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Abstract  
Masonry is an orthotropic material that exhibits distinct directional properties due to the 

existence of mortar joints acting as planes of weakness. Therefore, a constitutive model employed 

in the numerical analysis should be capable of describing the anisotropic behavior. In this thesis, a 

comprehensive framework is outlined for modelling of the mechanical behaviour of structural 

masonry. In this framework, the anisotropic material properties are described using the 

microstructure tensor approach (Pietruszczak and Mroz, 2001).  

First, a mathematical formulation defining the conditions at failure is discussed. The 

formulation contains several material parameters as well as material functions that describe the 

anisotropic behaviour. The identification procedure for these functions is outlined and is verified 

using the experimental tests conducted by Page (1983).     

Later, an extensive numerical study, including a set of numerical simulations of biaxial 

compression-tension and biaxial compression tests for different orientations of bed joints, is 

conducted to verify the macroscopic failure criterion. The results are then compared with the 

experimental data of Page (1983).     

In the last part of the thesis, some 3D finite element simulations of a shaking table test are 

performed involving a reduced scale model of four storey masonry building subjected to seismic 

excitation. A linear dynamic analysis, in which the proposed macroscopic failure criterion is 

incorporated through the UMAT subroutine, is carried out to assess the plastic admissibility of the 

stress field. The results including the distribution of the value of the failure function are then 

compared with the crack pattern in the experimental test.        
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Chapter 1 

INTRODUCTION 

 

 

1.1. Background  

Masonry is one of the most common construction materials due to its various advantageous 

properties such as high durability, low maintenance cost, fire resistance, and design flexibility. 

However, nonlinear behavior of the structural masonry is a major drawback leading to many 

challenges in the design of the masonry structures. This nonlinear behavior is due to the complex 

composition of the masonry that comprises brick units as well as bed and head joints acting as 

planes of weakness. Therefore, many masonry structures have been designed based on the 

engineering intuition and experience rather than a rigorous analysis. 

In recent years, many numerical studies have been conducted to model the mechanical 

behaviour of structural masonry. Two distinct approaches have been followed for the numerical 

simulations of masonry structures: meso-modelling and macro-modelling. In meso-modelling 

approach, the individual components, i.e. units and mortar joints, are simulated by continuum 

elements and the unit-mortar interfaces are considered as discontinuous elements.  On the other 
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hand, in the macro-modelling approach, the units, mortar and unit-mortar interfaces are smeared 

out in a representative volume element describing the macroscopic behaviour of the masonry.  

 The main aim of this research is to develop a macroscopic failure criterion for the masonry 

brickwork, which can be directly incorporated in the numerical analysis of masonry structures.  

1.2. Literature Review 

The previous studies on structural masonry can be divided into two broad categories: 

experimental testing and numerical modelling.  Over the past few decades, several experimental 

tests on brick masonry were conducted in order to provide information assisting in the design of 

the masonry structures. The experimental investigations have been performed at the material level 

as well as macroscopic level. The former involve assessment of conditions at failure in masonry 

constituents, including brick and mortar. Atkinson et al. (1985) and Bierwirth et al. (1993) used a 

linear form of the failure envelope for mortar. They also proposed a polynomial curve as the failure 

envelope for brick units in the tension-compression regime based on the results of biaxial tests.  In 

addition, the strength parameters of brick units and mortar have been determined by conducting a 

series of uniaxial tension and compression tests. Also, the shear characteristics of the interface 

were identified by Atkinson et al. (1989) for studying the brickwork behavior under cyclic 

loadings.   

The first experimental study on the mechanical behavior of brick masonry at the macroscale 

was performed by Samarasinghe and Hendry (1982).. The authors examined a number of scaled 

brickwork panels under a uniform biaxial tension-compression loading. They also suggested a 

failure envelope which depends on the principal stresses and the orientation of the bedding planes. 

The most comprehensive research yet on macroscopic behaviour of masonry was that performed 



    M.Sc. Thesis                        Mohammadreza Mohammadi             McMaster University-Civil Engineering 

3 

by Page (1981,1983). In those studies, a set of biaxial compression-tension and biaxial 

compression tests were carried out to define the failure surface for different orientations of bed 

joints. Drysdale and Khattab (1995) conducted similar research on the behaviour of grouted 

concrete masonry, in which the specimens were tested under biaxial tension-compression loading. 

Their study also indicated a strong dependency of the failure modes, strength parameters, and the 

deformation characteristics on both the orientation of bed joints and the principal stress ratio. In 

general, all the experimental tests mentioned above provided valuable data to establish various 

empirical design methods for masonry structures. 

Numerical modelling of masonry structures is another category of research which attracted 

a great deal of attention in recent years. As stated before, the numerical modeling can be performed 

at meso- and macro-levels. In the former approach, the masonry constituents, i.e. the brick units 

and mortar joints, are modeled separately by different types of elements. The masonry units are 

represented by continuum elements, and discontinuous elements are used for modeling the mortar 

joints. The behavior of mortar joints has been described by various models such as discrete crack 

model, Coulomb friction model, combined Coulomb friction/tension cut-off/compression cap 

model or a user defined constitutive model; while an elastic or viscoelastic models have been 

typically used to describe the brick units. In these approaches, it was commonly assumed that the 

cracks occur in the mortar joints while the units remain intact. Page (1978) was perhaps the first 

one to conduct the finite element analysis of masonry brickwork. In his simulations, brick units 

were modeled by isotropic, elastic 2D elements, and the behavior of interface was described in 

terms of a brittle response in the tension regime and a bi-linear failure surface in compressive 

regime (τ-σ space). A similar numerical methodology was later employed by Lourenco and Rots 

(1993), who used continuum elements for brick units and zero-thickness interface elements for the 
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mortar joints. Their model was more advanced in terms of its ability to capture various failure 

mechanisms of the brick masonry. This was accomplished by defining a constitutive relation for 

the interface elements that accounted for joint tensile cracking and joint slipping, as well as using 

vertical interface elements inside the brick units to take into account the direct tension crack in the 

brick, as shown in Figure 1.1 (Lourenco et al. 1994 ;Lourenco & Rots, 1997) .   

 

Figure 1.1 Failure Mechanisms of Masonry: (a) Joint Tensile Cracking (b) Joint Slipping (c) Direct Tension Crack in 

Brick Unit (d) Diagonal Tension Crack in Brick Unit (e) Masonry Crushing  (Lourenço and Rots, 1997) 

One of the main limitations of the stated approach is its inability to capture the mortar joints 

and brick interaction and to properly model the out-of-plane properties of masonry. Another 

important limitation is the lack of numerical efficiency. In other words, this methodology would 

not be feasible for application to real engineering structures due to high computational time.  
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In vew of the mentioned limitations of the meso-modeling approach, the macroscopic 

numerical methodology should be used for modeling the mechanical behavior of masonry 

structures. In this framework, a representative element volume, in which the masonry constituents 

are smeared out using homogenization techniques, is introduced to describe the masonry material 

at macroscale. The average properties of the representative elementary volume are determined at 

the micro-level taking the geometric arrangement of the constituents into account. In recent years, 

many studies have been conducted to estimate the average properties of masonry brickwork. 

Micropolar Cosserat continuum models and the use of homogenization theory for periodic media 

are the main proposed approaches to address this problem. The Micropolar Cosserat continuum 

approach (e.g., Sulem and Muhlhaus, 1997; Masiani and Trovalusci, 1996) incorporates the 

Cosserat theory of elasticity or micropolar elasticity in which additional kinematic degrees of 

freedom, represented by the microrotation, are introduced to describe the rotations of single 

masonry units. Consequently, the stress tensor becomes non-symmetric due to adding the couple 

stress components. The Cosserat approach cannot be easily implemented to solve the engineering 

problems mainly because of difficulties with identification of material parameters associated with 

specification of rotational degrees of freedom.  

The application of homogenization theory for the periodic media in determining the 

equivalent properties of brick masonry has been discussed in many studies. This approach has been 

adopted by Pande et al. (1989) and Pietruszczak & Niu (1992). In the former reference, a stacked 

brick-mortar system was considered which consisted of a set of parallel layers. In this approach, 

the equivalent elastic properties of brick masonry were assessed based on the elastic properties of 

brick and mortar. Later, this approach was improved by considering the masonry brickwork as 

consisting of sets of bed and head joints. The equivalent homogeneous orthotropic elastic 
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properties were then determined based on the elastic properties of brick and mortar and the 

thickness of the joints. Pietruszczak & Niu (1992) presented a two-step homogenization approach 

in which the brick masonry element is regarded as a structured medium. This medium consists of 

the brick matrix intercepted by two orthogonal sets of joints; bed joints forming continuous 

horizontal weakness planes, and head joints acting as aligned discontinuous weak inclusions. In 

the proposed homogenization approach the influence of the head and bed joints was considered 

separately in two successive stages to determine the equivalent properties of the structural masonry 

element. Also, a nonlinear average elastoplastic constitutive relation was proposed for the 

composite system using structural matrices which describe the macroscopic behaviour of the 

system as a function of the mechanical properties of the brickwork constituents, i.e. brick and 

mortar, and their volume contributions. Subsequently, the average elastic properties of the 

composite were also determined using the proposed constitutive relation. For an elastic material, 

there have been a number of other studies in which more accurate representations have been 

proposed using numerical homogenization (Anthoine (1995, 1997), Piszczek et al.(2001), Ma et 

al. (2001)). For instance, Anthoine (1995,1997) implemented the homogenization theory in a 

rigorous way to take into account the thickness of masonry. In that research, three types of 

problems, i.e. plane stress, plane strain, and generalized 3D, have been solved for the case of a 

running bond masonry, which was analyzed at the level of a basic cell using the finite element 

technique. This study indicated that the elastic characteristics of masonry are only slightly affected 

by the approximations of plane stress vs. general plane strain. However, use of the above 

approximations in the nonlinear range (plastic or damage) can lead to entirely different results. In 

this case, while the generalized plane strain assumption provides satisfactory results, the plane 

stress assumption gives inaccurate predictions.      
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      None of the approaches, as referred to above, has ever been employed in the numerical 

analysis of a real masonry structure, which is mainly due to their limitation within the inelastic 

range. Subsequently, many researchers, including Andreaus (1996),  Zhuge et al. (1998), Lourenco 

et al. (1998),  Raffard et al. (2001), and Ushaksaraei and Pietruszczak (2002), conducted studies to 

develop a macroscopic failure criterion that can be incorporated to describe the mechanical 

behaviour of brick masonry. Andreaus (1996) employed the well-known failure criteria of Mohr-

Coulomb, Saint-Venant, and Navier, to determine the failure stress state in masonry panels under 

in-plane loading. In this study, each criterion corresponded to different collapse mode such as 

slipping of mortar joints, cracking of bricks and middle plane spalling. The Coulomb frictional 

law, which has been modified to take into account the nonlinear dependence of shear strength on 

normal stress at high compression levels, captures slipping of mortar joints. Splitting can be 

predicted using the maximum tensile strain criterion (i.e. Saint-Venant criterion). Finally, the 

Navier criterion was associated with the middle plane spalling. These criteria were incorporated in 

the finite element analysis of a shear wall with openings under in-plane horizontal and vertical 

loads in two dimensions. Similarly, Lourenço et al. (1998) proposed a continuum model including 

two yield criteria for damage in tension and compression regimes. This approach consisted of an 

extension of conventional formulations for isotropic quasi-brittle materials employing different 

inelastic criteria for tension and compression. Rankine criterion for tension and Hill’s criterion for 

compression were used in this study; however, the influence of the out-of-plane direction was not 

considered. 

 Raffard et al. (2001) also developed a numerical homogenization approach to identify the 

material properties for a homogenized stone masonry. In this approach, a modified Drucker-Prager 

yield criterion was incorporated to derive a macroscopic failure criterion in terms of a generalized 

deviatoric stress for the anisotropic materials. In addition, the identification of the material 
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properties was performed through a curve-fitting of the results obtained in the triaxial tests on stone 

masonry for different orientations of bed joints. Nonetheless, this model was not capable of 

assessing the failure condition in a real masonry structure due to its limitations in tension regime.  

The most notable study in this context was performed by Ushaksaraei and Pietruszczak 

(2002). In that study, an anisotropic failure criterion for brick masonry was formulated within the 

framework of the Critical Plane Approach developed by Pietruszczak and Mroz (2001). The 

Critical Plane Approach is based on the notion of the existence of a critical plane, where the failure 

function reaches the maximum. Also, an extension of the critical plane framework was developed 

for the case of a nonlinear failure function which is more suitable for the class of brittle materials 

such as masonry. Subsequently, a macroscopic failure criterion in the quadratic form was proposed 

by incorporating a bilinear approximation for the structural masonry. Finally, the proposed failure 

criterion was incorporated in the 3D seismic analysis of the masonry walls of a power generation 

substation building located in Quebec.  

1.3. Structure of the thesis 

The main objective of this research is to implement a macroscopic failure criterion which 

describes the failure conditions in structural masonry. This thesis consists of four chapters. The 

next chapter introduces two frameworks which can be employed to formulate a macroscopic failure 

criterion for anisotropic materials (after Pietruszczak and Mroz, 2001). Then, a failure criterion 

incorporating both these frameworks, with a main focus on the microstructure tensor approach, is 

examined in the context of structural masonry. Subsequently, the identification procedure of the 

material parameters/functions incorporated in the failure criterion is discussed. At the end of this 

chapter, a numerical study including simulations of the experimental tests conducted by Page 
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(1981&1983) on the brick masonry is conducted to examine the performance of the framework. 

Chapter three is devoted to the application of this failure criterion in the finite element simulations 

of the shaking table test of a scaled four-storey masonry building as conducted at the Institute of 

Earthquake Engineering and Engineering Seismology (IEEES), Skopje. The numerical analysis is 

performed in the elastic range and the plastic admissibility of the predicted stress field is assessed 

by incorporating the proposed macroscopic failure criterion. The thesis ends with conclusions and 

recommendations for future works.
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CHAPTER 2  

MACROSCOPIC FAILURE CRITERION FOR 

STRUCTURAL MASONRY 

 

 

2.1. Introduction 

 

Duveau et al. (1998) conducted a comprehensive literature review on the formulation of 

failure criteria for anisotropic materials. On the basis of their study there are three main groups of 

criteria including continuous models, empirical continuous models, and discontinuous weakness 

planes-based models. 

In the first category, the strength anisotropy is described through a mathematical approach 

that assumes a continuous variation of strength parameters. Hill (1948) derived the first failure 

criteria in this category for frictionless materials by extending von Mises isotropic theory. This 

approach was pursued by Tsai and Wu (1971) who introduced a failure criterion employing the 

first- and second-order terms in the stress components. The Hill criterion was also modified by 

Pariseau (1968) for rocks and soils in order to take into account the sensitivity of the mechanical 

behavior to the mean stress. Later, a more accurate and general formulation was derived in terms 
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of the invariants of stress and microstructure tensors (Boehler and Sawczuk, 1970). This failure 

criterion was subsequently simplified by Cowin (1986) using different orders of stress components 

and fabric tensors. 

The failure criteria in the second category employ some empirical relations for the material 

parameters which are involved in an isotropic criterion. For instance,  Jaeger (1960) employed the 

Mohr-Coulomb theory coupled with an empirical rule for variation of the cohesion coefficient 

while the internal friction remained constant. Then, in a similar way, a variation law for the friction 

coefficient was proposed by McLamore and Gray (1967) to improve Jaeger’s criterion. The 

model’s parameters could be identified by fitting the Mohr-Coulomb criterion to the experimental 

results of an extensive series of triaxial tests for different sample orientations.   

The third category involves failure criteria in which the anisotropic material is considered 

as an isotropic body with sets of pre-defined weakness planes. Therefore, the failure can occur 

either within the matrix or along the weakness planes for different loading orientations. The first 

attempt in formulating such criterion was that by Jaeger (1960) who employed the Mohr-Coulomb 

function for both failure scenarios. A more accurate representation of this criterion was presented 

by Hoek (1964). The main improvement compared to Jaeger’s model was proposing a non-linear 

failure envelope instead of the classic Mohr-Coulomb theory. It should be mentioned that  

implementation of  this kind of failure criteria in a real problem requires identification of a large 

number of independent material parameters in addition to the information on orientation of the pre-

existing weakness planes.  

An alternative pragmatic approach to those discussed above is the formulation proposed by 

Pietruszczak and Mroz (2001). In this work, two conceptually different methodologies have been 

developed for specifying the failure conditions in anisotropic materials. The first one is the critical 
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plane approach in which the orientation of the potential failure plane is specified by solving a 

constrained optimazation problem for the maximum value of the failure function. The second 

approach incorporates a scalar anisotropy parameter η, which is expressed in terms of mixed 

invariants of stress and microstructure tensors. These two frameworks are reviewed in this chapter 

and later employed to describe the conditions at failure for structural masonry.      

2.2. Formulation of Macroscopic Failure Criterion for Structural 

Masonry  

The failure criterion for the structural masonry considered here has the same functional 

form as that employed for sedimentary rocks by Pietruszczak and Haghighat (2015). It incorporates 

both approaches mentioned above, i.e. critical plane framework and microstructure tensor 

approach. The general form of the failure function is defined as follows: 

𝐹 = 𝑚𝑎𝑥(𝐹ଵ, 𝐹ଶ)                                                                              (2.1) 

𝐹ଵ = 𝐹൫𝜎௜௝ , 𝑎௜௝൯           Failure function incorporating microstructure tensor 

 𝐹ଶ = 𝑓(𝜏, 𝜎) −  𝑐(𝑛௜)         Failure function based on Critical Plane Approach 

For an arbitrary stress state, the values of these two failure functions are calculated, and the 

maximum value of F is established. In the compression regime, the failure is governed by the 

failure function incorporating the microstructure tensor approach, while in the tension regime the 

failure function based on the Critical Plane framework is active. In the following sections, these 

failure functions will be explained in detail.      
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2.2.1. Microstructure Tensor Approach  

 

This approach employs a scalar anisotropy parameter which is a function of mixed invariants 

of stress and microstructure tensors (Pietruszczak and Mroz, 2001). A microstructure tensor 𝑎௜௝ is 

introduced as a measure of material fabric, e.g. the arrangement of intergranular contacts, the crack 

or voids patterns, the pore size distribution, etc. The eigenvectors of the microstructure 

tensors, 𝑒௜
(ఈ), 𝛼 =1,2,3, represent the principal material axes. The microstructure tensor 𝑎௜௝ may be 

defined as follows:  

𝑎௜௝ = 𝑎ଵ𝑒௜
(ଵ)

𝑒௝
(ଵ)

+ 𝑎ଶ𝑒௜
(ଶ)

𝑒௝
(ଶ)

+ 𝑎ଷ𝑒௜
(ଷ)

𝑒௝
(ଷ)

= 𝑎ଵ𝑚௜௝
(ଵ)

+ 𝑎ଶ𝑚௜௝
(ଶ)

+ 𝑎ଷ𝑚௜௝
(ଷ)

           (2.2)   

where,  𝑚௜௝
(ఈ)

= 𝑒௜
(ఈ)

𝑒௝
(ఈ) are the structure-orientation tensors and 𝑎ଵ, 𝑎ଶ, 𝑎ଷ are the principal values 

of the microstructure tensor.  

 In the most general representation, the failure criterion is expressed as a function of both 

the stress state 𝜎௜௝ and microstructure tensor 𝑎௜௝, i.e. 

           𝐹ଵ = 𝐹൫𝜎௜௝ , 𝑎௜௝൯ = 𝐹 (𝑇௜௝𝑇௣௤𝜎௣௤, 𝑇௜௣𝑇௝௤𝑎௣௤)                                                                (2.3)    

          = 𝐹(𝑡𝑟𝝈, 𝑡𝑟𝝈ଶ, 𝑡𝑟𝝈ଷ, 𝑡𝑟𝒂, 𝑡𝑟𝒂ଶ, 𝑡𝑟𝒂ଷ, 𝑡𝑟(𝝈𝒂), 𝑡𝑟(𝝈ଶ𝒂), 𝑡𝑟(𝝈𝒂ଶ), 𝑡𝑟(𝝈𝟐𝒂ଶ)) = 0 

Here, 𝑇௜௝ is the transformation tensor. The above representation is too complex to be used for 

practical applications. Thus, a simplified formulation has been developed (Pietruszczak and Mroz, 

2001) , whereby the anisotropy measures are defined in terms of relative orientation of principal 

axes of stress and microstructure tensors. These descriptors are then related to the strength 

parameters which are assumed to be orientation dependent.    
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 This formulation uses the concept of ‘generalized loading vector’ to characterize the 

loading direction with respect to the principal axes of the material. It is defined as:  

 𝐿௜ =  𝐿௝𝑒௞
(௜)

;   𝐿௝ = (𝜎௝ଵ
ଶ + 𝜎௝ଶ

ଶ + 𝜎௝ଷ
ଶ)

ଵ
ଶൗ ; ( i, j=1, 2, 3)                       (2.4)     

or 

 𝐿ଵ = (𝜎ଵଵ
ଶ + 𝜎ଵଶ

ଶ + 𝜎ଵଷ
ଶ)

ଵ
ଶൗ ;  𝐿ଶ = (𝜎ଵଶ

ଶ + 𝜎ଶଶ
ଶ + 𝜎ଶଷ

ଶ)
ଵ

ଶൗ ;                     (2.5)     

 𝐿ଷ = (𝜎ଵଷ
ଶ + 𝜎ଶଷ

ଶ + 𝜎ଷଷ
ଶ)

ଵ
ଶൗ          

As can be seen from the above equations, the components of  𝐿௜ are the magnitudes of traction 

vectors on the planes normal to the principal material axes. Also,  

 𝐿௜
ଶ = 𝑒௞

(௜)
𝜎௞௝𝑒௟

(௜)
𝜎௟௝ = 𝑡𝑟ቀ𝑚௞௣

(௜)
𝜎௤௟𝜎௟௞ቁ;      𝐿௞𝐿௞ = 𝜎௞௝𝜎௞௝ = 𝑡𝑟൫𝜎௞௟𝜎௟௝൯            (2.6)   

The generalized loading vector is a unit vector along 𝐿௜, so that 

𝑙௜ =
௅೔

(௅ೖ௅ೖ)
భ

మൗ
= ൤

௘ೖ
(೔)

ఙೖೕ௘೘
(೔)

ఙ೘ೕ

ఙ೛೜ఙ೛೜
൨

భ

మ

                                                          (2.7)  

A scalar anisotropy parameter used in this approach is defined as the projection of the 

microstructure tensor  𝑎௜௝ on the loading direction 𝑙௜ :  

𝜂 = 𝑎௜௝𝑙௜𝑙௝ = ൤
௔೔ೖఙ೔ೕఙೖೕ

ఙ೛೜ఙ೛೜
൨ = 𝑎ଵ

௧௥൫௠(భ)ఙమ൯

௧௥ఙమ
+ 𝑎ଶ

௧௥൫௠(మ)ఙమ൯

௧௥ మ
+ 𝑎ଷ

௧௥൫௠(య)ఙమ൯

௧௥ మ
=

௧௥൫௔ఙమ൯

௧௥ మ
      (2.8)   

Thus, this scalar variable 𝜂 is the ratio of the joint invariant of the stress and the microstructure 

tensor to the second invariant of the stress tensor. It describes the effect of the loading orientation 
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with respect to the principal material axes. Note that this measure is independent of the stress 

magnitude. The representation (2.8) can be expressed as:  

𝜂 = 𝜂଴(1 + 𝐴௜௝𝑙௜𝑙௝)                                                              (2.9)  

Where, 𝐴௜௝ = dev (aij)/𝜂଴  is a symmetric traceless operator. The above equation can be 

generalized by considering higher order tensors.  

   𝜂 = 𝜂଴(1 + 𝐴௜௝𝑙௜𝑙௝ + 𝐴௜௝௞௟𝑙௜𝑙௝𝑙௞𝑙௟ + ⋯ )                                            (2.10)    

For simplicity, the higher order tensors can be defined as dyadic products of second-order 

tensors, instance.  𝐴௜௝௞௟ =  𝑏ଵ𝐴௜௝𝐴௞௟ and  𝐴௜௝௞௟௠௡ =  𝑏ଶ𝐴௜௝𝐴௞௟𝐴௠௡. Therefore, the representation 

of anisotropy parameter 𝜂 becomes  

𝜂 = 𝜂଴(1 + 𝐴௜௝𝑙௜𝑙௝ + 𝑏ଵ(𝐴௜௝𝑙௜𝑙௝)ଶ + 𝑏ଶ(𝐴௜௝𝑙௜𝑙௝)ଷ + 𝑏ଷ(𝐴௜௝𝑙௜𝑙௝)ସ + ⋯ )             (2.11)   

Here, b’s are constants.  

 With regards to the above-stated simplification, the failure function (2.3) can be represented 

in the following simplified form: 

𝐹 = 𝐹൫𝜎௜௝, 𝑎௜௝൯ = 𝐹(𝑡𝑟𝝈, 𝑡𝑟𝝈ଶ, 𝑡𝑟𝝈ଷ, 𝜂)                                         (2.12)   

Also, the failure function (2.12) may be expressed in the form: 

𝐹 = 𝐹൫𝜎௜௝, 𝑎௜௝൯ = 𝐹(𝐼ଵ, 𝐽ଶ, 𝐽ଷ, 𝜂)                                                        (2.13)   

where, 𝐼ଵ is the first stress invariant, and  𝐽ଶ, 𝐽ଷ are the basic invariants of the stress deviator. 

Considering that the anisotropy parameter 𝜂 is orientation dependent, the above failure function 

can be employed for anisotropic materials by assuming that the strength parameters have a similar 
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representation to that of Equation (2.11). The number of strength parameters depends on the failure 

criterion used and the type of the material.  

Here, Mohr-Coulomb criterion is adopted to define the conditions at failure 

𝐹 = √3𝜎ത −  𝜂௙𝑔(𝜃)(𝜎௠ +  𝐶)                                                     (2.14)   

where 

𝑔(𝜃) =
ଷିୱ୧୬

ଶ√ଷ ୡ୭ୱ ఏିଶ ୱ୧୬ ఏ ୱ୧୬
;       𝜂௙ =

ଶ√ଷ ୱ୧୬ థ

ଷିୱ୧୬ థ
;     𝐶 = 𝑐 cot ∅                  (2.15)   

In this expression, ∅, 𝑐 are the angle of friction and cohesion, respectively, and 𝜃 denotes 

Lode’s angle. The stress invariants 𝜎௠ , 𝜎ത, and 𝜃 are function of the basic stress invariants, i.e.  

𝜎ത = (𝐽ଶ)
ଵ

ଶൗ ;   𝜎௠ = −
ଵ

ଷ
 𝐼ଵ; 𝜃 =

ଵ

ଷ
sinିଵ(

ିଷ√ଷ

ଶ

௃య

ఙഥయ)                               (2.16) 

The extension of the above failure criterion to anisotropic material may be obtained 

by expressing the orientation-dependent strength parameters, in this case 𝜂௙ and 𝐶, in a 

form analogous to Equation (2.11). However, the parameter 𝐶 associated with the strength 

under hydrostatic tension is a material constant, i.e., it is orientation independent. This is 

because under hydrostatic tension the loading vector components are equal to 

𝑙ଵ = 𝑙ଶ = 𝑙ଷ = 1 √3⁄                                                             (2.17)   

Since, in the principal material system, 𝐴௜௝ = 0 for 𝑖 ≠ 𝑗 and also  𝐴௜௜ = 0, it can be 

concluded that  

  𝐴௜௝𝑙௜𝑙௝ =   (𝐴ଵ + 𝐴ଶ + 𝐴ଷ) 3⁄ ≡ 0                                                    (2.18)   
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which implies that 𝐶 = 𝑐𝑜𝑛𝑠𝑡. Therefore, the only orientation-dependent strength parameter in 

this case is  𝜂௙ which can be defined as 

𝜂௙ = 𝜂௙ෞ(1 + 𝐴௜௝𝑙௜𝑙௝ + 𝑏ଵ(𝐴௜௝𝑙௜𝑙௝)ଶ + 𝑏ଶ(𝐴௜௝𝑙௜𝑙௝)ଷ + 𝑏ଷ(𝐴௜௝𝑙௜𝑙௝)ସ + ⋯ )              (2.19)   

To identify the material constants embedded in the Equation (2.19), the information 

of the failure conditions in samples tested at different orientations of the bedding plane β 

should be obtained, which will be discussed in detail further.  

2.2.2. Critical Plane Framework 

 

In the critical plane framework, the orientation of the failure plane is specified through the 

optimization of the failure function with respect to the orientation. The failure function is defined 

in terms of normal and shear stress components 𝜎, 𝜏, acting on the plane with unit normal 𝑛௜ , as 

well as the strength parameter c (Ushaksaraei and Pietruszczak, 2002) 

                                                       𝐹ଶ =  𝑓(𝜏, 𝜎) −  𝑐(𝑛௜)                                                                   (2.20)  

Here,  

                                                             𝜎 =  𝜎௜௝𝑛௜𝑛௝                                                                 (2.21)  

     𝜏 = 𝜎௜௝𝑛௜𝑠௝                                                       (2.22)  

where 𝑠௜ is an arbitrary unit vector normal to 𝑛௜   

      𝑛௜𝑠௜ = 0                                                        (2.23)   

Since the strength parameter c is orientation-dependent here, the function 𝑐(𝑛௜) may have a 

representation similar to Equation (2.11), i.e.:   
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𝑐(𝑛௜) = 𝑐଴(1 + Ω௜௝𝑛௜𝑛௝ + 𝑏ଵ൫Ω௜௝𝑛௜𝑛௝൯
ଶ

+ 𝑏ଶ൫Ω௜௝𝑛௜𝑛௝൯
ଷ

+ 𝑏ଷ൫Ω௜௝𝑛௜𝑛௝൯
ସ

+ ⋯ )       (2.24)       

The eigenvectors of Ω௜௝  define the principal material axes. For an orthotropic material, there are 

two independent eigenvalues of  Ω௜௝ (since Ω௜௜= 0), and the number of eigenvalues is reduced to 

one for a transversely isotropic materials.  

The onset of failure and the orientation of the critical plane can be specified by solving the 

following constrained optimization problem 

  𝑚𝑎𝑥௡೔
𝐹 = 𝑚𝑎𝑥௡೔

൫𝑓(𝜎, 𝜏) − 𝑐(𝑛௜)൯ = 0 ; 𝑛௜𝑛௜ = 1                                    (2.25) 

The method of Lagrange multipliers or other suitable optimization methods can be incorporated to 

solve the above equations. Depending on the type of material, different failure criteria can be 

utilized to describe the behavior.  

In this framework, tension cut-off criterion is employed to measure the tension resistance 

of masonry panel. The notion of tension cut-off criterion suggests that the tensile failure occurs 

when the normal component of traction vector 𝑡௜ acting on the localization plane reaches the value 

of the strength parameter 𝑐. In this case, the failure criterion (2.25) becomes: 

  𝑚𝑎𝑥௡೔
𝐹 = 𝑚𝑎𝑥௡೔

൫𝜎 − 𝑐(𝑛௜)൯ = 0                                                     (2.26) 

The identification of the material constants (𝑐଴, Ωଵ, 𝑏ଵ, 𝑏ଶ, and etc.) embedded in the 

general distribution of 𝑐(𝑛௜), Equation (2.24), requires high-order polynomial fitting to it, which 

will be explained further in the next section. 
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2.3. Identification Procedure of Material Parameters/Functions in the 

Failure Criterion 

 

2.3.1. Microstructure Tensor Approach 

 

This section explains the identification procedure of the constants embedded in the 

spatial distribution of the strength parameters in the failure function. The first step of this 

procedure is to estimate the value of the material parameter C appearing in the failure 

condition. For this purpose, it is convenient to express the Mohr-Coulomb failure function 

in terms of principal stresses, i.e.  

ଵ

ଶ
(𝜎ூ − 𝜎ூூூ) −

ଵ

ଶ
(𝜎ூ + 𝜎ூூூ) sin 𝜙 − 𝐶 sin 𝜙 = 0                                     (2.27)    

Note that, in this thesis, 𝜎ଵ and 𝜎ଶ refer to the horizontal and vertical stress, respectively. This 

notation is consistent with that used by Page’s in presenting the results of his experimental tests. 

At the same time, the principal stresses appearing in Mohr-Coulomb criterion have been defined 

by Roman numerals.  

For the tests involving uniaxial compression and biaxial compression-tension, the 

minimum principal stress (𝜎ூூூ) is zero, while the vertical stress is the maximum principal stress 

(𝜎ூ). Therefore, based on the results of these test, the value of C can be estimated by plotting the 

linear Mohr-Coulomb envelopes in  
ଵ

ଶ
(𝜎ூ − 𝜎ூூூ)  𝑣𝑠  

ଵ

ଶ
(𝜎ூ + 𝜎ூூூ) space.  

The identification process is based here on the results of experimental tests conducted by 

Page (1983) that involved both biaxial compression-tension and uniaxial compression at different 

orientations of sample (ranging from 0 to 90 degrees). The main results, in terms of averages for 
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all tests reported by Page, are shown in Table 2.1. In this table, β represents the orientation of bed 

joints, 𝑓௖  is the uniaxial compression strength, and 𝛼 is the ratio of horizontal tensile stress to 

vertical compressive stress at failure.  

β 𝑓௖(𝑀𝑃𝑎) 

𝛼 = 0.2 𝛼 = 0.1 

Compression 

stress (𝜎ଶ) 

(MPa) 

Tension 

stress (𝜎ଵ) 

(MPa) 

Compression 

stress (𝜎ଶ) 

(MPa) 

Tension 

stress (𝜎ଵ) 

(MPa) 

0 7.670 2.792 0.558 3.795 0.348 
22.5 5.663 2.343 0.455 3.462 0.325 
45 4.804 1.915 0.377 2.589 0.235 

67.5 2.866 1.489 0.295 1.596 0.146 
90 4.371 0.958 0.194 2.305 0.190 

Table 2.1. Results of Experimental Uniaxial Compression and Biaxial Compression Tension Tests, Page(1983) 

The value of the parameter C is assessed for each angle by best-fitting the experimental 

data with a linear Mohr-Coulomb approximation, Figure 2.1. 
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Figure 2.1 Linear Approximation (Mohr-Coulomb) of Failure Condition for Different Orientation of Bed Joints 

 The final estimate of C is obtained by taking the maximum value over the set of 

orientations considered. This results in 𝐶 = 0.956, which has been used in further analysis. It is 

important to note that this parameter has no physical meaning as the strength under hydrostatic 

tension is governed by the cut off criterion (2.20), in which ( )ic n C  . 

β C (MPa) 
0 0.956 

22.5 0.930 
45 0.628 

67.5 0.518 
90 0.319 

Max 0.956 

Table 2.2. Parameter (𝐶) for different bed joint orientations 
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After the determination of the value of 𝐶, the next step is to identify the coefficients 

(𝜂௙ෞ, 𝐴ଵ, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ) appearing in the distribution function of the strength parameter 𝜂௙, i.e. Equation 

(2.19). Note that 𝜂௙ can be expressed as a function of the friction angle through the relation                  

                         𝜂௙ =
଺ ୱ୧୬ థ

ଷିୱ୧୬ థ
                                                                     (2.28)   

The value of  𝜙 can be calculated from the Mohr-Coulomb failure function (2.27) by imposing 

the conditions of uniaxial compression, i.e.  

𝜎ூ = 𝑓௖; 𝜎ூூூ = 0 

1

2
𝑓௖ −

1

2
𝑓௖ sin 𝜙 − 𝐶 sin 𝜙 = 0 

sin 𝜙 =
௙೎

௙೎ାଶ஼
                                                             (2.29)                                                                  

Table 2.3 shows the obtained values of 𝜙 as well as the corresponding values of the parameter 𝜂௙. 

The results correspond to all uniaxial compression tests conducted by Page (1983) at the different 

orientations of bed joints.  
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β 𝑓௖(𝑀𝑃𝑎) 𝐶(𝑀𝑃𝑎) 𝜙 𝑙ଶ 1 − 3𝑙ଶ
ଶ 𝜂௙   

0 7.993 0.956 0.939 1.000 -2.000 2.208 
0 8.231 0.956 0.947 1.000 -2.000 2.225 
0 7.109 0.956 0.908 1.000 -2.000 2.138 
0 7.347 0.956 0.917 1.000 -2.000 2.158 

22.5 4.890 0.956 0.802 0.924 -1.561 1.891 
22.5 5.366 0.956 0.829 0.924 -1.561 1.955 
22.5 5.638 0.956 0.843 0.924 -1.561 1.988 
22.5 6.760 0.956 0.894 0.924 -1.561 2.106 

45 6.208 0.956 0.870 0.707 -0.500 2.052 

45 4.099 0.956 0.750 0.707 -0.500 1.765 

45 4.541 0.956 0.781 0.707 -0.500 1.839 

45 5.119 0.956 0.815 0.707 -0.500 1.923 

45 5.459 0.956 0.834 0.707 -0.500 1.967 

67.5 3.376 0.956 0.692 0.383 0.561 1.622 

67.5 2.321 0.956 0.580 0.383 0.561 1.342 

67.5 2.560 0.956 0.609 0.383 0.561 1.415 

67.5 3.206 0.956 0.677 0.383 0.561 1.583 

90 3.640 0.956 0.715 0.000 1.000 1.678 

90 4.218 0.956 0.759 0.000 1.000 1.786 

90 4.626 0.956 0.786 0.000 1.000 1.852 

90 5.000 0.956 0.809 0.000 1.000 1.906 

Table 2.3. Values of 𝜂௙ for different bedding plane orientations  

It should be noted that a more general identification procedure would involve a case of 

triaxial compression with confining pressure, 𝑃଴. In order to illustrate it, consider the sample 

geometry as shown in Figure 2.2. 
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Figure 2.2 Geometry of the Sample in Uniaxial Compression Test (Pietruszczak, 2010) 

For this problem, the stress tensor will have the following form in the local coordinate system 

𝜎௜௝ = ቎

𝑐𝑜𝑠ଶ(𝛽)𝑃଴ + 𝑠𝑖𝑛ଶ(𝛽)𝜎ଶ − cos(𝛽) sin(𝛽)𝑃଴ + cos(𝛽) sin(𝛽)𝜎ଶ 0

− cos(𝛽) sin(𝛽)𝑃଴ + cos(𝛽) sin(𝛽)𝜎ଶ 𝑠𝑖𝑛ଶ(𝛽)𝑃଴ + 𝑐𝑜𝑠ଶ(𝛽)𝜎ଶ 0
0 0 𝑃଴

቏ 

(2.30) 

In this way, the components of loading vector, Equation (2.4), become  

  𝐿ଵ
ଶ = 𝜎ଵଵ

ଶ + 𝜎ଵଶ
ଶ + 𝜎ଵଷ

ଶ = 𝑐𝑜𝑠ଶ(𝛽)𝑃଴
ଶ + 𝑠𝑖𝑛ଶ(𝛽)𝜎ଶ

ଶ 

 𝐿ଶ
ଶ = 𝜎ଶଵ

ଶ + 𝜎ଶଶ
ଶ + 𝜎ଶଷ

ଶ = 𝑠𝑖𝑛ଶ(𝛽)𝑃଴
ଶ + 𝑐𝑜𝑠ଶ(𝛽)𝜎ଶ

ଶ 

 𝐿ଷ
ଶ = 𝜎ଷଵ

ଶ + 𝜎ଷଶ
ଶ + 𝜎ଷଷ

ଶ = 𝑃଴
ଶ                                                                    (2.31) 

Also the unit vector, 𝑙௜, takes the following form 

𝑙ଵ
ଶ =

𝐿ଵ
ଶ

𝐿ଵ
ଶ + 𝐿ଶ

ଶ + 𝐿ଷ
ଶ =

𝑐𝑜𝑠ଶ(𝛽)𝑃଴
ଶ + 𝑠𝑖𝑛ଶ(𝛽)𝜎ଶ

ଶ

2𝑃଴
ଶ + 𝜎ଶ

ଶ
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𝑙ଶ
ଶ =

𝐿ଶ
ଶ

𝐿ଵ
ଶ + 𝐿ଶ

ଶ + 𝐿ଷ
ଶ =

𝑠𝑖𝑛ଶ(𝛽)𝑃଴
ଶ + 𝑐𝑜𝑠ଶ(𝛽)𝜎ଶ

ଶ

2𝑃଴
ଶ + 𝜎ଶ

ଶ
 

𝑙ଷ
ଶ =

௅య
మ

௅భ
మା௅మ

మ ା௅య
మ =

௉బ
మ

ଶ௉బ
మାఙమ

మ
                                                         (2.32) 

For a transversely isotropic material, there is one eigenvalue for the fabric tensor 𝐴௜௝. Also, 

the fabric tensor, 𝐴௜௝ is a traceless tensor,i.e., 𝐴௜௜ = 0. Thus,  𝐴ଵ = 𝐴ଷ and 𝐴ଶ = −2𝐴ଵ. In addition, 

𝑙ଵ
ଶ + 𝑙ଶ

ଶ + 𝑙ଷ
ଶ = 1. Thus 

𝐴௜௝𝑙௜𝑙௝ = 𝐴ଵ𝑙ଵ
ଶ + 𝐴ଶ𝑙ଶ

ଶ + 𝐴ଷ𝑙ଷ
ଶ = 𝐴ଵ𝑙ଵ

ଶ − 2𝐴ଵ𝑙ଶ
ଶ + 𝐴ଵ𝑙ଷ

ଶ = 𝐴ଵ(1 − 3𝑙ଶ
ଶ)         (2.33) 

 Therefore, the representation of  𝜂௙ , Equation (2.19), becomes   

𝜂௙ = 𝜂௙ෞ(1 + 𝐴ଵ𝜉 + 𝑏ଵ𝐴ଵ
ଶ𝜉ଶ + 𝑏ଶ𝐴ଵ

ଷ𝜉ଷ + 𝑏ଷ𝐴ଵ
ସ𝜉ସ … )                            (2.34) 

in which  

𝜉 = (1 − 3𝑙ଶ
ଶ)                                                                (2.35) 

When the confining pressure (𝑃଴) is zero, 𝑙ଶ equals cos 𝛽. Thus, Equation (2.35) for this case is 

reduced to  

𝜂௙ = 𝜂௙ෞ(1 + 𝐴ଵ(1 − 3𝑐𝑜𝑠ଶ(𝛽)) + 𝑏ଵ𝐴ଵ
ଶ൫1 − 3𝑐𝑜𝑠ଶ(𝛽)൯

ଶ
+ ⋯ )             (2.36) 

Figure 2.3 depicts the variation of 𝜂௙ against 𝜉. A fourth-order approximation is fitted to 

the diagram to find the set of coefficients appearing in (2.35). The identified coefficients are 

provided in Table 2.4.  
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Figure 2.3 Distribution of 𝜂௙ vs 𝜉 

𝜂௙ 1.676 

A1 -0.314 

b1 0.330 

b2 -8.322 

b3 10.313 

Table 2.4 Coefficients of function 𝜂௙(𝑙௜) for uniaxial compression test    

2.3.2. Critical Plane Framework 

 

Similar to microstructure tensor approach, the constants appearing in the spatial distribution 

of function 𝑐(𝑛௜), Eq (2.24), should be identified in this framework. These independent 

parameters 𝑐଴, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, and Ωଵ are specified based on the experimental data of uniaxial tension 

tests reported by Page (1983). Figure 2.4 shows the polar distribution of function 𝑐(𝑛௜) which has 
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been depicted by Ushaksaraei and Pietruszczak (2002) by assuming that the ratio of tensile strength 

on plane at 45o to the tensile strength along the bed joints lies between 3 and 4. The values of the 

parameter 𝑐 are summarized in Table 2.5.   

𝛽 1 − 3𝑐𝑜𝑠ଶ𝛽 𝑐 

0 -2.00 0.24 
10 -1.91 0.318 
20 -1.65 0.498 

22.5 -1.56 0.552 
30 -1.25 0.708 
40 -0.76 0.873 
45 -0.50 0.911 
45 -0.50 0.911 
50 -0.24 0.906 
55 0.01 0.881 
60 0.25 0.825 

67.5 0.56 0.693 
70 0.65 0.648 
80 0.91 0.476 
90 1.00 0.40 

Table 2.5 Values of 𝑐(𝑛௜) for different orientations of sample 

 

Figure 2.4 Polar distribution of c(ni) (Ushaksaraei.and Pietruszczak , 2002) 

 By fitting a fourth-order polynomial function to the distribution of function 𝑐(𝑛௜) , Figure 

2.5, the following set of coefficients is obtained as shown in Table 2.6.      
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Figure 2.5 Variation of 𝑐(𝑛௜) vs 𝜉 

. 

𝑐଴ 0.885 

Ωଵ -0.200 

𝑏ଵ -7.707 

𝑏ଶ 3.523 

𝑏ଷ -4.482 

 

Table 2.6 Coefficients corresponding to distribution function of 𝑐(𝑛௜)  

 

2.4. Model Verification against Experimental Data  

Several numerical simulations were conducted using the material parameters identified in 

the previous section to evaluate the performance of the proposed failure criterion. In this study, the 

numerical results are compared with those of experimental tests performed by Page (1981, 1983), 
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which included uniaxial compression, uniaxial tension, biaxial compression-compression, and 

biaxial compression-tension at different orientations of bed joint.  

First, the mechanical response of the sample under uniaxial compression loading is studied. 

Figure 2.6 shows the variation of axial compressive strength as a function of the orientation of 

bedding planes. For low values of 𝛽 (from 0௢to 40௢), the failure involves the formation of 

macrocracks in the direction close to the head joints. The failure mode changes at 𝛽 ≈ 40௢  as the 

damage is localized in the bed joints. For the above failure mechanism, the compressive strength 

first decreases significantly and reaches its minimum value at 𝛽 ≈ 67.5௢, and then increases 

gradually. In general, the numerical results are quite consistent with the experimental data, 

provided by Page (1983), especially in terms of representing the transition in the failure mode.  

 

Figure 2.6 Comparison of Numerical Results with Experimental Data (Page1983), Uniaxial Compression Test  
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presented in Figures 2.7 (a) and (b), respectively. Figure 2.7 (b) indicates a transition in the failure 

plane orientation; i.e. the failure plane shifts from along the bed joints to the orientation 

perpendicular to it at 𝛽 = 45௢. In addition, the tensile strength increases gradually until the bed 

joints angle reaches 45 degrees, then grows significantly at 𝛽 = 45௢, and finally decreases 

gradually. It should be noted that the definition of the bed joints angle in this simulation is different 

from its definition in Page’s uniaxial tension test. Here, 𝛽 equals zero when the tension is 

perpendicular to the bed joints, and when the load is applied along the bed joints,  𝛽 = 90௢. The 

predicted trend is generally consistent with the experimental results obtained by Page (1983).   
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b)   

Figure 2.7 Variation of a) Uniaxial Tensile Strength and b) Failure Plane Orientation vs. Orientation of Bed Joints, β 

The next stage of the numerical study is the simulation of a set of inplane biaxial compression-

tension tests performed by Page (1983) to evaluate the performance of the proposed macroscopic 

failure criterion. In these tests, the loading involves a constant ratio of compressive to tensile stress, 

including 0, -0.5, -0.25, -0.1, -0.033, and -∞. Figure 2.8 shows the predicted failure envelopes for 

different orientations of bed joints. The numerical results are fairly consistent with the 

experimental data, especially that the experimental scatter is quite significant.   
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Figure 2.8 Predicted Failure Surfaces of In Plane Biaxial Compression-Tension Tests 

Finally, the sets of predictions corresponding to the biaxial compression tests carried out 

by Page (1981) are represented in Figure 2.9. In these tests, the out–of-plane stress is zero, and as 

such it is the minor principal stress. Also, the loading path is similar to the biaxial compression-

tension test, i.e., the stress ratio is constant. As discussed previously, the assumption of transverse 

isotropy is not valid here, and the out-of-plane characteristics have a profound influence on the 

behavior of structural masonry. For this reason, another set of simulations has been performed 

considering the orthotropic properties of the structural masonry. The results of these simulations 

are shown by a broken line in Figure 2.9. In this case the fabric tensor 𝐴௜௝ has two independent 

eigenvalues, 𝐴ଵ and 𝐴ଶ, so that Equation (2.34) should be modified to  

𝐴௜௝𝑙௜𝑙௝ = 𝐴1𝑙1
2 + 𝐴2𝑙2

2 − (𝐴1 + 𝐴2)(1 − (𝑙
1

2 + 𝑙2
2))                            (2.37) 

Thus, there are now six unknown coefficients 𝜂௙ෞ , 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝐴ଵ, and 𝐴ଶ, in the formulation of 𝜂௙, 

Eq. (2.19). In this case, the values of  𝜂௙ can be calculated from Eqs. (2.28) and (2.29) again, 

however 𝑓௖ should be replaced by the corresponding value of the vertical stress. By solving a 

nonlinear equations system, the following coefficients have been obtained:   

1 2 31.8579   A    A   0.157   6.114   4.743 f b b b            
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Figure 2.9 Failure Surfaces for In Plane Biaxial Compression Tests
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CHAPTER 3  

FINITE ELEMENT ANALYSIS OF A LARGE-

SCALE MASONRY STRUCTURE 

 

 

3.1. Introduction 

 

This chapter discusses an application of the proposed macroscopic failure criterion in the 

numerical analysis. A 3D finite element simulation of a shaking table test is performed involving 

a reduced model of a building constructed with concrete and unreinforced masonry. In this 

simulation, the macroscopic failure criterion is incorporated for assessing the plastic admissibility 

of the stress field in the structure under earthquake excitation. The shaking table test was carried 

out at the Institute of Earthquake Engineering and Engineering Seismology (IEEES), Skopje 

(Jurukovski et al. 1989). The test involved  a reduced 1:3 scale model of the building that was 

designed based on the Theory of Models and subjected to a specific earthquake excitation  

(Ushaksaraei et al., 2007). 

The details of the 3D FE modelling of the shaking table tests are described in the following 

section. The dynamic FE analysis is performed within the elastic range, and the plastic 
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admissibility of the stress field is assessed by invoking the macroscopic failure criterion (2.1). The 

numerical results (the damaged zone at the peak displacement) are presented and compared with 

the crack pattern at the experimental test.  

3.2. FE Simulation of the Reduced Scale Model Test   

3.2.1 Geometry of the Model  

Figure 3.1 shows the panel of the reduced scale model which was constructed on scale 1 3⁄  

in relation to the size of the shaking table.  This model includes RC (reinforced concrete) slabs, 

RC frame in the basement, and unreinforced masonry walls with 8 cm thickness. The size of 

masonry brick is 8 × 8 × 4 cm. while the size of the panel is 410 × 350 cm.  

Figure 3.1 Reduced Scale Model Panel (Jurukovski et al. 1989) 
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3.2.2 Boundary Conditions and Discretization  

Figure 3.2 shows the ground motion history used in the dynamic analysis. This base 

excitation is considered for each four directions, +x, –x, +z, –z, in the separate dynamic analyses.  

The maximum horizontal base acceleration was 0.5091g at 4.56 seconds.  

               

 

 

       

        

Figure 3.2 Base Acceleration History (R. Ushaksaraei et al. , 2007) 

Figure 3.3 presents the FE discretization of the building. The 8-node linear hexahedral solid 

element type (C3D8) is employed in the finite element mesh for modeling the masonry walls, the 

concrete slabs, and the concrete beams above the window opening. A total of 9310 elements have 

been used. 
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Figure 3.3 FE Discretization of the Mixed Concrete Masonry Building  

3.2.3 Material Properties   

The material properties for the constituents in this model have been provided by R. 

Ushaksaraei et al. (2007), Table 3.1. Also, the average elastic properties of the masonry brickwork 

have been computed through a general three-dimensional formulation developed by Pietruszczak 

and Niu (1992):  
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       Constituent Property Value 

Brick Angle of internal friction, 𝜙 (௢) 55 

 
Cohesion, 𝑐 (MPa) 2.38 

 
Tensile strength, 𝜎଴ (MPa) 1.5 

   

Mortar Angle of internal friction, 𝜙 (௢) 50 

 
Cohesion, 𝑐 (MPa)  0.35 

 
Tensile strength, 𝜎଴ (MPa) 0.15 

   

Concrete Density, 𝛾 (𝑘𝑔 𝑚ଷ)⁄  
2400 

 
Module of Elasticity, 𝐸 (GPa) 

10.5 

  Poisson’ ratio, ν 
0.2 

Table 3.1 Material Properties of Constituents in Shaking Table Test Model (R. Ushaksaraei et al. 2007) 

  In order to implement the failure function in the numerical analysis, the material 

parameters should be specified for this case following the identification procedure described in 

Section 2.3. The material parameters associated with the spatial distribution of function 𝑐(𝑛௜), 

Equation (2.24), were derived by Ushaksaraei and Pietruszczak (2008). In this case, the variation 

of the uniaxial tensile strength has the form shown in Figure 3.4 and corresponds to the following 

parameters   

0 1 20.33374      0.077   3.46131c b b        
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Figure 3.4 Uniaxial Tension Strength of Structural Masonry Variation for Shaking Table Test at IEEES Skopje 

(1989) 

 As stated in Section 2.3, the identification of the material function 𝜂௙, Equation 2.11, and 

the strength parameter 𝐶 requires the uniaxial compression and the biaxial compression tension 

tests data for different orientations of bed joints. These data have been generated using the results 

based on Critical Plane approach as reported by Ushaksaraei and Pietruszczak (2008). The key 

values are presented in Table 3.8 below.  
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Bedding 
Angle β 

Uniaxial 
Compressive, 

𝑓௖ 
(MPa) 

Biaxial Compression Tension 

𝛼 = 0.2 𝛼 = 0.1 𝛼 = 0.033 

𝜎ଶ(MPa) 𝜎ଵ(MPa) 𝜎ଶ(MPa) 𝜎ଵ(MPa) 𝜎ଶ(MPa) 𝜎ଵ(MPa) 

0 4.343 1.579 0.315 2.491 0.249 0.983 0.327 

22.5 1.932 1.105 0.221 1.420 0.142 0.860 0.286 

45 3.442 1.465 0.293 2.235 0.223 0.871 0.290 

67.5 4.081 0.997 0.199 2.035 0.203 0.586 0.195 

90 1.888 0.774 0.154 1.482 0.148 0.466 0.155 

Table 3.2 Uniaxial Compression and Biaxial Compression Tension Tests Data for Shaking Table Test at IEEES 

Skopje (1989) 

By following now the identification procedure described in Chapter 2 and using the above set of 

data, the values of the parameter C and the approximation coefficients appearing in the function 𝜂௙ 

have been determined as  

1 2 32.003   A    26.002   84.229   167.005   C=0.83f b b b          

Bedding Angle, 
β 𝑓௖(𝑀𝑃𝑎) 

C 

𝛼 = 0.2 𝛼 = 0.1 𝛼 = 0.033 

0.0 4.343 0.56 0.67 0.47 

22.5 1.932 0.70 0.74 0.70 

45.0 3.442 0.60 0.78 0.44 

67.5 4.081 0.28 0.45 0.24 

90.0 1.888 0.30 1.08 0.23 
 Max 0.70 1.08 0.70 
  C (Final) 0.83  

Table 3.3 Cohesion Parameter (𝐶) for Shaking Table Test at IEEES Skopje (1989) for different bedding plane 

orientations 



    M.Sc. Thesis                        Mohammadreza Mohammadi             McMaster University-Civil Engineering 

42 

Bedding Angle, β 𝑓௖(𝑀𝑃𝑎) C 𝜙 𝑙ଶ 1 − 3𝑙ଶ
ଶ 𝜂௙   

0 4.343 0.830 0.809 1.000 -2.000 1.907 

22.5 1.932 0.830 0.568 0.924 -1.561 1.311 

45 3.442 0.830 0.740 0.707 -0.500 1.741 

67.5 4.081 0.830 0.791 0.383 0.561 1.863 

90 1.888 0.830 0.561 0.000 1.000 1.294 

Table 3.4 Anisotropy Parameter 𝜂௙ for Shaking Table Test at IEEES Skopje (1989) for different bedding plane 
orientations   
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3.3.     Numerical Results and Discussion 

In this section, the main results of the FE dynamic analysis of the masonry building, 

performed within the elastic range, are presented and the plastic admissibility of the resulting stress 

field is assessed.   

Figure 3.5 shows the distribution of the value of the failure function, Equation (2.1), along 

the surfaces of the masonry walls at the peak displacement for the seismic excitation in the 

direction of +x. In this figure, the regions shown in red experience F>0, which means that the stress 

field is plastically inadmissible, i,e, the cracks will occur in the masonry brickwork. It is noted that 

the results only indicate the regions where the crack will form, the prediction of the crack pattern 

requires an appropriate non-linear analysis. The actual crack pattern recorded in the experimental 

test is depicted in Figure 3.6. In general, the predicted damage regions, Figure 3.5, are fairly 

consistent with the experimental results. The results for seismic excitation in other directions are 

presented in Figure 3.7. 

Finally, the damaged regions in tension and compression are shown in Figures 3.8 (a) and 

(b), respectively. Comparing these two distributions, it is seen that the failure of the masonry 

brickwork, i.e., F>0, under seismic excitation happens mostly in the tension regime. This is due to 

the fact that the stress field in this regime violates the tension cut-off criterion based on the critical 

plane approach, Eq (2.20). At the same time, in compression regime the plastic admissibility is 

governed by the failure criterion incorporating microstructure tensor approach, Eq (2.14). 
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a) 

 

b) 
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c) 

 

d) 
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e) 

Figure 3.5 Distribution of Failure Function of the Numerical Model for Maximum Base Acceleration in the 
Direction of +x a) 3D View b) Front Side c) Back Side d) Left Side e) Right Side  

 

Figure 3.6 Crack Pattern of Masonry Walls in the Experimental Shaking Table Test, Front Side (Bottom Left), Back 
Side (Bottom Right), Left Side (Top Left), Right Side (Top Right) (Jurukovski et al. 1989) 
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a) 

 

b) 
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c) 

 

d) 

Figure 3.7 Maps of Failure Function for Seismic Excitation in the Directions a) +x b) -x c) +z d) -z at the Maximum 
Displacement 
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a) 

 

 

b) 

Figure 3.8 Maps of Failure Function in a) Tension b) Compression Regimes, Seismic Excitation in the Direction of +x   
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Chapter 4  

CONCLUSIONS AND FUTURE WORK 

 

 

4.1. Summary and Conclusions 

The analysis of structural masonry is difficult due to the complex mechanical behaviour of 

its constituents and their interaction. In Chapter 1, two main modeling approaches for masonry, 

i.e. meso-modelling and macro-modelling, have been reviewed. It was argued that the analysis of 

a real masonry structure should be performed by employing a macro-modelling approach in which 

the masonry brickwork is described by a representative element volume consisting of brick units 

with sets of mortar joints. Its average properties can be identified through different methods, such 

as homogenization approach, by considering the geometric arrangement of the constituents. In 

addition, in this approach, a macroscopic failure criterion is defined for the representative element 

to capture the failure condition of structural masonry. Two distinct approaches (Critical Plane 

Approach and Microstructure Tensor Approach) have been developed by Pietruszczak & Mroz 

(2001) to describe the anisotropy in material properties. In these approaches, a set of distribution 

functions are incorporated to define the spatial variation of strength. Ushaksaraei and Pietruszczak 
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(2002) derived a macroscopic constitutive model within the framework of the critical plane 

approach for structural masonry.  

This study examined a macroscopic failure criterion for structural masonry which 

incorporates the microstructure tensor approach to specify the failure condition. This approach 

introduces a scalar anisotropy parameter, which is a function of mixed invariants of stress and 

microstructure-orientation tensors, to describe the anisotropic properties of brickwork. The 

framework incorporates an enhanced version of Mohr-Coulomb failure criterion for failure in 

compression regime, while in tension the conditions at failure are defined by employing the critical 

plane approach.     

Using the experimental data provided by Page (1981,1983), material parameters/functions 

have been identified including strength descriptors associated with the failure condition, 

coefficients involved in the distribution functions of anisotropy parameter 𝜂௙  and strength 

parameter 𝑐. Some simplified assumptions were incorporated in some parts of the identification 

process due to the lack of the experimental information.  

The performance of the proposed macroscopic failure criterion has been verified through 

the numerical simulations of the experimental tests conducted by Page (1981&1983) including 

uniaxial tension, uniaxial compression, biaxial compression-tension, and biaxial compression-

compression tests. The predicted results are consistent with the experimental data. Moreover, it 

was shown that the out-plane properties of masonry brickwork have a profound influence on the 

results of the in-plane biaxial compression-compression tests and the assumption of transverse 

isotropy is not valid in these tests.    
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In the final part of this study, a seismic analysis of a scaled four-storey masonry building 

was conducted by incorporating the macroscopic failure criterion into a user-defined material 

subroutine UMAT (Abaqus/Standard code). The analysis was performed within the elastic region. 

The numerical results include the maps of the failure function values along the outer faces at the 

peak base acceleration, indicating the damged zones. Comparing the predicted damage zones with 

the numerical simulation and the crack pattern in the experimental test, it was observed that they 

are fairly consistent with each other. Moreover, the results revealed that the failure in the masonry 

walls subjected to seismic loading occurs mostly in the tension regime.  

4.2. Future Directions  

In this study, a macroscopic criterion has been investigated for specifying the condition at 

failure in terms of the microstructure tensor for structural masonry. However, more studies are 

required to improve the performance of the proposed failure criterion. Therefore, some suggestions 

for future research are presented here. 

           The identification of material parameters requires some additional experimental studies, 

such as the direct shear tests and the triaxial compression test. The reason is that some material 

properties, such as the out-of-plane characteristics, which play an important role in the results of 

the compression tests, cannot be identified based on the information on the in-plane tests alone. 

Thus, numerical simulations of other experimental tests can be the subjects of further research. 

           The current approach based on the microstructure tensor describes the behaviour of the 

structural masonry within the elastic range, but it can be extended for modeling of progressive 

failure in the structural masonry by incorporating it within a plasticity framework. Such a 
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constitutive model will be capable of modeling the deformation characteristics in elastic as well as 

the elastoplastic range.  

            Finally, the Mohr-Coulomb failure criterion, which is incorporated in this project to 

describe the conditions at failure, is not able to capture the effect of the intermediate principal 

stress 𝜎ூூ. The experimental data indicates that for the biaxial compression this stress component 

plays an important role in the failure condition. Therefore, it would be desirable to modify the 

Mohr-Coulomb failure criterion to consider the effect of the intermediate principal stress in order 

to adequately predict the behaviour of the structural masonry in compression regime.                 
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