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Lay Abstract

Biochemistry is the study in which life is built upon a series of diverse chemistry and their

interactions. Some of these chemicals are not essential for the maintaining basic metabolism,

but are instead tailored for alternative functions best suited to their environment. Often, these

molecules mediate biological warfare, allowing organisms to compete and establish dominance

amongst their neighbours. Understanding this, several of these molecules have been exploited

in our modern pharmaceutical regimen as effective antibiotics. Due to the ever rising reality of

antibiotic resistance, we are in dire need of novel antibiotics. With this goal, I have developed

several software tools that can both identify these molecules encoded within bacterial genomes,

but also predict their effects on neighbouring bacteria. Through these computational tools, I

provide an updated strategy for the discovery and characterization of these biologically derived

chemicals.
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Abstract
Microbial natural products have served a key role in the development of clinically relevant drugs.

Despite significant interest, traditional strategies in their characterization have lead to dimin-

ishing returns, leaving this field stagnant. Recently developed technologies such as low-cost,

high-throughput genome sequencing and high-resolution mass spectrometry allow for a much

richer experimental strategy, allowing us to gather data at an unprecedented scale. Naive efforts

in analyzing genomic data have already revealed the wealth of natural products encoded within

diverse bacterial phylogenies. Herein, I leverage these technologies through the development of

specialized computational platforms cognizant of existing natural products and their biosynthesis

in order to reinvigorate our drug discovery protocols.

As a first, I present a strategy for the targeted isolation of novel and structurally divergent

ribosomally synthesized and post-translationally modified peptides (RiPPs). Specifically, this

software platform is able to directly compare genomically encoded RiPPs to previously char-

acterized chemical scaffolds, allowing for the identification of bacterial strains producing these

specialized, and previously unstudied metabolites. Further, using metabolomics data, I have

developed a strategy that facilitates direct identification and targeted isolation of these unchar-

acterized RiPPs. Through these set of tools, we were able to successfully isolate a structurally

unique lasso peptide from a previously unexplored Streptomyces isolate.

With the technological rise of genomic sequencing, it is now possible to survey polymicrobial

environments with remarkable detail. Through the use of metagenomics, we can survey the pres-

ence and abundances of bacteria, and further metatranscriptomics is able to reveal the expression

of their biosynthetic pathways. Here, I developed a platform which is able to identify microbial

peptides exclusively found within the human microbiome, and further characterize their putative

antimicrobial properties. Through this endeavour, we identified a bacterially encoded peptide

that can effectively protect against pathogenic Clostridium difficile infections.

With the wealth of publicly available multi-omics datasets, these works in conjunction demon-

strate the potential of informatics strategies in the advancement of natural product discovery.
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Chapter 1

Introduction

1.1 Thesis context

Biochemistry is, in many ways, the insight into how life is built upon a series of non-living

molecular components. Apart from the core set of molecules required to facilitate living, many

organisms have developed a set of so-called secondary metabolites. Since these molecules are

non-essential for basic metabolism, they are often tailored for very specific adaptations to niche

environments. In many cases, these molecules mediate biological competition through inducing

deleterious effects on neighbouring organisms [6]. It was this property that intrigued many

scientists in the early to mid 1900s to investigate these natural products (NPs).

Biological extracts have been used medically predating modern history. From the widespread

usage of the opium extract [4] for pain relief, to the Cinchoa bark extract used to treat malaria

[1], it was evident that these NPs played a significant role in historical medicine. It was not

until the isolation of morphine in 1803 [4] and the first synthetic production of a natural product

in 1828 [29] that we began to understand the underlying chemical components responsible for

manifesting these important therapeutic effects. Koch’s postulates published 1884 demonstrated

a clear link between disease and microbiological organisms [12]. With the combination of these

understandings, we began to hunt aggressively for molecular components that can selectively

antagonize biological agents responsible for disease. In this pursuit, it was Paul Erlich in the

early 1900s that first attempted to systematically test molecules that could selectively treat

1
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syphilis growth without harming human tissue. Through this work, one of the first antibiotics,

salvarasan, was discovered [28]. However, as an arsenic containing compound, salvarasan was

both highly unstable, and often caused severe adverse effects inspiring the search for further

antibiotics.

Through the early 1900s, the works by Selman Waksman and Alexander Fleming showed

proof that bacteria and fungi can also be rich sources of antibacterial agents with the discovery

of streptomycin and penicillin, respectively [25, 9]. These highly successful examples spurred both

academic and industrial research into further microbial sources of antibiotics. Using bioactivity

assays, microbes with demonstrable antibacterial activity were collected and investigated at scale.

Through successive fractionations of biological extracts, scientists were able to trace the antibiotic

phenotype to specific purified compounds. This strategy was highly successful, and led to a wealth

of antibiotics developed during the 1950s-1970s [15], which has since been termed the “Golden

Age” of antibiotic discovery. As nuclear magnetic resonance (NMR) technologies advanced during

this era, scientists were further able to characterize these discovered NPs. Further, isotope

labeling studies were able to demonstrate that these antibiotic agents were often built up from

monomers already present in primary metabolites. Looking back, its clear that many of the

antibiotic agents can be grouped into families, according to their monomer units. These NPs were

often composed of sugars (aminoglycosides), isoprene units (terpenes), amino acids (peptides),

acetate units (polyketides and fatty acids) and nucleic acids (nucleosides).

Despite the remarkable success of NP discovery in the mid-1900’s, scientists and industrial

leaders noticed that these large scale bioactivity guided searches were waning [15]. Towards the

late 1900s, screening programs for synthetic molecules began using strategies such as combinato-

rial chemistry to generate large libraries of candidate molecules. However, despite keen interest

and significant investment, these libraries have not produced nearly the number or diversity of

antibiotic agents expected. Other than the kinase inhibitors and G-protein coupled receptor

antagonists developed [7], these platforms have only able to generate a single family of new an-

tibacterials (oxazolidinones [26]). This can be largely attributed to the decreased diversity of

compounds observed in combinatorial libraries, where molecules in general lack as many chiral

centers and complex ring systems [8]. Further, while many candidate compounds are discovered

2
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to effectively antagonize specific bacterial targets, a larger problem that is often overlooked is

bacterial cell wall and membrane permeability [22]. Looking back, it is clear that NPs and their

derivatives were our best source for antimicrobial agents. In fact, almost all new drugs clinically

approved have been either NPs or NP derived / inspired. Only 4% of drugs approved since 1981

have been developed entirely from synthetic chemistry based approaches [20].

Peptides are of particular interest in this body of work, in part due to their immense func-

tionality within biological systems. Even in primary metabolism, the inherent modularity of

amino acid backbones fuel a wealth of molecular diversity. Using just the twenty base amino

acids, and a few minor post translational modifications (PTMs) (e.g. disulfide bridges, phos-

phorylation, etc.), all forms of life create functional proteins that act as catalytic, structural and

signaling elements. However, in many cases, these peptidic scaffolds have evolved niche roles in

microbial antagonism. These antimicrobial peptides can be largely classified according to their

size and relative decree of PTMs. Small unmodified antimicrobial peptides (AMPs) are found

across all phylogenetic orders of life, and are believed to primarily target cell membranes. Since

bacterial outer membranes are chemically and structurally distinct from eukaryotic membranes,

and are often varied between bacterial taxonomies, AMPs such as these are able to exert specific

antibacterial effects. While the specific mechanisms of action are believed to vary depending on

concentration, peptide, target organism and membrane composition, it is generally believed that

these AMPs all derive their action through instilling membrane pore formation and instability.

Similarly, large unmodified peptides, such as the pyocins produced by various species of the

genus Pseudomonas [18] and the colicins produced by E. coli [14], are also known for biological

antagonism through a myriad of highly specialized mechanistic interactions with specific cellular

membrane targets and intracellular processes.

With decreasing size, peptides often employ a wider set of modifications to achieve the struc-

tural and functional diversity required to mediate wide functionalities. These often use a much

larger set of amino acids and extensive PTMs to achieve greater structural diversity [2, 10].

While early structural elucidation techniques were able to reveal the peptidic nature of these

antibiotics discovered in the golden era, very little was known about their complex biosynthesis.

3
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As molecular biology techniques were developed in the 1980s, along with DNA sequencing tech-

niques, scientists were able to identify the genes responsible for NP biosynthesis. In many cases,

these genes were clustered within the genome in regions now known as biosynthetic gene clusters

(BGCs), and often transcriptionally linked within operons. We can now classify these heavily

modified peptides into two main families, as directed by their biosynthetic pathways: (1) ribo-

somally synthesized and post-translationally modified peptides (RiPPs) and (2) nonribosomal

peptides (NRPs).

RiPPs, as nomenclature suggests, are biosynthesized through ribosomal translation, followed

by extensive post-translational processing by a variety of tailoring enzymes to form mature

products of distinct classes. Due to these extensive PTMs, the biological activity of RiPPs is also

highly variant. From the quorum sensing mediator ComX [21], morphogenic sapB [13], antifungal

pinensins [19] to the antibacterial and recently discovered anticancer property of thiopeptides [3,

11], the chemical diversity in this class of compounds is demonstrably wide enough to accomplish

these various biological functions. While at first indistinguishable from NRPs, this class of

molecules is distinct because the core chemical backbone begins as a standard peptide, comprised

of the twenty proteinogenic amino acids. This precursor peptide is then modified with the

use of various co-localized genes. Prior to excretion, cleavage is guided by various proteases

along specific motifs to release a mature peptide. To date, over 21 subfamilies of RiPPs have

been characterized [27], each denoted with unique tailoring motifs and intriguing biosynthetic

machinery capable of assembling a diverse pool of chemical scaffolds.

Contrary to the prior peptidic NPs, NRPs are assembled via multimodular protein complexes

called nonribosomal peptide synthases (NRPSs). Unlike the ribosomal peptide assembly systems

that are limited to the set of amino acids covalently bonded to tRNA molecules, these factories

are much more flexible in their design [17]. Within the genome, these assembly lines are encoded

into modules, where each successive amino acid is encoded by a distinct group of genetic domains.

A minimal module is comprised of three domains: adenylation (A) domains selectively activate

amino acids with ATP which is then transfered onto neighbouring thiolation (T) domains where

they are temporarily covalently bonded to a long, flexible phosphopantethenine extension. At

this point, the adjacent condensation (C) domain is able to create the amide bond between the

4
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activated amino acid and the growing peptide chain. Through this process, each module is able to

append a wide range of amino acids, with as many as five hundred possibilities recognized to date

[5]. These growing chains are then released by a thioesterase (TE) domain which uses water or a

in-product nucleophile to release linear or macrocyclized product respectively. Further diversity

can be introduced with the addition of various starter units and incorporation of polyketide

modules. This complex, and highly substitutable modular machinery allows for the creation of

extremely diverse chemical structures, tailored towards to biological activity at hand.

In the past, these products were identified through largely through bioactivity guided screen-

ing platforms. While successful at the time, it is widely accepted that this methodology has

aged. Originally, bacterial and fungal strains were gathered and cultured en masse for subse-

quent biological assays. While this was exceptionally successful for compounds relevant to the

assay of interest, it was only possible to effectively identify compounds produced in abundance.

However, recent genomic efforts have demonstrated that many actinomycetes, responsible for

over two thirds of current antibiotics [16], may be hiding several so-called cryptic gene clus-

ters [24]. These are BGCs that can be detected clearly through genomic scans, but are missed

through bioactivity guided screens likely due to their low abundance or unique regulation path-

ways. These BGCs represent a wealth of untapped NPs that have not been investigated for

antibacterial activity. The work here aims to develop a comprehensive pipeline to selectively

target these NPs to reveal novel peptides with strong antibiotic activity.

Recently, several new technologies have emerged to better broadly survey biological extracts,

microbial genomes and their behaviour in ecological niches. Metabolomics, powered by liquid

chromatography coupled mass spectrometry (LCMS), is able to identify a wealth of molecules in

crude biological samples. Due to the high resolution nature of of this technique, we can reveal

exact masses of the thousands of metabolites produced by a single microbe. Further, selected

metabolites can be further examined through tandem mass spectrometry (MS2) where these

metabolites are broken down into fragments revealing key structural information. Techniques

such as this are crucial in revealing the metabolites of these cryptic BGCs, as we are able to

detect metabolites far below the effective minimum inhibitory concentration (MIC) of potential

antibiotics.

5
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Genomics, or more specifically, the significant decrease in sequencing cost, has lead to an

explosion of publicly available genomic sequence data. More than one hundred thousand bacterial

isolates have been sequenced, assembled and uploaded to NCBI [23]. Since bacterial metabolites

are directly encoded within their genomes, this data can be used to estimate the antibiotic

potential of a given bacterium. Further, if used correctly, this data can infer key structural

properties of the NPs produced. This data can effectively then be used to assess the novelty

and relationship to known antibiotics. Further, these structural cues can be used to relate the

putative products of BGCs to their actual product measured in metabolomic data.

Studying microbial communities and their produced metabolites in situ can reveal key in-

sights about the function of specific metabolites on With the rise in large scale DNA sequencing

techniques, it is now possible to conduct even more untargeted experiments to survey microbial

interactions within their ecological niche. Specifically, metatranscriptomic experiments can illu-

minate the expression level of various genes responsible for NP biosynthesis, and thus estimate

levels of a given metabolite within sample. Further, metagenomic data can estimate the overall

abundance of various microbes within a given sample. While these techniques are still in their

infancy, the integrated human microbiome project (iHMP) has recently conducted an in depth

survey of the lower intestinal tract, studying multiple healthy and diseased patients over time

using these techniques. Although the goals of the iHMP are multidisciplinary, we can leverage

this data to find antibiotics that are already native to the human ecosystem.

Although natural products discovery and characterization is a crucial source of new bioac-

tive chemical scaffolds, pharmacophores and lead molecules, the methods used in the past have

since lead to diminishing returns. With an ever increasing crisis and antibiotic resistance, it

is crucial to accelerate this discovery pipeline using technologies recently developed. In par-

ticular, these data rich experimental platforms such as genomics, metagenomics, metabolomics

and metatranscriptomics have made significant impacts into our understanding of biology and

biochemistry as a whole. Unlike technologies in the past that allowed for reductionist, highly

controlled environments, these next generation platforms generate massive amounts of data that

are not apprehensible without the use of modern day compute power. In the context of drug

discovery, this body of work aims to develop scientific software that can better enable researchers

6
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to appreciate these data in the endeavour of targeted drug discovery. I propose that through

a stronger machine understanding of NP biosynthesis, we can leverage this data to

effectively accelerate the search for novel antibiotics.

1.2 Scope and nature of this work

The collection of works presented here represents a curated sample of the projects undertaken

through my graduate studies that best demonstrate my endeavours in developing scientific soft-

ware targeted towards accelerating NP discovery. First, I begin in Chapter 2 with an in

depth exploration of genomically encoded RiPPs among the totality of publicly available genome

sequences. This aims to provide a complete platform for NP discovery and characterization.

Through the development of software that can accurate classify and compare genomically en-

coded RiPPs, I demonstrate the wealth of scaffolds yet to be characterized while providing key

metrics upon the various bacterial clades housing the most divergent examples. Further, I present

here a clear protocol for the isolation and characterization of these products through targeted

metabolomics.

Following this, I present a second pipeline to leverage in situ microbial dynamics in the char-

acterization of antimicrobial peptides (Chapter 3). Here, we look into the secondary metabolites

produced exclusively by microbial entities found on and within the human body. Our body is

a host to a diverse and complex polymicrobial environment that is in constant flux. While it

is known that certain microbial flora may provide a protective role against foreign pathogens,

relatively little has been explored into the chemicals mediating these interactions. Through the

integrated use of genomic, metagenomic and metatranscriptomics, I present a platform to visual-

ize the rich network of antimicrobial interactions mediated by secondary metabolites. We glean

from this analysis a molecule responsible for inhibiting the infection of Clostridium difficile, a

notorious infectious agent of the GI tract.

Taken together, these software platforms provide a novel way to perform experimentation

in the modern information era. Using informatics, and more specifically, software systems un-

derstanding of NP biosynthesis customized for this research field, I have demonstrated here the

7
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recent successes of this platform. These selection of works that I have completed show a small

glimpse into the potential of informatics strategies in this field, and towards the overall goal of

furthering our understanding of microbial natural products.

8
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Chapter 2

Machine learning platform for the

targeted discovery of divergent

ribosomal natural products

2.1 Preface

While ribosomally synthesized and post-translationally modified peptides (RiPPs) have been

extensively studied, there have been no formal attempts to develop metrics for comparing and

assessing compound similarity specifically for this biosynthetic class as a whole. In the pursuit of

advancing our software capabilities in deciphering large scale genomic, chemical and metabolomic

databases, we have developed a tool kit that aims to accelerate the discovery of highly divergent

and novel RiPPs. Specifically, the software here aims to create several metrics that can identify

genomically encoded RiPPs, to facilitate targeted analysis. In doing so, we conduct a wide

genomic scan on the entirety of publicly available bacterial genome sequences available through

NCBI, identifying taxonomic clades strongly enriched in novel encoded RiPPs. Further, here we

present a targeted isolation strategy that is able to specifically identify metabolites associated

with specific RiPP gene clusters of interest. This was accomplished by first using genomic data

to identify a collection of bacterial strains naturally lacking the specific encoded RiPP of interest
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using BARLEY. Through the development of CLAMS, an algorithm for the identification and

dereplication of metabolites in large scale metabolomics, this collection of strains can be used to

drastically reduce the number of candidate metabolites in a given metabolomics experiment. Of

the remaining metabolites, we present a further strategy to reduce candidate metabolites using

the predicted scaffold library generated by PRISM to both identify metabolites with similar

fragmentation patterns and exact masses. Through this platform, we have identified a novel

lasso peptide from a previously uncharacterized Streptomyces, and have demonstrated its targeted

isolation. The software tools and protocols developed through this work are hoped to accelerate

the discovery of novel and divergent RiPPs.

The following chapter is a manuscript prepared for submission for which I will be the lead

author. For this work, I developed and validated BARLEY, an extension of the previous works

developed by Christopher Dejong developed for NRPs and PKs. I conducted a large scale genomic

scan, and used BARLEY in combination with CLAMS to develop a targeted isolation strategy

leading to the discovery of streptopeptin. I also contributed to overall study design and wrote the

manuscript. Walaa Mousa curated data, cultured bacteria, isolated streptopeptin, contributed to

study design and wrote the manuscript. Michael Cannon and Christopher A. Dejong developed

CLAMS, Michael Skinnider developed PRISM, extended LEMONS for assessing BARLEY, and

edited the manuscript. Professor Nathan Magarvey contributed to study design and wrote the

manuscript.

2.2 Abstract

Bacteria are historically recognized as an invaluable source of natural products with diverse chem-

ical scaffolds. Noted for their unique biosynthesis, ribosmally synthesized post-translationally

modified peptides (RiPPs) are a class of natural products with interesting structural diversity

and bioactivities. Recent years have witnessed a revolutionary shift in in natural products dis-

covery from bioactivity-guided to bioinformatics genome-based protocols aided by the exposed

wealth of genomic data and the vast advances in bioinformatics algorithms. However, we still

lack an automated tool to connect genomic predictions to metabolomic data. Here, we present
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BARLEY/CLAMs pipeline, a machine-learning algorithm which expands on genome prediction

tools to discover encoded novelty and selectively identify the putative cluster product in crude

extract mixtures. BARELY is a local alignment tool that employs a unique multiple scoring

matrix to assign a divergence score to predicted clusters relative to all known entities. CLAMS

is metabolomics peak detection tool and can take biosynthetic predictions to link candidate ions

in mass spectrometry data. BARLEY/CLAMS, as an integrated platform, facilitates the discov-

ery of products from their native hosts and as such, subverts the laborious processes of cloning

and heterologous expression to detect products, enabling targeted natural products discovery.

As a proof of concept, we purified a new RiPP, we named it streptopeptin from an unexplored

Streptomyeces. Streptopeptin is fully structurally divergent from all known RIPPs discovered to

date.

2.3 Introduction

Natural products, in particular those of microbial origins, are appreciated for their structural

diversity. Much of the strategies designed to enable natural products discovery rely on finding

products from microbial extracts or metabolomes. Creating an efficient workflow from genomic

startpoints, with an emphasis on diversity-staged discovery, would produce the changes that

are necessary in a genomic era and would fix the issues of high rediscovery of known molecules

facing natural product discovery [24]. Emergence of large-scale microbial genome sequence data

has suggested that high numbers of natural products remain undiscovered [3]. However, few

such tools are designed explicitly to define genomic loci according to their encoding of novel

agents and further, carry this information forward to facilitate targeted isolation. Combined

bio- and cheminformatic analyses have demonstrated that novel chemical scaffolds are more

likely to affect divergent or previously unknown targets [10]. Consequently, a method capable

of selectively targeting structurally novel agents for genome-guided discovery would be a highly

desirable complement.

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are noted for

their structural diversity with RiPP biosynthesis proceeding from gene translation, post-translational
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tailoring to form mature products of distinct chemical classes. Like other microbial secondary

products, gene clustering exists, facilitating computational identification within genomic se-

quences. In previous work, we introduced a computational pipeline, RiPP-PRISM, designed

to identify and predict the structures of RiPPs of 21 structural and biosynthetic families [25].

A shortcoming was an inability to explicitly define the genetic clusters encoding novel RiPPs as

compared with the known RiPPs. Moreover, to close the cycle of genomes to natural products

and define novel low-abundance RiPPs, an explicit pipeline with genomic and metabolomics data

integration needs formulation.

In the present study, we introduce an algorithm, Basic Alignment of RibosomaL Encoded

products locallY (BARLEY), that permits direct alignment of biosynthetic information encoded

in microbial genomes to a database of known RiPP chemical structures. To ensure the function-

ality of this suite, GRAPE was extended to recognize and comprehensively retrobiosynthesize

RiPP scaffolds. Integration of BARLEY, with a metabolomics matching package, Computational

Library for the Analysis of Mass Spectral data (CLAMS), pairs genomic and metabolomic data

to facilitate selective isolation of novel RiPPs within complex microbial extracts. In doing so, we

formalize an automated genome to natural products pipeline to permit the directed discovery of

unknown RiPPs.

2.4 Results

The aim of this work is to survey the genomic landscape of encoded RiPPs and to connect the

genomic prediction to real metabolomics data for targeted identification of new RiPPs in their

native host producer. Previously, we attempted to map the encoded RiPPs using chemoinfor-

matic methods based on the predicted chemical scaffolds identified by PRISM. Here, we extend

on RiPP-PRISM capability with an integrated platform that dereplicates known RiPPs, assign

divergence distance to known entities, and directly link the predicted gene cluster to the corre-

sponding metabolite in the crude extracts. Here, we present BARLEY-CLAMS pipeline. Basic

Alignment of Ribosomally Encoded products locally, BARLEY generates a divergence score of

16

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

each predicted gene clusters to all known RiPPs using three unique scoring metrics. Com-

parative aLignment Algorithm of Mass Spectral, CLAMS connects predicted masses, identified

by RiPP-PRISM, of each cluster to the corresponding putative metabolite in the crude extract.

Specifically, CLAMS is able to accurately identify and categorize MS1 ions in crude metabolomic

extracts. Using a pool of samples, CLAMS facilitates comparative analysis strategies to iden-

tify metabolites uniquely found in relation to specific samples of interest through subtracting

metabolites observed in non-candidate bacteria and natural product databases. In combination

with BARLEY, CLAMS identifies metabolites uniquely associated with specific RiPP cluster.

Comprehensive cataloguing of all known RiPPs

As a first step, we curated all known landscape of RiPPs (Figure 2.1) and created a database with

their structures (Supplementary table 2). Each of the known RiPP classes has defined features

that lead to their definition. Many of these are highly differentiated from other non-ribosomal

peptides, NRPs. All RiPPs are biosynthesized by direct translation of their propeptide by the

ribosome, the propeptide is then undergoes various structural modifications and cleavage to yield

the mature product. Post-translational modifications that tailor the core peptide can be extensive

when considering the complete catalog of known Ripps. We have summarized the existing known

modifications within a simulated core peptide backbone for illustrative summary of the chemical

functionalities (Figure 2.1). Examples of these structural alterations include; 1. simple head-to-

tail macrocyclization, as observed in cyclic bacteriocins, 2. lanthionine and labionin bonds as in

the lantibiotics, 3. multiple thiazole and oxozole ring formations as in cyanobactins, thiopeptides,

YMs, and linear azol(in)e peptides (LAPs) 4. dehydro-amino acids, 5. Secondary amide bonds

and characteristic knot-like topology observed in lasso, 6. O and S -glycosylations in gylcosins,

7. thioamide bonds in thioviridamides, 8. D-amino acids, β-hydroxylation and methylations in

proteusins, 9. Varying prenylations in cyanobactins and ComX, 10. Pyridines, hydroxy pyridines

and piperidines in thiopeptides among many more.

17

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

Figure 2.1: Structural diversity of known RiPPs. Shown is a summary of known posttranslational
tailoring that defines subclasses within RiPPs. A simulated core peptide backbone was used for the
illustrative summary.
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The BARLEY/CLAMS workflow

Using PRISM, genomically encoded RiPPs of bacteria can be identified. Using this information,

in conjunction with the totality of characterized RiPP scaffolds to date, BARLEY is able to

identify novel RiPPs and dereplicate these across multiple bacterial strains. This information

is translated to CLAMS to facilitate identification of metabolites that are uniquely present in

strains carrying an encoded RiPP product of interest (Figure 2.2). In total, we are able to com-

paratively analyze metabolites in extracts of 463 strains, each with a multitude of media and

growth conditions and genomic data, through BARLEY. Media constituents are also eliminated

through the discarding of metabolite signatures present in any of 118 diverse blank media ex-

tractions. Further, we are able to dereplicate metabolites against a database of 50,317 bacterial

and fungal natural products. In total, the combination of these software platforms allows for a

much more targeted analysis of candidate metabolites, drastically reducing the amount of noise

present in metabolomic experiments.

BARLEY implements multiple unique scoring metrics

BARLEY is an alignment algorithm designed for accurate scoring of genome-predicted RiPPs to

all known entities. Dereplication is an essential preliminary step in the modern discovery pipeline

to help diminish the rediscovery of natural products. BARLEY uses three scoring metrics to

measure similarity between RiPP scaffolds, capture genomically encoded diversity of RiPPs and

identify the novelty of encoded RiPPs. Through these metrics, BARLEY aims to create a method

that accurately leads to the identification of novel and divergent encoded chemistry.

Measuring chemical similarity

Previously, we have demonstrated that chemoinformatic methods used for measuring chemical

similarity have varying degrees of efficacies [26], and are highly dependent on the dataset [9]. In

particular, due to the large size, and inherent modularity of peptidic scaffolds, typical hashing

fingerprints may not be the best representative for plotting chemical similarity. Thus, GRAPE
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Figure 2.2: Workflow for BARLEY/CLAMS pipeline. PRISM parses genomic data to identify
RiPPs as a core amino acid sequence alongside subsequent tarilorings. GRAPE retrobiosynthetically
processes RiPP chemical scaffolds to identify the proteinogenic core amino acid sequence, and denotes
any associated tailoring reactions. The input to BARLEY is these two streams of data. BARLEY
performs local alignment between the amino acid sequences while scoring the number of tailorings that are
matched. These scores are then classified to identify an encoded RiPP as new or previously characterized.
Using a BARLEY genome guided scan, we can identify bacterial strains that are known to carry a specific
encoded RiPP of interest, while identifying the numerous strains that naturally lack the product. CLAMs
enables the identification of metabolites present uniquely in strains carrying the specific encoded RiPP.
From the encoded RiPP cluster, PRISM generates a library of predicted chemical scaffolds. Using
in silico fragmentation, this library is then compared to the experimental fragmentation patterns of
metabolites, retaining only those with significant overlaps. Finally, candidate peaks may be selected by
matching the exact mass as predicted by PRISM.
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was extended to perform retrobiosynthesis on RiPP scaffolds. In particular, this algorithm is

now capable of recognizing 60 post-translational modifications (PTMs) and is able to convert

these resulting residues into the likely standard set of amino acids from which they are derived

(Supplementary table 2). To determine a chemical similarity score, these derived amino acids

are then compared using local alignment, while PTMs are scored independently. Using the

naive scoring parameters, detailed in the methods section, we performed two stages of validation.

Firstly, we examined the efficacy and accuracy of BARLEY to determine the class of a particular

RiPP cluster. Specifically, we looked to validate how accurate BARLEY chemical similarity score

can be used to assign RiPPs to a specific class. For comparison, a Tanimoto coefficient using

the extended connectivity fingerprint with a radius of three (ECFP6-Tc) [23] was used as it

was previously determined as the likely optimal choice for peptidic natural products [26]. In

comparison to the ECFP6-Tc method, BARLEY scores are a better classifier of inter and intra

family RiPP chemical relationships (Figure A1.1-b).

As a second stage of validation, we sought to compare more detailed chemical patterns within

a single class. In particular, we use the case of class I lantipeptides and examine how chemoinfor-

matic similarity tools work with peptides of increasing divergence. To conduct this experiment,

we used LEMONS, a tool to generate hypothetical scaffolds and random substitutions given an

initial product template [26]. LEMONS was extended to perform the LanB and LanC catalyzed

reactions in silico, introducing dehyrdated amino acids and lanthionine bridges to scaffolds where

possible. Thus LEMONS was used to generate a library of scaffolds using the initial proteinogenic

sequence for nisin, where divergence was manually increased through random substitutions of

individual amino acids. The results of this analysis demonstrate that while most metrics demon-

strably have a negative correlation with increasing divergence, BARLEY is the most consistent

similarity metric that can be correlated to this divergence, with the least degree of variance (Fig-

ure A1.1-b). Through these stages of validation, we deem that model based chemoinformatic

solutions such as BARLEY are a better estimator of chemical divergence within RiPPs. In Figure

2.3, we have demonstrated the effectiveness of this novel metric in grouping RiPP families.
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Figure 2.3: Dendrogram of known RiPP chemical scaffolds as grouped by BARLEY. Hier-
archical clustering was performed using the Ward linkage method, using a distance matrix comprised of
all pairwise scores generated by BARLEY between 640 unique RiPP scaffolds.
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Measuring genomically encoded RiPP similarity

The main goal of measuring similarity between genomically encoded RiPPs, is to use this data

as a proxy for real chemical structural information. Previously, we have shown that while RiPP-

PRISM is highly accurate in translating encoded-BGCs to their respective scaffolds, it does

generate an entire library of scaffolds to reach this level of accuracy. While these chemical

scaffolds are essential for downstream targeted mass spectral identification, we demonstrate here

that these predicted chemical libraries are not the most effective tool in charting and identifying

diversity of genomically encoded RiPPs. As we have demonstrated that BARLEY is likely an

effective tool for measuring chemical diversity, we measure how well genomic comparisons by

BARLEY correlate to the same true chemical comparisons.

In total, our dataset is comprised of 136 gene clusters encoding for 161 products (Supple-

mentary table 3). In cases where a single gene cluster might encode for multiple products due

to multiple encoded precursor peptides as predicted by PRISM, BARLEY is able to consider

these independently and assumes the same tailoring reactions occur for both products. However,

for this analysis, we consider the maximum similarity between both structural products, to best

ensure that we are capturing the event when two BGC clusters may produce the same product.

Each cluster was compared by three metrics: (1) BARLEY, (2) median tanimoto similarity of

predicted RiPPs, (3) BiGScape, a BGC comparison tool used to determine relative similarity

between clusters. The characterized products of these BGCs were then respectively compared

according to BARLEY and the ECFP-Tc (Figure 2.4-b). When assessing the full spectrum of

similarity scores and their correlation, the highest correlation is seen between the Tc of PRISM’s

predicted structures and the Tc of their characterized products. However, it is important to note

that the majority of their similarities occur at relatively low Tc values ¡ 0.5. Further, a major

concern is that in several instances, clusters that encode the same product are often not distinctly

recognized through PRISM’s predicted structures. These cases were more pronounced in RiPP

families with large combinatorial space such as thiopeptides and lantipeptides. To enrich for

these cases, we examined cases where the respective encoded products were similar (i.e. Tc /

BARLEY ¿ 0.5). With this, we found a stark reversal, where BARLEY genomic similarity scores

are more consistently mapped to both chemical similarity scores both measured by BARLEY and
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ECFP6-Tc. In all cases, BigScape, while demonstrating some correlation, was significantly less

useful as a proxy for chemical similarity (Figure 2.4-b). Overall, this analysis reveals that when

comparing related genomic clusters within the same family, BARLEY is more refined to capture

the true underlying chemical diversity than existing tools. Further, BARLEY is able to more

accurately depict duplicate clusters than through examination of PRISM structure predictions.

Measuring novelty among genetically encoded RiPPs

A final, but crucial functionality of BARLEY is its ability to determine the novelty of genomically

encoded RiPPs. This metric is essential in focusing future research towards putative RiPPs that

are yet to be characterized, and promotes the discovery of diverse chemical scaffolds. Unlike the

metrics defined above, this metric was specifically trained using example data to better classify

pairwise relationships between genetically encoded RiPPs and characterized RiPPs to fall in these

three ordinal categories: unknown, within family, or exact match. In this attempt, the dataset

was split into a training and test dataset (75 : 25 % split) of BGC-structure pairs, and stratified

according to family such that any comparisons made in the test set were between structures and

BGCs that were never trained on.

While both streams of data from PRISM and GRAPE contain a similar data format (core

amino acids, identified modifications), this data is further annotated by BARLEY to describe

5 features; two features describe the strength of the local alignment, and three represent the

similarity of PTMs. This training set was further split for validation and model selection, where

two models were chosen and evaluated using 10-fold cross validation. In particular, it was found

that a random forest performed the best to predict structural novelty. Three parameters were

further tuned using this same validation set to generate a final random forest model with 400

base tree estimators, a minimum of 5 randomly selected features for each estimator, and a min-

imum terminal node size of 1 (Supplementary figures A1.2, A1.3, A1.4). Finally, this model

was compared to the structure prediction engine within PRISM using the test dataset, in the

context of classifying a candidate RiPP-BGC as either representing a novel, or previously char-

acterized product. In this task, BARLEY outperforms the RiPP structure prediction engine
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Figure 2.4: Evaluating genomic similarities predicted by BARLEY. (a) Comparing BigScape to
BARLEY in determining encoded RiPP pairs as belonging to the same family. (b) Comparing genomic
RiPP distances measured by BARLEY, median ECFP6-Tc distance of PRISM predicted scaffold library,
and BigScape on y-axis to corresponding chemical distances measured by BARLEY and ECFP6-Tc on
x-axis. Above each chart is the corresponding Spearman correlation between variables measure on both
all data (full) and all data points above ECFP6-Tc 0.5 (half). Colours represent comparisons between
RiPPs of same family (purple), or different family (yellow).
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when considering the maximum Tc index between predicted scaffolds and the candidate com-

parison (Supplementary figure A1.5). BARLEY can comparatively analyze BGCs to candidate

compounds with an accuracy of 99.7% when using a cutoff of 0.2.

Refined genomic charting

Using these key metrics defined, we set forward to reassess the genomic landscape of RiPPs. In

particular, we set to define the diversity potential of genera according to each of RiPP subfamilies.

Of total of 65,421 prokaryotic genomes analysed through PRISM, a total of 19,113 contained at

least one BGC. A total of 27,393 products were predicted, using BARLEY, the total number

of uniquely encoded products can be predicted as 21,849, with 5,062 predicted as being known

(Figure 2.5). As BARLEY considers multiple RiPPs encoded within the same BGC as separate

entities, the total number of novel unique compounds to be potentially isolated given the current

set of genomes available is 16,787.

Among each of the RiPP families, we can use BARLEY to estimate the total encoded di-

versities. Here, we look at the mean BARLEY genomic distances between all encoded RiPPs

as a measure for the total diversity. This effectively normalizes for the number of instances we

observe encoded RiPPs, where certain rare families such as proteusins (8 encoded RiPPs) can

be directly compared to more frequently encoded AIPs (8365 encoded RiPPs). This diversity

metric effectively demonstrates the total space encoded within each biosynthetic family. Inter-

estingly, a common trend seen here is that many of the rare RiPP families such as the YMs,

cyanobactins, proteusins and prochlorosins in general encode for much more diversity than very

common families. Surprisingly, class III/IV lantipeptides are the least diverse class of RiPPs,

despite a total of 4154 encoded products detected through this analysis. Among these, these,

sactipeptides and bottromycins are the two families which are mostly comprised of previously

characterized RiPPs (Figure 2.6-a).

With this in mind, we set to evaluate the encoded chemical diversity across genera to eval-

uate these bacterial clades for targeted mining. This is particularly difficult due to the large

divergence in sample size per genera, with the Streptococcus being the most sampled genera
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Figure 2.5: Topological distribution of 21,849 encoded RiPPs according to diversity and
novelty as determined by BARLEY. Diversity is plotted on two axes, shown at two angles for
appreciation. Diversity was plotted using classical multidimensional scaling using a distance matrix of
BARLEY pairwise distance scores. Novelty is presented on the y-axis as labeled and all encoded RiPPs
predicted as known fall within the grey-filled space. Colours represent the diverse RiPP families, and
the size of the points represent the number of occurrences a unique RiPP scaffold is encoded in multiple
genomes.
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Figure 2.6: Encoded RiPP diversity and novelty across chemical subfamilies and genera.
(a) Mean diversity of encoded RiPPs across chemical subfamilies, numbers above bars represent the
number of encoded RiPPs in each class. (b) Top 20 most diverse RiPP encoding genera. Numbers above
bars represent the number of unique RiPPs encoded in each genera observed, only genera with at least
20 sequenced members were included here. In both charts, colour represents the percentage of uniquely
encoded RiPPs that were predicted as known.
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with over 9934 deposited sequences, and 703 genera with only a single sequenced member. Using

an iterative sampling strategy and calculating total diversity as the sum of BARLEY defined

distance measurements between the detected RiPPs per sample, we generate a slope for each

genera representing the average amount of RiPP diversity increased per new genome sequenced.

In this context, we evaluate each genera according to this diversification index in the context of

all RiPPs, followed by a specific evaluation according to each RiPP family. This index (Di, Di-

versity index), represents how frequently we can expect to find a highly divergent RiPP through

sampling more members of a specific genera. To ensure accurate sampling, only genera with at

least twenty sequenced members were included, leaving 163 genera for analysis (Figure 2.6-b).

When concerning all RiPP families, the genus with the largest projected diversity of RiPPs

is Nocardiopsis (Figure 2.6-b). In this genus, despite only having 28 sequenced members, these

strains carry a total of 75 unique products of which none are predicted as characterized. In

particular, this genera is rich in diverse thiopeptides, linear azole containing peptides (LAPs),

lasso peptides and all classes of lantipeptides (Figure 2.6-b). The total Di for this genus is 100.4.

Within the class I lantipeptides, Staphylococcus represents the genera with the most diverse

encoded scaffolds (Di=2.4), with a total 2699 unique predicted products from a total of 7235

genomes analysed (Figure 2.6-b). Following this is Paenibacillus (Di=0.7), Lacotoccus (Di=0.44)

and Geobacillus (Di=0.33) where despite containing diverse encoded RiPPs, these genera are also

abundant in previously characterized products. Of the class II lantipeptides, Bacillus (Di=1.55)

and Carnbobacterium (Di=1.24) carry the most diversity, with 23% and 66% of these products

representing characterized products. Balancing these two factors, Streptococcus seems to hold

the most divergent class II lantipeptides (Di=1.13), while only 1% of these encoded products are

predicted as known (Figure 2.6-b). For class III/IV lantipeptides, Streptomyces are the carriers

of the most diverse products (Di=0.73), while 36% of its products are predicted as characterized.

Following this genus are Nocardiopsis (Di=0.58) and Cellulomonas (Di=0.25), where none of

their predicted products are predicted to be known.

For thiopeptides, Nocardiopsis represents the genus with the most diverse encoded products

(Di=8.76), with only 3% of its products marked as known. Following this are the Deinococcus

(Di=0.71), and Streptomyces (Di=0.4), with 0% and 9% of its clusters marked as known. In
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general, apart from the limited diversity carried by Lactobacillus (Di=0.0008, 75% known) and

Bacillus (Di=0.01, 31% known), most genera carry a majority uncharacterized thiopeptides,

making this class of RiPPs a tractable target for isolation of novel scaffolds (Figure 2.6-b).

ComX, previously characterized in Bacillus [20], was detected here in three genera, Lysini-

bacillus, Bacillus and Anoxybacillus. Of these, only Bacillus carried ComX peptides that are

previously characterized, but even this only represents a small portion (1%) of their total pre-

dicted diversity (Figure 2.6-b).

Autoinducing peptides (AIPs) represent the largest family of products predicted. AIPs were

first characterized from Staphylococcus [16], and this trend is apparent here where 54% of the

diversity encoded by this genus (Di=1.26) represents previously characterized products. Interest-

ingly, Peptoclostridium carries the most diversity (Di=2.01), and is completely uncharacterized.

Apart from these, diverse AIPs are found in Clostridium (Di=0.96), Ruminococcus (Di=0.1) and

Lactobacillus (Di=0.001) that are all uncharacterized (Figure 2.6-b).

Linear azole containing peptides (LAPs) are encoded by eight genera, with Nocardiopsis

(Di=0.004), Streptomyces (Di=0.003) and Streptococcus (Di=0.0027) contain the most diversity.

containing the most predicted diversity (Di=0.004). Of these LAP encoding genera, Clostridium

(Di=0.0004, 94% known) and Bacillus (Di=0.0003, 84% known) carry a number of unique prod-

ucts, however the majority of these are closely related and predicted as characterized, leading to

low diversity indices.

Lasso peptides are found among a large diversity of genera. Of these, Sphingopyxis (Di=31.49),

Sphingobium (Di=19.95) and Caulobacter (Di=14.8) represent the most enriched genera with

diverse lasso peptides. Of the remaining genera, all contain a fairly high density of divergent

RiPPs, however it is interesting to note that of all the 436 unique products encoded by the genus

Burkholderia, the majority (91%) share significant similarity to characterized products (Figure

2.6-b).

Microviridins are very abundantly encoded within the Chryseobacterium genus, with 104

products found in just 61 genomes. While also found in Alteromonas and Flavobacterium, these

products are generally quite rare outside Chryseobacterium (Figure 2.6-b).
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Several families of RiPPs were denoted as much rare, appearing in only select genera. Of these,

prochlorosins were found in two genera, Prochlorococcus (Di=0.47) and Butyrivibrio (Di=0.02),

where both genera carried completely uncharacterized products (Figure 6b). Linaridins were

only found in Streptomyces, with 12 encoded products, of which 59% are predicted to be novel.

Likewise, trifolitoxins were only found within the Rhizobium genera, for a total of three gene

clusters. Bottromycins were only found in select Streptomyces where 10 unique products were

encoded, however 8 of these were very similar to the currently characterized member of this

family. Glycocins are only found in Bacillus, however, are fairly diverse, with only 10% of these

marked as previously characterized. Thioviridamides were only found in Streptomyces, of which

the majority are uncharacterized. Sactipeptides were only found in Bacillus, of which almost all

(94%) were denoted as previously isolated.

Mass spectral strategies for genomic RiPP identification

In order to facilitate targeted mining, we have developed an explicit workflow for the identification

of RiPP scaffolds in native strains using metabolomic data. The goal of this work was to develop

an analytical workflow that can drastically reduce the number of LC-MS signatures for targeted

isolation. Through a subtractive analysis, where BARLEY is used to identify strains sharing

identical products, thus when searching for mass spectral signatures corresponding to a specific

RiPP gene cluster, extracts from other bacterial strains can be used as a negative control to

eliminate these redundant signatures. Herein, we present an example where this protocol is able

to identify a novel lasso peptide from a previously unexplored Streptomyces isolate (Figure 2.7).

A lasso peptide cluster that was predicted as novel was found encoded in Streptomyces sp.

BTA 0171 was sought after in this manner. This strain was grown in four media conditions,

resulting a total of 20,007 MS1 ions. An initial filter for ions present in over fifty strains and

dereplication of ions between media conditions identified a total of 611 MS1 ions relevant to this

pursuit. After filtering against a bacterial metabolite database a total of 142 ions were eliminated

as previously characterized compounds. A further 421 ions were eliminated due to very low

abundance. BARLEY identified that no other strain within our internal collection contained

this exact encoded product, and thus a further 29 ions were removed, resulting in a remaining
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Figure 2.7: Genomic and metobolomic guided isolation of novel lasso peptide. All publicly
available prokaryotic genomes were analysed through PRISM to identify 27,393 predicted RiPPs. Of
these, RiPP-BARELY identified 18,369 of these as previously uncharacterized, with 844 of these being
lasso peptides. Within these, Streptomyces sp. BTA-0171 was chosen as a candidate. This strain was
grown in four media conditions, resulting in a total of 20,007 ions. This was dereplicated to 611 MS1
ions. After filtering for an intensity of sixty thousand, the remaining metabolites were then dereplicated
against a bacterial metabolite database, removing a further 421 low intensity compounds and 142 known
compounds. In total, the metabolomic database currently contains 459 other strains with both genomic
and metabolomic data for the process of metabolite dereplication. This metabolite was not observed
in any other strains according to BARLEY, and so 29 metabolites were removed for being observed
in other bacterial cultures. Of the remaining 19 metabolites, 5 had some fragmentation patterns in
common with in-silico fragmentation of the predicted lasso peptide, but one in particular had both strong
fragmentation similarities and also shared the exact predicted mass of the lasso peptide. This metabolite
was then targeted for isolation through large-scale fermentation and its structure was determined to be
exactly as predicted.
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19 metabolites. PRISM was used to generate a combinatorial structure library for this encoded

product, revealing 17 unique masses, and an in silico generated library of 1000 fragment ions.

Of these remaining ions, 5 were revealed to share some fragmentation similarity to the encoded

product, while one was found to both share significant fragmentation similarity and match a mass

within PRISMs structural library. The resulting ion was then selected for targeted isolation from

a large scale fermentation in KE medium, given this ion was most intensely witnessed in GGYM

and KE media. NMR spectroscopy data revealed the structure to be exactly as predicted by

PRISM, further validating this pipeline (Figure 2.7, supplementary figures: A1.11 – A1.18).

Currently no biological activity was seen against gram positive (S. aureus Newman) and gram

negative (P. aeruginosa PAO1) bacteria or fungi (C. albicans ATCC 90028), however a much

wider array of bioactivity assays may be needed to assess the total functional spectrum of this

novel scaffold considering the diverse targets of existing lasso peptides [29, 11, 21].

Identifying noncanonical precursor peptides

Traditional genome mining approaches for RiPPs is dependent on the identification of precursor

peptides adjacent to modifying enzymes. In certain scenarios, it may be that precursor peptides

can leverage enzymes located in distant regions of the genome to facilitate post-translational

modifications. In many cases, PRISM is not able to identify a definitive precursor peptide

within gene clusters. Of the 30,261 BGCs identified by PRISM, 5,459 were denoted to either not

have a precursor peptide at all, or to only have one on the basis of a heuristic rule determined

by PRISM. With this idea, we acknowledge this as a limitation of our current platform, and the

encoded diversities as described above may be a conservative estimate. As seen in Figure A1.7,

all subclasses of lantipeptides are frequently observed with this phenomenon. To investigate this,

a candidate bacterium (Flavobacterium ginsengiterrae JCM 17337) was chosen with an abun-

dance of class I lantipeptides gene clusters lacking canonical precursor peptides. Specifically, this

bacterium was denoted with 5 class I lantipeptide gene clusters, 3 of which were found without

a definitive precursor peptide. Due to the inherent failure of homology based models (HMMs

and motifs) in recognizing the precursor peptides in this scenario, we set to develop a new set of

heuristic rules for the size and possible cleavage sites of precursor peptides using the totality of

33

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

identified precursor peptides from our genomic analysis. As seen in figure A1.8, precursor ORFs

in class I lantipeptides are typically between 40 and 80 amino acids in length, while cleavage

sites within these peptides are typically located on the relative position 0.4 (Figure A1.9), but

can be variable. Using this information, a heuristic rule was developed such that putative class I

lantipeptide ORFs must be between 40 and 80 amino acids in length, and must contain at least

two cysteines and two of either serine or threonines in the C-terminal 60% region of the ORF.

Further, it was gleaned from this data, that the median size of mature products within class I

lantipeptides was 22 AA, but was variable with a range from 8 to 53. Thus, a combinatorial

cleavage and structure generation strategy was implemented to create putative products at posi-

tion 22 ± 10 from the C-terminal to use for subsequent structure prediction using PRISM. Using

this strategy, Prodigal was used to extract protein coding ORFs within this genome of F. gin-

sengiterrae JCM 17337, and a total of 70 ORFs were found to meet this set of heuristics. These

ORFs were used to generate a total of 1,400 cleavage possibilities. In total 165,040 predicted

structures across 3,232 unique masses were generated. To evaluate this approach, this bacteria

was fermented, and its biological extracts were analyzed using LCMS/CLAMS to reveal a total of

XX metabolites. Of these, 20 were identified to match a mass from this set of predictions where

two products (ginsebactin and ginsecidin) were isolated. In both cases, the precursor peptides

of these ORFs were encoded on large contigs (flavopeptin I: 466 kbp contig, ORF at 377 kbp; II:

500 kbp contig, ORF at 60 kbp) containing no genes detected by PRISM to share homology with

any lantipeptide modifying enzymes. Although seemingly unlikely, NMR spectroscopy revealed

these two products to match exactly to the structures as predicted by this analysis (seen in

Figures A1.19 and A1.27. This process shows that these products exist and are not produced

through canonical pathways, while this software strategy is able to identify peptides outside of

the canonical rules for RiPP genomic encoding.

2.5 Discussion

Presented here is a comprehensive platform in the identification and targeted isolation of novel

genomically encoded RiPP scaffolds. Due to their direct genomic translations, genome mining of

RiPPs has garnered significant interest [1]. However, the main focus of most current algorithms
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is biased towards detection of BGCs [2, 28], without making any attempt to link this informa-

tion to metabolomic datasets. Further, there are no current platforms which aim to targetedly

dereplicate genomically encoded RiPPs to known scaffolds. Previous works have used sequence

similarity metrics to determine novelty within a single subfamily of RiPPs [28], however in mov-

ing towards a generalist platform, BARLEY integrates the various PTMs associated with RiPPs

to generate a more comprehensive novelty index.

Recently, due to advancements in molecular biology techniques, heterologous expression of

RiPP BGCs has been increasingly used to isolate natural products following genome identifi-

cation [15, 30, 5]. Currently, only a limited number of hosts are optimized for this process,

including S. coelicolor [32], S. avermitilis [12], E. coli [31] and S. cerivesiae [14]. However, this

analysis has demonstrated the wealth of novel and divergent RiPPs encoded across almost all

bacterial phyla. Developing a strategy for each to be expressed in the same biosynthetic ca-

pability as such divergent hosts is not a simple endeavour. First, researchers need to consider

the differential codon bias and regulatory elements across bacteria to optimize expression [6],

and second, heterologous biosynthesis may drastically alter the original metabolic balance of the

hosts, leading to inadequate or incomplete biosynthetic intermediates [8]. Further, many RiPPs

act as antibacterial agents and may induce significant toxicity to heterologous hosts [4]. For these

reasons, it is improbable that simple identification of encoded RiPPs and heterologous expression

technologies will allow for efficient characterization of the total diversity of encoded RiPPs.

Unlike heterologous expression platforms, identifying the precise metabolite produced by a

RiPP BGC of interest is challenging due to the large number of metabolites seen in a typical

crude bacterial extract. One previous approach has demonstrated that mass spectral fragmen-

tation patterns can be used to link lantipeptide metabolites to specific BGCs in native hosts

[18, 17]. Other work has demonstrated the viability of mass spectral fragment residue identifi-

cation and genomic matching of metabolites, which is demonstrably successful across a variety

of peptidic natural products [19]. Issues with fragmentation of more complex RiPPs confounds

this approach and lacks an ability to provide resolution among complex peptidic media extracts.

While fragmentation patterns are used to guide metabolite selection in this platform, the iSNAP

algorithm used here does not make strong assumptions or limitations in the possible residues
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detected [7]. Instead a library of candidate fragment masses is generated through successive in

silico bond cleavages of the predicted scaffold library by PRISM, allowing for a targeted analysis

across 21 RiPP classes. Further, we describe CLAMS, a novel subtractive strategy to effectively

leverage genomic data from multiple bacterial strains to effectively discard commonly produced

metabolites and shed light on strain-unique products. While other peak identification tools have

been published [13, 22, 27], CLAMS allows, and was built specifically for, large scale metabolomic

analysis, facilitating the dereplication of MS1 ions across thousands of individual experiments.

Thus, we can leverage wide scale metabolomic and genomic data across a large diversity of

bacterial strains to effectively target specific and novel genomically encoded RiPPs.

Overall, our analyses not only provide clear directions for future efforts in targeted discovery

of RiPP scaffolds, we provide here the tools and protocols necessary to expedite this process.

To exemplify the success of our platform, we have selected a lasso peptide highly divergent

from all currently characterized and encoded RiPPs as directed by BARLEY. Further, we have

demonstrated that our mass spectral strategy can drastically reduce the number of candidate

metabolites in crude bacterial extracts to identify a single ion corresponding to this lasso peptide.

The genomic analysis presented here represents an exploration into the genomically encoded

chemical space at an unparalleled fine resolution. Overall, this platform is built as a flexible

toolkit to guide the discovery of novel RiPP scaffolds, as demonstrated through the discovery of

two lantipeptides biosynthetically encoded via a noncanonical pathway. Although the adjacency

of precursor peptides and their modifying enzymes is a highly prevelant pattern within the

genomic encoding of RiPPs, this analysis has revealed that it is not universal. It is our hope that

the directions and strategies provided here will accelerate and facilitate efficient genome-guided

searches for novel RiPP scaffolds.
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2.6 Methods

Genomic and chemical datasets

A total of 138 gene clusters stored in FASTA format, mapped to 161 chemical scaffolds, stored

in SMILES format, were used to validate the genomic distance analysis and to train BARLEY’s

genome to chemical novelty index (Supplementary table 3). A total of 640 chemical scaffolds

with family level annotation, but without mapped clusters were used to validate BARLEY’s

chemical distances (Supplementary table 1).

Construction of GRAPE

As described before [3], GRAPE is used to retro-biosynthetically process chemical structures in

SMILES format to their corresponding amino acids and a list of chemical reactions detected in

doing so. Specifically, for RiPPs, GRAPE was extended to annotate 60 specific PTMs (Supple-

mentary table 2).

BARLEY - Chemical distance

For a comparison between a query chemical scaffold to a subject, a Smith-Waterman alignment

is calculated between the query and the subject using an identity matrix, scoring 1 for exact

matches, and a gap opening and extension penalty of -2. From this alignment, two scores are

denoted for the local alignment, the total number of amino acids in the query that were exactly

matched and mismatched to the subject, which are weighted 1 and -1 respectively. From the

resulting PTMs identified, three metrics are derived with respect to the query: the number of

PTMs observed in both the query and the subject, the number of PTMs observed in either

the query or the subject but not in both, and the number of PTMs between query and subject

that were marked as similar. A table of similar PTMs are denoted (Supplementary table 6).

These three scores (PTM match, PTM mismatch and PTM similar) are weighted 5, -5 and 5

respectively. The sum of these five weighted scores are used to determine a total score. To
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generate a relative score between 0 and 1, a self-score is generated between the query and itself.

The total score is divided by the self score to determine the relative similarity of two RiPP BGCs.

BARLEY - Genomic distance

BARLEY uses the genes identified by PRISM within RiPP gene clusters to build a model of the

propeptide core amino acid sequence, and the total PTMs possibly encoded. A total of 112 genes

are identified in PRISM as performing PTMs (Supplementary table 6). Each reaction is encoded

into BARLEY with three main parameters: a list of genes required to perform the reaction, a list

of precursors required, and the resulting PTM. Since certain PTMs are required precursors for

other PTMs, such as the dehydration of serine and threonine residues by LanB prior to thioether

formation by LanC, all possible reactions are performed iteratively until the total number of

PTMs converges upon a maximum, guaranteeing that all possible PTMs encoded by a gene

cluster are available. Precursors for a PTM include both amino acids and other PTMs, and are

not consumed during the execution of a reaction, thus allowing for all combinatorial possibilities.

For a comparison between a query gene cluster to a subject, all potential PTMs as described

above are gathered for both query and subject. The corresponding core amino acid sequence for

each BGC are then identified using the predictions by PRISM. In cases where multiple precursor

peptides are identified within a RiPP gene cluster, each is considered as a unique entity, and all

PTMs are generated for each independently. The query and subject are then scored in the exact

same manner as described above for chemical distance.

BARLEY - Novelty index

To generate a novelty index, BARLEY compares encoded RiPPs from PRISM to the database of

all RiPP chemical scaffolds processed by GRAPE.As described above, BARLEY is able to parse

PRISM and GRAPE data to model RiPPs in the same manner, a sequence of proteinogenic

amino acids and a set of PTMs. The same five scores are generated between the PRISM query

and GRAPE subject to generate a list of five scores per comparison. These five scores are used

as features in a random forest regression model to sort comparison types into three categories.
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Here, an outputted score of -1 represents comparisons from different RiPP families, 0 represents

a same family comparisons, and 1 represents an exact comparison between a RiPP BGC and

its corresponding product. To train and tune this model, the set of 138 gene clusters and

their corresponding matched small molecules and family annotations were used. 25% of this

data was saved for final testing, while the remaining was used to tune the model using 10-fold

cross validation across three parameters: number of base tree estimators, number of randomly

selected features for each estimator, and the minimum terminal node size. Using these results

(Supplementary figures A1.2-A1.4), a final model was constructed using 400 base estimators, 5

randomly selected features, and a minimum terminal node size of 1.

Genomic analysis

This analysis was performed on the same dataset as published previously by Skinnider et. al, 2016

[25]. A total, 65,421 genomes were run through PRISM, and revealed 24,756 BGCs. The JSON

output of PRISM was parsed through BARLEY, and all pairwise scores were stored in an n x n

distance matrix where n represents the total number of identified and cleaved precursor peptides

identified by PRISM. Since BARLEY scores are directionally dependent, the maximum score

of each side is considered for subsequent analysis. Each encoded product was also compared

to library of 641 microbial peptide chemical scaffolds using BARLEY. If the highest scoring

chemical scaffold to an encoded product was above a cutoff of 0.2, it was determined to be

previously characterized.

Diversity Index

To score genera according to their encoded RiPP diversity, all genera with at least twenty se-

quenced strains were collected and scored according a diversity index. This index is calculated

from an iterative random sampling strategy of genomes. The distance described below is 1 -

BARLEY similarity score.

A sample here is defined as a selection of genomes. To generate the diversity score for a

sample, all unique RiPP gene clusters within a sample were identified, and the sum of the
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pairwise distances between each was used as the total diversity within a sample. To generate

the diversity index, a randomly selected sample of genomes, of size n, were collected and scored

for diversity. This was repeated 10 times for each integer increment between 1 and 20. From

this, a linear regression was fit to this data, where the slope was used to estimate the average

amount of diversity increase per new genome. This analysis was repeated for every genera with

more than 20 sequenced members, across all RiPP families.

For estimating the total encoded diversity according to specific RiPP families across all

genomes, the mean of pairwise distance scores between all encoded products was generated as it

better reflected an intermediate value between modes in the multimodal distributions witnessed

(Figure A1.6).

Metabolomic mass spectral analysis

For analytical separation and to record high resolution LC-MS/MS spectra, a SciEX 5600+

TripleTOF mass spectrometer (ABSciEX) with an electrospray ionization (ESI) source was used.

The system operates using CID with helium for fragmentation, coupled with an Agilent 1100 se-

ries HPLC system using an luna C18 column (150 mm × 2.1 mm, Phenomenex). For preparative

separation we used Dionex UltiMate 3000 HPLC system, coupled with a Luna C18 column (250

mm × 15 mm, Phenomenex). For both analytical and preparative separation, the mobile phase

consists of gradient mixture of double distilled H2O with 0.1% formic acid and acetonitrile. 0.1%

formic acid was used as buffer for both solvents.

Mass spectrometry data was analysed using CLAMs to format MS1 ions as individual entities,

mapping to each their relative isotopic distribution, monoisotopic m/z, retention time, charge

and intensity. Precise values were obtained for each MS1 ion at their maximal intensity. Where

observed, MS2 spectra containing relative intensity and m/z of each ion were associated with

each MS1 ion. To generate a profile of MS1 ions per strain, all detected MS1 ions above a

baseline intensity of 10,000 from each experimental analysis across multiple media conditions

were compared. Ions within 5 PPM and a 30 second retention time window were considered

the same metabolite. Of these overlapping ions across media conditions, a single candidate ion
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was chosen based on its relative intensity as a representative for subsequent analysis. All MS1

ions in this representative set were then compared to a dataset of 118 blank media extractions

to remove any compounds not associated to bacterial metabolism using the same PPM and

retention time tolerance described above. The remaining MS1 ions were then compared to all

analytical experiments from 463 strains with associated genomic data. BARLEY was used to

determine strains with identical encoded RiPPs, any MS1 ions from the candidate strain that were

overlapped with non-RiPP carrying strains were eliminated using the same PPM and retention

time tolerances described above. Remaining MS1 ions were then evaluated for similarity to a

library of PRISM generated scaffolds for a genomically encoded RiPP product of interest. As

described before [7], a library of fragment masses were generated in silico from a randomly chosen

set of 100 predicted scaffolds. The top 1000 most frequently observed fragment masses were then

compared to the MS2 spectra for each candidate peak using a 20 PPM tolerance, where a score

was generated representing the fraction of MS2 ions that were matched to an in silico prediction.

For each MS1 ion, all adducts were considered to generate a set of predicted exact masses. MS1

ion mass matches were considered with a tolerance of 20 PPM.

Detection of noncanonical precursor peptides

To identify all putative precursor peptides within the genome of Flavobacterium ginsengiterrae

JCM 17337, all ORFs were gathered from its genome using Prodigal v2.6.2. These ORFs were

filtered according to size (between 40 and 80 AAs in size), and were further filtered according to

containing at least two cysteines and two of either serines or threonines in the C-terminal 60%

region of the ORF, as these residues are required for lanthionine bridging. For each of these

ORFs, a combinatorial set of cleavage predictions was generated at position 22 ± 10 from the

C-terminal. These cleaved ORFs were then analysed through the structure prediction engine

of PRISM using the LanB and LanC catalysed reactions to generate a total set of predicted

structures. Flavobacterium ginsengiterrae JCM 17337 was cultured (as described below), and its

metabolites were anlaysed using CLAMS to generate a total set of metabolites. For each MS1

ion, all adducts were considered to generate a set of predicted exact masses. The total set of
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predictions were compared to these MS1 ions to generate mass matches with a tolerance of 20

PPM.

General Experimental Procedures

For analytical separation and to record high resolution LC-MS/MS spectra, a SciEX 5600+

TripleTOF mass spectrometer (ABSciEX) with an electrospray ionization (ESI) source was used.

The system is coupled with an Shimadzu Nexera XR HPLC system (Mandel Scientific Company)

using an luna C18 column (150 mm × 2.1 mm, Phenomenex). For preparative separation we

used Dionex UltiMate 3000 HPLC system, coupled with a Luna C18 column (250 mm × 10

mm, Phenomenex). For both analytical and preparative separation, the mobile phase consists

of gradient mixture of double distilled H2O with 0.1% formic acid and acetonitrile. 0.1% formic

acid was used as buffer for both solvents.

To record nuclear magnetic resonance (NMR) spectra of streptapeptin we used Bruker AVIII

700 MHz. Recorded spectra included, 1D (1H and DEPTq), 2D (1H-1H) COSY, TOCSY,

ROESY, and NOESY, and 2D (1H-13C) HSQC, and HMBC.

Microbial Strains and Culturing

Streptomyces sp. BTA 0171 was obtained from Pfizer culture collection and maintained on ISP3

agar, or KE or GGYM broth with shaking at 200 RPM, at 28 °C. ISP3 medium consists of 4

g/L yeast extract, 10 g/L malt extract, 4 g/L dextrose, and 15 g/L agar. KE medium consists of

1 g/L glucose, 10 g/L potato dextrin, 5 g/L NZ-amine, 5 g/L yeast extract, 3 g/L beef extract,

0.5 g/L CaCO3, 0.05 g/L MgSO4.7H2O, 2 mL/L filter-sterilized phosphate buffer, added after

autoclaving (consists of 91 g/L potassium phosphate monobasic and 95 g/L potassium phosphate

dibasic at pH 7). GGYM medium consists of 4 g/L glucose, 4 g/L yeast extract, 10 g/L malt

extract, and 5 g/L glycine. Flavobacterium ginsengiterrae JCM 17337 was obtained from Japan

Collection of Microorganisms nad maintained on Nutrient agar, Nutrient broth or CY broth

with shaking at 200 RPM, at 28 °C. CY medium consists of casitone 5 g/L and yeast extract 1

g/L. For antimicrobial assay, P. aeruginosa PAO1, S. aureus Newman, and C. albicans ATCC
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90028 were maintained and cultured on cation-adjusted Mueller Hinton, CAMH (4 g/L, DifcoTM,

USA), tryptic soy broth, TSB (24 g/L, DifcoTM, USA), and potato dextrose broth, PDB (30g/L,

Sigma-Aldrich, USA), respectively

Production and purification of streptopeptin

Streptomyces sp. BTA 0171 was cultured in small 250 mL Erlenmeyer flasks to produce a seed

culture. A 48 h single colony of strain BTA 0171 grown on ISP3 agar was used to inoculate 50

ml GGYM medium. The seed cultures were incubated for 48 h at 28 °C with continuous shaking

at 200 rpm. Thereafter, 10 ml of the seed cultures were aseptically transferred to 2.8-L Fernbach

flask containing one liter KE broth and incubated for 5 days at 28 °C with continuous shaking at

200 RPM. A total of 18 liters KE media was used for large scale production of streptopeptin. Cells

were harvested by centrifugation at 4000 rpm for 20 min at 4 °C then pellets were extracted with

one liter of methanol for 4 h. Simultaneously, a resin mixture of 1:1 HP20 and XAD7 were added

to the supernatant at ratio of 3:100 W/V, shacked at 100 RPM for 3 h at room temperature,

filtered under vacuum, washed with water. The resin was then extracted three times with

methanol (1:4 W/V) followed by a final wash in acetone (1:4 W/V). The methanol extract from

the mycelial pellets and resin was combined and dried under vacuum using a rotary evaporator

followed by nitrogen air for complete drying to yield 10 g of crude extract. The dried extract

was then suspended in water and subjected to liquid-liquid partition between 1:1 n-butanol and

water. The n-butanol fraction was dried under vacuum using rotary evaporator then nitrogen

gas to yield 600 mg dry residue. The residue was suspended in 2 ml methanol and applied on the

top of size exclusion column (Sephadex LH20, 1.6 × 80 cm), methanol was used as the mobile

phase with flow rate of 1 ml/min. Fractions containing streptopeptin were pooled and dried

under nitrogen to yield 120 mg dry mass which was dissolved in 5 ml methanol and subjected

to a semi-preparative reversed-phase HPLC with a luna 5 µm C18 column (Phenomenex, 250

mm × 15 mm) using water and acetonitrile with 0.1% formic acid as mobile phase employing

a linear gradient of 5% to 80% acetonitrile over 30 min followed by a wash of 100% acetonitrile

for 10 min. Fractions were collected at 5 sec interval with streptopeptin being eluted at 18 min.

HPLC fractions contain streptopeptin were pooled and dried under nitrogen line to yield 10
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mg of pure compound which is then dissolved in methanol-d3 and subjected to NMR analysis.

Detailed NMR spectra and assignment of chemical shifts are detailed in supplementary Figures

A1.10-A1.18.

Production and purification of ginsebactin and ginsecidin

Flavobacterium ginsengiterrae JCM 17337 was allowed to grow in 250 mL Erlenmeyer flasks to

produce seed culture. A 48 h single colony of strain JCM 17337 grown on nutrient agar was

used to inoculate 50 ml nutrient medium. The seed cultures were incubated for 48 h at 28 °C

with continuous shaking at 200 rpm. Thereafter, 10 ml of the seed cultures were aseptically

transferred to 2.8-L Fernbach flask containing one liter CY broth and incubated for 5 days at

28 °C with continuous shaking at 200 RPM. A total of 18 liters CY media was used for large

scale production of ginsebactin and ginsecidin. A resin mixture of 1:1 HP20 and XAD7 were

added to the fermented broth at ratio of 3:100 W/V, shacked at 100 RPM for 3 h at room

temperature, filtered under vacuum, washed with water. The resin was then extracted three

times with methanol (1:4 W/V) followed by a final wash in acetone (1:4 W/V). The mixture of

methanol and acetone was dried under vacuum to yield 7.9 g of crude extract, which was dissolved

in water (500 mL) and partitioned with EtOAc (3 × 500 mL) to yield an EtOAc fraction of 4.2

g. The EtOAc fraction (4.2 g) was then subjected to a flash column chromatography (Teledyne)

with a 30 g SNAP Ultra C18 column (Biotage) using water and acetonitrile as mobile phase at

35 ml/min employing a linear gradient of 10% to 100% acetonitrile over 18 mins followed by

5 mins of 100% acetonitrile wash. Fractions containing ginsebactin and ginsecidin were pooled

to result a dry mass of 230 and 160 mg, respectively. ginsebactin containing fraction (230 mg)

was then subjected to a semi-preparative reverse phase HPLC with a Luna 5 µm C18 column

(Phenomenex, 250 mm × 10 mm) using water and acetonitrile with 0.1% formic acid as mobile

phase employing a linear gradient of 20% to 45% acetonitrile over 12.5 min followed by 5 mins

isocratic run with 45% acetonitrile then a wash of 100% acetonitrile for 10 min. Ginsebactin is

eluted at 17.6 min. HPLC fractions contain ginsebactin were pooled and dried under nitrogen to

yield 1.4 mg of pure compound. Ginsecidin containing fraction (160 mg) was subjected to reverse

phase HPLC using water and acetonitrile with 0.1% formic acid as mobile phase employing a
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linear gradient of 40% to 60% acetonitrile over 17.5 min followed a wash of 100% acetonitrile

for 10 min. Ginsecidin was eluted at 19.9 min with a total of 2.1 mg. Both ginsebactin and

ginsecidin were then dissolved in DMSO-d6 and subjected to NMR analysis. Detailed NMR

spectra and assignment of chemical shifts are detailed in supplementary Figures A1.10-A1.18.

Screening of antimicrobial activity

To test if streptopeptin, ginsebactin and ginsecidin possess antimicrobial activity, a broth mi-

crodilution assay was conducted on three indicator strains, P. aeruginosa PAO1, S. aureus New-

man, and C. albicans ATCC 90028 grown in CAMH, TSB, PDB, media respectively. The

indicator strains were grown in at 37 °C and shacked at 200 rpm for 24 h except for C. albicans

was grown without shaking. The actively grown cultures were diluted to 1:10,000 using the

same media used for the growth of each strain. To 96-well microtiter plate, 196 µL inoculated

medium was added and mixed with 4 µl of either streptopeptin, ginsebactin or ginsecidin (20-5

µg/mL final concentration were used for a preliminary screen). Polymyxin, erythromycin, and

amphotericin were used as positive control for P. aeruginosa PAO1, S. aureus Newman, and C.

albicans ATCC 90028, respectively, at final concentration of 2 µg/mL. Negative control consisted

of inoculated media and DMSO as solvent used to dissolve streptopeptin. Blank consisted of

non-inoculated and DMSO. The entire experiment was repeated in triplicate with 3 independent

replicates each time.
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Chapter 3

In situ systemic algorithm reveals

functional peptides exclusively

encoded within the human

microbiome

3.1 Preface

The human body is a host to a wide assortment of bacterial residents. While we have exten-

sively studied those that are deleterious to human health, relatively little is understood about

those bacteria which may play a protective role. Due to advances in metagenomic sequencing,

several studies have correlated the presence and abundance of various bacteria to numerous ail-

ments. Yet still, much is still unknown regarding the various mechanistic interactions in which

these bacteria engage with the human body and among themselves. Previous works had demon-

strated that antimicrobial peptides were abundantly encoded within the human microbiome.

However, apart from those studied extensively in vitro, not much is understood about the role

these metabolites play within the polymicrobial human environment. To answer this question,

we developed an informatics platform, AMPLIFY, which firstly identifies those peptide families
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uniquely present within the human microbiome. Further, AMPLIFY aims to characterize the

potential antimicrobial activity of these products through correlating their expression to the

constant flux in microbial population dynamics seen within the GIT. As an application of this

pipeline, we sought to identify peptides relevant against the infectious pathogen Clostridium

difficile. In this endeavour, AMPLIFY identified several candidates, one of which was produced

by Scardovia wiggisae, a bacterium previously implicated in early childhood dental caries. This

peptide, termed scardovicin, was synthesized to evaluate its biological activity in vitro. We show

here its potent and multimodal activity in protecting against C. difficile. Informatic strategies

such as these are essential in understanding the complexities and multitudes of chemical media-

tors underlying human biology. The software that I have built to tackle this problem specifically

uses large scale surveillance data of the varying microbial populations and peptide expressions

in the GIT. While this data is publicly available for research, no such applications have been

developed before to specifically link bacterial metabolites to putative functions.

The following chapter is formatted as a manuscript which is in preparation for journal submis-

sion. I developed AMPLIFY to analyse genomic, metagenomic and metatranscriptomic data. I

curated data, built HMMs, contributed to study design and wrote the manuscript. Walaa Mousa

developed assays to test the immunomodulatory effects of scardovicin and the antibacterial ac-

tivity of scardovicin against C. difficile in the context of cell growth, spore germination and

spore formation. Walaa Mousa also curated data, built HMMs, contributed to study design and

wrote the manuscript. Bilal Athar, Keshav Dial and Mathusan Gunabalasingam curated data

and built HMMs. Waliul Khan helped in designing the cell line assay and Huaqing Wang helped

in performing the assay. Professor Nathan Magarvey contributed to study design and wrote the

manuscript.

3.2 Abstract

The human microbiome is a complex ecosystem with a diversity of species, genes and metabolism.

Systematic methods to define the uniquely encoded chemistry of the microbiome has been lacking.

Defining such metabolites is timely as links between the human microbiota and human biology
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are increasingly made and elaborating the mechanistic underpinnings would further both the

basic and applied sciences. To date, we still lack systematic platforms to integrate genomics,

metagenomics and transcriptomics data to expose unique microbiome chemistry as it relates to

human health and disease. Herein, we present AMPLIFY, A tool to enrich for Microbial Peptides

Linked to In-situ FunctionaliTy. AMPLIFY defines novel microbiome exclusive antimicrobial

peptides in silico based on the fluctuation in their expression profile in accordance with microbial

dynamic shifts. AMPLIFY is an integration of multi-omics data to compare in situ expression of

genetically encoded peptides and subsequent definition of novel entities correlated with biological

outcomes. As a proof of concept, we use AMPLIFY to find a human microbiota-unique molecule

which, according to analytics, is inferred as an agent antagonistic with Clostridium difficile

growth. We report the discovery of scardovicin, a peptide encoded within Scardovia wiggisae with

nano-molar potency toward C. difficile both as an antibiotic, anti-sporulation agent, and as a host

immune modulator dampening the host response to C. difficile toxins. We see scardovocin as a

system construct where such modes of action have not been observed previously from a synthetic

or natural product. This example highlights the use of this technology and its capabilities to

define important evolved human microbiome exclusive mediators with beneficial effects.

3.3 Introduction

The human microbiota forms a dynamic consortium with a poorly understood interactive network

thought to be mediated by evolved secreted molecules. Our knowledge of the chemistry that

mediates the interaction between microbes and with the host is sparse yet at the core gaining

knowledge through advancement of new tools may facilitate bridging of such knowledge gaps

[9, 33]. At current, strong correlative links are noted between microbiota shifts with the onset

or progression of human diseases such as diabetes [45], ulcerative colitis [31], arthritis [39],

Alzheimer’s disease [50], depression [20], and autism [27].

Several examples of microbiome products with immunomodulatory activity are noted such as

polysaccharide A [30], pyro-dipeptides [59], and indole-3-aldehyde [56]. Recently identified, N-

acyl amides of the human microbiome interact with human cellular receptors and are suggested
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to mimic native ligands [4]. The microbiome product, 4-ethyl phenyl sulfate mediates autism

spectrum disorder in mice, an effect that is neutralized by Bacteriodes fragiles, an effect claimed

to be related to elevated level of N-acetylserine. Other chemical mediators are thoughts to cause

cancer such as putative colibactin of E. coli Nissle 1917 [49, 40]. Specialized enzymes encoded

in the microbiome are recently blamed to mediate inactivation of chemotherapeutics. Example

is a long form of cytidine deaminase produced by Mycoplasma bacteria which has been proven

to degrade anticancer drug, gemcitabine resulting in drug resistance [14]. An interesting class

of functional molecules produced by the microbiota are antibiotics. In all microbial ecosystems

production of antibiotics is seen as a weapon to enhance ecological fitness of the producer [8].

To date, dozens of antimicrobial molecules are discovered from the human microbiota and their

bioactivity spectrum against body site specific pathogens emphasizes the co-evolution hypothesis.

Examples of these molecules include Lugdunin [58], lactocillin [10], humimycins [3], and others

as reviewed [33]. Among these antimicrobials, unmodified peptides, known as bacteriocins, are

believed to exert lethal and selective killing by variety of mechanisms [26, 38]. Known bacteriocins

from the human microbiota include gassericin A, pediocins, leucocins with activity against some

human pathogen such as Listeria monocytogenesis [33].

Discovery of microbiome-exclusive and previously unknown chemical mediators in among the

human microbiota, either through traditional bioactivity screening or modern genome mining

is extremely challenging, shaded by uncertainty, and mostly fails to establish a link between

in situ microbial fluctuations and the corresponding shift in metabolites expression. Here, we

attempt to develop a platform to combine multi-omics tools to annotate functional unmodified

peptides in silico. We present, AMPLIFY, A tool to enrich for Microbial Peptides Linked to

In-situ FunctionaliTy. AMPLIFY integrates genomics, metagenomics and metatranscriptomic

data into a sole platform designed to enrich for accurate functional annotations of these peptides

using the relative gene expressions of these peptides in correlation with the varying population

abundances of diverse microbial species in situ.

AMPLIFY identified 189 peptides unique to the microbiome that exhibit over two thousand

antagonistic relationships towards 275 microbes including numerous human pathogens. Given

the challenges associated with targeting toxigenic spore-forming pathogens, we selected one of
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the leading cause of nosocomial infections worldwide, Clostridium difficile, as a model to validate

our platform [25, 6]. We report for the first time the discovery of novel peptide, we named it

scardovicin, encoded in the genome of Scardovia wiggisae with unprecedented actions against

C. difficile ameliorating the growth and health consequences corresponding with its infection.

Scardovicin combines potent direct inhibitory activity on the active growing cells of C. difficile

with a powerful inhibition of sporulation, spore germination, and strong anti-inflammatory effect.

We see AMPLIFY as an enabling tool to discover microbiome exclusive functional peptides

and leverage our knowledge of microbiome chemical mediators as they relate to human diseases.

The AMPLIFY workflow

In the hunt for new chemical mediators encoded in the human microbiome, we developed AM-

PLIFY, which integrates genomic, metagenomic and transcriptomic data to predict a functional

annotation for microbial peptides (Figure 3.1).

The input to AMPLIFY is DNA-predicted sequences of peptides, here we used 202 pep-

tides that we identified as unknown and unique to the human microbiome, as detailed below.

AMPLIFY measures the expression of each peptide in transcriptomic data compiled from more

than 700 fecal samples available from the integrated human microbiome project, iHMP [18, 17].

AMPLIFY then generates a matrix to correlate the fluctuation in peptide expression to shifts in

microbial populations detected in each metagenomic sample. Through this process, AMPLIFY

annotates a putative in situ antimicrobial function to each peptide with significant negative

correlation to the abundance of a target pathogen. The output from AMPLIFY is candidate

antimicrobial peptides with a validated accuracy of 71%.

Identification of encoded peptides in the human microbiome

The first step in AMPLIFY pipeline starts with identification of sequences of DNA-encoded

peptides in a given set of bacterial genomes sharing some degree of homology to characterized

antimicrobial peptides. In this analysis we used a sample consisting of 9,953 bacterial genomes
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Figure 3.1: Protocol for in situ functional annotation of microbial peptides using AM-
PLIFY. The pipeline starts with identification of microbial peptides encoded in the analyzed genomes
using an updated version of PRISM. A new developed algorithm, BARLEY is then employed to assign
sequence similarities between identified peptide and dereplicate known entities. The committed step in
the pipeline is to measure the expression of each peptide as it correlates to the shift in microbial pop-
ulation in each metagenomics sample. Using these antagonisms correlation, we can annotate targeted
antimicrobial function to analyzed peptides with 71% confidence.

55

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

isolated from both human and environmental sources. These genomes were processed through

PRISM v4.2.0, which has been implemented with 123 new pHMMs for the identification of

putative antimicrobial peptides. We constructed these pHMMs through the curation, grouping

and subsequent alignment of the 156 known antimicrobial peptides. We identified a total of

2815 peptides from the entire genome set used in this study (Supplementary table 3). From the

2274 microbiome genomes analyzed, a total of 955 peptides were identified encoded within 514

genomes, isolated from microbes distributed over 42 genera (Figure 2). This represents 22.6%

of the analyzed microbiome genomes encoding for at least a single of these peptides (Figure

3.2). Enterococcus and Streptococcus represent the highest peptide containing genomes with

306, and 255 peptides detected over 72.1%, and 52.11% of the tested genomes for these genera,

respectively. While we did not detect any of these peptides in 162 genera including Helicobacter

and Fusobacterium. Some individual genomes were especially rich in putative antimicrobial

peptides such as Streptococcus oralis SK255 isolated from a blood sample with 8 encoded peptides,

Enterococcus sp. HMSC063H10, E. coli subsp. MS 16-3, Lactobacillus plantarum, with 8, 5 and

6 encoded peptides in each respectively.

Apparently most enriched genomes were sequenced from GIT microbes, with 499 identified

peptides. However, 65% of the analyzed genomes are sequenced from microbes isolated from the

GIT, after normalizing this effect, the skin shows the highest enrichment of peptides (186 in 112

genomes). To dereplicate known peptides from the identified sequences, we used our recently

developed alignment tool, BARLEY, Basic Alignment of Ribosomally Encoded products locally.

BARLEY aligns predicated sequences to a curated database of known antimicrobial peptides

with a sequence similarity threshold of 0.85 (Supplementary table 1). We matched 21% of

identified peptides to previously characterized antimicrobial peptides. Interestingly all identified

peptides within the genera of Cutibacteria and Staphylococcus, 71 and 30 peptides respectively,

are unknown.

Revealing peptide families unique to the human microbiome

To identify peptide families exclusive to the human microbiome, a set of 7,679 bacterial genomes,

represents 30 phyla and 960 genera, were curated from NCBI with isolation sources broadly
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Figure 3.2: Distribution of encoded candidate antimicrobial peptides among the represen-
tative 2274 human associated microbes. (a) Schematic overview of antimicrobial peptide detection
engine using pHMMs within PRISM and dereplication using a database of characterized antimicrobial
peptides using BARLEY. (b) Phylogenetic tree of all microbial genomes generated via PhyloPhlAn [41].
Outer rings in brown, magenta red, yellow, blue and grey represent the isolation site of each individual
microbe analysed where “Other” is comprised of bacterial isolates from wounds, blood, nose, bone, eye,
spinal cord, brain, ear, heard abdomen, limb and liver samples. In cyan, the total number of peptides
encoded by each strain is shown where the max value represents six from Streptococcus oralis SK255. The
furthest ring, represents the percent of encoded bacteriocins per strain that were identified as previously
characterized. Selected genera abundant in encoded peptides are labelled.
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annotated as environmental (e.g. soil, plant marine, etc.). Having analyzed this taxonomically

diverse dataset, we identified 1,860 putative antimicrobial peptides. Using a similarity threshold

of 0.55, we generated a pairwise similarity score between all peptides which resulted in a total

of 380 families (Figure 3.3-a). Of these, 33 families were shared between the human microbiome

and the environment, while a total of 124 were exclusive to the human microbiome (Figure 3.3b-

c). Interestingly, one of the largest families observed is an overlap between environmental and

the human microbiota (Figure 3.3b). This family consists of 274 peptides from 67 genera is

distantly related to lincocin M18, originally isolated from Brevibacterium linens [46]. Among the

124 microbiome-exclusive families (Figure 3.3-c), only 17 shared sequence similarity to at least

one known peptide with experimentally validated antimicrobial activity. Surprisingly, 71% of the

families exclusive to the human microbiome consists of only one member with distinct sequence.

(Figure 3.3-c). Of the remaining larger peptide families, 89% percent were noted to be shared

between members of the same genera with only few exceptions. Interestingly, 80% of peptides

exclusive to the human microbiome are exclusive to one body site. While exclusive microbiome

peptides that are shared between different body sites are mostly encoded within microbes of the

same genera. Of the peptides relevant in multiple body sites, a notable example is a thermophilin

A derivative encoded within the genomes of several Streptococci isolated from blood, airway, oral

and GIT samples (Figure 3.3-c).

Functional annotation of new unmodified peptides unique to the human

microbiome

Having identified 202 peptides exclusive to the human microbiome, the next step in the pipeline

was to algorithmically assign them a putative antimicrobial function. AMPLIFY employs a novel

protocol to infer the functional spectrum of peptides based on metagenomics and transcriptomic

data. Using the inflammatory bowel disease multi’omics databases (IBDMDB) which consists of

742 fecal samples collected at varying time points from 109 patients denoted as either healthy

or diseased with ulcerative colitis or Chron’s disease [17]. The dataset collected and released by

the iHMP project is currently the only resource where this analysis is amenable, both due to the
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Figure 3.3: Families of peptides observed in human microbiota, their relative distribution
among environmental and human body sites. (a) All peptides observed in environmental and
human microbiomes were assigned into families as depicted. (b) Peptide families found exclusive to
human associated microbiota are shown within specific body sites, or shown in the middle as overlapping
between multiple body sites. Peptide families found in both human and environmental genomes are
shown in top grey section. Circles represent unique peptide sequences, while edges between circles
represent a shared sequence similarity. Peptides sharing a high sequence similarity to characterized
antimicrobial peptides are shaded black and labelled, while select uncharacterized peptide groups are
labelled with the producer genera in italics.
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large number of samples collected and the varieties of multi-omic technologies used to experi-

mentally investigate these samples. In particular, the availability of metagenomic sequence data

from each of these samples allowed for accurate species level characterization of relative abun-

dance of microbes using MetaPhlAn2 [44], and bypassed the need to use 16s rRNA sequencing

platform with relatively low resolution at species and strain levels [23]. Further, the microbial

metatranscriptomic sequencing data available for each of these samples allowed us to query the

relative expression of any gene of interest.

Across all samples, metagenomic analysis revealed a total of 499 microbial species. The most

dominant species in this analysis was Faecalibacterium prausnitzii with a mean abundance of

12%, but this was highly dynamic as seen by a standard deviation of 12.4%. Metatranscriptome

sequence data corresponding to the totality of bacterial RNA expression in these samples were

used to identify the relative abundance of microbiome exclusive peptides. For the 202, there were

209 unique RNA segments due to codon variance. From these, a total of 197 candidate peptides

were observed in at least 10% of samples and were chosen for further functional annotation.

Giving the challenges associated with this approach mainly due to the strong amounts of noise

and variation in population dynamics, we performed two sets of validation. First, we applied the

pipeline to four constitutively expressed housekeeping genes. The genes were curated as PFAM

models (Figure 3.4-a). These genes were then identified in all microbiome genomes used in this

study, mapped to metatranscriptomic data, and correlated to the microbial abundance values.

In total, 628 genes from 226 species were identified in at least 10% of samples. As a control,

these same genes were compared to randomly assigned species in metagenomic data. Data

supports that the relative expression of these genes is strongly associated with the abundance of

the bacteria which not only validates AMPLIFY pipeline, but also bolsters the quality of this

dataset (Figure 3.4-a).

As a next step of validation, we conducted this analysis on 16 peptides, identified in some mi-

crobiome genomes in this study, with exact sequence similarity to known antimicrobial peptides.

For each of the validated targets of these peptides, 10 cases were found to be amenable to testing

according to the selection criteria described earlier. A total of 52 antagonistic relationships were
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identified for this training set. We randomly selected some of these relationships as a compari-

son representing the inherent noisiness of this dataset (Figure 3.4-b). Antagonistic relationships

between known antimicrobial peptides and their target species do seem to present a slightly, yet

significant shifted spearman correlation when compared to a random selection of relationships,

with an increasing likelihood of true antagonism present with more negative correlations (Figure

3.4-b). The student’s t-test reveals this shift as significant (p=0.007). Assuming a 50% prior

likelihood of antagonism and using a cutoff of -0.05, a positive predictive value of 71% can be

obtained while predicting on 28% of cases. This cutoff represents the bottom 20.7% of this dis-

tribution and can be used as a guide for subsequent analysis. Given these layers of validation, we

confidently demonstrate that metatranscriptomic associations to microbial population dynamics

is a valid strategy to computationally annotate antagonism relationships between a given peptide

and specific microbial target.

We identified 275 target bacterial species present in the metagenomics data samples, present

at least in 1% of the samples. This represents a total of 54175 potential tests. Considering

the top 5% of negative correlations (a maximum spearman correlation of -0.086), we identified

2708 antagonistic relationships between microbiome exclusive peptides and various target species

(Supplementary table 8). Using the results of the validation experiment discussed above, along-

side a more stringent cutoff, we can be at least 71% confident that each of these relationships

are in fact true. AMPLIFY reveals at least one antagonistic relationship for 95% of the peptides

tested with a total of 266 target species across 90 genera (Supplementary table 8).

As a proof of concept, we thought to pursue a targeted search for new unique microbiome

exclusive peptide with antagonism potential against a defined target. We choose C. difficile

as a target pathogen, given the challenges associated with discovery of molecules with effective

anti-C. difficile activity. C. difficile is a spore-forming and toxigenic pathogen with complex

disease etiology leads to sever complications that might include pseudomembranous colitis, colon

rupture, sepsis, and even death [24, 42].

A total of 12 candidate peptides were identified with confident antagonizing relationships to

C. difficile (Figure 4c). The candidate peptides are encoded in genomes from the genera Entero-

coccus, Streptococcus, Bacteroides, Lactobacillus, Hafnia, and Scardovia. Of these, we selected a
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candidate peptide, we named it scardovicin, encoded within two strains of Scardovia wiggisae, an

inhabitant of the oral cavity, for further synthesis and i activity profiling. Scardovicin, was pri-

marily chosen due its relatively small size that allows for total synthesis. The primary sequence

of scardovicin consists of 53 amino acids, MGAFFRLLSILARYGARAVQWAWAHRGTVLR-

WIGAGQAIDWVIKQIKRLLGIR

Bioactivity profile of scardovicin

To test the antimicrobial activity of scardovicin, we conducted a broth microdilution assay.

We selected a virulent C. difficile strain from ribotype 027 group [54]. Scardovicin was proven

Figure 3.4: Validating the correlations of metatranscriptomic data to metagenomic data
within this dataset and the identification of putative anti-clostridial peptides. Full caption
on following page.
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Figure 3.4: (Previous page.) (a) Validation of correlations between metatranscriptomic data and
metagenomic data using housekeeping genes. Boxes are drawn between the first and third interquartile
range (IQR) with whiskers extending 1.5 IQR and outliers beyond this are plotted as points. (b)
Distribution of spearman correlations between characterized antimicrobial peptides and their targets
alongside these same peptides and randomly selected targets. A total of 16 peptides were identified with
exact sequence similarity to characterized peptides. Of these, a total of 10 were identified with unique
RNA sequences that could be used as individual test cases. Through literature search, a total of 18
target species were identified for these cases, representing 52 pairwise comparisons with experimentally
verified antimicrobial activity. For each peptide, a randomly selected list of bacterial target species were
obtained of equal length to its known targets. A significant negative shift is seen in the case of true
antagonism (p=0.007, two sample t-test). Using a cutoff of -0.05, a positive predictive value of 71%
can be obtained by predicting on 28% of true antagonistic cases. (c) Identification of 12 peptides with
confident antagonizing relationships with C. difficile. (d) Graph shows percent of growth inhibition of
C. difficile DSM 27147 upon treatment with serial dilutions of scardovicin (2 µM to 0.1 µM). Scardovicin
shows antibacterial activity against C. difficile with MIC100=0.85 µM, MIC50=0.35 µM. Data points in d
represent averages of 6 independent biological replicates, and error bars represent the standard deviation
from the mean.

effective in inhibition of C. difficile with MIC50= 0.35 µM and MIC100 = 0.85 µM. (Figure 3.4-e).

Figure 3.4-e-inset shows preliminary agar well diffusion assay against C. difficile using observed

MIC100.

However, the main challenge associated with C. difficle infection is its ability to form resis-

tant spores that are easily spread, in particular within hospital settings. To test the abilities

of scardovicin in this context, transmission electron microscopy (TEM) and scanning electron

microscopy (SEM) imaging were conducted to visualize spore formation and spore germination

in C. difficile when treated with scardovicin in comparison to control non-treated cells or spores.

SEM results demonstrated that sporulation was aborted completely with 100 nM and con-

tinues with 50 nM of scardovicin (Figure 3.5c-f), while sporulation is gradually restored at lower

scardovicin concentrations (25 nM and 10 nM) albeit with smaller immature spores (Figure

3.5g-j). Total reversion to normal sporulation was noticed with 5 nM concentration of the pep-

tide (Figure 3.5k-i). Concerning inhibition of spore germination, SEM imaging revealed that

scardovicin inhibits spore outgrowth and subsequent germination upon treatment of C. diffi-

cile spores with a concentration as low as 1X of MIC100 compared to control untreated cells

(Figure 3.5m-t). However, there was no significant effect observed on early germination steps

albeit a slightly delayed germination with high concentration of the peptide at 80 and 100x MIC

(Supplementary Figure A2.5).
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Figure 3.5: Bioactivity profile of scardovicin including inhibition of sporulation, spore
outgrowth and antiinflammatory activity. Full caption on following page.
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Figure 3.5: (Previous page.) a-l, Transmission electron microscopy imaging show inhibition of sporu-
lation in C. difficile upon cultured on sub-MIC concentrations of scardovicin. a, b show C. difficile
vegetative cells grown on 70:30 medium without scardovicin. c-d, e-f, g-h, i-j, k-l show C. difficile grown
on decreasing concentration of scardovicin, 100 nM, 50 nM, 25 nM, 10 nM, and 5 nM, respectively.
White arrows point to C. difficile spore which is formed inside the mother cell. Number of arrows in
images a, g, I, and k is proportional to the average frequency of observed spores in each samples. Images
shown are representative of six independent biological replicates for each treatment. Scale bar in a, c,
e, g, I, and k is equal to 5 µm while in b, d, f, h, j, and l is equal to 1 µm. m-t, Scanning electron
microscopy imaging show inhibition of spore outgrowth in C. difficile upon treatment with scardovicin.
m-p, show C. difficile spores treated with 1X MIC of scardovicin in the presence of germination inducer
(10% taurocholate) then incubated anaerobically for 0.5, 3, 6, and 18 h, respectively. q-t, show C. dif-
ficile spore cultured in the presence of germination inducer only and incubated anaerobically for 0.5, 3,
6, and 18 h, respectively. White arrow points to emerging vegetative cells while green arrow point to
un-germinating spore. u-x, Immunomodulatory activity of scardovicin on HT-29 cell line. u-x, graphs
show the inhibitory activity of three concentrations of scardovicin (70, 50 and 20 µM) on IL-8, TNF,
MCP-1, and GM-CSF, respectively. Whiskers represent the range of data points of six independent
biological replicates while error bars indicate the standard error of the mean. Data were analyzed using
one-way ANOVA test and t-test. ****P¡0.0001, ***P¡0.0002, **P¡0.001, *P¡0.01

One of the main complications of C. difficile infection is severe inflammation of the colon

due to secreted toxins. An anti-inflammatory assay using a the human colorectal cell line (HT-

29) was used to determine the immunomodulatory properties of scardovicin. The concentration

of 13 inflammation biomarkers including GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8,

IL-10, IL-12(p70), IL-13, MCP-1, TNF-α was measured in supernatant of cells incubated for 24

h with different concentration of scardovicin and compared to control untreated cells. Results

reveals that scardovicin has inhibitory activity on four of the major inflammation biomarkers

IL-8, TNF-α, MCP-1, GM-CSF in a concentration dependent manner (Figure 3.5u-x). The

inhibitory activity of scardovicin on IL-8 was most significant (Figure 3.5u) compared to the

control (at p¡0.0001, one-way-ANNOVA) with the highest inhibition observed with 70 and 50

µM. Scardovicin at 50 µM causes the highest inhibitory effect on MCP-1 followed by 70 µM then

20 µM (Figure 3.5w) (at p¡0.0001, and p¡0.0002, respectively, one-way-ANOVA). Concerning the

inhibitory effect of scardovicin on TNF-α, 20 µM all used concentrations resulted in the same

statistically significant effect (Figure 3.5v) (at p¡0.001, one-way-ANOVA). While the inhibitory

effect of scardovicin on GM-CSF was only significant at 70 and 50 µM (Figure 3.5x) (at p¡0.005,

one-way-ANOVA). The effect of scardovicin on IL-4 and IL-10 was insignificant (Supplementary

Figure A2.6. Using spontaneous non-stimulated cells, other biomarkers showed no expression in

all treatment including the control. Scardovicin did not exhibit any cellular cytotoxicity on the

HT-29 cell line used in this study.
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Collectively, these results revealed that scardovicin is a unique inhibitor of C. difficile with

multifactorial effects starting with direct inhibitory activity, followed by inhibiting spore forma-

tion and germination, and suppression of inflammation. The bioactivity of scardovicin is not

accompanied by cellular cytotoxicity.

3.4 Discussion

The dynamics of microbial populations and the drivers of these dynamics are increasingly a

focal point for basic and translational science in understanding the microbiome [19, 15]. Cer-

tain drivers can be advanced through an enhanced understanding of the products derived from

individual human microbiome strains and likewise appreciating the expression of these prod-

ucts in situ. Here we have detailed a pipeline that leverages the computational capabilities to

translate microbiome genomic information into small molecule data, connect with this expres-

sion of genomically inferred products and populations of microbes from metagenomic sequence

information.

A guiding principle of the work is to define products created by human microbiota and how

they correlate to the abundance of other microbiota. We developed AMPLIFY, A tool to enrich

for Microbial Peptides Linked to In-situ FunctionalitY (Figure 3.1). We used a comprehensive

repository of environmentally sourced genomes to filter for peptide families exclusive to the

human microbiome (Figure 3.3). Thereafter, we correlated the expression of each peptide unique

to the microbiome to the corresponding shift in microbial population, using transcriptomic and

metagenomic datasets available through the iHMP. Our analysis reveals more than two thousand

antagonistic relationships with a prediction accuracy of 71%, based on a validation experiment

of known antibacterial agents and their corresponding targets. Applying our pipeline to find

a unique microbiome antimicrobial peptide against C. difficile, we discovered scardovicin, a

multifactorial bioactive peptide with strong anti-inflammatory activity.
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The AMPLIFY workflow identifies peptides exclusive to the microbiome

and maps their distribution over all body sites

Several efforts have been made to curate databases of antimicrobial peptides among all forms of

life [52, 43, 47, 16], with some focus to characterize those encoded within the human microbiome

using sequence alignment of putative primary sequences obtained from either a collection of

reference genomes or metagenomics data to reference peptides from BAGEL3 [57, 51]. These

studies only evidenced the presence of encoded peptides in genomes of the host bacteria, without

assessing the actual expression and production of these peptides in-situ. Previously, Donia et.

al. used both metagenomic and metatranscriptomic data to verify the presence and expression

of modified peptide gene clusters in the microbiome [10]. While most previous analyses made a

relevant use of these datasets, our analysis moved beyond identification of metabolites to provide

a real functional annotation of these encoded peptides in situ, and reveal those that might have co-

evolved to combat human pathogens relevant to distinct body site. We mapped the distribution

of 202 microbiome exclusive peptides over distinct body sites and showed that they follow a non-

random distribution pattern. This pattern might contribute a specific function at each body site,

mediated by shaping the population structure. In accordance with our hypothesis, a previous

study revealed that the human microbiota follows a specific ecological distribution, either a co-

occurrence or co-exclusion, when colonizing each body site [12]. Some of these patterns are

pre-requisites to perform a given function [12].

AMPLIFY leads to the discovery of a chemical mediator with unique

bioactivity profile against C. difficile

C. difficile is one of the most frequently occurring infections in hospital setting and blamed for

claiming the lives of 30,000 persons in the USA annually, according to estimates from Centers

for Disease Control and Prevention [32], with a increasing rates of epidemic outbreaks [22, 37].

Treatment of C. difficile is technically challenging, in part due to the ability of C. difficile to

produce dormant resistant spores which can spread easily between patients, in addition to fur-

ther complications associated with secreted toxins. C. difficile toxins cause severe inflammation
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which can lead to pseudomembranous colitis, weakened colon membrane, abdomen distension

(toxic megacolon), which have in many cases lead to colonic rupture, sepsis and death [24, 42, 34].

Currently, our best small molecule for treatment of C. difficile infection is the macrolide fidox-

amicin (lipiarmycin, tiacumicin B) which exhibits 50% lower rates of failure rates and relapse

compared to vancomycin and metronidazole [5]. However, giving the complex disease etiology of

C. difficile, there is no antibiotic discovered to this date that causes full treatment and completely

prevent recurrence [7, 48].

C. difficile infections most occurs after prolonged antibiotic treatment, which drastically alters

microbial composition of the GIT. These opportunities allow C. difficile to colonize in the absence

of protective microbial agents, a hypothesis that has been further confirmed by the success of

fecal transplants in preventing recurrence of C. difficile infection [2]. Although a mechanistic

link is missing, there are thought to be chemical mediators produced by microbes that may

play a protective role against C. difficile. Extending this, it is interesting to speculate that

the disappearance of low abundance protective microbiota through the administration of broad-

spectrum antibiotics, is accompanied by the disappearance of these chemical mediators. Thus,

we can propose that the expression of these anti-C. difficile mediators is likely correlated with a

low abundance of C. difficile. Among the peptides uniquely found in the human microbiome, we

developed AMPLIFY to identify peptides which follow this predicted expression profile against

C. difficile, leading the the functional annotation of 12 candidates with putative anti-C. difficile

activity.

We pursued synthesis and in vitro activity profiling of the top candidate to identify scardovicin

with unique activity profile superior to all known antibiotics. While fidaximicin exhibits a strong

cytotoxicity on human cell lines [11], an effect that is neutralized by its minimal absorption from

the GIT, scardovicin shows a protective anti-inflammatory effect on GIT cells through potent

inhibition of the chemokines IL-8 and TNF-α (Figure 3.5) implicated in C. difficile infection [55].

Discovery of scardovicin validates AMPLIFY as a new robust pipeline that surpasses routine

natural products discovery protocols, allows for in situ functional annotation of unmodified

peptides, and exposes a wealth of unique bioactivities of the human microbiome that relates to

human disease.
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3.5 Methods

Peptide genome detection model

A curated set of 156 antimicrobial peptides together with their microbial producers and functional

annotations were gathered from literature including sequences from BAGEL, UniProt and NCBI

(Supplementary table 1). The sequences of these peptides were used to build a genome detection

tool employing profile hidden markov models (pHMMs). pHMMs were created from sequence

alignment of closely related peptides using, first, a hierarchical clustering algorithm, cd-hit, to

identify groups of sequences from the reference set with greater than 70% sequence identity [28].

To ensure that each group contains the maximum possible numbers of available related sequences,

the representative sequence of each of these cluster families were then compared to the totality

of the proteins within the NCBI non-redundant database [36] of sequences using BLASTP with

an e-value threshold of 10-6. Matches with greater than 70% sequence identity in accordance to

the representative sequence were added to each cluster family. Each of these cluster families were

then aligned using PRANK (v. 140603) [29] to generate a multiple sequence alignment (MSA),

which were then compiled to pHMMs using HMMER (v. 2.3.2). HMMMER is a suite of tools

used to build profile hidden markov models. These models are built from MSAs, and are used

to search for protein families based on the information in the MSAs [13].

To assess the validity of these pHMMs, each pHMM was processed through JackHMMER to

iteratively identify sequences in the UniProt database. JackHMMER uses an iterative strategy

to rapidly use an HMM against a large database of sequences. It has a higher error rate than

typical HMMer, but is essential for large scale searches [21]. A bit-score cutoff for each model

was manually chosen at the score in which all matched sequences above this cutoff were either a

characterized or a putative antimicrobial peptide as annotated by UniProt. In total, this strategy

generated 123 pHMMs (supplementary Table 2) which have been integrated into PRISM v4.2.0

for analysis of genomic data and made available to public: https://magarveylab.ca/prism.
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Genomic analysis of DNA-encoded unmodified peptides

We then analyzed a total of 9,957 bacterial genomes through PRSIM to identify all putative

antimicrobial peptides within these genomes. The analyzed genomes included a total of 2,274

human microbiome genomes together with the associated body site annotations downloaded

from NCBI, using all whole genome sequences linked to the Human Microbiome Project (NCBI

BioProject ID 28331) [18]. A phylogenetic tree of these bacteria was generated using PhyloPhlAn

(v0.99) [41], which examines the homology between the top 400 genes shared between all bacteria.

In addition to the microbiome genomes, a total of 7,683 environmental genomes were obtained

from the NCBI genome database. We confirmed the non-human origin of these environmental

genomes by gathering the corresponding metadata on isolation sites of these bacterial strains

as listed on JGI, NCBI trace, BacDive and PATRIC databases. The purpose of including envi-

ronmental genomes in the analysis is to use them as filter later on in the analysis to determine

peptides families exclusive to the human microbiome. All of these detected peptides are combined

and shown in Supplementary table 3.

Determination of novelty of PRISM-identified peptides

All peptides detected by PRISM from human and environmental microbiomes were compared

to the previously curated reference dataset of characterized antimicrobial peptides to determine

their novelty. A similarity score was calculated by BARLEY using a Smith-Waterman local

alignment employing an identity matrix with a match score of 1 and a gap opening and extension

penalty of -2. The score of the alignment is normalized between 0 and 1 by dividing this score

by the alignment score of the detected peptide to itself. Examining the distribution of the scores

among all detected peptides and their highest matched antimicrobial peptide in the reference

dataset, the data was determined to be bimodal, where a separation line was drawn in the minima

separating known and unknown peptides (supplementary Figure A2.2). BARLEY scores for all

identified clusters together with the closest match to known entities are shown in Supplementary

table 4.
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Genomic clustering to determine exclusivity of predicted peptides

For determining peptides exclusive to the human microbiome, all clusters identified with both en-

vironmental and human source annotations were grouped into families, and only families observed

entirely from a corresponding human origin were denoted as human exclusive. We obtained a

sequence similarity score (described above) for all pairwise comparisons between all peptides and

then generated a graph considering all peptides as nodes. Edges between nodes appear only

when sequence similarity score fell above a threshold. This graph was then segmented according

to connecting groups of nodes to isolate individual unmodified peptides into families. Pairwise

similarity scores were calculated by BARLEY using a Smith-Waterman local alignment using

the same parameters discussed above. Since this score is directionally dependent, an edge was

drawn between peptides when the minimum of either pairwise directional score passed a thresh-

old. This threshold was tested iteratively between 0.01 and 0.99, where each cutoff was scored

according to the number of valid families outputted. A valid families is defined as having greater

than 1 entity and detected by the same pHMM or having a minimum pairwise similarity greater

than 0.7 between all members of the families. This threshold was tested iteratively between

0 and 1 at 0.01 increments. It was found that the percent of valid families according to this

criterion was stable between 0.45 and 0.7, so the midpoint at 0.55 was chosen as the optimal

cutoff (supplementary Figure A2.3).

Population dynamics informatics

To assess the expression of PRISM-detected peptides, which we denote as human exclusive, a

total of 742 fecal samples of single-end raw reads from 109 individuals were collected from the

Inflammatory Bowel Disease Multi’omics Database (IBDMDB) (accessed Dec. 2017). We col-

lected both metatranscriptomic and metagenomic data to assess gene expression and microbial

abundance in each sample respectively. The single-end raw reads obtained from each sample were

trimmed using Trimmomatic with default settings (LEADING:3 TRAILING:3 SLIDINGWIN-

DOW:4:15 MINLEN:36 ILLUMINACLIP:TruSeq3-SE:2:30:10) to eliminate adapter sequences

introduced during RNA sample preparation and low quality reads. To estimate the relative
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abundance of query peptides in each of these samples, we generated a reference transcriptome

that represents the DNA sequences of the query peptides’ open reading frames. The reads from

each sample were then aligned to this reference transcriptome using Salmon quasi-alignment

with a k-cutoff of 11 to generate a transcript per million (TPM) value that reflects the overall

relative expression of each gene to the total amount of transcript information in the sample

[35]. For the 742 samples, the relative abundance of any given bacterial species was determined

via MetaPhlAn2 using metagenomic sequencing data. MetaPhlAn2 uses metagenomic sequences

and accurately predicts the relative abundance at the species and strain levels [44]. This data

was preprocessed by the The Inflammatory Bowel Disease Multi’omics Database, IBDMDB. In

order to determine the correlative relationship between peptides and the corresponding microbial

abundance, we calculated a spearman correlation between these two streams of data, considering

each sample as a unique observation. To limit the number of comparisons to candidates with

sufficient information, only query genes detected in at least 10% of samples, and subject bacterial

species present in at least 1% of samples were considered.

Validation of population dynamics informatics

To validate this analysis, the expression of four housekeeping (HK) genes in each transcriptomic

sample was measured. HK genes are constitutively expressed so their relative expression from

a query organism should be positively associated with the same subject organism in all of these

samples. The four HK genes used are key for DNA replication, protein membrane translocation,

and DNA repair. We gathered 4 PFAM families representing multiple sequence alignments and

HMMs for the selected 4 HK genes (PFAM ids: PF08278, PF00204, PF07517, PF00154). We

then identified the ORFs aligned to these PFAMS in the 2274 human microbiome genomes using

HMMER, above the trusted cutoff identified on PFAM for each gene family.

The expression of the HK genes was then compared to the relative abundances of individual

species in each metagenomic sample. As a control, the same number of pairwise comparisons

were generated between each of these genes and a randomly selected species from different genera

than the producer organism. Using the strategy outlined above, these pairwise comparisons were

generated and the distribution of these correlations were used to ensure data integrity and provide
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support for the methods and techniques used in this analysis (Figure 3.4-a and Supplementary

table 6).

Another validation was performed to examine the difference in spearman correlations between

experimentally validated antagonistic relationships and random noise in this dataset. Each pep-

tide from the human microbiome that shared 100% sequence identity to characterized peptide

with proven antimicrobial activity were collected. A total of 10 known peptides were queried

against 18 different species represent known microbial targets resulting in 52 pairwise compar-

isons (Supplementary table 6). Multiple peptides with the same protein sequence were allowed,

but only genes with unique ORF were used for this validation, thus each candidate peptide

represents a unique and independent experiment. Using the same strategy discussed above, all

pairwise comparisons were made and the resulting distribution in correlations was used to infer

the validity of this pipeline, and guide the accuracy of downstream analyses. Expression values of

all analyzed sequences measured in TPM together with their antagonistic correlations are shown

(Supplementary table 7).

Antimicrobial activity and determination of minimum inhibitory con-

centration of scardovicin

C. difficile DSM 27147 [ Ribotype 027, producer of toxins A and B (TcdA and TcdB) and

the binary toxin (CtdA and CtdB)] was maintained on carbohydrate chopped meat (CCM)

agar medium supplemented with 5% defibrinated horse blood (SR0050, ThermoScientific). The

medium composition is 30 g/L peptone, 5 g/L yeast extract, 5 g/L K2HPO4, 4 g/L glucose,

1 g/L cellobiose, 1 g/L maltose, 1 g/L starch, 4 ml/L resazurin solution (0.025%), 15 g/L

agar. The volume is made up to 1 liter by chopped meat broth composed of 500 g/L fat-free

ground beef boiled with 25 ml/L NaOH (1N) and deionized water of up to 1 liter. Scardovicin

was synthesized by GenScript (Piscataway, NJ, USA) and primary structure was validated by

LC/MS/MS (Supplementary Figure A2.4).

As a preliminary screening to assess if scardovicin processes antimicrobial activity, we con-

ducted agar well diffusion assay. Briefly, 10 µL of overnight actively grown culture of C. difficile
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DSM 27147 were plated on the top of CCMA plates then holes were punctured in the agar using

sterile glass pipette and 20 µL of 1-5 µM scardovicin were applied into the holes. The plates were

incubated anaerobically at 37 °C for 24 h. Thereafter, plates were screened for any developed

zone of inhibition.

To determine the minimum inhibitory concentration (MIC) of scardovicin, we conducted

broth microdilution antimicrobial assay in 96-well microtiter plate. Briefly, a single colony of

each of C. difficile DSM 27147 grown for 48 h in CCM agar supplemented with 5% defibrinated

horse blood was inoculated into CCM broth for 24 h then diluted with the same medium to 1:

10,000. Thereafter, 196 µL of this inoculated medium were added to each well, 4 µL different

serial dilutions of scardovicin were added to the well resulting in final concentration range starting

from 100 µM to 100 nM. Blank control was wells contains 196 µL non-inoculated CCM broth and

4 µL DMSO (solvent used to solubilize scardovicin). Positive control was wells containing 196

µL inoculated CCM broth and 4 µL DMSO. The FDA-approved antibiotic, fidaxomicin (1µM)

was used as a positive control.

The plates were incubated anaerobically at 37 °C. After 24 h, the OD600 of each well was

measured with a microplate reader. Thereafter, MIC100 and MIC50, defined as the lowest con-

centration of the peptide that results in 100% and 50% growth inhibition, respectively, were

measured. Each concentration was tested in triplicates and the entire assay was repeated inde-

pendently in duplicates. Percent of growth inhibition was determined according to the following

equation:

Inhibition% = 1 −
(

(OD600 test) − (OD600 blank medium)
(OD600 pathogen only) − (OD600 blank medium)

)
∗ 100

Purification of C. difficile DSM 27147 spores

To assess if scardovicin has effect on spore germination or spore production, C. difficile DSM

27147 spores were purified. A single 48 h C. difficile colony grown on CCM medium supple-

mented with 5% defibribnated horse blood was inoculated into brain heart infusion supplement

(BHIS) medium (composed of 37 g brain heart infusion extract and 5 g yeast extract per liter)
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supplemented with 10% taurocholate (86339, Sigma-Aldrich) and incubated anaerobically at 37

°C for 24 h. The cells were then diluted with BHIS (1:100) and 200 µL of the diluted actively

growing culture were plated on 70:30 sporulation agar plates (composed of 63 g bacto peptone,

3.5 g proteose peptone, 0.7 g ammonium sulphate, 1 g tris base, 11 g brain heart infusion extract,

1.5 g yeast extract, 15 g agar, 3 ml cysteine (10%W/V), 10 mM taurocholate. Five plates were

then incubated anaerobically at 37 °C for 5 days. Thereafter, colonies were suspended in ice cold

sterile deionized water and the suspension was then removed from the anaerobic chamber. The

cells were centrifuged at 2000 rpm for 10 min at room temperature, the supernatant contains

vegetative cells and debris was decanted and pellets were washed up to 10 times in ice cold water

at the same speed. The washed pellets were then suspended in 10 mL sterile deionized water

and incubated at -20 °C for 48 h to help lysis of the mother cells and release of mature spores.

Thereafter, the spore suspension was centrifuged at 13,000 rpm for 2 min at 4 °C followed by at

least 10 washes in sterile water. The pellets were suspended in 3 ml water and applied slowly on

top of 10 ml 50% nonionic density gradient medium (Histodenz™, D2158, Sigma-Aldrich) in 15

ml polypropylene conical tube and centrifuged in swinging bucket rotor at 6000 rpm for 40 min

at 4 °C. The vegetative cells and debris were collected through the gradient and on the interface

while spores formed a pellet at the bottom. The spore pellet was then washed at least 10 times

in 1X filter-sterilized phosphate buffer Saline (PBS, composed of 2.5 g/L Na2HPO4.7H20, 8 g/L

NaCL, 0.2 g/L KCL, 0.2 g/L KH2PO4) at 13 rpm for 2 min at 4 °C. The final spore preparation

was kept in 1X PBS+1% bovine serum albumin. Throughout the entire purification steps, spores

were checked for purity by imaging under light microscopy using malachite green/safranin coun-

terstain, where spores stained green and vegetative cells stained in magenta color. To count the

number of the viable spores, spores were heat activated at 80 °C for 15 min in sterile deionized

a water immediately before germination then a series of 10 fold dilutions were prepared. To

allow spore germination, 100 µL of each dilution was plated on pre-reduced BHIS agar plates

supplemented with 10 mM taurocholate and incubated anaerobically at 37 °C for 24 h then the

number of spores per ml was calculated following the equation:

CFU
mL

= Number of colonies
Dilution factor ∗ Volume plated (mL)

75

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

Spore count was performed using light microscopy and staining malachite green and safranin

counterstain. The working spore count differs according to the downstream experiment as de-

tailed later.

Testing the activity of scardovicin on initiation of germination of C.

difficile spores

The early steps in spore germination involves release of small molecules such as Ca2+-dipicolinic

acid upon sensing some germination triggers such bile acid, followed by hydration of the cortex

and core. These reactions could be measured as a drop in OD600 to 60-70% [53]. To determine

if scardovicin has effect on this step, we measured the change in OD600 of a purified spore

suspension upon treatment with the peptide.

Spores were suspended in BHIS medium supplemented with 50mM lactate, 100 mM alanine

and 10 mM taurocholate and adjusted to OD600 of 1 (equivalent to 5000 spores per mL) and

different dilutions of scardovicin were added to a final concentration ranging from 100X MIC to

1X MIC in 96 well-plate format. The negative control use was the spore suspension in BHIS only

without inducer and the positive control was spore suspension treated with 10 mM taurocholate.

There were three replicates from each concentration and the entire experiment was performed

in three independent replicates. GraphPad-PRISM software (GraphPad 7.0d, USA) was used to

plot and analyze data.

Spore outgrowth inhibition assay

To test if scardovicin can inhibit spore outgrowth and emergence of vegetative cells, anaerobic

germination followed by scanning electron microscopy (SEM) imaging was conducted. Heat ac-

tivated spore (1000 spore per mL) suspended in germination solution consisted of CCM broth

supplemented with 1% taurocholate, 100 mM L-alanine and 50 mM lactate and different concen-

tration of scardovicin (from 100 nM to 2 µM) and allowed to incubate anaerobically at 37 °C.

Spores germinating on medium without scardovicin were used as negative control while 2 µM
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final concentration of fidaxomicin antibiotic was employed as positive control known to inhibit

spore outgrowth [1]. At 30 min time interval, 50 µL of the spore suspension were withdrawn,

fixed with equal volume of 2% glutradhyde in 0.1M phosphate buffer (pH 7.4) and left for 2 h at

4 °C. To further prepare samples for SEM, samples were centrifuged at 4000 rpm for 20 min at

4 °C, supernatant was decanted and pellets were suspended in 1X PBS and washed up to three

times. 10 µL were then applied to poly-lysine coated cover slips, air dried for 1 h, dehydrated

through a graded ethanol series (70%, 95%, and 100% (2 x 2min) and then transferred to the

critical point dryer. The samples were kept immersed in 100% ethanol, placed into wire baskets

and transferred to the chamber of a Leica EM CPD300 critical point dryer (Leica Mikrosysteme

GmbH, Wien, Austria). The chamber was sealed and then flushed 12 times with liquid CO2.

The CO2 filled chamber was heated to 35 °C and pressure increased in chamber to above 1100 psi

so that CO2 was changed from liquid phase to gaseous phase. The gas was vented slowly from

the chamber until atmospheric pressure was reached and the samples were dehydrated without

surface tension damage. The dried samples were mounted onto SEM stubs with double-sided

carbon tape. The samples on stubs were then placed in the chamber of a Polaron Model E5100

sputter coater (Polaron Equipment Ltd., Watford, Hertfordshire) and approximately 20 nm of

gold was deposited onto the stubs. The samples were viewed in a Tescan Vega II LSU scanning

electron microscope (Tescan USA, PA) operating at 20kV.

Inhibition of sporulation experiment

To test if scardovicin can inhibit sporulation at sub-MIC concentration, C. difficile DSM 27147

was grown on sporulation medium supplemented with different concentration of the peptide then

followed by transmission electron microscopy (TEM) imaging to visualize the produced spores

inside the mother cell. Briefly, a single colony of C. difficile DSM 27147 grown on CCM medium

for 48 h was used to inoculate CCM broth which is then incubated anaerobically for 24 h at

37 °C. Thereafter, 100 µL of the actively grown culture were plated on 70:30 agar medium

supplemented with different sub-MIC concentrations of the peptide starting from 100 nM to 5

nM and incubated anaerobically for 48 h at 37 °C. Produced colonies were then washed out in

2% glutradhyde in PBS and kept at 4 °C for 2 h, centrifuged at 4000 rpm for 10 min. Pellets
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were re-suspended in 1X PBS and washed three times. To prepare cells for TEM, the samples

were then post-fixed in 1% osmium tetroxide in 0.1M phosphate buffer for 1 hour. The samples

were dehydrated through a graded ethanol series (50%, 70%, 70%, 95%, 95%, 100%, 100%).

The final dehydration for the TEM samples was done in 100% propylene oxide (PO). Infiltration

with Spurr’s resin was through a graded series (2:1 PO:Spurr’s, 1:1 PO:Spurr’s, 1:2 PO:Spurr’s,

100% Spurr’s, 100% Spurr’s, 100% Spurr’s) with rotation of the samples in between solution

changes. The samples were transferred to embedding moulds which were then filled with fresh

100% Spurr’s resin and polymerized overnight in a 60°C oven. Thin sections were cut on a Leica

UCT Ultramicrotome and picked up onto Cu grids. The sections were post-stained with uranyl

acetate and lead citrate and then viewed in a JEOL JEM 1200 EX TEMSCAN transmission

electron microscope (JEOL, Peabody, MA, USA) operating at an accelerating voltage of 80kV.

Immunomodulation and cytotoxicity assay

To test if scardovicin has immunomodulatory activity, we developed a cell-based assay using

HT-29 cell line. HT-29 cells were obtained from Dr. Bruce Vallance (BC Children’s Hospi-

tal, The University of British Columbia, British Columbia, Canada). HT-29 cells were cul-

tured in T-75 tissue culture flasks (Costar, Cambridge, MA, USA) in Dulbecco’s modified Ea-

gle medium–nutrient mixture F-12 (DMEM–F-12, Gibco BRL Life Technologies, Burlington,

Canada). DMEM was supplemented with 10% fetal bovine serum, 100 U/mL of penicillin, 100

µg/mL of streptomycin, 1% MEM and 20 mM HEPES (Invitrogen Life Technologies). Cells were

maintained at 37°C in a humidified incubator at 5% CO2. Culture medium was replaced with pre-

warmed medium every 2 days. Confluent cultures (¿80%) were harvested using trypsin-EDTA.

Cells from passages 13 to 15 were used in this study.

500 µL of HT-29 cells were added to 24-well tissue culture plate. Each well was treated by

either one of three tested concentrations of scardovicin (70 µM, 50µM, 20µM) or DMSO (solvent

used to dissolve scardovicin). The plate was then incubated at 37°C in a humidified incubator

at 5% CO2 for 24 h. Thereafter, supernatant was harvested by centrifugation at 4000 rpm for

15 min, filtered, kept frozen on dry ice and shipped to Eve Technologies (Calgary, Canada) for

an inflammatory-focus 13-custom plex discovery assay to determine the spontaneous secretion
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of granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ, IL-1β, IL-2, IL-4, IL-5,

IL-6, IL-8, IL-10, IL-12(p70), IL-13, MCP-1, and TNF-α. For cytotoxicity assay, HT-29 cell lines

were used under the same conditions detailed above, except for a longer incubation period of 72

h, were treated with different concentrations of scardovicin (70 µM, 50 µM, 20 µM) and then

stained with Resazurin solution (500 µM) for 10% of the final volume (v/v) and incubate at 5%

CO2 for 5 h. Dead cells remain purple while live cells turned pink.

Statistical analyses

Statistical analysis was conducted using GraphPad Prism (GraphPad Software, Inc., La Jolla,

USA; version 7.0d). Statistically significant differences were calculated by appropriate statistical

methods as indicated in each experiment.
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Chapter 4

Significance and future

prospective

Microbial natural products (NPs), as secondary metabolites, are facets of chemistry that have

been evolutionarily honed towards highly specific functions. It is this property that has made NPs

immensely valuable small molecules with direct relevance as antibiotics and other therapeutics

[6]. While these products were the basis of many drug discovery programs, the emphasis on clas-

sical methodologies for their discovery has lead to ever diminishing returns [4]. Historically, the

field of natural products has been rapidly advanced through the advent of new technologies. Ex-

amples include the development of NMR in the 1950s accelerating structure elucidation [2], and

the advancement of molecular biology techniques in the 1980s allowing us to better understand

NP biosynthesis [5]. Currently, biology is facing a strong paradigm shift due to the emergence of

new large scale methods of collecting data [7]. From the explosion in genome sequencing, to the

advancements in metabolomics, these platforms facilitate a new wave of untargeted experimenta-

tion where generalizable data under standard conditions can be collected and published. Through

the development of software platforms, cognizant and specialized for accelerating NP discovery,

we can leverage these rich datasets to guide future endeavours. The work demonstrated here

shows some examples in which I have successfully crafted informatic platforms targeted towards

the discovery of diverse, novel and bioactive peptidic chemical scaffolds.

Taxonomically, the golden era of NP discovery was largely fueled by the en masse collection
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and culturing of Streptomyces. Through routine screening of these bacteria, it was revealed that

common secondary metabolites such as streptomycin may be present in 1% of soil isolates [4]

leading to false positives and successive wasted efforts in isolation and structural characteriza-

tion. A large risk in the strategies of this era was the relatively blind nature in which active

fractions were further pursued. In contrast, the platforms presented here aims to target leverage

genomic data to infer key structural elements of resulting natural products. Specifically, when

looking into ribosomally and post-translationally modified peptides (RiPPs), I have developed a

platform, BARLEY, that can infer differential chemistry through genomic data (Chapter 2).

While efforts such as these have been attempted in other classes of modularly encoded natural

products (PKS and NRPS) [1], this represents the first and currently only effort in quantifying

the diversity and novelty among genomically encoded RiPPs. As a further step, I present a

targeted isolation strategy that leverages high resolution mass spectral datasets. As a demon-

stration of this workflow, we were able to isolate a novel and highly dissimilar lasso peptide.

More importantly, this workflow not only revealed the wealth of genomically encoded RiPP di-

versity, but is built to provide researchers with a clear avenue for targeted discovery. Tools such

as BARLEY are essential in the modern data-rich world. With recent evaluations demonstrating

we may have only recognized 1% of the total bacterial population [8], we are heading towards a

future with an even greater abundance of information.

The function of natural products has largely been guided through reductionist experimental

strategies. In the early days of this work, it was often noticed that a particular biological extract

had an interesting property, which was subsequently purified to result in a single compound.

However, the evolved function of these NPs was honed in a likely polymicrobial environment. In

this context, there has been relatively little study, likely due to the difficulties in monitoring this

process [9]. However, due to the recently developed platforms for metagenomic and metatran-

scriptomic sequencing, we can now peek into the role these metabolites may play in situ. With

this in mind, I have developed AMPLIFY, A tool to enrich for Microbial Peptides Linked to In-

situ FunctionaliTy (Chapter 3). Here, we look to find chemical mediators evolved specifically

to tackle the niche environment of the human gastrointestinal tract. Further, through examining

the interplay between peptide expression and overall microbial composition, we were able to

extract an interesting relationship between antimicrobial peptides and their targets. Specifically,
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we found that negative correlations between peptide expression and target microbial abundance

can be used to infer an antimicrobial relationship. In this context, we mined this dataset to

find peptides likely to antagonize the invasion of foreign pathogens. Against the infectious mi-

crobe, Clostridium difficile, this analysis revealed several peptides with putative antimicrobial,

not only indicating that our GI residents may provide an innate protective role, but also that

nature, by default, implements redundancy. To further validate this protocol, we synthesized a

candidate antimicrobial peptide from Scardovia wiggisae, and evaluated its effects in vitro. This

peptide, scardovicin, demonstrated anti-clostridial effects in a multi-faceted manner, inhibiting

growth, preventing spore formation and spore germination. Further, this peptide also demon-

strated significant anti-inflammatory activity on GI cell lines, an effect that is ideal in tackling

the pro-inflammatory conditions induced by C. difficile infection [3]. Discoveries such as these

would not be possible through reductionist approaches, and are solely enabled through large

scale data analytics as demonstrated here.

These projects in conjunction demonstrate a small portion of what is capable given the

technologies available. The goal of these works is to enable scientists to better leverage the

technologies and data available in a manner amenable to NP discovery and characterization. As

our technological and data collection capabilities continue to increase, as we have seen within the

last decade, software development and evaluation will inevitably play a much larger role in the

scientific process. The works demonstrated here effectively have shown how these computational

platforms, built with the goal of accelerating NP discovery, can successfully guide research and

lead to a better understanding of the chemical mediators underlying our biology.
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[8] Rappé, M.S. and Giovannoni, S.J. The uncultured microbial majority. Annual Review of

Microbiology, 57:369–394, 2003. ISSN 0066-4227. doi: 10.1146/annurev.micro.57.030502.

090759.

90



BIBLIOGRAPHY

[9] Wiener, P. Experimental studies on the ecological role of antibiotic production in bacteria.

Evolutionary Ecology, 10(4):405–421, July 1996. ISSN 0269-7653, 1573-8477. doi: 10.1007/

BF01237726.

91



Appendix A

Chapter 2 Supplement

A1 Supplementary Files

Due to size, these tables are not presented here, but are submitted during peer review. Please

correspond with Nishanth Merwin for access.

• Supplementary table 1: All characterized RiPP structures associated with

names and families curated and used in this analysis.

• Supplementary table 2: All RiPP post-translational modifications recognized

by GRAPE/BARLEY.

• Supplementary table 3: Characterized RiPP BGCs with associated families

and structures.

• Supplementary table 4: List of reactions encoded within BARLEY using PRISM

detected genes.

• Supplementary table 5: All genera analysed and their associated diversity in-

dices across multiple RiPP families.

• Supplementary table 6: List of RiPP post-translational modifications recog-

nized by BARLEY as similar.
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A2 Supplementary Figures

Figure A1.1: Evaluating chemical similarity comparison tools in the context of RiPPs. (A)
BARLEY demonstrates a more consistent ranked relationship across peptide libraries with increasing
monomer substitutions. Using LEMONS, a library of theoretical class I lantipeptides were created with
randomly substituted monomers. A similarity index was calculated between the derived
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Figure A1.2: Tuning BARLEY minimum node size. Minimum node size represents the size of
the terminal node in a regression tree where smaller sizes develop deeper and more complex trees. This
parameter was tuned using a ten fold cross validation within the traning set.

Figure A1.3: Tuning BARLEY number of randomly sampled features. In a random forest,
each tree can be randomly assigned a set of features to predict upon. Of a total of five features, this
model performed optimally when each decision tree was able to access all variables.
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Figure A1.4: Tuning BARLEY number of base estimators. Random forests are ensemble meth-
ods which use many less accurate estimators to generate a consensus. Through iterating through the
number of base estimators, it was found that accuracy mostly reaches a minimum around 400 trees.
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Figure A1.5: Accuracy of BARLEY novelty index. (a) A model was trained on 75% of the data
and tested on the remaining to classify according to whether a particular comparison between an encoded
RiPP and a chemical scaffold was an exact match, within the same family, or from a different family.
Using a cutoff of 0.2, there is a 99.7% accuracy in classifying exact matches from other comparison
types. In (b) and (c), this same model on the test data was compared to PRISM’s structural library
using median and maximum ECFP6-Tc. (b) Accuracy in classifying comparisons as exact matches or
other. (c) Accuracy in classifying ccomparisons as same-family or other.
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Figure A1.6: Evaluating summary statistics for measuring average distance. Shown are the
distribution of BARLEY derived distances across all genomically encoded RiPPs. Median and mean
values are shown in red and blue respectively. In an unbalanced multimodal distribution such as this,
the median is heavily weighted towards the dominant mode, while the mean is able to capture the shift
associated with minor modes.

Figure A1.7: Precursor peptide detection type across RiPP families. Distribution of RiPP
BGCs across 65 thousand prokaryotic genomes sorted according to the presence of a precursor peptide,
and the model used for detection.
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Figure A1.8: Distribution of lantipeptide precursor peptide lengths. Precursor peptides ORF
sizes are shown here across all detected lantipeptide BGCs with successful motif identification for sub-
sequent cleavage.

Figure A1.9: Lantipeptide precursor cleavage sites. All detected lantipeptide precursors through
PRISM with predicted cleavage sites via homology based motifs. (a) Relative position of cleavage site,
where x-axis represents the indexed cleaveage position divided by ORF length. (b) Cleavage site as a
measure of distance from C-terminal.
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Figure A1.10: Structure of streptopeptin with assigned chemical shifts. Proton chemical shifts
are shown in red while carbon chemical shifts are shown in blue.
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Figure A1.11: 1H-NMR spectrum of streptopeptin in methanol-d3.

Figure A1.12: 1H-NMR (water suppression) spectrum of streptopeptin in methanol-d3.

100

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

Figure A1.13: DEPTq spectrum of streptopeptin in methanol-d3.

Figure A1.14: 1H-1H COSY spectrum of streptopeptin in methanol-d3.
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Figure A1.15: 1H-1C HMBC spectrum of streptopeptin in methanol-d3.

Figure A1.16: 1H-1H TOCSY spectrum of streptopeptin in methanol-d3.
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Figure A1.17: 1H-1H ROESY spectrum of streptopeptin in methanol-d3.

Figure A1.18: 1H-1H NOESY spectrum of streptopeptin in methanol-d3.
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Figure A1.19: Structure of ginsebactin with assigned chemical shifts. Proton chemical shifts
are shown in red while carbon chemical shifts are shown in blue.

Figure A1.20: 1H-NMR spectrum of ginsebactin in DMSO-d6.
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Figure A1.21: 13C-NMR spectrum of ginsebactin in DMSO-d6

Figure A1.22: 1H-1H COSY spectrum of ginsebactin in DMSO-d6.
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Figure A1.23: 1H-1C HSQC spectrum of ginsebactin in DMSO-d6.

Figure A1.24: 1H-1H NOESY spectrum of ginsebactin in DMSO-d6.
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Figure A1.25: 1H-13C HMBC spectrum of ginsebactin in DMSO-d6.

Figure A1.26: 1H-1H TOCSY spectrum of ginsebactin in DMSO-d6.
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Figure A1.27: Structure of ginsecidin with assigned chemical shifts. Proton chemical shifts are
shown in red while carbon chemical shifts are shown in blue.

Figure A1.28: 1H-NMR spectrum of ginsecidin in DMSO-d6.

108

http://www.mcmaster.ca/
https://fhs.mcmaster.ca/biochem/


MSc. – Nishanth Merwin; McMaster University– Biochemistry and Biomedical Sciences

Figure A1.29: 13C-NMR spectrum of ginsecidin in DMSO-d6

Figure A1.30: 1H-1H COSY spectrum of ginsecidin in DMSO-d6.
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Figure A1.31: 1H-1C HSQC spectrum of ginsecidin in DMSO-d6.

Figure A1.32: 1H-1H NOESY spectrum of ginsecidin in DMSO-d6.
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Figure A1.33: 1H-13C HMBC spectrum of ginsecidin in DMSO-d6.

Figure A1.34: 1H-1H TOCSY spectrum of ginsecidin in DMSO-d6.
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Chapter 3 Supplement

A1 Supplementary Files

Due to size, these tables are not presented here, but are submitted during peer review. Please

correspond with Nishanth Merwin for access.

• Supplementary table 1: Reference dataset of curated bacteriocins.

• Supplementary table 2: pHMMs generated from reference dataset.

• Supplementary table 3: All predicted peptides, associated organism, and iso-

lation site.

• Supplementary table 4: Microbiome predicted peptides, associated organism,

and isolation site and BARLEY score to reference dataset.

• Supplementary table 5: Peptide families exclusive to human microbiome.

• Supplementary table 6: Pairwise correlations of housekeeping genes.

• Supplementary table 7: Pairwise correlations of known antimicrobial peptides.

• Supplementary table 8: All confident antagonistic relationships among peptides

unique to the human microbiome.
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A2 Supplementary Figures

Figure A2.1: Distribution of collected human microbiome genomes across genera and body
sites. (A) A total of 2274 genomes were collected and annotated belonging to 17 body sites, represented
here according to colour where other is comprised of bacteria isolated from wounds, blood, nose, bone,
eye, spinal cord, brain, ear, head, abdomen, limb and liver samples. The top 40 most sequenced genera
are represented here, with the remaining 161 genera represented as “Others”.
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Figure A2.2: Novelty distribution of peptides among enriched genera. All genera shown at
top demonstrate a bimodal distribution, where characterized peptides typically fall above a sequence
similarity threshold of 0.85. These genera were sorted according to the median sequence similarity score.

Figure A2.3: Determining the optimal sequence similarity threshold for peptide clustering.
All threshold values were tested between 0 and 1 at 0.01 intervals, and the percent of valid clusters
observed were recorded. A stable flat region in this distribution was observed between 0.45 and 0.7
(dashed lines). As such, the midpoint, representing a threshold of 0.55 was chosen as the sequence
similarity threshold when identifying peptide families.
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Figure A2.4: LC/MS/MS chromatogram of scardovicin. Scardovicin is a 53mer peptide with
an exact mass of: 6088.437 Da, and sequence: MGAFFRLLSILARYGARAVQWAWAHRGTVLR-
WIGAGQAIDWVIKQIKRLLGIR.

Figure A2.5: Effect of scardovicin on initiation of spore germination in C. diffcile. Shown
is graphical representation of OD600 (t)/OD600 (t0) of purified spore suspension treated with different
folds of scardovicin MIC concentration and measured over time points for a total period of 60 min. Data
points represent mean of 3 independent biological replicates while error bars represent standard error of
the mean.
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Figure A2.6: Immunomodulatory activity of scardovicin on HT-29 cell line. a-d, graphs show
activity of three concentration of scardovicin (70, 50 and 20 µM) on IL-4, IL-10, IL-12, and TNF-γ,
respectively. Whiskers represent the range of data points of six independent biological replicates while
error bars indicate the standard error of the mean. Data were analyzed using one-way ANOVA test and
t-test. No significant difference was found between all treatments.
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