complexity

of the algorithm is O(n4 logB), the same as the well-known LLL algorithm [54].
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Chapter 4

A Hybrid Jacobi Method for Lattice Basis

Reduction
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The conditional Jacobi method introduced in Section 3 has a time complexity of

O(n4 logB) for a full rank basis matrix, where n is the dimension of the input lattice

basis, and B is the maximum length of the input basis vectors. The Lagrange reduction

technique used in the conditional Jacobi method is efficient at improving the orthogo-

nality defect of a basis matrix. However, it is not effective to reduce the lengths of the

basis vectors. Size reduction, on the other hand, is an effective approach to shorten the

lengths of the basis vectors.

In this chapter, we present a hybrid Jacobi method, which integrates the size reduc-

tion into the conditional Jacobi method. By using the partial size reduction technique,

we show that the time complexity of the hybrid Jacobi method remains O(n4 logB) for a

full rank basis matrix.

4.1 Size Reduction

Given an n-dimensional lattice L and its generator matrix A. Let R be the upper triangu-

lar matrix in the QR decompositon of A. We define the size reduction of a basis matrix

as the following:

Definition 4.1.1 (Size Reduced [70]). Let A be an n dimensional basis matrix and A = QR

be its QR decomposition, then we say that A is size reduced, if the upper triangular matrix

R satisfies

|ri , j | ≤ 1

2
|ri ,i |, (4.1.1)
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for all 1 ≤ i < j ≤ n.

Size reduction is a widely used condition for lattice reduction algorithms, for exam-

ple, the LLL algorithm [54, 75] and Schnorr’s algorithm [81]. However, unlike the La-

grange reduction, size reduction cannot ensure a strict length reduction for the basis

vectors, i.e., the reduction factor τ may greater than 1 after applying the size reduction.

The generic Jacobi method, which is based on the Lagrange algorithm, brings basis

vectors closer to being orthogonal to each other. However, it is ineffective in reducing

the lengths of the basis vectors, especially if we measure the quality of a basis matrix by

the condition number of matrix. The size reduction, which is required by most lattice

reductions, can effectively shorten the basis vectors and hence improve the condition

number of a basis matrix [105].

For example, consider the following basis matrix [84],

A = [a1,a2,a3] =


5 3 2

0 8 −8

0 0 2

 .

We can verify that A satisfies Definition 2.4.1 (i.e., A is Jacobi reduced) and its condition

number is approximately 10.0768. After applying size reduction on A, a3 is shortened to

[0 0 2]T and the condition number of the modified basis matrix is improved to approxi-

mately 4.3961.

30



Ph.D. Thesis - Zhaofei Tian McMaster University - Computing and Software

To improve the condition number of the basis matrix produced by the conditional Ja-

cobi method, we integrate the size reduction into Algorithm 4. Since each Lagrange iter-

ation modifies only one column of the basis matrix, we introduce a notion of partial size

reduction, which is a generalization of the size reduction described in Definition 4.1.1.

Definition 4.1.2 (Partial Size Reduction). We say that a basis matrix A is (i , j )-partially

size reduced, 1 ≤ i < j ≤ n, if the upper triangular matrix R in the QR decomposition of A

satisfies

|rk, j | ≤
1

2
|rk,k |, (4.1.2)

for all 1 ≤ k ≤ i .

From the above definition, (i , j )-partially size reduced means that the subvector r1:i , j

is size reduced. Partially size reduced is a generalization of size reduced in that if A is

(i , i +1)-partially size reduced for all i , 1 ≤ i < n, then A is size reduced.

Let A be a basis matrix and G and R be the gram matrix and the upper triangular

matrix in the QR decomposition of A, respectively. Let Z be an initial unimodular matrix.

The following procedure PSizeReduce applies the (i , j )-partial size reduction on R. The

operations on R are accumulated in the unimodular matrix Z.

We can see that there are at most O(n) vector operations in Procedure PSizeReduce.

So the time complexity of the procedure is O(n2) for an m ×n basis matrix, noting that

the matrices G and R are of size n ×n.
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Procedure PSizeReduce(G,Z,R, i , j )

Input : G,Z,R and indices (i , j ), i < j
Output: Updated G,Z and R, so that R is (i , j )-partially size reduced

1 Zi j = In ;
2 for k ← i downto 1 do
3 if |rk j | > |rkk |/2 then

4 q = brk j /rkke ;
5 Set Zs = In except zk j =−q ;
6 R ← RZs ;
7 Zi j ← Zi j Zs ;

8 Z ← ZZi j ;
9 G ← ZT

i j GZi j ;

4.2 Restoring the Upper Triangular Structure

Let

M =

r1,1 r1,2

r2,1 r2,2

 , where r 2
1,1 + r 2

2,1 > 0. (4.2.1)

To triangulate matrix M, we construct a plane rotation matrix [37, 57, 58]

P2 =

c s

s −c

 , where c = r1,1√
r 2

1,1 + r 2
2,1

and s = r2,1√
r 2

1,1 + r 2
2,1

,

so that

P2 M =

r ′
1,1 r ′

1,2

0 r ′
2,2

 (4.2.2)
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to annihilate the (2,1)-entry. In the following hybrid Jacobi method for lattice basis re-

duction, when R is not upper triangular after a vector operation, it is necessary to re-

store R back to upper triangular structure. In the thesis, we only consider either adding

a scaled column r j to another column ri , i < j , or swapping two columns r j and ri , i < j ,

meaning that R is upper triangular except only one column. For example, if R is present

in procedure LagrangeIT, then after applying Zi j to R, the entries rk,i , k = i +1, ..., j , of

R become nonzero, as shown in Figure 4.1, where “x” represents a nonzero entry.

R =



i i +1 j −1 j

x · · · x x · · · x x · · · x
. . .

...
... · · · ...

... · · · ...
i x x · · · x x · · · x
i +1 x x · · · x x · · · x

...
. . .

...
... · · · ...

j −1 x x x · · · x
j x x · · · x

. . .
...
x


Figure 4.1: The non-triangular structure of R

Given a matrix R of the structure shown in Figure 4.1, the following Procedure RestoreR

restores the upper triangular structure of R using the plane rotations.

In RestoreR(R, i , j), we eliminate the elements rk,i , k = i +1, ..., j from k = j down

to k = i +1 in the first for loop by the plane rotations. To find the n-dimensional plane

rotation matrix Pn in line 2, we firstly take the following 2-by-2 matrix M2 as the target
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matrix M in (4.2.1)

M2 =

rk−1,i rk−1, j

rk,i rk, j

 .

Secondly, we find a 2-dimensional plane rotation matrix P2 that eliminates rk,i in M2.

Lastly, we construct the n-dimensional matrix Pn by initiating an n-dimensional iden-

tity matrix In and replacing its (k − 1, i ), (k − 1, j ), (k, i ) and (k, j ) entries with the four

entries p1,1, p1,2, p2,1 and p2,2 in P2, respectively. After the first for loop, a sequence

of non-zero subdiagonal elements rk+1,k , k = i +1, ..., j −1 are created as shown in Fig-

ure 4.2). Hence, the second for loop is necessary to eliminate the non-zero entries on

the subdiagonal. Likewise, to eliminate the element rk+1,k , we find the n-dimensional

plane rotation matrix Pn in line 5 starting from the following 2-by-2 matrix

M2 =

 rk,k rk,k+1

rk+1,k rk+1,k+1

 .

In line 2 of Procedure RestoreR, the n-dimensional plane rotation matrix Pn is or-

thogonal, i.e., PT
n Pn = 1. Let Gn , An , Qn and Rn be the updated Gram matrix, the basis

matrix, the orthogonal matrix and the upper triangular matrix after applying the plane
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R =



i i +1 j −1 j

x · · · x x · · · x x · · · x
. . .

...
... · · · ...

... · · · ...
i x x · · · x x · · · x
i +1 x · · · x x · · · x

x
. . .

...
... · · · ...

j −1
. . . x x · · · x

j x x · · · x
. . .

...
x



Figure 4.2: The structure of R after the first for loop in Procedure RestoreR

rotation matrix Pn , respectively, i.e., Rn = PnR and Gn = AT
n An , then we have

Gn = AT
n An

= RT
n QT

n QnRn

= RT PT
n QT

n QnPnR

= RT PT
n PnR

= RT R

= G.

Hence, applying the plane rotation matrix Pn on R doesn’t change matrix G. Like-

wise, the matrix Pn in line 5 doesn’t change G. Therefore, when we apply Procedure
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RestoreR to triangulate a non-triangular matrix R of the structure in Figure 4.1, the ma-

trices G and Z remain unchanged.

Procedure RestoreR(R, i , j )

Input : R and indices i , j (i < j )
Output: Triangulated R

1 for k = j downto i +1 do
2 Find a plane rotation Pn to eliminate rk,i using rk−1,i , rk−1, j and rk, j ;
3 R ← PnR ;

4 for k = i +1 to j −1 do
5 Find a plane rotation Pn to eliminate rk+1,k using rk,k , rk,k+1 and rk+1,k+1 ;
6 R ← PnR ;

4.3 A Hybrid Jacobi Method for Lattice Basis Reduction

Generally, the generic Jacobi method, Algorithm 2, computes basis matrices with smaller

orthogonality defect than those computed by the LLL algorithm[78]. However, the com-

plexity of the generic Jacobi method is unknown. The conditional Jacobi method, Algo-

rithm 4, improves the generic Jacobi method with a time complexity w.r.t. the dimension

of the lattice. However, the conditional Jacobi method is not as efficient in reducing the

lengths of the basis vectors as the LLL algorithm [97]. An enhanced Jacobi method [95]

is then proposed for MIMO decoding applications, which integrates the generic Jacobi

method with the size reduction technique to improve the condition number of the com-

puted basis matrix. Since the size reduction does not always reduce basis vector lengths,
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the convergence of the enhanced Jacobi method is unknown.

In this section, we introduce a hybrid Jacobi method for lattice basis reduction short

as the hybrid method. It integrates the size reduction into the conditional Jacobi method.

The hybrid Jacobi method ensures the convergence. We show that the time complexity

of the hybrid method is O(n4 logB), the same as the conditional Jacobi method, where

n is the dimension of the input basis, and B is the maximum length of the input basis

vectors.

As shown in Algorithm 5, three techniques are used in our hybrid method. First,

we introduce a condition for the partial size reduction to ensure that the basis vector

lengths decrease. Specifically, after applying PSizeReduce on gi i in line 14, if gi i is not

reduced, we roll back the procedure. Second, to make the length reduction of basis vec-

tors more effective, after each inner j-loop, we push the shorter basis vector to the front

in line 8 to 13. Third, we add a postprocessing procedure, lines 15 to 27, to the hybrid

Jacobi method without changing the complexity. Unlike the main while loop in Algo-

rithm 5, both the Lagrange iterations and the partial size reductions are unconditional

in the postprocessing part. We can run the postprocessing multiple times to gain higher

quality results. Based on our experiences, adding a postprocessing part can improve the

condition number of the computed basis matrix.

For the complexity of Algorithm 5, we give the following theorem:

Theorem 4.3.1. Let Am×n = [a1,a2, . . . ,an] be an integer lattice basis matrix, and B =
max1≤i≤n ‖ai‖2, then, the number of arithmetic operations required by Algorithm 5, the
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Algorithm 5: Hybrid Jacobi method

Input : A basis matrix A and a reduction factor ω (1/
p

3 ≤ω< 1)
Output: A unimodular matrix Z such that AZ is reduced

1 G = AT A, Z = In , get R from the QR decomposition of A ;
2 while not all elements gi j satisfy (3.3a) and (3.3b) do
3 for i = 1 to n do
4 for j = i +1 to n do
5 if gi j doesn’t satisfy (3.3a) and (3.3b) then
6 [G,Z,R] ← LagrangeIT(G,Z,R, i , j) ;

7 RestoreR(R, i ,n) ;
8 Find an index k (i ≤ k ≤ n), s.t. gkk = minn

l=i gl l ;
9 if k 6= i then

10 Swap the i th and kth columns in Z ;
11 Swap the i th and kth columns in R ;
12 Swap the i th and kth columns, and the i th and kth rows in G ;
13 RestoreR(R, i ,k) ;

14 Apply PSizeReduce(G,Z,R, i −1, i) only if gi i is reduced after the
appplication ;

15 for i = 1 to n do
16 for j = i +1 to n do
17 [G,Z,R] ← LagrangeIT(G,Z,R, i , j) ;

18 RestoreR(R, i ,n) ;
19 Find an index k (i ≤ k ≤ n), s.t. gkk = minn

l=i gl l ;
20 if k 6= i then
21 Swap the i th and kth columns in Z ;
22 Swap the i th and kth columns in R ;
23 Swap the i th and kth columns, and the i th and kth rows in G ;
24 RestoreR(R, i ,k) ;

25 [G,Z,R] ← PSizeReduce(G,Z,R, i −1, i ) ;
26 for j = i +1 to n do
27 [G,Z,R] ← PSizeReduce(G,Z,R, i , j ) ;
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hybrid Jacobi method for lattice basis reduction, is O(mn2+n4 logB). In particular, if A is

full rank, then the complexity of Algorithm 5 is O(n4 logB).

Proof. Similar to the proof of Theorem 3.2.2, computing G and R takes O(mn2) arith-

metic operations. The costs of PSizeReduce, LagrangeIT and RestoreR are O(n2).

Similar as Theorem 3.2.2, the complexity of the main while loop is O(n4 logB). The

cost of the postprocessing is O(n4). Thus, adding a postprocessing does not compro-

mise the complexity of our algorithm. The time complexity of the hybrid Jacobi method

is O(mn2 +n4 logB). When m ≤ n2, the complexity is O(n4 logB). In particular, if m = n,

i.e., A is full rank, the complexity of the algorithm is O(n4 logB).
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In this chapter, we present our experimental results of the proposed hybrid method

and compare it with two widely used algorithms, the LLL algorithm [54], a well-known

polynomial time lattice reduction algorithm, and the Blockwise-Korkine-Zolotarev al-

gorithm, BKZ 2.0. The BKZ algorithm was originally introduced by Schnorr [81] in 1987,

then a practical implementation [82] was introduced in 1994. Chen and Nguyen im-

proved the BKZ implementation to BKZ 2.0 [20], which is commonly used, because it

calculates reasonably high quality basis vectors within acceptable time in practice. We

adopt the BKZ 2.0 in this thesis.

We first show the experimental results of the quality of the computed bases by the

algorithms. Then, we show the performance of the three algorithms by simulating two

applications in signal processing and cryptography. The experiments demonstrate the

potential practical applications of our method.

5.1 Quality of the Computed Bases

In this section, we show the output quality and the efficiency of the hybrid method,

comparing with the other two algorithms. We measure the quality of the computed

basis matrices by two metrics, the orthogonality defect δ(A) defined in (2.1.1) and the

condition number defined in (2.1.3).

For many lattice based cryptography systems, the orthogonality defect is a popular

criterion for measuring the quality of the involved lattice basis. For example, the GGH
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cryptosystem, the knapsack cryptosystem and the RLWE (Ring Learning with Errors)

version of the classic Diffie-Hellman cryptography. The difficulty of breaking these lat-

tice based cryptography is equivalent to solving known hard problems on lattices, such

as finding a shortest vector in a lattice of dimension at least 3 [27, 39, 63, 66]. Differ-

ent from the applications in cryptography, the performance of applications in signal

processing and communications are highly influenced by the condition numbers of the

channel matrices, for example, the MIMO detectors [6, 45, 102]. Thus, we also choose

the condition number as the second metric for comparing the quality of the computed

lattice bases.

The efficiency of the algorithms is measured by the cpu time that an algorithm takes

to reduce a given basis matrix.

The hybrid method, the LLL algorithm and the BKZ 2.0 are implemented in the 64 bit

MATLAB 2014b running on a Mac OS X server with 2.8GHz 4 core processor. We adopt the

vector-operation version [60] of the LLL algorithm to achieve high efficiency, and set the

parameter ω in the LLL algorithm to 0.99 to get high quality outputs [20, 82]. The block

size β in the BKZ algorithm highly affects the output quality of the computed basis. In

the experiments, we adopt the two block sizes recommended by Nguyen [20]: a small

block size 20 and a medium block size 40. In the cases when the dimension of the lattice

is less than the block size, we use the dimension as the block size. We set the reduction

factors ω, 1/
p

3 ≤ω< 1, in the hybrid method to 1/
p

3. From our experience, the hybrid

method is insensitive to the value of ω. The postprocessing of the hybrid method is run
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twice. We compare the basis matrices of dimensions up to 100, starting from dimension

10 with interval 10.

To obtain the average of each dimension, we generated 1000 matrices with uniformly

distributed random entries between 0 and 1. The results shown in Figure 5.1 (a)-(b) and

Figure 5.2 are the measurements for the chosen dimensions.

Figure 5.1 (a) and (b) illustrate the quality of the bases computed by the three algo-

rithms, measured by the orthogonality defect and the condition number. Both measure-

ments are the smaller, the better. The figures show that the hybrid method outperforms

the LLL algorithm and the BKZ 2.0 on output quality with respect to the two measure-

ments for random matrices. The difference becomes more significant as the dimension

increases.

Figure 5.2 shows the cpu times, in the logarithm of seconds, of the three algorithms.

The hybrid method is faster than both the LLL algorithm and the BKZ 2.0. As expected,

both hybrid method and the LLL algorithm are much faster than the BKZ 2.0.

We also found that the hybrid method did not perform well for extremely ill-conditioned

basis matrices. For extremely ill-conditioned bases, the BKZ 2.0 computed the best basis

matrices among the three methods.
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(a) The orthogonality defects of computed bases
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Figure 5.1: The quality of the bases computed by the hybrid method, the LLL algorithm
and the BKZ 2.0
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Figure 5.2: The time performance (in logarithm of seconds) of the hybrid method, the
LLL algorithm and the BKZ 2.0
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5.2 Multiple Input Multiple Output System

In signal processing, the performance of radio communications highly depends on the

antenna system. Multiple antenna technologies are designed to achieve high transmis-

sion rate, high signal reliability and long range communications. Therefore, multiple-

input multiple-output has become an essential element of wireless communication stan-

dards for wireless LANs, 3G and 4G mobile-phone networks, such as IEEE 802.11n, IEEE

802.11ac, HSPA+, WiMAX and LTE [10, 33, 92, 98].

The lattice reduction technique has been successfully introduced to numerous ap-

plications in signal processing for decades. When being applied to MIMO systems, the

lattice reduction algorithms can improve the quality of the communication links and

hence improve the accuracy and efficiency of signal transmission. For example, the LLL

algorithm and other lattice reduction algorithms are widely adopted in MIMO systems

because of their relatively low computational complexities. It has been proven that the

lattice reduction algorithms such as the LLL and the BKZ 2.0 can improve the perfor-

mance of MIMO systems with respect to high spectral efficiency in data transmission,

high accuracy for signal detection and the maximum receive diversity over fading chan-

nels [8, 15, 31, 91, 107].

In wireless communication, there are more than one transmit antennas and more

than one receive antennas in a MIMO system. The multiple antenna structure multiplies

the capacity of a radio link to exploit multipath propagation [10]. Suppose that a MIMO

system consists of n transmitting antennas Tx and m receiving antennas Rx, as shown
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Figure 5.3: A general MIMO channel model

in Figure 5.3. The communication link of the system is the channel matrix between

antennas, denoted by H, which consists of all mn communication paths between the

antennas. The independent elements in the signal vector x can then be transmitted

simultaneously through the transmitting antennas and the receiving antennas. Once

the receiver gets a signal vector y from the receiving antennas Rx, it decodes the received

signal vector into a transmit signal vector simultaneously. Practically, the receive signal

stream also includes particular additional noise, called fading, being introduced during

signal transmission [98].

We can model a MIMO system as

y = H x+z, (5.2.1)

where H denotes an m-by-n channel matrix, zm×1 is the additional noise vector, and

ym×1 and xn×1 represent the receive vector and the transmit vector, respectively [36, 38,
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98] .

In our MIMO simulation, we choose the instantaneous channel state information

(CSI) model for the communication link, indicating that the complex channel matrix H

is clearly known. According to the sequential Monte Carlo sampling method [1, 23, 25],

we can generate a random binary stream as the transmit signals, e.g., 10010111010 . . . .

The communication link does not accept the binary stream directly. We need to modu-

late these discrete signals into continuous symbols. To minimize the bit error rate (BER)

during the signal transmission, we adopt the Quadrature phase-shift keying (QPSK) dig-

ital modulation scheme, also known as 4-PSK or 4-QAM [36]. QPSK modulation scheme

maps every two source signal bits onto one complex symbol using Gray coding [12],

shown in Figure 5.4. For example, two bits "01" are mapped into − 1p
2
+ 1p

2
i .

Figure 5.4: Constellation diagram for QPSK with Gray coding

In wireless communications, fading is an unavoidable deviation of the attenuation
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that affects a signal over propagation media. In our MIMO simulation, we assume that

the priorities of the transmitting antennas are the same, i.e., none of the line of sight

signal is much stronger than the others. Thus, we use the Rayleigh fading model for the

effect of a propagation environment. The tropospheric and ionospheric signal propaga-

tion on radio signals are two typical cases of the Rayleigh fading [77, 87]. To implement

Rayleigh fading in the phasor domain, we choose the noise n as the additive white Gaus-

sian noise (AWGN). Hence, the resultant phasor’s magnitude is a Rayleigh distributed

random variable, i.e., the phase is uniformly distributed with zero mean between 0 and

2π radians [76, 79, 87]. The signal-to-noise ratio(SNR) is defined as the ratio of the power

of a signal and the power of background noise:

SNR= Ex∈A (‖Hx‖2
2)

E(‖n‖2
2)

, (5.2.2)

where the transmitting signals x are assumed to be uniformly distributed in the finite set

of modulation alphabet A [77, 108].

There are two typical detection methods in MIMO systems. The zero forcing (ZF) de-

tection compensates the delays of receiving signals from a specific source when using as

a time-domain equalizer, and it maximizes the transmitted signal capacity of the given

communication channel in spatial domain. The other method is the minimum mean-

square-error (MMSE) precoding, which is more commonly used since it minimizes the

expected or the mean value of the square of the error [9, 80, 89].
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(b) Receive symbols with AWGN by the MMSE decoding at SNR of 20 dB

Figure 5.5: Example of transmit and receive symbols using QPSK scheme
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If perfect complex channel gain matrix (CSI) is available at the receiver, the zero-

forcing estimation of the transmitted symbol vector can be written as

x̂ = (HH H)−1HH y, (5.2.3)

where HH is the conjugate transpose of the channel matrix H and y is the received vec-

tor [98, 101]. The ZF estimator offers significant computational complexity reduction

with tolerable performance degradation. The MMSE estimator, on the other hand, pro-

vides the best estimation mean square error among the set of all commonly used linear

estimators. In the case that the noise n is additive white Gaussian noise, the MMSE esti-

mation formula can be simplified as

x̂ = (HHH +σ2Im)−1HH y, (5.2.4)

where σ2 is the variance of the noise, m is the number of the receiving antennas and Im

is the m-dimensional identity matrix [50, 98].

After computing the estimation vector x̂ of the transmit signal x from the received

signal vector y by either ZF estimator (5.2.3) or MMSE estimator (5.2.4), the hard deci-

sion of determining the transmit bits is straightforward. We calculate a source bit by the

sign of the real or imaginary part of the corresponding complex entry x̂i in x̂ (1 ≤ i ≤ m),

called QPSK demodulation [36, 98]. That is, the source bit is 1 if the corresponding part

of the complex number is positive, and 0 if the part is negative.
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We give an example of a 2× 2 MIMO system. In the example, we show the whole

signal processing circle that includes signal mapping, symbol transmission with AWGN,

signal decoding and the hard decision of computing the transmit symbols. Suppose a

2×2 channel matrix is

H =

−0.99367+1.81176i −0.88471+2.85039i

−0.54034−0.42801i −2.32167−0.86847i

 .

Assume zero forcing detection method is applied. We send four transmit signal bits

"1100" to the receiver. By the QPSK constellation diagram, Figure 5.4, we first map the

four transmit bits into two complex numbers 1p
2
+ 1p

2
i and − 1p

2
− 1p

2
i , corresponding to

bits "11" and "00", respectively. Thus, the transmit vector is

x =
[

1p
2
+ 1p

2
i − 1p

2
− 1p

2
i

]T

.

By MIMO model formula (5.2.1), we get the following receive signal

y =
[

0.84347−0.46420i 1.45678+0.76190i

]T

,

in which a noise

w =
[

0.18609+0.34727i 0.50864−0.80914i

]T

,
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is included. Then, we can compute the estimation x̂ of the source signal vector x by the

ZF estimator (5.2.3):

x̂ =

 0.96973−0.46620i

−0.95459−0.04137i

 , corresponding to

 1p
2
− 1p

2
i

− 1p
2
− 1p

2
i

 .

Notice that we determine the transmit bit by the sign of the estimation of a transmit sig-

nal. The signs of the four parts in the estimation vector x̂ are +, −, − and −, respectively.

Hence, the decoded receive bits are "1000", indicating that the second transmit bit is

incorrect after the transmission.

Now, applying a lattice reduction algorithm, say the complex LLL algorithm [30], to

the channel matrix H, we obtain the complex unimodular matrix

Z =

−2 −1+2i

1 1− i


and the reduced channel matrix

HZ =

 1.10263−0.77313i −0.66418−0.06400i

−1.24099−0.01245i −1.79378+0.80054i

 .

Note that cond(H) ≈ 6.2552 while cond(HZ) ≈ 1.9751. Applying the ZF estimator to the
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reduced channel matrix HZ and the receive signal y, we obtain

 1p
2
− 1p

2
i

− 1p
2
− 1p

2
i

 .

Premultiplying the above vector with the complex unimodular Z to transform it back to

the original system, the transmit signal x is correctly decoded. This example illustrates

how lattice reduction can improve the MIMO detection performance.

Since the LTE-Advanced standard (3GPP Release 11) supports maximum 8×8 MIMO

[93], we use 8 transmit antennas and 8 receive antennas in our MIMO simulation. The

entries of the channel matrices H8×8 are random Gaussian distributed complex num-

bers of zero-mean and unit variance. The signal noise ratio SNR varies from 2 dB to 20

dB. We generate 1,000 random channel matrices in each SNR. For each channel matrix,

we transmit 1,000,000 random binary bits to the receiver.

Figure 5.6 shows our MIMO simulation results of the hybrid method, the LLL algo-

rithm and the BKZ 2.0. The figure shows the average BER of the experiments in loga-

rithm. We set the block size β of the BKZ 2.0 algorithm to 16 in our MIMO experiments.

The simulation results show that our hybrid algorithm performs better than the LLL al-

gorithm and the BKZ 2.0 with respect to BER in both ZF and MMSE estimation. The LLL

algorithm and the BKZ 2.0 have almost the same BER and our hybrid algorithm improves

around 0.5 dB.
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Figure 5.6: The BER performance (in logarithm) of ZF decoding and MMSE decoding for
an 8×8 complex-valued MIMO system
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5.3 Lattice Based Cryptography

Lattice-based strategies have successfully involved in many applications in security, such

as GGH encryption scheme and NTRU signature scheme. People also use lattice-reduction

technique to attack traditional cryptography systems like RSA and knapsack [13, 24, 27,

63]. Comparing with the non-lattice cryptographic schemes, such as RSA and ElGa-

mal, lattice-based cryptographic schemes show advantages in simplicity, efficiency and

average-case hardness. Moreover, lattice-based cryptography is believed to be secure

against quantum computers [11, 56, 66].

Most lattice-based cryptosystems are constructed on the presumed hardness of lat-

tice problems: the shortest vector problem (SVP) and the closest vector problem (CVP).

For example, the security of Ajtai-Dwork (AD) cryptosystem is based on solving SVP, and

the Goldreich-Goldwasser-Halevi (GGH) cryptosystem is based on the hardness of solv-

ing CVP [4, 17]. It has been proved that SVP is NP-hard under randomized lattices, and

solving CVP is slightly harder than solving SVP [2, 3, 35, 51].

The GGH cryptosystem can be regarded as a lattice analogue of the McEliece cryp-

tosystem based on the algebraic coding theory. It presents an intuitive encryption scheme

of designing a closest vector problem on the given lattice [17, 63].

Designing a GGH cryptosystem includes finding a private key, constructing a public

key, and choosing a proper bias vector, shown in the following steps [27, 44]:

1. Private key generation
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To generate a private key for a GGH cryptosystem, we can compute a "good" basis

matrix Vm×n for a lattice L that consists nearly orthogonal basis vectors, i.e., the

orthogonality defect δ(V) is close to 1. Then, we keep the basis matrix V as the

private key of the constructed GGH cryptosystem.

2. Public key generation

A public key Wm×n is a "bad" basis for the lattice L(V), i.e., δ(W) is very large. To

compute a basis matrix with large orthogonality defect for L(V), we can first com-

pute a unimodular matrix Z, and compute

W = V Z. (5.3.1)

Then, we check the orthogonality defect δ(W). If δ(W) is not large enough, we re-

peat the above iteration by computing a new unimodular matrix Z and multiply-

ing it with W computed in (5.3.1) of the previous iteration, until δ(W) satisfies our

expectation. After that, we publish W as the public key of the GGH cryptosystem.

There are several practical methods to compute the public key W, improving the

original method by either efficiency or the size (in bits) of the public key. For exam-

ple, S. Qiao introduced an efficient method to compute W within one iteration by

constructing the unimodular matrix Z from the eigenvalues of an ill-conditioned

matrix. The size of the public key W computed by iteratively finding and multi-

plying Z may be large. Alternately, Micciancio proposed a Hermite Normal Form
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w

v u

Figure 5.7: Encrypt a plain text vector p to the cipher text vector e

(HNF) method to compute the public key W with relatively small size by comput-

ing the HNF of V [65].

3. Encryption process

The encryption process is to construct a non-lattice vector, such that we can easily

find its correct closest vector in the lattice using the private key V. Let Wm×n be

the public key of the GGH cryptosystem, and let p be an n×1 plain text vector. We

encrypt the plain text p by

e = W p+ r, (5.3.2)

where e is the encrypted m × 1 cipher text vector, and r is an m × 1 bias vector,

shown as Figure 5.7. In the original paper of the GGH cryptography, each entry of
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the bias vector r is randomly set to either +σ or −σ, with equal probability 50%,

where σ is a security parameter [34]. Nguyen proved that the choice of either +σ
or −σ was insecure [69, 70, 74]. Thus in (5.3.2), we use Nguyen’s improvement to

define r,

r = (r1,r2, . . . ,rm)T , (5.3.3)

where ri is uniformly distributed between [−σ, σ], for all 1 ≤ i ≤ m [69, 100]. Ge-

ometrically, the Euclidean length of r should be less than a half of the shortest

distance between any two adjacent points in the lattice L. Hence, the vector W p

is the closest vector in the lattice to the vector e. The criteria for choosing r highly

influence the security of the GGH cryptosystem, for example, the range of the se-

curity parameter σ, or the form of r [65, 73]. In practice, we can consider sending

the cipher text e together with its hashed value to ensure the correctness of the

cipher text.

4. Decryption process

The theoritical security of GGH is that it is hard to find the closest vector in a lattice

to a given non-lattice point.

The decryption process includes two steps. Firstly, we find the closest lattice vec-

tor u of the cipher text vector e using the private key V. We compute u by Babai’s

algorithm [7]

u = VbV−1ee. (5.3.4)
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Since u = W p, we can then compute the plain text p by the public key

p = W−1u. (5.3.5)

If we apply the public key W directly on (5.3.4), the closest vector u cannot be

correctly discovered. Thus, the plain text p is safe [34, 70].

Known attacks on GGH cryptosystem involve with the two aspects of the original

definition. The first attacking method uses the behavior of the bias vector r in the origi-

nal definition that each entry of r is either +σ or −σ. We can avoid this attacking method

by defining r as (5.3.3). Nguyen presents another flaw in the design of the GGH scheme,

by which we can reduce the decryption to a special closest vector problem using lat-

tice reduction technique, such that decrypting the cipher text is much easier than the

general CVP problem. Nguyen shows that the GGH cryptosystem is insecure for dimen-

sion up to 350 by attacking it using the LLL algorithm [65, 69]. In our GGH simulation,

we attack the GGH cryptosystem using the lattice reduction technique pointed out by

Nguyen, i.e., reduce the public key W and then try to find the closet lattice vector to e

using the reduced W.

By the lattice invariant of Minkowski’s theorem, for an n-dimensional lattice L, there

exists a Hermite’s constant γn , such that we have λ1 ≤ p
γn (det L)1/n , where λ1 is the

length of a shortest vector in the lattice [19, 44]. Since the Hermite’s constant γn is di-

rectly related to the lattice dimension n, an approximation factor α is then introduced
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Figure 5.8: The performance of attacking a GGH cryptosystem by lattice reduction algo-
rithms
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to evaluate the approximation of γn that a lattice reduction algorithm can achieve. The

LLL algorithm and the BKZ algorithm can roughly achieveϕn for someϕ, which are still

exponential to the dimension of the lattice. In practice, the LLL algorithm and the BKZ

algorithm can achieve ϕ ≈ 1.022 and ϕ ≈ 1.012, respectively [29, 74]. Therefore, in our

experiments, we can safely use 1n as a loose lower bound for γn . Furthermore, we use

the approximation γn = 1 to estimate the above safety lower bound of λ1, such that the

length of the bias vector r satisfies ‖r‖2 < λ1/2 ≤ 1
4 (det L)1/n after choosing the parame-

ter σ, i.e., to ensure that the lattice point closest to e is Wp.

We attack the GGH cryptosystem using our hybrid method, the LLL algorithm and

the BKZ 2.0 with block size 20 in the simulation. The dimension of the GGH cryptosys-

tem we constructed varies from 60 to 200 with interval 10. We set the maximum of the

orthogonality defect of the public key W to 1.0×104. Practically, the dimension of a GGH

cryptosystem can be as large as 350 to 400 to achieve high security, and the orthogonal-

ity defect of W is usually much larger than our simulation choice 1.0×104. In such case,

the numbers of the decode elements are too small to be distinguished among the three

algorithms. For each dimension, we generated 1000 GGH instances; for each GGH in-

stance, we encrypted and decrypted 1000 integral plain text vector. For every generated

GGH instance, we used the lattice reduction algorithms to reduce the public key W, and

decrypt the cipher text e by (5.3.5) using our reduced public keys.
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In practice, revealling the full cipher text may not be necessary. Preventing par-

tial decryption of cipher texts (or other information leakage) is also critical for a cryp-

tosystem. Decrypting partial information from the cipher text can be a valuable attack

[14, 18, 26]. For example, the Japanese purple cipher was first and partially broken in

August, 1940 by U.S. Navy cryptanalysts in Hawaii. The U.S. army then revealed the

location of impending attack on Midway Island. Despite that only fewer than 15% of

Japanese messages is broken, the broken Japanese purple cipher messages showed sig-

nificant impact on World War II [5, 88]. Therefore, in our experiments, we compare the

average rate of the successfully decrypted plain text elements in the encrypted vector by

the three algorithms against the same GGH cryptosystem.

Figure 5.8 shows the experimental results of attacking the GGH cryptosystem. The

average decryption rate of attacking simulations indicates that our hybrid method can

discover more information than the LLL algorithm and the BKZ 2.0. We remark that

the bias vector r in our simulation is relatively small comparing with the selection of

r in practice. Thus, the average rate of the decrypted elements in our experiment are

relatively higher than the GGH cryptosystem in practice. This high success rate can be

decreased by making the security parameter σ bigger.
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Chapter 6

Conclusion and Future Work

64



Ph.D. Thesis - Zhaofei Tian McMaster University - Computing and Software

The main contribution of this thesis is the polynomial time hybrid method for lattice

basis reduction. We showed that its complexity is O(n4 logB) for integer basis matrices,

where n is the dimension of the lattice and B is the maximum length of the input basis

vectors. The hybrid method has the same complexity as the well-known LLL algorithm.

In this thesis, we first described the generic Jacobi method (the Gaussian algorithm)

with unknown convergence. To ensure convergence, we introduced a parameter ω into

the condition for the Lagrange reduction in the generic Jacobi method. We showed that

the complexity of the conditional Jacobi method is O(n4 logB), the same as the com-

plexity of the LLL algorithm. To improve the quality, especially the condition number,

of the computed bases, we proposed a hybrid method by integrating the conditional

size reduction into the conditional Jacobi method. We proved that the complexity of the

hybrid method is the same as that of the conditional Jacobi method, that is, O(n4 logB).

We compared our hybrid method with the widely used LLL algorithm and the BKZ

2.0 algorithm in three-part experiments. In the first part, we tested the three algorithms

on random matrices. Our experimental results show that the hybrid method consis-

tently produced bases with smaller orthogonality defect and smaller condition number

than the bases computed by the LLL algorithm and the BKZ 2.0. The difference between

our algorithm and the other two methods grows as the problem size increases. Despite

that the worst case complexity of our hybrid method is the same as that of the LLL algo-

rithm, our algorithm ran faster than the LLL algorithm in our experiments. In the sec-

ond part, we simulated a communication system consisting of 8 transmit antennas and
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8 receive antennas, which is the maximum number of antennas that the LTE standard

supports for MIMO systems. Our experiments show that the communication channels

improved by our proposed hybrid method performed lower bit error rate than both the

LLL algorithm and the BKZ 2.0. Lastly, we simulated the attacks against the GGH cryp-

tosystem. Our experiments show that after reducing the public key matrices by the three

algorithms, the hybrid method discovered more plain texts than the the LLL algorithm

and the BKZ 2.0 in the GGH attack simulations.

6.1 Future Work

1. Derive theoretical boundary of the length of the shortest vector in the computed

basis

In the hybrid method, after introducing a fixed parameter 1/
p

3 ≤ω< 1 into equa-

tion (3.2b), each iteration reduces the length of a vector with a reduction factor τ,

which is small than or equal to ω. Let a1 be the shortest vector in the basis com-

puted by the hybrid method, the theoretical upper bound of the length of a1 is still

unknown.

2. Parallel implementation

The Jacobi method is inherently parallel. Jeremic and Qiao give an parallel imple-

mentation of the generic Jacobi method using GPU [46]. Our future work includes

parallel implementations of the hybrid method.
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3. Improve performance on extremely ill-conditioned basis matrices

Experimental results show that the proposed hybrid method does not perform

very well on extremely ill-conditioned basis matrices.
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