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Abstract

This thesis explores some of the relationships between model theoretic and algebraic

properties of fields, focusing on valuations of fields. We first show that the dp-rank

of henselian valued fields admitting relative quantifier elimination is equal to the sum

of the dp-ranks of the value group and of the residue field. Moreover, we give a

characterization of henselianity of valued fields of finite dp-rank in terms of the dp-

rank of definable sets. We also obtain partial results generalizing the work of Johnson

in classifying fields of finite dp-rank. Finally, we consider fields with the property that

the algebraic closure is an immediate extension with respect to every valuation. We

show that under certain conditions these fields are dense in their algebraic closure

with respect to every valuation and provide an example that demonstrates that this

property does not hold in general.
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Chapter 1

Definitions and Preliminary

Results

1.1 Introduction

This thesis is focused on a fundamental question of the model theory of fields: given

a field in some language, what is the relationship between the model theoretic and

algebraic properties of that field. One of the first significant results in this area is

Macintyre’s proof that all ω-stable fields are algebraically closed (Macintyre, 1971).

Since that time, many other model theoretic classes of fields have been shown to have

strong algebraic properties: superstable fields (Cherlin and Shelah, 1980), o-minimal

fields (van den Dries, 1998), and more recently, superrosy fields (Krupiński, 2015)

and dp-minimal fields (Johnson, 2015).

The two recent examples mentioned above use valuation theory as a tool to bridge

the gap between logic and algebra. Valued fields, and in particular henselian valued

fields, are very amenable to model theoretic techniques, with important classes ad-

mitting partial quantifier elimination and cell decompositions. Moreover, the field

theoretic structure of a henselian valued field can be deduced almost entirely from

the structure of the residue field and value group, providing a way to reduce a problem

into hopefully simpler terms.

Each chapter of this thesis has a different approach to applying valuation theory.

In Chapter 2, we consider fields with a fixed valuation and deduce properties about the

field using the auxiliary structures provided by the valuation. In Chapter 3, we make

model theoretic assumptions about the structure of a field and attempt to construct
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a valuation using only these assumptions. Finally, in Chapter 4, we consider fields in

which all possible valuations share a particular algebraic property.

Chapters 2 and 3 focus on dp-finite fields, that is, fields whose theory has finite

dp-rank. These theories fit into the universe of stability theory in a number of ways:

o-minimal strongly minimal

dp-minimal

dp-finite superstable

strongly dependent stable

NIP

Dp-rank gives a notion of dimension to type-definable sets in NIP structures, and

dp-finite structures are ones in which the set defined by “x = x” has finite dp-rank.

This definition was motivated by an attempt to find a notion for NIP structures that

satisfied an analogous relationship to that of superstable and stable structures. The

proposed analogy was strongly dependent theories, in which every complete type has

finite dp-rank, but partial types (in particular, “x = x”) may have a countably infinite

rank. There is some subtlety to this particular case, which is discussed in more detail

in Section 1.4.

While this notion did not fit the analogy perfectly (among other things, the class

of structures which is strongly dependent and stable is slightly larger than the class

of superstable theories), they have become an active area of research. The dp-rank

in particular, and some variants for structures that are not NIP, has been very useful

as a measure of complexity for type-definable sets. Unfortunately, it is only partially

successful as a notion of dimension: while it satisfies nice properties (for example,

dp-rk(X×Y ) = dp-rk(X)+dp-rk(Y ) and dp-rk(X∪Y ) = max{dp-rk(X), dp-rk(Y )})
it is not always possible to find sets of every dp-rank. There are theories that contain

sets of dp-rank 0 and dp-rank 2, but no sets of dp-rank 1.

The second chapter focuses on the structure of valued fields admitting relative

quantifier elimination, a class that includes all strongly dependent henselian valued
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fields by Halevi and Hasson (2017a). First, we show that in the three-sorted Denef-

Pas language, the dp-rank of such fields can be easily calculated as the sum of the

dp-rank of the value group and the dp-rank of the residue field. Then, we show that

the dp-rank is a very coarse notion of dimension on the home sort: in one variable,

a set either has dp-rank 0 or dp-rank equal to the dp-rank of the theory. In fact, for

dp-finite valued fields, this property can be used to characterize henselianity.

The next chapter focuses on a particular case of a large open question: can we

classify the algebraic structure of all NIP fields? In other words, can we classify the

NIP fields in the pure field language, up to elementary equivalence? Conjecturally,

these fields are either separably closed, real closed, or have a definable henselian

valuation. Johnson (2015) showed that this conjecture holds in the dp-minimal case.

We generalize portions of Johnson’s argument to the dp-finite case, and show that

certain dp-finite fields admit a uniformly definable field topology. The last section

of this chapter gives an argument that the dp-finite fields that do not admit a field

topology should be stable and algebraically closed. We unfortunately can only say

“should be,” because the proposed proof that we outline would require a stonger

version of some of the results in the rest of the chapter, which we have not yet been

able to prove.

In the last chapter, we investigate two different classes of fields, first considered by

Hong (2013). These two classes each consist of fields that approximate their algebraic

closure in a particular way. We show that the two classes are not equal, but that by

restricting them slightly (and uniformly between the two classes), they align.

3
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1.2 Algebra of Valued Fields

This section very quickly covers the basic notions and notations for valued fields that

will be used in this thesis. It assumes familiarity with all of the concepts of valuation

theory; for a more thorough introduction, refer to Engler and Prestel (2005).

Given a field K (with 0 6= 1), we can define a valuation on K in two ways. First, we

can define a subring O ⊆ K, called a valuation ring, such that for every x ∈ K, either

x ∈ O or x−1 ∈ O. Alternatively, we can define a surjective map v : K× � Γ onto

some ordered abelian group Γ, called the value group, with the following properties:

1. v(xy) = v(x) + v(y)

2. v(x+ y) ≥ min{v(x), v(y)}

We usually write vK for the value group, especially when there are multiple fields or

multiple valuations being considered. We then extend v to a map v : K → Γ ∪ {∞}
by setting v(0) =∞ and γ <∞ for all γ ∈ Γ. These concepts are interdefinable:

• Given a valuation v, we can define a valuation ring Ov = {x ∈ K : v(x) ≥ 0}.

• Given a valuation ringO, we can define an ordering on K×/O× by x·O× ≥ 1·O×

if and only if x ∈ O. Then the usual quotient map vO : K× � K×/O× is a

valuation.

However a valuation is defined, there are two additional useful structures associ-

ated to it:

• m = {x ∈ O : x−1 /∈ O} = {x ∈ K : v(x) > 0}, the maximal ideal of O

• Kv = O/m, the residue field of K.

When specifying the characteristic of a valued field, it is important to also specify

the characteristic of the residue field; we list the characteristic as an ordered pair

(char(K), char(Kv)). The possible combinations of characteristics are (0, 0), (0, p),

and (p, p) for all primes p > 0; we say that a field has equicharacteristic if char(K) =

char(Kv), and mixed characteristic otherwise.

We write (K, v) or (K,O) for a valued field. An extension of a valued field is

a field extension L/K and a valuation w on L such that w|K = v. When there is

no ambiguity, we write v for both the valuation on L and its restriction to K. If

(L, v)/(K, v) is a valued field extension then Kv is a subfield of Lv and vK is a

4
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subgroup of vL. Moreover, if L/K is algebraic then so is Lv/Kv, and vK and vL

have the same divisible hull. In the case where Lv = Kv and vL = vK, we say that

the extension is immediate.

A particularly useful class of valued fields is the class of henselian valued fields.

A valued field (K, v) is called henselian if one of the following equivalent conditions

holds:

1. There is a unique valuation w on the algebraic closure of K such that v = w|K

2. There is a unique valuation ring O′ on the algebraic closure of K such that

O = O′ ∩K

3. Every polynomial p(X) = Xn + aXn−1 +
∑n−2

i=0 aiX
i ∈ O[X] with v(a) = 0 and

v(ai) > 0 for all i has a root in K.

It is clear from property (3) above that separably closed fields are henselian, but

many other fields are also henselian, including the p-adic numbers. It can be shown

that every valued field has a minimal algebraic extension that is henselian, and that

this extension is unique up to isomorphism. This extension, denoted (Kh, vh), is

called the henselization of (K, v), and is always an immediate extension of (K, v).

Example 1.2.1. (Valuations on the rationals) Given a rational number a = x
y

and

a prime p, we define vp(a) to be the unique integer n ∈ Z such that x
y

= pn x
′

y′
with

gcd(x′, p) = gcd(y′, p) = 1. The map vp : Q → Z is a valuation for each prime p,

called the p-adic valuation, and every non-trivial valuation on Q is a p-adic valuation

for some p. The p-adic numbers Qp are the completion of Q with respect to vp, and

Qp ∩Qalg is the henselization of Q with respect to vp.

Example 1.2.2. (Field of Hahn series) Let k be any field and Γ be any group, and

consider the set k[[tΓ]] of functions f : Γ→ k such that supp(f) = {γ ∈ Γ : f(γ) 6= 0}
is well-ordered. We think of elements of this set as power series and generally write

them as f =
∑

γ∈Γ aγt
γ, where aγ = f(γ). This set is a field with the usual operations

on power series, and the map v(f) = min(supp(f)) is a valuation on k[[tΓ]]. In fact,

k[[tΓ]] is henselian.

Example 1.2.3. (Natural valuation on an ordered field) Let (K,<) be an ordered

field, and let O be the convex hull of Q in K. It is easy to check that O is a valuation

ring on K, and that Kv is isomorphic to an ordered subfield of R.

5
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Definition 1.2.4. An angular component map is a function ac : K → Kv which

satisfies the following:

1. ac(0) = 0

2. For all x ∈ O×, ac(x) = x+ m

3. For all x, y ∈ K, ac(xy) = ac(x) ac(y).

On a Hahn field, the leading term map (the map that returns the first nonzero

coefficient of a generalized power series) is an angular component map. Not every val-

ued field admits an angular component map, but every valued field has an elementary

extension that does (Pas, 1990, Corollary 1.6).

When an angular component map exists, it can be used to determine whether

v(x+y) is greater than min{v(x), v(y)} or equal to it. Appendix A contains a precise

description of this relationship, along with several other fundamental facts about the

interaction between angular components and valuations.

Definition 1.2.5. A subgroup ∆ of an ordered abelian group Γ is said to be convex

if for every a ∈ ∆, the interval [−a, a] = {x ∈ Γ : −a ≤ x ≤ a} is a subset of ∆. The

convex subgroups of Γ are linearly ordered by inclusion, and this order type is called

the rank of Γ. In particular, if Γ has no proper non-trivial convex subgroups then Γ

has rank 1, and is called archimedean.

Given a valued group (K, v) and a convex subgroup ∆ ≤ vK, we can define

O∆ = {x ∈ K : v(x) ≥ δ for some δ ∈ ∆}. Clearly, O∆ ⊇ O is a valuation ring; it

defines a valuation w : K× → vK/∆, which is called a coarsening of v. Moreover, v

induces a valuation v : Kw → ∆ with v(x+O∆) = v(x).

Definition 1.2.6. Let (aρ)ρ<κ be a sequence of elements of K indexed by κ, a well-

ordered set with no maximum element. We say that (aρ) is pseudo-convergent if

v(aρ2 − aρ1) < v(aρ3 − aρ2)

for all ρ1 < ρ2 < ρ3. In this case, for all ρ < κ there exists γρ ∈ vK such that

v(aρ − aρ′) = γρ

for all ρ′ > ρ. We say that x ∈ K is a pseudo-limit of (aρ) if v(x− aρ) = γρ for all ρ.

6
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Note that pseudo-limits are not unique. The definitions of pseudo-convergence

and pseudo-limits are due to Kaplansky (1942). In that paper, Kaplansky also shows

that a valued field extension (L, v)/(K, v) is immediate if and only if every element

of LrK is the limit of a pseudo-convergent sequence in K (Theorem 1). Moreover,

he shows that if (L, v)/(K, v) is any field extension and x, x′ ∈ L are pseudo-limits of

the same pseudo-convergent sequence in K then (K(x), v)/(K, v) is immediate and

K(x) and K(x′) are isomorphic as valued fields (Theorems 2 and 3).

7
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1.3 Model Theory of Valued Fields

Valued fields can be viewed as first order structures in a number of ways: the two

that we use in this thesis are as a one-sorted structure in Ldiv, an expansion of

Lring = {0, 1,+,−,×} by a binary predicate for the relation v(x) ≤ v(y), or as a

three-sorted structure with sorts for K, vK, and Kv, and various maps between

them.

Definition 1.3.1. The Denef-Pas Language for valued fields is the three-sorted lan-

guage LPas with the following sorts and functions:

• The valued field sort VF has the language of rings Lring = {0, 1,+,−, ·}

• The value group sort VG has an expansion of the language of ordered abelian

groups LVG = {0,+,−, <,∞, . . .}

• The residue field sort RF has an expansion LRF of the language of rings

• The only maps between sorts are v : VF→ VG and ac : VF→ RF.

Calling this “the” Denef-Pas Language is slightly misleading, since the value group

and residue field languages are some expansion of the appropriate minimum languages.

When we consider a valued field (K, v) as an LPas-structure, we always assume that

the VF-sort is K, the VG-sort is vK, the RF-sort is Kv, v is the valuation map, and

ac is an angular component map.

We say that a theory T in LPas admits relative quantifier elimination if it elimi-

nates quantifiers ∀x and ∃x, where x is a variable in the valued field sort. In other

words, T has relative quantifier elimination if every formula φ(xVF, xVG, xRF) in T is

equivalent to one of the form

n∨
i=1

χi(v(f1(xVF), . . . , v(fm(xVF)), xVG) ∧ ρi(ac(f1(xVF)), . . . , ac(fm(xVF)), xRF)

where xVF, xVG, xRF are tuples of variables in the sorts VF,VG,RF, respectively, χi
are LVG-formulas, ρi are LRF formulas, and fj are polynomials with integer coef-

ficients. Note that there is no Lring-formula corresponding to the VF-sort; this is

because any such formula would be a boolean combination of statements of the form

g(xVF) = 0, which is equivalent to v(g(xVF)) = ∞, and so this part of the formula

can be moved into the LVG portion.

8
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Suppose T is a theory with relative quantifier elimination, and consider the special

case of a formula φ(x) with parameters in some model (K, v) such that x is a singleton

in the VF-sort. In this case, φ(x) is equivalent to a formula of the form

n∨
i=1

χi(v(f1(x), . . . , v(fm(x))) ∧ ρi(ac(f1(x)), . . . , ac(fm(x)))

where χi are LVG-formulas with parameters in vK, ρi are LRF formulas with param-

eters in Kv, and fj are polynomials with coefficients in K. This follows immediately

from the general form of relative quantifier elimination by substituting a parameter

for every variable except a singleton in the VF-sort.

Many theories of henselian valued fields have relative quantifier elimination, in-

cluding all theories of henselian valued fields of characteristic (0, 0) (Pas, 1989) and

algebraically maximal Kaplansky fields of characteristic (p, p) (Bélair, 1999). Of par-

ticular interest in Chapter 2, strongly dependent henselian valued fields also have

relative quantifier elimination (Halevi and Hasson, 2017a). In the case where T is

a theory of henselian valued fields of characteristic (0, 0), we may assume that the

polynomials fi are all linear by the cell decomposition of Pas (1989). In fact, we prove

in Section 2.1 that this is true in any characteristic.

A straightforward but significant consequence of relative quantifier elimination is

the Ax-Kochen-Ershov (AKE) principle:

Fact 1.3.2. Suppose (K, v) and (L,w) are both models of some theory T of henselian

valued fields in LPas that admits relative quantifier elimination. Then (K, v) ≡ (L,w)

if and only if vK ≡ wL (as LVG-structures) and Kv ≡ Lw (as LRF-structures).

9
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1.4 Inp-patterns and Dp-rank

Throughout the rest of this document, various definitions and properties of dp-rank

will be used. This section introduces the concept as well as several equivalent defini-

tions; Appendix B lists and proves many of the basic properties of the rank.

The notion of dp-rank was motivated by Shelah (2009), where he attempted to

find a property P which satisfied the following: every theory satisfying P should

be NIP, and a theory should be superstable if and only if it is stable and satisfies

P . While Shelah was unsuccessful in his attempt to find the property P , various

ideas have proved interesting in their own right, in particular the notion of strong

dependence, which depends on the notion of ict-patterns.

Definition 1.4.1. Let π(x) be a partial type in a theory T with x a tuple of variables.

A randomness pattern, also known as an ict (independent contradictory types) pattern,

of depth κ for π is a set of formulas {φα(x, yα) : α < κ} and a set of parameters

(bα,i)α<κ,i<ω such that |yα| = |bα,i| for all i < ω, and the following set of formulas is

consistent for each η : κ→ ω:

π(x) ∧ {φα(x, bα,η(α)) : α < κ} ∧ {¬φα(x, bα,i) : α < κ and η(α) 6= i < ω}.

The dp-rank of π(x) is the supremum of all cardinals κ such that there exists a ran-

domness pattern of depth κ for π(x). If no such κ exists, we say π(x) has unbounded

dp-rank, and write dp-rk(π) =∞.

Some comments on dp-rank:

• The dp-rank of π(x) measures the complexity of π: the greater the depth κ of

a randomness pattern, the closer π is to satisfying the independence property.

In fact, dp-rk(π) =∞ if and only if π(x) has the independence property.

• Given an element c in a model of T and a set of parameters A, we say that

dp-rk(c/A) = dp-rk(tp(c/A)). Note that the dp-rank of c depends on the choice

of parameters A.

• If π(x) contains only the formula x = x, where x is a singleton in the main sort

of T , then we often write dp-rk(T ) for dp-rk(π).

• If M is a structure, we often write dp-rk(M) for dp-rk(Th(M)).

10
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• We name some important possible values for the dp-rank of a theory:

1. If dp-rk(T ) = 1 then we say that T is dp-minimal

2. If dp-rk(T ) is finite then we say that T is dp-finite

3. If π(x) = {x = x} has a randomness pattern of every finite depth, but no

randomness pattern of depth ℵ0, then we say that T is strongly dependent.

• Note that if dp-rk(T ) = ℵ0 then either π(x) = {x = x} has a randomness

pattern of depth ℵ0 or T is strongly dependent. This odd situation actually

occurs whenever dp-rk(T ) is an infinite cardinal and there are several different

ways of handling it: see (Adler, 2007) for one. We will avoid confusion by

referring to the depth of an explicit randomness pattern (or inp-pattern, see

below) whenever the dp-rank could be ambiguous.

• When π(x) is a complete type, its dp-rank is always realized by a randomness

pattern. So in a strongly dependent theory, every complete type has finite

dp-rank.

• If T is a theory in a multi-sorted language (say LPas), there are several valid

interpretations of dp-rk(T ). In this thesis, we will always use dp-rk(T ) to mean

dp-rk({x = x}), where x is a variable in the dominant sort; in the case of LPas,

this is the valued field sort VF.

Strong dependence was one of Shelah’s candidates for the property P , but it was

shown in (Shelah, 2009, Claim 3.3(4)) that the class of superstable theories is strictly

contained in the class of strongly stable (that is, stable and strongly dependent)

theories.

Usvyatsov (2009) isolated the notion of dp-rank from Shelah’s work. The desire

was to find a notion of rank that could be used in the same way that weight is used

in stable theories, and again the attempt was partially successful. In Adler (2007), it

is shown that in stable theories, the weight of a complete type is equal to its dp-rank.

However, in Kaplan et al. (2013), the authors define a theory in which every type in

one variable has dp-rank 0 or 2, and so unlike the case with weight in stable theories,

problems cannot in general be reduced to types of rank 1. In Section 2.4, we use

properties of henselian valued fields to define theories for every n < ω such that each

type in one variable has dp-rank 0 or n, showing that this problem is more than just

an unfortunate occurrence in specially constructed theories.

11
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Dp-rank can also be defined using indiscernible sequences, rather than randomness

patterns:

Fact 1.4.2. (Kaplan et al., 2013, Proposition 2.6) The following are equivalent for a

partial type π(x) over a set A.

• There is a randomess pattern of depth κ for π(x)

• There is an element c that realizes π(x) and such that dp-rk(c/A) = κ

• There exists a set of κ infinite mutually indiscernible sequences over A and a

realization c of π(x) such that none of the sequences are indiscernible over Ac.

Moreover, the main results of Kaplan et al. (2013) show that dp-rank is subad-

ditive. They split the result into the finite case (Theorem 4.8) and the infinite case

(Theorem 4.11); note that the fact below is slightly stronger than what is in the

statement of the theorems, but follows directly from the proofs without adjustment.

Fact 1.4.3. Let M be any first order structure, x and y any tuples in M , and A any

subset of M . Then

dp-rk(x, y/A) ≤ dp-rk(x/Ay) + dp-rk(y/A).

A significant portion of the fundamental results about dp-rank are immediate

consequences of the two facts above. We include proofs of a number of them in

Appendix B, as they are often stated without proof in the literature.

If we add NIP as an assumption, we can also define dp-rank using a related, but

simpler notion in place of randomness patterns.

Definition 1.4.4. Let π(x) be a partial type. An inp (independent partition) pattern

in π(x) of depth κ consists of tuples {bα,i : α < κ, i < ω}, formulas {φα(x, yα) : α <

κ, |yα| = |bα,i|}, and kα < ω such that

• {φα(x, bα,i)}i<ω is kα-inconsistent for each α < κ

• π(x) ∪ {φα(x, bα,η(α))}α<κ is consistent for any η : κ→ ω.

The burden of π(x), written bdn(π), is the supremum of the depths of all inp-patterns

in π(x).

12
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In order to simplify the notation, we often write (φα(x, yα), bα, kα)α<κ for the above

inp-pattern. In this notation, bα represents the sequence (bα,i)i<ω.

As with dp-rank, we write bdn(T ) for the burden of {x = x}. When working

in an NIP theory, dp-rank is equal to burden (Adler, 2007), but it is usually easier

to find an inp-pattern than an ict-pattern. By strengthening the assumptions on

inp-patterns slightly, we can make it even easier to check whether a given array is an

inp-pattern.

Definition 1.4.5. Let π(x) be a partial type. An indiscernible inp-pattern in π(x) of

depth κ consists of tuples {bα,i : α < κ, i < ω} and formulas {φα(x, yα) : α < κ, |yα| =
|bα,i|} such that

• The sequences (bα,i)i<ω are mutually indiscernible

• {φα(x, bα,i)}i<ω is inconsistent for each α < κ

• π(x) ∪ {φα(x, bα,0)}α<κ is consistent.

As with inp-patterns, we often condense the notation for the above indiscernible

inp-pattern to (φα(x, yα), bα)α<κ.

It follows immediately from the definition of indiscernibility that every indis-

cernible inp-pattern is an inp-pattern. By a common argument using Ramsey theory

and compactness, any inp-pattern can be used to generate an indiscernible inp-pattern

of the same depth; see Lemma 5.1.3 of Tent and Ziegler (2012) for a more detailed

explanation. Thus, the burden of a type is equal to the supremum of the depths of all

inp-patterns in π(x). We could similarly define a notion of indiscernible randomness

pattern, but it is less useful since the added assumption of indiscernibility does not

simplify the array that needs to be checked for consistency.

13
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1.5 Examples of Dp-finite Fields

Before discussing the structure of dp-finite fields, it seems helpful to give some exam-

ples of what they look like. The majority of the concrete examples are dp-minimal,

and were classified in Johnson (2015). They include algebraically closed fields, real

closed fields, and finite extensions of the p-adics. Moreover, these fields remain dp-

minimal when expanded by an appropriate valuation.

For dp-finite fields that are not dp-minimal, one option is to consider expansions

of the above fields. For any valuation v on C, the theory of (C, v) as an LPas-structure

has dp-rank at least 2, witnessed by the formulas

v(z) = y and ac(z) = x

and any non-constant sequences of parameters bi ∈ vC (for y) and ci ∈ Cv (for x). We

will show in Section 2.2 that the dp-rank of this structure is actually equal to 2. Note

that in the pure valued field language Ldiv, the structure (C, v) is dp-minimal, and so

the increase in dp-rank comes from the angular component map, not the valuation.

Another way to expand the complex numbers to a structure of dp-rank 2 is to add

the projections onto the real and imaginary parts. More precisely, consider C in the

language {0, 1,+, ·, π0, π1} where π0(z) = Re(z) and π1(z) = Im(z). This structure

clearly has dp-rank at least 2, witnessed by the formulas

π0(z) = x and π1(z) = y

and any non-constant sequences of parameters bi, ci ∈ R for x and y. Moreover, this

structure has dp-rank at most 2, since it is interdefinable with R2, with the structure

induced from the Lring-structure on R.

This example leads to generalizations of dp-rank 4 and 8: the quaternions and

octonions with projections onto the R-vector spaces generated by the standard basis

elements. These examples are of course not fields, as quaternion multiplication is

not commutative and octonion multiplication is neither commutative nor associative.

They do demonstrate the potential lack of tameness in NIP theories, even in finite

dp-rank. For contrast, consider the recent result of Halevi and Palaćın:

Fact 1.5.1. (Halevi and Palaćın, 2017, Proposition 7.2) Every infinite stable division

ring of finite dp-rank is an algebraically closed field.

When we add the assumption of stability, the possibility of skew-fields with finite

14
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dp-rank is removed, but the examples of the quaternions and octonions show that

these are indeed possible in the general dp-finite case.

In this section, all of our examples of fields have been expansions of dp-minimal

structures. But in order to find a classification of dp-finite fields, we should also

consider examples of pure fields that are dp-finite but not dp-minimal. Combining

results of Chernikov (2014) and Halevi and Hasson (2017b), we know that if Γ is an

ordered abelian group with finite spines then the Hahn series field C[[tΓ]] is dp-finite,

but we do not have a good bound on the dp-rank.

In Section 2.2, we improve the bound on the dp-rank of henselian valued fields of

residue characteristic 0 developed by Chernikov (2014), and in Section 2.4, we will

give explicit constructions of fields of dp-rank d for every d ∈ N.

In a recent pre-print, Halevi et al. (2018) suggest a conjectural classification of

strongly dependent fields that is equivalent to the conjecture studied in Chapter 3. If

the conjecture is true, then their classification would imply that all strongly dependent

valued fields are dp-finite.

15



Chapter 2

Henselian Valued Fields

As noted in Section 1.5, all of the currently known examples of dp-finite fields fall

into one of two categories: expansions of dp-minimal fields, and fields elementarily

equivalent to Hahn series fields k[[tΓ]], where k is dp-minimal and Γ is dp-finite. This

chapter focuses on the second source of examples, as they provide more insight on

how to extend Johnson’s algebraic classification of dp-minimal fields (Johnson, 2016).

In the first two sections, we improve the bound on the dp-rank of k[[tΓ]] given by

Chernikov (2014). In the third, we explore the strong relationship between the dp-

rank and the topology of definable sets in dp-finite valued fields, and give a criterion

for henselianity in terms of dp-rank. Finally, we combine the results of these sections

to produce examples of valued fields with dp-rank d for every d ∈ N. These examples

also have the property that every definable set in one variable either has dp-rank 0

or dp-rank d, a property that was previously not known to occur in any theories of

algebraic structures.
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2.1 Relative Quantifier Elimination

In Section 2.2, we generalize and improve a result of Chernikov (2014) relating the

burden of certain valued fields to the burdens of their value groups and residue fields.

In order to obtain the generalization, we need a stronger version of relative quantifier

elimination than the one given in Section 1.3.

We begin with a classification of 1-types over any model in LPas, due to Delon

(1981). Consider an elementary extension K ≺M of LPas-structures, fix x ∈M rK,

and define

IK(x) = {γ ∈ vK : ∃k ∈ K(γ = v(x− k))}.

Then tp(x/K) belongs to one of three families:

1. IK(x) = {v(x − k) : k ∈ K} and does not have a maximum element. In this

case, we say that tp(x/K) is immediate.

2. IK(x) = {v(x− k) : k ∈ K} and has a maximum element. In this case, we say

that tp(x/K) is residual.

3. IK(x) 6= {v(x− k) : k ∈ K}. In this case, we say that tp(x/K) is valuational.

In the first two cases, {v(x − k) : k ∈ K} is a subset of vK. In the third, there is a

single element γ0 ∈ {v(x− k) : k ∈ K}r vK, which is a least upper bound for IK(x).

The stronger form of quantifier elimination we need is a consequence of the fol-

lowing theorem:

Theorem 2.1.1. Suppose K is a henselian valued field in LPas such that Th(K)

admits relative quantifier elimination. Let M be a monster model of Th(K) and let

x ∈M rK be an element of the valued field sort.

1. If tp(x/K) is immediate, let (aρ, γρ) be a sequence indexed by a well-ordered set

such that aρ ∈ K, γρ = v(x−aρ), and (γρ) is cofinal in IK(x). Then tp(x/K) is

completely determined by (aρ, γρ) and by the set of formulas {v(x− aρ) = γρ}.

2. If tp(x/K) is residual, then it is completely determined by some constants a ∈ K
and γ ∈ vK such that v(x − a) = γ and ac(x − a) /∈ Kv, by the formula

v(x− a) = γ, and by the type tp(ac(x− a)/Kv).

3. If tp(x/K) is valuational, then it is completely determined by some constant

a ∈ K such that v(x − a) /∈ vK, by the type tp(v(x − a)/vK), and by the type

tp(ac(x− a)/Kv).
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In equicharacteristic 0, this theorem was originally proved by Delon (1981); a more

detailed proof can be found in Bélair and Bousquet (2010). Before we can prove the

result for any characteristic, we state the following technical lemma.

Lemma 2.1.2. Suppose K is a henselian valued field in LPas such that Th(K) admits

relative quantifier elimination. Let M be a monster model of Th(K) and suppose

there are y, y′ ∈M such that the following exist:

• A valued field isomorphism ϕ : K(y)→ K(y′) with ϕ|K = idK and ϕ(y) = y′

• An LVG-automorphism α : vM → vM with α|vK = idvK and α(v(y)) = v(y′)

• An LRF-automorphism β : Mv →Mv with β|Kv = idKv and β(ac(y)) = ac(y′)

Assume moreover that vK(y) is generated by vK ∪ {v(y)}, that vK(y′) is generated

by vK ∪ {v(y′)}, and that either

• ac(y) and ac(y′) are both transcendental over Kv, or

• v(yn) /∈ vK and v((y′)n) /∈ vK for any nonzero n ∈ Z.

Then there exists an LPas-automorphism σ of M with σ|K(y) = ϕ; in particular, this

means tp(y/K) = tp(y′/K).

Proof. First, note that since ϕ is a valued field automorphism, by choice of α we have

α(v(x)) = v(ϕ(x)) for all x ∈ K(y). We claim that we also have β(ac(x)) = ac(ϕ(x)).

To prove this, we will first show that for every polynomial p(X) ∈ K[X], there exists

a polynomial p(X) ∈ Kv[X] such that ac(p(y)) = p(ac(y)). Note that p(X) will not

in general be the residue polynomial of p(X), but a separate polynomial as described

below.

Suppose v(yn) 6= v(z) for any z ∈ K and n ∈ Z and fix a polynomial p(X). If

two terms of p(y), say z1y
n1 and z2y

n2 have the same valuation, then we must have

v(z1/z2) = v(yn2−n1), which is impossible. Thus, p(y) must have a term zyn of least

valuation, and so ac(p(y)) = ac(z) ac(y)n by Lemma A.2(1).

On the other hand, suppose ac(y) is transcendental over K. In this case, we

proceed by induction on the degree of p. If deg(p) = 0 then p(X) = z for some z ∈ K
and ac(p(y)) = ac(z). If deg(p) = n > 0, then we can write p(X) = z + Xq(X) for

some z ∈ K and some polynomial q(X) of degree less than n. By induction, ac(q(y)) =

q(ac(y)) for some polynomial q. Since ac(y) is transcendental over K, we must have
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ac(z) 6= ac(yq(y)) = ac(y)q(ac(y)), and so by Lemma A.2, ac(q(y)) must be one of

ac(z), ac(y)q(ac(y)), or ac(z) + ac(y)q(ac(y)), depending on the relationship between

v(z) and v(yq(y)). In any case, ac(p(y)) is a polynomial in Kv[ac(y)], completing the

induction.

Note that the polynomial p(y) found above depended only on the valuations of

the terms of p(y). Because α(v(x)) = v(ϕ(x)) for all x ∈ K(y), an identical argument

shows that ac(p(y′)) = p(ac(y′)). Then, given any polynomial p(y) ∈ K[y], we have

β(ac(p(y))) = β(p(ac(y))) = p(β(ac(y))) = p(ac(y′)) = ac(p(y′)) = ac(ϕ(p(y)))

by choice of β. Since every element x ∈ K(y) can be written as a rational function

in y, say x = x1/x2, we can easily extend this result to the entire field:

β(ac(x)) = β

(
ac

(
x1

x2

))
=
β(ac(x1))

β(ac(x2))
=

ac(ϕ(x1))

ac(ϕ(x2))
= ac

(
ϕ

(
x1

x2

))
= ac(ϕ(x)).

Finally, by the above observations, relative quantifier elimination, and the fact that

α and β are elementary maps, it follows that ϕ : K(y) → M is a partial elementary

map, and hence can be extended to an automorphism σ of M.

Proof. (of Theorem 2.1.1)

Case 1: Suppose tp(x/K) is immediate. Fix any well-ordered cofinal sequence (γρ)ρ<κ
of IK(x) and any sequence (aρ)ρ<κ such that v(x−aρ) = γρ. We claim that the set of

pairs (aρ, γρ) and the set of formulas {v(x−aρ) = γρ} completely determines tp(x/K).

Note that by choice of aρ and γρ, for ρ1 < ρ2 < κ, we have

v(aρ2−aρ1) = v((aρ2−x)+(x−aρ1)) = min{v(aρ2−x), v(x−aρ1)} = v(x−aρ1) = γρ1

since γρ1 < γρ2 . Thus, for ρ1 < ρ2 < ρ3 < κ, we have

v(aρ2 − aρ1) = γρ1 < γρ2 < v(aρ3 − aρ2)

and so (aρ)ρ<κ is a pseudo-convergent sequence. Moreover, since v(x − aρ) = γρ for

all ρ < κ, x is a pseudo-limit of (aρ)ρ<κ.

Suppose x′ ∈ M is another element of immediate type such that v(x′ − aρ) = γρ
for all ρ < κ. Then x′ is also a pseudo-limit of (aρ)ρ<κ, and so by Theorems 2 and 3
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of Kaplansky (1942), K(x) is an immediate extension of K and there exists a valued

field isomorphism ϕ : K(x)→ K(x′) fixing K.

Since K(x) is an immediate extension, for any y ∈ K(x), there must exist b ∈ K
with ac(y) = ac(b). Then

ac(ϕ(y)) = ac(ϕ(b)) = ac(b) = ac(y)

so by relative quantifier elimination, ϕ is a partial elementary map and can be ex-

tended to an automorphism σ of M. Because σ(x) = ϕ(x) = x′, this automorphism

demonstrates that tp(x/K) = tp(x′/K) as desired.

Case 2: Suppose tp(x/K) is residual; we must first show that there exists a ∈ K and

γ ∈ vK as described in the theorem. Let γ ∈ vK be the largest element of IK(x),

and fix a ∈ K such that v(x− a) = γ. If ac(x− a) ∈ Kv then there must exist some

b ∈ K with ac(x− a) = ac(b) and v(b) = γ by Lemma A.1. But then

v(x− (a+ b)) = v((x− a)− b) > v(x− a) = γ,

by Lemma A.2(2), contradicting the maximality of γ. Thus, ac(x− a) /∈ Kv.

Now, suppose x′ ∈M is another element of residual type such that ac(x′−a) = γ,

ac(x′ − a) /∈ Kv, and tp(ac(x− a)/Kv) = tp(ac(x′ − a)/Kv). We wish to show that

tp(x/K) = tp(x′/K), which we will do by finding an LPas-automorphism ofM, fixing

K, which maps x to x′. Let y = x− a and y′ = x′− a; finding such a map that sends

y to y′ is equivalent.

Since K ≺ M is an elementary extension, K is algebraically closed in M , and

so y and y′ must both be transcendental over K. Then there is a field isomorphism

ϕ : K(y) → K(y′) that fixes K and sends y to y′. Moreover, ϕ is a valued field

isomorphism since v(y) = γ = v(y′). Setting α : vM → vM to be the identity

automorphism, we even have α(v(y)) = v(y′).

Since tp(ac(x − a)/K) = tp(ac(x′ − a)/K), there is an LRF-automorphism β :

Mv →Mv with β|Kv = idKv and β(ac(y)) = ac(y′). Finally, ac(y) and ac(y′) must be

transcendental over Kv since Kv ≺Mv. Then by Lemma 2.1.2, tp(y/K) = tp(y′/K),

which means tp(x/K) = tp(x′/K).

Case 3: Suppose tp(x/K) is valuational and fix any a ∈ K with v(x− a) /∈ vK.

Suppose x′ ∈M is another element of valuational type such that v(x′ − a) /∈ vK,

tp(v(x−a)/vK) = tp(v(x′−a)/vK), and tp(ac(x−a)/Kv) = tp(ac(x′−a)/Kv). As
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in Case 2, it suffices to show that tp(y/K) = tp(y′/K) for y = x− a and y′ = x′ − a.

Again following Case 2, K ≺ M, which means y and y′ are both transcendental

over K and there exists a field isomorphism ϕ : K(y) → K(y′). Moreover, we have

vK(y) = vK⊕Zv(y) and vK(y′) = vK⊕Zv(y′) since vK ≺ vM and v(y), v(y′) /∈ vK;

in particular, vK(y) is generated by vK∪{y} and v(yn) = nv(y) /∈ vK for any n ∈ Z,

and similarly for y′. It then follows from Corollary 2.2.3 of Engler and Prestel (2005)

that ϕ is a valued field isomorphism.

Finally, by choice of x′, there exists an LVG-automorphism α of vM that fixes

vK and such that α(v(y)) = v(y′). Similarly, there exists an LRF-automorphism

β of Mv that fixes Kv and such that β(ac(y)) = ac(y′). Thus, by Lemma 2.1.2,

tp(y/K) = tp(y′/K), so tp(x/K) = tp(x′/K).

As a consequence of the above theorem, we can improve the equivalence of formulas

provided by relative quantifier elimination.

Proposition 2.1.3. Suppose K is a henselian valued field in LPas such that Th(K)

admits relative quantifier elimination. Let φ(x) be a formula in one valued field sort

variable with parameters in K. Then φ(x) is equivalent to a finite disjunction of

formulas of the form

χ
(
v(x− c1), . . . , v(x− cn), bVG

)
∧ ρ
(
ac(x− c1), . . . , ac(x− cn), bRF

)
where χ(x, y) is an LVG-formula, ρ(x, y) is an LRF-formula, c1, . . . , cn are singletons

in the VF-sort, bVF is a tuple in the VG-sort, and bRF is a tuple in the RF-sort.

Proof. First, note that all of the formulas occurring in the conclusion of Theorem

2.1.1 have the desired form:

• (If x is immediate) A fomula of the form v(x− aρ) = γρ.

• (If x is residual) An element of tp(ac(x − a)/Kv), and hence of the form

ρ
(
ac(x− c), cRF

)
.

• (If x is valuational) An element of tp(v(x− a), vK) or tp(ac(x− a), Kv), both

of which are clearly in the desired form.

We will refer to these formulas as good formulas for the duration of this proof. Note

that by a simple rearrangement, the conjunction of a finite set of good formulas is

itself a good formula.
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Let {pα : α < κ} be the set of complete K-types containing φ(x). By the theorem,

for each α < κ there is a partial type πα(x) consisting only of good formulas such

that πα ` pα; in particular, πα ` φ. By compactness, this implication only requires

a finite subset of πα(x); let ψα(x) be the conjuction of this finite set, and note that

ψα(x) is a good formula by the observation above.

Ranging over α, we have φ `
∨
α<κ ψα(x). Of course, this statement is not

first-order, due to the infinite disjunction. Let Σ(x) = {¬ψα : α < κ}. Then

by contrapositive, Σ ` ¬φ, so again by compactness, there must be a finite subset

Σ0 = {¬ψα1 , . . . ,¬ψαn} such that Σ0 ` ¬φ. Then

K |=

(
n∧
i=1

¬ψαi
(x)

)
→ ¬φ(x)

so by contrapositive again

K |= φ(x)→
n∨
i=1

ψαi
(x).

But we already know that ψα(x)→ φ(x) for all α < κ, and so

K |= φ(x)↔
n∨
i=1

ψαi
(x).

Since each ψα(x) is a good formula, this shows that φ(x) is equivalent to a finite

disjunction of good formulas, as desired.
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2.2 Calculating Dp-rank

Throughout this section, we assume that K = (K, vK,Kv) is a sufficiently satu-

rated model of some theory T of henselian valued fields in LPas that admits relative

quantifier elimination. For example T might be strongly dependent or a theory of

fields of characteristic (0, 0). Chernikov (2014) gives a bound for bdn(T ) in terms of

bdn(TVG) and bdn(TRF) in the characteristic (0, 0) case, but the proof in that paper

uses a Ramsey theory argument, and so the bound is very imprecise. The goal of

this section is to improve Chernikov’s bound and extend the result to also apply to

theories of any characteristic. First, we repeat two results from that paper that we

will use throughout the section.

Fact 2.2.1. (Chernikov, 2014, Lemma 7.1)

1. If (φα,0(x, yα,0)∨φα1(x, yα,1), aα, kα)α<κ is an (indiscernible) inp-pattern, then(
φα,f(α)(x, yα,f(α)), aα, kα

)
α<κ

is also an (indiscernible) inp-pattern for some f : κ→ {0, 1}.

2. Let (φα(x, yα), aα, kα)α<κ be an (indiscernible) inp-pattern and assume that

φα(x, aα,0)↔ ψα(x, bα,0)

for all α < κ and some (mutually indiscernible) (bα)α<κ. Then there is an

(indiscernible) inp-pattern of the form (ψα(x, zα), bα, kα)α<κ.

Fact 2.2.2. (Chernikov, 2014, Lemma 7.9) Let (ci)i∈I be an indiscernible sequence

of singletons. Consider the function (i, j) 7→ v(cj − ci) with i < j. It satisfies one of

the following:

1. It is strictly increasing depending only on i (so (ci)i∈I is pseudo-convegent)

2. It is strictly decreasing depending only on j (so (ci)i∈I taken in the reverse

direction is pseudo-convergent)

3. It is constant (in this case (ci)i∈I is referred to as a “fan”)

Because there are definable surjections v : K× � vK and ac : K � Kv, we

only need to consider inp-patterns where the variable is in the VF-sort. Combining
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Proposition 2.1.3 and Fact 2.2.1, we can already focus only on inp-patterns with very

tame formulas. In Lemma 2.2.4 below, we follow another argument of Chernikov’s to

find an equivalent inp-pattern such that the VF-sort component of each parameter

sequence is a singleton.

Throughout this section, we will write (φα(x, yα, zα), (bα, cα))α<κ for indiscernible

inp-patterns, where for each α < κ

• x is a singleton in the VF-sort,

• yα is a tuple of VG-sort and RF-sort variables (we will indicate these subtuples

as yVG
α and yRF

α whenever it is useful),

• bα = (bα,i)i<ω is a sequence of VG-sort and RF-sort parameters corresponding

to yα (we will use bVG
α,i and bRF

α,i to indicate the appropriate subtuples),

• zα is a tuple of VF-sort variables, and

• cα = (cα,i)i<ω is a sequence of VF-sort parameters corresonding to zα.

Lemma 2.2.3. Assume T and K are as above, and let (φα(x, yα, zα), (aα, cα))α<κ be

an indiscernible inp-pattern with x a singleton in the valued field sort. Fix a realization

a of {φ(x, bα,0, cα,0) : α < κ}. Suppose that for each α < κ, there exists a formula

ψα(x, yα, zα, z
′
α) and a sequence of VF-sort parameters c′α = (c′α,i)i<ω such that:

• The array {(bα, cα, c′α) : α < κ} is mutually indiscernible,

• K |= ψ(a, bα,0, cα,0, c
′
α,0), and

• Ψα = {ψ(x, bα,i, cα,i, c
′
α,i) : i < ω} is inconsistent.

Assume moreover that for each α < κ there exist finitely many terms {tiα : 1 ≤ i < nα}
occuring in the VG-sort and RF-sort components of ψα(x, yα, zα, z

′
α) such that

• x does not appear in any tiα and

• every occurrence in ψα of a variable from the tuple zα occurs in some tiα.

Then for each α < κ there exists a tuple of VG-sort and RF-sort variables y′α, a pa-

rameter sequence b′α, and a formula φ′α(x, y′α, z
′
α) such that ((φ′α(x, y′α, z

′
α), (b′α, c

′
α))α<κ

is an indiscernible inp-pattern of the same depth κ.
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Proof. Fix α < κ and let w1
α, . . . , w

n
α be new variable symbols. For each j ≤ n and

i < ω, let djα,i = tjα(bα,i, cα,i, c
′
α,i). Let y′α = yαw

1
α . . . w

n
α, and let b′α,i = bα,id

1
α,i . . . d

n
α,i

such that the variables wjα correspond to the parameters djα,i.

Let φ′α(x, y′α, z
′
α) be the same formula as ψ(x, yα, zα, z

′
α), but with the new variables

w1
α, . . . , w

n
α replacing each occurrence of the terms t1α, . . . , t

n
α. By assumption, zα no

longer occurs in the formula after making this substitution, and so we can remove it

from the list of variables.

Apply the above process to each α < κ, and note that

K |= φ′α(x, b′α,i, c
′
α,i)↔ ψα(x, bα,i, cα,i, c

′
α,i)

for each α < κ and i < ω. Since each coordinate of b′α,i was built from a term including

only parameters from (bα,i, cα,i, c
′
α,i), the array {(b′α, c′α) : α < κ} is mutually indis-

cernible. Then applying Fact 2.2.1(2), ((φ′α(x, y′α, z
′
α), (b′α, c

′
α))α<κ is an indiscernible

inp-pattern of depth κ, as desired.

Proposition 2.2.4. Assume T and K are as above, and let (φα(x, yα, zα), (bα, cα))α<κ
be an indiscernible inp-pattern with x a singleton in the valued field sort. Then we

can construct a new inp-pattern (φ′α(x, y′α, z
′
α), (b′α, c

′
α))α<κ of the same depth, such

that each formula φ′α has the form

χα
(
v(x− z′α), (y′α)VG

)
∧ ρα

(
ac(x− z′α), (y′α)RF

)
and such that:

• χα and ρα are formulas in LVG and LRF, respectively, and

• z′α is a singleton in the valued field sort.

Proof. We wish to apply Lemma 2.2.3. Fix some α < κ. By Proposition 2.1.3 and

Fact 2.2.1, we may assume that φα(x, yα, zα) has the form

χα
(
v(x− z1

α), . . . , v(x− znα), yVG
α

)
∧ ρα

(
ac(x− z1

α), . . . , ac(x− znα), yRF
α

)
where zα = (z1

α, . . . , z
n
α) for some n ∈ N.

If n = 1 then we may take ψα(x, yα, zα, z
′
α) = φα(x, yα, z

′
α) (zα will be an unused

variable), c′α = cα, and the set of terms tjα to be the empty set. Otherwise, let θ = φα
and fix a realization a of {φα(x, bα,0, cα,0) : α < κ}.
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Let I be the set of indices i such that either v(x − ziα) or ac(x − ziα) appears

in θ. We proceed recursively, at each step replacing θ with a new formula θ′ such

that |Iθ′| = |Iθ| − 1. Set r = min(I) and s = max(I); we break into cases based

on the relationships between a, crα,0, and csα,0, following the proof of Lemma 7.12 of

Chernikov (2014).

Case 1: If v(a− crα,0) < v(csα,0− crα,0), then v(a− crα,0) = v(a− csα,0) and ac(a− crα,0) =

ac(a− csα,0) by Lemma A.3. Take θ′(x, yα, zα) to be the conjunction of

• θ with each occurrence of v(x − zsα) replaced by v(x − zrα) and each occurence

of ac(x− zsα) replaced by ac(x− zrα)

• The formula v(x− zrα) < v(zsα − zrα).

Case 2: If v(a−crα,0) > v(csα,0−crα,0) then v(a−csα,0) = v(csα,0−crα,0) and ac(a−csα,0) =

ac(csα,0 − crα,0). Take θ′(x, yα, zα) to be the conjunction of

• θ with each occurrence of v(x− zsα) replaced by v(zsα − zrα) and each occurence

of ac(x− zsα) replaced by ac(zsα − zrα)

• The formula v(x− zrα) > v(zsα − zrα).

Case 3: If v(a− csα,0) < v(csα,0 − crα,0), proceed symmetrically to case 1.

Case 4: If v(a− csα0
) > v(csα,0 − crα,0), proceed symmetrically to case 2.

Case 5: If v(a − c1
α,0) = v(a − cnα,0) = v(cnα,0 − c1

α,0) then by Lemma A.3 again, we

must have ac(a − cnα,0) = ac(a − c1
α,0) − ac(cnα,0 − c1

α,0). Take θ′(x, yα, zα) to be the

conjunction of

• θ with each occurrence of v(x− zsα) replaced by v(zsα − zrα) and each occurence

of ac(x− zsα) replaced by ac(zsα − zrα)

• The formula v(x− zrα) = v(zsα − zrα) ∧ ac(x− zrα) 6= ac(zsα − zrα).

Note that in each case, we have K |= θ′(a, bα,0, cα,0) by construction, and that |Iθ′| =
|Iθ| − 1. If |Iθ′ | = 1, let r be the single index in Iθ′ , set c′α = (crα,i)i<ω, and set

ψ(x, yα, zα, z
′
α) to be θ′ with each occurrence of v(x− zrα) replaced by v(x− z′α) and

each occurrence of ac(x− zrα) replaced by ac(x− z′α). Otherwise, repeat the process

recursively with θ′ in place of θ.
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Since c′α is a subtuple of cα, the array {(bα, cα, c′α) : α < κ} is mutually indis-

cernible. By choice of θ′ and ψ, any realization of Ψα = {ψ(x, bα,i, cα,i, c
′
α,i) : i < ω}

would also be a realization of {φ(x, bα,i, cα,i : i < ω}, and so Ψα is inconsistent. Fi-

nally, for the set of terms take {v(ziα−zjα) : 1 ≤ i, j ≤ n}∪{ac(ziα−zjα) : 1 ≤ i, j ≤ n}.
We can then apply Lemma 2.2.3 to obtain ((φ′α(x, y′α, z

′
α), (b′α, c

′
α))α<κ, a new in-

discernible inp-pattern of depth κ. By choice of ψα and the fact that z′α is a singleton

for all α < κ, the formulas in the new inp-pattern have the desired form.

We have just shown that we can replace any inp-pattern with one in which there

is only one VF-sort parameter in each row. In the next two propositions, we show

that we can find a new inp-pattern in which the VF-sort parameter is constant within

each row, and then one in which there is no VF-sort paramter in any row.

Proposition 2.2.5. Assume T and K are as above, and let (φα(x, yα, zα), (bα, cα))α<κ
be an indiscernible inp-pattern with x a singleton in the valued field sort. Then we

can construct a new indiscernible inp-pattern (φ′α(x, y′α, z
′
α), (b′α, c

′
α))α<κ of the same

depth, such that for each α < κ,

• the formula φ′α has the form described in Lemma 2.2.4, and

• the VF-sort sequence c′α = (c′α,i)i<ω is a constant sequence.

Proof. First, by applying Proposition 2.2.4, we may assume that each φα has the form

described in that proposition. We again wish to apply Lemma 2.2.3. Fix α < κ, and

write bα = (bi)i<ω and cα = (ci)i<ω. From the application of Proposition 2.2.4, (ci)i<ω
is a sequence of singletons.

Let c∞ be an element such that (c0, c1, c2, . . . , c∞) is indiscernible (if (ci)i<ω is a

reverse pseudo-convergent sequence, instead take c∞ so that (c∞, c0, c1, . . .) is indis-

cernible) and such that everything remains mutually indiscernible; such an element

exists by compactness. Take c′α = (c′i)i<ω to be the constant sequence c′i = c∞ for all

i < ω.

Let z′α be a new variable symbol corresponding to c′α. To find the formula

ψα(x, yα, zα, z
′
α) needed for Lemma 2.2.3, we split into cases based on the relation-

ship between v(a − c∞) and v(c0 − c∞). As in the lemma, we fix a realization a of

{φα(x, bα,0, cα,0 : α < κ} and write Ψα(x) = {ψα(x, bi, ci, c
′
i) : i < ω}. In each case

below, we will clearly have K |= ψα(a, b0, c0, c
′
0) by choice of ψα.
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Case 1: If v(a−c∞) < v(c0−c∞) then v(a−c0) = v(a−c∞) and ac(a−c0) = ac(a−b∞)

by Lemma A.3. Consider the following formula ψα(x, yα, zα, z
′
α):

v(x− z′α) < v(zα − z′α) ∧ χ
(
v(x− z′α), yVG

α

)
∧ ρ
(

ac(x− z′α), yRF
α

)
.

Note that any realization of Ψα(x) would also be a realization of {φα(x, bi, ci) : i < ω},
so Ψα(x) is inconsistent.

Case 2: If v(a − c∞) > v(c0 − c∞) then by Lemma A.3, v(a − c0) = v(c∞ − c0) and

ac(a − c0) = ac(c∞ − c0), so K |= φ(c∞, b0, c0). Then by indiscernibility, c∞ realizes

{φα(x, bi, ci) : i < ω}, contradicting the inconsistency of that row of the inp-pattern.

Thus, case 2 cannot occur.

Case 3: Assume v(a− c∞) = v(c0 − c∞). In this case, we need to split into subcases

based on the form of the sequence (ci)i<ω and the relationship between ac(a − c∞)

and ac(c0 − c∞).

Case 3a: If ac(a − c∞) 6= ac(c0 − c∞) then v(a − c0) = v(a − c∞) = v(c0 − c∞), so

ac(a− c0) = ac(a− c∞)− ac(c0 − c∞). Consider the formula ψα(x, yα, zα, z
′
α):

v(x− z′α) = v(zα − z′α) ∧ ac(x− z′α) 6= ac(zα − z′α)

∧χ
(
v(x− z′α), yVG

α

)
∧ ρ
(

ac(x− z′α)− ac(zα − z′α), yRF
α

)
.

As in Case 1, note that any realization of Ψα(x) would also be a realization of

{φα(x, bi, ci) : i < ω}, so Ψα(x) is inconsistent.

Case 3b: If (ci)i<ω or its reversal is pseudo-convergent, let ψα(x, yα, zα, z
′
α) be the

formula v(x − z′α) = v(zα − z′α). It is easy to check that c∞ is a pseudo-limit of the

pseudo-convergent sequence, and so v(ci − c∞) 6= v(cj − c∞) whenever i 6= j. Thus,

for any d ∈ K, it is impossible for v(d − c∞) to be equal to both v(ci − c∞) and

v(cj − c∞); in other words, Ψ(x) is inconsistent.

Case 3c: Finally, assume (ci)i<ω is a fan and ac(a − c∞) = ac(c0 − c∞). Let

ψα(x, yα, zα, z
′
α) be the following formula:

v(x− z′α) = v(zα − z′α) ∧ ac(x− z′α) = ac(zα − z′α).
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Since c∞ will be an element of the fan, ac(ci− c∞) 6= ac(cj− c∞) for any i 6= j. Thus,

for any d ∈ K, it is impossible for ac(d − c∞) to be equal to both ac(ci − c∞) and

ac(cj − c∞), which means Ψα(x) is inconsistent.

As noted above, Case 2 cannot occur. In each other case, we have shown that Ψα(x)

is inconsistent and chosen ψα(x, yα, zα, z
′
α) so that K |= ψα(a, b0, c0, c

′
0).

Note that (bi, ci)i<ω is indiscernible over c∞: for any formula θ,

θ(ci1 , . . . , cin , c∞)↔ θ(cj1 , . . . , cjn , c∞),

since∞ is greater than each ik and jk (in the reverse pseudo-convergent case,∞ is less

than each ik and jk). Thus, the array {(bα, cα, c′α) : α < κ} is mutually indiscernible.

Finally, the terms t1α = v(zα− z′α) and t2α = ac(zα− z′α) satisfy the remaining con-

ditions of Lemma 2.2.3, and we obtain a new inp-pattern ((φ′α(x, y′α, z
′
α), (b′α, c

′
α))α<κ.

Note that the VF-sort parameter sequence of each row of the new inp-pattern is c′α,

a constant sequence. Moreover, each ψα has the form described in Proposition 2.2.4

by construction, and φ′α inherits this form since it is obtained from ψα through a

substitution of terms. Thus, the new inp-pattern has the desired form.

Proposition 2.2.6. Assume T and K are as above, and let (φα(x, yα, zα), (bα, cα))α<κ
be an indiscernible inp-pattern with x a singleton in the valued field sort. Then we

can construct a new indiscernible inp-pattern (φ′α(x, y′α), (b′α))α<κ of the same depth,

such that for each α < κ,

• the formula φ′α has the form described in Lemma 2.2.4, and

• y′α has no VF-sort component.

Proof. From the previous propositions, we may assume each φα(x, yα) has the form

χα
(
v(x− zα), yVG

α

)
∧ ρα

(
ac(x− zα), yRF

α

)
and that for each α < κ, cα is a constant sequence. Throughout this proof, we will

identify a constant sequence with its value. We will again apply Lemma 2.2.3. Let a

be some realization of {φα(x, bα,0, cα) : α < κ}.
For any α, β < κ such that v(a− cα) < v(a− cβ), we have v(a− cα) = v(cβ − cα)

and ac(a− cα) = ac(cβ− cα) by Lemma A.3. Then, since K |= φα(a, bα,0, cα), we have

K |= φα(cβ, bα,0, cα). But then by mutual indiscernibility, K |= φα(cβ, bα,i, cα) for all

i < ω, contradicting the inconsistency of the row α.
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Thus, v(a− cα) is constant for all α < κ; in particular, it is equal to v(a− c0). For

each α, let c′α = cα − c0, and let a′ = a− b0. Since (bα,i, cα,i)i<ω is indiscernible over

c0 for all α < κ (including α = 0, since c0 = c0,i for all i < ω), the array obtained

by replacing cα with c′α is still an inp-pattern, and a′ will still be a realization of the

first column. To simplify notation, assume that c0 = 0, so a′ = a and c′α = cα.

Now v(a − cα) = v(a − c0) = v(a) for all α < κ, and so ac(a − cα) equals either

ac(a) or ac(a)−ac(cα), depending on whether v(a) < v(cα) or v(a) = v(cα). We again

split into cases in order to define formulas ψα(x, yα, zα, z
′
α) for α < κ.

Case 1: If v(a) < v(cα), take ψ(x, yα, zα) to be the formula

v(x) < v(zα) ∧ χ(v(x), yVG
α ) ∧ ρ(ac(x), yRF

α ).

Case 2: If v(a) = v(cα), take ψα(x, yα, zα) to be the formula

v(x) = v(zα) ∧ χ(v(x), yVG
α ) ∧ ρ(ac(x)− ac(zα), yRF

α ).

In either case, K |= ψ(a, bα,0, cα) and any realization of Ψα = {ψ(x, bα,i, cα,i) : i < ω}
would also be a realization of {φ(x, bα,i, cα,i : i < ω}, so Ψα is inconsistent. Take v(zα)

and ac(zα) for the terms tiα.

Then, setting z′α and c′α to be empty tuples, we may apply Lemma 2.2.3 to obtain

((φ′α(x, y′α), (b′α))α<κ, a new inp-pattern with no VF-sort parameter sequences, and in

which each formula has the desired form by choice of ψα.

Now that we can reduce to inp-patterns with no VF-sort parameters, we can prove

the main result of the section.

Theorem 2.2.7. Suppose T is a theory of henselian valued fields in LPas admitting

relative quantifier elimination. Then

bdn(T ) = bdn(TVG) + bdn(TRF),

where TVG and TRF are the induced theories on the value group and residue field,

respectively.

Proof. We begin by showing that bdn(T ) ≤ bdn(TVG) + bdn(TRF). Suppose that

(φα(x, yα), bα)α<κ is an indiscernible inp-pattern for T . If x is a VG-sort variable

then we can obtain a new inp-pattern (φ′α(x′, yα), bα)α<κ with x′ a VF-sort variable
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by taking φ′α(x′, yα) = φα(v(x′), yα). A similar substitution with ac(x′) can replace

an RF-sort variable with a VF-sort variable.

Thus, we may assume without loss of generality that x is in the valued field sort.

By Proposition 2.2.6, we may further assume that for each α < κ, yα has no VF-sort

component and φα(x, yα) has the form

χα
(
v(x), yVG

α

)
∧ ρα

(
ac(x), yRF

α

)
where χα ∈ LVG and ρα ∈ LRF.

Suppose that for some α < κ, the sets Xα(x) = {χα(v(x), bVG
α,i ) : i < ω} and

Pα(x) = {ρα(ac(x), bRF
α,i ) : i < ω} are both consistent, say they are realized by elements

c and d, respectively. Then by Lemma A.1, there exists an element a with v(a) = v(c)

and ac(a) = ac(d). But then a would be a realization of Xα(x)∪Pα(x), and so would

also be a realization of {φα(x, bα,i) : i < ω}, contradicting the inconsistency of the

row.

Thus, we can write κ = |G∪R|, where α ∈ G if Xα(x) is inconsistent, and α ∈ R
if Pα(x) is inconsistent. Then for new variable symbols z and w, (χα(z, yVG

α ), bVG
α )α∈G

is an inp-pattern in vK and (ρα(w, yRF
α ), bRF

α )α∈R is an inp-pattern in Kv, so

κ = |G ∪R| ≤ |G|+ |R| ≤ bdn(TVG) + bdn(TRF).

Since bdn(T ) is the supremum of all such κ, we have bdn(T ) ≤ bdn(TVG)+bdn(TRF).

For the reverse inequality, let (χα(z, yα), bα, kα)0≤α<κ and (ρα(w, yα), bα, kα)κ≤α<λ
be inp-patterns for TVG and TRF. For each 0 ≤ α < κ, let φα(x, yα) be the formula

χα(v(x), yα), and for each κ ≤ α < λ, let φα(x, yα) be the formula ρα(ac(x), yα). We

claim that (φα(x, yα), bα, kα)0≤α<λ is an inp-pattern for K.

First, note that each row is kα-inconsistent, since we started with inp-patterns for

TVG and TRF. Fix any function η : λ→ ω. If γ ∈ vK and c ∈ Kv are realizations of

{χα(z, bα,η(α)) : 0 ≤ α < κ} and {ρα(w, bα,η(α)) : κ ≤ α < λ}, respectively, then any

element a ∈ K with v(a) = γ and ac(a) = c will realize {φα(x, bα,η(α)) : 0 ≤ α < λ}.
Thus, (φα(x, yα), bα, kα)0≤α<λ is an inp-pattern for T , which means λ ≤ bdn(T ).

Taking the supremum over all such inp-patterns, we get bdn(TVG) + bdn(TRF) ≤
bdn(T ), completing the proof.

In section 2.4, we use this theorem to find valued fields of dp-rank d for every

d ∈ N. Note that equality only holds in the Denef-Pas language; if T ′ is the theory
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of a reduct of a model of T , then we only have the inequality

bdn(T ′) ≤ bdn(T ) = bdn(TVG) + bdn(TRF).

We know that this inequality can be strict in certain reducts. For example, any

model K of ACVF will have dp-rank 1 in Ldiv, but dp-rank 2 in LPas.

Question 2.2.8. Is there a valued field K where equality holds in a reduct of the

Denef-Pas language? This will certainly happen if the angular component map is

definable in Ldiv and the residue field is infinite; does this ever happen, and is it the

only case where equality holds?
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2.3 Definable Sets

Throughout this section, we continue to work in the Denef-Pas language. Recall that

in this language, expansions of the value group and residue field are possible, but not

expansions of the valued field sort. We begin the section by showing that there is a

strong relationship between the valuation topology and the dp-rank of types.

Lemma 2.3.1. Let (K, v) be a valued field. Then every type-definable set X ⊆ K

with interior satisfies dp-rk(X) = dp-rk(K).

Proof. If X has interior, then X contains a ball B = {x ∈ K : v(x − a) ≥ v(r)}
for some a, r ∈ K, r 6= 0. Since the map x 7→ rx + a is a definable bijection, it

preserves dp-rank, and so we may assume B = {x ∈ K : v(x) ≥ 0} = O without loss

of generality. Then the map f : K → B given by

f(x) =

{
x if x ∈ B
x−1 if x /∈ B

is definable and finite-to-one. By Proposition B.3 and the fact that B ⊆ X ⊆ K, we

have

dp-rk(K) ≤ dp-rk(B) ≤ dp-rk(X) ≤ dp-rk(K)

and so dp-rk(X) = dp-rk(K) as desired.

Corollary 2.3.2. Let (K, v) be a valued field. Then every type-definable set X ⊆ Kn

with interior satisfies dp-rk(X) = n · dp-rk(K).

Proof. Since X has interior, it contains a product of balls B = B1 × B2 × . . . × Bn.

As in the lemma, there is a definable bijection between B and On, and so we may

assume B = On. Let f : K → B be the map

f(x) =

{
x if x ∈ B
x−1 if x /∈ B

from the lemma. Then g : Kn → B given by

g(x1, . . . , xn) = (f(x1), . . . , f(xn)).

is definable and finite-to-one, and so dp-rk(X) ≤ n · dp-rk(K) ≤ dp-rk(X) by Propo-

sition B.3 again.
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In the case where K admits relative quantifier elimination, we can prove the

converse of Lemma 2.3.1 for definable sets. In fact, we get something even stronger.

Lemma 2.3.3. Let (K, v) be an infinite valued field admitting relative quantifier

elimination and let X be a definable subset of K. The following are equivalent:

1. X has interior

2. dp-rk(X) = dp-rk(K)

3. dp-rk(X) > 0

Proof. (1 ⇒ 2) is the previous lemma, and (2 ⇒ 3) is easy: since K is infinite,

dp-rk(X) = dp-rk(K) > 0 by Proposition B.1.

For (3 ⇒ 1), we may assume K is ℵ1-saturated, since dp-rank is preserved by

elementary extensions and having interior is definable in LPas. Suppose dp-rk(X) > 0

and let S be some finite set of parameters such that X is S-definable. By relative

quantifier elimination, we may assume X is defined by

n∨
i=1

χi(v(f1(x), . . . , v(fm(x))) ∧ ρi(ac(f1(x)), . . . , ac(fm(x))),

where χi are LVG-formulas with parameters in vK ∩ S, ρi are LRF formulas with

parameters in Kv ∩ S, and fj are polynomials with coefficients in K ∩ S.

Fix a ∈ X with dp-rk(a/S) > 0; then a is not algebraic over S, so v(fi(a)) < ∞
for all i ≤ m. Let K0 � K be a countable submodel containing a and S. By

saturation, there exists a nonzero element ε ∈ K such that v(ε) > v(b) for all b ∈ K0.

In particular, this means that v(fi(a + ε)) = v(fi(a)) and ac(fi(a + ε)) = ac(fi(a))

for all i ≤ m. Moreover, the same will hold for every ε′ with v(ε′) ≥ v(ε), and so

a + ε′ ∈ X for every ε′ with v(ε′) ≥ ε. In other words, the ball with centre a and

radius ε is a subset of X, and hence X has interior.

The remainder of this section is devoted to proving that Lemma 2.3.3 characterizes

henselianity for dp-finite fields. Unfortunately, satisfying the conclusion of Lemma

2.3.3 in K is not enough to conclude that K is henselian; we must assume K satisfies

the following condition (∗):

For every coarsening w of v (including the case where w is the trivial val-

uation), every infinite definable subset X ⊆ Kw has interior with respect

to the valuation induced by v on Kw.
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Our goal for the remainder of the section is to prove the following theorem.

Throughout the section, we assume that v is a non-trivial valuation.

Theorem 2.3.4. Let (K, v) be an dp-finite valued field. Then (K, v) is henselian if

and only if it satisfies condition (∗).

In private communication with Yatir Halevi, the author learned that Halevi, Has-

son, and Jahnke have independently proved a version of Theorem 2.3.4 using prop-

erties of the Zariski topology. Their proof is currently not publicly available. The

rest of the section will be dedicated to our proof of the theorem, beginning with some

intermediate lemmas and propositions.

Note that in the proof of Lemma 2.3.3, we actually show that all elements of

positive dp-rank are in the interior of X. By focusing on these elements, we obtain a

version of the lemma with relative quantifier elimination replaced by a weak form of

condition (∗).

Lemma 2.3.5. Let (K, v) be a valued field such that every infinite definable subset

of K has interior, let S be some parameter set, and let a ∈ K be a singleton. Then

the following are equivalent:

1. dp-rk(a/S) = dp-rk(K)

2. a is an interior point of every S-definable set X containing a

3. Y = {y ∈ K : y |= tp(a/S)} is open

Proof. (1 ⇒ 2) Suppose for contradiction that dp-rk(a/S) = dp-rk(K) and a is in

the topological boundary of some S-definable set X. Since the boundary of X is

S-definable and does not have interior, it must be finite. But then a is algebraic over

S, contradicting dp-rk(a/S) = dp-rk(K) > 0.

For (2 ⇒ 3), similar to Lemma 2.3.3, we may assume that K is (ℵ1 + |S|+)-

saturated. Let K0 � K be a small submodel containing a and S, and pick ε ∈ K such

that v(ε) > v(b) for all nonzero b ∈ K0. Then the ball B = {x ∈ K : v(x−a) > v(ε)}
is contained in all S-definable sets X containing a. Since Y is the intersection of all

such sets X, we have B ⊆ Y , and hence a is an interior point of Y . But the same

argument can be made for any y ∈ Y , which means every point in Y is an interior

point, and hence Y is open.

Finally, (3⇒ 1) is just Lemma 2.3.1 since dp-rk(Y ) = dp-rk(a/S).
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The next proposition demonstrates why finite dp-rank is a necessary assumption

for the theorem. If K has infinite dp-rank, there is no way to distinguish between

dp-rk(K) and dp-rk(Kn), and so a subset of Kn will have full dp-rank if and only

if some projection onto K has interior, which is significantly weaker than what we

need.

Proposition 2.3.6. Let (K, v) be a dp-finite valued field such that every infinite

definable subset of K has interior, let S be some finite set of parameters, and let

X be an S-definable subset of Kn. If (a1, . . . , an) ∈ X satisfies dp-rk(a1, . . . , an) =

n · dp-rk(K) then (a1, . . . , an) is an interior point of X.

Proof.1 Without loss of generality, assume K is ℵ1-saturated; we proceed by induction

on n. If n = 1 the result follows immediately from Lemma 2.3.5.

For n > 1, note that by Fact B.4, (a2, . . . , an) has full dp-rank over {a1}∪S. Then

since the set

X1 = {(x2, . . . , xn) : (a1, x2, . . . , xn) ∈ X}

is Sa1-definable, (a2, . . . , an) is in the interior of X1 by induction.

Consider the formula φ(x, r) given by

r 6= 0 ∧

(
{x} ×

n∏
i=2

B(ai, r) ⊆ X

)
,

where B(a, r) = {x ∈ K : v(x− a) > v(r)}.
Let R be the set {r ∈ K : K |= φ(a1, r)}; since (a2, . . . , an) is in the interior of X1,

R is nonempty. Suppose for contradiction that for all r ∈ R, a1 is in the boundary

of φ(K, r). Since boundary sets do not have interior, they are finite by assumption;

then by compactness, there must be a uniform bound k such that |φ(K, r)| < k for

all r ∈ R.

Let b1, . . . , bk+1 be any elements satisfying p(x) = tp(a1/Sa2 . . . an); such elements

exist since this type is not algebraic. Since ∃rφ(x, r) is a formula in p(x), we can choose

r1, . . . , rk+1 such that K |= φ(bi, ri). Moreover, each bi is a boundary point of φ(K, r)

for every r ∈ R. Fix any r0 ∈ K with v(r0) ≥ v(ri) for each 1 ≤ i ≤ k + 1. Then

r0 ∈ R and K |= φ(bi, r0) for each i, contradicting the uniform bound k.

1The author would like to thank the external examiner, Dr. Assaf Hasson, for suggesting this
approach, which is more intuitive than the original submission.
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Thus, there must exist r2 ∈ R such that the set defined by φ(x, r2) contains

an open ball B(a1, r1). Then the product B(a1, r1) ×
∏n

i=2 B(ai, r2) witnesses that

(a1, . . . , an) is an interior point of X, as desired.

As a corollary, we get a generalization of Lemma 2.3.5 for dp-finite fields:

Corollary 2.3.7. Let (K, v) be a dp-finite valued field such that every infinite defin-

able subset of K has interior, let S be some parameter set, and let a ∈ K be a finite

tuple. Then the following are equivalent:

1. dp-rk(a/S) = n · dp-rk(K)

2. a is an interior point of every S-definable set X containing a

3. Y = {y ∈ K : y |= tp(a/S)} is open

Proof. (1⇒ 2) This is precisely Proposition 2.3.6.

For (2 ⇒ 3), the proof follows identically to Lemma 2.3.5, replacing the ball

B = {x ∈ K : v(x− a) > v(ε)} with the product B = {x ∈ K : v(x− a) > v(ε)}n.

Finally, (3⇒ 1) is just Corollary 2.3.2 since dp-rk(Y ) = dp-rk(a/S).

We can also combine Proposition 2.3.6 with Corollary 2.3.2 to get the following

equivalence between dp-rank and interior:

Corollary 2.3.8. Let (K, v) be a dp-finite valued field such that every infinite defin-

able subset of K has interior. Then a definable set X ⊆ Kn has interior if and only

if it has full dp-rank.

This result then gives us a strong result about definable finite-to-one maps.

Corollary 2.3.9. Let (K, v) be a dp-finite valued field such that every infinite de-

finable subset of K has interior and let f : Kn → Kn be a finite-to-one definable

function. Then for every X ⊆ Kn (not necessarily definable), if X has non-empty

interior, so does f(X).

Proof. If X has non-empty interior, then it contains a product of balls B, which will

be definable and have full dp-rank. Since dp-rank is preserved by finite-to-one maps,

f(B) also has full dp-rank, and hence f(B) ⊆ f(X) has interior.
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This corollary is the key step towards showing that dp-minimal valued fields are

henselian, in both (Jahnke et al., 2017) and (Johnson, 2016). From this point forward,

we follow the method of (Jahnke et al., 2017, Section 4) very closely. Write (Kh, vh)

for the henselization of (K, v). We begin by stating two technical facts.

Fact 2.3.10. (Follows immediately from Theorem 7.4 of Prestel and Ziegler (1978))

Let G ∈ K[x1, . . . , xn]n and let B ⊆ (Kh)n be a product of balls. Suppose that the

Jacobian JG(a) is nonzero for some a ∈ (B ∩Kn). Then there is an open set U ⊆ B

containing a such that G|U is injective.

Fact 2.3.11. (Guingona, 2014, Lemma 3.9) Let K be a field and a /∈ K algebraic

over K. Let a = a1, . . . , an be the conjugates of a over K and let

g(X1, . . . , Xn, Y ) =
n∏
i=1

(
Y −

n−1∑
j=0

ajiXi

)
.

Then there exist G0, . . . , Gn−1 ∈ K[X1, . . . , Xn] such that

g(X1, . . . , Xn, Y ) = Y n +
n−1∑
j=0

Gj(X1, . . . , Xn).

Moreover,

1. If c = (c1, . . . , cn) ∈ Kn and cj 6= 0 for some j then g(c, Y ) has no roots in K.

2. Writing G = (G0, . . . , Gn−1) and JG for the Jacobian of G, there is d =

(d1, . . . , dn) ∈ Kn such that JG(d) 6= 0 and dj 6= 0 for some j.

Proposition 2.3.12. Suppose that (K, v) is a dp-finite valued field such that every

infinite definable subset X ⊆ K has interior and let a ∈ Kh be such that for any

γ ∈ vK, there exists b ∈ K with vh(b− a) ≥ γ. Then a ∈ K.

Proof. This is Proposition 4.4 of Jahnke et al. (2017) with only one minor adjustment;

we repeat the proof here in order to keep the thesis self-contained.

Suppose that a has degree n over K, and let a = a1, . . . , an be the conjugates of

a over K. Let g, G, and d be as in Lemma 2.3.11. Then by Lemma 2.3.10, there

is an open set U such that G|U is injective. Further, by Corollary 2.3.9, G(U) has

non-empty interior. Since JG is continuous we may assume, shrinking U if necessary,

that JG is nonzero on U . Shrinking U again if necessary, we may assume that for all
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(x1, . . . , xn) ∈ U there exists j such that xj 6= 0. Finally, after changing d if necessary,

we may assume that e = G(d) lies in the interior of G(U).

Let V ⊆ G(U) be an open neighbourhood of e. Define f : Kh r {0} → Kh by

f(y) = −

(
yn +

n−2∑
j=0

ejy
j

)
· y−(n−1)

and note that f is continuous on all of Kh r {0}. Then for every y 6= 0 we have

yn + f(y)yn−1 +
n−2∑
j=0

ejy
j = 0.

Define

h(x) =
n−1∑
j=0

djx
j.

Then h(a) is a root of g(d, Y ), so f(h(a)) = en−1. Moreover, since g(d, Y ) has no

roots in K by Lemma 2.3.11(1), h(a) ∈ Kh rK; in particular, h(a) 6= 0. If b ∈ K is

sufficiently close to a then h(b) 6= 0 and

(e0, . . . , en−2, (f ◦ h)(b)) ∈ V.

Thus, there exists c ∈ U with

G(c) = (e0, . . . , en−2, (f ◦ h)(b)).

Then by our choice of U , cj 6= 0 for some j, and so g(c, Y ) has no root in K. On the

other hand, h(b) is a root of g(c, Y ). By contradiction, we must have had a ∈ K from

the beginning.

With this result, we can now prove Theorem 2.3.4: a dp-finite valued field is

henselian if and only if it satisfies condition (∗).

Proof. (of Theorem 2.3.4) Suppose (K, v) is henselian. For every coarsening w of

v, write v for the valuation on Kw induced by v. Then (Kw, v) is henselian and

is interpretable in (K, v), so is dp-finite. By Lemma 2.3.3, every infinite definable

subset of Kw has interior, which means (K, v) satisfies condition (∗).
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For the reverse direction, we follow the proof of (Jahnke et al., 2017, Proposition

4.5); again, only one minor adjustment is required, but we repeat the proof for the

sake of completeness.

Suppose (K, v) satisfies condition (∗), and assume for contradiction that (K, v) is

not henselian. Then there is a polynomial

p(X) = Xn + aXn−1 +
n−2∑
i=1

ciX
i

such that v(a) = 0, v(ci) > 0 for all i, and such that p has no root in K. Let

(Kh, vh) be the henselization of (F, v) and choose some α ∈ Kh such that p(α) = 0,

v(α− 0) > 0, and v(p′(α)) = 0. Consider the set

S = {vh(b− α) ∈ vK : b ∈ K and vh(b− α) > 0}.

Let ∆ be the convex subgroup of vK generated by S and note that ∆ is a proper

subgroup of vK; for otherwise, we would have α ∈ K by Proposition 2.3.12. Following

the proof of Claim 5.12.1 of Macpherson et al. (2000), S is cofinal in ∆.

Let w be the coarsening of v with value group vK/∆, let wh be the corresponding

coarsening of vh, and let v be the valuation on Kw induced by v. As noted above,

(Kw, v) is dp-finite since it is interpretable in (K, v). Given any element x in Kh,

write x for its residue in Khwh.

We claim that there exists β ∈ K such that w(p(β)) > 0. By condition (∗), every

infinite definable subset of (Kw, v) has nonempty interior, and as in the proof of

the corresponding claim in Proposition 4.5 of Jahnke et al. (2017), (F hwh, vh) is the

henselization of (Kw, v). Moreover, by choice of ∆, the residue α of α with respect

to wh is approximated arbitrarily well by elements of Fw, so by Proposition 2.3.12,

α ∈ Kw. Take any β ∈ K with β = α; then since w(p(α)) > 0, we also have

w(p(β)) > 0.

Now take

J = {b ∈ K : v(b− α) > 0}.

Since β − α ∈ mw ⊆ mv, we have β ∈ J . Moreover, for all b ∈ J , we have v(b− α) =

v(p(b)) by Claim 5.12.2 of Macpherson et al. (2000). However, by definition of ∆,

w(p(b)) = 0 for any b ∈ J . This contradicts our choice of β, and hence (K, v) must

be henselian.
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2.4 New Examples of Dp-finite Valued Fields

Using the results of the previous two sections, we will now construct, for each d ∈ N,

a theory Td with the following properties:

1. Td is a complete theory of henselian valued fields,

2. dp-rk(Td) = d,

3. if d > 2 then Td is not the theory of an expansion of a dp-minimal field, and

4. Every partial type π(x) in the home sort of Td has dp-rank equal to 0 or d

Because these examples do not come from expansions of dp-minimal fields, they

are fundamentally different from the examples explored in Section 1.5. Moreover,

while theories with property (3) have been known to exist since Kaplan et al. (2013),

to the author’s knowledge the only theories with this property have been purely

combinatorial in nature, and do not come from any theory of algebraic structures.

First, we note that (4) follows from (1) and (2). If d = 0 or d = 1, this is

trivial; otherwise, if we work in the Denef-Pas language, (4) is an immediate con-

sequence of Corollary 2.3.5. We could alternatively work in a 1-sorted language

L = {0, 1,+,−, ·, R, S} where R is interpreted as the valuation ring and S is inter-

preted as the set

{(x, y) : ac(x) = ac(y)}.

Henselian valued fields in this language are interdefinable with those in the Denef-Pas

language, and so the results of the previous sections will also hold in this language.

We can choose T0 to be any theory of finite fields with the trivial valuation, T1 to

be any theory of infinite dp-minimal valued fields in Ldiv, and T2 to be any completion

of ACVF in LPas or L. By Jahnke et al. (2017), T1 and T2 will satisfy 1, and by section

2.2, T2 will satisfy 2. For concreteness, take T0 = Th(Z/97Z), T1 = ThLdiv(Q11), and

T2 = ThLPas
(C).

By Section 2.2, in both LPas and L we have dp-rk(C[[tΓ]]) = 1 + dp-rk(Γ) for

all ordered abelian groups Γ. Thus, given Γ of dp-rank d, we may take Td+1 to be

ThLPas
(C[[tΓ]]) or ThL(C[[tΓ]]). The dp-rank of an ordered abelian group can be easily

calculated by the work of Farré (2017) and Halevi and Hasson (2017b): both sets of

authors independently characterized strongly dependent ordered abelian groups, and

provided a formula for calculating the dp-rank of such a group.
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We will state the result using the notation of Halevi and Hasson (2017b). For a

strongly dependent ordered abelian group G, let

P∞(G) = {p ∈ N : p is prime and [G : pG] =∞}.

For each p ∈ P∞(G), let kp be the length of a maximal chain of definable convex

subgroups H1 ( . . . ( Hn ( Hn+1 = G such that for all i ≤ n,

[Hi+1/Hi : p(Hi+1/Hi)] =∞.

This value is always finite by (Halevi and Hasson, 2017b, Lemma 4.4). If p /∈ P∞(G)

then no such chain exists, and we set kp = 0. Consider G in the language described

in (Halevi and Hasson, 2017b, Lemma 3.4), which we will denote LHH. Then G is

dp-minimal if and only if P∞(G) = ∅, and dp-rk(G) is equal to

1 +
∑

p∈P∞(G)

kp

otherwise.

Recall that an ordered abelian group is called archimedean if it has no proper

convex subgroups; this occurs if and only if it is order isomorphic to a subgroup of R.

For each prime p, let Bp be a countable subset of R such that B =
⋃
pBp is linearly

independent over Q. For each p, consider

Gp =
∑
b∈Bp

bZ(p) =
⊕
b∈Bp

bZ(p)

as an ordered subgroup of R. Clearly, this group is archimedean, and by Example

2.10 of Halevi and Hasson (2017b), [Gp : pGp] = ℵ0, while [Gp : qGp] = 1 for every

other prime q.

Now, let P be a finite set of primes, and set G =
⊕

p∈P Gp as an ordered subgroup

of R. This group is clearly still archimedean, and so has no proper convex subgroups.

Hence, for each prime p, either kp = 1 (if p ∈ P∞(G)) or kp = 0 (otherwise). Note

that for all q, we have

G/qG =

(⊕
p∈P

Gp

)/(⊕
p∈P

qGp

)
∼=
⊕
p∈P

Gp/qGp.
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Since qGp = Gp whenever q 6= p, this quotient will be trivial whenever q /∈ P , and will

be equal to Gq/qGq whenever q ∈ P . We have already noted that [Gq : qGq] = ℵ0,

and so P∞(G) = P and kp = 1 for all p ∈ P∞(G).

Now, it is easy to calculate dp-rk(G) in the language LHH: it is

dp-rk(G) = 1 +
∑

p∈P∞(G)

kp = 1 +
∑

p∈P∞(G)

1 = 1 + |P∞(G)| = 1 + |P |.

Now, for each d ≥ 1, we can take Td+2 to be the theory of the Hahn series field C[[tG]]

for some G constructed as above with |P | = d.

Note that LHH is a definitional expansion of Loag, so we have

dp-rkLoag(G) = dp-rkLHH
(G) = 1 + |P |.

However, we will now demonstrate an explicit inp-pattern in Loag of depth 1 + |P | for

G for the sake of concreteness.

Enumerate P as {p1, . . . , pn}, let q =
∏n

i=1 pi, and let qj =
∏

i 6=j pi. Consider the

following formulas:

• φ0(x, y, z) is the formula y < x < z

• For 1 ≤ i ≤ n, φi(x, y) is the formula x− y ∈ piG

For the first row, take as parameters any sequence of pairs (ai, bi)i<ω that satisfy

ai < bi < ai+1, and for each other row, take as parameters any sequence (ci,j)j<ω in

qiG such that ci,j and ci,j′ are in different cosets of qG whenever j 6= j′. Note that

qiG/qG ∼=
n⊕
j=1

(qiGpj)/(qGpj)
∼= Gpi/piGpi

since for j 6= i, qGpj = qiGpj = pjGpj . Thus, [qiG : qG] = ℵ0 for each i, and so the

sequences (ci,j)j<ω exist.

Clearly, these rows are 2-inconsistent. Fix some map η : {0, . . . , n} → ω, and

some prime p /∈ P . Then there exists r ∈ N such that qp−r < bη(0) − aη(0), and s ∈ Z
such that

aη(0) < qsp−r +
n∑
i=1

ci,η(i) < bη(0).
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Set xη = qsp−r +
∑n

i=1 ci,η(i). By choice of r and s, we have G |= φ0(xη, aη(0), bη(0)).

Moreover, for each i > 0, we have

xη − ci,η(i) = qsp−r +
n∑
j 6=i

cj,η(j)

which is an element of piG by choice of q and cj,η(j). Thus, G |= φi(xη, ci,η(i)), which

means we have indeed constructed an inp-pattern.

Note that while this does give us examples of henselian valued fields of dp-rank d

for all d ∈ N in a natural language, as mentioned in Section 2.2, we do not know the

dp-rank of the reduct of Td to Ldiv. Suppose K |= Td, and let (K, v) be the reduct of K
to Ldiv. It is easy to check that any inp-pattern in LVG corresponds to an inp-pattern

in Ldiv of the same depth, so we have

d− 1 ≤ dp-rk(K, v) ≤ dp-rk(K) = d.

In the case where d = 2, we know that this inequality is strict, but we do not know

anything about d > 2. This suggests a particular case of Question 2.2.8 to investigate:

Question 2.4.1. Suppose K |= Td for d > 2 in LPas, and that (K, v) is the reduct of

K to Ldiv. Is the dp-rank of (K, v) equal to d or to d− 1?

44



Chapter 3

Classification of Dp-finite Fields

This chapter is concerned with the following question: what is the algebraic structure

of a dp-finite field, up to elementary equivalence? A well-known conjecture, based on

Conjecture 5.34(c) of Shelah (2014), states the following:

Conjecture 3.0.1. If K is a strongly dependent field, then K is either algebraically

closed, real closed, or has a definable henselian valuation.

As part of his thesis, Johnson (2016) proved that this conjecture holds in the

special case of dp-minimal fields:

Fact 3.0.2. (Follows directly from (Johnson, 2016, Theorem 9.4.18) and (Jahnke

and Koenigsmann, 2015, Theorem 5.2)) Let K be a sufficiently saturated dp-minimal

field. Then K is either algebraically closed, real closed, or has a definable henselian

valuation.

Johnson’s proof is completed by constructing a valuation using nothing but the

definable sets in the pure field language, and showing that this valuation must be

henselian. He in fact characterizes dp-minimal fields up to elementary equivalence

(Johnson, 2016, Theorem 9.7.2); a recent pre-print of Halevi et al. (2018) gives an

analogous characterization of strongly dependent fields, assuming that Conjecture

3.0.1 holds.

Johnson also published a pre-print of his proof to arXiv.org (Johnson, 2015). The

thesis is more recent than the pre-print, and some of its organization and explanation

are slightly clearer, although the overall structure and content of the arguments is

the same in both. Throughout the remainder of this chapter, we will cite results to
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the pre-print (Johnson, 2015), rather than the thesis, as we believe that arXiv.org is

a more accessible platform for the majority of readers.

This chapter contains our progress towards generalizing Johnson’s method from

dp-minimal fields to dp-finite fields. The main obstacle to overcome is that unlike in

the dp-minimal case, it is possible for a definable set in one variable in a dp-finite

structure to be infinite but not have full dp-rank. Johnson uses this equivalence

(which does hold in the dp-minimal case) liberally, and working without it makes

many arguments significantly more challenging.

The first section of this chapter establishes some preliminary results about V-

topologies and the remaining sections provide the progress so far on generalizing

Johnson’s results to the dp-finite case. They are divided based on the following

property:

Definition 3.0.3. Let K be a dp-finite field. We say that a definable subset X ⊆ K

is large if dp-rk(Xc) < dp-rk(K). Note that since X ∪ Xc = K, if X is large then

dp-rk(X) = dp-rk(K).

We say that K has the large sets property (LSP) if for every definable set X ⊆ K,

either X or Xc = K r X is large; equivalently, either dp-rk(X) < dp-rk(K) or

dp-rk(Xc) < dp-rk(K).

Note that any field with a definable ordering or valuation will not have LSP, since

any interval or ball X will satisfy dp-rk(X) = dp-rk(Xc) = dp-rk(K). On the other

hand, in an algebraically closed field, definable sets are either finite or cofinite, and

hence every algebraically closed field has LSP in the ring language. Sections 3.2

and 3.3 consider fields without LSP, which we expect to have a definable henselian

valuation. Section 3.4 considers fields with LSP, which we expect to be algebraically

closed.
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3.1 V-Topologies

Following Johnson’s method, our aim is to show that if a dp-finite field does not have

LSP then it has a definable henselian valuation. We approach this goal through the

use of a definable topology with a strong algebraic structure:

Fact 3.1.1. Let K be a field, and let N be a filtered family of subsets of K, meaning

that for all U, V ∈ N , there exists W ∈ N such that W ⊆ U ∩ V . Suppose moreover

that the following conditions hold:

(1) {0} =
⋂
U∈N U

(2) {0} /∈ N

(3) For all U ∈ N there exists V ∈ N such that V − V ⊆ U

(4) For all U ∈ N and x ∈ K there exists V ∈ N such that x · V ⊆ U

(5) For all U ∈ N there exists V ∈ N such that V · V ⊆ U

(6) For all U ∈ N there exists V ∈ N such that (1 + V )−1 ⊆ (1 + U)

(7) For all U ∈ N there exists V ∈ N such that for all x, y ∈ K, if xy ∈ V then

x ∈ U or y ∈ U

Then N is a neighbourhood basis of 0 of a topology on K.

Definition 3.1.2. A topology generated by a neighbourhood basis as in the previous

proposition is called a V-topology.

For more on V-topologies, see Appendix B of Engler and Prestel (2005). Suppose

τ is a V-topology. (1)-(3) ensures that τ is Hausdorff and that τ is a group topology

on K: that is, (x, y) 7→ x + y is continuous with respect to τ . Similarly, (4)-(5)

ensure that τ is a ring topology and (6) ensures that τ is a field topology: that is,

(x, y) 7→ x · y and x 7→ x−1 are continuous, respectively. Finally, (7) ensures the

following:

Fact 3.1.3. A topology is a V-topology if and only if it is induced by a non-trivial

valuation or a non-trivial absolute value.
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This result was originally proven in Dürbaum and Kowalski (1953). A proof is

also included in Appendix B of Engler and Prestel (2005).

The fact that a field with a V-topology must have a non-trivial valuation or non-

trivial absolute value on its own is not surprising: almost all fields admit non-trivial

valuations. In order for the valuation to be definable and henselian, the V-topology

must satisfy an additional axiom schema:

Definition 3.1.4. Suppose τ is a V-topology generated by some family N . If we

also assume the following axiom scheme for each n ∈ N:

(8)n There exists U ∈ N such that for all f(X) = Xn+1 +Xn + an−1X
n−1 + . . .+ a0

with ai ∈ U , there exists y ∈ K with f(y) = 0.

then we say that τ is a t-henselian topology.

As the name implies, t-henselianity is related to henselianity; it can be thought of

as a non-uniform version of henslianity. This relationship can be made precise:

Fact 3.1.5. Let K be a field that is not separably closed.

1. If K admits a t-henselian topology then this topology is the only t-henselian

topology on K and is first-order definable in the language of rings.

2. If K admits a t-henselian topology then every field elementarily equivalent to K

admits a t-henselian topology.

3. K admits a t-henselian topology if and only if K is elementarily equivalent to a

field admitting a non-trivial henselian valuation.

4. Suppose K is also not real closed and admits a t-henselian topology. Then K

admits a definable henselian valuation inducing the t-henselian topology.

Proof. 1. Fix any irreducible separable polynomial f ∈ K[X] with deg(f) > 1 and

a ∈ K satisfying f ′(a) 6= 0. Consider the family of definable sets

Uf,a = {f(x)−1 − f(a)−1 : x ∈ K}.

The collection c · Uf,a for c ∈ K× is a neighbourhood basis of 0 of the unique

t-henselian topology on K. See page 203 of Prestel (1991) for the details.

2. This follows immediately from (1).
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3. This follows from Theorem 7.2 of Prestel and Ziegler (1978).

4. This is Theorem 5.2 of Jahnke and Koenigsmann (2015).

From these results, we can now see the general form of our aspirational proof:

suppose K is dp-finite and neither real closed nor separably closed, then construct N ,

a neighbourhood basis of 0 for a t-henselian topology on K. In practice, it will be more

helpful to look at the intersection IN =
⋂
U∈N U in some very saturated elementary

extension M of K. If each set in N is definable over K, then this intersection will be

type-definable over K. Moreover, each of the properties (1)-(8) has a corresponding

property on IN :

Fact 3.1.6. (Johnson, 2015, Section 2.2) Let N be a filtered collection of K-definable

sets, and let M and IN be as in the previous paragraph. Then each property of N in

Proposition 3.1.1 holds if and only if the corresponding property holds below:

(1) IN ∩K = {0}

(2) IN 6= {0}

(3) IN is a subgroup of (M,+)

(4) IN is closed under multiplication by elements of K

(5) IN is closed under multiplication (by elements of IN )

(6) (1 + IN )−1 = (1 + IN )

(7) Mr IN is closed under multiplication

(8) If f(X) = Xn+1 +Xn + an−1X
n−1 + . . .+ a0 with each ai ∈ IN then f(X) has a

root in M

If IN as above satisfies (1)-(5) and (7) then it also satisfies (6) and is the maximal

ideal of a valuation ring on M.

Proposition 3.1.7. Suppose IN ⊆M satisfies conditions (1)-(5) and (7) and define

O = {x ∈M : xIN ⊆ IN}.

Then O is a valuation ring on M, IN is the unique maximal ideal of O, and IN
satisfies condition (6).
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Proof. (repeated from Johnson (2015), Observation 2.4) Clearly O is closed under

multiplication; it is also closed under addition by condition (3). It contains IN and

K by conditions (4) and (5), respectively; conditions (1), (3), and the definition of O
then give that IN is a proper ideal of O.

By condition (7), if x, y ∈ Mr IN then xy ∈ Mr IN . Thus, if x ∈ Mr IN and

xy ∈ IN , we must have y ∈ IN . In other words, if x /∈ IN then x−1IN ⊆ IN , which

means x−1 ∈ O. Equivalently, x−1 /∈ O implies x ∈ IN . The first condition tells us

that O is a valuation ring, and the second tells us that IN is its maximal ideal.

Finally, we know that if m is the maximal ideal of some valuation ring then

(1 + m)−1 = 1 + m, and hence condition (6) holds for IN .

If (8) holds as well, then the corresponding valuation is henselian by Theorem 4.1.3

of Engler and Prestel (2005). In Johnson (2015), rather than proving N generates

a (t-henselian) topology, he shows that IN satisfies properties (1)-(5) and (7), then

shows separately that the corresponding valuation is henselian. In the next two

sections, we will also focus on IN , although we have only shown that it satisfies some

of the necessary properties.
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3.2 The Johnson Topology

As outlined in Section 3.1, our general approach is to define a set which we hope

to prove is the maximal ideal of a henselian valuation ring on K; following Johnson

(2015), we will write IK for this set. In this section, we define IK to be a type-

definable set and show that it satisfies conditions (1), (2), and (4) from Proposition

3.1.6: specifically, IK ∩K = {0}, {0} 6= IK , and IK is closed under multiplication by

elements of K.

Let K be an ℵ1-saturated field of dp-rank d < ω and let M � K be a monster

model. If X, Y ⊆M, let X −∞ Y denote

X −∞ Y = {c ∈M : ∃∞y ∈ Y (y + c ∈ X)}
= {c ∈M : X ∩ (Y + c) is infinite}

and let

IK =
⋂
{X −∞ X : X is K-definable and dp-rk(X) = d}.

We call sets of the form X −∞ X where X is K-definable and dp-rk(X) = d basic

neighbourhoods of 0. We call elements of IK infinitesimals. As mentioned, our goal is

to prove that IK is the maximal ideal of a valuation ring, and hence elements of IK
will have positive valuation.

In Dolich and Goodrick (2015), Corollary 2.2, it is shown that dp-finite fields have

uniform finiteness; that is, for any formula φ(x, y), there is a number n < ω such that

|φ(K, b)| > n implies φ(K, b) is infinite. Thus, X −∞ Y is definable whenever X and

Y are, and IK is type-definable over K.

It is worth noting here that in attempting to generalize Johnson’s work to the

dp-finite case, we could also consider sets of the form

X −∗ Y = {c ∈M : dp-rk(X ∩ (Y + c)) = d}.

Unfortunately, these sets are not definable, or even type definable. As a result, using

X −∗ X instead of X −∞ X to define IK would result in IK also not being type

definable, preventing the use of compactness in Proposition 3.2.2 to conclude that IK
is infinite. Showing that the sets X −∗ X generate the same topology as X −∞ X

seems to be a key step in proving condition (3) from Proposition 3.1.6, but is currently
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out of reach.

In this section and the next, we will work under the additional assumption that

K does not have the large set property (LSP), that is, that there exists a definable

set D ⊆ M with dp-rk(D) = dp-rk(Dc) = d. In Section 3.4, we will discuss fields

with LSP; morally, they should all be algebraically closed.

Lemma 3.2.1. Suppose K is a field of dp-rank d < ω and X, Y ⊆ K are definable.

If X and Y both have dp-rank equal to d then so does X −∞ Y .

Proof. Suppose X and Y are A-definable. Take (x, y) ∈ X × Y of dp-rank 2d over

A, and let c = x− y. By subadditivity of dp-rank,

2d = dp-rk(x, y/A) = dp-rk(y, c/A) ≤ dp-rk(y/Ac) + dp-rk(c/A) ≤ d+ d.

Then equality must hold, and hence y /∈ acl(Ac) and c /∈ acl(A). As y ∈ Y ∩ (X − c)
and Y ∩ (X − c) is Ac-definable, Y ∩ (X − c) is infinite. It follows that c ∈ X −∞ Y ,

which is an A-definable set by uniform finiteness in K. Thus

d = dp-rk(c/A) ≤ dp-rk(X −∞ Y ) ≤ d,

and again equality holds.

Proposition 3.2.2. Suppose K is an ℵ1-saturated field of dp-rank d < ω without

LSP. Then the set of basic neighbourhoods of 0, as defined at the beginning of the

section, is filtered. Moreover, IK ⊆M satisfies the following:

1. IK is infinite

2. IK is closed under multiplication by elements of K

3. IK ∩K = {0}

Proof. To show that the set of basic neighbourhoods is filtered, we first show that they

form a consistent type. Suppose X and Y are A-definable and of maximal dp-rank d.

As in the previous lemma, fix (x, y) ∈ X × Y of dp-rank 2d over A and let c = x− y.

Set X ′ = X − c. Then y ∈ Y ∩X ′ and dp-rk(y/Ac) = d, so dp-rk(Y ∩X ′) = d. Note

that X ′ −∞ X ′ = X −∞ X, so we have

(Y ∩X ′)−∞ (Y ∩X ′) ⊆ (Y −∞ Y ) ∩ (X ′ −∞ X ′) = (Y −∞ Y ) ∩ (X −∞ X).
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Thus, every finite intersection of basic neighbourhoods contains a basic neighbour-

hood, which means they form a filtered set.

1. Since the partial type defining IK is consistent, IK is nonempty by saturation

of M. Moreover, since (Y ∩ X ′) −∞ (Y ∩ X ′) is infinite for every choice of X

and Y , we must have that IK is infinite.

2. Clearly 0 · IK = {0} ⊆ IK . Suppose a ∈ K×. Then for any K-definable X of

full dp-rank, we have

aX −∞ aX = a(X −∞ X)

and hence IK = aIK .

3. We first show that there exists c ∈ K r IK . Since K does not have LSP, there

is a definable set D ⊆ K with dp-rk(D) = dp-rk(Dc) = d. Taking X = Dc and

Y = D in the lemma, we have (x, y) ∈ X×Y and c = x− y, all of maximal dp-

rank. By Proposition B.5, we may assume that these elements are all contained

in K by saturation of K.

Set Y ′ = (X − c) ∩ Y ; then y ∈ Y ′ and hence Y ′ has full dp-rank. Clearly,

Y ′ + c ⊆ X, so

Y ′ ∩ (Y ′ + c) ⊆ Y ∩X = D ∩Dc = ∅,

and hence c /∈ Y ′ −∞ Y ′, which means c /∈ IK .

Now, fix any b ∈ K×. Since K is a field and IK = bc−1IK by (2), we have

b ∈ bc−1(K r IK) = (bc−1K) r (bc−1IK) = K r IK

and so b /∈ IK . Thus, IK ∩K× = ∅, which means IK ∩K = {0}.
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3.3 An Intermediate Conjecture

In Section 2.3, we showed that a strengthening of the assumption “every infinite

definable set has full dp-rank” could be used to show that a dp-finite valued field is

henselian. The fact that this assumption holds for dp-minimal fields is used to great

effect by Johnson in his classification of dp-minimal fields, specifically when showing

that the topology generated by basic neighbourhoods is a V-topology.

In this section, we consider Johnson’s topology from the previous section, but

with the additional assumption that every infinite definable set has full dp-rank. We

show that with this additional assumption, we can get most of the way towards the

following conjecture:

Conjecture 3.3.1. The following are equivalent:

1. Every infinite dp-finite field is either algebraically closed, real closed, or has a

definable henselian valuation.

2. Suppose K is a dp-finite field in the language Lring. Then every infinite definable

subset X of K has dp-rk(X) = dp-rk(K).

The proof that (1) implies (2) is straightforward: it follows directly from strong

minimality, o-minimality, or Section 2.3, depending on which case we are in.

Conversely, suppose (2) holds, and that K is a dp-finite field with LSP. If X ⊆ K

is infinite then dp-rk(K r X) < dp-rk(K), which means it must be finite by (2).

Thus, every subset of K is either finite or cofinite. Moreover, since dp-finite fields

have uniform finiteness (Dolich and Goodrick, 2015, Corollary 2.2), this is also true

of every field elementarily equivalent to K. Thus, if K is a dp-finite field with LSP,

it is strongly minimal, and hence algebraically closed.

So for the remainder of the section, we consider the case where (2) holds, K is

a dp-finite field in the language Lring without LSP, and M � K is a monster model.

Following Section 3.2, the set IK is an infinite type-definable subset of M such that

IK ∩K = {0}. Note that by (2), we have

IK = {ε ∈M : X ∩ (X + ε) is infinite for all infinite K-definable sets X}
= {ε ∈M : X ∩ (X + ε) has full dp-rank for all infinite K-definable sets X}.

The equivalence of these two definitions allows us to make a number of conclusions

that would be impossible otherwise.
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First, consider the following condition on definable bijections of M:

Definition 3.3.2. Let K � M be dp-finite structures and let f : M → M be a

definable bijection. We say that f is K-slight if, for every K-definable set X with

full dp-rank, X ∩ f(X) has full dp-rank.

By assumption (2), f : M → M is K-slight if and only if, for every infinite

K-definable set X, X ∩ f(X) is infinite. Consider the map f(x) = x + ε. If ε ∈ IK
then by definition X ∩ (X + ε) is infinite for all infinite K-definable sets X, so f is

K-slight. Conversely, if f is K-slight, then ε ∈ IK by definition, and so f(x) = x+ ε

is K-slight if and only if ε ∈ IK .

Now the rest of Section 3.1 of Johnson (2015) goes through without any changes,

so IK is closed under addition. Moreover, an analogue of Theorem 9.3.9 of Johnson

(2016) also follows:

Proposition 3.3.3. Let K be an ℵ1-saturated field of dp-rank d < ω without LSP in

Lring, and assume that every infinite definable subset of K has full dp-rank. Then the

family

N = {X −∞ X : X ⊆ K is infinite and K-definable}

determines a non-discrete group topology on (K,+). Moreover, the family

N ′ = {X −X : X ⊆ K is infinite and K-definable}

determines the same topology, and the same type-definable set IK.

Proof. By Proposition 3.2.2, N determines a non-discrete topology such that the map

x 7→ −x is continuous. The fact that IK is closed under addition then implies that

N determines a group topology.

To show that N and N ′ determine the same topology, we must show that for every

infinite definable set X, there exist Y and Z, both infinite and definable, such that

Y − Y ⊆ X −∞ X and Z −∞ Z ⊆ X −X. Set Z = X; clearly, X −∞ X ⊆ X −X.

Fix U = X −∞ X. Since IK is a group, if x, y ∈ IK then x − y ∈ IK ⊆ U .

Thus, IK − IK ⊆ U , and so by compactness, there exists a basic neighbourhood

Y of 0 such that Y − Y ⊆ U = X −∞ X. Thus N and N ′ determine the same

topology; the fact that they determine the same type-definable set IK follows from

taking intersections.
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Thus IK can also be written as

IK =
⋂
{X −X : X is K-definable and infinite}

= {ε ∈M : X ∩ (X + ε) is non-empty for all infinite K-definable sets X}.

We now have that IK satisfies properties (1) through (4) of Proposition 3.1.6.

Unfortunately, at this stage the argument becomes conjectural. To show (5), we want

to follow Section 4.1 of Johnson (2015), which begins with the following property:

Conjecture 3.3.4. Let K be an ℵ1-saturated field of dp-rank d < ω without LSP

in Lring, and assume that every infinite definable subset of K has full dp-rank. Let

X ⊆ K be a definable subset of K. Then ∂X ⊆ K is finite.

Johnson’s proof of this result relies on his assertion that in a theory T of dp-

minimal fields, the number of infinitesimal types over a model of T (that is, comple-

tions of the partial type defining IK) is bounded only by T (Johnson, 2015, Corollary

4.10). We have been unsuccesful in proving this conjecture without a bound on the

number of infinitesimal types, although we believe it can be done. With the conjec-

ture resolved, we could follow the same proof as (Johnson, 2015, Proposition 4.13) to

show that IK is closed under multiplication:

Proposition 3.3.5. Suppose K is an ℵ1-saturated field of dp-rank d < ω without

LSP in Lring, and assume that every infinite definable subset of K has full dp-rank.

If Conjecture 3.3.4 holds then the set of K-infinitesimals IK is closed under multipli-

cation.

We would then have that IK satisfies conditions (1) through (5) of Proposition

3.1.6. The next step in Johnson’s proof is to show that IK is the maximal ideal of a

valuation ring; then IK also satisfies condition (7), and so by Proposition 3.1.7, the

Johnson topology is a V-topology. Unfortunately, we do not yet have a proof of this

result for the dp-finite case, even with the assumption that Conjecture 3.3.4 holds.

However, some of the consequences follow from Proposition 3.3.5, including a partial

results towards a proof that K admits a henselian valuation.

Define R = {a ∈M : aIK ⊆ IK}; clearly, 0, 1 ∈ R. If a, b ∈ R then

(a+ b)IK = aIK + bIK ⊆ IK + IK = IK

and abIK ⊆ aIK ⊆ IK , so R is a ring. By the definition of R and the fact that IK is

closed under addition, IK is an ideal of R. Let IR be a maximal ideal containing IK .
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Then IR is prime, and so by the Chevalley Extension Theorem (Engler and Prestel,

2005, Theorem 3.1.1), there is a valuation ring O with maximal ideal m such that

R ⊆ O and m ∩R = IR ⊇ IK . Write v for the valuation corresponding to O.

Consider an expansion of M by a predicate for O; this expansion might not be

dp-finite, and so we want to obtain an approximation for O in Lring. The expansion

also might not be saturated, but by passing to an elementary extension of (M,O), we

may be able to use compactness in this expanded language to find an Lring-definable

set B such that IK ⊆ B ⊆ O. Assuming such a set B exists, consider the topology τ

generated by {rB+a : r, a ∈M}. If X is open with respect to the valuation topology,

it contains a ball, which we can write as rO + a; clearly rB + a ⊆ rO + a, and so τ

would be finer than the valuation topology. But importantly, τ would be uniformly

definable in Lring.

In the dp-minimal case, there is no need to distinguish between τ and the valuation

topology, because they are the same. However, even though we do not have equality,

we can still obtain a partial results towards a proof of the henselianity of the valuation

topology.

Consider the proof of Proposition 2.3.6. The only place that the valuation is

used is that the set of balls B(a, r) form a uniformly definable basis for the topology.

Replacing each instance of B(a, r) with rB + a, the proof follows identically. We

would then obtain the following generalization of Corollary 2.3.9:

Conjecture 3.3.6. Let M be a very saturated field of dp-rank d < ω without LSP

in Lring, and assume that every infinite definable subset of K has full dp-rank. Let

f : Mn → Mn be a finite-to-one definable function. Then for every set X ⊆ Mn (not

necessarily definable), if X has non-empty interior, then so does f(X).

Proof. (Assuming the existence of a definable set B with IK ⊆ B ⊆ O.) Since

X ⊆Mn has interior, it contains a product X ′ of sets of the form rB+ a. Then X ′ is

definable, and since dp-rk(rB + a) = d = dp-rk(M) for any a, r ∈ M with r 6= 0, we

have dp-rk(X ′) = nd. Then dp-rk(f(X ′)) = nd, and so f(X ′) has interior. It follows

that f(X) also has interior.

As observed in Section 2.3, this corollary is the main step in proving that the

corresponding topology is t-henselian. However, this is where the fact that τ is not

the valuation topology becomes a problem. Whether we follow Jahnke et al. (2017)

or Johnson (2015), at some point we need to consider a residue field Mw of some
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coarsening of the valuation induced by O. But since O is not definable, there is no

guarantee that Mw is dp-finite.

The missing steps towards a proof of Conjecture 3.3.1 are summarized below:

Question 3.3.7. Suppose K is an ℵ1-saturated field of dp-rank d < ω without LSP

in Lring, and assume that every infinite definable subset of K has full dp-rank.

1. Is it true that every definable set in K has finite boundary?

2. If so, let O be a valuation ring on M � K obtained via the Chevalley Extension

Theorem applied to R = {a ∈ M : aIK ⊆ IK}. Does there exist an Lring-

definable set B such that IK ⊆ B ⊆ O?

3. If so, let w be any coarsening of the valuation induced by O. Is Mw dp-finite

as an Lring-structure?
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3.4 The Stable Case

Throughout this section, let K be a sufficiently saturated dp-finite field. A recent

result of Halevi and Palaćın (Halevi and Palaćın, 2017, Proposition 7.2) shows that

if K is stable then K is algebraically closed. Conjecturally, if K is unstable as a pure

field, then K is either real closed or has a definable henselian valuation.

Recall that a field has LSP if, for every formula φ, exactly one of φ and ¬φ has

full dp-rank. The motivation for considering this property is clear in the previous

sections, specifically in Proposition 3.2.2. We make the following conjecture, which

explains the title of this chapter:

Conjecture 3.4.1. Suppose K is a dp-finite field in Lring = {+,−, ·, 0, 1}. Then K

has LSP if and only if K is stable.

In this section, we will show a weaker version of the conjecture that is dependent

on successful completions of the previous sections. More precisely, we assume the

following condition (∗∗):

Every dp-finite field without LSP is either real closed or has a definable

henselian valuation.

Theorem 3.4.2. Assume that every dp-finite field without LSP is either real closed

or has a definable henselian valuation. Then a dp-finite field in Lring has LSP if and

only if it is stable.

One direction of the theorem follows immediately from the condition (∗∗). If K is

stable, then it cannot have a definable ordering, so it cannot be real closed or have a

definable valuation. Hence, under the assumption of the theorem, it must have LSP.

The remainder of the section is dedicated to a proof of the other direction.

We begin by showing that finite extensions of fields with LSP also have LSP. This

is actually the only place where condition (∗∗) is used. We believe that the following

lemma is true without that assumption, but we do not have a proof at this time.

Lemma 3.4.3. Assume that every infinite dp-finite field without LSP is either real

closed or has a definable henselian valuation. Let L/K be a finite extension of fields

such that K is dp-finite and has LSP. Then L is dp-finite and has LSP in Lring.

Proof. Since L is interpretable in K, it must be dp-finite. Suppose it does not have

LSP. Then by assumption, it is either real closed or has a definable henselian valuation.
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But the real closure of K is only a finite extension of K if K is real closed itself, and so

if L is real closed then we must have K = L, contradicting the fact that K has LSP.

Similarly, if L has a definable henselian valuation ring O then K ∩ O will definable

in K, contradicting the fact that K has LSP. Thus, if K has LSP then L must also

have LSP.

Now we prove that LSP implies algebraically closed. To do this, we follow the

proof that superstable fields are algebraically closed (Cherlin and Shelah (1980), based

in turn on Macintyre (1971)). We assume throughout that the conclusion of Lemma

3.4.3 holds.

Lemma 3.4.4. (“Surjectivity Theorem”) Suppose K is an infinite dp-finite field with

LSP satisfying the conclusion of Lemma 3.4.3. Let G be either the additive or mul-

tiplicative group of K, and let h : G → G be a definable endomorphism. If ker(h) is

finite then im(h) = G.

Proof. Write H = im(h) ≤ G. Since ker(h) is finite, h is a finite-to-one map, and

so dp-rk(H) = dp-rk(G) = dp-rk(K) by Proposition B.3. Suppose there exists some

a ∈ G r H, and let A be the coset a + H or aH, depending on whether G is the

additive or multiplicative subgroup of K. In either case, A is a subset of K rH and

there is a definable bijection from H to A, so

dp-rk(K) = dp-rk(H) = dp-rk(A) ≤ dp-rk(K rH) ≤ dp-rk(K).

This clearly contradicts the fact that K has LSP, and so we must have G = H.

Definition 3.4.5. Let L/K be a Galois extension of prime degree q.

• We say that L/K is a Artin-Schreier extension if q = char(K) and L is generated

over K by a root of Xq −X − a for some a ∈ K.

• We say that L/K is a Kummer extension if q 6= char(K) and L is generated

over K by a root of Xq − a for some a ∈ K.

Lemma 3.4.6. Let K be an infinite dp-finite field with LSP satisfying the conclusion

of Lemma 3.4.3. Then K has no Artin-Schreier or Kummer extensions.

Proof. The fact that K has no Artin-Schreier extensions actually holds for all NIP

fields by Kaplan et al. (2011), but we prove it directly using Lemma 3.4.4 in order to

keep the proof self-contained.
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Suppose q = char(K) and h : K → K is the map h(x) = xq − x. This is clearly

an additive endomorphism with finite kernel, and so must be surjective by Lemma

3.4.4. It follows immediately that every polynomial of the form Xq − X − a has a

root in K, and so K is closed under Artin-Schreier extensions.

Suppose q 6= char(K) and h : K× → K× is the map h(x) = xq. This is clearly a

multiplicative endomorphism with finite kernel, and so must be surjective by Lemma

3.4.4. It follows immediately that every polynomial of the form Xq − a has a root in

K, and so K is closed under Kummer extensions.

If K contains qth roots of unity for some prime q, Artin-Schreier and Kummer

extensions are the only Galois extensions of degree q; see, for example, Exercise 14.7.9

and Proposition 37 of Dummit and Foote (2003).

Fact 3.4.7. Let L/K be a Galois extension of prime degree q, and suppose xq − 1

splits in K. Then L/K is either an Artin-Schreier extension or a Kummer extension.

Combining the above lemma and fact, we can now prove the main theorem of

this section. The proof below is based heavily on Theorem 1 of Cherlin and Shelah

(1980); another version of essentially the same proof can be found in Theorem 3.1 of

Poizat (1987).

Theorem 3.4.8. Suppose K is an infinite dp-finite field with LSP satisfying the

conclusion of Lemma 3.4.3. Then K is algebraically closed.

Proof. Assume for contradiction that there is an infinite dp-finite field with LSP

which is not algebraically closed. Since dp-finite fields are perfect (Johnson, 2015,

Observation 2.1), any finite algebraic extension of a dp-finite field is contained in a

finite Galois extension. Consider all pairs of fields (K,L) such that K is infinite,

dp-finite, and LSP, and L is a finite Galois extension of K. Choose such a pair (K,L)

with deg(L/K) = q minimal. We claim that q is prime and xq − 1 splits in K.

Suppose r is a prime factor of q, and let K ′ be the fixed field of an element of

order r in Gal(L/K). Since K ′/K is finite, K ′ is dp-finite and has LSP by Lemma

3.4.3, and so (K ′, L) is a pair as above with degree r. Thus, minimality of q implies

that r = q, and hence q is prime.

Now let L′ be the splitting field for xq − 1 over K. Then the degree of L′ over K

divides q − 1, so again by minimality of q we have K = L′.

Thus, L/K is either an Artin-Schreier or a Kummer extension, but K has no

proper Artin-Schreier or Kummer extensions. By contradiction, K must be alge-

braically closed.
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Corollary 3.4.9. Suppose K is an infinite dp-finite field with LSP satisfying the

conclusion of Lemma 3.4.3. Then the reduct of K to the language of rings is stable.

Proof. By the previous theorem, K is algebraically closed. It is a well-known fact

that in the language of rings, algebraically closed fields are stable. In fact, they are

strongly minimal by Corollary 3.2.9 of Marker (2002).

Combining this corollary with Lemma 3.4.3 completes the proof of Theorem 3.4.2.

The conjecture was stated only for fields in Lring, but it could have been stated more

generally, as the following questions are currently open:

Question 3.4.10. Is there an algebraically closed field K and an expansion L of Lring

such that the L-theory of K is stable, dp-finite, and does not have LSP?

Question 3.4.11. Is there an algebraically closed field K and an expansion L of Lring

such that the L-theory of K is unstable, dp-finite, and has LSP?

The most natural expansions of the above form involve adding an ordering (either

to K itself, to a definable subset of K, or a quotient of K) and a related topology. For

example, if T is ACVF, there is an ordering on the value group, and a topology on

the home sort. Similarly, if T is the theory of C with real and imaginary projections,

there is an ordering on R from which we obtain the usual Euclidean topology on C.

The ordering clearly makes these structures unstable, and the topology means they

do not have LSP, since the ball around 0 and its complement both have full dp-rank.

So the questions could be answered by finding a way to add an ordering without a

topology or a topology without an ordering, all while maintaining finite dp-rank.

As pointed out by the external examiner, the first question is likely false: one

should be able to fuse a trivial theory of an equivalence relation with two infinite

classes with an ACF. This would resulting in a structure of Morley rank 1 that is

strongly minimal, negatively answering the question.
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Chapter 4

IAC and VAC Fields

This chapter does not focus on dp-rank, but instead on the relationship between two

algebraic properties of fields.

Definition 4.0.1. We say that a field K is immediately algebraically closed (IAC) if,

for every non-trivial valuation v on K, Kv is algebraically closed and vK is divisi-

ble. Equivalently, K is immediately algebraically closed if its algebraic closure is an

immediate extension with respect to every non-trivial valuation.

We say that a field K is valuationally algebraically closed (VAC) if, for every

non-trivial valuation v on K, K is dense in its algebraic closure with respect to any

extension of v to Kalg. Explicitly, given any a ∈ Kalg, any valuation v on Kalg, and

any γ ∈ vKalg, there is an element b ∈ K with v(b− a) > γ.

These definitions are given in Hong’s doctoral thesis (Hong, 2013), where he sug-

gested VAC in particular may be useful as an intermediate step in proving the sta-

ble field conjecture. They were independently considered by Krupiński (2015), who

showed that every superrosy field of positive characteristic is IAC.

It is easy to see that every algebraically closed field is both VAC and IAC. In fact,

this is also true for every separably closed field (Engler and Prestel, 2005, Propo-

sition 3.2.11) and every pseudo-algebraically closed field (Fried and Jarden, 2008,

Proposition 11.5.3).

One curious difference between IAC and VAC is that the definition of IAC can be

made without specifying any valuations on Kalg, whereas VAC seems to depend on

ranging over all valuations of Kalg, not just on valuations on K. However, as we will

prove in Corollary 4.2.2, once a valuation v on K is fixed, either all extensions of v to

Kalg result in a dense embedding, or none do. For this reason, we will often say that
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K is dense in Kalg “with respect to v,” rather than the more accurate “with respect

to some extension of v to Kalg.”

Suppose K is VAC and fix a non-trivial valuation v on Kalg. Then for every

a ∈ Kalg, there is b ∈ K with v(a − b) > v(a). Clearly, this means that v(a) = v(b),

so vK = vKalg. Moreover, if v(a) = v(b) = 0 then a and b belong to the same residue

class of Kvalg, and so Kv = Kvalg. Thus, every VAC field is IAC.

In his thesis, Hong asked whether the converse also holds; that is, is every IAC

field also VAC (Hong, 2013, Question 5.6.8)? In Section 4.1, we give an example

that negatively answers the question. We also explore two situations in which the

equivalence holds with an additional assumption: if char(K) > 0 and K is Artin-

Schreier closed (in Section 4.1) and if every K ′ ≡ K is also IAC (in Section 4.2).
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4.1 Artin-Schreier Extensions

Throughout this section, we assume that K has characteristic p > 0. We want to

show that every Artin-Schreier closed IAC field is VAC. Recall that a polynomial of

the form Xp−X − a is called an Artin-Schrier polynomial and that a field extension

L/K is called an Artin-Schreier extension if L is generated over K by the root of

an Artin-Schreier polynomial over K. Note that Artin-Schreier extensions are always

Galois: they are clearly separable, and if θ is the root of an Artin-Schreier polynomial,

then the full set of roots is {θ, θ + 1, . . . , θ + p− 1}.
As observed previously, every VAC field is automatically IAC; we begin this sec-

tion by showing that every VAC field is closed under certain Artin-Schreier extensions.

These extensions are distinguished by their defect with respect to a particular valu-

ation.

Definition 4.1.1. Let N/K be a Galois extension, and fix a valuation v on N . Let

e = [vN : vK] and f = [Nv : Kv], and let r be the number of distinct valuations v′

on N with v′|K = v. The defect of (N, v)/(K, v) is the positive integer

d =
[N : K]

ref
.

The extension (N, v)/(K, v) is called a defect extension if d > 1, and defectless if

d = 1. See Section 3.3 of Engler and Prestel (2005) for more detail.

The defect plays an important role in the Galois theory of valued fields, but in

the case of Artin-Schreier extensions of IAC fields, it simply measures whether the

valuation extends uniquely. More precisely, if L is a proper Artin-Schreier extension

of an IAC field K then [L : K] = p and e = f = 1, so r = 1 if and only if d 6= 1.

Proposition 4.1.2. Suppose K is VAC, and fix a valuation v on K. Then (K, v)

has no Artin-Schreier defect extensions.

Proof. Suppose L = K(θ) is an Artin-Schreier defect extension of (K, v); then there is

a unique extension of v to L, which we also denote by v. By Lemma 2.30 of Kuhlmann

(2010), v(θ − c) < 0 for all c ∈ K, which means K is not dense in K(d). But K is

dense in Kalg, which means it must be dense in every algebraic extension of K; by

contradiction, no such L can exist.
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We will use this proposition along with the following fact to construct an example

of a field that is IAC but not VAC. In particular, we construct an IAC field with an

Artin-Schreier defect extension.

Fact 4.1.3. (Quigley, 1962, Theorem 1) Let K be a field and fix α ∈ Kalg. Let M be

a subfield of Kalg such that M is maximal with respect to the properties K ⊆M and

α /∈M . Then the following hold:

1. There exists a prime p such that [N : M ] is a power of p for every finite normal

extension N of M .

2. Either M is perfect or Kalg is a purely inseparable extension of M .

3. [M(α) : M ] = p and M(α) is a normal extension of M .

4. M contains all pth roots of unity.

Example 4.1.4. Let K be the algebraic closure of Fp, the finite field with p elements.

Since the only valuation on Fp is the trivial valuation, and algebraic extensions do not

increase the rank of the value group, the only valuation on K is the trivial valuation.

Then by Theorem 2.1.4 of Engler and Prestel (2005), every non-trivial valuation on

K(t) is either the degree valuation v∞ or an f -adic valuation for some irreducible

f ∈ K[t].

Let θ ∈ K(t)alg be a root of the Artin-Schreier polynomial Xp −X − t−1 and let

v be any extension of v∞ to K(t, θ). Note that v(θ) = −p−1 /∈ Z = v∞K(t), and so

[K(t, θ) : K(t)] = p = [vK(t, θ) : v∞K(t)]. Then, rearranging the formula for defect,

we have drf = 1; since all of these values are integers, r = 1, which means v∞ extends

uniquely from K(t) to K(t, θ).

By a straightforward Zorn’s Lemma argument, there is a subfield M of Kalg which

contains K and is maximal with respect to the property θ /∈M . By Fact 4.1.3, since

M(θ) is a separable extension of M , M is perfect and [N : M ] is a power of p for

every finite normal extension N of M . Then if c ∈Malg with cq ∈M for some prime

q 6= p, we must have c ∈ M ; for otherwise, M(c) would be a finite normal extension

of M with order divisible by q, and hence not a power of p. On the other hand, if

c ∈ Malg with cp ∈ M then we must have c ∈ M since M is perfect. Thus, for any

non-trivial valuation v on M , the value group is divisible.

Clearly, the degree valuation on K(t) has residue field K, which is algebraically

closed; any f -adic valuation has residue field K[t]/(f), which is an algebraic extension
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of K and hence equal to K. Since M is an algebraic extension of K(t), it follows that

the residue field Mv for any valuation v on M will also be equal to K. Thus, M is

immediately algebraically closed.

It remains to show that M is not valuationally algebraically closed. Fix any

extension v of v∞ to M . Since [M(θ) : M ] = p = [K(t, θ) : K(t)], M and K(t, θ)

are linearly disjoint, meaning any K(t)-linearly independent subset of K(t, θ) is also

linearly independent over M . Then, following the argument in Example 4.21 of

Kuhlmann (2010), the fact that v∞ extends uniquely from K(t) to K(t, θ) implies

that v extends uniquely form M to M(θ). Since M is immediately algebraically

closed, this extension of v to M(θ) must be a defect extension, and so by Proposition

4.1.2, M is not valuationally algebraically closed.

It turns out that Artin-Schreier extensions are the only way that an IAC field can

fail to be VAC. To prove this, we use the following result of Macintyre, McKenna,

and van den Dries:

Fact 4.1.5. (Macintyre et al., 1983, Lemma 7) Let (K, v) be a perfect henselian field

of positive characteristic such that

(a) Kv is algebraically closed,

(b) vK is divisible, and

(c) K is closed under Artin-Schreier extensions.

Then K is algebraically closed.

Consider a field K with two valuation rings O and O′. Recall that O′ is called

a coarsening of O if O ⊆ O′. In this case, O and O′ are dependent valuations, and

so by Theorem 2.3.4 of Engler and Prestel (2005), they induce the same topology.

Moreover, the set of coarsenings of O are linearly ordered by inclusion, since each

coarsening is determined by a convex subgroup of the value group. Determining

whether an IAC field is VAC depends only on the valuations that have a maximum

non-trivial coarsening, as the following lemma shows.

Lemma 4.1.6. Suppose K is an IAC field and O is a valuation ring on Kalg such

that the set of coarsenings of O has no maximum non-trivial element. Then K is

dense in Kalg with respect to the topology induced by O.
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Proof. Let v be the valuation induced by O. For each γ ∈ vK, let ∆γ be the smallest

convex subgroup of vK containing γ, and let Oγ be the coarsening of O corresponding

to ∆γ. Then the maximal ideal mγ of Oγ is a subset of Uγ = {a ∈ Kalg : v(a) > γ}.
Fix a ∈ Kalg, and note that a ∈ Oγ for all γ > |v(a)|. Then, since (Kalg,Oγ) is

an immediate extension of (K,Oγ ∩ K), for all γ > |v(a)| there exists bγ ∈ K such

that a− bγ ∈ mγ; in other words, v(a− bγ) > γ. Thus, for any a ∈ Kalg and γ ∈ vK
there exists b ∈ K with v(a− b) > γ, which means K is dense in (Kalg,O).

Combining this lemma with some facts about Artin-Schreier extensions, we obtain

the main result of the section.

Theorem 4.1.7. Suppose K is field of positive characteristic which is immediately

algebraically closed and Artin-Schreier closed. Then K is valuationally algebraically

closed.

Proof. Fix a valuation v on Kalg with valuation ring O. By the lemma, if there is

no maximal non-trivial valuation ring containing O, then K is dense in Kalg with

respect to v.

On the other hand, if there is a maximal non-trivial valuation ring containing O,

we may assume that this ring is equal to O since they induce the same topology on

Kalg. Then by (Engler and Prestel, 2005, Proposition 2.3.5), O has rank 1, which

means its value group vK is order isomorphic to a subgroup of the reals.

Let L be the completion of K (in the sense of Cauchy sequences) with respect to

v. As remarked on page 85 of Engler and Prestel (2005), the completion of every rank

1 valued field is henselian. Moreover, since K is IAC and L is an immediate extension

of K, we get that Lv = Kv is algebraically closed and vL = vK is divisible. Lastly,

L is perfect by Lemma 4.7 and closed under Artin-Schreier extensions by Lemma 4.8

of Kuhlmann (2010).

Thus, we may apply Fact 4.1.5 to obtain that L is algebraically closed. Since K

is dense in L, an algebraically closed field, it must also be dense in Kalg. Since this

holds for any choice of valuation v, K is valuationally algebraically closed.

Thus, if we can remove the possibility of K having Artin-Schreier extensions, IAC

and VAC are equivalent. One such case is that of NIP fields:

Corollary 4.1.8. Suppose K is an NIP field of positive characteristic. Then K is

immediately algebraically closed if and only if it is valuationally algebraically closed.
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Proof. Suppose K is NIP and immediately algebraically closed. By Kaplan et al.

(2011), every infinite NIP field is Artin-Schreier closed, so by the theorem, K is

valuationally algebraically closed. The converse always holds.

A more general converse to the theorem is still open. Below are two possible

extensions of the results of this chapter:

Question 4.1.9. Is it true that every VAC field of positive characteristic is Artin-

Schreier closed? If so, it would follow that a positive characteristic field is VAC if and

only if it is IAC and Artin-Schreier closed.

Question 4.1.10. Suppose K is an IAC field of positive characteristic such that for

any valuation v on K, K has no Artin-Schreier defect extensions. Does it follow that

K is VAC?
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4.2 Model Theory of IAC Fields

The previous section focused on IAC and VAC fields almost exclusively as algebraic

objects. In this section, we consider some basic model theoretic properties of these

fields. We begin with the proof that the density of (K, v) in its algebraic closure does

not depend on the extension of v to Kalg.

Proposition 4.2.1. The theory of valued fields that are dense in their algebraic clo-

sure is axiomatizable in Ldiv.

Proof. For each n, let σn be the formula

∀y0, . . . , yn−1 ∃d ∀a ∃x1, . . . , xn φn(y, d, a, x),

where φn states that f(x) = xn + yn−1x
n−1 + . . .+ y0 is irreducible and either:

• f(x) is not separable, or

• for each i 6= j, v(f(xi)) > v(a) and v(xi − xj) < v(d) (that is, each xi is

approximately equal to a root of f(x), and if d is chosen correctly, each xi
approximates a different root).

Let T be the union of the axioms for valued fields with {σn : n ∈ N}. We claim that

T is the desired axiomatization.

Suppose K is dense in its algebraic closure; if f(x) = xn + yn−1x
n−1 + . . . + y0 is

not separable then (K, v) |= σn. Otherwise, let {b1, . . . , bn} be the set of roots of f in

Kalg and choose d ∈ K so that v(bi− bj) < v(d) for all i 6= j. Then given any a ∈ K,

choose xi so that v(xi − bi) > max{0, v(a), v(d)}. Then

v(f(xi)) = v(xi − b1) + . . .+ v(xi − bn) > v(a)

and v(xi − bi), v(xj − bj) > v(d) > v(bi − bj), so

v(xi − xj) = v ((xi − bi) + (bi − bj) + (bj − xj)) = v(bi − bj) < d.

Thus, (K, v) |= σn for all n ∈ N, and hence (K, v) |= T .

Conversely, suppose K is not dense in (Kalg, v) for some extension of v to Kalg.

By Theorem 11.74 of Kuhlmann (2011), the separable closure Ksep of K is dense in
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its perfect hull, which is of course Kalg. Thus, since K is not dense in Kalg, it cannot

be dense in Ksep. Fix an element b ∈ Ksep such that sup{v(x− b) : x ∈ K} = γ <∞.

Choose y0, . . . , yn−1 so that f(x) = xn + yn−1x
n−1 + . . .+ y0 is the minimal poly-

nomial for b over K, any d ∈ K, and a ∈ K such that

v(a) > n ·max{γ, v(d)}.

(Such an a exists because K is dense in Kalg.) Since b ∈ Ksep, f(x) is separable; let

b = b1, . . . , bn be the set of roots of f(x). We claim that there are no x1, . . . , xn such

that (K, v) |= φn(y, d, a, x), and hence (K, v) 6|= σn.

Suppose for contradiction that there are. Then

v(f(xi)) = v(xi − b1) + . . .+ v(xi − bn) > v(a) > n ·max{γ, v(d)}.

Thus, for each i there exists η(i) such that v(xi − bη(i)) > max{γ, v(d)}. Since this

cannot occur for bη(i) = b by choice of γ, by the pigeonhole principle there must be

some i 6= j such that η(i) = η(j) = k. Then

v(xi − xj) = v((xi − bk)− (bk − xj)) ≥ min{v(xi − bk), v(xj − bk)} > v(d)

contradicting the assumption that v(xi − xj) < v(d) for all i 6= j. Thus, (K, v) 6|= T ,

and so T axiomatizes the theory of valued fields that are dense in their algebraic

closure.

Corollary 4.2.2. Let (K, v) be a valued field and v1, v2 extensions of v to Kalg. Then

(K, v) is dense in (Kalg, v1) if and only if it is dense in (Kalg, v2).

Proof. Since T from the previous proposition depends only on (K, v) and not on the

extension of v to Kalg, K is dense in (Kalg, v1) if and only if (K, v) |= T if and only

if K is dense in (Kalg, v2).

Discussing density in a first order way requires adding the valuation to the lan-

guage, as in the proposition above. In general, IAC and VAC are not first order

properties in the language of rings. For example, R is both IAC and VAC (Hong,

2013, Example 5.6.7), but the real closure of R(t) has a valuation with residue field

isomorphic to R, and hence is neither IAC nor VAC. One way to interpret this is

that R is only IAC because it is small; we can avoid cases like this by considering the

following strengthening of IAC:
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Definition 4.2.3. We say that a field K is strongly IAC if every field K ′ ≡ K (in

the language of rings) is IAC.

As mentioned in the previous section, Krupiński has shown that every superrosy

field of positive characteristic is IAC, and hence all such fields are strongly IAC. There

are other classes of fields, including supersimple fields and stable fields, that we might

hope are also all strongly IAC. This result appears easier to prove than the bolder

conjectures that supersimple fields are PAC and stable fields are separably closed,

and may be valuable as a stepping stone towards the full conjectures.

Theorem 4.2.4. Let K be a strongly IAC field, and fix a distinguished valuation ring

O of K. Then (K,O) is dense in its algebraic closure.

Proof. Consider a chain K = K0 � K1 � . . . of elementary extensions Kn = (Kn,On)

of K = (K,O) such that each Kn+1 is |vKn|+-saturated. Then K′ =
⋃
nKn is an

elementary extension of K with valuation ring O′ =
⋃
nOn. Moreover, since for each

n, Kn contains a realization of the partial type π(x) = {v(x) > v(a) : a ∈ Kn−1},
there is a proper convex subgroup ∆n < vKn which contains vKn−1.

Suppose O′ has a maximal proper overring O′′. Then there exists x ∈ K ′ such

that for all y ∈ K ′, there is n ∈ N such that v(y) < n·v(x). But if x ∈ K ′ then x ∈ Kn

for some n, and by assumption, there exists y ∈ Kn+1 ⊆ K ′ such that v(y) > n · v(x)

for all n ∈ N, and hence O′ has no maximal proper overring. Applying Lemma 4.1.6,

(K ′,O′) is dense in its algebraic closure, and hence by elementary equivalence, (K,O)

is dense in Kalg.

Corollary 4.2.5. Every strongly IAC field is VAC.

Proof. By the theorem, if K is strongly IAC then it is dense in its algebraic closure

with respect to every valuation, and hence is VAC.

Corollary 4.2.6. Every superrosy field of positive characteristic is VAC.

Proof. If K is superrosy of positive characteristic, then so is every K ′ ≡ K. By

Krupiński (2015), every such field is IAC. Thus K is strongly IAC, and so by the

previous corollary, K is VAC.

We conclude with some open questions related to IAC and VAC fields:

Question 4.2.7. (Hong, 2013, Question 5.6.10) Is every infinite stable field VAC?

By the results of this section, this is equivalent to asking: is every infinite stable field

IAC?
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Question 4.2.8. (Krupiński, 2015, Conjecture 2) Is every infinite superrosy field

with NIP either algebraically closed or real closed?

Question 4.2.9. (Hong, 2013, Question 5.6.11) Is every infinite stable VAC field

separably closed?

The second two questions could be generalized to the following:

Question 4.2.10. Under what additional assumptions is a VAC field PAC? Separably

closed? Algebraically closed?
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Appendix A

Valuations and Angular

Components

This appendix contains several facts about the relationship between valuations and

angular components. They should be familiar to anyone with an in-depth understand-

ing of valued fields, but we provide them here for the sake of completeness. They are

essential to several results in this thesis, particularly those in Chapter 2.

First, we observe that for an individual element the valuation and angular com-

ponent of an element are independent of each other, in the following sense.

Lemma A.1. Suppose (K, v) is a valued field. For every γ ∈ vK and r ∈ Kv×, there

exists a ∈ K with v(a) = γ and ac(a) = r.

Proof. Since the valuation and residue maps are surjective, there must exist b, c ∈ K
with v(b) = γ and c + m = r. For the same reason, there must be d ∈ K with

d + m = ac(b). Since r 6= 0, we must have v(c) = 0; similarly, since v(b) 6= ∞,

ac(b) 6= 0, and so v(d) = 0. Then take a = bcd−1. We have

v(a) = v(b) + v(c)− v(d) = γ + 0− 0 = γ

and

ac(a) = ac(b) ac(c) ac(d)−1 = ac(b)r ac(b)−1 = r

as desired.

The next two lemmas demonstrate how addition and subraction interact with

valuations and angular components.
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Lemma A.2. Suppose (K, v) is a valued field and a, b, c ∈ K×.

1. If v(a) < v(b) then v(a+ b) = v(a) and ac(a+ b) = ac(a).

2. If v(a) = v(b) then ac(a) 6= ac(b) if and only if v(a) = v(a− b).

3. If v(a) = v(b) and ac(a) 6= ac(b) then ac(a− b) = ac(a)− ac(b).

Proof. 1. From the definition, we have v(a+b) ≥ min{v(a), v(b)} = v(a). Suppose

v(a+ b) > v(a). Then

v(a) = v((a+ b)− b) ≥ min{v(a+ b), v(−b)} = min{v(a+ b), v(b)} > v(a)

which is impossible, so we must have v(a + b) = v(a). Moreover, since angular

component maps are multiplicative, we have

ac(a+ b) = ac(a) ac(a−1) ac(a+ b) = ac(a) ac(a−1a+a−1b) = ac(a) ac(1 +a−1b).

Note that v(a) < v(b) implies a−1b ∈ m, so ac(1 +a−1b) = 1 +m = ac(1), which

means ac(a+ b) = ac(a) ac(1) = ac(a).

2. Multiplying a and b by a constant if necessary, we may assume v(a) = v(b) = 0.

If ac(a) = ac(b) then

(a− b) + m = (a+ m)− (b+ m) = ac(a)− ac(b) = ac(b)− ac(b) = 0 + m,

which means a − b ∈ m, and hence v(a − b) > 0 = v(a). Conversely, suppose

ac(a) 6= ac(b). Then

0 + m 6= ac(a)− ac(b) = (a+ m)− (b+ m) = (a− b) + m

which means v(a− b) ≤ 0. But v(a− b) ≥ min{v(a), v(b)} = 0, and so we must

have v(a− b) = 0 = v(a).

3. As in (2), we may assume that v(a) = v(b) = 1. Since ac(a) 6= ac(b), we also

have v(a− b) = v(a) = 0 by (2). Then

ac(a− b) = (a− b) + m = (a+ m)− (b+ m) = ac(a)− ac(b)

as desired.
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Lemma A.3. Suppose (K, v) is a valued field and a, b, c ∈ K×.

1. If v(a− b) < v(c− b) then v(a− b) = v(a− c) and ac(a− b) = ac(a− c).

2. If v(a−b) = v(a−c) then ac(a−b) 6= ac(a−c) if and only if v(a−b) = v(c−b).

3. If v(a− b) = v(a− c) = v(c− b) then ac(a− c) = ac(a− b)− ac(c− b).

Proof. 1. We have v(a−c) = v((a−b)−(c−b)) = min{v(a−b), v(c−b)} = v(a−b).
Suppose for contradiction that ac(a− b) 6= ac(a− c). Then by Lemma A.2(2),

v(c− b) = v((a− b)− (a− c)) = v(a− b), contradicting our original assumption.

Thus, ac(a− b) = ac(a− c).

2. Since c − b = (a − b) − (a − c), this follows immediately from Lemma A.2(2)

with a and b replaced by a− b and a− c, respectively.

3. Since a− c = (a− b)− (c− b), by Lemma A.2(2) we have ac(a− b) 6= ac(c− b).
Then by Lemma A.2(3) we have

ac(a− c) = ac((a− b)− (c− b)) = ac(a− b)− ac(c− b)

as desired.
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Appendix B

Dp-rank

This appendix contains a number of facts about dp-rank that are used in the thesis,

often without citation. None of the results are new, but proofs of the results are

generally not included in the literature; we provide them here for the sake of com-

pleteness. We begin with a number of consequences of Facts 1.4.2 and 1.4.3 that are

fundamental to the usefulness of dp-rank as a notion of dimension.

Proposition B.1. Let M be a sufficiently saturated model of some theory T , and let

X and Y be type-definable with parameters from some small set A ⊆M .

1. dp-rk(X) = supx∈X(dp-rk(x/A))

2. dp-rk(c/A) = 0 if and only if c is algebraic over A

3. dp-rk(X) = 0 if and only if X is finite

4. dp-rk(X ∪ Y ) = max{dp-rk(X), dp-rk(Y )}

5. dp-rk(X × Y ) = dp-rk(X) + dp-rk(Y )

Proof. 1. By definition, dp-rk(X) is the supremum of the depths of randomness

patterns for X. By Fact 1.4.2, there is a randomness pattern of depth κ if and

only if dp-rk(x/A) = κ for some x ∈ X. Thus, dp-rk(X) = supx∈X(dp-rk(x/A)).

2. Suppose c ∈ acl(A). If I is indiscernible over A then I is also indiscernible

over acl(A); in particular, I is indiscernible over the finitely many realizations

of tp(c/A). Then by Fact 1.4.2 again, there is no randomness pattern of depth

1 for tp(c/A). In other words, dp-rk(c/A) = 0.
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Conversely, suppose c /∈ acl(A) and enumerate infinitely many elements of

tp(c/A) as (ci)i<ω. Then the formula “x = y” with the sequence (ci)i<ω forms

a randomness pattern of depth 1 for tp(c/A), and hence dp-rk(c/A) 6= 0.

3. This follows immediately from (1), (2), and the fact that X is finite if and only

if every x ∈ X is algebraic over A.

4. We have

dp-rk(X ∪ Y ) = sup
x∈X∪Y

(dp-rk(x/A))

= max

{
sup
x∈X

(dp-rk(x/A)), sup
x∈Y

(dp-rk(x/A))

}
= max{dp-rk(X), dp-rk(Y )}.

5. Suppose x ∈ X and y ∈ Y . Then dp-rk(x, y/A) ≤ dp-rk(x/Ay) + dp-rk(y/A)

by Fact 1.4.3; taking suprema, we obtain

sup
(x,y)∈X×Y

(dp-rk(x, y/A)) ≤ sup
x∈X

(dp-rk(x/Ay)) + sup
y∈Y

(dp-rk(y/A)).

By (1), this is exactly

dp-rk(X × Y ) ≤ dp-rk(X) + dp-rk(Y ).

For the reverse inequality, suppose that we have a pair of randomness pat-

terns (φα(x, zα), cα)0≤α<κ and (φα(y, zα), cα)κ≤α<κ+λ for X and Y , respectively.

Then, taking ψα(x, y, zα) to be φα with an extra dummy variable, the array

(ψα(x, y, zα), cα)0≤α<κ+λ is a randomness pattern for X × Y . Thus, we have

dp-rk(X × Y ) ≥ κ+ λ, and taking suprema again,

dp-rk(X × Y ) ≥ dp-rk(X) + dp-rk(Y ).

Dp-rank also behaves nicely with respect to definable functions. Before proving

those results, we need a lemma about interaglebraic tuples.

Lemma B.2. Suppose x and y are tuples that are interalgebraic over some set A,

that is y ∈ acl(Ax) and x ∈ acl(Ay). Then dp-rk(x/A) = dp-rk(y/A).
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Proof. From the definition of dp-rank, it is clear that dp-rk(y/A) ≤ dp-rk(x, y/A).

Then by sub-additivity and Proposition B.1(2),

dp-rk(y/A) ≤ dp-rk(x, y/A) ≤ dp-rk(x/Ay) + dp-rk(y/A) = dp-rk(y/A),

and so dp-rk(y/A) = dp-rk(x, y/A). But by a symmetric argument, we also have

dp-rk(x/A) = dp-rk(x, y/A); thus, equality holds as desired.

Proposition B.3. Suppose f : X → Y is a definable function, with X and Y type-

definable. Let A be a set of parameters over which f , X, and Y are all defined.

1. If f is surjective then dp-rk(X) ≥ dp-rk(Y )

2. If f is finite-to-one then dp-rk(X) ≤ dp-rk(Y )

3. If f is a bijection then dp-rk(X) = dp-rk(Y )

Proof. 1. We use the mutually indiscernible sequences definition of dp-rank. As in

the definition, fix any set of mutually indiscernible sequences over A and y ∈ Y
such that none of the sequences are indiscernible over Ay. Fix any x ∈ X with

f(x) = y. Then the sequences are also not indiscernible over Ax, simply by

replacing y with f(x) in any formula. Thus,

dp-rk(X) = sup
x∈X

dp-rk(x/A) ≥ sup
y∈Y

dp-rk(y/A) = dp-rk(Y ).

2. Because f is finite-to-one, every x ∈ X is interalgebraic with f(x). Thus, by

the lemma,

dp-rk(X) = sup
x∈X

dp-rk(x/A) = sup
y∈im(f)

dp-rk(y/A) ≤ dp-rk(Y ).

3. This follows immediately from (1) and (2).

Dp-rank can also be used as a sort of independence notion for tuples in dp-finite

structures, by defining a tuple to be independent if it has full dp-rank. This is not

a particularly robust notion of independence (among other things, it does not satisfy

the exchange property), but it does at least satisfy the hereditary property: if a tuple

a is independent then every subtuple of a is independent over the other elements.
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Proposition B.4. Suppose M is a structure of dp-rank d < ω. Suppose (a1, . . . , an)

has dp-rank nd over some parameter set S. Then for all permutations σ of {1, . . . , n}
and all 1 ≤ m < n, we have

dp-rk(aσ(1) . . . aσ(m)/aσ(m+1) . . . aσ(n)S) = md

Proof. Rearranging the tuple if necessary, we may assume σ is the identity map. Then

by sub-additivity of dp-rank,

nd = dp-rk(a1 . . . an/S)

≤ dp-rk(a1 . . . am/Sam+1 . . . an) + dp-rk(am+1 . . . an)/S)

≤ md+ (n−m)d

≤ nd

so we must have equality, and the result follows.

Recall that a partial type π(x) has dp-rank r if and only if it contains an element of

dp-rank r. We conclude this appendix with a result giving a bound on the saturation

of a model M required to deduce that the element witnessing dp-rk(π) is an element

of M .

Proposition B.5. Suppose M is an ℵ1-saturated structure, S ⊆M is at most count-

able, and π(x) is a type over S of dp-rank r < ω. Then there exists b ∈M such that

M |= π(b) and dp-rk(b/S) = dp-rk(π).

Proof. Let N be a very saturated elementary extension of M and let a ∈ N be a

realization of π(x) such that dp-rk(a/S) = dp-rk(π), and choose a set {I1, . . . , Ir}
of sequences as in the mutually indiscernible sequences definition of dp-rank. That

is, the sequences are mutually indiscernible over S, but none of the sequences are

indiscernible over Sa. For each t < r, let φt(x, y) be a formula with parameters in S

such that M |= φt(a, ct) and M |= ¬φt(a, dt) for some finite subsequences ct, dt ⊆ It.

Write ai,j for the jth element of the sequence Ii. By saturation of M , there exist

(b1,0, . . . , br,0) in M such that

tp(b1,0 . . . br,0/Sa) = tp(a1,0 . . . ar,0/Sa).
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Then, there exist (b1,1, . . . , br,1) in M such that

tp(b1,0b1,1 . . . br,0br,1/Sa) = tp(a1,0a1,1 . . . ar,0ar,1/Sa).

Continuing in this manner, we obtain sequences I ′t = (bt,i)i<ω in M that we claim are

mutually indiscernible over S but that are not indiscernible over Sa.

Suppose ψ(y) is a formula with parameters in Sa, e is a finite subset of I1∪ . . .∪Ir,
and e′ is the corresponding finite subset of I ′1 ∪ . . . ∪ I ′r. Then by choice of I ′t,

N |= ψ(e)⇔ N |= ψ(e′).

In particular, this means that the sequences must be mutually indiscernible over S,

since a witness for {I ′1, . . . , I ′r} failing to be mutually indiscernible would also be such

a witness for {I1, . . . , Ir}. Moreover, it means

N |= φt(a, c
′
t) ∧ ¬φt(a, d′t)

and so none of the sequences are indiscernible over Sa.

Now, consider the partial type

π′(x) = π(x) ∪ {φt(x, c′t) ∧ ¬φt(a, d′t) : 0 ≤ t ≤ r}.

This partial type is realized by a, so it is consistent, and has countably many parame-

ters, namely S and a finite subset of the indiscernible sequences. Thus, by saturation

of M , there is some b ∈ M that realizes π′(x). But then b is a realization of π(x)

such that I ′t is not indiscernible over Sb for any t, and so dp-rk(b/S) = r = dp-rk(π),

as desired.
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