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Abstract

This thesis addresses the design of quantizers for two-dimensional vectors, where

the scalar components are quantized sequentially. Specifically, design algorithms for

unrestricted polar quantizers (UPQ) and successively refinable UPQs (SRUPQ) for

vectors in polar coordinates are proposed. Additionally, algorithms for the design of

sequential scalar quantizers (SSQ) for vectors with correlated components in Cartesian

coordinates are devised. Both the entropy-constrained (EC) and fixed-rate (FR) cases

are investigated.

The proposed UPQ and SRUPQ design algorithms are developed for continuous

bivariate sources with circularly symmetric densities. They are globally optimal for

the class of UPQs/SRUPQs with magnitude thresholds confined to a finite set. The

time complexity for the UPQ design is O(K2 + KPmax) in the EC case, respectively

O(KN2) in the FR case, where K is the size of the set from which the magnitude

thresholds are selected, Pmax is an upper bound for the number of phase levels corre-

sponding to a magnitude bin, and N is the total number of quantization bins. The

time complexity of the SRUPQ design is O(K3Pmax) in the EC case, respectively

O(K2N
′2Pmax) in the FR case, where N ′ denotes the ratio between the number of

bins of the fine UPQ and the coarse UPQ.

The SSQ design is considered for finite-alphabet correlated sources. The proposed

algorithms are globally optimal for the class of SSQs with convex cells, i.e, where each
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quantizer cell is the intersection of the source alphabet with an interval of the real

line. The time complexity for both EC and FR cases amounts to O(K2
1K

2
2), where

K1 and K2 are the respective sizes of the two source alphabets. It is also proved

that, by applying the proposed SSQ algorithms to finite, uniform discretizations of

correlated sources with continuous joint probability density function, the performance

approaches that of the optimal SSQs with convex cells for the original sources as the

accuracy of the discretization increases.

The proposed algorithms generally rely on solving the minimum-weight path (MWP)

problem in the EC case, respectively the length-constrained MWP problem or a re-

lated problem in the FR case, in a weighted directed acyclic graph (WDAG) specific

to each problem. Additional computations are needed in order to evaluate the edge

weights in this WDAG. In particular, in the EC-SRUPQ case, this additional work in-

cludes solving the MWP problem between multiple node pairs in some other WDAG.

In the EC-SSQ (respectively, FR-SSQ) case, the additional computations consist of

solving the MWP (respectively, length-constrained MWP) problem for a series of

other WDAGs.
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the set Û, the lower boundary of the convex hull of U. The number

near each convex hull edge represents its slope. When µ = 0.35 the

solution to problem (2.13) is P ∗ = 4 since the line of slope −0.35

passing through S(4) is a support line for U. Note that S(2) is the

only point in U which is not an extreme point. . . . . . . . . . . . . 29

2.3 The partitions of proposed ECUPQ (a) and ECRQ (b) at rate R =

1.157 bits/sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Performance comparison with PASY (Perić and Nikolić, 2013) and with
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Chapter 1

Introduction

Quantization has been widely utilized in analog-to-digital conversion and data

compression in modern telecommunications. Quantizers can be divided into two

classes (Gray and Neuhoff, 1998): scalar quantizers, which operate on individual sam-

ples, and vector quantizers, which operate on groups of samples. Despite the fact that

non-structured vector quantizers with large dimension outperform the scalar quantiz-

ers, their computational and storage complexity grows exponentially with the dimen-

sion. In addition, it is worth pointing out that the rate gap between the optimum

entropy-constrained scalar quantizer and the rate-distortion limit (achieved using vec-

tor quantization with infinite dimension) is only 0.2546 bits/sample (Gish and Pierce,

1968) at high resolution for memoryless sources. Therefore, scalar quantizers are com-

monly used, especially in image and video compression algorithms, including the well

known JPEG standard (Wallace, 1992), JPEG 2000 standard (Skodras et al., 2001;

Taubman and Marcellin, 2012) and H.264/AVC standard (Wiegand et al., 2003).

However, for sources with memory, independent quantization of each scalar com-

ponent is too wasteful. A technique to overcome this drawback is the application of

a transform on blocks of samples in order to decorrelate the signal, followed by scalar
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quantization of transform coefficients. Alternatively, sequential scalar quantization

has also been investigated (Gray and Neuhoff, 1998; Balasubramanian et al., 1995).

A sequential scalar quantizer (SSQ) quantizes each scalar component of a vector se-

quentially, the quantizer of each component depending on the previous components.

This technique outperforms the use of independent scalar quantizers for each compo-

nent since it is able to exploit the correlation between components. The SSQ is also of

interest in situations where the encoder has sequential access to the source samples,

such as in sequential coding of frames of a video sequence.

In the case of two-dimensional sources with circularly symmetric probability den-

sities, the approach of quantizing each scalar component of the vector represented in

polar coordinates was also considered. This technique is termed polar quantization.

More specifically, a polar quantizer consists of a quantizer for the magnitude followed

by a uniform quantizer for the phase. A strictly polar quantizer (SPQ) uses indepen-

dent quantizers for the magnitude and phase (Pearlman, 1979). In unrestricted polar

quantization the phase quantizer depends on the magnitude level (Wilson, 1980). The

unrestricted polar quantizers (UPQ) were shown to outperform their strict counter-

parts. Notice that the UPQ can also be regarded as a sequential scalar quantizer

applied to the polar coordinates of a vector. Polar quantization is useful in numerous

applications, such as image processing (Senge, 1977; Kingsbury and Reeves, 2003),

for the encoding of discrete Fourier transform coefficients (Gallagher, 1978; Pearlman

and Gray, 1978), in holographic image processing (Bruckstein et al., 1998), as well as

for the quantization of sinusoid signals with application in audio coding (Vafin and

Kleijn, 2005). More recently, polar quantization was also used for wireless receiver

design in (Nazari et al., 2014).

This thesis addresses the design of SSQs for two dimensional correlated sources,

and of UPQs and successively refinable UPQs (SRUPQ) for bivariate sources with

2
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circularly symmetric densities. Prior design algorithms for UPQs, SRUPQs and SSQs

are either based on high-rate quantization theory or suffer from other drawbacks,

which will be discussed in detail in the next section. This thesis proposes efficient

design algorithms with guaranteed optimality properties under certain conditions.

The rest of the chapter is organized as follows. Section 1.1 reviews the related

literature and presents the motivation for our work. Section 1.2 describes the con-

tribution of this thesis. The organization of this thesis and the list of publications

resulted from the related research work are given in Section 1.3.

1.1 Motivation and Related Work

1.1.1 Unrestricted Polar Quantizers

A polar quantizer quantizes the magnitude and the phase of a two dimensional

source vector represented in polar coordinates. The phase quantizer is uniform while

the magnitude quantizer may be non-uniform. Polar quantization of bivariate sources

with circularly symmetric densities, has been extensively investigated either for the

general case or for the specific Gaussian case, e.g., see references (Senge, 1977; Gal-

lagher, 1978; Pearlman and Gray, 1978; Pearlman, 1979; Bucklew and Gallagher,

1979a,b; Wilson, 1980; Swaszek and Thomas, 1982; Swaszek, 1985; Swaszek and Ku,

1986; Neuhoff, 1997; Moo and Neuhoff, 1998; Peric and Stefanovic, 2002; Vafin and

Kleijn, 2005; Petković et al., 2011; Perić and Nikolić, 2013; Jovanović et al., 2016;

Pobloth et al., 2005; Ravelli and Daudet, 2007).

Most of the work on the analysis and design of polar quantizers relies on the high

resolution assumption. In particular, the asymptotic analysis of the uniform polar

quantizers, i.e., where the quantizer of the magnitude is also uniform, was performed

3
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in (Swaszek, 1985; Moo and Neuhoff, 1998; Jovanović et al., 2016) for the strict case

and in (Peric and Stefanovic, 2002) for the unrestricted case. We point out that the

above mentioned papers assume fixed-rate (FR) quantization, i.e., where the goal is to

minimize the distortion for a fixed number of total quantization levels. The asymptotic

analysis of FR non-uniform UPQ was addressed in (Swaszek and Ku, 1986; Neuhoff,

1997; Perić and Nikolić, 2013). Additionally, note that such techniques guarantee the

optimality of the design only as the number of quantization levels approaches infinity.

The design of optimal practical polar quantizers, i.e., without the high rate as-

sumption, was considered in (Gallagher, 1978; Pearlman, 1979) for the FRSPQ and in

(Wilson, 1980) for the FRUPQ. The approach taken in the aforementioned work is to

solve iteratively the necessary conditions for optimal decision thresholds and optimal

reconstruction values. This iterative procedure can be applied when the number M

of magnitude levels and the number P of phase levels are fixed, in the case of SPQ,

respectively, when the M -tuple of numbers of phase levels (P1, · · · , PM) is fixed, in

the case of UPQ. More specifically, since each phase quantizer is uniform the problem

further reduces to finding the optimal decision thresholds and reconstruction levels of

the magnitude quantizer, which depend on the number of phase levels of the phase

quantizer(s). The latter problem is solved in (Pearlman, 1979; Wilson, 1980) by using

an iterative algorithm similar to Max-Lloyd algorithm (Max, 1960; Lloyd, 1982) for

optimal scalar quantizer design, i.e., by iteratively optimizing the encoder, respectively

the decoder, while the other component is kept fixed. However, the aforementioned

works do not find an efficient solution for optimizing the rate allocation between the

magnitude and phase quantizers, i.e., for finding the optimum pair (M,P ) satisfying

the constraint MP = N in the case of SPQ, respectively, finding the optimum con-

figuration (M,P1, · · · , PM) satisfying
∑M

m=1 Pm = N , where N is the total number

of polar quantizer bins. In absence of an efficient strategy, the authors of (Pearlman,
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1979; Wilson, 1980) rely on exhaustive search to optimize the rate allocation.

The authors of (Petković et al., 2011) propose a nearly optimal algorithm for

FRUPQ, which iteratively optimizes the values of the vector of decision thresholds,

respectively, (P1, · · · , PM) and the vector of reconstruction levels, while the other two

vectors are kept fixed. The drawbacks of the method in (Petković et al., 2011) are

slow convergence and lack of guarantee of optimality.

Therefore, the above discussion motivates our search for a tractable and globally

optimal design algorithm for FRUPQ, for finite rates.

Further, in order to increase the efficiency of the polar quantizer, entropy coding

may be applied to the quantizer’s outputs. This was done, for instance, in (Wilson,

1980). However, for optimal performance the polar quantizer has to be optimized

under a constraint on the entropy. Such a quantizer is called entropy-constrained

(EC) quantizer. Work (Vafin and Kleijn, 2005) is the only work addressing the design

of EC polar quantizers, up to our knowledge. The authors of (Vafin and Kleijn,

2005) derive the asymptotically optimal ECUPQ and ECSPQ, as the rate approaches

infinity. They further consider a bivariate circularly symmetric Gaussian source and

compare the performance of the proposed ECUPQ to other asymptotically optimal EC

quantizers. As expected, they find that the asymptotical performance of ECUPQ is

significantly superior to that of ECSPQ. They also perform the comparison against the

entropy-constrained rectangular quantizer (ECRQ), which uses scalar quantization of

each Cartesian coordinate. This comparison reveals that the performance of ECUPQ

and ECRQ are identical asymptotically. This conclusion is expected since, as the rate

approaches∞, the shape of most of the UPQ quantizer cells approaches a rectangular

shape. Moreover, the authors of (Vafin and Kleijn, 2005) show that the practical

performance of the proposed ECUPQ is close to the performance predicted by the

asymptotic expression, when the rates are high enough.
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As the results of (Vafin and Kleijn, 2005) illustrate, the asymptotical expression of

ECUPQ performance is not accurate if the rate is not sufficiently high. In particular,

in our implementation of the ECUPQ proposed in (Vafin and Kleijn, 2005) we found

that the gap to the asymptotic performance is higher than 0.5 dB for rates between

2.050 and 2.495 bits per sample, and, although the gap gradually decreases, it remains

higher than 0.1 dB, for rates up to 4.0 bits/sample. Additionally, the asymptotic

expression cannot be applied to rates smaller than 0.5 log2(2πe) ≈ 2.047, thus no

comparison is possible for those rates. Furthermore, the optimality of the ECUPQ of

(Vafin and Kleijn, 2005) holds as the rate approaches infinity, but it is not guaranteed

at finite rates.

The above observations raise two natural questions that motivate the practical

design of ECUPQ:

Q1) Is it possible to further improve the performance of ECUPQ at finite rates?

Q2) Does ECUPQ exhibit any advantage in terms of performance versus ECRQ at

finite rates?

In order to address these inquiries we propose the design of ECUPQ for a bivariate

circularly symmetric source, at finite rates.

1.1.2 Successively Refinable Unrestricted Polar Quantizers

A successively refinable (SR) quantizer encodes the source into a sequence of em-

bedded bitstreams, which enables the decoder to retrieve the source reconstruction in

a progressively refinable manner. Specifically, a coarse reconstruction can be obtained

by decoding the base layer, while the quality of the reconstruction improves as more

refinement layers are decoded. As a promising technique for broadcasting multimedia

to heterogeneous devices over fluctuating bandwidth or unreliable networks, research
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topics related to SR quantization have drawn significant attention, see (Equitz and

Cover, 1991; Rimoldi, 1994; Brunk and Farvardin, 1996; Jafarkhani and Tarokh, 1999;

Dumitrescu and Wu, 2004; Effros and Dugatkin, 2004; Chen et al., 2010; Wang and

Gastpar, 2014; No et al., 2016; Kostina and Tuncel, 2017). Notably, the simplified

bit plane coding variant of the SR quantizer has been adopted as the baseline quanti-

zation method of the JPEG 2000 image compression standard (Skodras et al., 2001;

Taubman and Marcellin, 2012).

Consequently, it is natural to raise the curiosity on the design of successively

refinable UPQ (SRUPQ).

Work (Ravelli and Daudet, 2007) is the only work addressing the design of SR

polar quantizers, up to our knowledge. The authors of (Ravelli and Daudet, 2007)

consider the fixed-rate designs of SRUPQ and successively refinable strictly polar

quantizer (SRSPQ). In the latter case, both the low-rate and high-rate quantizers are

designed, where either the number of magnitude bins or the number of phase regions

is doubled (for high-rate case), or halved (for low-rate quantizer). In the case of fixed-

rate SRUPQ (FR-SRUPQ), the authors consider only the high-rate quantizers, and

an analytical solution using asymptotic quantization theory is derived, to determine

whether a magnitude refinement or a phase refinement should be applied (i.e., the

one gives smaller distortion).

This thesis concerns the practical performance at finite rates, for both the EC-

SRUPQ and FR-SRUPQ designs.
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Encoder 1 Decoder 1

Encoder 2 Decoder 2Y

X X̂
1R

2R
Ŷ

Figure 1.1: Block diagram of a sequential code for correlated sources.

1.1.3 Scalar Quantizer for Sequential Coding of Correlated

Sources

The problem of sequential coding of correlated sources (SCCS) in an information

theoretical sense was introduced in (Viswanathan and Berger, 2000). The authors of

(Viswanathan and Berger, 2000) gave a complete characterization of the achievable

rate-distortion region.

Figure 1.1 illustrates the framework of SCCS, where (X, Y ) is a pair of jointly dis-

tributed random variables. First encoder 1 observes only the source X and encodes it

at rate R1. Decoder 1 receives the output of encoder 1 and reconstructs an estimation

X̂ of X. Subsequently, encoder 2 observes both X and Y and generates a description

of Y at rate R2. Decoder 2 then utilizes the outputs of both encoders to reconstruct

an estimation Ŷ of source Y . Note that the problem of SCCS can be regarded as a

generalization of the successive refinement coding problem (Rimoldi, 1994) since it

reduces to the latter when the two sources are equal. In practice, the SCCS problem

can be utilized to model a video source, where a sequence of frames corresponds to

a sequence of correlated sources. Moreover, it also provides a theoretical model for

video compression using frame-differencing, as the encoding of a later frame refers to

a previous frame.

In this thesis, we address the problem of designing a practical coding scheme for the

SCCS problem, which uses scalar quantization at each encoder. Specifically, encoder

8
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1 consists of a unique scalar quantizer for the source X, while encoder 2 consists of a

set of scalar quantizers for the source Y , each quantizer corresponding to a particular

output of encoder 1. We refer to such a scheme using the term sequential scalar

quantizer (SSQ). Past work on the design of SSQ includes (Balasubramanian et al.,

1995) and (Chang and Allebach, 1993), where only the FR case is considered and

the quantizers are derived based on the asymptotic quantization theory. Specifically,

the authors of (Balasubramanian et al., 1995) find closed form expressions for the

distortion resulting from SSQ as a function of the quantizer design parameters and

find the optimum parameter values that minimize the distortion. The proposed SSQ

technique is utilized for color palette design of RGB images in (Balasubramanian

et al., 1994), whereas an initial SSQ structure has to be preset in order to obtain the

optimal number of quantization levels. It is worth pointing out that the optimization

in (Balasubramanian et al., 1995) is greedy. Further, the authors of (Chang and

Allebach, 1993) improve the performance of the design procedure by considering the

distribution of the unquantized scalars as well.

This thesis addresses the problem of optimal SSQ design for finite-alphabet sources

in both the FR and EC cases. Note that past work (Balasubramanian et al., 1995;

Chang and Allebach, 1993) did not consider EC-SSQ, while the optimality claims

for the FR-SSQ design algorithms hold only asymptotically as the rate approaches

infinity.

1.2 Contribution

This section provides the detailed contribution of this thesis.

9
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1.2.1 Design of Unrestricted Polar Quantizer

In this thesis we propose efficient globally optimal UPQ design algorithms, for

both EC and FR cases, for the class of UPQs with magnitude quantizer thresholds

restricted to a predefined finite set. In practice this finite set can be a fine uniform

discretization of the interval [0, B] for some sufficiently large B.

In the ECUPQ case, we formulate the optimization problem as the minimization

of the Lagrangian for a given multiplier λ, which is the same formulation as in (Vafin

and Kleijn, 2005). Thus, the cost function is actually a weighted sum of the quan-

tizer distortion and entropy. This formulation readily simplifies the problem of rate

allocation between the magnitude quantizer and phase quantizers. Specifically, for

each bin of the magnitude quantizer the optimal number of phase levels of the phase

quantizer can be determined independently of other bins. This observation is critical

for our approach since it allows us to convert the cost function (after determining

the optimal phase quantizer corresponding to each magnitude bin) to a summation

of the costs of individual magnitude bins. Thus, this problem can be modeled as a

minimum-weight path (MWP) problem in a certain weighted directed acyclic graph

(WDAG), where each edge represents a possible bin of the magnitude quantizer. In

order to expedite the computation of all weights we develop a fast strategy for find-

ing the optimal number of phase levels for all possible magnitude bins. The overall

running time of the solution algorithm is O(K2 +KPmax), where K is the size of the

set from which the magnitude thresholds are selected, while Pmax is an upper bound

for the number of phase levels corresponding to a magnitude bin.

Enabled with this tool we proceed to answer the initial questions Q1 and Q2 in

Section 1.1.1. For this we have tested the proposed ECUPQ design algorithm for a

bivariate Gaussian source for rates up to 6 bits/sample. Our experiments show that

10
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the proposed approach outperforms both the entropy-coded UPQ of (Wilson, 1980)

and the practical ECUPQ of (Vafin and Kleijn, 2005) designed based on the high rate

assumption. The gain of our scheme over the scheme of (Wilson, 1980) ranges from

0.216 to 0.755 dB, and is always higher than 0.6 dB when the rate is larger than 1.5

bits/sample. The improvement over the latter scheme is higher than 0.5 dB for rates

in the range 2.050 to 2.495 bits/sample and remains higher than 0.1 dB for rates up to

4.0 bits/sample. Additionally, we have observed that the performance of our design

is very close to the asymptotic ECUPQ performance derived in (Vafin and Kleijn,

2005). We have also compared the proposed ECUPQ with the ECRQ obtained using

the algorithm of (Muresan and Effros, 2008) for optimal entropy-constrained scalar

quantizer design. We found that ECUPQ has an advantage in terms of performance

versus ECRQ, even if small, for rates between 0.5 and 2.256. Notably, the highest

improvements are achieved for rates ranging from 1.0 to 1.377 and reach values higher

than 0.1 dB. In conclusion, our results show that the benefit of the proposed ECUPQ

scheme is most prominent for rates up to about 2.5 bits/sample. It is important

to emphasize that this range of encoding rates is of interest in lossy image coding,

especially for applications such as network image transmission or remote sensing.

Actually, one of the reasons of the development of the JPEG 2000 image compression

standard was the need to improve the performance at low bit rates (Skodras et al.,

2001; Taubman and Marcellin, 2012).

In the FRUPQ case, the solution algorithm is based on dynamic programming

sped up with the aid of a fast matrix search technique in totally monotone matrices

(Aggarwal et al., 1987), and achieves the time complexity of O(KN2), where N is the

total number of quantization bins.

It is worth pointing out that the design of FRUPQ has significant differences

11
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versus the design of ECUPQ. Specifically, the design of FRUPQ minimizes the distor-

tion with a constraint on the number of levels, while the problem of ECUPQ design

is formulated as the unconstrained minimization of a weighted sum of distortion and

entropy. These different formulations call for different solution approaches, with dis-

tinct time complexities. Additionally, in the FRUPQ case, we solve the problem for

any possible number N of quantizer levels, while the algorithm for ECUPQ can find

only the ECUPQs corresponding to points on the lower boundary of the convex hull

of the set of entropy-distortion pairs.

We point out that the design approach based on modeling the problem as an

MWP problem in some WDAG, with or without a constraint on the number of edges,

has been used in the past for the design of other scalar quantizer systems. For in-

stance, it was employed for the design of fixed-rate quantizers (Aggarwal et al., 1994),

entropy-constrained quantizers (Muresan and Effros, 2002, 2008), Wyner-Ziv quan-

tizers (Muresan and Effros, 2002, 2008), multi-resolution and multiple description

quantizers (Dumitrescu and Wu, 2002, 2005, 2007; Muresan and Effros, 2002, 2008),

as well as joint source-channel quantizer with random index assignment (Dumitrescu,

2016). The aspect which distinguishes the most the proposed ECUPQ and FRUPQ

designs from the aforementioned work, is that the optimization problem that needs

to be solved in order to compute the weight of a graph edge is of a different nature.

Another notable contribution of this work resides in proposing the first algorithm

which handles efficiently the problem of rate allocation between the magnitude and

phase quantizers, while still guaranteeing the globally optimal solution (under certain

constraints) at finite rates.
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1.2.2 Design of Successively Refinable Unrestricted Polar Quan-

tizer

This thesis also presents the design of SRUPQs with two refinement stages, for

both EC and FR cases. The proposed algorithms are globally optimal under the

constraint that the magnitude quantizers’ thresholds are confined to finite sets, which

are fine uniform discretizations of the same interval [0, B] for some sufficiently large

B.

The optimization problem for the EC-SRUPQ case is formulated as the mini-

mization of a weighted sum of the distortions and entropies of the coarse and fine

component UPQs. This formulation further enables the approach of converting the

cost function (after evaluating the refined UPQ and the optimal phase quantizers cor-

responding to each coarse magnitude bin) to a summation of the costs of individual

magnitude bins of the coarse UPQ. Therefore, this problem can be modeled as an

MWP problem in a certain WDAG, where each edge represents a possible bin of the

coarse magnitude quantizer. To achieve this goal, the proposed solution proceeds in

a series of steps including solving the MWP problems for multiple node pairs in an-

other WDAG, which corresponds to the refined UPQ. Further, the efficient algorithm

of evaluating the optimal number of phase levels for all possible magnitude bins of

the refined UPQ is also presented. The overall running time of the solution to EC-

SRUPQ case is O(K1K
2
2Pcmax), where K1 and K2 are the sizes of the sets of possible

magnitude thresholds of the coarse UPQ and fine UPQ components, respectively, and

Pcmax is the maximum number of phase levels of the coarse UPQ.

Another contribution of this thesis lies in the optimal design of FR-SRUPQ. The
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proposed solution algorithm involves solving a series of dynamic programming prob-

lems, where each problem deals with a single description FRUPQ design. Addition-

ally, we point out that the dynamic programming formulation allows the design of

FR-SRUPQ with any possible number of quantizer levels. The overall time complex-

ity of the proposed FR-SRUPQ design algorithm amounts to O(K1K2N
′2N1), where

N1 is the number of bins of the coarse UPQ, while N ′ denotes the ratio between the

number of bins of the fine UPQ and the coarse UPQ.

The algorithm for ECUPQ design relies on solving a single MWP problem in a

certain WDAG in conjunction with a procedure to compute the edge weights. The

proposed algorithm for optimal EC-SRUPQ design is much more involved and needs

to solve the MWP problem for multiple node pairs, where the framework for ECUPQ

can no longer be applied. As a result, it also has a higher time complexity than the

algorithm of ECUPQ design. Similar observations can be made for the FR-SRUPQ

case. The algorithm for FRUPQ design solves a single stage dynamic programming

problem, which is now one basic step in the FR-SRUPQ framework, and the overall

asymptotic running time also increases.

It is also important to discuss the relation between this work and the work on the

design of successively refinable scalar quantizers (SRSQ) (Dumitrescu and Wu, 2004;

Muresan and Effros, 2008; Dumitrescu and Wu, 2002). The SRSQ design algorithms

in the aforementioned work also include steps resembling solving the MWP problem

for multiple node pairs in a WDAG. The connection/similarity with the SRSQ stems

from the existence of the embedded partitions of the magnitude quantizers in the

SRUPQ. On the other hand, as the SRUPQ is essentially a two-dimensional quantizer,

the need to optimize the phase quantizer for each magnitude bin adds an additional

level of complexity to the SRUPQ design problem. More specifically, it makes the

computation of the edge weights more involved than in the SRSQ case.
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1.2.3 Design of Scalar Quantizer for Sequential Coding of

Correlated Sources

The design of SSQs for finite-alphabet correlated sources in the FR and EC cases,

is another contribution of this thesis. The proposed solutions are globally optimal for

the class of EC-SSQs, respectively FR-SSQs with convex cells.

In the EC case we formulate the optimization problem as the minimization of a

weighted sum of the distortions at the two decoders and the rates at the two encoders.

Note that this formulation corresponds to determining the points on the lower bound-

ary of the convex hull of the set of all quadruples of rates and distortions achievable

using EC-SSQ. The proposed algorithm relies on solving the MWP problem in a series

of appropriately constructed WDAGs. The time complexity of our solution amounts

to O(K2
1K

2
2), where K1 and K2 are the respective sizes of the two source alphabets.

In the FR case we impose the rate constraint at encoder 1 by fixing the number of

levels of the corresponding quantizer. The rate of each quantizer at the second encoder

equals the logarithm of its number of levels. As in (Balasubramanian et al., 1995;

Chang and Allebach, 1993) we allow different encoder 2 quantizers to have different

numbers of cells and compute the encoder 2 rate as the expectation of the rates of

component quantizers. The optimization problem is formulated as the minimization

of a weighted sum of the distortions at the two decoders and of the rate at encoder

2. The main difference between the optimization problems in the EC and FR cases

stems from the fact that in the EC case the rate of a quantizer can be written as

a sum of rates corresponding to individual quantizer cells, which is not possible in

the FR case. Because of this difference the solution to the FR problem is more

involved. In particular, it needs to solve length-constrained MWP problems in a series

of WDAGs, rather than unconstrained MWP problems as in the EC case. Using the
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straightforward solution algorithm for the length-constrained MWP problems leads to

a total time complexity of O(K2
1K

3
2). We further show that in some of these WDAGs

the edge weights satisfy the Monge property, fact which enables the speed up of the

solution by a factor of K2.

As mentioned earlier, in both the EC and FR cases we design the SSQ under

the constraint of cell convexity. It is important to highlight that this constraint does

not preclude the optimality of the quantizers for the source Y (see Figure 1.1) since

the design of each such quantizer reduces to the problem of optimal scalar quantizer

design for the conditional probability mass function (pmf) of Y given the particular

output of the quantizer for X.

We point out that, in the case of continuous-alphabet sources, it is intuitive that

approximate solutions to the EC-SSQ, respectively FR-SSQ, design problem can be

obtained by applying the proposed algorithm to discretizations of the original sources.

Another notable contribution of this thesis is a theoretical proof of the fact that the

SSQ obtained in this way approaches the performance of the optimal SSQ (with

convex cells) for the original sources as the discretization increases in accuracy, if the

sources have a continuous joint probability density function (pdf).

Note that for the SRSQ design problem (Muresan and Effros, 2008; Dumitrescu

and Wu, 2002, 2004), the goal is also to design a quantizer for the first encoder

and conditional quantizers for the second encoder. The main difference is that for the

SRSQ design problem all quantizers are designed for the same source. In SSQ scenario

the quantizers operating at the different decoders are for distinct sources. It turns out

that this generalization significantly complicates the problem, which can no longer be

solved by simply extending the framework in (Dumitrescu and Wu, 2004; Muresan

and Effros, 2008; Dumitrescu and Wu, 2002). To illustrate this point note that the

proposed design algorithm runs in O(K4) time for both EC-SSQ and FR-SSQ, when
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K1 = K2 = K. On the other hand, the optimal design of SRSQ can be performed in

O(K3) time for the EC case (Muresan and Effros, 2008; Dumitrescu and Wu, 2002),

respectively in O(K2) time for the FR case (Dumitrescu and Wu, 2004).

1.3 Thesis Layout and Related Publications

The rest of this thesis is structured as follows. Chapter 2 presents the algorithm

for the design of UPQs, while the design of SRUPQs is treated in Chapter 3. Chapter

4 proposes the design of SSQs, and both EC and FR cases are considered in each

aforementioned chapter. Chapter 5 finally concludes this thesis and proposes some

ideas to be investigated in future work.

This thesis consists of results of original research conducted by myself, except for

contributions made by my supervisor, Dr. Sorina Dumitrescu. The following is a list

of the publications which resulted from this research.

The content of Chapter 2 has been published in

• Wu, H. and Dumitrescu, S. (2018). Design of optimal entropy-constrained un-

restricted polar quantizer for bivariate circularly symmetric sources. In Proc.

2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), IEEE.

• Wu, H. and Dumitrescu, S. (2018). Design of optimal entropy-constrained unre-

stricted polar quantizer for bivariate circularly symmetric sources. IEEE Trans-

actions on Communications, 65(5), 2169–2180.

• Wu, H. and Dumitrescu, S. (2018). Design of optimal fixed-rate unrestricted po-

lar quantizer for bivariate circularly symmetric sources. IEEE Signal Processing

Letters, 25(5), 715–719.
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The content of Chapter 3 is presented in

• Wu, H. and Dumitrescu, S. (2018). Design of optimal entropy-constrained suc-

cessively refinable unrestricted polar quantizer for bivariate circularly symmetric

sources. In Proc. 2018 29th Biennial Symposium on Communications (BSC),

IEEE.

• Wu, H. and Dumitrescu, S. (2018). Design of successively refinable unrestricted

polar quantizer, to be submitted.

The content of Chapter 4 is presented in

• Wu, H. and Dumitrescu, S. (2017). Design of optimal entropy-constrained scalar

quantizer for sequential coding of correlated sources. In Proc. 2017 IEEE In-

formation Theory Workshop (ITW), pages 524–528. IEEE.

• Wu, H. and Dumitrescu, S. (2018). Design of optimal scalar quantizer for se-

quential coding of correlated sources, IEEE Transactions on Communications,

A revision was submitted.
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Chapter 2

Design of Unrestricted Polar

Quantizer for Bivariate Circularly

Symmetric Sources

This chapter proposes algorithms for the design of UPQs for bivariate circularly

symmetric sources, for both EC and FR cases. The algorithms are globally optimal

for the class of UPQs with magnitude quantizers’ thresholds confined to a finite set.

The optimization problem for ECUPQ is formulated as the minimization of a

weighted sum of distortion and entropy and the proposed solution is based on modeling

the problem as a MWP problem in a certain WDAG. Each graph edge corresponds to

a possible magnitude quantizer bin and computing its weight involves solving another

optimization problem. We develop a fast strategy for evaluating all edge weights,

leading to a O(K2 +KPmax) time solution algorithm, where K is the size of the set of

possible magnitude thresholds and Pmax is the maximum number of phase levels. The

solution algorithm of FRUPQ is based on dynamic programming, which is further

accelerated by exploiting a monotonicity property of the cost function. The time
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complexity of the accelerated algorithm is O(KN2), where N is the number of target

qunatizer levels.

The practical performance of the proposed algorithms is assessed for a bivari-

ate circularly symmetric Gaussian source. Our results demonstrate that the pro-

posed ECUPQ design achieves performance very close to the asymptotically optimal

ECUPQ, while at low rates it significantly outperforms all previous UPQ schemes.

The experimental results of the proposed FRUPQ algorithm show that our approach

outperforms the previous tractable designs when the total number of quantizer levels

ranges between 25 and 256.

This chapter is organized as follows. The next section introduces the necessary

definitions and notations. Section 2.2 formulates the problem of optimal ECUPQ

design and presents the proposed solution algorithm. The problem of optimal FRUPQ

design and its solution are presented in Section 2.3. The experimental results and their

discussion follow in Section 2.4, while Section 2.5 concludes this chapter.

2.1 Notations

Consider a bivariate random variable with the following circularly symmetric den-

sity, as a function of the polar coordinates r and θ,

p(r, θ) =
1

2π
g(r), 0 ≤ r <∞, 0 ≤ θ < 2π.

Note that g(r) is the marginal probability density function (pdf) of the magnitude

variable, while the phase variable is uniformly distributed over the interval [0, 2π).

Additionally, notice that the magnitude and phase variables are independent. An ex-

ample of such a variable is a two-dimensional memoryless Gaussian vector (X1, X2),
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i.e., where X1 and X2 are independent and have identical marginal pdfs. Quantiza-

tion of Gaussian variables is interesting since it has numerous practical applications.

For example, the joint distribution of discrete Fourier transform coefficients of a sta-

tionary data sequence is asymptotically Gaussian (Pearlman and Gray, 1978). Also,

the probability density function of prediction error signal in a differential pulse code

modulation coder for moving pictures can be modeled as Gaussian (Vogel, 1995).

LetM denote the number of magnitude levels of the UPQ and let r , (r0, r1, · · · , rM)

denote the vector of thresholds of the magnitude quantizer, where

r0 = 0 < r1 < r2 < · · · < rM−1 < rM =∞.

In this thesis, we use interchangeably the terms vector of thresholds and quantizer

(or encoder) partition.

For 1 ≤ m ≤M1, let Cm denote the m-th cell (or bin) of the magnitude quantizer,

i.e., Cm = {r|rm−1 ≤ r < rm}. Further, let P , (P1, P2, · · · , PM), where Pm denotes

the number of phase regions of the phase quantizer corresponding to Cm, 1 ≤ m ≤M .

Each phase quantizer is uniform, consequently, each quantization bin of the UPQ can

be represented as

R(m, s) =

{
rejθ|rm−1 ≤ r < rm, (s− 1)

2π

Pm
≤ θ < s

2π

Pm

}
,

for 1 ≤ m ≤ M , and 1 ≤ s ≤ Pm. Clearly, the total number of quantization bins of

the UPQ is N =
∑M

m=1 Pm.

1Note that the number of magnitude levels has to be finite in the fixed-rate case, while in the
entropy-constrained case it may be infinite. However, following the prior work on the ECUPQ design,
we only consider a finite number of magnitude levels.
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The reconstruction for quantizer bin R(m, s) is Ame
jθm,s , where Am is the re-

construction value of the magnitude for the m-th magnitude level, and θm,s is the

reconstruction value for the phase.

We will use the squared error as a distortion measure. Therefore, the expected

distortion (per sample) of the UPQ can be expressed as (Senge, 1977; Gallagher, 1978;

Wilson, 1980)

D =
1

2

M∑
m=1

Pm∑
s=1

∫ rm

rm−1

∫ s 2π
Pm

(s−1) 2π
Pm

‖rejθ − Amejθm,s‖2p(r, θ)dθdr

=
1

2

M∑
m=1

Pm∑
s=1

∫ rm

rm−1

∫ s 2π
Pm

(s−1) 2π
Pm

(r2 + A2
m − 2rAm cos(θ − θm,s))

g(r)

2π
dθdr. (2.1)

The best reconstruction values, which minimize the distortion, were determined

in prior work (Senge, 1977; Gallagher, 1978; Wilson, 1980) by solving ∂D/∂θm,s = 0

and ∂D/∂Am = 0, leading to

θm,s = (2s− 1)π/Pm, (2.2)

Am = sinc
(

1
Pm

) ∫ rm
rm−1

rg(r)dr∫ rm
rm−1

g(r)dr
, (2.3)

where sinc( 1
Pm

) = sin(π/Pm)
π/Pm

. By exploiting (2.2) and (2.3), the expected distortion can

be simplified as

D =
1

2

(
M∑
m=1

∫ rm

rm−1

r2g(r)dr −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr

)

=
1

2

(∫ ∞
0

r2g(r)dr −
M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr

)
. (2.4)

Notice that, since the reconstruction values of the UPQ are given by (2.2) and (2.3),

it follows that the tuples r and P completely specify the UPQ.
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We point out that the proposed algorithms of UPQs are under the constraint that

the magnitude quantizers’ thresholds take values in a finite set A = {a1, a2, · · · , aK}.

This set can be obtained by finely discretizing the interval [0, B], for some B chosen

such that the probability that the magnitude level is larger than B, to be sufficiently

small.

In the following section we formulate the problem of optimal ECUPQ design and

propose a solution algorithm. The counterpart for the FR case is addressed in Section

2.3.

2.2 Optimal ECUPQ Design Algorithm

2.2.1 Problem Formulation

Let Ia and Iθ denote the random variables representing the magnitude and phase

quantization indexes, respectively. Let H(Ia, Iθ) denote the joint entropy of (Ia, Iθ),

which can be expressed as follows

H(Ia, Iθ) = H(Ia) +H(Iθ|Ia)

=
M∑
m=1

q(Cm)(− log2 q(Cm) + log2 Pm), (2.5)

where for C ⊆ R, q(C) =
∫
C
g(r)dr. Then the entropy of the UPQ (in bits/sample)

is defined H(Ia, Iθ)/2.

Following prior work on entropy-constrained quantization (Chou et al., 1989;

Muresan and Effros, 2008; Vafin and Kleijn, 2005) we formulate the problem of
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ECUPQ design as follows2

min
M,r,P

L(r,P, λ), (2.6)

for fixed Lagrangian multiplier λ > 0, where

L(r,P, λ) , D + λH(Ia, Iθ)/2.

It is known (Everett III, 1963; Luenberger, 1997) that the set of solutions to problem

(2.6), when λ varies over (0,∞), is the set of UPQs such that the corresponding pair

(H(Ia, Iθ)/2, D) is on the lower boundary of the convex hull of the set of all possible

pairs (H(Ia, Iθ)/2, D). Thus, a UPQ which is a solution to problem (2.6) minimizes

the distortion for the corresponding entropy, thus it is an ECUPQ3.

Considering that the magnitude thresholds will take values in finite set A, the

problem that we will solve in this section is the following

minM,r,P L(r,P, λ), (2.7)

subject to ri ∈ A, 1 ≤ i ≤M − 1.

2.2.2 Graph Model

In this subsection we show how the minimization problem (2.7) can be modeled

as an MWP problem in a certain WDAG. For this we need first to perform some

manipulation of the cost function. Notice that the first term in (2.4) is constant,

therefore we can remove it from the cost function. Thus, minimizing L(r,P, λ) is

2Note that the minimum may be achieved by a configuration with infinite M .
3As the Lagrangian formulation is heavily utilized throughout this thesis, the relation between

the formulation of the optimal quantizer design problem as a constrained optimization problem and
the corresponding Lagrangian relaxation is explained in more detail in appendix A.
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equivalent to minimizing F(r,P), where

F(r,P) ,
1

2

(
−

M∑
m=1

A2
m

∫ rm

rm−1

g(r)dr + λH(Ia, Iθ)

)
.

Further, substituting (2.3) and (2.5) into the above equation leads to

F(r,P) =
1

2

M∑
m=1

∫ rm

rm−1

g(r)dr

(
−sinc2

(
1

Pm

)
x2(Cm) + λ log2

Pm∫ rm
rm−1

g(r)dr

)
, (2.8)

where for C ⊆ R, x(C) =
∫
C rg(r)dr∫
C g(r)dr

.

Now it can be seen that if the vector of thresholds r is fixed, then Pm can be

optimized separately for each m. Specifically, the optimal value of Pm, 1 ≤ m ≤ M ,

is

P ∗m = arg min
Pm

(
−sinc2

(
1

Pm

)
x2(Cm) + λ log2 Pm

)
,

since
∫ rm
rm−1

g(r)dr and x(Cm) are fixed, for fixed r.

Consider now the following notations. For each 0 ≤ α < β ≤ ∞, denote

q[α, β) ,
∫ β

α

g(r)dr,

x[α, β) ,

∫ β
α
rg(r)dr∫ β

α
g(r)dr

,

P ∗[α,β) , min arg min
P

(
−sinc2

(
1

P

)
(x[α, β))2 + λ log2 P

)
, (2.9)

where the minimization is over all positive integers P 4. Note that, if there are more

values P minimizing the cost in (2.9), we select the smallest one as P ∗[α,β).

Further, by replacing Pm in (2.8) by P ∗[rm−1,rm), we obtain a new cost function

4The fact that the minimum in (2.9) is achieved follows according to Lemma 2.1 in the following
section.
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which only depends on r

F̄(r) ,
1

2

M∑
m=1

q[rm−1, rm)

(
λ log2

P ∗[rm−1,rm)

q[rm−1, rm)
− sinc2

(
1

P ∗[rm−1,rm)

)
(x[rm−1, rm))2

)
.

(2.10)

According to the above discussion, problem (2.7) is equivalent to the following

minM,r F̄(r) (2.11)

subject to ri ∈ A, 1 ≤ i ≤M − 1.

The next step is based on the observation that the cost F̄(r) can be expressed as

a summation of costs of the individual intervals [rm−1, rm), fact which allows us to

regard it as the weight of a path in a certain WDAG, as we show next.

Let us assume that the elements of A are labeled in increasing order, i.e., 0 < ai <

ai+1, for 1 ≤ i ≤ K − 1. Additionally, let us denote a0 = 0 and aK+1 =∞. Construct

now the WDAG G = (V,E,w), where V = {0, 1, 2, · · · , K + 1} is the vertex set, and

E = {(u, v) ∈ V 2 | 0 ≤ u < v ≤ K + 1} is the edge set. Further, the weight of each

edge (u, v) is defined as follows,

w(u, v) ,
1

2
q[au, av)

(
−sinc2

(
1

P ∗[au,av)

)
(x[au, av))

2 + λ log2

P ∗[au,av)

q[au, av)

)
, (2.12)

The source node in this graph is vertex 0 and the final node is K + 1. A path

in this graph from some node u to some node v is any sequence of connected edges

starting at u and ending at v. Clearly, any path from the source to the final node can

be represented as an (s + 1)-tuple of vertexes t = (t0, t1, · · · , ts), satisfying t0 = 0,

ts = K+1 and tm−1 < tm, 1 ≤ m ≤ s, for some s ≥ 1. Note that s equals the number

26



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

0 1 2 3 4

0 1 2 3 4

Figure 2.1: Illustration of the graph G (top) for K = 3 and a path in the graph
(bottom). Nodes are depicted with circles and edges with arcs. The path shown on
the bottom corresponds to the magnitude quantizer with bins [0, a2) and [a2,∞).

of edges on the path. Let us denote by T(s) the set of all paths from the source to the

final node with exactly s edges, for each s ≥ 1. The weight W (t) of path t is defined

as the sum of the weights of its edges, i.e.,

W (t) ,
s∑
i=1

w(ti−1, ti).

Let us associate now to each (M + 1)-tuple of thresholds r, with components from

the set A, where M ≥ 1, the M -edge path t ∈ T(M), such that rm = atm for each

1 ≤ m ≤ M − 1. In other words, the m-th edge on this path, which is (tm−1, tm),

corresponds to the m-th magnitude cell [rm−1, rm). Then it is easy to see that the

weight of path t equals the cost F̄(r). Additionally, the above correspondence is

one-to-one. Therefore, we conclude that problem (2.11) is equivalent to the MWP

problem in the graph G, i.e., the problem of finding the path with the smallest weight,

from the source to the final node.

Figure 2.1 illustrates the graph G (top) for the case when K = 3, and a path

in the graph (bottom). The vertexes are represented with circles and the edges are

represented with arcs. The path depicted on the bottom consists of two edges (0, 2)

and (2, 4) and corresponds to the magnitude quantizer with bins [0, a2) and [a2,∞).

It is known that solving the MWP problem in the WDAG G takes O(|V |+ |E|) =

27



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

O(K2) operations, if the edge weights can be evaluated in constant time. However,

in our case, evaluating the weight of an edge requires solving the corresponding opti-

mization problem (2.9). Therefore, we have to solve problem (2.9) for all the edges.

In the next subsection we present an efficient way to accomplish this goal.

2.2.3 Edge Weights Computation and Solution Algorithm

In order to be able to compute each edge weight in constant time when it is needed,

we can include a preprocessing stage which solves problem (2.9) for all the edges and

stores the results. First we derive an important property of the optimal number of

phase regions P ∗[au,av), based on which an efficient search strategy can be developed.

Let us denote P , Z+. Moreover, for any y > 0, we denote f(y) = −sinc2( 1
y
) and

g(y) = ln y and consider the following minimization problem

min
P∈P

(f(P ) + µg(P )), (2.13)

where µ > 0. In view of (2.9), it can be easily verified that P ∗[au,av) is a solution to

problem (2.13) for µ = λ
(x[au,av))2 ln 2

.

Let us assume we know some value Pmax such that

P ∗[au,av) ≤ Pmax, for all (u, v) ∈ E. (2.14)

We will explain later how to find such a value. The straightforward approach to

solve (2.13) is by computing the cost for each value of P , 1 ≤ P ≤ Pmax, and

then determining the minimum. Doing so for each edge of the graph amounts to

O(K2Pmax) operations for the preprocessing step. We will show that the procedure

can be considerably sped up by exploiting properties of the solutions to problem
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Figure 2.2: Illustration of the set U of points of coordinates (g(P ), f(P )), and of the

set Û, the lower boundary of the convex hull of U. The number near each convex hull
edge represents its slope. When µ = 0.35 the solution to problem (2.13) is P ∗ = 4
since the line of slope −0.35 passing through S(4) is a support line for U. Note that
S(2) is the only point in U which is not an extreme point.

(2.13).

For P ∈ P let us denote by S(P ) the point in the plane of coordinates (g(P ), f(P )).

Additionally, let U denote the set of points {S(P )|P ∈ P}. It is known (Everett III,

1963; Luenberger, 1997) that some value P ∗ minimizes the cost in (2.13) if and only

if the point S(P ∗) is situated on the lower boundary of the convex hull of U, and the

line of slope −µ passing through S(P ∗) is a support line for U.

Let us denote by Û the lower boundary of the convex hull of U. Note that any

point S(P ) ∈ U ∩ Û is called an extreme point of U. Consider ordering the set of

extreme points in increasing order of P . Since the function g(·) is strictly increasing,

the aforementioned order is consistent with the increasing order of g(P ). We will

say that two extreme points are consecutive if they are consecutive with respect to
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the above order. Notice that since the set U is finite, the set Û is the union of line

segments connecting any two consecutive extreme points. Any such line segment is

called a convex hull edge. Figure 2.2 illustrates the sets U and Û. It also shows that

P ∗ = 4 is the solution to problem (2.13) when µ = 0.35 since the line of slope −0.35

passing through S(4) is a support line for U.

Let P̂ denote the set of integers P ∈ P such that S(P ) is an extreme point of U.

For each P ∈ P̂, except for the first and the last ones, further denote by left slope(P )

(respectively, right slope(P )) the slope of the convex hull edge to the left (respectively,

right) of S(P ), i.e., connecting S(P ) with the previous (respectively, next) extreme

point. Note that left slope(1) = −∞. Then the following relation holds

left slope(P ) ≤ right slope(P ), for any P ∈ P̂. (2.15)

An intuitive interpretation of the above relations is that when traversing the set of

convex hull edges from left to right, i.e., when moving through the extreme points in

increasing order of P , the slope of the convex hull edge does not decrease. We see

that condition (2.15) is verified in Figure 2.2.

Finally, the condition that the line of slope −µ passing through some extreme

point S(P ) is a support line to U, is equivalent to the following

left slope(P ) ≤ −µ ≤ right slope(P ). (2.16)

In light of the above discussion5, we obtain the following characterization of P ∗[au,av),

stated as a lemma. Its proof is deferred to Appendix B.

5A rigorous proof of the points highlighted above is provided in Appendix B.

30



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

Lemma 2.1. For each (u, v) ∈ E, a value P ∈ P̂ satisfying

left slope(P ) ≤ − λ

(x[au, av))2 ln 2
≤ right slope(P ) (2.17)

always exists, and the smallest such P equals P ∗[au,av). The above lemma together with

(2.15) implies that P ∗[au,av) can be found using a binary search over the set P̂. For this

the knowledge of the set P̂ is needed, which is settled by the following result, proved

in appendix B.

Proposition 2.1. P̂ = P \ {2}.

Note that Figure 2.2 confirms the above result for the case when Pmax = 11.

By applying the aforementioned strategy for each graph edge leads to a time

complexity of O(K2 log ˆ|P|) for the preprocessing step. However, we will show that

the complexity can be even further reduced when Pmax << K log ˆ|P|. For this we use

the following monotonicity result.

Proposition 2.2. For any integers u, u′, v, v′ such that 0 ≤ u < v ≤ K + 1, 0 ≤ u′ <

v′ ≤ K + 1, and such that u ≤ u′ and v ≤ v′, the following inequality holds:

P ∗[au,av) ≤ P ∗[au′ ,av′ ). (2.18)

Proof:

Notice that x[α, β) is the centroid of the interval [α, β). It is known that x[α, β) ≥
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α and that x[α, β) is a non-decreasing function of both α and β6. Then, under the

conditions specified in the hypothesis, it follows that

0 ≤ x[au, av) ≤ x[au′ , av′),

which further leads to

− λ

(x[au, av))2 ln 2
≤ − λ

(x[au′ , av′))2 ln 2
, (2.19)

since λ and ln 2 are positive. The above inequality together with Lemma 2.1 and

relations (2.15) implies inequality (2.18), thus proving the claim.

Remark. Proposition 2.2 implies that

P ∗[au,av) ≤ P ∗[aK ,aK+1) for all 0 ≤ u < v ≤ K + 1.

Then the value of P ∗[aK ,aK+1) can be set as Pmax. In view of Lemma 2.1 and Proposition

2.1, the value P ∗[aK ,aK+1) can be determined by inspecting all positive integers P, P 6= 2,

in increasing order until relation (2.17) is satisfied.

Proposition 2.2 implies that the search range for P ∗[au,av) can be reduced from P̂ to

the smaller set [P ∗[au,av−1), P
∗
[au+1,av)] ∩ P̂, if P ∗[au,av−1) and P ∗[au+1,av) are evaluated first.

Therefore, in order to exploit this observation we need to choose carefully the order of

computation of the values P ∗[au,av). To facilitate a visual representation of this ordering

imagine that P ∗[au,av) is the element on row u and column v of an upper triangular

matrix P ∗. Note that the row indexes range from 0 to K while the column indexes

range from 1 to K + 1, hence the main diagonal contains the elements P ∗[au,au+1),

6A proof of this result can be found in (Trushkin, 1982).
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Algorithm 1: Efficient procedure to precompute all values P ∗[au,av).

for v = 1 to K + 1 do
P ∗[av−1,av) := min arg minP∈P̂E(P, v − 1, v)

for u = v − 2 down to 0 do
P ∗[au,av) := min arg minP ∗

[au,av−1)
≤P≤P ∗

[au+1,av)
E(P, u, v)

0 ≤ u ≤ K. We will compute the elements of this upper triangular matrix starting

in the top left corner, i.e., with P ∗[a0,a1), then proceeding in increasing order of the

columns. Further, on each column we start with the element on the main diagonal

and move up to the top.

The pseudocode of the above procedure is described in Algorithm 1, where we

denote

E(P, u, v) ,

(
−sinc2

(
1

P

)
(x[au, av))

2 + λ log2 P

)
.

In order to evaluate the running time of Algorithm 1 note that the computation

of each entry on the main diagonal takes O(Pmax) time, therefore O(KPmax) time is

needed for all of them. On the other hand, evaluating all entries on any of the other

K superdiagonals takes only O(Pmax + K) operations. To see this consider the j-th

superdiagonal for some j ≥ 1. Its elements are P ∗[au,au+j+1), 0 ≤ u ≤ K − j. The entry

P ∗[au,au+j+1) is evaluated in O(P ∗[au+1,au+j+1) − P ∗[au,au+j)
+ 1) time. Therefore, the total

time for the j-th superdiagonal is

O

(
K−j∑
u=0

(
P ∗[au+1,au+j+1) − P ∗[au,au+j)

+ 1
))

= O
(
P ∗[aK−j+1,aK+1) − P ∗[a0,aj)

+K − j + 1
)

= O (Pmax +K) .

33



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

It follows that the total running time of Algorithm 1 is O(KPmax +K2) time, which

equals O(K2) when Pmax < K. Additionally, since the upper triangular matrix needs

to be stored an extra O(K2) storage space is required.

In order to enable the computation of each edge weight in constant time, the

following cumulative probabilities and first moments are also precomputed and stored

during the preprocessing step,

φi(u) ,
∫ au

0

rig(r)dr,

for i = 0, 1, and 0 ≤ u ≤ K + 1, where a0 = 0 and aK+1 = ∞ by convention. The

values φi(u) can be computed in increasing order of u using

φi(u) = φi(u− 1) +

∫ au

au−1

rig(r)dr.

Thus, assuming that the evaluation of each integral
∫ au
au−1

rig(r)dr takes constant time,

the computation of all these cumulative values takes O(K) time. Additionally, O(K)

storage space is needed to store them. Based on these values, when the weight of edge

(u, v) is needed, the quantities q[au, av) and x[au, av) will be computed in O(1) time

using

q[au, av) = φ0(v)− φ0(u),

x[au, av) =
φ1(v)− φ1(u)

q[au, av)
.

Recall that if all values P ∗[au,av) are precomputed, O(K2) storage space is required.

If K is large and memory is an issue, we can avoid this by computing the values

P ∗[au,av) on the fly during the algorithm execution and storing them only temporarily.

This can be done by organizing the computations of the MWP algorithm such
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that the edges are traversed in the same order as in Algorithm 1, then computing

the value P ∗[au,av) when the edge (u, v) is traversed, and storing this value only until

all the values corresponding to column v + 1 in the upper triangular matrix P ∗ are

evaluated. This way the extra memory is reduced to O(K).

The following pseudocode in Algorithm 2 describes the algorithm to solve problem

(2.7) including the above procedure for determining the values P ∗[au,av). We point out

that Ŵ (v) denotes the weight of the MWP from the source to node v, and ε(v) records

the node preceding v on this optimal path. At the end, the MWP can be tracked

back by utilizing the values of ε(v). The output is the vector t representing the nodes

on the path. During the preprocessing stage the value of Pmax is evaluated using

Pmax = P ∗[aK ,aK+1), and the cumulative probabilities and first moments are computed

and stored.

In conclusion, solving problem (2.7) takes O(K2 + KPmax) time in total. If the

condition Pmax < K is satisfied, which is the case in our experiments, then the total

time complexity for solving problem (2.7) is O(K2).

2.3 Optimal FRUPQ Design Algorithm

2.3.1 Problem Formulation

For each positive integer k and extended real number β ∈ A∩ (R ∪ {∞}), denote

by Tk(β) the set of all vectors of thresholds r = (r0, r1, · · · , rk) such that 0 = r0 <

r1 < r2 < · · · < rk = β and rm ∈ A for all 1 ≤ m ≤ k − 1.

The problem of FRUPQ design can be formulated as the following level-constrained

35



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

Algorithm 2: Solution algorithm for problem (2.7).

Preprocessing Stage
begin

Ŵ (0) = 0
for v = 1 to K + 1 do

Allocate memory of size v to store P ∗[·,av)

P ∗[av−1,av) := min arg minP∈P̂E(P, v − 1, v)

Ŵ (v) := Ŵ (v − 1) + w(v − 1, v)
ε(v) := v − 1
for u = v − 2 down to 0 do

P ∗[au,av) := min arg minP ∗
[au,av−1)

≤P≤P ∗
[au+1,av)

E(P, u, v)

if
(
Ŵ (u) + w(u, v) < Ŵ (v)

)
then

Ŵ (v) := Ŵ (u) + w(u, v)
ε(v) := u

Deallocate memory of P ∗[·,av−1)

// Restoring the MWP using back-tracking.
i = K + 1
j = 0
s(j) = i
while (i 6= 0) do

j := j + 1
s(j) := ε(i)
i := ε(i)

// Reverse array s to obtain the vector t.
while (i ≤ j) do

ti := s(j − i)
i := i+ 1

36



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

minimization problem

min
M,r,P

D

subject to
M∑
m=1

Pm = N, Pm ∈ Z+, r ∈ TM(∞),

(2.20)

where Z+ is the set of positive integers and N is the target value for the number of

levels of the UPQ. In this section we propose a globally optimal solution to the above

problem.

2.3.2 Dynamic Programming Solution

In this subsection we present a solution to problem (2.20) based on dynamic pro-

gramming. First we will introduce a few more notations. For α ≤ β and positive

integer P denote

ωP (α, β) ,
1

2
f(P ) (x[α, β))2 q[α, β). (2.21)

Notice that the first term of the distortion formulation in (2.4) is constant, therefore it

can be removed from the cost function of (2.20). After doing so the objective function

of (2.20) becomes

O(r,P) ,
M∑
m=1

ωPm(rm−1, rm).

For each pair of positive integers (k, n) with 1 ≤ k ≤ K + 1 and 1 ≤ n ≤ N , consider

problem P(k, n) defined as

min
M,r,P

O(r,P)

subject to
M∑
m=1

Pm = n, Pm ∈ Z+, r ∈ TM(ak).

(2.22)
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Additionally, denote by Ô(k, n) the optimal value of the objective function in (2.22),

for 1 ≤ k ≤ K + 1 and 1 ≤ n ≤ N .

Intuitively, problem (2.22) can be interpreted as finding the optimal FRUPQ with

n levels, corresponding to the portion of the magnitude space ranging from 0 to ak.

It can be easily seen that problem (2.20) is equivalent to P(K + 1, N). The dynamic

programming solution consists of solving all sub-problems P(k, n), for 1 ≤ k ≤ K + 1

and 1 ≤ n ≤ N , using the following recurrence relation

Ô(k, n) = min
0≤t<n

min
0≤j<k

(
Ô(j, t) + ωn−t(aj, ak)

)
, (2.23)

where Ô(0, 0) = 0 and Ô(0, t) = Ô(j, 0) = ∞, for t > 0 and j ≥ 1. The dynamic

programming process evaluates (2.23) in increasing order of k and n. For each pair

(k, n) the minimizations in (2.23) take O(KN) operations if each quantity ωn−t(aj, ak)

can be evaluated in constant time. Since there are O(KN) pairs (k, n) in total, the

time complexity of the solution algorithm becomes O(K2N2). It can be seen from

(2.21) that for computing the values ωn−t(aj, ak) the quantities x[aj, ak) and q[aj, ak)

are needed. In order to enable the computation of each x[aj, ak) and q[aj, ak) in

constant time, the cumulative probabilities and first moments are precomputed and

stored in a preprocessing step as in Section 2.2.3, which only requires O(K) operations.

In the next subsection we will show that the algorithm can be sped up by exploiting

a certain monotonicity property of the objective function.
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2.3.3 Complexity Reduction

For each pair of integers (n, t) with 1 ≤ t < n ≤ N , consider the upper triangular

matrix Gn,t with elements Gn,t(j, k), 1 ≤ j < k ≤ K + 1,

Gn,t(j, k) , Ô(j, t) + ωn−t(aj, ak). (2.24)

Clearly, the minimization over j in (2.23) is equivalent to finding the smallest element

on column k of matrix Gn,t, i.e., finding

Ĝn,t(k) , min
1≤j≤k+1

Gn,t(j, k). (2.25)

Then relation (2.23) is equivalent to

Ô(k, n) = min

(
ωn(0, ak), min

1≤t<n
Ĝn,t(k)

)
. (2.26)

Determining all column minima takes O(K2) time in a general O(K)-by-O(K) matrix.

However, when the matrix is totally monotone this task can be accomplished in O(K)

time using the algorithm nicknamed SMAWK (Aggarwal et al., 1987). According to

(Aggarwal et al., 1987) matrix Gn,t is said to be totally monotone (with respect to

the column minima problem7) if for all j < j′ and k < k′ the following implication

holds

Gn,t(j
′, k) < Gn,t(j, k)⇒ Gn,t(j

′, k′) < Gn,t(j, k
′).

7The total monotonicity is defined in (Aggarwal et al., 1987) for the problem of row maxima,
which can be converted to the column minima problem by transposing the matrix and multiplying
all entries by −1. Here we adapt the definition of total monotonicity to the column minima problem.
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A sufficient condition for the total monotonicity to hold is the following, known as

the Monge condition (Burkard et al., 1996)

Gn,t(j, k) +Gn,t(j
′, k′) ≤ Gn,t(j, k

′) +Gn,t(j
′, k) (2.27)

for all 1 ≤ j < j′ < k < k′ ≤ K + 1.

Proposition 2.3. Matrix Gn,t satisfies the Monge condition.

Proof:

By replacing (2.24) in (2.27) and performing the cancellation of the like terms,

(2.27) becomes equivalent to

ωn−t(aj, ak) + ωn−t(aj′ , ak′) ≤ ωn−t(aj, ak′) + ωn−t(aj′ , ak). (2.28)

Define now, for 1 ≤ j < k ≤ K + 1,

d(j, k) ,
∫ ak

aj

r2g(r)dr − (x[aj, ak))
2 q[aj, ak).

It was shown in (Wu, 1991) that d(j, k) satisfies the Monge condition, i.e., the following

holds

d(j, k) + d(j′, k′) ≤ d(j, k′) + d(j′, k), (2.29)

for all 1 ≤ j < j′ < k < k′ ≤ K + 1. Note from (2.21) that

d(j, k) =

∫ ak

aj

r2g(r)dr +
2

sinc2( 1
n−t)

ωn−t(aj, ak).

By applying the above in (2.29) and performing some algebraic manipulations, relation

(2.28) follows.

The fast solution algorithm proceeds as follows. It iterates over n in increasing
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order from 1 to N . For each n, problem P(k, n) is solved for all k, as follows. We

increase t from 1 to n − 1 and for each t all column minima in matrix Gn,t are

determined using SMAWK. This requires O(K) time for each matrix. Over all values

of t, this amounts to O(KN) operations. After that the minimization over t in (2.23)

is performed, for each k, requiring a total of O(KN) operations. Performing the above

for all n leads to O(KN2) time complexity for the solution algorithm.

Note that in order to apply SMAWK, the matrix Gn,t has to be extended to a full

matrix. This can be done by setting to∞ all elements below the main diagonal. This

extension does not change the column minima, and the full matrix still satisfies the

total monotonicity (Burkard et al., 1996).

The following pseudocode (Algorithm 3) describes the algorithm to solve problem

(2.20). We use the notation ĵn,t(k) for the value of j achieving optimality in (2.25),

and t̂(n, k) for the optimal t in (2.23).

2.4 Experimental Results

This section assesses the practical performance of the proposed UPQ design algo-

rithms. The experiments are conducted for a two-dimensional random vector (X1, X2),

where X1 and X2 are independent and identically distributed Gaussian variables with

zero-mean and unit-variance. After conversion to polar coordinates the joint pdf

becomes

p(r, θ) =
r

2π
exp

(
−r

2

2

)
, 0 ≤ r <∞, 0 ≤ θ < 2π,

where r =
√
x2

1 + x2
2, and θ = tan−1(x2/x1). It then follows that g(r) = r exp(−r2/2).
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Algorithm 3: Solution algorithm to problem (2.20).

Preprocessing Stage
begin

for k = 1 to K + 1 do

Ô(k, 1) = ω1(0, ak) /∗ n = 1 ∗/
ĵ1,0(k) = 0

t̂(1, k) = 0

for n = 1 to N do

Ô(1, n) = ωn(0, a1) /∗ k = 1 ∗/
ĵn,0(1) = 0

t̂(n, 1) = 0

for n = 2 to N do
for t = 1 to n− 1 do

Evaluate Ĝn,t(k) for all k using SMAWK

Record ĵn,t(k) for all k

for k = 2 to K + 1 do

Compute Ô(k, n) using (8)

Record t̂(n, k)

Restore the vectors r and P

Rate 10 log10D 10 log10D
(Wilson, 1980) 10 log10

D(Wilson, 1980)

D
10 log10

D
DG(R)

0.500 −2.127 −1.662 0.465 0.883
0.793 −3.560 −3.344 0.216 1.211
1.000 −4.692 −4.401 0.291 1.328
1.157 −5.596 −5.100 0.496 1.369
1.278 −6.305 −5.952 0.353 1.391
1.377 −6.879 −6.517 0.362 1.411
1.570 −7.996 −7.282 0.714 1.450
1.636 −8.392 −7.721 0.671 1.460
1.754 −9.089 −8.447 0.642 1.473
1.815 −9.444 −8.762 0.682 1.479
1.948 −10.235 −9.626 0.609 1.492
2.256 −12.069 −11.314 0.755 1.515
2.422 −13.056 −12.336 0.720 1.524
2.495 −13.496 −12.774 0.722 1.527

Table 2.1: Performance comparison of the proposed ECUPQ with the entropy-coded
UPQ of (Wilson, 1980) and DG(R), for rates R < 2.5 bits/sample.
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We first consider the case of ECUPQ, where we compare the proposed algo-

rithm with the designs of (Wilson, 1980), (Vafin and Kleijn, 2005) and with entropy-

constrained rectangular quantizer (ECRQ). The finite set of possible thresholds A

is obtained by dividing the range [0, 6] into subintervals of size 0.001 and picking

the thresholds between intervals. In other words, K = 6000 and ai = 0.001i, for

1 ≤ i ≤ K. Moreover, we set Pmax = 600 in the optimization of the number of phase

regions. In order to design an ECUPQ achieving some target rate Rt we run the

algorithm for various values of λ until the entropy of the UPQ becomes sufficiently

close to Rt. We use D to denote the distortion (per sample) of the proposed approach,

computed based on (2.4). The distortion is converted in dB using 10 log10D. The

rate R, in bits/sample, is computed as the entropy of the ECUPQ, i.e., as H(Ia, Iθ)/2.

The comparison against the entropy-coded UPQ of (Wilson, 1980) is performed

for rates in the range from 0.5 to 2.5 bits/sample, based on the results reported in

(Wilson, 1980). The comparison with the asymptotically optimal ECUPQ of (Vafin

and Kleijn, 2005) is performed for rates higher than 2.05.

Table 2.1 illustrates the performance comparison with (Wilson, 1980). Recall that

the UPQ of (Wilson, 1980) is fixed-rate, i.e., it is designed with the aim of minimizing

the distortion for a fixed number N of quantization bins. However, the rate reported

is computed as the entropy of the quantizer. Note that all the results related to the

UPQs of (Wilson, 1980) are taken from (Wilson, 1980). The second last column in

the table shows the gain in performance of the proposed approach versus the method

of (Wilson, 1980). It can be seen that our algorithm always outperforms the design

of (Wilson, 1980) with gains always higher than 0.2 dB, and even larger than 0.6

dB when R ≥ 1.5. Additionally, a peak improvement of 0.755 dB is achieved for

R = 2.256 bits/sample.

The last column in Table 2.1 lists the gap between the ECUPQ distortion and the
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distortion-rate function DG(R) of a univariate Gaussian source, given by

DG(R) = 2−2R.

Note that the gap takes values between 0.883 dB, at rate R = 0.5, and 1.527 dB,

at R = 2.495 bits/sample.

The vectors of thresholds (r1, · · · , rM−1) and the configurations (N,M,P1, · · · , PM)

for the proposed ECUPQ and for the UPQ of (Wilson, 1980) are presented in Table

2.2. We observe that for the same output entropy the fixed-rate UPQ of (Wilson,

1980) has a much smaller number of quantizer bins N than our ECUPQ. The same

observation holds for the number M of magnitude bins. On the other hand, such

a conclusion does not hold for Pm. In particular, we see that ECUPQ has P1 = 1

always, which means (since M > 1) that it has a disc-shaped cell around the origin

(see Figure 2.3a), while for the UPQ of (Wilson, 1980), P1 can take any value between

1 and 5.

By examining the number of phase levels Pm for the proposed ECUPQ we see that

for each rate, Pm increases with increasing m. This is expected in view of Proposition

2.2. On the other hand, it can be noticed that for ECUPQs with the same number

of magnitude levels M , Pm remains the same for each m, 1 ≤ m ≤ M − 1, while as

M increases Pm is non-decreasing most of the time. It would be interesting to find

out if the above observations can be confirmed theoretically and whether they can be

exploited in order to reduce the ECUPQ design complexity. The investigation of such

possibilities is deferred to future work.

Next we compare the performance of the proposed design scheme with the ECUPQ

optimized in (Vafin and Kleijn, 2005) based on the high resolution assumption. We

will use the acronym ASY to refer to the asymptotical ECUPQ performance derived
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Rate 10 log10D 10 log10DASY 10 log10
DASY
D

10 log10
D

DECVQ
10 log10

D
DG(R)

2.050 −10.842 −10.810 0.032 0.135 1.501
2.151 −11.442 −11.417 0.025 0.143 1.509
2.256 −12.069 −12.051 0.018 0.150 1.515
2.422 −13.056 −13.046 0.010 0.158 1.524
2.495 −13.496 −13.490 0.006 0.161 1.527
2.998 −16.511 −16.517 −0.006 0.173 1.539
3.498 −19.517 −19.524 −0.007 0.175 1.541
4.000 −22.542 −22.550 −0.008 0.174 1.540
4.500 −25.557 −25.560 −0.003 0.172 1.538
4.995 −28.538 −28.540 −0.002 0.171 1.536
5.496 −31.555 −31.556 −0.001 0.170 1.536
5.996 −34.560 −34.564 −0.004 0.170 1.536

Table 2.3: Performance comparison of the proposed ECUPQ with ASY, ECVQ and
DG(R), for rates R ≥ 0.5 log2(2πe) bits/sample.

in (Vafin and Kleijn, 2005). Note that the asymptotical distortion (per sample) of

ASY obtained in (Vafin and Kleijn, 2005) is

DASY =
2−(2R−log2(2πe))

12
, (2.30)

for rates R ≥ 0.5 log2(2πe) ≈ 2.047.

Table 2.3 illustrates the performance of the proposed algorithm in comparison

with ASY for several rates in the range 2.050 to 5.996 bits/sample. We see that the

proposed algorithm performs extremely close to ASY. Specifically, for the rates higher

than 2.495 the absolute value of the performance difference is smaller than 0.01 dB,

while for the rates lower than 2.495, our design is actually slightly better reaching

improvements of up to 0.032 dB.

Table 2.3 also shows the gap between the performance of the proposed ECUPQ and

the asymptotical performance (per sample) of the two-dimensional entropy-constrained
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Rate 10 log10D 10 log10DPASY 10 log10
DPASY

D

2.050 −10.842 −10.223 0.619
2.151 −11.442 −10.841 0.601
2.256 −12.069 −11.491 0.578
2.422 −13.056 −12.521 0.535
2.495 −13.496 −12.983 0.513
2.998 −16.511 −16.154 0.357
3.498 −19.517 −19.297 0.220
4.000 −22.542 −22.418 0.124
4.500 −25.557 −25.491 0.066
4.995 −28.538 −28.504 0.034
5.496 −31.555 −31.538 0.017
5.996 −34.560 −34.553 0.007

Table 2.4: Performance comparison of the proposed ECUPQ with PASY.

vector quantizer (ECVQ), computed based on (Gersho, 1979)

DECV Q =
5

36
√

3
2−(2R−log2(2πe)).

Moreover, the difference in performance versus the distortion-rate function is also

presented in Table 2.3. As we can observe the gap between the proposed scheme

and ECVQ is small, taking values from 0.135 dB to 0.175 dB, while the gap to the

theoretical limit given by the distortion-rate function, ranges from 1.501 dB to 1.541

dB.

In addition, we also compare the proposed ECUPQ design with the practical

ECUPQ based on the asymptotic point density functions given in (Vafin and Kleijn,

2005). We refer to the latter scheme using the acronym PASY. The asymptotically

optimal magnitude and phase quantization point densities, denoted by gA(a), gΘ(θ, a),

respectively, which are defined as the inverse of the corresponding quantization step
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sizes, are derived in (Vafin and Kleijn, 2005) as

gA(a) =

√
1

6λ log2(e)
, (2.31)

gΘ(θ, a) =

√
a2

6λ log2(e)
, (2.32)

where λ > 0 is the Lagrangian multiplier and a denotes the reconstructed magnitude

value. Notice that the magnitude quantizer corresponding to (2.31) is uniform with

step size 1/gA(a), while the phase quantizer corresponding to (2.32) has step size

1/gΘ(θ, a).

To implement the UPQ based on equations (2.31) and (2.32) we proceed as follows.

The vector of thresholds r of the magnitude quantizer is obtained by dividing the

interval [0, 6] in subintervals of size 1/gA(a). The middle of each magnitude quantizer

bin is taken as the reconstruction, except for the first bin, for which the reconstruction

is always set to 0. Subsequently, the number of phase regions corresponding to each

magnitude level is computed as the value of 2πgΘ(θ, a) rounded to the closest integer,

where a is reconstruction value of the magnitude. Moreover, the quantized phase value

is taken as the middle of the corresponding phase region as in (2.2). We evaluate the

distortion and entropy of PASY using (2.1), respectively, H(Ia, Iθ)/2, where H(Ia, Iθ)

is given in (2.5).

Table 2.4 depicts the performance of the proposed ECUPQ in comparison with

PASY for rates from 2.050 to 5.996 bits/sample. It can be observed that the proposed

algorithm outperforms PASY for all rates examined. The performance improvement

is between 0.5 and 0.619 dB for rates up to 2.495. The gap gradually decreases as the

rate increases, but it still remains higher than 0.1 dB for rates up to 4. Finally, for

R ≈ 5.996 the gap falls below 0.01 dB.
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Rate 10 log10D 10 log10DECRQ 10 log10
DECRQ

D

0.500 −2.127 −2.093 0.034
0.793 −3.560 −3.483 0.077
1.000 −4.692 −4.579 0.113
1.157 −5.596 −5.470 0.126
1.278 −6.305 −6.180 0.125
1.377 −6.879 −6.767 0.112
1.570 −7.996 −7.920 0.076
1.636 −8.392 −8.321 0.071
1.754 −9.089 −9.030 0.059
1.815 −9.444 −9.393 0.051
1.948 −10.235 −10.192 0.043
2.256 −12.069 −12.053 0.016
2.422 −13.056 −13.048 0.008

Table 2.5: Performance comparison of the proposed ECUPQ against ECRQ.

Since the authors of (Vafin and Kleijn, 2005) show that the asymptotical perfor-

mance of ECUPQ and of ECRQ are identical, we are interested in comparing the

proposed approach against ECRQ at small rates. For this we implement the ECRQ

using as the scalar quantizer for each Cartesian coordinate the entropy-constraint

scalar quantizer designed using the algorithm of (Muresan and Effros, 2008). We

point out that the algorithm of (Muresan and Effros, 2008) guarantees the globally

optimal solution for the problem of minimizing the Lagrangian, when the quantizer

thresholds are confined to a finite set. For fairness of comparison we use the same dis-

cretization step size as for ECUPQ. In other words, to obtain the finite set of possible

thresholds we divide the interval [−6, 6] in subintervals of size 0.001. This algorithm

was used to optimize the ECRQ for rates in the range from 0.5 to 6 bits/sample.

We list in Table 2.2 the number of quantization levels NECRQ of the optimal

ECRQ, and the corresponding vector of thresholds rECRQ = {rECRQ1 , rECRQ2 , · · · , rECRQ√
N ′−1
}

for the scalar quantizer partition, where rECRQ0 = −∞ and rECRQ√
N ′

= ∞ by default,

for various rates between 0.5 and 2.495 bits/sample. The performance comparison
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between ECUPQ and ECRQ is illustrated in Table 2.5 only for the range of rates

from 0.5 to 2.422, since for higher rates the absolute value of the performance differ-

ence is less than 0.01 dB. The results in Table 2.5 show that the proposed ECUPQ

outperforms ECRQ in the low-rate region with improvements reaching up to 0.126

dB. Specifically, the performance improvement first increases as the rate increases up

to about 1.2 bits/sample, after which it gradually deceases. We note that the gap

remains above 0.1 dB for rates between 1 and 1.377.

In order to understand why ECUPQ is better than ECRQ at low rates it is in-

structive to analyze the structure of the quantizer partition. This is depicted in Figure

2.3a for the ECUPQ at rate 1.157 and in Figure 2.3b for the ECRQ at the same rate.

Two possible reasons for the superiority of ECUPQ at low rates are:

1) ECUPQ has higher flexibility in the choice of the number N of quantization

bins, as it can be seen in Table 2.2. Namely, for ECUPQ N could be any

positive integer, while for ECRQ NECRQ can only be a perfect square. We see

that the ECUPQ with rate 1.157 has N = 20, while the ECRQ cannot select

such a value for NECRQ. Instead it has NECRQ = 25. The same conclusion

holds for all the rates illustrated in Table 2.2.

2) We observe in Figure 2.3a that the cell in the center of the ECUPQ is a disc,

which is the perfect shape to minimize the distortion, while in ECRQ all cells are

squares. Actually, by inspecting the configurations (N,M,P1, · · · , PM) in Table

2.2, we see that the proposed ECUPQ always has a disc-shaped cell around the

origin.

It is also interesting to compare the proposed ECUPQ design with the practical

two-dimensional vector quantizer (2DVQ). For this purpose, we have used the “vqd-

tool” in MATLAB R2018a to obtain the practical 2DVQ. The training set contains
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(a) ECUPQ.
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(b) ECRQ.

Figure 2.3: The partitions of proposed ECUPQ (a) and ECRQ (b) at rate R = 1.157
bits/sample.

107 two-dimensional Gaussian source vectors, where the two scalar components are

independent and each has zero-mean and unit-variance. The initial codebook is gen-

erated automatically. The stopping criteria is that the relative decrease of the squared

error has to be smaller than 10−7. Further, when a training vector has the same dis-

tortion for two different codewords, the lower indexed codeword will be selected. The

design is for the fixed-rate case, but entropy coding is applied to the output of the

2DVQ, where the term entropy-coded 2DVQ is used.

Table 2.6 illustrates the performance comparison between the proposed ECUPQ

and the entropy-coded 2DVQ, where the distortion is denoted by DE
2DVQ. The number

of cells (N2DVQ) of the 2DVQ is also given in the table. It can be noticed that

the proposed ECUPQ always outperforms the entropy-coded 2DVQ, reaching a peak

improvement of 0.639 dB at a rate of 2.899 bits/sample. The large improvement can

be explained by the fact that the 2DVQ is optimized under the constraint that the

number of cells is fixed, instead of imposing a constraint on the entropy. Another

reason could be attributed to the local optimality of the 2DVQ design algorithm.
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Rate 10 log10D 10 log10D
E
2DVQ N2DVQ 10 log10

DE2DVQ
D

0.500 −2.127 −1.665 2 0.462
1.000 −4.692 −4.398 4 0.294
1.460 −7.358 −6.918 8 0.440
1.946 −10.217 −9.642 16 0.575
2.418 −13.036 −12.430 32 0.606
2.899 −15.902 −15.263 64 0.639
3.385 −18.778 −18.172 128 0.606
3.878 −21.375 −21.115 256 0.260

Table 2.6: Performance comparison of the proposed ECUPQ against entropy-coded
2DVQ.

To summarize, we conclude that the proposed ECUPQ design algorithm outper-

forms the algorithm of (Wilson, 1980) and PASY at low rates, reaching peak im-

provements of 0.755 dB and 0.619 dB, respectively. We point out that the peak

improvements are achieved for rates lower than 2.495 bits/sample. Additionally, the

proposed scheme is slightly better than ECRQ for rates R ≤ 2.256, with improvements

of up to 0.126 dB achieved at R = 1.157 bits/sample. Additionally, for rates higher

than 2.050 our ECUPQ is extremely close in performance to ASY and is only about

0.175 dB away from the asymptotic ECVQ, while maintaining a lower implementation

complexity.

Next we assess the performance of the proposed FRUPQ design algorithm in com-

parison with the designs of (Perić and Nikolić, 2013), (Wilson, 1980) and (Petković

et al., 2011). In the FRUPQ case, we take K = 3000 and ai = 0.002i, for 1 ≤ i ≤ K.

We applied the dynamic programming algorithm to construct the optimal FRUPQ

with N = 256. The FRUPQs for all N < 256 were also generated during the dynamic

programming process.

Wilson (Wilson, 1980) constructed the optimal FRUPQs for all N between 1

and 16, and for 25, 32 and 36, and reported the optimal configuration M,P, r. Our
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N (M,P1, · · · , PM) (r1, · · · , rM−1) 10 log10D (M,P1, · · · , PM)(Wilson, 1980) (r1, · · · , rM−1)(Wilson, 1980) 10 log10D
(Wilson, 1980) 10 log10

D(Wilson, 1980)

D

25 (3, 5, 9, 11) (0.856, 1.682) −11.3188 (3, 4, 10, 11) (0.798, 1.674) −11.3181 0.0007

36 (4, 3, 8, 12, 13) (0.524, 1.130, 1.898) −12.7805 (4, 1, 8, 13, 14) (0.369, 1.051, 1.848) −12.7772 0.0033

Table 2.7: Performance comparison with the FRUPQ of (Wilson, 1980) and the cor-
responding optimal configuration, for N = 25 and 36.

N (M,P1, · · · , PM) (r1, · · · , rM−1) 10 log10D (M,P1, · · · , PM)(Petković et al., 2011) (r1, · · · , rM−1)(Petković et al., 2011) 10 log10D
(Petković et al., 2011) 10 log10

D(Petković et al., 2011)

D

64 (5, 5, 10, 15, 18, 16) (0.536, 0.998, 1.534, 2.234) −15.150 (6, 2, 6, 11, 15, 16, 14) (0.277, 0.663, 1.120, 1.655, 2.345) −15.082 0.068

128
(8, 1, 7, 13, 18,

22, 24, 24, 19)

(0.180, 0.498, 0.826, 1.174,

1.564, 2.026, 2.650)
−18.053

(8, 4, 9, 14, 18,

22, 23, 22, 16)

(0.324, 0.623, 0.943, 1.290,

1.688, 2.161, 2.806)
−17.991 0.062

256
(11, 1, 8, 14, 20, 25,

29, 33, 35, 35, 32, 24)

(0.138, 0.378, 0.610, 0.848, 1.098,

1.364, 1.660, 1.998, 2.408, 2.972)
−20.985 − − −20.907 0.078

Table 2.8: Performance comparison with the FRUPQ of (Petković et al., 2011) and
the corresponding optimal configuration.

approach generated the same FRUPQs as in (Wilson, 1980) for all N , except for

N = 25 and 36. The results for the latter values and the comparison with (Wilson,

1980), are presented in Table 2.7. We see that our design exhibits an improvement in

distortion of 0.0033 dB for N = 36, respectively 0.0007 dB for N = 25. It is worth

pointing out that, while the performance of the FRUPQ of (Wilson, 1980) is identical

or very close to our scheme for small values of N , the algorithm of (Wilson, 1980) is

not tractable for larger values of N , because of the exponential growth of the space

of all configurations (M,P) satisfying N =
∑M

m=1 Pm. On the other hand, the time

complexity of our proposed solution grows only quadratically with N , therefore it is

tractable for much larger values.

Table 2.8 illustrates the comparison with the FRUPQ of (Petković et al., 2011).

Note that the authors of (Petković et al., 2011) only report the distortions for N =

64, 128, 256, and the optimal FRUPQ parameters M,P, r for N = 64, 128. It can

be seen that our algorithm always outperforms the design of (Petković et al., 2011)

with gains higher than 0.06 dB, and reaching a peak improvement of 0.078 dB when

N = 256.

Next we compare the performance of the proposed design with the FRUPQ of
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N 10 log10D 10 log10DASY 10 log10DPASY 10 log10
DPASY

D

16 −9.614 −9.572 −9.324 0.290
32 −12.340 −12.297 −12.206 0.134
64 −15.150 −15.125 −15.075 0.075
128 −18.053 −18.022 −17.969 0.084
256 −20.985 −20.963 −20.945 0.040

Table 2.9: Performance comparison of the proposed FRUPQ with ASY and PASY of
(Perić and Nikolić, 2013), for N ≥ 16.

(Perić and Nikolić, 2013), using the results reported in (Perić and Nikolić, 2013). We

use the acronym ASY to refer to the asymptotical performance derived in (Perić and

Nikolić, 2013), and the acronym PASY to refer to the practical design counterpart.

Table 2.9 illustrates the performance of the proposed algorithm in comparison with

ASY and PASY, for N taking as values the powers of 2 from 16 to 256. We see that the

proposed algorithm is superior to both ASY and PASY for all values of N examined.

Specifically, the gains over ASY are always higher than 0.01 dB, with a peak of 0.043

dB at N = 32. The performance improvement over PASY ranges between 0.29 dB and

0.075 dB for N between 16 and 128. Additionally, we observe that the gap between

PASY and the proposed scheme tends to decrease as N increases. This is expected

since PASY is globally optimal as N → ∞, therefore its accuracy is expected to

improve as N increases. On the other hand, since the proposed approach is globally

optimal at finite rates (subject to the confined set of thresholds), it can serve as a

benchmark to establish the accuracy of PASY and ASY at finite rates.

Finally, Figure 2.4 plots the distortion in dB (i.e., 10 log10D) versus rate, computed

as R = 1
2

log2N , for the proposed FRUPQ, the PASY scheme in (Perić and Nikolić,

2013) and the design of (Petković et al., 2011), where the plots of (R,D) pairs at

R = 3 and 3.5 are magnified.

Additionally, we also compare the proposed FRUPQ design with the practical
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Figure 2.4: Performance comparison with PASY (Perić and Nikolić, 2013) and with
(Petković et al., 2011).

fixed-rate 2DVQ, whose distortion is denoted by DFR
2DVQ. The design procedure for

the 2DVQ is the same as the description above Table 2.6. Table 2.10 demonstrates

the comparison between the proposed FRUPQ and the fixed-rate 2DVQ, for N ≥ 2.

It can be observed that the proposed FRUPQ performs very close to the fixed-rate

2DVQ, but with a lower coding complexity. Specifically, the gap to the fixed-rate

2DVQ is smaller than 0.03 dB for N ≤ 8 and N = 16, while the largest gap is only

0.13 dB at N = 256.

Before ending this section we would like to briefly address the problem of choos-

ing the set A of possible thresholds. Although the goals of this chapter are solving

problems (2.7) and (2.20), which assume that the set A is given, the choice of A

determines how well the solutions of (2.7) and (2.20) approximate the solutions to

the corresponding unconstrained problems. A straightforward choice for the set A is

the one we used in our experiments, namely, to divide some interval [0, B] into small
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N 10 log10D 10 log10D
FR
2DVQ 10 log10

DFR2DVQ

D

2 −1.664 −1.665 −0.001
3 −3.346 −3.347 −0.001
4 −4.396 −4.398 −0.002
5 −5.096 −5.123 −0.027
6 −5.947 −5.964 −0.017
7 −6.518 −6.525 −0.007
8 −6.913 −6.918 −0.005
10 −7.731 −7.837 −0.106
14 −9.036 −9.128 −0.092
16 −9.614 −9.642 −0.028
32 −12.340 −12.430 −0.090
64 −15.150 −15.263 −0.113
128 −18.053 −18.172 −0.119
256 −20.985 −21.115 −0.130

Table 2.10: Performance comparison of the proposed FRUPQ against fixed-rate
2DVQ, for N ≥ 2.

intervals of equal size ∆. The smaller the value of ∆, the better the approximation.

However, if the function g(r) is decreasing for r larger than some value r0 ∈ [0, B], it

is natural to think that an error of size ∆ at a higher magnitude quantizer threshold

has a smaller impact on the performance than an error of the same size at a smaller

threshold. This suggests that a non-uniform discretization of the interval [0, B], where

the sizes of the sub-intervals start with ∆, but gradually increase, may lead to the

same performance, but with reduced time and space complexities since the value of

K would be lower. The investigation of such a possibility deserves attention and we

will address it in future work.

2.5 Conclusion

This chapter addresses the design of UPQ for bivariate circularly symmetric sources,

for both EC and FR cases. We propose design algorithms which are globally optimal
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when the thresholds of the magnitude quantizer are confined to a finite set. Our

solution to the ECUPQ design problem consists of solving the MWP problem in a

certain WDAG, in conjunction with an efficient procedure to find the optimal number

of phase regions for each possible magnitude quantizer bin. The proposed solution to

the FRUPQ design problem is a dynamic programming algorithm sped up based on a

monotonicity property of the objective function. The experimental results, performed

for a bivariate circularly symmetric Gaussian source, demonstrate significant improve-

ments over the prior practical designs at rates up to 2.5 bits/sample, and performance

very close to the optimal asymptotical performance for the ECUPQ case. The ex-

perimental results of the proposed FRUPQ algorithm show better performance than

predicted by the high-rate quantization theory and than the prior tractable designs

when the number of quantizer cells ranges between 25 and 256.

57



Chapter 3

Design of Successively Refinable

Unrestricted Polar Quantizer

This chapter addresses the design of SRUPQ with two refinement stages for bi-

variate circularly symmetric sources. We consider both the FR and EC cases. The

proposed algorithms are globally optimal under the constraint that the magnitude

quantizers’ thresholds are confined to finite sets.

The optimization problem for the EC case is formulated as the minimization of

a weighted sum of distortions and entropies. The proposed solution involves a se-

ries of stages including solving the MWP problem for multiple node pairs in certain

WDAGs. The solution algorithm for the FR case is based on solving a series of dy-

namic programming problems for multiple coarse quantizer bins. The asymptotical

time complexity is O(K1K
2
2Pcmax) for the EC case, where K1 and K2 are the sizes of

the sets of possible magnitude thresholds of the coarse UPQ and the refined UPQ, re-

spectively, while Pcmax is the maximum number of phase levels in any phase quantizer

of the coarse UPQ. The time complexity for the FR case amounts to O(K1K2N
′2N1),

where N1 is the number of bins of the coarse UPQ, while N ′ denotes the ratio between
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the number of bins of the fine UPQ and the coarse UPQ.

The rest of the chapter is organized as follows. The next section introduces the

necessary notations. Section 3.2 formulates the problem of optimal EC-SRUPQ de-

sign and presents the proposed solution algorithm, while the formulation for the FR-

SRUPQ problem and its solution are presented in Section 3.3. The experimental

results and their discussion follow in Section 3.4 and finally Section 3.5 concludes this

chapter.

3.1 Notations

For any integer n ≥ 2, an ascending n-sequence (vector of n-thresholds) is an

n-tuple t = (t0, t1, t2, · · · , tn−1), with ti ∈ [0,∞), for 0 ≤ i ≤ n− 2, and tn−1 ∈ [0,∞],

where t0 < t1 < t2 < · · · < tn−2 < tn−1. For any n ≥ 2, a ∈ [0,∞) and b ∈ [0,∞],

with a < b, let Sn(a, b) denote the set of all ascending n-sequences such that t0 = a

and tn−1 = b.

This chapter addresses the design of the SRUPQ with two refinement stages, which

can be represented as an ordered pair of embedded UPQs Q = (Q1, Q2), where Q1 is

the coarse UPQ, while Q2 is the refined UPQ.

The definition of Q1 is the same as the UPQ with M1 magnitude levels in Chapter

2. Recall that the vector of thresholds of the magnitude quantizer is r , (r0, r1, · · · , rM1),

the i-th cell is defined by Ci = {r|ri−1 ≤ r < ri} for 1 ≤ i ≤ M1, and P ,

(P1, P2, · · · , PM1) denotes the sequence of the number of phase regions corresponding

to Ci. Then the total number of quantization bins of Q1 is given by N(Q1) =
∑M1

i=1 Pi,

1 ≤ i ≤M1.

The magnitude partition of the refined UPQ Q2 is embedded in the partition r.

This means that each cell Ci, for 1 ≤ i ≤ M1, is further partitioned into M2,i cells
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of the magnitude quantizer for Q2. Let us denote by si , (si,0, si,1, · · · , si,M2,i
) ∈

SM2,i+1(ri−1, ri), the ascending vector of thresholds for this refined partition. We will

use the notation Ci,j = [si,j−1, si,j) for 1 ≤ i ≤ M1, and 1 ≤ j ≤ M2,i
1. Let us also

denote by s̄ the M1-tuple (s1, · · · , sM1), and by M2 the M1-tuple (M2,1, · · · ,M2,M1).

Additionally, the fact that Q2 is a refinement of Q1 implies that the number of phase

regions of the phase quantizer corresponding to magnitude level Ci,j, denoted by P̃i,j,

is a multiple of Pi, i.e., P̃i,j = PiPi,j, for some Pi,j ∈ Z+, where Z+ denotes the set

of positive integers. Further, let us denote by Pi , {Pi,1, Pi,2, · · · , Pi,M2,i
}, and by P̄

the M1-tuple (P1, · · · ,PM1). Accordingly, each quantization bin of the UPQ Q2 in

the EC-SRUPQ case can be represented as

R(i, j, k′) =

{
rejθ|si,j−1 ≤ r < si,j, (k

′ − 1)
2π

P̃i,j
≤ θ < k′

2π

P̃i,j

}
,

for 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,i and 1 ≤ k′ ≤ P̃i,j. The total number of quantization

bins of Q2 is then N(Q2) =
∑M1

i=1

∑M2,i

j=1 P̃i,j. The optimal reconstructed magnitude-

phase pair, for each 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,i and 1 ≤ k′ ≤ P̃i,j is Ai,je
jθi,j,k′ given

by

θi,j,k′ = (2k′ − 1)π/(P̃i,j), (3.1)

Ai,j = sinc
(

1
P̃i,j

)
x(Ci,j), (3.2)

where x(C) =
∫
C rg(r)dr∫
C g(r)dr

.

We will use the squared error as a distortion measure. Therefore, the expected

1In the entropy-constrained case, the number of magnitude levels could be infinite for both coarse
and fine UPQs. However, we consider finite number of magnitude levels, as in prior work.
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distortion (per sample) of Q1 and Q2 can be expressed, respectively, as

D(Q1) =
1

2

(∫ ∞
0

r2g(r)dr −
M1∑
i=1

A2
i q(Ci)

)
, (3.3)

D(Q2) =
1

2

∫ ∞
0

r2g(r)dr −
M1∑
i=1

M2,i∑
j=1

A2
i,jq(Ci,j)

 , (3.4)

where for C ⊆ R, q(C) =
∫
C
g(r)dr.

Notice that the tuples r, P, s̄ and P̄ completely specify the SRUPQ.

Let R(Q1) and R(Q2) denote the rate of Q1 and Q2, respectively. In the EC-

SRUPQ case, the rates (in bits/sample) can be expressed as

R(Q1) =
1

2

M1∑
i=1

q(Ci)(− log2 q(Ci) + log2 Pi), (3.5)

R(Q2) =
1

2

M1∑
i=1

M2,i∑
j=1

q(Ci,j) (− log2 q(Ci,j) + log2(PiPi,j)) . (3.6)

In the FR case we have

R(Q1) =
1

2
log2N(Q1), R(Q2) =

1

2
log2N(Q2). (3.7)

We will further assume that the thresholds of the magnitude quantizers of UPQs

Q1 and Q2 take values in some predefined finite sets A = {a1, a2, · · · , aK1} and B =

{b1, b2, · · · , bK2}, respectively. Note that the set B is finer than A, i.e., A ⊂ B, since A

is for the coarse quantizer. In practice, these sets can be obtained by finely discretizing

the interval [0, B], for some B chosen such that the probability that r /∈ [0, B], to be

sufficiently small. Assume that the elements of A and B are labeled in increasing

order, i.e., ai < ai+1, for 1 ≤ i ≤ K1 − 1, and bj < bj+1, for 1 ≤ j ≤ K2 − 1.
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Additionally, let us denote a0 = b0 = 0, aK1+1 = bK2+1 = ∞. Since A ⊆ B it follows

that there is an injective mapping ν : {0, 1, · · · , K1 + 1} → {0, 1, · · · , K2 + 1} such

that ai = bν(j).

3.2 Optimal EC-SRUPQ Design Algorithm

3.2.1 Problem Formulation

We formulate the problem of EC-SRUPQ design as the minimization of a weighted

sum of distortions and entropies, therefore the cost is

LEC(Q) , ρD(Q1) + (1− ρ)D(Q2) + λ1R(Q1) + λ2R(Q2), (3.8)

for some fixed 0 < ρ < 1 and λ1, λ2 > 0. Let us denote by Q(A,B) the set of all

EC-SRUPQs such that the thresholds ri are from the set A and the thresholds si,j

are from the set B. Then we consider the following optimization problem

min
Q∈Q(A,B)

LEC(Q). (3.9)

It is known (Everett III, 1963; Luenberger, 1997) that any EC-SRUPQ Q ∈ Q(A,B)

for which the quadruple (R(Q1), R(Q2), D(Q1), D(Q2)) lies on the lower boundary of

the convex hull of the set of all such quadruples is a solution to problem (3.9) for

some choice of ρ, λ1 and λ2.

3.2.2 Major Steps of Solution Algorithm

Notice that the first terms in (3.3) and (3.4) are both constant, therefore we can

remove them from the cost function. Further, by taking into account the relations
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(2.3), (3.2), (3.5) and (3.6), then problem (3.9) becomes equivalent to minimizing

FEC(r,P, s̄, P̄), where

FEC(r,P, s̄, P̄) =

1

2

M1∑
i=1

(
q(Ci)

(
−ρ sinc2

(
1

Pi

)
x2(Ci)− λ1 log2 q(Ci) + (λ1 + λ2) log2 Pi

)
︸ ︷︷ ︸

ϕ(Ci,Pi)

+

M2,i∑
j=1

q(Ci,j)

(
−(1− ρ) sinc2

(
1

PiPi,j

)
x2(Ci,j) + λ2 (− log2 q(Ci,j) + log2 Pi,j)

)
︸ ︷︷ ︸

η(Ci,j ,Pi,Pi,j)

)
.

(3.10)

By examining the cost function FEC(r,P, s̄, P̄) we notice that for each pair (i, j) the

variable Pi,j appears only in the term η(Ci,j, Pi, Pi,j). Thus, Pi,j can be optimized

separately for fixed Ci,j and Pi. For C ⊆ R and positive integer P denote

P ∗C,P = arg min
P ′∈Z+

η(C,P, P ′), (3.11)

η∗(C,P ) = η(C,P, P ∗C,P ). (3.12)

Note that if there are more minimizers in (3.11), the smallest one is taken. The fact

that the minimum in (3.11) exists will be explained in the following section.

Now replace in FEC(r,P, s̄, P̄) Pi,j by P ∗Ci,j ,Pi , for each 1 ≤ i ≤ M1 and 1 ≤ j ≤

M2,i, and denote by F1,EC(r,P, s̄) the expression obtained. In other words,

F1,EC(r,P, s̄) =
1

2

M1∑
i=1

ϕ(Ci, Pi) +

M2,i∑
j=1

η∗(Ci,j, Pi)

 . (3.13)

Since FEC(r,P, s̄, P̄) ≥ F1,EC(r,P, s̄), problem (3.9) can be reduced to minimizing

F1,EC(r,P, s̄). The expression of F1,EC(r,P, s̄) indicates that if the values η∗(Ci,j, Pi)
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are known for each possible pair (Ci,j, Pi), then the partition of Ci into cells Ci,j can be

optimized separately for each pair (Ci, Pi). We will denote by s∗(Ci, Pi) this optimal

partition. More generally, for each C ⊆ R such that C is an interval with endpoints

α and β, α < β, and positive integer P denote

s∗(C,P ) = arg min
M,s∈SM+1(α,β)∩BM+1

M∑
j=1

η∗(Cj, P ), (3.14)

where s = (s0, · · · , sM) and Cj = [sj−1, sj) for 1 ≤ j ≤M . Further, let

γ∗(C,P ) =
M∗∑
j=1

η∗(C∗j , P ) (3.15)

where s∗(C,P ) = (s∗0, · · · , s∗M∗) and C∗j = [s∗j−1, s
∗
j) for 1 ≤ j ≤ M∗. By replacing

in F1,EC(r,P, s̄) each si by the optimal partition s∗(Ci, Pi), the cost becomes only a

function of r and P and we denote it by F2,EC(r,P). More specifically,

F2,EC(r,P) =
1

2

M1∑
i=1

(ϕ(Ci, Pi) + γ∗(Ci, Pi)) . (3.16)

Now it can be seen that if the values γ∗(Ci, Pi) are known for all possible pairs (Ci, Pi),

then the optimal Pi can be found independently for each Ci. Denote for each C ⊆ R

P ∗C = arg min
P∈Z+

(ϕ(C,P ) + γ∗(C,P )) , (3.17)

where the smallest one is taken if there are multiple minimizers in (3.17). The proof

of the fact that the minimum in (3.17) exists follows the same lines as the proof of

Proposition 3.4.

By replacing Pi in F2,EC(r,P) with P ∗Ci , we obtain a new cost function which only
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depends on r,

F3,EC(r) =
1

2

M1∑
i=1

(
ϕ(Ci, P

∗
Ci

) + γ∗(Ci, P
∗
Ci

)
)
. (3.18)

Thus the optimization problem reduces to

min
M1,r

F3,EC(r)

subject to ri ∈ A, 1 ≤ i ≤M1 − 1.

(3.19)

The above discussion suggests the following procedure to solve problem (3.9).

Step 1) For each pair (bm, bn), 0 ≤ m < n ≤ K2 + 1, and each positive integer

P ≤ Pcmax, compute P ∗[bm,bn),P defined in (3.11).

Step 2) For each pair (au, av), 0 ≤ u < v ≤ K1 + 1, and each positive integer

P ≤ Pcmax, compute the best partition s∗([au, av), P ) defined in (3.14).

Step 3) For each pair (au, av), 0 ≤ u < v ≤ K1 +1, compute P ∗[au,av) defined in (3.17).

Step 4) Solve problem (3.19).

3.2.3 Solution for Each Step

Next we present the details for solving each step, starting with Step 1. For any y >

0, denote f(y) = −sinc2( 1
y
) and g(y) = ln y and consider the following minimization

problem

min
P ′∈Z+

(f(PP ′) + δg(PP ′)), (3.20)

where δ > 0. As P is fixed, we point out that the optimal solution to (3.20) will not

be changed by using g(PP ′) instead of g(P ′), since g(PP ′) = g(P ) + g(P ′). Then

it can be easily verified that P ∗[bm,bn),P is the optimal solution to problem (3.20) for

δ = λ2

(1−ρ)x([bm,bn))2 ln 2
.
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For any positive integer m, let S(m) denote the point in the plane having coordi-

nates (g(m), f(m)). Additionally, let U , {S(m)|m ≥ 1} and UP , {S(PP ′)|P ′ ≥ 1}.

Further, let P̂ denote the set of integers m such that S(m) is on the lower boundary

of the convex hull of U. Additionally, let P̂P denote the set of integers P ′ such that

S(PP ′) is on the lower boundary of the convex hull of UP . It is known (Everett III,

1963; Luenberger, 1997) that some value P ′∗ minimizes the cost in (3.20) if and only

if the point P ′∗ ∈ P̂P and the line of slope −δ passing through S(PP ′∗) is a support

line for UP . The latter condition is equivalent to

left slopeP (P ′∗) ≤ −δ ≤ right slopeP (P ′∗),

where left slopeP (P ′∗) (respectively, right slopeP (P ′∗)) denotes the slope of the con-

vex hull edge to the left (respectively, right) of S(PP ′∗), except for the first and the

last ones. Note that for any δ > 0, there is an integer P ′∗ achieving the minimum

in (3.20). The proof is very similar to the proof of Lemma 2.1 in Section 2.2.3. The

following proposition then characterizes the set P̂P .

Proposition 3.1. P̂P =

 Z+ \ {2}, if P = 1,

Z+, if P ≥ 2.

Proof:

It was proved in appendix B that P̂ = Z+ \ {2}. Clearly, when P = 1, P̂P = P̂,

thus the claim holds. Now consider the case P ≥ 2. If PP ′ ≥ 3 then PP ′ ∈ P̂,

therefore P ′ ∈ P̂P . This implies that for P ≥ 3 we have P̂P = Z+, while for P = 2 we

have Z+ \ {1} ⊆ P̂P . The fact that 1 ∈ P̂2 can be verified easily concluding the proof.

The monotonicity property established by the following result will be exploited

when computing the value P ∗[bm,bn),P , where the proof is similar to the proof of Propo-

sition 2.2 in Chapter 2.
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Proposition 3.2. For any integers m,m′, n, n′ such that 0 ≤ m < n ≤ K2 + 1,

0 ≤ m′ < n′ ≤ K2 + 1, m ≤ m′ and n ≤ n′, and for any P ∈ Z+ the following

inequality holds

P ∗[bm,bn),P ≤ P ∗[bm′ ,bn′ ),P . (3.21)

As a consequence, Algorithm 1 in Chapter 2 can be utilized to determine all

values P ∗[bm,bn),P , for fixed P , in O(K2P
′
P,max +K2

2) time, where P ′P,max = P ∗[bK2
,bK2+1),P

is the maximum of P ∗[bm,bn),P over all intervals [bm, bn), in virtue of Proposition 3.2.

Performing this for all P, 1 ≤ P ≤ Pcmax, amounts to O(K2

∑Pcmax
P=1 P ′P,max+K2

2Pcmax)

operations. In order to find a closed form for the expression of the running time, the

following result will be useful. Its proof is deferred to appendix C.

Proposition 3.3. For each integer P ≥ 2 the following holds

P ′P,max ≤
P ′1,max
P

+ 1. (3.22)

The following proposition clarifies how to compute Pcmax. Its proof is deferred to

appendix C.

Proposition 3.4. Consider Pcmax = max{P ′1,max + 1, P ′′}, where P ′′ is the

solution to problem (3.20) for P = 1 and δ = λ1

ρx([bK2
,bK2+1)2 ln 2

. Then there is an

optimal EC-SRUPQ such that the phase quantizer corresponding to any magnitude

level of the coarse UPQ has no more than Pcmax levels.

Using Pcmax defined in Proposition 3.4 and based on Proposition 3.3 one obtains

Pcmax∑
P=1

P ′P,max ≤ P ′1,max

Pcmax∑
P=1

1

P
+ Pcmax ≤ P ′1,max(lnPcmax + 1) + Pcmax ≤ Pcmax(lnPcmax + 2),

where the second inequality follows from the partial sum of Harmonic series, i.e.,∑Pcmax
P=1

1
P
≤ 1+

∫ Pcmax
1

1
P
dP = lnPmax+1. Thus, the running time of Step 1 becomes
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O(K2Pcmax(lnPcmax + K2)). If lnPcmax < K2, which is the case in our experiments,

the time complexity amounts to O(K2
2Pcmax).

Then we will consider the problem at Step 4. We will show that it is equivalent to

an MWP problem in the WDAG G = (V,E,w) where V = {0, 1, · · · , K1 + 1} is the

vertex set, and E = {(u, v) ∈ V 2 | 0 ≤ u < v ≤ K1 + 1} denotes the edge set. The

weight of each edge (u, v) ∈ E is w(u, v) defined as

w(u, v) = ϕ([au, av), P
∗
[au,av)) + γ∗([au, av), P

∗
[au,av)). (3.23)

Then each ascending vector of thresholds r ∈ SM1+1(0,∞), with components in A,

is in a one-to-one correspondence with an M1-edge path in G, from the source node

0 to the final node K1 + 1. It can be easily seen that the weight of the path equals

F3,EC(r). This observation implies that problem (3.19) is equivalent to the MWP

problem in the WDAG G. If each edge weight can be evaluated in constant time, this

problem can be solved in O(|V |+ |E|) = O(K2
1) operations.

Next we will consider the problem at Step 2. We will show that for each P , the

problem can be solved by solving the single source MWP problem in another WDAG,

multiple times. For each positive integer P , construct the WDAG GP = (V,E,wP ),

where V = {0, 1, · · · , K2 +1} is the vertex set, and E = {(m,n)|0 ≤ m < n ≤ K2 +1}

is the edge set. For each edge (m,n) define the weight wP (m,n) as follows

wP (m,n) , η∗([bm, bn), P ).

Let us fix an arbitrary pair (u, v). Let C = [au, av). Recall that [au, av) = [bν(u), bν(v)).

Consider a partition s of C consisting of M cells. It corresponds to an M -edge path

from node ν(u) to ν(v) in GP , and the mapping is one to one. It can be easily
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seen that the weight of the path equals
∑M

j=1 η
∗(Cj, P ). Therefore, finding s∗(C,P )

is equivalent to finding the MWP path from ν(u) to ν(v). Since we need to find

the MWP from ν(u) to ν(v) for any 0 ≤ u < v ≤ K1 + 1, we will solve the single

source MWP problem corresponding to source ν(u). This is the problem of finding the

MWP from the source to any other graph node reachable from the source and can be

solved O(|V |+ |E|) = O(K2
2). Doing so for each u and P amounts to O(K1K

2
2Pcmax)

operations.

The problem at Step 3 is straightforward and can be solved in O(K2
1Pcmax) opera-

tions. Additionally, the cumulative probabilities, the first and second order moments

of set B are precomputed and stored in a preprocessing step as in Section 2.2.3, as

set B is much finer, and this requires only O(K2) operations. Then each x[bm, bn),

x[au, av), q[bm, bn) and q[au, av) can be evaluated in constant time.

In conclusion, problem (3.9) can be solved in O(K2Pcmax(K1K2 + lnPcmax +K2))

time. Note that if lnPcmax + K2 ≤ K1K2, which we found to be true in our experi-

ments, then the time complexity of the solution is O(K1K
2
2Pcmax).

Finally, the following pseudocode in Algorithm 4 finalizes the solution algorithm

to problem (3.9). We point out that for each P , W (m,n, P ) denotes the minimum

weight of the MWP from node m to node n, and ε(m,n, P ) records the intermediate

node passed by the MWP. Moreover, for the coarse UPQ, we denote by Ŵ (v) the

weight of the MWP from the source node 0 to node v, and ε(v) records the node

preceding v on this optimal path. At the end, the MWP of the coarse UPQ and the

fine UPQ can be tracked back by utilizing the values of ε(v) and ε(ν(u), ν(v), P ∗[au,av)).
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Algorithm 4: Solution algorithm for problem (3.9).

Preprocessing Stage
begin

/∗ Step 1) ∗/
for P = 1 to Pcmax do

for n = 1 to K2 + 1 do
P ∗[bn−1,bn),P := min arg minP ′∈P̂P η([bn−1, bn), P, P ′)

W (n− 1, n, P ) := wP (n− 1, n)
ε(n− 1, n, P ) := n− 1
for m = n− 2 down to 0 do

P ∗[bm,bn),P := min arg minP ∗
[bm,bn−1),P

≤P ′≤P ∗
[bm+1,bn),P

η([bm, bn), P, P ′)

W (m,n, P ) := wP (m,n)
ε(m,n, P ) := m

/∗ Step 2) ∗/
for P = 1 to Pcmax do

for u = 0 to K1 do
for v = u+ 1 to K1 + 1 do

for k = ν(u) + 1 to ν(v)− 1 do
if W (ν(u), ν(v), P ) > W (ν(u), k, P ) +W (k, ν(v), P ) then

W (ν(u), ν(v), P ) := W (ν(u), k, P ) +W (k, ν(v), P )
ε(ν(u), ν(v), P ) := k

/∗ Step 3) and Step 4) ∗/
Ŵ (0) = 0
for u = 0 to K1 do

for v = u+ 1 to K1 + 1 do
for P = 1 to Pcmax do

Evaluate γ∗([au, av), P ) using (3.15)
Evaluate P ∗[au,av) using (3.17)

if
(
Ŵ (u) + w(u, v) < Ŵ (v)

)
then

Ŵ (v) := Ŵ (u) + w(u, v)
ε(v) := u

Restore the vectors r and P corresponding to the coarse UPQ Q1

Restore the vectors s̄ and P̄ corresponding to the fine UPQ Q2
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3.3 Optimal FR-SRUPQ Design Algorithm

3.3.1 Problem Formulation

In the fixed-rate case, according to (3.7), the rates R(Q1) and R(Q2) are deter-

mined by the number of quantization cells N(Q1) and N(Q2), respectively. Therefore,

the problem of FR-SRUPQ design can be formulated as the constrained problem of

minimizing a weighted sum of the distortions with constraints on the number of quan-

tizer levels, i.e.,

min
M1,r,P,s̄,P̄

ρD(Q1) + (1− ρ)D(Q2)

subject to

M1∑
i=1

Pi = N1,

M2,i∑
j=1

Pi,j = N ′

ri ∈ A, si,j ∈ B, 1 ≤ i ≤M1 − 1, 1 ≤ j ≤M2 − 1,

(3.24)

where N1 and N2 = N1N
′ are the two target numbers of quantization cells of Q1

and Q2, respectively. Moreover, Ri = dlog2Nie/2, i = 1, 2, denote the desired rates

(bits/sample) of UPQs Q1 and Q2. Imposing the constraint on
∑M2,i

j=1 Pi,j is motivated

by the fact that the value log2N
′ = log2

N2

N1
is actually the amount of extra bits

appended to each binary index output by the coarse quantizer Q1 to obtain an index

of the fine quantizer Q2.
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3.3.2 Solution Algorithm

Since the first terms in (3.3) and (3.4) are both constant, then problem (3.24) is

equivalent to minimizing FFR(r,P, s̄, P̄), where

FFR(r,P, s̄, P̄) =
1

2

M1∑
i=1

(
−q(Ci)ρ sinc2

(
1

Pi

)
x2(Ci)︸ ︷︷ ︸

ϕ′(Ci,Pi)

+

(1− ρ)

M2,i∑
j=1

(
− q(Ci,j) sinc2

(
1

PiPi,j

)
x2(Ci,j)

)
︸ ︷︷ ︸

ξ(Ci,Pi,si,Pi)

)
.

(3.25)

It is noticed from the above cost function that ξ(Ci, Pi, si,Pi) can be optimized

separately for fixed Ci and Pi. Then for Ci ⊆ R and positive integer Pi denote

ξ∗(Ci, Pi) , min
M2,i,si∈SM2,i+1(Ci)∩B

M2,i+1
,

Pi,
∑M2,i
j=1 Pi,j=N ′

ξ(Ci, Pi, si,Pi). (3.26)

Further, let s∗(Ci, Pi) denote the partition si achieving the minimum in (3.26) and let

P∗(Ci, Pi) be the corresponding optimal M2,i-tuple Pi. Then problem (3.24) reduces

to solving

min
M1,r,P

F1,FR(r,P) =
1

2

M1∑
i=1

(ϕ′(Ci, Pi) + (1− ρ)ξ∗(Ci, Pi))

subject to

M1∑
i=1

Pi = N1, ri ∈ A, 1 ≤ i ≤M1 − 1.

(3.27)

We conclude that the solution to problem (3.24) can be broken into two steps as

follows.

Step 1) For each pair (au, av), 0 ≤ u < v ≤ K1 + 1, and each positive integer P ≤ N1,
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compute ξ∗([au, av), P ), s∗([au, av), P ) and P∗([au, av), P ) by solving (3.26).

Step 2) Solve problem (3.27).

Next we will deal with the problem at the first step. For each positive integers P

and P ′ and for b0 ≤ α < β ≤ bK2+1 denote

ωP,P ′(α, β) , −sinc2

(
1

PP ′

)
(x[α, β))2 q[α, β). (3.28)

For each positive integer P , each partition s = (s0, s1, · · · , sM) of M cells and each

M -tuple of positive integers P = (P ′1, · · · , P ′M) denote

OP (s,P) ,
M∑
j=1

ωP,P ′j(sj−1, sj). (3.29)

Then it is noted from (3.26) that for each pair (u, v) the following holds

ξ∗([au, av), P ) = min
M,s∈SM+1([au,av))∩BM+1,P∈ZM+ ,

∑M
j=1 P

′
j=N

′
OP (s,P), (3.30)

where P = (P ′1, · · · , P ′M). This problem is very similar to the optimal FRUPQ design

problem treated in Section 2.3. Therefore, we can use the same solution algorithm.

More specifically, for each u we use the algorithm in Section 2.3.3 to solve problem

(3.30) for the pair (u, v) = (u,K2 + 1). The algorithm runs in O(K2N
′2) time and

also solves the problem for all pairs (u, v) where u < v < K2 + 1. This procedure

is repeated for each u and then the whole process is repeated for each P . Thus, the

total time complexity amounts to O(K1K2N
′2N1).

Let us give some details. For each u, P and each pair of positive integers (k, n)
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with ν(u) ≤ k ≤ K2 + 1 and 1 ≤ n ≤ N ′, consider the problem PP,u(k, n) defined as

min
M,s∈SM+1([bν(u),bk))∩BM+1,P∈ZM+

OP (s,P)

subject to
M∑
j=1

P ′j = n.

(3.31)

Additionally, denote by ÔP,u(k, n) the optimal value of the objective function in (3.31).

Notice that problem (3.31) is similar to problem P(k, n) in Section 2.3. It can be solved

using the following recurrence relation

ÔP,u(k, n) = min
0≤t<n

min
ν(u)≤j<k

(
ÔP,u(j, t) + ωP,n−t(bj, bk)

)
, (3.32)

where ÔP,u(ν(u), 0) = 0 and ÔP,u(ν(u), t) = ÔP,u(j, 0) =∞, for t > 0 and j ≥ 1.

We point out that for fixed P and u, the straightforward solution to problem (3.32)

will take O(K2
2N

′2) time, as there are O(K2N
′) pairs (k, n) in total. On the other

hand, note that the Monge property holds for the cost function in problem (3.32),

by following Section 2.3.3, for fixed P and u. Specifically, the Monge property can

be utilized to solve the minimization over j in (3.32). This reduces the complexity of

solving (3.32) to O(K2N
′2), and further leads to the aforementioned O(K1K2N

′2N1)

time complexity of Step 1.

Subsequently, Step 1 can be completed by solving the problem PP,u(K2 + 1, N ′)

for each integer P ≤ N1 and each pair (au, av), 0 ≤ u < v ≤ K1 + 1.

Now let us consider the problem at Step 2. For any cell C = [au, av) and any

positive integer P denote

ω′P (au, av) ,
1

2

(
ρf(P ) (x[au, av))

2 q[au, av) + (1− ρ)ξ∗([au, av), P )
)
. (3.33)
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Then problem (3.27) is equivalent to

min
M1,r∈SM1+1(0,∞)∩AM1+1,P∈ZM1

+

O(r,P) ,
∑M1

i=1 ωPi(ri−1, ri),

subject to
∑M1

i=1 Pi = N1, (3.34)

where P = (P1, · · · , PM1). The above problem is also similar to optimal FRUPQ

design problem and can be solved using dynamic programming. However, the weights

might not satisfy the Monge property, therefore there is no time complexity reduc-

tion. Thus, solving Step 2 will need O(K2
1N

2
1 ) operations. In conclusion, the time

complexity for the proposed FR-SRUPQ design is O(K1K2N
′2N1).

3.4 Experimental Results

This section assesses the practical performance of the EC-SRUPQ design algo-

rithm presented in this chapter, and compares it with the theoretical bounds. The

experiments are conducted for the same two-dimensional random vector (X1, X2) as

in Chapter 2, where X1 and X2 are i.i.d. Gaussian variables with zero-mean and

unit-variance.

The finite sets of possible thresholds A and B are obtained by dividing the range

[0, 6] into subintervals of size 0.025. In other words, K1 = K2 = 240 and ai = bi =

0.025i, for 1 ≤ i ≤ K1. Moreover, we set Pcmax = 55, ρ = 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5.

The value of P ′max is 40.

In this section, the notations Ri and Di are utilized instead of R(Qi) and D(Qi),

respectively, for i = 1, 2. Additionally, let R(Di) denote the rate-distortion function

for the Gaussian source, i.e., R(Di) = −0.5 log2(Di).

Figure 3.1, Figure 3.2 and Figure 3.3 illustrate the performance of the proposed
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Figure 3.1: Distortion performance of the proposed EC-SRUPQ.

EC-SRUPQ, in terms of distortion pair (D1, D2), rate pair (R1, R2) and the rate-gap

pair (R1 −R(D1), R2 −R(D2)), respectively.

It can be noticed from Figure 3.3 that in most cases the gap R2−R(D2) is within

0.275 bits/sample, which is very close to the gap of 0.254 bits/sample. Note that

the existence of this gap is expected since the theoretical bound is achieved using

vector quantization with dimension approaching ∞ while we use scalar quantization.

The rate gap between the optimum ECSQ and the rate-distortion limit was proved

in (Gish and Pierce, 1968) to be 1
2

log2
2πe
12

= 0.2546 bits/sample at high resolution.

Most of the points in this category also have the gap in R1−R(D1) within this limit.

However, there are also cases in which there is some additional loss only in R1, only

in R2, or in both. These cases are represented in the three figures with stars, crosses,

and squares, respectively. We can see that the cases with extra loss occur mostly when

both distortions are small. The existence of such extra loss in rate could be attributed

to the additional tension induced in the optimization by competing requirements at

the two decoders, as opposed to one decoder.
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Figure 3.2: Rate performance of the proposed EC-SRUPQ.
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Figure 3.3: Gap in rate versus the theoretical lower bounds.
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3.5 Conclusion

This chapter presents the algorithms for globally optimal design of SRUPQ for

bivariate circularly symmetric sources, for both the EC and FR cases. The global

optimality holds when the magnitude quantizers thresholds are confined to some finite

sets. For the EC case, the cost to be minimized is a weighted sum of distortions and

entropies, and the proposed algorithm involves a series of stages including solving

the MWP problem for multiple node pairs in certain WDAGs. In the FR case,

the proposed solution is based on tackling with a series of dynamic programming

problems. The experimental results performed on a bivariate circularly symmetric

Gaussian source demonstrate the effectiveness in practice of the proposed EC-SRUPQ

scheme.
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Chapter 4

Design of Scalar Quantizer for

Sequential Coding of Correlated

Sources

This chapter addresses the design of an SSQ for finite-alphabet correlated sources

in the FR and EC cases. The optimization problem is formulated as the minimization

of a weighted sum of distortions and rates. The proposed solution is globally optimal

for the class of SSQs with convex cells and is based on solving the MWP problem in

the EC case, respectively, a length-constrained MWP problem in the FR case, in a

series of WDAGs. The asymptotic time complexity is O(K2
1K

2
2), where K1 and K2 are

the respective sizes of the alphabets of the two sources. Additionally, it is proved that,

by applying the proposed algorithms to finite, uniform discretizations of correlated

sources with continuous joint pdf, the performance approaches that of the optimal

EC-SSQ, respectively FR-SSQ, with convex cells for the original sources as the accu-

racy of the discretization increases. Extensive experiments performed with correlated

Gaussian sources validate the effectiveness in practice of the proposed approach in
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approximating the optimal SSQ for the case of continuous-alphabet sources.

This chapter is organized as follows. The next section introduces the necessary

definitions and notations. Section 4.2 formulates the problem of optimal EC-SSQ

design and presents the proposed solution algorithm. The problem of optimal FR-

SSQ design and its solution are presented in Section 4.3. Section 4.4 investigates

the application of the proposed designs to continuous sources. Section 4.5 shows

simulation results, and finally, Section 4.6 concludes the chapter.

4.1 Notations and Problem Formulation

This section presents the definitions and notations used throughout this chapter.

Let X and Y be two finite-alphabet jointly distributed random variables (RVs). Let

pXY denote their joint pmf. The RVs X and Y take values in the alphabets X =

{x1, . . . , xK1} ⊆ R, respectively Y = {y1, . . . , yK2} ⊆ R, where K1 and K2 are positive

integers, xi < xi+1, for 1 ≤ i ≤ K1− 1 and yj < yj+1, for 1 ≤ j ≤ K2− 1. Let pX and

pY denote the marginal pmfs of X and Y , respectively.

For any positive integer k denote Ik , {0, . . . , k} and Ek , {(u, v)|0 ≤ u < v ≤

k}. For any (u, v) ∈ EK1 let CX(u, v] , (xu, xv] ∩ X = {xu+1, . . . , xv}. For any

(m,n) ∈ EK2 denote CY (m,n] , (ym, yn] ∩ Y = {ym+1, . . . , yn}. In this chapter we

consider quantizers with convex cells1. A subset of X is said to be convex if it equals

CX(u, v] for some (u, v) ∈ EK1 , while any convex subset of Y equals CY (m,n] for some

(m,n) ∈ EK2 .

Note that in this chapter, for any positive integer M , an ascending M -sequence for

X is defined as a vector of integer thresholds r , (r0, r1, . . . , rM), such that r0 = 0 <

1Note that the cell convexity does not preclude the optimality of the quantizers for the source Y
(Muresan and Effros, 2008; Gyorgy and Linder, 2002), as mentioned in Section 1.2.3, but there may
be some loss of optimality for the quantizer for source X.
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r1 < . . . < rM−1 < rM = K1. Let us denote by TX(M) the set of all such sequences.

Furthermore, let TX , ∪M>0TX(M). Clearly, the encoder partition of any scalar

quantizer with M convex cells for the source X can be identified with the ascending

M -sequence r ∈ TX(M), where CX(ri−1, ri] is the i-th cell, for 1 ≤ i ≤ M . Similarly,

an ascending M -sequence for Y is any vector of integer thresholds s = (s0, s1, . . . , sM)

such that s0 = 0 < s1 < . . . < sM−1 < sM = K2. We use the notation TY (M) for

the set of all ascending M -sequences for Y , and TY , ∪M>0TY (M). The encoder

partition of any quantizer with M convex cells for the source Y can be identified

with the ascending M -sequence s ∈ TY (M), where CY (sj−1, sj] is the j-th cell, for

1 ≤ j ≤ M . In the sequel we use interchangeably the terms ascending sequence and

quantizer (or encoder) partition.

In this chapter we also use the fact that any quantizer with convex cells can be

naturally associated with a path in a certain WDAG. Note that for any positive integer

k, the k-edge MWP problem is the problem of finding the path of minimum weight

among all paths from the source to the final node which have exactly k edges. This

is a length-constrained MWP problem since the number of edges can be regarded as

the length of the path.

For any mapping η : EK1 → R, let GX(η) denote the WDAG where IK1 is set

of vertices, EK1 is the set of edges, and η is the weighting function. The source

node is the vertex 0 and the final node is the vertex K1. It can be easily seen that

any ascending M -sequence r ∈ TX(M) can be identified with an M -edge path in

GX(η) from the source to the final node, whose i-th edge is (ri−1, ri). Clearly, this

correspondence between M -ascending sequences for X and M -edge paths from 0 to

K1 is one-to-one.

Likewise, for any mapping ζ : EK2 → R let GY (ζ) denote the WDAG with IK2 as

the set of vertices, EK2 as the set of edges, and ζ as the weighting function. Then
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there is a one-to-one correspondence between the ascending M -sequences for Y and

the M -edge paths from 0 to K2.

An SSQ for the pair of RVs (X, Y ) consists of two encoding functions f1, f2, and

two decoding functions g1, g2

f1 : X −→ I1, f2 : I1 × Y −→ I2, g1 : I1 −→ X̂, g2 : I1 × I2 −→ Ŷ, (4.1)

where I1 = {1, 2, . . . ,M1} and I2 = {1, 2, . . . ,M2} for some positive integers M1,M2,

X̂ ⊆ R and Ŷ ⊆ R. Notice that the pair (f1, g1) represents a scalar quantizer for the

source X with M1 cells. We will use the notation Ci for the cell assigned index i,

i.e., Ci , f−1
1 (i), 1 ≤ i ≤ M1. For each i, 1 ≤ i ≤ M1, the encoder-decoder pair

(f2(i, ·), g2(i, ·)) represents a scalar quantizer for the source Y . Let M2,i denote its

number of quantizer cells. Note that M2,i ≤ M2. Additionally, we use the notation

Ci,j for the j-th cell of this quantizer, i.e., Ci,j , {y ∈ Y|f2(i, y) = j}.

We will assume that all aforementioned quantizers contain convex cells. Thus,

the encoder partition of each such quantizer is specified by some ascending sequence.

Let r , (r0, r1, . . . , rM1) ∈ TX(M1) be the ascending sequence specifying the encoder

partition generated by f1. In other words, we have Ci = CX(ri−1, ri] for 1 ≤ i ≤

M1. Further, for each 1 ≤ i ≤ M1, let si , (si,0, si,1, . . . , si,M2,i
) ∈ TY (M2,i) be

the ascending sequence specifying the encoder partition generated by f2(i, ·). Thus,

we have Ci,j = CY (si,j−1, si,j] for 1 ≤ j ≤ M2,i. We will denote by s̄ the M1-tuple

(s1, . . . , sM1).
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We will use the squared error as a distortion measure. Thus, the expected distor-

tion at decoder 1, respectively 2, is

D1(f1, g1) = E[(X − X̂)2] =

M1∑
i=1

∑
x∈Ci

(x− g1(i))2pX(x),

D2(f1, f2, g2) = E[(Y − Ŷ )2] =

M1∑
i=1

M2,i∑
j=1

∑
y∈Ci,j

(y − g2(i, j))2
∑
x∈Ci

pXY (x, y).

(4.2)

It is known that, for fixed encoders, the decoding functions can be optimized to

minimize the distortion by setting

g1(i) = x̂(Ci), g2(i, j) = ŷ(Ci,j|Ci), (4.3)

for 1 ≤ i ≤M1, 1 ≤ j ≤M2,i, where, for each set A ⊂ X, and each B ⊂ Y, we define

x̂(A) ,

∑
x∈A xpX(x)∑
x∈A pX(x)

,

ŷ(B|A) ,

∑
y∈B yP[Y = y|X ∈ A]∑
y∈B P[Y = y|X ∈ A]

=

∑
y∈B y

∑
x∈A pXY (x, y)∑

y∈B
∑

x∈A pXY (x, y)
.

In the sequel we assume optimized decoders. Thus, the distortions at decoder 1,

respectively 2, depend only on the encoders, which are completely specified by their

partitions. Therefore, we denote them from now on by D1(r), respectively D2(r, s̄).

By plugging (4.3) in (4.2) we obtain

D1(r) =

M1∑
i=1

∑
x∈Ci

(x− x̂(Ci))
2pX(x),

D2(r, s̄) =

M1∑
i=1

M2,i∑
j=1

∑
y∈Ci,j

(y − ŷ(Ci,j|Ci))2
∑
x∈Ci

pXY (x, y).

(4.4)
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Let R1(r) denote the rate of encoder 1 and let R2(r, s̄) be the rate of encoder 2. The

expression of the rates depends on whether the quantizers are FR or EC. Therefore,

from now on we will discuss the two cases separately. In the following section we

formulate the problem of optimal EC-SSQ design and propose a solution algorithm.

The counterpart for the FR case is addressed in Section 4.3.

4.2 Optimal EC-SSQ Design Algorithm

Let I and J be the random variables representing the indexes output by f1, re-

spectively f2. In the EC case the rate at encoder 1 equals the entropy of I, while the

rate at encoder 2 equals the conditional entropy of J conditioned on I. Thus, we have

R1(r) = −
M1∑
i=1

P (Ci) log2 P (Ci),

R2(r, s̄) = −
M1∑
i=1

M2,i∑
j=1

P (Ci, Ci,j) log2 P (Ci, Ci,j) +

M1∑
i=1

P (Ci) log2 P (Ci),

(4.5)

where P (Ci) , P[X ∈ Ci] and P (Ci, Ci,j) , P[X ∈ Ci, Y ∈ Ci,j], for 1 ≤ i ≤ M1 and

1 ≤ j ≤M2,i.

Let RDEC denote the set of all quadruples (R1(r), R2(r, s̄), D1(r), D2(r, s̄)) for all

possible pairs (r, s̄). Then any point on the lower boundary of the convex hull of

RDEC is optimal in some sense. Any such point is the solution of the minimization of

a weighted sum of the distortions and rates ρ1D1(r)+ρ2D2(r, s̄)+λ1R1(r)+λ2R2(r, s̄),

for some choice of positive weights ρ1, ρ2, λ1 and λ2. Notice that the solution of the

minimization problem remains the same if all the weights are divided by ρ1 + ρ2.
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Therefore, we formulate the optimization problem as follows

min
M1,r∈TX(M1),s̄∈TM1

Y

F(r, s̄) , ρD1(r) + (1− ρ)D2(r, s̄) + λ1R1(r) + λ2R2(r, s̄), (4.6)

for some fixed ρ, 0 < ρ < 1, λ1 > 0 and λ2 > 0. We point out that the formulation

of the optimization problem as a minimization of a weighted sum of distortion(s) and

rate(s) was also adopted in (Muresan and Effros, 2008; Chou et al., 1989; Fleming

et al., 2004).

Based on relations (4.4)-(4.6) we obtain that

F(r, s̄) =

M1∑
i=1

(
ρ
∑
x∈Ci

(x− x̂(Ci))
2pX(x)− (λ1 − λ2)P (Ci) log2 P (Ci)+

M2,i∑
j=1

(
(1− ρ)

∑
y∈Ci,j

(y − ŷ(Ci,j|Ci))2
∑
x∈Ci

pXY (x, y)− λ2P (Ci, Ci,j) log2 P (Ci, Ci,j)
))

.

In order to simplify the expression of the cost we introduce a few more notations. For

each set C ⊆ X denote

dX(C) , ρ
∑
x∈C

(x− x̂(C))2pX(x), hX(C) , −(λ1 − λ2)P (C) log2 P (C).

For each C ⊆ X and C ′ ⊆ Y denote

dY (C ′|C) , (1− ρ)
∑
y∈C′

(y − ŷ(C ′|C))2
∑
x∈C

pXY (x, y),

hY (C ′|C) , −λ2P (C,C ′) log2 P (C,C ′).
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Using the above notations the cost function in (4.6) becomes

F(r, s̄) =

M1∑
i=1

(
dX(Ci) + hX(Ci) +

M2,i∑
j=1

(dY (Ci,j|Ci) + hY (Ci,j|Ci))︸ ︷︷ ︸
τ(Ci,si)

)
.

By examining the cost F(r, s̄) we notice that for each i the contribution of the partition

si to the cost function depends on cell Ci, but does not depend on any other cell of the

quantizer for X. Therefore, we will denote it by τ(Ci, si). We conclude that when the

partition r is fixed the optimization of the partition si can be performed separately

for each i. In other words, the following holds

min
M1,r∈TX(M1),s̄∈TM1

Y

F(r, s̄) = min
M1,r∈TX(M1)

M1∑
i=1

(
dX(Ci) + hX(Ci) + min

M2,i,si∈TY (M2,i)
τ(Ci, si)

)
.

Further, for each (u, v) ∈ EK1 , denote by ω(CX(u, v]) the minimum value of τ(Ci, si)

over all partitions si when Ci = CX(u, v], in other words

ω(CX(u, v]) , min
M2,s∈TY (M2)

τ(CX(u, v], s). (4.7)

With the above notation, problem (4.6) becomes equivalent to

min
M1,r∈T(M1)

F̂(r) ,
M1∑
i=1

(dX(Ci) + hX(Ci) + ω(Ci)) . (4.8)

We will show that the above problem is equivalent to an MWP problem. Indeed,

consider the WDAG GX(w), where, for each (u, v) ∈ EK1 , w(u, v) is defined by

w(u, v) , dX(CX(u, v]) + hX(CX(u, v]) + ω(CX(u, v]). (4.9)
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Then any partition r ∈ TX(M1) is in a one-to-one correspondence with an M1-edge

path in GX(w), from the source to the final node. Additionally, the weight of the

path equals the cost F̂(r). This implies that problem (4.8) is equivalent to the MWP

problem in GX(w).

In order to solve the MWP problem in GX(w) we need to be able to evaluate each

edge weight. Therefore, we need to solve first problem (4.7) for each edge (u, v). It

turns out that problem (4.7) is also equivalent to an MWP problem in some other

WDAG. Indeed, consider the WDAG GY (wu,v), where for each edge (m,n) ∈ EK2 ,

the weight wu,v(m,n) is defined as follows

wu,v(m,n) , dY (CY (m,n]|CX(u, v]) + hY (CY (m,n]|CX(u, v]). (4.10)

Then any partition s ∈ TY (M2) is in a one-to-one correspondence with an M2-edge

path from the source to the final node in WDAG GY (wu,v). The weight of the path

equals the cost function in (4.7), thus problem (4.7) is equivalent to the MWP path

problem in GY (wu,v).

Notice that solving the MWP problem in some WDAG requires O(|V | + |E|)

operations, if the weight of each edge can be evaluated in constant time, where V

denotes the vertex set and E denotes the edge set. In order to enable the evaluation

in constant time of each edge weight, we include a preprocessing step which computes

and stores the following cumulative values

φk,X(u) ,
u∑
i=1

xkpX(xi), φk,XY (u,m) ,
m∑
j=1

u∑
i=1

ykpXY (xi, yj),

for k = 0, 1, 2, 0 ≤ u ≤ K1 and 0 ≤ m ≤ K2. All the above values can be computed in

O(K1K2) time, while the amount of memory needed store all of them is also O(K1K2).

87



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

Then P (CX(u, v], CY (m,n]) can be computed in constant time as follows

P (CX(u, v], CY (m,n]) = φ0,XY (v, n)− φ0,XY (v,m)− φ0,XY (u, n) + φ0,XY (u,m).

Similarly, the quantity
n∑

j=m+1

v∑
i=u+1

yjpXY (xi, yj) can be evaluated in constant time

using φ1,XY (·, ·), leading further to the evaluation of ŷ(CY (m,n]|CX(u, v]) in O(1)

time as well. Next notice that

n∑
j=m+1

(yj − ŷ(CY (m,n]|CX(u, v]))2

v∑
i=u+1

pXY (xi, yj) =

n∑
j=m+1

v∑
i=u+1

y2
jpXY (xi, yj)− ŷ(CY (m,n]|CX(u, v])2P (CX(u, v], CY (m,n]),

where
n∑

j=m+1

v∑
i=u+1

y2
jpXY (xi, yj) can also be computed in O(1) time based on φ2,XY (·, ·).

Let us summarize now the solution algorithm to problem (4.6). After performing

the preprocessing step the algorithm proceeds in two stages as follows.

1) For each pair (u, v) ∈ EK1 , solve the MWP problem in GY (wu,v), where wu,v is

given in (4.10). This takes O(K2
2) operations for each pair (u, v). Doing so for

all (u, v) ∈ EK1 amounts to O(K2
1K

2
2) operations.

2) Solve the MWP problem in GX(w), where w is given in (4.9). This can be done

in O(K2
1) time.

In conclusion, the overall time complexity of the proposed algorithm is O(K2
1K

2
2).

4.3 Optimal FR-SSQ Design Algorithm

In this section, we formulate the optimal FR-SSQ design problem and present its

solution.
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The rates in the FR case are

R1(r) = log2M1,

R2(r, s̄) =

M1∑
i=1

P (Ci) log2M2,i.
(4.11)

It is easy to impose a constraint R1(r) ≤ R1 on the rate of encoder 1 by fixing the

number of cells in Q1 to be

M1 = b2R1c. (4.12)

The problem of optimal FR-SSQ design is formulated as

min
r∈TX(M1),s̄∈TM1

Y

F′(r, s̄) , ρD1(r) + (1− ρ)D2(r, s̄) + λ2R2(r, s̄), (4.13)

for some fixed ρ, 0 < ρ < 1, and λ2 > 0. Let RDFR(R1) denote the set of quadru-

ples (R1(r), R2(r, s̄), D1(r), D2(r, s̄)) satisfying (4.12). Then any point on the lower

boundary of the convex hull of RDFR(R1) can be obtained by solving problem (4.13)

for some choice of ρ and λ2 as above.

Using the notations introduced in the previous section, the cost in (4.13) becomes

F′(r, s̄) =

M1∑
i=1

(
dX(Ci) + λ2P (Ci) log2M2,i +

M2,i∑
j=1

dY (Ci,j|Ci)︸ ︷︷ ︸
τ ′(Ci,si)

)
.

Similarly to the EC case, if cell Ci is fixed the partition si can be optimized by

minimizing the cost τ ′(Ci, si). Therefore, for each (u, v) ∈ EK1 let us denote by
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ω′(CX(u, v]) the minimum value of τ ′(Ci, si) over all si when Ci = CX(u, v], i.e.,

ω′(CX(u, v]) , min
M2,s∈TY (M2)

τ ′(CX(u, v], s). (4.14)

Then problem (4.13) becomes equivalent to

min
r∈TX(M1)

F̂′(r) ,
M1∑
i=1

(dX(Ci) + ω′(Ci)) . (4.15)

Consider the WDAG GX(w′), where for each (u, v) ∈ EK1 the weight w′(u, v) is

defined as

w′(u, v) = dX(CX(u, v]) + ω′(CX(u, v]). (4.16)

Then any ascending M1-sequence r can be identified with an M1-edge path in GX(w′)

from the source to the final node, whose weight equals the cost F̂′(r). Since the

correspondence is one-to-one, it follows that problem (4.15) is equivalent to the M1-

edge MWP problem in GX(w′).

In order to solve the aforementioned problem we need to determine first the value

of ω′(CX(u, v]) by solving the minimization in (4.14), for each (u, v) ∈ EK1 . Note

that, unlike its counterpart (4.7) in the EC case, problem (4.14) can no longer be cast

as an MWP problem. In order to solve it notice that the following holds

ω′(CX(u, v]) = min
M2

(
λ2P (CX(u, v]) log2M2 + min

s∈TY (M2)

M2∑
j=1

dY (C ′j|CX(u, v])︸ ︷︷ ︸
Ŵu,v(M2)

)
. (4.17)

We conclude that the above problem can be solved in two stages.
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A) Solve first the inner minimization over ascending M2-sequences s, for each pos-

itive integer M2.

B) Solve the outer minimization over positive integers M2.

For each M2 > 0 the inner minimization is equivalent to the M2-edge MWP problem

in the WDAG GY (w′u,v), where for each (m,n) ∈ EK2 the weight w′u,v(m,n) is defined

as follows

w′u,v(m,n) , dY (CY (m,n]|CX(u, v]).

Thus, the quantity Ŵu,v(M2) defined in (4.17) equals the weight of the M2-edge

MWP in GY (w′u,v). As pointed out above, solving (4.17) can be done by determining

Ŵu,v(M2) for each M2 and then performing a linear search over M2.

The computation of Ŵu,v(M2) can be accomplished using dynamic programming

(DP). The DP algorithm finds the k-edge MWP path from node 0 to node n for each

pair (k, n) with 1 ≤ k ≤ M2 and 1 ≤ n ≤ K2. Let Wu,v(k, n) denote the weight of

the k-edge MWP path from node 0 to node n. Then the following recurrence relation

holds for all 2 ≤ k ≤M2 and 2 ≤ n ≤ K2

Wu,v(k, n) = min
1≤m<n

(
Wu,v(k − 1,m) + w′u,v(m,n)

)
. (4.18)

Clearly, Wu,v(1,m) = w′u,v(0,m) for all m ∈ IK2 \ {0}. The DP process solves (4.18)

for all pairs (k, n), 1 ≤ k ≤ M2, 1 ≤ n ≤ K2, in lexicographical order. The value

Ŵu,v(M2) sought of equals Wu,v(M2, K2). The total amount of operations reaches

O(M2K
2
2).

Note that the above procedure to solve the M2-edge MWP problem, also solves

the k-edge MWP problem for all smaller path lengths k, for 1 ≤ k < M2. Since

the maximum possible value of M2 is K2, it follows that solving the M2-edge MWP
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problem for all 1 ≤M2 ≤ K2 can be done in O(K3
2) time. Since the additional linear

search over M2 in (4.17) takes only O(K2) time, it follows that problem (4.17) can be

solved in O(K3
2) time.

Next we will show that the edge weights in the WDAG GY (w′u,v) satisfy the so-

called Monge property, fact which allows for a speed-up of the DP algorithm.

Lemma. The edge weights in the WDAG GY (w′u,v) satisfy the Monge property, i.e.,

the following holds

w′u,v(m,n) + w′u,v(m
′, n′) ≤ w′u,v(m,n

′) + w′u,v(m
′, n),

for all 0 ≤ m < m′ < n < n′ ≤ K2.

(4.19)

Proof:

Let C = CX(u, v], pC(y) ,
∑
x∈C pXY (x,y)

P (C)
and

η(m,n) ,
n∑

j=m+1

(yj − ŷ(CY (m,n]|C))2pC(yj).

Then we have

w′u,v(m,n) = (1− ρ)P (CX(u, v])η(m,n). (4.20)

Note that pC(y) is a pmf and ŷ(CY (m,n]|C) =
∑n
j=m+1 yjpC(yj)∑n
j=m+1 pC(yj)

. Then according to

(Wu, 1991; Wu and Zhang, 1993) the function η(m,n) satisfies the Monge property,

i.e., the following holds

η(m,n) + η(m′, n′) ≤ η(m,n′) + η(m′, n),

for all 0 ≤ m < m′ < n < n′ ≤ K2.
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The above property in conjunction with (4.20) implies (4.19), thus completing the

proof.

Since the weights w′u,v(m,n) of the WDAG GY (w′u,v) satisfy the Monge property,

the DP algorithm used to solve the problem at stage A can be sped up by a factor

of K2 (Wu, 1991; Wu and Zhang, 1993). Specifically, this is done by applying the so-

called SMAWK algorithm introduced in (Aggarwal et al., 1987) to compute all values

Wu,v(k, n) for all n and fixed k, in O(K2) operations. This implies that problem

(4.17) can be solved in O(K2
2) time. It follows that computing ω′(CX(u, v]) for all

pairs (u, v) ∈ EK1 takes O(K2
1K

2
2) operations.

Let us summarize now the proposed solution to the optimal FR-SSQ design prob-

lem (4.13). We start with a preprocessing step as in the EC case. After that the

algorithm proceeds as follows.

Step 1) For each pair (u, v) ∈ EK1 , solve problem (4.17) in the following two stages.

A) Solve the M2-edge MWP problem in GY (w′u,v), for all 1 ≤ M2 ≤ K2. To

this end, for each 1 ≤ k ≤ K2 use SMAWK to compute Wu,v(n) for all

1 ≤ n ≤ K2.

B) Compute ω′(CX(u, v]) = min
M2

(
λ2P (CX(u, v]) log2M2 + Ŵu,v(M2)

)
.

Step 2) Solve the M1-edge MWP problem in the WDAG GX(w′).

Recall that the preprocessing step needs O(K1K2) time. Further, Step 1 requires

O(K2
1K

2
2) operations. Step 2 can be accomplished in O(M1K

2
1) running time. In

conclusion, the overall running time to solve problem (4.13) is O(K2
1K

2
2) assuming

that M1 = O(K2
2).
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4.4 Application to Continuous Sources

In this section we assume that the sources X and Y are continuous and apply the

proposed algorithms to discretized versions of X and Y . We show that the EC-SSQ,

respectively FR-SSQ, obtained in this way approaches in performance the optimal

EC-SSQ, respectively FR-SSQ, with convex cells for the original sources as the dis-

cretization increases in accuracy.

First we need to introduce some notations. For any pair of real-valued RVs (X, Y )

with joint pdf fXY , for each positive real value B and positive integer K, we define the

pair continuous RVs (XB, YB) and the pair of discrete RVs (X̃B,K , ỸB,K) as follows.

(XB, YB) is the truncation of (X, Y ) to the set [−B,B] × [−B,B], i.e., its pdf is

fXBYB(x, y) , fXY (x,y)∫B
−B

∫B
−B fXY (x,y) dx dy

when (x, y) ∈ [−B,B]× [−B,B] and 0 otherwise.

The marginal pdfs of XB and YB are denoted by fXB and fYB , respectively. Further,

(X̃B,K , ỸB,K) is the quantized version of (XB, YB) using a product scalar quantizer.

More specifically, each scalar quantizer has K cells of equal size, and the centroid of

each cell as the reconstruction value. Thus, the thresholds of each scalar quantizer are

t
(B)
0 , . . . , t

(B)
K , where t

(B)
k , −B + 2kB

K
, 0 ≤ k ≤ K. Let UB,K denote the set of these

thresholds. The alphabet of X̃B,K is X̃B,K = {x(B)
k ,

∫ t(B)
k

t
(B)
k−1

xfXB (x) dx

∫ t(B)
k

t
(B)
k−1

fXB (x) dx

|1 ≤ k ≤ K}.

The alphabet of ỸB,K is ỸB,K = {y(B)
k ,

∫ t(B)
k

t
(B)
k−1

yfYB (y) dy

∫ t(B)
k

t
(B)
k−1

fYB (y) dy

|1 ≤ k ≤ K}. The joint pmf of

(X̃B,K , ỸB,K) is PX̃B,K ỸB,K (x
(B)
k , y

(B)
l ) ,

∫ t(B)
k

t
(B)
k−1

∫ t(B)
l

t
(B)
l−1

fXBYB(x, y) dy dx, 1 ≤ k, l ≤ K.

An SSQ for a continuous source is specified by the encoding functions f1, f2 and

the decoding functions g1, g2, as in (4.1) where I1 = {1, 2, . . . ,M1} or I1 = Z and

I2 = {1, 2, . . . ,M2} or I2 = Z. Note that we also consider the possibility that I1 = Z

and I2 = Z in the EC case. We consider SSQs with convex cells, thus the cells of each
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partition are intervals, open at the left end and closed at the right end (except when

the right end equals infinity). They are labeled in increasing order from left to right.

Additionally, we only consider partitions where the number of cells is finite in any

bounded interval2. For simplicity, let us denote Q = (f1, f2, g1, g2). When applying

the SSQ Q to a pair of RVs (X ′, Y ′), we denote by D1(Q, X ′) and D2(Q, X ′, Y ′) the

distortions at the first and second decoder, respectively, i.e.,

D1(Q, X ′) , E[(X ′ − X̂ ′)2], D2(Q, X ′, Y ′) , E[(Y ′ − Ŷ ′)2],

where X̂ ′ = g1(f1(X ′)) and Ŷ ′ = g2(f1(X ′), f2(f1(X ′), Y ′)). The rates of the two

encoders in the EC case will be denoted by REC,1(Q, X ′) and REC,2(Q, X ′, Y ′), re-

spectively. Thus,

REC,1(Q, X ′) , −E[log2 P (f1(X ′))], REC,2(Q, X ′, Y ′) , −E[log2 P (f2(f1(X ′), Y ′)|f1(X ′))],

where, for a discrete RV Z̃, P (Z̃) denotes its pmf, i.e., P (Z̃) = pZ̃(Z̃). The rates in

the FR case are RFR,1(Q, X ′) , log2M1 and RFR,2(Q, X ′, Y ′) , −E[log2M2,I ]. Note

that in the FR case we necessarily have I1 and I2 finite. We denote by QEC and by

QFR the class of EC-SSQs and of FR-SSQs defined as above, respectively. Finally,

consider fixed 0 < ρ < 1, λ1 > 0 and λ2 > 0 and denote

FEC(Q, X ′, Y ′) , ρD1(Q, X ′) + (1− ρ)D2(Q, X ′, Y ′) + λ1REC,1(Q, X ′) + λ2REC,2(Q, X ′, Y ′),

FFR(Q, X ′, Y ′) , ρD1(Q, X ′) + (1− ρ)D2(Q, X ′, Y ′) + λ2RFR,2(Q, X ′, Y ′),

2Note that considering only partitions where the number of cells is finite in any bounded interval
does not preclude the optimality of the quantizer for Y , according to (Gyorgy et al., 2003). It might
also be possible that the arguments of (Gyorgy et al., 2003) could be extended to prove a similar
claim for the quantizer for X. The investigation of this possibility is left for future work.
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The proof of the following result is deferred to appendix D.

Theorem 4.1. Let (X, Y ) be a pair of jointly distributed real-valued RVs with

a continuous joint pdf fXY with finite variance, satisfying fXY (x, y) > 0 for any

x, y ∈ R. Let

F∗EC , inf
Q∈QEC

FEC(Q, X, Y ). (4.21)

For each positive real value B and positive integer K, let Q̂B,K denote the optimal EC-

SSQ with convex cells for the pair of discrete RVs (X̃B,K , ỸB,K). Then the following

holds

lim
B→∞

lim
K→∞

FEC(Q̂B,K , X̃B,K , ỸB,K) = F∗EC . (4.22)

Furthermore, for each positive integer M1, let

F∗FR(M1) , inf
Q∈QFR

FFR(Q, X, Y ).

For each positive real value B and positive integer K, let Q̂B,K(M1) denote the op-

timal FR-SSQ with convex cells for the pair of discrete RVs (X̃B,K , ỸB,K). Then the

following holds

lim
B→∞

lim
K→∞

FFR(Q̂B,K(M1), X̃B,K , ỸB,K) = F∗FR(M1). (4.23)

4.5 Experimental Results and Discussion

This section assesses the practical performance of the proposed EC-SSQ and FR-

SSQ design algorithms for discretized Gaussian sources. We start with a pair (X, Y )
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of correlated Gaussian sources, both with 0 mean and variance 1, with joint pdf

fXY (x, y) =
1

2π
√

1− c2
exp

(
−x

2 + y2 − 2xyc

2(1− c2)

)
,

where c is the correlation coefficient. We consider c = 0.5 and c = 0.9 in this section.

Next we consider the discrete sources X̃ = X̃B1,K1 and Ỹ = ỸB2,K2 , where B1 = 3,

B2 = 5, K1 = 100 and K2 = 160. The proposed EC-SSQ and FR-SSQ design

algorithms are applied to the pair of discrete sources (X̃, Ỹ ) and the obtained SSQs

are extended to SSQs for the continuous sources (X, Y ). Then the distortions at

the two decoders, denoted by D1, respectively D2, and the rates of the two encoders,

denoted by R1, respectively R2, are evaluated for the extended SSQs applied to (X, Y ).

An SSQ for the discrete sources (X̃, Ỹ ) is extended to an SSQ for (X, Y ) by

extending each partition of the alphabet of X̃ and each partition of the alphabet of

Ỹ to a partition of R with the same number of cells as follows. A partition for X̃

specified by the sequence of thresholds 0 = r0 < r1 < . . . < rM1 = K1 is extended to

the partition of R with thresholds (−∞, t(B1)
r1 , . . . , t

(B1)
rM1−1 ,∞). Likewise, a partition for

Ỹ specified by the sequence of thresholds 0 = s0 < s1 < . . . < sM2 = K2 is extended

to the partition of R with thresholds (−∞, t(B2)
s1 , . . . , t

(B2)
sM1−1 ,∞).

We first consider the case of EC-SSQ. We ran the proposed algorithm for optimal

EC-SSQ design for four values of ρ, namely, ρ = 0.1, 0.5, 0.9, 0.95 and a large set of

values of λ1 and λ2 with λ1 ∈ [0.01, 1.50] and λ2 ∈ [0.01, 1.0].

Figures 4.1 and 4.2 illustrate the performance comparison against the theoreti-

cal rate-distortion bounds. Figures 4.1a and 4.2a plot the distortion pairs (D1, D2)

obtained in our experiments for c = 0.9 and c = 0.5, respectively. Each figure also

shows the boundary of the theoretical region of nontrivial distortion pairs, which is

characterized by 0 ≤ D1 ≤ 1 and D2 ≤ 1 − c2(1 − D1). These figures show that,
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by varying the parameters ρ, λ1 and λ2 the proposed design is able to achieve a

dense set of distortion pairs covering fairly well the theoretical distortion region. For

each distortion pair (D1, D2) achieved by our scheme we compute the rate-gap pair

(∆R1,∆R2) relative to the theoretical lower bound, namely ∆Ri = Ri −R∗i , i = 1, 2,

where (R∗1, R
∗
2) denotes the pair of information theoretical lower bounds on the rates

at the two encoders for the distortion pair (D1, D2). According to (Viswanathan and

Berger, 2000), we have

R∗1 =
1

2
log2

1

D1

,

R∗2 =
1

2
log2

1− c2(1−D1)

D2

.

The rate-gap pairs are plotted in Figures 4.1b and 4.2b for c = 0.9 and c = 0.5, re-

spectively. Recall that a rate gap of 0.2546 bits/sample is expected at high resolution,

as explained in Chapter 3.

As it can be seen from Figures 4.1b and 4.2b in most of the cases the rate-gap

at encoder 2 is within 0.254 bits/sample, while the gap at encoder 1 is within 0.274

bits/sample, which is very close to the gap due to the low dimensionality of the

EC-SSQ. This fact demonstrates the effectiveness of the proposed EC-SSQ design

algorithm as an approximation of the optimal EC-SSQ for continuous sources.

We also mention that the largest value of ∆R2 is only slightly higher than the

benchmark value of 0.254, namely it is 0.257 bits/sample for c = 0.9, respectively

0.262 bits/sample for c = 0.5. On the other hand, there are several cases for which

the rate-gap at encoder 2 ranges between 0.3 and 0.4. The corresponding rate-gap

pairs and distortion pairs are marked using star-shaped markers in Figures 4.1 and

4.2. We observe that these cases with excess rate loss are obtained when D1 is very

small (thus, R1 is very high), while D2 . 0.1. One possible reason for this additional
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(a) Distortion pairs against the theoretical bound.
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Figure 4.1: Comparison between the achievable rate-distortion performance and the
theoretical bound for c = 0.9.

rate loss could be the coarseness of discretization for the source X. Another possible

reason could be the additional tension in the optimization of encoder 1 generated by

the competing requirements at the two decoders. Namely, there is tension between

ensuring a good reconstruction of the source X as well as facilitating an efficient

encoder for the source Y .

It is also interesting to investigate the impact that the refinement of the dis-

cretization has on the EC-SSQ performance. Table 4.1 compares the rate-distortion

performance for four pairs K1, K2 representing a gradual increase in the discretization

accuracy. The EC-SSQ design algorithm is applied in all four cases to the same param-

eters, namely c = 0.9, λ1 = 0.22, λ2 = 0.15 and ρ = 0.5. The pair K1 = 100, K2 = 160

represents the coarsest discretization. The discretization is refined gradually by mul-

tiplying the initial values of K1 and K2 by two, five and ten, respectively. It can

be noted that the rate gaps generally decrease, as expected, but the decrease is very

small. In particular, the relative decrease of ∆R1 from the initial to the final value is

of 0.5%, while for ∆R2 the relative decrease is of 0.28%.
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Figure 4.2: Comparison between the achievable rate-distortion performance and the
theoretical bound for c = 0.5.

(K1, K2) (100, 160) (200, 320) (500, 800) (1000, 1600)
R1 1.3173 1.3030 1.3059 1.3030
D1 0.2307 0.2349 0.2340 0.2349
R2 1.0430 1.0461 1.0442 1.0452
D2 0.1196 0.1201 0.1201 0.1202

∆R1 0.2593 0.2580 0.2582 0.2580
∆R2 0.2150 0.2145 0.2144 0.2144

Table 4.1: Rate-distortion performance comparison of the proposed EC-SSQ for var-
ious K1 and K2.

It is instructive to analyze the structure of the encoder partitions generated by

the proposed approach. Note that in the sequel the distortion is represented in

dB, i.e., as 10 log10D. Figure 4.3 illustrates the optimized encoder partitions of

the proposed EC-SSQ with R1 = 1.3173 and R2 = 1.0430, when c = 0.9 and

ρ = 0.5. In this example, the source X is quantized to M1 = 3 cells with sequence

of thresholds (−∞,−0.9, 0.9,∞). For each i = 1, 2, 3, all quantizers of source Y

have M2,i = 4 cells. The partitions corresponding to the quantizers for Y , for i =

1, 2, 3, are defined by the sequences of thresholds (−∞,−3.1250,−1.75,−0.1875,∞),
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Figure 4.3: Example of optimized encoder partitions of the proposed EC-SSQ, when
c = 0.9 and ρ = 0.5.

(−∞,−1.4375, 0.0, 1.4375,∞) and (−∞, 0.1875, 1.75, 3.125,∞), respectively. In ad-

dition, the contour of the joint pdf fXY is also plotted in Figure 4.3, where the

probability decreases as the color changes from green to blue. It is worth pointing

out that the output of the quantizer of Y is more densely spaced where the joint

probability takes on large values, as expected.

Figure 4.4 plots the distortion D2 of the proposed EC-SSQ, versus the rate R2,

when the pair (R1, D1) is fixed, for three cases of (R1, D1) with c = 0.9 and ρ = 0.5.

As expected, for fixed pair (R1, D1), the distortion at the second decoder decreases

steadily as the rate at encoder 2 increases. On the other hand, when the rate R2 is

kept fixed, the performance at decoder 2 also improves consistently with the increase

of the rate at encoder 1. In particular, when R1 increases from 1.1983 to 1.6095, the

performance at decoder 2 jumps up by about 0.9 dB. The further increase of R1 to

1.9367 leads to another gain of about 0.5 dB at decoder 2. This is expected since

increasing R1, intuitively, corresponds to refining the information about the source
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Figure 4.4: Performance of proposed EC-SSQ at decoder 2, for three pairs (R1, D1)
when c = 0.9 and ρ = 0.5.

X. Since X and Y are correlated, the refinement of the information about X leads

to more information about Y . Thus, the rate at encoder 2 is used to further refine

the information which is already available about Y through the reconstruction of X.

Next we assess the performance of the proposed FR-SSQ design algorithm in

comparison with the level-constrained practical SSQ scheme developed in (Balasub-

ramanian et al., 1995) based on the asymptotic quantization theory. The authors of

(Balasubramanian et al., 1995) use the following quantizer density functions for Q1,

respectively Q2,i,

λ(x) =
fX(x)1/3∫
fX(x)1/3dx

,

λ(y|Ci) =
f(y|Ci)1/3∫
f(y|Ci)1/3dy

,

to derive the asymptotical expressions of the distortion, as the rates approach infin-

ity. Further, based on the asymptotical analysis, they propose a practical scheme
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operating at finite rates. Note that the design of (Balasubramanian et al., 1995) is

performed under the constraint that
∑M1

i=1M2,i = N , for some target value N . The

practical construction of (Balasubramanian et al., 1995) proceeds as follows. First,

the encoding function f1 partitions the real line into M1 cells such that the area un-

der the function λ(x) within each cell equals 1/M1, using the marginal pdf fX(x).

Subsequently, the values of M2,i are computed using

M2,i =

⌊
N

[||f(y|Ci)||1/3P (Ci)]
1/3∑M1

i=1[||f(y|Ci)||1/3P (Ci)]1/3

⌉
,

where ||f(x)||m = [
∫
f(x)mdx]1/m, whileb·e denotes rounding to the nearest integer.

Subsequently, for each cell i, 1 ≤ i ≤M1, the encoding function f2(i, ·) partitions the

real line into M2,i cells such that the area under λ(y|Ci) within each cell equals 1/M2,i,

using the conditional pdf f(y|Ci). Finally, the reconstruction values are taken as the

centroid of each quantization cell. The distortion and the average rate of quantizer

Q2 are evaluated using (4.4) and (4.11), respectively. To implement the practical

FR-SSQ based on the above asymptotic analysis, the same discretization procedure

as for the proposed algorithm is utilized with K1 = 3000 and K2 = 5000.

We ran the proposed algorithm for optimal FR-SSQ design for two values of M1,

namely 4 and 16, for ρ = 0.5, 0.9 and a set of values of λ2 satisfying λ2 ∈ [0.00001, 0.05].

Figures 4.5a and 4.5b plot the distortion D2 versus the average rate R2, for the

proposed FR-SSQ in comparison with the scheme of (Balasubramanian et al., 1995),

for M1 = 4 and M1 = 16, respectively. The plots for both correlation coefficients

c = 0.5 and c = 0.9 and ρ = 0.5, 0.9 are included. It can be observed from both

figures that the performance when ρ = 0.5 and ρ = 0.9 is almost identical. It can also

be seen that our design always outperforms the scheme of (Balasubramanian et al.,

1995). To make the comparison easier, we show in Tables 4.2 and 4.3 the performance
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Figure 4.5: Performance comparison of the proposed FR-SSQ against the level-
constrained SSQ of (Balasubramanian et al., 1995).

improvement (in dB) over the scheme of (Balasubramanian et al., 1995) at decoder 2

for various values of R2, when M1 = 4 and 16, respectively. Note that when R2 ≈ 1.0,

the quantizers of Y for all the schemes have M2,i ≤ 2 cells. This explains why the

improvement is small at this rate. Then the gap gradually increases with the ascending

rates, in most cases. We note that the difference in performance is more pronounced

for the higher correlation coefficient and the smaller M1. In particular, in the case of

c = 0.5, the improvement is around 0.45 dB for 2 ≤ R2 ≤ 3 for both values of M1.

For M1 = 4, the improvement increases as R2 becomes higher than 3, reaching a peak

of 0.75 dB at R2 = 0.47, while for M1 = 16 the performance difference peaks at 0.5

dB. In the case when c = 0.9, the improvement over the scheme of (Balasubramanian

et al., 1995) when M1 = 4 equals 0.8 dB for 2 ≤ R2 ≤ 3 and gradually increases for

R2 > 3, achieving the value of 1.4 dB when R2 = 4.4. For M1 = 16 the performance

gain slightly drops, reaching about 0.55 dB for 2 ≤ R2 ≤ 3 and a maximum of 1.1 dB

at R2 = 4.5.
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c
R2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.4 4.7

0.5 0.003 0.3 0.45 0.45 0.45 0.65 0.55 0.65 0.75
0.9 0.2 0.5 0.8 0.8 0.8 0.95 1.2 1.4 −

Table 4.2: Performance improvement (in dB) at the second decoder over the scheme
of (Balasubramanian et al., 1995) for M1 = 4.

c
R2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.1

0.5 − − 0.45 0.45 0.5 0.5 0.5 0.4 0.4 0.4
0.9 0.15 0.4 0.55 0.45 0.55 0.8 1.0 1.1 0.9 0.9

Table 4.3: Performance improvement (in dB) at the second decoder over the scheme
of (Balasubramanian et al., 1995) for M1 = 16.

For a fair comparison we also have to account for the value of D1, which is shown

in Table 4.4. We point out that, for fixed M1, the value of D1 obtained with the

scheme of (Balasubramanian et al., 1995) is constant, while with our design it varies

slightly as R2 increases up to 3.5, after which it stabilizes. We observe that our

scheme outperforms the scheme of (Balasubramanian et al., 1995) at the first decoder

when M1 = 4, but it is worse when M1 = 16. However, the loss in the latter case

(which is of only 0.1 dB for R2 ≥ 3.5) is offset by the gain in performance at decoder

2. Therefore, we conclude that the overall performance of our scheme is higher than

that of (Balasubramanian et al., 1995) for both values of M1. On the other hand, the

performance difference tends to decrease as M1 increases. This is expected since the

asymptotic analysis performed in (Balasubramanian et al., 1995) becomes accurate

when the rate approaches infinity.

Figure 4.6 illustrates the encoder partitions for the proposed FR-SSQ and for

the scheme of (Balasubramanian et al., 1995) when M1 = 3 and R2 ≈ 2.17. The

figure additionally shows the contour of the joint pdf fXY . It can be noticed that

the quantizer of X for the proposed FR-SSQ (Figure 4.6a) has more dense outputs
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D1

M1 4 16

(Balasubramanian et al., 1995) −9.05 −20.08
Proposed
c = 0.5

R2 < 3.5 R2 ≥ 3.5 R2 < 3.3 R2 ≥ 3.3
[−9.30,−9.21] −9.30 [−19.99,−19.89] −19.99

Proposed
c = 0.9

R2 < 2.3 R2 ≥ 2.3 R2 < 3.5 R2 ≥ 3.5
[−9.30,−9.18] −9.30 [−20.07,−19.74] −19.99

Table 4.4: Comparison of D1 between the proposed FR-SSQ and the scheme of (Bal-
asubramanian et al., 1995) for M1 = 4 and 16. The distortion is listed in dB.

in the region where the marginal pdf fX takes on large values, compared with the

counterpart of (Balasubramanian et al., 1995) (Figure 4.6b). This could explain the

performance improvement of around 0.19 dB in terms of D1 for our scheme.

It is instructive to examine the probabilities of the cells of quantizer of X. For the

proposed FR-SSQ, we have P (C1) = 0.2743, P (C2) = 0.4711 and P (C3) = 0.2546,

while for the scheme of (Balasubramanian et al., 1995), we have P (C1) = 0.2278,

P (C2) = 0.5444 and P (C3) = 0.2278. Note that in both cases P (C2) is higher than

P (C1) and than P (C3), but cell C2 is narrower in our design, making its contribution

to distortion D1 smaller than for the scheme of (Balasubramanian et al., 1995). It

turns out that this decrease in the distortion of cell C2 offsets the resulting increase in

the distortion of cells C1 and C3, thus leading to a smaller value of D1 for our design.

It can also be observed from Figure 4.6 that in our scheme M2,1 = M2,3 > M2,2,

while the opposite holds for the design of (Balasubramanian et al., 1995). This can

be attributed to the different constraints imposed in the two designs. Namely, this

chapter constraints the average rate at encoder 2, which is
∑M1

i=1 P (Ci) log2M2,i, to be

fixed, while (Balasubramanian et al., 1995) constraints the total number of cells for

all encoder 2 quantizers, to be fixed. Since P (C1) and P (C3) are lower than P (C2),

our design allows for values of M2,1 and M2,3 higher than M2,2 since an extra cell

in either M2,1 or M2,3 contributes much less to the average rate than an extra cell
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(a) Proposed FR-SSQ. (b) Scheme of (Balasubramanian et al., 1995).

Figure 4.6: Encoder partitions for the proposed FR-SSQ (a) and for the scheme of
(Balasubramanian et al., 1995) (b) at rate R1 = 1.5850 (i.e., M1 = 3).

in M2,2. On the other hand, for the design of (Balasubramanian et al., 1995), an

extra cell in any quantizer at encoder 2 has the same effect with respect to meeting

the constraint. Therefore, more cells are allocated to M2,2 since its distortion has a

higher weight in the average distortion D2 than M2,1 or M2,3 (i.e., P (C2) > P (C1) and

P (C2) > P (C3)). This difference in constraints leads to more quantizer cells being

allocated overall at encoder 2 in our design (i.e., 14 cells) than in the competitor

scheme (13 cells), ultimately leading to an 0.68 dB improvement in terms of D2 for

the proposed scheme.

4.6 Conclusion

This chapter develops optimal design algorithms for SSQs with convex cells for

finite-alphabet correlated sources. Both the FR and EC cases are considered. The cost

to be minimized is a weighted sum of distortions and rates. The proposed solutions

rely on solving the MWP problem in the EC case, respectively, a length-constrained
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MWP problem in the FR case, in a series of WDAGs. The time complexity of each

solution is O(K2
1K

2
2), where K1 and K2 denote the respective cardinalities of the al-

phabets of the two sources. We also prove that, if the proposed algorithms are applied

to fine, uniform discretizations of sources with continuous joint pdf, the performance

approaches that of the optimal EC-SSQ, respectively FR-SSQ, with convex cells for

the original sources as the discretization becomes more accurate. Experimental results

for correlated Gaussian sources corroborate the aforementioned theoretical result.
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Chapter 5

Conclusion

This thesis addresses the design of scalar-based quantizers for two-dimensional

vectors. In particular, the designs of unrestricted polar quantizer (UPQ) and suc-

cessively refinable UPQ (SRUPQ) for bivariate circularly symmetric sources in polar

coordinates are presented. Moreover, the design algorithm of sequential scalar quan-

tizer (SSQ) for source vectors with correlated elements in Cartesian coordinates is

also investigated. Both the entropy-constrained (EC) and fixed-rate (FR) cases are

considered in this thesis.

Chapter 2 proposes the globally optimal designs of ECUPQ and FRUPQ, for

continuous bivariate circularly symmetric sources. The optimality holds when the

magnitude quantizer thresholds are confined to a predefined finite, uniform set. The

design of ECUPQ is based on solving a single MWP problem in a WDAG, along

with an efficient algorithm finding the number of phase regions for each possible

magnitude quantization level. The proposed solution to FRUPQ design is based on

dynamic programming expedited by a monotonicity property of the objective function.

The time complexity of the proposed ECUPQ and FRUPQ amounts to O(K2 +

KPmax) andO(KN2), respectively, whereK is the size of the set of possible magnitude
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thresholds, Pmax is the maximum number of phase levels, and N is the number of

target qunatizer levels. Both the proposed ECUPQ and FRUPQ outperform the

prior practical designs.

Chapter 3 investigates the optimal designs of EC-SRUPQ and FR-SRUPQ. The

proposed algorithms are globally optimal when the magnitude quantizers’ thresholds

are confined to finite, uniform sets. Note that the solution to SRUPQ is more com-

plicated compared with the single-description UPQ design in Chapter 2, as we need

to solve the MWP problems (or dynamic programming problems) for multiple node

pairs in some other WDAG, where the algorithms in Chapter 2 can no longer be uti-

lized. The asymptotical time complexity is O(K1K
2
2Pcmax) for the EC case, where K1

and K2 are the sizes of the sets of possible magnitude thresholds of the coarse UPQ

and the refined UPQ, respectively, while Pcmax is the maximum number of phase

levels in any phase quantizer of the coarse UPQ. The time complexity amounts to

O(K1K2N
′2N1) for the FR case, where N1 is the number of bins of the coarse UPQ,

while N ′ denotes the ratio between the number of bins of the fine UPQ and the coarse

UPQ. The experimental results show that the performance of the proposed algorithm

is close to the corresponding theoretical bounds.

Chapter 4 considers the SSQ design for finite-alphabet sources in Cartesian coor-

dinates, for the case where the components of a two-dimensional vector are correlated.

The global optimality holds for the class of SSQs with convex cells. The proposed al-

gorithms of EC-SSQ and FR-SSQ involve solving the MWP and a length-constrained

MWP in a series of WDAGs, respectively. The overall running time of each solution

is O(K2
1K

2
2), where K1 and K2 denote the respective cardinalities of the alphabets of

the two sources. Moreover, we prove that if the proposed algorithms are applied to fi-

nite and uniform discretizations of sources with continuous joint pdf, the performance

approaches that of the optimal EC-SSQ, respectively FR-SSQ, with convex cells for
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the original sources as the discretization becomes more accurate. The proposed EC-

SSQ algorithm performs close to the theoretical bounds, while practical performance

of FR-SSQ is superior than the prior FR-SSQ design based on high-rate quantization

theory.

This thesis addresses the designs of UPQ, SRUPQ and SSQ only for the two-

dimensional case, and thus future work may involve the design for high-dimensional

sources in both polar and Cartesian coordinates. In Cartesian coordinates, note that

for T -dimensional source vector XT = (X1, · · · , XT ) (the samples take value from the

same alphabet), the zero delay coding (Yuksel, 2013; Linder and Yüksel, 2014; Wood

et al., 2017) allows the quantizer to encode a source sample Xt immediately when it is

observed, instead of waiting for grouping T source samples together. Therefore, zero

delay coding is practical in real-time processing scenarios, e.g., in real-time streaming

systems (Draper et al., 2014; Etezadi et al., 2014) and sensor networks (Akyildiz et al.,

2002).

Currently, the literature on zero delay coding mostly focuses on the existence and

structure of the optimal quantization policies for Markov sources, e.g., (Witsenhausen,

1979; Walrand and Varaiya, 1983; Yuksel, 2013; Linder and Yüksel, 2014; Wood et al.,

2017). Specifically, the authors of (Linder and Yüksel, 2014) prove the existence of

optimal zero delay quantizers with convex codecells, for finite T . Therefore, it is

worth investigating the practical design of zero delay coding using scalar quantizers

with convex cells, potentially and possibly by extending the proposed SSQ framework

to high-dimensional vectors (T ≥ 2).

On the other hand, the SRUPQ and successively refinable SSQ for correlated

sources, with general number of refinement stages are also worth further exploration.

Another interesting direction to be investigated is the rate of convergence of the

approximation error in Theorem 4.1, in terms of B and K. Besides that, the asymptotic
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analysis of the EC-SSQ performance is also interesting to address.
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Appendix A

Appendix

In this appendix we explain the relation between the formulation of the optimal

quantizer design problem as a constrained optimization problem and the correspond-

ing Lagrangian relaxation.

Generally, for any R ≥ 0, the operational distortion-rate function for a class of

quantizers Q can be defined by

DQ(R) , inf
Q∈Q
{D(Q) : R(Q) ≤ R},

where D(Q) is the distortion of the quantizer Q, while R(Q) denotes its rate. The

infimum is taken over all quantizers in Q whose rate is not greater than the given

rate R. If there is no such a Q with finite distortion and rate R(Q) ≤ R, then we

let DQ(R) = +∞. Additionally, any quantizer Q achieving DQ(R) in the sense that

R(Q) ≤ R and D(Q) = DQ(R) is called an optimal quantizer (Gyorgy et al., 2003).

In light of this, the quantizer design problem can be formulated as the following

113



Ph.D. Thesis - Huihui Wu McMaster - Electrical & Computer Engineering

constrained optimization problem

min
Q∈Q

D(Q)

subject to R(Q) ≤ R.

(A.1)

However, the Lagrangian relaxation is commonly used in prior work (Chou et al.,

1989; Muresan and Effros, 2008; Vafin and Kleijn, 2005; Fleming et al., 2004), i.e.,

min
Q∈Q

L(λ,Q), (A.2)

for some fixed λ > 0, where L(λ,Q) , D(Q) + λR(Q).

Note that according to [Theorem 1, (Everett III, 1963)] any quantizer Q achieving

the minimum of problem (A.2) with some rate R∗, is also a solution (an optimal

quantizer) to problem (A.1) with R = R∗. Conversely, any optimal quantizer of

problem (A.1) which lies on the lower boundary of the convex hull of DQ(R), can be

found by solving problem (A.2) for some multiplier λ > 0 [Proposition 3, Chapter

11.9, (Luenberger, 1997)].

In general, the operational distortion-rate function DQ(R) is not necessarily convex

(Chou et al., 1989), and thus the Lagrangian relaxation is not guaranteed to find

DQ(R), for every R ≥ 0. Actually, whenever the Lagrangian relaxation is utilized,

the purpose is to find the lower boundary of the convex hull of DQ(R) (where −λ is

the slope of the line supporting the convex hull), and to find the quantizer achieving

some point on the lower convex hull. These quantizers are in some sense optimal, and

can be used in practice.

The discussion above is for the quantizer design with single encoder-decoder pair,

while multiple encoder-decoder pairs may be needed in other systems. In this case,
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let us consider another class of quantizer systems QM with M encoder-decoder pairs,

where QM = {Q1, Q2, · · · , QM} ∈ QM , and the distortion and rate of quantizer Qi

are denoted by D(Qi) and R(Qi), respectively.

The corresponding quantizer system design problem can be formulated as the

following constrained optimization problem

min
QM∈QM

D(Q1)

subject to R(Qi) ≤ Ri, 1 ≤ i ≤M,

D(Qi) ≤ Di, 2 ≤ i ≤M.

(A.3)

where Ri and Di are the target rate and distortion for Qi, respectively.

Next, the Lagrangian relaxation is expressed by

min
QM∈QM

L(λ,QM), (A.4)

for some fixed positive vector λ = {λi}Mi=1, where L(λ,QM) ,
∑M

i=1(ρiD(Qi) +

λiR(Qi)).

We point out that the formulation of the optimization problem as a minimization

of a weighted sum of distortions and rates is also considered in prior work, e.g., (Chou

et al., 1989; Muresan and Effros, 2008; Fleming et al., 2004).

Let RD denote the set of all 2M -tuples (R(Qi), D(Qi)) over all quantizers in QM ,

i.e., RD = {(R(Qi), D(Qi))
M
i=1|QM ∈ QM}. Then any point on the lower boundary of

the convex hull of RD is optimal in some sense, as in the previous discussion. Any

such point is the solution of the minimization of a weighted sum of the distortions

and rates
∑M

i=1(ρiD(Qi) + λiR(Qi)), for some choice of positive weight vectors ρ and

λ. Notice that the solution of the minimization problem remains the same if all the
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weights are divided by
∑M

i=1 ρi.

Note that according to [Theorem 1, (Everett III, 1963)] any solution achieving the

minimum of problem (A.4) with QM∗ = {Q∗1, · · · , Q∗M}, is also a solution to problem

(A.3) with Di = D(Q∗i ), 2 ≤ i ≤M and Ri = R(Q∗i ), 1 ≤ i ≤M .
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Appendix

In this appendix we present the proofs of the claims corresponding to relations

(2.15) and (2.16), Lemma 2.1 and Proposition 2.1 in Chapter 2.

Proof of claims corresponding to relations (2.15) and (2.16): Let P ∗ ∈ P,

and let L denote the line passing through the point S(P ∗) of slope −µ. Consider the

following half plane bounded by L,

H , {(x, y)|y − f(P ∗) + µ(x− g(P ∗)) ≥ 0}.

It is clear now that P ∗ is a solution of problem (2.13), if and only if U ⊆ H (i.e.,

S(P ) ∈ H for every P ∈ P). The fact that U ⊆ H and that U ∩ L is nonempty

(since it contains S(P ∗)) means that L is a support line for U. In other words, we

have proved that P ∗ is a solution to problem (2.13) if and only if the line of slope −µ

passing through S(P ∗) is a support line to U.

Now we will prove that if P ∗ is a solution to problem (2.13), then relation (2.16)

holds. Consider P1, P2 ∈ P such that the segment P1P
∗ is the convex hull edge to the
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left of P ∗, and P ∗P2 is the convex hull edge to the right of P ∗. Then we obtain

f(P ∗) + µg(P ∗) ≤ f(P1) + µg(P1),

f(P ∗) + µg(P ∗) ≤ f(P2) + µg(P2).

Since function g(·) is increasing on P, after some algebraic manipulations, we further

obtain

left slope(P ∗) =
f(P ∗)− f(P1)

g(P ∗)− g(P1)
≤ −µ ≤ f(P2)− f(P ∗)

g(P2)− g(P ∗)
= right slope(P ∗),

which proves relation (2.16).

In order to prove relation (2.15), let us consider a point P0 in Û. Then there must

exist a support line passing through S(P0), such that all points S(P ) are above or on

this line. Let us denote its slope by −µ (note that we do not need to assume now

that µ > 0). Using similar arguments as in the previous discussion, it follows that P0

is a solution to problem (2.13). Then relation (2.16) holds for P0 in place of P , which

implies that relation (2.15) holds.

Proof of Lemma 2.1:

In light of the discussion above Lemma 2.1, if a point P satisfying (2.17) exists,

then the smallest such point equals P ∗[au,av). Then it is sufficient to show the existence

of such a point. Since λ > 0, we have − λ
(x[au,av))2 ln 2

< 0. Thus, it is sufficient to show

that limP→∞ right slope(P ) = 0.

Note that if x[au, av) = 0, we obtain − λ
(x[au,av))2 ln 2

= −∞, then relation (2.17)

holds for P = 1. Therefore, in the sequel, only the case x[au.av) > 0 is considered.

In view of Proposition 2.1, for every P ∈ Z+ \ {2}, we have P ∈ P̂. According to
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the definition of right slope(P ), we obtain

lim
P→∞

right slope(P ) = lim
P→∞

f(P + 1)− f(P )

g(P + 1)− g(P )

= lim
P→∞

(sinc( 1
P

) + sinc( 1
P+1

))(sinc( 1
P

)− sinc( 1
P+1

))

ln(P + 1)− lnP

= −2 lim
P→∞

sinc( 1
P+1

)− sinc( 1
P

)

ln(P + 1)− lnP
,

where the last equality is based on the fact that limP→∞(sinc( 1
P

) + sinc( 1
P+1

)) = 2.

Further, in light of the Cauchy’s mean value theorem, since functions sinc( 1
P

) and lnP

are both continuous on [P, P + 1], and differentiable on the open interval (P, P + 1),

there exists some Q ∈ (P, P + 1), such that

sinc( 1
P+1

)− sinc( 1
P

)

ln(P + 1)− lnP
=

(sinc( 1
Q

))′

(lnQ)′
.

Therefore, it is sufficient to prove that limQ→∞
(sinc( 1

Q
))′

(lnQ)′
= 0. For this, note that we

have the following sequence of relations

lim
Q→∞

(sinc( 1
Q

))′

(lnQ)′
= lim

Q→∞

1
π

sin( π
Q

)− 1
Q

cos( π
Q

)
1
Q

= lim
Q→∞

π

Q
sin(

π

Q
)

= 0,

where the second equality follows from the L’Hopital’s rule. Thus Lemma 2.1 follows.

Proof of Proposition 2.1:

Recall that f(P ) = −sinc2( 1
P

), and g(P ) = lnP . Let us make the change of
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variable u = g(P ), for P ≥ 1. Then P = g−1(u) = eu, for u ≥ 0. Further, define

y(u) , f(g−1(u)) = −sinc2(e−u), for u ≥ 0.

It follows that the following equality holds U = {(u, y(u))|u ∈ {ln 1, ln 2, · · · , lnPmax}}.

Thus, in order to find the lower convex hull of U, it is useful to determine the intervals

on which the function y(u) is convex, when u takes values in the continuous domain

(0,∞).

By computing the second order derivative of y(u), we obtain

y′′(u) =
1

x(u)2

(
−2 + (2− 2x(u)2) cos(2x(u)) + 3x(u) sin(2x(u))

)︸ ︷︷ ︸
β(x(u))

,

where x(u) = πe−u. Note that when u ≥ 0 we have x(u) ∈ (0, π]. Further, we aim at

determining the sign of β(x) as a function of x instead of u, for x ∈ (0, π]. For this

we compute the first and second order derivatives

β′(x) = 2x cos 2x− sin 2x+ 4x2 sin 2x,

β′′(x) = 4x (sin 2x+ 2x cos 2x)︸ ︷︷ ︸
γ(x)

.

Next we will determine the sign of γ(x). For this divide first the domain of x into the

following intervals: I1 = (0, π/4], I2 = (π/4, π/2], I3 = (π/2, 3π/4] and I4 = (3π/4, π].

Note that when x ∈ I1, we have x > 0, sin 2x > 0 and cos 2x ≥ 0, which lead to

γ(x) > 0. Additionally, for x ∈ I3 we have x > 0, sin 2x < 0 and cos 2x ≤ 0, yielding

γ(x) < 0. Further, to determine the sign of γ(x) on I2 and I4 we will analyze its

derivative

γ′(x) = 4(cos 2x− x sin 2x).
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It can be easily seen that γ′(x) < 0 holds for x ∈ I2, while γ′(x) > 0 holds for x ∈ I4.

These imply that γ(x) is decreasing for x ∈ I2 and increasing for x ∈ I4.

Further, we obtain that for x ∈ I2, γ(x) decreases from γ(π/4) = 1 > 0 to

γ(π/2) = −π < 0, yielding that there exists a unique point x1 ∈ I2 where γ changes

signs from positive to negative. In other words, γ(x1) = 0, γ(x) > 0 for x ∈ (π/4, x1)

and γ(x) < 0 for x ∈ (x1, π/2].

Similarly, for x ∈ I4, we have that γ(x) increases from γ(3π/4) = −1 < 0 to

γ(π) = 2π > 0, which implies that there exists a unique point x2 ∈ I4 where γ

changes signs from negative to positive. In other words, γ(x2) = 0, γ(x) < 0 for

x ∈ (3π/4, x2) and γ(x) > 0 for x ∈ (x2, π].

By summarizing the analysis of the sign of γ(x) and using the fact that β′′(x) has

the same sign as γ(x), we conclude that β′′(x) > 0 holds for (0, x1) and (x2, π], while

β′′(x) < 0 holds for x ∈ (x1, x2). This observation implies that: 1) β′(x) increases

for x ∈ [0, x1] from β′(0) = 0 to β′(x1) (thus β′(x1) must be positive); 2) β′(x)

decreases for x ∈ [x1, x2]; 3) β′(x) increases again for x ∈ [x2, π] up to β′(π) = 2π > 0.

Using further the fact that β′(π/2) = −π < 0, we conclude that there are exactly

two points x3, x4 ∈ (0, π], x3 < x4, where β′(x) changes signs. Specifically, we have

β′(x3) = β′(x4) = 0, β′(x) > 0 for x ∈ (0, x3) ∪ (x4, π], and β′(x) < 0 for x ∈ (x3, x4).

The aforementioned observation implies that β(x) increases on (0, x3] (from β(0) =

0 to a value which must be positive), further, β(x) decreases on [x3, x4] and increases

again on [x4, π] up to β(π) = −2π2 < 0. Considering the fact that β(π/2) = π2

2
−4 > 0,

it follows that there exists a unique point x5 ∈ (π/2, π) such that β(x5) = 0, β(x) > 0

holds for x ∈ (0, x5) and β(x) < 0 for x ∈ (x5, π].

Let u0 be the unique point in (0,∞) such that x(u0) = x5. Since the sign of y′′(u)

coincides with the sign of β(x(u)) we conclude that y(u) is concave for u ∈ [0, u0)

and is convex for u ∈ [u0,∞). Further, the fact that x5 > π/2 implies that u0 < ln 2.
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Leading to the conclusion that y(u) is convex on [ln 2,∞).

Recall that S(P ) denotes the point in the plane of coordinates (g(P ), f(P )). Then

the above considerations imply that the elements of P̂ are 1 and all points P0 + i,

for 0 ≤ i ≤ Pmax − P0, where P0 is the smallest integer larger than π
x5

, such that

the slope of segment (S(0), S(P0)) is smaller than or equal to the slope of segment

(S(P0), S(P0 + 1)). We found numerically that P0 = 3, thus the conclusion follows.
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Appendix

In this appendix we present the proofs of Proposition 3.3 and Proposition 3.4 in

Chapter 3. In order to prove Proposition 3.3, we need the following lemmas.

Lemma C.1: For any two points A and B in the plane we use the notation slope(AB)

for the slope of the line connecting A and B. Let Pi ∈ P̂ for 1 ≤ i ≤ 4, such that

P1 < P2, P3 < P4, P1 ≤ P3 and P2 ≤ P4. Then the following holds

slope(S(P1)S(P2)) ≤ slope(S(P3)S(P4)). (C.5)

Proof: Consider the function t : [0,∞) → R such that for each x ≥ 0 the pair

(x, t(x)) is the unique point with abscissa x situated on the lower convex hull of U.

Then function t is convex. For each 1 ≤ i ≤ 4 let xi = g(Pi). Then f(Pi) = t(xi) and

the claim follows in virtue of the following lemma.

Lemma C.2: Let t : R→ R be a convex function and x1 < x2, x3 < x4, x1 ≤ x3 and

x2 ≤ x4. Then the following holds

t(x2)− t(x1)

x2 − x1

≤ t(x4)− t(x3)

x4 − x3

. (C.6)
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Proof: Let us assume that x2 6= x3. In order to prove (C.6) we will prove the following

two inequalities

t(x2)− t(x1)

x2 − x1

≤ t(x3)− t(x2)

x3 − x2

, (C.7)

t(x3)− t(x2)

x3 − x2

≤ t(x4)− t(x3)

x4 − x3

. (C.8)

To prove (C.7) we will consider separately the cases 1) x2 < x3 and 2) x3 < x2. First

note that by performing some algebraic manipulations, (C.7) becomes

1

(x2 − x1)(x3 − x2)
(t(x2)(x3 − x1)− t(x1)(x3 − x2)− t(x3)(x2 − x1)) ≤ 0. (C.9)

In case 1) one has x1 < x2 < x3. Thus (x2 − x1)(x3 − x2) > 0 and (C.9) becomes

equivalent to

t(x2)(x3 − x1)− t(x1)(x3 − x2)− t(x3)(x2 − x1) ≤ 0, (C.10)

which is further equivalent to

t(x2) ≤ t(x1)
x3 − x2

x3 − x1

+ t(x3)
x2 − x1

x3 − x1

. (C.11)

Denote ρ = x3−x2

x3−x1
. Then 0 < ρ < 1, x2−x1

x3−x1
= 1 − ρ and x2 = ρx1 + (1 − ρ)x3. Thus,

(C.11) is equivalent to

t(ρx1 + (1− ρ)x3) ≤ ρt(x1) + (1− ρ)t(x3), (C.12)

which is true in virtue of the convexity of function t.

Let us consider now case 2). Then x1 ≤ x3 < x2. If x1 = x3 then (C.7) holds

trivially with equality. Assume now that x1 < x3. Then (x2 − x1)(x3 − x2) < 0 and
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(C.9) becomes equivalent to

t(x2)(x3 − x1) + t(x1)(x2 − x3)− t(x3)(x2 − x1) ≥ 0, (C.13)

which is equivalent to

t(x3) ≤ t(x1)
x2 − x3

x2 − x1

+ t(x2)
x3 − x1

x2 − x1

. (C.14)

If we let ρ = x2−x3

x2−x1
then 0 < ρ < 1 and inequality (C.14) is equivalent to

t(ρx1 + (1− ρ)x2) ≤ ρt(x1) + (1− ρ)t(x2), (C.15)

which holds since t is convex. With this observation the proof of (C.7) is complete.

The proof of (C.8) follows along similar lines. Clearly, (C.7) and (C.8) further imply

(C.6). In the case when x2 = x3 the proof of (C.6) is analogous to the proof of (C.7)

in case 1). These considerations complete the proof of the lemma.

Lemma C.3: slope(S(1)S(3)) ≤ slope(S(2)S(4)).

Proof: By using the definition of S(P ), after some algebraic manipulations we obtain

that the above inequality is equivalent to −27
4π2 ln 3

≤ −4
π2 ln 2

. This is further equivalent

to 27 ln 2 ≥ 16 ln 3. By applying the exponential function this becomes equivalent to

227 ≥ 316. The latter relation is true since 227 = (25)5 × 22, 316 = (33)5 × 3, while

25 > 33 and 22 > 3.

Proof of Proposition 3.3:

Let δ = λ2

(1−ρ)x([bK2
,bK2+1))2 ln 2

, and let P ∗ denote P ′1,max and P ∗P denote P ′P,max.

Assume first that P ∗ ≥ 3. Then, according to Proposition 3.1, P ∗ + 1 ∈ P̂ and based
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on Lemma 2.1 the following holds

−δ ≤ slope(S(P ∗)S(P ∗ + 1)). (C.16)

Note that P ∗ ≤ P dP ∗
P
e and P ∗ + 1 ≤ P dP ∗

P
e + P and, based on Proposition 3.1,

P ∗, P dP ∗
P
e,P ∗ + 1 and P dP ∗

P
e + P are in P̂. Thus, we can apply Lemma C.1 with

P1 = P ∗, P2 = P ∗ + 1, P3 = P dP ∗
P
e and P4 = P dP ∗

P
e+ P and obtain

slope(S(P ∗)S(P ∗ + 1)) ≤ slope(S(P dP
∗

P
e)S(P dP

∗

P
e+ P )).

The above equation together with (C.16) implies that

−δ ≤ slope(S(P dP
∗

P
e)S(P dP

∗

P
e+ P )). (C.17)

Recall that P ∗P is the smallest integer in P̂P such that

−δ ≤ right slopeP (P ∗P ) = slope(S(PP ∗P )S(PP ∗P + P )). (C.18)

Corroborating the above observation with relation (C.17) and with the fact that

dP ∗
P
e ∈ P̂P (since P̂P = Z+ by Proposition 3.1) and that the slopes of the convex hull

of UP increase from left to right, we conclude that P ∗P ≤ dP
∗

P
e < P ∗

P
+ 1.

It remains to consider now the case when P ∗ = 1. Then relation (C.16) has to be

replaced by −δ ≤ slope(S(1)S(3)). Assume now that P ≥ 3. We can apply Lemma

C.1 with P1 = 1, P2 = 3, P3 = P and P4 = 2P and obtain that slope(S(1)S(3)) ≤

slope(S(P )S(2P )). This implies that −δ ≤ slope(S(P · 1)S(P · 2)). Using further

(C.18) we conclude that P ∗P ≤ 1 < P ∗

P
+ 1. Consider now P = 2. Since P /∈ P̂ we can

no longer apply Lemma C.1 as above. However, we still obtain slope(S(1)S(3)) ≤
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slope(S(P · 1)S(P · 2)) according to Lemma C.3. Then we conclude as above that

P ∗P = 1 < P ∗

P
+ 1. Thus, the proof is complete.

In order to prove Proposition 3.4, we need the following lemma.

Lemma C.4: Consider P ∈ Z+ and let P ∗ denote the solution to problem (3.20).

Then for any P1, P2 ∈ P̂P such that P ∗ ≤ P1 < P2 one has

f(PP1) + δg(PP1) ≤ f(PP2) + δg(PP2). (C.19)

Proof: Note that since g(PP1) < g(PP2), the above inequality is equivalent (after

some algebraic manipulations) to

−δ ≤ slope(S(PP1)S(PP2)). (C.20)

Since P ∗, P1, P2 ∈ P̂P and P ∗ ≤ P1 < P2, an argument similar to the proof of

Lemma C.1 implies that right slopeP (P ∗) ≤ slope(S(PP1)S(PP2)). The definition

of P ∗ leads that −δ ≤ right slopeP (P ∗). Combining the last two inequalities proves

relation (C.20). This completes the proof.

Proof of Proposition 3.4:

It is sufficient to prove that if an EC-SRUPQ has Pi > Pcmax for some i, then

by replacing Pi by Pcmax the cost defined in (3.10) does not increase. Note that the

portion of the cost affected by Pi is c(Ci, Pi) = α(Ci, Pi)+
∑M2,i

j=1 β(Ci,j, Pi, Pi,j), where

α(Ci, Pi) = q(Ci)ρx
2(Ci)

(
f(Pi) +

λ1

ρx2(Ci) ln 2
g(Pi)

)
, (C.21)

β(Ci,j, Pi, Pi,j) = q(Ci,j)(1− ρ)x2(Ci,j)

(
f(PiPi,j) +

λ2

(1− ρ)x2(Ci,j) ln 2
g(PiPi,j)

)
.

(C.22)
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Let P ∗c denote the solution to problem (3.20) for P = 1 and δ = λ1

ρx2(Ci) ln 2
. Then

according to Proposition 2.2 in Section 2.2.3, P ∗c ≤ P ′′. Thus, P ∗c ≤ Pcmax. By

applying further Lemma C.4 and the fact that q(Ci)ρx
2(Ci) > 0 one obtains that

α(Ci, Pi) ≥ α(Ci, Pcmax).

Further, let P ∗f denote the solution to problem (3.20) for P = Pi,j and δ =

λ2

(1−ρ)x2(Ci,j) ln 2
. Then according to Proposition 3.2, one has P ∗f ≤ P ′Pi,j ,max. Us-

ing further Proposition 3.3, one obtains P ′Pi,j ,max ≤
P ′1,max
Pi,j

+ 1 ≤ P ′1,max + 1. Since

Pcmax ≥ P ′1,max + 1 one concludes that P ∗f ≤ Pcmax. By applying Lemma C.4 leads to

β(Ci,j, Pi, Pi,j) ≥ β(Ci,j, Pcmax, Pi,j), which concludes the proof.
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Appendix

In this appendix we present the proof of Theorem 4.1 in Chapter 4.

Proof of Theorem 4.1:

We will only prove relation (4.22) since (4.23) follows similarly. According to the

definition of F∗EC in Section 4.4, for every ε > 0, there exists an EC-SSQ Q∗ε such that

F∗EC ≤ FEC(Q∗ε , X, Y ) ≤ F∗EC + ε. (D.23)

Let α : R × R → R be a function such that E[α(X, Y )] is finite. For any B > 0

denote PB , P[X, Y ∈ [−B,B]]. Then the following sequence of equalities holds.

E[α(X, Y )] =

∫
R

∫
R
α(x, y)fXY (x, y) dxdy

= lim
B→∞

∫ B

−B

∫ B

−B
α(x, y)fXY (x, y) dxdy

= lim
B→∞

PB

∫ B

−B

∫ B

−B
α(x, y)

fXY (x, y)

PB
dxdy

= lim
B→∞

PBE[α(XB, YB)],

where the last equality is based on the fact that fXBYB(x, y) = fXY (x,y)
PB

for (x, y) ∈
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[−B,B] × [−B,B] and fXBYB(x, y) = 0 for (x, y) /∈ [−B,B] × [−B,B]. The above

sequence of relations, together with the definition of FEC , implies that

FEC(Q∗ε , X, Y ) = PBFEC(Q∗ε , XB, YB) + ε1(B), (D.24)

for some function ε1(B) such that lim
B→∞

ε1(B) = 0.

Since Q∗ε has convex cells, the partitions of f1 and f2,i, i ∈ I1, can be specified by

the thresholds separating the cells. According to the specification in Section 4.4, the

number of cells within a bounded set is always finite. Thus, the number of thresholds

inside a bounded set is also finite.

For each positive real value B and positive integer K, let Q∗ε,B,K denote the EC-

SSQ obtained from Q∗ε by restricting the encoding mappings f1 and f2,i to the interval

[−B,B] and by rounding down each threshold in (−B,B) to the closest, no larger,

value in UB,K . In other words, if a ∈ (−B,B) is a threshold of Q∗ε , then it is rounded

down to t
(B)
k such that t

(B)
k ≤ a < t

(B)
k+1. Let us assume that K is large enough so

that this rounding operation generates different values for different thresholds in Q∗ε

and all these values are larger than −B. Further, let v∗B denote the vector obtained

by stacking all thresholds of Q∗ε which are in (−B,B) and let v∗B,K denote the vector

obtained by stacking the corresponding thresholds of Q∗ε,B,K in the same order. Both

vectors have the same dimension. Then FEC(Q∗ε , XB, YB) can be regarded as a func-

tion of v∗B, while FEC(Q∗ε,B,K , XB, YB) is the same function of v∗B,K . Let β denote this

function. Thus,

FEC(Q∗ε , XB, YB) = β(v∗B) and FEC(Q∗ε,B,K , XB, YB) = β(v∗B,K).

It can be easily seen that lim
K→∞

‖v∗B,K − v∗B‖2 = 0, where ‖ · ‖ denotes the Euclidian
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norm. Additionally, we point out that β is a continuous function, as stated in Lemma

D.1, which is stated and proved at the end of this appendix. Thus, we obtain that

FEC(Q∗ε,B,K , XB, YB) = FEC(Q∗ε , XB, YB) + δ(B,K), (D.25)

for some δ(B,K) such that lim
K→∞

δ(B,K) = 0.

Consider now the EC-SSQ Q̃∗ε,B,K for the pair of discrete RVs (X̃B,K , ỸB,K), con-

structed from Q∗ε,B,K as explained next. For each cell Ci = (t
(B)
u , t

(B)
v ] of the first

encoder of Q∗ε,B,K , the corresponding cell in Q̃∗ε,B,K is C̃i = {x(B)
u+1, . . . , x

(B)
v }. For

each cell Ci,j = (t
(B)
m , t

(B)
n ] of the second encoder of Q∗ε,B,K , the corresponding cell in

Q̃∗ε,B,K is C̃i,j = {y(B)
m+1, . . . , y

(B)
n }. It follows that P[X̃B,K ∈ C̃i] = P[XB ∈ Ci] and

P[X̃B,K ∈ C̃i, ỸB,K ∈ C̃i,j] = P[XB ∈ Ci, YB ∈ Ci,j] for all i and j. This observation

implies that

REC,1(Q̃∗ε,B,K , X̃B,K) = REC,1(Q∗ε,B,K , XB),

REC,2(Q̃∗ε,B,K , X̃B,K , ỸB,K) = REC,2(Q∗ε,B,K , XB, YB).

(D.26)

Next we will show that the following hold

D1(Q̃∗ε,B,K , X̃B,K) = D1(Q∗ε,B,K , XB)−DX̃B,K
, (D.27)

D2(Q̃∗ε,B,K , X̃B,K , ỸB,K) = D2(Q∗ε,B,K , XB, YB)− γ(Q∗ε,B,K), (D.28)

where

DX̃B,K
,

K∑
k=1

∫ t
(B)
k

t
(B)
k−1

(x− x(B)
k )2fXB(x) dx,
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γ(Q∗ε,B,K) ,
M1∑
i=1

K∑
l=1

∫ t
(B)
l

t
(B)
l−1

(y − y(B)
l )(y + y

(B)
l − 2g2(i, f2(i, y)))

∫
Ci

fXBYB(x, y) dxdy.

Note that |y + y
(B)
l − 2g2(i, f2(i, y))| ≤ 4B and |y − y(B)

l | ≤ 2B
K

when y ∈ [t
(B)
l−1, t

(B)
l ].

Thus, we obtain that |γ(Q∗ε,B,K)| ≤ 8B2

K

∑M1

i=1

∑K
l=1

∫ t(B)
l

t
(B)
l−1

∫
Ci
fXBYB(x, y) dxdy = 8B2

K
,

which leads to

lim
K→∞

γ(Q∗ε,B,K) = 0. (D.29)

In order to prove (D.27) let Ci = (t
(B)
u , t

(B)
v ]. It follows that

∫ t(B)
v

t
(B)
u

(x− g1(i))2fXB(x) dx =
∑v

k=u+1

∫ t(B)
k

t
(B)
k−1

(x− x(B)
k + x

(B)
k − g1(i))2fXB(x) dx =

∑v
k=u+1

(∫ t(B)
k

t
(B)
k−1

(x− x(B)
k )2fXB(x) dx+

∫ t(B)
k

t
(B)
k−1

(x
(B)
k − g1(i))2fXB(x) dx+

2(x
(B)
k − g1(i))

∫ t(B)
k

t
(B)
k−1

(x− x(B)
k )fXB(x) dx

)
=∑v

k=u+1

∫ t(B)
k

t
(B)
k−1

(x− x(B)
k )2fXB(x) dx+

∑v
k=u+1(x

(B)
k − g1(i))2pX̃B,K (x

(B)
k ),

where the last equality is due to the fact that x
(B)
k is the centroid of (t

(B)
k−1, t

(B)
k ) with

respect to fXB(x) and thus
∫ t(B)

k

t
(B)
k−1

(x − x
(B)
k )fXB(x) dx = 0, and that pX̃B,K (x

(B)
k ) =∫ t(B)

k

t
(B)
k−1

fXB(x) dx. The above observation implies (D.27). In order to prove (D.28), let
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Ci,j = (t
(B)
m , t

(B)
n ]. It follows that

∫ t
(B)
n

t
(B)
m

(y − g2(i, j))2

∫
Ci

fXBYB(x, y) dxdy

=
n∑

l=m+1

∫ t
(B)
l

t
(B)
l−1

(
(y − y(B)

l )(y + y
(B)
l − 2g2(i, j)) + (y

(B)
l − g2(i, j))2

)∫
Ci

fXBYB(x, y) dxdy

=
n∑

l=m+1

∫ t
(B)
l

t
(B)
l−1

(y − y(B)
l )(y + y

(B)
l − 2g2(i, j))

∫
Ci

fXBYB(x, y) dxdy

+
n∑

l=m+1

(y
(B)
l − g2(i, j))2P[X̃B,K ∈ C̃i, ỸB,K = y

(B)
l ],

where the last equality uses the fact that

P[X̃B,K ∈ C̃i, ỸB,K = y
(B)
l ] =

∫ t(B)
l

t
(B)
l−1

∫
Ci
fXBYB(x, y) dxdy. The above observation

implies (D.28). Further, relations (D.26)-(D.28) lead to

FEC(Q∗ε,B,K , XB, YB) = FEC(Q̃∗ε,B,K , X̃B,K , ỸB,K)+ρDX̃B,K
+(1−ρ)γ(Q∗ε,B,K). (D.30)

Further, recall that Q̂B,K is the optimal EC-SSQ (with convex cells) for the pair of RVs

(X̃B,K , ỸB,K). Let QB,K be the corresponding EC-SSQ for (XB, YB) with thresholds

in UB,K , according to the correspondence described in the paragraph after equation

(D.25). Then we have, similarly to (D.30),

FEC(QB,K , XB, YB) = FEC(Q̂B,K , X̃B,K , ỸB,K) + ρDX̃B,K
+ (1− ρ)γ(QB,K). (D.31)

Now consider extending the EC-SSQ QB,K to an EC-SSQ Q̄B,K for X, Y , as follows.

The encoding partition for X in Q̄B,K has two more cells, namely (−∞,−B) and

(B,∞), both having the mean of X as reconstruction. Likewise, when X ∈ [−B,B],

the encoder for Y has two more cells, namely (−∞,−B) and (B,∞), both having

the mean of Y as reconstruction. When X /∈ [−B,B], the encoder for Y sends only
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one symbol and the reconstruction is the mean of Y . It can be readily seen that

FEC(Q̄B,K , X, Y ) = PBFEC(QB,K , XB, YB) + ε2(B), (D.32)

for some function ε2(B) such that lim
B→∞

ε2(B) = 0.

The aforementioned discussion implies the following sequence of relations

F∗EC
(a)

≤ FEC(Q̄B,K , X, Y )

(b)
= PBFEC(QB,K , XB, YB) + ε2(B)

(c)
= PB

(
FEC(Q̂B,K , X̃B,K , ỸB,K) + ρDX̃B,K

+ (1− ρ)γ(QB,K)
)

+ ε2(B)

(d)

≤ PB

(
FEC(Q̃∗ε,B,K , X̃B,K , ỸB,K) + ρDX̃B,K

+ (1− ρ)γ(QB,K)
)

+ ε2(B)

(e)
= PB

(
FEC(Q∗ε,B,K , XB, YB) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K))

)
+ ε2(B)

(f)
= PB

(
FEC(Q∗ε , XB, YB) + δ(B,K) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K))

)
+ ε2(B)

(g)
= FEC(Q∗ε , X, Y )− ε1(B) + PB(δ(B,K) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K))) + ε2(B)

(h)

≤ F∗EC + ε− ε1(B) + PB(δ(B,K) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K))) + ε2(B).

Notice that (a) follows from the definition of F∗EC , (b) is based on (D.32), (c) follows

from (D.31), (d) holds in virtue of the optimality of Q̂B,K for (X̃B,K , ỸB,K), (e) follows

from (D.30), (f) from (D.25), (g) is based on (D.24) and (h) is based on (D.23). Next

we use the sequence of relations (a) − (h) and apply the fact that A1 ≤ A2 ≤ A3

implies that A2−A1 ≤ A3−A1 and A3−A2 ≤ A3−A1, for A1 = F∗EC , A2 being the
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right hand side of (c) and A3 being the right hand side of (h). Thus, we obtain

PB

(
FEC(Q̂B,K , X̃B,K , ỸB,K) + ρDX̃B,K

+ (1− ρ)γ(QB,K)
)

+ ε2(B)− F∗EC

≤ ε− ε1(B) + PB(δ(B,K) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K))) + ε2(B).

(D.33)

F∗EC + ε− ε1(B) + PB(δ(B,K) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K)) + ε2(B)

− PB
(
FEC(Q̂B,K , X̃B,K , ỸB,K) + ρDX̃B,K

+ (1− ρ)γ(QB,K)
)
− ε2(B) ≤

ε− ε1(B) + PB(δ(B,K) + (1− ρ)(γ(QB,K)− γ(Q∗ε,B,K))) + ε2(B).

(D.34)

Relation (D.33) implies that

F∗EC − PBFEC(Q̂B,K , X̃B,K , ỸB,K) ≥ PB

(
ρDX̃B,K

− δ(B,K) + (1− ρ)γ(Q∗ε,B,K)
)

+ ε1(B)− ε.

Relation (D.34) leads to

F∗EC − PBFEC(Q̂B,K , X̃B,K , ỸB,K) ≤ PB

(
ρDX̃B,K

+ (1− ρ)γ(QB,K)
)

+ ε2(B).

The above two inequalities together with (D.29) and lim
K→∞

DX̃B,K
= lim

K→∞
γ(QB,K) =

lim
K→∞

δ(B,K) = 0, lim
B→∞

ε1(B) = lim
B→∞

ε2(B) = 0 and lim
B→∞

PB = 1 lead to

0 ≤ lim
B→∞

lim
K→∞

FEC(Q̂B,K , X̃B,K , ỸB,K)− F∗EC ≤ ε,

for every ε > 0, which implies that relation (4.22) holds. Relation (4.23) follows

similarly.

Lemma D.1: Function β(·) is continuous as a function of the thresholds of the

quantizer.

Proof of Lemma D.1:
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We will prove that the function β(·) is continuous as a function of thresholds v∗B of

the quantizer Q∗ε . The proof is based on the result [a.Theorem, Chapter 9.31, (Shilov

et al., 1996)] that if a function f(x) is integrable on a bounded interval [x1, x2], then

for x1 ≤ x ≤ x2, the function F (x) =
∫ x
x1
f(t) dt is continuous on [x1, x2].

It can be observed that

β(v∗B) = ρD1(Q∗ε , XB) + (1− ρ)D2(Q∗ε , XB, YB) + λ1REC,1(Q∗ε , XB) + λ2REC,2(Q∗ε , XB, YB),

and thus it is sufficient to prove that each term in β(v∗B) is continuous as a function

of boundaries of each cell. Further, we consider the cells by Ci = (a, b] ∈ (−B,B)

and Ci,j = (c, d] ∈ (−B,B). It then follows that the distortion and entropy of each

cell Ci can be represented, respectively by

d1(Ci, XB) =

∫ b

a

(x− x̂((a, b])2fXB(x) dx,

rEC,1(Ci, XB) = −P (Ci) log2 P (Ci),

where P (Ci) =
∫ b
a
fXB(x) dx and P (Ci) > 0, which follows from the hypothesis

that fXY (x, y) > 0 for any x, y ∈ R in Theorem 4.1. Considering the fact that the

marginal pdf fXB(x) and the function log2(·) are both continuous, then rEC,1(Ci, XB)

is continuous in the boundaries of Ci. Further, it is known that the centroid x̂((a, b])

is continuous and non-decreasing in a and b (Trushkin, 1982), which implies that

d1(Ci, XB) is also continuous in a and b. As a consequence, the terms D1(Q∗ε , XB)

and REC,1(Q∗ε , XB) are continuous as a function of v∗B.

Similarly, the distortion and entropy of each cell Ci,j can be expressed, respectively
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by

d2(Ci,j, XB, YB) =

∫ b

a

∫ d

c

(y − ŷ((c, d]|(a, b]))2fXB ,YB(x, y) dy dx

=

∫ d

c

y2fYB(y) dy − (ŷ((c, d]|(a, b]))2

∫ b

a

∫ d

c

fXB ,YB(x, y) dy dx,

rEC,2(Ci,j, XB, YB) = −P (Ci,j) log2 P (Ci,j) + P (Ci) log2 P (Ci),

where P (Ci,j) =
∫ b
a

∫ d
c
fXB ,YB(x, y) dy dx and P (Ci,j) > 0, since fXY (x, y) > 0 as

mentioned in the hypothesis in Theorem 4.1. Let us prove first the continuity of

d2(Ci,j, XB, YB) as a function of a, b, c and d. Note that the summation∑M1

i=1

∑M2,i

j=1

∫ d
c
y2fYB(y) dy is the second moment of y, which is a constant. Therefore,

we only need to prove the continuity of term
∫ b
a

∫ d
c
fXB ,YB(x, y) dy dx and of the

centroid ŷ((c, d]|(a, b]) as functions a, b, c and d.

Let us denote by F1(c, d, x) =
∫ d
c
fXB ,YB(x, y) dy, which is continuous as a function

of c and d, since the joint pdf fXB ,YB(x, y) is continuous. Consider F2(a, b, c, d) =∫ b
a
F1(c, d, x) dx. To prove that F2(a, b, c, d) is continuous as a function of a and b, it

is sufficient to prove that F1(c, d, x) is continuous as a function of x. In other words,

we need to prove that limx→x0 |F1(c, d, x)− F1(c, d, x0)| = 0 for every x0 ∈ [a, b]. For
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this note that

lim
x→x0

|F1(c, d, x)− F1(c, d, x0)| = lim
x→x0

∣∣∣∣∫ d

c

fXB ,YB(x, y) dy −
∫ d

c

fXB ,YB(x0, y) dy

∣∣∣∣
= lim

x→x0

∣∣∣∣∫ d

c

(fXB ,YB(x, y)− fXB ,YB(x0, y)) dy

∣∣∣∣
≤ lim

x→x0

∫ d

c

|fXB ,YB(x, y)− fXB ,YB(x0, y)| dy

≤ (d− c) lim
x→x0

max
y∈[c,d]

|fXB ,YB(x, y)− fXB ,YB(x0, y)|

= (d− c) lim
x→x0

|fXB ,YB(x, y∗)− fXB ,YB(x0, y
∗)|

(i)
= 0,

where y∗ = arg maxy∈[c,d] |fXB ,YB(x, y)− fXB ,YB(x0, y)|, and relation (ii) is due to the

fact that the joint pdf fXB ,YB(x, y) is continuous in x (leading to limx→x0 |fXB ,YB(x, y∗)−

fXB ,YB(x0, y
∗)| = 0). It is proved now that F2(a, b, c, d) is continuous in a and b. Since

the order of integral in
∫ b
a

∫ d
c
fXB ,YB(x, y) dy dx can be exchanged, the continuity of

F2(a, b, c, d) in c and d also follows.

Further, the proof of continuity of the centroid ŷ((c, d]|(a, b]) uses similar argu-

ments. Based on the above discussion, it is clear that D2(Q∗ε , XB, YB) is continuous

as a function of v∗B.

Next, let us consider the continuity of rEC,2(Ci,j, XB, YB) as a function of a, b, c

and d. Now it is known that P (Ci,j) is continuous using the above result, and then

considering the fact that both log2(·) and P (Ci) are also continuous, the continuity

of REC,2(Q∗ε , XB, YB) as a function of v∗B follows.
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Perić, Z. and Nikolić, J. (2013). Design of asymptotically optimal unrestricted polar

quantizer for gaussian source. IEEE Signal Processing Letters, 20(10), 980–983.

Peric, Z. H. and Stefanovic, M. C. (2002). Asymptotic analysis of optimal uniform

polar quantization. AEU-International Journal of Electronics and Communications,

56(5), 345–347.
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