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Abstract

In this thesis, experiments are described which study the elastocapillary interactions

between liquids and taut solid films. The research employs contact angle measure-

ments to elucidate how capillary forces deform compliant solid structures, but also to

attain fundamental insight into the energy of interfaces involving amorphous solids.

The majority of the work focuses on how capillary deformations of compliant

elastic membranes introduce modifications to descriptions of common wetting phe-

nomena. Particular focus is given to studying partial wetting in the presence of

compliant membranes in various geometries: droplet on a free-standing membrane,

droplet capped by a membrane but sessile on a rigid substrate, and droplet pressed

between two free-standing membranes. The mechanical tension in these membranes

is found to play an equivalent role as the interfacial tensions. As such, the mechanical

tension is incorporated into Young-Dupré’s law (capped droplet on a rigid substrate)

or Neumann’s triangle (droplet on free-standing membrane), leading to departures

from the classical wetting descriptions. In addition, one study is conducted investi-

gating how viscous dewetting is affected by the liquid film being capped by an elastic

film. The results of this study show that the dewetting rate and rim morphology are

dictated by the elastic tension.

Another important aspect of the work is demonstrating the utility of anisotropic

membrane tension for liquid patterning. A biaxial tension is shown to produce

droplets and dewetting holes which are elongated along the high tension direction.

The compliant membrane geometry can also be designed to produce droplets and

holes with square morphology.

In the final project, the surface energy of strained glassy and elastomeric solids

is studied. Glassy solids are shown to have strain-dependent surface energies, which

implies that surface energy (energy per unit area) and surface stress (force per unit

length) are not equivalent for this class of materials by virtue of the Shuttleworth

equation. On the other hand, this study provides strong evidence that surface energy

and surface stress are equivalent for elastomeric interfaces.
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Preface

This is a “sandwich” thesis based on the papers published or submitted during

my PhD. The first chapter will serve as an introduction for the reader, providing the

concepts necessary to digest the papers that follow. In Chapter 2, I outline supple-

mentary details of the experimental methods and data analysis protocols beyond those

that already appear in the manuscripts. This chapter will be of assistance to those

who seek to replicate or perform extensions of research presented herein. Chapter 3

contains the core papers of this thesis that have been published or submitted. Each

paper is prefaced by a summary of the work and a description of the contributions

I have made to each study. The final chapter contains a summary of the research

presented within this thesis, emphasizing the overarching story told by these papers,

and outlines some future directions that ought to be explored. In the Appendix, I

list other papers that I have been involved in and include a brief summary of the key

findings of each.

iv



Acknowledgements

The past four years have been a life-changing journey. Reflecting on the hard work

behind this thesis, I realize that I’ve accomplished something that my younger self

would never have thought possible. At the same time, there are people who have

supported and guided me, and without whom I wouldn’t have come this far.

First and foremost, I extend my sincerest gratitude to my supervisor, Kari. Any

success I’ve had in the lab can be traced back to your mentorship and experimental

saviness. You have an unmatched talent for designing experiments that embody

creativity and ingenuity, but at the same time, remarkable simplicity. I’ve never met

anyone with a better intuition for physics. From personal experience, I would advise

others never to enter a physics-related argument with you- their chances of winning

are exceedingly low. Your guidance has taught me the most important lessons during

these years, both in physics and beyond. You’ve succeeded in being an incredible

supervisor, but also a friend, and I’m sure that no future boss will ever compare.

A big thank you goes out to all the grad students in the KDV experience that have

been good friends during my PhD: Solomon, Mark, Paul, Adam, John, JC, Carmen,

Clementine, and Ben. You guys have made this journey such a pleasure. I would

also like to thank the Paris team, especially Tom and Elie, for doing incredible theory

work and teaching me to approach a problem from several angles.

I would never have reached this point without the infinite support of my family.

My sisters, brother-in-laws, and most importantly, my parents, have been an incredi-

ble source of love and encouragement. Mom and dad, your unwavering confidence in

me has provided me with the courage needed to face the challenges ahead. Your sup-

port means more to me than I can ever describe. Thank you for being such amazing

role models and for teaching me the importance of ambition.

Finally, I want to thank the most important person in my life, my future wife,

Michelle. You’ve been there for me every step of the way, motivating me, believing

in me, and supporting me. After a hard day, you always know just the right things

to say to make me feel better. You truly brighten up every single day, and I’m so

unbelievably lucky to have such a wonderful and loving person at my side. We’re an

amazing team. There is no one I would rather walk the road ahead with than you,

and I’m so excited for the adventures that await us.

v



vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Energetic cost of forming interface . . . . . . . . . . . . . . . . 2

1.1.2 A force parallel to the interface . . . . . . . . . . . . . . . . . 4

1.1.3 Laplace pressure . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 The gravity capillary length . . . . . . . . . . . . . . . . . . . 7

1.2 Wetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Partial wetting on a rigid solid . . . . . . . . . . . . . . . . . . 9

1.2.2 Partial wetting on a liquid . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Dewetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Elasticity of solid films . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Hooke’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Plane stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Transverse loading of a solid film . . . . . . . . . . . . . . . . 23

1.3.4 Elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Surface energy and surface stress of solid interfaces . . . . . . . . . . 29

1.5 Elastocapillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Partial wetting on a soft solid . . . . . . . . . . . . . . . . . . 35

1.5.2 Partial wetting on a compliant solid film . . . . . . . . . . . . 38

vii



CONTENTS

1.5.3 Elastocapillary interactions in dewetting . . . . . . . . . . . . 41

2 Experimental details 43

2.1 Creating thin polymer films . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.2 Film preparation . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Creating tension in solid films . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Method 1: isotropic tension set by film thickness . . . . . . . . 46

2.2.2 Method 2: biaxial tension from tunable uniaxial strain . . . . 48

2.2.3 Method 3: biaxial or isotropic tension from tunable biaxial strain 50

2.3 Droplet deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Contact angle measurements . . . . . . . . . . . . . . . . . . . . . . . 53

3 Papers 57

3.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Conclusions and future outlook 107

A Papers not included in this thesis 111

Paper AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Paper AII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Paper AIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113

viii



List of Figures

1.1 Intermolecular interactions in a liquid . . . . . . . . . . . . . . . . . . 3

1.2 Pulling on a liquid membrane . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Origin of Laplace pressure . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Partial wetting on a rigid solid . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Partial wetting on a liquid . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Dewetting by hole growth on a rigid solid . . . . . . . . . . . . . . . . 13

1.7 Plane stress equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 Plane stress equilibrium on a triangular segment . . . . . . . . . . . 20

1.9 Variation of tension in a film with respect to orientation . . . . . . . 21

1.10 Bending vs. stretching . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.11 Physically crosslinked elastomers . . . . . . . . . . . . . . . . . . . . 28

1.12 Partial wetting on a soft solid . . . . . . . . . . . . . . . . . . . . . . 36

1.13 Partial wetting on a free-standing film . . . . . . . . . . . . . . . . . 39

1.14 Neumann construction on a free-standing film . . . . . . . . . . . . . 40

2.1 Free-standing sample with isotropic tension . . . . . . . . . . . . . . . 47

2.2 Uniaxial straining set-ups . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Biaxial straining set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Methods of droplet deposition . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Side view contact angle measurement . . . . . . . . . . . . . . . . . . 54

2.6 Interferometric contact angle measurement . . . . . . . . . . . . . . . 55

ix



x



Chapter 1

Introduction

Surface tension is a fundamental physical property which characterizes the interface

between two phases. In fact, surface tension lies at the heart of several everyday

phenomena, such as water striders roaming on the surface of water or the spherical

shape assumed by a rain drop on a car’s windshield. Despite these canonical exam-

ples which serve as evidence for its influence, the magnitude of the capillary force is

relatively insignificant in comparison to other forces we experience on macroscopic

length scales. The same cannot be said at small length scales. Although a rigid

windshield remains completely undeformed by the capillary forces of the droplet act-

ing on its surface, at submillimetric scales, surface tension forces are often significant

enough to deform solid structures. In particular, these forces play an important role

in the context of micro- and nanotechnologies. For instance, microelectromechanical

systems (MEMS), which are used for countless applications, contain numerous com-

pliant solid structures, such as cantilevers, thin walls, and rods. Since MEMS devices

are often processed by rinsing with a liquid, capillary forces may induce large-scale de-

formations of the flexible structures within, destroying the integrity of the device [1].

Similar detrimental effects can be seen in other systems of comparable scale, such as

in the collapse of soft microfluidic channels or bundling of vertically aligned nanowire

“carpets” [2–4]. Therefore, it is of fundamental importance to understand the in-

fluence of surface tension forces on compliant solid structures. To purpose of this

thesis is to further our understanding of the interaction between capillary forces and

compliant structures by studying wetting on thin solid films under tension.

1



PhD Thesis - R.D. Schulman McMaster University - Physics and Astronomy

This chapter lays the foundation of the thesis, providing the essential concepts

and equations needed to fully understand the research performed during my PhD.

This introduction will begin with a discussion on surface tension (Section 1.1), which

can be equivalently described as an energetic cost and a tensile force for a fluid-fluid

interface. Section 1.2 will provide a background on wetting phenomena. The focus

will be on describing partial wetting on rigid solid and liquid substrates, as well as

providing an overview of viscous dewetting of a thin liquid film on a rigid solid. In

Section 1.3, fundamentals of elasticity will be reviewed, chiefly in the context of solid

films. A digression into the surface energy of solid materials is contained in Section 1.4.

There, the Shuttleworth equation is introduced, and with it, the notion that the

energtic cost and tensile force for a solid interface are not necessarily equal. Finally, in

Section 1.5, principles of “elastocapillarity” - the interaction between surface tension

and elasticity, are discussed. This section will home in on the interaction between

liquids and compliant solid structures, particularly solid films.

1.1 Surface tension

Water striders and other small insects dwell on the surface of water. In a well-mixed

vinaigrette, the oil droplets, surrounded by vinegar, are spherical in shape. Plants

are able to transport water from their roots to be delivered to leaves at a great

height. These seemingly disconnected phenomena are all manifestations of a single

physical property: surface tension. Although we typically think of surface tension as

a property of liquids, it is a property of an interface between any two unique phases.

However, as we will see in Section 1.4, there are some caveats that must be considered

when at least one of the phases is a solid. Therefore, to simplify the discussion in this

section, we will focus on fluid-fluid interfaces. In this context, surface tension can be

equivalently thought of as an energetic cost of forming an interface or a tensile force

at the interface.

1.1.1 Energetic cost of forming interface

In the liquid state, molecules are in a condensed phase in which they are constantly

interacting with other nearby molecules. The liquid is disordered, and it is different

2
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U

r

(a)

U0
r0

(b)

Figure 1.1: (a) A typical intermolecular potential between two liquid molecules. (b)
Schematic comparing the isotropic intermolecular interactions felt by a liquid molecule
in the bulk with those felt at the surface.

from a solid as the molecules are constantly changing in their relative positions and

rearranging globally. Molecules in a liquid are subject to two types of intermolecular

interactions, an attractive interaction and a steric repulsion. The steric repulsion,

which is strong and short range, is a result of the electron clouds of the molecules

overlapping and originates from the Pauli Exclusion Principle [5]. The attractive

potential is longer ranged and could originate from van der Waals interactions for a

non-polar liquid such as oil, or could stem from polar interactions such as hydrogen

bonding for liquids like water. The total interaction potential U between molecules

may be schematically depicted as in Fig. 1.1(a). The molecules in the liquid tend

to be found at separations r0 corresponding to the location of the minimum of the

potential well, and, on average, the molecules are bound to one another by a potential

energy of magnitude U0. If we now consider a molecule at the surface between a liquid

and air, as seen in Fig. 1.1(b), it has been stripped of roughly half its interactions

that it had in the bulk, and finds itself in an energy state of order U0 higher than in

the bulk. The same principle applies for an interface between two different liquids,

because the attractive interactions are typically stronger between molecules that are

identical compared with other molecules, and forming an interface implies replacing

the interactions with like molecules for less favourable ones [5]. As such, forming an

interface is associated with an energetic cost per unit area, and is quantified by the

surface tension γAB for the interface between A and B. In the special case of a liquid

3
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Figure 1.2: A liquid film framed on three sides by a U-shaped rigid wire and on
the fourth side by a wire capable of translating. In the thought experiment, the
translatable wire is displaced to the right by a distance dx.

that shares an interface simply with air, which necessarily contains the vapour of the

liquid, the typical notation γlv where “l” and “v” denote liquid and vapour, is often

replaced simply with γ.

Thermodynamically, the surface tension, also referred to as the surface energy,

is found through a derivative of the Helmholtz free energy F with respect to the

change in interfacial area A at constant temperature (T ), volume (V ), and number

of particles (n) [5, 6]:

γAB =
(∂F
∂A

)
T,V,n

. (1.1)

The fact that creating interface comes with an energetic penalty leads to the general

principle that liquids are driven to minimize their interfacial area. It is for this reason,

for instance, that oil droplets in vinaigrette (described earlier) are spherical.

1.1.2 A force parallel to the interface

In a thought experiment, we imagine a liquid membrane (e.g. a soap film) that is

framed on three sides by a wire bent into a U-shape (as seen in Fig. 1.2), and on

its fourth side, the liquid film is framed by a straight wire of length l that is able

to translate in the direction indicated. If we imagine translating the straight wire

to the right by a distance dx, this increases the interfacial area of the liquid film

by an amount 2ldx. The factor of two arises as there are liquid-air interfaces both

on the top and bottom side of the film. This increase in interfacial area implies a

4
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proportional increase in the surface free energy (δFγ) of the liquid

δFγ = 2ldx γ . (1.2)

Of course, this increase in free energy implies that work (δW ) must have been done

on the system:

δW = F dx , (1.3)

where F is the force applied to move the rod at a constant speed. If we equate Eq. 1.2

with Eq. 1.3, we find that F = 2γl. Thus, we see that film’s surface tension causes

a force per unit length which is parallel to the interface in the direction that would

tend to shrink the area of the interface. Once again, the factor of two arises due to

the presence of two interfaces in this example. Therefore, γ can be thought of as both

an energetic cost per unit area as well as a tensile force per unit length. It is due to

this tensile force that small insects are able to be supported on the surface of water.

In problems involving surface tension, there is always a duality between the energy

and force descriptions. Of course, the two are completely equivalent, but it is often

the case that one approach is enormously simpler than the other, as will be seen for

example in Section 1.2.1. In most of the work comprising this thesis (Papers I, II and

V), we have found the force picture to be the simplest approach.

The molecular origin of the tensile force is not as easily described as the ener-

getic cost of forming interface, but is a result of the interplay between the repulsive

and attractive contributations to the intermolecular interactions, and how these vary

in proximity to the interface where the liquid transitions from being a bulk liquid

to vapour [7–9]. These considerations are most clearly elucidated using molecular

dynamics simulations, where particles are subject to the Lennard-Jones potential

(which has a form akin to that drawn in Fig. 1.1(a)). At the interface, these sim-

ulations clearly show the existence of a tensile force parallel to the interface which

is spread over a few molecular diameters, comparable to the thickness of the region

where the density changes from bulk liquid to vapour, i.e. the interfacial width [8–10].

5
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2R

Figure 1.3: A small surface section of a liquid sphere of radius R (left) experiences
surface tension forces per unit length parallel to the interface at its perimeter (right).
The result of this force per unit length, when integrated around the cap’s perimeter,
is a net inwards force.

1.1.3 Laplace pressure

Across any curved liquid interface, there exists a pressure jump called the “Laplace

pressure”. To see why this pressure jump exists, we consider a liquid droplet of radius

R, as seen in Fig. 1.3. We consider an infinitesimal cap of this droplet’s surface, shown

in profile in Fig. 1.3, defined by a cone angle dθ. The surface tension of the liquid

surrounding this section exerts a tensile force pulling on the cap surface parallel to

the interface. The net result is a force per unit length of magnitude γdθ/2 directed

radially inward. The total force (Fγ) is found by multiplying by the perimeter of the

cap to be:

Fγ =
πRγ

2
dθ2 . (1.4)

Under the action of surface tension alone, there would be a net inward force on the

droplet’s surface causing it to collapse, and hence minimize surface area. To maintain

the droplet in equilibrium, there is an overpressure ∆PL within the droplet compared

to the outside pressure. This Laplace pressure can be found by dividing Eq. 1.4 by

the surface area of the cap πR2dθ2/4:

∆PL =
2γ

R
. (1.5)

6



PhD Thesis - R.D. Schulman McMaster University - Physics and Astronomy

The same result can easily be obtained from an energetic picture. This expression

can be generalized for any fluid-fluid interface with two principal radii of curvature

R1, R2 and of interfacial tension γAB:

∆PL = γAB

( 1

R1

+
1

R2

)
= 2γABC , (1.6)

where C is the mean curvature of the surface. Applying this principle, it is clear

that soap films must always assume a surface described by a zero curvature, since

the atmospheric pressure on either side of the film is the same [6, 11]. These are

called minimal surfaces as they are ones that minimize surface area. In addition,

static liquid volumes that are subject to no external body forces such as gravity,

must sustain a constant pressure within their volume (otherwise, the liquid would

flow). Therefore, all of its liquid-fluid interfaces must have a constant value of γABC,

in order to maintain a constant Laplace pressure within the entire volume.

1.1.4 The gravity capillary length

Although capillarity drives liquids to minimize interfacial area, gravity drives liquids

to flatten. For instance, puddles are liquid volumes that are flattened by gravity

and contain a great deal of interface. To further understand the interplay between

gravity and capillarity, we compare the pressure due to each force within a droplet.

Gravity creates a hydrostatic pressure difference (∆Pg) between the top and bottom

of a droplet of radius R of magnitude:

∆Pg = 2ρlgR , (1.7)

where ρl is the density of the liquid and g is the acceleration due to gravity. Equating

the Laplace pressure within the drop given by Eq. 1.5 with Eq. 1.7, and solving for

the droplet radius yields what we will refer to as the gravity capillary length LGC [6]:

LGC =

√
γ

ρlg
. (1.8)

For length scales much smaller than LGC, capillarity dominates and liquids are driven

to minimize their interfacial energy (subject to volume constraints). For length scales

7
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much larger than LGC, gravity forces liquids to flatten. The gravity capillary length

of water is approximately 2 mm. This length scale is traditionally referred to as

simply the “capillary length” [6], but the nomenclature we have chosen here will

better distinguish it from other length scales that will be discussed. In all the work

contained in this thesis, droplet sizes are sufficiently small that gravity can be safely

neglected. Unless otherwise stated, all further discussion will be in the context where

gravity can be neglected.

1.2 Wetting

Wetting describes how a liquid deposited on a solid (or liquid) substrate spreads

out [6, 12]. It is a vast field, motivated by a multitude of industrial applications

ranging from designing tires with better adhesion on wet roads, creating textiles that

perform well in rainy conditions, to developing chocolate powder that dissolves readily

in milk. An important parameter in this context is the spreading parameter S, which

describes the difference in surface energy per unit area of a solid substrate when it is

dry compared to when it is wet by a liquid film:

S = γsv − γsl − γ , (1.9)

where γsv and γsl are the interfacial energies of the solid-vapour and solid-liquid

interfaces [6, 12]. Although γAB for interfaces involving solids are sometimes referred

to as interfacial tensions as well, one must use caution in thinking of these quantities

as tensile forces for reasons that will become clear in Section 1.4. For a liquid substrate

being wet by another immiscible liquid, the solid “s” is simply replaced by a substrate

liquid “ls”. When S > 0, it is energetically favourable for a liquid deposited on a

surface to spread completely and form a liquid film that coats the substrate, and

hence is referred to as “total wetting”. On the other hand, when S < 0, the liquid

assumes the shape of a spherical cap on a solid substrate when in its lowest free energy

state. This case is referred to as “partial wetting”.

8
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(a) (b)

θY

γ

γsv γslr

hd

θY

Figure 1.4: Partial wetting between a liquid droplet and a rigid solid substrate.
(a) The droplet assumes the shape of a spherical cap with the indicated height hd,
contact radius r, and contact angle θY. (b) The interfacial tension balance to derive
the Young-Dupré equation.

1.2.1 Partial wetting on a rigid solid

When a liquid droplet is deposited on a rigid solid substrate, it assumes the shape

of a spherical cap with contact angle θY, as depicted in Fig. 1.4(a). The equilibrium

contact angle can be determined by minimizing the interfacial energy of the solid-

liquid-vapour system. For the calculation, we consider a spherical cap droplet with

base radius r and height hd [13]. The free energy of a partially wet substrate relative

to its dry state is given by F :

F =
(
γsl − γsv

)
Asl + γAlv , (1.10)

where Asl and Alv are the surface areas of the solid-liquid and liquid-vapour interfaces

of the droplet. Asl = πr2 is the base area of the droplet, and Alv = πr2 + πh2
d is the

surface area of the spherical segment of the cap. The volume (Ω) of the liquid cap is:

Ω =
1

6
πhd

(
3r2 + h2

d

)
, (1.11)

and must be held constant when the free energy is minimized. We minimize Eq. 1.10

with respect to r at constant Ω to yield:

(∂F
∂r

)
Ω

= 0 =
(
γsl − γsv

)
(2πr) + γ

(
2πr + 2πhd

dhd

dr

)
. (1.12)

9
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The derivative dhd
dr

can be evaluated by implicit differentiation of Eq. 1.11:

dΩ

dr
= 0 = πhdr +

π

2

dhd

dr
(r2 + h2

d) (1.13)

dhd

dr
=
−2hdr

r2 + h2
d

. (1.14)

Substituting Eq. 1.14 into Eq. 1.12 gives:

0 =
(
γsl − γsv

)
(2πr) + γ(2πr)

(r2 − h2
d

r2 + h2
d

)
. (1.15)

Making use of the spherical cap identity cosθY = (r2 − h2
d)/(r2 + h2

d) [13], we arrive

at the Young-Dupré equation [14]:

γcosθY = γsv − γsl . (1.16)

Thus, we see that by measuring the contact angle of a liquid of known surface tension

on a solid, we attain information regarding the energetics of the solid-liquid and

solid-vapour interfaces.

Although it is feasible to derive the Young-Dupré equation from an energetic

picture, it is much simpler in the force description. We imagine zooming in around

the contact line, such that the liquid can be described as a wedge subtending an

angle θY to the substrate, as schematized in Fig. 1.4(b). As indicated, if we proceed

with the notion that these interfacial tensions can be thought of as tensile forces,

the three tensions of the system are tugging at the contact line. Balancing these in

the horizontal direction, we immediately recover the Young-Dupré equation. In the

force description, it appears as if the vertical component at the contact line remains

unbalanced. In fact, the balancing vertical force γsinθ is provided by the elasticity of

the substrate itself [6,9,15]. Thus, the solid is also being subjected to a vertical force

γsinθ, but since it is infinitely rigid here, it remains undeformed. As we will see in

Section 1.5.1, if the solid substrate is soft, the deformation can become significant.
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α1
α3

α2

γlv

γlsl

γlsv

Figure 1.5: Partial wetting between a liquid droplet and a liquid substrate. The two
droplet interfaces take the shape of spherical caps with different radii of curvature.
The angles subtended between the three interfaces at the contact line are set by a
Neumann construction balancing the three interfacial tensions of the system.

1.2.2 Partial wetting on a liquid

In contrast with the rigid solid, in the case of a liquid substrate, its interface is

completely deformable. When a liquid droplet is deposited on an immiscible liquid

substrate, it assumes the shape of a lens, as shown in Fig. 1.5 [6, 16]. The two

interfaces of the liquid lens are spherical caps with different radii of curvature. In

the absence of gravity (i.e. for droplet sizes � LGC), the liquid substrate remains

completely planar surrounding the droplet. If gravity is considered, the substrate

interface becomes depressed near the contact line for droplets that are denser than

the liquid bath and raised for droplets that are less dense [16]. The angles subtended

between the three different interfaces can once again be determined by appealing to

a balance of interfacial tensions at the contact line, as depicted in Fig. 1.5. The

important distinction from the solid substrate is that the substrate is not elastic,

and hence, the force balance must be simultaneously performed in the vertical and

horizontal directions. As an example, using the cosine law, the internal angle α1

subtended by the interfaces of the lens is given by:

cosα1 =
γ2

lsv
− γ2

lv − γ2
lsl

2γlvγlsl

. (1.17)

Therefore, if the surface tensions of the the two liquids with vapour are known, it is

possible to determine the interfacial tension between them by measuring α1 (or α2 or

11
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α3).

For droplet sizes � LGC, we know from Section 1.1.3 that the Laplace pressure

must be constant within the liquid. Since gravity can be neglected, the ambient

pressure of the vapour and the liquid bath below the lens is identical. Thus, the

Laplace pressure across both interfaces must be equal:

∆PL =
2γlv

Rlv

=
2γlsl

Rlsl

(1.18)

γlsl

γlv

=
Rlsl

Rlv

(1.19)

where R indicates the radius of curvature of the interface. The same result can be

obtained by balancing the vertical component of the interfacial tensions at the contact

line.

1.2.3 Dewetting

When S < 0, it is energetically favourable for a thin liquid film on a solid substrate

to retract and eventually form droplets on the surface of the solid, a process termed

“dewetting”. In order for a flat liquid film to initiate the transition into droplets,

it necessitates an intermediate step in which the liquid-vapour interface of the film

is deformed, which increases the interfacial area of the system. Generally, films are

subject to an increase in surface energy in this intermediate step, and as such, are

metastable. In films thinner than ∼ 100 nm, the surface energies are modified by

long-range interactions, such as van der Waals forces between the solid and liquid

molecules [6,17]. Under certain circumstances, these interactions can cause such thin

liquid films to become wholly unstable, and dewetting initiates spontaneously by

amplification of surface modulations through thermal fluctuations, which eventually

reach the solid substrate [6, 17–21]. This process is called “spinodal dewetting”.

On the other hand, metastable films dewet by nucleation and subsequent growth

of a dry spot (hole in liquid) [6, 17, 19, 20, 22–24]. Dewetting may be initiated by

defects (heterogeneous nucleation), such as dirt particles, or by nucleation through a

large enough thermal fluctuation (homogeneous nucleation) [17,25,26]. Homogeneous

12
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θD θD

l(t)

γ

γsl γsv

h

γsl

γγ

γsl
A

B

Figure 1.6: A schematic of a thin liquid film dewetting by nucleation and growth of
holes off a rigid substrate. The interfacial tensions acting at contact lines A and B
are indicated. The dashed box around the left rim represents treating the rim as a
rigid body.

nucleation is typically not seen, as it requires extremely thin (a few nanometers) and

clean liquid films. In nucleated dewetting, holes are cylindrical in shape, and the

displaced liquid accumulates in a rim surrounding the hole.

To gain some insight into the dynamics, we present a slightly simplified version

of the model of viscous dewetting presented in Refs. [6, 19, 24], which describes the

growth of nucleated holes in a viscous liquid film on a rigid solid substrate on length

scales � LGC. The hole growth is schematized in Fig. 1.6, where the width of the

rim with time is indicated as l(t) and the radius of the hole is r(t). We begin with a

few geometrical assumptions, as follows. The rims are circular in cross-section as the

pressure is thought to be constant within the rim, and according to Laplace’s law,

their surface must have a constant curvature. We are interested in sufficiently late

times that the rims have accumulated enough material to be much larger than the

thickness of the liquid film, h. As such, the angles that the circular cap rims subtend

to the solid substrate and to the liquid film (on either side) are roughly equal, and

given by θD. We assume that θD and θY, the equilibrium contact angle of the liquid

on the solid, are small angles.

We are interested in the growth of the hole with time: r(t), but must begin with

a scaling argument for the width of the rim. The rim collects all the liquid material

that the hole displaces. The volume of liquid displaced by the hole is approximately

∼ hr2. At the scaling level, the volume held within the rim is roughly ∼ rl2θD.

Assuring volume conservation implies:

13
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l ∼
√
hr

θD

(1.20)

dl

dt
∼
√

h

θDr

dr

dt
. (1.21)

Since we are dealing with thin films and late times, h � r. Together with Eq. 1.20

and Eq. 1.21, it implies that l � r and dl
dt
� dr

dt
at these times. Thus, for the sake

of this model, the increase in rim width is treated to be negligible in comparison to

the growth in hole radius, i.e. l is roughly constant. This approximation is in good

agreement with experimental data [24].

In Fig. 1.6, we label the three phase contact line as A and the contact line with

the liquid film as B. All the interfacial tensions acting at these two contact lines are

shown. Since the rim is not changing in shape, we treat it as a rigid body (indicated

by the dashed square in Fig. 1.6) and evaluate the net external force acting upon it.

Interfacial tensions provide a net force per unit length on the rim given by:

Fγ = γ + γsl − γsv (1.22)

directed radially outward from the hole’s center. This unbalanced force on the rim

serves as the driving force for dewetting. The power (per unit length) of this driving

force is Pγ = Fγv, where v = dr/dt is the speed of the rim. Using Young-Dupré’s law

(Eq. 1.16), Pγ can be re-written as:

Pγ = γv
(
1− cosθY

)
. (1.23)

Note that if θD = θY, the interfacial energies at the three phase contact line (A, as

seen in Fig. 1.6) would be balanced and the contact line would remain static, as in

Section 1.2.1. We must have θD < θY in order for the interfacial energies acting at A

to generate a net driving force for dewetting. In the limit of small angles, Eq. 1.23

14
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simplifies to:

Pγ =
γvθ2

Y

2
. (1.24)

Although the driving force could feed into the rim’s kinetic energy when the dewetting

liquid is highly inviscid [27], our focus here will be on viscous dewetting, since most

dewetting studies are carried out with highly viscous fluids and at small length scales,

and are thus characterized by a low Reynolds number1. In this regime, the power done

by the driving force is immediately dissipated by viscous shear in the fluid [6,19,24,28].

In the presence of a three phase contact line, the viscous dissipation is generally

concentrated right at the contact line [6, 12]. This is because viscous liquids must

be stationary at a solid/liquid interface (known as the no-slip boundary condition),

and hence, there is an enormous viscous shear in a moving contact line. The power

expended in viscous dissipation (per unit length) in a moving contact line (Pη) is

given by:

Pη ∝
ηv2

θD

, (1.25)

where η is the viscosity and v is the speed of the contact line, equal to the hole

growth speed in this case [6,12]. The constant of proportionality for Eq. 1.25 contains

information regarding the molecular details of the contact line. Equating Pγ and Pη,

we find that v ∝ γθDθ
2
Y/η. In a more thorough treatment of this problem, the balance

between driving force and dissipation is considered separately for the two contact lines

of the rim (with solid and with liquid film) [6, 19, 24]. Employing the fact that θD

and v are approximated to be the same for each contact line, one can show in that

approach that θD ∝ θY. Thus, we arrive at our final result:

v ∝ γθ3
Y

η
. (1.26)

This canonical model for viscous dewetting, which is in good agreement with experi-

1The Reynolds number is a dimensionless number that quantifies the relative importance of iner-
tial forces to viscous forces in fluid flow [28]. The approximate Reynolds number of the experiment
from the study wherein this theoretical model was first tested was ∼ 1 ·10−5, indicating that inertial
forces could safely be ignored [24].
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mental data [24], demonstrates that the radius of holes increases linearly in time.

Dewetting experiments are frequently carried out with polymer melts, as these

liquids offer numerous practical advantages [17]. First and foremost, they have an

accessible glass-transition temperature, above which the polymer behaves as a liquid,

and below which the polymer behaves as a solid [5,17,29]. This property implies that

the dewetting process can be “paused” and “resumed” by changing the temperature

of the sample. When the sample is glassy, it is feasible to measure the morphology

of the dewetting structures using probes such as atomic force microscopy (AFM)

(see, for example, Refs. [25, 30–35]). The viscosity of polymer melts changes with

temperature [5, 29], so the rate of the dewetting dynamics can be controlled using

this variable. Thin, clean, and highly uniform polymer films can be prepared by a

variety of techniques, permitting a robust initial condition for dewetting experiments.

Finally, polymer melts are non-volatile and relatively inert at typical experimental

temperatures [17].

Dewetting can be used to study physical properties of the solid-liquid system.

Dewetting experiments can act as a probe of rheological properties of viscoelastic

materials [32,36], residual stresses from sample preparation of polymer films [30,33],

and van der Waals interactions between solid and liquid molecules [26,37,38]. Further-

more, on certain substrates, polymer melts violate the no-slip boundary condition.

Information about this slippage of liquid at the solid interface can be obtained from

dewetting experiments, as it causes important deviations from the constant speed of

Eq. 1.26 [25, 31, 34, 35, 39, 40]. Dewetting can also be exploited to engineer patterns

at microscopic length scales. Using a combination of chemical and topographical pat-

terning of the substrate, dewetting can be guided to obtain novel morphologies (see

for example Refs. [41–47]).

1.3 Elasticity of solid films

In the work comprising this thesis, basic results and concepts relating to continuum

elasticity are employed. In this section, I will provide a cursory overview of the most

important concepts and equations required to digest these principles. For a more

detailed overview of continuum elasticity, the reader is referred to Refs. [48, 49].
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1.3.1 Hooke’s law

When a bulk solid is subjected to external forces, its deformation can be described

using the strains εx, εy, εz which describe the unit elongation of an element of the

material along each axis, and the shearing strains sxy, sxz, syz which describe the unit

shear of an element of the material in each plane. When the solid is deformed, it also

builds up internal elastic normal stresses: σx, σy, σz, and shearing stresses: τxy, τxz,

τyx, τyz, τzx, τzy. By requiring that each solid element in equilibrium must be subject

to zero net torque, it is straightforward to show τxy = τyx, τxz = τzx, and τyz = τzy,

and hence, only six quantities are required to describe the elastic stresses on a solid

element [48].

There is an empirically established relationship that relates the normal stresses

and strains, which is known as Hooke’s law. Hooke’s law is typically only valid in a

range of small strains which depends on the material in question. Hooke’s law for an

isotropic material in the context of continuum elasticity can be written as

εx =
1

E

[
σx − ν(σy + σz)

]
(1.27a)

εy =
1

E

[
σy − ν(σx + σz)

]
(1.27b)

εz =
1

E

[
σz − ν(σx + σy)

]
, (1.27c)

where ν is Poisson’s ratio and E is the Young’s modulus of the material which

quantifies its stiffness, and will be an important parameter in Section 1.5. When a

solid material is stretched in one direction, it contracts in the orthogonal directions.

This property is incorporated in Hooke’s law (e.g. setting σx > 0, σy = 0 and σz = 0,

you find εy < 0 and εz < 0 for ν > 0), and is controlled by ν. Most materials have

0 < ν < 0.5, where the upper limit ν = 0.5 describes a perfectly incompressible

material (volume is conserved). Similar equations exist for the shearing components
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Figure 1.7: Equilibrium of stresses acting on a square segment in the plane of a solid
in plane stress.

of stress and strain:

τxy =
1

G
sxy , τxz =

1

G
sxz , τyz =

1

G
syz , (1.28)

where G is the shear modulus of the material, and one can show that G = E/2(1+ν).

1.3.2 Plane stress

When the solid takes the form of a thin plate or film, numerous simplifcations to the

elastic considerations emerge. One such simplification is in the case of “plane stress”,

wherein all the elastic stresses within the thin plate or film, which is presumed to

lie in the xy-plane, act in the plane of the solid. In other words, there are no stress

components in the out-of-plane direction, i.e. σz = τxz = τyz = 0. Thus, the state

of stress within the film is described completely by σx, σy, and τxy. To derive the

condition for equilibrium in plane stress, we consider the elastic forces acting on a

square segment of side length l in the plane of the plate, as seen in Fig. 1.7. In the

absence of body forces such as gravity, the elastic forces acting on each of the four
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sides must balance one another in x and y respectively:

(
σ(2)
x hl − σ4)

x hl
)

+
(
τ (1)
xy hl − τ (3)

xy hl
)

= 0 (1.29a)

(
σ(1)
y hl − σ3)

y hl
)

+
(
τ (2)
xy hl − τ (4)

xy hl
)

= 0 , (1.29b)

where h is the film’s thickness, assumed to be uniform, and the superscripts label the

side of the square segment, as seen in Fig. 1.7. Shrinking the square segment to be

infinitesimal in size, one derives the following equilibrium conditions:

∂σx
∂x

+
∂τxy
∂y

= 0 (1.30a)

∂σy
∂y

+
∂τxy
∂x

= 0 . (1.30b)

When a thin plate or film is loaded by forces applied to to its boundaries, which

are uniformly distributed over its thickness and are oriented parallel to plane of it, it

is in a state of plane stress. In this case, the elastic stresses are also constant across

the film’s thickness, and the tensions in the film can be calculated as:

Tx = σxh , Ty = σyh , Txy = σxyh , (1.31)

where h is the thickness of the film, assumed to be constant. For the remainder of

this subsection, we will consider this state of plane stress wherein the film is loaded

in the plane and experiences no out-of-plane deformation.

Principal directions

If the tension components in x and y (i.e. Tx, Ty, and Txy) are known, these can be

used to calculate the tension components in any other pair of orthogonal directions

(n,n′) in the plane. As shown in Fig. 1.8, we imagine a balance of the elastic forces
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Figure 1.8: Equilibrium of tensions acting on a triangular segment in the plane of a
solid in plane stress.

acting on a triangular segment of the film. Balancing the forces in the n direction:

0 = −Tnln′ + Txcosα ly + Tysinα lx + Txysinα ly + Txycosα lx (1.32)

where α is the angle between the x- and n-axes, and lx, ly, ln′ are side lengths of the

triangular segment depicted in Fig. 1.8 which multiply the tensions to yield forces.

Noting that lx = ln′sinα and ly = ln′cosα, we find:

Tn = Txcos2α + Tysin
2α + 2Txysinα cosα . (1.33)

Similarly, performing the force balance in the n′ direction yields:

Tnn′ =
(
Ty − Tx

)
sinα cosα + Txy

(
cos2α− sin2α

)
. (1.34)

From Eq. 1.34, it is clear that we can always find an angle α such that the shear

component vanishes. Setting Tnn′ = 0, we can find:

Txy
Tx − Ty

=
sinα cosα

cos2α− sin2α
= tan2α . (1.35)

From the above equation, two orthogonal directions (defined by values of α) can be

found for which there is no shearing component of the tension. Those special direc-

tions are referred to as “principal directions” and the stresses, strains and tensions
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Figure 1.9: Plot of tension in the general direction n oriented at angle α to the x-axis
of the film. In this plot, we have set Tx = 2 N/m and Ty = 1 N/m as an example.

in those directions are also prefaced by the word “principal”. For instance, if a film

with isotropic tension (Ty = Tx = T ) is subjected to a pure shear (Txy > 0), the

principal directions are oriented at 45◦ to the x- and y-axes. It is often convenient

to orient, or choose, the x- and y- axes to align with the principal directions [48]. As

such, Txy = 0, and Eq. 1.33 and Eq. 1.34 become:

Tn = Txcos2α + Tysin
2α (1.36)

Tnn′ =
(
Ty − Tx

)
sinα cosα . (1.37)

The result of Eq. 1.36 is plotted in Fig. 1.9 for Tx = 2 N/m and Ty = 1 N/m as

an example. As demonstrated by Eq. 1.36, and exemplified by Fig. 1.9, the princi-

pal directions always coincide with the directions of highest and lowest tension. In

addition, the tension is invariant upon a 180◦ shift in α, as we would expect.

Boundary conditions

Films under plane stress can be subject to a few different boundary conditions in-

cluding: clamped, fixed tension, and free. A clamped boundary means that the film’s

boundary is held in place at a given spot. This condition is applicable to films that are

suspended between fixed rigid supports, for instance. In a fixed tension boundary, the
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boundary of the film is not held in place, but is rather subject to a constant external

tension in plane, which generally may have components normal and tangential to the

boundary. In order to be in mechanical equilibrium, the tensions must be continuous

across the boundary of the film. For instance, if a film boundary is oriented such that

its normal and tangent point in the directions n and n′, we must at the boundary

have Tn = Tn,ext and Tnn′ = Tnn′,ext, where “ext” indicates the externally applied

tension [48]. A special case of the fixed tension boundary, is a free boundary. A free

boundary is not held in place nor subjected to any external tension. As such, we must

have Tn = Tnn′ = 0 at these boundaries. Since the shear component Tnn′ vanishes

at these boundaries, it necessarily implies that n and n′ are the principal directions.

Since Tn = 0, the orthogonal direction n′ must be the one of highest tension (as long

as the film is under tension rather than compression). Thus, at a free boundary of a

taut film, the highest tension direction is tangential to the boundary.

Hooke’s law for biaxial and isotropic plane stress

We now imagine applying Hooke’s law to the case of a film being strained biaxially.

A method for applying biaxial strains will be described in Section 2.2.3. The film is

in the xy-plane and strained directly along x and y, which implies that sxy = 0 and

hence τxy = Txy = 0. Thus, the principal directions coincide with the x- and y-axes.

Recognizing that σz = 0 for plane stress, we can simplify Eq. 1.27a and Eq. 1.27b:

εx =
1

E

[
σx − νσy] (1.38a)

εy =
1

E

[
σy − νσx

]
. (1.38b)

We can now invert these expressions to solve for the stresses, and hence tensions, in

x and y:

Tx = σxh =
Eh
(
εx + νεy

)

1− ν2
(1.39a)
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Figure 1.10: Schematics illustrating in-plane tensile and compressive plane stresses
in the case of (a) pure bending, (b) pure stretching, and (c) a stretching-dominated
regime.

Ty = σyh =
Eh
(
εy + νεx

)

1− ν2
. (1.39b)

Although the film is stress-free in the z direction, straining it in x and y will create

a strain in the z-direction, given by:

εz =
−ν
E

[
σx + σy

]
=

ν

ν − 1

[
εx + εy

]
. (1.40)

For most materials (i.e. when 0 < ν < 0.5), if εx > 0 and εy > 0 then εz < 0, which

implies that the film becomes thinner when strained.

The special case of isotropic tension (Tx = Ty = T ) is attained when the film is

strained equally in both principal directions (εx = εy). The tension T can be obtained

from Eq. 1.39:

T =
Ehε

1− ν . (1.41)

1.3.3 Transverse loading of a solid film

To this point, we have considered solid films that have been strained only in the plane

of the film, assumed to lie in the xy-plane. However, it is also of great interest to

consider the out-of-plane deformation of a film under the action of a transverse (or

lateral) load. There are two chief modes of deformation through which a thin plate or

film may deform laterally: bending and stretching [49,50]. When a thin plate or film

deforms by either of these mechanisms, it is a good approximation to assume that

the transverse components of the stress are negligible (i.e. σz = τxz = τyz = 0), which

means that the solid is in a state of plane stress. Although flexure and stretching
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are generally both present, there are limits where one predominates over the other.

When a plate is laterally deformed a distance much smaller than its thickness, bending

typically dominates [49,50]. To understand this mechanism, we imagine a rectangular

plate that is bent into a circular arc, shown in profile in Fig. 1.10(a). The typical

assumption in pure bending is that the central plane of the plate (indicated by a

dotted line in Fig. 1.10(a)) is undeformed (or neutral). To accomodate the shape

change, the material that is on the same side of the plate as the concave surface

becomes compressed, whereas the material on the other side of the neutral plane is

stretched. This gradient in in-plane strain of the plate is the characteristic of bending.

Pure stretching occurs only when the plate experiences a longitudinal (i.e. in-plane)

tensile load, which is the case we have considered in Section 1.3.2. In pure stretching,

the in-plane strain and stress exhibit no gradient across the plate’s thickness, as seen

in Fig. 1.10(b).

In the work comprising this thesis, the films are in a stretching-dominated state

(Fig. 1.10(c)). Stretching dominates if the film is subjected to a large longitudinal

tensile load before being subjected to a lateral load and/or if the film is sufficiently

deformed (a distance much larger than its thickness) by the lateral load such that

there is no neutral plane as all elements of the solid are under tension to accomodate

the shape change. When tension dominates, the strain and stress exhibit a suffi-

ciently small gradient across the film’s thickness that they can be approximated to

be constant, and the tensions can be calculated as in Eq. 1.31.

A quantitative description of the lateral deformation (w) through bending and

stretching of a film when subjected to a transvese load (p) applied to the film’s

surface is given by the Föppl - von Kármán (FvK) equation [49]:

B
(∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
− h
(
σx
∂2w

∂x2
+ 2τxy

∂2w

∂x∂y
+ σy

∂2w

∂y2

)
= p , (1.42)

where B = Eh3/12(1 − ν2) is known as the bending rigidity. The first bracketed

term on the left side represents the bending contribution to the deformation, whereas

the second term is associated with stretching. The FvK equation is only valid for

Hookean responses of the solid and small slopes of the deformed film. In addition

to Eq. 1.42, the equilibrium condition given by Eq. 1.30 must also be satisfied. It

should be noted that, in general, the stresses in Eq. 1.42 depend themselves on the
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deformation induced in the film, as these deformations are associated with strains in

the solid [49]. Needless to say, these equations are notoriously difficult to solve and

are only tractable in certain limiting cases, such as when stretching dominates over

bending.

When stretching dominates, tensions can be introduced into Eq. 1.42 via Eq. 1.31.

To gain some insight into this regime, we imagine a deformation in the film that is

independent of y (i.e. w = w(x)). Then, the FvK equation becomes:

B
∂4w

∂x4
− Tx

∂2w

∂x2
= p . (1.43)

At the scaling level, we can describe the deformation as having some amplitude A

which occurs over a typical length scale L. Using these terms, the bending contribu-

tion is of order BA/L4 and the stretching contribution is of order TxA/L
2. Therefore,

the film is in a stretching dominated regime when TxA/L
2 � BA/L4. From this, we

find a useful criterion for the stretching dominated regime:

L�
√
B

T
(1.44)

where T is the tension in the film and L is the typical length scale over which the film

is deformed (or over which the load acts). Thus, if the film is prepared with a large

tension before a lateral load is applied, it is likely to be in a stretching dominated

regime. It is important to note that, even in this case, if the film is inspected on

length scales L �
√
B/T , bending plays an important role in dictating the film’s

deformation. Rather, stretching is dominant when the system is inspected over length

scales relevant to the large-scale (“global”) deformation or load distribution. The

global deformation of a film is then described by [49]:

Tx
∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Ty

∂2w

∂y2
= −p . (1.45)

If x and y are the principal directions, the shear component vanishes, and the equation
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becomes simpler:

Tx
∂2w

∂x2
+ Ty

∂2w

∂y2
= −p , (1.46)

although the tensions are still themselves functions of the film’s deformation. The

most significant simplifcation arises in the membrane limit. An elastic membrane is

a thin plate or film that has been subjected to large in-plane tensile forces applied

to the circumference. The pre-tension is then sufficiently large that any additional

tension created by the lateral deformation of the film under load is negligible [49].

In other words, if the film is loaded with a large biaxial tension as in Eq. 1.39, the

values of Tx and Ty are constants in Eq. 1.46. If the film is prepared with an isotropic

pre-tension T , the elastic membrane equation becomes:

T∇2w = −p . (1.47)

All the work contained in this thesis deals with films that reside within the membrane

limit.

Analogy between elastic membrane tension and interfacial tension

The tension in an isotropically loaded elastic membrane can in many ways be thought

of as an interfacial tension. As discussed in Section 1.1.2, surface tension can be

thought of as a tensile force (per unit length) parallel to the interface. In the same

way, the mechanical tension of an elastic membrane is a tensile force (per unit length)

parallel to the plane of the elastic film. We can also reproduce the example of the

liquid membrane on the wire frame given in Section 1.1.2, but replace the liquid

with an elastic membrane. If we displace the straight wire to the right, we must do

work against the film’s tension. In the limiting case of an elastic membrane, the pre-

tension is large enough that deforming the membrane in this way will not change its

tension considerably. Since the tension is constant as the straight wire is displaced,

the problem remains completely analogous to the liquid membrane, and we find that

the tension T can be thought of as a force per unit length as well as an energetic

cost per unit area. Finally, if we inspect Eq. 1.47, and recognize that, in the limit of

small slopes, ∇2w/2 is equivalent to the mean curvature of the surface, we see that

26



PhD Thesis - R.D. Schulman McMaster University - Physics and Astronomy

the equation becomes 2TC = −p. In other words, in order for an elastic membrane

to have a positive curvature, it must be sustained by a net pressure acting down on

the membrane. This result is completely equivalent to the Laplace pressure of fluid

interfaces, given by Eq. 1.6. Hence, when an elastic membrane is acted upon by a

constant pressure load, it assumes a spherical (constant curvature) deformation in

the loaded region. The analogy between tension in elastic membranes and interfacial

tension is highlighted even further by the work contained in this thesis.

1.3.4 Elastic materials

We have discussed the response of an elastic film under load and under deformation,

and have made the assumption that the solid material exhibits a Hookean (or lin-

ear) stress-strain relationship. These solid films may be composed of one of several

different classes of material that respond elastically under deformation.

Crystalline materials, such as metals and ionic crystals, have their constituent

atoms (or ions or molecules) arranged in a 3D lattice structure and are held together

by bonds (metallic or ionic). These materials can be thought of as a lattice of balls

held together by springs [5]. As such, it is understandable that crystals conform most

closely to an ideal linear elastic response [51]. However, the elastic response is only

sustained for very small strains (< 1%) before yield [52]. The Young’s modulus for

these materials is on the order of 10-100 GPa.

Glassy materials are amorphous solids, and as such, have no organized lattice

structure. Polymer glasses, such as polycarbonates, are widely utilized materials be-

cause of their transparency and desirable mechanical properties [5]. These materials

are held together by intermolecular van der Waals bonds which allow them to deform

elastically under small strains (< 10% and varies greatly depending on the poly-

mer) [53]. At larger strains, the bonds are broken and the glass breaks or deforms

plastically. The initial elastic deformation is well approximated to be linear, and the

Young’s modulus for these materials is on the order of 1-10 GPa [53]. Strained glassy

films were used in Papers I and III.

Elastomers, such as rubber, are a special class of polymeric materials. These

are polymer melts that contain crosslinks, i.e. fixed points where individual chains

are bonded together, which renders the material into one connected network [5].
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(a) (b)

Figure 1.11: Physically crosslinked elastomers with soft (blue) and hard (red) seg-
ments. (a) A triblock copolymer, such as SIS, microphase separated into glassy
spheres surrounded by a matrix of polymer chains in the melt state. (b) A multiblock
copolymer, such as Elastollan, in which hard segments have aggregated to form small
crystalline regions which act as physical crosslinks.

Locally (on a length scale much smaller than the distance between crosslinks), the

material acts like a liquid, and as such, these materials are well approximated to

be incompressible (ν ≈ 0.5). However, the crosslinks ensure that no macroscopic

bulk flow can occur. When an elastomer is strained, the polymer chain segments in

between crosslinks are forced to stretch (or compress, depending on the sign of the

strain). Since ideal polymer chains in a melt are entropically favoured to have some

equilibrium size [5, 29], there is a driving force which tends to restore the chains to

that size. Thus, when deformed, the entire elastomer is driven to return to its natural

size, and as such, is elastic. Hence, this type of elasticity is referred to as entropic

elasticity. Elastomers are advantageous because they can be elastically deformed

to much larger strains than glassy or crystalline materials and are also much more

compliant. However, the entire elastic stress-strain relationship is not Hookean [5].

A simple statistical thermodynamics model of crosslinked polymer chains predicts a

neo-Hookean relationship where the stress is linear in strain initially, but shows a

substantial reduction in slope at sufficiently large strains. Thus, Hooke’s law is only

applicable within a range of strains which depends on the elastomer in question.

The crosslinks of an elastomer may either be chemical or physical in nature [5,54].
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In chemically crosslinked elastomers, the bonds between chains are permanent, cova-

lent bonds. On the other hand, physically crosslinked elastomers contain crosslinks

that are held together by physical bonds. In these cases, the polymers composing

the elastomer contain “hard segments” and “soft segments” [54]. As an example, one

commonly used physically crosslinked elastomer is composed of the triblock copoly-

mer styrene-isoprene-styrene (SIS). The styrene segments, which are glassy at room

temperature, are very short relative to the isoprene segment, which is in the melt

at room temperature. SIS polymers will spontaneously microphase separate into

small spherical domains of styrene in a matrix of isoprene [5, 54]. These hard glassy

styrene spheres act as crosslinks for the isoprene matrix, as seen in Fig. 1.11(a). An-

other common elastomer is Elastollan (BASF), composed of polyurethane multiblock

copolymers with small hard and long soft segments throughout [54]. The hard seg-

ments of different chains tend to aggregate and form small crystalline regions, which

in turn, act as physical crosslinks for the long soft segments that are in the melt state

(Fig. 1.11(b)). In either of these cases, at sufficiently high temperatures, the hard

segments will also enter the melt state, and the material ceases to be elastomeric

since the crosslinks have vanished. Thus, these physically crosslinked elastomers are

known as “thermoplastic elastomers”. SIS and Elastollan are used in all the papers

in Chapter 3.

1.4 Surface energy and surface stress of solid in-

terfaces

As described in Section 1.1, creating a liquid interface comes with an energetic cost,

since molecules at the interface are stripped of roughly half their nearest neighbour

interactions. Even though we typically think of surface tension as a liquid’s property,

solid interfaces are also associated with an energetic cost per unit area for the same

reason as given for liquid interfaces. In addition, in analogy with liquids, there exists

a force per unit length parallel to the interface. As an example, imagine a crystalline

solid (thought of as a lattice of balls connected by springs) that is cleaved to form new

interface. The atoms at the surface have been stripped of some nearest neighbour

interactions, and thus they experience a net inwards force from the bonds with the
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atoms in the first crystal plane below the surface, leading to a contraction in these

bond lengths [55–58]. In fact, this reorganization of electronic charge also causes a

change in (typically a shortening of) the equilibrium bond length between the atoms

at the surface. However, due to the periodic structure of a crystal, the atoms at the

surface must be held in registry with the lateral structure of the crystal planes below.

Thus, a force parallel to the interface exists, and is typically tensile. Unlike liquids, for

solid materials, the force at the interface is referred to as the “surface stress” ΥAB (for

the interface between materials A and B) and is not necessarily equal to the surface

energy. In this thesis, and traditionally in the literature, the energetic cost of forming

interface (γAB) is referred to as “interfacial energy” or “interfacial tension”. However,

in any context where the distinction between γ and Υ is important, it is preferred

to abstain from the usage of the term “interfacial tension” to eliminate ambiguity.

The interfacial energy is a scalar quantity, whereas, in general, the surface stress is a

tensor quantity, and may vary depending on the direction and also orientation of the

surface. However, for an amorphous solid, the surface stress is expected to assume a

single value for all surfaces and directions. In order to maintain a simpler discussion,

and since only isotropic materials are employed in this thesis work, we will consider

Υ to be independent of direction or orientation of the surface, and thus given by a

single scalar quantity.

To understand the difference between γ and Υ, it is important to note that solid

interface can be created in two ways: cleaving it and thus breaking the bonds at the

interface, or reversibly deforming the solid to generate more interface [55–58]. The

first protocol is associated with an energetic cost per unit area, γAB. On the other

hand, the surface stress ΥAB quantifies the force required to form new interface by

elastically deforming the material. To evaluate the quantity ΥAB, we imagine a semi-

infinite solid, whose surface lies in the xy-plane, to be uniaxially deformed along x

such that a rectangular segment of the interface with side lengths lx and ly elongates

to length lx + dx in x. If Fs describes the free energy of the surface, the change in

interfacial energy upon deformation is:

∆Fs =
( ∂F
∂AAB

)
ly

dAAB , (1.48)

where AAB = lxly is the area of the rectangular segment of the interface between A
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and B. The interfacial free energy is given by γABAAB. Thus, at constant ly, the

equation becomes

∆Fs = ly
d

dlx

(
γABlx

)
dlx . (1.49)

Of course, the change in interfacial free energy is also given by the work done against

the force parallel to the interface: ∆Fs = ΥABlydlx. Thus, we have:

ΥAB =
d

dlx

(
γABlx

)
. (1.50)

For fluid interfaces, γAB does not change as the interface is deformed, because molecules

from the two fluids may simply rearrange themselves to maintain a constant average

molecular environment at the interface. Thus, we recover ΥAB = γAB for fluid inter-

faces, as expected. However, solid molecules do not have the ability to freely rearrange

during material strain. Rather, as the material is strained, bonds at the interface are

stretched and the surface atomic density is altered. Thus, it is generally expected

that the energy of solid-vapour or solid-liquid interfaces changes as the material is

deformed. With this concept in mind, Eq. 1.50 becomes:

ΥAB = γAB + lx
dγAB
dlx

. (1.51)

Recognizing that the strain dε is given by dε = dlx/lx, we arrive at a simplified version

of the Shuttleworth equation [59]:

ΥAB(ε) = γAB(ε) +
dγAB

dε
. (1.52)

Therefore, when the interfacial energy is strain dependent, the force per unit length

parallel to the interface is not equal to the energetic cost per unit area of the interface.

Since solids have a force parallel to the interface, it implies that across a curved

solid interface, there exists a Laplace pressure jump ∆PL = 2ΥABC, where C is the

curvature of the surface [55].

For crystalline materials (ionic and metallic), the Shuttleworth effect (i.e. that

γAB = γAB(ε), and hence ΥAB 6= γAB) is well established [55–58]. Given the regular

lattice structure of these materials, rigorous theoretical calculations of surface energy
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and stress are tractable and have been carried out for a multitude of these materials

that have simple constituents [55–60]. On the other hand, direct measurements of

surface stress are scarce, as their effects are often masked by the elastic stresses which

tend to be much larger in comparison [56]. Surface stress difference measurements can

be performed using a thin cantilever or film [55, 56, 61–63]. In these measurements,

the flexible object is made of one crystalline material and is prepared to be flat.

Then, an adsorbate or oxide is grown on one side of the object, and the difference

in surface stress between the two faces induces a bending of the object. The only

studies which have succeeded in measuring the absolute value of the surface stress in

these materials have done so by probing the change in lattice size [56,60,64–67]. For

sufficiently small crystals (typically nanometers in size), the solid’s Laplace pressure

will generate measurable elastic deformations, and the change in lattice constants

can be related to the surface stress. Measurements of surface energy of crystalline

solids are also difficult, and typically rely on indirect methodologies that depend on

theoretical models, such as studying crack propagation, healing of scratches, or even

extrapolation from the surface energy in the molten state [68–70]. Unfortunately, the

distinction between surface stress and surface energy in these studies is often blurred

and sometimes even forgotten.

In fact, measurements of interfacial energies (γsv or γsl) of solids in general are

notoriously difficult, even for amorphous materials such as glasses and elastomers [6].

For polymeric glasses, the surface energy is typically measured by extrapolation from

the melt state [71–73]. Since these materials are amorphous in the solid state, and the

glass transition is a kinetic transition [5], this method is thought to be fairly accurate.

On the other hand, there have been no attempts (prior to Paper III) to determine the

surface stresses of polymeric glasses. Elastomers have the advantage of being com-

pliant (relative to polymer glasses or crystalline solids). Thus, measurements of γsv

and γsl have been achieved by measuring the contact patch during adhesion between

two elastomers [74,75]. Although, generally the surface energy is expected to be close

to that of the uncrosslinked melt. Surface stress measurements of elastomers have

been carried out by deforming these materials in various geometries and incorporat-

ing surface stresses into theoretical models to interpret the solid’s response [76–87].

Many of these experiments exploit “elastocapillary” phenomena, in which the surface
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tension of a contacting liquid (or surface stress of the solid itself) induces significant

elastic deformations of the solid structure. However, there is currently significant

debate whether or not surface stress and surface energy are distinct quantities for

elastomers, as studies have reached conclusions both for and against [76–86,88]. The

disparity in the literature is likely rooted in the fact that interpretations of the data

to determine Υ depend heavily on the model used to analyze them. In Paper III,

we provide strong evidence for the absence of a Shuttleworth effect in elastomers and

discuss why this result is not surprising given the nature of these materials.

1.5 Elastocapillarity

Elastocapillarity is the study of capillary induced deformations of solid structures.

Although it is a marriage of two well-studied fields (elasticity and capillarity), it has

been the subject of intense research activity over the last two decades. There are two

chief classes of elastocapillary phenomena: deformations of a solid induced by its own

surface stress and deformations of a solid induced by the capillarity of a contacting

liquid. Examples of the former were given in the previous section, which described

the bending of a cantilever due to differences in surface stress or the change in lattice

parameters of a nanometric crystal. If we assume a spherical crystallite of radius R

and an isotropic, constant surface stress Υsv for simplicity, the Laplace pressure is

given by PL = 2Υsv/R. The elastic stresses in the crystallite are on the order σ ∼ εE,

where ε is the typical strain and E is the Young’s modulus. At equilibrium, the elastic

stresses must balance the Laplace pressure, so at the level of scaling: Υsv/R ∼ εE. As

ε approaches unity, the deformations of the solid become increasingly more significant.

Thus, an important length scale emerges, called the elastocapillary length:

LEC =
Υsv

E
. (1.53)

A solid is significantly deformed by its surface stresses on length scales � LEC,

whereas elasticity dominates on length scales � LEC. For crystalline materials with

E ∼ 10-100 GPa and Υsv ∼ 1 N/m, we have LEC ∼ 0.1 - 1 Å, which is why nanometric

crystals were used, yet the changes in lattice constants were still small [56,60,64–67].

However, if a gel or soft elastomer is used, LEC can be made large enough for the solid’s

33



PhD Thesis - R.D. Schulman McMaster University - Physics and Astronomy

surface stress to induce deformations on near macroscopic length scales. In one experi-

ment, researchers fabricated rods of agar- a gel with E ∼ 100 Pa, Υsv ∼ 30 mN/m, and

thus LEC ∼ 300 µm. In doing so, they found that when the fiber radius is < 1
6
LEC,

the fiber developes a capillary instability completely analogous to the well-known

Plateau-Rayleigh Instability (PRI) [89, 90]. The instability continues until elastic

forces grow large enough to balance the capillary driving force, and the elastic rod

reaches an equilibrium peristaltic shape. Moreover, soft structures of size larger than

LEC have been shown to spontaneously deform in an attempt to decrease surface area,

such as rounding of any sharp corners and flattening of surface undulations [91–93].

The other class of elastocapillary phenomena concerns the deformation of solid

structures driven by the surface tension forces of a contacting liquid. These interac-

tions can lead to stunning displays of self-assembly and pattern formation. For in-

stance, when a droplet is put into contact with a thin flexible sheet, if the solid sheet

is sufficiently compliant, it will spontaneously wrap itself around the droplet [94–98].

This effect can be exploited to assemble the solid sheet into desired 3D configurations

in a process dubbed “capillary origami” [1,94,99]. Elastocapillary mechanics are also

prominent when surface tension forces act on thin solid fibers, as such structures are

highly compliant too [1]. These interactions result in diverse phenomena such as the

bundling of carbon nanotubes and nanowires during processing [3,4,100–102], coales-

cence of wet hair [103,104], and spontaneous coiling of fibers within as well as on the

surface of a droplet (studied in Paper AII) [1,105–107]. In most of the examples listed

above, the deformation of the solid is set by an equilibrium between surface tension

forces of the liquid, which drive deformation, and elastic bending of the structure,

which resists deformation. When these forces are compared, a natural length scale

emerges called the bending-elastocapillary length, LBC [1]:

LBC =

√
B

γ
, (1.54)

where B is the bending rigidity. If capillary forces act over length scales � LBC,

the bending rigidity of the structure dominates, and it does not significantly deform.

On the other hand, if surface tension forces act over length scales � LBC, capillar-

ity dominates, and the structure readily deforms. This condition is reminiscent of
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Eq. 1.44, which compares mechanical tension to bending rigidity.

However, a solid material can deform through other modes than just bending.

For instance, a thin elastic film is highly compliant and may deform primarily by

stretching. Moreover, a solid that has a low modulus is compliant even through bulk

deformation. In the next two subsections, we will explore elastocapillary interactions

when a droplet partially wets such substrates.

1.5.1 Partial wetting on a soft solid

When a droplet partially wets a soft solid, it exerts a contact line force through its

surface tension which tugs on the substrate, and also exerts Laplace pressure onto

the substrate over the entire wetting region. The balance between the capillarity of

a liquid and the bulk elasticity of a solid is described by an elastocapillary length

LEC = γ/E [1, 83]. This length scale is slightly modified from Eq. 1.53, because it is

the surface tension of the liquid that drives the deformation in this case. Thus, when

a droplet is sessile on a solid, the surface tension force at the contact line tugs at the

solid to deform it into a wetting ridge on a length scale comparable to LEC = γ/E,

as seen in Fig. 1.12 [108–111]. For hard substrates, such as crystalline materials

and glasses, LEC ∼ 10−12 m and, since this is much smaller than atomic size, no

wetting ridge forms. Thus, the picture drawn in Fig. 1.4 is completely valid for hard

substrates. However, the wetting ridge can be seen in elastomeric substrates where

LEC ∼ 10−100 nm, and is quite prominent for soft gels where LEC may reach several

hundred microns. How is then the Young-Dupré law of partial wetting modified when

the substrate is deformable?

When the droplet radius r is much larger than LEC, the deformation of the sub-

strate is a small perturbation to the overall wetting between the solid and the sub-

strate. This is the case drawn in Fig. 1.12, where the solid remains undeformed over

the majority of the wetting region. As such, the free energy minimization presented

in Section 1.2.1 for rigid substrates remains valid, becase the additional elastic and

interfacial energy from the wetting ridge can be neglected. Therefore, Young-Dupré’s

law (Eq. 1.16) holds for the global contact angle subtended to the undeformed sub-

strate (defined in Fig. 1.12 as θY) when r � LEC. On the other hand, the angles

subtended between the three different interfaces in a local picture of the contact line
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Figure 1.12: Partial wetting on a soft solid substrate. The global contact angle θY

is set by Young-Dupré’s law (left), but locally the solid is deformed into a wetting
ridge (right zoom-in), in which the solid angle θs < 180◦. The concept of a Neumann
construction balance between γ, Υsl, and Υsv to determine the wetting ridge geometry
is currently debated.

(zoom-in of Fig. 1.12) are believed to be set by a Neumann construction in which

the liquid surface tension γ is balanced by the solid surface stresses of the two solid

interfaces Υsv and Υsl [78, 80,83,85,86,111–116].

In the regime of small droplets or vanishing Young’s modulus, r � LEC, capil-

larity dominates over elasticity. In this case, the solid behaves as a liquid substrate,

and the wetting resembles the picture drawn in Fig. 1.5. In this regime, the global

contact angles between the three interfaces (analogous to α1, α2, α3 in Fig. 1.5) are

determined by a Neumann construction between γ, Υsv, and Υsl. Thus, as the mod-

ulus of the substrate or the droplet size is varied, there is a continuous transition

from partial wetting on a rigid substrate (Young-Dupré’s law) to partial wetting on

a liquid substrate (Neumann’s law) [78,83,113,115].

The concept that the local contact line geometry (as depicted in Fig. 1.12) is set

by a Neumann construction allows the surface stresses of the two solid interfaces to be

determined. Since γ is known, if the angles between the three interfaces are measured

at the contact line, Υsv and Υsl can be computed. Experiments using this methodology

(or a simple variant thereof) have been carried out by using either confocal microscopy

or X-ray microscopy to image the wetting ridge of polydimethylsiloxane (PDMS) gel

with various liquids (LEC ∼ 10 µm) in a regime where r > LEC [78, 80]. These

studies found values in the range of 30-60 mN/m for Υsv, larger than γsv of PDMS

(∼ 21 mN/m) [78, 80]. In later experiments, the PDMS substrates were pre-strained
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before the measurement [85, 86]. In addition, the local elastic strain induced by

formation of the wetting ridge itself was measured using fluorescently labeled particles.

Thus, the researchers measured surface stresses as a function of the total strain ε.

For simplicity, they employed a liquid wherein θY ≈ 90◦ and the wetting ridge was

observed to be symmetric, so the approximation that Υsv ≈ Υsl ≡ Υ was made. In

doing so, they found Υ to increase linearly with strain (due to an observed increase

in θs in Fig. 1.12), with an extropolated value of ∼ 22 mN/m at ε = 0, up to

a value of ∼ 50 mN/m at ε = 25%. On the other hand, there was no change

in the Young’s contact angle with strain, implying that dγsv/dε = dγsl/dε for this

material. Interestingly, the zero-strain value of the surface stress found from this

experiment coincides with the surface energy of PDMS, i.e. there is no Shuttleworth

effect present at zero strain. The equality between surface stress and surface energy

for unstrained PDMS has also been found independently using other experimental

methods [81,84]. However, no other studies have verified the strong strain dependence

of Υ in PDMS. In fact, molecular dynamics simulations on crosslinked polymer gels

found the surface energies and stresses to be identical and strain-independent for

strains comparable to those used in the PDMS experiments [87]. These simulations

claim that the surface stress balance at the contact line is only valid in the limit of

vanishing elastic contribution, i.e. r/LEC → 0 [115]. Otherwise, the deformation of

the substrate and formation of the wetting ridge lead to a significant elastic stress

which must be included in the local force balance at the contact line [87,115]. Hence,

measuring surface stresses from the wetting ridge without considering elastic stresses

would lead to inaccurate results, and may be the cause of the increasing value of Υ

with ε rather than the Shuttleworth effect being at play.

Beyond being useful for metrology, partial wetting on soft solids can lead to some

interesting dynamics. Recent work demonstrated that soft substrates that are pre-

pared with a gradient in compliance lead to spontaneous motion of the droplets [117,

118]. This “durotaxis” can be exploited to generate liquid patterning on soft sub-

strates. In addition, the elastocapillary deformations generated by droplets can be

sufficiently long range to cause interactions with neighbouring droplets [119]. In fact,

droplets may attract or repel depending on the compliance of the substrate.
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1.5.2 Partial wetting on a compliant solid film

Other than employing extremely soft solids, elastocapillary deformations in partial

wetting can also be amplified by choosing a substrate that is compliant simply due

to its geometry, such as a suspended thin film. In one realization of this system, a

thin glassy polystyrene sheet is floating on the surface of a water bath [120–122]. The

film is held taught by the surface tension of the water bath tugging at the edge of the

film and serves as a fixed tension boundary condition. When a droplet is placed on

this film, capillary forces of the droplet induce a global out-of-plane deformation of

the film below the droplet (despite LEC being less than atomic scale). The induced

deformation, and consequent additional stresses in the film, have been deduced by

solving Eq. 1.42 in the limit of small bending contribution [122]. Theoretical and

experimental work showed that in certain regimes, the capillary forces of the droplet

lead to an azimuthal compression of the film immediately surrounding the wetting

region [121, 122]. This “hoop” strain is responsible for a beautiful wrinkling pat-

tern that emerges surrounding the droplet, extending radially outward over a length

comparable to the droplet size [120].

Another highly compliant geometry is that of a free-standing film that is clamped

at its sides [77, 123–125]. Nadermann et al. placed droplets on free-standing films

of PDMS elastomer (E ∼ MPa) that were tens of microns thick but carried no pre-

tension [77]. They observed that the droplet induced a significant bulge in the film

below itself, comparable in magnitude to the droplet size itself. The deformation was

also computed by solving Eq. 1.42 in the limit of small bending contribution. In the

calculation, the deformation was assumed to generate a constant tension Tin in the

wetted region of the film, and a constant (but different) tension Tout in the unwetted

region.

In this system, the effects of bending remain localized to a small region surrounding

the contact line, and stretching dominates in a global picture of the droplet- the

length scale of which is set by Eq. 1.44. Thus, these problems are characterized by

a convenient separation of length scales, depicted in Fig. 1.13 [83]. On global length

scales L�
√
B/T , stretching dominates, and the capillarity of the droplet is balanced

by tensile forces in the film. On intermediate length scales LEC � L �
√
B/T ,

bending constitutes the dominant mode of deformation of the film. Finally, on length
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Figure 1.13: The separation of length scales which exist when a droplet partially wets
a compliant free-standing film. The droplet’s capillarity creates a global deformation
of the film. In this deformation, stretching dominates globally (left), bending is
the relevant elastic mode on intermediate length scales (middle), and bulk elastic
deformation is seen on the smallest local length scales (right).

scales L ∼ LEC the solid is deformed into a wetting ridge, as discussed previously.

In the global picture, the film outside the wetted region remains planar. The

Laplace pressure in the droplet (given by Eq. 1.5) is the source of the pressure term

in Eq. 1.47 for the wetted region where T = Tin in this case. Since the film has a

constant tension in this region, the curvature of the film must be constant to sustain

a constant pressure load. Therefore, the bulge is a spherical cap on global length

scales. It should be noted that the change in Gaussian curvature from a flat film to

a spherical cap generally requires non-uniform additional stretching of the material.

However, in the context of the membrane limit, these additional strains are negligible

when compared to the pre-existing strain in the film, and thus, do not significantly

modify the film’s tension. Thus, by measuring the global radius of curvature of the

bulge Rb, and comparing it to the Laplace pressure of the droplet, the tension in the

wetted region of the film can be measured using the equation:

Tin

γ
=
Rd

Rb

(1.55)

where Rd is the droplet’s radius of curvature [77]. This result is completely analo-

gous to Eq. 1.19. Nadermann et al. measured tensions on the order of ∼ 0.1 N/m

using this procedure, validating the separation of length scales ( LEC ∼ 50 nm �√
B/T ∼ 50 µm � ∼ 500 µm - the size of the droplet, which sets the global scale).
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θd
θb

Tout

Tin

γ

Figure 1.14: A global picture of the partial wetting of a droplet on a compliant free-
standing film. The film is planar surrounding the droplet, and assumes the shape of
a spherical cap in the wetted region. The contact line geometry is set by a Neumann
construction that balances mechanical as well as interfacial tensions.

As seen in Fig. 1.14, the global contact line geometry is thus defined by two contact

angles, θb- the angle subtended between the bulge and the unwetted film and θd- the

angle subtended between the droplet-air interface and the unwetted film. Since the

film is in mechanical equilibrium, it implies that the forces acting on the film at the

point of the contact line must balance [77, 124, 125]. This equilibrium implies that a

Neumann construction, as shown in Fig. 1.14, must be implemented at the contact

line which balances Tin, Tout, and γ. In fact, performing this balance in the vertical

direction yields the following relation:

Tin

γ
=

sinθd

sinθb

. (1.56)

Given the spherical cap identity r = Rsinθ where r is the contact radius, Eq. 1.55

and Eq. 1.56 are completely equivalent. Nadermann et al. used the horizontal force

balance to determine Tout, although erroneously assumed that the internal angle of

the liquid (i.e. θd + θb) was identical to Young’s angle. In fact, Young-Dupré’s law

should be recovered when a liquid contact line meets a rigid substrate, and does not

apply to the global picture here where the solid is cuspy at the contact line.

A further simplification arises when the film enters the membrane limit where the

pre-tension is sufficiently large that the deformations imposed by the droplet do not

significantly alter the tension [123]. The Neumann construction depicted in Fig. 1.14

remains unchanged, except for the modification that the mechanical tension in the
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film is identical in the wetted and unwetted regions. Thus, the partial wetting between

elastic membrane and liquid is completely analogous to partial wetting of a droplet

on a liquid substrate (Section 1.2.2), but with the interfacial tensions between the

two liquids replaced with Tin and Tout. These total tensions (Tin, Tout) are a sum of

the constant mechanical tension of the film T and interfacial tensions between film

and vapour as well as film and liquid. Thus, we have:

Tin = T + γsl + γsv (1.57a)

Tout = T + 2γsv , (1.57b)

which means there is a simple relationship between Tin and Tout:

Tout = Tin + γsv − γsl = Tin + γcosθY , (1.58)

where we have made use of Young-Dupré’s law. It is important to note that θY 6=
θd +θb, but rather is the contact angle of the liquid on a supported (rigid) substrate of

the elastic film. The above concepts, discussing the partial wetting between a liquid

droplet atop an elastic membrane, serve as the basis for the work done in Papers I

and II.

1.5.3 Elastocapillary interactions in dewetting

In order for a car to brake on a wet road, it is imperative that the rubber tires make

direct contact with the asphalt. The pressure due to the car’s weight causes the liquid

film to drain until a dry patch is nucleated. At this point, dewetting is the process

responsible for evacuating the remaining liquid, and ensuring that dry contact be-

tween the rubber tires and asphalt is established [6]. This example represents one

of several motivations for studying elastocapillary interactions in dewetting. As we

know from previous discussions, on length scales comparable to LEC, the dewetting

liquid will induce bulk deformations of the solid. In the case of the dewetting of a

liquid film pressed between a rigid substrate and a bulk elastomer, these elastocapil-

lary interactions determine the shape of the dewetting rim [6, 126]. Theoretical and
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experimental work on such systems showed that the dewetting velocity of holes is

no longer constant in time as it is on a rigid substrate, but rather scales as t−1/4,

where t is time [126,127]. The modified scaling arises in spite of the driving force to

dewet deriving purely from interfacial energy changes as before and the dissipation

in the system once again coming from viscous dissipation in the dewetting liquid rim.

Other studies have investigated dewetting of a liquid film atop a soft semi-infinite

substrate, although most have focused on spinodal dewetting [128–131]. In fact, one

of these studies demonstrated that uniaxially stretching the elastomeric substrates

can generate anisotropic spinodal dewetting morphologies [131]. Since dewetting re-

ceives significant attention for micropatterning purposes, this result demonstrates

that morphology could potentially be tuned not just by pre-designing chemical and

topographical patterns in the substrate, but also using elasticity. Another study ex-

amined dewetting by hole growth on soft substrates, and found that the formation of

the wetting ridge at the moving contact line leads to viscoelastic dissipation within

the elastomer which may actually dominate over viscous dissipation in the liquid,

further retarding the dewetting process [128]. Rather than studying the dewetting

between a rigid substrate and a soft semi-infinite elastomer, it is also interesting to

replace the bulk elastomer with a thin, compliant elastic layer [129,132–134]. In one

set of experiments, the retraction of thin water films sandwiched between two flexible

sheets of mica was observed [132,133]. Although the influence of stiffness of the mica

was not studied in detail, it was noted that thicker, less compliant sheets resulted in

slower dewetting. In Paper IV, we study the dewetting of a liquid film capped by an

elastic membrane with variable pre-tension.

42



Chapter 2

Experimental details

In the following section, I will summarize methods relevant to the experiments and

subsequent data analysis of the papers in Chapter 3. Although the methods are

described in each manuscript, this section should serve as a supplement for those

who require further detail. In the following section, I will describe the materials and

procedure for making thin polymer films (Section 2.1), several methods of introducing

tension into these films (Section 2.2), how droplets are deposited onto the substrates

(Section 2.3), and measurements of contact angle (Section 2.4).

2.1 Creating thin polymer films

2.1.1 Materials

In the experimental protocols for the papers in Chapter 3, a variety of polymers

were used to make films. Elastomers were used in every experiment. Two physi-

cally crosslinked elastomers were chiefly used: Styrene-isoprene-styrene (SIS) triblock

copolymer (Sigma-Aldrich) with a 14% styrene content and Elastollan TPU 1185A

(BASF). Solutions of SIS were made by dissolving in toluene (Fisher Scientific, Op-

tima grade) at mass concentrations c ranging from 4% to 20%. Elastollan was dis-

solved in cyclohexanone (Sigma-Aldrich, puriss p.a. >99.5%) with c ranging from 2%

to 7%. In Paper III, polyvinyl siloxane (PVS), a chemically crosslinked elastomer,

was also employed, and made by mixing base and catalyst (RTV EC00 Translucid)

at a 1:1 ratio. In Papers I and III, polymers that are glasses at room temperature
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were used. In Paper I, we made films of poly(n-butyl) methacrylate (PnBMA) with

number averaged molecular weight Mn = 66 kg/mol and polydispersity index PI =

1.05 (Polymer Source Inc.). This polymer was dissolved in toluene at c of 1% and 2%.

This polymer was used because it has a low glass transition temperature (Tg ∼ 30◦C),

which permitted lower pre-tensions to be introduced in free-standing films of these

materials (see Section 2.2.1). In Paper III, we used polysulfone (PSf) with Mn = 22

kg/mol (Sigma-Aldrich) and poly(bisphenol-A) carbonate (PC) with Mn = 22 kg/mol

and PI = 1.9 (Polymer Source Inc.). PSf and PC were dissolved in cyclohexanone

and chloroform (Fischer Scientific, Optima grade) respectively at concentrations of

7% and 5%. These materials were chosen for Paper III because they have large elon-

gations at yield (6% and 8% respectively for bulk samples) [135]. Finally, in Paper

IV, polystyrene (PS) with Mn = 15.8 kg/mol and PI = 1.05 (Scientific Polymer Prod-

ucts) was used. PS solutions were made by dissolving in toluene at c = 3%. This

polymer was used because it readily dewets in the experimental geometry of Paper

IV and because it is a standard polymer choice for dewetting studies.

In addition, primarily two materials were used as substrates. Silicon wafers (Uni-

versity Wafer) were cleaved into 1 cm x 1 cm pieces to serve as a supporting rigid

substrate for polymer films. Freshly cleaved 3 cm x 3 cm mica substrates (Ted Pella

Inc.) were used solely as an intermediary for films that were to be strained or made

free-standing, as will be described in more detail in the following section. Silicon and

mica are ideal substrates because they are extremely smooth and clean when freshly

cleaved.

2.1.2 Film preparation

Uniform polymer films were made by spincoating with a commercial spincoater (Head-

way Research Inc., Model PWM32). In this process, a few drops of polymer solution

are placed on a substrate (be it silicon or mica) which is then rotated at high rates

(2000-5000 rpm). When the sample is rotated initially, most of the solution is ejected,

leaving behind a layer of solution on the substrate. As the rotation proceeds, the so-

lution continues to flow outwards, causing the layer of solution to thin over time and

become highly uniform. This stage occurs very quickly, and the solution does not

evaporate coniderably during this period. After some time, the evaporation of the
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solvent from the solution becomes significant. During this stage, the polymer solu-

tion increases in concentration, and hence, becomes significantly more viscous, and

thinning of the film occurs mainly due to evaporation rather than outwards flow. In

the case of polymers that are glassy at room temperature, the concentration even-

tually becomes sufficiently high that the polymer chains lose mobility and the film

vitrifies. For the physically crosslinked elastomers, the polymers assemble into hard

and soft regions during spinning, and are elastomeric at the end of the process. The

entire spinning process is typically set to 20 s for solutions with toluene and chlo-

roform as solvents. However, cyclohexanone is much less volatile, and the spinning

is programmed to continue for 100 s to ensure most of the solvent has evaporated.

In order to vary the final film thickness, there are two adjustable parameters: film

thickness increases with concentration and decreases with spin speed. The final film

thickness can then be measured using various techniques. In this thesis work, we used

ellipsometry (Accurion, EP3). In the experiments for the papers in Chapter 3, films

were made with thicknesses ranging from 65 nm to 3 µm. Spincoating is an excellent

method for creating highly uniform, thin polymer films. For films less than 1 µm

thick, the thickness variation is typically less than 5%. For thicker films, we observe

thickness variations on the order of 10%. Once cast, all films were annealed for 10

minutes on a hot-stage (Linkam) to remove residual solvent and relax the polymer

chains. Glassy films were annealed tens of degrees above Tg, whereas elastomeric films

were annealed at elevated temperatures but where the material remains physically

crosslinked.

As mentioned previously, polymer films that were intended to be strained or made

free-standing were first prepared on mica as an intermediary substrate. Mica is ad-

vantageous because it has a high affinity for water, which means that films are easily

delaminated from the substrate by dipping the sample into a water bath. To remove

films from the substrate, the films on mica are first scored into rectangular sections.

The scoring is done using a scalpel for glassy films or Elastollan films of thickness &
400 nm. For SIS and thin Elastollan films, scoring is achieved by wetting a cotton

swab with acetone and tracing out the perimeter of a rectangle on the mica, which

removes the elastomer from the traced path. The mica sheet is then dipped into an

ultra-pure water bath (18.2 MΩ·cm, Pall, Cascada, LS). In doing so, a thin film of
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water wedges itself between the polymer film and the mica substrate. This method

can be used to fully release the polymer film from the mica, which leaves it floating

on the surface of the bath. The film is then picked up using a different substrate,

such as those described in Section 2.2.1 or Section 2.2.2. Alternatively, the mica can

be removed from the water bath before the film has been released. In this way, a

thin water film exists between the polymer film and the mica. The polymer film

can then be brought into adhesive contact with another substrate, allowing the mica

to be removed easily, thus completing the transfer of the polymer film. This proto-

col was used to transfer elastomeric films onto the straining apparatus described in

Section 2.2.3.

2.2 Creating tension in solid films

Every project included in this dissertation has employed taut polymer films. In the

process, we discovered that applying a well controlled pre-tension to such thin films

is not trivial. Therefore, increasingly more sophisticated techniques were employed

over the course of this PhD. In this section, the various methods will be described in

detail, beginning from the least controlled and finishing with the most tunable.

2.2.1 Method 1: isotropic tension set by film thickness

In the first technique, the polymer film is floated onto the surface of the ultra-pure

water bath. A stainless steel washer with a circular hole is dipped into the water bath,

positioned underneath the floating film, and then picked up along with the film. In

doing so, the solid film is suspended over the hole as shown in Fig. 2.1. The strong

adhesion between the film and the washer ensures that the film is clamped around

the perimeter of the hole. Any residual water is then left to dry.

When the film is composed of an elastomeric material, it is found to be taut with

an isotropic tension as prepared (verified and measured in Paper I). In addition, the

tension is varied by creating samples with different elastic film thicknesses. Although

this is an excellent technique for simply introducing an isotropic pre-tension, the

mechanism by which the tension is generated is not understood. As mentioned in

Section 1.5.2, when a film is floating on the surface of water, it experiences a constant
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Figure 2.1: Schematic of the simplest method for making films with isotropic tension.
(a) Top view and (b) side view perspective of the washer with a free-standing film
suspended over its circular hole.

isotropic tension given by the surface tension of water. Since the elastic films in our

experiments are picked up directly from the water surface, this effect is responsible for

a constant minimum value of the film’s tension, but does not explain why it increases

with film thickness. Our current hypothesis is that the water bath causes a minute

swelling of the elastic film. After floating, when the sample is left to dry, the water

escapes the elastic film causing it to contract. However, since it is clamped at its

boundaries, it is restricted from doing so, and thus becomes loaded with a constant

strain which leads to a tension proportional to film thickness (Eq. 1.41). We have

deduced that the strain needed to explain the measured tensions is minute, on the

order of 1-2%.

When the film is glassy, the film is not taut and quite wrinkled as prepared.

To introduce tension, the sample is first heated above the glass transition. In this

state, the film is liquid and rapidly flows to eliminate wrinkles and become perfectly

planar. Next, the film is quenched to room temperature, and thus returned to the

glassy state. As the film and washer are cooled, they contract. However, the thermal

expansion coefficient is much larger for polymeric materials compared with stainless

steel. As a result, the glassy film is driven to contract more than the washer, but it

is restricted from doing so because it is clamped at its edges. Therefore, a constant

strain proportional to the difference between the two thermal expansion coefficients

is introduced into the sample, and the tension can be calculated from this strain

using Eq. 1.41, as was done in Paper AIII. Thus, for glassy films, the tension may

also be varied by changing the film thickness. In addition, the strain resulting from
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Figure 2.2: (a) Uniaxial stretcher in which the film is strained by hand by translating
the top support in the direction indicated by the arrow. (b) Straining apparatus used
to generate highly precise uniaxial strains. One of the aluminum blocks is held fixed
while the other is translated using a motorized translation stage.

thermal contraction depends on the difference between Tg and room temperature.

Since PnBMA has a low Tg, it was used in Paper I to create tensions comparable to

those obtained in the elastic films.

These methods for creating isotropic tension by varying film thickness were em-

ployed in Paper I, and the tension in the film was measured using Eq. 1.56. In later

work, other techniques were used that permitted greater control of the magnitude

and anisotropy of the tension.

2.2.2 Method 2: biaxial tension from tunable uniaxial strain

In order to create films with biaxial tension, a different technique must be used. An

elastic film is instead picked up off the water surface by a uniaxial stretcher shown in

Fig. 2.2(a). The film is suspended (clamped by adhesion) between two silicon wafer

supports, but its boundaries are free in the orthogonal planar direction. Therefore, the

free boundaries acquire a bowed configuration, as depicted. For reasons described in

the previous section, the film is already taut when prepared. However, an additional

biaxial tension can be introduced by uniaxially stretching the film by translating

the top support, seen in Fig. 2.2(a), by hand along the y-direction. Through this

protocol, the film acquires a high tension along the y-direction. However, the film is

not able to freely contract in response along the x-direction because it is pinned to

the supports at the extremities of the free boundary. Therefore, straining the film

along the y-direction also introduces a small tension in the x-direction. Although the

tension field must vary significantly near the boundaries (we know from Section 1.3.2
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that the tension normal to a free boundary must be identically 0), it is expected to

be fairly uniform near the center. As such, close to the center of the film, there is a

uniform biaxial tension with Ty > Tx. This method was used in Paper II to study the

partial wetting of droplets on films with biaxial tension. Since the applied strains are

not well controlled in this method, the tensions were determined a posteriori using a

Neumann construction akin to the one depicted in Fig 1.14.

If highly precise uniaxial strains are required, a different system should be used.

Depicted in Fig. 2.2(b), the straining apparatus consists of two aluminum blocks that

are separated by a gap. Attached to the surface of these aluminum blocks are two

silicon wafers. The film is picked up off the water surface to be suspended across the

gap between the blocks, as shown in the figure. Silicon wafers are used because their

smoothness ensures that good adhesive contact exists with the polymer film, which

prevents delamination during strain. To prepare for straining, one of the blocks is held

in place while the other is attached to a motorized translation stage (Newport MFA-

CC, SMC100CC). One block is then translated by a pre-determined amount which

increases the gap spacing, and the film is thus stretched along the x-axis. Although

the strain in the x-direction is known precisely, the strain in the y-direction is once

again not known. This methodology was employed in Paper III because the uniaxial

strain was the control parameter in that case, and glassy films were used which had

to be precisely strained in the range of 0-8%. In order to further increase adhesion of

these films with the sample holder to prevent delamination, the silicon wafers were

coated in advance with the same polymer as was to be strained. Elastomeric films

were also strained uniaxially up to 100% using this apparatus. In this study, the

objective was to create strained films supported on rigid substrates. Therefore, once

the films were strained, the sample holder depicted in Fig. 2.2(b) was turned upside

down and carefully brought down until the stretched film formed contact with a silicon

wafer that was placed below. The strong adhesion between film and wafer ensured

that the film could not relax the applied strain. At this point, a scalpel was used to

cut the edges of the film in order to release it from the sample holder.

Although the latter apparatus is capable of applying precise strains, the first

stretcher (Fig. 2.2(a)) is much smaller and is able to fit under the microscope for a

contact angle measurement (refer to Section 2.4). For this reason, and since precise
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strains were not needed, the first uniaxial straining apparatus was used for Paper II.

2.2.3 Method 3: biaxial or isotropic tension from tunable

biaxial strain

The final technique that will be discussed allows for complete biaxial control of the

strain in an elastic film. The straining apparatus is depicted in Fig. 2.3(a). It is

composed of a 200 µm Elastosil (Wacker Chemie) elastic sheet which has been cut

into a rounded plus shape. In addition, the sheet is prepared with a circular hole

at its center. Each of the four edges of the plus shape is held by a clamp which is

attached to a post that is capable of being translated in the directions indicated in

Fig. 2.3(a).

To use this straining set-up, the mica is retracted from the water bath before the

thin elastomeric film has been released, such that a thin water film is wedged between

the polymer film and the mica. The mica sheet is then placed, film-side down, atop

the hole in the Elastosil sheet. The elastomeric film forms a strong adhesive contact

with the Elastosil surrounding the hole, which allows the mica sheet to be removed.

In the end, a thin elastomeric film is left free-standing over the hole in the Elastosil.

The elastomeric film can now be strained by translating the posts holding the

clamps. When the posts are translated, the hole in the Elastosil, and hence, the free-

standing elastomeric film suspended across it, stretches or compresses (depending on

the direction of translation). In this way, the strain in the film can be tuned along

both x- and y-axes. The first step in the straining protocol is to relieve the pre-existing

tension in the elastomeric film from preparation. This is accomplished by translating

all four posts inwards to compress the film until wrinkles appear. At this precise point,

the film is at its natural size, which serves as the initial condition. Thereafter, the

four posts may be translated outward by a desired amount to stretch the elastomeric

film and induce the desired strain. For instance, if an isotropic tension is desired, the

four posts are translated outward by an equal amount Fig. 2.3(b). This increases the

diameter of the suspended elastomeric film from di to df , creating a uniform isotropic

strain of ε = (df − di)/di. If the strain is small enough that the elastomer can be

treated as Hookean, Eq. 1.41 can be used to calculate the tension. If a biaxial strain

is desired, the posts translating along the y-axis are moved a different amount than
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Figure 2.3: Top view of the straining apparatus used to apply tunable biaxial strains
to an elastic film. (a) The initial condition of the film after the pre-existing tension
is removed. The four supports may be translated in the directions indicated by the
arrows to stretch the thin film. (b) All four supports displaced an equal amount to
create an isotropic tension. (c) The elastic film is stretched more along the y-axis
compared to the x-axis, to create a biaxial tension with Ty > Tx.

the two translating along the x-axis. These actions stretch the suspended film into

an elliptical shape, with major axes df,x and df,y, as seen in Fig. 2.3(c). Therefore, a

uniform biaxial strain is introduced into the film with components εx = (df,x− di)/di
and εy = (df,y−di)/di. Once again, if the strain is small enough to be in the Hookean

regime of the elastomer, Eq. 1.39 can be used to compute the tensions along the two

axes. Thus, using this technique, tension can be modulated using the applied strain

as well as with the thickness of the elastomer.

This method was used to create isotropic and biaxial tensions in Papers IV and

V. In these projects, the stretched film served as a capping elastic membrane for

dewetting (Paper IV) and partial wetting (Paper V). Once stretched, the elastic

film was transferred onto a substrate. For the dewetting project, the substrate was a

silicon wafer coated with a thin PS film. For the partial wetting project, the substrate

was comprised of a silicon wafer coated with an elastomeric film with liquid droplets

deposited atop. In either case, the substrate was placed on a stage situated directly
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(a) (b)

Figure 2.4: (a) The micropipette is coated with a film of the viscous liquid after
being removed from the bath. The film rapidly evolves into an array of droplets via
the PRI. (b) Droplets can be created at the tip by connecting the micropipette to a
syringe containing the liquid.

below the stretched film. The stage was then vertically translated until the substrate

formed a strong adhesive contact with the entire elastic film. Finally, the sample was

removed from the straining apparatus by cutting the excess stretched film surrounding

the substrate with a scalpel.

2.3 Droplet deposition

In all the papers in Chapter 3, with the exception of Paper IV, droplets of sizes in the

range 25 < r < 500 µm were used , where r represents the contact radius of the droplet

on the substrate (volumes in the range 1-105 fL). These droplets were deposited

using various techniques. All of the techniques make use of thin glass micropettes.

Micropipettes are fabricated by stretching hollow glass capillary tubes with an inner

diameter of 0.7 mm and an outer diameter of 1 mm (World Precision Instruments

Inc.) with a specialized pipette puller (Narishige PN-30) over a heated filament. Once

pulled, the resultant micropipettes are thin (outer diameter of ∼ 20 µm), long (1-3

cm), hollow, and flexible.

In this thesis work, three different test liquids were used to produce droplets: glyc-

erol (Caledon Laboratories Ltd.), polyethylene glycol (PEG) with Mn = 0.6 kg/mol

(Sigma-Aldrich), and diiodomethane (Sigma-Aldrich, Reagent Plus, 99%). Glycerol

and PEG are both non-volatile and much more viscous than water. Thus, when a
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micropipette is dipped into a bath of these liquids and withdrawn, it entrains a liquid

film. The liquid film is unstable and breaks up into droplets via the PRI, as seen in

Fig. 2.4(a). The pipette can then be held above a substrate and flicked using a pair of

tweezers. This action leads to a “spray” of droplets being deposited on the substrate

below. Although this process is poorly controlled in terms of the number of droplets

created and their position, it is useful for producing a multitude of droplets simulta-

neously with a wide range of sizes, including ones which are very small (r ∼ 25 µm).

This technique was employed in Papers I, III, and V, because a multitude of droplets

of various sizes were desired. On the other hand, there is usually a droplet which is

trapped at the tip of the pipette, as seen in Fig. 2.4(a). This droplet can be directly

transferred onto a substrate by gently bringing the two into contact. This technique

has the advantage of depositing a single droplet at a controlled position, but is not

capable of producing small droplets (typically, r > 150 µm). This technique was

used exclusively in Paper II, as only two droplets were deposited on a sample, and

their location had to be precisely controlled. For an inviscid liquid, such as water

or diiodomethane, the above techniques are not suitable, as the micropipette does

not entrain a sufficiently thick film when retracted from the bath. Instead, the mi-

cropipette can be connected to a syringe containing the liquid to be deposited. By

applying pressure to the plunger of the syringe, a small droplet is formed at the tip

of the pipette, as depicted in Fig. 2.4(b). Thereafter, the procedure is the same as in

the previous technique. This technique was used to deposit diiodomethane droplets

in Paper III.

2.4 Contact angle measurements

Contact angle measurements have been performed using two different methods. In

the first technique, the droplet (or bulge in a compliant free-standing film) to be mea-

sured is viewed from the side with an optical microscope. In Fig. 2.5, we schematize

a contact angle measurement on a free-standing isotropic tension film (as described

in Section 2.2.1). In this example, the profile of the droplet spherical cap (i.e. cor-

responding to the liquid-vapour interface) is imaged to measure the droplet contact

angle θd. Bulge contact angles (θb) are performed in the same way, but the droplet
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(a)

camera light source
(b) 20 mθd

Figure 2.5: (a) Schematic of a side view set-up for contact angle measurements. Here,
we depict the contact angle measurement of a droplet on compliant film, but the same
set-up is used for rigid substrates as well. (b) An image of a droplet with contact
angle θd = 64± 1◦ determined using Eq. 2.1. The red curve is the best spherical cap
fit to the profile. Everything below the white dashed line is a reflection off the film
itself.

is deposited on the underside of the film instead. The same experimental set-up is

also used for measuring contact angles of droplets on the uniaxial straining set appa-

ratus described in Section 2.2.2 as well as on silicon wafers. An image of the droplet

(or bulge) profile is acquired with a camera (Fig. 2.5(b)). The edge of the profile is

detected using a thresholding algorithm written in MATLAB, and subsequently fit

to a spherical cap of radius R. The reflection of the profile to be measured is seen

directly below itself (i.e. everything below the white dashed line in Fig. 2.5(b)), but

is not used for any analysis. An image of the droplet (or bulge) is also acquired from

a top view by rotating the sample. In doing so, the contact radius r can be precisely

measured. Thereafter, the contact angle θ can be determined using the spherical cap

identity:

θ = sin−1
( r
R

)
. (2.1)

This technique is most suited for measuring contact angles in the range of 10◦ < θ <

85◦. The upper limit exists because Eq. 2.1 is poorly behaved close to 90◦, which

makes θ difficult to determine in that range. This method was employed in Papers I,

II, III, and V to measure contact angles.

In Paper V, contact angles were also determined using interferometry. In this

study, droplets were flattened due to being capped by a taut elastic film to contact

angles of 3 < θ < 20◦. These droplets were sufficiently flat that concentric Newton

rings were seen when viewed from above with an optical microscope through a red
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Figure 2.6: (a) Optical image of a flattened droplet capped by an elastic membrane.
Interference fringes are seen since the droplet is viewed through a red filter. (b) Plot
of the height of the droplet, relative to the height of the first fringe, as a function of
position for a horizontal section through the droplet in (a). The spherical cap fit (red
curve) is used to determine the contact angle.

monochromatic filter (λ = 632.8 nm, Newport, 10LF10-633). An example is shown

in Fig. 2.6(a). From such an image, the MATLAB function findpeaks can be used

to detect the locations of the minima and maxima in intensity, corresponding to dark

and light fringes, for a section through the center of the droplet. The change in

thickness between subsequent light and dark fringes, ∆h, is given by:

∆h =
λ

4n
, (2.2)

where n is the index of refraction of the liquid. Using this procedure, the height

profile of the droplet (relative to the height of the first fringe) can be plotted as a

function of position for the particular section (Fig. 2.6(b)). A spherical cap fit (red

curve) to the height profile data is then used to extract R, and θ is finally computed

using Eq. 2.1.
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Chapter 3

Papers

The following chapter contains the papers which comprise the work that is central to

this thesis. Each paper will be prefaced with a summary of the project, key findings,

and conclusions. Since research is a highly collaborative process, my contribution to

each project will be made explicit at the end of each preface. Additional papers for

which I am not the main contributor or which are tangential to the theme of this

dissertation are listed in Appendix A.

These papers focus on elastocapillary interactions in wetting between liquids and

solid films under tension. With the exception of Paper III, all papers study how

compliant elastic boundaries cause modifications from wetting phenomena on rigid

substrates. In Paper I, we study the deformations produced by partially wetting liquid

droplets which are sessile on compliant elastic membranes with isotropic tension. In

particular, we measure contact angles of the droplet and bulge, and prove the validity

of the Neumann construction depicted in Fig. 1.14. In Paper II, we generalize the

system by studying partial wetting on elastic membranes with biaxial tension. In

this work, we show that droplets elongate along the high tension direction, and thus

serve as “compass needles” for the principal directions in a free-standing elastic film.

The Shuttleworth effect is the subject of Paper III. In this project, we use partial

wetting to probe how interfacial energies of polymer glasses and elastomers change

with strain. We show that polymer glasses do indeed exhibit a Shuttleworth effect,

and give strong evidence for the absence of this effect in elastomers. In Paper IV,

we return to studying how elastic boundaries alter wetting phenomena. We show
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that the dewetting of a thin liquid film can be tuned by capping the liquid with an

elastic membrane. In particular, elastic boundary conditions permit control of the

rate as well as the morphology of dewetting. Finally, in Paper V, we investigate the

partial wetting of a liquid which is capped by an elastic membrane. A Young’s law

construction which incorporates mechanical as well as interfacial tensions captures the

measured contact angles. Further, we find that this system can be used to measure

the interfacial energy between elastomer and liquid. Once more, we show that elastic

boundaries can be exploited for liquid patterning.
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3.1 Paper I

Liquid droplets on a highly deformable membrane

R. D. Schulman and K. Dalnoki-Veress, Phys. Rev. Lett., 115, 206101 (2015).

This paper represents our first attempt at understanding how wetting phenomena

are altered in the presence of a compliant elastic boundary. Here, we study the

partial wetting of liquid droplets on elastic membranes. Free-standing elastomeric

and glassy films are prepared suspended over the hole of a washer and contain an

isotropic tension. We observe that droplets produce an elastocapillary deformation,

or bulge, in the film below which is comparable in size to the droplet itself, but the

surrounding film remains completely planar. By viewing the sample from the side,

the global droplet and bulge contact angles (θd and θb depicted in Fig. 1.14) are

measured, and the normalized tension Tin/γ is determined from Eq. 1.56. The value

of the tension is found to be uniform throughout the film, and independent of droplet

size or the number of droplets deposited, thus validating the notion that these elastic

films can be treated as membranes. These tensions are also verified using mechanical

indentation measurements with a micropipette deflection technique to measure forces.

Knowing Tin/γ and the Young’s angle θY of the liquid on a supported substrate of

the solid film, we show that a Neumann construction which incorporates mechanical

and interfacial tensions can be used to fully predict the droplet and bulge contact

angles. In this way, the partial wetting between a droplet and an elastic membrane

is completely analogous to the partial wetting between a droplet and a liquid mem-

brane. As the tension in the film increases, the deformation in the film, and hence

θb, decreases, whereas θd increases. For finite tension, we find that the internal angle

(θd +θb) is larger than Young’s angle. In the limit of infinite tension, wherein the film

is undeformable, Young-Dupré’s law of partial wetting on a rigid solid is recovered.

This project was the idea of Dr. Dalnoki-Veress and myself. Under his guidance,

I designed the experimental set-up. Thereafter, I made the samples, performed the

experiments, and analyzed the data. Through numerous discussions, Dr. Dalnoki-

Veress and I worked out the kinks in the theoretical model together. I wrote the first

draft of the manuscript, which was revised by Dr. Dalnoki-Veress.
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Liquid Droplets on a Highly Deformable Membrane

Rafael D. Schulman1 and Kari Dalnoki-Veress1,2,*
1Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4M1, Canada

2Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI, Paris, France
(Received 12 September 2015; published 9 November 2015)

We examine the deformation produced by microdroplets atop thin elastomeric and glassy free-standing
films. Because of the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge.
Thus, two angles define the droplet or membrane geometry: the angles the deformed bulge and the liquid
surface make with the film. These angles are measured as a function of the film tension, and are in excellent
agreement with a force balance at the contact line. Finally, we find that if the membrane has an anisotropic
tension, the droplets are no longer spherical but become elongated along the direction of high tension.

DOI: 10.1103/PhysRevLett.115.206101 PACS numbers: 68.03.Cd, 47.55.D-, 68.08.Bc

The interaction between a liquid’s surface tension and a
solid’s elasticity, or elastocapillarity, is relevant in a wide
variety of systems including capillary origami and folding
[1–4], soft tissues [5–7], wetting of fibers [8–10], and
micropatterning of elastomeric surfaces [11–13]. Despite
the multitude of applications utilizing this physics, one of
the most fundamental properties has only recently started to
be understood: the contact angle of a liquid droplet atop a
soft solid [14–17].
On rigid substrates, the contact angle of a droplet can be

found through a horizontal force balance between the
interfacial tensions of the system, known as Young’s law
[18]. The vertical component of the force is balanced by the
elasticity of the solid. In the opposite regime, a liquid droplet
atop a liquid substrate, the contact line geometry is deter-
mined by a Neumann construction, in which the interfacial
tensions are simultaneously balanced in the vertical and
horizontal directions [19,20]. Intermediate to these extremes
is a droplet atop a soft surface. In such a case, the liquid
contact line deforms the solid into a cusp on a length scale
given by the elastocapillary length γ=E, where γ is the
surface tension and E is Young’s modulus [15–17,21–24].
Microscopically, the contact line geometry and local contact
angles are described byNeumann’s lawbalancing the surface
tension of the liquid with the surface stresses of the solid-
vapor and solid-liquid interfaces. The global contact angle,
the angle at which the spherical cap intersects the flat
undeformed substrate, satisfies Young’s law for droplets
larger than γ=E [14–17]. However, droplets on the order of
γ=E display global contact angles which deviate from
Young’s law [15]. Elastocapillary phenomena are also
present in rigid materials, such as glasses; however, in such
cases γ=E is on the order of the molecular size. Therefore,
elastocapillary experiments have been limited to soft materi-
als, with moduli on the order of kilo Pascals, to attain
deformations and elastocapillary lengths in the μm range.
Alternatively, the length scale of the deformation

can be amplified by selecting a more compliant geometry,
such as flexible sheets, fibers, or free-standing films, while

employing materials with moduli in the MPa to GPa range
[1,3,8–10,25–27]. In a seminal study, the surface tension of
droplets on free-standing elastomeric films tens of μm thick
generated deformations visible to the naked eye [26]. By
modeling the system at the contact line, the authors were
able to determine the tensions in their films. However, the
tensions were never quantitatively verified using other
techniques, and the relevant contact angles of the system
were solely used to determine the tension and not compared
to theoretical expectations.
In this Letter, we present measurements of the global

contact angle of droplets atop thin free-standing films of an
elastomer (E ∼MPa) and a glass (E ∼ GPa) as a function of
the tension within the films. We find the contact angles to
be in excellent agreement with a Neumann construction in
which interfacial andmechanical tensions are balanced at the
contact line. In the limit of high tensions, our model and
measured contact angles tend towards Young’s law. Finally,
we show that droplets placed atop films with an anisotropic
biaxial tension become elongated in the direction of high
tension.
Elastomeric films with thickness ranging from h ∼ 280

to 3500 nm were prepared from a styrene-isoprene-styrene
(SIS) triblock copolymer and subsequently supported on a
washer with a circular hole to produce free-standing films
3 mm in diameter [28]. Free-standing glassy films of poly
(n-butyl methacrylate) (PnBMA) with h ∼ 65 to 140 nm
were similarly prepared. For the liquid droplets, we use
glycerol and polyethylene glycol (PEG). Droplets were
placed on either side of the free-standing film as seen in
Fig. 1(a) and viewed from the side with an optical micro-
scope. In this geometry, droplets and bulges could be
directly imaged on the top side of the washer (the edges
of the washer obscures the bottom side). Images of the
corresponding droplets or bulges were also obtained from
a top view for a more precise measurement of the contact
radii rc [Fig. 1(a)]. Contact angle measurements were
performed within ∼4 min of droplet deposition to ensure
negligible evaporation of the liquid. We found that the
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contact radii and contact angles of sufficiently large
droplets (rc > 25 μm) exhibited negligible change over
this experimental time scale. Therefore, our measurements
were limited to droplets with rc > 25 μm to be completely
confident that evaporation does not play a role.
Examples of optical images of a droplet and bulge are

shown in Fig. 1(b). The droplet or bulge profiles are well fit
to spherical caps, represented by curves in Fig. 1(b). From
each fit, we extract the radius of curvature, Rd or Rb, for
droplets and bulges. The droplet and bulge contact angles
[Fig. 1(c)], θd and θb, are defined as the contact angles with
which the respective spherical caps intersect the unde-
formed film and are calculated using the identities
sin θd ¼ rc=Rd, sin θb ¼ rc=Rb. We find that the contact
angles show no systematic dependence on droplet size
within the range investigated (rc ∼ 25–200 μm). Therefore,
on a given sample, several droplets and bulges are
deposited and average values of θd and θb are found.
The total internal liquid angle α is simply the sum of the
average values of θd and θb.
As will be justified below, we make the reasonable

assumption that only tensile forces (surface tensions and
mechanical tension in the film) are relevant and that
bending can be neglected. The elastocapillary length
(<100 nm) in our system is much smaller than the size
of our droplets, so surface stresses of the solid or ridges at
the contact line do not influence the global contact angles
we measure. Furthermore, the droplet sizes employed are
well below the capillary length of the system. Thus,
gravitational effects are negligible. In this limit, the film
deformation can be understood rather simply. The Laplace
pressure within the droplet causes the film below it to
bulge into a spherical cap. Outside the droplet, the film is
undeformed and flat. In addition, as seen in Fig. 1(c),
the contact line geometry results from a force balance
between the interfacial tensions of the system and the
mechanical tension T within the film. Analogous to a

Neumann construction, the liquid-vapor γ, solid-liquid γsl,
and solid-vapor surface tensions γsv tug at the triple point.
However, we must also include the additional contributions
from the mechanical tension in the film, as well as the solid-
vapor surface tensions present on the opposite side of the
film. We label the three tensions pulling the film down as
T in ≡ T þ γsl þ γsv and the three tensions pulling away
from the droplet as Tout ≡ T þ 2γsv. We assume that T is
the same in the region under the droplet compared to
outside the droplet. From the definitions of T in and Tout,
we see that Tout ¼ T in − γsl þ γsv ¼ T in þ γ cos θy, where
θy is the Young’s angle of the liquid atop a supported
substrate of the material, which we measure independently.
A vertical force balance at the contact line yields

T in

γ
¼ sin θd

sin θb
; ð1Þ

which can also be attained by balancing the Laplace
pressure with the restorative pressure from the film.
Equation (1) is convenient: the normalized tension T in=γ
is obtained from the measured angles θd and θb. A similar
approach (assuming α ¼ θy) has been employed to deter-
mine tensions in thicker films [26]. Furthermore, we use the
cosine law to obtain

cos θd ¼
ðTout=γÞ2 þ 1 − ðT in=γÞ2

2Tout=γ
ð2aÞ

cos θb ¼
ðTout=γÞ2 − 1þ ðT in=γÞ2

2ToutT in=γ2
; ð2bÞ

where we have made use of the fact that the film is flat
outside the droplet. Since Tout ¼ T in þ γ cos θy, we see that
Eq. (2) allows us to predict the individual contact angles
knowing the Young’s angle and the normalized tension
T in=γ given by Eq. (1). Similarly, the total internal angle α
is given by

cos α ¼ cos θy −
γ

2T in
sin2θy: ð3Þ

In the limit of T in=γ → ∞ the equations reduce to
θd → θy, α → θy, and θb → 0. That is, in the limit of high
tensions, we recover Young’s law, since the droplet is
sessile on a completely rigid substrate. In Figs. 2(a) and
Fig. 2(b) we plot our data for θd and θb as a function of
T in=γ found using Eq. (1) for glycerol on SIS and PnBMA.
The droplet contact angle increases with increasing tension
while the bulge contact angle decreases as the surface
becomes less deformable at high tensions. Various tensions
were achieved by changing film thickness and through
sample-to-sample variation [29]. We find thicker films to
have a higher tension, in accordance with previous work
[26]. In Fig. 2(c) we plot the total internal liquid angle α

FIG. 1 (color online). (a) Schematic of the side view of liquid
droplets on the top and bottom side of the film, not to scale.
(b) Microscope images of the side view of a droplet (left) and
bulge (right). The top half of the image is the direct visualization
of the droplet or bulge, while the bottom half corresponds to a
reflection off the film itself. The curves represent spherical cap
fits to the profiles. The scale bar represents 20 μm. (c) Schematic
of a droplet and bulge with the relevant angles identified. The
expanded view shows the interfacial and mechanical tensions
acting on the contact line.
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against the normalized tension and find it to decrease with
higher tension. It is important to note that at all finite
tensions one has θd < θy while α > θy. This result is in
contrast with previous studies which have assumed α to be
constant and equal to the contact angle on a supported
substrate [26,27]. In Figs. 2(a)–2(c), the predictions of
Eqs. (2) and (3) are plotted, with the Young’s angle of
glycerol atop SIS fixed to 81� 1.5°. The simple force
balance at the contact line captures the data, validating
that at finite tensions the contact angles can be found
through a Neumann construction which includes interfacial
and mechanical tensions. As T in=γ → ∞ Young’s law is

recovered. In Figs. 2(a)–2(c) the SIS and PnBMA data are
found to collapse onto the same curve, despite being
completely different materials. This collapse is due to
the coincidental fact that Young’s angle of glycerol on
SIS is equal to the Young’s angle of glycerol on PnBMA
(82.5� 1.5°) within experimental error. Since the theoreti-
cal curves are completely determined by T in=γ (as seen in
the plots) and θy, the data fall along the same curve.
In the model, we assume the mechanical tension

T to be the same in the region under the droplet compared
with the rest of the film. In fact, the theoretical curves in
Figs. 2(a)–2(c) are remarkably sensitive to this assumption.
If we, for instance, enforce the two tensions to differ by
as little as 5 mN=m (which corresponds to only 7% of T in
for the lowest tension data), the theoretical curves are
inconsistent with the data [28]. Therefore, the assumption
of constant mechanical tension throughout the film must
be valid.
We also perform experiments with another liquid, PEG,

atop SIS and PnBMA, for which the Young’s angle is
substantially different from glycerol (55.3� 1.5° and
58.4� 1.5°). To demonstrate that the theory is valid for
all tested combinations of liquid and substrate material,
we can rearrange Eq. (3) into the following form
ðcos θy − cos αÞ=sin2θy ¼ γ=2T in. In Fig. 2(d), we plot
the left hand side of this equation against γ=2T in for the
four liquid-substrate combinations tested. As expected,
these data all fall along a line of unity slope passing
through the origin. The measured droplet and bulge contact
angles are also well predicted by Eq. (2) for PEG [28].
In our experiments, we obtain T in=γ from sin θd= sin θb.

Although this procedure was used in a previous study, the
tensions were never quantitatively verified using alternate
methods [26]. In order to completely demonstrate the
success of the model, we must test the measured tensions
against some predictions. First, if the tension of the same
film is measured with two different liquids, glycerol,
and PEG, then T in;PEG¼T in;glyc−γsl;PEGþγsl;glyc¼T in;glyc−
γglyccosθy;glycþγPEGcosθy;PEG, where subscripts PEG and
glyc denote the two liquids. Substituting in literature values
for γPEG ¼ 46 mN=m and γglyc ¼ 63 mN=m [30,31],
the expected relationship becomes T in;PEG ¼ T in;glyc−
ð16� 3 mN=mÞ. We performed simultaneous tension mea-
surements using the two liquids atop SIS as seen in
Fig. 3(a). The data are well fit to a line of slope 0.98�
0.07 and intercept of −22� 8 mN=m, which agrees with
the theoretical result within error. The difference in the
intercept can be explained by discrepancies in the literature
values of γ for our liquids.
To further validate the tensions obtained with the

droplets, we also measure the tensions mechanically using
a home built micropipette deflection apparatus [32]. In this
technique, the tip of a flexible micropipette, which serves as
a force transducer, is pressed against the film. In doing so,
the deformation of the membrane as well as the force acting

FIG. 2 (color online). (a) The droplet contact angle, (b) the
bulge contact angle, and (c) the total internal liquid angle plotted
as a function of the normalized tension [see Eq. (1)] for glycerol
on SIS (circles) and glycerol on PnBMA (squares). The curves
are Eq. (2) and Eq. (3) with θy given by the Young’s angle of
glycerol on SIS (represented by the dotted horizontal lines). The
dashed black lines are bounds to the theory due to uncertainty in
θy. The uncertainty in the theoretical curve for θb is on the order
of the thickness of the curve itself. (d) ðcos θy − cos αÞ= sin2 θy as
a function of γ=2T in for four liquid-substrate combinations. The
black line is the theoretical prediction. The vertical and horizontal
error bars stem from uncertainties in the measured values
of θd and θb.
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on it are known. Since the shape of a taut membrane
between two axisymmetric rings (the pipette tip and
washer) is known [33], we can determine the tension from
the force-deformation data. The measured tension must be
equal to Tpip ¼ T þ 2γsv ¼ T in þ γ cos θy. Measurements
were carried out on both SIS and PnBMA films [34], and
the results of Tpip as a function of T in;glyc are displayed in
Fig. 3(b). The data are in agreement with the expected
trend. Any systematic differences between the SIS and
PnBMA data can be attributed to differences in adhesion
between the pipette and the respective films, as well as
bending being locally important near the pipette tip and
influencing the measured tensions. The pipette measure-
ments are prone to scatter due to the alignment of the
pipette relative to the film. As evidenced by the signifi-
cantly reduced scatter in Fig. 3(a), we conclude that tension
is more accurately measured using the droplet technique.
These tests show that the model is fully consistent in terms
of both tension and contact angle data.
Recently, there has been disparity in the literature

regarding whether or not the surface tension of an elasto-
meric film is equal to its surface free energy [26,35].
Following the procedure of Ref. [26], the surface tension of
the film can be found by computing the extrapolated zero-
thickness value of T in for a SIS film with glycerol droplets.
In doing so, we find that T in ∼ 60 mN=m. This surface
tension compares well with the surface free energy
of the film under the droplet, given by γsv þ γsl ¼ 2γsv −
γ cos θy ∼ 50 mN=m [36–38].
In this Letter, we make the assumption that our system is

dominated by tension and that bending can be neglected.
That is, stretching dominates, and the influence of bending
is only manifested in a small region around the contact line
of characteristic size

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh3=12T tot

p

, where T tot is the total

tension in the film [26,27]. In our experiments this
region is maximally ∼4 μm but most typically below
∼2 μm, and thus small in comparison to the droplet sizes
employed in this study, indicating that bending can be
safely ignored in both materials. The fact that bulges
and droplets are well fit to spherical caps and that the
contact angles are size independent further validates the
assumption.
We have performed experiments with droplets atop thin

free-standing films, wherein the surface tension of the
liquid produces significant deformation of the film. We
measure contact angles of the droplets and bulges relative
to the flat film, as well as the total internal liquid angle, and
find these to be well described by a Neumann construction
in which the interfacial and mechanical tensions are bal-
anced at the contact line. In the high tension limit, the film
is essentially undeformable, and Young’s law is recovered.
Conversely, in the limit of vanishing mechanical tension,
we expect to recover the classical Neumann construction
where only interfacial tensions are balanced. The tensions
we measured using the droplet experiments, which have
contributions from both mechanical and interfacial ten-
sions, were quantitatively verified using a purely mechani-
cal technique and by comparing the measured tensions
from two different liquids. The experiments described in
this manuscript were carried out on a film with a constant
isotropic tension, in which case the droplets are perfectly
round when viewed from above, as seen in Fig. 4(a).
However, an interesting option exists that does not for a
droplet on a simple liquid: if a film is floated onto a support
and then preferentially stretched along one axis, then the
droplets no longer assume a circular equilibrium contact. In
Fig. 4(b), a liquid droplet has been placed atop a film which
has been stretched in the vertical (y) direction. The droplets
become elongated along the axis of higher tension which
provides an exciting opportunity for studying equilibrium
liquid droplets that deviate from the expected geometry.

The authors are grateful to Anand Jagota, René
Ledesma-Alonso, Elie Raphaël, and Thomas Salez for

FIG. 3 (color online). (a) The tension as measured with PEG
compared to those measured with glycerol on the same SIS
sample. The black line is a linear fit to the data. (b) The tension as
measured with micropipette deflection correlated to those mea-
sured with glycerol on SIS (circles) and PnBMA (squares). The
black line represents the theoretical relationship, where the
thickness of the line is indicative of its upper and lower bound
given uncertainties in θy. Error bars for liquid tensions stem from
uncertainties in determining θd and θb, whereas error bars for
pipette tensions arise from uncertainties in the spring constant of
the pipette as well as in measuring the deformation of the film.

FIG. 4 (color online). (a) Top view of a water droplet atop a SIS
film with isotropic tension (Tx ¼ Ty). The droplet is round when
viewed from above. (b) Top view of a water droplet atop a
SIS film which has been stretched in the y direction (Ty > Tx).
A white circle is superimposed to emphasize that the droplet is
elongated along the direction of high tension. The scale bar
represents 50 μm.
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SUPPLEMENTARY METHODS

Elastomeric films were prepared from a styrene-
isoprene-styrene (SIS) triblock copolymer (Sigma-
Aldrich) with a 14% styrene content. Solutions of SIS
in toluene (Fisher Scientific, Optima grade) were pre-
pared with various weight fractions. Upon spincoating
these solutions, the triblock copolymers self-assemble to
form an elastomeric material in which the matrix is com-
posed of polyisoprene while the polystyrene segments
form glassy spheres which serve as physical crosslinks.
The SIS solutions were spincoated onto freshly cleaved
mica substrates (Ted Pella Inc.) to produce uniform
(<10% variation) films with thicknesses in the range of
h ∼ 280 nm - 3500 nm, measured using ellipsometry
(Accurion, EP3). The films were floated onto the sur-
face of an ultrapure water bath (18.2 MΩ·cm, Pall, Cas-
cada, LS) and subsequently picked up by a circular metal
washer to produce free-standing films 3 mm in diameter.
Free-standing glassy films of poly(n-butyl) methacrylate
(PnBMA) with number averaged molecular weight Mn =
66 kg/mol and polydispersity index PI = 1.05 (Polymer
Source Inc.) of thicknesses in the range of h ∼ 65 nm
- 140 nm (with <5% variation) were made following the
same protocol. These free-standing films were heated
above the glass transition (at 42◦) for 1 min to elimi-
nate wrinkles and ensure the films were taut. For the
liquid droplets, we use glycerol (Caledon Laboratories
Ltd.) and polyethylene glycol (PEG) with Mn = 0.6
kg/mol (Sigma-Aldrich).

SUPPLEMENTARY RESULTS

Contact angle experiments on SIS were performed us-
ing both glycerol and PEG. In Fig. S1, we plot θd and θb
as a function of Tin/γ for both glycerol (red) and PEG
(blue) atop SIS. The circle markers indicate droplet con-
tact angles, while bulge contact angles are represented
by square markers. Evidently, the contact angle data of
PEG assumes the same qualitative behaviour as the glyc-
erol data, but the PEG contact angles are smaller due to
the smaller Young’s angle atop a supported SIS substrate.
In Fig. S1, the theoretical predictions for the contact an-
gles are plotted as solid curves for θd and dashed curves
for θb. We see that the PEG data is also in excellent
agreement with the theoretical predictions.
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FIG. S1. The droplet and bulge contact angles as a func-
tion of the normalized tension atop SIS films. The red mark-
ers correspond to glycerol and the blue markers correspond
to PEG. Circle markers indicate droplet contact angles and
square markers indicate bulge contact angles. The curves rep-
resent theoretical predictions from Eq. 2 in the main text for
glycerol on SIS (red) and PEG on SIS (blue), where the appro-
priate θy has been inputted. Solid curves indicate predictions
for θd and dashed curves indicate predictions for θb.

In developing our theoretical prediction, we make the
reasonable assumption that the mechanical tension in the
film is the same in the portion of the film directly below
the droplet and in the undeformed film. In fact, we find
the theoretical predictions to be very sensitive to this as-
sumption. In Fig. S2, θd (circle markers) and θb (square
markers) are plotted against Tin/γ for glycerol atop SIS.
The red curves correspond to the theoretical predictions
(given by Eq. 2 in the main text) for the droplet (solid
curve) and bulge (dashed curve) contact angles. Now,
if we enforce that the mechanical tension in the two re-
gions differs by as little as 5 mN/m in our model, we at-
tain new predictions for the contact angles, shown in blue
in Fig. S2. Upper/lower blue curves for θd and θb cor-
respond to the mechanical tension being smaller/larger
in the undeformed film compared to the film below the
droplet. A 5 mN/m tension change corresponds to only



2

7% of Tin for the lowest tension data on the plot and
2.5% for the highest tension data. We see that even for
a small change in the tension, the curves systematically
deviate from the data. In addition, this systematic dif-
ference grows larger as the tension change is increased.
Evidently, even a small difference in T for the two regions
causes the theory to fail systematically, indicating that
our data is fully consistent with the assumption we have
made.
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FIG. S2. The droplet and bulge contact angles as a function
of the normalized tension for glycerol atop SIS films. Circle
markers indicate droplet contact angles and square markers
indicate bulge contact angles. The curves represent theoret-
ical predictions from Eq. 2 in the main text for glycerol on
SIS, where solid curves indicate predictions for θd and dashed
curves indicate predictions for θb. The blue curves represent
the theoretical curves when T is enforced to be different by
5 mN/m in the two regions. Upper/lower blue curves for θd
and θb correspond to T being smaller/larger in the region
outside the droplet compared to inside.
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3.2 Paper II

Liquid droplets act as “compass needles” for the stresses in a deformable

membrane

R. D. Schulman, R. Ledesma-Alonso, T. Salez, E. Raphaël and K. Dalnoki-Veress,

Phys. Rev. Lett, 118, 198002 (2017).

In this project, we again study partial wetting on a compliant elastic membrane,

but generalize the system from the previous paper by using films with biaxial tension.

Free-standing elastic films are prepared on a home-built apparatus which allows the

films to be strained uniaxially. We find that droplets deposited on these films assume

a shape which is elongated along the high tension direction. In addition, the film

surrounding the droplet is no longer planar, but depressed on the low tension side of

the wetting region, and raised on the high tension side of the wetting region. Using

optical contact angle measurements, we perform measurements of θd and θb along

both high and low tension directions. In addition, we use optical profilometry to

map the out-of-plane deformation of the film surrounding the wetting region, and

measure the angle subtended by the membrane at the contact line relative to the

horizontal (θm) along the high and low tension axes. Using these two methods, the

angles between the three surfaces at the contact line (defined by the angles θd + θm,

θd + θb, θb − θm) are completely determined along both the high and low tension

axes. We appeal to an independent Neumann construction along each of these axes,

which dictates the contact line geometry as a function of θY, as well as Tin,high/γ for

the high tension direction or Tin,low/γ for the low tension direction. Fitting the three

measured angles θd + θm, θd + θb, θb − θm to the Neumann construction prediction

along the two orthogonal axes lets us independently extract Tin,high/γ and Tin,low/γ.

We use minimal theoretical arguments incorporating the elastocapillary membrane

deformation (by solving Eq. 1.46) and the Neumann construction at the contact line

to generate several predictions. We forge predictions for the shape of the droplet’s

footprint (i.e. projection of the wetting region onto the horizontal plane), the aspect

ratio of the elongated droplets, and the vertical oscillation of the contact line posi-

tion around the circumference of the wetting region. For all of these, we find good
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agreement between the model results and experimental data.

Since droplets elongate along the high tension axis in a region of biaxial tension,

it also implies that their short and long axes align with the principal directions in the

membrane. To test this principle more generally, we perform separate experiments

where films are made with different tension fields in which the principal directions

are known. In one experiment, we show that droplets which are deposited near the

bowed free boundaries of the film elongate in the direction which is tangential to

the boundary. This is consistent with the fact that the principal directions at a free

boundary of a film are oriented normal and tangential to the boundary (Section 1.3.2).

Furthermore, we deposit droplets on a film with an initially isotropic tension which

is subsequently subjected to a pure shear stress τxy. Droplets elongate such that

their major axes are oriented at 45◦ to the x- and y-axes, in complete accordance

with the expected orientation of the principal directions (refer to Eq. 1.35). Thus, we

conclude that droplets act as “compass needles” to map out the tension field in an

elastic membrane.

This project arose as a natural extension of the former study. Here, I designed

the experimental protocol and created the straining apparatus. Once again, I made

the samples, performed the measurements, and analyzed the data. The theoretical

work was a collaborative effort between Dr. Ledesma-Alonso and I, with significant

input from Dr. Salez, Dr. Dalnoki-Veress, and Dr. Raphaël. I wrote the first draft

of the manuscript, which was subsequently edited by all the other contributors.
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We examine the shape of droplets atop deformable thin elastomeric films prepared with an anisotropic
tension. As the droplets generate a deformation in the taut film through capillary forces, they assume a
shape that is elongated along the high tension direction. By measuring the contact line profile, the tension in
the membrane can be completely determined. Minimal theoretical arguments lead to predictions for the
droplet shape and membrane deformation that are in excellent agreement with the data. On the whole, the
results demonstrate that droplets can be used as probes to map out the stress field in a membrane.

DOI: 10.1103/PhysRevLett.118.198002

The physics of liquid droplets in contact with soft or
deformable solids, elastocapillarity, is an active subject of
research. Between capillary origami and wrinkling insta-
bilities of thin films [1–9], the bending, coiling, and
winding of slender structures [10–16], and elasticity-
mediated propulsion of droplets [17–19], there is no
shortage of complexity, self-assembly, or beautiful exam-
ples of pattern formation in the field. In addition, some
recent results have forced us to question familiar concepts
of solid-liquid interactions. For instance, studies on the
partial wetting of liquid drops on soft solids show that
Young’s law is applicable on length scales much larger than
the bulk elastocapillary length γ=E, where γ is the liquid-air
surface tension and E is the Young’s modulus of the solid.
However, on smaller length scales, the contact line reveals a
wetting ridge set by a Neumann construction involving
surface stresses [20–26].
Partial wetting on deformable substrates may also be

studied by employing a highly compliant geometry, such as
a droplet on a thin freestanding film [27–31]. These studies
have considered clamped films which are held taut and
support a uniform and isotropic tension. As shown in
Fig. 1(a), the Laplace pressure of the droplet creates a bulge
in the film below it, in the shape of a spherical cap, which is
of the same order in size as the droplet itself. The
deformations generated may be orders of magnitude larger
than the bulk elastocapillary length, because stretching of
the membrane is the relevant mode of elasticity [28–31].
The contact line profile is determined by a Neumann
construction, which incorporates both mechanical and
interfacial tensions. This profile is characterized by the
angles subtended by the liquid (θd) and bulge (θb) to the
surrounding film [Fig. 1(a)], which remains completely flat,
i.e., the film’s angle relative to the horizontal θm ¼ 0. From
the Neumann construction, these angles are set by two
parameters: the Young’s angle θY of the same solid

supported on a rigid substrate and the ratio T in=γ, where
T in is the total mechanical and interfacial tension acting
inside the contact region of the membrane or drop system
[31]. In the limit of infinite tension, the bulge vanishes and
Young’s law is recovered.
In this study, we explore the partial wetting of a liquid

droplet resting on an elastomeric membrane with an
anisotropic tension. Surprisingly, the droplet assumes a
shape which is elongated along the direction of high
tension. We show from minimal theoretical considerations
that the tensions in the film determine both the elongated
shape of the wetting region and an observed out-of-plane
deformation of the film surrounding the droplet. Therefore,
liquid droplets serve as nondestructive probes for mapping
out the stress field in a membrane.

FIG. 1. (a) Schematic of the side view of the drop and
membrane system. The contact angle profile is determined by
the force balance shown. On the right, an optical image of the
contact line region taken along the x direction is shown. The dark
part is the liquid, the lighter gray part below is simply a reflection
of the droplet off the film, and the thin light curve on the right
(indicated by arrows) is the film itself. (b) Schematic of a
freestanding elastomeric film between two supports with a single
droplet atop. An optical top view image of the droplet is shown on
the right. Scale bars ¼ 200 μm.
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Freestanding elastomeric films of thickness h ∼ 240 nm
were prepared from Elastollan TPU 1185A (BASF) and
suspended between two supports, as seen in Fig. 1(b) [32].
The sample is then stretched along the y direction to
produce a biaxial mechanical tension T, such that Ty > Tx.
As can be seen in Fig. 1(b), since the edges in the x
direction of the film are free, the membrane assumes a
bowed configuration. However, at the center of the film, far
from the edges, there is a biaxial tension which is uniform.
In an experiment, a droplet of glycerol is placed near the
center of the film. In doing so, we find that the droplet
assumes a noncircular footprint which is elongated along
the high tension direction [Fig. 1(b)]. Initially, the contact
line is seen to move as the droplet configuration equili-
brates, indicating that there is no pinning in our system.
Thus, we wait until the contact line reaches equilibrium
(∼5 min) before performing measurements. We advise that
contact angle hysteresis should be minimized a priori so
that equilibrium contact angles are indeed measured.
Optical contact angle measurements are performed by
viewing the sample from the side. These measurements
are taken in two directions: viewing the sample from the x
direction, where the bulge and liquid-air interface can be
simultaneously seen [as in Fig. 1(a)], and viewing the
sample from the y direction. When observing from the y
direction, the supports block the view of the lower side of
the film; hence, two separate droplets are needed, one on
the top side and one on the bottom side of the film, to get
images of both the bulge and liquid-air interface. Images of
the two droplets are also taken from above, from which we
obtain precise measurements of the contact radii rx and ry
and, hence, the aspect ratio ϵ≡ ry=rx. We use droplets with
contact radii in the range of 300 − 450 μm, small enough
that gravity does not play a role but large enough that
evaporation does not influence our measurements over the
experimental time scale. The droplets are much smaller
than the overall lateral size of the film.
A sample optical image taken from the x direction is

shown in Fig. 2(a), where the droplet is sessile on top of the
film, generating a bulge below it. The true 3D shape of the
liquid-air interface is unknown. Nevertheless, its interface
must have a constant mean curvature to ensure a constant

internal pressure. However, to simplify our analysis, we fit
all liquid-air interface profiles to circular caps and extract
the average radii of curvature Rd;x and Rd;y. As can be seen
by the solid curve in Fig. 2(a), these fits exhibit excellent
agreement with our experimental images [32]. We note that
Rd;y > Rd;x in further support that the droplet’s shape is not
spherical. Knowing ri and Ri in each direction i ¼ x, y, the
contact angles θd;x and θd;y [defined as the angles the
liquid-air cap makes at the contact line relative to the x − y
plane as seen in Fig. 1(a)] can be determined. Furthermore,
the bulge profiles are fit to parabolas, the justification for
which will be provided later. As can be seen by the dashed
curve in Fig. 2(a), we find these fits to capture the bulge
profile well [32]. From these fits, we determine θb;x and
θb;y, defined as the angles the bulge makes at the contact
line relative to the x − y plane, as defined in Fig. 1(a).
We describe our films as membranes where bending can

be ignored, and, hence, the membrane slope is thought of as
being discontinuous at the contact line. In reality, there
exists a narrow region near the contact line where bending
dominates and the membrane curves to connect the bulge
region to the outside region. However, since this bending
region is too small to be measured in our experiments, the
membrane description is appropriate. For droplets on
membranes with isotropic tension, the film is flat outside
the contact region, and the contact line shape is completely
determined by θd and θb [28–31]. However, for films with
anisotropic tension, the film experiences an out-of-plane
deformation outside the wetting region. Therefore, a
complete picture of the contact line profile must include
the angle of the membrane relative to the x − y plane at the
contact line which we denote with θm. As can be seen in
Fig. 1(a), the membrane curves down towards the droplet in
the y direction, which we define to correspond to θm > 0.
Conversely, the film curves up towards the droplet in the x
direction and θm < 0. Since jθmj is small (< 4°) and the
membrane is difficult to resolve optically, we employ
optical profilometry (Veeco, Wyko NT1100) to probe the
out-of-plane deformation of the membrane, w, where
w > 0 is defined to indicate the side from which the liquid
droplet is placed. One such profilometry scan taken from
the droplet side is shown in Fig. 2(b). The membrane is
pulled towards positive w on the low tension side while
being displaced towards negative w on the high tension
side. From the profilometry data, it is straightforward to
determine the values of θm in the two principal directions:
x and y.
Although the tension in the membrane is not known

a priori, it may be determined using the contact line profile,
as has been demonstrated in previous studies [28–31].
Through a Neumann construction, as depicted in Fig. 1(a),
where T in and Tout ¼ T in þ γ cos θY contain mechanical
and interfacial tensions (see Ref. [31]), the contact line
profile in a given direction is completely determined by the
values of T in=γ and θY . The contact line profile is entirely

FIG. 2. (a) Optical side view taken from the x direction. The
solid curve is a circular fit to the liquid-air interface, and the
dashed curve is a parabolic fit to the bulge. (b) Optical profil-
ometry scan taken from above the droplet depicting the z
displacement w of the film surrounding the wetting region (dark
elliptical area).
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characterized by the three internal angles subtended at the
contact line: π − θd − θm, θd þ θb, and π − θb þ θm. The
Neumann construction is able to predict only these internal
angles, not θd, θb, and θm individually. Therefore, using the
value for θY and the angles θd, θb, and θm, we fit the
internal angles to the Neumann construction prediction in x
and y with T in;x=γ and T in;y=γ as the fitting parameters (see
Ref. [32]). The best fit allows us to extract values of T in;x=γ
and T in;y=γ. A sample fit is provided in Table 1, where it is
clear that a single value of T in;x=γ captures the data well.
The tensions measured in this way were found to be
consistent with tensions computed from the strains in the
film during stretching, attained using particle tracking in a
separate experiment [32].
We now turn to theoretical considerations and begin with

some simplifications to render the problem more tractable.
First, we restrict our analysis to the case in which ϵ is close
to unity, where the shape of the droplet may be treated as a
perturbation to a spherical cap. As such, we make the
assumption that the liquid-air interface profile as viewed
along a general sight line oriented at ϕ [Fig. 1(b)] is simply
a circular cap with its own radius of curvature. This
assumption is validated by the fact that such profiles are
well fitted to circular caps [32]. Similarly, as will be
justified later, all profiles of the bulge are parabolic in a
good approximation. We make the simplistic assumption
that the deformations produced by the two droplets on
the film are perturbative only to the pretension. This
assumption was found to be valid in a previous study done
with isotropic tension [31] but is further supported by the
fact that the contact angles are unchanged as additional
droplets are placed onto the film as well as by the tension
measurement done using particle tracking [32]. Finally, we
make small angle approximations when appropriate [37].
To predict the shape of the droplet’s footprint, i.e.,
projection of the wetted region onto the x − y plane, we
make use of the fact that the total height from the bottom of
the bulge to the top of the droplet must be equal in
every profile. We find that the contact radius rϕ [defined
in Fig. 1(b)] of the footprint is given by (see Ref. [32])

rϕ

�
arccos

�
cos θY −

γ

2T in;ϕ
sin2θY

��
¼ C; ð1Þ

where T in;ϕ is the total (mechanical and interfacial) tension
in the ϕ direction in the region under the droplet and C is a

constant which simply sets the overall length scale. We see
that rϕ increases with T in;ϕ, consistent with the observation
that droplets are elongated along the direction of highest
tension. Since the membrane tensions are assumed to be
unchanged by the addition of droplets, the tension remains
purely biaxial with its principal axes aligned along x and y,
and T in;ϕ ¼ T in;xcos2ϕþ T in;ysin2ϕ [38]. In Fig. 3(a), we
show an optical top view of an elongated droplet on a
film, where we also plot Eq. (1) as a solid curve with
C ¼ 514 μm found by fitting. We see that Eq. (1) provides
an excellent approximation of the elongated shape of the
footprint. Furthermore, Eq. (1) can be used to determine ϵ
without any free parameters. We see that the aspect ratio is
high when T in;y is large while retaining a small T in;x. For a
quantitative comparison with our experimental observa-
tions, we refer to Fig. 3(b), where all measurements of the
aspect ratio ϵexp are plotted against their predicted values
ϵth, computed using Eq. (1) and the measured values of
T in;x=γ and T in;y=γ. We find a good agreement between the
experimental and theoretical values of ϵ. We note that ϵth is
systematically smaller than ϵexp, which we attribute to the
simplifications made in the theory.
To construct a full theoretical treatment of the membrane

deformation, one may follow the approach laid out in
articles by Davidovitch and co-workers, where the Föppl–
von Kármán equations are solved in the limit of negligible
bending contributions [7,8,39]. However, further simplifi-
cations can be made when the deformation of the
membrane by the droplet does not notably modify the pre-
existing tension. Justified by our experimental observa-
tions, we have already made this assumption (in the claim
that T in;ϕ remains biaxial) to simplify the description of our
system. As such, the deflection of a membrane (w) carrying
a uniform biaxial tension of T in;x, T in;y is given by [32,40]

TABLE I. Sample fit of contact angle data in the x direction to a
Neumann construction to extract T in;x=γ ¼ 2.7� 0.15.

Experiment Best fit

ðθd;x þ θm;xÞ 57.8� 1.2° 59.5� 0.6°
ðθd;x þ θb;xÞ 76.6� 1.1° 78.1� 0.6°
ðθb;x − θm;xÞ 18.8� 0.8° 18.7� 1.1°

(b)

(c)

(a)

FIG. 3. (a) Top view image of an elongated droplet (ϵ ∼ 1.09)
where the solid curve represents the best fit of Eq. (1) and the
dashed curve is a circle drawn for comparison. Scale
bar ¼ 200 μm. (b) A comparison between the experimental
and theoretical values of ϵ for all samples. The line drawn
represents ϵth ¼ ϵexp. (c) Vertical position of the contact line
around a sample droplet, where the points correspond to
experimental data and the solid curve is calculated from Eqs. (1)
and (3) with A and B obtained from bulge profile fits.
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T in;x
∂2w
∂x2 þ T in;y

∂2w
∂y2 ¼ −pðx; yÞ; ð2Þ

where p is the pressure distribution acting on the film. This
equation is essentially Laplace’s law but with anisotropic
tension and in the limit of small membrane slopes. The
small slope approximation is appropriate in this case, since
the bulge contact angles are always below 25°. From this
equation, it is straightforward to solve for the shape of the
bulge, which forms in response to the uniform Laplace
pressure over the wetted region. We propose a solution of
the form

w ¼ Ax2 þ By2 þ w0; ð3Þ

where w0 is an arbitrary vertical shift and A and B are found
experimentally [32]. Thus, any vertical cross section of the
bulge passing through its apex is simply a parabola, which
is the reason for fitting the bulge profiles with parabolas to
extract θb;x and θb;y. From these parabolic fits, the values of
A and B are determined. Of course, we must still ensure
Eq. (2) is satisfied. Substituting w back into Eq. (2)
generates a criterion which can be written as [32]

T in;x

γ
θb;x þ

T in;y

γϵ
θb;y ¼ sin θd;x þ

1

ϵ
sin θd;y: ð4Þ

Evaluating both sides of Eq. (4) using all our data yields a
constant value of 1.75� 0.03 for the left side and 1.70�
0.06 for the right side, indicating that the data and theory
are consistent.
A striking aspect of the system is the out-of-plane

deformation of the membrane surrounding the wetting
region, as evidenced in Fig. 2(b). As shown for a sample
droplet in Fig. 3(c), the vertical position wc of the contact
line relative to its average value oscillates with ϕ. Knowing
all parameters in Eqs. (1) and (3), we may attain a
prediction for wc by evaluating Eq. (3) at the position of
the contact line given by Eq. (1). Therefore, we plot the
prediction of the data in Fig. 3(c) with a solid curve and find
that it exhibits excellent agreement with the data.

As we have seen, droplets are elongated along the high
tension direction; i.e., the major and minor axes of the
droplets’ footprints align with the principal tension direc-
tions in the membrane [38]. We can further test this
property by a separate experiment where samples are made
with different stress fields in which the principal directions
are known. As shown in Fig. 4(a), water droplets have been
sprayed onto a freestanding elastomeric film on a circular
washer, where the tension is completely isotropic and
uniform. A thin glass pipette has then been placed into
contact across the film but does not significantly modify the
film’s stresses. As such, the droplets are completely round,
in agreement with previous work done with isotropic
tension [31]. After these droplets have evaporated, we
displace the pipette slightly towards the right, as seen in
Fig. 4(b), which generates a shear stress in the membrane.
If a membrane with isotropic stress is subjected to a shear
stress τxy, the principal directions of the stress are aligned at
45° to the x and y axes regardless of the shear’s magnitude
[38]. To employ this known stress field as a test, we spray
water droplets onto the film and fit the footprints of these
with ellipses to extract the major (minor) axis, which is
displayed in Figs. 4(b), 4(c) as a long (short) line.
Computing the average angle that the major axes subtend
to the pipette, we find 44� 8°, as we would expect. Finally,
at a free (i.e., stress-free) boundary, the principal directions
are tangent (high tension) and normal (low tension)
to the boundary [38]. We thus purposely deposit liquid
droplets near the bowed edges [see Fig. 1(b)] of our
stretched sample, as seen in Fig. 4(c). Indeed, the
major and minor axes plotted atop the droplets align with
the principal directions. Note that, although we do not
observe any mutual influence between droplets, we expect
such an effect to become important at sufficiently small
separations.
In this work, the droplets’ elongated shape stems from

the anisotropy in the compliance of the freestanding film in
the two orthogonal directions. On the other hand, it is
known that droplets atop stretched substrates which are
noncompliant in the out-of-plane direction may also
experience anisotropic wetting conditions and become

FIG. 4. (a) Droplets on a film with isotropic tension with a pipette laid across the film (schematized in the inset). (b) The pipette is
moved in the direction indicated by the arrow to shear the film (schematized in the inset, where the thin diagonal lines indicate the
principal direction of high tension). (c) Droplets deposited near the boundary (see the inset) of a film. The major (minor) axis of the
droplets are indicated by a long (short) line in (b) and (c).
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elongated [41–43]. This is a result of two effects: aniso-
tropic molecular forces or compositions caused by stretch-
ing the molecules at the surface [41,42] or an induced
anisotropy in the topographical roughness [43,44]. These
effects do not contribute to the results within our study,
since droplets are round when placed atop stretched films
which have been transferred onto a rigid substrate.
We have performed experiments studying liquid droplets

atop deformable membranes which carry an anisotropic
tension. Droplets assume shapes which deviate from
spherical caps and become elongated along the direction
of highest tension. By measuring the contact line profile,
we completely determine the tensions in the membrane.
Using these tensions, along with a minimal theoretical
model, we are able to form accurate predictions for the
elongated shape of the droplet’s footprint and the out-of-
plane deformation of the membrane surrounding this
region. Thus, liquid droplets may be used as a tool to
map out the magnitudes and directions of the stresses in a
membrane—analogous to iron filings in magnetic fields.
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ESPCI Paris, PSL Research University, 75005 Paris, France.
4Global Station for Soft Matter, Global Institution for Collaborative Research and Education,

Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
(Dated: April 6, 2017)

SAMPLE PREPARATION

Elastomeric films were prepared from Elastollan TPU 1185A (BASF). Solutions of Elastollan in cyclohexanone
(Sigma-Aldrich) were prepared at 3% weight fraction. Upon spincoating these solutions, the Elastollan polymers,
which contain hard and soft segments, assemble to form an elastomer with physical crosslinks. The Elastollan
solutions were cast onto freshly cleaved mica substrates (Ted Pella Inc.) to produce highly uniform (<5% variation)
films with of thickness h ∼ 240 nm, measured using ellipsometry (Accurion, EP3). These films were subsequently
heated at 100◦C for 90 min to remove any residual solvent from the elastomer. After annealing, these films were
floated onto the surface of an ultrapure water bath (18.2 MΩ·cm, Pall, Cascada, LS) and picked up between two
supports to form our sample. In our experiments, the liquid we use is glycerol (Caledon Laboratories Ltd.).

LIQUID CAP AND BULGE PROFILES

As explained in the main text, two droplets are placed on the film: one on each side. The purpose of doing so is to
be able to visualize both the liquid-air interface and the bulge when viewing the sample from the y-direction, where
the supports obscure our view of the lower side of the film. Sample optical microscopy images of the two profiles when
viewed from the y-direction are shown in Fig. S1. In Fig. S1(a), the solid curve represents the best fit of a circular
cap to the liquid-air interface profile, and in Fig. S1(b), the dashed curve represents the best fit of a parabola to the
bulge profile. The fits describe the optical profiles well.

From optical profilometry, we find that the film is always pulled up towards the droplet on the low-tension side. This
is seen in Fig.2(b) of the main text, where we observe a positive w on the sides of the droplet along the x-direction.
In fact, this small deformation can be visualized in Fig. S1, where the film is seen to be pulled up towards the droplet
in (a) and suppressed leading into the bulge in (b).

(a)
 200 m  200 m

(b)

FIG. S1. (a) An optical sideview of a liquid-air interface profile taken from the y-direction, where the solid curve represents the
circular cap fit to the profile. (b) An optical sideview of a bulge as seen from the y-direction. The dashed curve corresponds
to the parabolic fit to the profile.

As mentioned in the main text, to derive Eq. 1, we assume that the liquid-air interface profile is well described
by a circular cap when viewed along any general direction oriented at φ to the x-axis. Experimentally, we observe
that this assumption is fully reasonable. In Fig. S2, we show a sample profile of a liquid-air interface taken along a
sightline corresponding to φ = 45◦, where we show the circular fit as a solid curve. As can be seen from this image,
as well as any other sightline we have tested, the profile is always well described by a circular cap. Of course, since
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200 m

FIG. S2. An optical sideview of the liquid-air interface taken from a sightline oriented at φ = 45◦ to the x-axis. The solid
curve represents the circular fit to the profile.

the 3D shape of the liquid-air interface is not spherical, the radius of curvature of the circular cap extracted from the
profile fits changes along the various sightlines.

TENSION VERIFICATION

Although the technique of using liquid contact angles to measure the tension in deformable membranes has been
employed and verified in previous studies [1, 2], we perform an additional validation here. In this experiment, we
prepare a film where the tension is isotropic (droplets are completely round within experimental error) and is measured
to be Tin/γ = 2.1 ± 0.1 using the contact angle technique from the main manuscript. Near the center of the film,
we place small dirt particles to act as tracer particles. Next, we stretch the film along the y-axis, and from the
tracer particles, the strains induced in the film in both directions are measured to be ex = −0.016 ± 0.006 and
ey = 0.195 ± 0.015. Next, we perform contact angle measurements once again to determine the tension in this way.
We find the change in tension from the initial state to be ∆Tin,y/γ = 6.6±0.8 and ∆Tin,x/γ = 2.3±0.3. If we suppose
the interfacial tensions do not change appreciably upon stretching, the change in tension is purely mechanical.

To derive a theoretical expression for the change in tension upon straining the film, we employ Hooke’s law [3]. We
assume that there is no stress acting in the z-direction across the film, i.e. σz = 0. We also know that the mechnical
tension is related to stress through film thickness ∆T = h∆σ. Once again, the ∆ signifies changes from the reference
state of isotropic tension. As such, we may derive simple expressions for the changes in mechanical tension upon
stretching:

∆Tx =
Eh(ex + νey)

1− ν2 , (S1)

∆Ty =
Eh(ey + νex)

1− ν2 , (S2)

where ν is the Poisson ratio of the elastomer, which can be assumed to be 0.5 and E is the Young’s modulus. Some
other quantities of interest to compute are the tension ratio

(∆Ty/∆Tx) =
ey + νex
ex + νey

, (S3)

since this quantity is independent of the modulus and film thickness, as well as the strain in the vertical direction,
representing the fractional change in film thickness upon straining

ez =
ν

ν − 1
(ex + ey). (S4)

Substituting our measured strain values for the strains into Eq. S3, we find (∆Ty/∆Tx) = 2.3± 0.1. This value is
in agreement with the value measured using contact angles (∆Tin,y/∆Tin,x) = 2.9± 0.5 within experimental error. In
addition, as a consistency check, we verify Eq. S4 by measuring the film thickness before and after stretching, to find
a change in film thickness of -18.3%, which agrees nicely with the predicted strain of -17.9% from Eq. S4.
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To compare the individual values of the tension from contact angles against those from particle tracking, we must
know E and γ. We may find values for E in the literature; nevertheless, this introduces error, as E will depend on the
details of the sample preparation for a physically cross-linked elastomer. With this caveat in place, we find measured
literature values for the Young’s modulus of Elastollan be roughly within the range E = 9 ± 1.5 MPa [4–6]. The
surface tension of glycerol is γ = 0.063 N/m [7]. For h in Eqs. S1 and S2, we use the stretched film thickness. As
such, our predicted values from particle tracking are ∆Tx/γ = 3.1± 0.9 and ∆Ty/γ = 7± 2, which compare well with
the tensions determined from contact angles.

SHAPE OF THE WETTING REGION PERIMETER

In this section, we outline the arguments used to attain Eq. 1 in the main manuscript. We make some simplifying
assumptions to render the problem more tractable. First and foremost, we assume that the shape of the liquid-air
interface is a perturbation from a spherical cap. Given this assumption, there are two reasonable approximations
which can be made. First, we approximate that any vertical cross-section of the liquid-air interface done along a
general line oriented at φ (see Fig. 1(b) in the main manuscript) is a circular cap with its own radius of curvature.
This assumption is found to be in agreement with the experimental observation that sideview profiles of the liquid-air
interface from any such sightlines are well-described by circular caps (example seen in Fig. S2). From the elliptical
paraboloid shape of the bulge, which will be discussed in the following section, we know that all cross-sections of the
bulge done in the same way are parabolas. Next, if we define φ′ to be the angle subtended between the x-axis and
the in-plane normal of the footprint perimeter, we make the approximation that φ′ ≈ φ. Of course, true equality only
holds in the limit that the footprint shape is circular (ε = 1), but it remains a good approximation for ε close to 1.

To begin the derivation, we point out that the vertical distance from the apex of the bulge to the top of the droplet,
htot, must be the same for any profile taken from a cross-section along a line oriented at φ. For a given φ, this height
is found as the sum of the liquid cap height hd,φ and the bulge height hb,φ. The height of the liquid cap can be
found through a simple circular cap identity hd,φ = rφtanθd,φ/2, where rφ is the footprint radius and θd,φ is the cap’s
contact angle, both for this value of φ. A similar relationship can be found for the parabola which represents the
bulge, hb,φ =

rφ
2 tanθb,φ. Therefore, we can write

htot = rφ

(1

2
tanθb,φ + tan

θd,φ
2

)
. (S5)

Our final simplification in this derivation is to assume that θb and θd/2 are small angles, such that tanθb ≈ θb and
tanθd/2 ≈ θd/2. This approximation is reasonable for our experiments where θb,φ < 25◦ and θd,φ/2 < 33◦, so there
is less than 11% error in making this approximation at this point. Generally these assumptions become increasingly
more appropriate the smaller θY is. Employing the small-angle limit, we are left with

htot =
rφ
2

(
θb,φ + θd,φ

)
. (S6)

The angle sum θb,φ + θd,φ represents the internal angle of the liquid at the contact line, and can be simply predicted
using a Neumann construction, as was shown in previous work [2].

θb,φ + θd,φ = arccos
(

cosθY −
γ

2Tin,φ
sin2θY

)
. (S7)

This Neumann construction should be set up normal to the contact line. However, since φ′ 6= φ as outlined before,
the normal line does not pass through the droplet center. Therefore, to simplify the problem, we assume that φ′ ≈ φ,
which implies that the Neumann construction above represents the internal angle of the liquid for a cross-section taken
from the contact line to the droplet center, oriented at an angle φ to the x-axis. Thus, noting that htot in Eq. S6 is
just some constant value, we arrive at the final result

rφ =
C

arccos
(

cosθY − γ
2Tin,φ

sin2θY

) , (S8)

where Tin,φ is the total tension in the φ direction in the region under the droplet, and C is a constant which simply
sets the overall scale of the region. As discussed in the main text, we assume that the deformations produced by the
two liquid drops on the film are only perturbative to the pre-tension of the membrane. This assumption was validated
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in previous study done with isotropic tension [2], but is further supported by the experimental observation that the
contact angles remain constant as additional droplets are placed onto the film and also by the tension confirmation
using tracer particles described in the previous section. Since we have prepared the film to have a biaxial tension with
principal directions in x and y, the tension in any direction φ is Tin,φ = Tin,xcos2φ+ Tin,ysin2φ [3].

DERIVATION OF THE BULGE SHAPE

The small-slope out-of-plane deformation of a film w (x, y) subjected to a transverse pressure is described by the
Föppl-von Kármán equations [8]:

D∆2w − h∇ ·
(
σ · ∇w

)
= p, (S9a)

∇ · σ = 0 , (S9b)

where p is the transverse pressure distribution, D is the flexural rigidity, h is the film thickness, and σ is the stress
tensor. In our system, bending can be neglected, and the first term in Eq. S9a can be ignored. Motivated by
experimental observations, we make the simplifying assumption that the deformation of the membrane by the droplet
does not notably modify the pre-existing tension. Therefore, the stress in the membrane is the as-prepared biaxial
stress which is uniform in the region near the center of the film where the experiment is performed. Since the stress
is uniform, Eq. S9b is automatically satisfied, and Eq. S9a can be simplified to:

Tin,x
∂2w

∂x2
+ 2Tin,xy

∂2w

∂x∂y
+ Tin,y

∂2w

∂y2
= −p, (S10)

where we have used the general relation that tension is stress multiplied by film thickness. Since the film is prepared
with a biaxial tension in which the principal directions are aligned with x and y, it implies that Tin,xy = 0, thus we
are left with

Tin,x
∂2w

∂x2
+ Tin,y

∂2w

∂y2
= −p (x, y) , (S11)

Since there is no flow within the liquid, the droplet must contain a uniform pressure, so p is a constant value in our
case and given by the Laplace pressure of the droplet p = −γ

(
1

Rd,x
+ 1

Rd,y

)
, where the negative sign indicates that

the pressure acts on the film in the negative z-direction. Note that Eq. S11 is simply the anisotropic Laplace’s law in
the limit of small slopes.

For the particular case in which Tin,x = Tin,y, we recover the isotropic Laplace’s law (small slopes), for which the
solution is given by

w (r) =
pr2

4Tin,x
+ c0 ln(r) + c1 , (S12)

with r =
√
x2 + y2. Since the position of the membrane at x = y = 0 must be finite, we find that c0 = 0, whereas

c1 = w0, an arbitrary vertical shift of the system. Therefore, the isotropic solution becomes

w (x, y) =
p

4Tin,x

(
x2 + y2

)
+ w0 , (S13)

For the anisotropic case, since ε is near 1, we expect that the solution should be very similar to the isotropic case.
Thus, we propose

w (x, y) = Ax2 +By2 + Cxy +Dx+ Ey + F . (S14)

In addition, we know that ∂xw = ∂yw = 0 at x = y = 0, which provides the values D = 0 and E = 0. Once more, at
x = y = 0 an arbitrary vertical shift of the system w0 is asigned to the coefficient F . Additionally, we must consider
the symmetry conditions: 1) ∂xw = 0 at x = 0; 2) ∂yw = 0 at y = 0; both implying that C = 0.

Therefore, we have

w (x, y) = Ax2 +By2 + w0 . (S15)
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Plugging this ansatz back into Eq. S11 leads to

2Tin,xA+ 2Tin,yB = γ
( 1

Rd,x
+

1

Rd,y

)
. (S16)

We can also write A and B in terms of θb,x and θb,y. At x = rx, y = 0 we have ∂xw = 2Arx = tanθb,x ≈ θb,x.
Similarly, 2Bry ≈ θb,y. In addition, a circular cap identity can be used to write Rd,x and Rd,y in terms of θd,x and
θd,y. Thus, Eq S16 becomes

Tin,xθb,x
rx

+
Tin,yθb,y

ry
= γ

( sinθd,x
rx

+
sinθd,y
ry

)
. (S17)

Finally, we arrive at Eq. 4 in the main manuscript

Tin,xθb,x
γ

+
Tin,yθb,y

γε
= sinθd,x +

1

ε
sinθd,y . (S18)

NEUMANN CONSTRUCTION

The three internal angles characterizing the contact line profile are π− θd− θm, θd + θb, and π− θb + θm. Thus, the
internal angles are set by three different linear combinations of the measured angles: θd +θm, θd +θb, and θb−θm. As
was done in Ref. [2], one may apply a Neumann construction to attain predictions for these three angle combinations:

cos (θd + θm) =
[Tout/γ]

2 − [Tin/γ]
2

+ 1

2 [Tout/γ]
, (S19a)

cos (θb + θd) =
[Tout/γ]

2 − [Tin/γ]
2 − 1

2 [Tin/γ]
, (S19b)

cos (θb − θm) =
[Tout/γ]

2
+ [Tin/γ]

2 − 1

2 [Tout/γ] [Tin/γ]
, (S19c)

where Tout = Tin + γcosθY. These predictions depend only on two parameters: Tin/γ and θY. Of course, this
Neumann construction may be carried out normal to the contact line at any point along the perimeter. Thus, using
the value we measure for θY, we fit these predictions separately to the measured internal angles in x and in y to find
the best fit parameter values of Tin,x/γ and Tin,y/γ. The best fitted values of θd + θm, θd + θb, and θb − θm are listed
in Table I of the main manuscript.
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3.3 Paper III

Surface energy of strained amorphous solids

R. D. Schulman, M. Trejo, T. Salez, E. Raphaël and K. Dalnoki-Veress, Nat. Com-

mun., 9, 982 (2018).

In this study, we digress from examining elastocapillary deformations of elastic

membranes to focus on the Shuttleworth effect. Since several of our studies employ

strained elastomeric materials, it is of fundamental interest to address whether the

interfacial energy of these materials changes with strain. Here, we extend our exper-

iment to investigate polymeric glasses as well, since the Shuttleworth effect has not

been studied for this class of materials.

To probe the Shuttleworth effect, we prepare thin glassy and elastomeric polymer

films. The films are uniaxially strained with high precision using the apparatus de-

picted in Fig. 2.2(b), and then transferred onto a silicon substrate for measurement.

The experiment consists of measuring Young’s angle θY on these strained films. Since

γcosθY = γsv − γsl, any changes in θY implies changes in the interfacial energy dif-

ference γsv − γsl. The contact angle measurements are performed with two standard

test liquids of known surface energy: glycerol and diiodomethane.

For the glassy polymers, polysulfone and polycarbonate are used since these

have high elongations at yield. We find that γsv − γsl decreases with strain for di-

iodomethane but observe a strong increase in γsv − γsl with strain using glycerol.

These results indicate, for the first time, that glassy polymer interfaces have strain-

dependent surface energies, which implies that ΥAB 6= γAB for interfaces involving

these materials. In addition, the opposite behaviour for the two test liquids is at-

tributed to be caused by differences in polarity: diiodomethane is non-polar whereas

glycerol is highly polar. Since γsl quantifies intermolecular interactions between solid

and liquid, it is not surprising that polarity of the liquid plays an important role.

A simple integration of dispersive (van der Waals) intermolecular interactions

across the interface (Hamaker’s calculation) shows that the quantity γsv−γsl depends

linearly on the density of the solid. Since the density of glassy solids decreases with

strain (ν = 0.37 for the materials chosen), it is expected that γsv − γsl should also
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decrease with strain for the non-polar test liquid. We find that a model which in-

corporates only these density changes does not fully capture the magnitude of the

trends we observe for diiodomethane, and implies that there are other effects at play

as well, such as the polarizability of the molecules in the solid changing with strain.

This model does not account for interactions involving permament dipoles, and thus

should not be applied to data attained with the polar test liquid.

For the elastomers, two physically crosslinked elastomers (SIS and Elastollan) and

one chemically crosslinked elastomer (polyvinyl siloxane) are used. Although the films

are strained up to 100%, we find no change in θY for any of these elastomers using two

test liquids. This observation implies that dγsv
dε

=
dγsl1

dε
=

dγsl2
dε

, where 1 and 2 indicate

two different test liquids. Since there is no reason to expect the solid-vapour surface

energy to change at the same non-zero rate as the solid-liquid surface energy for an

arbitrary choice of liquid, we suggest that dγsv
dε

= dγsl
dε

= 0 for interfaces involving

elastomers - i.e. no Shuttleworth effect. In fact, elastomers are incompressible liquids

(ν ≈ 0.5) which are constrained by crosslinks on length scales much larger than those

relevant to intermolecular interactions. Thus, at the interface, we anticipate that

elastomers maintain a constant molecular environment and density at the interface,

much like a liquid, resulting in an unchanging surface energy with strain.

The idea for this project was conceived through discussion between Dr. Dalnoki-

Veress, Dr. Raphaël and Dr. Salez on how to most directly address the Shuttleworth

effect with an experiment. The experimental set-up was designed by Dr. Dalnoki-

Veress and myself. In this study, I made the samples, performed the experiments,

and analyzed the data. The theoretical work was a collaborative effort between Dr.

Trejo and I, with important conceptual input from Dr. Dalnoki-Veress, Dr. Salez,

and Dr. Raphaël. I wrote the first draft of the manuscript, which was then edited by

all the other contributors.
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Surface stress and surface energy are fundamental quantities which characterize the interface

between two materials. Although these quantities are identical for interfaces involving only

fluids, the Shuttleworth effect demonstrates that this is not the case for most interfaces

involving solids, since their surface energies change with strain. Crystalline materials are

known to have strain-dependent surface energies, but in amorphous materials, such as

polymeric glasses and elastomers, the strain dependence is debated due to a dearth of direct

measurements. Here, we utilize contact angle measurements on strained glassy and elas-

tomeric solids to address this matter. We show conclusively that interfaces involving poly-

meric glasses exhibit strain-dependent surface energies, and give strong evidence for the

absence of such a dependence for incompressible elastomers. The results provide funda-

mental insight into our understanding of the interfaces of amorphous solids and their

interaction with contacting liquids.
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The surface energy γ of an interface between two materials is
the energetic cost associated with creating a unit of surface
by cleaving and is associated with breaking intermolecular

bonds, whereas the surface stress ϒ characterizes the force
required to generate a unit of area by deforming the materials and
is associated with stretching the bonds of the molecules near the
interface1–5. These separate quantities are related through the
Shuttleworth equation1, for which a simplified form is:

ϒABðεÞ ¼ γABðεÞ þ
dγABðεÞ

dε
; ð1Þ

where ε is the strain parallel to the interface and the subscript
refers to the interface between A and B. Although the validity of
Eq. 1 is well established (see ref. 2 for a review), it is not obvious
how the surface energy is dependent upon strain. For a liquid in
contact with a vapour, the surface stress and energy are identical
because as the liquid–vapour interface is deformed, molecules
from the two fluids may simply rearrange themselves to maintain
a constant average molecular environment at the interface. In
contrast, as a crystalline solid is deformed, the surface density of
atoms is altered, leading to a strain-dependent surface energy.
Given Eq. 1, this strain dependence implies that the surface
energy and surface stress are in general not equal for this class of
materials. There has been some experimental work verifying this
principle, but there is difficulty in performing absolute mea-
surements which are precise and model independent2,3,5–10. Due
to the periodic structure of crystals, rigorous theoretical calcula-
tions of surface energy and stress are tractable and have been
carried out for a multitude of these materials2,3,5,6.

On the other hand, there is little evidence to indicate whether
the surface energies of interfaces involving amorphous materials,
such as glasses and elastomers, are strain dependent. In fact, to
the best of our knowledge, there has been no theoretical or
experimental work investigating the Shuttleworth effect for glas-
ses. Elastomers have recently received particular attention,
because in these soft materials the surface stresses may induce
large-scale deformations11,12. For instance, sufficiently soft
cylindrical structures will undergo a Plateau–Rayleigh instabil-
ity13. However, despite the multitude of recent studies, no con-
sensus has been reached on whether interfaces involving
elastomers have surface stresses which are different from surface
energies14–25. This situation is likely rooted in the fact that
interpretations of the experimental measurements to determine Υ
have been model dependent.

In this study, by using contact angle measurements, we
unambiguously quantify the strain dependence of the difference
between the solid–liquid and solid–vapour surface energies of
strained interfaces involving polymeric glassy and elastomeric
materials. We employ Young–Dupré’s law, which dictates that
γlv cos θY= γsv− γsl, where s, l, and v indicate the solid, liquid,
and vapour phases and θY is the contact angle at equilibrium.
Since γlv is independent of any strain applied to the solid, θY is a
direct indicator of the strain-dependent difference between γsv
and γsl. We found that interfaces involving polymeric glassy
materials do exhibit strain-dependent surface energies. As seen in
Fig. 1a, a droplet placed on a glassy substrate strained by only 6%
exhibits a significant change in contact angle. In contrast, we
provide strong evidence that interfaces involving an elastomer
together with a liquid or a vapour have surface energies which are
unchanged by strain. In Fig. 1b, an elastomeric substrate strained
by 100% shows no measurable change in θY. As we will show, θY
is independent of strain for all tested combinations of elastomer
and liquid.

Results
Contact angle measurements. In our experiment, polymeric
glassy and elastomeric films are strained (Fig. 2) and then
transferred onto a silicon wafer. We then place sub-millimetric
liquid droplets on those strained films. The droplets are observed
to be completely circular when viewed from above. We perform
contact angle measurements by viewing the droplets from the side
under an optical microscope and fitting their profiles to circular
caps, an example of which is shown in the left panel of Fig. 1a.
We note that Young–Dupré’s law only holds for droplets which
are much larger than the elastocapillary length of the system16.
Therefore, we work exclusively in the regime where the droplet
size much exceeds this length scale. All contact angle measure-
ments are performed in air and at room temperature (~20 °C).

Polymeric glasses. In the first part of this study, we perform our
measurements on polymeric glasses. Since we want to avoid any
plastic deformation of the samples, we choose polysulfone (PSf)
and polycarbonate (PC) which have large elongations at yield: up

� = 0% � = 6%

� = 0% � = 100%

�Y=71±1° �Y=62±1°

�Y=69±1° �Y=68±1°
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Fig. 1 Contact angle measurements on strained and unstrained polymeric
substrates. a Contact angle measurements of glycerol on unstrained (left)
and 6% strained (right) polycarbonate glass. The left panel shows a typical
circular cap fit (red solid line) to the droplet profile. b Contact angle
measurements of glycerol on unstrained (left) and 100% strained (right)
Elastollan elastomer. The images are rescaled so that all contact radii
appear equal, while preserving the aspect ratio. Since the profiles are
spherical caps, the height of the cap is thus indicative of the contact angle
(see the black dotted lines). Anything below the horizontal white dashed
line is a reflection off the substrate. All scale bars correspond to 50 μm

l0 = 4.5 mm

~1 cm
x

z
y

Fig. 2 Schematic of the sample holder used to apply precise strains to the
films. The sample holder consists of two aluminium blocks separated by a
fixed initial distance l0. Two pieces of silicon, which have been coated with
the same polymeric material as is to be strained, are affixed to the
aluminium blocks. The films to be strained are placed such that they bridge
the gap between the sample holder blocks. The strong adhesion between
the film and the coated silicon pieces keeps the film in place and prevents
delamination. The two blocks are then precisely separated by an additional
distance Δl along the x-direction, using a motorized translation stage at
constant speed, which creates a strain ε=Δl/l0 in the film
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to 6 and 8%, respectively, for bulk samples26. For the thin film
samples and low strain rates employed, we find that both glasses
can be strained up to 7–8% without observing crazing. Thus, we
vary the strains in the range of 0–8% and discard any sample
where crazing is observed. The absolute error in the strain is
estimated to be ±1%. Contact angle measurements are performed
with two standard test liquids: diiodomethane (DIM), a sym-
metric, non-polar molecule with γlv= 51 mJ m−2 (at 20 °C)27,
and glycerol, a highly polar molecule with γlv= 63 mJ m−2 (at 20
°C)28.

In Fig. 3a,b, we plot γsv− γsl, obtained via Young–Dupré’s law,
as a function of strain for PSf and PC, respectively, with DIM as
the test liquid (circles). In both these cases, the contact angle
increases with strain, causing γsv− γsl to decrease. This result
demonstrates, for the first time, the existence of strain-dependent
surface energies for interfaces involving a polymeric glass.

Using Eq. 1, the surface stress difference at zero strain
ϒð0Þ

sv � ϒð0Þ
sl , where the (0) superscript will henceforth refer to the

unstrained (ε= 0) case, can be determined by fitting a line to each
of the data sets (circles) in Fig. 3a, b. In doing so, the surface
stress difference at zero strain is found to be, respectively, 11 and
17 mJ m−2 smaller than the surface energy difference at zero
strain, γð0Þsv � γð0Þsl , for PSf and PC, respectively. Similarly, the
dependence of γsv− γsl upon strain for PSf and PC with glycerol
as the test liquid is shown (circles) in Fig. 3c, d. A clear strain
dependence is again observed. Surprisingly, γsv− γsl increases
with strain with this polar liquid, contrary to the results with

DIM. Due to curvature in these data, they are not well described
by a linear relationship, but fitting a line to the first few data
points allows us to determine approximate values for ϒð0Þ

sv � ϒð0Þ
sl .

The magnitude of the effect is much larger with glycerol as the
test liquid, as ϒð0Þ

sv � ϒð0Þ
sl is found to be roughly 60 and 140 mJ m

−2 larger than, γð0Þsv � γð0Þsl , for PSf and PC, respectively.
After performing the measurements above using the strained

glassy films (supported on silicon wafers), we anneal the
supported films in the melt state (~30 °C above their glass
transition temperature) for 15 min. This procedure relaxes the
pre-applied strain in the films. Next, the films are quenched back
down to room temperature, and this thermal change induces a
contraction. The expansion coefficient of silicon is much smaller
than that of the polymer films. Therefore, as the films re-enter the
glassy state, their strong adhesion to the silicon wafers restricts
them from contracting in the x–y plane any further than the
thermal contraction of the silicon. Therefore, although the pre-
applied strain is erased by the annealing, a small biaxial strain
εt ≈ 1% is introduced due to thermal contraction29. Then, we
perform contact angle measurements once more, and the
corresponding surface energy differences are plotted as squares
in Fig. 3. As can be seen in these plots, the value of γsv− γsl is now
constant with respect to the pre-applied strain ε. These data
intersect the previous measurements (circles) at a small non-zero
strain, as expected from the small, εt ≈ 1% biaxial strain present in
the film due to thermal contraction.

To further assure that our results are not an artefact due to a
plastic deformation of the surface upon straining, we performed
two additional tests. First, atomic force microscopy scans (not
shown) reveal no noteworthy difference between strained and
unstrained films. No signs of crazing or anisotropic topography
are seen on the strained sample, and the typical surface roughness
is unchanged. Second, one PC film was strained to ε= 6%—below
plastic yield—and subsequently peeled off the holder blocks
(Fig. 2). The peeled film could thus relax the elastic deformation it
was initially subjected to and was subsequently transferred onto a
silicon wafer. The measured contact angle on that sample was
found to lie within error of the value measured on an unstrained
PC film.

A remaining question concerns the origin of the sign change
between the slopes of the data sets for the two test liquids
(Fig. 3a–d, circles). The striking difference between the two
liquids is that DIM (Fig. 3a, b) is non-polar, whereas glycerol
(Fig. 3c, d) is highly polar. To provide further evidence for the
important role of polarity, we perform contact angle measure-
ments with water on PSf. For the droplet sizes relevant to our
experiments, the evaporation rate of water is too high to perform
robust measurements of θY. Instead, we perform advancing and
receding contact angle measurements. The advancing and
receding contact angles of water on PSf decreased by 7 ± 4° and
11 ± 3° over a 7% strain, implying an increase in γsv− γsl. Thus,
both polar liquids, water and glycerol, show the same increasing
trend of γsv− γsl with strain. Moreover, since surface energies
characterize the molecular interactions at the interface, we would
anticipate a significant difference whether these interactions are
permanent–permanent dipole (Keesom force), permanent-
induced dipole (Debye force), or induced–induced dipole
(London dispersion force) in origin30. Therefore, we suspect that
the polarity of the liquid is the source of the difference in slope
sign.

Minimal model. The surface energy difference γsv− γsl can be re-
written as: γsv− γsl=− γlv+Wlvs, where Wlvs(ε) is the work of
adhesion between the liquid and solid (with vapour in between)
and depends on strain. A simple treatment of the work of
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Fig. 3 Surface energy change of strained glasses in contact with two
different test liquids. Difference between solid–vapour and solid–liquid
surface energies as a function of strain in the solid, shown as circle markers
for four liquid–solid combination: a diiodomethane/polysulfone, b
diiodomethane/polycarbonate, c glycerol/polysulfone, and d glycerol/
polycarbonate. The square markers represent room temperature results
obtained after annealing the initially strained samples above their glass
transition temperature. The average value of these is indicated by the
dotted line. The solid lines in a and b are best fits to Eq. 2, with k= 2.3 ± 0.5
and γð0Þsv � γð0Þsl ¼ 47:5±0:1 mJ m−2, as well as k= 1.4 ± 0.5 and
γð0Þsv � γð0Þsl ¼ 44:4±0:3mJm−2, respectively. Contact angle
measurements are repeated several times at each strain, and the vertical
error bars represent standard errors in these measurements. Uncertainties
in the fitting parameters represent the 95% confidence bounds
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adhesion between two non-polar materials requires that the van
der Waals interaction energy between two atoms is integrated for
all pairs across the interface (Hamaker’s calculation)30. If we
consider such a calculation for two semi-infinite half spaces of
liquid and solid, Wlvs is proportional to the mass density product
ρlρs. As a simplification, we suppose that physical properties (e.g.,
polarizability) other than ρs do not vary with strain. In this
approach, a positive strain ε can induce a reduction in the density
ρs, which causes a proportional reduction in Wlvs, implying a
reduction in γsv− γsl. Indeed, the mass density of our films upon
straining is given by ρs ¼ ρð0Þs ½1� ð1� 2νÞε=k� in the limit of
small strains, where ν is the Poisson ratio of the film, and where
the parameter k depends on details of the straining geometry but
is expected to be unity when the strained solid is completely
unclamped at its sides in the y-direction and z-direction (Fig. 2)
but smaller than unity if the film is fully clamped. The constant k
is left as a free parameter in this minimal approach. Therefore, for
dispersive interactions, we have a simple prediction for the strain
dependence of the surface energy difference:

γsv � γsl ¼ γð0Þsv � γð0Þsl � γð0Þsv � γð0Þsl þ γlv

� � ð1� 2νÞ
k

ε: ð2Þ

Given that ν= 0.37 for both PSf and PC26, we can fit Eq. 2 to
our DIM/PSf and DIM/PC data leaving both γð0Þsv � γð0Þsl and k
free. The results are shown as solid lines in Fig. 3a, b. These fits
describe the data well, and from these we extract values of γð0Þsv �
γð0Þsl which are in agreement with those obtained from contact
angle measurements on unstrained films (see Fig. 3a, b), and
determine k to be 2.3 ± 0.5 and 1.4 ± 0.5 for DIM/PSf and DIM/
PC, respectively. Though k is of order unity, as expected, the
minimal model is missing some important ingredients. For
instance, the polarizability of the molecules in the solid may
change with strain, or the surface density may behave differently
under strain compared to the bulk. The simple model we have
proposed is applicable to the dispersive interactions between a
non-polar liquid and a solid, but cannot be simply extended to
interactions involving permanent dipoles. Indeed, a polar liquid
like glycerol introduces an additional degree of complexity in the
interfacial interactions3.

Elastomers. In the second part of this study, we perform contact
angle measurements upon various elastomers using several test
liquids. We employ two physically crosslinked elastomers:
styrene–isoprene–styrene (SIS) triblock copolymer, and Elastollan
which is a thermoplastic polyurethane multiblock copolymer, as
well as one chemically crosslinked elastomer: polyvinyl siloxane
(PVS). We measure θY for these three elastomers using glycerol
and DIM as the test liquids, with the exception of SIS for which
we replace DIM by polyethylene glycol (PEG), since SIS is swollen
by DIM. The results of the contact angle measurements for all
liquid–elastomer combinations are shown in Fig. 4, where we plot
θY− 〈θY〉ε, that is, the deviation of the equilibrium contact angle
from its mean value taken over all measured strains, as a function
of strain. As seen in this plot, all contact angles remain constant
within ±1° up to 100% strain. These trends together with
Young–Dupré’s law imply that dγsv

dε ¼ dγsl1
dε ¼ dγsl2

dε for all strains,
where 1, 2 indicate the two different test liquids. However, there is
no physically sound reason to expect the solid–vapour surface
energy to change by a non-zero amount under strain in exactly
the same way as the solid–liquid surface energy, for an arbitrary
choice of test liquid. In fact, one might expect the polarity of the
liquid to play an important role. Thus, a reasonable expectation is
that dγsv

dε ¼ dγsl
dε ¼ 0 for the interfaces involving the elastomers,

which would imply through Eq. 1 that ϒsv ¼ ϒð0Þ
sv ¼ γsv ¼ γð0Þsv

and ϒsl ¼ ϒð0Þ
sl ¼ γsl ¼ γð0Þsl , and thus no Shuttleworth effect.

Since we have tested several elastomers (physically and chemically
crosslinked) and liquids (with varying polarity), we conjecture
that this suggested property is applicable to solid–fluid interfaces
involving elastomers in general. If correct, this conjecture may be
understood in the following simple way: elastomers are essentially
incompressible (ν ≈ 0.5) liquids which are constrained by cross-
links on length scales much larger than those relevant to inter-
molecular interactions. Thus—despite the strain—the local
molecular environment, density, and consequently stress and
energy near the interface remain mostly unchanged.

Discussion
In carrying out contact angle measurements, care must be taken
to ensure that contact angle hysteresis does not cause artefacts.
Here, the contact angle hysteresis is small (e.g., <5° for glycerol on
PSf) on the glassy substrates since the spincoated films are uni-
form and clean. We find the measured contact angle to be highly
reproducible from one droplet to the next. Given the methods of
droplet deposition employed in this study, the measured static
contact angle is expected to be closer to the advancing contact
angle, but is a reliable approximation of the true Youngs angle
due to the small hysteresis present. Given all the consistency
checks that have been performed, including advancing/receding
contact angle measurements with water which exhibit a con-
sistent trend with strain, it is clear that hysteresis cannot be the
cause of our main observations.

The fact that droplets in these experiments are completely
circular when viewed from above emphasizes an important point.
We apply uniaxial strains and hence the surface stresses, which
are tensor quantities, are different in the directions normal and
tangential to the strain. However, since our droplets are orders of
magnitude larger than the elastocapillary length, the macroscopic
contact angles measured are determined by Young–Dupré’s law
and thus functions of the surface energies, which are scalar
quantities16. For this reason, the macroscopic contact angle is
constant around the circumference of the droplet and the dro-
plet’s shape is a spherical cap.

Our study is motivated by the on-going debate on whether or
not surface stresses in elastomers are identical to surface ener-
gies14–25. One set of experiments measured the surface stresses of
an interface involving PVS by dipping a rod of this elastomer into
an ethanol bath and measuring the deformation of the rod both
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Fig. 4 Contact angles on strained elastomeric substrates. Equilibrium
contact angles relative to their average over all strains as a function of
strain, for three elastomers using three different test liquids. Equilibrium
contact angles are compared to the average value over all strains because
this provides better statistics for the normalization compared to plotting
with respect to the value at ε= 0, in which case the normalization is
determined only by one data point in each set and, as such, is more prone
to error. Vertical error bars represent standard errors in the measurement
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above and beneath the liquid–air interface14,21. In the afore-
mentioned experiment, dγsl

dε � dγsv
dε ¼ 43 ± 10 mNm−1, in contra-

diction to our data which suggests that dγsl
dε � dγsv

dε ¼ 0 for all
solid–fluid interfaces involving elastomers (including PVS).
However, the result of Refs. 14,21 relies on a model of the system
which has recently been questioned31. In addition, the measure-
ments of the local strains are highly sensitive to any minute
swelling the submerging liquid may induce, since swelling
affects ρs.

Other experiments have utilized the shape of the wetting ridge
created at the contact line of a liquid droplet on a soft PDMS
substrate to determine surface stresses of interfaces involving an
elastomer16,18. In a recent study, PDMS substrates were strained up
to 25% and, thereafter, the wetting ridge was imaged to deduce the
strain-dependent surface stresses23,24. It was found that Υsv and
Υsl—approximated to be equal due to a specific choice of liquid—
more than doubled over the range of strains tested, despite the
equilibrium contact angle remaining unchanged. Although this
result is in principle consistent with our elastomer data in Fig. 4, it is
inconsistent with our suggestion that dγsv

dε ¼ dγsl
dε ¼ 0 for elastomers.

A noteworthy point is that considerations of how the elastic stress
due to the strain affects the shape of the wetting ridge are not
included in that study. In addition, although PDMS is a ubiquitous
material which is important to study, it is also a challenging
material as it is known to contain uncrosslinked chains which can
migrate to the surface and act as a lubricant32, among other possible
unexpected effects33. We acknowledge that the same effects may be
present in PVS as well, and stress that PVS was only studied here to
facilitate a direct comparison with Ref. 14.

Let us stress that all these studies, whether providing evidence
for or against the equality between surface stress and surface
energy for solid–fluid interfaces involving elastomers, are highly
dependent upon a model to extract Υ from the raw data. In our
work, we simply rely on Young–Dupré’s law to attain the results
we present and, in turn, directly probe the surface stress differ-
ence ϒsv � ϒsl .

As discussed in the context of our minimal model, the fact that
the value of the factor k (see Eq. 2) falls outside the expected
range may indicate that the relevant physics is not described
solely by the density changes upon strain. In fact, at large
extensions, the orientation of chains, and thus the polarizability,
will also be modified. Previous work has shown that orientation
of chains in semicrystalline materials can induce contact angle
changes for large strains (~100%)34. This type of effect could even
play a role in some elastomers which are rich in double bonds. In
such materials, if there is a sufficiently strong strain-induced
birefringence, it is possible that a surface energy change will exist
upon strain, despite the density remaining constant. We also
expect that polarizability effects may be responsible for the dif-
ferent behaviours we observe for polar vs. non-polar liquids.

In this study, we have investigated the strain dependence of the
solid–vapour and solid–liquid surface energies of interfaces
involving amorphous materials, using contact angle measure-
ments. The glassy materials tested show a significant change in
γsv− γsl with strain, which serves as a first demonstration of the
Shuttleworth effect for glassy materials. In addition, we show that
changing the polarity of the test liquid switches the sign of the
strain dependence of γsv− γsl. In contrast, we show that γsv− γsl
remains constant for strains as large as 100% for several different
elastomers, using various test liquids with different polarities. Our
data are consistent with the notion that incompressible elasto-
mers do not exhibit a Shuttleworth effect.

Methods
Polymer details and annealing protocols. PSf with number-averaged molecular
weight Mn= 22 kgmol−1 (Sigma-Aldrich) is dissolved in cyclohexanone (Sigma-

Aldrich, puriss p.a. >99.5%). Psf films are made with a thickness of h ≈ 400 nm. These
films are annealed at 220 °C for 12 h. The re-annealing after contact angle mea-
surement is done at 220 °C for 15min. Poly(Bisphenol-A Carbonate) (PC) with Mn

= 22 kgmol−1 (Polymer Source Inc.) and polydispersity index of 1.9 is dissolved in
chloroform (Fisher Scientific, Optima grade). PC films are made with a thickness of
h ≈ 1200 nm. These films are annealed at 170 °C for 12 h. The re-annealing after
contact angle measurement is done at 175 °C for 15min. SIS triblock copolymer
(Sigma-Aldrich) with a 14% styrene content is dissolved in toluene (Fisher Scientific,
Optima grade). These films are made with a thickness of h ≈ 1300 nm and annealed at
110 °C for 10min. Elastollan TPU 1185A (BASF) is dissolved in cyclohexanone
(Sigma-Aldrich, puriss p.a. >99.5%). These films are made with a thickness of h ≈ 250
nm and annealed at 100 °C for 90min. PVS elastomer is made by mixing base and
catalyst (RTV EC00 Translucid) at a 1:1 ratio. These films are made with thicknesses
on the order of several hundred microns.

Sample fabrication and straining protocol. With the exception of the PVS
samples, all films are prepared by spincoating out of solution. The samples are cast
onto freshly cleaved mica substrates (Ted Pella Inc.) to produce uniform films.
Subsequently, all samples (except PVS) are annealed to relax the polymer chains
and remove any residual solvent that may be present within the sample. The glassy
films are scored into ~1 cm squares using a scalpel blade. The elastomeric samples
are also divided into squares of ~1 cm but rather using a cotton-tip applicator
which is wetted with acetone. The films are then floated onto the surface of an
ultrapure water bath (18.2 MΩ-cm, Pall, Cascada, LS) and subsequently picked up
using a home-built sample holder (Fig. 2). The PVS samples are made by depos-
iting a drop of the catalyst–base mixture onto a freshly cleaved mica substrate and
spreading it into a film using a clean glass pipette and then leaving the elastomer to
cure for 1 h. The film is subsequently peeled off the mica and placed onto the
sample holder. The initial gap between the two blocks of the sample holder (i.e., the
length of the film being strained, see Fig. 2) was fixed at l0= 4.5 mm. The water–air
surface energy ensures that the films are taut (albeit at a strain ≪1% for the glasses
and <5% for the elastomers) while floating and during the transfer onto the sample
holder. After drying of the residual water from the floating process, one of the
blocks of the sample holder is held in place while the other is attached to a
translation stage (Newport MFA-CC, SMC100CC). The blocks are then un-fixed
and the film is stretched along the x-axis. For the glassy films, the block is moved at
a speed of 10 μm s−1 equivalent to a strain rate of 2.2×10−3 s−1. Performing the
straining at 20 μm s−1 produces no observable difference in the final results;
however, as the speed is increased above 100 μm s−1, we observe an increase in the
likelihood of crazing. For the elastomeric films, the block is moved at a speed of
100 μm s−1 to reduce the time required to achieve the large strains. We observe no
difference in the results when these films are strained at a speed of 10 μm s−1.

Once strained, the sample holder is rotated upside down and carefully
translated down until the film bridging the gap between the two blocks makes
contact with a silicon wafer which is placed below. Strong adhesive forces between
the film and the smooth silicon wafer ensure that the film remains fixed to the
wafer and thus unable to relax its strain. At this point, we cut the edges of the film
with a scalpel to remove it from the sample holder, completing the sample
preparation. The atomic force microscopy scans to ensure there are no apparent
topographical changes to the strained surfaces in comparison to unstrained are
performed with a Bruker, Multimode 8.

Contact angle measurements. Contact angle measurements are performed under
an optical microscope. Measurements are performed immediately following droplet
deposition. For DIM (Sigma-Aldrich, Reagent Plus, 99%), the contact radii r of the
droplets are in the range of 300 < r < 500 μm. For glycerol (Caledon Laboratories
Ltd.) and PEG (Sigma-Aldrich, Mn= 0.6 kg mol−1), the contact radii are in the
range of 50 < r < 350 μm. The sufficiently large size of the droplets and the rapidity
of the measurement ensure that evaporation does not significantly affect our
measurements. For the PVS experiments, we work only with droplets with r > 200
μm to ensure that the droplets are much larger than the elastocapillary length of the
system. Droplets are placed as close as possible to the centre of the film where the
strain is least affected by the boundary conditions of the experimental straining
geometry. However, we observe no systematic difference in the contact angles
depending on the location of the droplet on the film. The droplet profiles are fit to
circular caps to extract their radius of curvature R, from which the contact angle is
attained using the relation sin(θY)= r/R. For each sample, several different droplets
are imaged and the average contact angle is determined.

To rule out potential effects due to swelling, we only employ liquid–solid
combinations which are known to be highly immiscible. Since we work with thin
films, which undergo colour changes upon minute thickness or refractive index
changes, it is easily verified that there is no significant swelling of our films upon
exposure to the test liquids used since colour changes are not observed.

It is known that interfacial properties may depend upon the method with which
the sample was prepared. For instance, a film which has been spincoated may
exhibit different properties on the interface which was in contact with the substrate
compared with the free interface. In order to be consistent, all our contact angle
measurements are performed on the interface of the film which was in contact with
the mica during spincoating.
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Data availability. The data that support the findings of this study are available
from the corresponding author upon request.

Received: 21 November 2017 Accepted: 6 February 2018

References
1. Shuttleworth, R. The surface tension of solids. Proc. Phys. Soc. Lond. Sec. A 63,

444 (1950).
2. Cammarata, R. C. Surface and interface stress effects in thin films. Prog. Surf.

Sci. 46, 1–38 (1994).
3. Ibach, H. The role of surface stress in reconstruction, epitaxial growth and

stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997).
4. Sander, D. Surface stress: implications and measurements. Curr. Opin. Solid

State Mater. Sci. 7, 51–57 (2003).
5. Müller, P. & Saúl, A. Elastic effects on surface physics. Surf. Sci. Rep. 54,

157–258 (2004).
6. Nicolson, M. M. Surface tension in ionic crystals. Proc. R. Soc. Lond. Ser. A

228, 490–510 (1955).
7. Berger, R. et al. Surface stress in the self-assembly of alkanethiols on gold.

Science 276, 2021–2024 (1997).
8. Mays, C., Vermaak, J. & Kuhlmann-Wilsdorf, D. On surface stress and surface

tension: ii. determination of the surface stress of gold. Surf. Sci. 12, 134–140
(1968).

9. Wasserman, H. & Vermaak, J. On the determination of a lattice contraction in
very small silver particles. Surf. Sci. 22, 164–172 (1970).

10. Wasserman, H. & Vermaak, J. On the determination of the surface stress of
copper and platinum. Surf. Sci. 32, 168–174 (1972).

11. Shanahan, M. The influence of solid micro-deformation on contact angle
equilibrium. J. Phys. D 20, 945 (1987).

12. Bostwick, J. B., Shearer, M. & Daniels, K. E. Elastocapillary deformations on
partially-wetting substrates: rival contact-line models. Soft Matter 10,
7361–7369 (2014).

13. Mora, S., Phou, T., Fromental, J.-M., Pismen, L. M. & Pomeau, Y. Capillarity
driven instability of a soft solid. Phys. Rev. Lett. 105, 214301 (2010).

14. Marchand, A., Das, S., Snoeijer, J. H. & Andreotti, B. Capillary pressure and
contact line force on a soft solid. Phys. Rev. Lett. 108, 094301 (2012).

15. Nadermann, N., Hui, C.-Y. & Jagota, A. Solid surface tension measured by a
liquid drop under a solid film. Proc. Natl. Acad. Sci. USA 110, 10541–10545
(2013).

16. Style, R. et al. Universal deformation of soft substrates near a contact line and
the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103
(2013).

17. Weijs, J. H., Snoeijer, J. H. & Andreotti, B. Capillarity of soft amorphous
solids: a microscopic model for surface stress. Phys. Rev. E 89, 042408 (2014).
1310.3941.

18. Park, S. J. et al. Visualization of asymmetric wetting ridges on soft solids with
X-ray microscopy. Nat. Commun. 5, 4369 (2014).

19. Mondal, S., Phukan, M. & Ghatak, A. Estimation of solid–liquid interfacial
tension using curved surface of a soft solid. Proc. Natl. Acad. Sci. USA 112,
12563–12568 (2015).

20. Andreotti, B. et al. Solid capillarity: when and how does surface tension
deform soft solids? Soft Matter 12, 2993–2996 (2016).

21. Andreotti, B. & Snoeijer, J. H. Soft wetting and the Shuttleworth effect, at the
crossroads between thermodynamics and mechanics. Eur. Phys. Lett. 113,
66001 (2016).

22. Xu, X., Jagota, A., Paretkar, D. & Hui, C.-Y. Surface tension measurement
from the indentation of clamped thin films. Soft Matter 12, 5121–5126 (2016).

23. Xu, Q. et al. Direct measurement of strain-dependent solid surface stress. Nat.
Commun. 8, 555 (2017).

24. Xu, Q., Style, R. W. & Dufresne, E. R. Surface elastic constants of a soft solid.
Preprint at http://arXiv.org/abs/1711.10300 (2017).

25. Liang, H., Cao, Z., Wang, Z. & Dobrynin, A. V. Surface stress and surface
tension in polymeric networks. ACS Macro Lett. 7, 116–121 (2018).

26. Margolis, J. M. Engineering Thermoplastics: Properties and Applications
(Marcel Dekker, New York, 1985).

27. Good, R. J. & Elbing, E. Generalization of theory for estimation of interfacial
energies. Ind. Eng. Chem. Res. 62, 54–78 (1970).

28. Lide, D. R. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 2004).
29. Fortais, A., Schulman, R. D. & Dalnoki-Veress, K. Liquid droplets on a free-

standing glassy membrane: deformation through the glass transition. Eur.
Phys. J. E 40, 69 (2017).

30. Israelachvili, J. N. Intermolecular and Surface Forces: Revised3rd edn
(Academic, New York, 2011).

31. Hui, C.-Y. & Jagota, A. Wetting of a partially immersed compliant rod. J. Appl.
Phys. 120, 195301 (2016).

32. Hourlier-Fargette, A., Antkowiak, A., Chateauminois, A. & Neukirch, S. Role
of uncrosslinked chains in droplets dynamics on silicone elastomers. Soft
Matter 13, 3484–3491 (2017).

33. Rivetti, M. et al. Elastocapillary levelling of thin viscous films on soft
substrates. Phys. Rev. Fluids 2, 094001 (2017).

34. Good, R. J., Kvikstad, J. A. & Bailey, W. O. Anisotropic forces in the surface of
a stretch-oriented polymer. J. Colloid Interface Sci. 35, 314–327 (1971).

Acknowledgements
The financial support by Natural Science and Engineering Research Council of Canada is
gratefully acknowledged. We thank the Global Station for Soft Matter, a project of Global
Institution for Collaborative Research and Education at the Hokkaido University, as well
as the Joliot chair from ESPCI Paris. We also thank Y. Amarouchene, B. Andreotti, A.
Antkowiak, L. Bureau, A. Chateauminois, M. Chaudhury, K. Daniels, C. Drummond, E.
Dufresne, A. Hourlier-Fargette, H. Perrin, P. Rambach, F. Restagno, J. Snoeijer, R. Style
and Q. Xu for valuable suggestions and comments.

Author contributions
All authors contributed to designing the research project, R.D.S. performed all experi-
ments and analysed the data, M.T. lead the development of the theoretical model with
input from all authors, R.D.S. wrote the first draft of the manuscript, and all authors
edited the manuscript to generate a final version and contributed to the discussion
throughout the entire process of the research.

Additional information
Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03346-1

6 NATURE COMMUNICATIONS |  (2018) 9:982 | DOI: 10.1038/s41467-018-03346-1 | www.nature.com/naturecommunications



PhD Thesis - R.D. Schulman McMaster University - Physics and Astronomy

3.4 Paper IV

Liquid dewetting under a thin elastic film

R. D. Schulman, J. F. Niven, M. A. Hack, C. DiMaria and K. Dalnoki-Veress, Soft

Matter, 14, 3557 (2018).

This work examines the dewetting of a thin liquid film which is capped by an

elastic membrane. First, we study the dewetting of a thin polystyrene (PS) film

which is situated between a rigid silicon substrate on one side and a thin elastic layer

on the opposite side. The elastic films are strained using the apparatus described

in Section 2.2.3, and we begin by introducing an isotropic tension into these films.

When the sample is heated above the Tg of PS, circular holes nucleate in the PS

which grow linearly in time (akin to viscous dewetting on a non-slipping substrate,

described in Section. 1.2.3) after a brief initial transient. We find that the dewetting

speed decreases with increasing tension in the elastic membrane. An increased tension

also leads to a flatter and wider dewetting rim, which is attributed to be the cause of

the decreased dewetting speed.

Next, we study the effects of tension anisotropy in the capping elastic film on

dewetting. When the elastomer has a biaxial tension, holes acquire a non-circular

shape which is elongated along the high tension direction. The rim shape is also

non-uniform surrounding the hole, and we find it to be consistent with a shape that

maintains a constant pressure throughout the rim. Furthermore, we create a unique

free-standing sample geometry wherein the PS film is sandwiched between two biaxi-

ally stretched elastic films whose high tension directions are oriented perpendicular to

one another. Under these conditions, PS holes nucleate and grow with a square mor-

phology. Thus, we show that exploiting elastic membranes as boundary conditions

offers a promising new avenue for controlling liquid patterning in dewetting.

This study began with the undergraduate student C. DiMaria, who was supervised

by Dr. Dalnoki-Veress and me. The initial idea was to study the dewetting of a thin

liquid on a compliant free-standing elastic membrane. However, we found only a very

subtle dependence on the tension in the film. This sample geometry was abandoned

as C. DiMaria discovered the method for producing square holes, and the project
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changed to studying dewetting capped by an elastic membrane. At this juncture,

the project was handed off to M. A. Hack, an intern student from University of

Twente, who worked under the supervision of Dr. Dalnoki-Veress and myself. M. A.

Hack performed preliminary experiments, measurements, and data analysis. After

his internship ended, I took the reins of the project. I performed all subsequent

experiments (which comprised the bulk of the final data in the paper) and data

analysis. J. F. Niven assisted with AFM measurements throughout. I wrote the first

draft of the manuscript, which was then revised by all other contributors.
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Liquid dewetting under a thin elastic film†
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We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the

elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The

morphology of holes and rim stability can be controlled by changing the boundary conditions and

tension in the capping film. When the capping film is prepared with a biaxial tension, holes form with a

non-circular shape elongated along the high tension axis. With suitable choice of elastic boundary

conditions, samples can even be designed such that square holes appear.

1 Introduction

Dewetting, the study of the spontaneous withdrawal of a liquid
off a substrate, has been a topic of intense research over the last
several decades.1–21 In part, this is due to the fact that dewet-
ting serves as a powerful tool to probe physical properties and
principles such as: residual stresses in polymer films,4,5 rheo-
logical properties of viscoelastic materials,6–8 hydrodynamic
slip conditions and the dynamics of the contact line,9–12 as
well as determining the effective interface potential and
Hamaker constants of a system.13–15 In addition, dewetting
may be utilized to generate pattern formation at microscopic
length scales. Novel dewetting morphologies are typically intro-
duced by chemical and topological patterning in the substrate
itself.16–21

Liquid patterning at small length scales may also be
achieved using principles of elastocapillarity, which is the study
of the interplay between a solid’s elasticity and a liquid’s
capillarity. In particular, when a solid substrate is sufficiently
deformable (either because it is a soft material or because the
chosen geometry is highly compliant), the solid will experience
large-scale deformation due to capillary forces of a droplet
acting upon it.22–30 Due to this principle, droplets can migrate
towards regions of a substrate that are less stiff, which can be
used to pattern a soft substrate with liquid droplets.24

In another study, droplets are shown to map out the stresses
in free-standing elastic films by assuming a shape which is
elongated along the direction of highest tension.30 More
fundamentally, the replacement of a rigid boundary condition
with a compliant one leads to unique wetting properties which
show departures from the classic descriptions, such as Young-
Dupré’s law of partial wetting.23,25,27,29,30

Few studies have investigated the intersection of dewetting
and elastocapillarity; those that do have focused on a liquid
dewetting off a bulk elastic solid and have chiefly been theore-
tical in nature.31–35 Some studies have investigated systems
where the liquid film is capped by a thin, compliant elastic
layer.36–39 In one set of experiments, the dewetting of thin water
films between two sheets of mica, several microns thick, was
observed.36,38 Although the effect of changing the stiffness of
the elastic layer was not systematically studied, it was noted
that thicker mica sheets (less compliant) resulted in slower
dewetting.

In this work, we study the dewetting of a liquid film which is
capped by a taut, thin elastic film. Increasing tension in the
elastic layer leads to a reduction in the hole growth rate, a
flatter and wider dewetting rim, as well as increased stability of
the rim. In addition, we show for the first time that elastic
capping films can be utilized to generate novel dewetting
morphologies. A biaxial tension causes holes to appear with
an elongated, non-circular shape. Further, we show that these
elastic boundaries can be manipulated to generate holes with a
square morphology.

2 Experimental methods

In these experiments, thin polystyrene (PS) films (Scientific Polymer
Products, number averaged molecular weight Mn = 15 800 g mol�1,
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polydispersity index 1.05) of thickness hPS B 100 nm, measured
using ellipsometry (Accurion, EP3), were prepared through spin-
coating out of a toluene solution onto 1 cm � 1 cm silicon wafers.
The PS was removed near the four sides of the silicon using an
acetone-wetted cotton swab. The PS samples were then annealed
on a hot stage (Linkam) at 140 1C for 10 min to relax the polymer
chains and remove any residual solvent. Elastomeric films were
prepared from Elastollan TPU 1185A (BASF). Upon spincoating
these solutions, the Elastollan polymers, which contain hard and
soft segments, self-assemble to form an elastomer with physical
crosslinks. The Elastollan/cyclohexanone solutions were cast onto
3 cm � 3 cm freshly cleaved mica substrates (Ted Pella Inc.) to
produce highly uniform (o5% variation) films with initial thick-
ness in the range h0 B 50–320 nm, measured using ellipsometry.
These films were subsequently heated atop a hot stage at 150 1C for
10 min to remove any residual solvent from the elastomer. After
annealing, these films were scored using a scalpel along each edge
of the mica and dipped into an ultrapure water bath (18.2 MO cm,
Pall, Cascada, LS). In doing so, a thin film of water wedges itself
between the Elastollan film and the mica substrate. Subsequently,
the films are easily transferred to home-built straining apparatus.
The straining apparatus consists of a 250 mm thick elastomeric
Elastosil sheet (Wacker Chemie) which is cut into a rounded ‘plus’
shape, with a circular hole at its center. Each of the four edges of
the thick Elastosil sheet is clamped to a post which can translate
along an axis. The sheet is held taut by the clamps. The Elastollan
film to be strained is suspended over the hole in the thick Elastosil
sheet. When the posts are moved outward, the Elastosil sheet
stretches, and the hole at its center expands. As a result, the
suspended Elastollan film becomes stretched as well. When all
four posts are translated outward by the same amount, the Elastosil
sheet becomes stretched such that the hole at its center grows in
size, but remains circular. Thus, the Elastollan film suspended over
this hole, gets stretched radially outward (equally in all directions)
and the strain e is isotropic. If the posts are instead displaced
further along one axis compared to the posts along the orthogonal
axis, the hole in the Elastosil acquires an elliptical shape. In this
way, the suspended elastollan film is stretched biaxially with strains
elow and ehigh in the two orthogonal directions. The initial film
thickness of the Elastollan is chosen such that the final film
thickness after straining, h, is a fixed quantity. In this study, we
test h = 50 nm and 100 nm. The strained films are then transferred
onto the PS sample. Having removed PS from the edges of the
silicon wafer, the Elastollan makes good contact with the silicon
around the perimeter of the sample, which ensures that the pre-
strain in the film cannot relax. Using ellipsometry, h is measured in
this portion of the sample with no PS. The sample is then ready for
the experiment. Refer to the ESI† for the full details of the straining
protocol and sample preparation.

To observe dewetting of the PS, samples are annealed at
140 1C at which PS is a melt and Elastollan remains elastic.
Within minutes of heating, small holes form in the PS film
(through heterogeneous nucleation) surrounded by rims where
the liquid has collected, as depicted schematically in Fig. 1(a).
These holes quickly adopt a circular shape and the elastic film
acts as a solid capping layer during this process. In the dry

region from which the PS has retracted, the elastic film forms
adhesive contact with the silicon substrate. The growth of several
holes is monitored using an optical microscope (Fig. 1(b)) and the
radius of each hole, r, is measured over time (Fig. 1(c)). For the first
B100 min, the hole growth speed is changing with time, which in
other dewetting systems has been caused by complex transient
dynamics or liquid slip at the contact line being important at early
times,40–42 but could also be a result of elastic effects in the
capping film. Thereafter, the speed of dewetting, v, tends towards
a constant, analogous to standard dewetting (i.e. Newtonian,
viscous, non-slipping liquid on a rigid surface).1,2 The holes are
tracked until the rim exhibits significant morphological changes
due to undergoing an instability akin to the Plateau–Rayleigh
Instability (PRI).43–45

3 Results and discussion
3.1 Hole growth and rim shape under isotropic tension

In the first part of this study, we investigate how the dewetting
speed is influenced by changes in the isotropic strain of the
capping elastomer. Since we are changing the strain in the
films while keeping their final thickness constant, we are
primarily changing the tension, T, in the films, while main-
taining a nearly constant bending rigidity. In the case of a
Hookean material, the tension is simply related to the strain,
T p eh (see ESI†). In the absence of a measured stress–strain
relationship of the elastomer at 140 1C, we use eh as an
approximate indicator of the tension in the film, although
Elastollan is not Hookean over large strains.46 Thus, in
Fig. 2(a), we plot the dewetting speed v as a function of eh for
two different values of h. We see that the dewetting speed
decreases with increasing strain in the elastomer. In addition,
changing the elastomer thickness by a factor of two (i.e. an
eight-fold change in the bending rigidity) produces no observ-
able change in v. This observation implies that bending of the

Fig. 1 (a) Schematic of PS film dewetting atop silicon and capped by a thin
elastomeric film. The material from the hole collects in a rim which moves
outward with speed v. (b) Optical micrograph of two holes capped by an
elastomeric film with an isotropic strain e = 28% after 250 min. Scale bar =
100 mm. (c) Radius of a hole in the experiment depicted in (b) over time.
The dashed line is the best fit to the linear growth region, and its slope is
the dewetting speed v.
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elastomer does not determine the dewetting rate, but rather the
tension in the film plays the dominant role. In the inset of
Fig. 2(a), we show atomic force microscopy (AFM) profiles of
rims for samples with eh B 4 nm and eh B 80 nm. From these
scans, it is clear that increased tension results in a flatter,
wider rim.

In the simplest model, we assume that the tension is not
globally altered by the formation of holes. This simplistic
picture is consistent with the observations that the dewetting
rate (which depends on T) is constant as holes grow and
independent of the number of nucleated holes on a sample.
Within this approximation, the energy per unit area of the wet
regions of the sample is Ewet = T + gel,v + gel,l + gs,l, where g
represents interfacial tensions, ‘‘el’’, ‘‘v’’, ‘‘l’’ and ‘‘s’’ denote the
elastomer, vapour, liquid and the solid substrate. The energy per
unit area of the dry regions is Edry = T + gel,v + gel,s. Therefore,
the spreading parameter S = Edry � Ewet is not dependent on the
tension, and thus, the driving force for dewetting remains
unchanged when the tension is altered. Thus, the change in
tension must alter the dissipation in the system.

A simple balance of mechanical and interfacial tensions at
the contact line (see ref. 29, 30 and the ESI†), yields a relation

for the equilibrium contact angle yE � y0
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T
�

gel;v þ gel;l
� �q

of the capped rim in the limit of small angles, where y0 is the
equilibrium contact angle for vanishing mechanical tension.
This expression is qualitatively consistent with the inset of
Fig. 2(a), where an increased tension results in a flatter rim
(smaller dynamic contact angle). The dissipation in this system

could stem from a combination of several plausible mechanisms.
If viscous dissipation at the contact line dominates, then the
dewetting speed is proportional to the dynamic contact angle of
the capped rim.1 If hydrodynamic slip is important, then the
dissipation may be area-dependent rather than concentrated at
the contact line; but for either of these mechanisms, a flatter and
wider rim will result in increased dissipation.2,9,40 There might
also be energy lost due to viscoelastic effects in the elastomer;
however, we see no clear reason why an increased stress in the
elastomer would implicate a larger dissipation.

In Fig. 2(a), we see that the dewetting speed decreases slowly
with eh when eh \ 20. There are two potential reasons why this
might be the case. If the rim shape determines the dewetting
speed, we would expect v to decrease asymptotically towards
zero in the limit of infinite tensions and a completely flat rim,
which appears to be the case in Fig. 2(a). Moreover, although we
have approximated the elastomer to be Hookean for simplicity,
if the full stress–strain relationship of the elastomer is neo-
Hookean, the tension would increase more slowly with strain at
large values. Since the tension determines the dewetting speed,
this could, in part, explain why v decreases more slowly at
large eh.

Changing tension also affects the stability of the liquid rim,
as seen in Fig. 2(b–d). Despite the holes being equal in size, the
low tension sample shows rims which have reached late stages
of the rim instability as fingers are in the process of forming,
the intermediate sample shows bulges in the rims, while the
high tension sample exhibits rims which appear unaffected by
the instability. It is known that liquids dewetting off more wettable
substrates (i.e. lower dynamic contact angle, wider rims) are less
susceptible to developing the rim instability.43,44 Analogously, here
the higher tension samples are characterized by rims which
are flatter and wider, and this leads to increased rim stability
(consistent with the PRI: a lower curvature increases stability).

3.2 Elongated holes under biaxial tension

There is great interest in utilizing dewetting for microscopic
pattern formation.16–21 Although a theoretical study has shown
that spinodal dewetting patterns become anisotropic atop
biaxially strained bulk elastic substrates,35 there has been no
subsequent work studying the possibility of exploiting elasticity
to generate novel morphologies. Thus, we perform the first
investigation of how hole morphology may be altered using a
capping elastomeric layer. In these experiments, we anneal the
uncapped PS samples long enough that circular holes form. An
elastic film is strained only along one direction and held fixed
in the perpendicular direction (ehighh B 100 nm, elowh B 0) and
then transferred onto the sample, and the experiment proceeds
as usual. As seen in Fig. 3(a), an AFM scan reveals that the
initial hole shape is completely circular, as we have prepared it.
However, after a short time, the hole adopts a shape which is
elongated along the high tension direction (Fig. 3(b)). Holes
that form after capping are also elongated in the same way, but
we purposefully choose to start with a small circular hole, to
ensure a more robust initial condition. At first, the elongated
hole is surprising because Fig. 2(a) implies that holes grow

Fig. 2 (a) Dewetting speed as a function of eh, which is proportional to
the tension, for two different elastomeric film thicknesses. Inset: AFM
profiles of the rim shape for a low (eh = 4 nm) and high (eh = 80 nm)
tension sample. (b–d) Optical micrographs of holes of the same size but
with different tension in the capping elastomer. Scale bars = 50 mm.
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slower with high tension, and naı̈vely, we would thereby expect
holes to be elongated along the low tension direction. However,
since we are investigating the initial shape of the hole here, it
necessarily implies that the energetic cost of forming the rim
determines the morphology, and the physics pertaining to the
later stages of dewetting, where the growth rate of the round
holes was constant in time, is not applicable. In fact, we observe
that the elongated holes’ rims become unstable before even
reaching a constant dewetting speed (see ESI† for further
discussion). Therefore, it is not possible to formulate a quanti-
tative comparison between the dewetting speed of the round
holes and the dynamics of the elongated holes. To first create
the rim, extra interface is created, and work is done against
mechanical and interfacial tensions. It is then favourable to
deform the film less across the high tension direction and more
across the low tension direction – this balance leads to an

elongated shape shown in Fig. 3(b). This argument is analogous
to deforming a trampoline with an anisotropic tension – an
asymmetric deformation would result.

Consistent with the case of isotropic tension, the elongated
hole (Fig. 3(b)) has a flatter rim along the high tension direc-
tion. We quantify the rim’s shape by the radius of curvature of
the top of the rim for a slice normal to the hole, R> (i.e. the
radius of curvature at the peak of the rim profiles akin to those
shown in the inset of Fig. 2(a)). The radius of curvature of the
rim for a slice in the tangential direction is much larger and
need not be considered. For the hole shown in Fig. 3(b), we
measure R> for different values of f, defined as the angle the
normal of the rim subtends to the high tension direction,
indicated in Fig. 3(b). These data are plotted in Fig. 3(c), where
it is clear that the radius of curvature of the rim is much larger
along the high tension direction. At these early times, wherein
the rim energetics dictate the hole’s shape, we expect that the
liquid within the entire rim has a constant Laplace pressure. If
bending is ignored, as validated above, the pressure in the rim
is P E Ttot/R>, where Ttot is the total mechanical and interfacial
tensions between the elastomer–air interface and elastomer–
liquid interface. However, at these large strains, the mechanical
tension is dominant over interfacial tensions, since the Young’s
modulus of Elastollan is B107 Pa (see ESI†).46 Thus, we can
simply write R> E PT. Since the film is prepared with a biaxial
strain, T = Thigh cos2f + Tlow sin2f. For a Hookean material with a
Poisson’s ratio of 0.5 (typical of elastomers), it is the case that Thigh =
2Tlow when elow = 0. We can use this fact to generate an approximate
expression for R>, and find that R> E R0(2cos2f + sin2f), where R0

is a constant. In Fig. 3(c), the solid curve represents the best fit of the
expression for R>(f), with R0 as the only free-parameter. Despite the
approximations made, R>(f) captures the curvature of the rim well.

3.3 Holes with square morphology

In the experiments described thus far, the PS film is sandwiched
between an elastic film and a rigid silicon substrate. However, the
rigid substrate may also be substituted for an elastic film. To further
manipulate the boundary conditions for dewetting, we make the
sample depicted in Fig. 4(a). Here, a biaxially strained elastomeric
film (ehighh B 140 nm) is transferred onto a steel washer with a
circular hole. The PS film is placed atop this elastomer. Finally,

Fig. 3 (a) AFM scan of the initially round hole which has been capped by
an elastomeric film with ehigh B 100%, elow B 0% and h B 100 nm. (b) AFM
scan of the same hole after annealing. (c) For the hole at the time of (b), R>

as a function of the orientation of the rim (defined in (b)). The solid curve
represents the best fit of the expression for R>(f) discussed in the text
(R0 = 28 mm). In the AFM scans, colours indicate relative heights on the
sample, and the bottom of the hole is outside of the colour bar range. The
high and low tension axes are oriented as shown in (a).

Fig. 4 (a) Top view schematic of the sandwiched sample. The trilayer sample is free-standing over the hole in the washer, and the PS is sandwiched
between two biaxially stretched elastic films. (b) Optical micrograph of the square holes nucleating in the PS. (c and d) AFM scan of a square hole. Colours
indicate relative heights on the sample.
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a second elastomeric film (strained biaxially in the same way) is
placed on top, but with its high tension direction oriented
perpendicular to that of the bottom elastomeric film. As such,
the sample is a free-standing trilayer: elastomer–liquid–elastomer.
When this sample is annealed, the holes evolve with a square
morphology with the sides oriented along the principal strain
directions. This configuration is maintained as the holes continue
to grow (Fig. 4(b) (see Video in ESI†)). As shown in Fig. 4(c and d),
an AFM scan of one of these holes performed from the top side of
this sample reveals that the rims parallel to the high tension
direction of the top film are much taller than the ones parallel to
the low tension direction. On the underside of the sample where
the high tension direction in the film is perpendicular to that of the
top film, we would expect the 3D-morphology in Fig. 4(c and d) to
be rotated by 901. This morphology is completely consistent with
the notion that the rim energetics dictate the initial shape of the
hole. Precisely as in the elongated hole in Fig. 3(b), it is favourable
to minimize the deformation of the elastic film across the high
tension direction and maximize it across the low tension direction.

4 Conclusions

In this study, we have investigated the dewetting of a thin liquid
film capped by a taut elastomeric layer with both isotropic and
biaxial tension. For the case of isotropic tension, holes are round
and dewet at a constant speed at long times. A higher tension in
the elastomer leads to a flattened rim and decreases the dewetting
speed. When the capping elastic film is prepared with a biaxial
tension, holes assume a shape which is elongated along the high
tension direction, a process driven by the energetics of the rim. By
choosing the magnitude and anisotropy of the tension in the
elastic film, holes can be designed to have wider and more stable
rims or to form with non-circular shapes. In addition, when a
liquid film is sandwiched between two elastomeric layers with
biaxial tension, holes acquire a square morphology. We have
shown that by using thin elastic films to cap the dewetting liquid,
a new avenue for patterning emerges.
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Supplemental Information for “Liquid dewetting under a thin elastic
film”

Rafael D. Schulman,a John F. Niven,a Michiel A. Hack,a Christian DiMaria,a and Kari Dalnoki-Veress∗ab

S1 Straining of elastic films
The home made straining apparatus is depicted in Fig. S1(a). The apparatus consists of a 250 µm thick Elastosil sheet which has been
cut into a rounded plus sign shape, but contains a circular hole at its center. The Elastosil film is clamped at its four sides and supported
by four posts which are able to translate in the directions indicated by arrows in Fig. S1(a). The Elastollan sample is placed atop of the
hole in the Elastosil, which immediately causes the the Elastollan film to form strong contact with the Elastosil, allowing the mica to be
peeled off and removed. Thus, a thin Elastollan film is left free-standing over the hole in the Elastosil.

Upon transfer, the Elastollan films have a small (< 5%) pre-strain due to being stretched by the surface tension of the water during
the sample preparation. In order for the initial condition to be an unstrained film, we must relieve this pre-strain. This is done by slowly
bringing all four supports inwards to shrink the size of the Elastosil hole. At the point that the pre-strain is relieved, wrinkles just begin
to appear in the Elastollan film. This point serves as the initial condition for the Elastollan film. To then strain the Elastollan film, the
four posts supporting the Elastosil are moved outwards to stretch the Elastosil film, and hence, expand the hole at its center. To generate
isotropic tension, each support is moved an equal distance such that the Elastosil hole remains circular in shape (Fig. S1(b)). For the
biaxial samples, one set of supports is held fixed, while the other set of supports is displaced in the orthogonal direction. This generates
a hole in the Elastosil with an elliptical shape (Fig. S1(c)). For the case of isotropic tension, the strain is found by ε = (df −di)/di, where
di and df are the initial (i.e. the state after the pre-strain has been relieved) and final diameters of the free-standing Elastollan film. In
the case of biaxial tension, the strain along the high-tension direction is evaluated as εhigh = (dhigh,f − di)/di, where dhigh,f is the final
diameter of the free-standing Elastollan film along the high-tension axis.

Next, the PS sample is brought into contact with the strained Elastollan film. The Elastollan adheres strongly to the PS and also to
the bare silicon frame where the PS has been removed. Using a scalpel, the excess Elastollan is cut to free the sample from the straining
set up. At this point, the sample looks as depicted in Fig. S2.

Fig. S1 (a) Top view schematic of the straining apparatus. The Elastollan film is free-standing over the hole in the Elastosil with diameter di. The
clamped sides of the Elastosil can be translated along the axes indicated by the arrows. (b) An Elastollan film which has been strained equally in both
directions (isotropic tension) to a final diameter of df. (c) An Elastollan film which has been strained biaxially to a final diameter dhigh,f in one direction,
while being held fixed in the orthogonal direction.
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Fig. S2 Top view schematic of the final sample. The labels indicate the different material layers of the sample, listed in order from the top surface to
the bottom surface. The ellipsometry measurements are performed in the region of Elastollan on silicon.

S2 Mechanical relationships for straining
Using Hooke’s law1, we can predict simple stress-strain relationships for our films under the assumption of Hookean elasticity. We
assume that there is no stress acting in the direction orthogonal to the film (z-direction), i.e. σz = 0. We also know that the mechnical
tension is related to stress through film thickness T = hσ . As such, we may derive a simple expression for isotropic tension generated
upon straining:

T =
Ehε
1−ν

, (S1)

where ν is the Poisson ratio of the elastomer, which can be assumed to be 0.5, and E is the Young’s modulus. Thus, εh is an appropriate
indicator for the tension in our films. For the case of biaxial tension where the film is held fixed along one direction (εlow = 0), we arrive
at:

Tlow =
Ehνεhigh

1−ν2 , (S2)

Thigh =
Ehεhigh

1−ν2 , (S3)

where “high" and “low" indicate the high and low tension directions. Here, we see that under the assumption of Hookean elasticity,
Thigh = 2Tlow, since ν = 0.5. In the biaxial tension experiments, εhigh ∼ 100%, h ∼ 100 nm, and E ∼ 107 Pa2, which leads to Thigh ∼
1.3 N/m. Thus, it is clear that mechanical tension will dominate over interfacial tensions in determining the Laplace pressure in the
rim.

Since volume is conserved in a material with ν = 0.5, it is possible to predict the final thickness upon an isotropic strain:

h =
h0

(1+ ε)2 , (S4)

as well as for a biaxial strain with εlow = 0:

h =
h0

(1+ εhigh)
. (S5)

Using the equations above, the initial film thickness h0 was chosen to produce the desired h (50 nm or 100 nm) once strained.

S3 Equilibrium contact angle
To calculate the equilibrium contact angle that the rim would subtend with the substrate, we appeal to a balance of the interfacial and
mechanical tensions depicted in Fig. S3. In this picture, we employ the simplifying assumption that the formation of holes does not
alter the mechanical tension in the film. Carrying out the force balance in the horizontal direction yields:

T + γel,v + γel,s =
(
T + γel,v + γel,l

)
cosθE + γs,l. (S6)

From the equation above, using the small angle approximation in which cosθ ≈ 1−θ 2/2, it is straightforward to show that:

θE =
θ0√

1+ T
γel,v+γel,l

. (S7)
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Fig. S3 Balance of interfacial and mechanical tensions to calculate the equilibrium contact angle that the rim subtends with the substrate.
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Fig. S4 (a) AFM scan of the hole from Fig. 3(b) once evidence of the rim instability sets in on the high tension sides of the hole. (b) Optical micrograph
of the hole after the rim instability has started forming fingers at the high tension ends.

S4 Elongated holes at late times
As the elongated holes continue to grow beyond the early stages described in the main manuscript, we observe that the rim instability
rapidly begins to set in on the high tension side of the rim. The early stages of this instability can be seen in an AFM scan of the hole in
Fig. 3(b) at t = 70 min shown in Fig. S4(a) where there is a bulge forming in the high tension side of the rim. The later stage of this
instability is showcased by the optical image in Fig. S4(b), where there are fingers forming at the high tension ends of the hole, yet the
low tension side of the rim appears completely stable. In fact, the rim instability sets in at the high tension ends long before the stage
of constant dewetting velocity has been reached. For this reason, the physics contained in Fig. 2(a), wherein holes exhibit a smaller v
when the tension is larger, cannot be applied to these anisotropic experiments. We suspect that the root of this effect is that depending
on a liquid cylinder’s orientation, the Plateau-Rayleigh instability can become enhanced or suppressed when a tension anisotropy is
introduced in the elastomeric film capping the liquid – this is beyond the scope of this study and will be investigated in future work.

S5 Supplemental movies
Movie S1 - Hole growth when the capping elastomer has an isotropic tension (εh = 8 nm). The movie is 750 min long.
Movie S2 - Growth of square holes.
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3.5 Paper V

Droplets capped with an elastic film can be round, elliptical, or nearly

square

R. D. Schulman and K. Dalnoki-Veress, submitted to Nat. Phys. in April 2018.

Manuscript ID: NPHYS-2018-04-00950.

In this final paper, we explore partial wetting of a liquid which is capped by an

elastic membrane. In these experiments, the sample substrate consists of a silicon

wafer which has been coated with an elastomeric film. Droplets are deposited on

the substrate and subsequently capped by an additional elastic film (composed of

the same material with which the silicon is coated) which has been strained using

the apparatus described in Section 2.2.3. Droplets capped by films with isotropic

tension assume the shape of spherical caps with contact angles which decrease with

increasing tension. To describe the data, we invoke a horizontal force balance at

the contact line, completely analogous to Young-Dupré’s law, which includes both

mechanical and interfacial tensions. We find an excellent agreement between the

experimental data and this simple model, which contains one free parameter. From

the free parameter, we determine the interfacial energy between the elastomer and

liquid- a quantity which is traditionally difficult to measure. We extract this value

for four combinations of two elastomers and two test liquids. In addition, using

Young-Dupré’s law, we determine γsv for each of the elastomers twice. The values we

obtain for γsv are reasonable in magnitude and self-consistent within the error of the

measurements.

If the droplet is instead capped by a film with biaxial tension, it acquires an el-

liptical shape when viewed from above. By a simple extension of the contact angle

prediction, our model predicts the aspect ratio of the droplets to be given by the

relation
√
Thigh/Tlow. We find this relation to be in close agreement with experimen-

tal data. Finally, we design a free-standing sample where droplets are sandwiched

between two biaxially stretched elastic films whose high tension directions are ori-

ented perpendicular to one another. In doing so, we observe that droplets acquire

a square morphology - in complete analogy with the square holes in the dewetting
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study. In this free-standing geometry, capped droplets may act as lenses to focus light.

Since the droplets’ radius of curvature and shape can be changed through the tension

in the film, these lenses would be highly tunable. As a demonstration, we shine a

laser through a square droplet and show that the resultant focal spot acquires a cross

shape. Therefore, this study demonstrates again that elastic boundaries can be useful

for liquid patterning and presents a potential application for creating tunable lenses.

This research project was a natural extension for me after having completed the

dewetting project. With that, I designed the experimental protocol, made the sam-

ples, performed the experiments, and analyzed the data. I developed the simple

theoretical model. As before, I wrote the first draft of the manuscript, which was

subsequently edited by Dr. Dalnoki-Veress
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Droplets capped with an elastic film can be round, elliptical, or nearly square
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When a droplet partially wets a rigid substrate, it assumes the shape of a spherical cap with
contact angle set by Young-Dupré’s law. However, modifying the boundary conditions for wetting
can significantly alter its characteristics, take for example water droplets on a superhydrophobic lotus
leaf. In addition, it is known that soft elastic substrates lead to departures from Young-Dupré’s
law. Here, we present experiments which show that the wetting of droplets capped by taut elastic
films is highly tunable. Adjusting the tension allows the contact angle and droplet morphology to be
controlled. By exploiting these elastic boundaries, droplets can be made elliptical, with an adjustable
aspect ratio, and can even be transformed into a nearly square shape. Our results imply that this
system can be used to create tunable liquid lenses, and moreover, presents a unique approach to
liquid patterning.

Wetting has been the subject of intense research for
well over a century. The activity has been motivated
largely by industrial applications, ranging from design-
ing tires to treating textiles and choosing coatings for
surfaces, but also by the academic interest in a field
which is undeniably rich [1]. A common theme in wet-
ting phenomena is that boundary conditions and sub-
strate play a pivotal role. For instance, when the sub-
strate is replaced by a soft solid, elastocapillary inter-
actions lead to deviations from the classical prediction
of Young-Dupré’s law due to the formation of a wetting
ridge at the contact line [2–9]. The substrate can also
be replaced by a thin free-standing elastic film, serving
as a compliant boundary for the droplet [11–18]. Work
employing such a geometry has shown that the contact
angles are set by a Neumann construction in which me-
chanical and interfacial tensions are balanced at the con-
tact line [12, 13, 15, 17, 18].

Compliant elastic surfaces have also been shown to
cause novel wetting behaviours and morphologies. For
instance, droplets have been observed to migrate towards
regions of increased compliance [19–21], and to interact
with other droplets due to deformations induced in the
elastic films [16, 22]. Anisotropic tension in a support-
ing free-standing film causes sessile droplets to elongate
along the high tension direction, and thus, droplets map
out the stress field in the elastomer [18]. Droplets pressed
between a rigid surface and a soft solid acquire the shape
of a flattened ellipsoid [10]. In yet another example,
dewetting liquid films which are capped by a thin elas-
tic layer exhibit slower dynamics with increased tension
in the elastomer, and by introducing anisotropy in the
elastic boundaries, dewetting morphologies can be con-
trolled [23].

Although partial wetting on soft or compliant solids
has received significant attention in the past, here, we
examine partial wetting in a novel geometry wherein

droplets are capped by a thin elastic film under ten-
sion. This system could serve as a model for blisters
or droplets trapped beneath drying paint [24]. We show
that the contact angle of these droplets decreases with
increased tension, and that this is well described by a
horizontal balance of interfacial and mechanical tensions
at the contact line. The model contains a free param-
eter from which the elastomer-liquid interfacial tension
may be determined. We extract reasonable values for
this quantity for four different liquid-solid combinations.
Finally, we show that introducing biaxial stresses in the
capping elastic boundary can produce elliptical droplets
with tuneable aspect ratio, and even droplets with nearly-
square morphology using a suitable choice of sample ge-
ometry.

Thin elastomeric films of Elastollan (elast) TPU
1185A (BASF) and styrene-isoprene-styrene (SIS) tri-
block copolymer (14% styrene content, Sigma-Aldrich)
are prepared by spincoating out of cyclohexanone and
toluene solutions respectively. Films are spun onto silicon
wafers to create substrates and also onto freshly cleaved
mica. The films are annealed at 150

◦
C (elast) or 100

◦
C

(SIS) for 10 min to remove solvent and relax the poly-
mer chains. The substrate films are of thickness 200 nm
(elast) and 400 nm (SIS), as measured using ellipsometry
(Accurion, EP3). One edge of each substrate is brushed
with an acetone-wetted cotton swab to remove the elas-
tomer from this edge. Small droplets of glycerol (Caledon
Laboratories Ltd.) or polyethylene glycol (PEG) with
Mn = 0.6 kg/mol (Sigma-Aldrich) are deposited onto
the substrates. These sessile droplets are capped with
a thin film of the same elastomer as the substrate film
(to simplify the boundary conditions for wetting), using
the following procedure: the capping films are prepared
on mica and then transferred onto a home-built strain-
ing set-up following the protocol described in Ref. [23].
Using this apparatus, films are loaded isotropically with
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FIG. 1. (a) Schematic of a liquid droplet capped by a taut
elastic film and supported by a film of the same elastomer
on a silicon substrate. The tension balance to determine the
contact angle is shown. (b) Optical micrograph under a red
filter of the top view of a glycerol droplet capped by an Elas-
tollan film with ε = 0.15 and h = 570 nm. (c) Height profile of
the capped droplet in (b) as a function of horizontal position.
The solid curve is a circular cap fit from which we determine
θc = 7.8 ± 0.2

◦
.

strain ε or biaxially with principal strains εlow and εhigh.
The substrate with sessile droplets is then brought into
contact with the strained capping film such that strong
adhesive contact is formed between the two elastic films,
thus completing the sample depicted in Fig. 1(a). We
study four different pairings of liquid and elastomer. In
the region where the substrate film was removed from
the silicon using the cotton swab, we use ellipsometry to
determine the thickness h of the capping film. We em-
ploy films with h between 150-1700 nm (Elastollan) and
550-3000 nm (SIS).

After being capped, the droplets are circular with a
contact radius r when viewed from above. Only droplets
which are not visibly pinned are measured. We work with
droplets in the range 30 µm < r < 300 µm. Droplets are
large enough that evaporation can be ignored, and much
larger than the bulk elastocapillary length such that elas-
tic substate films are not significantly deformed by the
capillarity of the droplets and can be thought of as un-
compliant substrates [5]. In addition, we employ droplet
sizes such that bending of the capping film is only rel-
evant locally at the contact line and tension dominates
the global picture [25]. Due to the high tension in the
capping film, the droplets are sufficiently flattened (to
a height hd) to exhibit interference fringes when viewed
under an optical microscope with a red (λ = 632.8 nm)
filter (Newport, 10LF10-633), as seen in Fig. 1(b). From
this interference pattern, the height profile of the droplet
is determined. A height profile from a horizontal slice
through the droplet in Fig. 1(b) is shown by the data
points in Fig. 1(c). We find that this profile is in excel-
lent agreement with a circular cap fit, shown by the solid
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FIG. 2. Contact angle as a function of εh, which is propor-
tional to tension, for two elastomers: (a) Elastollan and (b)
SIS, and with two test liquids: glycerol (glyc) and PEG. The
Elastollan/glycerol data includes sets where the strain is held
constant, ⟨ε⟩ = 0.16± 0.03 ( ) and ⟨ε⟩ = 0.08± 0.02 (�), and
only film thickness is changed. Plotted on the same graph are
also data attained from biaxial strain experiments along the
low (�) and high (�) tension axes. Solid (glyc) and dashed
(PEG) curves correspond to fits of Eq. 1, with γel,l/E as the
only free parameter. Vertical error bars represent the stan-
dard deviation in contact angles measured for a sample, and
horizontal error bars stem from uncertainties in thickness and
strain.

curve, from which the radius of curvature R of the capped
droplet is measured. If the droplets are large enough, it
is also possible to directly image the droplet’s profile by
acquiring images from a side view, and fit this profile
to a circle to extract R. We find good agreement be-
tween both techniques. The contact angle of the capped
droplet θc is finally evaluated using the geometric rela-
tion sinθc = r/R. Several droplets are measured and the
average θc is determined. The contact angles are highly
reproducible from one droplet to the next and indepen-
dent of the size of the droplet over the range studied.

Although elastomers are not Hookean over large
strains, we work exclusively with small strains (⪅ 0.2),
such that we can approximate a linear relationship be-
tween stress and strain [26]. As such, the mechanical ten-
sion in an isotropically strained film is T =

Eεh
1−ν

≈ 2Eεh,
where E is the Young’s modulus of the elastomer and
ν ≈ 0.5 is the Poisson ratio. Thus, the mechanical ten-
sion in a capping film can be varied by tuning film thick-
ness or strain. In Fig. 2(a), we plot the contact angle
as a function of the product εh for Elastollan with glyc-
erol (glyc) droplets. Two data sets are shown wherein
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h is varied while the isotropic strain is held constant:
⟨ε⟩ = 0.16±0.03 ( ) and ⟨ε⟩ = 0.08±0.02 (�). The data
sets collapse on the same curve and show that contact
angle decreases with εh. This observation is consistent
with previous work which found dewetting rims of a liq-
uid capped with an elastic film to be increasingly more
flattened with higher T [23]. Our experiment is repeated
with PEG droplets with strains in the range of 0.1-0.2 and
variable film thicknesses, and the data is plotted in Fig. 2
(⭑). Once again, the same trend is seen, but the two liq-
uids, PEG and glycerol, do not collapse onto the same
curve. In Fig. 2(b), the two liquids are paired with SIS
elastomer instead (again with strains in the range 0.1-0.2
and variable film thicknesses), and the same qualitative
trends as in Fig. 2(a) are seen.

To understand these trends, we construct a balance of
mechanical and interfacial tensions at the contact line
akin to previous work [12, 13, 15, 17, 18]. In the sim-
plest model, we make the assumption that the tension in
the capping film is not significantly altered by the defor-
mation induced by the droplet (elastic membrane limit)
and remains uniform throughout [27]. This important
assumption is discussed later in more detail. The ten-
sion balance is shown in Fig. 1(a), where γ represents in-
terfacial tensions between elastomer (”el”), liquid (”l”),
and vapour (”v”), and is carried out in the horizontal
direction, in analogy with Young-Dupré’s law of partial
wetting on a rigid solid. Since the substrate is intention-
ally chosen to be the same material as the capping film,
there is no interfacial tension between these. Motivated
by previous work on these elastomers, we further assume
that the interfacial tensions remain constant with strain
(i.e. no Shuttleworth effect) [28]. The horizontal tension
balance gives cosθc = (T + γel,v − γel,l)/(T + γel,v + γel,l).
Note that, just as for Young-Dupré’s law, the same re-
sult is obtained by a free-energy minimization. Given
measured modulus values Eelast = 13 ± 2 MPa and
ESIS = 1.1 ± 0.2 MPa [26], we calculate that 300 < T <

7000 mN/m for all our samples. Thus, we make the ap-
proximation that T is much greater than any interfacial
tension in the system, as interfacial tensions involving
polymeric materials are typically < 50 mN/m. Finally,
we employ the small angle approximation (since all our
contact angles are less than 20

◦
), and uncover a simple

prediction for the contact angle:

θc = 2

√
γel,l

T
≈

√
2
γel,l

Eεh
. (1)

Thus, the contact angle is fully determined by the me-
chanical tension and elastomer-liquid interfacial tension.
To test the model, we fit Eq. 1 to each data set in Fig. 2,
leaving γel,l/E as a free parameter in each case. The fits
are plotted in Fig. 2 as solid (glyc) and dashed (PEG)
curves for each of the elastomers, and are in excellent
agreement with the data. The best fit values of γel,l/E

TABLE I. Interfacial tensions extracted from fitting to con-
tact angle data.

Solid/Liquid γel,l/E γel,l θY γel,v

(nm) (mN/m) (
◦
) (mN/m)

Elast/glyc 0.85 ± 0.04 11 ± 2 67.8 ± 0.8 35 ± 2

Elast/PEG 0.28 ± 0.08 4 ± 1 42.4 ± 0.7 38 ± 1

SIS/glyc 18 ± 3 20 ± 5 82.3 ± 1.3 29 ± 5

SIS/PEG 4.0 ± 0.8 5 ± 1 54 ± 1.2 32 ± 2

are shown in Table I. Using our measured values of E,
we compute γel,l. In addition, we have measured the
Young’s contact angle (θY) of each solid/liquid combina-
tion tested, and the values are listed in Table I. Using the
Young-Dupré equation, we can calculate the elastomer-
vapour interfacial tension as γel,v = γl,vcosθY + γel,l,
where γl,v is found in the literature to be 63 mN/m [29]
and 46 mN/m [30] for glycerol and PEG. Therefore, by
measuring contact angles of droplets capped with thin
taut elastic films, one can determine the system’s solid-
liquid and solid-vapour interfacial energies. These in-
terfacial energies are of typical magnitudes for interfacial
tensions involving polymeric solids. In fact, γel,v is within
error of that quoted in Ref. [31]. Furthermore, as seen in
Table I, the values of γel,v are determined twice (using
the two liquids) for each solid, and are within error of
each other, which further validates the simple model.
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FIG. 3. (a) Optical micrograph under red filter of an elliptical
droplet aligned with the high tension direction in the capping
film (εhigh = 0.2, εlow = –0.04, h = 586 nm). (b) Measured
aspect ratio as a function of strain along the low tension axis.
εhigh is held constant at ∼ 0.2. (c) Measured aspect ratio
plotted against the theoretically expected aspect ratio (Eq. 2)
given εhigh and εlow. The solid line represents the relationship
aexp = ath. Horizontal error bars are due to uncertainties in
the two strains. Vertical error bars are standard deviations
in measured aexp.

Thus far, all films have been prepared with an isotropic
tension. However, previous work has shown that wetting
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morphologies can be controlled by loading elastic bound-
aries with anisotropic strains [18, 23]. Thus, we per-
form additional experiments with Elastollan and glyc-
erol, wherein the droplets are capped by films with a
biaxial tension with principal strains εhigh and εlow. In
doing so, droplets assume an elongated shape (Fig. 3(a))
which is well described by an ellipse whose major axis
aligns with the high tension direction (plotted as a curve
around the perimeter). To understand how the ellip-
tical droplet’s measured aspect ratio, aexp, varies with
strain, we perform experiments where εhigh ∼ 0.2 and
−0.05 < elow < 0.2. As seen in Fig. 3(b), the aspect ratio
decreases as εlow increases, and approaches unity in the
limit of isotropic strain (εlow = εhigh).

We find that height profiles of the droplet along the
high- and low-tension axes are well described by spheri-
cal cap fits once again, and from these, we determine the
contact angles along both axes (θc,high and θc,low). Along
each of the principal axes (high tension or low tension),
the tension balance at the contact line, and the final pre-
diction of Eq. 1, is identical to the isotropic case, but
with T replaced by Thigh or Tlow respectively. Applying
Hooke’s law, one can calculate the tension along the prin-
cipal strain direction i to be Ti ≈

1
1−ν2E(εi+νεj)h where

j is the orthogonal principal strain direction and for elas-
tomers we can set ν ≈ 0.5. At this point, an effective
strain can be defined for this direction εeff,i =

1−ν
1−ν2 (εi +

νεj), such that the isotropic expression is recovered for

the biaxial case as well: Ti =
1

1−ν
Eεeff,ih ≈ 2Eεeff,ih. In

this way, the elliptical droplet data for θc,high (�) and
θc,low (�) is plotted against εeff,ih in Fig. 2(a). As ex-
pected, the biaxial strain data collapses onto the same
curve as the isotropic strain data.

Since the droplet profiles along both principal direc-
tions are well fit to circular caps, the droplet height
can be evaluated using the circular cap identity hd,i =

ritan(θc,i/2) ≈ riθc,i/2, where subscript i once again de-
notes a principal direction (either high or low tension
axis) and the small angle approximation was employed.
Of course, the droplet height must be the same for profiles
taken along either principal direction (hd,high = hd,low).
Therefore, the theoretical aspect ratio can be calculated
as rhigh/rlow to be

ath =
θc,low

θc,high
=

√
Thigh

Tlow
=

√
εhigh + νεlow

εlow + νεhigh
, (2)

where we have made use of Eq. 1 and the Hookean rela-
tionships described above. For a quantitative test of this
result, we refer to Fig. 3(c), where all measurements of
the aspect ratio aexp are plotted against their predicted
values ath, computed using Eq. 2 and the applied strains.
Plotted in this way, we find consistency with a line rep-
resenting aexp = ath, indicating good agreement between
theory and experiment.

The theory outlined in this study relies on the sim-
ple assumption that the tension of the film is not sig-
nificantly changed by the deformation induced by the
droplet. To construct a comprehensive theoretical treat-
ment to calculate the additional stresses created by this
deformation, one may follow the methodology presented
in articles by Davidovitch, Vella, and co-workers, where
the Föppl-von Kármán equations are solved in the limit
of vanishing bending contributions [32–34]. However, re-
sults we have presented suggest that our assumption is
appropriate. Droplets under isotropic tension are well
described as spherical caps, which is consistent with the
notion of a uniform tension in the elastic film acting
against a constant pressure within the capped liquid. The
contact angles depend on the prepared tension, i.e. the
product εh. If the tension was significantly modified dur-
ing capping, one would expect the additional tension to
depend individually on h as well (through the stretch-
ing modulus Eh), and would disrupt the collapse of the
data seen in Fig. 2(a). However, the strongest evidence
in favour of the assumption stems from the success and
self-consistency of the model presented herein (success of
predictions made by Eq. 1 and Eq. 2, sensible values of
γel,l and γel,v, and the collapse of biaxial and isotropic
strain data in Fig. 2(a)).

FIG. 4. (a) Top view schematic of the sample with droplets
capped by biaxially stretched films on either side, all free-
standing over the hole in the washer. (b)-(c) Optical images
of droplets with square morphology. (d) Focal spot (with
diffraction pattern) of a laser shone through a square droplet.

In previous work, we have seen that using suitable
elastic boundary conditions, dewetting liquid films will
nucleate holes which are square [23]. Drawing inspira-
tion from that result, we recreate such elastic boundary
conditions, but for sessile droplets instead, in the sample
depicted in Fig. 4(a). An Elastollan film with biaxial ten-
sion (εhigh ∼ 2, εhigh ∼ −0.4) is placed atop a steel washer
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with a circular hole. Glycerol droplets are deposited on
the free-standing portion of this film. Finally, a second
Elastollan film subjected to the same biaxial strains is
placed on top, but with its high tension axis oriented
perpendicular to the bottom film. Thus, the droplets are
capped by an elastomer on either side, and the whole sys-
tem is free-standing. As seen in Figs. 4(b)-(c), droplets in
such a sample assume a remarkable square morphology
with the sides oriented along the principal strain direc-
tions. In this free-standing sample geometry (Fig.4(a)),
droplets act as lenses whose focal length and shape can be
tuned using the elastic boundary conditions. As a proof
of principle, we shine a laser through a pinhole (150 µm
in diameter) onto a square droplet. The resultant focal
spot (with the diffraction pattern) is shown in Fig. 4(d).
As an elliptical droplet resembles a cylindrical lens pro-
ducing a focal spot in the shape of a line, a square droplet
creates a focal spot resembling a cross.

In this study, we have investigated the partial wetting
of liquid droplets capped by thin elastic films. When the
tension in the elastic film is isotropic, droplets assume the
shape of spherical caps which flatten with increasing ten-
sion. A horizontal balance of interfacial and mechanical
tensions at the contact line well describes the change in
contact angle with tension with only one free parameter.
From this free parameter, the elastomer-liquid interfa-
cial tension - a notoriously difficult quantity to measure-
can be determined. Finally, we show that elastic films
as boundary conditions for partial wetting can produce
droplets with novel morphologies. Droplets can be de-
signed to have elliptical shapes with aspect ratios that
depend on the strains in the elastic film, and it is even
possible to generate droplets with square morphology us-
ing suitable choices of the elastic boundary conditions.
Thus, elastic membranes can be used to create highly
tunable liquid morphologies.
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Chapter 4

Conclusions and future outlook

In the work comprising this thesis, we use contact angle measurements to study

elastocapillary interactions between liquids and taut solid films. Primarily, we show

that wetting phenomena (partial wetting and dewetting) are altered when a free

boundary or a rigid boundary is replaced by a compliant membrane. We emphasize

the principle that there exists a strong parallel between interfacial tensions and the

mechanical tension of an elastic membrane. In Papers I and II, we show that the

contact line geometry of a partially wetting droplet on a compliant membrane is

found through a Neumann construction incorporating both mechanical and interfacial

tensions. This result is completely analogous to the partial wetting of a droplet

on a liquid substrate. Further evidence of the parallel is that partial wetting on

a rigid substrate wherein the droplet is capped by a membrane is described by a

modification to Young-Dupré’s law which includes mechanical tension and interfacial

tensions (Paper V). Although interfacial tensions are more or less pre-determined by

the nature of the materials, the tension in a membrane can be readily modified. Thus,

these compliant boundary conditions render wetting phenoma much more tunable.

As we have seen, by altering the tension in the solid film, contact angles in partial

wetting can be adjusted and dewetting rates can be changed.

However, there is a crucial difference between elastic membranes and interfacial

tensions which make these compliant boundary conditions so interesting. Namely,

elastic membranes can be prepared with an anisotropic tension, whereas interfacial

tensions of amorphous materials are isotropic in nature. Consequently, membranes
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can be exploited to control liquid patterning. We have shown in Papers II and V that

droplets elongate along the high tension direction when sessile on, or capped by, a

biaxially stretched elastic film. In this way, droplets on free-standing membranes map

out elastic stresses and act as compass needles for the principal directions. Further-

more, compliant boundary conditions can even be designed to produce square-shaped

droplets and dewetting holes. We have found that droplets which are capped on either

side by compliant elastic membranes can be used as lenses to focus light. Since the

magnitude and anisotropy of the tension can be adjusted to change the morphology

of the droplets, the focal length and focal spot shape is highly tunable. Moreover,

dewetting is generally considered a promising candidate for creating liquid pattern

formation on a microscopic scale. However, past studies have used chemical or topo-

graphical pre-patterning of the substrate itself to guide dewetting into forming desired

morphologies. In Paper IV, we show that compliant boundaries offer a novel avenue

for controlling dewetting morphologies.

In Paper III, we address the hotly debated Shuttleworth effect in amorphous

materials. We provide the first evidence for the presence of strain-dependent surface

energies of interfaces involving glassy polymers. This implies that surface stress (force

per unit length) and surface energy (energy per unit area) are not equivalent quantities

for these interfaces. On the other hand, we provide strong evidence for the absence

of the Shuttleworth effect in elastomeric materials. Although the latter is not a

conclusive proof, we believe that the evidence we have brought forth will contribute

to the current discussion and reduce confusion within the literature.

There are several extensions and new research ideas which follow naturally from

the studies contained within this dissertation. In the following text, I will outline

some of these. As we have seen, droplets on compliant substrates induce a deforma-

tion below themselves which depends on the tension in the film. Since the wetting

configuration is altered by tension, the total free energy of the wetting must also be

a function of tension. Therefore, if the elastic film is prepared with a spatial gradient

in the tension, there must necessarily be a gradient in the free energy as a function

of droplet position. Hence, the droplet will be driven to migrate towards a position

which minimizes its free energy. We have made modest experimental attempts to

observe this spontaneous motion, but have not yet had any sucess. Our current hy-
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pothesis is that the driving force in those experiments was not sufficiently large to

overcome contact angle hysteresis. Therefore, future work must focus on overcoming

this barrier to motion, possibly by designing a tension gradient which maximizes the

driving force.

Another promising idea is to use the system studied in Paper V to further address

the Shuttleworth effect. In Paper III, we show that dγsv
dε

= dγsl
dε

for interfaces involving

elastomers up to strains of 100%. Although this is strong evidence for the absence

of a Shuttleworth effect, conclusive proof would require showing that dγsl
dε

= 0 or
dγsv
dε

= 0. In Paper V, we find that fitting the contact angles of partially wetting

droplets capped by elastic membranes to a modified Young-Dupré model allows for

a robust determination of γsl. Thus, this system could be used to test whether γsl

remains constant for strains up to 100%. The only complication is that the stress-

strain relationship for this range of strains will need to be completely determined in

advance, as the elastomer will not be Hookean at such large extensions.

Compliant membranes could also be used to modify other wetting phenomena,

such as the Plateau-Rayleigh Instability. If a liquid cylinder is coated with an elastic

membrane containing isotropic tension, we would expect to see a change in the growth

rate of the instability. Even more intriguing is the notion of capping the liquid with

a biaxially stretched elastic film. In this case, the orientation of the high tension

direction relative to the axis of the cylinder could potentially also alter the wavelength

and stability conditions of the Plateau-Rayleigh Instability.

As seen from this dissertation as well as other work in the field of elastocapillar-

ity, there is no lack of rich physics or unexpected manifestations of self-assembly that

can emerge from the interplay between capillarity and elasticity - even for seemingly

simple solid structures. Although there are a multitude of future directions to be ex-

plored, the work contained in this thesis uncovers some of the important principles at

play when liquids interact with taut solid films. Stated quite generally, elastocapillary

interactions between liquids and taut elastic films introduce modifications to classical

descriptions of wetting, present avenues for generating liquid patterning, and provide

fundamental insight into the physics of interfaces.
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Appendix A

Papers not included in this thesis

The following papers comprise additional studies that I have been involved in, but

have not been included as the core papers for my dissertation. In Paper AI, we study

the swimming dynamics of the nematode C. elegans in fluids of varying viscosity. By

measuring forces during swimming, we determine the drag coefficients of the worm

and compare to predictions from classical theories. I was not the main contributor of

this study, but co-supervised A. Kasper alongside Dr. Backholm and Dr. Dalnoki-

Veress. I helped wth the experiments, data analysis, and editing the manuscript. In

Paper AII, we study the elastocapillary deformations induced by a liquid droplet on

a thin fiber. We find that the capillary forces of the droplet cause the fiber to bend.

For a critical droplet size, proportional to LBC (Eq. 1.54), the fiber spontaneously

winds itself around the droplet. Although I am the main contributor in this study

(performed the experiments and data analysis, contributed to the theoretical model,

and wrote the first draft of the manuscript), the subject is tangential to the theme

of this thesis. For Paper AIII, I am not the main contributor, but the subject is

relevant to this thesis. Here, we examine the elastocapillary deformation of droplets

on glassy membranes. The deformation is observed as the film is heated through the

glass transition. The results are replicated using a similar model as Paper I, but with

the additional ingredient that the mechanical tension varies with temperature until

the film enters the melt state where the mechanical tension vanishes. In this project,

I was involved in developing the theoretical model and provided mentorship to A.

Fortais who performed the experiments.
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Paper AI

The effects of viscosity on the undulatory swimming dynamics of C. el-

egans

M. Backholm, A. K. S. Kasper, R. D. Schulman, W. S. Ryu and K. Dalnoki-Veress,

Phys. Fluids, 27, 091901 (2015)

Paper AII

Elastocapillary bending of microfibers around liquid droplets

R. D. Schulman, A. Porat, K. Charlesworth, A. Fortais, T. Salez, E. Raphaël and K.

Dalnoki-Veress, Soft Matter, 13, 720 (2017).

Paper AIII

Liquid droplets on a free-standing glassy membrane: Deformation through

the glass transition

A. Fortais, R. D. Schulman, and K. Dalnoki-Veress, Eur. Phys. J. E, 40, 69 (2017).
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