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Lay Abstract 

 In civil engineering, granular materials are ubiquitous, such as sand, gravel, rock, 

and concrete. Due to the discrete nature of microstructure, this type of material usually 

displays exceedingly complicated behaviours under shear, for example, dilatancy, 

non-coaxiality, critical state, instability, and anisotropy. These mechanical responses 

are notoriously difficult to model and most existing models are phenomenological and 

lack a clear physical meaning. To provide a clear physical meaning for the constitutive 

model of granular material, the current study explored the evolution of the 

microstructure within the granular material subjected to quasi-static shear and the 

micromechanical origins of those macroscopic behaviours such as critical state, 

non-coaxiality, and instability. Both micromechanical analysis and discrete element 

method were applied. Results showed that the evolution of the whole microstructure 

depended on the loading condition. However, the evolution of the microstructure 

joined by the ‘strong contacts’ was independent of the loading path. At critical state, 

the microstructure was highly anisotropic, not unique and depended on the stress paths. 

The rearrangement of the microstructure helped to maintain the stability of a granular 

material. The instability of the granular material was triggered by the failure of the 

microstructure joined by the ‘weak contacts’.  
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Abstract 

 Granular materials, such as sand, are systems consisting of huge numbers of 

particles that interact with each other through inter-particle contacts. Different from 

continuum materials, a granular material displays distinctive features due to the 

discrete nature of the microstructure, characterized by a spatial arrangement of 

inter-particle connection as well as a force-chain network. With a consideration of the 

contact force, the overall contact network is divided into a strong sub-network and a 

weak sub-network that carry contacts with normal contact forces larger and lower than 

the average normal contact force, respectively. Thus, the fabric anisotropy for different 

contact networks, are employed to characterize the microstructure of the granular 

material.  

 In this research, the behavior of granular materials subjected to quasi-static shear 

was extensively investigated in terms of the fabric evolution including the magnitude 

and direction of anisotropy for different contact networks. Both statistical and 

micromechanical approaches were adopted to obtain the macroscopic properties, such 

as the fabric tensor, Cauchy stress tensor and the second-order work, in terms of the 

micro-scale variables. The discrete element method (DEM) was employed to simulate 

laboratory tests along fixed loading paths; for example, 2D tests along proportional 

strain paths, 2D simple shear tests and 3D tests along radial stress paths on the 

π-plane.  

 Results demonstrated that the induced fabric anisotropy for the overall contact 

network can be related to the deviatoric stress ratio for both two-dimensional and 

three-dimensional conditions. The relation was found to be not unique, depending on 

the loading paths as well as the stress state. Nevertheless, a unique linear fabric-stress 

relation was presented between the stress tensor and fabric tensor for the strong 

sub-network. Specifically, the obliquity of this linear relation was found to be a 

function of the mean stress. This description held true for initially isotropic specimens 
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subjected to proportional and non-proportional loading paths. On the other hand, for 

the initially anisotropic specimen, this correspondence only worked at the critical 

stress state.  

 According to Nicot and Darve (2006), the macro second-order work cannot be 

interpreted as a summation of the local second-order work from the contact plane. The 

second-order work induced by the fabric evolution and the volumetric change must 

also be taken into account. The second-order work induced by the fabric evolution 

cannot be neglected in 2D analysis along proportional strain paths. Moreover, the 

vanishing of the second-order work is related to the fabric anisotropy in contact 

sub-networks that the decrease of fabric anisotropy for the weak sub-network or the 

degradation of weak sub-network was observed to be an indicator of deformation 

instability even though the strong sub-network dominants the shear resistance. The 

degradation of strong sub-network was a necessary but not a sufficient condition of 

instability. 

 The direction of the fabric anisotropy for the strong sub-network was observed to 

be coaxial with the orientation of the principal stress. The principal direction of fabric 

anisotropy for the weak sub-network was always perpendicular to that of the strong 

sub-network, regardless of whether the principal stress rotated or not. For the overall 

contact network, however, the direction of the fabric anisotropy was not necessarily in 

line with the major principal stress direction, even for an initial isotropic granular 

assembly. Therefore, the finding by Radjaï et al.(1998) that the direction of the fabric 

anisotropy for the weak sub-network is perpendicular to that for the overall contact 

network only held true for the loadings in which the critical stress could be 

approached no matter if the principal stress orientation rotated or not. Under this 

circumstance, the fabric anisotropy for the overall contact network could be 

interpreted as a function of sub-networks’ anisotropy weighted by the ratio of contact 

number in each sub-network over the total number of contacts.  

 At critical state, both the strong sub-network and the overall contact network 
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developed high fabric anisotropy with the weak sub-network being mostly isotropic. 

When plotted on the π-plane, both the fabric anisotropy for the strong sub-network 

and the fabric anisotropy for the overall contact network depended on the stress paths 

but were independent of the mean stress level. The response surface of the former 

could be expressed as a Lade’s surface. The response envelope of the latter was an 

inverted Lade’s surface.  
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Chapter 1 Introduction 

 

1.1 Background  

Granular materials, such as sand and gravel, are commonly encountered in civil 

engineering. Different from a continuum mass, the granular material can be pictured 

as a collection of individual particles that interact with each other through 

inter-particle contacts which portray a geometric topology of the internal structure 

specifically. Upon loading, the mechanical and hydrological behaviors of granular 

material can be interpreted as an aggregation of the grain-scale actions over the 

topology of the microstructure. Thus, some microstructure based parameters are 

employed in the continuum modeling of granular material to achieve more physically 

profound explanations of macro-behaviour. The fabric tensor, characterizing the 

geometric microstructure, is commonly used to characterize microstructure.  

 As a measure of the microstructural alignment, the fabric anisotropy of a granular 

material can have an either inherent or induced origin. Inherent anisotropy is produced 

during the sedimentation of the particles. Induced anisotropy, is the result of the 

non-elastic deformation (Oda, 1993). Both experimental and theoretical studies 

suggest that fabric anisotropy and its evolution contribute to some key features of 

granular material behaviour, including dilation (i.e. shear-induced volume change), 

and non-coaxiality between stress and strain rate, as well as failure and instability 

during deformation (Cai et al., 2013; Collins and Muhunthan, 2003; Fu and Dafalias, 

2011; Li and Yu, 2009; Oda, 1993; Ohkawa et al., 2011; Radjaï et al., 2012; Wan and 

Guo, 2004).  

 

Shear-induced dilatancy  

The shear-induced dilatancy was first noted by Reynolds (1885) to describe the 
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remarkable phenomenon that the volume of a dense-packed granulate assembly 

increases when it is subjected to shear. The topic of shear-induced dilatancy was not in 

the mainstream interest in soil mechanics until the work of Taylor (1948), who 

presented a link between the shear strength and dilation properties. He adopted an 

energy principle where the total work done during shear equals to the dissipated 

energy at zero volume change and the work of volume change under constant stress. 

Thereafter, various theoretical models of shear-induced dilatancy have been 

established. Generally, these models can be categorized into two major trends. One is 

the microscopic analysis that considers a granular mass as a collection of particles. A 

stress-dilatancy relation based on a minimum energy principle was presented by Rowe 

(1962), which has become a fundamental conceptual idea in geomechanics. Following 

this line, different stress-dilatancy equations were developed (Collins and Muhunthan, 

2003; Matsuoka, 1974; Tokue, 1979; Ueng and Lee, 1990; Wan and Guo, 1998). The 

physical significance of these approaches is profound since micromechanical aspects 

were incorporated. However, the geometric connectivities of the individual particles, 

was not explicitly considered for these approaches. The second trend is to obtain the 

stress-dilation relation by directly assuming the internal energy dissipation function, 

for example the famous Cam-Clay model by Roscoe et al. (1963). Similar research 

can also be found in Modaressi et al. (1994) and Dafalias (1986). For this type of 

approach, possible origins of the dilatancy are neglected. For example, the physical 

origin behind shear-induced dilatancy could be either the geometrical constraint 

including the grain-level behaviours and the microstructure (Wan et al., 2007) or the 

kinematic constraint as the coupling between the shape and the volume of the 

assembly of rigid particles (Goddard, 1999). Therefore, in addition to the constraints 

of confining pressure and packing density, the fabric structure as well as its evolution 

must be properly incorporated into the stress-dilation equations. However, only a few 

dilatancy models considered the effect of fabric structure.  
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 It is worth to note that Wan and Guo (2004) embedded a second-order tensor, 

obtained from a microscopic analysis of an ensemble of rigid particles, into their 

stress-induced dilatancy equation. More recently, Li and Dafalias (2011) related the 

fabric tensor based on the void space to the dilatancy state line using a dilatancy state 

parameter. Thereafer, Gao et al. (2014) proposed a fabric-dependent dilatancy 

function. Yin and Chang (2013) derived a relation between stress increment, strain 

increment and fabric tensor by considering the slips at contacts in all orientations. 

Kruyt and Rothenburg (2016) demonstrated a fabric-based expression of the dilatancy 

rate. To provide strong support for mechanisms of shear-induced dilatancy, more 

research must be dedicated to investigate the evolution of the fabric structure along 

various loading paths. 

 

Critical state  

The concept of critical state, in which a granular soil undergoes continuous shear 

deformation without volume change under constant stress, plays an important role in 

geomechanics. The necessary and sufficient conditions for critical state have been 

proposed. Schofield and Wroth (1968) originally developed the critical state soil 

mechanics, in which the granular soil at critical state reaches a constant stress ratio 

and a unique critical void ratio. The theory includes the microstructure parameter, void 

ratio, which is a homogeneous scaler thus does not characterize any anisotropic details 

of the internal structure. Thus, at critical state, the internal structure must be isotropic 

no matter the structure at initial state. However, experimental and numerical studies 

have indicated that the internal structure is of high anisotropy instead of being 

isotropic before approaching the critical state (Dafalias and Li, 2004; Hardin, 1989; 

Nakata et al., 1998; Masanobu Oda, 1972; Yoshimine et al., 1998). Such fabric has 

been measured in various ways, including preferred orientations of the contact normal, 

via branch vectors and the void space.  
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 One question is how to add fabric to the necessary and sufficient condition for a 

critical state to occur. Li and Dafalias (2011) presented an Anisotropic Critical State 

Theory (ACST) for granular material by introducing a normalized fabric parameter 

that evolves toward a critical state value norm-wise and direction-wise. The fabric is 

computed according to the geometry of the void cells (Li and Li, 2009). A sufficient 

characterization of fabric structure usually includes two terms, the fabric tensor based 

on void shape and the fabric tensor based on the inter-particle contact normal (Fu and 

Dafalias, 2015). The latter, known as the geometric fabric, is believed to be more 

sensitive to the stress-strain relation in granular materials (Kuhn et al. 2015). Hence, 

geometric fabric should be incorporated into the critical state conditions. The notable 

work of Zhao and Guo (2013) introduced the effect of the geometric fabric to the 

critical state parameters, by including a fabric anisotropic parameter K, defined as the 

first joint invariant of the deviatoric stress tensor and the deviatoric fabric tensor. A 

unique relation between the mean stress level and the parameter K was obtained. 

However, this unique relationship is not profound physically, since the parameters, K 

and confining stress are not independent and actually K already includes the stress 

component.  

 It is emphasized that the natural process from the initial state to the critical state is 

associated with the evolution of fabric anisotropy which should be carefully integrated 

in critical state theory of granular soils. Hence, a microstructural sufficient and 

necessary condition with regard to the fabric tensor for critical state, as well as the 

evolution of the fabric tensor deserves more attention. One possible approach is to 

define a modified stress tensor based on the Cauchy stress tensor and fabric tensor and 

then achieve an identical state at the critical state.  

 

Instability of granular materials  

A theoretical basis for stability in granular materials is the Drucker’s postulate of 
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non-negative second-order plastic work, i.e., 
2d d d 0p

ij ijW     for stability 

(Drucker, 1957). This postulate was extended to the total work by Hill (1958) as 

2d d d 0ij ijW    , in which d ij  and d ij  are incremental stress and strain, 

respectively, using upper script “p” implying plastic component. It is essential to note 

that the second-order criterion by itself provides a sufficient but not necessary 

condition of stability. Correspondingly, the material may be unstable when 
2d 0W  . 

The effective collapse of a homogeneous sample depends on the loading direction and 

the controlled loading variables (François Nicot et al., 2013; Prunier et al., 2009). 

Various experimental studies have been conducted to explore the instability of 

granular soils in terms of the postulate (Castro, 1969; Lade, 1988; Misra and 

Poorsolhjouy, 2015; Nicot et al., 2015; Wan et al., 2007; Zhu et al., 2016). As put 

forward by Nicot and Darve (2009), Hill’s second-order work criterion lacks physical 

insight and misses the physical link between the macro instability and vanishing of the 

second-order work. Since the apparent stress and strain are functions of the contact 

forces and particle displacements on the grain-scale; respectively. It is believed that 

the fabric structure of granular material evolves during the deformation history and 

that the fabric is inevitably linked with the macroscopic material instability. In this 

respect, multi-scale approaches of modeling instability may be applied in order to 

investigate physical origins of the instability in granular materials. This issue has been 

extensively studied, for example by Misra and Poorsolhjouy (2013), F. Nicot et al. 

(2013), Nicot and Darve (2005) , Zhu et al. (2016) and among other. However, the 

macroscopic second-order work cannot be understood as a simple summation of the 

all local second-order works in each contact orientations. The challenge lies in the 

unilateral contract interactions allowing for rearrangements of the fabric structure and 

the change of volume. In another word, the fabric structure and its evolution must be 

properly considered. However, an understanding of the relation between the vanishing 
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of the second-order work and micro-variables is far from achieved.  

 

Non-coaxiality within granular material  

The conventional elastic-plastic constitutive models generally assume that the 

directions of the principal stress coincide with these of the principal strain rate. 

However, both experimental studies and numerical simulations show that, for example 

in simple shear tests, the direction of the principal strain rate does not follow the 

rotation of principal stress direction in granular soils, which is known as 

non-coaxiality (Ai et al., 2014; Cai et al., 2013; Gutierrez and Ishihara, 2000; Joer et 

al., 1992; Li and Yu, 2009; Matsuoka et al., 1988; Roscoe et al., 1967). Roscoe (1970) 

is among the first to observe the inconsistency of the principal axes of the plastic 

strain increment and those for the stress. This non-coaxiality is greatest at lower shear 

strain levels and generally decreases as the shear strain increases. At the critical state, 

they become coaxial. Since both the stress tensor and the strain increment tensor can 

be computed through contact forces and relative displacements acting through 

inter-particle contacts (Bagi, 1996; Bathurst and Rothenburg, 1988; Chang and Liao, 

1990; Christoffersen et al., 1981). Hence, non-coaxiality is inevitably related to the 

internal structure, characterized by fabric anisotropy. For example, a higher degree of 

non-coaxiality is observed in more anisotropic samples, and it gradually diminishes as 

the stress ratio approaches the critical state (Gao and Zhao, 2017, 2013; Gutierrezl et 

al., 1991; Miura et al., 1986; Yang et al., 2007). Therefore, the micromechanical study 

of fabric and its evolution during principal stress rotation can be of great theoretical 

and practical importance for the understanding of the non-coaxial behaviour in 

granular materials.  

 

1.2 Objectives  

The primary objectives of this research are to determine the evolutionary relation 
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between the internal structure, as characterized by fabric, and the stress state during 

various loading paths. DEM simulations are employed to obtain the detailed 

information on the microstructure in numerically simulated laboratory tests. The 

statistic approach is adopted to investigate the non-coaxial behaviour within the 

granular material. Some specific objectives are:  

• To characterize the internal structure using fabric anisotropy in both the overall 

contact network and the strong and weak sub-networks, and explore their 

physical relation under the statistic framework.  

• To determine fabric evolution in different contact networks (i.e., the overall 

contact network, the strong and weak sub-networks) during proportional and 

non-proportional shearing of granular materials.  

• To examine the fabric anisotropy at critical state and quantify the response 

surface of the fabric for different contact networks on the π-plane and then 

obtain a unique stress-fabric relation for the critical state. 

• To investigate the major principal direction of the fabric tensors for different 

contact networks during the rotating and of the principal orientation of the 

stress tensor and examine non-coaxiality between the orientations of principal 

stress and the principal fabric components along various loading paths with an 

expectation of better understanding the non-coaxial behaviour of granular 

materials.  

• To interpret the origin of material instability from a microscopic point of view 

using a micromechanical analysis and statistic approach, and then to verify the 

relation between the degradation of different contact networks and the 

vanishing of the second-order work. 

 

1.3 Outline of the thesis 

An extensive investigation on the research objectives gives a dissertation, which is 
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organized into eight chapters. A brief outline of these chapters is provided as follows. 

 Chapter 2 presented an exclusive review of the microscopic modeling of granular 

materials and discrete element method. The significance of the micro-macro 

correspondence between stress state and microstructural evolution was highlighted.  

 Chapter 3 demonstrated series of two-dimensional and three-dimensional tests 

using the discrete element method (DEM). Stress-strain responses from numerical 

tests were investigated by comparing them with data from laboratory tests.  

 Chapter 4 explored the fabric evolution within granular materials which were 

subjected to general loading conditions in two-dimensional and three-dimensional 

conditions. The evolution of fabric anisotropy for the overall contact network and 

sub-networks were investigated based on the numberical tests results. Typically, the 

fabric-stress relation was established in different contact networks.  

 Chapter 5 examined the fabric and its evolution at the critical state. The 

fabric-stress relation was established using the fabric tensor for the strong 

sub-network or the overall contact network. The fabric response surfaces on the 

octahedral plane were determined for fabric tensor in different contact networks.  

 Chapter 6 examined the coaxiality between the direction of the principal 

component of the fabric tensor and that of the stress tensor micromechanically. This 

coaxiality was further verified using numerical tests results involving in shearing 

under both fixed and rotating of the principal stress orientation. 

 Chapter 7 investigated fabric in different contact networks and its relation to the 

vanishing of the macroscopic second-order work. Micromechanically, the 

second-order work was derived using local level parameters which made it possible to 

interpret the origin of material instability from a microscopic point of view. 

 Chapter 8 summarized the main conclusions of the current study and highlighted 

the future work. 
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Chapter 2 Literature Reviews 

 

 A literature review on various important aspects about the micromechanical 

analysis of granular materials including the characterization of fabric, stress-fabric 

relations, the fabric at critical state and material instability, as well as discrete element 

method is provided in this chapter.  

 

2.1 Homogenization 

In granular materials, the load-deformation behaviour is usually described within a 

continuum mechanics framework, in terms of stress and strain. Micromechanically, 

the mechanical behaviour is dominated by the inter-particle interaction and the 

geometric arrangement of particles, known as the microstructure. The inter-particle 

contact forces, i.e., normal force, tangential force and bounded force, produce motions 

on the contact plane, such as relative displacement, particle rotation and contact 

sliding. Hence, the microscopic interpretation of the stress tensor and strain tensor, as 

well as the geometric microstructure is a fundamental step for constitutively modeling 

of granular material. 

 Among the earliest works, Cundall and Strack (1979) highlighted the significance 

of involving particulate details into the continuum parameters and presented the 

interpretation of the average stress tensor, the average moment tensor and average 

displacement gradient tensor within an assembly of disks. For example, the stress 

tensor and strain tensor can be related to the contact force and particle displacement 

on the particle scale. A key assumption of this process is homogenization within a 

Representative Volume Element (RVE) (see Nemat-Nasser et al. 1996). The RVE is 

considered as a statistically representative of the material. It must be sufficiently large 

and include enough particles. Nemat-Nasser (1999) suggested a relative size of the 
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RVE in the heterogeneous material such that 3

50 10RVED D  , where 
50,RVED D  are 

the diameter of the RVE and the mean particle diameter, respectively. Lower ratios of 

50/RVED D  tend to be applied in the DEM simulations due to the limitations 

associated with the computer technology.  

 

Stress in granular materials  

Among the definitions of the stress tensor in terms of contact forces using averaging 

approaches, Christoffersen et al. (1981) derived the symmetric stress tensor by 

applying the principle of virtual work considering the time rate as 

0

1 ˆ
2

ij c i j j iN l f n f n   , where 
cN , 

if , jn  and 0l̂  are the number of total contact 

within the unit volume of granular mass, the i-th component of contact force vector 

including the normal force and tangential force, the j component of contact normal 

vector and the average length over all branch vectors, respectively. A branch vector, l, 

is the vector joining the centroids of two contacting particles. •  denotes averaging 

which takes place over all 
cN  contacts within the unit volume of granular assembly. 

Mehrabadi et al. (1982) obtained the same formulation of the macroscopic stress 

tensor using average tractions.  Emeriault and Chang (1997) employed the stress 

tensor of principal virtual work and derived the incremental form such that 

0

1 ˆ
2

ij c i j j iN l f n f n    . According to these definitions, the stress tensor is 

symmetric.  

 Rothenburg (1980) analyzed the static equilibrium and obtained an expression for 

the boundary stress tensor in term of the average contact forces and branch vectors as  

c
ij i j

N
f l

V
     with V being the volume of REV, which was verified using 

three-dimensional idealized granular assemblies. Rothenburg and Selvadurai (1981) 
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proposed a continuum expression of the stress tensor using a probability density 

function ( )E n  as 0
ˆ ( ) ( )ij v i j

V
m l f n n E   n n dn , where 

v cm N V  is also known as 

the volumetric density of the contact and ( )f n  is the contact force in the direction of 

n.   

 Chang and Ma (1991) proposed a definition of stress based on the principle of 

energy equivalence referring to the particle point rather than to a local element. The 

basic idea is that the energy at all contacts of a particle equals to the energy calculated 

using the stress and strain on the local scale. Accordingly, the Cauchy stress tensor can 

be given as 
2

c
ij i j

N
f l

V
    . 

 Various stress formulations have been proposed either using statistical averaging 

over the sample volume of contact forces and branch vector or defining the overall 

tractions transformed across an interior imaged plane as the sum of the contact forces 

that represent the mechanical effect on one side of the unit area of this plane (see 

Mehrabadi et al. 1982 ). Regarding statistical averaging methods, three approaches 

have been developed (a) from boundaries (Drescher et al. 1972); (b) from particle 

stress (Christoffersen et al., 1981; Potyondy and Cundall, 2004) and (c) from local 

stress (Bagi, 1996). Nevertheless, all these methods arrive at a similar expression for 

the stress, i.e.  

 
1

1 cN
k k

ij i j

k

f l
V




   (2-1) 

where V is the volume of REV; kf  and 
kl  represent the contact force and branch 

vector of the k-th contact, respectively.  

 

Strain in granular materials  

The volumetric homogenization of the contact forces and branch vectors can be used 

to physically interpret the stress tensor in terms of geometrical considerations and 
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equilibrium. On the other hand, to relate the strain tensor to the microscopic details is 

not straightforward. Many efforts have been dedicated to derive the strain tensor for 

granular materials. Initially, the strain tensor is defined kinematically at the local level. 

Research along this line can be found, for example, in Walton (1987), Jenkins (1987), 

Chang (1993) and Bathurst and Rothenburg (1988). An important assumption for 

these local strain formulations is that the strain field is uniform and that there is no 

particle rotation. Chang and Liao (1990) derived local strain by considering a 

non-uniform strain field and the effect of particle rotation. The local level strain 

definition can help to build the micro constitutive law of granular materials. However, 

the global strain cannot be derived from the local level strain directly using 

homogenization since there are too many unknown parameters.  

 Compared with the local definition of strain, it is more complicated to obtain a 

strain definition in terms of the relative displacement of neighboring grains. Generally, 

two categories of strain homogenization have been developed in granular materials. 

One is the spatial discretization approach or equivalent continuum method that 

describes the assembly as a continuum geometric system such as Voronoi network, 

Dirichlet network, and Delaunay network. Then the displacement gradient tensor 

becomes an expression of the discrete micro-variables only. Using this approach, Bagi 

(1996) arrived the deformation gradient tensor as  

 

,1 cm n N
mn mn

ij i j

m n

e u d
V





   (2-2) 

where mn m n

i i iu u u   and ,m nu u  are the relative displacements of node pair m and n. 

mnd  is an area complementary vector. Similarly, Li and Li (2009) applied the 

volumetric averaging on the sub-cell displacement gradient into the total displacement 

gradient.  

 Another approach is the best fit method based on the premise that the mean field 



Ph.D. Thesis-Jingshan Shi                               McMaster University 

13 

 

of displacement rate, the mean displacement rate gradient multiplying the branch 

vector of the contact, is the best fit of actual particle displacement rate (Liao et al., 

1997, Potyondy and Cundall, 2004). A best fit is achieved by minimizing the 

summation of least squares of differences between the actual displacement gradient 

and the approximate displacement gradients over all particles. Once the best fit curve 

is found, the strain can be obtained through integrating the mean displacement rate 

gradient over time. This approach works well in a material with a homogeneous strain 

field. Shear band or localization may not be picked up in a heterogeneous strain field.  

 

2.2 Fabric tensor 

The concept of the fabric was originally defined to present the directional arrangement 

of particles and associated voids (Brewer, 1964). Thereafter, it was widely used to 

define the internal structure of the granular material. Experimental results have shown 

that fabric is significant for the understanding various properties of a granular mass, 

especially dilatancy and anisotropy (Oda, 1972b; Wan et al., 2007). According to Oda 

(1972b), the fabric of granular mass should include at least two main sub-concepts; 

i.e., (1) orientation of individual particles, and (2) position of the particle and their 

relationships. According to Kuhn et al. (2015), various measures can be used to 

describe the fabric structure of a granular material: particle orientation, particle 

surfaces, contacts between particles, and void space.  

 

Fabric based on particle orientations 

The simplest measures of fabric are those based on the orientations of the particles 

(Kuhn et al., 2015), especially for the non-spherical particles. Oda (1972b) 

characterized the internal structure using an inclination angle, which is defined as the 

angle from the long or short axis of the grain to a fixed direction. Then the distribution 

of particle orientations, or orientation vectors, is described using a directional 
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distribution function ( )E  . The fabric is defined as a ratio of the normalized contact 

area in the minor principal stress direction over that in the major principal stress 

direction.  

 Oda and Nakayama (1988) proposed a fabric definition based on preferred 

orientations of non-spherical particles. They presented the definition of the fabric 

tensor in an assembly with non-spherical particles as that ( )ij i jn n E d


  b  where 

b  is the orientation vector which is parallel to the longest axis of the ellipsoid particle. 

( )E b  and   are the density function of b  and the solid angle corresponding to the 

entire surface of a unit sphere. 

 Kuhn et al. (2015) employed a matrix , , , ,

1 2 3[ , , ]p i p i p i p iJ q q q  and a diagonal matrix 

,p i
A  to represent the principal axes and widths of the i-th particle, respectively. For 

the ellipsoidal particles, ,

1

p i
q  is the orthogonal direction of the particle principal axis. 

For the oval particles, ,

1

p i
q  is oriented along a particle’s central axis and 

,

2

p i
q , 

,

3

p i
q  

are oriented in arbitrary transverse directions. When averaged among all particles in 

an assembly, a tensor-valued measure of the average particle orientations gives:  

 
, , ,

,

3

( )

p p i p i p i

jm ml lk j kp i
J A J

tr
 J e e

A
 (2-3) 

where •  denotes an average over all particles and e is the Cartesian basis vector. 

As a second-order tensor 
p

J  gives clear indication of the particle arrangement. The 

anisotropy of particle orientation is characterized by 
11 33( ) / ( ( ) / 3)p p pJ J tr J . 

According to this definition, the fabric anisotropy is always zero for an assembly of 

spherical particle.  

 

Fabric based on measures of particle connectivity: contact orientation and 
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branch vector 

For both non-spherical and spherical particulate assemblies, particles and their 

connected neighbors can intensively affect the mechanical behaviour of granular 

materials. The inter-particle connection can be qualified with a branch vector or a 

contact normal vector. The branch vector joins the centroids of the contacting particles. 

The contact normal vector is a unit vector that is perpendicular to the contact plane. 

Fabric tensors based on branch vectors or contact normal vectors have been proposed 

in various forms.  

 Among the earliest researchers, Satake (1978) defines the fabric tensor using the 

contact normal vector. The contact orientation gives a basic interpretation of the 

internal structure in both spherical and non-spherical particulate assemblies. This 

definition is the most commonly used expression for the fabric tensor, which is given 

by  

 
1

1 cN
k k

ij i j

kc

n n
N




   (2-4) 

where 
cN  is the total number of the contacts in the system with 

k

in  and 
k

in  being 

components of the kth contact normal vector in the i and j-directions, respectively. The 

fabric tensor can also be defined in terms of particle as 
1

2 pN

k k

ij i j

kp

n n
N




   (Kruyt and 

Rothenburg, 2014).  

 Oda and Nemat-Nasser (1982) adopted a statistic method to describe the 

distribution of the contact normal vector and branch vector. Let ( )E n  and   

represent the density function of n and the solid angle corresponding to the entire 

surface of a unit sphere. The probability density function of the contact normal n is 

defined as ( )E n . The mean value of the ( )f n  can be obtained by applying 

( ) ( )f f E d


  n n . They define a second-order fabric tensor as  
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 0
0

1

ˆ
ˆ ( )

cN
k kc

ij i j i j

k

N l
F l n n E d n n

V V


    n  (2-5) 

in which 0l̂  and V are the mean length of the branch vector and volume of the 

assembly. Instead of considering the contact nature only in Eq. (2-4), both the 

volumetric contact density and the average length of the branch vector are involved 

according to the definition in Eq. (2-5). These two definitions are related by 

0
ˆc

ij ij

N
F l

V
 . Actually, the fabric tensor defined by Oda and Nemat-Nasser (1982) 

emphasizes the connection between fabric tensor and the macro stress tensor. The 

fabric surface can be developed similar to the stress response surface. For the 

non-spherical granules, a natural modification of the fabric tensor Eq. (2-5) becomes 

0

1

ˆ cN
k k

ij i j

k

l
F m m

V 

   with 
k

m  being the unit vector of the branch vector at contact k 

(Mehrabadi and Nemat-Nasser, 1983). 

 Similar to the stress tensor, the fabric tensor can be converted into a diagonal 

form characterized by its principal components. Oda (1982) introduced fabric space 

using a coordinate system with the three axes corresponding to the principal 

components of the fabric tensor. Then a fabric state can be described as a vector in the 

fabric space where the mean and deviator values are the isotropic and anisotropic parts 

of the fabric tensor.  

 Besides defining a fabric tensor quantity using the average length of the branch 

vector, Satake (1982) also proposed a fabric tensor quantity that contains both the 

contact orientations and the branch vectors.  

-branch vector 

 
' ( )ij i j i jH E l l d l l


   n  (2-6) 

-combined fabric tensor  
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'' ( )ij i j i jH E n l d n l


   n  (2-7) 

 Mehrabadi and Nemat-Nasser (1983) proposed a fabric tensor, which includes 

both the contact normal vector and branch vector. The length of the branch vector and 

the contact area are also considered. The fabric tensor is of the form  

 
1

1 cN
k k k k

ij i j

k

H a m n l
V 

   (2-8) 

 Under the static hypothesis, Liao et al. (1997) derived the relationship between 

global strain and inter-particle displacement using a term related to the fabric tensor. 

An inverse form of the fabric tensor is employed to describe the stress localization in 

granular material. The fabric tensor is defined using the branch vector as well as the 

volume of the assembly 
1

1 cN
k k

ij i j

k

B l l
V 

  . Thereafter, Hicher and Chang (2005) 

introduced a simpler expression of the fabric tensor as 
1

cN
k k

ij i j

k

B l l


 .  

 Similarly, Emeriault and Chang (1997) suggested a definition of the fabric tensor 

for the homogenization of the global strain, where the fabric is defined using branch 

vector and contact normal vector, as well as the volume of the representative element, 

as ''

1

1 cN
k k

ij i j

k

F l n
V 

  . For an assembly with 
cN  contacts and identical particle radius R, 

the fabric tensor can be decomposed into an isotropic part and anisotropy part as  

 
'' 1

( )
2

c
ij ij ij

RN
F

V
    (2-9) 

in which 
ij  is a second-order tensor with ( ) 0tr    and 

ij  is the Kronecker 

delta. 

 Radjaï et al. (2012) evaluated the geometrical state of the granular material using 

a combined definition involving both of the coordination number Z and the fabric 

anisotropy. As lowest-order descriptors of the contact network, the combined tensor is 



                               Chapter 2                               

 

18 

 

defined as  

 ( )
2 2

ij i j i j

Z Z
G n n E n n d


   n  (2-10) 

According to this definition, the mean value of 
ijG  becomes 11 22

2 4
P

G G Z
G


   in 

2D and 
6

P

Z
G   in 3D.  

 

Fabric based on surface area 

Surface texture provides critical information in the stereology granular assembly. The 

anisotropy of the surface texture influences both the permeability of the sample and 

the mechanic characters such as dilation and critical state (Kuhn et al., 2015). Kuo et 

al. (1998) defined fabric tensors based on the principles of stereology, including the 

surface area tensor, mean free path tensor and porosity tensor. They introduced an 

orientation distribution function of ( )S u  to quantify the anisotropy of surface area, 

which is defined as the fraction of surface area per unit volume with a unit normal 

vector in the direction of u , as 

 ( ) (1 )
4

v
ij i j

S
S S u u

V
 u  (2-11) 

where, 
ijS  is the surface area tensor, and Sv is the total surface area of the particles in 

volume V, with ( )vS S d


  u   

 Kuhn et al. (2015) defined the orientation of a particle surface using an inertia 

tensor, ,s i
I , for each particle. Then the preferential distribution of the particle surface 

within the assembly is described with the mean of the inertia tensor among all 

particles.  

 
, d

i

s i i

S
A


 I x x    

,

,

3

( )

s
s i

s itr
I I

I
 (2-12) 

where x is the vector from the centroid of the particle surface 
iS  to points on this 
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surface, and x x  is the dyad 
i jx x .  

 

Fabric based on the void 

It is widely accepted that the fabric tensor based on the contact normal is the most 

important measure in connection with the mechanical behaviour of the granular 

material. It is expected that the void might be an alternative or a complementary 

measure of fabric since the particle contact and void are the two fundamental elements 

of the internal structure of granular materials. The hydraulic properties of the granular 

material are affected by the size, shape, orientation, and connectivity of internal voids. 

The proper characterization of the void has been conducted in varies approaches.  

 

 

Figure 2-1: A void with associated particle and a replaced polygon 

 

 Given a void domain enclosed by connected particles, the geometry of the domain 

is described by a polygon with every chord being a vector connecting the adjacent 

contact points. Konishi and Naruse (1988) suggested a mean void tensor vij to 

characterize the void system in terms of the local void within the system. An 

intermediate tensor 
k

ijp  is defined using the edges of the polygon as:  

 
2

1

1

2

k
vnk l l

ij i jl
p v v


   (2-13) 
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where 
k

vn  is the number of associated chord vector v of the k domain. The local void 

tensor can be described using the difference of the principal values 
1 2( )k kp p  and the 

major principal axis 
k  of the intermediate tensor 

k

ijp . Let h  be the unit vector of 

the principal axis of 
k  and 

pN  be the number of the local void. The mean void 

tensor for the while void system can be given as:  

 

2

2
1

1

1 1

2

p

p

N
k

ij i jp N
kk

k

V D h h
N

D




 


 (2-14) 

 Instead of using the local void tensor, Tsuchikura and Satake (1998) present a 

loop tensor for describing the local void cell. The loop tensor k

LF  for the kth void 

domain with 
km  branch vectors m

l  is defined as 

 
1

0

1

2

km
k m m

L

m

F




  l l  (2-15) 

 According to Li and Li (2009), the geometry of a spatial object can be described 

with the polar spherical coordinates, (r, n), in which n is a unit vector representing 

directions, and r is the length of from the center of the object boundary. Therefore, for 

the void cells, the geometry is described by the void vector, v, which is a vector 

connecting the void cell center and the contact points on the boundary. The anisotropy 

of the granular material can be quantified based on an average void cell. The length of 

the void vector in the direction of n is the average length of all the void vectors along 

that direction. This allow us to define  

 0 ( )ij i jG E v n n d


  n  (2-16) 

The integration is taken over the entire domain of solid angle in space. 0E  is the 

normalization factor which is equal to 2  and 4  in 2D and 3D space, 

respectively.  
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Fabric in strong and weak sub-networks 

Traditional attempts to mathematically characterize the internal structure are based on 

the geometrical description of contact normal or branch vector in the whole contact 

network. However, both experimental and numerical results indicate that the majority 

of the contacts carry the force less than the average contact force and the contacts with 

contact forces larger than the average contact force dominate the shear resistance 

(Radjaï et al.,1998; Thornton and Antony, 2000; Peters et al., 2005; Wan et al., 2007). 

 Generally, the contact force distribution is inhomogeneous even among spherical 

particles since the internal structure affects force chains during a loading process. 

Radjaï et al. (1996) evaluated contact network of a granular assembly by defining a 

“ -network” which consists of all contacts with normal contact forces lower than a 

given cutoff  . The value of   may vary from 0 to the maximum contact force in 

the system. The “  -network” corresponding to 
max

nf   and nf   are the 

overall and the weak sub-network, respectively. nf  and 
max

nf  are the average and 

maximum values of the normal contact force. 

 Radjaï et al. (1998) discussed the correlation between contact forces and the 

texture of a granular assembly subjected to biaxial compression test using numerical 

simulations. According to the test results, almost all sliding dissipation occurs within 

weak sub-network, and all contacts within the strong sub-network are non-sliding. 

Moreover, referring to the strong and weak contacts, the contact network is divided 

into a load-bearing network or strong sub-network and a dissipative network or weak 

sub-network corresponding to the normal contact force larger or smaller than the 

average normal contact force. The load-bearing carries the shear-induced anisotropy 

and all contacts are non-sliding. Meanwhile, the orientation of induced structural 

anisotropy in the weak sub-network is orthogonal to that of the overall contact 

network.  
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 Thornton and Antony (1998) derived the relation between the fabric tensor in 

overall contact network, 
ij , and the fabric tensors in the strong (

s

ij ) and the weak 

sub-network (
w

ij ) as (1 ) w s

ij ij ij       where   is the proportion of contact 

number in strong sub-network. Under quasi-static shear deformation, they observed 

that the fabric anisotropy in weak sub-network is much lower than that in strong 

sub-network. Moreover, the fabric tensor for the weak sub-network was found to be 

coaxial with that of the stress tensor. Thornton and Zhang (2010) obtained the 

equation of 2 / 3 / 3w s

ij ij ij     which is independent of the radial strain direction 

and magnitude of the deviatoric strain.  

 Radjaï et al. (1998) investigated the force distribution within both 

two-dimensional and three-dimensional systems through a set of numerical 

observations. They found that the weak forces do not contribute to the shear stress; the 

stress computed from the weak sub-network is analogous to the mean stress. It is the 

strong forces that support the whole shear stress of the medium. Even for a granular 

packing with elongated particles, the shear stress is totally sustained by the strong 

sub-network (Radjaï et al., 2012). 

 Peters et al. (2005) conducted numerical simulations on a 2D granular assembly 

consisting of polydisperse particles which were subjected to indentation by a rigid flat 

punch. They found that only half of the particles in the strong sub-network were 

actually working in the force-chain. In other words, the weak sub-network might play 

a significant role during resisting external loads.  

 García and Medina (2008) observed a switch between the orientation of structural 

fabric tensor in strong sub-network and that in weak sub-network. After a series 

loading-unloading cycles, they found that induced anisotropies remained for both 

contact networks.  

 By adopting a statistical framework, Kruyt (2016) proposed an alternative 
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definition of weak and strong contacts based on the comparison of the forces at 

contacts with the average force within the specific contact orientation. Under this 

definition, both the pressure and the shear stress were found to be equally carried by 

the weak and strong sub-networks. 

 Thornton and Zhang (2010) explored stress and fabric responses to general 

three-dimensional compression tests along radial strain paths which corresponds to 

straight lines on the π-plane of principal strain components. The fabric response 

envelope was found to be similar to the stress response surface, which could be 

described with Lade surfaces. The anisotropy corresponding to the weak sub-network 

at critical state was relatively small, but depending on the stress paths. 

 Based on three-dimensional DEM simulations, Zhao and Guo (2013) investigated 

the shear-induced anisotropy during drained/undrained shearing. They concluded that 

the weak sub-network always showed isotropic features, while the nature of the 

overall contact network was dominated by that of the strong sub-network. 

 

2.3 The stress-fabric relation  

As mentioned previously, the internal structure or fabric can influence the 

macroscopic behaviour of a granular assembly significantly. The fabric can be 

quantified by various measures that characterize microscopic features such as the 

distribution of contact normals or branch vectors that describe inter-particle 

connectivity (Mehrabadi et al., 1983; Mehrabadi et al.,1982; Oda et al.,1985; 

Satake,1978), the distribution of void size or orientation (Fu and Dafalias, 2015; 

Konishi and Naruse, 1988; Kuhn, 1999; Li and Li, 2009), the distribution of longer 

axis for non-spherical particles (Oda et al.,1985) or the orientation of particle surfaces 

(Kuo et al.,1998). The measure of the contact orientations is the most responsive to 

loading than the other measures (Kuhn et al.,2015). As shown in Figure 2-2, the 

quasi-static loading-deformation responses of a particulate assembly are governed by 
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a contact law that describes the correspondence between contact force and relative 

displacement at the local level. Macroscopically, the stress-strain response follows 

constitutive laws. One practical approach to bridge the gap between local and global 

behavior is to add the fabric evolution into the constitutive laws. Following this 

approach, various fabric evolution models have been established using either stress or 

strain rate (Kruyt, 2012; Maeda et al., 2006; Ng, 2001; Oda et al., 1982; Satake, 1987; 

Subhash et al., 1991; Zhao and Guo, 2013). The fabric evolution within these models 

employs the fabric tensor for the overall contact network. Not all contacts play the 

same role during the deformation of a granular assembly. Moreover, the load-bearing 

strong sub-network carries a direct geometrical anisotropy induced by shear. It gives 

rise via buckling to an indirect anisotropy inside the dissipative weak sub-network 

with a preferred direction orthogonal to the major principal direction of the stress 

tensor (Radjai et al., 1998).  

 

 

Figure 2-2: Skeleton of micro-macro transition in granular material 

 

 The preferential distribution of the contact force network describes the 

mechanical anisotropy and that of the contact network is the geometric anisotropy. 

The shear-induced anisotropy of contact network in an initially isotropic specimen can 

be interpreted as a result of the interaction between the contact force-chain and the 

contact network. According to Eq. (2-1), the macro stress tensor is developed using 
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the contact force vector and the branch vector. Therefore, the relation between the 

fabric anisotropy and stress parameters, such as the shear strength, can be thoroughly 

investigated. Generally, research in this area follows two trends: (1) decomposition of 

the stress tensor into components related to characteristics of contact force and 

parameters reflecting the microscopic geometry or the fabric, i.e., the 

stress-force-fabric relation; (2) observation or derivation of the relation between fabric 

tensor and stress tensor directly. 

 

Stress-force-fabric(SFF) relation 

On the basis of static equilibrium, Rothenburg and Selvadurai (1981) derived the 

expression of the stress using the microscopic characterization of a contact force 

network and a contact normal network. A Stress-Force-Fabric (SFF) relation in a 

two-dimensional case can be obtained in the form of 
2

t c n t

n

a a a
. Herein, 

1 2( ) / 2t
 and 

1 2( ) / 2n
, respectively. The three components on the 

right-hand side are the degree of anisotropy for contact normal ( ca ), the normal 

contact force ( na ), and tangential contact force ( ta ). It is clear that the ability of the 

specimen to resist an external load depends on the anisotropies in the distribution of 

the contact, normal contact force and tangential contact force, which equally 

contribute to the shear strength of an assembly. It is notable that this SFF relation is 

based on two assumptions: (a) the distributions of the contact normal, the normal 

contact force and tangential contact force are independent of each other and (b) the 

major principal axes of these directional distributions are coaxial. Chantawarungal 

(1993) developed a SFF equation for three-dimensional cases using spherical particle 

and then verified the equation with numerical results from true triaxial tests. 

Following these assumptions, Voivret et al. (2009) considered the effect of anisotropy 
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in the distribution of branch vector ( la ) and obtained a stress-force-fabric equation as 

of the form 
2

t c n l t

n

a a a a
 for two-dimensional cases. Here, 

t  and 
n  

are the deviatoric and effective mean stresses. Similarly, Zhao and Guo (2013) added 

anisotropy of the distribution of the branch vector. Then the stress-force-fabric relation 

becomes 
'

2 3
( )

5 2
c l n t

q
a a a a

p
     where cross products between two degrees of 

fabric anisotropy are neglected. Moreover, Ouadfel and Rothenburg (2001) concluded 

that 
la  can give a negative contribution to the overall shear strength if the particle 

shape is non-spherical. 

 Instead of adopting the assumption that the distribution of the contact force vector 

is independent of that of the contact normal vector, Kruyt (2016) described the 

probability density function of both contact force and contact normal vectors under a 

statistic framework. A joint probability density function and a conditional probability 

density function were employed. An assumption that the contact force and contact 

normal within a certain angle are self-similar to the whole system was made. A 

stress-force-fabric relation was obtained for both overall contact network and weak 

sub-network without considering the tangential contact force. For the overall contact 

network, the SFF relation coincided with the conclusion made by Rothenburg and 

Selvadurai (1981) without considering 
ta .  

 Li and Yu (2013) applied the theory of directional statistics in exploring the 

directional dependence between contact vectors and contact forces. The directional 

dependence between the contact vectors and contact forces was described by a scalar, 

which is independent of direction. They proved that the assumption made by 

Rothenburg and Selvadurai (1981), the directional distribution of contact vectors is 

independent with that of the contact forces, which does not hold true for the 
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non-proportional loadings. Meanwhile, their orientations were not coaxial neither 

during the non-proportional loadings.  

 Hosseininia (2015) decomposed the branch vector into a normal and a tangential 

component according to the contact plane and then derived the stress-force-fabric 

equation for planar granular materials. He found that assumptions made by 

Rothenburg and Selvadurai (1981) are not applicable since the branch vector did not 

coincide with the contact force vector. 

 

Fabric evolution- numerical findings 

Mehrabadi et al. (1982) provided a relation between the stress tensor and the fabric 

tensor in terms a fourth-order tensor as 
ij ijkl klA F   where the 0

ˆ
kl c i jF N l m m ,

0
ˆ

ij c i jN l m m  , and 
ijklA  is a function of the contact normal vector and 

Kronecker delta  
ij . Furthermore, Mehrabadi and Nemat-Nasser (1983) proposed a 

stress expression based on the local stress tensor on the contact scale. This leads to the 

average stress being connected with the fabric tensor in an inherent nonlinear equation 

such that 
' '

0 1ij ij ik kja F a F F   . Here '

0a  and '

1a  are the functions of the stress 

invariants. Since the fabric tensor and the stress tensor are coaxial according to their 

definition above, Oda et al. (1982) presented a stress-fabric relation of the form 

' ' 2

1 2 1 2 1 2( )A F F B F F     in which the parameter 'A  and 'B  are -1.0 and 2 .0 

based on results from biaxial compression tests on assemblies of oval cross-section 

rod. Results of biaxial tests on photo-elastic rods demonstrate that the ratio of 

principal values of fabric tensor was approximately proportional to the square roots of 

the corresponding principal stress ratio as 1/2

1 2 1 2/ ( )     (Satake, 1984). A 

similar relation was obtained by Maeda et al. (2006)  

 Antony (2004) conducted biaxial compression tests on the assembly of oval 
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particles. They obtained a relation between shear stress ratio and the square root of 

22 11( )s s   for strong sub-network as 1/2

1 2 1 2 22 11( ) / ( ) (1 2)( )s s         where 
11

s  

and 
22

s  are the components of fabric tensor defined in Eq. (2-8). By carrying out 

drained triaxial compression tests on an assembly of ellipsoidal particles, Ng (2001) 

observed that the principal stress ratio (
1 3/  ) is proportional to 

1 3ln( / )   where 

1  and 
3  are the major and minor principal components of the fabric tensor for 

overall contact network defined according to Eq. (2-8).  

 Various fabric evolution laws have been proposed through either theoretical 

approaches or experimental tests. The application of fabric evolution laws in a 

continuum modeling of granular material is far from satisfactory. Wan and Guo (2004) 

proposed a stress dilatancy model with embedded microstructural information by 

assuming a fabric evolution law. They assumed that the rate of change of fabric tensor 

components is proportional to the rate of change of the deviatoric stress ratio which is 

defined as the increment of deviatoric stress over that of the mean stress. Their 

principal orientations were assumed to be coaxial with each other. Similarly, Yu (2008) 

assumed that the increment of the fabric tensor is related to the deviatoric stress and 

the stress rate.  

 

2.4 Fabric at critical state  

The existence and uniqueness of the critical state fabric has been a controversial topic 

in soil mechanics. Even laboratory tests with simple and controllable boundaries often 

give opposite findings. For example, the critical state strength of sand has been found 

to be stress-path dependent, which means the critical state line may be not unique 

(Riemer and Seed, 1997; Vaid and Chern, 1985; Vaid and Sivathayalan, 1996; 

Yoshimine et al., 1998). Yoshimine et al. (1998) demonstrated non-uniqueness due to 
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an anisotropic fabric structure. The fabric anisotropy could be either inherent or 

induced. By conducting a series of hollow cylinder undrained torsional tests on 

Toyoura sand, Nakata et al. (1998) and Yoshimine et al.(1998) found that the 

orientation of fabric structure within a soil specimen has a considerable effect on the 

critical state failure. Some research also indicates that shearing processes can totally 

destroy all previous memory of granular media, including initial anisotropy, such that 

the critical state will not be affected by the initial fabric structure (Ng, 2009; Soga and 

Yimsiri, 2010).  

In general, as pointed out by Been and Jefferies (1985), a state is a description of 

physical conditions, as opposed to properties of a material or substance. The 

behaviour of sand may be characterized in term of two variables: a state parameter 

combining the influence of void ratio and stress, and a fabric parameter characterizing 

the arrangement of the sand grains. Hence, the fabric should be properly considered 

when describing the critical state. Moreover, microstructural studies without exception 

reveal that the fabric anisotropy at critical state is considerable (Li and Li, 2009; 

Masson and Martinez, 2001; Masanobu Oda, 1972). A uniqueness of void 

ratio-confining stress-fabric relation is extensively pursued. Li and Dafalias (2002) 

employed a joint invariant of the fabric tensor and the stress tensor, as a state 

parameter of the critical state. Therefore, the critical state line in the e-p space was 

made a function of the joint invariant. It is noted that only inherent anisotropy was 

considered as a characterization of the contact orientations. Zhao and Guo (2013) 

incorporated a fabric anisotropic parameter K, defined as the first joint invariant of the 

deviatoric stress tensor and the deviatoric fabric tensor, into the critical state 

conditions. A unique relationship between the mean stress level and the parameter K 

was obtained, with the fabric anisotropy being induced by shearing. Li and Dafalias 

(2011) presented an Anisotropic Critical State Theory (ACST) for granular material by 

introducing a normalized fabric parameter that evolves toward a critical state value 
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norm-wisely and direction-wisely. The fabric tensor is defined based on the concept of 

void cell (Li and Li, 2009). According to Fu and Dafalias (2015), a strong linear 

correlation between contact-normal-based fabric tensor and void-vector-based fabric 

tensor was obtained for granular material composed of non-elongated particles. The 

fabric tensor based on contact normal can be easily incorporated into the ACST for 

assembly of non-elongated particles. Furthermore, Gao et al. (2014) developed a 

critical state plastic model expressed by the direct and joint isotropic invariants of the 

stress tensor and fabric tensor. 

By adopting the fabric space defined by Oda (1982), Thornton and Zhang (2010) 

found that the response surface of the induced structural anisotropy was a small 

inverted Lade surface using triaxial tests with fixed strain paths at the critical state. A 

new parameter 
*

f  was introduced to define the fabric response envelopes, thereby 

providing a general measure of the induced structural anisotropy. At critical state, the 

value of 
*

f  was found to be a constant for all strain paths. Similar fabric envelopes 

were obtained by Zhao and Guo (2013) using triaxial tests along fixed stress paths. 

 

2.5 Material instability and contact network 

Strain softening and instability of geomaterials may lead to catastrophic deformation 

including failure. In granular material, various bifurcations and their related failure 

modes coexist, such as plastic limit, strain localization and instability. In mechanical 

terms, stability is obtained if a small load increment yields a small strain increment, 

while instability is defined as a phenomenon that a large plastic strain develops 

quickly due to the inability of a soil element to sustain a given stress or load (Guo and 

Su 2007). The theoretical basis for stability is Drucker’s postulate of non-negative 

second order plastic work, i.e., 
2d d d 0p

ij ijW     (Drucker, 1957) This postulate 

was extended to include the total work by Hill (1958) that 
2d 0W  . Positive 
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second-order work constitutes is a sufficient, but not a necessary condition of stability. 

When 
2d 0W  , the effective collapse of a homogeneous sample depends on the 

loading direction and the controlled loading variables (François Nicot et al., 2013; 

Prunier et al., 2009). It can be interpreted as a bifurcation criterion. At a bifurcation 

point, the response path can be unique or non-unique (undetermined) and stable or 

unstable. For example, in tests along proportional strain paths, the failure 

corresponding to the vanishing of the second-order work is thought to be non-effective 

(François Nicot et al., 2013).  

Based on this postulate, various experimental studies have been conducted to 

explore the instability of granular sand (Castro, 1969; Chu et al., 1993; Daouadji et al., 

2013; Lade, 2002; Lade et al., 1988; Wan et al., 2007). Lade (1988) proposed the 

existence of an instability line above which the instability occurs. Later on, this 

instability line was found to be void ratio and stress history dependent. As put forward 

by Nicot and Darve (2009), Hill’s second-order work criterion lacks physical insight 

and misses physical links between the instability and vanishing of the second-order 

work. Matiotti et al. (1995) found that the initial anisotropic consolidation is an 

important factor in the Lade’s instability line. Notably, Wan et al. (2007) conducted 

series of controlled strain path tests using photoelastic disks. They found that strong 

force-chains in the core play a critical role in the instability of assembly. Sibille et al. 

(2007) presented the micromechanical detail for the vanishing of the second-order 

work, which does not work profoundly with DEM results. 

Nicot and Darve (2006) inspected the physical origins of the Hill’s instability 

condition for frictional materials using the micro-directional model and demonstrated 

that the macro-scale instability could be directly related to the constitutive nature of 

the local contact model between neighboring particles. The micro-directional model 

was proposed to relate to models at two different scales (Nicot, 2004, 2003). However, 

decomposing the macroscopic second-order work has highlighted that, as far as 
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granular materials are concerned, the macroscopic second-order work could not be 

understood as the single summation of all the local second-order works on each 

contact direction; other terms account for the change in volume and fabric must be 

considered. The specific effect of fabric structure on the macro-scale instability was 

not verified. Furthermore, for each incremental step, the generating and deleting of the 

contacts were ignored.  

A major challenge is to understand the micromechanical mechanisms that govern 

the vanishing the second-order work. To continue work along this line, Nicot et al. 

(2014) found that global potential instability occurs only after several contact planes 

become potentially unstable. After vanishing of the summation of all the local 

second-order works, global potential instability occurs and the overall stress-strain 

response shows a decrease of the deviatoric stress. More inter-particle contact planes 

become potentially unstable. Misra and Poorsolhjouy (2015) investigated the 

instability micromechanically for a 2D assembly of cylindrical particle by using both a 

kinematic method and a least squares method. Along with the principal virtual work, 

the work done by microscopic force-displacement conjugates equated to that of the 

macroscopic stress and strain tensor conjugates. They found that the macroscopic 

instability coincided with instabilities of the inter-particle contacts. But, the 

micro-scale mechanisms for these two methods were not identical when the 

information of fabric structure was not properly considered. 

It is believed that the microstructure or fabric of granular material evolves during 

the deformation history and the fabric is inevitably linked with the macroscopic 

behaviour related to the stress path, such as material strength and stability. Thus, 

fabric structure must be incorporated into the macroscopic instability of granular soil. 

 

2.6 Coaxiality between fabric tensor and stress tensor  

In geotechnical engineering, principal stress rotation is inevitable in responding to 
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loading conditions such as cyclic loading, excavation, earthquakes etc. Upon cyclic 

rotation of the stress, permanent strain can grow continuously even when the 

magnitudes of principal stresses are kept constant (Ishihara, 1983). The experimental 

studies by Roscoe et al. (1967) and Roscoe (1970) shows that the principal stress 

direction changes in simple shearing tests for which the direction of the principal 

strain rate does not follow. This phenomenon is also known as the non-coaxiality. 

Moreover, the difference between the principal stress orientation and principal strain 

rate orientation is the largest when the shear strain is small and decreases with the 

shear strain (Roscoe, 1970; Matsuoka et al., 1988). Oda and Konishi (1974) found that 

the principal axes of the stress and strain increments did not generally coincide with 

each other, at least up to the peak stress ratio. A similar conclusion was obtained by 

Arthur et al. (1977) and Hight et al. (1983).  

In granular materials, both the stress and strain are originated from the 

inter-particle actions, the contact force, and relative displacement, in the microscopic 

scale as shown in Eqs. (2-1) and (2-2). Therefore, the non-coaxiality between the 

directions of the principal stress and strain rate is inevitably related to the internal 

structure at the particle scale. The coaxiality assumption is actually only valid for 

isotropic media according to Hill (1950) and along proportional loading paths (Li and 

Yu, 2011).  

Among the earliest studies, Matsuoka et al. (1988) connected the non-coaxiality 

between the orientation of the principal stress and the direction of the principal strain 

rate with the internal structure and the fabric, during the simple shearing tests using 

the photoelastic rod mass. The principal direction of the directional distribution of the 

contact normal also rotates during the rotation of the maximum shear stress, which 

indicated that the induced anisotropy is a natural consequence of the external loading 

involving principal stress rotation. Similar work has been conducted by Wong and 

Arthur (1986) by using a directional shear cell apparatus. They observed 
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non-coaxiality between the directions of the stress and strain rate along planes other 

than the bedding plane. Generally, the non-coaxiality is found to be dependent on the 

fabric anisotropy, that defines the preference of the directional distribution of particle 

contacts (Cai et al., 2013; Li and Yu, 2009; Miura et al., 1986; Ohkawa et al., 2011; 

Pradel et al., 1990). The evolution of fabric anisotropy and its direction are 

indispensable for modeling the non-coaxial behavior of granular material (Gao and 

Zhao, 2017; Yu, 2008).  

The Discrete Element Method (DEM), proposed by Cundall and Strack (1979), 

enables monitoring of the internal structure during the numerical experimental tests 

and provides an ideal methodology for studying non-coaxiality. Among those first 

using two-dimensional DEM to investigate the behavior of granular material, Arthur et 

al. (1977) conducted biaxial tests (2D) along stress paths that included a chosen 

sudden change in the major principal stress direction. Thornton and Zhang (2006) 

examined shear banding and non-coaxial flow rules for simple shear tests using a 2D 

numerical model. Dabeet et al. (2015) investigated the non-coaxial stress-strain 

behavior by performing 3D DEM simulations to mimic the direct simple shear test. Li 

and Yu (2009) studied the influence of inherent anisotropy on the stress-strain 

behavior on continuously sheared 2D tests using two-particle bounded disks. They 

found that the non-coaxiality depends on the relative direction and magnitude of the 

contact fabric anisotropy and contact force anisotropy. Ai et al. (2014) conducted a 

series of simple shear tests using a discrete element method. The degree of fabric 

anisotropy, as well as its orientation, was investigated. They concluded that the 

evolution of the principal fabric direction resembled that of the principal stress 

direction. In other words, the orientation of the principal fabric rotated during the 

rotation of the principal stress direction.  

The micromechanical study of the non-coaxial behavior of granular material 

mostly starts from the fabric-stress relation. The Stress-Force-Fabric (SFF) proposed 
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by Rothenburg and Selvadurai (1981) is based on the assumption that the distribution 

of contact normal is independent with that of the contact force or 
c n t    . Based 

on this assumption, we can easily obtain that the orientation of the principal stress is 

coaxial with that of the principal fabric tensor or 
c   . Here, , , ,c n t      are the 

directions of 
ca , 

na , 
ta  and the principal stress, respectively. However, little effort 

has been conducted to verify the conclusion that 
c   . Based on the SFF relation 

obtained by Rothenburg and Selvadurai (1981), Hosseininia (2015) derived the 

expression of 11 sin 2
tan ( )( , , )

2 cos2

i i

i i

a
i c n t

a







  . The assumption of 
c n t     was 

verified using a 2D biaxial compression test. It is worth to mention that, the principal 

stress direction is not monotonically rotated during the test. Li and Yu (2013) derived 

the SFF function based on directional statistical theory and considered the effect of 

statistic dependence between the contact vectors and the contact forces. They 

concluded that the assumption of 
c n t     was invalid for non-proportional 

loading.  

 

2.7 Discrete element method  

As noted previously, particulate systems are quite common in nature. Their dynamic 

behavior is very complicated due to the discrete nature induced by the interaction 

between contact particles. Owing to their heterogeneous structure, classical continuum 

mechanics cannot completely capture the mechanical behaviour of granular material 

because of the fundamental assumptions regarding continuity, homogeneity, and 

isotropy. The discrete particle simulation technique rapidly flourished with the advent 

of computing technology. A well-known modeling framework is the discrete element 

method (DEM) which was initially developed by Cundall (1971) for the analysis of 
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rock mass problems. Cundall and Strack (1979) adopted this method in describing the 

mechanical behaviour of particulate assemblies.  

Generally, the discrete element method is based on dynamic or transient analysis 

using an explicit numerical scheme in which the particle interaction is monitored for 

each individual contact and the motion of the particles is modeled from particle to 

particle. The interaction between contacting particles is viewed as a transient problem 

that the state of equilibrium developed whenever the internal force balances. Two 

fundamental calculations are adopted in a DEM analysis. One is Newton’s second law 

describing the motion of the individual particle. The other is a force-displacement law 

acting on the contact. One basic assumption for the explicit numerical scheme lies in 

that the disturbances cannot propagate from any particle further than its neighbors in a 

single time step (Cundall and Strack 1979).  

DEM has been extensively used to study various geomechanical problems which 

can be categorized into two main motivations. In the first case, the DEM can be 

applied to simulate physical laboratory tests in which the evolution of the contact 

forces, the particle and contact orientations, the particle rotations etc., can be easily 

measured. While it is incredibly difficult to access all those details in a physical 

laboratory test. As far as the laboratory test is concerned, the most common modeling 

of the granular matter is based on the quasi-static condition in which, the loading rate 

is slow enough to ensure the inertial forces is much smaller than typical contact forces 

(Cundall and Strack 1979). Thereafter, DEM simulation has been extensively used to 

study the quasi-static behaviour of granular matter for different shearing flows: a) 

direct shear test, e.g. Cui and O’Sullivan (2006), Masson and Martinez (2001), 

Thornton and Zhang (2006) and Liu and Matsuoka (2003); b) biaxial compression test, 

e.g. Oda and Iwashita (2000), Kuhn (1999), O’Sullivan et al. (2002), David et al. 

(2007), Potyondy and Cundall (2004), Rothenburg and Kruyt (2004) and Antony et al. 

(2004); c) triaxial compression test, e.g. O’Sullivan et al. (2007), Ishibashi and Capar 
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(2003), Belheine et al. (2009), Thornton and Zhang (2010), Zhao and Guo (2013), 

Yoshimine et al. (1998) and Nicot et al. (2014). Validation of the results from DEM 

simulated tests has been conducted extensively. For example, Cheng et al. (2003) 

showed that the macroscopic behaviour of triaxial tests obtained in their DEM 

simulations is similar to those from laboratory tests on sands/silica. Powrie et al. 

(2005) conducted biaxial tests and found that effective angles of friction at peak 

strength and critical state are similar to those obtained from test results in the lab.  

A second, more applied, motivation for the used of DEM is that it allows analysis 

of the mechanisms involved in large-displacement problems in geomechanics, e.g. 

rock cracking, rock fill, slope stability, fluid-solid coupling, soil-machine interaction, 

which can not easily be modeled using continuum approaches. Since the real 

boundary value problem will include millions of particles with highly complex and 

varying geometries, DEM simulation could be applied within a simplified physical 

system and provide good insights into the development of mechanisms (O’Sullivan, 

2011). 

Disks and spheres are currently the most popular types of particle considered in 

2D and 3D DEM simulations; respectively. This is because the contact detection and 

the contact force computing are much easier conducted than those of irregular 

particles. However, due to the complex geometries of real soil particle, one drawback 

associated with using disk or sphere particles is that the rotation of the particles 

experience greatly exceeds the rotation particles has in real soil under equivalent 

loading conditions (O’Sullivan, 2011). Elliptical particles (2D) for two-dimensional 

analyses were proposed by Rothenburg and Bathurst (1991) and Ting (1992). More 

cases can be found in Azéma and Radjaï (2012), Bathurst and Rothenburg (1992) and 

Fu et al. (2012)  The ellipsoid particle (3D) was introduced by Lin and Ng (1995) 

and Ng and Lin (1997). Vu-Quoc et al. (2000) applied ellipsoidal particles to simulate 

the dry granular material. The ellipsoidal particles were represented by clusters of 
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spheres for contact detection and for contact-force calculation. The method of cluster, 

gluing several spherical particles into one element through overlapping, provides an 

efficient tool for generating non-smooth, non-convex and non-spherical geometries. 

Various authors have proposed algorithms to create cluster particles, for example, 

Favier et al.(1999), O’Sullivan (2002) and Vu-Quoc et al. (2000). Even using circular 

and spherical particles, DEM simulation can capture mechanical behaviors observed 

in the laboratory tests. 

As a powerful tool of investigating the microscopic behaviour of the granular 

material, the DEM simulation has been extensively employed to bridge the gap 

between micro-macro responses of the granular material, for example, the evolution of 

fabric structure in various loading paths. Rothenburg and Bathurst (1989) 

characterized the directional distribution of the contact normal and contact forces 

based on the data from DEM simulated biaxial tests using disc-shaped particle 

conduced by Bathurst (1985) and validated the Stress-Force-Fabric relation, originally 

proposed by Rothenburg (1980) based on micromechanics approach. Thereafter, 

Bathurst and Rothenburg (1992) explored the fabric evolution with stress and strain 

terms using DEM simulated tests on assemblies of 2D ellipse particles. Ouadfel and 

Rothenburg (2001) studied the fabric evolution in DEM simulated triaxial tests on 

assemblies of ellipsoid particles. Antony et al. (2004) analyzed the effect of the 

particle shape on the fabric evolution during DEM simulated biaxial compression tests 

where oval and circular particle was employed. By applying DEM simulation, Kuhn et 

al. (2015) explored the evolution of fabric structure in response to biaxial compression 

using assemblies of ovoid particles. More than fourteen measures of the fabric 

structure are investigated and can be categorized into four types: particles, particle 

surface, interparticle contact, the void space. The evolution of the fabric structures for 

the strong and weak sub-networks was also investigated. Hosseininia (2015) carried 

2D biaxial compression tests on aggregates consisting circular particles or elongated 
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polygon-shaped particles using DEM simulation. The evolution of the fabric 

anisotropy, as well as its direction, was investigated. Zhao and Guo (2013) studied the 

characteristics of shear-induced anisotropy in granular material based on 

three-dimensional discrete element method simulation. In their research, the distinct 

features associated with the evolution of internal granular structure and different 

anisotropy sources during drained/undrained shearing of granular samples were 

carefully examined. Zhao and Guo (2014) considered rotational resistance among 

spherical particles in the DEM code as an approximate way to account for the effect of 

particle shape. The internal structure was divided into a strong force-chain network 

and a weak force-chain network. The 3D test results indicated that the critical state can 

be uniquely characterized by two linear relations between e p  and lnca p , 

where p  and 
ca  are the mean effective stress and the fabric anisotropy.  

 

2.8 Summary 

A brief literature review has demonstrated the characterization of internal structure 

and its relation to the macroscopic response of granular materials. The microstructural 

definition of fabric tensor, stress tensor and strain, the fabric-stress relation, coaxiality 

between directions of the fabric tensor and stress were presented. Generally, the 

following statements can be concluded :  

a) The fabric tensor which is defined using the contact orientations, characterized 

by the branch vector or contact normal, is one of the most apparent and effective 

measures associated with the mechanical response of the granular material. Therefore, 

one possible approach of microstructure based continuum model is to introduce the 

fabric tensor into the constitutive equations. A fabric evolution law in terms of the 

fabric-stress relation is a necessary prerequisite.  

b) Several fabric-stress relations have been obtained under either statistical 
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framework or numerical simulations. However, a unique equation that could be 

introduced into the constitutive model, has not been proposed.  

c) The weak and strong sub-networks behave individually during the shear 

deformation. The weak sub-network behaves much like the mean stress while the 

strong sub-network contributes to most of the shear strength. The evolution of fabric 

anisotropies in these sub-networks with stress deserves more effort. 

d) At critical state, the overall contact network develops a high degree of fabric 

anisotropy depending on the loading path, which is similar to the critical state stress 

ratio. Hence, the fabric and its evolution at critical state have been intensively 

investigated with an expectation of achieving an anisotropic critical state theory. 

e) The micromechanical study of the second-order work within a granular 

assembly gives the conclusion that the macro second-order work can be decomposed 

into three terms, the summation of the all local second-order work, the term induced 

by fabric evolution and the term induced by volume change. Therefore the fabric 

evolution corresponding to the vanishing of the second-order work might reveal the 

physical motivation of the macro instability.  
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Chapter 3 Numerically Simulated Laboratory Tests 

 

3.1 Introduction 

The discrete element method makes use of dynamic or transient analysis that 

considering the dynamic interaction of a system of interacting particles based on 

explicit time-marching schemes. The particle interaction is monitored for each 

individual contact and physical motion is modeled for individual particles. A contact 

constitutive model is employed to describe force-displacement on the contact scale. A 

dynamic equilibrium is always fulfilled for the individual particle. Hence, DEM 

simulations can provide dynamic information of micro-scale, such as the trajectories 

of particle connections and transient forces acting on individual particles, which are 

difficult to obtain in physical experiments. Moreover, numerical tests can be a 

supplement of real tests in investigating the mechanical behaviour of granular 

materials since various states can be easily handled using DEM approaches, which 

may not be applicable in real tests.  

A brief outline of the discrete element approach is firstly demonstrated followed 

by an introduction of the contact model and parameter selection for numerical 

simulations. By adopting the selected DEM properties, a series of biaxial tests along 

proportional strain paths, simple shear tests and three-dimensional test along radial 

stress paths on the π-plane will be conducted to simulate the mechanical responses of 

granular material in the experimental tests. 

 

3.2 Numerical tool-Discrete Element Approach  

Following Cundall and Strack (1979), a single calculation step for interacting and 

potentially interacting particles can be divided into two stages: finding the contact 

force corresponding to the relative displacement between two contacting particles; 
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determining accelerations of individual particle based on the dynamic equilibrium. 

Owning to the particle motion, springs are introduced or removed as contacts are 

formed or broken. The continuous removal and introduction of contact springs result 

in a change in the overall system stiffness. 

 

Description of motion of particles  

To illustrate the mechanisms of the discrete approach during a calculation cycle, a 

simple contact integration procedure is assumed, as shown in Figure 3-1. Two initially 

isolated particles, A and B with the radius and mass ,A Br r  and ,A Bm m , respectively, 

move together motivated by the initial boundary conditions. The particle centers 

corresponding to A and B are ( , )A Ax y  and ( , )B Bx y ; respectively. The velocity 

vectors for translational motion of A and B are ( , )A Ax y  and ( , )B Bx y . The 

acceleration vectors for translational motion of A and B are ( , )A Ax y  and ( , )B Bx y . At 

time step 
0t , each particle has an independent velocity in the x-direction, 

0,A tx  and 

0,B tx , respectively. At time step 
it , two particles are detected to be in contact at point 

C with the velocities being , iA tx  and , iB tx  in the x-direction. The contact detection is 

conducted by the condition that the distance between two particle centers is less than 

the sum of their radii, i.e. 
AB A Bd r r  , where 2 2

, , , ,( ) ( )
i i i iAB A t B t A t B td x x y y    . 

Once in contact, an overlap between two particles develops and during the time step, 

the overlap becomes , ,( )
i i i

x

t A t B tx x t     in the x-direction. An incremental 

force-displacement law at contact C during the step yields 

 
,

, i i

x A n x

n t tf k     , 
,

, i i

x B n x

n t tf k     (3-1) 

where 
nk  is the normal stiffness; 

, ,

, ,,
i i

x A x B

n t n tf f   represent the x-components of normal 
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force increment within the time step for particle A and B, respectively. Therefore, the 

resultant x- components of the normal contact force increments for particle A, 
,

, i

x A

n tF , 

is summations of contact forces over all 
i

A

tN  contacts regards to particles A at this 

time step. Therefore, 
,

, i

x A

n tF  and 
,

, i

x B

n tF  can be expressed as  

 , , ,

, ,

1

A
ti

i i

N

x A x A j

n t n t

j

F f


   ; , , ,

, ,

1

B
ti

i i

N

x B x B j

n t n t

j

F f


    (3-2) 

The x-components of the acceleration increment for particle A and B within this time 

step can be derived using Newton’s second law as  

 
,

, /
i

x A

A n t Ax F m   ; 
,

, /
i

x B

B n t Bx F m    (3-3) 

The new accelerations for time step 
it  can be updated as 

1, ,i iA t A t Ax x x

    and 

1, ,i iB t B t Bx x x

    for particles A and B, respectively. , iA tx  and , iB tx  are the 

accelerations for particle A and B in the positive x-direction for the time step 
it . By 

assuming that these accelerations are constant during the time period t , the updated 

velocities for particle A and B at the end of this time step (
it ) become  

 
1 1, , ,i i iA t A t A tx x x t
 
    

1 1, , ,i i iB t B t B tx x x t
 
    (3-4) 

Similarly, during the subsequent time step, the incremental overlap at contact C in 

the x positive direction becomes 
1 1 1, ,( )

i i i

x

t A t B tx x t
  

    . The incremental normal 

contact force and the accelerations of particles can be obtained using Eqs. (3-1) to 

(3-4). For simplification purposes, only one inter-particle contact is presented in 

Figure 3-1. It is worth mentioning that the particle acceleration is governed by all 

contacts forces related to the specific particle and the tangential contact force together 

with the particle rotation must also be considered for actual cases. 

Figure 3-2 shows a schematic diagram of contact information between two disc 
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particles where both the contact vector and the contact force vector have a normal 

component and a tangential component. The rotation of the particle is also considered 

with the rotation angles of the particle A and B being 
A  and 

B , respectively. 

The relative velocity at the contact can be decomposed into a translation of the 

particle center and a part of the angle rotation. The relative velocity vector 

( 
T

C Cx y ), with respect to the contact plane in Figure 3-2, becomes  

 
1

2

( ) 0

0 ( )

C A B A A B B

C A B B B A A

x x x tr r

y y y tr r

 

 

       
        

       
 (3-5) 

 

 

Figure 3-1: Schematic illustration of particle motion and inter-particle contact  

 

Instead of using the (x, y) coordinate system, the relative velocity is projected on 

the plane of (n, t) as  

  
TC C

C C

n x

t y

   
   

   
n t  (3-6) 

Therefore, the relatively incremental displacements in the normal and tangential 

directions within the time step t  are  

t0 ti ti+1 

x 

y 

A B 

C 
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n C

t C

n
t

t





   
    

   
 (3-7) 

 

 

Figure 3-2: Illustration of a contact scheme between two particles 

 

Description of contact law  

In geomechanics, the particle forces may be induced by activities such as normal and 

tangential displacements, particle rotation, contact cohesion, contact damping, parallel 

bond, liquid bridge, surface tension, et al. Correspondingly, numerical contact models 

have been developed to describe these interactions, such as normal contact models, 

tangential models, bond models, rotational resistance models et al. When the 

mechanical behaviour of frictional material in laboratory tests is concerned, normal 

contact overlap, particle sliding, and particle rotation are most commonly considered. 

Among various contact laws, there are two popular ones that are widely applied in 

simulating granular soils. The first one is based on a linear contact model introducing 

three input parameters: the normal contact stiffness 
nk , the tangential contact 

stiffness 
sk  and the frictional coefficient  . The corresponding increments of 

normal contact force and tangential contact are described as  

 ,n s

n n t tf k f k        (3-8) 

x 

y 

 

 

 

n  

t   

B 

A  
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Here, the contact stiffness is only related to the stiffness of the particles. In other 

words, 
nk  and 

sk  are the equivalent contact stiffnesses. Given ,n s

A Ak k  and ,n s

B Bk k  

being the normal and tangential contact stiffness for particle A and particle B, 

respectively, the equivalent stiffness is expressed as / ( )n n n n n

A B A Bk k k k k  , 

/ ( )s s s s s

A B A Bk k k k k  .  

The Coulomb friction model is employed to describe the relation between the 

tangential and normal contact forces as  

 
c c

t nf f  (3-9) 

where   is the inter-particle friction coefficient. When c c

t nf f , sliding occurs 

and the tangential force acts opposite to the direction of slip. In some cases, a 

cohesion term, 'C , may be added to the failure criterion for the tangential force as 

'c c

t nf f C  .  

The other is the nonlinear Hertz-Mindlin formulation. This normal contact 

force-displacement model was developed by Hertz (1882) (also reported in Johnson, 

1985). The tangential contact force-displacement model was reported by Mindlin 

(1949) where the tangential stiffness is constant for no-slip contact. A series of loading 

conditions were identified in the work of Mindlin and Deresiewicz (1953) who 

developed a set of rules for the generation from simple cases to the oblique impact 

problem using an incremental procedure. For spherical particles, when neglecting the 

plastic deformation of particles, the normal and tangential stiffnesses can be estimated 

as: 

 * *2n

nk E r  , 

1/3

* *8 * 1s t
n

n

f
k G r

f




 
  

 
 (3-10) 

where *r  and *E  are the equivalent particle radius and the elastic modulus, 
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* / ( )A B A Br r r r r   and * 2 21/ (1 ) / (1 ) /A A B BE v E v E    . 
*G  is the equivalent 

elastic shear modulus such that *1/ (2 ) / (2 ) /A A B BG v G v G    . 
Av , 

AE  and 
AG  

are Poisson's ratio, the elastic modulus and the elastic shear modulus of particle A. n  

is the relative approach of the centroids of the two spheres in contact 

n A B ABr r d    .  

 

Rolling resistance 

The shape and the roughness of the contact surface between soil particles can produce 

a rolling resistance or rolling friction that has a significant influence on the overall 

material response. Iwashita and Oda (1998) employed a combined 

sprint-dashpot-slider system that transferred a moment to the contacting particles as  

 
r

r r r rM k C     (3-11) 

where 
rk  is the stiffness of rotation resistance; 

rC  is the rational viscosity 

coefficient and 
r  is the relative rotation of the two particles, “-” implies the 

negative effect or in opposite direction with the rolling. Within the context of 

modeling the effect of particle shape, a rolling stiffness was defined by Iwashita and 

Oda (1998) as 
2r sk k r .  

It is assumed that perfectly plastic rolling will occur if 
rM  exceeds a threshold 

value, 
maxrM , which is related to normal contact force as 

 max

c

r r nM f  (3-12) 

where r  is the coefficient of rolling friction. It should be noted that the total 

moment increment during a time step contains the part resulted from tangential 

contact force increments for all contacts regarding to the specific particle and the 
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increment of movement from rolling resistance.  

 

Damping  

For the real inter-particle contact, particle damage and plastic yielding will happen 

and dissipate the accumulated kinetic energy within the system. In DEM simulation, 

as far as the elastic model is concerned, the energy dissipation could only happen 

during frictional sliding between particles. If the frictional sliding is small, the particle 

will vibrate constantly like a highly complex system of connected elastic springs 

without approaching a steady state. Therefore, the artificial damping is usually 

introduced to overcome the non-physical nature of the contact constitutive models 

used in DEM simulations, especially for the quasi-static conditions. Moreover, the 

damping is critical to the numerical stability in DEM simulation.  

 There are two most common types of damping, viscous damping and 

“non-viscous” damping. The viscous damping is proposed by Cundall and Strack 

(1979) and then was implemented in DEM analysis as (Bardet, 1998) 

 t t tMa Cv F   
(3-13) 

where M is the mass matrix, at is the acceleration vector at time t, C is the damping 

matrix, vt is the velocity vector at time t and Ft is the force vector. Since the viscous 

damping force on each particle is proportional to its mass, it is sometimes called 

mass-damping. Cundall (1987) proposed an alternative damping system, in which the 

damping force at each node is proportional to the magnitude of the out-of-balance 

force with a sign that ensures that the vibrational modes are damped, rather than 

steady motion. Here the “out-of-balance force” is the non-zero resultant force that acts 

on a particle to cause acceleration. According to Cundall (2004), the damping force is 

given by  

  *p p p

d sign F F v  (3-14) 
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in which p

dF  is the damping force for particle p, 
*  is the damping constant, p

F  

is the resultant or out-of-balance force acting on the particle p, and 
p

v  is the velocity 

vector for particle p. According to this definition, only accelerating motion is damped, 

therefore no erroneous damping force arise from steady-state motion.   

 

3.3 Parameter selection 

Owing to the complexity of natural granular materials, including the randomness in 

particle shape and particle size distribution, it is generally difficult to reproduce a real 

granular assembly and its corresponding mechanical behaviour by DEM simulations. 

Nevertheless, the models with circular or spherical particles enable us to investigate 

the micromechanics of granular material in a way that cannot be achieved in 

continuum methods. In the following sections, the linear contact model in Eq. (3-8) 

and the Coulomb friction model in Eq. (3-9) are employed to describe the activities on 

the contact plane.  

 

Properties for two-dimensional tests 

The selection of the contact stiffness and the inter-particle friction coefficient  has a 

direct influence on the results of DEM simulations. In general, both the elastic 

modulus and the Poisson’s ratio of the bulk material are intensively affected by the 

stiffness ratio /s nk k . According to Mohamed and Gutierrez (2010), / 1.0s nk k   

gives a Poisson’s ratio of 0.25 while / 0.5s nk k   corresponds to a Poisson’s ratio of 

0.28 in two-dimensional cases. Both of them are realistic for most granular materials. 

Consequently, the assumption / 1.0s nk k   has been adopted in DEM simulations 

(Antony et al., 2004; Nguyen et al., 2009; Zhu et al., 2016). Similarly, / 0.5s nk k   

is also widely adopted, for example, Kruyt (2012).  

Various studies have revealed that the inter-particle friction can influence the 
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critical state and the stress-dilatancy relation. According to Huang et al.(2014), when 

 < 0.5, the dilatancy tends to increase with an increase of . On the other hand, the 

behaviour of granular material at the critical state seems to be insensitive to further 

increases in  when  ≥ 0.5. Moreover, a high friction coefficient can cause a 

negative Poisson’s ratio (  ) (Rothenburg and Kruyt, 2004). Hence, 0.5   has 

been widely adopted by Kruyt (2012), Rothenburg and Kruyt (2004) and Jiang et al. 

(2006); see, e.g., Figure 3-3.  

In two-dimensional tests, a linear elastic contact law is employed in this research 

and the inter-particle friction coefficient is selected as 0.5. In the biaxial tests along 

proportional strain paths, the normal and tangential stiffness are chosen based on 

/ 1.0s nk k  and 
9/ 5.4 10nk r Pa  where r  is the mean value of the particle 

radius. For the simple shear test, the normal and tangential stiffness are valued 

according to / 0.5s nk k  and 
10/ 2.6 10nk r Pa . The ratio of 

0 / np k  in both 

tests is lower enough (
310 ) to guarantee the rigid particle assumption. 

 

  

Figure 3-3: A summary of numerical properties /s nk k  vs. friction coefficient in 2D 

DEM simulations  

 

Properties for three-dimensional tests  

For three-dimensional DEM simulations, Goldenberg and Goldhirsch (2005) 
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suggested that 2 / 3 / 1s nk k  . / 1s nk k   was adopted by, for example, Zhao and 

Guo (2013) and Yoshimine et al. (1998). The ratio of normal contact stiffness over 

average particle radius should be larger than 
8/ 10 Pank r   to guarantee the 

assumption of rigid particles according to Nicot et al. (2014). In 3D tests along radial 

stress paths on the π-plane, a linear elastic model is employed with the friction 

coefficient being 0.5. The contact stiffness in all three-dimensional tests are selected 

as on / 1.0s nk k  and 
8/ / 2 10 Pan sk r k r   .  

 

3.4 2D tests along proportional strain paths  

According to Wan et al. (2007) and Guo and Su (2007), strain softening and material 

instability for granular materials are dominated by the rate of forced volume change, 

as well as the inherent potential of dilation. From a kinematical point of view, the 

collapse of a specimen can be illustrated as a larger imposed dilatancy rate than the 

intrinsic dilatancy rate of the granular assembly. Comparing with tests along selected 

stress paths, controlled proportional strain path tests can provide in-depth observations 

towards the mechanism of strain-softening and deformation instability of a granular 

material. As a result, DEM simulations for biaxial tests along proportional strain paths 

were carried out.  

 

3.4.1 Test setup 

A rectangle packing of polydisperse disks was considered as the 2D DEM model that 

was constrained by four frictionless rigid sidewalls. The normal contact stiffness at the 

walls was chosen to be sufficiently high, and the tangential contact stiffness at the 

walls is set to zero. A linear force-displacement contact law was employed with the 

contact behavior being governed by the normal stiffness kn, tangential stiffness ks and 

the frictional coefficient  . The following assumptions were made: 1s nk k   and 



                               Chapter 4                               

52 

 

0.5  . The basic characteristics of the initial assembly are given in Table 3-1.   

The initial packing of the assembly for each test was generated by filling the box 

with randomly generated particles after which the specimen was slowly consolidated 

up to an initial isotropic confining pressure, as illustrated in Figure 3-4 (a). A total of 

nineteen numerical tests were conducted that can be divided into two categories: tests 

along proportional strain paths with a constant strain increment ratio 
11 22     

and tests with constant horizontal stress, which was achieved by controlling the 

movement of the vertical and horizontal walls (Figure 3-4 b). 

 

Table 3-1: DEM parameters and material properties 

Parameter Value 

Number of particles  ≈ 26000 

Particle density 2000 kg/m3 

Smallest particle diameter Dmin 1.6 cm 

Largest particle diameter Dmax 2.0 cm 

Average particle diameter D 1.8 cm 

Initial porosity/Void ratio (e0) 0.14~0.22/0.16~0.28 

Inter-particle friction coefficient   0.5 

Particle-wall friction coefficient  0.0 

Height (H), width (W) of sample H/D= 212, W/D=110 

Initial axial stress σ11 170 to 400 kPa 

Initial confining stress σ22 170 to 400 kPa 

Normal spring stiffness kn kn/D=2800MPa  

Tangential spring stiffness ks ks/D=2800MPa   

 

In this study, the average macroscopic strain was determined according to the 

displacement gradient, e.g.,  
1

2
ij i j j iu x u x      . The strain rates in the vertical 

( 11 ) and horizontal (
22 ) direction are kept constant. Referring to Suiker and Chang 

(2004) and Christoffersen et al. (1981), the uniform strain field 
ij  in the granular 

assembly is the best fit for describing the actual contact displacements and can be 
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considered as a plausible assumption. The macroscopic strain rates in the assembly are 

related to the relative velocities of the boundary walls as 
1 1 11 2 1

1

2

t t tHv v      and 

2 2 21 2 2

1

2

t t tWv v      with tH  and tW  being the height and width of the specimen 

at time t. Similar treatments can be found in Thornton (2000) as well as Suiker and 

Chang(2004). The vertical strain rate 
11  is always positive (compression), while the 

lateral strain rate 
22 11     can be positive or negative depending on the selected 

  value. Since  1,0   and the boundary walls are frictionless, directions of the 

major principal stress and strain are always in the vertical direction, 
11 1   and 

11 1  . Generally, the major and minor principal strain can be calculated as 

1 1 t    and 2 2 t   . Here t  is the length of time within a step. It should 

be noted that for initially isotropic specimens, the strain paths with 10 are the 

same as those with that belongs to a subgroup of tests with 1. 

 

   

(a)                               (b)  

Figure 3-4: Schematics of the specimen (a) and associated loading boundaries (b) in a 

2D test 

 

In all DEM simulations, the velocities of the boundary walls are slow enough 

(e.g., 
1 =105/s) to maintain a quasi-static condition throughout the entire loading 
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history. We introduce the parameter /v   , which is the ratio of volumetric strain 

rate (
1 2v    ) to the shear strain rate (

1 2    ). It is related to the strain ratio 

  as ( 1) ( 1)    . Hence, all proportional strain paths can be categorized 

into forced dilation with 0   (or 0 1 ) and forced contraction 0   (or 

1  ), respectively. Hereby, a value of 0   (or 1  ) is associated with the 

isochoric deformation condition, while the hydrostatic compression and 

K0-compression conditions are obtained when    ( 1   ) and 1   

( ).  

 

 

Figure 3-5: Two types of forced contractant tests (a) the VEC test and (b) the VCC 

test 

 

For the sake of convenience, a test along an imposed strain path is described 

according to the following conventions: (a) the first letter, V stands for vertical 

compression; (b) the second letter, C or E means horizontal compression or horizontal 

extension; (c) the third letter, C, I or D, refers to volumetric contraction, isochoric 

deformation or volumetric dilation. For example, VEI represents a test in which the 

specimen has vertical compression, horizontal extension with the volume being a 

constant ( 1.0 ). For tests with constant confining pressure, the second letter P 

stands for constant confining pressure. VP200 is used to describe a test in which the 
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specimen undergoes vertical compression with σ2=200 kPa. Details of the tests are 

listed in Table 3-2. 

It is worth to mention that for the two-dimensional cases, the principal stresses are 

calculated as  

 2 2

1,2 ( )
2 2

x y x y

xy  
(3-15) 

where 
x  and 

y  are normal stresses in the x and y directions, and 
xy  is the 

shear stress. The corresponding mean and deviatoric stresses are readily obtained as 

1 2( ) / 2s     and 
1 2( ) / 2t    . 

 

Table 3-2: Details about tests  

Test type 
Test 

label 

Initial stresses Macroscopic boundary conditions 

2   constant 

VP200 1 2 200kPa     
1 20, 200kPa     

VP300 1 2 300kPa     
1 20, 300kPa     

VP400 1 2 400kPa     
1 20, 400kPa     

Controlled 

strain paths  

VED 

1 2 170kPa     

1 2 1 20, 0,        

VEI 1 2 1 20,  0,       

VEC 1 2 1 20, 0,          

VCC 1 2 1 20, 0,           

Note: The sign convention for strain and strain increment is positive for compression.  

 

3.3.2 Stress-strain responses 

Figure 3-6 presents the stress paths in the s-t space along a variety of imposed strain 
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paths ranging from extreme dilation 0.43  ( 0.40   ) to extreme contraction, 

1.1   ( 21  ). The initial consolidation pressure was 170 kPa. The critical state 

line (CSL) and the failure envelope corresponding to the peak state line (PSL) on the 

stress-strain curves obtained from drained compression tests under the constant 

confining pressure are also presented in Figure 3-6. The peak and critical state friction 

angles were determined as 23.6p    and 16cv   , respectively. A similar critical 

friction angle was reported by Jiang et al. (2006). Such small values of peak and 

critical friction angle are normal when the particle rolling resistance is ignored 

according to the Thornton (2000). Moreover, the stress path patterns were similar to 

the test results obtained by Wan et al.( 2007). The stress-strain responses in different 

tests are presented in Figure 3-7. 

 

 

Figure 3-6: Stress path response for tests along proportional strain paths  

 

One immediately observes that the material response was not bounded by the 

stress paths in the constant lateral confining pressure (akin to a drained test) and the 

isochoric (akin to an undrained test of a saturated specimen) conditions. As the 

imposed strain ratio changes, the response of the material changed from a stable 
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behaviour (hardening) in VEC and VCC tests corresponding to forced contraction 

( 0  ), to an unstable one (strain softening) in VED tests with 0  . More 

specifically, for the highly dilative strain path (i.e., 0.43 ), shearing induced a 

continuous decrease in the mean effective stress. The deviator stress first increases and 

then decreased until “flow” failure occurred, as if the specimen were a saturated loose 

sand subjected to undrained shearing. For the moderate dilative strain path with 

0.76 , the mean effective stress first decreased while the deviator stress increases 

at the beginning of shearing. Then the effective stress path changed direction with all 

stress components increasing with axial strain, which reflects typical strain hardening. 

Nevertheless, the effective stress path snaped back shortly after the maximum friction 

angle ( t s )max ratio was mobilized. The effective stress paths along low dilative strain 

paths with 0.86 ~ 2.2  had the same feature as a saturated dense sand subjected 

to undrained shear: the mobilized friction angle (or the t s  ratio) gradually increased 

to its peak value and then tended to approach the critical state, while the mean 

effective stress and the deviator stress increased monotonically. For VED tests ( 0   

or 0 1 ), the effective stress paths at large shear strain were bounded by the peak 

state line (PSL) and the critical state line (CSL). These observations are consistent 

with those of Guo and Su (2007), Wan et al.(2007) and Wan and Guo (2004) based on 

laboratory test results and constitutive simulations. It should be noted that the limiting 

case with    is isotropic compression. The stress-strain responses along 

different dilative strain paths are presented in Figure 3-7 (a). 

The deformation states corresponding to the two types of contraction strain paths, 

the VEC tests with 0   and 1  , and the VCC tests with 0   and 1  , 

are illustrated in Figure 3-5. On the s-t plane, the strain paths in the VEC and VCC 

tests are separated by the stress path of K0-compression at 1   and  , as 

shown in Figure 3-6. The stress-strain responses, presented in Figure 3-7 (b) and (c) 
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for VEC and VCC groups, are very distinctive depending on the deformation. For 

VEC tests with 0   and 1  , a peak value of t s  is obtained, with ultimate 

deformation state being different from the critical state. One observes that the value of 

  increased, the lateral strain tended to decrease and gradually approaches the 

(biaxial) K0-condition with 
2 0  . For strain paths for VCC with 0   and 

1  , the t s  ratio increased monotonically with shear strain, gradually 

approaching a constant that is smaller than sin cv  which depended on the strain ratio

 . These observations are generally consistent with the findings of Wan et al.(2007). 

 

 

 

Figure 3-7: Stress strain responses in:(a) VED tests with 0 1 ; (b) VEC tests with 

1  ; (c) VCC tests with 1   
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The stress-strain curves obtained from drained compression tests under the 

constant confining pressure are presented in Figure 3-8. Here, 0v
 represents 

volumetric compression. Unique peak shear strength was obtained for tests under 

different confining pressures. After the peak, the shear strength underwent softening 

until a constant value was approached that coincided with that of the biaxial tests on a 

dense sand. An initial contraction was observed for all cases after which the specimen 

underwent dilation. The specimen with lower confining pressure tended to be less 

contractive but more dilatant than a specimen with higher confining pressure. 

 

 

(a)                                   (b) 

Figure 3-8 Stress strain responses of biaxial compression under different confining 

stresses: (a) t s  vs. shear strain; (b) volumetric strain vs. shear strain 

 

3.5 2D simple shear tests 

3.5.1 Test setup 

A simple shear test can be mimicked by a discrete wall system as shown in Figure 3-9. 

According to Ai et al. (2014), the discrete wall system encloses the granular sample 

by individual rigid points with the inter-point gaps being much smaller than any 

particle diameter. The motion of each boundary point is governed by a target strain 
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rate and its location. In Figure 3-9, two horizontal discrete walls maintain a constant 

shear strain rate according to 
i ij jx x  where 

ix  is the coordinate of point i on the 

boundary and 
ij  is the target strain rate tensor. The vertical solid walls maintain a 

constant confining pressure via a servo-controlled system. 

 

 

(a)                  (b) 

Figure 3-9: Sketches of simple shear tests using discretized wall system: (a) before 

shearing and (b) after shearing 

 

DEM simulations were carried out on rectangle specimens consisting of 

approximately 4700 elastic disks with the radii ranging from 0.75 cm to 2.25 cm. A 

linear force-displacement contact law was employed where the contact behavior was 

governed by the normal stiffness kn, tangential stiffness ks, and the friction coefficient 

. The normal and tangential contact stiffnesses satisfied / 6.7nk D GPa and 

ks/kn=0.5, with D being the mean particle radius. As a comparison, biaxial tests along 

proportional strain paths were also conducted using the arrangement shown in Figure 

3-4. The details of initial assembly are summarized in Table 3-3. 

The specimens were generated with an initial porosity 0.175 following the 

method described in Section 3.4. Once generated, these specimens were subjected to 

either isotropic consolidation or anisotropic consolidation to selected initial stress 

states between 300 kPa and 900 kPa. The initial stress ratio   was defined as 

x 

y 
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( ) ( )x y x y        to characterize the initial stress states. When 0  , the 

orientation of initial major principal stress is coaxial with the horizontal axis (x+). 

Then 0   is corresponding to the major principal stress orientation coincides with 

the vertical axis (y+). Figure 3-10 summarizes the initial stress states prior to simple 

shear, with the initial mean stress  0 0 0

1

2
x ys     being 300 kPa, 500 kPa, 700 

kPa and 900 kPa respectively. The initial stress ratio   ranged from highly vertical 

bias of 0.3    to highly horizontal bias of 0.3   for each mean stress level.  

 

Table 3-3: DEM parameters and material properties in 2D tests 

Parameter Value 

Number of particles  ≈ 4700 

Particle density 2550 kg/m2 

Smallest particle diameter Dmin 1.5cm 

Largest particle diameter Dmax 4.5cm 

Average particle diameter D 3 cm 

Initial porosity/Void ratio (e0) 0.17/0.205 

Inter-particle friction coefficient   0.5 

Particle-wall friction coefficient  0.0 

Height (H), width (W) of sample H/D=67, W/D=67 

Initial axial stress σ11 500 kPa 

Initial confining stress σ22 500 kPa 

Normal spring stiffness kn kn/D=6.7GPa  

Tangential spring stiffness ks ks/D=3.35GPa 

 

When performing the simple shear test simulations, the vertical stress 
y  on the 

specimen was kept constant and the specimen had zero lateral extension (i.e., 0x  ). 

The accumulated shear strain was calculated by 

 2 ( )yxt
t    (3-16) 

where yx  is the strain rate with respect to the x-axis, t  is the size of the time step. 
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The value of 
yx  was low enough (

410yx  ) to ensure quasi-static deformation in 

all simulations. The orientation of principal strain rate relative to the x-axis was 

calculated by 

 
2 2

tan(2 )
yx yx

d

x y y



 


  
  


 (3-17) 

where 
d  refers to the angle of the principal axis of strain increment relative to the 

horizontal direction.  

 

 

Figure 3-10: Initial stress states in simple shear tests 

 

3.5.2 Stress-strain responses 

Simple shear tests  

Figure 3-11 presents the normalized stress-strain curves for specimens subjected to 

different initial isotropic consolidation stresses and the corresponding stress paths are 

presented in Figure 3-11 (b). A master curve was obtained for all tests under different 

initial mean stress level in Figure 3-11 (a). Thus, a peak and critical state lines could 

be represented in the stress space (t-s) with peak and critical friction angles being 17.5° 

and 15° as shown in Figure 3-11 (b). All specimens, with different initial mean stress, 
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short with 5%  . The volumetric dilation depended on the mean stress level, in 

which higher initial mean stress levels induced lower volumetric dilation.  

 

 

(a)                            (b) 

 

(c) 

Figure 3-11: Evolution of (a) stress ratio with shear strain, (b) stress paths and (c) the 

volumetric strain vs shear strain in simple shear tests under different confining 

pressure with 0   

 

Figure 3-12 (a) show the normalized stress-strain curves for specimens with initial 

stress state 0   at an initial mean stress of 0 ( ) / 2 500x ys kPa . One 

observed that the peak and critical stress ratios were approximately the same as those 

obtained in tests with isotropic initial conditions, as shown in Figure 3-12 (a). In other 
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words, the peak and the critical friction angles were independent of the initial stress 

ratio. But the initial consolidation stress rate   could influence the volumetric strain 

significantly since the initial mean stress was identical for different   values. With 

an increase of   value, the vertical confining pressure decreased gradually, which in 

turns induced more dilation, as exhibited in Figure 3-12 (b).  

Upon shearing, the horizontal stress decreased for tests with an initial stress ratio 

0   due to lower confining stress in the vertical direction. Correspondingly, the 

horizontal stress increased for tests with an initial stress ratio 0   due to higher 

confining stress in the vertical direction. As exhibited in Figure 3-13 (a), the 

horizontal stress increased or decreased monotonically until to an identical ultimate 

value in which 
x y  . Meanwhile, the shear stress gradually increased in all tests. 

The peak and critical values of /xy y   approximately equaled the peak and critical 

stress ratios in Figure 3-12 (a).  

It is notable that the peak frictional angle corresponded to 0.3    

( 1sin (0.3) 17.5   ). Therefore in Figure 3-12 (c), the stress paths for tests with 

0.3    originated from the peak state line. Upon shearing, the stress path of the test 

with 0.3    evolved upward and migrated away from the peak state line until the 

critical state was reached due to the increase of the horizontal stress and the shear 

stress. According to Eq. (3-15), the rise of 
x  increased the mean stress level. When 

0.3  , the horizontal stress decreased upon shear and the mean stress declined. 

According to Eq. (3-15), both tests with an increase of the horizontal stress with 

0   and a decrease of vertical stress with 0   had a negative influence on the 

deviatoric stress. However, the increase of the shear stress had a positive effect on the 

deviatoric stress. This is because the shear stresses in tests with 0   were larger 
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than those with 0   and the positive influence of the shear stress on the deviatoric 

stress dominated the variation of the deviatoric stress. Therefore, when 0.3  , the 

stress path just followed the peak state line and evolved downward in the (t-s) stress 

space, in Figure 3-12 (c). On the other hand, the stress path evolved upward and 

gradually approached the critical state line (t-s) stress space.  

 

 

(a)                               (b) 

 

(c) 

Figure 3-12: (a) Evolution of stress ratio and (b) volumetric strain with shear strain 

and (c) the stress paths with initial stress 0 ( ) / 2 500x ys kPa   
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(a)                               (b) 

Figure 3-13: Effect of initial stress ratio   on (a) the evolution of stress ratio /x y   

and (b) shear stress ratio /xy y   against shear strain in simple shear tests 

 

Figure 3-14 (a) presents the variation of major principal stress direction with 

shear strain under different initial stress ratios. As expected, the major principal stress 

direction rotated during the simple shear tests, from its initial orientation to 45 . 

Depending on the initial stress ratio, the initial principal stress direction was either 
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the directions of the principal stress and the principal strain increment is presented in 

Figure 3-14 (b) for different initial stress ratios. It should be noted that the principal 

strain increment always made a 45  angle with the horizontal; i.e., 45d   . One 

observes a period of non-coaxiality (when 10% ) between the major principal 

orientation of the stress and that of the strain rate for all cases at the beginning of 

shearing. When 10% , 45d     . The stress-strain curves for different 

initial stress ratio followed a master curve after the stress and strain ratio became 

coaxial. 
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(a)                           (b) 

Figure 3-14: Effect of initial stress ratio   on the evolution of (a) principal stress 

orientation, (b) non-coaxiality between principal orientations of stress and strain rate 

 

3.6 3D tests along radial stress paths on the π-plane 

3.6.1 Test setup 

The traditional triaxial compression test in the laboratory is usually conducted on a 

cylindrical specimen that is compressed axially with the 
2 3  . This type of test is 

also known as ‘standard triaxial test’. For most geotechnical problems, the second 

principal stress is not identical with the third principal stress, 
1 2 3    . Tests 

applying three individual principal stress are referred as ‘true’ triaxial tests. Herein, 

laboratory tests under true triaxial stress state were simulated using the discrete 

element method. The ‘true’ triaxial test was performed on a cubic representative 

volumetric element enclosed by six frictionless walls. More than 20000 spheres were 

employed with the radius ranging from 0.1 mm~0.3 mm. A linear force-displacement 

contact law is employed where the contact behavior was governed by the normal 

stiffness kn, tangential stiffness ks and the frictional coefficient . The tangential 

contact stiffness was assumed to equal to the normal contact stiffness; i.e., kn=ks. The 

basic characteristics of the initial assembly are given in Table 3-4. The ratio of /nk D  
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was selected as 
810  N/m which was large enough to guarantee the rigid particles 

assumption. Here D  denotes the average diameter of the particle.  

 

Table 3-4: DEM parameters and material properties 

Parameter Value 

Specimen dimension 20× 20× 20 mm3 

Number of particles   ≈ 20000 

Particle density 2000kg/m3 

Particle diameter rmin ~rmax 0.1mm ~0.3mm 

Initial porosity  0.40 

Inter-particle friction coefficient μ  0.5 

Particle-wall friction coefficient μ 0.0 

Initial confining pressure   300~900 kPa 

Normal spring stiffness kn 8/ 10nk D Pa   

Tangential spring stiffness ks 8/ 10sk D Pa  

 

The initial packing specimen was generated by filling the cubic cell with 

randomly generated spheres according to the initial porosity. Once the specimen was 

generated, the system was subjected to an isotropic consolidation to the initial stress 

state with the mean stress ranging from 300 kPa to 900 kPa. The inter-particle 

frictional coefficient was 0.5. After consolidation, the specimen was subjected to 

loading along select stress paths during which the Lode angle and the mean stress 

were constant. This corresponded to a straight line on the π-plane. As shown in Figure 

3-15, a stress state can be expressed in the Lode coordinate system using radial 

coordinate r and Lode angle  , as 

 2

6
2

3
r J q  , 1 3

3/2

2

1 3 3
sin

3 2

J

J
 

 
    

 
 (3-18) 

in which J2 and J3 are the second and the third invariants of the deviatoric stress tensor 

ij ij m ijs      with 3m ii  . The deviatoric stress is defined as 
3

2
ij ijq s s . 
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According to this definition, the Lode angle takes value in the range of  

/ 6 / 6      and the point with / 6    representing an axisymmetric 

compression stress state (i.e. a conventional triaxial compression stress state). 

Introducing the intermediate stress ratio 2 3 1 3( ) / ( )b       , the relation between the 

Lode angle and the intermediate stress ratio is provided in Table 3-5 where b ranges 

from 0.0 to 1.0. 

 

Table 3-5: Conversion between the stress ratio and the Lode angle  

 From compression to dilation 

b 0.000 0.280 0.500 0.732 1.000 

  -π/6 (comp) -π/12 0.0 π/12 π/6 (ext) 

 

A simulation was conducted by applying a constant strain rate ( 5

1 10  /s) in the 

major principal direction (σ1). Meanwhile, the other two principal stresses (σ2, σ3) 

were adjusted using the servo-controlled systems to maintain the constant mean stress 

and stress path. It is easy to obtain the expression of the principal stress, where both 

the mean stress and the Lode angle are constants: 

 1
2

(1 )3 (2 1)

2

b p b

b




  



,  1

3

3 ( 1)

2

p b

b




 



 (3-19) 

 

Figure 3-15: Loading paths in the Lode coordinate system 
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3.6.2 Stress-strain responses 

Figure 3-16 presents the variation of deviator stress ratio q p  and volumetric strain 

v  with respect to the deviatoric strain 
q  along different stress paths for an initial 

consolidation pressure of 300 kPa when kn =ks =4×10
4 

N/m. Herein the volume strain 

and deviatoric strain are defined as 
v ii   and ' '2

3
q ij ije e   with '

3

v
ij ij ije


   . 

Referring to Figure 3-16 (a), all specimens initially experienced compression and then 

dilation upon shearing. The 
v q   curves were not sensitive to the stress paths, 

particularly at small shear strains. However, the stress-strain responses and the 

maximum deviatoric stress ratios are stress path dependent, as shown in Figure 3-16 

(b). In general, the peak shear resistance in axisymmetric extension when / 6   

(or b=1) is the smallest and in axisymmetric compression test at / 6    (or b=0), 

it is the largest for all stress paths examined.  

 

 

(a)                            (b)  

Figure 3-16: Stress-strain responses (a) volumetric strain vs. shear strain and (b) stress 

ratio vs. shear strain with kn=ks= 4×10
4 

N/m, p=300 kPa 
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In comparison, Figure 3-17 provides stress-strain responses along different stress 

paths at an initial consolidation pressure of 500kPa. The normal and tangential contact 

stiffnesses were kn =ks =10
6
 N/m. The volumetric contraction stage was very short and 

then all samples dilated upon shearing along different stress paths, as shown in Figure 

3-17 (a).  

 

 

(a)                                (b)  

Figure 3-17: Stress-strain responses (a) volumetric strain vs. shear strain and (b) stress 

ratio vs. shear strain with kn=ks= 10
6
 N/m, p=500 kPa  

 

3.7 Summary 

This chapter briefly introduced numerically simulated tests including biaxial 

compression tests, two-dimensional tests along proportional strain paths, 

two-dimensional simple shear tests, and three-dimensional tests using discrete element 

method. To begin with, a brief introduction of the discrete element approach and the 

selection of material properties. 
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dense and loose sample, strain softening and shear-induced dilation for dense sand. 

Meanwhile, simple shear tests were simulated for both isotropic and anisotropic 

consolidated specimens using point wall system. The orientation of the major 

principal stress rotated with the orientation of the major strain rate being constant 

during the shearing. The numerically simulated simple shear tests generally 

reproduced the stress-strain responses of the simple shear tests in laboratory tests. For 

the three-dimensional conditions, ‘true’ triaxial tests were performed along certain 

stress paths that were in straight lines in the Lode coordinate system. The stress and 

strain responses of tests along different stress paths were found to be reasonable when 

compare these results with those from real tests, e.g., the significance of the 

intermediate principal stress. 

Generally, the DEM simulated experimental tests qualitatively reproduced the 

macro response of the granular matter in both 2D and 3D cases. Moreover, the 

configuration of the microstructure became visible when using the discrete element 

method. Correspondingly the evolution of the microstructure could be monitored and 

might be related with the macro-mechanical behaviour of granular materials. 
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Chapter 4 Evolution of Induced Anisotropy of Granular 

Materials 

 

4.1 Introduction 

The mechanical behavior of a natural granular material can be inherently anisotropic 

as a consequence of the deposition process and the following stress history. Such 

anisotropy is easily altered when the granular material is subjected to shear distortion, 

because of the rearrangement of particles via relative particle movements, including 

rolling and sliding at particle contacts. The spatial arrangement or inter-connectivity 

of discrete particles subjected to stress change is known as the stress-induced 

anisotropy (Oda, 1993). Both experimental and theoretical studies suggest that the 

induced anisotropy and its evolution contribute to key aspects of granular soil 

behaviours, including dilation (i.e. shear-induced volume change), failure and 

instability during deformation (Collins and Muhunthan, 2003; Fu and Dafalias, 2011; 

Oda 1993; Radjaï et al., 2012; Wan et al., 2007; Wan and Guo, 2004; Richard Wan 

and Pouragha, 2015). Research incorporating anisotropy into the constitutive model 

has been conducted by Gao et al. (2014), Lade (2008), Li and Dafalias (2011). Yet, 

one challenge of micromechanically formulated constitutive laws lies in how to 

mathematically describe the anisotropy and its evolution with the deformation history. 

This chapter explores the evolution of fabric and its correlation with stress states 

of granular materials sheared along proportional strain and different stress paths using 

DEM. The evolution of fabric for different contact networks (i.e., the overall contact 

network, the strong and weak sub-networks) is traced in all simulations. The results 

reveal that the deviator of fabric tensor based on the strong sub-network shows a 

unique relation with the deviatoric stress ratio, particularly for specimens along 

proportional strain paths corresponding to forced dilation. The maximum value of the 
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deviator of fabric tensor varies with the applied strain ratio or the maximum dilatancy 

rate in stress-controlled tests. The strong sub-network plays the primary role in shear 

resistance, while the weak sub-network and its evolution are significantly affected by 

the imposed dilatancy rate.  

 

4.2 Macroscopic stress and fabric tensor of granular materials  

4.2.1 Quantification of micromechanics 

A number of measures for fabric anisotropy have been developed, which can be 

classified in four categories as preferred orientations of the particle body, the particle 

surface, the contact normal and the void space (Kuhn et al., 2015). Among these 

measures, the most apparent and efficient measure associated with the mechanical 

response of granular materials is based on the orientation of contact normal. The 

fabric tensor quantifying the contact normal orientation of the overall contact network 

is defined as (Satake, 1978):  

 
1

1 cN
k k

ij i j

kc

n n
N




  , 1ii   (4-1) 

where k

in  is the i-th component of the unit vector representing the contact normal at 

the k-th contact. When using polar coordinate systems as shown in Figure 4-1, 

(cos , sin )T n  for 2D and (cos , sin cos , sin sin )T    n  with  0,  ,

 0,2   for 3D cases, respectively. 

 Let V be the volume of a representative element, which has pN  particles and 

cN  contacts. By introducing the probability density function (PDF) of the contact 

orientation ( )E n , the number of contact vectors within the range of solid angle 

[ / 2, / 2]d d     is ( )cN E dn . The fabric tensor in Eq.(4-1) can be rewritten 

as 
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1

1
( )

cN
k k

ij i j i j

kc

n n E n n d
N






    n  (4-2) 

It should be noted that the probability density function ( )E n  satisfies 

( ) 1.0E n d


   and ( ) ( )E E n n .  

 

  

(a)                    (b) 

Figure 4-1: Contact normal in (a) 3D and (b) 2D spaces 

 

  For 2D cases, the unit vector of contact normal n can be expressed as 

1 2( , ) (cos ,sin )n n    with   being the inclination of the angle of n with respect to 

the reference axis 1. Since ( )E   is a periodic function of 2 , it can be expanded 

with the Fourier function as 

 0

1

1
( ) { ( cos sin )}

2
k k

n

E a a k b k  






    (4-3) 

where ak and bk are both zeroes if k is an odd number (Oda,1999).  

 
2

0
2 ( )cos( )ka E x kx dx



     
2

0
2 ( )sin( )kb E x kx dx



   (4-4) 

By considering ( ) ( )E E n n , when taking k=2, the Flourier expansion of ( )E   is 

simplified as  

  
1

( ) 1 cos2( )
2

c cE a  


    (4-5) 
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The second-order fabric tensor in Eq. (4-2) becomes  

 
2 2

2 2

21
( )

24
ij i j

a b
E n n d

b a




 
    

  
 n  (4-6) 

It can be shown that 
c  defines the major principal direction of the fabric tensor and 

ca  is a measure of the degree of fabric anisotropy 
2 2tan 2 /c b a   and 

2 2

2 2( ) ( )ca a b  .  

 In 3D cases, the probability density function ( ) ( , )E E  n  that satisfies 

( , )sin 1.0E d d      . According to Chang et al. (2011), when applying the 

Flourier expansion of the ( , )E    and taking the second-order term only,  the 

contract orientation distribution can be expressed as:  

 
20

22 22

1
( , ) 1 (2cos2 1) 3sin ( cos2 sin 2 )

4 4

a
E a b     



 
     

 
 (4-7) 

 The probability density function of contact normal can also be written in a 

combination of an isotropic part and a deviatoric part in both 2D and 3D cases. 

 
1

( ) ( )
2

ij ij i jE n n


 n  (2D)  
1

( ) ( )
4

ij ij i jE n n


 n  (3D) (4-8) 

where 
ij  is the Kronecker delta and 

ij  is a traceless symmetric second-rank 

tensor. Then the fabric tensor can be decomposed into an isotropic part and a 

deviatoric part as 

 
1 1

2 4
ij ij ij     (2D) 

1 2

3 15
ij ij ij     (3D) (4-9) 

 Following Radjaï et al. (1996), we evaluate the geometrical anisotropy of 

granular assemblies by determining the fabric tensor for both the network of all 

contacts and subsets of contacts that carry forces lower or higher than a given cutoff 

 that may vary from 0 to the maximum contact force in the system. The subset that 

carries forces lower than  is referred to as the “ -network”, which is the same as 
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the overall contact network when 
maxF . The contacts in the network 

supplementary to the “ -network” carry normal contact forces higher than . For 

simplicity, the -network and its supplementary sub-network corresponding to 

nf  with nf  being the average contact force in the system are referred to 

as the weak sub-network and strong sub-network, respectively. The fabric tensors 

associated with the strong and weak networks are expressed as  

 
1

1
w
cN

w k k

ij i jw
kc

n n
N




  , 
1

1
s
cN

s k k

ij i js
kc

n n
N




    (4-10) 

where s

cN  and w

cN  are the number of contacts in the strong and weak contact 

networks, respectively. The total number of contacts Nc in the granular assembly is 

s w

c c cN N N . By introducing the relative proportion of the strong contacts in the 

system /s

c cN N , the relation between the fabric tensor 
ij

 of the overall contact 

network and those of the sub-networks can be expressed as  

 (1 ) w s

ij ij ij       (4-11) 

 For a two-dimensional case, similar to Eq. (4-6), the fabric tensors in different 

sub-networks can be expressed as  

 
2 2

2 2

21

4 2ij

s s

s

s s

a b

b a


 
  

  
 2 2

2 2

21

4 2ij

w w

w

w w

a b

b a


 
  

  
 (4-12) 

where 
2 2( , )s sa b  and 

2 2( , )w wa b  are the coefficients of the second-order components in 

Flourier functions of ( )sE   and ( )wE  , which are the PDFs of the strong and weak 

sub-network, respectively. Accordingly, the magnitude and the direction of anisotropy 

in strong sub-network are 2 2

2 2( ) ( )s s s

ca a b   and 
2 2 tan2s s s

cb a  . In weak 

sub-network, they are 2 2

2 2( ) ( )w w w

ca a b   and 
2 2 tan 2w w w

cb a   correspondingly.  
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By employing s

c cN N  , the fabric anisotropy within the overall contact 

network can be expressed with that in the sub-networks as  

 cos2 (1 ) cos2 cos2w w s s

c c c c c ca a a        (4-13) 

For 2D analysis, the degree of anisotropy of different contact networks can be 

characterized by the corresponding fabric deviator as  

 

2
* *

* * * * 2

1 2 2
2

xx yy

xyq
 

  
 

     
 

 
(4-14) 

where * represents the overall contact network, strong sub-network and weak 

sub-network with * *

1 2,  being the major and minor principal fabric components of 

different contact networks, with 

* * * *

* 2 * 2

1,2 ( ) ( )
2 2

xx yy xx yy

xy

   
 

 
   . The mean 

value of fabric tensor is 
* * *

1 2( ) / 2 1/ 2p      for all contact networks. 
*q  can be 

related to the degree of fabric anisotropy *

ca  via * *1

2
cq a  . 

 Under 3D stress conditions, the fabric deviator of different contact networks is 

expressed as  

 * * *3

2
ij ijq     (4-15) 

where * represents the overall contact network, strong sub-network and weak 

sub-network and * * 1

3
ij ij ij

. Similarly, 
* * / 3 1/ 3iip  holds true for all 

contact networks. 

 

4.2.2 Macroscopic stresses and strains  

(1) Macroscopic strains  

In the DEM simulations carried out in this study, the strain of a specimen was 

obtained from the boundary displacement in both two-dimensional and 
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three-dimensional cases. The average macroscopic strain was determined according to 

the displacement gradient, e.g.,  
1

2
ij i j j iu x u x      . Referring to Suiker and 

Chang (2004) and Christoffersen et al. (1981), the uniform strain field ij  in a 

granular assembly is the best fit for describing the actual contact displacements. Under 

biaxial conditions, the following quantities with i, j =1 and 2 were used: 
v ii  , 

1 2    , sin m t s  , sin p p

m v    . Here p

v  and p  are the volumetric 

and shear plastic strain increments. The angles 
m  and 

m  are the mobilized 

friction angle and the mobilized dilation angle, respectively. 
1 2,   are the principal 

components of ij . In biaxial tests along proportional strain paths, for example, the 

macroscopic strain rates in the assembly were related to the relative velocities of the 

boundary walls as 
1 1 11 2 1

1

2

t t tHv v      and 
2 2 21 2 2

1

2

t t tWv v      with tH  and 

tW  being the height and width of the specimen at time t, as shown in Figure 3-4 (a). 

Similar methods can be found in Thornton (2000) as well as Suiker and Chang (2004).  

In 3D tests along radial stress paths on the π-plane, three principal strain 

components were calculated from the average displacement gradient. The volumetric 

strain and the deviatoric strain 
q  were  

 
1 2 3v      ,       

2 2 2

1 2 1 3 2 3

1

2
q            

 
 (4-16) 

(2) Macroscopic stresses 

The micromechanical description of the stress tensor within a representative 

elementary volume (REV) with volume V can be related to the contact forces and 

branch vectors according to Eq. (2-1). For a two-dimensional assembly composed of 

circular disks, the contact force k
f  and the branch vector lk at the kth contact can be 
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expressed as 

 
k knk tk kf f f n t , k k kll m  (4-17) 

in which nk=(cosθk, sinθk) and tk=(-sinθk, cosθk) are the normal and tangential 

direction of the contact plane, with θk representing the orientation of the branch vector. 

kl  is the length of the branch vector at the kth contact, nkf  and tkf  are the normal 

and tangential components of the contact force, respectively; as shown in Figure 4-2. 

Therefore, the stress tensor can be expressed as 

 
1 1

1 1c cN N
nk k k k tk k k k

ij i j i j

k k

f l n n f l t n
V V


 

    (4-18) 

 

 

(a)                       (b) 

Figure 4-2: Sketches of a contact between two (a) circular particles and (b) 

elongated particles  

 

Branch vector  

The branch vector l  is defined as a vector connecting the centroids of two particles 

in contact. A probability density function ( )S l  can be used to describe the 

distribution of the length and orientation of the branch vectors. Therefore ( )S dl l  
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gives the proportion of the branch vector ranging from l  to dl l . It is noted that 

( )S l  is a joint distribution of the length and orientation, as ( ) ( , )S S ll m . 

Rothenburg and Bathurst (1989) assumed that the length of a branch vector is 

independent of its orientation m . Therefore, ( )S l  can be decomposed into a 

conditional length distribution ( )P l|m  and an orientation distribution ( )E m  as 

( ) ( ) ( )S P l| El m m . It should be noted that the orientation of a branch vector m is the 

same as the associated contact normal n only for circular disks or spherical particles.  

Without loss of generality, one may assume that the distribution of particle radius 

r follows a normal distribution within the ranges of [rmin, rmax] with the mean value 

being 
min max( ) / 2r r r  . We further make the following assumptions:  

 all particles are randomly arranged, the length of branch vector 
1 2l r r   of 

two particles in contact follows a normal distribution with the expected mean 

value being 0
ˆ 2l r . 

 within the range  / 2, / 2      , the length of l  exhibits a 

self-similarity with that in the whole domain and ( ) ( )P l P l|m  

 The average length of branch vectors in a given direction is  

 
max max

min min

( )

0
ˆ( ) ( ) ( )

( )

k
l l

k N

l l

l
l lP l dl lP l dl l

N







   


 |m  

(4-19) 

in which ( )N   is the number of contacts within the range  / 2, / 2      . 

min min2l r  and max max2l r  are the maximum and minimum length of the branch 

vectors.  

 

Contact forces  

Referring to Figure 4-2, the contact force c
f  can be decomposed into a normal and a 
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tangential component as c nc ncf ff n t  in 2D problems. The directional 

distributions of the normal and tangential contact forces can be described as 

(Rothenburg and Bathurst, 1989)  

 0( ) 1 cos 2( )n n

n nf f a , 
0( ) sin 2( )t n

t tf f a  (4-20) 

where 
0

1
( )

2

n nf f d  is the directional average normal contact force, 
na  and 

ta  describe the degree of anisotropies for the distributions of nf  and tf , 
n

 and 

t
 define the directions of the anisotropy for the distributions of nf  and tf . 

 By substituting Eqs. (4-20) and (4-19) into the Eq. (4-18), the stress tensor 

becomes  

 0 0
ˆ ˆ

( ) ( ) ( ) ( )n tc c
ij i j i j

N l N l
E f n n d E f t n d

V V
 

(4-21) 

 For 2D cases, the stress components are explicitly expressed as 

 
0

11 2 cos 2 cos 2 cos 2( ) cos 2v c c n n n c n c t tm a a a a a  (4-22a) 

 
0

22 2 cos 2 cos 2 cos 2( ) cos 2v c c n n n c n c t tm a a a a a  (4-22b) 

 
0

12 21 sin 2 sin 2 (sin 2 cos 2 ) sin 2v c c n n n t t t t tm a a a a a  (4-22c) 

where 0 0 0
ˆ

4

n

c
v

N l f
m

V
.  

 When the macroscopic variables can be obtained from the microscopic variables 

via averaging operations, the local contact forces and relative particle displacements 

can be obtained from corresponding macroscopic variables through localization or 

projections (Chang and Gao, 1996; Emeriault and Cambou, 1996). More specifically, 

the projection rule is derived from the mean field value (MFV) theorem (Jenkins and 

Strack, 1993), which gives the local microscopic variable attached to a pair of 

particles as the projection of the macroscopic variable gradient along the branch 
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vector characterizing the connectivity of particles. The contact force can be related to 

the Cauchy stress tensor and the fabric tensor 
ij  via  

 
*c c

i ij jf l  (4-23) 

in which * 11

3
ij ik kj    is defined as the true stress tensor (Oda, 1993). Here we use 

the definition that 
* 1

ij ik kj   . When ij  and 
ij  are coaxial, the principal 

components of 
*

ij , 
ij  and ij  can be related by  

 
* / ( )i i i       (i is not in summation here) (4-24) 

 Similarly, one may define the true stress tensor or fictitious stress tensor based on 

the fabric tensor for the strong sub-network as 
* 1( )s s

ij ik kj . When 
s

ij  and 
ij  

are coaxial, the principal components of 
*s

ij , 
ij  and 

s

ij  can be related by 

* / ( )s s

i i i    and i is not in summation here.  

 The other fictitious stress that is employed in this research is the fabric stress, 

which the is defined by the principal components of the stress tensor and fabric tensor 

as 
f

ij ik kj   . It is noted that i is not in summation here.  

 It is convenient to introduce the true stress invariants  * *,p q  defined as  

* * *3

2
ij ijq s s  and * * / 3iip   with 

* * *

ij ij ijs p    in 3D cases. Similarly, for the 

true stress defined using the fabric tensor for the strong sub-network, the stress 

invariants are 
* * *3

2

s s s

ij ijq s s  and * * / 3s s

iip   with 
* * *s s s

ij ij ijs p   . 

 

4.3 Fabric evolution in 2D tests along proportional strain paths 

As discussed before, the macroscopic variables of a granular material during 
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deformation can be obtained from microscopic variables via proper averaging method. 

This section examines the evolution of fabric tensors in different contact networks 

when a granular assembly is sheared along proportional strain paths using the results 

of DEM simulations presented in Chapter 3. 

 

4.3.1 Fabric evolution in overall contact network  

Fabric evolution in VED and VEI tests  

According to Table 3-2, the VED and VEI tests correspond to volumetric dilation and 

isometric compression. Figure 4-3 presents the evolution of the fabric deviator 

1 2q  of the overall contact network in different tests. As shown in Figure 4-3 

(a), the value of q  increased with the shear strain initially until it approached the 

peak value. Thereafter, q  decreased as shearing continuing and approaches a 

constant at large strain. This trend is similar to the evolution of the deviatoric stress as 

shown in Figure 3-7 (a). However, both the peak value and the ultimate value of q  

at large shear strain depend on the imposed strain ratio  . In particular, the peak and 

ultimate values of q  increased as   was decreased, implying that the contact 

orientations showed most strong directional preference to resist deformation in the 

VED tests ( 0 1  or 0 ), in which the specimen collapsed much easier than 

in other cases. The evolution of q  with the stress ratio ( t s ) is plotted in Figure 4-3 

(b), in which the deformation started from an initially isotropic stress state. Prior to the 

peak stress ratio, q  increased with the increase of t s  and the overall contact 

network resisted deformation by rearranging contact orientation with more contacts in 

the vertical direction. At the peak stress rate, the overall contact network reached its 

maximum bearing capacity and buckled. After the peak, a decrease of q  was 
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observed as t s  decreased and gradually approached the critical state. Before the 

peak stress ratio, the relation between q  and t s  was nonlinear, which is 

consistent with the conclusion of Mehrabadi and Nemat-Nasser (1983). Nevertheless, 

after the peak stress ratio, the variation of q  with t s  ratio can be described as a 

linear expression approximately, as shown in Figure 4-3. 

In the VEI test 1  , the volume of specimen was a constant during deformation 

since 
1 2    and the volumetric strain was 0v  . The evolution of q  with the 

stress ratio ( t s ) is similar to that from the VED tests, as shown in Figure 4-3. 

 

 

(a)                            (b) 

Figure 4-3: Evolution of the fabric anisotropy in overall contact network with (a) 

shear strain and (b) stress ratio t s  in VED and VEI tests 

 

Fabric evolution in VEC tests  

As shown in Figure 4-4 (b), significant fabric anisotropy developed in the VED tests 

( 0 1 ) since a rapid lateral extension caused a quick reduction of lateral constraint, 

which in turn resulted in relatively more contacts aligned in the vertical direction to 

resist deformation. Thereafter, failure of the overall contact network happened after 
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the fabric anisotropy approaching its maximum. The magnitude of fabric anisotropy in 

the VEC tests was lower than that in the VED and VEI tests owing to the smaller 

extension rate in the lateral direction (
2 1 /    , 1  ) relative to the vertical 

compression rate 
1 . With the increase of  , the horizontal extension rate, 2 , 

became smaller, which tended to produce relatively stable force-chains in the direction 

of σ2. In other words, with an increase of the   value, the force-chains in the lateral 

direction provided stronger support to the strong force-chains in the vertical direction. 

When the value of   was large enough, the weak force-chains in the lateral 

direction were always stable during deformation and provided stronger support to the 

strong force-chains in the vertical directions. Correspondingly, the stress paths did not 

approach the peak state line, for example, in the test with strain path of   in 

Figure 3-6.  

 Regarding the development of induced anisotropy, referring to Figure 4-4 (a), 

with the increasing of  , the fabric anisotropy decreased significantly, and q  may 

not have a peak value as 32  , which implied that the contact network could resist 

external shearing steadily without much contact rearrangement. It should be noted that 

K0-condition corresponds to  .  

 

Figure 4-4: Evolution of fabric deviator for the overall contact network with (a) shear 

strain in VEC tests, and (b) t s  along different strain paths 
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Fabric evolution in VCC tests  

In VCC tests, both 
1  and 

2  were positive (compression) with 
1 2 0   . When 

compared with other tests, the enhanced lateral constraint in VCC tests helped to build 

more contacts and increased the contact forces in the lateral direction. As a result, the 

directional variation of the contact distribution decreased, which resulted in a reduced 

magnitude of fabric anisotropy in the overall contact network; as can be observed in 

Figure 4-4 (b) and Figure 4-5.  

 

 

(a)                               (b)  

Figure 4-5 Evolution of the fabric anisotropy in overall contact network with (a) shear 

strain, and (b) stress ratio t s  in VCC tests 

 

Effect of stress on fabric evolution in overall contact network  
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  1 2 /
n

A t s    (4-25) 

where A and n are functions of the imposed strain ratio   or  . As shown in Figure 
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4-7, A and n can be reasonably expressed as 1.6 0.94A    and 0.5 0.76  n   . 

Eq. (4-25) plays the role of fabric evolution law that is important for a stress-strain 

model based on continuum mechanics. 

 In the post-peak loading stage, the variation of q  with the decrease of t s  

can be described by a linear relation  max

max/ ( / )pq q t s t s      with 

max

max( / )nq A t s  , as shown in Figure 4-3 (b). The value of 
p  could be expressed as 

a function of the imposed strain ratio 0.50 0.24p   ; see Figure 4-7 (b). 

 The reason that the expression of Eq. (4-25) does not hold true for the post-peak 

deformation stage can be attributed to the different patterns of fabric evolution in the 

strong and weak sub-networks as well as the deformation instability. Owing to the 

rigid boundary conditions adopted in the DEM simulations, the post-peak deformation 

was still homogeneous without noticeable localized or diffused deformation patterns, 

and the deformation instability manifests itself as the collapse or buckling of 

force-chain segments.  

 

 

Figure 4-6: Evolution of the fabric deviator of the overall contact network with t s  

and the best fit of pre-peak data in different tests 
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(a)                               (b) 

Figure 4-7: Best fit of (a) the parameters A, n and (b) the parameter p  

 

4.3.2 Fabric evolution in strong sub-network  

It seems that the fabric anisotropy in overall contact network alone cannot interpret 

the stress-strain response ideally. Therefore fabric of the strong network and its 

evolution were investigated for a better understanding of granular material’s internal 

structure.  

 

Fabric evolution in VED and VEI tests  

Figure 4-8 presents the evolution of fabric anisotropy of the strong sub-network 

characterized by 1 2

s s sq    under different conditions, with 
1

s  and 
2

s  being the 

principal components of the fabric tensor defined for the strong sub-network. Figure 

4-8 (a) shows the variation of 
sq  with the t s  ratio in the VED and VEI tests with 

 0.43,1.0 . A unique relation between 
sq , or alternatively 

1 2 1 2( ) / ( )s s s s     , 

and t s  can be defined prior to the peak deviator stress ratio along different strain 

paths, which is different from the fabric evolution of the overall contact network 

presented in Figure 4-3(b). The maximum induced anisotropy ,

s

peakq  appeared 

simultaneously with ( t s )max that corresponded to the peak friction angle. The 
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post-peak data were slightly scattered, however, they distributed in a narrow band that 

almost overlapped the pre-peak data. The following relation can be used to describe 

the variation of 
sq  with the t s  ratio:  

 
1 2

1 2

s s

s s

t

s

 


 





  (4-26) 

where   is a constant. The best estimate of 1   can be applied to different strain 

paths, as shown in Figure 4-8 (a).  

 

 

 

Figure 4-8: Evolution of the fabric deviator in the strong sub-network with stress ratio 

t s  (a) in the VED and VEI tests ( 0  ), (b) at different initial void ratios, and (c) 

under different confining pressures 
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different initial void ratio in Figure 4-8 (b) and by conventional biaxial compression 

tests with constant 
2  (VP200, VP300 and VP400) on specimens with initial void 

ratio being 0.16 in Figure 4-8 (c). In both cases, Eq. (4-26) can be used to describe the 

relation between t s  and 
1 2( )s s  , regardless the initial void ratio of the specimens 

and the variation of the dilatancy rate  /vd d   in the conventional biaxial 

compression tests. As such, one may conclude that Eq. (4-26) can be used to describe 

the evolution of fabric in the strong sub-network. With 1   holding true for all 

cases, Eq. (4-26) can be alternatively expressed as :1 2 1 2:s s    .  

 

Fabric evolution in VEC tests 

When shearing took place along contraction strain paths in VEC tests with 1   (or 

0  ), the ( / )sq t s  curves were all in a narrow band around the line of 

1 2( ) /s s t s   , as shown in Figure 4-9 (a). Similar to the development of anisotropy 

in the VED tests, a peak and a residual anisotropy were observed along strain paths 

with relatively small   values; for example 2.2 . Eq. (4-26) could be used to 

describe the prior peak ( / )sq t s  relation. Moreover, the occurrence of the ( t s )max 

and ,max

sq  implied that the maximum resistance to deformation of the strong 

sub-network was mobilized due to the intensive reduction of the lateral constraints. 

 However, when 54  , the expansion of the specimen in the lateral direction 

was relatively small. As a result, the strong force-chain network was able to resist 

deformation without approaching its maximum capacity due to the strong support of 

the horizontal force-chains. Therefore, 
sq  increased monotonically with the stress 

ratio ( t s ) following Eq. (4-26). When compared with the scattered relation of 
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q t s  for the overall contact network shown in Figure 4-4, Figure 4-9 (a) 

suggested a strong influence of t s  on the internal structure of the strong 

sub-network in tests along contraction strain paths with 1  . In addition, the 

ultimate fabric deviator ,

s

ultq  depended on the value of   in these cases. ,

s

ultq  is 

higher than the critical value ,

s

crq  in the VED and VEI tests.  

 

Fabric evolution in VCC tests  

For imposed contractant strain paths with 0   and 1   in the VCC tests, 
sq  

increased monotonically with t s  and the shear strain; as shown in Figure 4-9 (b) 

and (d). The ultimate fabric deviator ,

s

ultq  increased as the strain paths moves toward 

K0-compression at   . With an increase of the | |  value, the volume 

contraction became dominant and the effect of shearing decreased. As a special case 

when 1   , the specimen was subjected to hydrostatic compression. One expects 

smaller ,

s

ultq  values as   increases, which is confirmed by the results in Figure 4-9 

(b) and (d). With the decrease of   value, the lateral constraint became weaker, and 

hence severe anisotropy developed in the strong sub-network. 
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(a)                                    (b)  

 

(c)                                   (d)  

Figure 4-9: Evolution of fabric anisotropy in the strong sub-network with t s  in (a) 

VEC tests, (b) in VCC tests, (c) with the shear strain in VEC tests and (d) in VCC tests 
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dilatant strain paths showed a linear relation with t s  in the form of   

 
1 2

1 2

w w
w

w w

t

s

 


 





  (4-27) 

in which w  was a coefficient that varied with the values of   or  . As shown in 

Figure 4-11, w  varied in the ranges of 0.3 to 0.45 when the dilation rate increased 

from 0.4    ( 0.43 ) to 0   ( 1.0 ). The peak value of 
wq  appeared 

much earlier than the maximum mobilized shear strength in Figure 3-7 (a).  

The ultimate value of 
wq  at large shear strain depended on the strain paths. As 

shown in Figure 4-10 (a), for tests along higher dilatant strain paths such as 

0.43,0.65  , 
wq  decreased to zero when t and s both approached zero, which 

corresponded to “liquefaction” of the samples. The weak sub-network collapsed since 

the horizontal extension was much larger than the vertical compression in these two 

tests. With an increase of  , the horizontal extension rate decreased and the weak 

sub-network were stable to provide support to the strong sub-network in the vertical 

direction. Correspondingly, both the peak and ultimate value of 
wq  increased with 

the increasing of  . When 1.0 , 
wq  was almost a constant at large strain level; 

as shown in Figure 4-10 (a).  
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(a)                               (b)  

Figure 4-10: Evolution of the fabric anisotropy in weak sub-network (a) with shear 

strain, and (b) with stress ratio t s  in the VED and VEI tests 

 

  

Figure 4-11: Linear relation between 
wq  and t s  prior to the ,max

wq  in VED and 

VEI tests 
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increased monotonically with the shear strain. At larger strain level, the value of 
wq  

increased with the increase of   in VEC tests but decreased with the increase of the 

  in VCC tests. For example, in the test with 1.1  , the fabric anisotropy of the 

weak sub-network was the lowest among all tests.  

Figure 4-12 (b) and Figure 4-13 (b) present the variation of 
wq  with the t s  

ratio in VEC tests and VCC tests, respectively. The induced anisotropy in the weak 

sub-network reached a much higher level as the t s  increased, as long as the strain 

paths were close to the K0-compression. In the VCC tests, the 
wq  increased 

monotonically with the stress ratio and could develop a much higher level if the stress 

paths were close to the K0-compression. As a special case, no significant anisotropy 

was observed in the weak sub-network when a specimen was subjected to isotropic 

compression ( 1   ). Only minor fabric anisotropy developed in the weak 

sub-network in the test with 1.1   when the lateral compression rate was slightly 

smaller than the vertical compression.  

Figure 4-14 compares the evolution of the fabric anisotropy in different contact 

networks with shear strain in VED test ( 0.65 ), VEI test ( 1.0 ), VEC test 

( 2.2 ) and VCC test ( 2.2  ). Significant anisotropy developed in the strong 

sub-network, with the degree of anisotropy much higher than those in overall contact 

network and weak sub-network in all tests. The evolution of fabric in the weak 

sub-network was significantly affected by the imposed strain paths, or the lateral 

constraint. When the value of   decreased from 0.65  (Figure 4-14 a) to 

2.2   (Figure 4-14 d), the lateral deformation of the specimen changed from 

extension to compression. With the increase of lateral constraint, strong anisotropy 

was developed in the weak sub-network, which was confined by the rose diagrams 

representing the directinal distribution of contact normals shown in Figure 4-15.  
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(a)                                  (b)  

Figure 4-12: Evolution of the fabric anisotropy in the weak sub-network (a) with 

stress ratio t s , and (b) shear strain in VEC tests 

 

 

(a)                            (b)  

Figure 4-13: Evolution of fabric anisotropy in the weak sub-network (a) with shear 

strain, and (b) stress ratio t s  in VCC tests 
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mostly orientated in the lateral direction and provided support for the strong 

sub-network. With a decrease of  , the contact normals in the weak sub-network 

tended to concentrate more in the lateral direction, which corresponded to an 

increased anisotropy of the weak sub-network. As shown in Figure 4-15, the 

directional distributions for the contact normal in the sub-network are much like 

peanuts which could not be exactly described using a second-rank Fourier expansion. 

Here an approximation is made in calculating the second-order fabric tensor for 

sub-networks. 

 

(a)                            (b) 

 

(c)                            (d) 

Figure 4-14: Evolution of the fabric anisotropy in overall contact network and 

sub-networks with shear strain in (a) VED tests, (b) VEI tests, (c) VEC tests and (d) 

VCC tests 
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Figure 4-15: Histogram of the strong sub-network (S), the weak sub-network (W) and 

the overall contact network (O) when γ=3% in different tests 
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induced significant dilation of the specimen in the vertical direction. As a result, more 

contact normals tended to align around the horizontal direction, leading to higher 

degree of fabric anisotropy. Compared with the evolution of stress ratio with shear 

strain in Figure 4-16 (b), ( t s )max appeared earlier ( 0.1  ) than that of the 
,maxq  

which occurred at 0.2  . Figure 4-17 presents the evolution of q  with the stress 

ratio t s  for tests under different initial consolidation pressures. Prior to the peak 

value of ,maxq , the fabric evolution with t s  could be approximately described by a 

unique curve in the form of  0.005 28.49 80.436q t s t s    . After the peak, the 

evolution of the q  was dependent on the confining pressure. At the ultimate state 

(or critical state) of deformation, the value of q  depended on the confining pressure.  

 

 

(a)                             (b)  

Figure 4-16: Evolution of (a) fabric anisotropy in overall contact network and (b) t s  

with shear strain in simple shear tests under different initial consolidation stresses with 

0   

 

Figure 4-18 displays the influence of initial stress ratio  , which was defined as 

0

0.04

0.08

0.12

0 0.1 0.2 0.3 0.4 0.5

q
ϕ

γ

900kPa
700kPa
500kPa
400kPa
300kPa

δ=0.0

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5

t/
s

γ

900kPa
700kPa
500kPa
400kPa
300kPa

δ=0.0



Ph.D. Thesis-Jingshan Shi                               McMaster University 

101 

 

x y

x y

 


 





, on the evolution of q  with shear strain and stress ratio at initial 

consolidation pressure s0=500kPa. As expected, “initial” or inherent anisotropy was 

observed in specimens under initial stresses with 0  . In Figure 4-18 (a), the initial 

anisotropy was found to be 
0q = 0.015, 0.02 and 0.03 for specimens with initial stress 

ratio 0.1   , -0.2 and -0.3, respectively. The initial value of q  increased with the 

value of  . As the shear strain increased, q  of all tests quickly increased to its 

ultimate value 0.085q   at 20%  . With further increase of shear strain, q  

kept almost as constant until the critical state was approached. At the critical state, 

both the stress ratio ( t s ) and q  approach constant values; as shown in Figure 4-18 

(b). The ultimate value of q  was independent of the initial stress ratio   (or the 

initial stress state) which is similar to the observation made by Ai et al. (2014). It 

should be noted, however, the ultimate value of q  was affected by the mean 

effective stress level as shown in Figure 4-16 (a).  

 

 

Figure 4-17: Evolution of q  with stress ratio t s  in simple shear tests under 

different initial consolidation pressures  
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(a)                             (b)  

Figure 4-18: Evolution of fabric anisotropy in overall contact network with (a) shear 

strain and (b) stress ratio in simple shear tests with different initial stress ratios   and 

s0=500 kPa 
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Figure 4-20 presents the evolution of 
sq  in specimens initially consolidated at 

different stress ratio   at s0=500kPa. Referring to Figure 4-20 (a), a higher initial 

stress ratio resulted in stronger inherent anisotropy of the strong sub-network. As the 

shear strain increased, 
sq  gradually approached a critical value, regardless of its 

initial value. Similar to the results obtained from tests with 0  , the relation of 
sq  

with t s  could be considered as nearly linear, as shown in Figure 4-20 (b).  

 

 

(a)                             (b)  

Figure 4-19: Evolution of fabric anisotropy in strong sub-network with (a) shear strain 

and (b) stress ratio in simple shear tests under different initial mean stresses with 

0   
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observed when the initial consolidation stress increased. The variation of 
wq  with 

t s  presented in Figure 4-21 (b) revealed that, prior to reaching its peak value, a 

unique relation between 
wq  and t s  could be defined: (1 3 4),wq t s . 

As a first-order approximation, 
wq t s  could be used. In the post-peak stage, 

wq  

gradually decreased with shear strain until approaching an ultimate constant, as shown 

in Figure 4-21 (a). The ultimate value of 
wq  at large shear strain depended on the 

strain paths. For the test with higher initial consolidation pressure such as 0 900s  kPa, 

the ultimate value of 
wq  was nearly 0.05. But for the test with 0 300s  kPa, the 

ultimate value of 
wq  approached 0.02. The magnitude of fabric anisotropy was 

relatively small when compared with those in the whole contact network and strong 

sub-network. Therefore, at critical state, the weak sub-network was mostly isotropic.  

 

 

Figure 4-20: Evolution of fabric anisotropy in strong sub-network with (a) shear strain 

and (b) stress ratio in simple shear tests under different initial stress ratios at 

s0=500kPa 
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(a)                           (b) 

Figure 4-21: Evolution of fabric anisotropy in weak sub-network with (a) shear strain 

and (b) stress ratio in simple shear tests under different hydrostatic consolidation 

pressures  
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Figure 4-22: Evolution of fabric anisotropy for weak sub-network with (a) shear strain 

and (b) stress ratio at different   values with 0 500s  kPa 
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was also affected by the mean stress level. As shown in Figure 4-23 (b), along the 

stress path ( 0b   or / 6  ) of axisymmetric extension, the induced degree of 

fabric anisotropy was more pronounced at lower mean stresses for the same q p  

level. However, the peak values of q  and q p  were not sensitive to the variation 

of mean stresses.  

 

 

(a)                               (b) 

Figure 4-23: Comparison of fabric evolution with q p : (a) p=300 kPa, 0 ~ 1b ; 

and (b) p=300-900 kPa, b=0: kn=ks=4×10
4 

N/m  
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that Eq. (4-28) is similar to Eq. (4-25) for the evolution of q  in 2D tests along 

proportional strain paths.  

 During the post-peak deformation state, the variation of q  with the decrease 

of q p  can be described by a linear relation  max

max( )pq q q p q p      with 

max

max( )zq B q p  , as shown in Figure 4-25 (b). The value of 
p  could be expressed 

as a function of the intermediate stress coefficient b, as 0.05 0.11p b   ; see Figure 

4-25 (b). 

 

 

(a)                               (b) 

Figure 4-24: Evolution of q  with q p  before peak stress state: (a) p=300 kPa, 

0 ~ 1b ; and (b) p=300-900 kPa, b=0: kn=ks=4 ×10
4 N/m 
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(b). In addition, the stronger anisotropy developed in the strong sub-network in the 

axisymmetric extension test (b=0, / 6   ) than that in the in axisymmetric 

compression test (b=1, / 6  ), as shown in Figure 4-26 (a).  

 

 

(a)                               (b) 

Figure 4-25: Best fit for (a) B and z, and (b) p 

 

 

(a)                            (b) 

Figure 4-26: Evolution of fabric anisotropy in the strong sub-network with (a) stress 

ratio and (b) deviatoric strain in 3D tests along radial stress paths on the π-plane with 

kn=ks=4 ×10
4 N/m 
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by 
sq , against the q p  ratio under different conditions. Regarding the variation of 

sq  with ( q p ), a unique relation between 
sq  and q p  can be defined for all cases 

as 

 
s s q

q
p

   (4-29) 

with 1/ 3s   which was independent of the stress paths, the mean stress level and 

the inter-particle contact stiffness (see Figure 4-27). Since the mean of the fabric 

tensor is 1/ 3sp  , Eq. (4-29) could be written as  

 

s

s

q q

p p





  
(4-30) 

 

 

(a)                                  (b)  

Figure 4-27: A unique relation between the fabric deviator for strong sub-network and 

stress ratio q p  in 3D tests with kn=ks=10
6 N/m: (a) p=500 kPa, 0 ~ 1b ; and (b) 

p=300-1000 kPa, b=0.0 
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noted that Eq. (4-28) is applicable to the whole deformation process. In the post-peak 

deformation stage, 
sq  decreased together with q p  as the shear strain continued 

increasing until the critical state was reached, as shown in Figure 4-26 (b). 

 

4.5.3 Fabric evolution in weak sub-network 

When kn=ks=4 ×104 N/m and p=300 kPa, the evolutions of the anisotropy of weak 

contact network with the q p  ratio and the deviatoric strain along different stress 

paths with a constant mean stress are presented in Figure 4-28. The weak fabric 

deviator 
wq  initially increased with the deviatoric strain until approaching its peak 

value. For all stress paths, 
wq  reached its maximum 

,max

wq  at 
q  1% ~1.5%, 

much earlier than the occurrence of the peak stress ratio 
max( / )q p  and ,max

sq  at 

approximately 
q  5.5%, as shown in Figure 3-16 (b) and Figure 4-26 (a). 

Comparing with Figure 4-26 (a), the values of ,max

wq  were much smaller than ,max

wq  

at the same deformation state. As shown in Figure 4-28 (b), at low shear stress levels 

of q p < 0.5, 
wq  is linearly proportional to q p  for all stress paths, such that  

 
w w q

q
p

 (4-31) 

with 0.187w
. Comparing with Eq. (4-29), at a given q p  ratio, stronger 

anisotropic develops in the strong sub-network since 
w s

. After the peak, 
wq  

decreases as the deviatoric strain increases while the deviator stress ratio q p  keeps 

increasing until the peak state max( / )q p . At the critical stress state, 
wq  arrives at its 

ultimate value close to zero, especially for the stress path of 1.0b  ; as shown in 
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Figure 4-28 (b). Even though the critical state value of ( )w

crq  is small, the weak 

contact network can build up a certain level of anisotropy under axisymmetric 

compression ( 0b  ). In particular, 
, 0.03w

crq  at 0b   and 
, 0.01w

crq  at 1b  , 

respectively. However, it is reasonable to state that the weak contact network is nearly 

isotropic at the critical state, particularly when compared with the levels of fabric 

deviators in the strong and the whole contact network as presented in Figure 4-26 (a) 

and Figure 4-23 (a), respectively. 

 

 

(a)                               (b) 

Figure 4-28: Evolution of fabric anisotropy in the weak sub-network along various 

stress paths: (a) 
wq  vs.  , and (b) 

wq  vs. /q p : kn=ks=4 ×104 N/m, p=300 kPa 
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then declined gradually. Before the strain level at 'A , the relation between 
sq  and 

wq  was almost linear, as shown in Figure 4-29 (b). With the further increase of the 

deviatoric strain, 
sq  approached its peak value at 'B , where the weak sub-network 

was nearly isotropic. After 'B , the 
sq  began to decrease while q  continuously 

increased until its peak value at 
'C .  

 

 

(a)                          (b)   

Figure 4-29: Evolution fabric anisotropy in the whole, sub contact networks with 

deviatoric strain in tests along stress path (a) b=0.0 and (b) b=1.0, kn=ks=4 ×104 N/m  
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peak values simultaneously according to Eq. (4-29). At this time, 
wq  reached a low 

level near its minimum. During the post-peak deformation process, 
wq  stayed at its 

minimum while 
sq  and q p  gradually decreased to their values at critical state. 

One may interpret the increase of fabric deviator q  as a measure of strong 

anisotropy of internal structure or more biased arrangement of particles in preferential 

directions. A decreasing fabric deviator indicates degradation or collapse of the 

anisotropic internal structure. At the very beginning of shearing, owing to 

shear-induced compaction, both sub-networks (strong and weak) rearranged 

themselves to resist the shear stress. Following the occurrence of the maximum rate of 

volumetric compression rate, owing shear-induced dilation with the increase of shear 

strain, some contacts disappeared. The disappearing contacts were mostly in the weak 

sub-network and originally perpendicular to the major principal stress direction, which 

resulted in a decrease of 
wq . During this period of deformation, the strong 

force-chains still built up accompanied by an increase of 
sq  and q p . With the 

increase of volumetric dilation rate, continuous loading and weakening of the weak 

sub-network resulted in the local collapse of strong force-chains, which was initiated 

when 
sq  and q p  reached their maximum values. The strong sub-network 

continued to collapse until a critical state at which the rate of volumetric strain became 

zero and the weak sub-network was practically isotropic; as shown in Figure 4-28. 
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Figure 4-30: Evolution of fabric anisotropy in the whole and sub-networks with ratio 

of strain increment in tests along stress paths of b=1.0 and kn=ks=4 ×104 N/m  

 

4.6 The upper limit of fabric anisotropy in 2D granular assembly 

The fabric tensor, defined in strong sub-network in Eq. (4-10), can also be 

approximately expressed in the form of Eq. (4-5) as  

 
2

0
( )s s

ij i jE n n d


     (4-32) 

with the probability density function of contact normal distribution being (Radjai et al., 

1998): 

  
1

( ) 1 cos2
2

s s s

c cE a  

   
 

 (4-33) 

The parameters 
s

ca  and s

c  define the amplitude of anisotropy and its principal 

direction. Figure 4-31 shows the directional distribution of the contact normal of the 

strong sub-network at the peak stress state in an isochoric compression test, which 

corresponds to / 2s

c  . Given that   0sE    must be satisfied in any direction, 

one has 1ca  . It has been shown that 2s s

cq a  , which implies 0.5cq  .   
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Figure 4-31: Sketch of the directional distribution of contact normal density for strong 

sub-network in VEI test when at the peak stress state ( 3%  )  

 

The results of DEM simulations under various conditions have shown that 
sq  is 

larger than both q  and 
wq . Therefore, the maximum value of the fabric deviator 

within strong sub-network satisfies ,max 0.5sq  .  

Figure 4-32 (a) presents the variation of ,max

sq  with 
vd d    in 2D 

simulations for proportional strain paths tests and biaxial compression tests with 

constant confining pressure. In general, the data points can be divided into two 

sections by the K0 state ( ) where the value of fabric deviator within strong 

sub-network approached its maximum value. The right section corresponds to the 

VCC series ( 1  ) in which the specimen had a compressive deformation in the 

directions of both 1  and 2 . The ,max

sq  tended to decrease as 
vd d    

increased in the right section, which was induced by increasing of the friction of 

strong contacts in the lateral direction due to the over-constraint imposed by 

deformation in the direction of 2 . However, ,max

sq  increased with the increase of 

vd d    on the left section corresponding to VEC series tests, in which the 
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specimen was allowed to expand in 2  direction. ,max 0.5sq   was only approached 

when the specimen was subjected to K0 compression as shown in Figure 4-32 (a). In 

biaxial tests with constant lateral stresses, the developed anisotropy was close to that 

along dilative strain paths with 
maxsin    in which max  was the maximum 

dilatancy angle in conventional biaxial tests defined as 

max maxsin tan /vd d       (see Figure 4-32 b). The results of DEM simulations 

presented in Figure 4-32 confirm ,max 0.5sq  . 

 

 

(a)                                        (b) 

Figure 4-32: (a) The upper limits of fabric deviator in strong sub-network and (b) the 

volumetric strain variation in biaxial compression tests with constant confining 

pressure 

 

4.7 Summary  
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(1) The evolution of the fabric of the overall contact network depended on the 

stress path or the strain path. Owing to its dependency on deformation 

history, the fabric deviator of the overall contact network, q , could not be 

expressed as a unique function of stress states.  

(2) When a granular assembly was sheared along a selected proportional strain 

path or stress path, a power relation    / /
n z

q A t s or B q p   was found 

before the peak stress state with parameters of A, n and B, z depending on 

imposed dilatancy rate /vd d  and the intermediate stress ratio b; 

respectively. 

(3) For an initially isotropic granular assembly subjected to shearing, a unique 

stress-fabric relation was found, which took the form / /s sq p q p    for 3D 

stress conditions and / /s sq p t s    for biaxial stress conditions. 

Alternatively, the stress-fabric relation for the strong sub-network can be 

expressed as 
1 2 1 2: :s s     for 2D stress conditions. 

(4) For the weak sub-network, the initial buildup of induced fabric anisotropy 

could be linearly related with the stress ratio under both two-dimensional 

tests and three-dimensional tests. The peak value of 
wq  occurred much 

earlier than the peak stress ratio q p  or t s . The evolution of 
wq  was 

significantly affected by stress or strain paths. The anisotropy of the weak 

sub-network was always weaker than the strong sub-network. Moreover, at 

critical state, the weak sub-network tended to be isotropic.  
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Chapter 5 Induced Fabric at Critical State 

 

5.1 Introduction  

The critical state theory formulated by Roscoe et al. (1958) and Schofield and Wroth 

(1968) for soil mechanics assumes a unique ultimate state for soil under sustained 

shear. At critical state, the material deforms continuously under constant stresses with 

constant volume. This unique ultimate state in constitutive modeling of granular soils 

is described by the critical stress ratio M ( / )cq p  in the p -q space together with a 

critical state line (CSL) defining in e- ln p  plane, where p , q and e are the mean 

effective stress, deviatoric stress, and void ratio, respectively. M is a material property 

which is independent of the initial state and the drainage condition but is affected by 

the history of deformation or stress paths. For example, under axisymmetric stress 

conditions, the value of M in triaxial compression is larger than that in triaxial 

extension. The necessary and sufficient conditions for the critical state are that 

/q p M   and ( )c ce e e p   with 0q p   are satisfied simultaneously. But the 

critical stress ratio may not unique. In the Lode system, the critical stress response 

surface is not a circle since M is stress path dependent.  

The classical state theory does not make reference towards the fabric which 

depends on the connectivity of particles or the distribution of particle orientation, 

contact normals or branch vectors. It only includes a scalar measure, the void ratio, as 

an indirect measure of the particle arrangement. In other words, it is assumed that the 

critical state is independent of the fabric of the material. However, both DEM 

simulations and experimental studies reveal that granular material exhibit fabric 

anisotropy at their critical states, where the material is initially isotropic or with a 

certain level of inherent anisotropy (Been and Jefferies, 1985b; Li and Dafalias, 2011; 

Masson and Martinez, 2001; Nakata et al., 1998; Thornton, 2000; Zhao and Guo, 
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2013). In addition, the induced fabric anisotropy at critical state also depends on the 

stress (Zhao and Guo 2013). On the constitutive modeling side, Li and Dafalias (2011) 

presented a critical-state based model, which considered the influence of the fabric 

during deformation and the fabric anisotropy at the critical state. Zhao and Guo (2013) 

proposed a unique relationship between the mean stress and a fabric anisotropy 

parameter K defined as the first joint invariant of the deviatoric stress tensor and 

deviatoric fabric tensor, which resulted in a unique curve in the K-e- p space at the 

critical state.  

In this chapter, the fabric-stress relation at critical state is explored using the 

obtained DEM simulations carried out in Chapter 3. The fabric tensor was calculated 

in both the overall contact network and sub-networks. The stress-fabric relations for 

different contact networks at the critical state were examined. The fabric response 

surfaces were identified at critical state for different contact networks. 

 

5.2 Fabric anisotropy of the whole contact network at critical state 

According to the findings from biaxial tests by Satake (1978, 1982) and Oda and 

Nemat-Nasser (1982), the relation between the principal components of induced fabric 

in the overall contact network and principal stresses can be expressed as  

 1 2 1 2: :m m     (5-1) 

where m  is a constant varying in the range of 0.4 to 0.6, 
1 2,   and 

1 2,   are the 

principal components of the fabric tensor and stress tensor, respectively. Maeda et al. 

(2006) conducted biaxial tests using DEM simulations and suggested that 0.5m  . 

For three-dimensional cases, Eq. (5-1) becomes  

 1 2 3 1 2 3: : : :m m m       (5-2) 

with the parameter m being approximately 0.5. This relation further coincides with the 
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spatially mobilized plane (SMP) and the concept of 
ijt  proposed by Chowdhury and 

Nakai (1998).  

 To obtain the relation between the principal components of fabric for the overall 

contact network and the principal stresses at the critical state, we define a new 

measure of stress as  

 
1ˆ ( )m

i i i        (i not in summation, and i =1, 2, 3) (5-3) 

where m is constant. The mean and the deviator of ˆ
ij  are ˆ ˆ / 3ip   and 

3
ˆ ˆ ˆ

2
ij ijq s s  with ˆ ˆ ˆ

ij ij ijs p   . When Eq. (5-2) holds true, one has ˆ 0q  . 

Consequently, to examining the applicability of Eq. (5-2) and determine the 

deformation process at the critical state, one may explore the variation of q̂  under 

various conditions. It should be noted that the true stress tensor defined in Eq. (4-24) 

is recovered from Eq. (5-2) when m=1.  

Figure 5-1 presents the evolution of ˆ ˆ/q p  at different m values with the 

deviatoric strain along various stress paths in 3D tests with kn=ks= 1×10
6 

N/m and 

p=500kPa. When m varied in the range of 0.35 to 0.5, for each individual stress path, 

ˆ ˆ/q p  approached a steady level when 10%q   until the critical state. The 

minimum values of ˆ ˆ/ 0.01q p   was obtained at m=0.4, as shown in Figure 5-1 (b). 

As a result, it is plausible to the following relation at the critical state 

 

0.4 0.4 0.4

1 2 3

1 2 3

( ) ( ) ( )  

  
   (5-4) 

or  

 
0.4 0.4 0.4

1 2 3 1 2 3: : ( ) : ( ) : ( )       (5-5) 
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(a)                          (b) 

 

(c)                           (d)  

Figure 5-1: Evolution of ˆ ˆ/q p  with equivalent shear strain at various values of m: 

kn=ks= 1×10
6 

N/m, p=500kPa  

 

We next examine the dependency of m on the interaction at particle contacts. 

Figure 5-2 presents the variation of ˆ ˆ/q p  at different m-values in Eq. (5-3) when the 

contact stiffness kn=ks=4×10
4 

N/m. The minimum values of 
min

ˆ ˆ( / ) 0.01 0.03q p   

was obtained when m=0.3 at the ultimate deformation state; as shown in Figure 5-2 

(b).  In other words, at the critical state, the relation between the principal 

components for the stress and fabric for the overall contact network can be expressed 

as  
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0.3 0.3 0.3

1 2 3 1 2 3: : ( ) : ( ) : ( )       (5-6) 

 

 

(a)                            (b) 

 

(c)                           (d) 

Figure 5-2: Evolution of ˆ ˆ/q p  with equivalent deviatoric strain at various values of 

m : kn=ks= 4×10
4 

N/m, p=500kPa 

 

As discussed previously, the principal components of the true stress tensor based 

on the fabric tensor of the strong sub-network are defined as  
1

*s s

ij ik kj  


 . When 

ij  and 
s

ij  are coaxial, the principal components of 
*s

ij  can be expressed as 

* 1( )s s

i i i     (i is not in summation). Figure 5-3 and Figure 5-4 present the 
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variation of the true stress ratios * *q p  and * *

s sq p  along different stress paths 

when kn=ks=1×10
6 

N/m and kn=ks=4×10
4 

N/m respectively. Comparing with the 

/ ~ qq p   curves in Figure 3-16 (b) and Figure 3-17 (b), the evolution of the 

deviatoric true stress ratios * *q p  with the deviatoric strain, as shown in Figure 5-3 

(a) and Figure 5-4 (a) were very similar to that of q p . For a given stress path, the 

values of * *q p  were smaller than q p  at the same deviatoric strain. The peak 

values of * *q p  were also lower than the peak q p  values of the same stress path. 

Moreover, ultimate values of q p  and * *q p  were stress paths dependent. 

The variation of the true stress ratio * *s sq p  based on the fabric in the strong 

sub-network is plotted in Figure 5-3 (b) and Figure 5-4 (b). In general, the values of 

* *s sq p  were much smaller than * *q p  and /q p  at the same deviatoric strain in 

tests with both high and low contact stiffness. At the critical state, regarding of the 

contact stiffness, the value of the true stress ratio * *s sq p  were very low ( 0.06 ). 

Therefore, one may assume * * 0.0s sq p  , which yields the following relation 

between the principal components of stress and fabric tensors at the critical state: 

 1 2 3 1 2 3: : : :s s s       (5-7) 

The above relation can also be expressed as 

 
1

,
3

s

s

s

q q
p

p p







      (3D) (5-8) 

where ,s sq p   are the deviator and the mean of the fabric tensor for the strong 

sub-network. In general, Eqs. (5-7) and (5-8) hold true throughout the loading process 

can be used to describe the fabric evolution in the strong sub-network. It should be 
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noted that the Eq. (5-8) is identical to Eq. (4-28). 

 

 

(a)                                 (b)  

Figure 5-3: Evolution of true deviator stress ratio (a) * *q p  and (b) * *s sq p  with 

deviatoric strain: kn=ks= 1×10
6 

N/m, p=500kPa 

 

 

(a)                          (b) 

Figure 5-4: Evolution of true deviator stress ratio (a) * *q p  and (b) * *s sq p   with 

deviatoric strain: kn=ks= 4×10
4 

N/m, p=500kPa 
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state and the critical stress state. Figure 5-5 presents the Cauchy stress response 

envelopes at both the peak stress state and critical stress state at kn=ks=1×10
6
N/m and 

p=500kPa. In general, the shape of the stress response surfaces is a rounded triangle 

on the π-plane, which can be reasonably expressed using the surfaces proposed by 

Lade and Duncan (1975) and Matsuoka and Nakai (1974) in the form of  

 

3

1

3

LD

I

I
 ,     1 2

3

MN

I I

I
  (5-9) 

where 
1 1 2 3= + +I    , 

2 1 2 2 3 3 1= + +I        and 
3 1 2 3=I     are the invariants of 

Cauchy stress (i.e., ), LD  and MN  are constants in the Lade-Duncan relation 

and the Matsuoka-Nakai relation, respectively. The agreement with the data set is 

excellent as shown in Figure 5-5 where the specific values of LD  and MN  used 

for the plots are 31.5LD   and 10.11MN   at the critical state and  

32.30, 10.15LD MN    at the peak state for the specimen with contact stiffness 

kn=ks= 1×10
6 

N/m and p=500kPa.  

Eq. (5-5) was proposed as the failure criterions of granular material. For example, 

Davoudzadeh (1982) found that Lade surface could satisfactorily define the failure 

criterion of sand using experimental tests. The results from DEM simulation also had 

excellent agreements with Lade surface using spherical particles (Calvetti et al., 2003; 

Thornton and Antony, 2000; Thornton and Zhang, 2010) and ellipsoids (Ng, 2001).  

 To examine the values of LD  and MN  at the peak states and the critical states, 

the variation of LD  and MN  with deviatoric strain during the deformation process 

is presented in Figure 5-6 under different conditions, which demonstrates that all data 

sets of different stress paths can be described by a unique curve, especially for the 

Lade’s parameter. In general, either a Lade-Duncan relation or the Matsuoka-Nakai 

ij
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relation can be used to reasonably describe Cauchy stress at the critical state. 

  

  

(a)                               (b)  

Figure 5-5: Stress envelops (a) at critical state and (b) at peak state: kn=ks= 1×10
6 

N/m 

and p=500kPa 

 

 

(a)                             (b) 

Figure 5-6: Evolution of the LD  and MN  for the Cauchy stress with shear strain 

under different stress paths: kn=ks= 1×10
6 

N/m and p=500kPa 
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critical state was also examined. Figure 5-7 presents the critical state stress surfaces on 

the π-plane at different mean effective stress levels when kn=ks= 1×10
6 

N/m and 

p=500 kPa to 1000 kPa. For the granular assembly and the adopted parameters of 

interaction between particles, the effect of the stress level on the critical stress surface 

can be neglected. Figure 5-8 compares the stress surfaces of the specimens with 

kn=ks=1×10
6 

N/m (dotted line) and kn=ks=4×10
4 

N/m (solid line) at the critical state. 

The fabric surface for the specimen with lower contact stiffness is slightly bigger than 

that with high contact stiffness at the critical state.  

 

 

Figure 5-7: Influence of the mean stress level on the stress envelopes at critical state: 

kn=ks=1×10
6 

N/m 
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Figure 5-8: The stress envelopes at critical state for specimens with kn=ks=1×10
6 
N/m 

(dotted line) and kn=ks=4×10
4 

N/m (solid line) 

 

 Figure 5-9 presents the envelops of the true stress and the fabric stress at critical 

state, and the fittings using the Lade’s surface and the Muskoka-Nakai’s surface. It is 

recalled that the fabric stress is defined as 
f

ij ik kj    in Chapter 4. The specific 

values of LD  and MN  were 28.8LD  , 37.5, 
MN  11.21, 9.43 for the 

envelopes of  and  at the peak and critical states, respectively. The variation 

of LD  and MN  for the true stress and the fabric stress can be found in Figure 5-10 

and Figure 5-11, respectively. In general, either a Lade-Duncan relation or the 

Matsuoka-Nakai relation can be used to describe the stress surface at the critical state. 
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(a)                             (b) 

Figure 5-9: Best fittings of (a) true stress envelops and (b) fabric surface at critical 

states using the Lade’ surface and Matsuoka-Nakai’s surface: kn=ks= 1×10
6 

N/m and 

p=500kPa 

 

  

(a)                             (b) 

Figure 5-10: Evolution of (a) *

LD  and (b) *

MN  of the true stresses with deviatoric 

strain: kn=ks= 1×10
6 

N/m and p=500kPa 
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(a)                             (b) 

Figure 5-11: Evolution of (a) f

LD  and (b) f

MN  of the fabric stresses with deviatoric 

strain: kn=ks= 1×10
6 

N/m and p=500kPa 

 

5.4 Limit fabric surface at critical states 

In addition the evolution of fabric, it is equally important to evaluate the ultimate 

fabric at the critical deformation state. Similar to the stress envelop on the π-plane at 
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. Herein, 
2J  and 

3J  are the 

second and the third invariants of the deviatoric fabric tensor (
1

3
ij ij  ), respectively. 

At critical stress state, the fabric surface for the overall contact network is plotted in 

Figure 5-12 (a), in which the surface took the shape of ‘inverted’ Lade’s surface. For 

comparison purposes, Figure 5-12 (b) compares the ‘inverted’ Lade’s surface for the 

fabric at critical state with other stress surfaces. It is observed that the critical state 

fabric surface was relatively smaller than any stress surfaces. According to Thornton 

and Zhang (2010), the ‘inverted’ Lade’s surface for critical fabric state can be 

expressed as  
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3

1 *

1 2 32 3

I

I I I



  




 (5-10) 

where 
*  is a constant, 

1 1 2 3 1I        , 
2 1 2 1 3 2 3I         and 

3 1 2 3I     

are the three invariants of the fabric tensor. Thornton and Zhang (2010) suggested 

* 1.806  for a dense polydisperse system of elastic spheres with the size ranging 

from 0.25mm to 0.33mm and inter-particle friction coefficient μ=0.5. Zhao and Guo 

(2013) found that the values of 
*
 at the critical state varied in a small range of 

* 1.810 0.001  , marginally affected by the mean stress and the intermediate stress 

parameter b . Barreto and O’Sullivan (2012) showed that 
*
 at the peak stress state 

tended to increase with inter-particle friction coefficient μ following 

* 0.0034(5.48 3) .  

The DEM simulation results obtained in this research showed that a modified 

expression of Eq. (5-10) in the following form 

 

3

1 *

* *

1 2 3

I

a I I b I



  




 (5-11) 

can better describe the critical state fabric surface. In Eq. (5-11), *a ,  *b  and 
*  are 

constants. A regression analyses revealed that 
* * 1 1.5b a  . When *a =2, *b =3 and 

*a = *b =2, Eq. (5-11) had excellent agreement with the results of DEM simulations as 

shown in Figure 5-13. Moreover, the variation of 
*
 during deformation with the 

deviatoric strain could be described by a unique curve, which is independent of the 

stress paths with different intermediate stress coefficients. At critical states, when *a

=2, *b =3 , the values of 
*
 varies in the range of * 1.809 0.001cr   , which is 

consistent with the findings by Zhao and Guo (2013). However, the results of DEM 
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simulation were also reproduced by *a = *b =2 with * 1.698 0.001cr    for the critical 

state fabric surface. The evolution of the 
*
 with deviatoric strain presented in 

Figure 5-13 also implied that the fabric at the peak stress state may also be described 

by Eq. (5-11) with 
*

p  which was slightly larger than *

cr
.  

 

  

(a)                          (b) 

Figure 5-12: (a) The fabric surface of the overall contact network at critical state and 

(b) comparison of critical fabric surface with different critical state stress: kn=ks= 

1×10
6 

N/m and p=500kPa,  

 

 Recalling Eq. (5-8), the principal component of the fabric tensor in the strong 

sub-network is proportional to principal stresses, 
1 2 3 1 2 3: : : :s s s , which 

indicated that the shape of the critical fabric surface for the strong sub-network has the 

same shape of the critical stress surface. As shown in Figure 5-14, the critical fabric 

surface for the strong sub-network is a rounded edge triangle that can be described 

using the Lade’s surface. Recalling the findings in Chapter 4, the fabric anisotropy for 
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networks at critical state since the weak sub-network was nearly isotropic. As shown 

in Figure 5-14, the size of the fabric surface of the strong sub-network was bigger than 

that of the fabric surface of the weak sub-network, which is consistent with the 

findings in Chapter 4. 

 

 

(a)                    (b) 

Figure 5-13: Variation of *  of surfaces against deviatoric strain when (a) a*=b*=2 

and (b) a*=2, b*=3: kn=ks= 1×10
6 

N/m and p=500kPa 
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5.5 Summary 

A series of DEM simulations under general 3D stress conditions were carried out 

along different stress paths to investigate the state of fabric in different contact 

networks at the critical states. Base on the analyses of DEM simulation results, the 

following conclusions can be withdrawn:  

(1) The stress-fabric relation for the overall contact network at critical state 

can be described using 
1 2 3 1 2 3: : ( ) : ( ) : ( )m m m       with m varying in 

the range of 0.4 ~ 0.3.  

(2) For the strong contact sub-network, the evolution of its fabric components 

can be expressed as 
1 2 3 1 2 3: : : :s s s      , which is applicable to the 

whole deformation process.  

(3) The Cauchy stress envelopes at both the critical states and peak states can 

be described by the Lade’s surface and the Matsuoka-Nakai’s surface. The 

specific values of LD  and MN  used for the plots are 31.5LD   and 

10.11MN  , respectively. The surfaces of the true stresses and fabric 

stresses based on the fabric for the overall contact network also fit 

equations of the Lade’s and Matsuoka-Nakai’s surfaces satisfactorily.   

(4) On the π-plane, the fabric envelopes for the overall contact network takes 

the shape of an inverted Lade’s surface in the form of Eq. (5-11), in which 

*
 is approximately * 1.809 0.001cr    at the critical state when 

* *2.0,  3.0a b  alternatively * 1.698 0.001cr    when * 2.0a  and 

* 2.0b . 

(5) On the π-plane, the fabric envelope for the strong sub-network at critical 

state has the same shape as the Lade’s surface.  
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Chapter 6 Coaxiality between Fabric and Stress 

 

6.1 Introduction 

In geotechnical engineering, the non-coaxiality refers to the principal axis of stress 

does not generally coincide with that of incremental strain, especially when the 

principal axis of stress rotates, for example in simple shear tests (Roscoe, 1970; 

Roscoe et al., 1967). Experimental results showed that the initial anisotropy had a 

considerable effect on the degree of non-coaxiality during the rotation of principal 

stress orientation (Cai et al., 2013; Miura et al., 1986). Since the stress and 

deformation are originated from contact interaction and relative displacement on the 

microscopic scale, the non-coaxiality is inevitably related to the internal structure at 

the particle scale. The principal orientation of the fabric tensor is essential to 

understand the physical matter of the non-coaxiality between the direction of the 

principal stress and that of the strain increment.  

 Matsuoka et al. (1988) observed that the principal direction of fabric anisotropy 

rotates with rotation of the maximum shear stress during simple shear tests using 

initially isotropic assemblies of photo-elastic rods. Ai et al. (2014) observed that the 

orientation of the principal fabric for the overall contact network generally resembles 

that of the principal stress independent of the initial anisotropy. But they did not 

consider the fabric anisotropies for the sub-networks. Actually, not all contacts play 

the same role during the deformation of a granular assembly. According to Radjaï et al. 

(1998), the shear resistance is largely determined by the contribution of the strong 

force network. In Chapter 4, the mobilized shear stress ratio is proportional to the 

degree of fabric anisotropy of the strong sub-network in both 2D and 3D cases. 

Therefore, it is reasonable to assume that the principal direction of fabric for the 

strong sub-network might be coaxial with that of the principal stress.  
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 The micromechanical analysis for the principal orientation of fabric yields to the 

stress-force-fabric relation. For a two-dimensional assembly of circular disks, the 

principal direction of fabric for the overall contact network is coaxial with principal 

direction of the stress according to the assumption made by Rothenburg and 

Selvadurai (1981) that the contact normal distribution is independent of those of 

contact forces. A similar conclusion was arrived by Hosseininia (2015) for randomly 

settled assemblies of circular or elongated particles. It is noted that the orientation of 

the principal stress did not rotate and the fabric anisotropy was computed for the 

overall contact network in their research. 

 Motivated by the observations above, this chapter attempts to investigate the 

non-coaxiality between the principal direction of stress tensor and that of the fabric 

tensor. A series of two-dimensional DEM simulations were conducted to investigate 

the stress-strain responses of granular materials including biaxial tests and simple 

shear tests. The internal structures of specimens were characterized by different 

particle contact networks, i.e., the strong-, weak- and overall contact networks. The 

non-coaxiality between stress and fabric tensors for different contact networks was 

determined from micromechanical analyses that yields the stress-force-fabric relation. 

The results showed that the orientation of stress tensor is always coaxial with that of 

the fabric tensor for strong sub-network instead of the fabric tensor for the overall 

contact network. The principal direction of the weak sub-network was always 

perpendicular to that of the strong sub-network except for tests with zero confining 

pressures, but not necessarily orthogonal to that of the overall contact network. The 

fabric anisotropy for the overall contact network could be interpreted as a combination 

of sub-network anisotropy weighted by the ratio of contact number in each 

sub-network over the total number of contacts. 
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6.2 Principal directions of the stress and fabric tensors  

For a 2D granular assembly, the orientation of the stress tensor is quantified by the 

inclination angle of major principal stress with respect to the x-axis, as shown in 

Figure 6-1. Using a Mohr’s circle,   can be determined as    

 
12

11 22

2
tan 2 




 



 (6-1) 

According to this definition,   ranges within o o0 ,180   . Recalling Section 4.2, the 

stress components were explicitly derived from a microscopic scale, see Eq. (4-22) 

(a-c). Therefore,   can be expressed in term of the measures for the distribution of 

contact forces and contact normals as 

 
sin 2 sin 2 sin 2 (sin 2 cos2 )

tan 2
cos2 cos2 cos2

c c n n t t n t t t

c c n n t t

a a a a a

a a a


    


  

   


 
 (6-2) 

 By assuming that 
c n t     (Rothenburg and Bathurst, 1989), tan 2   can be 

simplified as  

 tan 2 1 tan 2n t n t
c

c n t c n t

a a a a

a a a a a a
 

 
   

    
 (6-3) 

 Given that ,n ta a  cannot be zero during a shearing process, 
c   is possible 

only when 2c    , which implies that 
1  is applied in the direction of the 

major principal fabric component.  
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(a)                            (b) 

Figure 6-1 (a) Sketches of principal stresses’ orientations and (b) interpretation of the 

 in the Mohr’s stress circle 

 Similar to the stress tensor in a two-dimensional case, the state of fabric can also 

be interpreted using the “Mohr’s Circle” shown in Figure 6-2 (a) with the center and 

radius being 
2

xx yy 
 and 2 2( )

2

xx yy

xy

 



  respectively. The principal 

components of the fabric tensor are given as  

 2 2

1,2 ( )
2 2

xx yy xx yy

xy

   
 

 
    

(6-4) 

with the major principal direction being 

 
2

tan 2
xy

c

xx yy




 



 (6-5) 

where 
c  designates the angle that defines the direction of the major principal 

component of fabric tensor, as shown in Figure 6-2 (a). 

 In the following sections, the evolution of fabric anisotropy and its orientation 

for different contact networks are investigated through 2D DEM simulations with 

fixed and rotation of the principal stress direction. 
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(a)                            (b) 

Figure 6-2: (a) Sketches of the transformation of fabric tensor; and (b) Definition of 

orientation of the major principal component of fabric tensor  

 

6.3 Results from 2D tests along proportional strain paths 

The degree of fabric anisotropy  

Along different strain paths, the evolution of fabric anisotropy for the overall contact 

network, the strong and weak sub-networks with deviatoric strain was discussed in 

Section 4.3 corresponding to the VED, VEI and VEC tests. In this section, two types 

of loading paths were considered: highly dilatant path (e.g. 0.5 ) and contract 

strain path (e.g. 10  ). As shown in Figure 6-3, the evolution of q  for the 

overall contact network was affected significantly by the strain paths. The fabric 

deviator q  initially increased to its peak value with the increase of shear strain and 

then evolved individually without achieving a unique ultimate value as shearing 

continues. Both the peak value and ultimate value of q  were affected by the value 

of   for each strain path. The peak value of q  decreases as the value of 

increases, with 
, 0.125peakq   for the highly dilatant strain path at 0.5  and 

, 0.047peakq   for the highly forced contraction strain path at 10  . After the peak, 

two interesting phenomena were observed in Figure 6-3 (a). One is the sudden 

increase of fabric anisotropy in highly dilatant strain path test (i.e. 0.5 ), in 
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which catastrophic failure of the internal structure occurs when the shear resistance 

became zero due to diminishing constraint in the lateral direction at A, as shown in 

Figure 6-3 (b). The other is instantaneous isotropic fabric structure at D in tests along 

forced contraction strain paths. More specifically, as shown in Figure 6-3 (a), in the 

test along a highly forced contraction strain path with 10  , after 
,maxq  point C, 

continuous shearing induced decrease of q  which became zero instantaneously at D. 

Since the stress path evolved blow the failure line on the t-s plane in Figure 6-3 (a), 

this decline of q  did not correspond to degradation or collapse of the overall contact 

network. But it indicates a significant change in the microstructure. With continuously 

shearing, regaining of the fabric anisotropy was observed after the decline of q . The 

same phenomenon was observed in the test along forced constraction strain path 

corresponding to 2  . 

 

 

(a)                    (b) 

Figure 6-3: (a) Effect of strain paths on the evolution of fabric anisotropy for overall 

contact and (b) the fabric anisotropy before and after the catastrophic failure along 

strain path 0.5  
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fabric anisotropy for different contact networks were examined for tests along highly 

contractant strain path with 10   and highly dilatant strain path with 0.5 . 

Figure 6-4 presents the evolution of fabric anisotropy in different contact networks in 

tests along those two paths. The polar diagram of contact normal distributions was 

plotted at selected deformation stages. As shown in Figure 6-4 (a), both overall 

contact network and sub-networks develop notable geometric anisotropy ( q , 
sq  and 

wq ), which initially increased with the shear strain. The peak value of q  (at C) 

accurred earlier than that of 
sq  but later than that of 

wq . After the peaks 
wq  

experienced a short period of near constant value followed by a monotonic increase 

until the strain level corresponding to E where both 
sq  and 

wq  were almost equal. 

After the strain level at C, 
sq  approached its peak value and then gradually 

decreased to an ultimate value with the increase of shear strain. The orientations of the 

principal fabric in strong and weak sub-networks were aligned in the vertical and 

horizontal directions, respectively. From C to D, the value of 
wq  continuously 

increased while 
sq  was almost constant, which in turn resulted in a decrease of the 

fabric anisotropy in the overall contact network. After the strain level at D where the 

overall contact network was instantaneously isotropic, 
wq  continuously increased 

with 
sq  decreasing with the shear strain, which resulted in an increase of q  and 

the orientation of principal fabric in the overall contact network rotates from the 

vertical to the horizontal.  
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For the test along highly dilatant strain path with 0.5 , a significant 

post-peak decrease of 
wq  took place, as shown in Figure 6-4 (b). The weak 

sub-network became nearly isotropic at A. Thereafter, the weak sub-network regained 

anisotropy quickly. The evolution of 
sq  had the same trend as that of 

wq , but with 

less post-peak degradation and larger shear strain to mobilize the peak value of 
sq . 

The anisotropy of the overall contact network, however, increased monotonically with 

shear strain. It should be noted that both 1  and 2  were close to zero at A, as 

presented in Figure 6-3 (b). The principal fabric orientations for the overall contact 

network and the strong sub-network were in the vertical direction throughout the 

loading procedure. However, before and after A, the orientation of the principal fabric 

for the weak sub-network rotated from the horizontal direction to the vertical direction, 

as illustrated by the polar plots in Figure 6-4 (b). Microscopically, almost no contact 

could be stable in the horizontal direction due to the high extension rate after A. 

Therefore, most of the strong contacts and weak contacts were aligned with the 

vertical axis. The rearrangement of the contact sub-networks might cause the 

orientation of the major principal fabric component to rotate in either the overall 

contact network or the sub-networks. This will be further discussed later.  
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(a)                              (b) 

Figure 6-4: Evolution of fabric anisotropy with shear strain in different contact 

networks in tests along strain paths (a) 10   and (b) 0.5  
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reduction of 
wq  varied with the strain paths. The lower the   value, the more 

reduction of 
wq . In other words, a significant post-peak decrease of 

wq  took place in 

tests along highly forced dilatant strain paths.  

 

 

(a)                              (b) 

Figure 6-5: Evolution of fabric anisotropy within strong sub-network (a), and weak 

sub-network (b) with shear strain  
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, remained in the vertical direction, corresponding to 90d    and 90    

once the deformation begins, as shown in Figure 6-6. The dotted line shows the 

orientation ( ) of the major principal stress calculated from inter-particle contact 

forces and branch vectors. At small shear strain level (lower than 0.25%),   initially 

started from 135    and rotated to the vertical direction of 90   . The 

temporary non-coaxiality between 1  and 1  reflected the influence of internal 

structure, which was not ideally isotropic initially. However, this deviation only exists 

at very low strain level and is negligible. 

 

 

Figure 6-6: Evolution of orientations of the major principal stress and strain increment 
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approximately 8  at the beginning of loading but it decreased to 4° when 0.2%  , 

as shown in Figure 6-7 (a). However, the fabric tensor for strong sub-network was 

practically coaxial with the stress tensor ij  and 
max| | 1.5s

c     for different 

strain paths with 0 1 , as shown in Figure 6-7 (a). The major principal 

orientation of the stress tensor was always perpendicular to that of the fabric tensor for 

the weak sub-network, i.e., | | 90w

c    , as shown in Figure 6-7 (c). For the high 

dilatant strain path test, ( )w

c   became zero after A (see both Figure 6-7 and  

Figure 6-3). This is because most contacts were in the vertical direction at A with 

almost no confinement for contacts due to high dilatant rate in the horizontal direction. 

These results confirmed that the strong sub-network was coaxial with the stress tensor, 

while the weak sub-network was perpendicular to the strong sub-network or the major 

principal stress direction. This conclusion agrees with the directional distribution of 

contact normal in different networks presented in Figure 6-4.  

For tests along the highly forced contraction strain paths with 10 , the 

variations of ( )c  , ( )s

c   and ( )w

c   with shear strain are presented in 

Figure 6-8. When 0.1  , the major principal orientation of fabric tensor ij  for the 

overall contact network was aligned with the orientation of the major principal stress. 

With an increase of the equivalent shear strain, the major principal orientation of ij  

gradually rotated from the vertical direction to the horizontal axis. At D, the overall 

contact network became isotropic instantaneously (see Figure 6-4 a). Thereafter, the 

major principal direction of ij  was perpendicular to major principal stress direction. 

However, the major principal direction of fabric for the strong sub-network was 

coaxial with the direction of the major principal stress, as shown in Figure 6-8 (b). 

Similar to tests along dilatant strain paths, the direction of the major principal fabric 
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for weak sub-network was always perpendicular to the major principal direction of 

stress in tests along forced contraction strain paths; as shown in Figure 6-8 (c). 

 

 

(a) 

 

(b)                        (c) 

Figure 6-7: The non-coaxiality between the stress tensor and fabric tensor for the 

overall contact network (a), the strong sub-network (b) and the weak sub-network(c) 

in tests along strain paths 0 1  

 

 

-10

-5

0

5

0 0.2 0.4

θ
σ
-θ

c
(°

) 
  

γ

.
.

.

-10

-5

0

5

0 0.1 0.2 0.3 0.4 0.5

θ
σ
-θ

s c
(°

) 
  

γ

.

.

.
-60

0

60

120

0 0.1 0.2 0.3 0.4 0.5

θ
σ
-θ

w
c

(°
) 

  

γ

.

.

.
A



Ph.D. Thesis-Jingshan Shi                               McMaster University 

149 

 

 

(a) 

 

(b)                                  (c) 

Figure 6-8: Differences between directions of stress tensor and fabric tensor for (a) the 

overall contact network, (b) the strong sub-network and (c) the weak sub-network 

along strain paths 10  
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each other, with the only exception in the test along strain path with 0.5  when 

the internal structure of the specimen collapsed and the stress components all 

approached zero. However, the major principal direction of fabric tensor for the 

overall contact network might be perpendicular or parallel to the major principal stress 

direction, depending on the applied strain paths. 

The probability density function of contact normal distribution in the 

sub-networks can be written into second-order approximations as 

† † †1
( ) 1 cos 2( )

2
c cE a  


      with †  = “s” or “w” representing the strong 

sub-network or the weak sub-network, respectively. By defining s

c cN N , the 

fabric anisotropy within the overall contact network can be expressed in terms of that 

in sub-networks as 

 cos2 cos2 (1 ) cos2s s w w

c c c c c ca a a  (6-6) 

where ( , ,s w

c c c
) and ( , ,s w

c c ca a a ) are the direction and degree of fabric anisotropy for 

the whole, the strong and the weak sub-networks respectively. Herein, the ratio   

evolves during deformation. By applying | | 90s w

c c     and 2ca q , Eq. (6-6) 

can be alternatively written as 

 cos 2 (1 ) cos 2s w s

c cq q q           (6-7) 

The relation reveals that q  and 
c
 for the overall contact network depends on the 

directions and degrees of anisotropy in the sub-networks as well as the normalized 

contact number s

c cN N . Herein, c  is not necessarily identical to s

c ; as shown 

in Figure 6-8 (a) for tests along highly contracted strain paths. For most cases, 

s

c c  , Eq. (6-7) can be approximately expressed as 

 (1 )s wq q q       (6-8) 
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Eq. (6-8) is applicable to tests along dilatant strain paths when the stress paths on the 

s-t plane approach both the peak and critical state lines, as shown in Figure 6-9.  

 

 

Figure 6-9: Correspondence between q  and (1 )s wq q     in biaxial tests along 

proportional strain paths with 0.8 1  
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applied via the discrete wall system. 

Owing to the constraint of 0x   and the constant vertical stress during shearing, 

the horizontal stress x  is expected to vary with the shear strain and the applied 

vertical stress. As a result, the stress path on the t-s plane and the volume change 

curves are affected by the initial stress state characterized by  . As shown in Figure 

6-10 (a), the mean stress during shearing increases with the decrease of   at the 

same t s  ratio. In addition, more contraction and hence less dilation is observed in 

tests under larger vertical stress, for example, when 0.3   , as shown in Figure 

6-10 (b).  

 

 

 

Figure 6-10: Evolution of (a) stress ratio, (b) volumetric strain with shear strain and (c) 

stress paths under different initial consolidation stress ratio : s0=500 kPa  
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 Figure 6-11 presents the evolution of /x y   and /xy y   with shear strain in 

tests starting at different initial stress states. It should be noted that in each test, the 

vertical stress y  was kept as a constant. According to Figure 6-11 (a), regardless of 

the initial stress ratio, /x y   approached to 1.0 with the increase of shear strain. At 

the critical state, the specimen was subjected to pure shear with x y  . The 

/xy y   vs. shear strain curves in Figure 6-11 (b) revealed that the mobilized friction 

angle of the horizontal plane at the peak and the critical states were practically 

identical to those determined from the t s  ratio. 

 

`  

(a)                       (b) 

Figure 6-11: Evolution of (a) stress ratio 
x y

 with shear strain and (b) the 

variation of shear stress ratio /xy y   with shear strain under different initial 

consolidation stress ratio  : s0=500kPa  

 

Non-coaxiality between stress and strain increment 
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90  (vertical direction). Thereafter, as the shear strain increased, the major 

principal stress direction rotated and gradually approached 135  when the 

critical stress state was reached, as shown in Figure 6-10 (a). At the critical state, the 

horizontal stress equaled the vertical stress ( y x  ), which implied that the 

specimen was under pure shear, as demonstrated in the inset of Figure 6-11 (a). The 

rate of principal stress rotation in terms of the shear strain was affected by the initial 

stress state. A higher vertical stress (e.g. when 0.3   ) induced a slower rate of 

rotation of the major principal stress orientation.  

 In contrast, the inclination angle of the major principal strain rate, d , varied in 

the range of 134° to 136.7° upon shearing until to the critical state, see Figure 6-12 (b). 

In general, d  varied within a small range of 135° 3  in all tests and was nearly 

independent of the initial stress ratio. Recalling Eq. (3-17), since 0x   and 

.const   in all simple shear tests, d  was determined via tan 2 /d y    , 

which implies 135d    when 0y  . During the shearing process, ( 135 )d    

reflected the rate of shear-induced contraction or dilation and could be used as a 

measure of dilatancy. 

 Figure 6-12 (c) presents the variation of ( )d    with the shear strain. An 

immediate conclusion was that the value of ( )d    decreased quickly from its 

initial value ( 45  ) as the shear strain increased and gradually approached its 

ultimate value ( ) 0d      at the critical state. The decrease rate of ( )d    
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with shear strain was affected by the initial stress ratio or the vertical stress. In 

particular, with an increase of shear strain, ( )d    gradually decreased, 

accompanied by shear-induced dilation. min( )d    appeared when the maximum 

dilation was mobilized. Theoretically, the coaxiality of the major principal stress and 

strain rate under simple shear conditions requires that 
2

x y xy

x y xy xy

   

   


 


, which 

can be satisfied only at the critical state. 

  

(a)                             (b) 

   

(c) 

Figure 6-12: Evolution orientations of major principal (a) stress and (b) strain 

increment with shear strain; (c) the variation of θdε-θσ with shear strain under different 

initial consolidation stress ratio  : s0=500kPa 
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Non-coaxiality between stress and fabric tensors 

We next examine the non-coaxiality between the major principal stress and the major 

principal fabric components for different contact networks during simple shear tests. 

Figure 6-13 plots the variations of c  , 
s
c   and 

w
c   with respect to 

shear strain for different initial stress ratio 0 0.3    at 0 500s  kPa. According 

to the results in Figure 6-13(a), even though the specimens are nearly isotropic 

initially, noticeable differences between  and c  are observed at 20%  . The 

maximum magnitudes of non-coaxiality, with  
max

5c    , occurred at the shear 

strain corresponding to the maximum volume compaction approximately (see Figure 

6-10 b). With an increase of shear strain, the orientations of the major principal stress 

and the principal fabric component gradually approach to each other. Even though 

there are some fluctuations in the data, it is plausible to conclude that ( ) 0c     

when 25%  . Regarding the direction of the major principal component of fabric 

tensor for the strong sub-network, one observed 2s

c     (see Figure 6-13 b), 

which confirms that orientation of the major principal fabric for the strong 

sub-network closely followed that of the major principal stress during simple shear 

tests. At the same time, the major principal component of fabric tensor for the weak 

sub-network always made an angle of 90  relative to the direction of major principal 

stress with 90 5w

c     . The large oscillation of data when 35%   was 

likely owing to the numerical error when the weak sub-network approached isotropy 
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(see Figure 4-22 c). These results demonstrated that, regardless of the initial stress 

states, the major principal fabric component in the strong sub-network was always 

coaxial with the major principal stress and perpendicular to the direction of the major 

principal fabric component for the weak sub-network. 

 

 

(a)                                (b) 

 

(c) 

Figure 6-13: Evolution of non-coaxiality between the orientations of major principal 

stress and the major principal fabric for (a) the overall contact network; (b) the strong 

sub-network and (c) the weak sub-network: s0=500kPa 
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6.5 Results from 3D tests with radial stress paths on the π-plane 

Details about 3D tests along radial stress path on the π-plane were described in 

Section 3.6. In this series of tests, the Lode angle or the intermediate principal stress 

coefficient b is kept as a constant, as shown in Figure 6-14 (a). For each stress paths 

with constant Lode angle, the corresponding fabric trajectories on the π-plane are 

plotted in Figure 6-14 (b). It is noted that the directions of the fabric increments did 

not necessarily coincide with that of the stress increments even for initially isotropic 

granular materials. On the π-plane, the Lode angle of the Cauchy stress tensor was 

defined in Eq. (3-18). Similarly, the Lode angles for the fabric tensors can be 

expressed as 

 
 

1 2 1 3

1 3

2 3
tan

3
c

  


 


  

  
  

 
 
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1 3

2 3
tan

3

s s s
s

c s s

  


 


  
 

  

 (6-9) 

for the overall contact network and the strong sub-network, respectively. 

As demonstrated in Figure 6-14 (c), the non-coaxiality between the stress and 

fabric tensors can be measured by 
c      and s s

c      for the overall 

contact network and the strong sub-network respectively.  

Figure 6-15 presents the variations of   and s  with shear strain for tests 

along various stress paths with selected b values. The following observations were 

obtained: 

(a) Along stress paths of axisymmetric compression (b=0) and extension (b=1), 

the stress tensor could be considered as coaxial with the fabric tensors for 

both the whole contact network and the strong sub-network, with the 

maximum value of   and s being approximately 5° and 1°, 

respectively.  

(b) For non-axisymmetric stress conditions along stress paths with 0 1b  , the 

stress tensor for the strong sub-network was nearly coaxial with the stress 
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tensor, with the maximum value of s  being around 5 ; as shown in 

Figure 6-15 (b).  

(c) However, non-coaxiality was observed between 
ij  of the whole contact 

network and the stress tensor, with max 18   , as shown in Figure 6-15 (a).  

 

 

 

Figure 6-14: Trajectories of (a) stress paths and (b) associated fabric paths along 

different b values on the π-plane; (c) sketch of c   on the π-plane: kn=ks= 4×10
4
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(a)                                   (b) 

Figure 6-15: The evolution of magnitudes of non-coaxiality between (a) the stress 

tensor and the fabric tensor for the overall contact network, (b) the fabric tensor for 

strong contact network with deviatoric strain: kn=ks= 4×10
4
 N/m, p=300 kPa 

 

In general, the results clearly demonstrated that, regardless of the initial stress 

states, the major principal fabric component in the strong sub-network was always 

coaxial with the major principal stress and perpendicular to the direction of the major 

principal fabric component for the weak sub-network. 

 

6.6 Fabric evolution law  

As discussed above, the stress-induced fabric relation for the strong contact network 

can be addressed as 1 2 1 2: :s s     and 1 2 3 1 2 3: : : :s s s       for 2D and 3D 

stress conditions, respectively, no matter whether the principal stress orientation 

rotates or not. Hence, one can obtain that  

 s
J σ  (6-10) 

where s
J  and σ  are the diagonal matrices of the principal stresses and fabric 

components for the strong sub-network; the parameter  depends on the stress state 

and loading path. According to the matrix transformation, the stress and fabric can be 
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expressed in term of transformation matrixes T and Q.  

 
Ts s

J T J T       σ Q σQ
T  

(6-11) 

It is noted that 1
T T

T   and 1
Q Q

T  . By substituting Eq. (6-11) into Eq. (6-10), it 

comes that  

 
s

T J T Q σQ
T T  

(6-12) 

Since the stress tensor and fabric tensor are coaxial with each other, we can easily 

address that T Q . Hence, the stress- fabric relation can be expressed as  

 
s

J σ  or  
s

ij ij   (6-13) 

 Since s

c   always holds true and 
w

c  is perpendicular to the  in most 

cases. Therefore, it is reasonable to obtain the relation of 90s w

c c    conditionally. 

Micromechanically, behaving as the confining pressure, the weak sub-network 

provide supports for the strong contact which contributes to the majority of the shear 

stress. This finding is identical with the conclusion made by Radjaï et al. (1998). Even 

though 
s

c  is more precise in describing the orientation of the stress than the c , it is 

still reasonable to conclude that 90w

c c    conditionally. This is consistent with the 

finding made by Radjaï et al. (1998).  

According to Radjaï et al. (1998), most of contact slidings happen within the 

weak sub-network. In other word, the whole dissipation by friction occurs at contacts 

bearing a force lower than the average force. Almost all contacts with a force larger 

than the average, corresponding to the bulking chains, are non-sliding. Therefore, 

intensive rearrangement of the weak sub-network plays a critical role in supporting the 

strong sub-network on the orthotropic plane. Furthermore, the role of the weak 

sub-network on the macro-instability and energy dissipation will be discussed later on. 
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6.7 Summary  

In this study, the coaxiality between the principal stress orientation and the direction 

of the principal fabric component was investigated via a series of DEM simulations, 

which involved loading under constant principal stress orientation and continuous 

rotation of the principal stress direction. The evolution of fabric tensors was examined 

for both the overall contact network as well as the strong and the weak sub-networks.  

The major principal direction of the fabric of the strong sub-network is always 

coaxial with the major principal stress orientation. The major principal direction of the 

fabric of the weak sub-network is always perpendicular to that of the strong 

sub-network, regardless of where the principal stress rotates or not. The major 

principal orientation of the fabric of the overall contact network, however, may not be 

in line with the major principal stress direction, even for the isotropic granular 

assembly subjected to biaxial compression tests with fixed principal stress directions.  

For the loading in which the critical stress could be approached, the direction of 

the fabric of the overall contact network is nearly coaxial with that of the strong 

sub-network. Correspondingly, the fabric anisotropy within overall contact network is 

expressed in terms of those in sub-networks as (1 )s w

q q q       with  is the 

ratio of strong contact number in the overall contact network. 

The evolution of fabric tensor in strong sub-network is uniquely related to the 

applied stress by 
1 2 1 2: :s s     and 

1 2 3 1 2 3: : : :s s s       for 2D and 3D stress 

conditions respectively. The stress-fabric relation can be further described as 

s

ij ij  , with the parameter  depending on stress state and loading condition. The 

evolution of the fabric anisotropy in the weak and the overall contact network, 

however, can not be described as a function of the applied stress only.   
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Chapter 7 Micromechanical Interpretation of Material’s 

Instability 

 

7.1 Introduction 

In mechanical terms, stability is obtained if a small stress increment yields a small 

strain increment, while instability is defined as a behaviour in which large plastic 

strains develop rapidly due to inability of the material to sustain a given stress or load. 

Hill (1958) and Drucker (1957) demonstrated a sufficient condition of the stability 

using the second-order work, respectively. For any  d ,dij ij   linked by their 

constitutive relation, a material is stable when 2d 0W  . Correspondingly, the material 

may be unstable when 2d 0W  . It is essential to note that the second-order work 

criterion by itself does not provide a sufficient condition for failure. For a granular 

material, owing to the non-symmetry of the constitutive tensor related to 

shear-induced dilation, 2d 0W   may take place before the occurrence of failure at 

the maximum shear resistance (Nicot et al., 2014). When the second-order work 

vanishes along a loading path, the material may become unstable with a bifurcation in 

deformation mode or transformation from a quasi-static regime towards a dynamic 

regime (Nicot et al., 2014).  

 Physically, the deformation becomes unstable when an initially homogeneous 

deformation field (called ‘trivial’) ceases to be unique and stable, evolving into an 

inhomogeneous alternative deformation pattern. Since the deformation of a granular 

material is generally associated with the movement of individual particles, the 

transition from homogeneous to inhomogeneous deformation pattern implies a change 

of the material’s internal structure. In other words, the vanishing of the second-order 
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work may be triggered by the change of the internal structure.  

 It is not a trivial task to understand micro-structural mechanisms that govern the 

vanishing of the second-order work. According to the micromechanics of granular 

materials, the stresses and strains can be related to the contact force and relative 

displacement, respectively. Hence, the second-order work and the failure criteria may 

be determined within the framework of the granular micro-mechanics. It has been 

revealed that the origin of material instabilities as a macro-scale phenomenon could be 

directly related to the constitutive nature of the local contact model at particle contacts 

(Nicot and Darve, 2006). In addition, Nicot et al. (2007) observe that changes in the 

fabric of the medium, associated with rearrangements caused by sliding and rolling, 

caused nonequivalence between the microscopic and macroscopic second-order 

works.  

 This chapter will focus on the variation of fabric in different contact networks and 

its relation to the vanishing of the macroscopic second-order work, which makes it 

possible to interpret the origin of material instability from a microscopic point of view.  

 

7.2 Second-order work criteria for material stability 

Drucker (1957) presented a fundamental definition of a stable inelastic 

(elastic-visco-plastic) material that “the work done by external agency on the change 

in displacement it produces must be positive”. For a non-viscous and 

time-independent material this criterion is written as: 

 
2d 0p

p ij ijW    ,  * *d d 0p

p p ij ij ijW W        (7-1) 

where 
ij  is a stress state located on the yield surface, 

*

ij  represents a state located 

within the yield surface, and 
ij  is a stress increment initiated on the yield surface 

causing the plastic strain increment 
p

ij . The first inequality, which is referred to as 
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the stability in the small, defines stable behaviour of material deformation. If it is not 

fulfilled for any 
ij , then the material may be unstable. Otherwise, the material will 

be unconditionally stable (Lade et al., 1988). The second one, which is referred to as 

the stability in the large, requires the yield surface to be convex.  

 Hill (1958) extended Drucker’s postulate to the second increment of total work. 

For a solid volume V in the steady state, suppose that a part of the boundary is fixed 

and other part of the boundary is only under action of dead loading, Hill (1958) 

demonstrated that this system was stable if every  d ,dij ij   admitted by the 

constitutive relation satisfied that  

 2 d d dij ij
V

W V    (7-2) 

Eq. (7-2) presents a sufficient condition of the stability in the large or global scale. At 

the material point or on the small scale, the local form of the condition of material 

stability can be expressed as  

 
2d d d 0ij ijW     (7-3) 

For a non-associated material such as a granular material, the global condition holds 

true when the local condition is satisfied at every point of volume V. It is noted that a 

positive second-order work constitutes a sufficient, but not necessary, the condition of 

stability. 

 

7.3 Fabric evolution and instability in 2D tests along proportional strain paths 

Attempts have been made to investigate material instability in granular assemblies on 

the microscopic scale in terms of the microstructure of the overall contact network; 

see, e.g., Wan et al. (2007), Nicot and Darve (2006, 2005) and Nicot et al. (2015). The 

following analyses, however, will focus on the variation of fabric in different contact 

networks when the macroscopic second-order work vanishes. 
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 Following the stability analysis for sand tested along proportional strain paths 

undertaken by Wan et al. (2007), Darve and Laouafa (2000) and Wan et al. (2005), the 

second-order work under biaxial stress conditions can also be expressed via  

 
2 2 2

1 1 1 1

d
d d d d dW

 
   

   
      

    
 (7-4) 

with 
1 2     as defined previously. With the strain increment 1d  being 

non-negative, the condition of zero second-order work is satisfied when 

 1 2d 0    , for which  

 
2

1 max



 

  
 

 (7-5) 

The above equation implies that instability starts at the peak point of the curve 

obtained by plotting 
1 2    versus the axial strain 1 .  

 Figure 7-1 presents the variation of 
1 2    with the axial strain along 

different proportional strain paths. The peak points corresponding to the onset of 

deformation instability according to Eq. (7-5) can be easily identified in VED tests 

( 0 1 ). For the VEC ( 1  ) and VCC ( 1  ) tests, however, the value of 

 1 2    in each individual test tended to increase monotonically with 1 , 

indicating that the deformation is always stable.  
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Figure 7-1: Variation of  1 2    with axial strain 

 Figure 7-2 presents the variation of the second-order work 2d W  as well as the 

fabric deviator for different contact networks in the VED tests with 0.43 ~ 0.86 . 

As shown in Figure 7-2 (a), in the test with 0.43 , 2d W  was initially positive 

and gradually decreased with increasing shear strain and approaches zero value when 

the shear strain 0.018  . Herein,   is defined as 1 2    . At this strain level, 

1 2

s s sq    for the strong sub-network was at its peak value while 1 2

w w wq    in 

the weak sub-network is decreasing, as shown in Figure 7-2 (a). With further increase 

in the shear strain, the second-order work remained at d2W=0, while the weak 

sub-network gradually evolved to an isotropic state in which 0wq  . The strong 

sub-network and the whole contact network, however, both showed significant 

anisotropy.  

 Similar curves have been observed in Figure 7-2 (b) with 0.65 . It is noted 

that the stress paths for 0.43  and 0.65  developed strain softening of shear 

resistance in Figure 7-2 (e) and d2W=0 occurred at points marked the star after the 

peak deviatoric stresses. After the onset of the zero second-order work, the stresses 

quickly reduced toward zero and the material underwent instability. When 0.76  

and 0.86, d2W=0 occurred slightly after the peak of deviatoric stress ratio ( t s )max, as 
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shown in Figure 7-2 (e). Then, the stress paths stretched from the peak state line 

towards the critical state line after the onset of d2W=0, which indicated that material 

instability happened after the failure state being approached. According to Figure 7-2 

(c) and (d), the second-order work vanished slightly after the peak of the fabric 

deviator for the strong contact network. Generally, in all tests, the onset of the zero 

second-order work did accompany the highest magnitude of the fabric anisotropy for 

the strong sub-network.  
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Figure 7-2: Variation of the fabric anisotropy in different contact networks and 

second-order work in VED tests (a) 0.43 , (b) 0.65 , (c) 0.76  and (d) 

0.86 ; (e) the stress state corresponding to vanish of the second-order work in the 

stress paths (star marks) 

 

 Figure 7-3 presents the variations of 1 2

s s sq    and 1 2

w w wq    with 

 1 2    in VED and VEI tests with 0.43 1.0 . In particular, Figure 7-3 (a). 

shows the variation of 
sq  with  1 2   . The thicker dotted segment on each 

curve represents states of unstable deformation. An immediate observation is that the 

strong sub-network was responsible for deformation instability since the peak fabric 

deviator of the strong sub-network was reached when d2W=0. More specifically, for 

high dilation rate with 0.43 0.65 , 1 2

s s sq    increased initially with 

 1 2   , both reaching their maximum simultaneously, see Figure 7-3(a). For 

lower rates of dilation with 0.76 0.86 , sq  and  1 2    reached their 

maximum at the same time approximately. However, degradation of strong 

sub-network with reduced degree of anisotropy took place following the onset of 

deformation instability, as shown in Figure 7-1. In the VEI test, a peak value of sq  

developed during deformation process which was always stable according to Figure 
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7-1 since  1 2    increased monotonically. These observations indicate that the 

onset of deformation instability was accompanied by a degradation or progressive 

collapse of the strong sub-network. However, degradation of the strong sub-network 

does not guarantee unstable deformation. In other words, degradation of strong 

sub-network is a necessary but not sufficient condition for deformation instability. 

 Figure 7-3 (b) displays the evolution of weak sub-network anisotropy with 

 1 2   . For dilation rates in the range of 0.43 0.86 , the highest value of 

1 2

w w wq    was not associated with  1 2 max
    that was achieved after the 

peak of 
wq . In all cases, a significant decrease of 

wq  took place when deformation 

became unstable. In other words, degradation of the weak sub-network was initiated 

before deformation became unstable. For the VEI test ( 1  ), deformation was 

always stable and therefore no degradation of 
wq  occurred. 

 

 

(a)                    (b) 

Figure 7-3: (a) Evolution of deviator fabric of strong contact sub-network and (b) 

weak contact sub-network with  1 2    along various strain paths 
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and VCC tests. Figure 7-4 and Figure 7-5 compare the evolution of the fabric 

anisotropy for different contact networks and the variation of the second-order work 

for VEC ( 1  ) and VCC tests ( 1  ), respectively. When 2.2 , both 
wq  and 

sq  initially increased with the shear strain and approached its peak at 0.05  . At 

the same time, d2W decreased from its initial positive value continuously until a 

positive constant at approximately 0.05  . Thereafter, both 
wq  and 

sq  gradually 

decreased. The decrease of the fabric anisotropy does not represent the collapse of the 

internal structure since the second-order work was always positive. In other words, the 

specimen may not collapse since it underwent volumetric contraction. When 

10.8 , 
wq  increased monotonically and the peak value of q  corresponding to a 

positive constant of the second-order work at 0.06   , as shown in Figure 7-4 (b). 

In the VCC tests, starting from its initial positive value d2W increased monotonically 

with the shear strain, as shown in Figure 7-5. Correspondingly, the fabric anisotropy 

for different contact networks continuously increased upon loading without 

approaching a peak value. 

 

 

(a)                        (b) 

Figure 7-4: Variation of the fabric anisotropy in different contact networks and 

second-order work with the shear strain in VEC tests (a) 2.2  and (b) 10.8   
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(a)                        (b) 

Figure 7-5: Variation of the fabric anisotropy in different contact networks and 

second-order work with the shear strain in VCC tests (a) 5.4   and (b) 2.2    
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sq ) is a necessary but not 

a sufficient condition of deformation instability. In other words, deformation 

instability is accompanied by strong network degradation but not opposite. On the 

other hand, a decrease of 
wq  or collapse of the weak sub-network is an indicator of 

deformation instability in tests along all imposed strain paths.  
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the average relative displacement between particles and the (macroscopic) strain 

tensor. When adopting the Voigt hypothesis and assuming the existence of a mean 
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strain tensor 
ijd  as  

 d di ij ju l  (7-6) 

where 
jl  is the branch vector connecting the centroids of the two particles. When 

introducing the average length 
0l  of the branch vectors, 

jl  can be expressed as 

0j jl l n , with 
jn  being a unit vector in the direction of the branch vector. For 

spherical particles, 
jn  is the same as the unit vector of the contact normal. It follows 

that (Nicot and Darve, 2006, 2005): 

 0d di ij ju l n  (7-7) 

The relative displacement can be further decomposed into a normal component ( ndu ) 

and a tangential component ( tdu ), with  

 d d dn tu u u n t ;  d dn

i iu u n ;  d dt

i iu u t
 
 (7-8) 

in which n and t are unit vectors normal to and parallel to the contact plane, 

respectively. As shown in Figure 4-1, in a polar coordinate system of 3D, 

(cos , sin cos , sin sin )T    n , (sin , cos cos , cos sin )T     t , with 

 0,   and  0,2  . For 2D cases, n and t are expressed as 

(cos ,sin )n
T   and ( sin ,cos )t

T   , respectively (as shown in Figure 4-1 b). 

 

7.4.2 Micro and macro-level second-order works  

Consider a representative volume element around a point in a granular assembly, the 

macroscopic stress tensor at this point can be computed from the local contact forces 

and branch vectors using the generalized homogenization method. For a given density 

function ( , )E    describing the directional distribution of the contact normal, the 

macroscopic stress tensor can be determined as  
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 0 ( , ) ( , )c
ij i j

N l
E f n d

V
    


   

(7-9) 

where sind d d     and   is the solid angle corresponding to n, 
cN  is the 

total number of contacts in the granular assembly. Based on the experimental results 

obtained by Field (1963), Nicot and Darve (2006) proposed an expression for 
cN  as  

 
0 1

12
1

c p

g kk

N N


 



 (7-10) 

in which 0  and 
pN  are the initial density and the number of particles with the 

density of 
g  in the granular assembly. Given the initial volume 0V  of the granular 

assembly, the present volume is  

 0 (1 )kkV V  
 

(7-11) 

in which kk  is the current volumetric strain of the granular assembly (or the 

specimen).  

 By substituting Eqs. (7-10), (7-11) into Eq. (7-9), the expression of 
ij  becomes  

 
   

 
0

2

, ,
sin d d

1

i j

ij

kk

E f l n   
    





  (7-12) 

with 0

0

1
12 g

g

N
V





 , which is a constant independent of the timescale. When 

considering the normal and the tangential components of the contact force with 

n t

i i if f n f t  , the stress tensor can be decomposed into two parts: the stress 

component 
n

ij  associated with the normal contact force nf  and the component 
t

ij  

associated with the tangential contact force 
tf  so that  

 
n t

ij ij ij     (7-13) 
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where  
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 
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sin d d
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n n
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E
f l n n

 
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
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
  

As a result, the stress increment can be estimated as  

 d d dn t

ij ij ij     (7-14) 

with  

 

 
02

,
d d sin d d

1

n

n

ij i j

kk

E f
l n n

 
    



 
  

  
   

and 
 

 
02

,
d d sin d d

1

t

t

ij i j

kk

E f
l t n

 
    



 
  

  
 . Thus, the second-order work is 

decomposed into two parts:    

    2 2 2d d d d dij ijW W W 
 

    (7-15) 

in which 
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  
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Recalling Eqs. (7-7) and (7-15) the two parts of the second-order work can be 

expressed as: 

  
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On the other hand, the contact force increments and the relative incremental 
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displacements can be related through contact law. For d nf  and d nu , we have 

d dn n nf k u . For the tangential forces and the relative tangential displacements, 

depending on whether relative sliding occurs or not, the relation between d tf  and 

d tu  can be expressed as d dt t tf k u  for elastic contact, or else 
d d

d
t n n

t

s

f k u
u

k


  

for sliding contacts with   being the interparticle friction coefficient. Therefore, the 

expressions for  2d W

 and  2d W


 in Eqs. (7-12) and (7-13) can be rewritten as  
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(7-19) 

 Following Nicot and Darve (2006), 2d W  can be divided into three terms as 

2 2 2 2d (d ) (d ) (d )fabric micro volumeW W W W   . The term 2(d )microW  can be interpreted as 

the summation of the average of the local directional second-order work in each 

contact direction. The term 2(d )volumeW  accounts for the volume change of the 

granular assembly and the term 2(d ) fabricW  is the second-order work related to the 

change of fabric. Similarly,  2d W

 and  2d W


 can be decomposed into these 

three components, which yield  

 
2 2 2

I(d ) (d ) (d )fabric fabric fabricW W W    (7-20) 

 
2 2 2(d ) (d ) (d )micro micro micro

IW W W    (7-21) 

 
2 2 2(d ) (d ) (d )volume volume volume

IW W W    (7-22) 
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with 
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 Similar expressions can be obtained for 
2d W  and its components associated 

with different mechanisms.  

 

7.4.3 Analysis of second-order work in 2D tests along controlled strain paths  

As illustrated in Figure 3-4 (b), in a biaxial test along a proportional strain path, the 

constant strain increment ratio 
11 22     was achieved by controlling the 

movement of the vertical and horizontal walls. According to this definition, 
11  is the 

vertical strain rate. Nevertheless, the inclination angle of contact normal is defined 

according to the horizontal axis. Therefore, we rotate the coordinate system by 90° 

and the strain rate tensor becomes 

 
/ 0

d
0ij

C
C


  
  

 (7-29) 

where C is the constant strain rate in the horizenta direction. The relative normal and 

tangential displacements between two particles with the contact normal 
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(cos ,sin )n
T   can be estimated as  

 
2 2d d (sin ) (cos )n ij i j

C
u n n C    


;

1
d d ( )sin 2

2
t ij i j

C
u t n C   


 (7-30) 

Recalling Eq. (4-5), the probability density function of the contact normal is 

 
1

( ) 1 cos 2( )
2

c cE a  


   . The directional variations of the normal and 

tangential contact forces can be expressed as (Rothenburg and Selvadurai, 1981)  

  0( ) 1 cos 2( )n n

n nf f a     , 0( ) sin( )t n

t tf f a     (7-31) 

where 
0

nf  is the directional mean normal contact force which equals the mean 

normal contact force only when the contact normals in all directions are uniformly 

distributed, 
ca , 

na  and 
ta  define the degree of anisotropies in the distributions of 

the contact normal, the normal contact force ( )nf   and tangential contact force 

( )tf  , respectively. c , n  and t  represent the major principal directions of the 

directional distribution of contact normals, normal contact forces and tangential 

contact forces. Following Rothenburg and Bathurst (1989), we assume that 

n c t    . As discussed in Chapter 6, in biaxial tests along proportional strain paths, 

we may assume / 2n c t      . As a result, the second-order work components 

2(d )W   and 
2(d )W  , which are associated with the normal and tangential contact 

forces respectively in Eqs.(7-18) and (7-19), are expressed as  

 
2 0

2[0,2 ]

( ) ( ) 1 1
(d ) d 1 1 cos2

2 (1 )

n

kk

C l E f
W d



  
 




      
         

       
  (7-32) 

and  

 
2

0 2[0,2 ]

1 ( ) ( )
(d ) d sin 2

2 (1 )

t

kk

C E f
W l C d



 
  




  
    

    
  (7-33) 

After some algebraic manipulations, the different terms of 
2

I(d )W  and 
2(d )W   are 
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determined as 

 
0 0

2

2

1 1
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 
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

 
(7-34) 
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(7-35) 

 
0 0

2

3

1 1
d (1 )(2 ) ( )(1 )

(d )
2(1 )

n

kk c n c n
volume

kk

l Cf a a a a

W

 




 
       


 

(7-36) 

 
2(d ) 0fabricW    (7-37) 
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(7-38) 
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n

t kk
volume

kk

l C f a

W
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


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 (7-39) 

which yield the three components of 
2d W  associated with different mechanisms: 

    2 0 0

2

d 1
(d ) 1 1

4(1 )

n
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n n

kk

l Cf a
W a a





 
      

 (7-40) 
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 (7-41) 

 
2 0 0

3

d 1 1
(d ) 1 (2 ) ( ) 1

2(1 )

n
volume kk

c n c n t

kk
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W a a a a a

 



    
                

 (7-42) 

Recalling Eqs. (4-22) (a-c), the mean stress and the stress deviator are determined as  

 
0 0 0 011 22 11 22

2 2

( ) (2 )
,

2 4(1 ) 2 4(1 )

n n

c n t c n

kk kk

l f a a a l f a a
t s

    

 

   
   

 
 (7-43) 
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Eqs. (7-40) and (7-42) can be rewritten as 

    2 1
(d ) 1 1 d

2

fabric

n n c

c n

Cs
W a a a

a a

 
      

 (7-44) 

  2 2 d 1 1 2 d 1
(d ) 1 sin 1 sin

1 1 1

volume kk kk

kk kk

sC sC
W

 
  

 

    
         

        
 (7-45) 

By applying Eq. (7-43), the local second-order work 
2(d )microW  becomes  

 
2 0

0

1 1 d 1
(d ) (1 ) 1 d d

1 2 1

n
micro

c n tn

c n

f s
W C s t a a a

f a a

       
          

        
 (7-46) 

By assuming that 1 1kk   and 2 2c na a  , hence 
0 0d d n ns s f f . Then, Eq. 

(7-41) can be simplified as 

    2(d ) (1 1/ ) sin d 1 d
2

micro

c n

s
W C s a a   

 
       

 
 (7-47) 

in which    1 1    , d dt na a  . It should be noted that the above analysis 

is limited to the case when the major principal stress and the major principal fabric are 

coaxial with / 2c    . According to Chapter 6, this assumption holds true for 

the VED test, all VED tests and VEC tests with 1 10.8  .  

 Base on Eqs. (7-47), (7-44) and (7-45), for tests along proportional strain paths 

with 0 , the following conclusions can be obtained: 

(1) 
2(d ) fabricW  is always positive when d 0ca  . 

(2) may be positive or negative depending on the imposed strain rate. According to 

Eq. (7-45), 2(d ) 0volumeW   when d 0kk   & 0t s    corresponding to 

1
0

1

t s

t s


 


, or when d 0kk   & 0t s    corresponding to 1  . In 

other words, global volumetric dilation does not guarantee 2(d ) 0volumeW  , for 
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example, 2(d ) 0volumeW   when 
1

1
1

t s

t s


 


. 

(3) The average local second-order work 
2(d )microW  is significantly affected by the 

distribution of the normal contact forces. A decrease of na  tends to reduce 

2(d )microW  and results in the vanishing of 
2(d )microW . Since na  is closely 

related to the strong force chain network, the decrease of na  implies the 

degradation of the strong network during shearing. This is consistent with the 

observation obtained from Figure 7-3 (a) that the onset of deformation instability 

is accompanied by a degradation or progressive collapse of strong sub-network. 

However, degradation of strong sub-network does not guarantee macroscopic 

unstable deformation owing to the contribution of 
2(d ) fabricW  or 

2(d )microW  to 

the overall second-order work 
2d W . 

 As a special case, for the isochoric compression test in which 1   and 

d 0kk  , the Eqs. (7-40) to (7-42) are simplified as 

 2 0 0 d
(d )

2

n
fabric cl Cf a

W


  (7-48) 

 0 0 02
d ( ) (d d )

(d )
2

n n

c n t n tmicro
l C f a a a f a a

W
        (7-49) 

 
2(d ) 0volumeW   (7-50) 

It follows that  

 
2 2 2

0 0

1
d =(d ) (d ) d ( ) 2 d

2

fabric micro n

c n tW W W l C f a a a C t         (7-51) 

Eq. (7-51) is identical to the macro-level expression of 
2d W : 

 
2d d d d d d d 2 dij ij vW s t C t        (7-52) 

 In previous chapters, the relation between the fabric anisotropy factor ca  and the 
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fabric deviator q  was obtained as 2ca q . Eqs. (7-48) to (7-51) show that 

2d 0W   and 
2(d ) 0microW   do not necessarily take place at the same time. 

Depending on how the fabric tensor evolves during shearing, it is possible that the 

specimen is locally stable but macroscopically unstable owing to the fabric change or 

vice versa. More specifically, when 
2(d ) 0microW   while d 0q  , the macro-level 

second-order work will still be positive. On the other side, when degradation of the 

fabric occurs, 
2d 0W   is possible when 

2(d ) 0microW  . 

 It is noted that all terms of second-order work calculated from DEM simulation 

results of 2D tests along proportional strain paths were normalized using the unit time 

or the constant vertical strain ratio as  

  
 2

2

fabric

F d W
d W

t



,  

 2

2

micro

M d W
d W

t



,  

 2

2

volume

V d W
d W

t



 (7-53) 

where 1t
C


   and C is the constant vertical strain rate. For convenience, we make 

   2 2
fabric F

d W d W ,    2 2
micro M

d W d W  and    2 2
volume V

d W d W  in the 

following discussions. Figure 7-6 (a) presents the evolution of 
2d W  together with its 

components 
2(d )microW , 

2(d ) fabricW  and 
2(d )volumeW  obtained from the DEM 

simulation for the test with 1.0 . 
2d W  was mostly contributed by the average of 

the local second-order work, which was approximately 80% of 
2d W . 

2(d ) fabricW  

was approximately 20% of 
2d W  and could not be neglected. Figure 7-6 (b) presents 

the evolutions of 
2(d ) fabricW  and ca  with the shear strain, which confirmed the 

relation in Eq. (7-48) and 
2(d ) fabricW  vanished when ca  reached its peak value. 

Even though 
2d W  was initially larger than 

2(d )microW , the decrease of 
2(d ) fabricW  

resulted in vanishing of 
2d W  prior to 

2(d )microW , as can be observed from Figure 7-6 
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(a). 

 

 

(a)                                (b) 

Figure 7-6: (a) Evolution of the second-order work and its three components 

associated with the shear strain; (b) Evolution of 
2(d ) fabricW  and ca  with the shear 

strain in VEI test: 1.0 , e0=0.16  

 

 For tests along the strain path with 10  , the evolution of the second-order 

work computed from the micromechanical analysis using the DEM simulation results 

is presented in Figure 7-7 (a). In this case, the specimen was sheared along a forced 

contraction strain path with 0  . Consequently, the second-order work induced by 

volume change, 
2(d )volumeW , was always positive according to Eq. (7-42). However, 

2(d ) fabricW  initially increased and then vanished at approximately 0.05   where 

cda  approached zero and ca  approached its maximum value. After that, ca  

decreased and 
2(d ) fabricW  became negative, as shown in Figure 7-7(b). 

2(d ) fabricW  

formed only a small fraction of 
2d W  (less than approximately 3%). Owing to the 

continuous increase in 
2(d )volumeW  and the volume compaction of the specimen, the 

deformation of the specimen was always stable with 
2 2d (d ) 0fabricW W   even 
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though 
2(d ) fabricW  vanished at 0.05  . The results are consistent with that in 

Figure 7-4 in which a decrease in ( 2 )ca q  did not induce deformation instability. 

 

 

(a)                              (b) 

Figure 7-7: (a) Evolution of the second-order work and its three components with the 

shear strain; (b) evolution of 
2(d ) fabricW  and ca  with the shear strain in VEC test: 

10  , e0=0.16  

 

 For tests along strain paths with 0 1 , the term (1 ) (1 )n na a     in Eq. 

(7-42) was always positive, which implies that 
2(d ) fabricW  can be negative only when 

d ca . As shown in Figure 7-8, when 0.5 , 
2(d ) fabricW  initially increased to its 

peak then decreased gradually with the shear strain. 
2(d ) fabricW  vanished when the 

peak fabric deviator was approached. In this case, even though 
2d W  was initially 

larger than 
2(d )microW , the decrease of 

2(d ) fabricW  resulted in vanishing of 
2d W , 

2(d )microW , and 
2(d ) fabricW  at the same time; as can be observed from Figure 7-8 (a).  
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(a)                                (b) 

Figure 7-8: (a) Evolution of the second-order work and its three components with the 

shear strain; (b) evolution of 
2(d ) fabricW  and ca  with the shear strain in VED test: 

0.5 , e0=0.16  

 

7.5 Fabric evolution and instability in 3D tests 

To better understand the evolution of the second-order work and fabric evolution 

under general 3D stress conditions, a series of DEM simulations were carried out 

along radial stress paths on the π-plane with the mean effective stress 300p kPa  at 

select b coefficient, which corresponds to a constant Lode angle on the -plane. In 

these simulations, the specimens were isotropically consolidated and the values of the 

normal and tangential stiffness were kn=ks = 4×10
4
N/m. Figure 7-9 presents the 

evolution of the second-order work and fabric anisotropy in different contact networks. 

The results of the triaxial compression test (b=0) are presented in Figure 7-9 (a). With 

the increase of the deviatoric strain 
q , wq , sq  and q  all increased initially. 

However, wq  quickly increased to its peak value at 0.019q   while sq  and q  

were still increasing. With further increase of 
q , sq  and q  continued to increase 

but wq  decreased, indicating a degradation of the weak force chain network. During 
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this process, the second-order work 
2d W  continuously decreased. When sq

 

approached its maximum at 0.093q  , 
2d 0W   simultaneously. At this moment, 

the value of q
 was still increasing. The second-order work was positive at the peak 

value of wq  in all tests with various stress paths. With further increase of shear strain, 

2d W  stayed at very small value around zero, while wq  and sq
 continuously 

decreased with q  increasing until a steady state was reached. At this steady state, 

the value of wq  was close to zero, implying that the weak force chain network was 

nearly isotropic. For other stress paths with different b-values, wq , sq , q  and 

2d W  varied following the same trends.  

 In the 3D tests along radial stress paths on the π-plane, we normalized the 

second-order work using the the constant vertical strain ratio (
1d ) as  

 
 

2

2

1

ij ijd d
d W

d

 


   (7-54) 

 Figure 7-10 summarizes the relation between 
2d W  and the degree of fabric 

anisotropy in the strong and weak sub-networks respectively along stress paths with 

different b-values. As shown in Figure 7-10 (a), regardless of the b-value, 
2d W  

decreased monotonically while  of the strong network increased. The results 

clearly showed that the second-order work vanished when . The results in 

Figure 7-10 (a) confirmed that  reached a peak value prior to the vanishing of 

2d W  in all simulations. Then  decreased quickly to a near-zero value when 

2d 0W  . 
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Figure 7-9: Variation of fabric anisotropy in different contact networks and 
2d W  in 

3D tests along stress paths with constant b-value: p=300 kPa, kn=ks= 4×10
4
N/m  
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(a)                             (b) 

Figure 7-10: Variation of fabric anisotropy of (a) the strong sub-network, and (b) the 

weak sub-network with 
2d W  in 3D tests along different stress paths: p=300kPa and 

kn=ks= 4×10
4
N/m 

 

 In conclusion, the results obtained from DEM simulations along radial stress 

paths on the π-plane confirm the finding from 2D DEM simulations for tests along 

proportional strain paths. More specifically, the degradation of strong sub-network 

(i.e., the decrease of 
sq ) is a necessary but not a sufficient condition of instability, 

while a degradation of the weak sub-network is the indicator of deformation instability. 

The fabric evolution plays an important role in composing the second-order work. 

Thus the vanishing of directional average local second-order work does not mean the 

macroscopic instability. Moreover, the evolution of the fabric anisotropies in 

sub-network works can be used to characterize the vanishing of the second-order work 

macroscopically. 

 

7.6 Summary  

The instability of a granular material might be initiated from the variation of its 

internal structure. The fabric tensor, characterizing the geometric arrangement of the 
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microstructure, should be involved in the macroscopic instability of granular materials. 

In this chapter, the evolution of fabric in different contact networks was investigated 

to identify potential relations between fabric and the material instability in Hill’s sense. 

The DEM simulations for granular materials along proportional strain paths under 2D 

conditions and radial stress paths on the π-plane under 3D stress conditions revealed 

that the degradation of strong sub-network is a necessary but not a sufficient condition 

of instability, while the degradation of the weak sub-network is the indicator of 

deformation instability in tests along all imposed strain paths.  

 In addition to DEM simulations, this chapter provided a micro-interpretation for 

the vanishing of the second-second order work. The macroscopic second-order work 

can be decomposed into three terms: the average of the local directional second-order 

work associated with inter-particle contact forces and relation displacements, the term 

accounts for the volume change of the granular assembly and the term related to the 

change of fabric. It was shown that vanishing of the macro-level second-order work 

was dependent on the fabric degradation of the granular assembly, particularly the 

strong force chain network. 

 Physically, the strong sub-network dominants the shear resistance and the weak 

sub-network provides supports to the strong contacts. The results from 2D tests along 

proportional strain paths indicated that the fabric anisotropies for sub-networks can be 

used to identify the vanishing of macroscopic second-order work. Moreover, the 

degradation of strong sub-network (i.e., the decrease of 
sq ) is found to be a necessary 

but not a sufficient condition of instability. In other words, deformation instability is 

accompanied by strong network degradation but not opposite. On the other hand, a 

decrease of 
wq  or the degradation of weak sub-network is the indicator of 

deformation instability in tests along all imposed strain paths. 
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Chapter 8 Conclusions and Discussions 

 

8.1 Main contributions  

In this research, the focus was placed on the behaviour of granular materials subjected 

to quasi-static shear in terms of the fabric evolution including the magnitude and 

direction of anisotropy for different contact networks. Both statistical and 

micromechanical approaches were adopted to obtain the macroscopic properties, such 

as the fabric tensor, Cauchy stress tensor and the second-order work, in terms of the 

micro-scale variables. A series of DEM simulations were conducted to simulate 

laboratory tests along fixed loading paths; for example, 2D tests along proportional 

strain paths, 2D simple shear tests and 3D tests along radial stress paths on the π-plane. 

The following conclusions can be addressed based on the research accomplished 

within this thesis.  

(1) Using statistic approach, the fabric-stress relation is obtained and equivalent to 

the stress-force-fabric function presented by other researchers. The relation between 

the orientations of the major principal stress and the major principal fabric component 

is presented in Eq. (6-2). 

(2) DEM results show that the induced fabric anisotropy within overall contact 

network can be related with the deviatoric stress ratio q p  (in 3D) or t s  (in 2D) 

through ( )nq A t s   or ( )zq B q p   before the peak stress state with parameters 

of A and n depending on the stress paths and the parameters of B and z depending on 

the strain increment rate. 

(3) After the peak stress state, the stress-fabric relation (in 3D) for the overall 

contact network can be described using 
1 2 3 1 2 3: : ( ) : ( ) : ( )m m m      , where m 

ranges within 0.3~0.4. The shape of the fabric response envelope for the overall 
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contact network is that of a small inverted Lade’s surface at critical state in Eq.(5-11). 

The ratio of the parameters 
* *b a  ranges from 1.0 to 1.2.  

(4) For the strong sub-network, the stress-fabric relation yields to 

1 2 3 1 2 3: : : :s s s       or 
1 2 1 2: :s s     throughout the loading process in 3D or 

2D cases along general loading conditions. This relation is independent of the stress or 

strain paths, the friction coefficient, the contact stiffness. At critical state, the fabric 

response envelopes for the strong sub-network shows similar shape with the Lade’s 

surface and is much larger than that of the fabric for the overall contact network. 

(5) The macro second-order work can be interpreted into three parts: directional 

average second-order work from the contact plane, a part induced by the fabric 

evolution and a part induced by the volumetric change. The second-order work 

induced by the fabric evolution cannot be neglected. Moreover, a decrease of wq  or 

the degradation of weak sub-network is the indicator of deformation instability. The 

degradation of strong sub-network (i.e., the decrease of sq ) is a necessary but not a 

sufficient condition of instability. 

(6) The orientation of the major principal stress is always coaxial with that of the 

fabric for strong sub-network which is perpendicular to the direction of the major 

principal component of the fabric tensor for the weak sub-network. The fabric 

anisotropy within overall contact network is expressed in terms of those in 

sub-networks as (1 )s wq q q       with   is the ratio of strong contact number 

in the overall contact network. 

(7) It is notable that the direction of the principal fabric tensor in the overall 

contact network may rotate 90° in tests along forced high contraction strain paths, 

which implies that the degree of induced fabric anisotropy in overall contact network 

may become isotropic instantaneously when the principal direction of fabric tensor 
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rotates. However, the orientation of the major principal fabric in strong sub-network is 

always coaxial with the major principal stress direction regardless of the major 

principal stress rotating or not. Moreover, 90s w

c c     indicates that the weak 

sub-network provide supports for the strong contact which contributes to the majority 

of the shear stress since s

c   0°. 

 

8.2 Future works  

Once the evolution of the microstructure has been quantified, the macro response of 

the granular material can be interpreted micromechanically. Moreover, the fabric 

evolution can be added into the modeling under continuum framework. Some other 

interesting studies could be further explored within the scope of this thesis. The 

following works will be considered in the future. 

(1) Verification of the fabric-stress evolution law  

In order to verify the fabric-stress relation, irregular shape particles and rolling 

resistance should be properly considered in DEM simulations. Moreover, this relation 

can also be verified by results of laboratory tests using photo-elastic material. 

(2) A unique critical fabric for granular material  

At critical state, the induced fabric anisotropy is relatively high and varies with 

the loading path. The critical state theory does involve a local level parameter, the 

void ratio which quantifies the void cell system of granular material according to (Li 

and Li, 2009). However, the fabric structure or the solid cell system is found to be 

critical for the stress-strain behavior of the granular material. Therefore, the unique 

critical state needs to consider the fabric anisotropy based on the contact normals. 

(3) Continuum model with a consideration of fabric evolution 

Employing the fabric evolution law into the continuum modeling of the granular 

material is critical for better understanding the macro behavior of sand. One approach 
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is adding the fabric to the yielding surface and the plastic potential function. 

(4) Hydro-DEM coupling  

The real granular material shows multiphase, such as the air, solid, water. For 

simplicity, both the solid skeleton and the pore water can be considered. The coupling 

procedure can be computed as a DEM implementation plus a computational fluid 

dynamics. 
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Appendix 

A-1 2D-sample.dat 

;fname: 2D-sample.dat   Creation and packing of particles – 2D sample 

new 

SET random ; reset random-number generator 

SET disk on ; treat balls as disks of unit thickness 

def make_walls ; create walls with overhang of extend 

  extend = 0.5 

  _x0 = -extend*width 

  _y0 = 0.0 

  _x1 = width*(1.0 + extend) 

  _y1 = 0.0 

  command 

    wall id=1 kn=w_stiff nodes (_x0,_y0) (_x1,_y1) 

  end_command 

  _x0 = width 

  _y0 = -extend*height 

  _x1 = width 

  _y1 = height*(1.0 + extend) 

  command 

    wall id=2 kn=w_stiff nodes (_x0,_y0) (_x1,_y1) 

  end_command 

  _x0 = width*(1.0 + extend) 

  _y0 = height 

  _x1 = -extend*width 

  _y1 = height 

  command 
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    wall id=3 kn=w_stiff nodes (_x0,_y0) (_x1,_y1) 

  end_command 

  _x0 = 0.0 

  _y0 = height*(1.0 + extend) 

  _x1 = 0.0 

  _y1 = -extend*height 

  command 

    wall id=4 kn=w_stiff nodes (_x0,_y0) (_x1,_y1) 

  end_command 

end 

def assemble ; assemble sample 

  s_stiff = 0.0 ;initial stiffnesses 

  n_stiff = 1e8 

  w_stiff = 1e8 

  tot_vol = height * width * 1.0 

  rbar = 0.5 * (rlo + rhi) 

  num = int((1.0 - poros) * tot_vol/(pi * rbar^2)) 

  mult = 2.0                              ; initial radius multiplication factor 

  rlo_0 = rlo / mult 

  rhi_0 = rhi / mult 

  make_walls 

  command 

      gen id=1,15000 rad=rlo_0,rhi_0 x=0,width y=0,height 

      prop dens=2000 ks=s_stiff kn=n_stiff 

    end_command 

  command 

        gen id=15001, 21000 rad=rlo_0,rhi_0 x=0,width y=0,height 



 

 

 

        prop dens=2000 ks=s_stiff kn=n_stiff 

  end_command 

  command 

          gen id=21001, num rad=rlo_0,rhi_0 x=0,width y=0,height 

          prop dens=2000 ks=s_stiff kn=n_stiff 

  end_command 

  ii = out(string(num)+'particles were created') 

  sum = 0.0 ; get actual porosity 

  bp = ball_head 

  loop while bp # null 

    sum = sum + pi * b_rad(bp)^2 

    bp = b_next(bp) 

  end_loop 

  pmeas = 1.0 - sum / tot_vol 

  mult = sqrt((1.0-poros)/(1.0-pmeas)) 

  command 

    ini rad mul mult 

    cycle 1000 

    prop ks=1e8 fric 0.5 

    cycle 500 

  end_command 

end 

def cws                                  ;change lateral wall stiffnesses 

  command 

    wall id 2 kn=w_stiff 

    wall id 4 kn=w_stiff 

    wall id 1 kn=w_stiff 
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    wall id 3 kn=w_stiff 

  end_command 

end 

macro zero 'ini xvel 0 yvel 0 spin 0' 

SET height=4.0 width=2 rlo=0.008 rhi=0.01 poros= 0.160 

assemble 

SET w_stiff= 1e7                      ;make lateral wall stiffness=0.1 of ball 

stiffness 

cws 

cyc 5000 

zero 

solve  av=0.0001 max=0.0001 

zero 

plot create assembly 

plot add ball lorange wall black 

save 2D_ass.SAV 

return 

 

A-2 2D-stress.dat 

;fname: 2D-stress.DAT   Preparation for upcoming tests. Define output variables 

 set log off  

 res 2D_ass.SAV                             ;restore compacted assembly 

def get_coor 

  count_1= 0 

  bp=ball_head  

  loop while bp # null 

  count_1 = count_1+1 



 

 

 

  bp=b_next(bp) 

  endloop  

  count_2= 0 

  cp=contact_head  

  loop while cp # null  

     b1=c_ball1(cp) 

     b2=c_ball2(cp) 

  if pointer_type(b2) # 101 

     count_2 = count_2+1 

  endif 

  cp=c_next(cp) 

  endloop 

  count_1 = count_1*1.1 

  count_2 = count_2*1.1 

  co_nu  = count_2/count_1 

end 

def get_ss                                 ;determine average stress and 

strain at walls 

  get_coor 

  xdif = w_x(wadd2) - w_x(wadd4) 

  ydif = w_y(wadd3) - w_y(wadd1) 

  new_xwidth = width + xdif 

  new_height = height+ ydif 

  volume = new_xwidth*new_height 

  wsxx = 0.5 * (w_xfob(wadd4)- w_xfob(wadd2)) / (new_height * 1.0) 

  wsyy = 0.5 * (w_yfob(wadd1)- w_yfob(wadd3)) / (new_xwidth * 1.0) 

  wexx = xdif/(width*1.0) 
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  weyy = ydif/(height*1.0) 

  wevol= wexx + weyy 

  dest = weyy - wexx 

if co_nu_0 > 1.0 

  r_co = (co_nu-co_nu_0)/co_nu_0 

else  

  r_co = 0.0 

endif 

cp=contact_head 

  sum_fx  = 0.0 

  sum_fy  = 0.0 

  sum_fxy = 0.0 

  sum_fyx = 0.0 

loop while cp # null 

   b1 = c_ball1(cp) 

   b2 = c_ball2(cp) 

   nforce=c_nforce(cp) 

if pointer_type(b2) # 101 

  x_dif=b_x(b2)-b_x(b1) 

  y_dif=b_y(b2)-b_y(b1) 

  vel_x=c_xun(cp) 

  vel_y=c_yun(cp) 

  delta_fx  = nforce*vel_x*x_dif 

  delta_fy  = nforce*vel_y*y_dif 

  delta_fxy = nforce*vel_x*y_dif 

  delta_fyx = nforce*vel_y*x_dif 

  sum_fx  = sum_fx  + delta_fx 



 

 

 

  sum_fy  = sum_fy  + delta_fy 

  sum_fxy = sum_fxy + delta_fxy 

  sum_fyx = sum_fyx + delta_fyx 

endif 

cp=c_next(cp) 

endloop 

  wsxx_1 = sum_fx/volume 

  wsyy_1 = sum_fy/volume 

  wsxy_1 = sum_fxy/volume 

  wsyx_1 = sum_fyx/volume 

end 

def get_gain                 ;determine servo gain parameters for x and y 

  alpha = 0.5                ;relaxation factor 

  count = 0 

  avg_stiff = 0 

  cp = contact_head          ;find avg.number of contacts on x-walls 

  loop while cp # null 

    if c_ball1(cp) = wadd2 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    if c_ball1(cp) = wadd4 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    if c_ball2(cp) = wadd2 

      count = count+1 
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      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    if c_ball2(cp) = wadd4 

      count = count+1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    cp = c_next(cp) 

  end_loop 

  nxcount = count/2.0 

  avg_stiff = avg_stiff/count 

  gx = alpha*(height*1.0)/(avg_stiff*nxcount*tdel) 

  count = 0 

  avg_stiff = 0 

  cp = contact_head             ;find avg. number of contacts on y-walls the 

averaged lateral force  

  loop while cp # null 

    if c_ball1(cp) = wadd1 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    if c_ball1(cp) = wadd3 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    if c_ball2(cp) = wadd1 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 



 

 

 

    end_if 

    if c_ball2(cp) = wadd3 

      count = count + 1 

      avg_stiff = avg_stiff + c_kn(cp) 

    end_if 

    cp = c_next(cp) 

  end_loop 

  nycount = count/2.0 

  avg_stiff = avg_stiff/count 

  gy = alpha*(width*1.0)/(avg_stiff*nycount*tdel) 

end 

def servo 

  while_stepping 

  if x_servo = 1   

     udx = gx*(wsxx-sxxreq) 

     w_xvel(wadd4) = udx 

     w_xvel(wadd2) = -udx 

  endif   

  if y_servo = 1                ;switch stress servo on or off 

     udy = gy*(wsyy-syyreq) 

     w_yvel(wadd1) = udy 

     w_yvel(wadd3) = -udy 

  end_if 

end 

def iterate 

  loop while 1 # 0 

    if abs((wsxx-sxxreq)/sxxreq)<sig_tol then 
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      if abs((wsyy-syyreq)/syyreq)<sig_tol then 

        exit 

      end_if 

    end_if 

    command 

      cycle 500 

    end_command 

  end_loop 

end 

def out_detail 

new_xwidth_0=new_xwidth 

new_height_0=new_height 

get_poros  

oo=out(string(pmeas1)+'is the porosity    '+string(new_xwidth_0)+' is the new 

width    '+string(new_height_0)+'is the new height     ') 

end 

def wall_addr 

  wadd1 = find_wall(1) 

  wadd2 = find_wall(2) 

  wadd3 = find_wall(3) 

  wadd4 = find_wall(4) 

end 

wall_addr 

zero 

SET sxxreq=-2e5 syyreq=-2e5 sig_tol=1e-6 y_servo=1 x_servo = 1  

iterate                           ;get all stresses to requested state 

SET width=new_xwidth     height=new_height 



 

 

 

out_detail 

zero 

…………… 

sav 2D_stress.SAV    ;get the required stress states and ready for the intializtion  

return 

 

A-3 2D-preload.dat 

;fname: 2D-preload.DAT   Preparation for upcoming tests. Define output variables 

 set log off 

 res bt_stre.SAV  

def get_fabric  

    fs_x_x = 0.0 

    fs_x_y = 0.0 

    fs_y_x = 0.0 

    fs_y_y = 0.0 

    ns_c  = 0 

    fw_x_x = 0.0 

    fw_x_y = 0.0 

    fw_y_x = 0.0 

    fw_y_y = 0.0 

    nw_c  = 0 

    f_x_x = 0.0 

    f_x_y = 0.0 

    f_y_x = 0.0 

    f_y_y = 0.0 

    f_x_x = f_x_x/n_c 

    f_x_y = f_x_y/n_c 
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    f_y_x = f_y_x/n_c 

    f_y_y = f_y_y/n_c 

    fs_x_x = fs_x_x/ns_c 

    fs_x_y = fs_x_y/ns_c 

    fs_y_x = fs_y_x/ns_c 

    fs_y_y = fs_y_y/ns_c 

    fw_x_x = fw_x_x/nw_c 

    fw_x_y = fw_x_y/nw_c 

    fw_y_x = fw_y_x/nw_c 

    fw_y_y = fw_y_y/nw_c 

end 

def set_ini ;set initial strains 

  get_ss 

  weyy_0  = weyy 

  wexx_0  = wexx 

  wevol_0 = wevol 

  co_nu_0 = co_nu 

  dest_0  = dest 

end 

def get_average_f 

   n_avg_s=0.0 

   n_c=0 

   n_c_f=0.0 

  _cp=contact_head 

loop while _cp # null 

  b2=c_ball2(_cp) 

  nforce=c_nforce(_cp) 



 

 

 

  if nforce>1e-6 

  if pointer_type(b2) # 101 

     n_c=n_c+1 

     n_c_f = n_c_f +c_nforce(_cp) 

  end_if 

  end_if 

    _cp=c_next(_cp) 

endloop 

     n_avg_s = n_c_f/n_c 

end 

def conf       ;variables for histories 

  get_ss 

  get_fabric  

  degree_f 

  get_poros  

  avxy_1 = wsxx_1 

  devi_1 = wsyy_1-avxy_1 

  conf_1 = avxy_1 

  avxy = wsxx 

  devi = wsyy - avxy       ;deviatoric stress 

  conf = avxy              ;confining stress 

  deax = weyy - weyy_0     ;axial strain 

  dela = wexx - wexx_0     ;lateral strain 

  devol= wevol- wevol_0    ;volumetric strain 

  dest = dest - dest_0     ;deviatoric strain  

  coor_r= r_co 

  stress_s=-(avxy+wsyy)/2 
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  stress_t=-(wsyy-avxy)/2 

end 

def accel_platens         ; Accelerates the platens to achieve vel of _vfinal in 

_nsteps; using _nchunks 

   conf    

  _niter = _nsteps / _nchunks 

  loop _chnk (1,_nchunks) 

    if _close = 1 then 

      _vel_1 = _chnk*(_vfinal/_nchunks) 

    else 

      _vel_1 = -_chnk*(_vfinal/_nchunks) 

    end_if 

     _mvel_1 = -_vel_1 

     _vel_2  = _vel_1*new_xwidth_0/(n_rate*new_height_0) 

     _mvel_2 = -_vel_1*new_xwidth_0/(n_rate*new_height_0) 

    command 

      wall id 1 yvel= _vel_1 

      wall id 3 yvel= _mvel_1 

      wall id 2 xvel= _vel_2 

      wall id 4 xvel= _mvel_2 

      cycle _niter 

    end_command 

  end_loop 

end 

def degree_f 

array degree (4, 80000) 

array average_n(36,1)       ;y vector for an  



 

 

 

array average_t(36,1)       ;y vector for at  

array x_a_n(36,2)           ;x matrix for an 

array x_a_t(36,2)           ;x matrix for at 

array average_ns(36,1)       ;y vector for asn  

array average_ts(36,1)       ;y vector for ast  

array average_nw(36,1)       ;y vector for awn  

array average_tw(36,1)       ;y vector for awt  

sum_avg_ns=0.0                 

sum_avg_nw=0.0 

sum_avg_n=0.0 

loop i (1, 80000) 

    degree (1, i)=0.0 

    degree (2, i)=0.0 

    degree (3, i)=0.0 

    degree (4, i)=0.0 

endloop 

count= 0 

va1 = 1.0 

va2 = 0.0 

cp = contact_head 

loop while cp # null  

  b1 = c_ball1(cp) 

  b2 = c_ball2(cp) 

  nforce=c_nforce(cp) 

  sforce=c_sforce(cp) 

  if nforce>1e-6 

  if pointer_type(b2) # 101 
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     count = count+1 

     vb1 = b_x(b2)-b_x(b1) 

     vb2 = b_y(b2)-b_y(b1) 

     maga_a = sqrt(va1*va1+va2*va2) 

     maga_b = sqrt(vb1*vb1+vb2*vb2) 

     na1= va1/maga_a 

     na2= va2/maga_a 

     nb1= vb1/maga_b 

     nb2= vb2/maga_b 

     cc= na1*nb2-na2*nb1                     ;cross product  

     bb= nb1*na1+nb2*na2                     ;dot product 

     dthet = atan2(abs(cc),abs(bb)) 

     if sforce > 1e-7 

        sthet= dthet+0.5*pi 

     else  

         sthet=1.5*pi+dthet 

     endif 

           if cc>0.0 

              if bb<0.0 

                 dthet = pi-dthet 

                  if sforce > 1e-7 

                     sthet= dthet+0.5*pi 

                  else 

                      sthet=dthet-0.5*pi 

                   endif 

               endif 

            else 



 

 

 

               if bb>0.0 

                  dthet = 2*pi-dthet 

                  if sforce > 1e-7 

                     sthet= dthet-1.5*pi 

                  else  

                      sthet=dthet-0.5*pi 

                   endif 

               else 

                  dthet = pi+dthet 

                  if sforce > 1e-7 

                     sthet= dthet+0.5*pi 

                  else  

                      sthet=dthet-0.5*pi 

                   endif 

               endif 

            endif 

     degree (1,count) = dthet 

     degree (2,count) = c_nforce(cp) 

     degree (3,count) = sthet 

     degree (4,count) = sforce 

  endif 

  endif 

cp=c_next(cp) 

endloop 

loop i (1,36) 

 detal_n1=(i-1)*pi/18 

 detal_n2=i*pi/18 



Ph.D. Thesis-Jingshan Shi                               McMaster University 

225 

 

 count_n=0 

 sum_n=0.0 

 sum_t=0.0 

 count_ns=0 

 sum_ns=0.0 

 sum_ts=0.0  

 count_nw=0 

 sum_nw=0.0 

 sum_tw=0.0  

get_average_f 

n_avg_ff = n_avg_s 

 x_a_n(i,1)= cos(2*detal_n2)   

 x_a_n(i,2)= sin(2*detal_n2)   

 x_a_t(i,1)= sin(2*detal_n2) 

 x_a_t(i,2)=-cos(2*detal_n2) 

 array x_mat(36,2) 

 array y_mat(36,1) 

 loop j (1, count) 

   if degree (1,j)>detal_n1 

   …………. 

  endif 

  endloop 

    average_n(i,1)=sum_n/count_n 

    average_t(i,1)=sum_t/count_n 

    average_ns(i,1)=sum_ns/count_ns 

    average_ts(i,1)=sum_ts/count_ns 

    average_nw(i,1)=sum_nw/count_nw 



 

 

 

    average_tw(i,1)=sum_tw/count_nw   

endloop 

loop k (1,36) 

  if average_n(k,1)>1e-5 

     sum_avg_n=sum_avg_n+average_n(k,1) 

  endif 

     if average_ns(k,1)>1e-5 

     sum_avg_ns=sum_avg_ns+average_ns(k,1) 

  endif  

     if average_nw(k,1)>1e-5 

       sum_avg_nw=sum_avg_nw+average_nw(k,1) 

  endif 

endloop  

sum_avg_n=sum_avg_n/36 

sum_avg_ns=sum_avg_ns/36 

sum_avg_nw=sum_avg_nw/36 

loop k (1,36) 

   average_n(k,1)=average_n(k,1)/sum_avg_n-1       ; y function for an  

   average_t(k,1)=-average_t(k,1)/sum_avg_n         ; y function for at 

   average_ns(k,1)=average_ns(k,1)/sum_avg_ns-1 

   average_ts(k,1)=-average_ts(k,1)/sum_avg_ns 

   average_nw(k,1)=average_nw(k,1)/sum_avg_nw-1 

   average_tw(k,1)=-average_tw(k,1)/sum_avg_nw    

endloop 

loop m (1,36) 

   x_mat(m,1)= x_a_n(m,1)           ;x function for an  

   x_mat(m,2)= x_a_n(m,2)           ;x function for an  
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   y_mat(m,1)= average_n(m,1)       ;y function for an 

endloop 

find_roots  

b_1_an= return_a 

b_2_an= return_b 

a_nn=sqrt(b_1_an^2+b_2_an^2) 

thet_n=atan2(abs(b_2_an),abs(b_1_an)) 

if b_1_an >0 

   if b_2_an >0 

      thet_n=thet_n; 

   else 

      thet_n=2*pi-thet_n; 

   endif  

else 

  if b_2_an >0 

     thet_n=pi-thet_n; 

  else  

     thet_n=pi+thet_n; 

  endif 

endif 

a_n_theta=thet_n/2 

loop m (1,36) 

   x_mat(m,1)= x_a_t(m,1)           ;x function for at  

   x_mat(m,2)= x_a_t(m,2)           ;x function for at  

   y_mat(m,1)=average_t(m,1)        ;y function for at 

endloop 

find_roots  



 

 

 

b_1_at=return_a 

b_2_at=return_b 

a_tt =sqrt(b_1_at^2+b_2_at^2) 

thet_t=atan2(abs(b_2_at),abs(b_1_at)) 

if b_1_at >0 

   if b_2_at >0 

      thet_t=thet_t; 

   else 

      thet_t=2*pi-thet_t; 

   endif  

else 

  if b_2_at >0 

     thet_t=pi-thet_t; 

  else  

     thet_t=pi+thet_t; 

  endif 

endif 

a_t_theta=thet_t/2 

loop m (1,36) 

   x_mat(m,1)= x_a_n(m,1)           ;x function for ans  

   x_mat(m,2)= x_a_n(m,2)           ;x function for ans  

   y_mat(m,1)= average_ns(m,1)       ;y function for ans 

endloop 

find_roots  

a_nns =sqrt(b_1_ans^2+b_2_ans^2) 

thet_ns=atan2(abs(b_2_ans),abs(b_1_ans)) 

if b_1_ans >0 
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   if b_2_ans >0 

      thet_ns=thet_ns; 

   else 

      thet_ns=2*pi-thet_ns; 

   endif 

else 

  if b_2_ans >0 

     thet_ns=pi-thet_ns; 

  else 

     thet_ns=pi+thet_ns; 

  endif 

endif 

a_ns_theta=thet_ns/2 

loop m (1,36) 

   x_mat(m,1)= x_a_t(m,1)           ;x function for at  

   x_mat(m,2)= x_a_t(m,2)           ;x function for at  

   y_mat(m,1)=average_ts(m,1)        ;y function for at 

endloop 

find_roots  

b_1_ats=return_a 

b_2_ats=return_b 

a_tts = sqrt(b_1_ats^2+b_2_ats^2) 

thet_ts= atan2(abs(b_2_ats),abs(b_1_ats)) 

if b_1_ats >0 

   if b_2_ats >0 

      thet_ts=thet_ts; 

   else 



 

 

 

      thet_ts=2*pi-thet_ts; 

   endif 

else 

  if b_2_ats >0 

     thet_ts=pi-thet_ts; 

  else  

     thet_ts=pi+thet_ts; 

  endif 

endif 

a_ts_theta=thet_ts/2 

loop m (1,36) 

   x_mat(m,1)= x_a_n(m,1)           ;x function for ans  

   x_mat(m,2)= x_a_n(m,2)           ;x function for ans  

   y_mat(m,1)= average_nw(m,1)      ;y function for ans 

endloop 

find_roots  

a_nnw =sqrt(b_1_anw^2+b_2_anw^2) 

thet_nw =atan2(abs(b_2_anw),abs(b_1_anw)) 

if b_1_anw >0 

   if b_2_anw >0 

      thet_nw=thet_nw; 

   else 

      thet_nw=2*pi-thet_nw; 

   endif  

else 

  if b_2_anw >0 

     thet_nw=pi-thet_nw; 
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  else  

     thet_nw=pi+thet_nw; 

  endif 

endif 

a_nw_theta=thet_nw/2 

loop m (1,36) 

   x_mat(m,1)= x_a_t(m,1)           ;x function for at  

   x_mat(m,2)= x_a_t(m,2)           ;x function for at  

   y_mat(m,1)=average_tw(m,1)        ;y function for at 

endloop 

find_roots  

b_1_atw=return_a 

b_2_atw=return_b 

a_ttw = sqrt(b_1_atw^2+b_2_atw^2) 

thet_tw = atan2(abs(b_2_atw),abs(b_1_atw)) 

if b_1_atw >0 

   if b_2_atw >0 

      thet_tw=thet_tw; 

   else 

      thet_tw=2*pi-thet_tw; 

   endif 

else 

  if b_2_atw >0 

     thet_tw=pi-thet_tw; 

  else  

     thet_tw=pi+thet_tw; 

  endif 



 

 

 

endif 

a_tw_theta=thet_tw/2 

end 

def out_put_f 

    degree_f 

loop n (1,count) 

    de_gress= degree(1,n) 

    de_force= degree(2,n) 

    de_sgress=degree(3,n) 

    de_sforce=degree(4,n) 

    oo=out(string(de_gress)+'        '+string(de_force)+'        

'+string(de_sgress)+'        '+string(de_sforce)) 

endloop  

end 

def out_put_c 

array coornumber (1, 10) 

loop i (1, 10) 

    coornumber (1, i) = 0 

endloop  

max_co = -10 

…………….. 

end 

wall_addr 

zero 

set_ini 

history id=1 conf 

history id=2 devi 
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history id=3 deax 

…………. 

SET hist_rep=500 

del ball range x -10 -1 

del ball range x  5  20 

zero 

sav 2D_init.SAV                               ;ready implosed strain tests 

return 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the end. 


