
Methods for 3D Structured Light Sensor

Calibration and GPU Accelerated Colormap

METHODS FOR 3D STRUCTURED LIGHT SENSOR

CALIBRATION AND GPU ACCELERATED COLORMAP

BY

VENU KURELLA, M.Sc., (Mathematics)

University of British Columbia, Vancouver, Canada

a thesis

submitted to the school of computer science & engineering

and the school of graduate studies

of McMaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

© Copyright by Venu Kurella, 2018

All Rights Reserved

Doctor of Philosophy (2017) McMaster University

(School of Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Methods for 3D Structured Light Sensor Calibration and

GPU Accelerated Colormap

AUTHOR: Venu Kurella

PhD student

SUPERVISORS: Dr. Allan Spence and Dr. Christopher Anand

NUMBER OF PAGES: xvi, 109

ii

To the love and support of family, friends and well-wishers whose brought me in

tolerance with the PhD requirements.

Abstract

In manufacturing, metrological inspection is a time-consuming process. The higher

the required precision in inspection, the longer the inspection time. This is due to

both slow devices that collect measurement data and slow computational methods

that process the data. The goal of this work is to propose methods to speed up some

of these processes. Conventional measurement devices like Coordinate Measuring

Machines (CMMs) have high precision but low measurement speed while new digitizer

technologies have high speed but low precision. Using these devices in synergy gives

a significant improvement in the measurement speed without loss of precision. The

method of synergistic integration of an advanced digitizer with a CMM is discussed.

Computational aspects of the inspection process are addressed next. Once a part is

measured, measurement data is compared against its model to check for tolerances.

This comparison is a time-consuming process on conventional CPUs. We developed

and benchmarked some GPU accelerations. Finally, näıve data fitting methods can

produce misleading results in cases with non-uniform data. Weighted total least-

squares methods can compensate for non-uniformity. We show how they can be

accelerated with GPUs, using plane fitting as an example.

iv

Acknowledgements

I am grateful and fortunate to have Dr. Allan Spence and Dr. Christopher Anand

as my supervisors. Their guidance, support and encouragement helped me navigate

not just my PhD but also my life. I am thankful to Drs. Veldhuis, Fleisig, Bone for

the guidance throughout the program. Special thanks to Dr. Qiao and Dr. Mayer

for their valuable feedback on my thesis. I appreciate the financial support provided

through NSERC and Origin International.

I would also like to thank Kai for being such a great colleague. I must acknowledge

the invaluable company of Hamad, Graham, Yahu, Mohamed, Behrad, Yile, Rong,

Yangliu and Cris. Thanks go to Bob and Murray of Origin and Ron, Mark, John,

Joe and Dan of machining lab for their kind and patient support during my research.

Special appreciation goes to Bartek and Julie of CSE and Dr. Lightstone, Lily,

Florence and Vania of mechanical Engineering for going above and beyond to help

me out. I must also mention the valuable mentorship of Steve and Jeremy.

I am thankful to my loving wife, Parathy, and friends, Jessie, Sravan, Vishnu,

Sathish and Naresh for their unwavering love, support and encouragement. Finally, I

would like to express my gratitude to my parents, Laxmi and Kumaraswamy, sister,

Swetha and brother, Praveen, for their unending support and love throughout my

life.

v

Notation and Abbreviations

3D Three Dimensional

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CMM Coordinate Measuring Machine

DLL Dynamic Link Library

FFM Facet Facet Matching

GD&T Geometric Dimensioning and Tolerancing

GPGPU General Purpose Computing on Graphics Processing Units

GPU Graphics Processing Unit

HTM Homogeneous Transformation Matrix

LED Light Emitting Diode

NIST National Institute of Standards and Technology

OLS Orthogonal Least Squares

PFM Point Facet Matching

TLS Total Least Squares

WTLS Weighted Total Least Squares

vi

Contents

Abstract iv

Acknowledgements v

Notation and Abbreviations vii

1 Introduction 1

2 Calibration of a Compact Snapshot Sensor 3

2.1 Digital Sensors in Metrology . 3

2.2 Types of Digital Sensors . 5

2.2.1 Structured Light Sensors . 6

2.2.2 Laser Line Scanners . 7

2.2.3 Fringe Sensors . 7

2.3 Calibration . 8

2.3.1 Calibration Artefact . 8

2.3.2 Calibration Types . 9

2.3.3 Extrinsic Calibration . 9

2.3.4 Existing Calibration Methods 10

vii

2.4 Snapshot Sensor . 11

2.4.1 Specifications . 12

2.5 Calibration Mathematics . 12

2.5.1 Homogeneous Transformation Matrix (HTM) 12

2.5.2 CMM-Sensor Calibration . 14

2.5.3 Feature Fitting . 15

2.6 Artefact Design . 15

2.6.1 Sphere Artefact . 16

2.6.2 Plane and Lines . 17

2.6.3 Grayscale Artefacts . 18

2.6.4 Aluminum Artefact . 21

2.6.5 Angled Slot . 22

2.7 Calibration Method . 24

2.7.1 Artefact Design . 24

2.7.2 Mechanical Alignment . 24

2.7.3 Developed Protocol . 25

2.7.4 Advantages . 28

2.7.5 Application: Registration . 28

2.7.6 Application: Hybrid Sensor 29

2.8 Contributions . 31

3 Point Cloud to CAD Deviation Mapping Using GPU Computing 33

3.1 Introduction . 33

3.2 Algorithm Challenges and Solutions 35

3.2.1 Algorithms . 35

viii

3.2.2 Challenges . 37

3.2.3 Experimental Set-up . 39

3.3 Point-Facet Matching . 40

3.3.1 Initial Experiments and Results 40

3.3.2 Performance Analysis . 40

3.3.3 Complete Looping . 43

3.3.4 Texture Memory . 44

3.3.5 Results . 44

3.4 Facet-Facet Matching . 45

3.4.1 Setup . 45

3.4.2 Results . 46

3.5 Analysis and Conclusions . 47

3.5.1 Consistency Check . 47

3.5.2 CPU-GPU Result Comparison 48

3.5.3 Industry Software Implementation 50

3.5.4 Other Challenges . 50

3.5.5 Limitations . 51

3.5.6 Conclusion . 51

4 Weighted Total Least Squares 52

4.1 Introduction . 53

4.1.1 Fitting Methods . 53

4.1.2 Minimum Zone Method . 53

4.1.3 Total Least Squares (TLS) . 54

4.2 Weighted Total Least Squares (WTLS) 55

ix

4.2.1 Weighting and Filtering . 55

4.2.2 WTLS on Parallel Planes . 56

4.2.3 Method . 56

4.3 GPU Computing . 57

4.3.1 TLS on GPU . 58

4.3.2 WTLS on GPU . 58

4.3.3 GPU Algorithm . 58

4.4 Implementation . 59

4.4.1 Input . 59

4.4.2 Set-up . 59

4.4.3 GPU Implementation . 61

4.5 Profiling and Optimization . 61

4.5.1 Managed Memory . 61

4.5.2 Explicit Memory . 62

4.5.3 Bundling . 62

4.5.4 Streams . 63

4.5.5 Other Optimization . 63

4.6 Results . 63

4.6.1 Performance . 63

4.6.2 Limitations . 65

4.6.3 Future Architecture . 65

4.6.4 Applications . 65

4.7 Conclusions . 66

5 Conclusions 67

x

A Calibration Algorithms 69

A.1 Projection of Point on a Plane . 69

A.2 Point of Intersection of Two Coplanar Lines (3D) 70

A.3 Point on Line of Intersection of Two Planes 71

A.4 Select Data in a Point Cloud Plot . 71

A.5 Estimation of Calibration HTM using Processed Data from Sensor and

CMM . 73

B Calibration Artefact Drawing 79

C Weighted Total Least Squares 81

C.1 kernel.cu . 81

C.2 Header (CudaHeader.h) . 95

C.3 Header (definitions.h) . 96

C.4 Header (largest eigen.cpp) . 98

xi

List of Tables

2.1 Hybrid sensor application . 30

3.1 PFM and FFM matching algorithms. Here actual refers to actual facet

and point in FFM and PFM respectively while model refers to a model

facet. Vicinity is a fixed distance parameter. 36

3.2 Improvement in performance parameters with texture memory. 43

3.3 PFM: Computation time (seconds) and speed-up (s-u) of Tesla K40 . 44

3.4 FFM: Computation time (seconds) and speed-up (s-u) of Tesla K40 . 47

3.5 Order of the maximum absolute differences of deviation results from

the CPU and the GPU. 49

4.1 Performance comparison. Timings in milliseconds 64

xii

List of Figures

2.1 Conventional metrology: (a) Cartesian CMM (b) FaroArm articulated

arm CMM (c) Touch probe reporting the X, Y and Z coordinates of

the point of contact . 4

2.2 Stereo and triangulation sensors . 6

2.3 Gocator® laser line scanners and fringe sensor differences as shown in

their documentation [21] . 7

2.4 Renishaw® AM1 module [53] . 10

2.5 Sensor mounted on the CMM . 11

2.6 Scanning a sphere gives unreliable points close to equator due to steep

angle of incidence . 16

2.7 Analysis of pen lines data . 17

2.8 Using grayscale in calibration . 18

2.9 Analysis of ABS artefact . 20

2.10 Uncertainty analysis of slot data from the ABS artefact 21

2.11 Uncertainty analysis of aluminium slot data 22

2.12 Inclined slots on test artefact . 23

2.13 Mechanical alignment of the calibration artefact and the sensor . . . 24

xiii

2.14 Angled slot calibration target. Details of the design can be found in

the CAD drawing in appendix A . 25

2.15 Calibration method . 26

2.16 Constraction of coordinate frame on the artefact. 27

2.17 CMM-sensor system is used to scan the automotive part. 29

2.18 Seven snapshots of an automotive part are taken at different orienta-

tions to cover the complete surface. Data from all the snapshots has

been registered to the CMM frame using the calibration method. The

result is compared with its CAD model in Geomagic software. 32

3.1 Matching methods . 35

3.2 Instruction Level Parallelism (ILP) for FFM: (a) Filtering and critical

condition branches in CPU implementation (b) Improving ILP on the

GPU by bundling conditions . 38

3.3 Point-Facet Matching: Points fit to its model to produce a colormap

of deviations. 41

3.4 Results of performance analysis showing the warp stall reasons. . . . 42

3.5 Input and output from facet facet matching 46

3.6 Consistency of PFM deviation results over 100 iterations for the 1 M

model facet dataset. 48

3.7 Absolute differences between the CPU and GPU deviation results for

0.3 M model facet dataset in FFM. 49

4.1 Digital sensors produce dense and non-uniform data. 55

4.2 Parallel plane fit algorithm . 60

4.3 Incremental improvements in performance with each optimization . . 62

xiv

4.4 GPU acceleration compared to the CPU implementation 64

B.1 Angled slot artefact CAD drawing . 80

xv

Chapter 1

Introduction

Metrology is the study of measurement. In manufacturing, metrology relates to in-

spection of manufactured parts to ensure that they adhere to the dimensions, within

given tolerances, set by the design. In industries like automotive manufacturing and

aerospace, metrology is a crucial but very time-consuming process. This work draws

motivation from the need to speed up the inspection process. Metrological inspection

of a part can be broken down into two stages: measurement with precise devices

and processing the measurement data to check for tolerances. This work proposes

methods to speed up these two stages.

Many parts manufactured in the automotive industry have very tight tolerances

requiring micrometer level measurement precision. CMMs are the most reliable mea-

suring devices in automotive industry. They have been widely used for decades. While

most CMMs have micrometer level precision, they are known to be slow. Digital mea-

surement devices that arrived in the past few years are faster than a CMM but not

as precise; hence, researchers have come up with methods to integrate digital devices

with CMM to get an intermediate speed without any loss of precision. Chapter 2 of

1

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

this work discusses a novel integration of a state-of-the-art digital sensor and a CMM.

It is an expanded version of the paper [64].

In the second stage of metrological inspection, collected measurement data is com-

pared against the CAD model to check if the part is manufactured within tolerances.

Several computational methods exist to perform this comparison. They use the points

from the data and facets from the CAD model for this purpose. Deviations are calcu-

lated for every part feature and compared against the tolerances in its design. Only

if the deviations are within the tolerances, does the part pass the inspection. Com-

parison software tools have been widely implemented on conventional CPUs. While

the CPU implementations are suitable for small data sets, e.g . those from CMMs,

digitizers produce dense data making it a time-consuming process. Recent GPU

technologies have been used to accelerate the CPU implementations. GPUs are also

inexpensive. In chapter 3, we study the acceleration methods in the context of an

industrial problem. The results have been summarized in the publication [37].

Existing point cloud to model comparison tools do not account for non-uniformity

in point clouds. Weighted total least squares have been developed by researchers at

NIST to tackle the basic problem of plane fitting. We show how this method can

benefit from GPU acceleration, in chapter 4 which is also submitted for publication.

Each chapter sets the stage with a review of the relevant literature. The last chapter

is summary of contributions of the thesis work.

2

Chapter 2

Calibration of a Compact Snapshot

Sensor

2.1 Digital Sensors in Metrology

Coordinate Measuring Machines (CMMs) are a broad category of machines that per-

form Geometric Dimensioning and Tolerancing (GD&T) based measurement of parts.

A CMM reports points on a part by making contact with a touch probe. There are

two major types of CMMs: Cartesian CMMs (Fig. 2.1a) which give Cartesian (XYZ)

coordinates directly and non-Cartesian CMMs (Fig. 2.1b) which use angles along with

translations to give the required coordinates [25].

While each have their own applications, this work focusses is Cartesian CMMs that

are by far the most prevalent, accurate and well-investigated among the two types.

Conventionally, touch probes are used with CMMs in geometric measurement. Touch

or tactile probes touch a part to report the XYZ coordinates of the point of contact.

These are the most precise among the methods of measurement in manufacturing.

3

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) IOTA-P® CMM
(b)

FaroArm® [17]
(c) Renishaw ® probe [54]

Figure 2.1: Conventional metrology: (a) Cartesian CMM (b) FaroArm articulated
arm CMM (c) Touch probe reporting the X, Y and Z coordinates of the point of

contact

However, they have two major limitations: slow point collection capability (up to a

few hundred points per second) and the need for making contact with the part for

measurement - a concern when a part could be deflected due to touch. Because of

these reasons, over the past few years, touch probing on CMMs has been augmented

by the incorporation of 3D digitizers. These digital sensors have high speed, high

resolution and are able to perform contactless measurement. Manufacturing industry

has heavily invested in these technologies in the past few decades.

4

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.2 Types of Digital Sensors

Currently there are various types of digitizers used in metrology in the manufacturing

industry. Their usage generally depends on the type of application and the required

accuracy.

i. Structured light sensors use triangulation or fringe based techniques to calculate

the distance of a part from the sensor (Fig. 2.2b). Laser line scanners and visible

light sensors, including fringe based sensors, come under this category. These are

the most accurate among the digitisers. They find applications not only in the

manufacturing industry for part inspection and reverse engineering but also in

other fields such as plastic surgery and dentistry [34].

ii. Computed Tomography (CT) uses ionizing radiation passing through a part to

obtain its image. For manufacturing purposes, CT is discouraged since it is

expensive, hard to calibrate and relatively less accurate.

iii. Stereo vision digitizers extract information from images of a part taken from

multiple views (Fig. 2.2a). Compared to structured light sensors, stereo vision

sensors have lower accuracy.

Barbero et. al. [6], study and compare three different kinds of laser scanners

(including one mounted on a CMM), a CT method and a fringe projection method.

They study parameters like accuracy, part digitization, distribution of scan points,

mesh edges, roughness of meshing and holes without meshing. This work concluded

that a laser scanner mounted on a CMM and fringe based sensors have better accuracy

compared to other techniques. Triangulation based laser scanners and fringe-based

5

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Stereo sensor [59] (b) Creaform ® scanner

Figure 2.2: Stereo and triangulation sensors

projection digitizers are used in 90% of the close-range digitizing applications in

industry [27]. A Fiat Chrysler Automobiles technical report discusses investment

in the digitizing techniques leading to decline of problems in vehicles [47]. While

scanners are commercially available, they can also be custom built to suit specific

needs [48, 50].

2.2.1 Structured Light Sensors

In metrology, widely used structured light sensors are of two types: laser line scanners

and fringe based sensors. Line scanners project a beam of light within a 2D field of

view to collect 3D data along the line of incidence. Fringe sensors, on the other

hand, project patterns of visible light to obtain 3D data within the 3D field of view.

The difference is illustrated in the documentation of Gocator® sensors from LMI

Technologies Inc. [21] (Fig. 2.3).

6

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 2.3: Gocator® laser line scanners and fringe sensor differences as shown in
their documentation [21]

2.2.2 Laser Line Scanners

Commercially available laser scanners are of two kinds: mountable and portable scan-

ners. While the former can be mounted on a CMM or a robotic arm, portable scanner

is generally hand-held. The advantage of portable scanners is that they can be used

to get a quick 3D point cloud of an object. The drawbacks are that their accuracy

is generally lower than that of the mountable scanners, and they usually require a

person to move and scan around the part.

2.2.3 Fringe Sensors

Fringe based sensors, like laser line scanners, can also be placed into two categories:

stationary sensors and mountable sensors. Stationary sensors can be either purchased

or custom built using visible light projectors [52]. Mountable sensors have been

a recent development. Compared to laser scanners, they have been less prevalent

7

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

in manufacturing due to lower precision and greater size, making them difficult to

mount on CMMs. With recent advances in technology, fringe sensors have come

closer to scanners in precision and size. LMI Technologies Inc. developed a fringe

based sensor [21] called a snapshot sensor. This sensor can be mounted on a CMM

due to its light weight and compact size and is capable of sheet metal precision (∼0.1

mm).

While both laser scanners and fringe sensors have comparable speed and precision,

laser scanners are not considered eye-safe due to the focussed laser beam. Fringe

sensors, on the other hand, avoid this problem. Both kinds of mountable sensors can

be automated for manufacturing inspections on assembly lines. Once mounted on a

CMM, they have to be calibrated.

2.3 Calibration

In metrology, calibration means determining the transformation between two frames.

A calibration artefact is used for this purpose.

2.3.1 Calibration Artefact

A calibration artefact is a part with known geometry and dimensions used to cal-

ibrate measurement devices. The artefact is measured by devices to obtain their

position and orientation with respect to the artefact. This information can be used

to establish a transformation between the devices’ frames. The artefacts are usually

stationary, resulting in a consistent measurement frame. Once a calibration artefact

is designed, it is measured by the devices. Mathematical methods are applied to the

8

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

measurement data to estimate the devices’ position and orientation. These mathe-

matical methods are developed using Homogeneous Transformation Matrices (HTMs)

and feature fitting algorithms discussed in Sec. 2.5.

2.3.2 Calibration Types

Calibration is of two kinds: intrinsic and extrinsic [12, 65]. A structured light sen-

sor has a camera that takes images of laser lines or fringe patterns to calculate X,

Y, Z coordinates using triangulation or stereo methods. Intrinsic calibration deter-

mines this transformation between the image plane and the internal sensor coordinate

frame based on its camera parameters. During digitizer manufacture, intrinsic cali-

bration is a standard procedure where artefacts like checker board patterns and grids

are used [52, 65]. When sensors are mounted on external devices like CMMs, the

transformation between the CMM and the sensor frames has to be determined. This

process, known as extrinsic calibration, helps establish a common coordinate frame

to represent data obtained by touch probing or scanning a part. The focus of this

work will be extrinsic calibration.

2.3.3 Extrinsic Calibration

Extrinsic calibration is the correction for small mounting misalignments when mounted

on an external machine like a CMM on the shop floor. This is required to use the

multi-sensor system in a synergistic way. It is performed in two stages: mechanical

and mathematical. First, the roll, pitch and yaw angles are adjusted mechanically

using a Renishaw® adjustment module to manually align the axes of the frames as

much as possible [53] (Fig. 2.4). Then they are mathematically compensated using

9

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

a precise calibration method. The mathematical compensation requires a calibration

artefact.

Figure 2.4: Renishaw® AM1 module [53]

2.3.4 Existing Calibration Methods

Mathematical calibration, referred to as just calibration in the rest of the thesis, was

performed by various researchers on CMM mounted laser scanners. Calibration meth-

ods for commercial laser scanners are proprietary and are usually not discussed in the

literature. In the academic literature, spheres are used for extrinsically calibrating

custom built scanners [12]. The literature on fringe sensors focuses on intrinsic cali-

bration, since stationary sensors are more prevalent than mountable ones [7, 10, 52].

To the best of our knowledge, there was no known extrinsic calibration method for

fringe sensors available in literature. The main contribution of this work is an extrinsic

calibration method for the CMM mounted snapshot sensor.

10

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.4 Snapshot Sensor

The snapshot sensor, powered by blue LED structured light, can take a snapshot of a

sizeable 3D zone within its field of view [21](Fig. 2.5) and provides XYZ coordinates of

the points in the region. The snapshot sensor uses a combination of triangulation and

stereo methods to obtain the 3D information of a part. To the best of our knowledge,

at the time of purchase, it was the only 3D structured light sensor with sheet metal

precision that was compact and light enough to be mounted on a CMM. This gives it

the advantage of quickly measuring large parts (especially sheet metal) on the shop

floor. It can also be used to give the CMM an approximate location of features on a

part that deviates from its CAD/nominal geometry.

Figure 2.5: Sensor mounted on the CMM

11

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.4.1 Specifications

The LMI Gocator 3100 snapshot sensor, used in this work, has a near field of view of

60 mm x 105 mm and a far field of view of 160 mm x 90 mm. Maximum resolutions

are of 0.09 mm, 0.15 mm and 0.035 mm along X, Y, and Z axes respectively. It has

a clearance distance of 150 mm, a measurement range of 100 mm and a maximum

snapshot rate of 5 Hz. The sensor is mounted on a motorized IOTA-P Cartesian

CMM. Ball-bar calibration of the CMM established a very small XY squareness error

of 8.073× 10−4 rad. The static location of the sensor is obtained from the CMM mo-

tion controller through RS232/Ethernet or using a personal computer PCI counter

card connected to the position scale reader heads. Along with XYZ data, the sensor

provides grayscale images of the parts. Once mounted on the CMM, the snapshot

sensor has to be extrinsically calibrated using an artefact. The calibration math-

ematics involves estimation of Homogeneous Transformation Matrices (HTMs) and

feature fitting methods which will be discussed in the following sections.

2.5 Calibration Mathematics

2.5.1 Homogeneous Transformation Matrix (HTM)

Transformation between two frames is made up of rotation and translation. Con-

sider frames A and B. The goal is to transform point, pB(xB, yB, zB), in frame B to

point, pA(xA, yA, zA) in frame A. If rotation, RA
B, a 3 × 3 matrix, and translation

TA
B (xA

B, y
A
B, z

A
B) of frame B with respect to frame A is known, then the transformation

12

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

is

pA = TA
B + RA

BpB
xA

yA

zA

 =

xA
B

yAB

zAB

 + RA
B

xB

yB

zB

(2.1)

An HTM can be used to compactly represent the same transformation. HTMs

are 4 × 4 matrices, commonly used in complex rigid body transformations. They

store both the rotation and translation information. An HTM in this case is shown

in eqn. 2.2 where 01X3 = [0 0 0].

HA
B =

 RA
B TA

B

01X3 1

 (2.2)

This HTM transforms all points in frame B to frame A. Now, eqn. 2.1 can be

rewritten as

pA

1

 = HA
B

pB

1

xA

yA

zA

1

= HA

B

xB

yB

zB

1

(2.3)

13

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.5.2 CMM-Sensor Calibration

The focus of this work is calibration of the snapshot sensor on the CMM. This cal-

ibration enables easy transformation of the points collected in the sensor frame to

the CMM frame. Calibration artefacts should be parts that are easy to measure by

both the devices. This helps establish a common coordinate system and quick trans-

formation between the coordinate systems of the devices. While CMMs can measure

most parts, snapshot sensors pose a challenge due to their relatively lower precision

and noise due to surface properties of the artefact. To calibrate, rotation and trans-

lation components of the HTM have to be calculated. Translation is related to the

relative positions of coordinate frames. Rotation matrices are directly related to the

misalignment angles along each of the axes with respect to the calibration artefact.

Rotation matrix, R, in eqn. 2.1, is the product of individual rotation matrices along

X, Y and Z axes (eqn. 2.4).

R = RXRYRZ (2.4)

The goal is to, first, find the transformations from the artefact to the CMM (HC
A)

and to the snapshot sensor (HS
A). Transformation from the snapshot sensor to the

CMM, HC
S , can then be calculated as

HC
S = HS

A(HC
A)−1 (2.5)

14

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.5.3 Feature Fitting

Calibration methods use feature fitting algorithms to measure features like lines and

planes. Total Least Squares (TLS) fitting methods [56] are widely used for this

purpose. In TLS fitting, the sum of the squares of the orthogonal distances, d, of M

points to a feature, S, is minimized.

S =
M∑
i=1

‖di‖2, (2.6)

where, for plane fitting,

di = (si − p) · v

di = (si,x − px)vx + (si,y − py)vy + (si,z − pz)vz

(2.7)

is the orthogonal distance of each point, si, from the plane. TLS plane fitting yields

point, p, on the plane and its normal direction, v. Similarly, for line fitting

di = (sm − p)× v (2.8)

is the orthogonal distance of each point, si, from the line. This yields point, p, on the

line and its direction, v.

2.6 Artefact Design

Several design experiments were conducted to develop a calibration artefact. This

section discusses the experiments in chronological order.

15

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.6.1 Sphere Artefact

As discussed in section 2.3.4, sphere is a known calibration artefact for laser scanners.

However it has been established by various studies that the surface point cloud data

collected by digitizers close to the equator of a sphere is unreliable due to the steep

angle of incidence (Fig. 2.6). This leads to a fit that yields a sphere that is bigger

than the nominal [18, 41, 42, 63] resulting in a significant deviation in the estimation

of the sphere centre. A sphere of 38.136 mm radius was scanned using the snapshot

sensor. Data was fit to a sphere, using National Institute of Standards and Technology

(NIST) tools, which estimated the radius to be of 37.85 mm. Hence using the sphere

would not be adequate for calibration of the snapshot sensor.

(a) Sphere scan illustration shown
in Gocator® documentation [21]

(b) Incident rays simulated in HOOPS®

Figure 2.6: Scanning a sphere gives unreliable points close to equator due to steep
angle of incidence

16

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Gray scale image
of pen lines

(b) Intensity plots at
three cross sections

Figure 2.7: Analysis of pen lines data

2.6.2 Plane and Lines

A calibration method using a combination of surface data from a planar plate and

gray scale data from axially oriented lines (Fig. 2.7) was investigated. This method

estimates the HTM as follows: planar surface data from the artefact is Total Least

Squares (TLS) plane fit to obtain misalignments about two axes (RX and RY) while

misalignment about the third axis (RZ) can be extracted by TLS line fitting gray scale

line data. The preliminary experiments with this method showed promising results

motivating the design and development of a calibration artifact. Further detailed ex-

periments have revealed the challenges in gray scale implementations and an estimate

of uncertainty. Research in this direction led to design of an aluminum slot calibra-

tion artefact that overcomes the drawbacks of the grayscale methods. The rest of

this chapter discusses the chronological stages in the development of the working cal-

ibration artefact. Various calibration artefact designs with corresponding analytical

methods, results and identified sources of uncertainty are discussed.

17

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.6.3 Grayscale Artefacts

Initial investigations were performed on using ink filled slots engraved on an aluminum

plate (Fig. 2.8a). Mounted on CMM table, the plate was aligned using iterative touch

probe measurements. The challenges of ink filling were soon understood. While the

method relies on the uniformity of ink distribution on the slots, it was difficult to

maintain such uniformity with either viscous or liquid ink. However this test gave

insights into design of the artefact and helped establish the alignment practices of

artefacts on the CMM table.

(a) Ink filled slots on
aluminium artefact

(b) ABS test part (c) ABS artefact

Figure 2.8: Using grayscale in calibration

ABS Plate

To overcome the drawbacks of the ink filled slots, use of color layered ABS plate was

suggested. ABS plastic plate used has a black layer under a white layer. Black slots

can be engraved on it by machining off the top layer. Before designing the artefact,

experiments were performed on a test ABS part to estimate the depth and width of

18

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

slots (Fig. 2.8b). A minimum width is essential to obtain a sufficient number of good

quality pixels after removing noisy edges. The slots have to be deep enough to chip

off the white layer and shallow enough to avoid shadows. Multiple lines with different

depths and widths on the test part were studied. Based on the results, a calibration

artefact is made with slots that are 0.1 mm deep and 3.175 mm wide (Fig. 2.8c). It is

mounted on the CMM table using Renishaw AM1 [53] adjustment module (Fig. 2.4)

and aligned with the CMM. Interactive algorithms were developed to extract planar

and gray scale information and estimate the residual misalignments. Along with the

previous line fit methods, edge detection method was also developed to detect the

left and right edges of the slots (Algorithm 1).

Algorithm 1 Edge Detection

for each row do
if current pixel = black then

black pixel point set ←− new black pixel point
if previous pixel = white then

left edge point set ←− new left edge point
end if

else
if next pixel = white then

right edge point set ←− new right edge point
end if

end if
end for

It was found that the result of TLS line fit of a slot pixel is close to the mean of

the values from the edge pixel line fits (Fig. 2.9a). Using ABS plate plane-grayscale

method, three snapshots of the part were taken and stitched together. The height

map and gray scale data of the stitched snapshots are shown below (Fig. 2.9b, 2.9c).

This method was able to correct the Z direction misalignment up to 0.1 degree.

The data was analyzed to identify the sources of uncertainty. First source is

19

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Edge detection and line
fits on monochrome data

(b) Registered snapshots:
grayscale colormap

(c) Registered snapshots:
height colormap

Figure 2.9: Analysis of ABS artefact

the flatness of the planar surface. The unevenness can be observed in the stitched

snapshot (Fig. 2.9c). Although developed with high proficiency, since the artefact is

made of plastic glued on metal, it is difficult to match the flatness of a machined metal

part. The second source of uncertainty is the intensity distribution of the sensor in

a snapshot. The intensity of an image varies radially affecting the edge detection at

the ends of the slot, leading to uncertainty in line fit (Fig. 2.10b, 2.10c). The third

source is the resolution of the sensor which places points in bins of 0.1 mm leading

to uncertainty in the fit result (Fig. 2.10a).

20

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Edge pixels along slot
length and line fit

(b) Intensity distribution
in a sample snapshot

(c) Line fit of slot
showing noisy ends

Figure 2.10: Uncertainty analysis of slot data from the ABS artefact

2.6.4 Aluminum Artefact

After understanding the limitations of the ABS artefact, an immediate motivation

was the investigation of a similarly designed aluminum plate to overcome the draw-

back of uneveness (Fig. 2.11a). Interactive algorithms developed for ABS plate were

adapted to calibrate the sensor using the aluminum artefact. Due to high flatness,

the misalignments about the X and Y axes were corrected to less than 0.01 degrees.

Sub-resolution edge detection was performed by using a combination of height based

thresholding and moving window based data smoothing (Fig. 2.11c, Eqn. 2.9), with

window sizes 5 and 7. The smoothed value of ith pixel, pi,avg, can be obtained by

averaging it over a window size, m, as follows

pi,avg =

∑m
i=1 pi−m + . . . + pi + . . . + pi+m

2m + 1
(2.9)

21

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Aluminum
artefact

(b) Point distribution on a
long slot edge

(c) Variation in Z values
along three cross sections

Figure 2.11: Uncertainty analysis of aluminium slot data

Uncertainty Analysis

Detailed study was performed on the slot edges to identify the sources of uncertainty.

It was observed that the location of slot edge varied along the length of the slot

(Fig. 2.11b). This is because of the non-square slot edges caused by an imperfec-

t/curved tool-tip corner. Due to these reasons, the Z misalignment uncertainty still

remained close to 0.1 degrees. To overcome the difficulty an artefact design with

inclined edges was proposed.

2.6.5 Angled Slot

An angled slot is made with a double edged shank cutter with an included angle of

120 degrees (Fig. 2.12a). This slot is scanned and probed. The lines of intersection

22

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

of the inclined planes of the slot can be used to estimate the misalignment along Z

direction (pointing out of the plane). Calibration using this artefact is expected to

be more robust due to the density of points obtained on the inclined edges.

(a) Double edged
cutter [15]

(b) Test angled slot
artefact

(c) Snapshot as seen in the
sensor interface

Figure 2.12: Inclined slots on test artefact

Initially, a test part is studied to understand the feasibility of the method (Fig. 2.12b,

2.12c). Methods for scanning, touch probing and analyzing the resulting data have

been developed for the part. Experiments on the test part showed that the sensor is

able to capture good quality point data in the regions close to the sensor origin. This

data is processed in Geomagic software [20] to obtain the plane normals and the lines

of intersection. Analysis of the data showed good agreement between the included

angles obtained from sensor and touch probe, motivating the design of an artefact.

23

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Artefact mount (b) Sensor mount

Figure 2.13: Mechanical alignment of the calibration artefact and the sensor

2.7 Calibration Method

2.7.1 Artefact Design

Based on the observations from the test part, an angled slot artefact has been designed

and machined (Fig. 2.14). Two slots, a long slot and a short slot, with inclined edges

were made using the 120 degree double edged shank cutter (Fig. 2.12a). The CAD

drawing of the calibration artefact can be found in appendix B.

2.7.2 Mechanical Alignment

Before beginning the calibration process, the calibration artefact and the sensor have

to be mechanically aligned to the CMM as closely as possible. In order to align the

calibration artefact, it is mounted on the CMM table using an AM1 adjust module

(Fig. 2.4, 2.13a). Vertical and horizontal surfaces of the artefact are touch probed to

estimate the misalignments. Next yaw, pitch and roll angles of the AM1 module are

adjusted to nullify the misalignments. This process is performed iteratively until the

errors are too small to be corrected mechanically. Once the artefact is mechanically

24

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Artefact features (b) Touch probing the artefact

Figure 2.14: Angled slot calibration target. Details of the design can be found in
the CAD drawing in appendix A

.

aligned, it is scanned using the sensor which is mounted on the CMM using another

AM1 module (Fig. 2.13b). The data is studied to estimate the misalignments which

are nullified using the sensor’s AM1 module. This process also takes place iteratively

until the errors are too small to be corrected mechanically. The residual alignment

errors are compensated using the calibration process. While mechanical alignment is

a one-time process, calibration has to be performed whenever the CMM is restarted.

2.7.3 Developed Protocol

The calibration procedure is described below and the related artefact labels are shown

in Fig. 2.14a.

� Scan and touch probe left plane (LP), right plane (RP), left edge of long slot

25

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Sensor or Probe data

Plane data Slot data

Establish Z direction
and Z location. This

is set as XY plane

Long slot data Short slot data

Plane fits of left and
right inclined edges

Plane fits of up-
per and lower
inclined edges

Intersect the planesIntersect the planes

Get 3D line and
point at intersection

Project line and
point into XY plane

Establish Y axis
and X location of
coordinate system

Intersect the planes

Get 3D line and
point at intersection

Project line and
point into XY plane

Intersect the projected
line with Y axis to

get Y location of the
coordinate system

Figure 2.15: Calibration method
26

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 2.16: Constraction of coordinate frame on the artefact.

(LL), right edge of long slot (LR), upper edge of short slot (SU), and lower edge

of short slot (SL). The following analysis is performed independently on both

the scanner and the touch probe data.

� Data from flat planes (LP and RP) is TLS plane fit. The obtained normal

direction and the centeroid establishes the Z direction and the Z location of

the target coordinate axes. Intersection line of the LL and LR inclined planes

gives Y direction and X location of target coordinate system. Intersection line

of SU and SL inclined planes intersects the Y axis at the origin of the target

coordinate system. X direction is assigned to be the direction orthogonal to Y

and Z directions. Details of the algorithm are shown in Fig. 2.15 and Fig. 2.16.

27

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

� This establishes transformations from the sensor and the CMM coordinate sys-

tems to the calibration target. The required calibration HTM between the

sensor and the CMM is obtained using the eqn 2.5.

Using this method uncertainty less than 0.01 degrees in all three directions was

achieved. All the algorithms are implemented in MATLAB software [43]. The imple-

mentation code can be found in Appendix A.

2.7.4 Advantages

The calibration method has many advantages.

� From the manufacturing point of view, the calibration artefact has a simple

design.

� It is easy and cheap to manufacture with the slot making tool, without the need

of high skill.

� From the calibration point of view, a high density sensor point cloud data is

used. Hence this method is more robust than the previous methods.

� The features on the calibration target are easy to locate with the touch probe.

The calibration method makes a CMM and snapshot sensor system with applications

to sheet metal.

2.7.5 Application: Registration

The calibration transformation matrix is used to transform the local scanner data

into global CMM frame. Seven snapshots of a car part, Fig. 2.17, have been captured

28

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 2.17: CMM-sensor system is used to scan the automotive part.

at different orientations to cover all the part. The combined data is registered into

the global or CMM frame. Registered data is compared with its model in Geomagic

Qualify software [20] and the results are shown in Fig. 2.18. It can be observed that

most of the part deviates less than 0.380 mm from the CAD nominal model. This

is good since the uncertainty per snapshot due to sensor’s resolution can be between

0.1-0.16 mm. Higher deviations in the result are possibly due to deflection of the part

from the CAD nominal.

2.7.6 Application: Hybrid Sensor

The second application is the hybrid sensor technique where scanner is used, before

touch probing, to obtain a close initial guess of hole location on a part that signifi-

cantly deviates from it CAD nominal. This saves on touch probing time and avoids

probe crashes. The part is first scanned and registered to global frame using the

calibration HTM. Approximate hole locations are obtained from the data. The CMM

29

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

touch probe uses this information to get close to hole location and to iteratively con-

verge on the exact location. As tabulated results indicate (Table 2.1), when hole

positions deviate up to 0.458 mm from nominal, the scanner is able to locate them

within 0.107 mm of the actual position. The hole locations numbered 1-5 can be

found in Fig. 2.18.

Table 2.1: Hybrid sensor application

Hole CAD Nominal Blue LED Touch Probe

X Y R X Y R X Y R

1
112.012 -57.300 5.000 111.839 -56.805 5.125 111.881 -56.845 4.957

converged 111.882 -56.842 4.957

2
101.342 -80.086 5.000 101.105 -79.688 5.126 101.131 -79.787 4.959

converged 101.133 -79.785 4.960

3 49.128 -58.540 5.000 49.024 -58.161 5.128 48.959 -58.268 4.949

converged 48.959 -58.268 4.950

4
76.738 -62.618 11.000 76.493 -62.195 11.202 76.547 -62.277 10.963

converged 76.547 -62.273 10.963

5
34.714 -126.508 5.000 34.739 -126.112 5.130 34.792 -126.148 4.971

converged 34.793 -126.148 4.971

30

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

2.8 Contributions

In summary, this work discusses integration of a compact snapshot sensor with a

CMM with a novel calibration method using an artefact with simple design. The

main contributions are

� Design of a calibration artefact: Experiments have been performed on various

designs of gray scale and slot artefacts to find the best-suited design for the

calibration requirements.

� Algorithms and software have been developed for data analysis, calibration and

registration.

� A measurement protocol has been introduced for calibration.

� The calibration method has been successfully applied in multiple snapshot reg-

istration and in hybrid sensor measurements.

During the same time as this work, He et. al. developed a calibration artefact for a

mounted custom-made fringe sensor [24]. It is polyhedron shaped and includes angled

surfaces similar to our angled slot artefact. While the alignment between their angled

surfaces would be difficult to maintain during machining, our design is expected to

be easier to manufacture due to the use of double edge cutter.

31

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 2.18: Seven snapshots of an automotive part are taken at different
orientations to cover the complete surface. Data from all the snapshots has been

registered to the CMM frame using the calibration method. The result is compared
with its CAD model in Geomagic software.

32

Chapter 3

Point Cloud to CAD Deviation

Mapping Using GPU Computing

3.1 Introduction

Sheet metal stamping production rates approach one part every second [14], [5]. With

increasing demand that comprehensive geometric quality conformance information be

approved by final assembly plant management prior to shipment, the associated dig-

itizing analysis of millions of points requires extremely fast algorithms. For example,

an industrial blue LED snapshot sensor can acquire 1 million points per second. At

a 0.1 mm nominal point spacing, for even small part areas, many millions of points

need to be registered with the 3D coordinate system of the CAD nominal surfaces.

The memory and computing power needed to perform this analysis at part pro-

duction rates far exceeds the capacity of the conventional personal microcomputer

CPUs. This work investigates the alternative of using massively parallel Graphical

Processing Unit (GPU) hardware. Use of this hardware exploits the parallel GPU

33

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

architecture to accelerate data intensive computations. Designed for high graphics in-

tensity CAD and gaming, a GPU has a complex memory and processing architecture.

Hence effective programming resource allocation and utilization is much more com-

plex. Therefore, existing serial algorithms, which were not intended to run on a GPU,

must be extensively rewritten. Compared to visually appealing but approximate gam-

ing applications, dimensional metrology applications require that high accuracy be

maintained throughout. Hence, while a few points may be sufficient for registration

of point cloud data, all available data are helpful in part inspection.

Early GPU computing required researchers to mask arithmetic operations as

graphical tasks to perform computations on CAD parts [38] or tool paths [11]. The

NVIDIA CUDA programming language [55] revolutionized GPU computing. It led

to applications such as rendering [23], filtering [26] and collision detection [39]. Sheet

metal strain measurement was reported by Kinsner et al. [33]. Other computational

applications such as distance queries between NURBS surfaces [35] and feature-fitting

of geometric primitives [51], showed respectively 300X and 18X speed-up. While 2.5X

- 1000X speed-up achievements are reported in literature [32], 20-30X is considered

worthwhile. Erdos et al. [16] suggest GPU computing for fast mapping of CAD with

point cloud data. Iterative Closest Point (ICP) like registration methods [8, 9] have

already been implemented on GPUs [49]. The subsequent brute force facet-by-facet

deviation estimation of the registered data is very computationally intensive. In this

work, we investigated speed-up of point-facet matching (PFM) and facet-facet match-

ing (FFM) algorithms that estimate deviations and report them as informational col-

ormaps. These algorithms for CPU implementation are part of Origin Checkmate [13]

software’s proprietary library. A similar smallest sphere distance finding algorithm

34

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

showed 5X speed-up with näıve GPU implementation [30]. We show that, using a

Tesla K40 GPU, careful algorithm optimization and advanced memory management

delivers an impressive 124X speed-up. This work has been published in a peer re-

viewed journal [37].

Figure 3.1: Matching methods

3.2 Algorithm Challenges and Solutions

3.2.1 Algorithms

Two matching algorithms are studied here: point-facet matching (PFM) and facet-

facet matching (FFM). The input and outputs of the matching methods are summa-

rized in Fig. 3.1. PFM and FFM both accept facetted CAD model data as input.

Actual part data from scanners is provided as facets and points for FFM and PFM

respectively. For PFM, output is the average deviation between a model facet and

its matching actual points while for FFM it is the deviation between a model facet

and its first actual facet. The output is displayed as a colormap. Details of the

computations that take place on every model facet in the matching algorithms are

35

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Table 3.1: PFM and FFM matching algorithms. Here actual refers to actual facet
and point in FFM and PFM respectively while model refers to a model facet. Vicinity
is a fixed distance parameter.

Step FFM PFM

Transform model to actual

Binary search Find the closest actual based on its distance from origin

For all actuals in the vicinity of the closest actual

Refined tests Is the actual ’s location and orientation close to that of the
model?

If refined tests
passed

Does the model nor-
mal pierce the actual?

Estimate the projected distance be-
tween the model and the actual

Is the distance
less than

Deviation threshold model radius

If false Move to the neighboring actual in the vicinity and go to ’re-
fined tests’ step

Exit when First deviation found Average of all the deviations found

discussed in Table 3.1. The registration algorithm is based on the well-known ICP [8]

method. The transformation matrix is initiated by manual matching of a few widely

separated points chosen from both the digitizer and facet data. Because of the ex-

pected high number of digitizer points as compared to the size of the CAD facets, the

algorithms begin by transforming the facets into the digitizer part coordinate system.

This is followed by binary search of digitizer points/facets to find the actual point/-

facet, j, nearest to the CAD facet. The final step is a refined search using matching

parameters, in the neighborhood of j, to find matches whose deviation is within a

36

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

given threshold. The first/average of the deviations is calculated and reported as

color map. As originally implemented, both the binary and neighborhood search al-

gorithms are intricate and time consuming due to loops, branches and many memory

and function calls. The algorithm complexity is O(m log n) where m and n are the

number of model facets and actual points/facets respectively. Actual facets/points

are sorted based on their distances from origin, thus, facilitating binary search which

takes O(log n) time. Since the refined matches (if any) are found in close vicinity of

the binary search result, the overall computational time of the algorithm per model

facet remains O(log n). The normal direction in point-facet matching data indicates

the direction of scanning.

3.2.2 Challenges

The existing serial inspired methods face GPU challenges in both algorithm and

memory implementation. Conditional tests and branches (Fig. 3.2a) exhibit poor

instruction level parallelism (ILP). To address this, filtering flags were used within

the GPU algorithm to bundle tests into a single branch (Fig. 3.2b). As an example,

a snippet of the facet-facet matching algorithm is discussed below.

Computation 1 : Z distance between CAD facet and inspection facet

Filtering Condition 1 : Is the distance less than the threshold value?

Computation 2 : Dot product of the model and actual facet normals

Filtering Condition 2 : Dot product > 0? (normal directions within 90 degrees)

Critical Condition 1 : Does the model facet normal intersect the actual facet?

37

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

For every facet j

Computation 1

Filtering
Condition 1

Computation 2

Filtering
Condition 2

Filtering
Condition 2

Critical
Condition 1

Computation 3

False

False

Next facet

False

(a)

For every facet j

Computations
1 & 2

Filtering
Conditions 1

& 2

Critical
Condition 1

Computation 3

False

Next facet

False

(b)

Figure 3.2: Instruction Level Parallelism (ILP) for FFM: (a) Filtering and critical
condition branches in CPU implementation (b) Improving ILP on the GPU by

bundling conditions

38

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(this condition is critical as further calculations cannot proceed without the

point of intersection)

Computation 3 : Euclidean distance between the center of the actual facet and

the point of intersection

Data structures were simplified and matching parameters were bundled for con-

tinuous memory accesses.

3.2.3 Experimental Set-up

For industrial acceptance the research described herein was implemented using an HP

Z440 desktop engineering workstation, equipped with Intel Xeon E5 processor. The

added NVIDIA Tesla K40 GPU card has 2880 CUDA cores. The GPU algorithms

were integrated as a Dynamic Link Library (DLL) with the Origin International

CheckMate software [13] added to Autodesk Mechanical Desktop, running under Mi-

crosoft Windows 7. Results from a single core of the Intel CPU were compared with

Tesla K40. Each of the timing results are averaged over 100 iterations with the

speed-up (s-u) calculated as shown in equation 3.1. Programming was done in Visual

Studio 2013 with NVIDIA Nsight 4.1 and CUDA 6.5. Scanned part data is provided

as input, and a CAD model of the part was used to generate the facets. Iterations

produce colormap deviation values of every model facet. The maximum facet edge

length parameter was varied to get three model data sets.

Speed-up (s-u) =
Time taken by the CPU

Time taken by the GPU
(3.1)

39

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

3.3 Point-Facet Matching

3.3.1 Initial Experiments and Results

For PFM, scanned part data from an exhaust cone with 424307 points and its CAD

model (Fig. 3.3a) is provided as input. Each sample point includes the direction

to the scanner to get an approximate local part orientation. Since this information

is not as strong as the direction of surface normal at that point, the neighborhood

search in PFM finds all possible close matches within a given threshold. The result

is the average of the deviation of the model facet with each of the matched actual

points (Fig. 3.3b). Three sets of test data were generated using the model facet sizes

(with maximum facet edge lengths) of 2 mm, 1 mm and 0.5 mm leading to around

0.1 million, 0.3 million and 1 million model facets respectively. After improving ILP,

experiments on the K40 GPU achieved speed-ups of 8X, 22X and 46X respectively.

Performance analysis was conducted to understand the bottlenecks and to investigate

the scope of further acceleration.

3.3.2 Performance Analysis

To understand the bottlenecks in the näıve GPU implementation, performance was

analyzed using the NVIDIA Nsight tool in Visual Studio. GPU multiprocessors ex-

ecute the computational instructions as sets of 32 threads called warps. On every

multiprocessor, only a few of the active warps are eligible for execution. Profiling

showed that, at any given instance, active warps were stalled, i.e. not eligible to

move to the next instruction, due to the following reasons (Fig. 3.4):

� Memory throttle: It occurs when there are large number of pending memory

40

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Cone CAD model (b) Colormap

Figure 3.3: Point-Facet Matching: Points fit to its model to produce a colormap of
deviations.

operations.

� Memory dependency: When load and store cannot happen because resources

are unavailable or are being completely utilized.

� Pipe busy: It means that the load/store and arithmetic pipelines are not avail-

able for computations.

� Execution dependency: This is because input for an instruction is not available.

Hence the existing algorithm structure does not use the GPU cores effectively. The

algorithm is made up of global memory accesses and arithmetic operations. A global

memory access is more time consuming (200-800 clock cycles) than an arithmetic

operation (1-8 clock cycles). The CUDA programming model relies on efficiently

scheduling these two components to hide the latency and achieve performance. The

high number of cores in the K40 can only speed-up computations. As first imple-

mented, before a memory access is completed either the computation is already over

41

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 3.4: Results of performance analysis showing the warp stall reasons.

or a conditional branch is encountered. No speed-up was observed because there is

not enough computation between the (many) memory accesses to hide the latency.

As seen from the causes (Fig. 3.4), memory throttle and dependencies are the leading

causes. The high utilization of the memory resources is keeping the pipeline busy.

Common approaches to tackle these issues are bundling the memory operations, low-

ering memory access times, increasing ILP and allowing contiguous memory accesses.

Hence to improve the performance, either the algorithm parallelism has to be in-

creased (such as by complete looping), or the memory accesses times have to be

lowered (such as using texture memory). The potential of these improvements are

explored next.

42

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

3.3.3 Complete Looping

A simple way to achieve near-perfect parallelism is to eliminate branching and loop

over all points, instead of a specific neighborhood (Table 3.1). This change:

� eliminates the non-contiguous memory accesses of the binary search

� removes branching in the neighborhood search

Näıve implementation of the complete looping decreased the performance (10%-

70%). This is because looping over all of the points results in more total memory

accesses. In attempts to overcome the drawback, use of shared and texture memories

was attempted to share information of memory reads between the threads. But they

could not help as the cache/memory sizes (8 KB/48 KB) of texture/shared memories

are very small compared to actual point data size (∼3 MB). Due to these reasons,

the complete looping approach failed to improve speed-up. Therefore, as discussed

in the next section, attempts were made to lower memory access times using texture

memory.

Table 3.2: Improvement in performance parameters with texture memory.

Näıve Texture memory

Warp occupancy (%) 5.17 20.03

Giga flops per second 26.09 99.64

Instructions per clock executed (in a
GPU streaming multiprocessor)

0.14 0.66

43

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

3.3.4 Texture Memory

Overall memory access time can be lowered by re-using information. With binary

and neighbourhood searches, the search range is different for each facet/thread, so

shared memory cannot facilitate efficient re-use of information. Texture memory,

an unconventional read-only graphics memory, is located off-chip with up to 8 MB

capacity. Although located on global memory, it has an 8 KB on-chip cache making

it ideal to store small, but frequently used information. Neighbouring facets share at

least part of the search ranges thus exploiting texture cache. Its implementation takes

additional work on the CPU side as textures support only basic data types. Texture

memory produced excellent results as evident from the significant improvement in

performance parameters shown in Table 3.2.

Table 3.3: PFM: Computation time (seconds) and speed-up (s-u) of Tesla K40

Number of model
facets

Max. facet
edge length
(mm)

Intel Xeon
E5 single
core

NVIDIA Tesla K40

Näıve Texture

Time Time s-u Time s-u

103,966 (∼ 0.1 M) 2.000 22.6291 2.827 8 0.964 23

345,592 (∼ 0.3 M) 1.000 75.1014 3.347 22 0.883 85

1,188,408 (∼ 1 M) 0.500 259.126 5.676 46 2.098 124

3.3.5 Results

The computation times and speed-ups are summarized in Tab. 3.3. The time taken

by the CPU increases with the number of points. As seen CPU takes 22 seconds, 75

44

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

seconds and around 4 minutes to process the three data sets. GPU is significantly

fast. It can be seen that the näıve implementation itself brings down the computation

time to 3-6 seconds. With memory optimization, computation times of 22 seconds

and 75 seconds are brought under a second. Looking at the results in terms of speed

up, the performance of the GPU improves with the density of the data. While näıve

usage of memory, itself, showed an impressive 46X speed-up for 1 million model facets

case, texture memory further boosted it to 124X. The speed-up is expected to further

improve with the density of data. It can be noticed that the 0.3 M facets case takes

time less than the 0.1 M case. This is likely because as the number of model facets

gets close to the actual facets number (∼0.4 M), fewer texture cache misses occur

leading to a higher speed. A practical colormap resolution is possibly achieved when

the number of CAD facets is nearly the same as the number of cloud points.

3.4 Facet-Facet Matching

3.4.1 Setup

The industrial part used for performing FFM experiments is shown in Fig. 3.5. Its

actual part data contains 702429 facets each storing its normal direction. Unlike PFM

where only the point and scanning direction is available, here the facet and normal

information can be used to find a tighter match using various position and orientation

tests. Once a match is found, the neighborhood search exits returning the deviation.

This means for every model facet, FFM can find deviation sooner than PFM. While

this might be computationally faster, it should be noted that such actual part facet

data can only be obtained by rigorous and time consuming pre-processing of raw

45

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Model data (b) Actual data (c) FFM colormap

Figure 3.5: Input and output from facet facet matching

noisy point clouds data from scanners.

3.4.2 Results

As with PFM, the maximum facet edge length parameter of the part CAD model

(Fig. 3.5a) was varied to generate three testing data sets. Preliminary experiments

on FFM showed an impressive 7X, 16X and 24X accelerations for the three datasets

respectively (Tab. 3.3). Learning from PFM, texture memory implementation is made

without attempting complete looping. This boosted the speed-ups to 12X, 25X and

28X respectively (Tab. 3.4). For example, looking at the 1 million facets case, FFM

that would take about 3 minutes on the CPU can be completed in about 6 seconds

using the K40 GPU. The speed-ups are further expected to improve with the density

of the data. It can be noted that the final speed-ups are lower than those observed

for point-facet matching. This is because FFM algorithm has more branches and

function calls. There is also at least twice as much work on the CPU side during

46

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

copying data to basic texture data types e.g. facet vertex location data is needed for

FFM but not PFM. Hence PFM is more parallelizable than FFM on the GPU.

Table 3.4: FFM: Computation time (seconds) and speed-up (s-u) of Tesla K40

Number of model
facets

Max. facet
edge length
(mm)

Intel Xeon
E5 single
core

NVIDIA Tesla K40

Näıve Texture

Time Time s-u Time s-u

89,850 (∼ 0.1 M) 0.157 13.596 1.876 7 1.154 12

322,010 (∼ 0.3 M) 0.078 49.929 3.151 16 1.993 25

1,147,568 (∼ 1 M) 0.039 174.558 7.381 24 6.343 28

3.5 Analysis and Conclusions

3.5.1 Consistency Check

Experiments were conducted to check the consistency of the GPU results with time.

PFM and FFM were iterated 100 times on the GPU, resetting after each iteration.

The three facet sizes were studied and iterations output deviation values of every

model facet. Maximum absolute error over the iterations is estimated. Sample max-

imum absolute error distribution for the 1 M facet case in PFM is shown in Fig. 3.6.

In all the three facet experiments, it was found to be of the order of 1E-6 for both

PFM and FFM. Since the input variables are declared as single precision floats (6

significant digits), this is reasonable.

47

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 3.6: Consistency of PFM deviation results over 100 iterations for the 1 M
model facet dataset.

3.5.2 CPU-GPU Result Comparison

The deviation results of PFM and FFM algorithms from the GPU and the CPU were

also compared. Maximum absolute differences for each of the three test datasets are

presented in Tab. 3.5. These differences are not errors and are caused by different

ways of algorithm execution by the CPU and the GPU. The differences for PFM are

within the limits of single floating point precision. The gap in facet-facet matching

cases is relatively high likely because it uses more precision sensitive tests compared to

point-facet matching and does not average deviations. Results are especially affected

when the precision sensitive tests match poorly oriented actual and model facets, for

example those on the corners of the geometry. Fig. 3.7 shows the absolute difference

on log scale for 0.3 M dataset in FFM. Other causes for the differences could be

different rounding methods and order of steps of computation executed by the CPU

48

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

and the GPU. As it can be seen from the plot, there is a drift in the differences, with

values increasing with facet index. This is because the actual facets are ordered with

respect to their distance from the origin. Points nearer the origin are stored with

more precision than those farther from the origin resulting in the drift.

Table 3.5: Order of the maximum absolute differences of deviation results from the
CPU and the GPU.

model facets 0.1 M 0.3 M 1 M

PFM 1E-6 1E-6 1E-6

FFM 1E-3 1E-4 Two mismatches, remainder 1E-3

Figure 3.7: Absolute differences between the CPU and GPU deviation results for
0.3 M model facet dataset in FFM.

49

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

3.5.3 Industry Software Implementation

The research was motivated by a collaboration initiative involving Origin Interna-

tional Inc. [13] to improve the speed of their CheckMate measurement analysis soft-

ware. The existing CPU method, initially developed for a low number of touch probe

data points, was impractical for the large point clouds measured with non-contact

digitizers. Accordingly, the implementation was realized using a Windows DLL that

provided a bridge between the proprietary CheckMate source code and the newly

developed parallel GPU code. Origin provided agreed upon function call interfaces

that could switch between existing serial CPU and the newly developed parallel GPU

algorithms. This approach offers a win-win university-industry collaboration.

3.5.4 Other Challenges

� Since Checkmate software is proprietary and closed, it was a challenge to create

a CUDA powered Microsoft Windows DLL that can seamlessly integrate into

the Origin Checkmate library which itself plugs into an Autodesk software.

� Another crucial factor to performance is the effective task distribution between

the CPU and the GPU. Initially, work was divided based on the conceptual

understanding and experience with the GPU programming model. Further

finer distribution needed performance experiments.

� Since Checkmate software is proprietary and closed, it was tedious to track the

bugs. It took longer to identify the bugs when they are located in the software

instead of the DLL.

� The industry expected a minimum 8X speed-up from the GPU powered DLL

50

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

to compensate the cost overhead. Only then the product would be viable.

� Identifying the source of differences between the CPU and the GPU deviation

results was another challenge (section 3.5.2). Thorough understanding of the

mathematics of matching was crucial in tracking the issues.

3.5.5 Limitations

Like any work, this implementation also has a few limitations. The GPU implemen-

tation is made in CUDA programming language. While the GPU algorithms can be

implemented on any GPU, the CUDA implementations run only on NVIDIA GPUs.

GPUs also need high volume data for good performance. So it may not be ideal for

CMM data.

3.5.6 Conclusion

In conclusion, this work demonstrates the feasibility and the method of accelerating

point-facet and facet-facet matching of a dense and complex data, including colormap

generation. It delivers the product as a practical and industrially applicable library

compatible with Microsoft Windows.

51

Chapter 4

Weighted Total Least Squares

Measurement of a planar surface using conventional measuring devices like Coordi-

nate Measuring Machines (CMMs), typically, produces uniformly sampled data which

can be fitted to a plane using a simple total least squares (TLS) method. Non-contact

scanners, however, typically produce point clouds with varying uniformity and un-

certainty. Using a simple unweighed fit for non-uniform planar data may result in

skewed or erroneous results; hence there is a need for weighted fit. This work focusses

on weighted total least squares (WTLS) on parallel planes. Least squares problems

on dense point clouds can take advantage of Graphical Processing Units (GPUs) for

fast computation. This chapter presents an efficient GPU implementation of WTLS

that processes arbitrary numbers of a) parallel planes b) sets of parallel planes and

c) points per plane, making it suitable for industrial application.

52

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

4.1 Introduction

4.1.1 Fitting Methods

Three dimensional (3D) XYZ coordinate data is obtained by measuring a part using

Coordinate Measuring Machines (CMMs) or digital scanners. This data is fit to

various geometric shapes such as planes and spheres as well as Computer Aided

Design (CAD) models to evaluate size and position tolerances. Two kinds of fitting

methods, total least squares (TLS) fit and minimum zone fit, are widely studied

for this purpose. Both of these methods use the concept of residual which is the

orthogonal distance of a measured point to the surface of the desired geometry. TLS

fit is the minimization of the sum of the squares of the residuals while minimum

zone fit minimizes the value of the largest residual [2, 57]. TLS is also referred to as

orthogonal least squares (OLS) or just least squares in literature. The term ‘total’

refers to the fact that residuals account for the distances along all the coordinate axis

directions. Other methods such as particle swarm optimization, which have not been

studied for dense and noisy data [61], are not considered.

4.1.2 Minimum Zone Method

Minimum zone methods match Dimensioning & Tolerancing standards [4]. In prac-

tice, however, minimization methods have inherent drawbacks [57]. Solutions to these

methods may not be unique leading to possible convergence to the wrong local mini-

mum. Testing of such algorithms is not well developed and the implementations are

computationally slow, sometimes up to a hundred times slower [60]. They are also

highly sensitive to noise and outliers. In some cases, the minimum zone algorithms

53

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

may not even be available [46, 57]. Studies like [1, 40, 45] recommend minimum zone

methods over least squares for accuracy. However, these works investigate only a

small number of points (∼100) with no discussion of the effect of noise or of point

cloud size. As a result, while this recommendation might be true for small uniform

point sets without noise, it is not applicable to widely used digital devices which

produce millions of noisy points. Dense data drastically slows down the computation

speed of minimum zone methods. Additionally, noise increases the probability of

converging to an incorrect minimum. Many of the available minimum zone methods

use least squares results as initial guesses [40, 46], hence the study of least squares is

valuable.

4.1.3 Total Least Squares (TLS)

Least squares techniques are widely used because they overcome most of the draw-

backs of the minimum zone methods. They are less sensitive to outliers or measure-

ment noise and are computationally fast with algorithm testing available for basic

shapes, thus making them more reliable [56]. The UK’s National Physical Laboratory

(NPL), and the US’s National Institute of Standards and Technology (NIST) have

been forerunners in developing least squares methods for metrological feature fitting

methods for basic geometries such as plane, line, circle, sphere, cylinder, cone and

torus [19, 56]. While linear geometries have closed solutions, non-linear geometries

require iterative schemes with good initial approximations [60]. Like many iteration

schemes, poor initial guesses can lead to convergence to a local extremum that may

not be the sought after.

54

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(a) Blue light scanner (b) Point capture simulation

Figure 4.1: Digital sensors produce dense and non-uniform data.

4.2 Weighted Total Least Squares (WTLS)

CMMs can be programmed to sample data uniformly from a surface but they are

being increasingly augmented with non-contact scanners [64]. Point sampling is typ-

ically non-uniform (Fig. 4.1). Digitizers are electro-optical devices whose accuracy

of scanning is affected by part, scanner and environmental factors [31] [44]. Using

simple TLS on non-uniform plane data can result in a skewed fit [58].

4.2.1 Weighting and Filtering

Consider the case of sampling and fitting two parallel planes. Uniform sampling

gives the expected fit, while non-uniform sampling skews the fit in the direction of

the densely sampled plane. There are two strategies to overcome this problem. One

strategy is to filter the data to produce a uniform point-set, before applying TLS.

Filtering can be achieved using various smoothing and data reduction techniques

available in the literature [57]. Filtering leads to a uniformly distributed data set

that can be studied using the simple least squares methods. The second strategy

55

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

uses careful weighing of each point followed by the application of weighted total least

squares (WTLS) methods. While both could lead to the same result, WTLS can

not only to address spatial non-uniformity but also uncertainties between and within

data sets [58]. Moreover, NIST researchers recommend that TLS mentioned in recent

and emerging ISO tolerancing standards like [28] and [29] should be interpreted as

WTLS [58]; hence it is a timely opportunity to develop efficient implementations for

these methods.

4.2.2 WTLS on Parallel Planes

In the literature, WTLS schemes have been studied for implicit features [3] and for

uncertainty based line fitting [36]. Both the studies propose complicated iterative

schemes that are developed in a general sense. Recently, researchers at NIST have

developed WTLS methods with closed form solutions for parallel planes and lines,

suitable for non-uniformly sampled data [58]. These methods are proven to converge

to the solution that would be expected from continuous data. Uniqueness of fit is

guaranteed for all reasonable data sets. This chapter focusses on their WTLS method

for parallel planes which is summarized next.

4.2.3 Method

Let A and B be two parallel planes with XYZ coordinate point sets x1,x2 . . . ,xN on

plane A and xN+1,xN+2, . . . ,xM on plane B. Here xi denotes the ith point (xi, yi, zi).

Also provided are their corresponding positive weights w1, w2, . . . , wM . The goal is to

minimize
∑M

i=1 wid
2
i , where di is the orthogonal distance of xi to the corresponding

plane.

56

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

� Calculate the weighted centroids of both the planes as follows:

xA =
∑N

i=1 wixi∑N
i=1 wi

, xB =
∑M

i=N+1 wixi∑M
i=N+1 wi

� The required normal to the fit plane is the right singular vector corresponding

to the smallest singular value of the M × 3 matrix, S, shown below

S =

√
w1(x1 − xA)

√
w1(y1 − yA)

√
w1(z1 − zA)

√
w2(x2 − xA)

√
w2(y2 − yA)

√
w2(z2 − zA)

...
...

...

√
wN(xN − xA)

√
wN(yN − yA)

√
wN(zN − zA)

√
wN+1(xN+1 − xB)

√
wN+1(yN+1 − yB)

√
wN+1(zN+1 − zB)

...
...

...

√
wM−1(xM−1 − xB)

√
wM−1(yM−1 − yB)

√
wM−1(zM−1 − zB)

√
wM(xM − xB)

√
wM(yM − yB)

√
wM(zM − zB)

4.3 GPU Computing

In manufacturing, metrological inspection is a time-consuming process and efficient

inspection methods are needed to lower production costs. Typically, digital scanning

of parts produces thousands to millions of XYZ points leading to long computation

times (Fig. 4.1b). Least squares operations on such dense scanner data are compute-

intensive making the problem a good candidate for Graphical Processing Unit (GPU)

acceleration, with memory dependent tasks performed on the CPU and compute-

intensive tasks on the GPU.

57

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

4.3.1 TLS on GPU

In the literature, Mohan et al. implemented TLS on GPUs [51]. The authors used

plane fitting methods for planes, circles, spheres, cylinders, cones and tori as presented

in [56]. Performance gains of 3 to 18 times were observed for all primitives except the

plane. This is due to the fact that TLS fitting of a plane is relatively less data-intensive

compared to other geometries. There were some limitations to the study, such as that

the data set has to be a power of two, and only uniformly distributed data was used.

The GPU implementation was timed against a custom C++ implementation and not

against an optimized library. No further work was conducted by the group.

4.3.2 WTLS on GPU

While performance of simple TLS on planes did not seem to improve with GPU usage

in [51], it is not expected to be the case with WTLS on parallel planes due to the

more data-intensive computations. In Shakarji et al. [58], WTLS was implemented in

MATLAB without any performance oriented discussion. No GPU implementations

of this method are available. The next section discusses the GPU algorithm and

implementation.

4.3.3 GPU Algorithm

An implementation flow chart of the weighted parallel plane fitting algorithm is pre-

sented in Fig. 4.2. It works with an arbitrary number of planes. Singular vectors of S,

a M×3 matrix, can be calculated using Singular Value Decomposition (SVD). Math-

ematically, singular vectors of S are the same as eigenvectors of STS, a symmetric

3× 3 matrix [62]. While SVD is tedious to perform on a GPU, matrix multiplication

58

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

to calculate STS is highly parallelizable. It is therefore implemented on the GPU,

followed by the power method to calculate the eigenvectors of the 3×3 matrix on the

CPU.

4.4 Implementation

4.4.1 Input

Points on the planes and their weights were randomly generated. Points’ X, Y and Z

coordinates are random floats uniformly distributed in the ranges of (-50, 50), (-50,

50) and (-0.1, 0.1) respectively while their weights lie in the range of (1, 2). Every

plane parallel to the first generated plane has Z coordinates off-set approximately by

20. Data sets of 10,000, 100,000 and 1 million XYZ points are used in the experiments.

4.4.2 Set-up

An HP Z440 desktop engineering workstation is used for this work. It is equipped

with a 3.7 GHz Intel Xeon E5 processor and an NVIDIA Tesla K40 GPU card with

2880 CUDA cores. The GPU implementation (Fig. 4.2) was developed on the CUDA

platform in Visual Studio 2013 with NVIDIA Nsight 4.1. The highly optimized Eigen

library [22] was used in an efficient C++ implementation of the WTLS method on the

CPU. This CPU implementation specifically applies the EigenSolver method in the

library to calculate eigen values and vectors. Timings in milliseconds were recorded

for the CPU and GPU implementations. All the reported timings are averages of

those recorded over 100 iterations. The accelerations were calculated as the ratio of

time taken by the CPU to that by the GPU.

59

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Generate XYZ coordinates and
weights of the points on planes

Allocate memory on the
CPU and the GPU variables

For each plane: send data to
the GPU and collect results

GPU Kernels
1. Calculate the

weighted centeroid
2. Calculate STS

and send results back to the CPU

Add STS matrices for
all the parallel planes

Calculate eigenvalues and
eigenvectors of STS on the

CPU using the power method

Output the weighted plane fit
normal vector and free memory

Figure 4.2: Parallel plane fit algorithm

60

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

4.4.3 GPU Implementation

The number of threads and blocks were set to be equal to the number of cores and

streaming multiprocessors on the GPU respectively. The input data was approxi-

mately equally divided between the threads. Points were stored in single precision,

sums and multiplications in double precision. The power method was used to cal-

culate the required normal/eigen vector from the ST × S matrices. Making it ideal

for manufacturing settings, implementation can process an arbitrary number of a)

plane sets b) parallel planes per set and c) points per plane. The CPU and the GPU

WTLS fits were very close to each other. Normal vector differences were less than

1E-6. Since this is the maximum representable precision of the single-precision float-

ing point input data, it means that essentially no numerical error was added by the

computation.

4.5 Profiling and Optimization

This section discusses the profiling and optimization of the GPU implementation

beginning with a prototype. Its performance was compared against the CPU imple-

mentation based on the highly efficient Eigen library. The incremental improvements

in performance with each optimization are summarized in Fig. 4.3.

4.5.1 Managed Memory

Initially, a prototype of the implementation was developed in CUDA and tested on

the GPU. Since the prototype used managed memory, it was easier to develop but

not very efficient. The CPU implementation was much faster than the prototype. For

61

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure 4.3: Incremental improvements in performance with each optimization

example, for one million points in each of the pair of parallel planes, the CPU was 5

times faster.

4.5.2 Explicit Memory

Refactoring the working prototype by replacing managed memory with explicit mem-

ory allocations and copies was the first step in pursuit of efficiency. This resulted in

only a small improvement in speed. The CPU was still 3 times faster for 1 million

points.

4.5.3 Bundling

Profiling identified memory allocations and synchronizations as bottlenecks, so input

and output variables were bundled into a data structure to reduce the number of

memory allocations. Many synchronizations were removed and memory copies were

interleaved with CPU processes. These improvements made the GPU implementation

about 4 times faster than the CPU implementation.

62

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

4.5.4 Streams

For further optimization, streams were implemented by making computations and

memory copies on the two planes independent of each other. More in-depth profiling

showed that memory (de)allocations account for more than 50% of the time; hence

variables and storage space for one plane was reused for the next plane to save on

deallocations and reallocations. With these improvements, the GPU version became

11 times faster for one million points per plane.

4.5.5 Other Optimization

Next, shared memory and atomic operations were exploited for optimization. Unlike

in the last chapter, texture memory would not improve speed because the kernels

were already fast (consuming less than 5% of the execution time) and the input data

is accessed only once per kernel.

4.6 Results

The final implementation fits more than 2 parallel planes. Data structures, streams,

memory (de)allocations and copies are made independent for each plane. In the

method, parallel planes can be processed independently and sums can be accumulated

at the end. They are assigned different streams for copies and computations.

4.6.1 Performance

Timing experiments with different numbers of planes showed that the profiling-

directed improvements were generally beneficial. Timings were recorded for 2, 5

63

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Table 4.1: Performance comparison. Timings in milliseconds

Points

per plane

2 planes 5 planes 10 planes

CPU GPU CPU GPU CPU GPU

10,000 0.9 0.2 2.7 0.3 5.3 0.5

100,000 7.3 0.9 15.6 1.7 31.3 3.2

1 million 86.8 7.7 204.9 15.8 413.8 29.7

and 10 parallel planes with 10,000, 100,000 and 1 million points each. A maximum

of 14 times acceleration was observed for 1 million points. The accelerations increase

both with the number of parallel planes and the number of points per plane. It is

very significant performance considering that the GPU implementation is compared

against a highly optimized CPU library. The detailed timings and accelerations are

presented in Table 4.1 and Fig. 4.4 respectively.

Figure 4.4: GPU acceleration compared to the CPU implementation

64

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

The results show pure CPU timing. In an industrial setting, the CPU could also be

busy doing other tasks such as data acquisition and displaying a graphical interface.

In this setting, the acceleration would likely be higher.

4.6.2 Limitations

The development of GPU implementations is more time-consuming than CPU im-

plementations due to the difficulty in debugging distributed processes. While this

algorithm can be implemented on any GPU, the CUDA implementation runs only

on NVIDIA GPUs. Finally, GPU implementations typically benefit from dense data

and will not show benefits for small data sets.

4.6.3 Future Architecture

Tesla K40 GPU came into the market more than 3 year ago and more recent processors

are faster. Newer Tesla architecture is more than twice as fast (10.6 TFLOPS) as the

K40 (4.29 TFLOPS), and recompiling for this processor would be expected to double

the performance.

4.6.4 Applications

As discussed in beginning of the chapter, WTLS should be used to comply with the

recent standards. This implementation could be used on planar datasets obtained at

different resolutions and with different uncertainties. For data with different resolu-

tions, weights could be partitioned according to the areas measured. Another major

application is with large parts. When large parts are scanned in small sections, the

multiple sets of point cloud data should be stitched together. In such cases, the GPU

65

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

implementation helps fit the data quickly in parallel. Fitting the sections indepen-

dently helps gauge the uniformity and alignment of the planes. Certain regions can

be also be avoided using zero or low weights, such as bumps, holes, corners or those

with specular reflection.

4.7 Conclusions

This chapter demonstrates that GPU-accelerated WTLS for parallel planes can achieve

very significant 14 times acceleration, even above the best available CPU algorithms.

It also discusses the merits of least squares fitting over the minimum zone method for

noisy dense data from digitizers.

66

Chapter 5

Conclusions

Industries like automotive and aerospace require tight tolerances on manufactured

parts. Conventional measurement devices like CMM are very precise but slow. Chap-

ter 2 discusses a calibration method to integrate a snapshot sensor on a CMM to facil-

itate quick inspection. A novel calibration method is developed using an artefact with

simple design. Algorithms and software were developed along with a measurement

protocol. Applicability of the method to industrial problems has been demonstrated.

Chapter 3 discusses a solution to an industrial problem. A point cloud to CAD

comparison colormap tool is investigated to identify the feasibility of acceleration. Al-

gorithm bottlenecks were identified and faster GPU implementations ware developed.

Performance analysis and optimization was conducted to guide further improvement.

The final tool was 124 times faster. The product was delivered as a practical and

industrially applicable library.

Finally in chapter 4, a GPU-accelerated implementation of weighted total least

squares (WTLS) for parallel planes is discussed. Initially it was implemented for

two planes. Later it was extended to tackle arbitrary numbers of parallel planes,

67

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

sets of parallel planes and points per plane. After rigorous performance analysis,

optimization gave incremental performance improvements. The resulting product

is 14 times faster than a highly optimized C library. Finally, fields of industrial

applicability were identified.

In conclusion, this work discusses accelerating two aspects of metrological inspec-

tion: sensor integration and computation. While the discussed sensor integration

saves time, it is yet to be fully automated. Data filtering and noise removal from the

calibration artefact scan is manual but could be automated and processed in real-time

using GPU computations.

68

Appendix A

Calibration Algorithms

This appendix covers MATLAB [43] implementation of major algorithms discussed

in Chapter 1.

A.1 Projection of Point on a Plane

function ProjectedPoint = ProjectPointonPlane(Point, PlaneNormal,

PointonPlane)

%This function projects a given point on specified plane along its

% normal. Line connecting the Point (P) and its projection

% ProjectedPoint, ProjP) will be parallel to the Plane normal,N.

% Hence ProjP = P + t * N for a number ’t’ to be evaluated

% Equation of plane: N(X-PP) = 0; PP is given Point on Plane

% Since ProjP lies on the plane, N.(ProjP-PP)= 0

% N.(P + t * N - PP) = 0 => N.(P - PP) + t = 0 => t = N.(PP-P)

69

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

t = dot(PlaneNormal, PointonPlane)-dot(PlaneNormal, Point);

ProjectedPoint = Point + t * PlaneNormal;

A.2 Point of Intersection of Two Coplanar Lines

(3D)

function OutputPoint = PointofIntersectionofCoplanarLines3D(Dir1, Point1,

Dir2, Point2, PlaneNormal)

%This function calculates points of intersection of two given coplanar

lines in 3D. Input: 3D Line directions and points on the coplanar

lines; normal to the plane Normal direction is optional and can be

calculated using cross product of directions

P0 = Point1;

Q0 = Point2;

PUnitVec = Dir1/norm(Dir1);

QUnitVec = Dir2/norm(Dir2);

%Any point on P line can be written as P0 + t *PUnitVec, t is a real number

%Any point on Q line can be written as Q0 + s *QUnitVec, s is a real number

% Let IntersecPQ be the point of intersection of lines

% Let QUnitVecPerp be a coplanar unit vector perpendiclar to QUnitVec

QUnitVecPerp = cross(PlaneNormal, QUnitVec);

%Since IntersecPQ lies on Line Q, dot((IntersecPQ-Q0), QUnitVecPerp) = 0;

% => dot((P0 + t *PUnitVec -Q0), QUnitVecPerp) = 0 since IntersecPQ also

lies on Line P

70

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

% => dot((P0 - Q0), QUnitVecPerp) + t * dot(PUnitVec, QUnitVecPerp) = 0

t = (dot((Q0 - P0), QUnitVecPerp))/(dot(PUnitVec, QUnitVecPerp));

IntersecPQ = P0 + t *PUnitVec;

OutputPoint = IntersecPQ;

A.3 Point on Line of Intersection of Two Planes

function OutputPoint = PointonLineofIntersection(Point1, Normal1, Point2,

Normal2)

%This function calulates the point on Line of intersction of two given

%planes. X is the unknown point on line of intersection. P = [Point1 ;

Point2]

%Equation of planes satisfy N(X-P) = 0; so we need to solve NX = NP

N = [Normal1; Normal2];

NP = [dot(Normal1, Point1) ; dot(Normal2, Point2)];

OutputPoint = N\NP;%X

OutputPoint = OutputPoint’; %outputting in same format as input

end

A.4 Select Data in a Point Cloud Plot

function BrushedData = CopyBrushedData(gobj)

%Returns brushed data from the figure object gobj;

71

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

%adapted and simplified from datamanager.copyUnlinked found in

%C:\Program Files\MATLAB\R2014b\toolbox\matlab\datamanager\@datamanager

%Last Revision date 14 Nov 2014

import com.mathworks.page.datamgr.brushing.*;

% Find brushed graphics in this container

sibs = datamanager.getAllBrushedObjects(gobj);

BrushedData = [];

for i = 1: length(sibs) %loop over the brushed objects

gobjBrushed = sibs(i);

if ~graphicsversion(gobjBrushed,’handlegraphics’)%If figures return

objects; ie if matlab version >= R2014b

BrushedDataSection = brushing.select.getArraySelection(gobjBrushed);

else

this = getappdata(double(gobjBrushed),’Brushing__’);%If figures

return handles; ie if matlab version <= R2014a

BrushedDataSection = this.getArraySelection;

end

BrushedData = [BrushedData; BrushedDataSection];

end

72

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

A.5 Estimation of Calibration HTM using Pro-

cessed Data from Sensor and CMM

%This code is use to obtain the calibration HTM using calibration artefact

data from sensor and CMM

%Sensor Data

%Data in sensor frame; sensor uses LHS so left and right are

%opposite compared to sensor

%Plane equation (SenPointonPlane - (x,y,z)).SenPlaneNormal = 0;

%Line equation P = P0 + t.Pvec

%HTM from transforming from sensor frame to part frame (origin located at

SenProjectedSlotIntersectionPoint)

%HTM = [R T]

% [0 1]

%R = [(cross(PlaneNormal,LongSlotUnitVect))’ ProjectedSenLongSlotUnitVect’

SenPlaneNormal’]

% T = SenProjectedSlotIntersectionPoint’

%CMM data; data in RHS frame

%Touch probe data processes and Output data from DataProcess_v4 included as

%InputForCalibrationHTMEstimation.m

%Similarly sensor input from SensorInputForCalibrationHTMEstimation.m

clear all

CurrentFolder = uigetdir(’C:\Users\kurellv\Dropbox

(McMasterDMSL)\TeamSharedFolder\Kai\DailyPlaneCalibration\’);

cd(CurrentFolder)

73

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

format longG

diary(’HTMlog.txt’);

fprintf(’%s \n’, datestr(now)); %display date and time

%sensor input provided from local SensorInputForCalibrationHTMEstimation.m

%file

SensorInputForCalibrationHTMEstimation

%Finding Long slot line equation (Point and Direction):

SenLongSlotDir = cross(SenLeftLongSlotNormal,SenRightLongSlotNormal);%may

not be a unit vector

SenLongSlotPoint = PointonLineofIntersection(SenLeftLongSlotPoint,

SenLeftLongSlotNormal,SenRightLongSlotPoint,SenRightLongSlotNormal);

%Finding Short slot line equation (Point and Direction):

SenShortSlotDir =

cross(SenAboveShortSlotNormal,SenBelowShortSlotNormal);%may not be a

unit vector

SenShortSlotPoint = PointonLineofIntersection(SenAboveShortSlotPoint,

SenAboveShortSlotNormal,SenBelowShortSlotPoint,SenBelowShortSlotNormal);

%Directions and points projected onto planes; directions may not be unit

vectors

ProjectedSenLongSlotDir = SenLongSlotDir -

dot(SenLongSlotDir,SenPlaneNormal)*SenPlaneNormal;

74

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

ProjectedSenShortSlotDir = SenShortSlotDir -

dot(SenShortSlotDir,SenPlaneNormal)*SenPlaneNormal;

ProjectedSenLongSlotPoint = ProjectPointonPlane(SenLongSlotPoint,

SenPlaneNormal, SenPointonPlane);

ProjectedSenShortSlotPoint = ProjectPointonPlane(SenShortSlotPoint,

SenPlaneNormal, SenPointonPlane);

%Point of intersection of projected lines

SenProjectedSlotIntersectionPoint =

PointofIntersectionofCoplanarLines3D(ProjectedSenLongSlotDir,

ProjectedSenLongSlotPoint, ProjectedSenShortSlotDir,

ProjectedSenShortSlotPoint, SenPlaneNormal)

ProjectedSenLongSlotUnitVect =

ProjectedSenLongSlotDir/norm(ProjectedSenLongSlotDir);

SenR = [cross(ProjectedSenLongSlotUnitVect’, SenPlaneNormal’)

ProjectedSenLongSlotUnitVect’ SenPlaneNormal’];

SenT = SenProjectedSlotIntersectionPoint’;

SenHTM = eye(4); SenHTM(1:3,1:3) = SenR; SenHTM(1:3,4) = SenT;

SenHTM

%CMM part: Input data

InputForCalibrationHTMEstimation

75

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

%Finding Long slot line equation (Point and Direction):

cmmLongSlotDir = cross(cmmLeftLongSlotNormal,cmmRightLongSlotNormal);%may

not be a unit vector

cmmLongSlotPoint = PointonLineofIntersection(cmmLeftLongSlotPoint,

cmmLeftLongSlotNormal,cmmRightLongSlotPoint,cmmRightLongSlotNormal);

%Finding Short slot line equation (Point and Direction):

cmmShortSlotDir =

cross(cmmAboveShortSlotNormal,cmmBelowShortSlotNormal);%may not be a

unit vector

cmmShortSlotPoint = PointonLineofIntersection(cmmAboveShortSlotPoint,

cmmAboveShortSlotNormal,cmmBelowShortSlotPoint,cmmBelowShortSlotNormal);

%Directions and points projected onto planes; directions may not be unit

vectors

ProjectedcmmLongSlotDir = cmmLongSlotDir -

dot(cmmLongSlotDir,cmmPlaneNormal)*cmmPlaneNormal;

ProjectedcmmShortSlotDir = cmmShortSlotDir -

dot(cmmShortSlotDir,cmmPlaneNormal)*cmmPlaneNormal;

ProjectedcmmLongSlotPoint = ProjectPointonPlane(cmmLongSlotPoint,

cmmPlaneNormal, cmmPointonPlane);

ProjectedcmmShortSlotPoint = ProjectPointonPlane(cmmShortSlotPoint,

cmmPlaneNormal, cmmPointonPlane);

%Point of intersection of projected lines

76

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

cmmProjectedSlotIntersectionPoint =

PointofIntersectionofCoplanarLines3D(ProjectedcmmLongSlotDir,

ProjectedcmmLongSlotPoint, ProjectedcmmShortSlotDir,

ProjectedcmmShortSlotPoint, cmmPlaneNormal)

ProjectedcmmLongSlotUnitVect =

ProjectedcmmLongSlotDir/norm(ProjectedcmmLongSlotDir);

cmmR = [cross(ProjectedcmmLongSlotUnitVect’, cmmPlaneNormal’)

ProjectedcmmLongSlotUnitVect’ cmmPlaneNormal’];

cmmT = cmmProjectedSlotIntersectionPoint’;

cmmHTM = eye(4); cmmHTM(1:3,1:3) = cmmR; cmmHTM(1:3,4) = cmmT;

cmmHTM

%Converting the HTM to LHS for consistncy

LHSProjectedcmmLongSlotUnitVect = ProjectedcmmLongSlotUnitVect;

LHSProjectedcmmLongSlotUnitVect(1) = -LHSProjectedcmmLongSlotUnitVect(1);

LHScmmPlaneNormal = cmmPlaneNormal;

LHScmmPlaneNormal(1) = -LHScmmPlaneNormal(1);

LHScmmProjectedSlotIntersectionPoint = cmmProjectedSlotIntersectionPoint;

LHScmmProjectedSlotIntersectionPoint(1) =

-LHScmmProjectedSlotIntersectionPoint(1);

LHScmmR = [cross(LHSProjectedcmmLongSlotUnitVect’, LHScmmPlaneNormal’)

LHSProjectedcmmLongSlotUnitVect’ LHScmmPlaneNormal’];

%

LHScmmT = LHScmmProjectedSlotIntersectionPoint’;

77

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

LHScmmHTM = eye(4); LHScmmHTM(1:3,1:3) = LHScmmR; LHScmmHTM(1:3,4) =

LHScmmT;

LHScmmHTM

%Visually verify that LHScmmHTM and SenHTM have similar eliments in the

%rotation part

%Concept: There are two ways to transform coordinates into calibration

%artefact coordinate system

% 1. Multiplying/transforming LHS CMM data with LHScmmHTM

% 2. Multiplying/transforming (LHS CMM location offsetted) sensor data with

% CMMtoSensorHTM * SenHTM;

%Hence CMMtoSensorHTM * SenHTM = LHScmmHTM

% Using this concept we can obtain CMMtoSensorHTM as

% CMMtoSensorHTM = LHScmmHTM * inverse(SenHTM) or using matlab function

% CMMtoSensorHTM = mrdivide(LHScmmHTM, SenHTM)

%Verify that Rotation part of CMMtoSensorHTM is close to identity upto

four decimals

CMMtoSensorHTM = mrdivide(LHScmmHTM, SenHTM)

fprintf(’\n’);

diary off

78

Appendix B

Calibration Artefact Drawing

Design of the angled slot calibration artefact is shown in the next page.

79

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

Figure B.1: Angled slot artefact CAD drawing

80

Appendix C

Weighted Total Least Squares

This appendix shows the setup and implementation of the weighted parallel plane fit

method discussed in [58].

C.1 kernel.cu

#include <iostream>

#include <fstream>

#include <string>

#include "CudaHeader.h"

#include "definitions.h"

void cpu_impl(XYZW ***, XYZW *, long *);

void largest_eigen(double *, double *, double *, int *);

81

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

void GenPlaneAB(XYZW ***, long *);

__global__ void WarmUpKernel() {}

__global__ void wt_cen_sum_kernel(XYZW *Points, BUNDLE *gpu_data, long

num_pts, int plane_num) {

__shared__ doubleXYZW shared_thread_sum[THREADS_PER_BLOCK];//allocate

as many cells as threads

unsigned long i = blockIdx.x * blockDim.x + threadIdx.x;

int PointsPerThread = num_pts / (THREADS_PER_BLOCK*NUM_OF_BLOCKS);

int RemainingPoints = num_pts % (THREADS_PER_BLOCK*NUM_OF_BLOCKS);

int n_start = 0, n_end = 0;

if (i < RemainingPoints){

n_start = PointsPerThread*i + i;

n_end = n_start + PointsPerThread + 1;

}

else

{

n_start = PointsPerThread*i + RemainingPoints;

n_end = n_start + PointsPerThread;

}

doubleXYZW local_sum = { 0, 0, 0, 0 };

#pragma unroll //loop unrolling

82

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

for (int j = n_start; j < n_end; j++)

{

local_sum.x += Points[j].w * Points[j].x;

local_sum.y += Points[j].w * Points[j].y;

local_sum.z += Points[j].w * Points[j].z;

local_sum.w += Points[j].w;

}

//copying thread local sums to shared memory

shared_thread_sum[threadIdx.x].x = local_sum.x;

shared_thread_sum[threadIdx.x].y = local_sum.y;

shared_thread_sum[threadIdx.x].z = local_sum.z;

shared_thread_sum[threadIdx.x].w = local_sum.w;

__syncthreads(); // syncronizing threads

//summing threads-wise local sums of a block in the first thread

if (threadIdx.x == 0) //in the first thread

{

doubleXYZW block_sum = { 0, 0, 0, 0 }; //local block sum; will

internally use registers

for (int i = 0; i < THREADS_PER_BLOCK; i++)

{

block_sum.x = block_sum.x + shared_thread_sum[i].x;

block_sum.y = block_sum.y + shared_thread_sum[i].y;

83

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

block_sum.z = block_sum.z + shared_thread_sum[i].z;

block_sum.w = block_sum.w + shared_thread_sum[i].w;

}

atomicAdd(&(gpu_data[plane_num].cen_sum.x), block_sum.x);

atomicAdd(&(gpu_data[plane_num].cen_sum.y), block_sum.y);

atomicAdd(&(gpu_data[plane_num].cen_sum.z), block_sum.z);

atomicAdd(&(gpu_data[plane_num].cen_sum.w), block_sum.w);

}

}

//only upper diagonal of matrix S’S will be computed since it is symmetric

3X3 matrix

__global__ void STS_kernel(XYZW *Points, BUNDLE *gpu_data, long num_pts,

int plane_num) {

__shared__ double shared_STS[THREADS_PER_BLOCK][6];//allocate as many

cells as threads

unsigned long i = blockIdx.x * blockDim.x + threadIdx.x;

int PointsPerThread = num_pts / (THREADS_PER_BLOCK*NUM_OF_BLOCKS);

int RemainingPoints = num_pts % (THREADS_PER_BLOCK*NUM_OF_BLOCKS);

int n_start = 0, n_end = 0;

if (i < RemainingPoints){

n_start = PointsPerThread*i + i;

n_end = n_start + PointsPerThread + 1;

84

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

}

else

{

n_start = PointsPerThread*i + RemainingPoints;

n_end = n_start + PointsPerThread;

}

double local_STS[6] = { 0, 0, 0, 0, 0, 0 }; //local copy of matrix S’S

for (int j = n_start; j < n_end; j++)

{

//centeroid

//calculating centeroid here instead of copying data back and forth

from the gpu to cpu to perform the simple divison

float gpu_wt_cen[3] = { 0, 0, 0 };

gpu_wt_cen[X] = gpu_data[plane_num].cen_sum.x /

gpu_data[plane_num].cen_sum.w;

gpu_wt_cen[Y] = gpu_data[plane_num].cen_sum.y /

gpu_data[plane_num].cen_sum.w;

gpu_wt_cen[Z] = gpu_data[plane_num].cen_sum.z /

gpu_data[plane_num].cen_sum.w;

XYZW offset_point = { 0, 0, 0, 0 }; //point offset by centeroid

int pt_index = j + plane_num*num_pts;

85

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

offset_point.x = Points[j].x - gpu_wt_cen[X];

offset_point.y = Points[j].y - gpu_wt_cen[Y];

offset_point.z = Points[j].z - gpu_wt_cen[Z];

//estaimting local S’S

local_STS[0] += (Points[j].w) * (offset_point.x) * (offset_point.x);

//multiplying the two square rooted w removes the root

local_STS[1] += (Points[j].w) * (offset_point.x) * (offset_point.y);

local_STS[2] += (Points[j].w) * (offset_point.x) * (offset_point.z);

local_STS[3] += (Points[j].w) * (offset_point.y) * (offset_point.y);

local_STS[4] += (Points[j].w) * (offset_point.y) * (offset_point.z);

local_STS[5] += (Points[j].w) * (offset_point.z) * (offset_point.z);

}

//copying thread local S’S elements to shared memory

shared_STS[threadIdx.x][0] = local_STS[0];

shared_STS[threadIdx.x][1] = local_STS[1];

shared_STS[threadIdx.x][2] = local_STS[2];

shared_STS[threadIdx.x][3] = local_STS[3];

shared_STS[threadIdx.x][4] = local_STS[4];

shared_STS[threadIdx.x][5] = local_STS[5];

__syncthreads(); // syncronizing threads

//summing threads-wise local sums of a block in the first thread

if (threadIdx.x == 0) //in the first thread

86

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

{

double block_STS[6] = { 0, 0, 0, 0, 0, 0 }; //local block sum; will

internally use registers

for (int i = 0; i < THREADS_PER_BLOCK; i++)

{

block_STS[0] += shared_STS[i][0];

block_STS[1] += shared_STS[i][1];

block_STS[2] += shared_STS[i][2];

block_STS[3] += shared_STS[i][3];

block_STS[4] += shared_STS[i][4];

block_STS[5] += shared_STS[i][5];

}

atomicAdd(&(gpu_data[plane_num].STS[0]), block_STS[0]);

atomicAdd(&(gpu_data[plane_num].STS[1]), block_STS[1]);

atomicAdd(&(gpu_data[plane_num].STS[2]), block_STS[2]);

atomicAdd(&(gpu_data[plane_num].STS[3]), block_STS[3]);

atomicAdd(&(gpu_data[plane_num].STS[4]), block_STS[4]);

atomicAdd(&(gpu_data[plane_num].STS[5]), block_STS[5]);

}

}

int main()

87

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

{

long num_pts[NUM_PLANES]; //number of points in the planes

XYZW *Gen[NUM_PLANES];

XYZW **Plane_Arr[NUM_PLANES];

for (int j = PLANE_A; j < NUM_PLANES; j++)//looping over planes A and B

{

num_pts[j] = 0;

Gen[j] = NULL;

Plane_Arr[j] = &Gen[j];

}

GenPlaneAB(Plane_Arr, num_pts);//returns data and the number of points

std::ofstream f_out;

f_out.open("Output.txt", std::ios::app);

f_out << "\n" << NUM_PLANE_SETS << " parallel plane sets used\n";

f_out << "Compiled in " << COMPILATION_MODE << " mode at " << __DATE__

<< " @ " << __TIME__ << "\n"; //shows only last compile time

f_out << "Computation for " << NUM_PLANES << " planes each with " <<

NUM_POINTS << " points\n";

//print results

f_out << "Smallest eigen value of STS and required normal \n";

long i = 0;

88

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

cudaFree(0);

cudaStream_t stream[NUM_PLANES];

XYZW *Points[NUM_PLANES], *gpu_Points[NUM_PLANES]; //points on planes

for (int j = PLANE_A; j < NUM_PLANES; j++)//looping over planes A and B

{

Points[j] = NULL;

gpu_Points[j] = NULL;

cudaStreamCreate(&stream[j]);

HANDLE_ERROR(cudaMallocHost((XYZW**)&Points[j], MAX_SIZE_A *

sizeof(XYZW)));

HANDLE_ERROR(cudaMalloc((XYZW**)&gpu_Points[j], MAX_SIZE_B *

sizeof(XYZW)));

//copy data into a CPU varaible

//in reality a more efficient data reading/memory mapping will be used

for (i = 0; i < num_pts[j]; ++i) {

(Points[j])[i].x = (*Plane_Arr[j])[i].x;

(Points[j])[i].y = (*Plane_Arr[j])[i].y;

(Points[j])[i].z = (*Plane_Arr[j])[i].z;

89

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

(Points[j])[i].w = (*Plane_Arr[j])[i].w;

}

}

BUNDLE *cpu_data = NULL, *gpu_data = NULL;//centeroid sum and sts

matrix data

HANDLE_ERROR(cudaMallocHost((BUNDLE**)&cpu_data,

NUM_PLANES*sizeof(BUNDLE)));

HANDLE_ERROR(cudaMalloc((BUNDLE**)&gpu_data,

NUM_PLANES*sizeof(BUNDLE)));

WarmUpKernel << <NUM_OF_BLOCKS, THREADS_PER_BLOCK >> >();

HANDLE_ERROR(cudaGetLastError());

// computataions on all plane sets

for (int plane_set_index = 0; plane_set_index < NUM_PLANE_SETS;

plane_set_index++)

{

//code organised so that points are copied are while everything else

happens

for (int j = PLANE_A; j < NUM_PLANES; j++)//looping over planes A and

B

{

90

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

//initialization

cpu_data[j].cen_sum.x = 0;

cpu_data[j].cen_sum.y = 0;

cpu_data[j].cen_sum.z = 0;

cpu_data[j].cen_sum.w = 0;

for (int i = 0; i < 6; i++) cpu_data[j].STS[i] = 0;

HANDLE_ERROR(cudaMemcpyAsync(&gpu_data[j], &cpu_data[j],

sizeof(BUNDLE), H2D, stream[j]));

//using async here and copying each plane seperately to hide

latency

HANDLE_ERROR(cudaMemcpyAsync(gpu_Points[j], Points[j],

(num_pts[j]) * sizeof(XYZW), H2D, stream[j]));

//launch kernel

wt_cen_sum_kernel << <NUM_OF_BLOCKS, THREADS_PER_BLOCK, 0,

stream[j] >> >(gpu_Points[j], gpu_data, num_pts[j], j);

HANDLE_ERROR(cudaGetLastError());

STS_kernel << <NUM_OF_BLOCKS, THREADS_PER_BLOCK, 0, stream[j] >>

>(gpu_Points[j], gpu_data, num_pts[j], j);

HANDLE_ERROR(cudaGetLastError());

//finally copy the plane A and B summed STS from the gpu

91

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

HANDLE_ERROR(cudaMemcpyAsync(cpu_data[j].STS, gpu_data[j].STS, 6 *

sizeof(double), D2H, stream[j]));

} //end of iterations on both planes

//synchronize streams

for (int j = 0; j < NUM_PLANES; j++) {

cudaStreamSynchronize(stream[j]);

}

double STS[6] = { 0, 0, 0, 0, 0, 0 };

//summing up STS results from both the planes

for (int i = 0; i < 6; i++)

for (int j = 0; j < NUM_PLANES; j++)

STS[i] += cpu_data[j].STS[i];

//finding largest eigen value / vector for the STS

double LEvec[3] = { 0, 0, 0 }, LEval = 0, temp = 0;

int iter_num = 0;

largest_eigen(STS, LEvec, &LEval, &iter_num);

//creating matrix A whose largest eigen value corresponds to the

smallest eigen value of STS with the same eigen vector

//A = 2 * lambda*I - STS;

double A[6] = { 0, 0, 0, 0, 0, 0 };

92

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

A[0] = 2 * LEval - STS[0];

A[1] = -STS[1];

A[2] = -STS[2];

A[3] = 2 * LEval - STS[3];

A[4] = -STS[4];

A[5] = 2 * LEval - STS[5];

temp = LEval;

// the eigen vector result obtained is the required normal

largest_eigen(A, LEvec, &LEval, &iter_num);

//smallest eigen value of STS

temp = 2 * temp - LEval;

f_out << "GPU :\t" << temp << "\t" << LEvec[0] << "\t" << LEvec[1] <<

"\t" << LEvec[2] << "\n";

} //end of plane sets

//free GPU memory

HANDLE_ERROR(cudaFree(gpu_data));

HANDLE_ERROR(cudaFreeHost(cpu_data));

//synchronize streams

for (int j = 0; j < NUM_PLANES; j++) {

93

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

//free points memory

HANDLE_ERROR(cudaFreeHost(Points[j]));

HANDLE_ERROR(cudaFree(gpu_Points[j]));

//destroy streams

cudaStreamDestroy(stream[j]);

}

HANDLE_ERROR(cudaDeviceReset());

for (int plane_set_index = 0; plane_set_index < NUM_PLANE_SETS;

plane_set_index++)

{

//call the cpu implementation here

XYZW cpu_eigen = { 0, 0, 0, 0 };

cpu_impl(Plane_Arr, &cpu_eigen, num_pts);

f_out << "CPU :\t" << cpu_eigen.w << "\t" << cpu_eigen.x << "\t" <<

cpu_eigen.y << "\t" << cpu_eigen.z << "\n";

}//end of plane sets

f_out.close();

////free input data

for (int j = 0; j < NUM_PLANES; j++) {

free(Gen[j]);

94

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

}

return 0;

}

C.2 Header (CudaHeader.h)

//C++ headers

#include <iostream>

#include <fstream>

#include <string>

// CUDA headers

#include "cuda_runtime.h"

#include "device_launch_parameters.h"

#define H2D cudaMemcpyHostToDevice

#define D2H cudaMemcpyDeviceToHost

#define HANDLE_ERROR(err) (HandleError(err, __FILE__, __LINE__))

// Handle error is copy of a commonly used error handle obtained from

other sources

void HandleError(cudaError_t err, const char *file, int line)

{

if (err != cudaSuccess) {

95

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

printf("%s in %s at line %d\n", cudaGetErrorString(err), file, line);

getchar(); // to prevent output window from closing immediately after

error display

exit(1);

}

}

//double atomic add taken from CUDA documentation

__device__ double atomicAdd(double* address, double val) {

unsigned long long int* address_as_ull = (unsigned long long

int*)address;

unsigned long long int old = *address_as_ull, assumed;

do {

assumed = old; old = atomicCAS(address_as_ull, assumed,

__double_as_longlong(val + __longlong_as_double(assumed)));

// Note: uses integer comparison to avoid hang in case of NaN (since

NaN != NaN)

} while (assumed != old);

return __longlong_as_double(old);

}

C.3 Header (definitions.h)

typedef struct {

96

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

float x;

float y;

float z;

float w; //weight

}XYZW;

typedef struct {

double x;

double y;

double z;

double w; //weight

}doubleXYZW;

typedef struct {

doubleXYZW cen_sum; //centeroid sum

double STS[6];// STS (symmetric) matrix elements row by row

}BUNDLE; //structure to bundle other parameters to tranfer to GPU

//definitions to imrove readbility

#define X 0

#define Y 1

#define Z 2

#define W 3

#define PLANE_A 0

#define PLANE_B 1

97

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

#define NUM_POINTS 1000000 //should be greater than number of cores

#define THREADS_PER_BLOCK 192 //threads per block ; the number has to be

32 for gtx 480

#define NUM_OF_BLOCKS 15 //number of blocks

#define EPSILON 1E-5 //ERROR EPSILON

#define TOL 1E-6

#define NUM_PLANE_SETS 1 // number of plane sets used

#define NUM_PLANES 10 // number of parallel planes per set

define NUM_ITER 1

C.4 Header (largest eigen.cpp)

//C++ headers

#include <iostream>

#include <fstream>

#include <string>

#include "definitions.h"

//calculates the largest eigen value-vector pair using power method

void largest_eigen(double *A, double *LEvec, double *LEval, int *iter_num)

98

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

{

double v1[3] = { 1, 0, 0 };

double v0[3] = { 1, 0, 0 };

float rel_err = 10; //initialization

double lambda = 0;

int iter = 0;

while (rel_err > TOL)

{

// v0 = v1

v0[0] = v1[0];

v0[1] = v1[1];

v0[2] = v1[2];

// v1 = A * v0;

v1[0] = A[0] * v0[0] + A[1] * v0[1] + A[2] * v0[2];

v1[1] = A[1] * v0[0] + A[3] * v0[1] + A[4] * v0[2];

v1[2] = A[2] * v0[0] + A[4] * v0[1] + A[5] * v0[2];

// lambda = norm(v1); // norm(v0) is already 1 so no need to divide

lambda = sqrt(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);

// normalizing v1 = v1 / norm(v1)

v1[0] = v1[0] / lambda;

v1[1] = v1[1] / lambda;

v1[2] = v1[2] / lambda;

99

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

// rel_err = norm(v1 - v0); % norm(v0) is already 1 so no need to

divide

rel_err = sqrt((v1[0] - v0[0]) * (v1[0] - v0[0]) + (v1[1] - v0[1]) *

(v1[1] - v0[1]) + (v1[2] - v0[2]) * (v1[2] - v0[2]));

iter++;

}

//Copy results

LEvec[0] = v1[0];

LEvec[1] = v1[1];

LEvec[2] = v1[2];

*LEval = lambda;

*iter_num = iter;

}

100

Bibliography

[1] Aguirre-Cruz, J. A. and Raman, S. (2005). Torus form inspection using coordinate

sampling. Journal of manufacturing science and engineering, 127(1), 84–95.

[2] Ahn, S. J. (2004). Least squares orthogonal distance fitting of curves and surfaces

in space, volume 3151. Springer Science & Business Media.

[3] Ahn, S. J., Rauh, W., Cho, H. S., and Warnecke, H.-J. (2002). Orthogonal distance

fitting of implicit curves and surfaces. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 24(5), 620–638.

[4] American Society of Mechanical Engineers (2009). Dimensioning and Tolerancing.

ASME Y14.5-2009, ASME.

[5] Andrea, D. (2005). Punching and stamping: How to compare production cost,

technical report, dallan rollformers and systems. Technical memo, Dallan S.p.A.,

Treviso, Italy.

[6] Barbero, B. R. and Ureta, E. S. (2011). Comparative study of different digitization

techniques and their accuracy. Comput. Aided Des., 43(2), 188–206.

101

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

[7] Bernal, C., de Agustina, B., Maŕın, M. M., and Camacho, A. M. (2014). Ac-

curacy analysis of fridge projection systems based on blue light technology. Key

Engineering Materials, 615.

[8] Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In

Robotics-DL tentative, pages 586–606. International Society for Optics and Pho-

tonics.

[9] Bosché, F. (2010). Automated recognition of 3D CAD model objects in laser

scans and calculation of as-built dimensions for dimensional compliance control in

construction. Advanced engineering informatics, 24(1), 107–118.

[10] Bräuer-Burchardt, C., Heist, S., Kühmstedt, P., and Notni, G. (2014). High-

speed 3d surface measurements with a fringe projection based optical sensor. In

Proc. of SPIE Vol, volume 9110, pages 91100E–1.

[11] Carter, J. A., Tucker, T. M., and Kurfess, T. R. (2008). 3-Axis CNC path

planning using depth buffer and fragment shader. Computer-Aided Design and

Applications, 5, 612–621.

[12] Che, C. and Ni, J. (2000). A ball-target-based extrinsic calibration technique

for high-accuracy 3-d metrology using off-the-shelf laser-stripe sensors. Precision

Engineering, 24(3), 210–219.

[13] Checkmate (2015). version 12.1. Origin International Inc., Richmond Hill, ON,

Canada.

[14] Dolcemascolo, D. (2006). Improving the extended value stream: lean for the entire

supply chain. Productivity Press.

102

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

[15] Double edged cutter (2013). KBC Tools, 6200 Kennedy Rd, Mississauga, ON

Canada L5T 2Z1.

[16] Erdõs, G., Nakano, T., and Váncza, J. (2014). Adapting CAD models of complex

engineering objects to measured point cloud data. CIRP Annals - Manufacturing

Technology, 63, 157–160.

[17] FaroArm (2013). FARO, 250 Technology Park Lake Mary, FL 32746, USA.

[18] Feng, H., Liu, Y., and Xi, F. (2001). Analysis of digitizing errors of a laser

scanning system. Journal of the International Societies for Precision Engineering

and Nanotechnology, pages 185–191.

[19] Forbes, A. (1991). Least-squares best-fit geometric elements. NPL report DITC.

[20] Geomagic Qualify (2010). 3D Systems Inc., Cary, NC, USA.

[21] Gocator (2013). Snapshot sensor. LMI Technologies, Delta, BC, Canada.

[22] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

[23] Günther, C., Kanzok, T., Linsen, L., and Rosenthal, P. (2013). A GPGPU-based

pipeline for accelerated rendering of point clouds. Journal of WSCG, 21, 153–161.

[24] He, W., Li, Z., Zhong, K., Shi, Y., Zhao, C., and Cheng, X. (2014). Accurate and

automatic extrinsic calibration method for blade measurement system integrated

by different optical sensors. In SPIE/COS Photonics Asia, pages 92761D–92761D.

International Society for Optics and Photonics.

[25] Hocken, R. J. and Pereira, P. H. (2012). Coordinate measuring machines and

systems. CRC Press.

103

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

[26] Hu, X., Li, X., and Zhang, Y. (2013). Fast filtering of LiDAR point cloud in urban

areas based on scan line segmentation and GPU acceleration. IEEE Geoscience and

Remote Sensing Letters, 10(2), 308–312.

[27] InnovMetric Software Inc (2013). 3D metrology hardware review. Technical

memo, InnovMetric Software Inc, Qubec, Canada.

[28] International Organization for Standardization (2010a). Geometrical Product

Specifications (GPS)-Dimensional Tolerancing-Part 1: Linear Sizes. ISO 14405-

1:2010, ISO.

[29] International Organization for Standardization (2010b). Geometrical Product

Specifications (GPS)-Dimensional Tolerancing-Part 3: Angular Sizes. ISO 14405-

3:(emerging), ISO.

[30] Inui, M., Umezu, N., and Shimane, R. (2015). Shrinking sphere: A parallel

algorithm for computing the thickness of 3D objects. Computer-Aided Design and

Applications, pages 1–9.

[31] Kamil, M., Kamely, A., Saifudin, H., Puvanasvaran, A., and Dan, M. (2010).

The source of uncertainty in 3D laser scanner. Journal of Advanced Manufacturing

Technology.

[32] Kinsner, M. (2011). Close-range machine vision for gridded surface measurement.

Phd thesis, McMaster University.

[33] Kinsner, M., Spence, A., and Capson, D. (2010). Gpu accelerated sheet forming

grid measurement. Computer-Aided Design and Applications, 7(5), 675–684.

104

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

[34] Kovacs, L., Zimmermann, A., Brockmann, G., Baurecht, H., Schwenzer-

Zimmerer, K., Papadopulos, N. A., Papadopoulos, M. A., Sader, R., Biemer, E.,

and Zeilhofer, H. F. (2006). Accuracy and precision of the three-dimensional as-

sessment of the facial surface using a 3-D laser scanner. IEEE Transactions on

Medical Imaging, 25(6), 742–754.

[35] Krishnamurthy, A., McMains, S., and Haller, K. (2011). GPU-accelerated min-

imum distance and clearance queries. IEEE Transactions on Visualization and

Computer Graphics, 17(6), 729–742.

[36] Krystek, M. and Anton, M. (2007). A weighted total least-squares algorithm for

fitting a straight line. Measurement Science and Technology, 18(11), 3438.

[37] Kurella, V., Stone, B., and Spence, A. (2017). GPU accelerated CAD to inspec-

tion data deviation colormap generation. Computer-Aided Design and Applications,

14(2), 234–241.

[38] Kurfess, T. R., Tucker, T. M., Aravalli, K., and Meghashyam, P. (2007). GPU

for CAD. Computer-Aided Design and Applications, 4(6), 853–862.

[39] Lee, R. S. and Ren, M. K. (2011). Development of virtual machine tool for

simulation and evaluation. Computer-Aided Design and Applications, 8(6), 849–

858.

[40] Lei, X., Song, H., Xue, Y., Li, J., Zhou, J., and Duan, M. (2011). Method

for cylindricity error evaluation using geometry optimization searching algorithm.

Measurement, 44(9), 1556–1563.

105

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

[41] Mart́ınez, S., Cuesta, E., Barreiro, J., and Álvarez, B. (2009). Analysis of laser

scanning and strategies for dimensional and geometrical control. The International

Journal of Advanced Manufacturing Technology, 46(5-8), 621–629.

[42] Mart́ınez, S., Cuesta, E., Barreiro, J., and Álvarez, B. (2010). Methodology for

comparison of laser digitizing versus contact systems in dimensional control. Optics

and Lasers in Engineering, 48(12), 1238–1246.

[43] MATLAB (2014). version R2014a. The MathWorks Inc., Natick, Massachusetts.

[44] Mekid, S. and Luna, H. (2007). Error propagation in laser scanning for dimen-

sional inspection. International Journal of Metrology.

[45] Mohan, P., Shah, J., and Davidson, J. K. (2013). A library of feature fitting

algorithms for GD&T verification of planar and cylindrical features. In Interna-

tional Design Engineering Technical Conferences and Computers and Information

in Engineering Conference, pages V02AT02A005–V02AT02A005. ASME.

[46] Mohan, P., Haghighi, P., Shah, J. J., and Davidson, J. K. (2015). Development of

a library of feature fitting algorithms for CMMs. International Journal of Precision

Engineering and Manufacturing, 16(10), 2101–2113.

[47] Morey, B. (2013). New metrology culture improving Chrysler quality. http:

//www.sme.org/MEMagazine/Article.aspx?id=77027.

[48] Ozan, Ş. and Gümüştekin, Ş. (2013). Calibration of double stripe 3D laser

scanner systems using planarity and orthogonality constraints. Digital Signal Pro-

cessing.

106

http://www.sme.org/MEMagazine/Article.aspx?id=77027
http://www.sme.org/MEMagazine/Article.aspx?id=77027

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

[49] Park, S.-Y., Choi, S.-I., Kim, J., and Chae, J. S. (2011). Real-time 3D registra-

tion using gpu. Machine Vision and Applications, 22(5), 837–850.

[50] Peiravi, A. and Taabbodi, B. (2010). A reliable 3D laser triangulation-based

scanner with a new simple but accurate procedure for finding scanner parameters.

Journal of American Science, 6(5).

[51] Ram, M. P. M., Kurfess, T. R., and Tucker, T. M. (2008). Least-squares fitting of

analytic primitives on a GPU. Journal of Manufacturing Systems, 27(3), 130–135.

[52] Rashidizad, H. and Rahimi, A. (2014). Building three-dimensional scanner based

on structured light technique using fringe projection pattern. Journal of Computing

and Information Science in Engineering, 14(3), 035001.

[53] Renishaw AM1 adjustment module (2014). Renishaw plc, Wotton-under-Edge,

Gloucestershire, UK.

[54] Renishaw touch probe (2013). Renishaw plc, Wotton-under-Edge, Gloucester-

shire, UK.

[55] Sanders, J. and Kandrot, E. (2010). CUDA by Example: An Introduction to

General-Purpose GPU Programming, Portable Documents. Addison-Wesley Pro-

fessional.

[56] Shakarji, C. M. (1998). Least-squares fitting algorithms of the NIST algorithm

testing system. Journal of Research-National Institute of Standards and Technol-

ogy, 103, 633–641.

[57] Shakarji, C. M. (2011). Coordinate measuring system algorithms and filters. In

107

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

J. Fagerberg, D. Mowery, and R. Nelson, editors, Coordinate Measuring Machines

and Systems, Second Edition, page 153182. CRC Press.

[58] Shakarji, C. M. and Srinivasan, V. (2013). Theory and algorithms for weighted

total least-squares fitting of lines, planes, and parallel planes to support tolerancing

standards. Journal of Computing and Information Science in Engineering, 13(3),

031008.

[59] Spence, A., Capson, D., Sklad, M., Chan, H.-L., and Mitchell, J. (2008). Si-

multaneous large scale sheet metal geometry and strain measurement. Journal of

manufacturing science and engineering, 130(5).

[60] Srinivasan, V., Shakarji, C. M., and Morse, E. P. (2012). On the enduring

appeal of least-squares fitting in computational coordinate metrology. Journal of

Computing and Information Science in Engineering, 12(1), 011008.

[61] Wang, Y., Li, L., Ni, J., and Huang, S. (2009). Form tolerance evaluation of

toroidal surfaces using particle swarm optimization. Journal of Manufacturing

Science and Engineering, 131(5), 051015.

[62] Watkins, D. S. (2004). Fundamentals of matrix computations, volume 64. John

Wiley & Sons.

[63] Xi, F., Liu, Y., and Feng, H.-Y. (2001). Error compensation for three-dimensional

line laser scanning data. The International Journal of Advanced Manufacturing

Technology, 18(3).

[64] Xue, K., Kurella, V., and Spence, A. (2016). Multi-sensor blue LED and touch

108

PhD Thesis - Venu Kurella McMaster - Computer Science and Engineering

probe inspection system. Computer-Aided Design and Applications, 13(6), 827–

834.

[65] Zexiao, X., Jianguo, W., and Qiumei, Z. (2005). Complete 3d measurement in

reverse engineering using a multi-probe system. International Journal of Machine

Tools and Manufacture, 45(12), 1474–1486.

109

	Abstract
	Acknowledgements
	Notation and Abbreviations
	Introduction
	Calibration of a Compact Snapshot Sensor
	Digital Sensors in Metrology
	Types of Digital Sensors
	Structured Light Sensors
	Laser Line Scanners
	Fringe Sensors

	Calibration
	Calibration Artefact
	Calibration Types
	Extrinsic Calibration
	Existing Calibration Methods

	Snapshot Sensor
	Specifications

	Calibration Mathematics
	Homogeneous Transformation Matrix (HTM)
	CMM-Sensor Calibration
	Feature Fitting

	Artefact Design
	Sphere Artefact
	Plane and Lines
	Grayscale Artefacts
	Aluminum Artefact
	Angled Slot

	Calibration Method
	Artefact Design
	Mechanical Alignment
	Developed Protocol
	Advantages
	Application: Registration
	Application: Hybrid Sensor

	Contributions

	Point Cloud to CAD Deviation Mapping Using GPU Computing
	Introduction
	Algorithm Challenges and Solutions
	Algorithms
	Challenges
	Experimental Set-up

	Point-Facet Matching
	Initial Experiments and Results
	Performance Analysis
	Complete Looping
	Texture Memory
	Results

	Facet-Facet Matching
	Setup
	Results

	Analysis and Conclusions
	Consistency Check
	CPU-GPU Result Comparison
	Industry Software Implementation
	Other Challenges
	Limitations
	Conclusion

	Weighted Total Least Squares
	Introduction
	Fitting Methods
	Minimum Zone Method
	Total Least Squares (TLS)

	Weighted Total Least Squares (WTLS)
	Weighting and Filtering
	WTLS on Parallel Planes
	Method

	GPU Computing
	TLS on GPU
	WTLS on GPU
	GPU Algorithm

	Implementation
	Input
	Set-up
	GPU Implementation

	Profiling and Optimization
	Managed Memory
	Explicit Memory
	Bundling
	Streams
	Other Optimization

	Results
	Performance
	Limitations
	Future Architecture
	Applications

	Conclusions

	Conclusions
	Calibration Algorithms
	Projection of Point on a Plane
	Point of Intersection of Two Coplanar Lines (3D)
	Point on Line of Intersection of Two Planes
	Select Data in a Point Cloud Plot
	Estimation of Calibration HTM using Processed Data from Sensor and CMM

	Calibration Artefact Drawing
	Weighted Total Least Squares
	kernel.cu
	Header (CudaHeader.h)
	Header (definitions.h)
	Header (largest eigen.cpp)

