ESTABLISHING VERIFIABLE TRUST IN
COLLABORATIVE HEALTH RESEARCH

ESTABLISHING VERIFIABLE TRUST IN
COLLABORATIVE HEALTH RESEARCH

BY
ANDREW SUTTON, B.A.Sc.

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTING AND SOFTWARE
AND THE SCHOOL OF GRADUATE STUDIES
OF MCMASTER UNIVERSITY
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

(© Copyright by Andrew Sutton, June 2018
All Rights Reserved

Master of Science (2018)

(Computing and Software)

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

McMaster University
Hamilton, Ontario, Canada

Establishing Verifiable Trust in Collaborative
Health Research

Andrew Sutton
B.A.Sc. (Computer Science),
McMaster University, Hamilton, Canada

Dr. Reza Samavi

xiii, 68

11

Lay Abstract

Collaborative health research environments involve the sharing of private health
data between a number of participants, including researchers at different insti-
tutions. The inclusion of Al systems as participants in this environment allows
predictive analytics to be applied on the research data to provide better diag-
noses. In such environments where private health data is shared among diverse
participants, the maintenance of trust between participants and the auditing of
data transformations across the environment are important for protecting the
privacy of data contributors. Preserving the integrity of these transformations
is paramount for supporting transparent auditing processes. In this thesis,
we propose an architecture for establishing verifiable trust and transparency
among participants in collaborative health research environments, present a
model for creating tamper-proof privacy audit logs that support the privacy
management of data contributors, and analyze methods for verifying the in-
tegrity of all logged data activities in the research environment.

111

Abstract

Collaborative health research environments usually involve sharing private
health data between a number of participants, including researchers at differ-
ent institutions. Inclusion of Al systems as participants in this environment
allows predictive analytics to be applied on the research data and the pro-
vision of better diagnoses. However, the growing number of researchers and
AT systems working together raises the problem of protecting the privacy of
data contributors and managing the trust among participants, which affects
the overall collaboration effort. In this thesis, we propose an architecture
that utilizes blockchain technology for enabling verifiable trust in collabora-
tive health research environments so that participants who do not necessarily
trust each other can effectively collaborate to achieve a research goal. Prove-
nance management of research data and privacy auditing are key components
of the architecture that allow participants’ actions and their compliance with
privacy policies to be checked across the research pipeline. The architecture
supports distributed trust between participants through a Linked Data-based
blockchain model that allows tamper-proof audit logs to be created to pre-
serve log integrity and participant non-repudiation. To maintain the integrity
of the audit logs, we investigate the state-of-the-art methods of generating
cryptographic hashes for RDF datasets. We demonstrate an efficient method
of computing integrity proofs that construct a sorted Merkle tree for growing
RDF datasets based on timestamps (as a key) that are extractable from the
dataset. Evaluations of our methods through experimental realizations and
analyses of their resiliency to common security threats are provided.

v

For my Mom and Dad
In memory of Gramma and Poppie

Acknowledgements

I would like to thank my supervisor, Dr. Reza Samavi, for his great sup-
port, assistance, and guidance that helped me successfully complete this the-
sis. Thank you for the enjoyable and memorable experiences throughout my
graduate studies. I would also like to thank Dr. Thomas E. Doyle and Dr.
David Koff for their helpful guidance and comments.

vi

Contents

Lay Abstract

Abstract

Acknowledgements

Definitions and Abbreviations

1

Introduction

iii

iv

vi

xi

1.1 Thesis Scope & Objectives
1.2 Thesis Contributions
1.3 Structure

2 Related Work
2.1 Blockchain Applications in Healthcare
2.2 Tamper-proof Auditing
2.3 Integrity Preservation Techniques

3 Digitized Trust in Human-in-the-Loop Health Research
3.1 Architecture
3.2 Privacy, Security & Trust
3.3 Evaluation oo
3.4 Conclusion

4 Blockchain Enabled Privacy Audit Logs
4.1 Properties of Tamper-proof Privacy Logs
4.2 Blockchain Enabled Privacy Audit Logs.
4.3 Log Integrity Verification
4.4 Experimental Evaluation
4.5 Conclusion

5 Timestamp-based Integrity Proofs for Linked Data
5.1 Integrity Proof Properties

vil

O I

S O ot O

5.2 Timestamp Tree.o 47

5.3 Ewvaluationo 50
54 Conclusion 55
Conclusion 56
6.1 Contribution Summary L. 56
6.2 Future Work o7
Full Graph Listings 59
A.1 Signature Graph 59
A2 Block Graph 59
A.3 Privacy Event Graph 0oL 60

Viil

List of Figures

1.1
3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
5.1
5.2
5.3
5.4
9.9

Collaborative Research Pipeline 2
Architectural Layers 11
Data Sharing Transaction Sequence 12
Active Involvement of Patients in the Research Process 13
Architecture Realization 23
Elapsed Execution Times for Data Sharing Transaction Gener-

ation and Integrity Verification 24
Privacy Audit Log Generation Comparison 27
Tamper-Proof Audit Log Model Architecture 30
Elapsed Execution Times for Integrity and Signature Verification 39
Merkle Tree 47
Merklix Tree 47
Timestamp Tree Generation 49
Tree Generation Runtime 52
Data Hash Query Runtime 53

1X

List of Tables

3.1 System Actors and Requirements 10
3.2 System Trustworthiness Summary 20
5.1 Comparative Analysis of Integrity Proof Methods for RDF Datasets 43

Definitions and Abbreviations

Definitions

Blockchain

A distributed ledger that records immutable transactions be-
tween parties through a consensus protocol. A copy of the
ledger is distributed and maintained among nodes on the net-
work. Groups of transactions are batched together to form a
block, and blocks of transactions are linked together to form
a chain of blocks. Blocks are composed of a header that con-
tains the block metadata, including the hash (see Crypto-
graphic Hash Function) of the previous block (i.e., forming a
chain of blocks), and a body containing a group of transaction
records. A consensus protocol is used to verify transactions,
generate blocks, and publish blocks to the blockchain.

Cryptographic Hash Function

A function that takes an arbitrary length input string (pre-
image) and transforms it to a fixed length output string (hash
value or integrity proof). A cryptographic hash function must
support three properties: pre-image resistance (infeasible to
modify data without changing the resulting hash value); sec-
ond pre-image resistance (infeasible to find any two inputs
that hash to the same output); one-way (infeasible to invert
the hash).

Data Sharing Agreement

Legally binding contractual agreement between parties that
want to share data. The contract outlines who can access and
use the data, for what purpose (including when and where),
how the data is managed while it is being used, and how the
data should be disposed of at the end of the defined agreement
period [82].

Integrity Proof

The output string from a cryptographic hash function; used

x1

Linked Data

Quad Store

RDF

RDF Graph

to verify the integrity of a data item. See Cryptographic Hash
Function.

Refers to a set of best practices for publishing and connecting
structured data on the Web [8]. Data is published following
the Linked Data principles: (i) use Uniform Resource Identi-
fiers (URI) to name things; (ii) use HTTP URISs, so people can
look up those things; (iii) provide useful information (using
RDF, SPARQL) when someone looks up a URI; (iv) include
links to other URIs [27].

A database designed to store Linked Data named graphs (i.e.,
quads) and allow SPARQL queries to retrieve graph data.

A graph-based data model designed to be used in highly scal-
able web contexts.

A set of RDF statements (see RDF Statement).

RDF Statement

Defined as the triple: subject predicate object. In an RDF
graph, the statement is depicted by an arc between two nodes,
where the arc travels from the subject node to the object node
and is labeled by the predicate [63]. A triple can be extended
to include a name to form a quad (i.e., named graph), defined
as the quad: name subject predicate object.

Abbreviations

Al Artificial Intelligence

API Application Programming Interface

CA Certificate Authority

DSA Data Sharing Agreement

ECDSA Elliptic Curve Digital Signature Algorithm
EMR Electronic Medical Record

FHIR Fast Healthcare Interoperability Resources
HIS Hospital Information System

xii

L2TAP Linked Data Log to Accountability, Transparency, and Pri-

vacy
PII Personally Identifiable Information
PKI Public Key Infrastructure

RDF Resource Description Framework
REST Representational State Transfer
RSA Rivest, Shamir, Adleman

SHA Secure Hash Algorithm

SPARQL SPARQL Protocol and RDF Query Language

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, Elevation of Privilege

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

W3C World Wide Web Consortium

Xlil

Chapter 1

Introduction

The era of immense data analytics is transforming healthcare with the ability
to interpret large and diverse datasets to provide better diagnoses, manage
complex diseases, improve efficiency of care, and generate aggregated data for
Artificial Intelligence (AI) systems [74]. For instance, Alphabet, the parent
company of Google, has launched a new initiative called Cityblock Health that
will provide low income households with medical care by analyzing multiple
datasets to determine where care is needed [74]. Furthermore, IBM Watson’s
cognitive computing platform uses multiple large datasets to generate pre-
dictive analytics for improved diagnoses. In both examples, individuals (or
patients) are actively and continuously involved in contributing data to be fed
to the AT systems and the research goal is achieved through an intense (some-
times real time) collaboration between humans (as the data contributors),
diverse researchers from multiple disciplines (e.g., medicine, computer science,
statistics) and Al systems. The active involvement of humans (or patients) in
this type of emerging health research is different to their roles in the classi-
cal clinical trial type research where a limited number of patients are involved
and the patient’s connection to the research ends when the data collection step
is over. For data analytics health research, a feedback loop among patients,
researchers and Al systems needs to be maintained in order to improve the
predictive model. However, a successful realization of such a human-in-the-
loop paradigm for health research requires establishing verifiable trust among
participants (including humans and Al systems). The following motivating
scenario reveals the challenges in maintaining trust among participants.

The author of this thesis is part of a multi-disciplinary research team that
is currently developing an active classifier to predict patients’ cancer risk from
accumulated medical imaging radiation exposure. The classifier is active since
the machine learning model will be constantly refined as individuals contribute
their data points on medical imaging and diagnosis. Patients at the point of
care will benefit from the updated risk assessment model while they have a

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Global Auditor

T T

Auditor 0 Auditor 1 Auditor 2 - Auditor n
| | l |
N 1___ ___ 1___
{ AY (hY (A} |
! Provide | 1 Analyze | 1 Predictiye | Data transformations
i Data “r T Data 1 Analysis T ’ e to project outcome
‘oocgmoc Moccpmmc Moopee- s s s
i i : 1 E
{ DSA, J [DSA, J .. Hospital Al System
| | h, | a,
Hospital Researcher Al System Researcher
ho fo ao I

Figure 1.1: Collaborative Research Pipeline

chance to contribute their data for the consequent model refinement iteration.
Such a complex collaboration on private data requires multiple Data Sharing
Agreements (DSA) to be devised between diverse groups of researchers and
hospitals as each participant may adhere to different privacy policies and juris-
dictions. In addition, patients are in the loop of research since the Al system
needs to be updated in near real time to produce accurate and relevant cancer
risk assessment for each patient [45, 57].

Figure 1.1 conceptualizes the collaborative research pipeline for such a
scenario, where hospitals hg, ..., h,, provide data for participants and multi-
ple researchers rg,...,r, and Al systems ay, ..., a, provide data analytics on
the datasets. Hospitals continuously provide data as it is generated, and
DS Ay, ..., DS A,, govern access to the datasets in the research pipeline. Audit-
ing the data lifecycle (from collection to use, disclosure and transformation) is
essential in this scenario to ensure accountability. Typically, local and global
auditors oversee the process [60], and the trust between different auditors and
researchers is a presumption, however in reality there are conflicts of interests
that may undermine the presumed trust [21]. In order to prevent conflicts
of interests, transparency and accountability are required. However, trans-
parency and accountability cannot be achieved without trustworthy auditing.
Consequently, for trusted auditing, we need to ensure log integrity and partic-
ipant non-repudiation. We focus on addressing the challenges of establishing
verifiable trust among all participants in the research environment, preserving
the privacy of all data contributors, and maintaining the integrity of all logged
data activities for effective and trustworthy auditing.

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

1.1 Thesis Scope & Objectives

The objective of this thesis is to address the privacy and trust challenges
that arise in collaborative health research environments, where private data is
shared among multiple participants. When multiple researchers collaborate,
the mismanagement of trust between actors affects the overall collaboration
effort and hinders the ability to provide better diagnoses. We aim to achieve
three objectives: (i) establishing verifiable trust and transparency in collabo-
rative health research environments; (ii) supporting the privacy management
of data contributors; and (iii) maintaining the integrity of all data interactions
in the research environment.

In order to create a trusted research environment, we leverage blockchain
technology. By using a permissioned blockchain (a blockchain that is con-
trolled by authenticated participants as opposed to a public blockchain used
for crypto-currencies) we support a collaborative environment that all data ac-
tivities are transparent and can be verified by all participants. To protect data
subjects’ privacy and manage the data size, we define a concept of data sharing
transactions where data is made accessible through data pointers that rely on
institutional-based access control. Data pointers are stored on the blockchain
and privacy policies related to each data item are captured. Transactions
stored on the blockchain provide a tamper-proof trail of data while integrity
verification can be performed and participants cannot repudiate their actions.
We leverage theories and technologies stemming from blockchain technology
[4, 66, 56, 16, 26], Linked Data graph signatures [34, 32, 30, 31|, and Linked
Data graph digest computation [30, 63| to create non-repudiable privacy audit
logs and utilize the distributed and immutable properties of blockchain tech-
nology to make the audit logs tamper-proof. Furthermore, we exploit features
in the datasets to create integrity proofs (cryptographic hashes) with desirable
properties for auditing purposes.

Current approaches on protecting individuals’ privacy and maintaining
trust in collaborative research are based on data anonymization [35, 51] and
provenance management, i.e., tracking the collection, use, disclosure, and
transformation of data items throughout the research pipeline [85, 23]. These
approaches are necessary, but insufficient when trust is not guaranteed between
collaborators, especially when Al systems are also considered as participants
in the process of data transformation. Importantly, the autonomous decision
making process of Al systems needs to be captured and audited to demon-
strate the trustworthiness of the predictive algorithms. Provenance and data
anonymization methods can be supplemented by digitizing trust to mitigate
the risk of collusion between auditors and researchers or inadvertent breaches
of data usage by Al systems. Furthermore, approaches to generate integrity
verification (cryptographic hash) for datasets are either based on incremental

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

methods or constructing different variations of a Merkle tree [46]. The proper-
ties of each method need to be investigated so that the most effective method
can be used in the context of privacy auditing.

1.2 Thesis Contributions

The four main contributions of this thesis are that we:

1. propose a blockchain-based architecture to digitize trust in collaborative
health research environments, where actors who do not necessarily trust
each other can effectively collaborate to achieve a research goal;

2. present a Linked Data-based [27] model for creating tamper-proof pri-
vacy audit logs and provide a mechanism for log integrity and authentic-
ity verification that auditors can execute in conjunction with performing
compliance checking queries;

3. investigate the state-of-the-art methods of generating cryptographic hashes
that can be used as integrity proofs for RDF datasets;

4. provide a more efficient method of computing a cryptographic hash for
the special case of growing RDF datasets where the dataset statements
carry some notion of ordering (e.g., statements are timestamped).

Abridged versions of the contributions described in this thesis have been pub-
lished or have been submitted in [69, 70, 71, 72]. The author of this thesis is
the lead author for each publication and received guidance from his supervisor
and the other authors at McMaster University. Specifically, contribution 1 has
been submitted to [72], contribution 2 has been published in [69] (nominated
for best research paper and best student research paper awards) and submitted
to [70], and contributions 3 and 4 have been published in [71].

1.3 Structure

The structure of the thesis is as follows. Chapter 2 presents an investigation of
the related work. Chapter 3 describes the proposed blockchain-based architec-
ture for collaborative health research. We provide an enhanced privacy audit
log framework utilizing blockchain technology in Chapter 4. In Chapter 5,
we discuss common metrics for integrity verification algorithms and provide a
tree-based integrity proof algorithm that utilizes underlying data semantics.
We conclude in Chapter 6 with some future directions for this research.

Chapter 2
Related Work

In this chapter, we present an investigation of the related work in three areas:
(i) blockchain technology and its application in a healthcare domain (Section
2.1); (ii) methods for supporting non-repudiation and tamper-proof auditing
(Section 2.2); and (iii) the current approaches to integrity preservation in
auditing and digital signatures (Section 2.3).

2.1 Blockchain Applications in Healthcare

There have been numerous proposals for the use of blockchain in a healthcare
environment [40, 43, 55]. McFarlane et al. [43] discuss a patient-centered peer-
to-peer EMR supported by blockchain technology that provides an infrastruc-
ture for an interoperable health information exchange network and implements
mechanisms for storing private information on an Ethereum-based blockchain.
Use of blockchain for data sharing in clinical research has been investigated by
Sotos et al. [65]. Sotos’ solution treats data sharing as a series of transactions.
Data sharing agreements are digitally signed and stored in the blockchain to
make them public and unalterable.

Preliminary investigation of using blockchain for data sharing and collab-
oration has been performed in [37]. However, this approach focuses on inves-
tigating the issues related to mobile healthcare applications rather than the
specific privacy issues related to collaborative health research. Zyskind et al.
[86] present an automated decentralized access control manager that utilizes
blockchain technology. Similarly, Zyskind’s system has different types of trans-
actions for user access control management and data storage and retrieval. Xu
et al. [83] propose blockchain based access control that allows access policies
and access histories to be stored on the ledger.

Additionally, Google’s DeepMind Health Verifiable Data Audit project is
developing a real-time auditing platform for health research data [68, 24, 18].
This approach uses an append-only tree-based ledger that records data usage

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

events. Similar to a blockchain, the ledger allows the integrity verification of
data entries, however, the tree-based structure lacks some important proper-
ties that are inherent in blockchain technology, such as consensus and smart
contracts, that contribute to preserving trust among participants. While this
body of work considers the integration of blockchain into the healthcare do-
main, the approaches are limited to providing access control over patient data,
rather than providing a mechanism to allow all participants in the environ-
ment to collaborate in a trusted and privacy-aware way. Chapter 3 intends to
fill the gap in this research.

2.2 Tamper-proof Auditing

There are a number of approaches that provide a mechanism for verifying the
integrity of an audit log [1, 67]. Butin et al. [11] address the issues of log
design for accountability, such as determining what the log should include so
auditors can perform meaningful a posteriori compliance analysis. Tong et
al. [77] propose a method of providing role-based access control auditability
in audit logs to prevent the misuse of data. Use of blockchain technology in
the auditing of financial transactions have been investigated in [4] after the
repercussions of the Enron Scandal in 2001 [36], where auditor fraud was the
source of public distrust [66]. Anderson [4] proposes a method of verifying the
integrity of files using a blockchain. Cucurull et al. [16] present a method for
enhancing the security of logs by utilizing the Bitcoin blockchain.

These solutions focus on addressing the integrity preservation and verifica-
tion of privacy audit logs and miss the non-repudiation aspect. There is a need
for a practical solution for supporting both the non-repudiation and integrity
of the logs. Chapter 4 intends to fill this gap by providing a model to create
tamper-proof logs in a highly scalable Linked Data environment.

2.3 Integrity Preservation Techniques

As mentioned previously, Google’s DeepMind Health Verifiable Data Audit
project is developing an auditing platform for health research data that uses
an append-only log to record events in a Merkle tree structure [25, 18]. This
approach can be extended to capture the time of any data interaction, which
can be utilized in the log tree structure such as in the method we propose
in Chapter 5. Lindqvist presents a protocol for producing verifiable privacy-
preserving membership proofs of Merkle trees [39]. In the context of audit logs,
Lindqvist’s protocol allows auditors to query the logs for audit proofs of log
entries while preserving the privacy of unrelated entries. Since our timestamp
tree approach, described in Chapter 5, is an extension of a sorted Merkle tree,

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

where the leaves are ordered, there is the potential of leaking information
about adjacent leaves when querying the tree [39, 53]. Supplementing our
approach with Lindqvist’s protocol has potential for preventing undesirable
data leakage.

Kleedorfer et al. [34] propose a Linked Data-based messaging system where
conversations can be verified through digital signatures. This approach pre-
serves the integrity of conversations through the chaining of message signatures
where all messages and signatures are defined as RDF graphs. The hash of the
graphs used for the digital signatures are calculated using incremental cryp-
tography. However, this approach does not exploit the fact that the message
graphs contain timestamp information for each message, which our approach
in Chapter 5 can use to semantically preserve the order of the messages. Kas-
ten et al. provide a framework for signing graph data where a number of graph
hashing methods for the signatures are discussed [30, 32]. Similarly, this ap-
proach does not leverage available data in the graph datasets to construct
a hash value to achieve sorted Merkle tree-like properties, which is desirable
for preserving the data order. The research reported in Chapter 5 intends to
supplement these methods.

Chapter 3

Digitized Trust in
Human-in-the-Loop Health
Research

In this chapter, we present our proposed blockchain-based architecture for en-
abling verifiable trust in collaborative health research environments. Our goal
is to design an efficient architecture that protects the privacy of data that is
dispersed among different organizations. We aim to support the human-in-the-
loop paradigm for health research by establishing trust between participants,
including human researchers and Al systems. Trust is established by making
all data transformations transparent and verifiable by all participants. Sec-
tion 3.1 provides an overview of our blockchain enabled trust architecture for
collaborative health research. The security properties of the architecture are
discussed in Section 3.2. A threat model evaluation and experimental realiza-
tion are performed in Section 3.3. We conclude in Section 3.4.

3.1 Architecture

A trusted system means that all parties accept the actions of the system to
be correct, the system’s outputs to be true, and that the system will com-
plete its expected task [64]. The trustworthiness of a system depends on the
level of perceived trust of each system component [3]. Typically, trust is a
subjective measurement based on the perception of how different parties eval-
uate each other and the systems they interact with. Achieving a trustworthy
system requires transforming the notion of trust into an objective measure-
ment. This transformation often relies on the use of a centralized trusted
third party, where all collaborating parties trust this external entity (e.g., cer-
tificate authorities in public key infrastructures [73], arbitrated protocols [49)]).

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Establishing trust through a centralized third party is often the source of col-
lusion, which threatens the trust, the very central notion that collaborative
parties intend to establish. The Enron Scandal [36] is a textbook case when
the trust placed in the centralized auditors was a major factor in the fraud.
Rather than a centralized approach, we can leverage a distributed system to
support trust between collaborating parties and alleviate the disadvantages
that tend to threaten trust in centralized systems.

With the emergence of blockchain technology, the issues involved with a
centralized trust system are alleviated through the use of distributed trust
where all interactions are distributed, immutable, transparent and consensu-
ally agreed upon. Adapting blockchain from the typical crypto-currency use
case to collaborative health research requires overcoming multiple challenges.
First, transactions in health research involve immense data sizes (e.g., an entire
health record with all medical imaging history [54]). Second, specific privacy
statements must be captured for each individual data item, which might be
applicable for all transactions. Therefore, blockchain adaptation for health
research transactions requires careful investigation of the relationship between
data and what is stored on the blockchain and the privacy of data subjects.

In this section we identify the classes of participants and their requirements
when collaborating in a research environment as well as the properties required
for a system to be trustworthy (Section 3.1.1). We then describe an archi-
tecture that supports blockchain enabled self-governed trust (Section 3.1.2),
where specific components are detailed in Sections 3.1.3, 3.1.4, and 3.1.5, re-
spectively.

3.1.1 Desiderata

Actors involved in collaborative health research include the data contributors
(e.g., patients), data custodians (e.g., hospitals and research institutes), Al
systems (e.g., active machine learning system [79]), researchers, and auditors.
Patients are the source of the contributed data (e.g., subject of a CT scan)
while data custodians store this data in their information systems. In an en-
vironment that involves the interaction of private health data among multiple
actors, the data contributors want to know who is accessing and sharing their
data, as well as when and what through some consent mechanisms. Data
custodians are responsible for securely storing private health data while re-
searchers require access to this data to perform analysis. Furthermore, Al
systems also need to access patient data to update their predictive models.
Finally, auditors monitor the system actors to determine compliance to pri-
vacy policies stated in DSAs and consent directives. The details of each actor
type and their specific requirements are summarized in Table 3.1.

For an architecture to be trustworthy, certain properties need to be present.

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Table 3.1: System Actors and Requirements

Actor Type Requirements

1) Provide consent regarding their data
Know who is accessing and sharing their data
Know when their data is being accessed and shared

Data Contributors

Remain in control of the data
Securely store private data
Comply with data protection and DSA policies and obligations

Data Custodians

Researchers Access Al System outcomes
Comply with DSA policies and obligations

2
3
1
2
3
1
2
3
4) Provide feedback to the Al system

Auditors 1) Monitor actor compliance

Comply with DSA policies and obligations

1
2) Provide analytical outcomes for researchers

)
)
)
)
)
)
) Access patient data
)
)
)
)
Al Systems g

Security properties that support trustworthy systems are grouped into six do-
mains: confidentiality, integrity, availability, authentication (access control),
non-repudiation, and accountability (transparency) [3]. Confidentiality and
integrity define mechanisms that prevent the unauthorized reading and writ-
ing of data, respectively. Mechanisms such as encryption, digital signatures,
and cryptographic hash functions support these properties. Ensuring that re-
sources are accessible when required by authorized users falls under the avail-
ability category. Our proposed architecture relies on external mechanisms to
support the availability of the system and is therefore considered out of scope
for this research. Authentication and access control provide processes for ver-
ifying the identity of an entity and maintaining the entity’s privilege across
the system, respectively. The use of digital signatures and cryptographic hash
functions support non-repudiation by creating undeniable evidence that an
action has occurred. Finally, accountability and transparency, an extension of
non-repudiation, capture non-compliant users and support the maintenance of
user privacy through the use of logging and auditing. An ideal trustworthy
system aims to support all six domains and properties to establish digitized
trust. Especially in a health research environment that deals with private pa-
tient data, our proposed architecture must support these trust properties to
provide a trustworthy system.

10

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

/ Transparency Layer

Entity A : —
! Tx
24 Proof) Blockchain
|
Data Transaction Layer
Sharing

Data Query EndpointO

Data Layer

Entity B

Data Repository()

Figure 3.1: Architectural Layers

3.1.2 Architectural Overview

Given the requirements of each class of actors (Table 3.1) and the trustworthy
system requirements, our architecture should support three main functional-
ities: provenance management of research data, privacy management of data
subjects, and distributed and verifiable trust among participants. We present
a layered architectural approach, as shown in Figure 3.1, with three layers to
support data transactions, privacy and trust. At the bottom is the data layer
responsible for generating data pointers that link to the medical records and
can be shared among actors. Data pointers allow for the data custodians to
remain in operational control of the data and provide their institutional-based
access control mechanisms to protect the data. The middle layer is the trans-
action layer responsible for providing a mechanism for storing and querying
data sharing transactions, including provenance and privacy information. At
the top is the transparency layer responsible for distributed trust between all
participants by allowing all data transactions to be transparent among all par-
ticipants. A layered approach has multiple advantages. The functionality and
the applied technology can be decoupled so that connections between compo-
nents are clearly defined and a component does not rely on the internal logic
and the technology used in other components. For example, a permissioned
blockchain can be used as a plug-in for the transparency layer without chang-
ing any blockchain properties. The relationships between layers and how the
layers work together are described below. The internal specifications of each
layer are described in subsequent subsections.

The collaborative research pipeline (Figure 1.1) involves multiple actors

11

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Transaction Transparency
Researcher ry Layer Layer Data Layer Researcherr, Auditor

Generate Pointer

Data Event
Privacy Event
Sign Event

Integrity Proof

Verify Integrity

Check Privacy Event

Access Data

Query Data

Verify Integrity

Compliance Checking

P

’

Figure 3.2: Data Sharing Transaction Sequence

interacting with each other and sharing private health data. The sequence
diagram in Figure 3.2 depicts a dynamic view of the architecture in Figure
3.1 and demonstrates an instance of the research pipeline where data is being
shared between two researchers (9 and 7). DSAs are established between the
researchers that outline the privacy policies that the researchers must abide
by when using the data. When performing a data sharing transaction, the
sending entity (rg) first interacts with the data layer to generate a pointer to
the data that they want to share. The data accessible by the pointer is stored
in the data layer’s data repository, which is hosted at a hospital or research
institute. After researcher ry has generated the data pointer in the data layer,
they construct a data sharing transaction, which is composed of a data sharing
event, privacy event, and signing event. These events provide the transaction
metadata (including the pointer generated in the data layer), privacy policies
related to the data, and a digital signature of the transaction. The data sharing
transaction is stored in a data query endpoint so that other actors can query
the transactional data. An integrity proof (i.e., cryptographic hash) of the
data sharing transaction is computed and written to the transparency layer so
that all participants are aware of the transaction.

After the data sharing transaction has been completed by researcher ry,
researcher r; must first query the transparency layer to verify the integrity
of the transaction. Integrity verification consists of recomputing the integrity
proof of the data sharing transaction and comparing it to the integrity proof
in the transparency layer. If both integrity proofs match, researcher r; can
proceed to accessing the data through the data pointer specified in the data
sharing transaction. Alternatively, if the integrity proof verification fails, re-
searcher r; should not access the data and an auditor can perform further
investigation. Researcher r; then queries the transaction layer to determine

12

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Transaction Transparency
Researcher r, Layer Layer Data Layer Researcherry Auditor Patient

Generate Pointer
Data Event
Privacy Event
Sign Event
Integrity Proof

Verify Integrity

Check Privacy Event

Access Data

Query Data
Verify Integrity

Determine Data

1
Provenance
Determine Tx !

Semantics

Figure 3.3: Active Involvement of Patients in the Research Process

the privacy policies they must abide by when using the data and then ac-
cesses the data through the data pointer at the data layer. Finally, auditors
query the transaction and transparency layers to check the compliance of all
participants with the policies in the governing DSAs.

A common use case scenario for this architecture involves patients, as data
contributors, actively participating in the research process and auditing the
use of their data. For example, suppose we have a research team rt; who
has deployed an Al system (machine learning model) that provides a patient,
pi, cancer risk assessment based on p;’s accumulated exposure to low dose
radiation from medical imaging (X-ray, CT scans, etc.). Over p;’s lifetime,
their medical imaging data is stored in hospital information systems (data
custodian) and as new imaging data is captured, the data is added to p;’s
health record. In order to train the Al system to provide accurate and relevant
cancer risk assessment, the researchers need to access the imaging data for all
patients, including p;. Additionally, the Al system must continuously consume
new imaging data for each patient, as new data becomes available. Typically,
in such a scenario, ethic review boards (ERB) review the research team’s
proposal for accessing private health data held by data custodians and grant
approval after challenges relating to data privacy and security are addressed.
Upon granting approval, DSAs are established to define how the researchers
can share, access, and use the data, and the research project begins.

Traditionally, patients were not actively involved in the research process
after contributing their data and there was a disconnect between patients and
the researchers. However, with our architecture, patients can be actively in-
volved in the research process where they can selectively determine what data
is being shared and with whom the data is being shared with. Importantly,

13

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

they can also transparently see the provenance of their data across the research
pipeline and determine how their data is being used. Figure 3.3 extends the
sequence diagram of Figure 3.2 to include a symbolic user (i.e., anyone in the
research environment, including the auditor). In this realization scenario, we
consider the patient to be the symbolic user who wants to know what is hap-
pening to their data throughout the research process. Upon commencement
of the research project, patient p; can be active in the research process by en-
rolling in the transparency layer’s blockchain network. When research team rt;
shares patient p;’s data with the AI system or another research team rt,, the
data sharing transaction is proposed to the blockchain network participants.
Patient p; is enrolled in the network, so they can consent to the transaction
if they agree with the usage of their data. If patient p; does not consent to
how their data is being used or who it is being shared with, they can reject
the transaction and inform the research team to withdraw their data from
the project. Confirmation from the patient p; (confirmation can also include
agreement from other actors such as data custodians) means that the data
sharing transaction is recorded on the blockchain and the data records can be
shared. As depicted in Figure 3.3, patient p; can query each layer of the archi-
tecture to determine specifically what data records are being shared between
researchers (data layer), determine data sharing transaction provenance to see
who is accessing and sharing their data (transparency layer), and determine
the semantics of the data sharing transaction, including privacy policies and
obligations associated with their data (transaction layer).

3.1.3 Data Layer

The data layer acts as a data repository where the data pointers that are shared
among actors reference the actual data records. We leverage the emerging Fast
Healthcare Interoperability Resources (FHIR) standard to serve as our data
pointers. A set of modular components called Resources are at the core of
the FHIR framework [28]. Resources represent healthcare concepts, such as
patients, providers, medications, and diagnostics. Each resource has a unique
URL (uniform resource locator) and can be retrieved and manipulated through
these URLs. In our architecture, authorized actors access the data using the
FHIR URLs. By using FHIR we can not only support local hospital access
control mechanisms but we also only maintain the pointers to data (or their
hash values) in other layers instead of the actual data.

14

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

3.1.4 Transaction Layer

After the sending entity has generated the data pointer in the data layer, a
data sharing transaction is generated by the transaction layer. This trans-
action is composed of a data sharing event, privacy event, and signing event
as shown in Figure 3.2. We leverage a graph data model to represent the
data sharing transaction events as it provides generalizability and flexibility
[27], but our approach is data model agnostic and any other data models
(e.g., relational data models) can also be used. We define Linked Data named
graphs [13] for each type of event. The graphs are stored in an externally
accessible data query endpoint, such as a quad store or SPARQL endpoint,
so that they can be queried by other authorized actors in the system. Listing
3.1 represents the data sharing transaction and records the metadata of the
transaction, including the sender, receiver, and timestamp (lines 4-7), the data
pointer (FHIR URL) that is going to be shared (line 8), and the related privacy
event graph (line 7). The transaction layer supports two types of transactions,
depending on the purpose and initiator of the transaction (line 3). Tpinter
transactions specify that the transaction is sharing data pointers referencing
patient data and are performed by the actors that store, generate, or manage
the actual data (i.e., researchers, data custodians). The Tjpinter transactions
can be queried by Al systems and by following the data pointer, the referenced
data can be retrieved to update the Al system’s predictive algorithm. T,,;come
transactions are performed by Al systems and specify that the transaction is
sharing the results computed by their algorithms. The differentiation between
Thointer a0d Toyicome transactions allows actors to track transactions relating
to data sharing and Al system predictive outcomes over the the course of the
research pipeline, as well as provide feedback for the Al system improvement.

:data-sharing-graph {

:data-sharing-graph a https://example.com/DataSharingTransaction ;
:hasTxType "pointer"~“xsd:string ;

:hasTimestamp "1517263159399"""xsd:string ;

:hasSender "McMaster University Medical_Center"~"xsd:string ;
:hasReceiver "Juravinksi Hospital"~~"xsd:string ;

:hasPrivacyEvent _:privacy-graph-header ;

:hasFHIRURL http://fhir.example.com/DiagnosticReport?id=system’7C00003. }

Listing 3.1: Data Sharing Event Graph

0 N OO W N =

To support accountability and transparency, a privacy event captures promised
and performed privacy acts, such as expressing privacy policies, requesting ac-
cess, and defining data usage and obligations. For example, the Linked Data
Log to Accountability, Transparency, and Privacy (L2TAP) framework [61]
can be used to generate Linked Data privacy events. Listing 3.2 is an example
of an L2TAP privacy event, which consists of a header that asserts provenance
semantics (lines 4-8), and a body that asserts privacy semantics (lines 9-16).

15

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

This privacy event is an example of an access request (line 10) that contains
properties for specifying the requested data item(s) (line 14), the purpose of
access (line 15), and the data sender and requester (lines 12 and 11, respec-
tively). L2TAP privacy events can also provide assertions of requested privacy
privileges (omitted); more details can be found in [61, 69] and the extended
triple set can be found in Section A.3 of the Appendix.

@prefix 12tap:<http://purl.org/l2tap#> .

@prefix scip:<http://purl.org/scip#> .

Q@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
_:privacy-graph-header {

_:logevent a 1l2tap:PrivacyEvent ;
12tap:eventParticipant _:researcher-2 ;
12tap:receivingTimestamp "2018-01-29T12:00:00Z"""xsd:dateTime ;
-}

_:privacy-graph-body {

:requests-reql a scip:AccessRequest ;
scip:dataRequestor _:researcher-2 ;
scip:dataSender _:researcher-1 ;
scip:dataSubject _:patient-1234 ;
scip:requestedDataltem _:patient-1234-CTScan ;
scip:requestedPurpose _:purposes-treatment ;

-}

© 00 N U W N

=
o

e e
D U W N

Listing 3.2: Privacy Event Graph

A signature event graph (Listing 3.3) is used for integrity verification and
provides participant non-repudiation so that data sharing actions cannot be
denied. A data sender’s digital signature of a data sharing and privacy event
graph is captured in the signature event (line 6). The signer’s public key used
to verify the signature can be obtained through the signer’s WebID [62] in line
5. The signed data sharing and privacy event graphs are referenced in line
7. Information describing how to verify the signature is also asserted in the
graph, such as signing algorithms used (the full set of triples can be found in
Section A.1 of the Appendix). The specific algorithm for computing digital
signatures for graphs is described further in Chapter 4.

1 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .
2 _:sig-graph {

3 # graph signing methods omitted

4 _:sig-graph a sig:Signature ;

5 sig:hasVerificationCertificate <signer/WebID/URI> ;

6 sig:hasSignatureValue "BC3A14C44DEBF82A..."""xsd:string ;

7 12tap:hasSignedGraph _:privacy-graph-header, _:data-sharing-graph . }

Listing 3.3: Signature Event Graph

16

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

3.1.5 Transparency Layer

The underlying technology used at the transparency layer is a blockchain.
Blockchain technology is a suitable candidate to operate at the transparency
layer by providing mechanisms to record tamper-proof data transactions among
multiple untrusted actors through its distributed consensus network [47, 6, 84,
55]. A blockchain is a decentralized database composed of a continuously
increasing amount of records, or blocks, that represents an immutable digi-
tal ledger of transactions [56]. Distributed ledgers allow for a shared method
of record keeping where each participant has a copy of the ledger, meaning
that a majority of participants (i.e., nodes on the network) will have to be
in collusion to modify the records in the blockchain. Each record, or block,
in the blockchain is composed of a header containing a cryptographic hash of
the previous block (forming a chain of blocks) and a payload of transactions.
Blockchain is the technology behind the popular Bitcoin crypto-currency [50],
where the blockchain provides a secure and consensus-driven record of mon-
etary transactions between participants on the network. Similar to how Bit-
coin leverages blockchain, our architecture leverages a blockchain to provide
transparent and tamper-proof data sharing transactions. However, unlike the
popular use of blockchain for crypto-currencies (e.g. Bitcoin [50]), which is
public in nature, our blockchain network is private, or permissioned, since we
are dealing with personal health information and the network participants are
known (i.e., the network is composed of the actors in the collaborative research
environment). Since the network is permissioned, we forgo the computation-
ally expensive cryptographic consensus protocol used in public blockchain net-
works, and leverage participant signature-driven consensus protocols instead.

A data sharing transaction that is generated in the transaction layer is
hashed using a cryptographic hash function to generate an integrity proof of
the data sharing transaction (i.e., data sharing event, privacy event, signing
event graphs). There are numerous methods for computing a digest of Linked
Data graphs (e.g., [44, 12, 63, 22]), but we use the incremental cryptography
approach in [63] since it provides an efficient runtime (Chapter 5 provides
metrics for evaluating digest computation methods for Linked Data graphs).
Incremental cryptography produces an integrity proof of Linked Data graphs
by hashing each statement in the graphs and using a commutative operation
(e.g., multiplication) modulo a large prime number to merge the statement
hashes into an integrity proof. Formally, integrityProof = 11 h(s;)mod(p)
where n is the number of statements in the graphs, h is a cryptographic hash
function (e.g., SHA-256), s; is a graph statement, and p is a large prime
number.

The data sharing transaction integrity proof is stored on the blockchain to
have an immutable record of the transaction and for actors to be aware of the
transaction. To store the integrity proof on the blockchain, we must define a

17

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

specific transaction for the network. A transaction in the transparency layer in-
volves generating and storing a tuple t = (integrity Proof, sender, receiver, tx
Type) on the blockchain. The tuple serves as a tamper-proof record of the data
sharing transaction and is composed of an integrity proof of the data sharing
transaction, the sender and receiver of the transaction (e.g., researcher, Al
system), and the transaction type (i.e., Thointer OF Toutcome)-

The transparency layer supports human-in-the-loop functionality, even for
patients as the data contributors in the collaborative health research envi-
ronment. Inherent to blockchain technology, all participants in the network
contribute and maintain the ledger of transactions. Therefore, all participants
can audit data sharing transactions by verifying the integrity proofs on the
blockchain and querying privacy events in the transaction layer to determine
compliance and adherence to DSA policies and consent directives. We also
leverage smart contracts (programs that run on a blockchain network and all
participants can interact with) to encode and enforce DSA constraints that
are part of contractual obligations.

3.2 Privacy, Security & Trust

In this section, we discuss how our architecture addresses important privacy
and security properties in the health research domain. We then summarize the
trustworthiness of the architecture in terms of our defined trust requirements.

Accountability and Transparency. Information accountability is an im-
portant aspect of privacy protection and has three main characteristics: vali-
dation (verifies a posteriori if tasks were performed as expected), attribution
(finding non-compliant participants), and evidence (supporting information of
non-compliant acts) [69, 14]. In order to support accountability, our archi-
tecture captures privacy events in the transaction layer that records deontic
modalities such as privacy policies, purpose of data usage, obligations, and
data access activities as described in [61]. Although the privacy events do
not provide enforcement of the participants’ performed acts and does not
guarantee the accuracy of the reported actions, the privacy events provide a
mechanism to express actions that can be effectively audited. The transparent
flow and exchange of information in health research is an important factor in
determining the compliance of participants in the research environment. Our
architecture supports transparency through the use of blockchain technology
to allow all participants to query when, what, by whom and why data is be-
ing shared in the entire data lifecycle. The transparency layer supports the
concept of human-in-the-loop by allowing all participants to actively audit the
sharing of private health data.

Confidentiality and Integrity. The confidentiality of private health data

18

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

is achieved through the use of encryption. Since our architecture relies on
the sharing of data pointers, the actual data records do not leave their secure
storage in data repositories at hospitals and research institutes. The data
accessible through the pointers are encrypted at rest in the repositories. For
example, the data repositories leverage a public key infrastructure (PKI) to
encrypt the data with the data sharing recipient’s public key, where only the
recipient can decrypt the data using their private key. The integrity of the
data sharing transactions is guaranteed by the integrity proofs that are stored
on the blockchain in the transparency layer. Since the blockchain provides a
tamper-proof storage mechanism for the integrity proofs, the integrity proofs
in the blockchain can reliably be used for data sharing transaction integrity
verification purposes.

Authentication and Access Control. To support authentication, the
transparency layer utilizes a permissioned blockchain network that allows only
authenticated participants (e.g. patients, researchers, hospitals) whose iden-
tity is verified through a PKI to transact and query the blockchain. A PKI
allows our network to leverage a multi-signature consensus mechanism where
n out of m (where n < m and n > 1) signatures are required to validate trans-
actions. Unlike proof-of-work consensus mechanisms [50] that are employed in
public blockchain networks, a signature consensus only requires a majority of
participant signatures to determine valid transactions and write data to the
blockchain. Our architecture employs access control mechanisms to prevent
unauthorized users from accessing private health data. Specifically, the access
decision for participants who can perform data sharing transactions (e.g., write
transactions to the transaction layer’s endpoint or generate a data pointer in
the data layer) is determined at the respective layers through mechanisms
such as keys, certificates, tokens, passwords, and institutional access control
mechanisms. Data sharing transaction types are limited to specific users, for
example, T,uicome transactions are only performed by Al systems and only
authorized users, such as researchers, can view the results, whereas Tinter
transactions can be performed by any user (e.g., researcher or Al system).
Since each network participant can be identified through digital signatures,
participant authentication and transactions can be verified.

Trustworthiness. To determine the trustworthiness of our proposed system,
we must examine how each of the architectural components addresses the six
trust requirements outlined in Section 3.1.1. Our proposed architecture is
composed of three modular layers, transparency, transaction, and data, so we
examine each of the layers in terms of each trust property.

The transparency layer’s key feature is the use of a permissioned blockchain,
which means this layer must support all six properties. In terms of confiden-
tiality and integrity, the blockchain supports encrypted data over the network

19

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Table 3.2: System Trustworthiness Summary

Architectural Conf. | Integrity | Auth. | Non-rep. | Acc. Avail.

Component
Transparency v v v v v Out of
Layer Scope
Transaction v _ v v v Out of
Layer Scope
Data Layer v - v B B Que of
Scope

and provides an immutable digital ledger of transactions. A permissioned
blockchain network supports authentication and access control through net-
work entity identification (i.e., digital signatures, certificates). All transactions
on the network are digitally signed to achieve non-repudiation. A blockchain
supports the transparency and accountability of participants on the network
since all data interactions are stored on the blockchain and all transactions are
verified through a consensus protocol. Furthermore, all data transformations
and interactions across the research pipeline can be audited by the blockchain
network participants.

The transaction layer operates as a data query endpoint, which provides
confidentiality through data at rest encryption services. Only authenticated
and authorized users can interact with the transaction layer to store data relat-
ing to data sharing events. Non-repudiation is achieved since all data sharing
events stored in the transaction layer are digitally signed by the event genera-
tor. All data sharing events capture the provenance and privacy information
relating to each individual data sharing event to capture the accountability of
all actors participating in the sharing of data. Data sharing event integrity is
not directly supported in this layer, rather the integrity proof of the transac-
tion is preserved in the transparency layer.

The data layer offers data pointer generation services and provides the
secure storage for the actual data records. By leveraging data pointers, we
support the access control mechanisms enforced at local hospitals where the
actual data records reside. Furthermore, the FHIR data pointer framework
supports the authentication of users and provides role-based (RBAC) and
attribute-based (ABAC) access control mechanisms [29]. The data pointer
repositories also support confidentiality by providing encryption services to
protect the data at rest. Similar to the transaction layer, the data layer does
not directly achieve integrity, non-repudiation, and accountability, rather these
properties are indirectly captured in the transparency and transaction layers.

Table 3.2 provides a summary of the system trustworthiness in terms of
the six requirements for establishing trust. Although we achieve many of the
requirements for establishing trust, there are some limitations with respect to

20

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

the trust properties. We discuss these limitations in the adversarial threat
characterization of Section 3.3.1.

3.3 Evaluation

In this section, we first enumerate an adversary’s capabilities when interacting
with our architecture (Section 3.3.1). Then, we investigate our system’s re-
siliency to common security threats using an industry standard threat model
(Section 3.3.2). We then experimentally evaluate the realization of our archi-
tecture in Section 3.3.3.

3.3.1 Adversarial Threat Characterization

We classify the goals of an adversary as compromising the confidentiality or
integrity of the private health data. An adversary compromises the confiden-
tiality of the data by having unauthorized access to and reading plaintext
data, whereas an integrity compromise refers to the malicious and unintended
manipulation of the data. In terms of data confidentiality, our architecture
relies solely on the sharing of data pointers rather than the actual private data
records. Since we leverage FHIR as our data pointers, we rely on the insti-
tutional access control mechanisms to manage users’ access rights when using
the pointer to read the data. The data behind the pointer is encrypted at the
data source. Although, the data pointer itself is not encrypted for auditing
purposes, we can apply obfuscating techniques to the pointer so that no po-
tentially private information is leaked through the URL. Since we utilize an
immutable ledger in the form of a blockchain, all transactions have immutable
integrity proofs stored in the blockchain. Attempts made by the adversary
to perform retrospective modification of any transaction records will fail the
integrity verification process in the transparency layer.

Based on the design of our proposed architecture, in a worst-case scenario,
we assume that an adversary has three attack surfaces to potentially exploit:
the transparency, transaction, and data layers. Since a blockchain serves as
our transparency layer, the adversary would have to successfully become a
participant in the blockchain network to potentially exploit attacks. However,
we leverage a private (permissioned) blockchain network where participants’
identities are known and participants are granted certificates for digital sig-
natures through a certificate authority. Therefore, a more likely attack vec-
tor is from an insider adversary, where they have successfully enrolled in the
network. In fact, in this case, the consensus mechanism leveraged by the net-
work can prevent an adversarial participant in the network from exhibiting
malicious behaviour since all transactions must be verified and accepted by

21

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

network participants. Majority-based consensus protocols give rise to a ma-
jority attack on the network, where 51% of the network must be adversarial
to overcome the benign nodes, but these majority attacks are more common
in public blockchain settings rather than private settings (due to the different
consensus protocols used) [9].

At the transaction layer, although the confidentiality and authenticity of
the transactions are supported, an internal attacker has the opportunity to
generate and inject fake data sharing events (e.g., to possibly to hide non-
compliant actions) into the system to subvert the verification process. Since
collaborating participants perform data sharing transactions with each other,
an internal attacker could create events that do not represent the true data
transformation or activity that occurred (e.g., an adversary could create a fake
and misleading privacy event). However, through retrospective auditing and
the fact that all network participants are known, the adversary will be caught
and identified by their digital signature (assuming the signing key was not
stolen or the adversary is not masquerading as another entity). Furthermore,
to be successful, an attacker would have to generate and sign a fake data
sharing transaction, store the events in the transaction layer, calculate an
integrity proof, and have the integrity proof transaction successfully verified
and accepted by participants on the blockchain.

The data layer relies on the institutional-based protection mechanisms for
preventing adversarial threats. Since the data layer stores the actual data
records, it makes a prime target for an adversary to access private patient
data. For this reason, we only interact and store pointers to this data in
subsequent architectural layers so that hospitals and research institutes (i.e.,
data custodians) remain in operational control of their data and can apply
their security policies to provide the safe and secure storage of data.

3.3.2 Threat Model Assessment

We assess our architecture using the Spoofing, Tampering, Repudiation, Infor-
mation disclosure, Denial of Service, Elevation of privilege (STRIDE) threat
classification methodology developed by Microsoft [48].

Spoofing. Since we leverage secure PKI, users cannot masquerade as another
user (unless their private key has been exposed).

Tampering. Since we leverage a blockchain, the integrity proof stored in the
blockchain cannot be altered. A data sharing transaction that is tampered
with in the transaction layer can be detected by verifying the integrity of
the transaction since there is an immutable integrity proof of the transaction
stored in the blockchain.

Repudiation. All data sharing transactions are digitally signed by the ini-
tiator of the transaction, so users cannot deny the actions they have taken

22

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

:/ Data Layer ‘: [Transaction /," Transparency Layer
i i Layer 1 e
Researcher A /
= :'
T 9 ! Integrity Proof ' -
X + Tx metadata 1 Hospital A
|
|
Invoke |
\ ! i ! . ervice
i b b Query | Hospital B
I i :. \
1 [! |
| o i !
s 2. |
[v "
L P i\ ' ResearcherB | Hospital C
[[H \

Figure 3.4: Architecture Realization

(assuming signing keys are not compromised).

Information disclosure. Since our architecture relies on sharing data point-
ers rather than actual data records, the likely-hood of a data record privacy
breach is reduced. In the case of data leakage to unauthorized parties, the
URL used to access the data can be terminated so that the data cannot be ac-
cessed through that URL. Access to the data at the URL is governed by secure
access control mechanisms at the data source (password protection, one-time
password generation, data is encrypted, etc.).

Denial of Service (DoS) and Elevation of privilege. These types of
threats are out of the scope of our architecture and we rely on external mech-
anisms to address these threats.

3.3.3 Experimental Realization

We map our proposed architecture in Figure 3.1 to existing and emerging tech-
nologies to demonstrate the feasibility of such a system in a realistic collabora-
tive health research environment. The technological realization is depicted in
Figure 3.4. The data layer is mapped to a FHIR server from hospital informa-
tion systems (HIS) that provide the data pointer services. A quad store with
a SPARQL query endpoint (Virtuoso Universal Server [52]) is used for the
transaction layer where the data transaction graphs are stored (and accessible
through SPARQL queries). The transparency layer requires a permissioned
blockchain network, so we utilized the Hyperledger Fabric blockchain plat-
form [76].

We simulated a collaborative health research environment by running mul-
tiple virtual machines (VM), representing different actors, on a high perfor-
mance cloud. Each VM is an Ubuntu 16.04.3 LTS instance with 1 VCPU
(Intel Pentium IIT Xeon processor at 2.3 GHz) and 4 GB of memory. In par-
ticular, our Hyperledger Fabric blockchain network (v1.0.6) is composed of

23

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

1,000 Ja 800 /_’
m’d e

_ 600 o

o
400 /1/

*J;l | 200 //A
AJ‘?]l

0 ok
0 200 400 0 200 400
of Transactions # of Transactions

(a) (b)

Figure 3.5: Elapsed Execution Times For a) Data Sharing Transaction Gen-
eration and b) Integrity Verification

200

Time [s]
Time [5]

three organizations (representing research institutes or hospitals) with each
organization running two peers, as shown in Figure 3.4. The Fabric network
also has a dedicated VM running as the network orderer and is attached to a
Kafka-Zookeeper ordering service (for providing efficient transaction and block
ordering). Hyperledger Fabric is capable of running smart contracts, or chain-
code, and we created a DSA chaincode that enforces simple DSA constraints.
Specifically, we encoded data retention periods found in DSAs and the chain-
code rejects transactions that fall outside of some date range asserted by the
DSA. Hyperledger Fabric stores data in the blockchain as key-value pairs, so
in the case of our tuple defined in Section 3.1.5, we map the integrity proof as
the key and the remaining tuple elements as the value (represented as a JSON
object). To realize the human-in-the-loop concept, we used a blockchain vi-
sualization dashboard (Hyperledger Explorer [75]) to invoke transactions and
perform transaction- and block-level queries.

We performed two experiments to measure the scalability of the architec-
ture as the number of transactions increases in the research environment using
the architecture realization in Figure 3.4. The first experiment is from the
perspective of actors that want to generate data sharing transactions and in-
volves generating a data sharing transaction event (composed of the graphs in
Section 3.1.4), storing it in the transaction layer, computing an integrity proof
of the event (using incremental cryptography) and writing the integrity proofs
to the blockchain (integrity proof computation methods are further described
in Chapter 5). The second experiment is from the perspective of those who
want to audit the transactions (i.e., verify transaction integrity) and involves
querying the transaction layer for a data sharing transaction event, recomput-
ing the event’s integrity proof, querying the blockchain for the integrity proof
and verifying the integrity. The elapsed execution time of both experiments
is plotted in Figure 3.5. Each reported elapsed time is the average of three

24

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

independent executions. It can be seen that the graphs validate the linear
time growth of both perspectives.

3.4 Conclusion

In this chapter, we presented our proposed architecture to support verifiable
trust in collaborative health research environments. We demonstrated how
we can leverage existing technologies to support secure data sharing trans-
actions in a data intensive research environment. In particular, we utilized
the distributed and consensus-driven nature of permissioned blockchain net-
works to facilitate data sharing transactions and allow all participants in the
environment to audit the transactions. By capturing the provenance of all
data transformations in privacy events and storing records of transactions on
a blockchain, our architecture supports the transparency of all data sharing
transactions. The blockchain’s distributed network allows all participants to
be involved in the research process. Furthermore, the human-in-the-loop re-
search paradigm is supported by making all data transformations transparent
and auditable. In the next chapter, we expand on the privacy auditing aspect
of the architecture to incorporate tamper-proof integrity verification mecha-
nisms and non-repudiation.

25

Chapter 4

Blockchain Enabled Privacy
Audit Logs

As described in Chapter 3, to support accountability, we maintain the privacy
of each data contributor through the use of privacy audit logs. However, col-
lusion can occur between individuals in the organizations, such as researchers
in the research teams, and the auditors to obfuscate or modify the integrity of
the generated logs. The resulting degraded trust placed in the auditing pro-
cess is a problem that needs to be solved in order to prove that organizations
are responsible for privacy breaches resulting from non-compliant actions or
to prove that they are compliant with the policies. In order to combat the
potential modification of the logs due to collusion, a mechanism to provide
tamper-proof audit logs is needed [4, 66]. This chapter describes a method
that leverages blockchain technology to create tamper-proof audit logs that
provides proof of log integrity and non-repudiation. Section 4.1 presents how
privacy audit logs are generated and the design requirements for tamper-proof
logs. Our solution to generate tamper-proof privacy audit logs is described
in Section 4.2. Section 4.3 presents a SPARQL-based solution to perform log
integrity verification. In Section 4.4, the results of an experiment to validate
the scalability of our method is given. Concluding remarks are discussed in
Section 4.5.

4.1 Properties of Tamper-proof Privacy Logs

Privacy auditing addresses three characteristics of information accountability:
validation, attribution, and evidence [81, 14]. Validation verifies a posteriori if
a participant has performed the tasks as expected, whereas attribution and evi-
dence deal with finding the responsible participants for non-compliant actions
and producing supporting evidence, respectively [81, 14]. To address these

26

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Integrity \ﬂﬂ | Audit Log | |Auditor |

Preserver Privacy log event e,

. Signed event e; N
Logger | | Audit Log | | Auditor | Integrity proofof >
signed evente;
i R d of integrit f
Privacy log evente; ecord of integrity proo R
—
1 1 1
1 Privacy log evente, o
Privacy log evente, Signed event e,,
» Integrity proof of >
Compliance query signed evente,
Record of integrity proof

“ Compliance query

(a) Privacy Audlt LOg Generation Log integrity query
PrOCGSS Signature verification

of signed log events

(b) Tamper-proof Log Generation Process

Figure 4.1: Privacy Audit Log Generation Comparison

characteristics, privacy audit logs need to capture events with deontic modal-
ities, such as capturing privacy policies, purpose of data usage, obligations of
parties, and data access activities. A privacy audit log generation process is
depicted in Figure 4.1a. The process is composed of a logger producing log
events of promised and performed privacy acts and storing them in an audit
log accessible to auditors. The logger generates multiple privacy log events (e;
to e,) over time (e.g., expressing privacy policies, requesting access and access
activities). An auditor can then perform compliance queries against the audit
log to determine if the performed acts are in compliance with the policies in
the governing DSA (e.g., the scenario in Figure 1.1 and the sequence diagram
in Figure 3.2) [60].

There are a number of proposals on logs for supporting privacy auditing
[2, 11, 77]. In this research, we utilize the L2TAP privacy audit log because it
provides an infrastructure to capture all relevant privacy events and provides
SPARQL solutions for major privacy processes such as obligation derivation
and compliance checking [60]. The L2TAP model follows the principles of
Linked Data to publish the logs. By leveraging a Linked Data infrastructure
and expressing the contents of the logs using dereferenceable URIs, the L2TAP
audit log supports extensibility and flexibility in a web-scale environment [60].
In this research we extend the L2TAP ontology to support non-repudiation
and log event integrity:.

4.1.1 Tamper-proof Privacy Audit Log Desiderata

An event in a privacy audit log needs to be non-repudiable so that the per-
formed act cannot be denied and the authenticity of the event can be provably

27

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

demonstrated. For example, in the scenario in Figure 1.1, if an auditor de-
termines that the researchers have performed non-compliant actions, there is
no provable method of holding the researchers accountable for their performed
acts. Furthermore, after being logged, log events should not be altered by any
participant, including the logger and auditor. If the researchers and auditors
act in collusion to hide non-compliant acts in the log to avoid consequential
actions, the resulting log does not represent the true events. Without a mech-
anism to provably demonstrate that the integrity of the log is intact, there will
be a significant lack of confidence in the auditing process [4, 66]. The privacy
audit log should enable the logger to digitally sign an event to support non-
repudiation. The log should also offer a mechanism to preserve the integrity of
log events (e.g., hashing or encryption). Verifying the signature of an event will
prove the authenticity of the event logger. The ability to verify the integrity of
the log events will result in a genuine audit of the participant’s actions, since
the performed actions (events) in the log are proven to be authentic.

Figure 4.1b depicts the additional steps required in the privacy audit log
generation process to support event non-repudiation and integrity. The log is
generated by the logger, but an additional entity, the integrity preserver, is
required. After a log event is generated, the event must be signed by the logger
to support provable accountability. Integrity proof digests (i.e. cryptographic
hashes) of the log events should be generated and stored by the integrity pre-
server as the immutable record of the integrity proof. These records can then
be retrieved to enhance the process of compliance checking with log integrity
verification.

Besides the functionality described above, the tamper-proof privacy audit
log should preserve the extensibility, flexibility and scalability of the underly-
ing logging framework (i.e., L2TAP). We achieve flexibility through the Linked
Data and SPARQL based solution for the log verification. The extensibility is
addressed by a limited extension of the L2TAP ontology and using other exter-
nal ontologies through the modular structure of L2TAP. As demonstrated in
[60], the L2TAP privacy audit log is scalable. The additional verification pro-
cesses introduced in this chapter to make the log tamper-proof should preserve
the scalability.

4.2 Blockchain Enabled Privacy Audit Logs

In situations where a central authority has control over information resources,
the trust placed in that authority to maintain correct and accurate informa-
tion is reduced because there is no provable mechanism for external entities to
verify the state of the resources. Blockchain technology solves the trust prob-
lem by maintaining records and transactions of information resources through
a distributed network, rather than a central authority [33, 38]. The use of

28

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

blockchain technology to create an immutable record of transactions is analo-
gous to the auditing problem we are trying to solve; the need for the immutable
storage of information that is not governed by a central authority. In this sec-
tion, we present how our blockchain enabled privacy audit log model works. We
start with a brief background on the blockchain technology leveraged by our
model, the Bitcoin blockchain, in Section 4.2.1. We describe the architecture
of our model in Section 4.2.2. Sections 4.2.3 and 4.2.4 present the signature
graph and block graph generation components of our model, respectively.

4.2.1 Bitcoin Blockchain

The Bitcoin system [50] is a crypto-currency scheme based on a decentralized
and distributed consensus network. Transactions propagate through the Bit-
coin peer-to-peer network in order to be verified and stored in a blockchain.
Transactions are written to the blockchain through data structures that con-
tain an input(s) and output(s). Monetary value is transferred between the
transaction input and output, where the input defines where the value is com-
ing from and the output defines the destination. The Bitcoin blockchain allows
a small amount of data to be stored in a transaction output using a spe-
cial transaction opcode that makes the transaction provably non-spendable
[16]. Using the OP_RETURN opcode available through Bitcoin’s transaction
scripting language! allows up to 80 bytes of additional storage to a transaction
output [5]. Changes to the state of the blockchain are achieved through a con-
sensus mechanism called Proof of Work. Transactions are propagated through
the Bitcoin network and specialized nodes, called miners, validate the transac-
tions. These miners generate new blocks on the blockchain by solving a hard
cryptographic problem and the other nodes on the network verify and mutu-
ally agree that the solution is correct. As more transactions and blocks are
generated, the difficulty of the cryptographic problem rises, which makes the
tampering of data written in the blocks very difficult. A blockchain explorer
application programming interface (API) is required to query transaction in-
formation on the Bitcoin network. A blockchain explorer is a web application
that acts as a Bitcoin search engine, allowing users to query the transactions
and blocks on the blockchain [5]. We utilize this queryable special transaction
to store an integrity proof of privacy audit logs on the Bitcoin blockchain.

4.2.2 Architectural Components

A blockchain is well suited to fill the role of the integrity preserver in the
tamper-proof log generation process in Figure 4.1b. We use the capabilities

'https://en.bitcoin.it/wiki/Script

29

https://en.bitcoin.it/wiki/Script

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Logger
i s) Bitcoin
uditor 1 ignature Graph Blockchain
CA
Generation E

Log Integrity

7
Verification Quad store 13 4 [oitcoin Client o
6 Block Graph
Generation 5 1 Blockchain | 5 Blockchain

' RESTFUl AP] Explorer

Figure 4.2: The Architecture of the Model

provided by the Bitcoin blockchain to store an immutable record of the log in-
tegrity proofs. The logger generates privacy log events and signs these events.
After producing integrity proofs of the signed events, each of the proofs will
be written to the Bitcoin blockchain through a series of transactions. The im-
mutable record of the integrity proofs on the blockchain will be retrieved us-
ing a blockchain explorer. The components for signing log events and creating
Bitcoin transactions are signature graph generation and block graph generation
illustrated in Figure 4.2 and described below.

The signature graph generation component is responsible for capturing the
missing non-repudiation property of the L2TAP audit log framework. An
L2TAP audit log is composed of various privacy events such as data access
requests and responses. The log events consist of a header that captures the
provenance of an event and a body containing information about the event,
such as what data is being accessed by whom. URIs are used to identify a set
of statements in the header and body to form RDF named graphs stored in a
quad store [13]. We generate a new named graph, called the signature graph,
that contains assertions about the event’s signature. The event that will be
signed is pulled from the quad store and signed by the logger (flow 1). There
needs to be a public key infrastructure (PKI) with certificate authorities (CA)
in place where the logger has a generated key pair used for digital signatures
(flow 2). The computed signature and signature graph will be passed to the
block graph generation component to be part of the integrity proof digest
computation (flow 3).

The block graph generation component conducts transactions on the Bit-
coin network to write the integrity proof digest to the blockchain. The logger
uses a Bitcoin client to create a transaction containing the integrity proof
digest (flow 4). After the transaction is written to the blockchain, the transac-
tion data is queried through a RESTful request [58] to a blockchain explorer
API (flow 5). The queried data is parsed to an RDF named graph, called
the block graph. The block graph contains the integrity proof digest and in-
formation identifying the block containing the transaction on the blockchain.
After the block graph has been generated, it is stored in a quad store in order
for an auditor to perform log event integrity and signature verification queries

30

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

(flows 6 and 7, respectively). Generating a block graph reduces the burden
on the auditor when performing log integrity verification since all of the event
integrity proofs are stored in a quad store. Without the block graphs, the
auditor would have to search the entire Bitcoin blockchain for the integrity
proof digests. Since the Bitcoin blockchain is a public ledger, there are many
transactions unrelated to the auditor’s search, which would make this method
of searching inefficient. An alternative approach is to use a full Bitcoin client
to download the entire blockchain, however in this case the required network
bandwidth and local computing power are major limitations.

The signature graph and block graph generation components require two
ontology modules to be added to the modular structure of the L2TAP ontology.
The Signing Framework signature ontology [31] expresses all of the necessary
algorithms and methods required for verifying a signature. The BLONDIE |78,
19] ontology semantically represents the Bitcoin blockchain. We also need to
extend the L2TAP ontology to capture the signature graph and the signed log
event. The new hasSignedGraph property in the L2TAP-participant module
links the signature graph and signed event graph. An L2TAP log event body is
dereferenced in the corresponding event header through the L2TAP eventData
property. The signature graph just needs to reference the event header since
there is an assertion between the body and header that the two graphs belong
to the same event. The existing structure of L2TAP allows other components
of the tamper-proof auditing to be asserted when a new log is initiated. For
example, if a log uses Symantec? as the CA this can be included as a triple in
the body of the log initialization event. The extended ontology is available on
the tamper-proof audit log section of the L2TAP ontology website®.

4.2.3 Signature Graph Generation

The process that the logger of an event has to take to compute a signature and
generate a signature graph is formalized in Algorithm 1. The input parameters
are the log event ¢ header RDF graph, hg;, body, bg;, and the logger’s private
key, sk. Our algorithm follows the process of signing graph data in [32], which
includes: canonicalization, serialization, hash, signature, and assembly [34, 32].
We can omit the canonicalization and serialization steps as we can assume our
graphs are in canonicalized form and are serialized in the TriG syntax [7].

’https://www.symantec.com
Shttp://12tap.org

31

https://www.symantec.com
http://l2tap.org

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Data: Event header graph: hg;, event body graph: bg;, private key: sk

Result: Signature graph: sg;
1 Triples < (extractTriples(hg;) U extractTriples(bg;)) ;

|Triples|
2 Hash <+ H h(t; € Triples)mod(p) ;
j=1
3 Sig < Sign(Hash, sk) ;
4 sg; « assembly(Sig) ;
5 return sg;
Algorithm 1: Signature Graph Generation Algorithm

The first step in Algorithm 1 is to compute the hash of the input event
header, hg;, and body, bg;. We use incremental cryptography and the graph
digest algorithm [63] to compute the digest of hg; and bg;. Since the order-
ing of triples in the RDF graph is undefined, the graph digest computation
involves segmenting the input into pieces, using a hash function on each piece,
and combining the results [63]. In line 1 we extract the triples from hg; and
bg; into the set of triples, Triples, so that incremental cryptography can be
performed on each triple. In line 2, a set hash over all of the triples in Triples
is computed using a cryptographically secure hash function (e.g., SHA-256) to
produce a hash of each triple [63]. This triple hash is reduced using the modulo
operation by a sufficiently large prime number, p (the level of security depends
on the size of the prime number [63]). Each of the triple hashes are multiplied
together, producing the Hash value in line 2 as the resulting header and body
graph digest. After constructing the graph digest, the logger generates a sig-
nature, Sig, by signing the digest using the Elliptic Curve Digital Signature
Algorithm (ECDSA) in line 3. ECDSA uses smaller keys to achieve the same
level of security as other algorithms (such as RSA), resulting in a faster signing
algorithm. In the final step we generate the triples of the signature graph as
a new named graph using the assembly function. The triples in this graph
contain the signature value and algorithms for verifying the signature [32].

1 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .
2 @prefix 12tapp: <http://purl.org/l2tapp#> .
3 _:log-sig-1 {
triples omitted describing graph signing methods
_:log-sig-1 a sig:Signature ;
sig:hasVerificationCertificate <signer/WebID/URI> ;
sig:hasSignatureValue "MEUCIQC44Qy208Mx..."""xsd:string ;
12tapp:hasSignedGraph _:log_hl . }

el B S

Listing 4.1: Signature Graph

Listing 4.1 illustrates an example signature graph generated using Algo-
rithm 1. Analogous to work presented in [34], we also use the Signing Frame-
work signature ontology [31]. Lines 5-8 in this listing contain the signature

32

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

triples. Line 6 contains the WebID [62] where the signer’s public key can be
acquired [34]. The log event signature, Sig, is identified in line 7. Line 8 ref-
erences the log event header that is signed. The signature graph also contains
triples describing the algorithms required to verify the signature, which are
included in the extended set of triples in Section A.1 of the Appendix.

4.2.4 Block Graph Generation

Algorithm 2 inputs an event’s signature (sg;), header (hg;) and body (bg;)
graphs to compute and write an integrity proof digest to the Bitcoin blockchain
and generate a block graph. Analogous to Algorithm 1, the triples are ex-
tracted from the input graphs into the set of triples, Triples (line 1), so that
incremental cryptography can be used to compute the integrity proof digest,
H (line 2).

Data: Signature graph: sg;, event header graph: hg;, event body graph: bg;
Result: Block graph: BlockGraph;
1 Triples < (extractTriples(sg;) U extractTriples(hg;) U extractTriples(bg;)) ;
|Triples|
2 H « H h(t; € Triples)mod(p) ;
j=1
Write H to Bitcoin blockchain (using Bitcoin client) ;
md < query block metadata (using blockchain API) ;
BlockGraph; < assembly(md, H) ;
return BlockGraph;
Algorithm 2: Block Graph Generation Algorithm

[= I B N

The next step is to create a Bitcoin transaction using a Bitcoin client?
to write the integrity proof to the Bitcoin blockchain (line 3). An audit log
requires one transaction per event. The Bitcoin client validates transactions
by executing a script written in Bitcoin’s transaction scripting language. The
language provides the scriptPubKey output and the scriptSig input scripts® to
validate transactions. A transaction in our model contains the OP_RETURN
opcode in the scriptPubKey output (scriptPubKey = OP_RETURN + H)
and the logger’s signature and public key in the scriptSig input (scriptSig =
signature + publicKey). We store the integrity proof digest in the 80-byte
data segment of the OP_RETURN transaction output. The transaction is
propagated through the Bitcoin network for verification.

After the transaction containing the integrity proof digest has been stored
on the Bitcoin blockchain, two queries are performed to retrieve the metadata

‘https://blockchain.info/wallet/#/
Shttps://en.bitcoin.it/wiki/Script#Provably_Unspendable.2FPrunable_Outputs

33

https://blockchain.info/wallet/#/
https://en.bitcoin.it/wiki/Script#Provably_Unspendable.2FPrunable_Outputs

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

of the transaction using the Bitcoin blockchain data API® provided by the
blockchain.info blockchain explorer (line 4). The first query is an HTTP GET
request to https://blockchain.info/rawaddr/$bitcoin_address, where $bit-
coin_address is the logger’s Bitcoin address used to create the transaction.
JSON data is returned containing an array of transactions made from the
specified Bitcoin address. The JSON data is parsed to find the block height of
the block containing the integrity proof digest transaction. The block height is
the number of blocks between the first block in the Bitcoin blockchain and the
current block. The block height can be found in the transaction array using
the transaction’s scriptSig value. The second query is an HT'TP GET request
to https://blockchain.info/block-height/$block height?format=json,
where $block_height is the retrieved block height. This query returns the block
metadata needed to assemble the block graph, such as the hash of the previ-
ous block and timestamp. This information is necessary to build a complete
representation of the block and allow for the block graph data to be easily
verified.

The final step in the algorithm is to use the assembly function to cre-
ate a new named graph, called the block graph, that describes the metadata
about the block containing the integrity proof digest transaction. Listing 4.2
illustrates an example of a block graph output by Algorithm 2, serialized in
TriG. We use the BLONDIE [78] ontology to generate the triples in this list-
ing. The object of each triple is populated with the values extracted from the
blockchain.info queries. Lines 5-9 describe the integrity proof transaction. The
scriptSig value is captured in Line 8 and the hash of the transaction in line 7.
Line 9 holds the integrity proof digest of the event and signature graphs (in
hexadecimal). This value is what an auditor will be querying when conducting
log integrity verification. Additional triples that describe the block header and
payload are omitted here. The full set of triples is included in the appendix
(Section A.2).

1 @prefix blo: <http://www.semanticblockchain.com/Blondie.owl#> .

2 _:exlog-block-1 {

3 _:exlog-block-1 a blo:BitcoinBlock ;

4 # triples omitted describing block header and payload

5 blo:BitcoinTransaction blo:hasBitcoinTransactionInput blo:BitcoinTransactionInput ;

6 blo:hasBitcoinTransactionOutput blo:BitcoinTransactionOutput .

7 blo:BitcoinTransactionInput blo:hashBitcoinTransactionInput "1a2...3fc"""xsd:string ;

8 blo:scriptSignBitcoinTransactionInput "4730440...41d6e6"""xsd:string .

9 blo:BitcoinTransactionOutput blo:scriptPubkeyBitcoinTransactionOutput "6a2848...e46e65"""
xsd:string . }

Listing 4.2: Block Graph

Shttps://blockchain.info/api/blockchain_ api

34

https://blockchain.info/rawaddr/$bitcoin_address
https://blockchain.info/block-height/$block_height?format=json
https://blockchain.info/api/blockchain_api

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

4.3 Log Integrity Verification

The goal of an auditor in a privacy auditing scenario is to check the compliance
of participants’ actions with respect to the privacy policies. The authors in [60]
described a SPARQL-based solution for compliance checking; i.e. answering
the question of, for a given access request and its associated access activities,
have the data holders followed the access policies? This section describes our
extended SPARQL-based solution to enhance the compliance checking queries
described in [60] to include the integrity and authenticity verification of log
events.

For a given L2TAP log, the process of verifying the log integrity and au-
thenticity and compliance checking can be performed in a sequence; i.e., for
all events in the log, first ensure the integrity and authenticity of all events
and then execute the compliance queries for the interested access request.
However, in practice this approach is not desirable as for a fast growing log,
verifying the entire log for each audit query is very expensive (see our exper-
iment in Section 5.3). Alternatively, we can devise an algorithm that verifies
the integrity and authenticity of a small subset of the event graphs for a given
access request. The L2TAP ontology provides compliance checking of a subset
of events through SPARQL queries [59], which the following algorithm can
leverage to reduce the runtime.

Data: Event header graph: hg;, event body graph: bg;, signature graph: sg;
Result: Boolean verification value: v;
1 Triples < (extractTriples(hg;) U extractTriples(bg;) U extractTriples(sg;)) ;
|Triples|
2 H + H h(t; € Triples)mod(p) ;
j=1
URI < Query block graphs for H (Listing 4.3) ;
if URI # () then
‘ v; < verifySignature(sg;, hgi, bg;) ;
else
‘ v; < false ;
end
return v;

© W N o ok W

Algorithm 3: Verification Algorithm

Algorithm 3 formalizes the steps an auditor takes to verify the integrity of
a log event and the event signature prior to checking compliance. The input
parameters are the event header (hg;), body (bg;), and signature (sg;) graphs,
for an event ¢ in the subset of events related to an access request. Assuming
a cryptographically secure hash function is used to recompute the digest, any
modification of the graphs will result in a different digest. If the search of the

35

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

block graphs is successful and the computed digest is found, then the log event
must have remained unmodified [4]. Therefore, the first step in the algorithm
is to recompute the integrity proof digest of the log event. We originally used
incremental cryptography to calculate the integrity proof digest, so the same
method must be used again for computing consistent digests. In lines 1 and 2,
we first extract the triples of the input graphs and compute the integrity proof
digest, H, similar to what we described in Section 4.2.4. The SPARQL query
in Listing 4.3 is executed against the block graphs to find a matching digest in
the scriptPubkeyBitcoinTransactionOutput relation (line 3). This query is
parameterized with the integrity proof digest, H (@integrityProofDigest).
If the query returns the URI of a block graph containing the integrity proof
digest, we proceed to verify the signature in the signature graph (lines 4 and
5). Otherwise, if no matching value is found in the block graphs, we conclude
that the integrity of the log event has been compromised.

1 PREFIX blo: <http://www.semanticblockchain.com/Blondie.owl#> .
2 SELECT ?g WHERE {
3 GRAPH 7g { ?s blo:scriptPubkeyBitcoinTransactionOutput @integrityProofDigest }}

Listing 4.3: SPARQL Query for Integrity Verification

The signature graph of the event can be found through the hasSignedGraph
property. The algorithms used to verify the signature are extracted from the
signature graph triples containing the hashing (i.e. SHA-256) and signing al-
gorithms (i.e. ECDSA). The public key of the logger is retrieved by following
the WebID URL in the hasVerificationCertificate property of the signa-
ture graph. If the signature verification process in line 5 fails, the algorithm
returns false. In the case of no matching integrity proof digest or signature
verification failure, the auditor will know which event has been modified and
who the logger of the event is. However, the auditor will not know what the
modification is, only that a modification has occurred. Therefore, proof of
malicious interference would need further investigation.

Despite the process in this section supporting the confidentiality, authen-
ticity and integrity of a privacy log, the approach is susceptible to an internal
attack to subvert the verification process. However, to be successful, an at-
tacker would have to generate and sign a fake log event, store the event in the
quad store, calculate an integrity proof, store the proof on the blockchain, and
finally generate a block graph pointing to the fake integrity proof block.

4.4 Experimental Evaluation

This section presents a scalability evaluation of our blockchain enabled privacy
audit log model from the perspective of an auditor. In the experiment, we ran

36

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

our integrity checking algorithm on increasingly sized L2TAP privacy audit
logs. Section 4.4.1 describes the synthetic audit log used in the experiment.
In Section 4.4.2, we illustrate the details of the test environment. The results
of the experiment are discussed in Section 4.4.3.

4.4.1 Dataset

To simulate the process of an auditor checking the integrity of an audit log,
we generated synthetic L2TAP logs”. A basic log consists of eight events:
log initialization, participants registration, privacy preferences and policies,
access request, access response, obligation acceptance, performed obligation,
and actual access. The actual contents of these events can be found in [60].
To create a larger audit log, we repeatedly generate the access request events.
Our largest synthetic log, composed of 10,000 events, contains approximately
990,000 triples: 90 triples from the first three events of log initialization, par-
ticipants registration, and privacy preferences and policies, and 989,703 triples
generated from 9997 additional access request events where each access request
leads to the generation of the five remaining events with a total of 99 triples.

The signature and block graph for each event needs to be generated for
the auditor to perform the integrity verification procedure. A log containing
10,000 events would generate the same number of signature graphs, block
graphs, and Bitcoin transactions. In this case, the total size of the dataset
that the auditor would need to process is about 40,000 graphs. The initial
state of the experiment is an audit log containing n events (composed of 2n
header and body graphs) with n generated signature graphs and n generated
block graphs. All of these graphs (4n) would be stored on a server in a quad
store prior to measuring the scalability of the integrity verification solution.
Figure 4.3 illustrates the log sizes used for the experiment, which range from
a log containing 100 events to 10,000 events.

4.4.2 Test Environment

The experiment was run by executing the SPARQL queries on a Virtuoso
[52] server and quad store deployed on a Red Hat Enterprise Linux Server
release 7.3 (Maipo) with two CPUs (both 2 GHz Intel Xeon) and 8 GB of
memory. The RDF graph processing and hash computations in Algorithm 3
were run on a MacBook Pro with a 2.9 GHz Intel Core i7 processor and 8 GB
of memory. The Java method used to measure the elapsed execution time of
the experiment is System.nanoTime(). The execution time is measuring the
time difference between sending the queries to the quad store on the server

"Datasets are available in the figshare repository: https://doi.org/10.6084/
m9.figshare.5234770

37

https://doi.org/10.6084/m9.figshare.5234770
https://doi.org/10.6084/m9.figshare.5234770

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

over HTTP and verifying the integrity proof digest and the signature. The
recorded time does not take into account the time to generate the signature
and block graphs (these were pre-computed before the experiment) or the time
needed to write the data to the Bitcoin blockchain. To account for variability
in the testing environment, each reported elapsed time is the average of five
independent executions.

4.4.3 Experimental Results

In practice, an auditor would operate on a subset of events in the log based
on the results from compliance queries for a given access request. We have
opted to demonstrate a worst-case scenario by verifying the integrity and
authenticity of an entire log rather than a subset of the events. This will also
demonstrate the execution time of large subsets of events that are the size of
the entire logs we conducted the experiment on.

The experiment consisted of retrieving all of the log events and their cor-
responding signature graphs from a quad store deployed on the server. Each
set of graphs were input to Algorithm 3, which computes the integrity proof
digest and executes the query in Listing 4.3 to determine if the integrity proof
could be found in a block graph in the quad store. This procedure was ex-
ecuted on an audit log that contained a number of events ranging from 100
to 10,000, as shown in Figure 4.3. Figure 4.3 also illustrates the number of
graphs that were input to the integrity proof digest computation in line 2 of
Algorithm 3. A log consisting of 10,000 events requires 30,000 (10,000 header,
10,000 body, 10,000 signature graphs) graph digest calculations. A log of this
size will generate 10,000 block graphs as well, which will need to be searched
for the integrity proof.

The elapsed execution time is plotted in Figure 4.3. The graph illustrates
the execution time of verifying the signature, computing and verifying the
integrity of the events, and the overall process. The experiment validates the
linear time growth for the entire integrity checking procedure. It can be seen
that an increase of about 2000 events results in an increase of approximately
7 minutes to the integrity verification procedure. The reported results can be
extrapolated to predict that a log containing an extreme case of one million
events will take approximately 48 hours to perform an integrity check. This
time is relatively small considering the vast amount of triples that would need
to be processed from the event header and body, signature and block graphs
(> 100 million triples). The results of the experiment validate the scalability
of our blockchain solution and demonstrates that the solution can perform
efficiently at the task of verifying the integrity and signature of the audit log
events.

38

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

21}
2,000 —— Integrity Proof
Signature # of .
1,500 —H— Overall i # of Events| Graphs for Ex.ecutlon
= Hashing Time (s)
£ 1,000 98 294 23.19
< 1998 5994 432.15
500 3998 11994 851.28
5998 17994 1311.51
7998 23994 1743.78
0 2 1 6 8 10 9998 29994 2191.06

of Events (in thousands)

Figure 4.3: Elapsed Execution Times for Integrity and Signature Verification

4.5 Conclusion

In this chapter, we proposed an extended privacy audit log model that supports
non-repudiation and integrity verification. We supplement an existing privacy
audit log framework with capabilities to support non-repudiation through the
use of Linked Data-based digital signatures. Loggers digitally sign all gener-
ated privacy events so that the actions they have performed cannot be denied
and responsible participants for non-compliant actions can be identified. In-
tegrity verification is supported through the use of integrity proofs that allow
auditors to determine if privacy events in the log have been maliciously tam-
pered with to hide non-compliant actions. We demonstrate how leveraging
blockchain technology, in combination with event integrity proofs, can pro-
duce a tamper-proof log generation process. The algorithm we employed to
generate our event integrity proofs is one of many integrity proof algorithms to
choose from. In the proceeding chapter we investigate the methods for gener-
ating integrity proofs of datasets and provide a set of metrics that can be used
to determine effective algorithms for different use cases. Furthermore, we pro-
pose an extension to an existing approach such that, in specific contexts such
as privacy auditing, yields improved query runtime, supports random access,
and preserves the order of data.

39

Chapter 5

Timestamp-based Integrity
Proofs for Linked Data

In Chapters 3 and 4, we relied on existing methods of computing integrity
proofs of RDF datasets. As for any data model, a desirable feature for RDF is
having efficient methods to generate integrity proofs of RDF statements, par-
ticularly when the size of the dataset is incrementally growing. For example,
the Linked Data based log designed for encoding privacy auditing, which we
leveraged in Chapters 3 and 4, constantly grows and the integrity proof needs
to be recomputed to guarantee that the log is tamper-proof and/or supports
non-repudiation [69]. However, in certain contexts, such as privacy auditing,
we can leverage the underlying data semantics to produce integrity proofs with
specific properties.

Current approaches to generate integrity verification (cryptographic hash)
for RDF datasets are either based on incremental methods where a commu-
tative operation (e.g., concatenation or multiplication) is applied to the hash
values of data items (e.g., individual RDF statements or RDF subgraphs) to
produce a hash value for the whole dataset [44, 12, 63, 22] or based on con-
structing different variations of a Merkle tree [46], which is a rooted binary
hash tree where nodes are labeled with cryptographic hashes and the root pro-
vides a hash for the whole dataset [46, 15, 17, 42]. The hash value of an RDF
graph generated using each of the proposed methods carries different proper-
ties. For example, one method may generate the same hash value when the
order of statements in a dataset changes and another might be order sensitive.
The methods may also differ in their running time to generate the integrity
proof of a graph or in supporting an efficient method for pinpointing a specific
RDF statement in a graph that contributes to the computation of a different
hash value for the entire graph.

In this chapter, we investigate the state-of-the-art methods of generating
cryptographic hashes that can be used as integrity proofs for RDF datasets

40

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

and define a set of properties that can be used to compare and select the
appropriate method of generating integrity proofs. We then propose a more
efficient method of computing a cryptographic hash for the special case of
growing RDF datasets where the dataset statements carry some notion of
ordering (e.g., statements are timestamped). In Section 5.1, we present a
comparative analysis of existing methods of generating integrity proofs and
define common properties among these methods. In Section 5.2, the algorithm
for generating a timestamp based integrity proof is described. We compare
our proposed algorithm with nine other integrity proof methods and evaluate
how our algorithm is resistant to security threats in Section 5.3. We conclude
in Section 5.4.

5.1 Integrity Proof Properties

In this section, we perform a comparative analysis between nine methods of
generating a cryptographic hash value for a set of data items that can be used
as the integrity proof for the dataset. We investigate these methods in terms
of six common properties as described below. For the remainder of the paper,
we interchangeably refer to RDF statements (i.e., triples or quads) or RDF
graphs as data items and a collection of statements or graphs as a dataset.

Preserving integrity proof independent to data order. This property
determines if the method for computing a hash value of the entire dataset is
independent from the order of the data items. It is often the case that the same
set of data items are ordered in different sequences. For example, querying a
database may provide the same set of data to different users, but the order of
the data in the query result may be different for each user. In certain scenarios,
such as when calculating digital signatures, it is undesirable for the same set
of data to generate a unique hash value for each possible data item sequence
order. Rather, we would like the hash value to remain data order independent
so that the same dataset, regardless of the order of its data items, generates
the same hash value (assuming that the data items themselves have not been
modified).

Support for random access to a hash value. For this property, we are
interested to investigate if the hash method supports random access (or provide
a notion of indexing) to the hash value of a specific data item. When some
data items are modified in a dataset (intentionally or maliciously) and in turn
the computed hash value of the entire dataset captured the integrity violation,
the ability to efficiently pinpoint hash values of which data items contributed
to the inconsistency of the integrity proof is a desirable property. For example,
in Linked Data-based auditing, where privacy events are represented by RDF
graphs, we need to determine which graph was modified so that auditors can

41

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

focus their investigation on the modified statements. Alternatively, a lack of
random access forces an auditor to examine the entire dataset to pinpoint
altered subgraphs.

Pre-processing and running time. In order to achieve properties such as
calculating data order independent hash values, some methods require data
pre-processing, such as running the data through a sorting algorithm. The
additional pre-processing effort may affect the overall efficiency of the hash
calculation method. Since each hash calculation method requires different
amounts of pre-processing to achieve desirable properties (such as data order
independence), the runtime of each method is an important factor to consider.
Importantly, determining the computational cost of achieving different hash
calculation properties must be examined.

Proof of membership and non-membership. The last property we inves-
tigate is if the hash computation method allows proofs of membership and/or
proofs of non-membership. A proof of membership means that there is way
to determine if a data item is or is not at a given position in the set, with-
out having to store or retrieve the entire dataset. Alternatively, a proof of
non-membership means that we can produce evidence, such as a position or a
path, that a given data item is not present in the dataset, without storing or
retrieving the entire dataset.

In the following subsections, we evaluate the state-of-the-art methods of
computing hash values that can be applied to RDF datasets in terms of the
above properties. The results of our analysis is summarized in Table 5.1.
Columns in this table are ordered according to the appearance of properties
and rows are ordered according to the algorithms and methods described be-
low.

5.1.1 Linked Data Graph Digests

We first discuss two similar methods for computing the digest of Linked Data
(RDF) graphs proposed by Melnik [44] and Carroll [12]. A statement in an
RDF graph is composed of a subject, predicate, object triple. For each state-
ment in a graph, Melnik [44] computes a hash value of a statement’s subject,
predicate, and object, and concatenates the three digests to produce the state-
ment’s digest. Upon computing a digest for each statement, the set of state-
ment digests are sorted, concatenated together, and hashed to produce the
digest of the graph. Similarly, Carroll [12] uses a sort function on the state-
ments, concatenates the sorted statements, and computes the digest. Since
both methods use a sort function, the computed hash value is independent
to the order of the data items, as the same hash value will be computed for
different sequences of the same data. Using concatenation means that there is

42

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Table 5.1: Comparative Analysis of Integrity Proof Methods for RDF Datasets

Algorithm | Order | Indexing | Pre- Run. Mem. | Non- | Ref.
proc. | time mem.
Melnik [44] Y N Y O(nlog(n)) | N N Sect.
5.1.1
Carroll [12] Y N Y O(nlog(n)) | N N Sect.
5.1.1
Sayers et al. | Y N N O(n) N N Sect.
[63] 5.1.2
Fisteus et al. | Y N N O(n) N N Sect.
[22] 5.1.2
Merkle Tree | N Y N O(log(n)) Y N Sect.
[46] 5.1.3
Sorted Y Y Y O(log(n)) Y Y Sect.
Merkle Tree 5.1.4
Position N Y Y O(log(n)) Y N Sect.
Merkle Tree 5.1.5
[42)
History N Y N O(log(n)) Y N Sect.
Merkle Tree 5.1.6
15
Merklix Tree | Y Y Y O(log(n)) Y Y Sect.
[17] 5.1.7

no indexing ability for these methods since there is no key associated with each
data item and the position of each data item in the resulting hash is dependent
on the sort function. Both methods require the use of a sort function, such as
merge sort, which results in a hash computation runtime of O(nlog(n)). Since
all of the data are concatenated when computing the hash value, there is no
way to provide a proof of membership or non-membership without supplying

the whole dataset. These comparisons are summarized in the first two rows of
Table 5.1.

5.1.2 Incremental Cryptography

Sayers et al. [63] and Fisteus et al. [22] utilize incremental cryptography to
compute the digest of Linked Data graphs. Incremental cryptography is the
process of incrementally applying a commutative operation to a set of data
item hash values to produce a hash value for the whole dataset. Sayers and
Fisteus use multiplication as the commutative operation [63, 22]. The hash
value of a graph is computed by hashing the statements of the graph and mul-
tiplying each statement digest together modulo a large prime number [63, 30].
Both methods can compute the same hash value for a set of data indepen-
dent to the data order because of the commutative operation. However, the
consequence of using the commutative operation is that the position of a data

43

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

item in the resulting hash value will be lost, so these methods do not support
proof of membership and non-membership. Since each of these methods uti-
lize incremental cryptography, they do not need to perform pre-processing to
the data (for example, sorting), which is an improvement over the previous
two methods, and results in a runtime of O(n). The third and fourth rows of
Table 5.1 summarize these comparisons.

5.1.3 Merkle Tree

A Merkle tree [46] is used for the integrity verification of an ordered set of data
items. Formally, a Merkle tree is a rooted binary hash tree defined as an undi-
rected graph MT = (V, E), where V is a finite set of vertices (or nodes) and £
is a finite set of edges. The vertex set of MT contains three types of elements,
root, internal, and leaf. An example Merkle Tree is shown in Figure 5.1. The
root node has no parents and is defined as r = h(r.le ftChild||r.rightChild)
and h is a cryptographic hash function (e.g., SHA-256). Internal nodes have
a parent and are defined as n; = h(n;.leftChild||n;.rightChild). A leaf node
has a parent and is defined as l; = h(data;), where data; is a data item. Each
node in the tree is labeled with a hash value. The label of the root h,., is used
to verify the integrity of the data items that a Merkle tree is generated for.
The integrity of a data item can then be verified by reconstructing a portion
of the tree up to the root and then comparing the original root hash with the
recomputed hash. The root hash of a Merkle tree is dependent on the order of
the data items in its leaf nodes. Each sequence of a set of data items results
in a unique Merkle tree and in turn a different hash value for the root node.
To make the Merkle tree order independent, we need to either sort the data
items prior to constructing the tree (Section 5.1.4) or determine an item’s po-
sition while constructing the tree (Section 5.1.7). The fifth row of Table 5.1
summarizes the Merkle tree properties.

5.1.4 Sorted Merkle Tree

If the set of data contains key-value pairs then a sorted Merkle tree can be
constructed. Formally, if we have a dataset D = {(k,d)|k € K,d € D},
where each data item d € D has an associated key k, then we can construct
a Merkle tree where the data items are sorted based on their keys. Contrary
to a Merkle tree where the resulting root hash is dependent on the order of
the data items, a sorted Merkle tree allows the root hash to be independent
of the data order. Since each data item is associated with a key, no matter
what the initial order of the data is, a sort function can be applied to the keys
to order the data into a specific sequence and then construct a Merkle tree on
this ordered sequence of data. However, the sort function requires additional

44

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

pre-processing to get the data into an ordered sequence. Similar to a Merkle
tree, a sorted Merkle tree allows for proofs of membership without revealing or
storing the entire dataset. However, unlike a Merkle tree, a sorted Merkle tree
can provide proofs of non-membership by producing a path in the tree where
the data item should be. Since the data items are sorted, the correct position
of the data item is known. Row six in Table 5.1 summarizes the properties for
a sorted Merkle tree.

5.1.5 Position-Aware Merkle Tree

Mao et al. [42] present a modified Merkle tree called a Position-aware Merkle
tree (PMT) where each node in a Merkle tree can keep track of its relative
position to its parent node. A node n; in a PMT records its position in the tree
and is defined as a 3-tuple (n;.p, n;.r,n;.v), where n;.p is n;’s relative position
to its parent node, n;.r is the number of n;’s leaf nodes, and n;.v is the value of
n; [42]. A PMT allows the generation of an integrity authentication path for
data verification by directly computing the root of the tree without querying
the whole tree structure. Although this approach makes each node cognisant
of its position in the overall tree structure, it does not utilize the underlying
semantics of the data to position the data items in the tree. Similar to a
Merkle tree, a PMT does not provide data order independent integrity proofs
of datasets. Since each node is aware of its position in the tree, data items
can be accessed through the positioning scheme. Proofs of membership can be
achieved since a data item can be checked if it is or is not at a given position
due to the node position data. Unlike a Merkle tree, a PMT requires some
additional processing to record the 3-tuple position index for each node. Row
seven of Table 5.1 summarizes the position-aware Merkle tree properties.

5.1.6 History-Based Merkle Tree

Crosby et al. propose a tree-based history data structure for tamper-evident
logging called a History-Based Merkle tree [15]. The history-based tree is an
append-only tree where loggers add log events to the tree incrementally and
consistency proofs are generated to prove that each addition to the tree has not
altered past additions. However, the addition of data items to the tree does
not preserve the semantic order of the data. If log events are added to the tree
out of sequence, then the resulting root hash won’t be representative of the
specific order of the events. Therefore, the root hash of the tree is dependent
on the order of the data items. Similar to the Merkle tree, a history-based tree
supports indexing and proofs of membership since paths in the tree for each
data item can be produced. These comparisons are shown in the eighth row
of Table 5.1.

45

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

5.1.7 Merklix Tree

A Merklix tree [17] (also known as a Merkle Patricia Tree [20]) is a binary
tree with Merkle and radix tree properties. A radix tree is a search tree where
keys are strings defined by the position of nodes in the tree and all children of
a node share a common prefix of the key. Similar to a Merkle tree, a Merklix
tree labels non-leaf nodes with the cryptographic hash of their children and
leaf nodes with the cryptographic hash of a data item. Unlike a Merkle tree,
a Merklix tree uses a radix tree structure to store elements in the tree by
using a key, where each sub-tree shares a common prefix in their key [17].
A Merklix tree is also a rooted binary hash tree defined as an undirected
graph MXT = (V,E). An example Merklix Tree is shown in Figure 5.2.
The root and leaf nodes are defined the same way as for the Merkle tree.
However, the internal nodes of a Merklix tree are defined as the ordered pair
n; = (hash, key), where hash = h(n;.le ftChild||n;.rightChild) and key is the
common prefix shared among the hash values of n;’s children. Assuming that
the hash values are in binary, node nyq is the subtree of nodes whose hash values
have a common prefix of 0 (e.g., hy, = 001101001... and h;, = 011001110...).
Similarly, node n; is the subtree of nodes whose hash values have a common
prefix of 1 (e.g., hy, = 10110010... and h;, = 11100110...). Note that the order
of the data items in Figure 5.2 differs from the order shown in Figure 5.1,
however, the computed hash value of the root for a Merklix tree will always
be the same for each possible sequence of the nodes’ data items (assuming
the data items have not changed) since the data items will be sorted into the
correct sequence based on their hash values. Another advantage of Merklix
tree is its support for proof of non-membership. Since the position of a data
item in the tree is known based on the key, we can determine if a data item
was part of the dataset used to construct the tree by producing a path in the
tree that would lead to that data item [17].

Although a Merklix tree provides integrity verification proofs of unordered
data, additional computation is required to determine the key and an element’s
position. Furthermore, in certain situations where maintaining the order of
the data is important, a Merklix tree does not guarantee order preservation.
For example, in security logs, preserving the order of events is critical when
conducting forensic analysis and maintaining log provenance. Since a Merklix
tree employs a radix tree structure, the data items will be positioned based on
their hash values rather than some underlying semantic of the dataset. The
last row of Table 5.1 shows these properties.

46

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

hing||ni)

h(ngl||n.)

W(12]1s)

h(datao) h{datai) h(dataz) h(datas) h(datay) h(data,) h(datay) h(datas)

Figure 5.1: Merkle Tree Figure 5.2: Merklix Tree

5.2 Timestamp Tree

In this section we propose an algorithm to construct a sorted Merkle tree
for incrementally growing RDF datasets based on a key that is semantically
extractable from the RDF dataset. Although not all RDF datasets carry a
notion of a key in their dataset, the assumption of finding a key, in special cases,
is reasonable since there are a number of semantic databases built on Linked
Data principles in which capturing provenance assertions of an individual or
collection of RDF statements is necessary. For example, in privacy auditing,
a privacy log event is designed as a named graph [80] that the provenance
assertions about the event include the necessary timestamp of its publication
[61]. This timestamp can be a perfect candidate to be used as the key for the
log event (an RDF named graph). We can leverage this existing feature of the
dataset to create a sorted Merkle tree without additional pre-processing effort
to generate a key or to sort the dataset based on the generated key.

A timestamp tree is an incrementally growing (i.e., append-only) sorted
Merkle tree that uses pre-determined timestamp data as the key for data items
in the tree. Formally, a timestamp tree is a rooted binary hash tree defined as
an undirected graph TT = (V, E). Similar to the trees discussed in Section 5.1,
the vertex set of TT" contains three types of elements, root, internal, and leaf,
where each type is defined as an ordered pair (hash,timestamp). For a root
or internal node n;, hash = h(n;.leftChild||n;.rightChild) and timestamp =
n;.rightChild.timestamp. For a leaf node, hash = h(data;) and timestamp =
data;.timestamp.

We now illustrate the operations in the construction of 77" through the sub-
figures of Figure 5.3, where node updates are highlighted. The construction of
a timestamp tree includes one generate operation followed by n — 1 insert
operations (formally described in Algorithm 4), where n is the number of data

47

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

items at a given time.

Data: Previous timestamp tree: tt;_1, RDF data: d;
Result: Timestamp tree: tt;
TSg, «+ extractTimestamp(d;) ;
position; <— compareTimestamp(T'Sy,, tti—1) ;
newLeaf; < insertData(h(d;), T'Sq,, tti—1, position;) ;
tt; < recomputeParentHashes(newLeaf;, tt;—1) ;
return tt;
Algorithm 4: Timestamp Tree Insertion Algorithm

Uk W N =

Initially, the generate(dy) operation starts the construction of a timestamp
tree as shown in Figure 5.3a, where dj is the first data item. The timestamp
TSy, is extracted from dy and will be used to determine dy’s position in the
tree. Since this is the first stage in the tree generation, there is no position to
determine and d is inserted as the root of the tree and is labeled with hash
of dy, h(dy), and T'Sy,. There are no other nodes in the tree so there are no
parent node hashes to recompute.

At time T7, a new data item d; is available and is inserted in the tree
with the insert(tty,d;) operation in Algorithm 4 (Figure 5.3b). Data item
dy’s timestamp T'Sy, is extracted (line 1) and is compared with each node’s
timestamp in the tree at time Ty (tt) to determine d;’s position (line 2). Since
there is only one node in the tree, T'Sy, is compared with 7'S,,. Assuming that
T'Sq, > TSy, di is inserted to the right of dy as a leaf [; labeled with the hash
of dy, h(dy), and T'Sy, (line 3). Since a new node was inserted in the tree,
the root of the tree must be recomputed. In this case the root from Figure
5.3a becomes leaf [y and a new root r; labeled with the hash of it’s children,
h(lo||l1), and the rightmost child’s timestamp 7'Sy, is computed (line 4). Data
item dy is available at time 7T, and is inserted in the tree (Figure 5.3c). The
extracted timestamp 7Sy, is compared with each node of the tree from 73
starting at the root r;. Assuming that 7'Sy, > T'Sy,, we know that all children
of r; contain timestamps before 7T'S;, so a new root ry is created where the
previous root r; becomes the left child of 7, and dy becomes the right child.

Finally, at time T3, data item dj is inserted in the tree (Figure 5.3d).
Again, the comparison with the extracted timestamp 7T'Sy, is performed on 7y
from 75. Assuming that 7Sy, > T'Sy,, ds will be inserted to the right of d.
Since dy is a leaf [y at Ty, a new internal node n; is created with dy as it’s
left child and ds as it’s right child. Node n; is labeled with the hash of it’s
children, h(ls||l3), and the left child’s timestamp T'S;, and is the right child
of the new root r3. The root r3 updates it’s hash value to be h(ng||ny) and
timestamp to be the right child’s timestamp, 7°S,,. The process of inserting
new data items through timestamp extraction, comparison, insertion, and node
re-computation continues as data becomes available.

48

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

(h(lo[|tr), TS,)

(}L{d[:). 'TS,;“) (h.{d]). 'TS,;L)

(a) (b)

(h(nol|l2), TS1,) (h(no||n1), T'Sn,)

l:h{"r'n) s 'TS;;”)

(h(lo||lr), TA1,)

h{ds). TS,
). T'Sa,) (h(d2), TSa,) TS %), TSa;)

(h(do), T'Say) (h(do), TSa,) (h(d2), TSa,)

(©) (d)

Figure 5.3: Timestamp Tree 7T Generation

Throughout the provided tree generation example, it is assumed that 7Sy, <
TSy, < .. <TSg, This assumption is valid in situations where out of se-
quence data are considered invalid, such as in security and privacy logs. In
such datasets, the new data item is always appended to the tree as the right-
most leaf node since the timestamps are sequentially ordered from left to right
and the current rightmost leaf of the tree has the latest timestamp. In this
case, computation of the hash value of the root node in each increment of a
data item is limited to only recomputing the hash values of the rightmost path
of the tree. For this reason, we store the right child’s timestamp at each parent
to provide a timestamp comparison upper bound so that we can immediately
insert a new data item as the rightmost leaf node of the tree upon performing
a timestamp comparison with the root. However, if in a rare case, insertion
of out-of-sequence nodes is a requirement (for example, due to system latency
where appending out of sequence data items is necessary), this algorithm sup-
ports this type of insertion with the additional cost of comparing timestamps
and following a path to a leaf of the tree depending on where in the tree the
out-of-sequence data item ends up.

49

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

5.3 Evaluation

In this section, we present an evaluation of the timestamp tree in comparison
with other methods outlined in Table 5.1. We perform an experimental eval-
uation of the timestamp tree with the standard Merkle tree and the sorted
Merkle tree in terms of generation and query runtimes. Finally, we discuss
how the timestamp tree can withstand types of security-related threats.

5.3.1 Comparative Analysis

In terms of the six properties we have presented in Section 5.1, a timestamp
tree achieves the ideal set of properties compared to the other methods. A
timestamp tree produces an integrity proof independent of the data order
since it inserts data items into the tree based on underlying data semantics
(i.e., timestamp). Since the data items are ordered in a specific way, a times-
tamp tree supports random access to a hash value since each node in the tree is
indexed with a timestamp key related to the data. Leveraging the semantics of
the data to order the items means that there is no pre-processing cost associ-
ated with applying a sort function to the data or computing an external key for
indexing. The running time for querying and inserting a hash value is only de-
pendent on a subset of the tree, which results in a runtime of O(log(n)). This
runtime is similar to the asymptotic insertion time for Merkle-based binary
hash trees. Proofs of membership and non-membership can also be provided
since paths to leaves in the tree can be determined based on the timestamp
indexing.

We have performed experiments to determine if the additional steps of
the timestamp extraction and comparison in the timestamp tree generation
procedure affects the overall generation runtime. Additionally, we measure the
execution time of querying the tree for auditing related tasks. We compare
the timestamp tree with two similar methods, the Merkle tree and the sorted
Merkle tree. The results of the experiment are detailed below.

Dataset

We leveraged the Linked Data Log to Transparency, Accountability, and Pri-
vacy (L2TAP) privacy audit log framework [61] to generate synthetic privacy
audit log events to compute integrity proofs on. An example log event is
shown in Listing 5.1. The events in an L2TAP log are composed of a header
representing provenance semantics (lines 4-13), and a body describing privacy
semantics (lines 14-23). To construct our dataset, we incrementally generate
log events (Listing 5.1) over time so that each event has a different timestamp.
The publication timestamp for each event is captured in the event header in

20

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

line 11 (this is extracted in the timestamp tree generation). The full listing is
shown in Section A.3 of the Appendix.

1 @prefix 12tap:<http://purl.org/l2tap#> .

2 @prefix scip:<http://purl.org/scip#> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4 _:privacy-graph-header {

5 _:logevent a l2tap:PrivacyEvent ;

6 12tap:eventParticipant _:researcher-2 ;

7 12tap:publicationTimestamp "2018-01-29T12:00:00Z"""xsd:dateTime ;
8 .}

9 _:privacy-graph-body {

10 _:requests-reql a scip:AccessRequest ;

11 scip:dataRequestor _:researcher-2 ;

12 scip:dataSender _:researcher-1 ;

13 scip:dataSubject _:patient-1234 ;

14 scip:requestedDataltem _:patient-1234-CTScan ;
15 scip:requestedPurpose _:purposes-treatment ;
6 ...}

Listing 5.1: Privacy Event Graph

Test Environment

Prior to running the experiment, we generated increasing amounts of the pri-
vacy log event in Listing 5.1 with sequential timestamps. The event graph
hash computation, tree generation, and hash query operations were run on a
MacBook Pro with a 2.9 GHz Intel Core i7 processor and 16 GB of memory.
The tree-based integrity proof methods were implemented in Java and the
System.nanoTime() Java method was used to measure the elapsed execution
time of the experiments. The execution time is measuring the time difference
between constructing variations of Merkle trees and querying hash values in
the trees. The recorded time does not take into account the time to generate
the audit log events (these were pre-computed before the experiment). To
account for variability in the testing environment, each reported elapsed time
is the average of ten independent executions.

Experimental Results

In the context of privacy auditing, it is assumed that all events in a privacy
log have an associated publication timestamp. We want to demonstrate how
leveraging the underlying semantics of the data can improve the Merkle tree-
based integrity proof methods. Specifically, we are interested in evaluating
two aspects of the methods: integrity proof generation and data hash query
runtimes. In this experimental evaluation, we compare our timestamp tree
approach (Section 5.2) with the standard Merkle tree (Section 5.1.3) and the
sorted Merkle tree (Section 5.1.4).

o1

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

50 I T

—= TT
MT

40 |

30 |-

Time [s]

20

of Events (-10°)

Figure 5.4: Tree Generation Runtime

Integrity proof generation. We opted to perform static tree generation
rather than incremental tree generation. Static tree generation constructs the
tree at once for n data items, whereas incremental generation constructs a
new tree for each data item 1..n. Although we have shown the incremental
generation approach in Algorithm 4, we can easily adapt this algorithm for
statically generating the tree (i.e., rather than inserting a single data item
each iteration, we run the algorithm over the whole dataset at once). In a
privacy auditing context, incremental generation is leveraged for when the in-
tegrity proof method requires real-time updates, where new log events can be
inserted to the tree as they become available. On the other hand, static gener-
ation is leveraged for retrospective auditing, where we have a set of generated
log events and we want to compute an integrity proof for that dataset. We
decided to evaluate the static tree generation since it better highlights the dif-
ferences in overall runtimes between the three tree-based methods for datasets
of increasing sizes.

Figure 5.4 depicts the results of the integrity proof generation runtime ex-
periment comparing the timestamp tree (TT), Merkle tree (MT), and sorted
Merkle tree (SMT) for log datasets of increasing sizes (100,000 to 1,000,000
log events). The standard Merkle tree constructs a binary hash tree from
the data with no pre-processing steps involved in the construction. A sorted
Merkle tree extends this process to include a sorting step prior to construct-
ing the tree. This sorting process requires a key to be generated to order the
data. A timestamp tree extracts the key used to sort the data from the data
(i.e., timestamp) and additionally carries the timestamp ordering semantics
throughout the entire tree. In this experiment, the data are ordered sequen-
tially based on their timestamps prior to constructing the tree (as is typically

02

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

150 |-
Z 100
<)
=
HE)O*
0 - J
0 2 4 6 8 10

of Events (-10)

Figure 5.5: Data Hash Query Runtime

the case for audit log events). As shown in Figure 5.4, the Merkle tree has
the lowest generation runtime since it simply computes the hash of each data
item and constructs the tree. Since the log events are generated in order prior
to constructing the tree, the sorting step for the sorted Merkle tree negligibly
adds to the processing time. The timestamp tree has the additional step of
extracting the timestamp from the event and storing that information in the
nodes of the tree, which yields a slight increase in runtime over the other two
methods. Based on the results, it can be seen that all three methods have sim-
ilar generation runtimes and that the timestamp extraction and comparison
for the timestamp tree negligibly adds to the runtime.

Data hash query. The ability to query the integrity proof of a privacy
audit log for a specific event is beneficial for auditors when conducting an
investigation. Specifically, an auditor may ask the question of ”did this event
produce a hash value that was part of the dataset integrity proof?”. We
evaluate the three methods on their ability and effectiveness at supporting
such a query. After the tree is generated, we compute the hash of a data item
and query the tree for that data item. A typical auditing query would want to
check if the tree contains the hash of the latest event in the log. To evaluate
the query execution runtime for each tree method, we perform a black-box
query, where the auditor running the query is not aware of the underlying
tree ordering or semantics (i.e., does not know the internal structure of the
timestamp tree, sorted Merkle tree, etc.). Querying a timestamp tree is similar
to a binary search through the tree (i.e., comparing timestamps at each node),
whereas querying the Merkle tree methods resembles a depth first search (i.e.,
brute-force checking each path in the tree).

Figure 5.5 shows the results of the data hash query runtime experiment.

23

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

Although the sorted Merkle tree orders the data items prior to constructing
the tree, under the assumption that the auditor is performing a black-box
query, they cannot exploit the fact that the latest event is in the rightmost
leaf position of the tree. Therefore, the query execution time is similar to the
Merkle tree. Furthermore, the sorted Merkle tree does not carry the underlying
data semantics throughout the tree (as opposed to the timestamp tree, which
carries the timestamps in all tree nodes), so we cannot perform a binary tree
search, rather we must rely on the depth first search method. Since the Merkle
and sorted Merkle tree methods rely on depth first searching, the query must
traverse 2 - d — 1 nodes, where d is the size of the dataset (i.e., the query must
check all leaves to find the data hash). Conversely, the timestamp tree only
requires traversing h nodes, where h is the height of the tree (since the query
is performing binary search based on the timestamps). Since h < 2-d — 1
and h grows slowly, the timestamp tree query runtime is sub-linear compared
with the Merkle and sorted Merkle trees. For example, the timestamp tree
query for a dataset of size 30,000 takes about 0.32 ms, whereas the Merkle and
sorted Merkle trees take around 54 ms. If we increase the dataset to 40,000 the
timestamp tree remains at around 0.32 ms, whereas the Merkle trees increase
to about 64 ms.

Experiment Conclusion

Although the timestamp tree does not improve over the Merkle tree generation
performance, the additional timestamp semantics greatly reduces the query
runtime. While the sorted Merkle tree produces identical integrity proofs
independent to the order of data, similar to the timestamp tree, we cannot
leverage this property when querying, especially in a black-box query scenario,
since the tree does not carry the semantics of the data ordering throughout the
tree. When comparing the three tree-based integrity proof methods against the
generation and query runtime aspects, the timestamp tree is a more suitable
structure for audit log based tasks.

5.3.2 Threat Model Evaluation

When the items in a dataset have a temporal aspect, as in the case of audit-
ing, an adversary may change the order of log events to avoid the detection
of malicious activity. For example, at time ¢y a log recorded the authorization
for a process pg. At time ¢;, an adversary performs an action and is recorded
in the log. At time t5, a benign entity performs another action and is recorded
in the log. Suppose a security incident occurs and upon investigation, is de-
termined to have occurred at time ¢; (and unknowingly to the investigators,
was ultimately caused by the adversary’s actions at time ¢;). By attempting
to reorder the data items in the timestamp tree to hide malicious activity, the

o4

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

adversary makes the appearance that the benign entity’s actions caused the
security incident. A timestamp tree should be able to detect and prevent the
malicious attempt to incorrectly insert and change the order of the leaves.

In order to prevent an adversary from reordering the data items in a times-
tamp tree, we can utilize a chaining mechanism that takes advantage of the
underlying data order semantics to detect and prevent this malicious behav-
ior. When a new data item is being inserted into the tree, the data item leaf
node’s label is modified to additionally contain the hash of the previous root
of the tree. Originally, a data item leaf in a timestamp tree is labeled with the
pair (h(d;),TSg;). The modified label contains the triple (h(d;), T Sq;, h(ri-1)),
where r;_1 is the previous root of the tree. By adding the hash of the previous
tree root to the leaf node, an adversary could not successfully insert a data
item in the incorrect location. Since the tree is incrementally growing over
time, the adversary cannot retrospectively calculate the correct h(r;_q) for the
previous tree root. Of course for this method to work, all tree root hashes
must be published, for example in a blockchain [69, 56], so that they can be
used for integrity verifications.

The chaining method previously described can also be applied at the data
item generation level. For example, in a privacy auditing scenario, where there
are multiple participants contributing to the log, each participant can link
together their generated log events. Specifically, if a participant is inserting
event data d; into the tree and they have previously generated data d;_; and
d;_2, the leaf node for d; would be labeled with the pair (h(d;||d;—1||d;—2), T'S4,)-
Therefore, an adversary could not alter a participant’s event data in the tree
since they do not possess all of a participant’s log events.

5.4 Conclusion

In this chapter, we first defined a set of properties that can be used to compare
and select the appropriate method of generating the integrity proof of an RDF
graph depending on the requirements that the proof needs to satisfy. Second,
we proposed an algorithm to generate an integrity proof specifically in the
context of privacy auditing (or other similar logging contexts) where the RDF
statements in the log are required to be timestamped (such as in Chapters 3
and 4). Our method is an extension of a sorted Merkle tree where the key is
exploited from the semantics of the RDF dataset (e.g., the keys can be retrieved
through SPARQL queries) rather than externally generated, as is typically the
case for sorted Merkle trees. Although our algorithm is limited for special cases
where a key is inherently present in the dataset, it provides the advantage of
avoiding the additional cost of preprocessing for sorting or indexing the RDF
dataset prior to generating an integrity proof. This is desirable particularly in
privacy auditing cases where the RDF dataset is incrementally growing.

95

Chapter 6

Conclusion

In this chapter, we provide a summary of the thesis contributions and present
future research directions for this work.

6.1 Contribution Summary

This thesis aimed to achieve three objectives: (i) establishing verifiable trust
and transparency in collaborative health research environments; (ii) support-
ing the privacy management of data contributors; and (iii) maintaining the
integrity of all data interactions in the research environment.

In Chapter 3, we proposed a blockchain-based layered architecture to facil-
itate the management of trust in collaborative health research environments.
Our architecture, which is composed of three modular layers, supports the
provenance management of research data, the privacy management of data
subjects, and distributed and verifiable trust among all participants. The
data layer is responsible for acting as a data repository that stores the actual
data records. The transaction layer is where the data sharing transactions
take place. Finally, the transparency layer is responsible for providing human-
in-the-loop functionality that facilitates transparent data sharing transactions.
A discussion on how the architecture addresses privacy and security properties
is presented and how the architecture supports the requirements for a trust-
worthy system. We evaluated the architecture’s resiliency to common security
threats through a threat model assessment and described the capabilities of
adversaries interacting with the system. Finally, we examined the feasibil-
ity and scalability of the architecture through a technological realization and
experimental evaluation.

Chapter 4 presented a method for utilizing blockchain technology to pro-
vide tamper-proof privacy audit logs. The provided solution applies to Linked
Data based privacy audit logs, in which lacked a mechanism to preserve log
integrity. SPARQL queries and graph generation algorithms are presented

o6

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

that a log generator can perform to write log events to a blockchain and audi-
tors can perform to verify the integrity of log events. The model can be used
by loggers to generate tamper-proof privacy audit logs whereas the integrity
queries can be used by external auditors to check if the logs have been modified
for nefarious purposes. We include an experimental evaluation that demon-
strates the scalability of the audit log integrity verification procedure. Based
on our experimental results, the solution scales linearly with increasingly sized
privacy audit logs.

We defined a set of properties that can be used to analyze appropriate
methods of generating integrity verification proofs for RDF datasets in Chap-
ter 5. Current methods are based on incremental procedures that utilize a
commutative operation or use constructions of Merkle trees to produce a hash
value for a dataset. We proposed an extension of a sorted Merkle tree, called a
timestamp tree, where keys are semantically extractable from an RDF dataset
(e.g., timestamps) and exploited to produce an integrity proof that achieves
characteristics such as data order independent integrity proofs, random access,
and proofs of membership and non-membership. We include an evaluation of
the timestamp tree generation algorithm compared to other integrity proof
methods and an adversarial threat model evaluation. Based on the results of
our comparative analysis, our method remains comparable to existing meth-
ods in terms of runtime growth, performs efficiently at data hash queries, and
can resist malicious actors that attempt to insert incorrect data to the tree.

6.2 Future Work

There are a number of directions for future work. In this section, we sum-
marize the future work in the three areas of the digitized trust architecture,
blockchain-based privacy auditing, and timestamp integrity proofs.

Digitized Trust Architecture. Further research is required to examine how
the architecture in Chapter 3 can effectively communicate with end users, dif-
ferent actors, and Al systems across the collaborative research environment.
One direction could be application programming interfaces (API) developed
for Al systems to interact with the architecture and existing Linked Data
endpoints. Additionally, further investigation is required to extend the archi-
tectural layers with a presentation layer for all entities across the system to
effectively access and utilize the data, as well as participate in the collaborative
research pipeline.

Smart contracts are programs that run on the blockchain network that
all participants can interact with. Currently, we leverage smart contracts
on the blockchain to encode and enforce simple DSA constraints, such as
retention periods. By running DSA smart contracts on the blockchain, we

57

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

can supplement the current method of ethic review boards (ERB) reviewing
and granting approval of data sharing activities, which often takes months to
achieve, by having the system itself capable of granting approval. Since we
are using semantic technologies such as Linked Data to represent the data
sharing transactions, the DSA smart contract can automatically reason over
the data to decide if the data sharing transaction conforms with the constraints
outlined in the DSA. For example, a privacy event in a data sharing transaction
contains related clauses in a DSA, such as purpose of use. Prior to a data
transaction record being written to the blockchain, the DSA smart contract
can interact with the transaction layer to confirm that the performed privacy
acts in the privacy event comply with the policies in the DSA and depending
on the compliance, either reject the transaction or allow the transaction to
proceed. Further research is required in encoding and enforcing complex DSA
constraints and conditions on the blockchain.

Blockchain-based Privacy Auditing. The tamper-proof privacy auditing
model in Chapter 4 has some limitations. First, we acknowledge Bitcoin’s lim-
itations in terms of cost, speed, and scalability [41]. We utilized Bitcoin since
it provides an established storage mechanism suitable for integrity proofs and
to demonstrate the feasibility of our solution applied to Linked Data. For an
optimized implementation, other blockchain technologies, such as Ethereum
[10] and Hyperledger Fabric [76], should be compared in terms of transac-
tion fee, scalability, and smart contract and private ledger support. Second, a
log containing thousands of events will require thousands of transactions and
occupy a large space on the blockchain. Using Merkle trees [16, 46] can re-
duce the storage and transaction requirements by writing the root of the tree
(composed of multiple integrity proofs) to the blockchain. However, this will
increase the work for an auditor to verify the log integrity since more hash
value computations are required to reconstruct the hash tree. Formalizing
the trade-offs between hash trees and the verification effort is an interesting
optimization problem to investigate.

Timestamp Integrity Proofs. In some application domains (e.g., in privacy
audit logs) the nature of the chosen key used in the timestamp tree proposed in
Chapter 5 may be considered private information. Further work can be done
to apply privacy-preserving techniques such as fully homomorphic encryption
or zero knowledge proofs, where the exact timestamp is not revealed but the
data insertion comparisons can still be performed over the encrypted data.
Furthermore, identical timestamps are stored in multiple tree nodes, resulting
in redundant data in the tree. Node data optimization needs to be investigated
to determine indexing schemes that allow the random access of data where a
subset of the nodes carry a key rather than all nodes.

o8

Appendix A

Full Graph Listings

A.1 Signature Graph

1 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .
2 @prefix 12tapp: <http://purl.org/l2tapp#> .
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:sig-graph {

_:gsm a sig:GraphSigningMethod ;
sig:hasDigestMethod sig:dm-sha-256 ;
sig:hasGraphDigestMethod sig:gdm-sayers-2004 ;
sig:hasSignatureMethod sig:sm-ecdsa .

_:sig-graph a sig:Signature ;
sig:hasVerificationCertificate <signer/WebID/URI> ;

sig:hasSignatureValue "MEUCIQC44Qy208Mx..."""xsd:string ;

12tapp:hasSignedGraph _:log_header . }

Listing A.1: Signature Graph

A.2 Block Graph

1 @prefix block: <http://www.semanticblockchain.com/Blondie.owl#> .

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

3

© 0 N O U

10

12
13
14
15

_:block-graph {

_:block-graph a block:BitcoinBlock ;

block:hasBitcoinBlockheaderBlock block:BitcoinBlockheader ;

block:hasBitcoinPayloadBlock block:BitcoinPayload .
block:BitcoinBlockheader block:hashPreviousBlockheader "000000...66b485"""xsd:string ;
block:nonceBlockheader 2614034692~ "xsd:decimal ;

block:timestampBlockheader 1337500093~ "xsd:decimal .
block:BitcoinPayload block:hasTransactionPayload block:BitcoinTransaction .
block:BitcoinTransaction block:hasBitcoinTransactionInput block:BitcoinTransactionInput ;

block:hasBitcoinTransactionOutput block:BitcoinTransactionOutput .
block:BitcoinTransactionInput block:hashBitcoinTransactionInput "la2...3fc
block:scriptSignBitcoinTransactionInput "4730440...41d6e6"""xsd:string .

xsd:string ;

block:BitcoinTransactionOutput block:scriptPubkeyBitcoinTransactionOutput "6a28486F...

Ae46e65" " "xsd:string .

}

Listing A.2: Block Graph

29

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

A.3 Privacy Event Graph

1 @prefix 12tap:<http://purl.org/l2tap#> .

2 @prefix scip:<http://purl.org/scip#> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4 _:privacy-graph-header {

5 _:logevent a 12tap:PrivacyEvent ;

6 12tap:member0f _:logl ;

7 12tap:eventParticipant _:researcher-2 ;

8 12tap:receivingTimestamp _el-t1 ;

9 12tap:eventData _:privacy-graph-body .

10 _:el-t1l a tl:Instant ;

11 tl:atDateTime "2018-01-29T12:00:00Z"""xsd:dateTime ;
12 tl:onTimeline _:tlphysical .

13 _:el-t2 a tl:Instant ;

14 tl:atDateTime "2018-01-29T12:00:00Z"""xsd:dateTime ;
15 tl:onTimeline _:tlphysical .

16 _:privacy-graph-body a rdfg:Graph . }

17 _:privacy-graph-body {

18 _:requests-reql a scip:AccessRequest ;

19 scip:dataRequestor _:researcher-2 ;

20 scip:dataSender _:researcher-1 ;

21 scip:dataSubject _:patient-1234 ;

22 scip:requestedDataltem _:patient-1234-CTScan ;

23 scip:requestedPurpose _:purposes-treatment ;

24 scip:requestedPrivilege _:Use .

25 _:researcher-2 scip:requestorRole _:Principle-Investigator .
26 _:researcher-1 scip:senderRole _:Researcher . }

Listing A.3: Privacy Event Graph

60

Bibliography

[1] Accorsi, R. (2009). Log data as digital evidence: What secure logging
protocols have to offer? In Computer Software and Applications Conference,
2009. COMPSAC’09. 33rd Annual IEEE International, volume 2, pages
398-403. IEEE.

[2] Agrawal, R., Evfimievski, A., Kiernan, J., and Velu, R. (2007). Auditing
disclosure by relevance ranking. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 79-90. ACM.

[3] Alexander, P., Kimmell, G., and Burke, D. (2007). Security as a system
property: Modeling trust and security in rosetta.

[4] Anderson, N. (2016). Blockchain technology: A game-changer in account-
ing? Deloitte.

[5] Antonopoulos, A. M. (2014). Mastering Bitcoin: unlocking digital cryp-
tocurrencies. O'Reilly Media, Inc.

[6] Azaria, A., Ekblaw, A., Vieira, T., and Lippman, A. (2016). Medrec:
Using blockchain for medical data access and permission management. In
2 International Conference on Open and Big Data (OBD’16), pages 25—
30.

[7] Bizer, C. and Cyganiak, R. (2013). Trig: Rdf dataset language. W3C.
http://www.w3.org/TR/trig/. Accessed May 2017.

[8] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data-the story so
far. International journal on semantic web and information systems, 5(3),
1-22.

[9] Bradbury, D. (2013). The problem with bitcoin. Computer Fraud & Secu-
rity, 2013(11), 5-8.

[10] Buterin, V. (2013). Ethereum white paper. GitHub Repository. https:
//github.com/ethereum/wiki/wiki/White-Paper. Accessed July 2017.

61

http://www.w3.org/TR/trig/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[11] Butin, D., Chicote, M., and Le Métayer, D. (2013). Log design for ac-
countability. In 2013 IEEE Symposium on Security and Privacy Workshops,
pages 1-7.

[12] Carroll, J. J. (2003). Signing rdf graphs. In International Semantic Web
Conference, pages 369-384. Springer.

[13] Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named graphs,
provenance and trust. In Proceedings of the 14th international conference
on World Wide Web, pages 613-622. ACM.

[14] Castelluccia, C., Druschel, P., Hiibner, S., Pasic, A., Prencel, B.,
and Tschofenig, H. (2011). Privacy, accountability and trust-challenges
and opportunities. ENISA. http://www.enisa.europa.eu/activities/
identity-and-trust/library/deliverables/pat-study/atdownload/
fullReport. Accessed May 2017.

[15] Crosby, S. A. and Wallach, D. S. (2009). Efficient data structures for
tamper-evident logging. In USENIX Security Symposium, pages 317-334.

[16] Cucurull, J. and Puiggali, J. (2016). Distributed immutabilization of
secure logs. In International Workshop on Security and Trust Management,
pages 122-137. Springer.

[17] Deadalnix’s Den (2016). Introducing merklix tree as an unordered merkle
tree on steroid. https://www.deadalnix.me/2016/09/24/introducing-
merklix-tree-as-an-unordered-merkle-tree-on-steroid/. Accessed
Jan. 2018.

[18] Eijdenberg, A., Laurie, B., and Cutter, A. (2015). Verifiable data struc-
tures. GitHub Repository. https://github.com/google/trillian/blob/
master/docs/VerifiableDataStructures.pdf. Accessed March 2018.

[19] English, M., Auer, S., and Domingue, J. (2016). Block chain technologies
& the semantic web: A framework for symbiotic development. In Com-

puter Science Conference for University of Bonn Students, J. Lehmann, H.
Thakkar, L. Halilaj, and R. Asmat, Eds, pages 47-61.

[20] Ethereum Wiki (2017). Merkle patricia trie specification. GitHub Repos-
itory. https://github.com/ethereum/wiki/wiki/Patricia-Tree. Ac-
cessed Jan. 2018.

[21] Field, M. J. and Lo, B. (2009). Conflict of interest in medical re-
search, education, and practice. National Academies Press (US). https:
//www.ncbi.nlm.nih.gov/books/NBK22942/. Accessed March 2017.

62

http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/pat-study/atdownload/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/pat-study/atdownload/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/pat-study/atdownload/fullReport
https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid/
https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid/
https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://www.ncbi.nlm.nih.gov/books/NBK22942/
https://www.ncbi.nlm.nih.gov/books/NBK22942/

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[22] Fisteus, J. A., Garcia, N. F., Fernandez, L. S., and Kloos, C. D. (2010).
Hashing and canonicalizing notation 3 graphs. Journal of Computer and
System Sciences, 76(7), 663-685.

23] Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance
for computational tasks: A survey. Computing in Science & Engineering,
10(3).

[24] Google (2018). Trillian. GitHub Repository. https://github.com/
google/trillian. Accessed Feb. 2018.

[25] Google DeepMind Health (2017). Trust, confidence and verifiable data au-
dit. https://deepmind.com/blog/trust-confidence-verifiable-data-
audit/. Accessed Jan. 2018.

[26] Haber, S. and Stornetta, W. S. (1990). How to time-stamp a digital
document. In Conference on the Theory and Application of Cryptography,
pages 437-455. Springer.

[27] Heath, T. and Bizer, C. (2011). Linked data: Evolving the web into
a global data space. Synthesis lectures on the semantic web: theory and
technology, 1(1), 1-136.

[28] HL7 International (2017). Fhir. https://www.hl7.org/fhir/index.html.
Accessed June 2017.

[29] HL7 International (2017). FHIR Security. https://www.hl7.org/fhir/
security.html. Accessed April 2018.

[30] Kasten, A. (2016a). Secure semantic web data management: confidential-
ity, integrity, and compliant availability in open and distributed networks.
Ph.D. thesis, University of Koblenz and Landau, Germany.

[31] Kasten, A. (2016b). A software framework for iterative signing
of graph data. GitHub Repository. https://github.com/akasten/
signingframework. Accessed Jan. 2017.

[32] Kasten, A., Scherp, A., and Schau8, P. (2014). A framework for iterative
signing of graph data on the web. In Furopean Semantic Web Conference,
pages 146-160. Springer.

[33] Kehoe, L., Dalton, D., Leonwicz, C., and Jankovich, T. (2015). Blockchain
disrupting the financial services industry? Deloitte.

63

https://github.com/google/trillian
https://github.com/google/trillian
https://deepmind.com/blog/trust-confidence-verifiable-data-audit/
https://deepmind.com/blog/trust-confidence-verifiable-data-audit/
https://www.hl7.org/fhir/index.html
https://www.hl7.org/fhir/security.html
https://www.hl7.org/fhir/security.html
https://github.com/akasten/signingframework
https://github.com/akasten/signingframework

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[34] Kleedorfer, F., Panchenko, Y., Busch, C. M., and Huemer, C. (2016). Ver-
ifiability and traceability in a linked data based messaging system. In Pro-

ceedings of the 12th International Conference on Semantic Systems, pages
97-100. ACM.

[35] Kushida, C. A., Nichols, D. A., Jadrnicek, R., Miller, R., Walsh, J. K.,
and Griffin, K. (2012). Strategies for de-identification and anonymization of
electronic health record data for use in multicenter research studies. Medical
care, pages S82-S101.

[36] Li, Y. (2010). The case analysis of the scandal of enron. International
Journal of business and management, 5(10), 37.

[37] Liang, X., Zhao, J., Shetty, S., Liu, J., and Li, D. (2017). Integrating
blockchain for data sharing and collaboration in mobile healthcare applica-
tions. In Personal, Indoor, and Mobile Radio Communications (PIMRC),
2017 IEEE 28th Annual International Symposium on, pages 1-5. IEEE.

[38] Libert, B., Beck, M., and Wind, J. (2016). How blockchain technology
will disrupt financial services firms. Knowledge@ Wharton, pages 2-7.

[39] Lindqvist, A. (2017). Privacy Preserving Audit Proofs. Master’s thesis,
KTH Royal Institute of Technology, Sweden.

[40] Linn, L. A. and Koo, M. B. (2017). Blockchain for health

data and its potential use in health it and health care re-
lated research. https://www.healthit.gov/sites/default/files/11-
74-ablockchainforhealthcare.pdf. Accessed Sept. 2017.

[41] Manu, S. (2017). Building better blockchains. In Linked Data in Dis-
tributed Ledgers Workshop Keynote. WWW2017.

[42] Mao, J., Zhang, Y., Li, P., Li, T., Wu, Q., and Liu, J. (2017). A position-
aware merkle tree for dynamic cloud data integrity verification. Soft Com-
puting, 21(8), 2151-2164.

[43] McFarlane, C., Beer, M., Brown, J., and Prendergast, N. (2017). Patien-
tory: A healthcare peer-to-peer emr storage network v1. 0.

[44] Melnik, S. (2001). Rdf api draft: Cryptographic digests of rdf models and
statements.

[45] Mercuri, M., Rehani, M. M., and Einstein, A. J. (2012). Tracking patient
radiation exposure: Challenges to integrating nuclear medicine with other
modalities. Journal of Nuclear Cardiology, 19(5), 895-900.

64

https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[46] Merkle, R. C. (1980). Protocols for public key cryptosystems. In Security
and Privacy, 1980 IEEE Symposium on, pages 122—-122.

[47] Mettler, M. (2016). Blockchain technology in healthcare: The revolution
starts here. In IEEE 18" International Conference on e-Health Networking,
Applications and Services (Healthcom’16), pages 1-3.

[48] Microsoft (2005). The stride threat model. https://
msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx. Ac-
cessed Jan. 2018.

[49] MIT Kerberos (2009). Kerberos: The network authentication protocol.
https://web.mit.edu/kerberos/. Accessed April 2018.

[50] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

[51] Nelson, G. S. (2015). Practical implications of sharing data: a primer on
data privacy, anonymization, and de-identification. In SAS Global Forum
Proceedings.

[52] OpenLink Software (2017). Virtuoso universal server. https://
virtuoso.openlinksw.com/. Accessed Jan. 2017.

[53] Ostrovsky, R., Rackoff, C., and Smith, A. (2004). Efficient consistency
proofs for generalized queries on a committed database. In International
Colloquium on Automata, Languages, and Programming, pages 1041-1053.
Springer.

[54] Patil, H. K. and Seshadri, R. (2014). Big data security and privacy issues
in healthcare. In Big Data (BigData Congress), 2014 IEEE International
Congress on, pages 762-765. IEEE.

[55] Peterson, K., Deeduvanu, R., Kanjamala, P., and Boles, K. (2016). A
blockchain-based approach to health information exchange networks.

[56] Pilkington, M. (2015). Blockchain technology: principles and applica-
tions. Research Handbook on Digital Transformations.

[57] Rehani, M. M. (2013). Challenges in radiation protection of patients for
the 21st century. American Journal of Roentgenology, 200(4), 762-764.

[58] Rodriguez, A. (2008). Restful web services: The basics. IBM developer-
Works, page 33.

65

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://web.mit.edu/kerberos/
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[59] Samavi, R. and Consens, M. P. (2012). L2tap+scip: An audit-based
privacy framework leveraging linked data. In 8th International Conference
on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom’12), pages 719-726.

[60] Samavi, R. and Consens, M. P. (2014). Publishing 12tap logs to facilitate
transparency and accountability. In The 23" International World Wide
Web Conference (WWW’14) Workshop on Linked Data on the Web.

[61] Samavi, R. and Consens, M. P. (2018). Publishing privacy logs to facilitate
transparency and accountability. In The Journal of Web Semantics.

[62] Sambra, A., Story, H., and Berners-Lee, T. (2014). Webid 1.0: Web iden-
tity and discovery. W3C. https://www.w3.0rg/2005/Incubator/webid/
spec/identity/.

[63] Sayers, C. and Karp, A. H. (2004). Computing the digest of an rdf graph.
Mobile and Media Systems Laboratory, HP Laboratories, Palo Alto, USA,
Tech. Rep. HPL-2003-235, 1.

[64] Schneier, B. (2007). Applied cryptography: protocols, algorithms, and
source code in C. john wiley & sons.

[65] Sotos, J. and Houlding, D. (2017). Blockchains for data sharing in clinical
research: Trust in a trustless world.

[66] Spoke, M. (2015). How blockchain tech will change auditing for good.

[67] Stathopoulos, V., Kotzanikolaou, P., and Magkos, E. (2008). Secure log
management for privacy assurance in electronic communications. computers
& security, 27(7-8), 298-308.

[68] Suleyman, M. and Laurie, B. (2017). Trust, confidence and verifiable data
audit.

[69] Sutton, A. and Samavi, R. (2017). Blockchain enabled privacy audit logs.
In Proceedings of the 16th International Semantic Web Conference, pages
645-660. Springer.

[70] Sutton, A. and Samavi, R. (2018a). Tamper-proof privacy auditing for
artificial intelligence systems. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pages 1-4.

[71] Sutton, A. and Samavi, R. (2018b). Timestamp-based integrity proofs
for linked data. In Proceedings of Semantic Big Data Workshop (SBD’18),
pages 1-6. ACM.

66

https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[72] Sutton, A., Samavi, R., Doyle, T. E., and Koff, D. (2018). Digitized
trust in human-in-the-loop health research. In Privacy, Security, and Trust
(PST’18), pages 1-10.

[73] Symantec (2018). https://www.symantec.com/. Accessed April 2018.

[74] The Economist (2018). Apple and amazon’s moves in health signal a
coming transformation. https://www.economist.com/news/business/
21736193-worlds-biggest-tech-firms-see-opportunity-health-
care-which-could-mean-empowered. Accessed March 2018.

[75] The Linux Foundation (2018). Hyperledger explorer. https://
www.hyperledger.org/projects/explorer. Accessed Feb. 2018.

[76] The Linux Foundation Projects (2017). Hyperledger fabric. https://
www.hyperledger.org/projects/fabric. Accessed June 2017.

[77] Tong, Y., Sun, J., Chow, S. S., and Li, P. (2014). Cloud-assisted mobile-
access of health data with privacy and auditability. IEEFE Journal of biomed-
ical and health Informatics, 18(2), 419-429.

[78] Ugarte, H. E. R. (2016). Blondie - blockchain ontology with dynamic ex-
tensibility. GitHub Repository. https://github.com/hedugaro/Blondie.

[79] Veeramachaneni, K., Arnaldo, I., Cuesta-Infante, A., Korrapati, V.,
sBassias, C., and Li, K. (2016). Ai%*: Training a big data machine to de-

fend. In IEEFE International Conference on Intelligent Data and Security
(IDS’16), pages 49-54.

[80] W3C (2004). RDFG: Named Graph Vocabulary. http://www.w3.org/
2004/03/trix/rdfg-1/. Accessed June 2015.

[81] Weitzner, D. J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler,
J., and Sussman, G. J. (2008). Information accountability. Communications
of the ACM, 51(6), 82-87.

[82] Wilson, M., Crompton, S., Matthews, B., and Orlov, A. (2011). Enforcing
scientific data sharing agreements. In E-Science (e-Science), 2011 IEEE 7th
International Conference on, pages 271-278. IEEE.

[83] Xu, L., Chen, L., Shah, N., Gao, Z., Lu, Y., and Shi, W. (2017). Dl-bac:
Distributed ledger based access control for web applications. In Proceedings
of the 26th International Conference on World Wide Web Companion, pages
1445-1450. International World Wide Web Conferences Steering Commit-
tee.

67

https://www.symantec.com/
https://www.economist.com/news/business/21736193-worlds-biggest-tech-firms-see-opportunity-health-care -which-could-mean-empowered
https://www.economist.com/news/business/21736193-worlds-biggest-tech-firms-see-opportunity-health-care -which-could-mean-empowered
https://www.economist.com/news/business/21736193-worlds-biggest-tech-firms-see-opportunity-health-care -which-could-mean-empowered
https://www.hyperledger.org/projects/explorer
https://www.hyperledger.org/projects/explorer
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://github.com/hedugaro/Blondie
http://www.w3.org/2004/03/trix/rdfg-1/
http://www.w3.org/2004/03/trix/rdfg-1/

M.Sc. Thesis — A. Sutton McMaster University — Computer Science

[84] Yue, X., Wang, H., Jin, D., Li, M., and Jiang, W. (2016). Healthcare data
gateways: Found healthcare intelligence on blockchain with novel privacy
risk control. Journal of Medical Systems, 40(10), 218.

[85] Zafar, F., Khan, A., Suhail, S., Ahmed, I., Hameed, K., Khan, H. M.,
Jabeen, F.; and Anjum, A. (2017). Trustworthy data: A survey, taxonomy
and future trends of secure provenance schemes. Journal of Network and
Computer Applications, 94, 50—68.

[86] Zyskind, G., Nathan, O., and Pentland, A. (2015). Decentralizing privacy:
Using blockchain to protect personal data. In 2015 IEEE Security and
Privacy Workshops, pages 180—-184.

68

	Lay Abstract
	Abstract
	Acknowledgements
	Definitions and Abbreviations
	Introduction
	Thesis Scope & Objectives
	Thesis Contributions
	Structure

	Related Work
	Blockchain Applications in Healthcare
	Tamper-proof Auditing
	Integrity Preservation Techniques

	Digitized Trust in Human-in-the-Loop Health Research
	Architecture
	Privacy, Security & Trust
	Evaluation
	Conclusion

	Blockchain Enabled Privacy Audit Logs
	Properties of Tamper-proof Privacy Logs
	Blockchain Enabled Privacy Audit Logs
	Log Integrity Verification
	Experimental Evaluation
	Conclusion

	Timestamp-based Integrity Proofs for Linked Data
	Integrity Proof Properties
	Timestamp Tree
	Evaluation
	Conclusion

	Conclusion
	Contribution Summary
	Future Work

	Full Graph Listings
	Signature Graph
	Block Graph
	Privacy Event Graph

