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Abstract

In 1966, Claude Berge proposed the following sorting problem. Given a string of n

alternating white and black pegs, rearrange the pegs into a string consisting of all

white pegs followed immediately by all black pegs (or vice versa) using only moves

which take 2 adjacent pegs to 2 vacant adjacent holes. Berge’s original question was

generalized by considering the same sorting problem using only Berge k-moves, i.e.,

moves which take k adjacent pegs to k vacant adjacent holes. Let h(n, k) denote the

minimum number of Berge k-moves to sort a string of n alternating white and black

pegs.The generalized Berge sorting conjecture states that h(n, k) = dn
2
e for any k

and large enough n. We develop a computational framework to determine h(n, k) for

small instances with a focus on the most computationally challenging instances; that

is, the determination of h(k + 2, k).
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Chapter 1

Introduction

In a column that appeared in the Revue Française de Recherche Opérationnelle in

1966, entitled Problèmes plaisans et délectables in homage to the 17th century work

of Bachet [2], Claude Berge [3] proposed the following sorting problem:

For n ≥ 5, given a string of n alternating white and black pegs on a one-

dimensional board consisting of an unlimited number of empty holes, we

are required to rearrange the pegs into a string consisting of dn
2
e white

pegs followed immediately by bn
2
c black pegs (or vice versa) using only

moves which take 2 adjacent pegs to 2 vacant adjacent holes. Berge noted

that the minimum number of moves required is 3 for n = 5 and 6, and 4

for n = 7. See Figure 1.1 for a sorting of 5 pegs in 3 moves.

◦ • ◦ • ◦
◦ • ◦ • ◦
◦ ◦ • • ◦
• • ◦ ◦ ◦

Figure 1.1: Sorting 5 pegs in 3 moves

Let h(n, k) denote the minimum number of Berge k-moves to sort a string of n

1



M.A.Sc Thesis - Zhuoyu Sun CHAPTER 1. INTRODUCTION

alternating white and black pegs. We believe that this problem was looked at within

the last 40 years. For example, Shin-ichi Minato [8] found out that h(n, 2) ≤ dn
2
e

when he was a high-school student in 1981. However, the first published answer

to Berge’s question might have been given by Avis and Deza [1] who showed that

h(n, 2) = dn
2
e for n ≥ 5. The Berge sorting question appeared in the 12th Prolog

Programming Contest [4] held in Seattle in 2006. In the statement of the problem, it

is noted that this result is surprising given that initially half of the white pegs and

half of the black pegs are incorrectly positioned. The following generalization displays

an equally surprising pattern. Consider the same sorting problem using only Berge

k-moves, i.e., moves which take k adjacent pegs to k vacant adjacent holes. Avis and

Deza [1] proved that h(n, k) ≥ dn
2
e. After generating minimal solutions for a large

number of k and n, it turned out that h(n, k) = dn
2
e except for the few first small

values of n, Deza and Hua [5] conjectured that, for n large enough, the minimum

number of Berge k-moves to sort the alternating n-string is independent of k and

h(n, k) = dn
2
e. As the case k = 1 is trivial and the case k = 2 corresponds to the

original Berge’s question and proven by Avis and Deza [1]. As for the case k = 3,

h(n, 3) = dn
2
e was proven for n ≥ 5, and n 6≡ 0 (mod 4) by Deza and Hua [5] and the

case was closed for n ≥ 20 and n ≡ 0 (mod 4) by Deza and Xie [6].

This thesis entails our investigation of the most computationally challenging in-

stances; that is, the determination of h(k + 2, k). We developed a computational

framework to determine h(k + 2, k) for various values of k. Deza and Hua [5] found

the h(k+2, k) for up to k = 14, our goal is to find values for k > 14 and to extrapolate

the behaviour of h(k + 2, k) to large k.

2
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1.1 Thesis Outline

In order to find the determination of h(k + 2, k), we needed solutions for more k

values to draw any conclusion. We build a computational frame to find h(k + 2, k)

for different k values and explored different methods to optimize the code and help

generate more data points to drew conclusion from. In chapter 2, we describe the

computational frame we have build to find h(k + 2, k) and different approaches we

took and conditions we set to help minimize the computational time and narrow

down the search space. In chapter 3, we discuss some of the results we get from our

computational approach and discuss the interpretation of it and future work to be

done in chapter 4.

1.2 Notations

We follow and adapt the notation used in [1, 3, 5]. The starting game board consists

of n alternating white and black pegs sitting in the positions 1 through n. A single

Berge k-move will be denoted as { j i }, in which case, the pegs in the positions

i, i + 1, . . . , i + k − 1 are moved to the vacant holes j, j + 1, . . . , j + k − 1. Suc-

cessive moves are concatenated as { j i } ∪ { l k }, which means perform { j i }

followed by { l k }. Often, a move fills an empty hole created as an effect of

the previous move, and the resulting notation { j k } ∪ { k i } is abbreviated as

{ j k i }. This can be extended to more than two such moves as well. Let h(n, k)

denote the minimum number of required k-moves, i.e., the length of a shortest so-

lution, and On,k denote an optimal solution for n pegs, i.e., a solution using h(n, k)

Berge k-moves. For example, we have h(5, 2) = 3 and the optimal solution given

in Figure 1.1 is O5,2 = { 6 2 5 1 }. Up to symmetry, we can assume that the first
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move is to the right. Let On,k be the set of all optimal solutions starting with a

move to the right. For example, there are 7 such optimal solutions in 10 Berge 3-

moves to sort the alternating 20-string; that is, we have h(20, 3) = 10 and O20,3 =

{ { 21 2 7 12 17 }∪{ 24 13 22 6 1 }∪{ 17 8 24 }, { 21 2 13 6 17 }∪{ 24 7 22 12 1 }∪

{ 17 8 24 }, { 21 2 13 8 17 } ∪ { 24 6 22 12 1 } ∪ { 17 7 24 }, { 21 6 13 2 17 } ∪

{ 24 7 22 12 1 }∪{ 17 8 24 }, { 21 8 13 2 17 }∪{ 24 6 22 12 1 }∪{ 17 7 24 }, { 21 12 7 2 17 }∪

{ 24 13 22 6 1 } ∪ { 17 8 24 }, { 21 16 3 10 } ∪ { 24 17 22 5 1 } ∪ { 10 15 6 24 } }.

See Figure 1.2 for an illustration of the optimal solution O20,3 = { 21 2 7 12 17 } ∪

{ 24 13 22 6 1 } ∪ { 17 8 24 }.

1 5 10 15 20
◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •
◦ ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • • ◦ •
◦ ◦ • ◦ ◦ • • ◦ • ◦ • ◦ • ◦ • ◦ • • ◦ •
◦ ◦ • ◦ ◦ • • ◦ • • ◦ ◦ • ◦ • ◦ • • ◦ •
◦ ◦ • ◦ ◦ • • ◦ • • ◦ ◦ • ◦ ◦ • • • ◦ •
◦ ◦ • ◦ ◦ • • ◦ • • ◦ ◦ • • • ◦ • • ◦ ◦
◦ ◦ • ◦ ◦ • • ◦ • • ◦ ◦ ◦ • • • • • ◦ ◦
◦ ◦ • ◦ ◦ • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦

◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • •

Figure 1.2: Sorting the alternating 20-string in 10 Berge 3-moves
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Chapter 2

Computational Approach

In this chapter, we discuss our approach to solving the problem. We felt we needed

more data so we could analyze it and try to find a solution to the problem. In order

to get more data points, we needed to write a program that takes k+2, the number of

pegs, as an input and sorts the pegs then returns h(k+2, k) and the actual moves made

to sort the pegs. Since every possible move will generate a new path in which the pegs

can be solved, this will ultimately become a huge growing tree with each node being

one configurations of the pegs. We adapted Depth-First Search to traverse through

this tree to find the solution. We will start by discussing some of the restrictions and

conditions we placed on our computational frame to make it run faster and how we

used it to help find the solutions quicker.

2.1 Search Space

The search space is essentially a tree. The pegs can be in different configurations

throughout the program run, they could be in different positions and have different

sizes of gap between different pegs. Each of these configurations is a node and at each

5
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node, every possible move we could make to move the pegs will generate a new path

and a new node. The tree will grow exponentially. The root is unsorted alternating

black and white pegs one after another as shown in Figure 2.1 and that is where we

start and the tree starts. Sometimes, there could be quite a few children to generate

from a node depending on the choices of available k pegs to pick and each of those

might have a few spots to move into but we can discard many of them by different

techniques explained in later sections. We keep track of the disorder at each node

and check to see if the pegs are sorted. If they are sorted at a node, that node will

not generate any new nodes and we will return necessary information for the sorted

node and explore other nodes. For this tree traversal, we decided to use Depth-First

Search to explore the nodes because it makes coding a lot easier and it is faster to get

the first solution.

1 5 10 15 20
◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •

Figure 2.1: Alternating 20-string

2.2 Possible Forms of Peg Placement

At each node, there will be two or more sets of consecutive k pegs that we can choose

to move around, each set of pegs can be moved to create a new node with new

configuration but we need to keep the total gap between pegs within dk
2
e ∗ k. The

pegs can be in the following 3 forms.

2.2.1 Type 1

The first form of peg placement is shown in Figure 2.2. There are no gaps between

the pegs. The restriction here is that we don’t make a move that will create a gap

6
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that’s greater than dk
2
e ∗ k. We could take pegs from position 0 to k − 1, 1 to k or 2

to k + 1 and move them around to make new nodes.

0 k + 1
◦ • ◦ • ... ◦ • ◦ • ◦ • ◦

Figure 2.2: k + 2 pegs, Type1

2.2.2 Type 2

The second form is shown in Figure 2.3. It has a gap of size x − 1 between the first

and second pegs. We have a choice to take the pegs from x to x + k − 1 or x + 1 to

x + k. We would have different moves to make for each set.

0 x x+ k
◦ • ◦ • ◦ • ... ◦ • ◦ • ◦

Figure 2.3: k + 2 pegs, type2

2.2.3 Type 3

The third type of placement of pegs if shown in Figure 2.4. In this form, there is one

gap between the pegs at k and x + k with x − 1 being the gap size. We can take

either the pegs from 0 to k − 1 or 1 to k. This is very similar to Type 2 2.2.2, we

just have k + 1 pegs on the left hand side. All the moves we can make in this case

will be symmetrical to the moves of 2.2.2.

0 k x+ k
• ◦ • ◦ • ... ◦ • ◦ • ◦ ◦

Figure 2.4: k + 2 pegs, type3

7
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2.3 Actual Implementation

For the actual implementation, I created 3 functions, one for each type, to call upon

recursively. As we can see from 2.2, we have 3 possible forms of the peg configurations.

Since moves available for each type are essentially the same, we could have one function

for each type. We start off with root, which is Type 1, make moves and call appropriate

functions with information needed. At any node, we make moves and we know the

types of peg configurations as a result of these moves so we can call the appropriate

functions and pass them the necessary information as well. We do this recursively

and thus creating the tree and traversing through it using Depth-First Search. In this

section, we discuss the actual implementation in more detail.

How to store the string

Initially, I used HashMap to store this information. I would use key to store its current

position and value to denote the color of the peg with 1 being a white peg and 0 being

a black peg. Every time we make a move, we simply update their keys to its current

position. Since each type will have at least k + 1 pegs that are consecutive we only

need to know the position of the isolated peg if it’s not Type 1 and that of the first

peg of the consecutive k+1 pile. Also, we use ArrayList to keep track of all the moves

made to get to the current node. However, this method would require a for loop to

update the peg positions so that was very inefficient and also redundant to keep track

of the peg positions. What we did was to use the Deque data type, which is a double

queue where we can take out the first element or last in constant time. This takes full

advantage of the fact that the order of at least k pegs will not change at each move.

So, in fact, we only have to move one peg from the k + 1 pile which is stored in a

Deque and add it to the other side and update the gap size.

8
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How to count the disorder

It is important to count the disorder, i.e., the number of pegs whose right neighbour

is not a peg of the same colour because we want to keep track of the disorders so we

know when to stop. As mentioned in How to store the string 2.3, I didn’t go with

array to store the peg position because the pegs will be moved around and going

by their concurrent positions would require sorting the array each time as the array

values denote their position, so HashMap was used instead. Since at least k pegs will

remain the same in their orders at each move, we only really needed to check a few

pegs who have lost their right neighbour to update their disorder. After we changed

our approach to string storage, the concept still remains the same and we only need

to check a few pegs to determine the disorder as most still don’t change.

Termination

It is also important that the program terminate. At each execution, I give a limit to

the number of moves the program can make. Thus, when a node reaches the limit

given, it will stop making more moves and calling other functions and the tree stop

growing from there, also if the pegs are confirmed to be sorted by checking disorder

then the node will stop making new moves and calling other functions too and it will

print out the results. Eventually all children either reach the limit or get sorted, the

program terminates then. Otherwise the program will never end.

2.4 Redundant Nodes

There are cases that we should always consider so that the program does not process

redundant nodes and sub trees that stem from them so the execution time can be

shortened. There are there such cases, relabelling, translation and symmetry, to look

9
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at and we discuss them in this section.

2.4.1 Translation

The first case is to reach a previously achieved node because this will create the exact

same sub tree as the one created by the previously achieved node and with more

moves as this new node would have the same configuration but with more pegs to get

there. Thus, we can definitely delete this repeated node. For example, in Figure 2.5,

both have the exact same configuration but different number of moves to get where

they are. The bottom one has every peg in the same order but shifted by a certain

amount so this is essentially the same node and will produce the same sub tree as

well just with everything shifted by the same amount so if this one has more moves

it needs to be deleted. The most trivial and common case of this is going back to the

same state after one move. Here, you make a move then on the next turn, you make

a move to place these pegs back where they come from.

◦ ... • • • ◦ ◦ ◦ • ◦ • ◦
◦ ... • • • ◦ ◦ ◦ • ◦ • ◦

Figure 2.5: Pruning by translation

2.4.2 Relabelling

Second case is the relabelling of white and black pegs as they are interchangeable. If

we flip the white pegs and black pegs, they are still the same thing and the moves

to be made to sort them will be exactly the same just with white and black pegs

swapped. White pegs followed by black pegs are the same as black pegs followed by

white pegs. As shown in Figure 2.6, those two are the same and the would produce

10
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the same results, just black and white swapped. These can be considered repeated

nodes as well so we would delete the one with more moves.

◦ ... • • • ◦ ◦ ◦ • ◦ • ... ◦
• ... ◦ ◦ ◦ • • • ◦ • ◦ ... •

Figure 2.6: Pruning by relabelling

2.4.3 Symmetry

The final case is when 2 sets of pegs are symmetrical about the half point as shown in

Figure 2.7. These two nodes are symmetric in that everything is a mirror image of one

other about the middle point and the moves to be made from these will be symmetric

as well so essentially the same thing. Thus, these could be considered redundant as

well.

◦ • ◦ • ◦ • ◦ • ◦ • ◦
◦ • ◦ • ◦ • ◦ • ◦ • ◦

Figure 2.7: Pruning by Symmetry

It is important to keep track of all the configurations so we know when these three

cases occur and we can eliminate the redundant nodes. However, identifying all these

with different positions with relabelling and translation can be troublesome, so we

will reset the positions at each node so the position of the first peg will always be

relabelled 0 and the rest follow, this takes care of translation as all pegs will occupy

positions 0 to k + 1 now and we will keep track of the type and gap size as well. This

way, we can detect all repeated nodes in translation. To deal with relabelling(white

and black swapped), we could simply set the first peg at each node to be a white peg

then reset the rest accordingly. If the first peg is white, we do not change anything in

11
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terms of the peg colour. As for symmetry, we simply create a reversed version of the

pegs at each node and with the information of gap size and type while applying the

relabelling technique, we can determine if this reversed configuration has already been

accomplished before. Another trick is using the fact that symmetry only occurs for

type 1 and type 2 so we could simply take out type 2 so symmetry would never happen

to begin with because they are the reverse image of each other for every configuration

of type 1 there’s a symmetry case of it in type2. Using these techniques, we can track

down all the redundant nodes and delete them if need be. However, in order to show

the solutions, we need to convert the positions back at the end. This approach gave

us a huge speed up.

2.5 Branch And Bound Like Pruning

The concept of this type of pruning is that once we have an upper bound to the

number of moves to make, we can use that as a limit to eliminate all nodes that will

require more moves than the upper bound to sort the pegs, thus pruning a huge chunk

of the tree. Let Dk+2,k(i) denote the disorder after the i-th Berge k-move. Initially,

Dk+2,k(0) = k + 2, and when the pegs are sorted Dk+2,k(i) = 2. We will try to find

solutions with number of moves strictly less than the upper bound. i+dDk+2,k(i)−2

2
e ≥

upperbound will be added as the stopping criteria, nodes that satisfy this criteria will

stop further executing from there. dDk+2,k(i)−2

2
e simply tells us how many moves are

needed at least to sort the remaining pegs as only optimal moves that decrease the

disorder by 2 can sort the remaining pegs in dDk+2,k(i)−2

2
e moves. This will be used

heavily to prevent unnecessary computation.

12
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2.6 Heuristic Bound On The Range

Initially, we decided to limit gap between pegs to 2k at most since having a gap

greater than 2k is sub-optimal. With this restriction, the length from the first peg

to the last peg would be 3k + 2 since we have k + 2 elements and the largest gap is

2k. This length can range from k + 2, when there is no gap in between, to 3k + 2.

This significantly limited the range of moves we could make and therefore reducing a

significant amount of computing due to the reduced tree size. However, this did not

give us the minimal solutions and judging from the previous solutions and it seemed

like increasing the gap limit to dk
2
e∗k was a better idea so we went with that instead.

2.7 Heuristic approach: Stage1

With all the ground work done, we can finally run the program and use it to find the

solution to our problem. With the brute force approach, the computation was still too

much so we needed to take a heuristic approach to further reduce the computation

time. We took a look at the past solutions and tried to find the patterns that we

could use to narrow down the search. We have two stages to this process and Stage 1

will be discussed in detail in this section. The purpose of this stage is to get the best

estimate for how many moves are needed to sort n pegs using different techniques to

shorten the computation time. We run a few rounds with each round having more

relaxed constraints from previous rounds in a hope to improve the estimate after each

round. After examining the solutions computed by Deza and Hua [5], we found out

that, for the most part, the first two moves reduce the disorder by one and a lot of

them have their disorder decrease by 2 after 3 moves. It is optimal not to to have any

bad moves that increase the disorder but examining the past solutions revealed that

13
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a lot of them do have one or two bad moves that increase the disorder by 1. Further

investigation of the past solutions has shown that there are no bad moves that occur

within the first bk
2
c moves and the first bad move occurs by the kth move. Some of

the solutions do have the second bad move after the first one and disorder decreasing

by 2 after 5 moves instead of 3. We will use all of these rules to prune for round 1 to

get the initial estimate. Our goal is to have our code get as close to the generalized

algorithm as possible so that we do not need the brute force algorithm to find the

minimum solution. Thus, for round 1 of this stage, we want to create a fast pruning

heuristic such that with all the rules, this formulation will return the optimal solution

for all values up until k = 14, which we could confirm with past solutions. These will

be used to find a good estimate for k > 14 and the estimate we get in round 1 will be

used in round 2 as an upper bound to prune more, this technique is discussed in 2.6.

1. Allow no bad moves in the first bk
2
c moves one bad move by kth move and

another one after that, disorder to decrease by 1 in the first 2 moves and 2 in

first 5 moves

2. Everything from round 1, and prune using the estimate from round 1 as upper

bound

Redundant nodes, as discussed in section 2.4, will be checked against all nodes

throughout the execution and they will be eliminated to shorten the execution time.

2.8 Heuristic approach: Stage2

At Stage 2, the program input are k + 2, the number of pegs and the estimate from

Stage 1. Our job here is the verify that the estimate we acquire from Stage 1 is indeed

14
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the best we can do or the one last try to improve the estimate as at this stage, all bets

are off and we allow all kinds of move to go but redundant nodes will be eliminated

as described in section 2.4. The estimate from stage 1 comes in handy because this

could act as a limit and we use it to prune all nodes that would exceed the estimate

or equal. i+dDk+2,k(i)−2

2
e ≥ estimate will be used as the stopping criteria. If no result

comes out of this, it verifies the estimate from Stage 1 as the best solution. If estimate

does get improved here, that is the best solution as we look at all the possibilities at

this stage. We do not impose the disorder to decrease in the first few moves or limit

the gap to dk
2
e ∗ k here. Result from here can verify whether the heuristic approach

we took in stage 1 is correct.

15



Chapter 3

Results and Analysis

In this chapter, we will look at the results we get from Stage 1 and Stage 2 as explained

in chapter 2. We will talk about what they represent and analyze them here.

16
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3.1 Stage 1 Result

Stage 1 Result(moves)

Input k Round1 Round2

k = 3 3 3

k = 4 6 6

k = 5 6 6

k = 6 7 7

k = 7 8 8

k = 8 11 11

k = 9 12 12

k = 10 16 16

k = 11 18 18

k = 12 22 22

k = 13 22 22

k = 14 29 29

k = 15 30 30

As we can see, Round 1 gives the minimum solution for all values k ≤ 14. For

example, for k = 15, round 1 gave 30 and round 2 did not improve that number.

3.2 Stage 2 Result

At Stage 2, we take string size k + 2 and the estimate from Stage 1 as the program

inputs and we verify that those estimates are the best we can do. This is where any

17
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kind of moves are allowed except the ones that are prohibited by the elementary con-

ditions. The results are as follows:

Stage 2 Result(moves)

Input k Round1

k = 3 3

k = 4 6

k = 5 6

k = 6 7

k = 7 8

k = 8 11

k = 9 12

k = 10 16

k = 11 18

k = 12 22

k = 13 22

k = 14 29

k = 15 30

18



Chapter 4

Conclusion

Even though we were not able to find the determination of h(k+2, k) due to increased

execution time when k gets larger because more moves are required and that means

longer path and more nodes to compute and since the tree grows exponentially, there

really are a lot of nodes to compute. Unfortunately for me, I did not have enough data

points to evaluate from and from the ones I already have, it was not possible to draw

any conclusion on the general case for h(k + 2, k). However, we do have a working

code and we made it a lot faster with different pruning techniques and with more time

and data to work with, it should be easier to find the determination of h(k + 2, k).

Also, it is interesting to notice that moves that are considered sub optimal do indeed

help sort the pegs quicker in most cases.

19
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font par les nombres. Partie recueillie de divers autheurs, et inventez de nouveau
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