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ABSTRACT

Process economic improvement subject to safety, operational and environmental constraints

is an ultimate goal of using on-line process optimization and control techniques. The dy-

namic nature of present-day market conditions motivates the consideration of process dy-

namics within the economic optimization calculation. Two key paradigms for implementing

real-time dynamic economic optimization are a dynamic real-time optimization (DRTO) and

regulatory MPC two-layer architecture, and a single-level economic model predictive con-

trol (EMPC) configuration. In the two-layer architecture the economically optimal set-point

trajectories computed in an upper DRTO layer are provided to the MPC layer, while in the

single-layer EMPC configuration the economics are incorporated within the MPC objective

function. There are limited studies on a systematic performance comparison between these

two approaches. Furthermore, these studies do not simultaneously consider the economic,

disturbance rejection and computational performance criteria. Thus, it may not be clear

under what conditions one particular method is preferable over the other. These reasons

motivate a more comprehensive comparison between the two paradigms, with both open-

and closed-loop predictions considered in the DRTO calculations. In order to conduct this

comparison we utilize two process case studies for the economic analysis and performance

comparison of on-line optimization systems. The first case study is a process involving two

stirred-tank reactors in-series with an intermediate mixing point, and the second case study

is a linear multi-input single-output (MISO) system. These processes are represented using

a first principles model in the form of differential-algebraic equations (DAEs) system for

the first case study and a simplified linear model of a polymerization reactor for the second

case study problem. Both of the case study processes include constraints associated with

input variables, safety considerations, and output quality. In these case study problems,

the objective of optimal process operation is net profit improvement.

The following performance evaluation criteria are considered in this study: (I) optimal value

of the economic objective function, (II) average run time (ART) over a same operating time

interval, (III) cumulative output constraint violation (COCV) for each constraint. The up-

date time of the single-layer approach is selected to be equal to that of the control layer in
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the two-layer formulations, while the update time of the economic layer in the two-layer for-

mulation is bigger than that of the single-layer approach. The nonlinear programing (NLP)

problems which result in the single-layer and two-layer formulations and the quadratic pro-

graming problem which corresponds to the MPC formulation are solved using the fmincon

and quadprog optimization solvers in MATLAB. Performance assessment of the single-layer

and two-layer formulations is evaluated in the presence of a variety of unknown disturbance

scenarios for the first case study problem. The effect of a dynamic transition in the prod-

uct quality is considered in the performance comparison of the single-layer and two-layer

methods in the second case-study problem.

The first case study problem results show that for all unknown disturbance scenarios, the

economic performance of the single-layer approach is slightly higher than that of the two-

layer formulations. However, the average computation time for the DRTO-MPC two-layer

formulations are at least one order of magnitude lower than that of the EMPC formulation.

Also, comparison results of the COCV for the EMPC formulation for different sizes of update

time intervals could justify the necessity of the MPC control layer to reduce the COCV for

the economic optimization problems with update times larger than that of the MPC control

layer. A similar computational advantage of the OL- and CL-DRTO-MPC over the EMPC

is observed for the second case study problem. In particular it is shown that increasing the

economic horizon length in the EMPC formulation to a sufficiently large value may result

a higher economic improvement. However, the increase in economic optimization horizon

would increase the resulting NLP problem size. The computational burden could limit

the use of the EMPC formulation with larger economic optimization horizons in real-time

applications. The ART of the dual-layer methods is at least two orders of magnitude lower

than that of the EMPC methods with an appropriate horizon length. The CL-DRTO-MPC

economic performance is slightly less than that of the EMPC formulation with the same

economic optimization horizon.

In conclusion, the performance comparison on the basis of multiple criteria in this study

demonstrates that the economic performance criterion is not necessarily the only important

metric, and the operational constraint limitations and the optimization problem solution
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time could have an important impact on the selection of the most suitable real-time opti-

mization approach.
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Chapter 1

Introduction

Real-time operations optimization (RTO) is an on-line technique to improve process op-

eration characteristics such as process profit, yield, reaction selectivity and/ or conversion

subject to the environmental, safety and quality considerations. This method uses a rig-

orous steady state process model and measurement feedback to maximize an economic

objective function of the processes. The RTO optimizing input variables could be deter-

mined by the solution of an NLP problem (Marlin et al. [1997]). In many process operations

dynamic changes could provide additional degrees of freedom for the improvement of the

process operation (Tosukhowong et al. [2004]). The dynamic nature of present-day mar-

ket conditions; dynamic transitions in product grade and operating conditions including

long-lasting dynamics of the processes; and persistent disturbance changes that have a ma-

jor impact on the process economics, motivates the consideration of the process dynamics

within the economic optimization calculation. The necessity of including process dynamics

in RTO methods has led to the development of dynamic real-time optimization (DRTO)

formulations (Klatt et al. [2000], Zanin et al. [2002], Engell [2007], Kadam and Marquardt

[2007], and Ochoa et al. [2010]). Considering the automation decision hierarchy, economi-

cally optimal set-point trajectories computed in an upper DRTO layer are provided to an

advanced control layer which uses a multi-input multi-output (MIMO) control strategy.

Process regulation and safety goals could be met at this control level (Marlin et al. [1997]).

1
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A linear MPC controller formulation is commonly considered for the advanced control layer

(Tosukhowong et al. [2004]). This control method uses a quadratic objective function to

minimize the deviation of the inputs and outputs of the process from their set-points using

a linearized model prediction of the process (Rawlings and Mayne [2009]). There is an-

other alternative for the real-time operation of the chemical processes in which economics

are incorporated within an EMPC objective function (Amrit et al. [2013]). The resulting

economically optimal control architecture involves unifying the target setting function and

the regulator function in a single-level (Bartusiak [2007]).

1.1 Problem Motivation and Goals

Recently, the single-level approach attracted considerable attention within the control com-

munity, (for example see Ellis et al. [2014a] and the references therein). The EMPC approach

could be considered as a promising replacement for the DRTO-MPC formulation because

there is no time-scale separation problem and model inconsistency issues which could exist

between in the RTO and control layer in the two-layer counterpart of the EMPC (Rawlings

and Amrit [2009]). However, the single-layer structure needs to be implemented with the

same frequency of control layer in the hierarchical structure to account for the control task

as well as the economic improvement task. Hence, the single-layer economic optimization

updating rate is naturally faster than that of the RTO layer in the two-layer structure. In

addition, a large economic optimization horizon might be needed to achieve an economic

performance improvements (Ellis and Christofides [2014b]). The large economic optimiza-

tion horizon could significantly increase the problem size. A large problem size may limit

the real-time application of the EMPC formulation due to the undesired effects of com-

putational delay such as diminished economic performance and stability issues (Yang and

Biegler [2013]). Thus, it may cause unnecessary and costly computations in cases where

only the slow-varying modes of the system and low frequency disturbances have a dominant

effect on the process economics. In these cases, the two-layer approach might be useful to

reduce computational effort via a slower update of the setpoint in the RTO layer; while the



3

inner control layer is responsible for the regulation of the fast varying modes of the system

and disturbances. This expectation could be explored by comparing the single-layer and

two-layer method’s economic and computational performance to demonstrate the possibil-

ity of achieving an equivalent economic operation with a lower computational cost in the

two-layer methods.

There are few researchers who have compared the performance of the two current ap-

proaches on the basis of the computational, economic and operational criteria. For instance,

Ochoa et al. [2010] compared a pure economic formulation of the single-layer approach with

an open-loop two-layer D-RTO structure for an extractive alcoholic fermentation process.

As an other example, Tosukhowong et al., 2004 compared the economic performance of

three different two-layer RTO/decentralized MPC formulations for a reactor-storage tank-

separator and recycle (RSSR) process system. Systematic performance comparisons be-

tween these two strategies are limited to the open-loop DRTO-MPC formulations and do not

simultaneously consider economic, disturbance rejection and computational performance

criteria. An inclusive and detailed discussion of these comparison studies are included in

chapter 2. This fact motivates a systematic performance comparison for the single-layer

EMPC and dual-layer DRTO-MPC architectures, with both open- and closed-loop flavours

of the prediction considered in the DRTO calculation (Jamaludin and Swartz [2017b]). A

review of the open- and closed-loop prediction of the DRTO calculation is included in the

literature review part of the thesis in chapter 2 and the general formulation is addressed in

chapter 3.

1.2 Research Approach and Scope

Potential process candidates which could benefit from the two-layer D-RTO and economic

model predictive control (EMPC) methods have dynamic and operating characteristics such

as switching conditions, frequent transitions, slow-varying dynamics, sustained disturbances

and high interaction between process units such as large recycle/feed ratio or mass/energy

integration loops (Tosukhowong et al. [2004]). These process characteristics could provide
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insight for consideration of appropriate process candidates for our comparison study. Con-

sidering these characteristics, one of the reasonable choices for a realistic case study problem

is the extractive alcoholic fermentation used by Ochoa et al. [2010] for the single-layer and

two-layer DRTO comparison. However, the process model and the associated parameters

are not explicitly available in their study and the other relevant references. Lack of a clear

process model causes a difficulty in the reproduction of the simulation results. The chosen

process model candidates are two benchmark models which are used in the literature either

to study the performance of the real-time optimization methods or to compare the compu-

tational and economic performance of the open- and closed-loop dynamic RTO methods.

Also, all of the details for the models are available in the reference papers to reproduce

the previous simulation results. The first case study problem is a nonlinear differential-

algebraic equation (DAE) system of two stirred-tank reactors (CSTRs) in series with an

intermediate feed (Loeblein and Perkins [1998]) and the second case study is a linear multi-

input single-output (MISO) system (Jamaludin and Swartz [2017a]). There are constraints

on the input variables, safety considerations, and output quality in both of the case study

problems. The existence of the output constraints could be considered as a reason to justify

the necessity of the control layer use in the implementation of the two-layer structure. The

economic optimization objective of the case study problems is the net profit improvement

and is denominated in dollar terms.

A fixed and sufficiently long economic optimization horizon is considered for all of the

formulations. For the control layer of the two-layer approaches, a standard linear model

predictive control (MPC) formulation with a sufficiently long prediction horizon to maintain

stability is used. The single-layer approach sample time is selected to be equal to that of

the control layer update time in the two-layer methods. In the solution step, a sequential

method is used to obtain the dynamic model solution in each iteration step of the result-

ing nonlinear programming problem (NLP). Open- and closed-loop prediction strategies

are considered in the DRTO layer of two-layer DRTO-MPC formulations. The open-loop

DRTO (OL-DRTO) layer uses the process model for the process output predictions whereas,

the closed-loop DRTO (CL-DRTO) layer uses embedded MPC subproblems in addition to

the process model. The focus of this thesis is on the formulation and the implementation of
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the EMPC and OL- and CL-DRTO-MPC systems for the purpose of performance compar-

ison, hence it does not aim to go through the detailed theory of the optimization solution

methods. Therefore, the resulting NLP and QP problems are solved using fmincon and

quadprog optimization solvers in MATLAB. For the first case study problem, the perfor-

mance assessment of the single-layer and two-layer formulations is repeated in the presence

of four unknown disturbance scenarios of the fresh feed concentration and the coolant flow

rate of the first reactor system. These designated unknown disturbance scenarios are in the

form of a variety of short-term and sustained pulse signals. Also, a product grade transition

is considered for the second case study problem. Most of integrated plants have very long

transient dynamics due to the presence of recycle loops (Tosukhowong [2006]). A large

economic optimization horizon might be needed to capture the effect of the long transient

dynamics on the economic improvement. As mentioned earlier, a large economic horizon

could cause difficulty for the real-time implementation of EMPC formulation. This possible

difficulty motivates us to consider recycle effects in the second case study problem. For

linear systems these recycle effects could be reflected in a form of change in the process

time constant and steady state input-output gains (Luyben [1993]).

The optimal value of the economic objective function, average run time (ART) over the

biggest update time intervals among the different formulations and the cumulative out-

put constraint violation (COCV) for each constraint, are considered for the performance

evaluation. The third metric is used to quantify constraint violation in the performance

comparison in the first case study problem and to justify the necessity of the control layer

in the two-layer approaches for the regulation task.

1.3 Main Contributions

As a main contribution, a systematic performance comparison for the single-layer EMPC

and dual-layer DRTO-MPC architectures is conducted using two different case study prob-

lems. There are some unique aspects of this comparison study that could distinguish it from

the existing literature on the performance comparison of the existing EMPC and DRTO
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approaches. Multiple performance criteria for the DRTO and EMPC schemes are evaluated

for the dynamic transition problem and a variety of short-term and sustained unknown

process disturbances. Also, both open-loop DRTO (OL-DRTO) and closed-loop DRTO

(CL-DRTO) prediction methods are considered in the performance comparison. Another

key outcome of this comparison is an order of magnitude reduction in the computational

time of the economic optimization using the DRTO approaches for an approximately equiv-

alent economic improvement.

Simultaneous and sequential methods are two main approaches for solving optimization

problems that include a dynamic model (see chapter 2 for a detailed review of these meth-

ods). In the simultaneous method the dynamic model is discretized together with the ma-

nipulated input variables. Whereas, in the sequential dynamic optimization, the dynamic

model of the process must be integrated using an ODE solver in each function evalua-

tion of the economic and control problems. The CL-DRTO-MPC formulation is originally

developed based on the simultaneous solution approach. However, in this study a sequen-

tial optimization framework is chosen to avoid a large optimization problem size in the

single-layer and two-layer approaches. Therefore, development and implementation of the

CL-DRTO-MPC approach in a sequential optimization framework is the second main con-

tribution of this study.

1.4 Thesis Overview

The contents of this thesis are coordinated in the following chapters:

Chapter 2 – Literature Review In this chapter relevant background on the economic

optimization of process plant operation which leads to the thesis research objectives is

included. The basic principle of the RTO method and some of its primary charachteristics

are discussed in the first section. In the next section, recent developments of the standard

formulation for the RTO and EMPC are included. This section is followed by the current

status of the economic optimization methods in terms of their advantages and disadvantages
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in the process industries. Considering the existing issues in the applicability of the single-

level EMPC and the two-layer DRTO-MPC formulations, some of the open questions are

discussed in the last section. These issues are considered in context of active research

directions such as performance comparison and time-scale separation. Also, the significance

of each research direction is explained in the last section.

Chapter 3 – Formulation and Comparison methodologies

This chapter describes a selected single-layer EMPC formulation and OL-DRTO formula-

tions. Moreover, it provides a sequential solution framework which is developed for the

inclusion of the CL-DRTO formulation in the performance comparison of economic opti-

mization methods. In addition to the problem formulation, this chapter introduces the

comparison critera and presents crucial assumptions which are considered in the EMPC

and OL- and CL-DRTO design and implementation.

Chapter 4 – First Case Study Problem

This chapter begins with a brief description of the case study problem. The process descrip-

tion is followed by the fundamental DAE process model and the operational constraints.

Also, the economic objective function and different sources of the unknown process dis-

turbances are described. Design and tuning parameters are reviewed and the performance

results analyzed and discussed for the EMPC, OL-DRTO-MPC and the CL-DRTO archi-

tectures, with relevant graphs and tables presented in the last part of this chapter.

Chapter 5 – Second Case Study Problem

This chapter begins with a brief description of the case study problem, the economic objec-

tive function and constraints. The solution strategies for the single- and dual-layer methods

are reviewed and results of the proposed sequential solution method for the OL- and CL-

DRTO formulations are compared with the results of Jamaludin and Swartz [2017a]. Then,

the detuning economic performance effects for some of the design parameters are investi-

gated, and suitable design parameters are selected for the performance comparison of the

EMPC and dual-layer methods. Finally, the recycle effect on the linear system is consid-
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ered in a performance comparison of the economic optimization problems and the results

are discussed.

Chapter 6 – Conclusions and Recommendations

At the end of this study, the key outcomes of performance comparison results for the case

study processes are included. These results are followed by conclusions on conditions under

which the two-layer methods could possibly be more preferable to the EMPC formulation

from the computational, operational and economic points of view. In this part the neces-

sity of considering multiple performance criteria for the selection of a suitable real-time

optimization approach is emphasized. Also, the results of the performance analysis for the

suggested sequential formulation of the CL-DRTO approach are mentioned and some re-

marks on the application of the closed-loop method for a better performance in comparison

to the other methods are included.



Chapter 2

Literature Review

2.1 On-line Economic Optimization Approaches

Reducing operational costs in competitive production, complying with environmental con-

straints, meeting different product specifications, and handling continuous changes in sur-

rounding, utility, operational, feedstock conditions, energy price changes and product de-

mand forecasts are all indispensable for efficient and profitable plant operation. These goals

could be accomplished through appropriate online optimization and control algorithms.

There are two general categories of methods to achieve optimal operation of process plant

systems: (I) hierarchical two-layer real time optimization (RTO) approach and (II) single-

layer economic optimization approach. The former takes the form of a cascade structure

between the RTO and control layers. In the latter, online optimization is implemented in a

single layer and there is no need to control the system to a given setpoint in a separate con-

trol layer. A general schematic of these two architectures is depicted in figure 2.1. There are

a variety of different two-layer and single-layer approaches in the literature. In this section,

these methods are briefly reviewed.

9
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Figure 2.1: Two-layer and single-layer architectures of optimal process operation in the

automation decision hierarchy.

2.1.1 Two-layer DRTO Approach

This approach determines economically optimal setpoints in an outer layer using an online

feedback optimization strategy in equation 2.1.

maximize
Uss,Xss

Φeco(Xss, Uss, C(k))

subject to 0 = F (Xss, Uss, d; θ)

G(Xss, Uss) ≤ 0

(2.1)

where Φeco is the economic objective as a function of the stationary input Uss and state

variables Xss which are the decision variables in the optimization problem. It is also a

function of cost parameters C which could change in each RTO iteration step. The equality

constraint F is the rigorous steady state model of the process which is a function of the input

and state variables and the unknown disturbance scenarios d and the model parameters

θ. The inequality constraint could be a general representation of the input and output

constraints, and any other possible operational constraints.
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Then in an inner layer of the two-layer approach, an MPC control formulation regulates the

system around the optimal setpoints which are the solution of the economic optimization

problem in equation 2.1. According to Marlin et al. [1997], conventional RTO approaches

use a steady state process model to find the optimal operating point. This may lead to a

deficiency when the external conditions change more frequently and/or the slow transient

changes in the state variables have a significant effect on the process economics. Some

researchers proposed the idea of replacing the steady state model with a dynamic process

model in the optimization layer to overcome these problems (Klatt et al. [2000], Zanin et al.

[2002], Engell [2007], Kadam and Marquardt [2007], and Ochoa et al. [2010]). However,

drawbacks associated with the two-layer approach, are model inconsistency between the

optimization layer and control layer, and the necessity to deal with time scale separation

in the design of the DRTO and predictive control layers (Rawlings and Amrit [2009]). The

single-layer economic optimization alternative combines the economic optimization problem

and regulatory control problem of the two-layer approaches approach to avoid the model

inconsistency and time-scale separation problems. This method uses an idea of the receding

horizon optimization similar to the model predictive control (MPC) formulation. A more

detailed description of the single-layer method is included in the next section.

2.1.2 Single-layer Approach

In the standard MPC formulation, control actions are calculated by solving an on-line con-

strained optimization problem at each sample time. This optimization problem minimizes a

quadratic objective function for a finite prediction time horizon subject to some constraints

on the states and control actions. Using the MPC formulation it is possible to integrate

economic optimization and control layers as a unified direct optimizing control layer. This

possibility presents MPC as an alternative to the two-layer approach (Rawlings and Amrit

[2009]). In the single-layer approach, the quadratic objective function of the MPC for-

mulation is replaced with either a pure economic objective function or a combination of

the economic and control objective functions. The economic objective function describes

a criterion such as profit, productivity, selectivity, yield, etc (Ellis et al. [2014a]). As a
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result of this change in the objective function, solution of the optimization problem pro-

vides input actions for the optimal operation of the plant. Despite the fact that single-layer

approach eliminates controller layer, it still has some challenging issues. For instance, in

comparison with the economic optimization layer of the two-layer approach, this method

requires a higher frequency of solving an economic dynamic optimization problem which

could increase the computational effort in comparison to the two-layer method; there is

no general stability analysis; and also it has reliability issues (Rawlings and Amrit [2009]).

The reliability problem means that there is no back up control system in the case of failure

for the single-layer economic control (Ochoa et al. [2010]). Moreover, some of the com-

mon single-layer formulations use an a-priori known fixed setpoint (Angeli et al. [2012] and

Heidarinejad et al. [2012a]), which may result in suboptimal transitions.

2.2 Active Research Directions

There has been some progress in the improvement of the single- and dual-layer approaches.

These advances have focused mostly on the stability analysis of the single-layer approach,

solution for the model inconsistency issues in the two-layer approach, reduction of the

computational demands and development of faster optimization strategies for the dynamic

optimization problem in both methods.

2.2.1 Performance Comparison of the Standard Formulations

As mentioned in the previous section, the single-layer structure needs to be implemented at

the same frequency as control layer in the hierarchical structure to account for the control

task as well as economic optimization. Hence, the single-layer updating rate is naturally

faster than the RTO layer in the two-layer structure. Thus, it may cause unnecessary and

costly computations in the cases that only the slow-varying modes of the system and low

frequency disturbances have a dominant effect on the process economics. In these cases, the

two-layer approach might be useful to reduce the computational effort via a slower update
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of the setpoint in the RTO layer; while the inner control layer is responsible for fast varying

modes of the system and disturbances. This strategy needs to be explored by comparing the

single-layer and two-layer methods’ economic and computational performance to investigate

whether an equivalent economic operation can be achieved with a lower computational cost.

There are few researchers who have compared performance of the two current approaches to

illustrate the computational, economic and operational advantages of the single-layer and

two-layer approaches for different processes. For instance, Ochoa et al. [2010] have compared

a pure economic formulation of the single-layer approach with a two-layer D-RTO structure

for an extractive alcoholic fermentation process. They maximize productivity of ethanol

production in a process system of fermentor, flash separator with a recycle stream. In this

process, the system flow rate of the flash separator to fermentor recycle stream and the

fermentor input flow rates of starch and enzyme are manipulated variables. Biomass and

ethanol concentration of the fermentor are considered as dynamic variables and starch feed

concentration is a process disturbance. They concluded that the single-layer approach gives

higher productivity for the process. However they did not provide the same conditions for

the implementation of the single-layer and two-layer D-RTO approaches. The following

remark should be considered for a fair comparison of the two approaches in their case study

process:

• They chose an update time of 0.5 hour for both of the single-layer approach and DRTO

layer in the two-layer approach and 0.2 hour for the control layer update time, as it

is assumed in their study update frequency of the DRTO layer should generally be

lower than the update frequency of the control layer in the two-layer DRTO structure.

However, the update time of the direct optimizing control should preferably be chosen

equal to that of the inner control layer of DRTO method for better consistency. These

two criteria are necessary to handle fast-varying modes and disturbances in the system.

Therefore in their implementation the necessity of using the control layer in the two

layer approach may not be justifiable, resulting in an increase in computational burden

without any outcome. Ochoa et al. [2010]’s comparison results confirm that controlling

biomass concentration to a fixed setpoint using the inner control layer cause economic
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performance deterioration. A successful justification of the necessity for the controller

means that the direct optimizing control should be susceptible to the fast changes

in the process modes and disturbances. In this regard the researchers explain that

single-layer method has a ”dead period” between update times. They claim that if

a disturbance affects the process during this ”dead period”, it may drive the process

to a condition of poor performance, and this will not be corrected until the following

optimization task is triggered. However they did not consider a scenario in their case

study simulation to show that the economic performance in the single layer method

decreases in the presence of disturbances.

In addition, Tosukhowong et al., 2004 have compared economic performance of three dif-

ferent two-layer RTO/decentralized MPC formulations for a reactor-storage tank-separator

and recycle (RSSR) process system. They intended to justify necessity of DRTO in cases

where implementation of steady state RTO (SS-RTO) is not possible and/ or does not pro-

vide expected improvement. However in their study, there is no performance analysis of the

single-layer real time optimization approach to specify which structure is a suitable option

to be implemented for a certain type of process system. Therefore, in the next chapters, we

will develop a systematic comparison of a two-layer D-RTO strategy versus a single-layer

formulation, in order to infer the conditions under which a certain approach is preferable

over the other.

2.2.2 Model Inconsistency Moderation

Model inconsistency arises for some reasons such as using different models for the optimiza-

tion and control layers, or avoiding closed loop control effects in the optimization layer.

Jamaludin and Swartz [2017b] developed a closed-loop two-layer formulation to capture the

closed-loop control effect in the optimization layer.
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2.2.3 Handling Uncertainty Using a Robust EMPC Formulation

There are two different approaches in dealing with model parameter and economic uncer-

tainty. The first approach is to estimate or predict uncertainties. Huang [2010] tried to

estimate the uncertain model parameters and the fictitious process noise for the purpose of

performance improvement in some RTO applications. Also, Würth et al. [2011] suggested

the use of disturbance trend detection in a two-layer DRTO formulation to improve the eco-

nomic performance. The second approach is application of stochastic optimization methods

(e.g. Min-max MPC, multi-stage NMPC). Lucia et al. [2013] applied a multi-stage MPC

formulation for the control of a semi-batch polymerization reactor under uncertainty. Fol-

lowing this successful application of the multi-stage MPC formulation to handle the process

model parameter uncertainty, later they incorporated this robust MPC technique in eco-

nomic model predictive control (Lucia et al. [2014]). In this method an uncertainty horizon

tree is considered which should be obtained using process knowledge and/ or statistical

methods (see figure 2.2). In this figure dji s are j different possibilities for the disturbance in

time instance i. Also uji is jth input element in time instance i which results jth predicted

state in the next time instance. From figure 2.2 one can infer that adding a longer horizon

will result a larger optimization problem. For instance, there are three generations of the

child nodes in the following scenario tree and the horizon size is N = 3. However, there are

some basic methods to limit the scenario options after a certain horizon length.

2.2.4 Integration with the Estimation Techniques

Similar to conventional feedback control systems, in the development of online optimization

methods, it is typically assumed that all state variables are available. In fact, it is not always

possible to measure all state variables. Therefore, states of the system could be estimated

using an appropriate estimation method. One approach is to use high gain observer with

guaranteed closed-loop stability. Heidarinejad et al. [2012b] used a high-gain observer to

extend the use of a Lyapunov based model predictive control (LEMPC) method for the case

that the full state measurements are not available. According to Ellis et al. [2014a], this
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Figure 2.2: Scenario tree representation of the uncertainty evolution (adapted from

Lucia et al. [2013]).
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type of estimator cannot handle constraints and it may also be sensitive to measurement

noise. The other option is Extended Kalman Filter (EKF) which is an optimization-based

state estimation method, which can account for noise. Rawlings and Mayne [2009] claimed

that ”EKF is at best an ad-hoc solution to a nonlinear state estimation problem”. Thus,

it can fail due to inaccurate linearization and cannot handle constraints reliably. To escape

the possible pitfalls of EKF, the Unscented Kalman Filter (UKF) has been introduced.

This method uses several samples of the nonlinear response, called sigma points, to avoid

linearization. In addition, it accounts for constraints in the sigma points and modifies the

sigma point that corresponds to the case of constraint violation. Chong [2012] used the UKF

for state estimation and showed its ability to estimate uncertain parameters to account for

plant-model mismatch. However, in this method, there is no appropriate modification for

constraint violation at the sigma point, which may lead to wrong state estimations. Despite

the previously mentioned issues, Kalman Filter variants of the state estimators have the nice

feature of one-step recursion which is suitable for the online application. Huang [2010] used

EKF-NMPC coupling and analyzed robust stability of off-set free output-feedback NMPC

using this combination. In contrast to the Kalman Filter methods, constraints in the moving

horizon estimation (MHE) method can be handled easily. However, MHE-MPC integration

methods may not be suitable for real-time application due to the computational difficulty in

solving the nonlinear optimization problem with the same MPC controller update frequency.

There are some new methods for addressing faster solution using a simultaneous collocation

approach, advanced-step MHE (as-MHE) and sensitivity methods, which are suitable for

real-time application to large-scale problems (Zavala et al. [2007], Zavala and Biegler [2009b],

and Zavala [2010]). Successful coupling of as-MHE-NMPC also has been carried out by

Huang [2010] for an air separation unit; despite this, still there is no stability analysis for

the as-MHE-NMPC formulation. Recently, Ellis et al. [2014b] proposed application of an

MHE formulation in the implementation of LEMPC formulation. They also analyzed the

closed-loop stability of the output-feedback based LEMPC in the presence of process and

measurement noise.
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2.2.5 Stability Analysis

Stability analyses for the single-layer method are provided by Angeli et al. [2012], Heidarine-

jad et al. [2012a] and Omell and Chmielewski [2013]. Addition of a terminal condition, ap-

plication of a Lyapunov based model predictive control formulation and implementation of

an infinite horizon MPC formulation are some different techniques which have been used for

the stability analysis of EMPC in these research works. Also, Ellis and Christofides [2014a]

carried out a stability analysis for a two-layer structure of dynamic economic optimization

and MPC using a Lyapunov based model predictive control formulation.

2.2.6 Computational Performance Improvement

Different methods such as Fast Nonlinear MPC algorithms for a two-layer structure (Kadam

and Marquardt [2004]), advanced-step NMPC and advanced multi-step NMPC for the

single-layer structures (Zavala and Biegler [2009a], Yang and Biegler [2013]) have been

developed to reduce the computational time of the dynamic optimization problems. Also

some other researchers have tried to reduce the computational time by employing the idea of

distributed model predictive control (DMPC). For example Chen et al. [2012] have applied a

distributed Lyapunov based EMPC formulation to a catalytic alkylation of benzene process

network. They could show that the average computational time for the solution of opti-

mization problem decreases by half for a standard Lyapunov based EMPC. Process model

reduction is another effective method to reduce the computational demand. Time-scale

separation strategies could be used to perform the process model reduction. Yu and Biegler

[2014] and Tosukhowong et al. [2004] introduced different time-scale separation strategies

based on the eigenvalue analysis of the linearized process model.



Chapter 3

Formulations and Comparison

Methodologies

This chapter presents the single-layer and two-layer formulations used for a systematic

comparative performance analysis. Also, the problem solution techniques applied and the

assumptions in the implementation of real-time optimization are addressed in the next sec-

tions. Moreover, a consistent real-time optimization design is proposed for a fair compari-

son between the two general approaches. The comparison methodology for the performance

evaluation of the selected single- and two-layer formulations is included in the last section

of this chapter.

3.1 Single-layer Formulation

As discussed in the literature review, assuming a-priori defined optimal setpoints for the

implementation of economically optimal setpoint tracking in the single-level fashion is a

common formulation. However, there is no necessity for an a-priori defined setpoint in

the general EMPC formulation. An EMPC formulation with a pure economic objective

function is used in Chong and Swartz [2013] for a multi-level implementation of the single-

19
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layer approach. Thus, their EMPC formulation is not limited to an a-priori known optimal

setpoint. An EMPC formulation of equation (3.1) is considered for a representative single

layer approach, which is similar to the single-layer formulation in Chong and Swartz [2013]

with a pure economic objective function.

maximize
U(k)

Φeco(Y (t), u(t), C(t))

subject to Ẋ = F (X(t), u(t); θ)

Y (t) = X(t) + d̂i

d̂i = Ym −X(ti|ti−1)

G(Y (t), u(t)) ≤ 0

u(t) = U(k), ti + (k − 1)Te ≤ t ≤ ti + kTe, ∀k = 1, ..., Ne

X(ti) = X(ti|ti−1)

(3.1)

where Y (t), u(t) & X(t) are vectors of output, input and state variables at time t and

U(k) is piecewise constant input sequence at discrete time instance k. C(t) represents a

sequence of known economic disturbances at the current time and the predicted economic

information in the near future. For instance C(t) could be unit price prediction. θ denotes

the process model parameters. In this single-layer formulation, it is assumed that all of the

output variables are measured. A vector of the prediction bias parameter d̂i is embedded in

the process model to account for the effect of unknown disturbances in the model prediction.

The prediction bias is updated based on the prediction error of the (i− 1)th iteration step

of the EMPC. Te and Ne represent the update time and the economic optimization horizon

and U(k) ∈ IRnu , ∀k = 1, ..., Ne is a sequence of decision variables applied to interval k in the

ith EMPC iteration step. The G(Y (t), u(t)) constraints include input constraints, output

constraints and any other type of desired nonlinear path constraints. Also the last constraint

denotes the update of state variables at ti based on the evolution of states using the process

model and the previous state values. In each EMPC iteration step the optimization problem

is solved subject to the process model and the constraints G(Y (t), u(t)). Then the first input

solution U(1) is implemented to the process using a zero-order hold until reaching the next
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update time (ti+1). After solving the optimization problem of the ith EMPC iteration step,

the horizon moves forward and these steps will be repeated until the end of the process

operation time.

3.2 Open-loop DRTO-MPC Formulation

The EMPC formulation of equation (3.1) is used for the economic optimization problem

in the both two-layer approaches. However, there are some differences in the design of the

DRTO layer and the implementation of optimal manipulated variables. The optimization

layer in the two-layer approach has a lower update frequency than that of the EMPC

formulation. Also, in the EMPC approach the optimal inputs are directly applied to the

processes whereas, in the two-layer DRTO-MPC approach the economically optimal inputs

and their corresponding outputs are re-sampled with the MPC control layer update time to

be used as an optimal setpoint in the standard linear MPC formulation of Equation (3.2)

which could be found in Maciejowski [2002]:

minimize
Uc(n)

Φc =

Np∑
n=1

||y(n+ 1)−R(n+ 1)||2Q +

Nc∑
n=1

(||Uc(n)− UR(n)||2Γ + ||∆Uc(n)||2S)

subject to x(n+ 1) = Aex(n) +BeUc(n), n = 1, ..., Nc

x(n+ 1) = Aex(n) +BeUc(Nc), n = Nc + 1, ..., Np

y(n+ 1) = Cex(n+ 1) + d̂j

Dey(n+ 1) + EeUc(n) + Fe ≤ 0, n = 1, ..., Np

d̂j = Ym(tj)− Cex(tj |tj−1),

x(1) = x(tj |tj−1), tj ∈ [ti, ti+1)

(3.2)

Where Te, Tc, Nc, Np, Q, Γ & S are DRTO update time, MPC update time, MPC control

horizon, MPC prediction horizon, output weight, input weight and input change penalty

weight matrices. R(n + 1) and UR(n) are reference output and input signals which are
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Figure 3.1: Re-sampling of the solution of the economic optimization problem U∗(k) to

build the reference input sequence UR(n) for the MPC problem at t = tj .

calculated in the most recent DRTO iteration step. Figure 3.1 shows the reference input

values UR(n) which result from the re-sampling of the solution of the economic optimiza-

tion problem U∗(k). In this figure, ti corresponds to the recent economic solution update[
U∗(1) U∗(2) ... U∗(Ne)

]
. The index for the solution of the economic optimization

problem U∗(k) starts from k = 1 for each DRTO iteration step. tj shows the current MPC

update time which starts from tj = ti for the first MPC iteration step and increases with

the MPC sample time Tc for the next MPC iteration steps in the economic optimization

time interval [ti, ti+1). The index of the re-sampled input UR(n) is from n = 1 to n = Nc

for each MPC iteration step. Equation 3.3 is used for the reference input re-sampling:
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UR(n) =


U∗(1), 1 ≤ n < 1 + (ti+1 − tj)/Tc

U∗(k), 1 + (ti+k−1 − tj)/Tc ≤ n < 1 + (ti+k − tj)/Tc
,

k = 2, ..., 1 + ceil(
NcTc
Te

)

tj ∈ [ti, ti+1)

(3.3)

Then, the re-sampled optimal input sequences UR(n) are used to integrate the same non-

linear process model, which is used in the economic optimization layer of equation (3.1), to

obtain the reference output variables R(n). The reference signals must be provided up to

the time which is needed by the horizon of the last MPC controller before the next economic

layer update time arrives. This time is equal to ti + Te +NpTc. The ceil(.) function in the

upper bound of k rounds a real number to the closest upper integer number.

In this MPC formulation Ae, Be, Ce, De, Ee, and Fe in the process model and path con-

straint result from the linearization in ith update time interval of the economic optimization

layer ([ti, ti+1)). The original process model and path constraint in the Equation (3.1) are

linearized around the average values of the optimal setpoint signals R(n) & U∗(k) at the

two ends of the time horizon.

In each MPC step j a bias parameter is updated which is calculated as a difference be-

tween the measured output Ym(tj) and the predicted output from the (j − 1)th MPC step

(x(tj |tj−1)). Also, the last constraint in Equation (3.2) denotes the update of initial state

variables based on the evolution of the states from the previous MPC iteration step. It

should be noted that the initial state variables are updated based on the measurements,

when full states measurements are available.

The first control input vector Uc(1) is implemented to the process using a zero-order hold

until reaching the next MPC controller update time tj+1. The MPC iteration steps proceed

for all tj ∈ [ti, ti+1). After the completion of the full sequence of the MPC steps in interval

[ti, ti+1), the economic optimization layer updates the economically optimal reference signal

at ti+1 for the MPC sequences of the (i+ 1)th time interval (i.e. [ti+1, ti+2)).
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The MPC formulation of equation 3.2 does not include ny kind of stability constraints be-

cause it is intended to compare the single-layer and two-layer structure with the simplest

possible MPC control approach. This assumption is reasonable for open-loop stable systems

and a sufficiently long prediction horizons and could lead to a general performance compar-

ison which is independent of stability constraint effects. However, the MPC formulation of

equation 3.2 could be readily replaced by other variants of MPC formulations.

3.3 Closed-loop DRTO-MPC Formulation

In the CL-DRTO-MPC formulation closed-loop control prediction is incorporated in the

economic optimization level. In this formulation, similar to the OL-DRTO formulation,

economic performance of the processes is optimized subject to the desired input, output

and path constraints. In the CL-DRTO-MPC formulation, closed-loop control interaction

of the MPC and the available model of the process must be included in a form of closed-

loop dynamic constraints in the DRTO layer to moderate undesired effects of the model

mismatch between the economic optimization layer and the regulatory control layer. A

closed-form solution of a general controller formula could be embedded in the economic

optimization problems to account for the closed-loop dynamic behavior of the process.

However, due to the bound constraint on the control action and the operational constraints

of the process output, there is no explicit solution for the general formulation of the MPC

problem. Solution of the necessary and sufficient first-order Karush-Kuhn-Tucker(KKT)

optimality conditions is equivalent to the solution of the MPC QP optimization problem.

Jamaludin and Swartz [2016] were able to show that it is possible to include a closed-loop

prediction of the process systems in the DRTO formulation using the KKT condition.

A multilevel simultaneous solution approach could be used to solve the resulting NLP

problem. This approach significantly increases the size of the DRTO problem. However,

there is a promising study on the problem reduction of the rigorous inclusion of the closed-

loop dynamic prediction in the DRTO approach(Jamaludin and Swartz [2017a]). In this

study three methodologies of hybrid formulation, bilevel formulation, and input clipping
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formulation are used to approximate the closed-loop response prediction.

Unlike the simultaneous solution approach which needs a full discretization of the control

inputs and the state variables, in the sequential solution approach only the control inputs

are discretized and dynamic constraints are evaluated using ODE solvers. Thus, the sequen-

tial approach has a the potential strength to maintain the dynamic optimization problem

size small, using the input vector discretization technique. There could be an opportunity

to solve CL-DRTO problems more efficiently by reducing the computational effort using a

sequential solution strategy. Also, in the implementation of CL-DRTO using simultaneous

solution approach, the original multilevel dynamic optimization problem is reformulated as

a single-level mathematical program with complementarity constraints (MPCC)(Jamaludin

and Swartz [2017b]). The sequential solution approach does not require optimization prob-

lem reformulation. Therefore, implementation of CL-DRTO using the sequential solution

approach is easier than that of the simultaneous approach. However, the sequential approach

has a potential drawback due to derivative discontinuities when MPC input constraints are

changed from active to inactive and conversely from inactive to active mode. In the cur-

rent section a sequential solution framework is developed which is able to directly solve

the MPC subproblems in the form of equation 3.2 in the CL-DRTO optimization layer.

Therefore, this method reduces the size of the primary optimization problem by the elimi-

nation of the KKT optimization constraints and the associated MPC decision variables in

the multilevel optimization problem of the CL-DRTO layer. In this sequential approach,

solution of multiple QP subproblems, which arise from the MPC iteration steps over the

economic optimization horizon, accounts for the closed-loop output prediction in the DRTO

level. The QP subproblems must be solved in each function evaluation of the economic op-

timization problem. A detailed representation of the sequential approach is depicted in a

flow-diagram system in figure 3.2. An overview on the flow-diagram could be useful for the

basic understanding of the flow of the tasks in the solution of the QP subproblems and the

way each subproblem communicates with the other optimization problems and the primary

optimization problem.

The initial input sequence of the UDRTO could be obtained from the solution of the previous
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Figure 3.2: A sequential implementation framework for the multilevel optimization

problem of the CL-DRTO layer in the two-layer configuration.
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CL-DRTO step. Integration of the DRTO process model using the initial input sequence

of the previous CL-DRTO step could result the required initial setpoints Y DRTO for the

initialization step of the closed-loop economic optimization problem. Figure 3.2 shows

the MPC subproblems in the ith DRTO update interval [ti, ti+1). The MPC subproblems

MPCj , & j ∈ {1, ..., N}) must be solved over the entire economic optimization horizon.

N = (Te/Tc)Ne determines the number of the MPC subproblems which are placed in each

DRTO update interval. The first control action (UCj1 ) of each MPCj subproblem in the

ith DRTO update time interval is applied to the DRTO model. The resulting hypothetical

measured output values (Y j
m) updates the MPC bias d̂j in the MPC formulation of equation

3.2. Also, the state values which corresponds to the outputs Y j
m of the DRTO model are

used to initialize the next MPC subproblem (MPCj+1). This pattern is repeated until

approaching the end of the economic optimization horizon (ti+NeTe). For the last (N−Nc)

MPC subproblems extra optimal inputs are required after the ending element of UDRTO.

Therefore, the extra input setpoints are assumed to be equal to the last element of the

optimal input setpoint (UDRTO(Ne)). A similar assumption holds for the extra output

setpoints of the last (N −Np) MPC subproblems.

After the solution of the sequence of MPC subproblems the hypothetical measured output

values Y j
m are sent to the primary economic optimization problem at the end of each DRTO

economic optimization horizon. These values are used for the calculation of the economic

objective function Φeco. The output constraints on Y j
m could be considered in each individ-

ual MPC subproblem. However this could cause feasibility issues for the MPC subproblems.

Therefore, the output constraints for the DRTO model outputs Y j
m, together with the path

constraints and input-output constraints for the setpoints, are considered in the economic

optimization layer. A feedback of the plant output measurements is provided to the CL-

DRTO method in each DRTO update time to update the bias di of the DRTO model in

each CL-DRTO step. The initial state values of X(ti) are obtained from the evolution of

states X(ti|ti−1) at the previous CL-DRTO step ti−1 using the DRTO model. This overview

shows a coherent closed-loop formulation scheme that includes the MPC optimization sub-

problems, virtual process plant included as a DRTO model, primary economic optimization

problem and the way these problems are connected to each other in the proposed sequential
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approach. The primary problem could be solved using an appropriate NLP solver. Details

on the relevant assumptions, design parameter specifications and the solution steps are

discussed in the next sections.

The communication of the entire block of the CL-DRTO layer formulation in figure 3.2 with

the MPC control layer and the actual plant is similar to that of the OL-DRTO. Solution

of the CL-DRTO layer, Y CL−DRTO and UCL−DRTO are re-sampled in a similar form of

equation 3.3 to provide setpoint for the lower level of MPC controller.

3.4 Real time Optimization Design

The following steps should be considered for the choice of the suitable economic optimization

update time, Te; and the economic optimization horizon, Ne in both single-layer and two

layer method; the MPC control layer update time, Tc; the MPC control horizon, Nc and

the MPC prediction horizon, Np in the two-layer approach.

1. MPC controller update time in the two-layer formualtion: update time selection

is the most straightforward part which exists in the literature (Shridhar and Cooper

[1998]). To this end a first-order plus dead-time (FOPDT) process model is determined

around the initial operating conditions (Marlin [1995]) to find the input-output time

constants (τRS) and process time delays (θRS) for process inputs S and outputs R. The

process time constants and time delays are used in the following formula to calculate the

MPC update time:

Tc = Min(Max(0.1τRS , 0.5θRS)) (3.4)

2. MPC control and prediction horizon length in the two-layer formualtion: As

the MPC formulation of equation (3.2) does not have any type of stability constraint

and/ or terminal condition to guarantee the stability, the prediction horizon is chosen

sufficiently long to insure stability of the MPC controller in the two-layer approach.
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Thereafter the control horizon could be chosen according to a methodology such as in

Garriga and Soroush [2010]. For open-loop stable and nonsquare multi input-multi output

(MIMO) systems, the initial value of the control horizon could be determined from the

maximum of the various combinations of (τRS + θRS) for process inputs S and outputs

R. The input-output time constants (τRS) and the corresponding process time delays

(θRS) are calculated from the FOPDT model of the process. They also mention that

trial and error could be useful for the final tuning of the control horizon. They state

that the horizon should be large enough to extend over all significant adjustments in the

manipulated variable required to implement a setpoint change. Without loss of generality

it is also considered that the MPC horizon length is less than the horizon of the economic

optimization. Otherwise the optimal set point could not be provided for the control layer

beyond the horizon of the economic optimization. This assumption will guarantee that

the current DRTO iteration step could provide a full length optimal setpoint which is

required by the MPC formulation.

3. EMPC update time: Considering the discussion in the motivating problem part (sec-

tion(1.1)), it is assumed that the update time in the single-layer approach could be equal

to that of the control layer in the two-layer structure. Hence, MPC sample time is chosen

for the EMPC formulation, because EMPC should be able to account for both of the

economic optimization and control tasks.

4. Economic optimization horizon length in the single- and dual-layer methods:

It is shown by Ellis and Christofides [2015] that in some case study problems it is possible

to improve the economic performance by increasing the horizon length of the economic

optimization problem. Therefore EMPC and/ or the DRTO horizon length could be

increased to the point that the economic performance improvement is negligible. The

horizon length corresponding to the maximum improvement is selected as the suitable

horizon.

5. DRTO layer update time in the two-layer formulation: The DRTO layer update

time could be bigger than the EMPC update time. The bigger economic optimization

update time means that the optimal setpoints are updated less frequently. The slower eco-
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nomic update may cause less economic performance improvement in comparison to that

of the EMPC for a case of an equal economic optimization horizon. Tosukhowong et al.,

2004 proposed a methodology to select the update time in a reasonable range for the

DRTO layer. They suggest to calculate the eigenvalues of the linearized process model

and sort them from smallest to biggest eigenvalue. Then, the biggest gap of the eigen-

value must be found which could divide the eigenvalues into two groups. Any higher

frequency dynamics (i.e. dynamics that are associated with the eigenvalues in the group

of the smaller eigenvalues) should be avoided in the selection of the economic layer up-

date time in the dual-layer method. The economic update time could be chosen as

6/(min(group of bigger eigenvalues)).

3.4.1 Incorporation of Operating Constraints and Objective Function

Calculation

According to Zafiriou [1990], the inclusion of hard output constraint in MPC formulation

could result infeasible optimization problem and/ or instability in the presence of the un-

known disturbances. This problem could happen when there is no available input to move

process output to the feasible region in the current MPC iteration step. Therefore, it is

important to decide on the appropriate method to incorporate input and output constraints

in the MPC control layer of the two-layer methods.

The soft constraint approach penalizes constraint violations in the objective function with a

weight parameter to avoid the infeasiblity of the QP optimization problems. The following

formulation explains how it is possible to convert a linear inequality hard constraint to a

soft constraint by adding a positive slack variable ε in a general optimization problem:

αmin − ε ≤ CX ≤ αmax + ε. (3.5)

where C is a row vector with the same size of the general decision variables X and αmin

& αmax are inequality bounds. A penalty term of the form wε2 must be added to the
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objective function where w represents constraint violation weight. This weight must be

large enough to prevent constraint violation when the original optimization problem with

the hard constraint is still feasible.

In this work, hard input constraints are handled within the economic layer and control

layer in the two-layer approaches. These input constraints are treated in the same way

in the single layer formulation. Also, hard output constraints are handled directly in the

EMPC formulation and within the economic layer in the two-layer approaches. However,

the soft constraint formulation approach is used for output constraint handling in the MPC

control layer in the two-layer approaches to account for the infeasiblity issues of the QP

optimization problems.

3.4.2 Dynamic Model Evaluation and Optimization Problem Solution

In each iteration step of the DRTO and single-layer formulations a dynamic optimization

problem must be solved. Sequential and simultaneous methods are two general strategies

to solve dynamic optimization problems. In the sequential method only control variables

are discretized. In this strategy model integration is required in each function evaluation.

In this study both of the single layer and two-layer approaches are implemented using

a sequential problem formulation. Thus, the process model must be integrated in each

function evaluation in the resulting nonlinear programming (NLP) problem. The ODE

models in the economic optimization problems are integrated using the ode45 MATLAB

built-in solver. The MPC optimization subproblems in the CL-DRTO formulation and the

MPC control layer problems are solved using the quadprog QP solver with the interior-point

algorithm. The NLP problems which result from the economic optimization problem are

solved using the fmincon NLP solver with the interior point algorithm.



32

3.5 Comparison Methodology

The first case study problem is considered to evaluate the performance of selected single-

and two-layer formulations in the presence of different unknown disturbance scenarios. Per-

formance evaluation of the selected formulations is conducted for the case of dynamic tran-

sitions between operating conditions in the second case study. It is important to operate

a process with minimal operating and safety constraint violations and to achieve enhanced

economic performance using a modest computational effort. Therefore, the following cri-

teria are considered to tabulate performance results for the purpose of comparison in the

presence of different operating condition scenarios:

3.5.1 Comparison Criteria

1. Net profit:

As mentioned in the previous sections, optimal process operation is the main purpose

of the application of RTO methods. In general, the goal of the economic optimization

layer could be expressed in different forms of maximizing reaction rate, yield, selectivity,

revenue, profit and many other possible desired metrics (Ellis et al. [2014a]). However,

an economic objective function, which could directly represent economic performance im-

provement in terms of profit, could explicitly show the economic advantage of one method

over the others. This reason encourages us to choose net profit (P ) over a fixed simulation

time as a criterion to judge the performance of different RTO approaches. This quantity

would be calculated using the manipulated inputs and predicted output variables, and

the estimated state variables if the full state measurements are not available.

2. Average run time (ART):

There are different approaches to indicate computational effort for the on-line optimiza-

tion methods such as computation time and problem size. In this study problem, size

and number of the required NLP and QP problems for a fixed simulation time may

vary in the implementation of different approaches. This different number and size of
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the NLP and QP are direct consequences of different update times in each formulation

and distinct formulation structure for the EMPC, OL-DRTO-MPC and CL-DRTO-MPC

formulations. Different size and number of NLP and QP problems in each formulation

do not provide a comprehensive overview of the information for the comparison of the

computational performance of the selected scenarios. Therefore, it is more preferable to

report the ART over the biggest update time intervals among different formulations, to

indicate total computational effort which is required in an equal time interval.

The solution time for each individual iteration step of the economic optimization layer in

the two-layer formulations and/ or the EMPC formulation are recorded until the end of

the simulation time. Then summation of these solution times is divided by the number of

DRTO problems that fits into the entire simulation time. A similar procedure is carried

out to obtain the solution time for QP problems of the MPC control layer. The value

of ART criteria is the average solution time of the economic optimization problem for

the single-layer method and the summation of the average solution time of the economic

optimization and MPC problems for the dual-layer methods.

3. Cumulative output constraint violation (COCV):

Operating a process system within the predefined constraints could maintain the effec-

tiveness of process design, specified product qualities and safety of the process. Thus, it is

important to satisfy these constraints and/ or to reduce constraint violation in the cases

where the constraint violation is unavoidable. Qualitative constraint violation compari-

son of single- and two-layer methods could clarify the severity of the constraint violation

where there is a significant difference in the constraint violation results, although it does

not provide a conclusive result on the amount of the constraint violation in the entire

simulation time interval. A COCV criteria of equation 3.6 is developed to account for

the constraint violation of each individual constraint. The COCV metric could be helpful

to conduct a systematic comparison of the capability of each formulation to maintain

process operation within the predefined constraints.
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COCV =

tf∫
t0

(
(αmin − CX)RLB + (CX − αmax)RUB

)
dt,

RLB(X) =


0, CX ≥ αmin

1, CX < αmin

,

RUB(X) =


0, CX ≤ αmax

1, CX > αmax

.

(3.6)

where the COCV accounts for the inequality constraint violation of equation (3.5) and

RLB, RUB are switch functions for the lower and upper bound constraint violation.

The COCV integration could be numerically calculated using trapezoidal method for

the numerical values of the variable X.

3.6 Chapter Summary

In this chapter a detailed discussion on the problem formulations and the implementation

method, appropriate design assumptions and the comparison criteria for the purpose of

a systematic and fair performance comparison are included. Also a detailed overview on

the sequential solution framework for the implementation of the CL-DRTO formulation

is presented. The next chapter focuses on the performance comparison of the selected

economic optimization formulations in the presence of unknown disturbances for the first

case study problem.



Chapter 4

First Case Study Problem
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4.1 Case Study Process: Two CSTRs in Series

In this chapter there is a brief description of the case study process. The process descrip-

tion is followed by process modeling, operational constraints, explanation on the different

sources of disturbances, and the economic objective of the optimal process operation. Also

necessary assumptions in the implementation of the online economic optimization methods

are included in the related sections. Thereafter, the performance of the chosen single- and

two-layer methods are interpreted and compared using the performance criteria.

4.1.1 Process Description

This process was originally considered by Loeblein and Perkins [1998] for the economic

analysis of RTO considering model parameter and structural uncertainties. The process

consists of two continuous stirred tank reactors (CSTRs) in series with a mixer in between,

where an intermediate feed is added, as shown in figure 4.1. Two exothermic and irreversible

first order reactions A −→ B −→ C take place in both CSTR reactors. The intermediate

product B is desired and the final product C is undesired. Pure component A is introduced

to the first reactor and the mixer. Cooling is provided to prevent the thermal runaway of

the reactors.

4.1.2 Process Modeling and Operational Constraints

It is assumed that volumetric holdup in the reactors is constant. Therefore process dynam-

ics are described by the equations of component mass and energy balances of the reactors.

It is also assumed that the mixing process is fast. Therefore accumulation terms in the

mixer total mass balance, component mass balance and energy balance are neglected. It is

assumed that fluid density, ρ, remains constant during the reaction and mixing processes.

Component heat capacities are also constant and equal to cp. The kinetic coefficients of

the two reactions, ki(T ), are Arrhenius type functions. With this set of assumptions, the

following model equations for a CSTR could be obtained:
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Figure 4.1: Two CSTRs in series with an intermediate feed.

• Overall mass balance equations in terms of volumetric flow rates, QFi:

0 = QFi −Qi, i = 1, 2. (4.1)

• Component mass balance equations in terms of feed concentrations, CA,F i, CB,F i,

CC,F i and constant reactor holdup, Vi:

dCAi
dt

=
QFi
Vi

CA,F i −
Qi
Vi
CAi − CAik0,Iexp(−

EI
RTi

),

dCBi
dt

=
QFi
Vi

CB,F i −
Qi
Vi
CBi + CAik0,Iexp(−

EI
RTi

)− CBik0,IIexp(−
EII
RTi

),

dCCi
dt

=
QFi
Vi

CC,F i −
Qi
Vi
CCi + CBik0,IIexp(−

EII
RTi

), i = 1, 2.

(4.2)

• Energy balance equations:
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dTi
dt

=
QFi
Vi

TFi −
Qi
Vi
Ti −

∆HR,I

ρcp
CAik0,Iexp(−

EI
RTi

)−
∆HR,II

ρcp
CBik0,IIexp(−

EII
RTi

)

−
qcool,i
Vi

, i = 1, 2.

(4.3)

• The cooling rate, qcool , is a function of the overall heat transfer coefficient,U , the

heat exchanger area, A, and the logarithmic mean temperature difference between

the cooling water and the reactor temperature:

qcool,i =
UiAi
ρcp

∆Tln,i = Uai∆Tln,i,

∆Tln,i =
Tcout,i − Tcin,i

ln(Ti − Tcin,i)/(Ti − Tcout,i)
, i = 1, 2.

(4.4)

• The cooling water outlet temperature is determined from the energy balance of the

cooling water:

qcool,i = Qc,i(Tcout,i − Tcin,i), i = 1, 2. (4.5)

In this process model, it is possible to eliminate Tcout,i in equation (4.5) using equations

(4.4):

qcool,i = ΛiQc,i(Ti − Tcin,i),

Λi = 1− exp(− Uai
Qc,i

), i = 1, 2.
(4.6)

Substitution of equation (4.6) converts the resulting set of differential-algebraic equa-

tion (DAE) process model to a set of ordinary differential equations (ODEs). There-

fore the process model could be directly integrated using a general ODE solver in

MATLAB. Also the coolant outlet temperature is not an independent state variable.

The value of the Tcout,i can be determined using equations (4.5) and (4.6):

Tcout,i = ΛiTi + (1− Λi)Tcin,i, i = 1, 2. (4.7)
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The steady-state balance equations for the mixer are given below:

• Overall mass balance equation:

QF2 = Q1 +QM . (4.8)

• Component mass balance equations:

QF2Cj,F2 = Q1Cj,1 +QMCj,M , j = A,B,C. (4.9)

• Energy balance equation:

QF2TF2 = Q1T1 +QMTM . (4.10)

In total, the model has 8 ODEs, the same number of independent state variables which

are reactor temperatures and concentrations, 22 parameters 2 output variables which are

T1 and Tcout,2, and 2 manipulated variables which are feed flow rates, QF1 and QM . The

nominal operating conditions and parameter values are given in table (4.1).

There are some operation and safety constraints as well as product specifications that limit

the admissible operational region of the process. These constraints are mentioned in the

following list:

1. Safety restrictions. The temperature in both of the reactors should not exceed 350 K.

T1 ≤ 350 K, T2 ≤ 350 K. (4.11)

2. Feed supply limitation. Maximum available total feed flow rate is 0.8 m3/s.

QF1 +QM ≤ 0.8 m3/s. (4.12)



40

Table 4.1: Parameters and nominal operating conditions of the case study process

Variables Values

Reactor volumes (m3) V1 = 5.0 V2 = 5.0

Feed concentrations (kmol/m3) CA,F1 = 20.0 CA,M = 20.0

for i = B,C and j = F1,M Ci,j = 0.0

Kinetic rate constants (s−1) k0,I = 2.7× 108 k0,II = 160

Feed temperatures (K) TF1 = 300.0 TM = 300.0

Activation energies (K) EI/R = 6000.0 EII/R = 4500.0

Heat of reactions (m3K/kmol) ∆HR,I/(ρcp) = −5.0 ∆HR,II/(ρcp) = −5.0

Cooling water flow rates (m/s) Qc,1 = 0.7 Qc,2 = 0.7

Inlet coolant temperatures (K) Tcin,1 = 300.0 Tcin,2 = 275.0

Heat transfer coefficients (m3/s) Ua1 = 0.35 Ua2 = 0.35

Nominal operating condition

Feed flow rates (m3/s) QF1 = 0.274 QM = 0.236

3. Process limitations. The cooling rate for the available coolant flow rate, Qc, i, with inlet

temperature, Tcin,i, is restricted such that coolant outlet temperature should not exceed

an a-priori defined temperature. Also there is a minimum feed flow rate required for both

feed streams.

Tc1out ≤ 330 K

Tc2out ≤ 300 K

QF1 ≥ 0.05 m3/s

QM ≥ 0.05 m3/s.

(4.13)

4. Product specifications. In the second reactor final product outlet should have a raw

material concentration less than 0.3 kmol/m3.

CA,2 ≤ 0.3 kmol/m3. (4.14)
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4.1.3 Disturbances and Parameter Uncertainties

Two different types of process and economic disturbances exist in the real-time economic

optimization of processes. According to Tosukhowong et al. [2004] most economic related

changes in the process plants have a low frequency nature. Therefore it is important to

differentiate between economic and process disturbances. This is due to the fact that

economic disturbances are usually in the sustained signal form and they have lower frequency

of change, while process disturbances could exist in both of the sustained and short-term

pulse forms.

Feedstock concentrations, CA,F1 & CA,M , and coolant flow rates, Qc,i could be considered

as process disturbance d in the state space process model. Depending on the nature of the

changes in the feed source, two different forms of sustained and short-term pulse distur-

bances are considered. For instance if we have to dissolve and/ or dilute reactant uniformly

before feeding it to the reactors, pulse fluctuations may appear in CA,F1 and CA,M . Also

a change in the feed storage source can cause sustained disturbance. These types of the

process disturbances could be either known or unknown.

Unit prices of the feedstock, wF1 & wM ; and the product, wB; utility and processing costs,

wU1 & wU2 could be considered as economic disturbances. These types of disturbances are

assumed to be known at least for the near future. These economic disturbances could also

exist in the forms of sustained and short-term pulses. In this study, it is assumed that the

economic disturbances predictions are fixed in a short- and long term future.

Loeblein and Perkins [1998] considered feedstock temperatures, TF1 & TM ; heat transfer

coefficients, Uai; and side reaction kinetic rate constant, k0,II , as uncertain process param-

eters. However, in our study of the single-layer and two-layer formulation performance

comparison, it is assumed that the exact values of these model parameters are known.

The uncertainty in these parameters could be considered to study uncertainty effects in

the performance evaluation of the single-layer and two-layer methods. It is clear that the

uncertainty in the above mentioned parameters could be treated as sustained unknown dis-

turbances which start from the beginning of the simulation time. Table (4.2) represents
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a summary of unknown process disturbances which are considered in the different pro-

cess model parameters. Moreover, these disturbance scenarios possess various magnitudes,

durations, and directions.

Table 4.2: Selected unknown process disturbance scenarios

Duration Source Direction Magnitude

Short-term Coolant flow rate Positive pulse 25 %

Short-term Coolant flow rate Negative pulse 25 %

Short-term Fresh feed concentration Negative pulse 95 %

Sustained Coolant flow rate Positive pulse 25 %

4.1.4 Economic Objective

The objective of the optimal process operation is the maximization of the net profit. The

net profit rate for this process is defined as the difference between the product value and

the costs for raw material and utilities. Nominal values of the cost coefficients are reported

in table (4.3), and the economic objective function has the following form:

Φeco = wB

(
V1CB,1 + V2CB,2

)∣∣∣
t=tf
− wB

(
V1CB,1 + V2CB,2

)∣∣∣
t=ti

+

tf∫
ti

(
wBQ2CB,2 − wU1qcool,1

− wU2qcool,2 − wF1QF1 − wMQM
)
dt.

(4.15)

where the final time is defined in terms of economic optimization horizon and update time

(tf = ti + NeTe). The first term in equation (4.15) shows the difference between final and

initial asset value of the product B inside the reactors. The second term of the economic

objective function represents the revenue of the product B in the outlet flow of the second

reactor. The product asset value and revenue should be maximized which means that a
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lower amount of raw material would be wasted in the form of unreacted and undesired

components in the outlet flow of the process. The remaining terms are the cost of cooling

rate in the utility system of the first and second reactors and the cost of inlet raw material

flows. The total utility and raw material cost should be minimized to improve the net profit.

It is assumed that the measurements of the variables are available for the calculation of the

objective function. It should be remarked that in some cases unknown disturbances appear

explicitly in the objective function and there is no alternative form for the calculation of

objective function. Therefore, unknown disturbance must be estimated for the calculation

of the economic objective function (See Ochoa et al. [2010]). An unknown disturbance

effect which is in the form of a linear combination with the available information in the

objective function, has no effect to the solution of the economic optimization problem.

Thus, disturbance estimation is not required for this special form of the objective function

(See Amrit et al. [2013]).

Table 4.3: Nominal values of the cost coefficients

Variables Values

Nominal unit prices wB = 10.0 (£/kmol)

wU1 = 0.01 wU2 = 1.0 (£/(m3K))

wF1 = 0.1 wM = 0.1 (£/m3)

The final condition in the economic objective function of equation (4.15) means that it is

also desired to maximize product B concentration inside the reactors at the end of each

dynamic optimization horizon in the RTO problem. This term is considered in the objective

function due to the fact that reaching the end of the horizon in each RTO step does not mean

the process operation is terminated. This final condition could prevent large input actions

at the end of economic optimization horizon for the continuous time processes. Therefore,

this final term is needed to keep the product concentration in its highest possible value

for the next RTO steps. The optimal steady state process condition with respect to the

economic objective function and operating constraints is reported in Loeblein and Perkins
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[1998] for the set of nominal model parameters and the cost coefficients in tables (4.1) and

(4.3). The nominal operating conditions are such that the first reactor should work at the

maximum temperature and the second reactor should work under the maximum cooling

for the economic optimal operation. Therefore, the maximum acceptable temperature in

the first reactor, T1 = 350 K and the maximum effective cooling water outlet temperature

of the second reactor, Tc2out = 300 K are active constraints. Thus, plotting the dynamic

behavior of these two state variables could provide important insight in our comparison

study.

Nevertheless, there is no guarantee that regulating the system at these active constraints

could necessarily result an optimal economic performance in the presence of the unknown

disturbance scenarios in this particular example. There are the following possibilities which

cause a deterioration in performance by the active constraint regulation method:

1. The active constraints might not be reachable predefined setpoints due to the limitations

on the manipulating input variables in the presence of unknown short-term and/ or

sustained disturbances and the model uncertainty.

2. In the presence of the unknown process disturbances and the model uncertainty regulating

the system at the fixed optimal output setpoints would demand for different manipulating

variables, QF1 & QM . Amrit et al. [2013] assume that there is an a-priori known optimal

steady-state setpoint in their case study problem. They showed that economic optimizing

approaches with a pure economic, regulatory, and hybrid objective function could result

different setpoint tracking, constraint violations, and economic performance. While, the

fixed a-priori known setpoint may not be true optimal value in the presence of unknown

disturbances and model uncertainty.

3. Optimal process operation on the boundary of the admissible operating region could

potentially increase the possibility of constraint violations in the presence of the unknown

disturbances and uncertainties. This could be a serious issue if it happens for the safety

constraints. Tosukhowong et al. [2004] showed that steady state RTO (SS-RTO) could

cause constraint violation in the operating condition transition and in the presence of
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unknown disturbances and model parameter changes. Also they could show that using

the steady state model in the RTO level would result lower economic improvement in

comparison with the DRTO methods. As opposed to the SS-RTO, the DRTO methods

use a dynamic process model could enable them to predict the dynamic behavior of the

output in addition to the steady state condition. This capability could moderate the

undesired constraint violation effects.

Considering the above explanation on the possible issues of using regulatory controller and

SS-RTO to account for the unknown disturbance effects on the economic and stabilization

performance of optimal process operation, this case study focuses on the performance com-

parison of the EMPC formulation with the two-layer DRTO structures which are mentioned

in the sections (3.1), (3.2) and (3.3) of the previous chapter.

Implementation results for the EMPC, OL-DRTO-MPC and CL-DRTO-MPC formulations

in the presence of the unknown disturbance scenarios of table (4.2) are discussed in the next

section.

4.2 Results and Discussion

EMPC, OL-DRTO-MPC and CL-DRTO-MPC approaches are implemented in the presence

of the chosen unknown disturbance scenarios of table (4.2). In all of the scenarios a pulse

change occurs at t = 30s. The pulse width of 30s and/ or 90s is considered which cor-

responds to the duration of the short-term and sustained disturbance cases. The optimal

profit, average run time and constraint violations that are discussed in the previous chap-

ter, are reported for each scenario. The resulting trends of changes and dynamic behavior

of the outputs and their corresponding input actions are depicted and discussed for each

formulation. In the performance comparison section, the comparison criteria are tabulated

and discussed according to the available results in the literature and the expectations for

each disturbance scenario.
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4.2.1 Single-layer EMPC Implementation

The EMPC formulation of equation (3.1) is used for the optimal operation of the process

with the design parameters of table (4.4). According to the guidelines of section (3.4) in

the previous chapter, a small update time of Te = 5s is chosen to perform the economic

optimization and the regulation tasks in the EMPC formulation. Also, a larger update time

period of Te = 30s is chosen using the design guidelines of the DRTO layer update time

in the dual-layer method in section (3.4) to consider the real-time economic optimization

task and to show the necessity of the regulatory control layer for the slower update fre-

quency. In the case of the larger update time, it is expected to observe a higher constraint

violation for some of the chosen disturbance scenarios. However, the economic performance

improvement may not be diminished significantly by using a slower EMPC update frequency

(Tosukhowong et al. [2004]).

Table 4.4: EMPC design parameters and the associated NLP size and iteration steps for

tf = 180s

Te(s) Ne NNLP NIter

5 12 24 36

30 2 4 6

An economic optimization horizon length of he = 60s is selected. The horizon size (Ne),

NLP problem size (NNLP ) for each EMPC iteration step and total number of EMPC iter-

ation steps NIter in the simulation time span are determined, considering the length of the

simulation time interval, the two update time cases, and the number of manipulated inputs

(QF1 and QM ). The Ne, NNLP and NIter are reported in table (4.4). These EMPC problem

specifications are common for all of the unknown disturbance scenarios. The NNLP and

NIter could provide an insight for the expected magnitude of the average solution time of

each formulation comparing to the other single- and two-layer formulations. The interior-

point algorithm in MATLAB fmincon solver is used to solve the resulting NLP problems in

both of the single- and two-layer formulations. This method has a polynomial computational
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complexity that shows the solution run-time increases with an increase in the problem size

NNLP (Ye and Tse [1989] and Papadimitriou [2003]). Therefore, a smaller ART is expected

for the smaller NNLP . Also fewer EMPC iteration steps (NIter) are required to cover a

certain simulation time span.

Simulation results of figures 4.2-4.5 show dynamic behavior of the concentration and tem-

perature in the process and the optimal inputs for the chosen disturbance scenarios for the

smaller update time. Figures 4.6-4.9 show similar results for the larger update time. The

trends of changes, dynamic behavior and the performance of the EMPC are discussed in

the performance comparison of section 4.2.4 in the current chapter.
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Figure 4.2: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 5s & −25% short-term pulse disturbance in Qc,1). The output and input

variables ( ) and the output constraints and optimal steady-state inputs ( ).
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Figure 4.3: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 5s & +25% short-term pulse disturbance in Qc,1). The output and input

variables ( ) and the output constraints and optimal steady-state inputs ( ).

4.2.2 Two-layer OL-DRTO-MPC Implementation

The cascade structure of the economic optimization layer and the MPC control layer, which

is described in chapter 3, is implemented with the design and tuning parameters of table

(4.5). The economic optimization layer update time is equal to the larger update time

of the EMPC and the MPC layer update time is equal to that of the smaller update

time in the EMPC implementations. As explained in the formulation and design of the

real-time optimization in the previous chapter, the chosen update time for the open-loop

two-layer approach would help to conduct a fair comparison of the economic improvement

and the regulation performance in the single- and two-layer approaches. The MPC horizon
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Figure 4.4: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 5s & +25% sustained pulse disturbance in Qc,1). The output and input

variables ( ) and the output constraints and optimal steady-state inputs ( ).

is hc = 30s which is equal to the length of the upper layer update interval. This horizon

length leads to the QP problem size of NQP = 12. The NLP and the QP problem size and

the number of their required iteration steps for the entire simulation time are determined

(see table (4.5)) with the same procedure that is used for the previous section. These values

could be helpful to justify the computational performance results for the OL-DRTO-MPC

formulation. The output constraints in the MPC layer are implemented in the form of the

soft constraint formulation to avoid an infeasible QP problem. In table (4.5) wc = 106 is the

tuning weight for the soft constraint implementation of the output variables in the MPC

control layer.

Figures 4.10-4.13 show the simulation results for the chosen disturbance scenarios. Trends
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Figure 4.5: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 5s & −95% short-term pulse disturbance in CA,F1 and CA,M ). The

output and input variables ( ) and the output constraints and optimal steady-state

inputs ( ).

Table 4.5: OL-DRTO-MPC design parameters and associated NLP & QP sizes and

number of their iteration steps for tf = 180s

Automation level Parameters Problem sizes & iteration steps

OL-DRTO Te = 30s Ne = 2 NNLP = 4 NIter = 6

MPC

Tc = 5s Nc = 6

NQP = 12 NIter = 36Q = I2×2 Γ = 02×2

S = 0.01I2×2 wc = 106
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Figure 4.6: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 30s & −25% short-term pulse disturbance in Qc,1). The output and

input variables ( ) and the output constraints and optimal steady-state inputs ( ).

of the changes and dynamic behavior of the outputs and the performance of the OL-DRTO-

MPC are discussed in the performance comparison of section 4.2.4 in this chapter.

4.2.3 Two-layer CL-DRTO-MPC Implementation

The CL-DRTO formulation of figure 3.2 is implemented in the economic layer of the DRTO-

MPC cascade structure. The design and tuning parameters are reported in table (4.6) which

are similar to those of the OL-DRTO-MPC formulation.
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Figure 4.7: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 30s & +25% short-term pulse disturbance in Qc,1). The output and

input variables ( ) and the output constraints and optimal steady-state inputs ( ).

Due to the multilevel optimization problem structure of the economic layer, the number

of the economic layer iterations and the size of the optimization problem does not remain

the same as that of the open-loop formulation. These values are reported in table (4.6) for

the primary economic optimization problem and the MPC subproblems in the CL-DRTO

optimization layer. Because of the sequential structure of the CL-DRTO formulation, the

total number of the MPC subproblem solution depends on the number of function evaluation

of the optimization solver (NFE) for the primary optimization problem. The NFE is not

exactly known before solving CL-DRTO in each update time. However, a reasonable number

of the NFE less than the default maximum function evaluation could provide an estimate

of the expected order of the increase in the solution time. It should pointed that the MPC
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Figure 4.8: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 5s & +25% sustained pulse disturbance in Qc,1). The output and input

variables ( ) and the output constraints and optimal steady-state inputs ( ).

subproblems in each CL-DRTO iteration step of the economic optimization layer, are solved

to cover the entire economic optimization horizon. As the MPC update time Tc = 5s and

the economic optimization horizon he = 60s, 12 consecutive MPC subproblems fit into

the economic optimization time interval. Thus, the number of required MPC subproblem

solution in each primary optimization problem of the CL-DRTO step is 12 times the number

of function evaluations. There are 6 CL-DRTO step for the entire simulation time (tf =

180s). Therefore, the total number of required MPC subproblem solution is the summation

of the number of MPC subproblem solutions for all of the CL-DRTO steps.

Figures 4.14-4.17 show the simulation results of the CL-DRTO-MPC formulation for the

chosen disturbance scenarios. Trends of the changes and dynamic behavior of the out-
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Figure 4.9: Dynamic behavior of the in-series CSTRs for the EMPC optimal process

operation ( Te = 5s & −95% short-term pulse disturbance in CA,F1 and CA,M ). The

output and input variables ( ) and the output constraints and optimal steady-state

inputs ( ).

puts and the performance of the closed-loop formulation are discussed in the performance

comparison of the next section.

4.2.4 Performance Comparison

In this section, the resulting economic objective, average run time and cumulative constraint

violation of the outputs are reported in tables (4.7, 4.8, 4.9 & 4.10) for the disturbance

scenarios. The performance results of the single- and two-layer formulations are discussed

for each disturbance scenario separately.
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Figure 4.10: Dynamic behavior of the in-series CSTRs for the OL-DRTO-MPC optimal

process operation ( −25% short-term pulse disturbance in Qc,1). The output and input

variables ( ), optimal input-output reference signals ( ), and the output constraints

and optimal steady-state inputs ( ).
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Figure 4.11: Dynamic behavior of the in-series CSTRs for the OL-DRTO-MPC optimal

process operation (+25% short-term pulse disturbance in Qc,1). The output and input

variables ( ), optimal input-output reference signals ( ), and the output constraints

and optimal steady-state inputs ( ).
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Figure 4.12: Dynamic behavior of the in-series CSTRs for the OL-DRTO-MPC optimal

process operation (+25% sustained pulse disturbance in Qc,1). The output and input

variables ( ), optimal input-output reference signals ( ), and the output constraints

and optimal steady-state inputs ( ).
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Figure 4.13: Dynamic behavior of the in-series CSTRs for the OL-DRTO-MPC optimal

process operation (−95% short-term pulse disturbance in CA,F1 and CA,M ). The output

and input variables ( ), optimal input-output reference signals ( ), and the output

constraints and optimal steady-state inputs ( ).
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Figure 4.14: Dynamic behavior of the in-series CSTRs for the CL-DRTO-MPC optimal

process operation ( −25% short-term pulse disturbance in Qc,1). The output and input

variables ( ), optimal input-output reference signals ( ), and the output constraints

and optimal steady-state inputs ( ).
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Figure 4.15: Dynamic behavior of the in-series CSTRs for the CL-DRTO-MPC optimal

process operation (+25% short-term pulse disturbance in Qc,1). The output and input

variables ( ), optimal input-output reference signals ( ), and the output constraints

and optimal steady-state inputs ( ).
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Figure 4.16: Dynamic behavior of the in-series CSTRs for the CL-DRTO-MPC optimal

process operation (+25% sustained pulse disturbance in Qc,1). The output and input

variables ( ), optimal input-output reference signals ( ), and the output constraints

and optimal steady-state inputs ( ).
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Figure 4.17: Dynamic behavior of the in-series CSTRs for the CL-DRTO-MPC optimal

process operation (−95% short-term pulse disturbance in CA,F1 and CA,M ). The output

and input variables ( ), optimal input-output reference signals ( ), and the output

constraints and optimal steady-state inputs ( ).
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Table 4.6: CL-DRTO-MPC design parameters and associated NLP-QP subproblems &

QP problem sizes and number of their iteration steps for tf = 180s

Automation level Parameters Problem sizes & iteration steps

CL-DRTO

Primary problem Te = 30s Ne = 2 NNLP = 4 NIter = 6

MPC

subproblems

Tc = 5s Nc = 6

NQP = 12 †NIter =
6∑
i=1

12N i
FEQ = I2×2 Γ = 02×2

S = 0.01I2×2

MPC

Tc = 5s Nc = 6

NQP = 12 NIter = 36Q = I2×2 Γ = 02×2

S = 0.01I2×2 wc = 106

† N i
FE denotes for the number of function evaluation that is required to solve the primary NLP in ith

CL-DRTO iteration step.

Negative short-term disturbance in Qc1

A sudden pulse decrease in the coolant flow rate of the first CSTR reactor reduces the cool-

ing effect and consequently causes an increase in the temperature of the first reactor and

the temperature of the coolant outlet stream in the second CSTR reactor. This negative

short-term pulse is used to simulate an undesired condition in which an unknown distur-

bance causes the output signals to escape the admissible operating region. Therefore, it

is expected to observe a feedback regulation function in the EMPC similar to that of the

MPC layer in the two-layer methods (Bartusiak [2007]) to counter this undesired effect of

the disturbance. Moreover, an increase in the CSTR and/ or coolant outlet temperature

indicates a higher rate of the exothermic reactions. Also, an increase in the reactant con-

centration in the reactors could increase the rate of the desired reaction and consequently

improve the economic performance in this case study. However, the increase of these out-

put variables in the current disturbance scenario leads to a significant safety and operation

constraint violations for the two-layer methods and the EMPC with the slower update fre-
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quency. Thus, the higher constraint violation causes a higher economic performance in this

scenario. In this case, it is only intended to show the constraint violation effect for the

economic optimization problem with the larger update time in the presence of an unknown

disturbance scenario. Hence, the economic performance comparison is not considered for

this disturbance scenario. Figures 4.2, 4.6, 4.10 and 4.14 show different regulation functions

in terms of the maximum violation of the safety and operating temperature constraint in

the CSTRs. In figure 4.2, the EMPC with the smaller update time (Te = 5s) reacts to the

utility resource limitation of the first CSTR by decreasing the inlet feed flow rate (QF1)

and increasing the second manipulated variable (QM ). Safety constraint and operation con-

straint violations are observed in T1 and Tc2out subplots due to the unknown disturbance

effect. Similar patterns for the manipulated inputs and output temperature changes are

observable in figure 4.6. However, the maximum output constraint violation and COCVs

for the larger economic update time Te = 30s are larger than those of the EMPC with

the smaller update time. The first manipulated input (QF1) in the results of the open-

and closed-loop dual layer methods in figures 4.10 and 4.14 gradually changes to decrease

the constraint violations. A lower maximum constraint violation is also observed for the

dual-layer method comparing to that of the EMPC with the larger update time. Table

(4.7) shows the quantitative metric for each constraint violation of the single- and two-layer

formulations. The qualitative regulation performance comparison from the graphs and the

tabulated results show that an EMPC formulation with a larger update time could cause a

severe constraint violation. This issue was predicted by Ochoa et al. [2010] for the larger

updating time gap in the single-layer method which was referred to as the dead period.

Thus, this results signify the necessity of the MPC control layer for the larger economic

update time.

Amrit et al. [2013] showed that the regulation performance of the EMPC and MPC controller

are different. This is due to the facts that regulatory and economic operation mechanisms

of EMPC and MPC use different objective functions and may act on the system in opposite

directions. Therefore, the EMPC automatically compromises between the required regula-

tory efforts and economic optimal operation to maintain the system within the admissible

operating region and leads to an improved economic performance.
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Table 4.7: Performance comparison in the presence of 25% short-term negative pulse

disturbance in Qc,1.

Method Φeco(£) ART (s) COCVT1(Ks) COCVTc2out(Ks)

EMPC (Te = 5) 15507.91 380.19 3.99 0.19

EMPC (Te = 10) 15507.53 36.90 12.84 0.99

EMPC (Te = 20) 15527.70 7.19 34.11 3.88

EMPC (Te = 30) -* 2.18 55.75 7.19

OL-DRTO-MPC 15519.27 3.85 24.31 1.53

CL-DRTO-MPC 15522.18 7.37 24.29 1.53

Jamaludin and Swartz [2015] show that the CL-DRTO-MPC responds to the change faster

than the OL-DRTO-MPC. This feature could improve the economic performance. Ja-

maludin and Swartz [2016] also show that CL-DRTO could provide a constraint back-off

mechanism to avoid constraint violation. However, the constraint violation results of the

CL-DRTO in table 4.7 do not show any improvement over that of the OL-DRTO-MPC

method. This indicates that the MPC controller-process model interaction does not have

a significant effect on the output prediction. Figure 4.19 shows that the open-loop and

closed-loop temperature output prediction for the current disturbance scenario are slightly

different. However, this difference is negligible comparing to the different output prediction

results in the presence of the third disturbance scenario (figure 4.20). The quantitative

results of table 4.11 confirms that the prediction errors for the Qc,1 disturbance scenarios

have the same order of magnitude, whereas the prediction error for the disturbance in feed

concentration has higher order of magnitude in comparison to the Qc,1 disturbance scenar-

ios. Thus, the effect of embedding closed-loop model in the DRTO layer is only observed for

the disturbance in the feed concentration and the performance of the CL-DRTO-MPC does

not considerably change in comparison to that of the OL-DRTO-MPC formulation in the

presence of the Qc,1 disturbance scenarios. This effect would be explained in more details
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in the next section.

The average CPU run times for a time interval which is equal to Te = 30s are reported

in table 4.7 for each method. The ART for the EMPC method with the smaller update

time is two orders of magnitude higher than that of the other methods. The ART of the

EMPC shows that considering the update time Te = 5 and the highest average solution for

the EMPC updates, the real-time application of the single-layer EMPC method using the

existing formulation may cause difficulty. Also a large computational delay could reduce the

economic performance and stability of the process (Yang and Biegler [2013]). However, the

advanced-step and advanced-multi-step methods could mitigate the computational delay

effects especially when slowing down the sampling rate is a less suitable option, as it will

degrade the performance of the EMPC (Zavala and Biegler [2009a] and Yang and Biegler

[2013]).

There is a possibility to reduce the dynamic optimization problem size by increasing the

economic optimization update time. Accordingly, the resulting NLP problem solution time

could be reasonably reduced for the real-time application. This possibility leads to the case

study problems for the EMPC implementation with intermediate update times Te = 10

and 20s. The ART results in table 4.7 shows the reduction in the solution time. However,

comparing the COCV results of table 4.7 for the EMPC formulations with different update

time verifies that the constraint violation could increase as a result of the increase in the

economic update time. The higher COCV results confirm the prediction of Ochoa et al.

[2010] that the single-layer method with a larger update gaps could be more susceptible to

the constraint violation effects of the unknown disturbances.

It is assumed that the economic performance for an average safety temperature constraint

violation higher than 0.2 and an average product quality constraint violation higher than

0.01 are not acceptable. For the current disturbance scenario in table 4.7, the COCV results

of the EMPC with the update times Te = 20, and 30s are higher than those of the two-layer

methods. Also, the higher COCV of the EMPC with Te = 30s could breach the tolerable

constraint violation limits and consequently cause unacceptable economic performance.
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The ARTs for the two-layer methods and the EMPC with larger update time have the same

order of magnitude. The optimization problem sizes and number of required NLP and QP

optimization problem in a certain time interval of Te = 30s explain why the magnitude of

the ART in one method is higher than that of the others. The effects of these factors are

mentioned in the previous section for each formulation. The ART for the EMPC with larger

update time which is lower than the ART for the OL- and CL-DRTO-MPC formulation

is consistent with the expected effects. For example, in the OL-DRTO-MPC formulation

several QP problem must be solved in addition to the NLP problem, while there is no QP

problem in the EMPC method. Also, in the closed-loop formulation the solution time of the

QP subproblems in the multi-level optimization problem of the CL-DRTO layer contributes

to the higher ART result in comparison to that of the open-loop formulation.

Positive short-term disturbance in Qc1

In the simulation results of figures 4.3, 4.7, 4.11 and 4.15 a sudden pulse increase in the

coolant flow rate of the first CSTR reactor causes a temporary over-cooling effect. The

over-cooling effect causes a temperature drop in the first reactor and the coolant outlet

stream in the second CSTR reactor. As a result the pulse increase in the utility resource

flow rate provides an extra raw material processing capacity. This extra processing capac-

ity could be exploited by increasing the reactor temperatures in the allowable temperature

range. Therefore, there is an opportunity for the use of the real-time optimization methods

to increase the net profit. The economic performance results of table 4.8 shows that the

EMPC method with the smallest update time achieves slightly higher profit in comparison

to the two-layer methods. The economic performance superiority of the EMPC is because

of the smaller economic update time in the feedback structure which results a prompt ad-

justment of the input feed flow rate to increase the profit. This result confirms the economic

performance comparison findings in the work of Ochoa et al. [2010] which states that the

single-layer formulation reacts to the changes of the unknown disturbance faster than the

two-layer formulation. However, the difference between the performance improvement of the

single-layer and two-layer formulation is negligible. Therefore, a faster update time is not
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necessary for the economic performance improvement. The open- and closed-loop two-layer

formulations lead to an equal economic performance. This equal economic performance

represents a situation similar to the previous scenario in which, the CL-DRTO-MPC may

not enhance the economic performance comparing to the OL-DRTO-MPC in the presence

of the unknown disturbance. The effect of unknown disturbance is explained for the COCV

result comparison of the open- and closed-loop formulations in the next paragraph.

Table 4.8: Performance comparison in the presence of 25% short-term positive pulse

disturbance in Qc,1.

Method Φeco(£) ART (s) COCVT1(Ks) COCVTc2out(Ks)

EMPC (Te = 5) 15620.35 321.22 2.59 0.13

EMPC (Te = 10) 15619.98 41.16 8.13 0.66

EMPC (Te = 20) 15603.27 5.91 21.33 2.44

EMPC (Te = 30) 15619.03 2.75 34.51 4.47

OL-DRTO-MPC 15599.96 2.88 4.31 0.00

CL-DRTO-MPC 15600.12 8.88 4.31 0.00

The simulation results of figure 4.3, shows the limited time T1 safety constraint violation

for the EMPC with the smaller update time, while a more sustained constraint violation is

observed for T1 in figure 4.7 as a result of larger economic update time. Also the maximum

T1 constraint violation is higher than that of the EMPC with the smaller update time. A

similar constraint violation pattern is observed for Tc2out in figures 4.3 and 4.7. T1 constraint

violation results for dual-layer formulations in figures 4.11 and 4.15 are less than that of

the EMPC with the larger update time. Also, the manipulated input QF1 in the results of

dual-layer formulations in figures 4.11 and 4.15 reacts earlier than that of the EMPC with

the larger update time.

The EMPC feedback structure requires at least one economic update time to capture the
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unknown disturbance effect using the feedback approach for the model parameter updates.

The EMPC with the larger update time shows a sluggish regulation function due to the

bigger feedback update delay. As a result of the larger update time a severe constraint

violation occurs for the output temperatures in the EMPC formulation with Te = 30ss

(see table 4.8 for COCV results). Comparing to the EMPC with a large update time,

the MPC controller in the two-layer formulations could reduce the undesired constraint

violation. However, in the two-layer methods the COCV is slightly higher than that of the

EMPC with smallest update time. These slightly different COCVs could be the result of

the fact that the MPC control layer in the dual-layer methods uses a linearized model of

the process. While, the EMPC with an update time equal to that of the MPC control layer

uses a nonlinear model of the process.

The CL-DRTO-MPC formulation could recognize the future model mismatch between the

nonlinear model of the economic layer and linear MPC predictions and correct it using the

MPC model bias update based on the nonlinear model. Therefore, closed-loop formulation

could adjust the setpoint trajectories in such a way that the closed-loop predictions will

return the best economics (Jamaludin and Swartz [2016]). A detailed investigation of the

OL- and CL-DRTO MPC performances in the next section would reveal that there is no

considerable difference between the open- and closed-loop model prediction in the presence

of the current disturbance scenario. Thus, the closed-loop variant of the two-layer method,

which could moderate constraint violation with a DRTO-MPC model discrepancy root

cause, does not have any advantages over the OL-DRTO-MPC formulation (see table4.8).

In this case, the unknown nature of disturbance might be the only dominant reason for the

constraint violation for both of the dual-layer methods.

The average CPU run times for a time interval which is equal to Te = 30s are reported in

table 4.8 for each method. The trend of change in the ART results from one method to the

other methods is similar to the ART for the previous unknown disturbance scenario. Like-

wise the ART results of the previous section for the EMPC with the smallest update time,

the large computational delay may impair the economic performance and the regulatory

function in the process operation. The observation of ART results for the larger Te shows
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the reduction in the computational load comes at a cost of higher constraint violations. It is

pointed that the EMPC with the largest update time Te = 30 results the highest constraint

violation. Also, the increase in the update time leads to a slightly lower profit in the cases

that the COCV is in the reasonable range.

The ARTs for the dual-layer methods and the EMPC with the larger update times (Te = 20

and 30s) have the same order of magnitude. The same reasoning stands for the explana-

tion of the difference in the order of magnitude of the ART in the single- and dual-layer

formulations.

Positive sustained disturbance in Qc1

The unknown sustained pulse increase in the utility flow rate provides an extra raw material

processing capacity for the same reason that is discussed in the previous comparison for

the short-term disturbance scenario. The unknown sustained increase in the coolant flow

rate of the first reactor means that the extra coolant utility resource is available over the

longer period of the process operation time comparing to the improvement capacity of the

short-term version of the disturbance. Therefore, for the sustained disturbance scenario, it

is expected to achieve a higher economic performance improvement in comparison to the

previous disturbance scenario due to the longer duration of the unknown pulse disturbance.

A comparison between the values of Φeco for each method in tables 4.8 and 4.9 shows different

effects of the sustained and short-term disturbance changes on the economic performances.

Despite the difference between the economic performance of each method in the presence

of the short-term and sustained disturbances, table 4.9 shows that the order of the higher

to lower economic performance is similar to that of the previous disturbance scenario. The

economic performance of the EMPC with the smallest update time is slightly higher than

that of the CL-DRTO-MPC and OL-DRTO-MPC. The economic performance results of

table 4.9 shows that the economic performance deterioration due to the increase in the

economic update time is negligible in the EMPC methods. However a smaller COCV could

be achieved because of the smaller economic update time. This results are consistent with
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the comparison results of the previous disturbance scenario.

Table 4.9: Performance comparison in the presence of 25% sustained positive pulse

disturbance in Qc,1.

Method Φeco(£) ART (s) COCVT1(Ks) COCVTc2out(Ks)

EMPC (Te = 5) 15708.77 273.67 2.59 0.13

EMPC (Te = 10) 15708.42 38.04 8.13 0.66

EMPC (Te = 20) 15691.52 9.22 21.44 2.54

EMPC (Te = 30) 15707.33 2.21 34.61 4.63

OL-DRTO-MPC 15652.00 2.71 4.67 0.00

CL-DRTO-MPC 15652.14 8.75 4.68 0.00

The COCV results of table 4.9 are similar to the constraint violation of the short-term

disturbance scenario. The same interpretations is still valid in the reasoning of the different

constraint violations criteria. The difference in the COCV of the OL- and CL-DRTO is

discussed in the next section.

Also, a similar ART pattern can be seen for the sustained disturbance scenario for the

application of the single- and dual-layer methods. However, the average CPU time for the

sustained disturbance is slightly less than that of the short-term disturbance scenario for

each method. This results are also obtained by Amrit et al. [2013] for the lower frequency

of unknown disturbance changes. The lower ART results are obtained because of a warm

start initialization of the interior-point method. The warm start initialization is constructed

from the solution of the previous NLP problems.
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Negative short-term disturbance in CA,F1 and CA,M

Since the inlet feed stream is shared by the two CSTRs in this case study problem, a

disturbance change appears in both of the inlet feed concentrations. A sudden decrease

in the feed concentration leads to a lower reactant concentration in the reactors. The

lower concentration of the reactants decreases the conversion rate of A in equations 4.2

for both of the reactors. The lower exothermic reaction rates produce less heat. As a

result, considering the effect of reaction rates in the heat balance equations 4.3, reactor

temperatures should drop which is similar to the effect of the increase in the utility flow

rate of the first reactor. The reduced temperature effect in turn decreases the rate of the

conversion of the reactant A. According to the Arrhenius type temperature dependency

kj(Ti) = k0,jexp(− Ej

RTi
), rate of the desired reaction A −→ B decreases faster than that

of the undesired reaction B −→ C because of the higher activation energy (see table 4.1).

Therefore, an increase in the volumetric feed flow rate, which is the manipulated variable,

could accelerate the exothermic reaction to oppose the temperature drop in the reactors.

However, this change in the feed concentration may not necessarily increase the total raw

material (i.e. total molar feed flow of A) processing capacity. Figure 4.5 shows the changes

in the manipulated inputs QF1 and QM in response to the disturbance for the EMPC with

the smaller update time. In response to the unknown disturbance effects, the lower bound

constraint for the first input (QF1) and the total feed flow rate constraint of equation 4.12

are active constraints for a certain simulation time interval. In this case study problem, the

online economic optimizer decides to decrease the volumetric inlet feed flow rate of the first

CSTR to its minimum value and injects the feed with the highest available flow rate directly

into the second CSTR. The EMPC controller uses the saturated input changes to resist the

rapid decrease in the output temperature T1 and Tc2out. The general trend of the input

responses could be explained as an optimal allocation of the available flow rate between the

two possible feed inlet positions to avoid over-cooling of the raw material in the first reactor

before feeding it to the second CSTR. The over-cooling could have a negative effect on the

production rate of the desired product B in the second CSTR and the cooling utility cost

of the first CSTR. However, it may not be easy to intuitively predict the behavior of each



73

individual input response. Also, a quality constraint violation is observed for the reactant

concentration in the second reactor CA,2 which is regulated using the manipulated inputs

QF1 and QM . There is a similar interpretation of the input changes in figure 4.9 for the

EMPC with the larger update time. However, the manipulated input actions are delayed

comparing to the QF1 and QM input changes in figure 4.5. As a result, the EMPC with the

larger update time shows a sluggish regulation function due to the delayed input responses.

This sluggish regulation function causes a large output temperature (Tc2out) constraint

violation for the EMPC with the larger update time (see figure 4.9). The simulation results

of the open- and closed-loop DRTO formulations in figures 4.13 and 4.17 show a slightly

different input change strategy for the first input action (QF1). In these figures QF1 is

initially increased before decreasing to the minimum inlet feed flow rate. The maximum

constraint violation for the output temperature Tc2out in figure 4.13 is smaller than that of

the EMPC with the larger update time in figure 4.9. Also, the COCV of the Tc2out output

in the closed-loop formulation results of figure 4.17 is smaller than that of the open-loop

formulation results in figure 4.13.

The economic performance results of table 4.10 show that the EMPC method with a small-

est update time has a higher profit comparing to that of the closed-loop two-layer formu-

lation. Table 4.10 also shows that the economic performance of the EMPC methods with

the larger update times and the open-loop two-layer formulation are not credible because

the constraint violation of the product specification and safety temperature of the first re-

actor are significantly higher than the tolerable limits, which are mentioned in the result

comparison of the negative short-term disturbance scenario.

The COCV results of the EMPC formulation increase with the increase in the update time

due to the same reason which is interpreted for the previous disturbance scenarios. The

MPC control layer in the OL-DRTO-MPC method could successfully reduce the CA,2 quality

constraint violation in comparison to the EMPC with the larger update times. However, the

MPC regulation of the OL-DRTO-MPC method causes an inevitable safety temperature

constraint violation in the first CSTR reactor. Also, there is a discrepancy between the

COCV results of the dual-layer methods and the EMPC with the smaller update time
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Table 4.10: Performance comparison in the presence of 95% short-term negative pulse

disturbance in CA,F1 and CA,M

Method Φeco(£) ART (s) COCVT1(Ks) COCVTc2out(Ks) COCVCA,2
(kmols/m3)

EMPC (Te = 5) 13824.44 463.15 0.00 3.08 1.13

EMPC (Te = 10) -* 41.73 0.00 67.80 6.64

EMPC (Te = 20) -* 6.84 0.00 190.64 6.70

EMPC (Te = 30) -* 2.23 0.00 295.45 8.19

OL-DRTO-MPC -* 10.18 168.76 145.56 1.55

CL-DRTO-MPC 13054.45 19.77 0.00 132.62 1.33

(Te = 5s). Since the MPC controller in the 2-layer formulation has the same update time

as the EMPC method a similar COCV results are expected. It should be recognized that

the MPC controller in the 2-layer formulation uses a linear process model to perform the

regulation task whereas the EMPC formulation uses a nonlinear model of the process. It

is clear that the closed-loop formulation could mitigate discrepancy between the dynamic

models in the DRTO and MPC layers. A detailed observation of the Tc2out constraint

violation in figure 4.17 which occurs at t = 70s shows that the QM input to Tc2out output

process gain might be underestimated in the linear model of the MPC. As a result of the

underestimated gain, the MPC controller introduces a QM flow rate which is higher than

the required input action and consequently leads to the higher COCV, while the nonlinear

model in the EMPC with the smaller update time could provide a higher accuracy of the

output prediction. The QM input to Tc2out output process gains for the nonlinear and linear

model are κNonlinear = 50.66(Ks/m3) and κLinear = 37.78(Ks/m3). The input-output gain

for the linear model is smaller than that of the nonlinear model. This comparison confirms

that the use of linear model in the MPC controller of the 2-layer formulation causes a

larger COCV for the closed-loop dual layer method in comparison to that of the EMPC

formulation.
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Despite the fact that the economic performance of of the EMPC formulation with larger

update times and the open-loop two-layer method are not acceptable because of the severe

constraint violation, including the COCV results of these methods in table 4.10 is ben-

eficial to illustrate different mechanisms of the constraint violation and the advantage of

the closed-loop DRTO method over the open-loop DRTO and single-layer methods with

different update times. Unlike the COCV comparison results of the OL- and CL-DRTO-

MPC formulations for the previous disturbance scenarios, the closed-loop formulation of the

two-layer method results lower COCVs for the coolant temperature of the second reactor

and the product quality constraint in comparison to the open-loop formulation. Also, the

closed-loop formulation eliminates the COCV of the safety temperature constraint. The

elimination of COCV for T1 shows that the constraint violation arises from the huge dif-

ference in the open-loop and closed-loop model prediction of the DRTO layer due to the

interaction effects of the embedded MPC controllers and the process model. This difference

in the open-loop and closed-loop model prediction of the economic optimization layer is

investigated in the next section.

The ART results of table 4.10 shows that the ART of the EMPC for the smallest economic

update time is one order of magnitude higher than that of the CL-DRTO-MPC method

in the presence of current disturbance scenario. Despite the fact that the EMPC could

react faster to the large disturbance to improve the profit and maintain the process within

the admissible operating region, the high ART could cause difficulty due to the delay in

real-time implementation of the optimal inputs (Yang and Biegler [2013]). However, the

advanced-step and advanced-multi-step methods could mitigate the computational delay

effects especially when slowing down the sampling rate is a less suitable option, as it will

deteriorate the performance of the EMPC (Zavala and Biegler [2009a] and Yang and Biegler

[2013]).
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4.2.5 Effect of the Open- and Closed-loop Prediction on the Performance

of the Dual-layer Methods

The open-loop model of the process in the economic optimization layer cannot capture

the closed-loop interaction effects of the MPC control layer and the process model. These

interaction effects of the controller and process model are formed because of the controller

attempts to regulate the outputs to the setpoints. Depending on the disturbance magnitude

and the disturbance input to the temperature and concentration output relative gain, these

interactions could lead to a different output prediction. The open-loop and closed-loop

process model prediction strategies of figure 4.18, which are used in the real-time economic

optimization layer, are compared in this section. The comparison is carried out for a fixed

input-output set-point and different disturbance scenarios which are used in the performance

comparison of the single- and dual-layer methods.

Figure 4.18: Open-loop and closed-loop prediction models of the economic optimization.
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The open- and closed-loop prediction differences are quantified and reported in the form of

cumulative error in the predicted output variables over the economic optimization horizon.

For instance, figures 4.19 and 4.20 show the difference between the open- and closed-loop

predictions for the reactant concentrations, temperature of the first reactor and temperature

of coolant outlet in the second reactor for the first and fourth disturbance scenarios in table

4.2.

Figure 4.19: Closed- and open-loop predictions in the presence of first disturbance

scenario. The closed-loop input and state variables ( ), open-loop input-states ( ),

and the output constraints and nominal inputs of the open-loop system ( ).

Table 4.11 shows the integral of the prediction error of the open-loop method comparing

to the closed-loop prediction over the economic optimization horizon for the same order

of the disturbance scenarios in table 4.2. The results show that prediction errors in the

presence of disturbance in the coolant flow rate (scenarios 1, 2 and 4 in table 4.2) have
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Figure 4.20: Closed- and open-loop predictions in the presence of fourth disturbance

scenario. The closed-loop input and state variables ( ), open-loop input-states ( ),

and the output constraints and nominal inputs of the open-loop system ( ).

the same order of magnitude, whereas the prediction error of the open-loop model for the

disturbance change in the feed concentration has a higher order of magnitude. Therefore, a

significant difference in the performance is expected for the usage of closed-loop prediction

in the DRTO system for the third disturbance scenario.

The open-loop results comparison of figures 4.19 and 4.20 reveals that the third disturbance

scenario cause a larger deviation from the setpoint. Therefore, the MPC controller should

provide a larger input action to regulate the system. The steady-state input-output gain

for a step change in the disturbances could be calculated as a ratio of difference between the

initial and final steady state over the percentage of change in the disturbance parameter.

The steady state gains are shown in table 4.12. The disturbance to output gains for the
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Table 4.11: Cumulative open-loop prediction error for different disturbance scenarios.

Disturbance scenarios e2
T1

e2
Tc2out

e2
CA,2

+25% short-term Qc,1 4.652 0.3059 0.00009

−25% short-term Qc,1 11.95 0.8184 0.00024

−95% short-term CA,(F1&M) 2208 300.90 0.64020

+25% sustained Qc,1 8.670 0.5659 0.00016

change of the inlet feed concentration are significantly higher than that of the coolant flow

change. This comparison of the steady state gains confirms the reason for the significantly

different open- and closed-loop prediction in the presence of the large disturbance scenario.

Table 4.12: Steady state input-output gains for Qc,1 and CA,F1&CA,M disturbances.

Input-output gains Qc,1 disturbance CA,F1&CA,M disturbance

κTc2out (K/%) 0.07 0.50

κT1 (K/%) 0.01 0.17

κCA,F
(
kmol

m3%
) 2.20× 10−4 7.37× 10−4

4.2.6 Effect of the MPC Output Constraint on the Performance of CL-

DRTO Formulation

As mentioned in section(3.4.1), the inclusion of hard output constraint in MPC formulation

could result infeasible QP optimization problem in the presence of the unknown disturbances
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(Zafiriou and Marchal [1991]). This problem could happen when there is no available input

to move process output to the feasible region in the current MPC iteration step. A soft

constraint formulation is considered for the MPC control layer of the dual-layer formula-

tions to avoid infeasible QP optimization problem in the comparison study of the single-

and dual-layer methods. However, for the unknown disturbance change in the fresh feed

concentration, the EMPC formulation and the DRTO layer of the dual-layer methods result

infeasible problem in the first update time after the disturbance changes. The infeasiblity

occurs for the EMPC with the smallest update time and biggest update time at step 7, and

3 respectively. It also occurs for the OL- and CL-dual layer formulations at the third DRTO

iteration step. The NLP problems which result from the economic optimization problem

are solved using the fmincon MATLAB NLP solver with the interior point algorithm. When

the problem is infeasible, fmincon attempts to minimize the value of constraint violation

using the soft constraint formulation (MATLAB Optimization Toolbox [2014]).

In the original CL-DRTO-MPC formulation the output constraints are not considered in

the embedded MPC subproblems of the CL-DRTO layer. The inclusion of the hard out-

put constraints in the MPC subproblems of the closed-loop dual layer method adds more

disjunctions. In other words, the hard constraint inclusion could cause infeasible QP sub-

problems, because in the intermediate iterations for the solution of the primary optimization

problem, the optimization solver may attempt for the setpoint change scenarios which are

not feasible for some of the individual MPC subproblems. In the case of the infeasible QP

problem, the solution of previous iteration step for the MPC update time interval is used.

In order to show the effect of the output constraint inclusion in the embedded MPC sub-

problems of the CL-DRTO formulation, the same in-series CSTRs process and unknown

disturbance scenarios are used. The CL-DRTO-MPC design parameters in table 4.6 are

considered in the modified CL-DRTO formulation. The ARTs for the first to forth sce-

narios increase to 14.91s, 13.28s, 13.37s, and 42.21s respectively, compared to the ART

results of CL-DRTO formulation in tables 4.7, 4.8, 4.9, 4.10 . While the regulation and eco-

nomic performances are similar to the case that there is no output constraint in the MPC

subproblems, the computational effort increases which confirms that the QP subproblem
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results for some of the intermediate iterations are different in comparison to unconstrained

MPC formulation. The increase in the ARTs also shows that in the CL-DRTO formulation,

inclusion of the output constraints in the economic optimization layer is computationally

more efficient than inclusion of them in the MPC subproblems.

The inclusion of soft constraint formulation in the MPC subproblems of the closed-loop

dual layer formulation could potentially improve the regulation and economic performances

when there is no feasible solution for the economic optimization problem. However, for the

current case study problem, soft constraint inclusion only causes the increase in the average

solution time of the last disturbance scenario. In this case the ART increases to 34.01s for

the same reason which is discussed in the previous paragraph.

4.3 Chapter Summary

In this chapter the case study process, operating constraints and the optimization objective

function are introduced. Also, different unknown disturbance scenarios and the plan of

the comparison study for the chosen formulations are presented and discussed. In the re-

sults and discussion section design and tuning parameters are provided. Also, the methods

and assumption in the implementation steps of each formulation are mentioned. Moreover,

the expected computational results are qualitatively predicted for each method using the

optimization problem size and the number of the economic and control problem iteration

steps. The observations are reported for each disturbance scenario and the resulting eco-

nomic, regulation and run-time criteria are compared and justified regarding the existing

theories and previous results in the literature. The key points of this comparison study are

highlighted in the conclusion chapter.



Chapter 5

Second Case Study Problem

82
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5.1 Case study process: Linear MISO process model

In this chapter there is a brief description of the case study process which is followed by the

definition of the operational constraints, and the economic objective of the optimal process

operation. Also, the state space form of the model which is used in the MPC and real-time

economic optimization, is presented. We also addressed the importance of choosing the

case-study process, regarding the recycle effects in the linear systems and the extra degree

of freedom due to the non-square form of the system. A process dynamics transition scenario

in the product specification is considered for the performance comparison of the single- and

two-layer methods. The implementation results of the chosen methods are interpreted and

compared using the performance criteria.

5.1.1 Process description

A linear multi-input and single-output (MISO) process described as

y(s) =
1

750s2 + 65s+ 1
u1(s) +

1

400s2 + 40s+ 1
u2(s). (5.1)

The output y responds to the input u2 faster than u1, and the cost of input u2 is higher

than that of input u1. A rapid output transition could result higher revenue while it may

result a higher production cost because of a higher contribution of the expensive resource

u2. Therefore, there must be a compromise between a rapid transition and an economic

resource consumption. This case study problem is used by Jamaludin and Swartz [2015]

for the performance comparison of the CL-DRTO and OL-DRTO formulation which could

typically represent a linearized version of a chemical process. The linear nature of the model

could be useful to provide a clear understanding of the observed input actions which result

from different real-time operation strategies.

As mentioned in the introduction chapter, a process system with a material recycle might

have some of the characteristics of the potential processes in which two-layer methods
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Figure 5.1: A linear multi-input and single-output case study problem.

may outperform the single-layer approach. A high ratio of the recycle stream could be

considered in the design of the reaction-separation processes to maintain a low single-pass

conversion to provide a high selectivity of the desired product. However, a high recycle

to feed ratio generates two distinct time-scales for the transient behavior of the process

dynamics (Luyben et al. [1999]). Moreover, a process with recycle stream can exhibit a

severe steady-state snowball effect, which is a large variation in the process due to a small

change in the feed conditions. This effect is undesirable because of limited processing ca-

pacity of the units such as liquid levels and turn-down ratio (Luyben [1994]). A regulatory

controller could be necessary to prevent the large variations in the process. A sufficiently

small controller sample time must be considered to react on the undesired process changes

with both fast and slow time-scale. We believe that the transient effects of a system with

recycle is a key point to determine which one of the single-layer and/ or two-layer methods

could lead to a more efficient optimal process operation. For the study of the recycle effect

subsystem 1 of figure 5.1 is designed to a recycle system of the two linear first-order models

shown in figure 5.2.
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Figure 5.2: Simple open-loop process with recycle.

The equation describing the overall system is:

y(s)

u(s)
=

K(τRs+ 1)

ττRs2 + (τ + τR)s+ 1−KKR
. (5.2)

Tosukhowong [2006] states that for many linear plant model with the material recycles

stream, 0 < KKR < 1. Therefore the overall open-loop system has two negative real

eigenvalues which means the system is stable. Increasing the steady-state recycle gain KR,

increases the process gain (K/(1−KKR)) which could be interpreted as an increase in the

recycle to feed ratio. This change also increases the time constant of the second order system

( ττR
1−KKR

)(1/2). This means that one of the time constants must become larger. Therefore an

integrated plant with a material recycle displays a distinct slow and fast time-scale behavior.

This behavior could be observed in a form of a fast initial response to a step change followed

by a slow transient behavior. Baldea and Daoutidis [2007] propose a hierarchical controller

framework for the systems with time-scale multiplicity due to the presence of material

recycle streams. This approach might yield a superior computational, economic and control

performance of the hierarchical methods in comparison to the single-layer method which
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does not take advantage of the time-scale multiplicity in a system. Different process gain

and time constants are considered in section 5.7 which could reflect the effect of recycle gain

KR and time constant τR on the dynamic behavior of the case-study process. It is expected

to observe from the performance analysis of the single-layer and dual-layer methods for the

various process gain and time constants of the first subsystem that the two-layer methods

could be preferable for the processes with recycle system.

The availability of two manipulated input variables for the optimal operation of a single

output introduces an extra degree of freedom. In the linear case study of equation 5.1, the

process output (y) is a linear combination of the input effects. This may lead to a clear

understanding of the dynamic behavior of the system in response to the combination of

the input actions. Therefore, in addition to the analysis of the effects of the recycle gain

(KR) on the performance of single- and dual layer methods, we will discuss the economic

value of the manipulating inputs and address the condition that could possibly result better

performance for the closed-loop DRTO in comparison to the EMPC approach.

5.1.2 The economic objective and constraints

Development of this case study process is motivated by a linearized model for the product

grade transition problem. These types of problems are specifically used to conduct grade

transition according to a-priori known schedules in the polymer and bioprocess industries.

In the grade transition problem revenue is calculated only when the product quality is within

an acceptable range. This means, when the quality does not meet a desired specification,

it is not marketable. There is a demand only for the specific product grade that meets

the quality constraints. This on-off switching mechanism in the economic objective could

be approximated using a hyperbolic tangent function (Tousain [2002]). This continuous

approximation technique is depicted in figure 5.3. This figure shows a typical transition

from yinitial to ytarget in which R1 and R2 are the approximated switch functions of equation

5.3 to detect whether each point on the output trajectory is within the acceptable quality

range or not. In this continuous approximation of revenue as a function of y, the desired
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product quality has a tolerance of ±δytarget.

Figure 5.3: Continuous approximation of specification satisfaction using the hyperbolic

tangent function.

R1(y) =
1

2
tanh[γ(y − ytarget + δytarget)] +

1

2
≈


0, y < ytarget − δytarget

1, y > ytarget − δytarget
,

R2(y) =
1

2
tanh[γ(ytarget + δytarget − y)] +

1

2
≈


1, y < ytarget + δytarget

0, y > ytarget + δytarget
.

(5.3)

where γ is a tuning parameter used to define the steepness of the switching function. R1(y)

is responsible for the detection of minimum quality bound violation and R2(y) tracks con-

straint violation for the maximum quality bound. Multiplication of product revenue term

by R1R2 results in a revenue contribution if the product is within the specification lim-

its. Also, it should be noted that an inefficient tuning parameter could cause numerical

problems which could possibly result a suboptimal solution (Lam [2006]). The economic

objective is formulated in equation 5.4 to maximize the net profit value which is by the
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standard definition in the form of subtraction of cost from the revenue over the economic

optimization horizon:

min ∆tMPC

N−1∑
j=0

wU1u1,j + wU2u2,j − wyR1(yj+1)R2(yj+1). (5.4)

The control vectors are discretized based on the MPC sample time of ∆tMPC and R1 and

R2 are evaluated with a sample time equal to that of the control vector discretization. The

nominal unit prices wy, wU1, and wU2 corresponding to the output and input variables, the

MPC design parameters, and tuning parameters are summarized in table 5.1.

The manipulated variables, output variables and the set-points are constrained as follows:

0 ≤ yRef ≤ 1.1,

0 ≤ uRef2 ≤ 1.5,

0 ≤ y ≤ 1.1,

0 ≤ u1 ≤ 1.5,

0 ≤ u2 ≤ 1.5 .

(5.5)

5.2 Solution strategies

In this study, we employ the sequential approach to solve the dynamic optimization problem

in the economic optimization step of the open-loop two-layer and single-layer method. In

the sequential method, only the control vector variables are discretized. Then a dynamic

process model in each function evaluation of the economic optimization is solved using

the values of the discretized control variables. In the sequential implementation approach

of the closed-loop two-layer DRTO formulation a sequence of convex QP sub-problem and

ODE model are paired and solved for each function evaluation of the economic optimization

problem. Each pair of the convex QP and ODE arises from a sequence of MPC sub-problem

calculations and the implementation of the control action to the model of the DRTO layer.
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Since, all QP problems in the dual-layer methods are convex, the QP solvers efficiently solve

the QP problems to their global minimum. Most of the MPC formulations use a discrete

state-space model to convert MPC optimization problems to the standard QP form which is

defined in the QP solver packages (for e.g. See Rawlings and Mayne [2009]). The frequency

domain model of the case study problem must be transformed to a time-domain model and

be discretized to be converted to the desired form of the model. The dynamic model which

is describing the systems behaviour is converted to the following observable state-space form

in MATLAB:

dx

dt
= Ax+Bu,

y = cx,

A =


−0.0748 0.0774 −0.0200 0.0134

−0.0065 −0.0166 −0.0248 −0.0069

0.0000 0.0140 −0.0952 −0.0390

0.0000 0.0000 0.0434 0.0000

 ,

B =


−0.0891 0.1330

0.0458 −0.0684

0.0748 0.2003

0.0000 0.0000

 ,

c =
[

0 0 0 0.2876
]
.

(5.6)

This state-space model is discretized in MATLAB based on the controller sample time

for implementation in the DRTO-MPC and EMPC formulations. Since input u2 has a

significant impact on the transition dynamics and the overall process economics, we include

it as a manipulated variable with a set-point trajectory, in addition to the set-point for

output y in the two layer methods.

Manipulated input constraints in the MPC optimization problem and the economic opti-

mization problems in both of the single-layer and dual-layer methods are considered as a

hard constraint formulation. However, in the dual-layer methods the output constraints
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Table 5.1: Nominal unit price, design parameters and tuning parameters for the

implementation of the single-layer and dual layer formulations.

Unit prices & Design parameters Tuning parameters

wy = 100, wU1 = 2, and wU2 = 10 MPC output tracking weight Q = 1

MPC prediction horizon p = 30 MPC move suppression weight R = diag(1, 1)

MPC control horizon m = 3 Control tracking weight S = diag(0, 1)

MPC update time ∆tMPC = 2min Switch function steepness tuning parameter γ = 8

DRTO update time ∆tDRTO = 20min Economic optimization horizon N = 3, 6, 20, 30, 40, & 50

EMPC update time, ∆tEMPC = 2min Control effort penalty tuning parameter ρ = 20

are not considered in the MPC optimization problems due to the robustness and stability

issues (Zafiriou and Marchal [1991]). Therefore, the output constraints must be considered

in the economic optimization problems in the closed-loop formulation. Also the appropriate

adjustment of the set-point trajectories in the dual-layer method would indirectly compen-

sate for the output constraints in the regulatory level. The ODE models in the economic

optimization problems are solved using ode45, MATLAB’s built-in solver, and the MPC

optimization problems are solved using quadprog, MATLABs QP solver, with the interior-

point algorithm. The NLP problems which result from the economic optimization problem

are solved using the fmincon MATLAB NLP solver with the interior point algorithm. A

warm start strategy using the solution of the previous NLP optimization problem is used

to initialize the input variables. Computations are performed in MATLAB a2014, using a

3.4 GHz INTEL CORE-i7 with 16 GB RAM running Windows 8.
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5.3 Validation of the results for the two-layer DRTO formu-

lations

There is a very high possibility that the NLP optimization problems which may arise from

the discretization of the economic optimization problems in either the single-layer and/ or

dual layer methods are non-convex and have a local optimal solution. Moreover, because

of the inherent non-smoothness in the structure of bi-level or in general a multi-level op-

timization problem, gradient based optimization methods might have some issues such as

convergence failure problem and/ or converging to the local optima (Clark and Westerberg

[1983]). Therefore, we decided to validate our results for the OL-DRTO-MPC and the

rigorous CL-DRTO-MPC with the results of the simultaneous implementation approach

for the same problem formulation. This performance check has been conducted for some

of different tuning parameters which are mentioned in Jamaludin and Swartz [2015], and

Jamaludin and Swartz [2016]. Figure 5.4 shows the resulting set-point changes and the

input-output behavior of the system for the OL-DRTO with a control horizon of m = 20 for

the sequential implementation approach. The input U2 and output y changes in this figure

are the same as those of the corresponding plots for the simultaneous solution method in the

reference. In this figure, dynamic changes for all internal state variables and the first input

are displayed to make sure that there is no internal instability. Because of the observable

form of the model, dynamic changes of x4 would be a scaled version of y, therefore there is

no need to display x4.

Also, the simulation result for the CL-DRTO formulation with the same tuning parameters

in Jamaludin and Swartz [2016] is shown in figure 5.5. The U2 and y trajectories are the

same as those in the reference. Also, the optimal value of the economic objective function,

is equal to Φeco = 7385$ which is very close to that of the simultaneous solution for the

rigorous CL-DRTO-MPC formulation (Φeco = 7371$).

In the simultaneous implementation of the CL-DRTO formulation the necessary and suffi-

cient KKT conditions which are equivalent to the solution of each MPC QP problem are

substituted in the primary optimization problem to convert the multi-level rigorous formula-
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Figure 5.4: OL-DRTO inputs and output responses and internal dynamics of the system

for the MPC control horizon m = 20. The input, output, and state variables ( ),

optimal reference signals ( ), and the output constraints ( ).

tion, and its hybrid and bi-level approximation of the problem to a single-level optimization

problem. In this approach the non-smoothness characteristic of the multi-level optimization

problem appears in the form of the complementarity constraints. These constraints take

the form ηiµi = 0, and are generally hard to solve due to violation of constraint quali-

fications in the nonlinear programming (NLP) problem (Baumrucker et al. [2008]). The

MPCC could be reformulated as a continuous approximation of the switching behavior of

the complementarity constraints using relaxation methods, exact penalty method and/ or

a mixed-integer approach (Lam et al. [2007], and Soliman et al. [2008]). If the saturation

pattern, i.e., which bounds are active at which time steps, were known before solving the

MPCC problem, the inclusion of the complementarity constraints in the form of ηiµi = 0
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could be avoided. Therefore, it is also possible to use partitioning heuristics technique to

estimate the input saturation which could eliminate the complementarity constraints (Li

and Marlin [2011]). The partitioning idea is to solve the problem assuming no input bounds

are active. In the next step the active-set is updated according to the solution of the un-

saturated inputs which have a value larger than the limits. In this method the unbounded

version of the problem must be solved for a number of iterations. However, Clark and West-

erberg have shown that the simultaneous solution technique which uses the embedded KKT

condition of the inner problem and solves a series of single-level NLP problem for differ-

ent complementarity constraint relaxation parameter is computationally more efficient than

the partitioning heuristic method. In the constraint relaxation approach, the resulting NLP

problems including the embedded KKT conditions should be solved several times to find the

proper relaxation parameter. However, in the exact penalty reformulation approach with

a pre-tuned penalty parameter (ρ > ρc), the NLP problem is solved one time (Jamaludin

and Swartz [2016]). In this method the complementarity constraints of the form ηiµi = 0

are moved from the constraint set of the MPCC problem to the objective function as an

additional penalty term (ρΣηiµi) with a penalty parameter ρ. This reformulation method

leads to an NLP problem which could be solved using a standard NLP solver. This method

needs a sufficiently large penalty parameter ρ to satisfy the complementarity constraint.

Choosing ρ too large may cause longer solution times and numerical problems. In the

sequential implementation approach there is no complementarity constraint formulation.

Thus, this method does not require relaxation and/ or complementarity penalty parameter

tuning. Also, it is easier to set up the problem in the sequential solution approach. In this

method, the interior-point NLP the inner problems are treated as a black box in the function

evaluation of the primary optimization problem and the gradients are approximated using

the finite difference method. Therefore for the effective implementation, we believe that

the solution of the inner problem should be computationally reliable and cheap to achieve a

better solution flow in comparison to the simultaneous solution method. In our CL-DRTO

formulation all of the inner problems are QP which guarantees the global solution of them

due to convexity of the QP. Thus the QP problems could be solved computationally reliably

and efficiently using the quadprog solver in MATLAB.
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Figure 5.5: Closed-loop response of output y and inputs u1, and u2 and dynamic behavior

of the internal state vaiables for N = 150. The input, output, and state variables ( ),

optimal reference signals ( ), and the output constraints ( ).

In the sequential method the inner QP problems are accurately solved in each function

evaluation of the primary optimization problem, while in the MPCC each set of KKT opti-

mality conditions with the penalty and/ or relaxation parameter represents an approximate

solution to the corresponding original QP sub-problem, although high accuracies are at-

tainable with a suitable penalty parameter and convergence tolerance. Our results show

that both of simultaneous and sequential methods could converge to the same solution for

an appropriate starting point.
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5.4 OL- and CL-DRTO performance comparison for the de-

tuning effects of the p

Model predictive controllers are ’tuned’ by adjusting parameters such as the prediction hori-

zon, and weights in the quadratic regulatory performance criterion (Maciejowski [2002]).

However, if the objective of increasing robustness is sought the performance could be im-

proved by de-tuning of the MPC. Jamaludin and Swartz [2015] have studied the de-tuning

effects of the move suppression weights and the MPC control horizon on the economic per-

formance of the OL- and CL-DRTO formulation. They showed that the CL-DRTO formu-

lation could effectively account for the MPC controller tracking capability. This capability

is particularly effective in the cases where the MPC controller is detuned for robustness

purposes. By contrast, the economic optimization problem of the OL-DRTO formulation is

unaware of the MPC controller detuning, hence causing a sluggish process transition and a

lower economic return.

A sufficiently large prediction horizon would ensure the closed-loop stability of the MPC-

plant system for open-loop stable systems without any terminal constraint (Maciejowski

[2002]). In this study we show that considering a larger MPC prediction horizon is also

equivalent to the DRTO-MPC detuning, in a sense that the economic performance would

decrease with an increase in the prediction horizon length (figure 5.6). A large prediction

incurs a deterioration in economic performance because the controller would not achieve

a prompt tracking of the changes in the output set-point for a long sequence of output

using a fixed number of input moves in each MPC step. Figure 5.6 also shows a similar

pattern of this behavior for the open-loop DRTO formulation which occurs for the same

reason. It is important to point out that the economic return of the OL-DRTO horizon is

still lower than that of the CL-DRTO-MPC for the larger MPC prediction horizon. The

reason for this lower economic performance is that the OL-DRTO economic optimization

layer does not account for the effect of the limited MPC control input moves over the large

MPC prediction horizon. Therefore the OL-DRTO-MPC would prefer to use the more

effective yet more expensive manipulating input resource U2. By contrast, the closed-loop
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counterpart is aware of the next MPC control actions and demands a lower U2 usage by

reducing the U2 set point.

Figure 5.6: Effects of the MPC prediction horizon on the economic performance of the

OL- & CL-DRTO.

Figure 5.6 clearly shows how a prediction horizon smaller than p = 10 would drastically

reduce the economic improvement of the OL-DRTO-MPC at the expense of maintaining

the stability. An inference of this behavior could be drawn by comparing the input-output

changes of the case study system for prediction horizons (p = 6, and 20) in figure 5.7 and

figure 5.8. In the simulation result of figure 5.7 the MPC prediction horizon is too short, so

that the controller is short-sighted. Thus, the MPC does not respond early enough to result

a rapid output transition. In this case study, the MPC changes the first input U1 too slowly

and mostly relies on the more expensive U2, because of the fast U2 input-output response.

In contrast, for the larger prediction horizon p = 20, the MPC predicts the slower U1 input-

output effect over a larger time span, so it could respond for the set point tracking early

enough using the cheaper control action to obtain a rapid transition. This effect could also

lead to an economic usage of U2 which merely contributes in the early stage of transition

for the purpose of a faster transition.

A moderate form of the economic loss is observed in the performance of the CL-DRTO-

MPC for the MPC prediction horizon smaller than p = 10. This is due to the fact that

the economic optimization layer of the CL-DRTO-MPC inherits the tracking capability of

a sequence of the short-sighted MPC steps over an economic horizon which is significantly

larger than the prediction horizon of each individual MPC step. This inherited property
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allows the economic optimization layer to confront the poor stability property of the MPCs.

A detailed observation of the input-output set point changes in figure 5.9 and figure 5.7

shows that the CL-DRTO provides larger and more active set point changes exploiting the

collective predictions and tracking effects of the sequence of MPC controllers. This set point

adjustment leads to a timely response of U1 which improves the economic performance of

the system to an appreciable extent. Figure 5.6 shows that for p = 6 and p = 20 CL-DRTO-

MPC results approximately the same economic performance. However, figure 5.9 and figure

5.10 show that there are less set-point moves for the CL-DRTO-MPC system with a larger

MPC prediction horizon to obtain the same economic performance.

In our performance comparison, an equal economic input move and prediction horizon is

considered in the EMPC formulation for the reason of consistency with the economic layer of

the dual-layer methods. Thus, a similar detuning behavior in the economic performance of

the single-layer method is not expected because of the equal EMPC prediction and control

horizon. The EMPC horizon and update time effects will be explored in the next sections

which helps to establish the basic foundation for the single- and dual-layer performance

comparison.

5.5 Horizon length and update time effects on the perfor-

mance of the EMPC

Lao et al. [2014] discuss that the economic performance benefit of EMPC over conventional

tracking MPC may strongly depend on the horizon length of the economic optimization. A

large EMPC horizon severely increases the number of the decision variables in the resulting

NLP problem in each EMPC step. The large NLP problem size increases the solution time,

which may cause difficulty for real-time applications especially for large-scale problems.

In this situation the economic optimization problem could be solved less frequently (i.e.,

for a large economic update time) for the sufficiently large economic horizon to determine

the set point. Then the economically optimal set points are passed to the MPC control
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Figure 5.7: OL-DRTO inputs and output responses and internal dynamics of the system

for the MPC prediction horizon p = 6. The input, output, and state variables ( ),

optimal reference signals ( ), and the output constraints ( ).

layer which solves a QP optimization problem for each MPC step in a suitably short time

to track the optimal set-point until the next economic optimization update time. This

strategy could also decrease the overall computational burden compared to the application

of the EMPC. In this section, the EMPC horizon length effect is investigated for the EMPC

with the update time equal to that of the MPC in the dual-layer formulations. An increase

in the EMPC horizon length form N = 2 to 6 improves the economic return (Φeco) from

7815.0 to 7866.0$ while the average solution for each EMPC step increases from 1.38 to

4.31s. However, the economic return remains approximately the same by an increase in

N from 6 to 30 and the average solution time of each EMPC step increases to 146.21s. A

desired economic improvement is notable for the optimal economic return (Φeco = 8050.51$)
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Figure 5.8: OL-DRTO for p = 20.

by increasing N from 30 to 40 for the average solution time of 307.2s, which is too high for

the online implementation. There is a possibility to increase the EMPC update time for the

same length of the economic optimization horizon to reduce the computational burden for

the online application of EMPC with the large horizon length. For the increasing sequence

of the economic update times Te = 2, 4, and 8, following economic values of Φeco = 8050.51,

8047.01, and 8003.81$ are obtained for the average run time ART = 307.2, 117.31, and

11.66s, respectively. This result means that the effect of the EMPC update time is negligible

in comparison to the horizon length effect on the economic performance.

Ochoa et al. [2010] claim that in the dead period between the large update time in the

single-layer method, there is no feedback to compensate for the undesired effects of the

unknown disturbance and/ or uncertainties. Simulation results of figure 5.11 for Te = 8 and

N = 12 shows output quality constraint violation. This constraint violation demonstrates
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Figure 5.9: CL-DRTO inputs and output responses and internal dynamics of the system

for the MPC prediction horizon p = 6. The input, output, and state variables ( ),

optimal reference signals ( ), and the output constraints ( ).

that the EMPC may perform an unsatisfactory regulation function due to the insufficient

horizon length of N = 12, even when there is no unknown disturbance and/ or uncertainty.

However, for the same update time a larger horizon would resolve the issue which is shown in

figure 5.12. This result shows that EMPC with a large update time and insufficient horizon

length could suffer from unstable behavior. Due to the short economic horizon length,

EMPC cannot capture the effect of control input for a sufficiently long future predictions.

Therefore, the EMPC attempts to improve the economic return without being aware of

the possible consequences of its current action. Thus, it drives the plant into ’dead-ends’

from which there is no feasible solution which could prevent the output from escaping the

acceptable quality bound. This issue motivates consideration of a sufficiently large EMPC
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Figure 5.10: CL-DRTO inputs and output responses and internal dynamics of the system

for the MPC prediction horizon p = 20. The input, output, and state variables ( ),

optimal reference signals ( ), and the output constraints ( ).

horizon N , to minimize the risk of economic performance loss and the output constraint

violation.

Similar to the smooth input changes in the MPC simulation results, smooth input changes

in the EMPC simulation results could reflect the desired detuning effect. The EMPC

formulation which is used for the application of the optimal transition of the process output

may potentially demand a large input change and may use the maximum available control

action to carry out a fast dynamic transition. Therefore, the EMPC acts aggressively by a

sharp increase of U1 to the maximum available control action (figure 5.12) which results a

higher overall control effort (OCE) in comparison to that of the dual-layer method in figure

5.8). The OCE is defined in equation 5.7:
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Figure 5.11: EMPC with Te = 8 & short horizon N = 12.

OCE =

jmax−1∑
j=0

∆UTRMPC∆U,

j = (tj − tinitial)/Tc, tj ∈ [tinitial, tfinal] .

(5.7)

where RMPC is equal to the move suppression weight of the MPC control layer in the OL-

and CL-DRTO-MPC formulation. The update time instances, tj are the EMPC and/ or

the MPC update time over the simulation time and ∆U is the optimal input change which

is applied to the system at time tj . The OCE could be determined for the EMPC and

the dual-layer methods for the quantitative representation of the overall control effort of

the single-layer and two-layer methods. For the EMPC performance result OCE varies in

the range of 4.8 − 7.5 depending on the value of the update time and the horizon length.

The OCE value for the CL-DRTO-MPC formulation is in the range 1.46− 2.11 and for the
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Figure 5.12: EMPC with Te = 8 and horizon:20.

OL-DRTO is in the range of 2.07−2.30 in which the lower ranges correspond with the MPC

prediction horizon of p = 30. The OCE value of the EMPC is 2 to 5 times greater than that

of the dual-layer methods. This indicates that the EMPC formulation performs aggressive

input changes, while figure 5.6 shows that the CL-DRTO-MPC with an aggressive MPC

prediction horizon p = 13 achieves approximately the same economic performance using

less control effort of OCE = 2.11.
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5.6 The EMPC, OL- and CL-DRTO-MPC performance com-

parison

A quadratic penalty term for the control inputs moves similar to that of the tracking MPC

could be considered in the EMPC objective function (Amrit et al. [2013]). The economic

performance results of the EMPC for different horizon length are obtained for the hybrid

EMPC objective function. This hybrid EMPC objective function is a summation of the net

profit term and the control effort penalty term Σ∆UTRMPC∆U with the tuning weight

of ρ = 20 over the economic optimization horizon. This control effort penalty weight ρ is

tuned such that the OCE is in the range of the OCE for the OL- and CL-DRTO-MPC

formulations. Also, average run time (ART) is considered for the EMPC and dual-layer

methods. The average of the NLP problem solution time for the EMPC formulation and

the summation of the averaged NLP and QPs’ solution times for the dual-layer methods

are considered as ART criterion. For the purpose of comparison, in all of the formulations

the ART is calculated for a fixed time interval that is equal to the DRTO update time.

The ART, OCE, and economic performance results are shown in table 5.2. Figure 5.15

Shows that the EMPC with a short horizon of N = 3 tends to increase the first input U1

from the early EMPC steps, because the prediction horizon length is not long enough to

acquire the knowledge of the fast U2 input-output behavior. Moreover, the use of a higher

U2 input action is apparently an expensive option from the point of view of the short-

sighted EMPC. Therefore, the EMPC starts with a U2 input action close to 1. By contrast,

because of the longer optimization horizon the CL-DRTO-MPC is aware of the fact that a

temporarily high U2 input action suffices to raise the output to the desired grade interval.

Figure 5.13 shows the simulation results for the CL-DRTO-MPC formulation with economic

optimization horizon N = 30. As a consequence of a large U2 action, the CL-DRTO-MPC

performs a maneuver to reduce the cost for the use of the unnecessary U1 input actions

over a H2 period of time, which is shown in figure 5.16. Also, this figure qualitatively shows

that the cumulative U1 input resource usage of the CL-DRTO-MPC is less than that of the

EMPC with the short horizon. In other words, the CL-DRTO-MPC formulation finds a

solution which is a compromise between the costs of the more effective yet more expensive
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input U2 and the less effective and cheaper U1 input resource.

Table 5.2: Economic, computational and control move performance of the single- and

dual-layer methods.

economic optimization horizon Economic objective ($) ART Overall Control effort

EMPC N = 3 Φeco = 7169.01 14.92 OCE = 1.86

EMPC N = 6 Φeco = 7285.00 45.44 OCE = 1.85

EMPC N = 10 Φeco = 7328.11 113.22 OCE = 1.86

EMPC N = 20 Φeco = 7375.00 375.83 OCE = 1.88

OL-DRTO-MPC N = 30 Φeco = 7387.00 2.48 OCE = 2.07

CL-DRTO-MPC N = 30 Φeco = 7663.60 13.74 OCE = 1.46

EMPC N = 30 Φeco = 7730.04 10.97∗ OCE = 1.95

EMPC N = 50 Φeco = 7766.30 12.21∗∗ OCE = 2.2

∗ & ∗∗ (These ART are calculated for Te = 10 and the equivalent economic horizons.)

An equal input unit price for U1 and U2 intuitively means that the single- and dual-layer

economic optimization methods may often prefer to use U2 which has a faster input-output

effect compared to that of U1. The manipulated input preference of the economic optimizers

suggest that the inputs should essentially have distinct unit prices to exhibit the input

compromise which is seen in the application of the CL-DRTO-MPC formulation. Also,

observation of this behavior is only expected for the case study problems in which the

unit price of the input resource with a faster input-output response is higher than that of

the input resource with a slower input-output changes. Otherwise, the economic optimizer

would obviously prefer to use the effectively fast and cheap input resource to minimize the

input cost. Moreover, an extremely large difference in the unit price virtually means that

do not use the extremely expensive manipulated input option.

The economic performance of the OL-DRTO-MPC with the smallest average run time
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Figure 5.13: Closed-loop DRTO results for N = 30.

(ART) is slightly higher than that of the EMPC with the short horizons. A longer economic

horizon of the OL-DRTO could be a possible reason for the higher economic performance of

OL-DRTO-MPC in comparison to the EMPC formulations with the short horizon length.

However, the OL-DRTO does not account for the closed-loop controller effect on the pro-

cess. figure 5.14 shows the simulation result for the OL-DRTO-MPC formulation. The

input set point changes in Figure 5.14 shows that the OL-DRTO layer requests maximum

available U1 action and in-turn reduces the contribution of the expensive input U2. The U1

input changes in this figure shows that the OL-DRTO layer could not accomplish a similar

compromise which is observed in the CL-DRTO-MPC simulation result. Thus, the eco-

nomic optimization layer could not leverage the economic improvement by the supervision

of the detuned MPC control layer. A more detailed performance comparison of the OL- and

CL-DRTO-MPC has been carried out in Jamaludin and Swartz [2016] and in the previous
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section of the current research.

Figure 5.14: Open-loop DRTO results for N = 30.

Results of table 5.2 shows that the CL-DRTO-MPC has the smallest OCE which means it

has the capability to skillfully distribute the smallest control effort over the horizon length

and result in relatively high economic return for a reasonably efficient ART. The results

of table 5.2 shows that the EMPC formulations with the longer horizon would achieve a

slightly higher economic performance. However, as mentioned by Ellis and Christofides

[2014a], EMPC with a large horizon length and update time equal to that of the MPC

control layer in the dual-layer method results in a large NLP problem size. Therefore, the

EMPC with a long horizon may not be appropriate for online application. Thus, EMPC with

the long horizons of N = 30, and 50 are solved for the larger update time Te = 10s and the

same economic horizon length. EMPC applications with a large update time are susceptible

to process model mismatch and unknown disturbance effects (Ochoa et al. [2010]).
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Figure 5.15: EMPC results for N = 3.

5.7 Recycle effects on the linear systems

As explained in the process description section for the overall input-output behavior of a

simple linear recycle system in the form of equation 5.2, an increase in a positive value of

the recycle gain KR and/ or the recycle time constant τR increases the overall input-output

gain and time constant. In this study, it is assumed that the recycle time constant is a small

fixed parameter. Therefore, the overall process gain and the overall time constant would

change due to a change in the recycle gain. In the current section, the efficient length of

the economic optimization horizon is investigated for following two cases:

1. The process gain and the average time constant of the first subsystem, which is in the

form of equation 5.2, are higher than the base case problem of equation 5.1.
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Figure 5.16: Sufficient horizon length for the control input resource saving maneuver of

U1. The input U1 of the EMPC with a small horizon ( ), and U1 of the CL-DRTO with

a large horizon ( ).

2. The process gain and the average time constant of the first subsystem, which is in the

form of equation 5.2, are lower than the base case problem of equation 5.1.

Simulation results of the CL-DRTO-MPC application for this two cases are shown in figures

5.17 and 5.18. A U1 input change pattern is visible in figure 5.17 which is similar to the U1

input maneuver of the CL-DRTO-MPC for the base case problem. The qualitative differ-

ences are the CL-DRTO tendency to use more U2 in comparison to the base case scenario.

This behavior is because of the slower U1 input-output response comparing to the base case
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problem. The slow U1 response could not settle down earlier than the end of simulation

time. The slower time-scale of the U1 input-output response suggests that a larger eco-

nomic optimization horizon might be needed to recover more economic performance. The

EMPC economic performance result increases from Φeco = 7347.0 to 7675.3$ by increasing

the horizon length from N = 30 to 50. This means that the sufficient economic horizon

which is N = 30 for the base case problem must be further increased to N = 50 for the

EMPC formulation which causes a more intensive computational burden comparing to the

base case problem. This result highlights the fact that the EMPC implementation with the

update time equal to that of the MPC in the two-layer structures may not be applicable.

Figure 5.17: Closed-loop DRTO results with N = 50 for the recycle effect of case 1

(Overall gain K1 = 3, and the time constants are 200 and 15 in subsystem 1).

The simulation results of figure 5.18 for the CL-DRTO-MPC implementation shows that for

the smaller gain and the faster input-output response the economic optimizer highly relies on
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Figure 5.18: Closed-loop DRTO results with N = 50 for the recycle effect of case 2

(Overall gain K1 = 0.7, and the time constants are 25 and 15 in subsystem 1).

the U1 input adjustment to improve the economic performance. This behavior is expected

because the first input is cheaper than U2, and its input-output response is nearly as fast

as that of the second input. After the initial input moves, there is only a rapid U1 input

change for a short interval of one DRTO update time to back-off the output from the upper

bound quality constraint. As there is no considerable control input move other than the

initial input changes for a large horizon of N = 30, no economic performance improvement

would be imagined for the larger economic optimization horizon and Φeco = 7803.67$.
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5.7.1 Chapter summary

In this chapter a systematic performance comparison of the single-layer EMPC, the open-

loop and the closed-loop two-layer DRTO-MPC formulation is conducted for a process

output dynamic transition application of a MISO linear case-study problem. The sequential

approach is selected for the implementation of the economic optimization problem. In the

first step the simulation results are validated using the simulation results of the simultaneous

solution strategy. Then, the MPC prediction horizon effect on the economic performance

and the stability of the dual-layer method is analyzed. The results suggest the use of a

sufficiently long MPC horizon for stability and robustness.

The MPC prediction horizon analysis is followed by the investigation of the EMPC horizon

length effect on the economic performance of the system. This result demonstrates the

necessity of using a significantly large economic optimization horizon to recover more eco-

nomic improvement. The necessity of a long horizon length forms a basis for the reasoning

of the next step that compares the performance of the selected EMPC and DRTO formu-

lations and shows the two-layer methods could economically outperform the single-layer

method with a smaller economic optimization horizon. This desired economic performance

is achieved for the computationally advantageous problem size and a slightly lower control

effort.

Finally, the changes in the efficient economic horizon length is explored for the two different

recycle effects. These effects are condensed in the form of the simultaneous changes in the

time constant and the input-output gain for the first subsystem of the case study problem.

It is shown that the two-layer formulation could be more beneficial for the systems with a

slower recycle time constant and a higher recycle gain.
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Conclusions and Recommendations

The main contributions including the key comparison findings of the single- and dual-layer

methods and a discussion on some of the important features for the proposed sequential

implementation approach of the rigorous CL-DRTO formulation are summarized and the

opportunities for future research work are recommended.

6.1 Conclusions

The first contributions of this thesis is that a systematic performance comparison for the

single-layer EMPC and dual-layer DRTO-MPC architectures is conducted for the dynamic

transition problem and a variety of the short-term and sustained unknown process distur-

bances. The unique aspects of this comparison study that could distinguish it from the

existing literature on the performance comparison of the existing EMPC and DRTO ap-

proaches are: 1-consideration of multiple performance comparison criteria and 2-inclusion

of both open-loop and closed-loop variants of the dual-layer formulation.

The key results of this comparison are that the single-layer method may not be a wise

choice in the cases where the economic performance of the dual-layer methods are slightly

less than that of the EMPC for an equal length of the economic optimization horizon and
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1- the computational cost is significantly higher than that of the two-layer method even for

the EMPC horizon length smaller than that of the dual-layer method and/ or 2- the slow

time scale of the external disturbance or the process dynamics strongly affects the process

economic performance. For instance, in the second case study problem, process output

changes in response to the first input are slower than that of the second input. However,

the first input resource is cheaper than the second input. Thus, the slower input to output

response eventually should be considered for the higher economic performance. In this

case, it is shown that a large economic optimization horizon is necessary to capture the

slower input to output dynamic effects. We showed that a larger economic horizon length is

necessary for a higher gain and slower output response of the cheaper input. The increase

in the horizon length results in a bigger size NLP for the EMPC comparing to the NLP

problem size in the dual-layer methods. This means the application of the EMPC, with

the same MPC update time of the dual-layer methods could be computationally expensive.

A recycle effect could increase the input to output gain and result in slow dynamics. A

possible solution could be the use of larger economic update time in the EMPC formulation

to reduce the NLP problem size. However, an inherent response delay to the unknown

changes, arising from a slower EMPC update time for the first case study problem could

cause a higher constraint violation (COCV). It is also shown for the transition problem in

the second case study that an insufficient EMPC horizon length could cause quality grade

constraint violation. As another example, for the first case-study problem in the presence

of the sustained disturbance scenario, there is no need for the higher frequency of the

economic update and the MPC formulation provides a satisfactory regulation function. It

is also shown that the economic improvement in the presence of the sustained disturbance

could be higher than a short-term disturbance with an equal unknown pulse magnitude.

Unlike the case of the sustained disturbance effect, the EMPC with a smaller update time is

preferable when the short-term disturbance with a large magnitude alters the process more

frequently and causes unacceptable COCV. It is shown in the first case study problem that

the linear model in the MPC layer of the OL- and CL-DRTO formulation could not provide

an accurate output prediction in the presence of the large magnitude disturbance while the

EMPC formulation could overcome this issue due to the use of a nonlinear process model.
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It is also shown that for the product grade transition the CL-DRTO-MPC formulation could

result in a higher economic performance and less overall control effort comparing to that of

the open-loop formulation at a cost of higher computation times.

In this study, a sequential optimization framework is chosen to avoid a large optimization

problem size in the single-layer and two-layer approaches. The CL-DRTO-MPC formula-

tion was originally developed based on the simultaneous solution approach. Therefore, a

sequential implementation approach is proposed for the CL-DRTO-MPC formulation. Un-

like the simultaneous implementation approach, there are no complementarity constraints

in the resulting NLP problem. Thus, it does not require MPCC problem reformulation

and parameter tuning for the complementarity constraint handling in a standard NLP for-

mulation. Also, the implementation of the sequential method is easier than that of the

simultaneous CL-DRTO method. However, the sequential approach has a potential draw-

back due to derivative discontinuities. In this study, we showed that the same solution of

the simultaneous method could be achieved using the sequential approach.

6.2 Recommendations for Further Work

In the conclusion of this study, the computational cost and constraint violation are intro-

duced as important factors which could be considered together with the economic perfor-

mance to determine which one of the single- and dual-layer formulations is preferable for a

process system. The EMPC formulation with a large horizon and the rigorous CL-DRTO-

MPC formulations solution times could be very high and inappropriate for the real-time

applications. Also, these methods may result in unacceptable constraint violations especially

in the presence of the unknown disturbances and model parameter uncertainty. Therefore,

there is a need to upgrade computational resources, to develop proper online optimization

techniques, and to reformulate the online economic optimization problem to overcome the

computational delay limitation. Therefore, following avenues could be explored in future

research:
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1. A method of advanced-step NMPC has been developed by Zavala and Biegler [2009a] to

reduce the computational time of the dynamic optimization problems. In this method,

the NLP optimization of the next NMPC step is solved using the output prediction of

the process model in the background of the process operation and before the start of next

NMPC update. Then, the NLP solution is updated in the next update time using the

measured output and the sensitivity information of the NLP problem. The possibility of

using this idea for the real-time solution of the NLP for each EMPC and/ or DRTO step

could be explored.

2. The stochastic optimization methods (e.g., Min-max MPC, multi-stage NMPC) could

be included in the DRTO formulation to reduce constraint violation in the presence of

the unknown disturbance scenarios and model uncertainties. Lucia et al. [2013] applied a

multi-stage MPC formulation for the control of a semi-batch polymerization reactor under

uncertainty. Following this successful application of the multi-stage MPC formulation to

handle the process model parameter uncertainty, they later incorporated this robust MPC

technique in an EMPC formulation (Lucia et al. [2014]). In this method, an uncertainty

horizon tree is considered which should be obtained using process knowledge and/ or

statistical methods. We believe that the incorporation of this technique may potentially

mitigate the constraint violation effects due to the use of a linear model in the MPC layer

of the dual-layer methods.

3. As mentioned in chapter 3, the sequential approach has a potential drawback due to

derivative discontinuities. However, for the second case study problem, it is shown that

the same solution of the simultaneous method could be achieved using the sequential ap-

proach. Possible derivative discontinuity effects should be shown in a case study problem.

This analysis could be useful to understand the discontinuity issue and to identify the

conditions under which the problem converges to an acceptable solution.
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