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Abstract

Source coding, a central concept in information theory, is the study of encoding and

decoding data. Depending on the topological structure of the coding system, i.e. how

the sources are connected with encoders, different rate distortion functions are used.

In this thesis two different encoding schemes—distributed and decentralized—are

discussed and compared with a benchmark (centralized) coding structure. Specifi-

cally, all structures for two and three sources are discussed and a special case for

the multi-source (more than three sources) is calculated. This work gives a pathway

to characterize the generalized multiterminal source coding systems by finding the

difference in the rate distortion limits from the optimal centralized coding system. It

is shown that in specific cases, some decentralized systems can achieve the Shannon

lower bound in a high resolution regime.
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Chapter 1

Introduction

1.1 Literature Review

Source coding, a central method in information theory, was rigorously developed

to find mathematical models for data compression (Shannon, 1948). Today, source

coding has three main frameworks: centralized, decentralized, and distributed.

Centralized source coding refers to a encoder-decoder scheme where all sources are

received by a central encoder, which jointly encodes the sources. This is considered

the optimum setup when sources are correlated because the encoder can model the

dependent information (Shannon, 1948).

Distributed source coding (DSC) is a modelling framework that compresses mul-

tiple correlated sources separately. DSC’s main advantage is transferring computa-

tional load from the encoder to the decoder side. Slepian and Wolf (1973) first showed

that two correlated sources could efficiently be reconstructed provided a joint decoder

was used. If joint encoding is unfeasible or there are computational constraints at

the encoder level, DSC should be considered. For example, two satellites unable
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to communicate with each other can independently send images to earth where a

joint decoder, unconstrained by computational stress or power, can receive the source

(Aljohani et al., 2016). Later, Cover (1975) extended the work done by Slepian and

Wolf to the multiterminal system.

Decentralized source coding refers to the framework in which some combination

of sources are jointly encoded and some are not. Particularly, decentralized source

coding with three sources was studied by Chen et al. (2007) and Wang and Chen

(2013). This type of scheme is discussed throughout the thesis and will be compared

with the optimal coding scheme, centralized.

Within these coding frameworks lies two different methods for constructing the

encoders: direct and indirect. Direct source coding assumes the sources are perfectly

observed by the encoders without noise, while indirect assumes the sources are cor-

rupted by some independent noise. Direct multiterminal source coding is an extension

of Slepian and Wolf (1973) and has a tight inner bound for the distortion rate region

referred to as the Berger-Tung bound (Berger, 1978). This thesis considers only the

direct version, however much work has been done for the indirect case. The pivotal

paper by Oohama (1997) who took advantage of Shannons entropy power inequal-

ity, led to important advances in the general indirect scalar Gaussian multiterminal

source coding (GMSC) problem. In fact, Oohama’s paper was the starting point for

a complete characterization of the rate region of the scalar Gaussian CEO problem,

a special case of GMSC. However, in a vector scenario, Oohama’s methods can be

unsuitable as shown in Wang and Chen (2013) and Wang and Chen (2014).

In the general case for multiterminal source coding, Chen et al. (2007) further ex-

plored the sum rate distortion function. Showing that a centralized systems rate

2
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distortion can be matched by ostensibly weaker decentralized ones. Chen et al.

(2007) presented a novel graphic approach to investigate generalized multiterminal

source coding systems and highlighted the role of shared inputs of different encoders.

Through the use of Gaussian Markov networks (GMN) or a Gaussian Markov ran-

dom field (GMRF) the effect of shared inputs on GMSC was highlighted and the

sum-rate of the Berger-Tung scheme could match the Shannon lower bound under

certain conditions.

1.2 Contribution and organization

In this thesis, a pathway is given to characterize the rate distortion limit of general-

ized multiterminal source coding by comparing it to a corresponding special source

coding system with a centralized encoder. Eventually, the Shannon lower bound is

obtained by optimizing the rate distortion function subject to some criterion. How-

ever, for some complex systems, the source coding problem can not be transformed

into an optimization problem. In addition to this, some times even when the equiv-

alent optimization form is found, a closed form of the solution is not obtainable or

unfeasible. There are three common distortion criteria: distortion matrix criterion,

vector distortion criterion, and sum distortion criterion. This thesis will only consider

the sum distortion criterion, where the trace of the covariance matrix is bounded by

some constant, D. Different coding systems with 2 sources, 3 sources and L sources

are discussed separately. Surprisingly, it is found that some source sharing coding

systems with non-centralized encoders can be as powerful as a centralized version.

The rest of the paper is organized as follows, the next two sections of Chapter 1

introduce the rate distortion problem and graphical models. In Chapter 2 a formal

3
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statement of the problem is presented. The two-sources source coding and three-

sources case are then discussed in Chapter 3. Following that, another section in

Chapter 3 shows two special cases of the generalized multiterminal coding systems

with L sources. Finally, some discussion is made in Chapter 5.

1.3 Rate Distortion

1.3.1 Rate Distortion Theory

In this section, we will address a fundamental problem of information theory, rate dis-

tortion. More details and proofs can be found in Cover and Thomas (2006). Suppose

we want to represent a continuous random variable by a sequence of bits, infinite bits

will be required. Hence, if finite bits are used, distortion is inevitable. From this ex-

ample, the rate distortion theory can be stated as an optimization problem. Based on

the distribution of sources and a distortion measure, at a given rate, what is the min-

imum expected distortion achievable? The problem can also be stated in a different

but equivalent way, for a fixed distortion, what is the minimum rate description.

1.3.2 Gaussian Source

When the source is normally distributed, N (0, σ2), the rate distortion function with

a squared distortion function is

R(D) =


1
2

log σ2

D
, 0 ≤ D ≤ σ2

0, D > σ2

. (1.1)

4
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When there are L sources with a multivariate normal distribution, N (µ,Σ), the rate

distortion function is

R(D) = min
D

1

2
log
|Σ|
|D|

subject to: 0 � D,

tr(D) ≤ Ld,

(1.2)

where Σ is the covariance matrix, D is a symmetric and semi-positive matrix called

the distortion matrix which is different for coding systems with different structures,

and d is a positive constant close to zero.

1.4 Graphical models

The purpose of this section is to introduce the Probabilistic Graphical Model (PGM),

which is a graph-based representation. It allows us to compactly express the condi-

tional dependence structure of a joint distribution over a high-dimensional space.

More details can be found in the book of Koller and Friedman (2009).

1.4.1 Gaussian Markov Network

One important Probabilistic Graphical Model is called Markov Network, also known

as Markov Random Field (MRF). It is an undirected graphical model where the in-

teraction between variables is not directed. A node in a Markov Field represents a

random variable and an edge in a Markov Field shows the conditional dependence

between the two corresponding random variables. Specifically, when the joint distri-

bution is a multivariate Gaussian distribution, a Markov Network is called a Gaussian

5
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Markov Network (GMN).

Assume a set of n random variables X = {X1, X2, · · · , Xn} are jointly multivari-

ate Gaussian distributed with a density function:

p(x) =
1

(2π)n/2
|Σ|−1/2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
, (1.3)

where µ is the mean vector with dimension 1 × n and Σ is the covariance matrix.

The inverse of Σ is called the information matrix which is Θ = Σ−1. The information

form of the exponential part can then be expressed as:

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
(x− µ)TΘ(x− µ)

= −1

2

xTΘx︸ ︷︷ ︸
scalar

− 2xTΘµ︸ ︷︷ ︸
scalar

+µTΘµ︸ ︷︷ ︸
scalar

 . (1.4)

The last term does not contain any variables i.e. a constant, therefore it can be seen

that the density function is proportional to the first two terms and can be further

expressed in so called information form:

p(x) ∝ exp

[
−1

2
xTΘx + (Θµ)Tx

]
. (1.5)

In this form Θ needs to be a positive semi-definite matrix in order to define a valid

Gaussian distribution. For the multivariate Gaussian distribution, the covariance ma-

trix reveals independence and the information matrix shows conditional independence

between variables.

Theorem 1: Xi and Xj are independent if and only if σij = 0.

Theorem 2: p(x) |= (Xi ⊥ Xj|X − {Xi, Xj}) if and only if θij = 0.

6
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Based on Theorem 2, one can see that the information form induces a pairwise

Markov network, where if θjk = θkj = 0, then there is no edge between Xj and Xk.

1.5 A combinatorial Problem

Consider a set B = {1, 2, · · · , L}, where L is a positive integer. A1,A2, · · · ,Ak are

k nonempty subsets of set B (here k is not fixed). If A1 ∪ A2 ∪ · · ·Ak = B and

Ai 6⊂ Aj for all i and j, then we say that A
∆
=
{

A1,A2, · · · ,Ak

}
is a set cover of B

(i.e, a family of nonempty subsets of B whose union contains B itself).

Among all set covers of B, some of them are isomorphic to each other via index

relabeling. For example, when B = {1, 2, 3}, set cover
{
{1, 2}, {3}

}
and set cover{

{1, 3}, {2}
}

are isomorphic. Here the combinatorial problem can be stated as: given

a set B, how many non-equivalent set covers can be found?

When L is small, the answer is straightforward. For instance, when L = 2, there

are only two non-equivalent set covers which are
{

1, 2
}

and
{
{1}, {2}

}
, when L = 3,

there are five non-equivalent set covers:

{
{1}, {2}, {3}

}
,{

{1, 2}, {3}
}
,{

{1, 2}, {2, 3}
}
,{

{1, 2}, {2, 3}, {1, 3}
}
,{

1, 2, 3
}
.

When L increases, the number of non-equivalent set covers quickly increases, for

L = {1, 2, 3, 4, 5, 6, 7, · · · }, the corresponding number of set covers = {1, 2, 5, 20, 180, 16143,

7
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489996795, · · · }. Consider a generalized multiterminal source coding system with L

sources and K encoders, where each source is connected with at least one encoder

and each encoder observes a nonempty subset of sources. Clearly, the number of

inequivalent possible source coding topological structures is the sequence discussed

above.

8



Chapter 2

Problem statement and

preliminaries

A formal statement of the central problem is given in this chapter and some previous

results will be shown after. To begin with, we consider a generalized multiterminal

source coding system of L correlated Gaussian sources XL = {X1, X2, · · · , XL} which

is an L dimensional random vector. The variance covariance matrix of XL is denoted

by Σ and the inverse of variance covariance matrix is called information matrix de-

noted by Θ. This coding system is shown in Figure 2.1, L Sources are observed by K

encoders and then separately compressed and represented by bits. After compression,

data are forwarded to a central decoder and are jointly reconstructed in this step.

It is worth mentioning that each encoder is allowed to observe a nonempty subset

of sources, and each source is observed by at least one encoder and can be observed

by multiple encoders at the same time. Thus, after connecting sources and encoders,

we can achieve a bipartite graph. The number of non-equivalent bipartite graphs is

the sequence found in Section 1.5. When the number of sources is two or three, we

9
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can find two or five non-equivalent source coding systems respectively which will be

discussed in details in Chapter 3. Throughout this work, all the data compressed

by different encoders will be forwarded to a centralized information processing center

(decoder) which attempts to reconstruct the remote source XL.

Figure 2.1: Generalized multiterminal source coding system with L sources and K

encoders.

The rate distortion function of this coding system is given in Equation 1.2, in

which the distortion criteria is a trace constraint called the sum distortion criteria,

tr(D) ≤ Ld, i.e the trace of the distortion matrix must not exceed a prescribed

10
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positive number. The equivalent trace constraint can be expressed as

0 � D =



εd1 .. . . . ..

.. εd2 . . . ..

...
...

. . .
...

.. .. . . . εdL


(2.1)

where the diagonal elements have to satisfy ε(d1 + d2 + · · · + dL) ≤ Ld and ε and d

are both small enough (i.e, close to zero) and non-negative.

A special case of this generalized multiterminal source coding system is shown

in Figure 2.2 where there is only one centralized encoder which can simultaneously

observe all sources XL = {X1, X2, · · · , XL}. Intuitively, the centralized encoder can

gather all the information about the input sources completely, namely, it can not

only observe each source but also the information between them, like correlation.

Therefore, we can state that the source coding system with a centralized encoder is

the most powerful among all the possible coding topological structures which means

its’ rate distortion function (R(D){X1,X2,··· ,XL} = minD
1
2

log |Σ||D|) is the smallest with

a diagonal distortion matix

D =



εd1

εd2

. . .

εdL


(2.2)

which can be found in this paper Chen et al. (2007).

11



M.Sc. Thesis - Xiaolan Tu McMaster - Mathematics & Statistics

Figure 2.2: Centralized source coding system with L sources.

Apparently, in order to minimize 1
2

log |Σ||D| , |D| needs to be maximized subject to

a lower bound of the distortion matrix and an upper bound of its trace (tr(D) ≤ Ld)

which is expressed in (2.3)

max |D| = max εL
L∏
i=1

di

subject to: 0 � D⇒ di is nonnegative for i = 1, 2, · · · , L ,

tr(D) = ε
L∑
i=1

di ≤ Ld,

(2.3)

where ε is a small non-negative constant. It can be proved that the product is

maximized if and only if each entry is equal to each other. A brief argument is

12
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given here: suppose any pair di and dj are different and let dm be their arithmetic

average so that di + dj = 2dm and di = dm + c, dj = dm − c for some c 6= 0. Consider

the product we have:

di × dj = (dm + c)(dm − c) = d2
m − c2 < d2

m, (2.4)

which means one can maintain the overall sum but increase the overall product by

replacing di and dj by dms. Therefore the determinant is maximized when all diagonal

entries equal to each other which is εd1 = εd2 = · · · = εdL = d. Thus the rate

distortion for this source coding system with a centralized encoder is

R(D){X1,X2,··· ,XL} =
d→0

1

2
log
|Σ|
dL

. (2.5)

Specifically, when there are two sources (i.e, L = 2), the rate distortion function is

R(D){X1,X2} =
d→0

1

2
log
|Σ|
d2
, (2.6)

and when there are three sources (i.e, L = 3), the rate distortion function is

R(D){X1,X2,X3} =
d→0

1

2
log
|Σ|
d3
. (2.7)

Consider this most powerful coding system as a benchmark, we would like to find what

is the differences between any other source coding systems with different encoder

structures (non-centralized) in the value of rate distortion functions which can be

13
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mathematically expressed as

lim
ε→0

R(D)non-centralized encoders −R(D)centralized encoder

ε2
. (2.8)

It is worth mentioning that both R(D)non-centralized encoders and R(D)centralized encoder

approach zero when ε is small enough, thus

lim
ε→0

R(D)non-centralized encoders −R(D)centralized encoder

does not imply anything valuable because it is always zero. One can find that

R(D)non-centralized encoders −R(D)centralized encoder = O(ε2),

where O(ε2) means the order of this difference about ε is two. Therefore, finding the

difference in (2.8) is meaningful.

14



Chapter 3

Generalized Gaussian

Multiterminal Source Coding

In this chapter, we will discuss coding systems with two (X1 and X2), three (X1,

X2 and X3) and multiple (L) sources. The process of source coding are the same

as mentioned before, encoded by encoders and decoded by a central decoder. In

generalized multiterminal source coding, it is important to know that inputs can be

shared by different encoders. There are two non-equivalent coding systems for two

sources and five for three sources. Using the centralized encoder system as a reference,

differences between this reference and other non-centralized encoder systems will be

found.

3.1 The Two-Source Case

Assume the joint distribution of X1 and X2 is multivariate normal distribution with

mean vector µ = [µ1, µ2]T , variance covariance matrix Σ, and information matrix Θ,

15
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where

Σ =

σ11 σ12

σ12 σ22

 , Θ = Σ−1 =

θ11 θ12

θ12 θ22

 (3.1)

and entries in Θ are nonzero. The Markov network of X1 and X2 is shown here

Figure 3.1: The Markov network of X1 and X2.

where there is an edge connecting X1 and X2 because off-diagonal entry θ12 in infor-

mation matrix is nonzero. Figure 3.2 shows a source coding system with the most

powerful encoder which can observe two sources X1 and X2 simultaneously. Encoder

1 encodes the sources and forwards the compressed data R1 to a central decoder

where data is reconstructed and the output X̂1 and X̂2 are generated.

Figure 3.2: One encoder which observes X1 and X2 simultaneously.

Figure 3.3, the source coding system with the least powerful encoders which is

16
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called distributed source coding, observe two sources X1 and X2 individually. Sources

are encoded by Encoder 1 and Encoder 2 to compressed data R1 and R2. They are

further forwarded to a central decoder which decodes the data generates the output

X̂1 and X̂2. The edge between X1 and X2 in the Markov network is not observed by

this distributed encoding setup.

Figure 3.3: Two encoders which observe X1 and X2 individually.

The rate distortion function for this distributed coding system which can be found in

the paper of A. B. Wagner and Viswanath (2008) is

R(D){X1},{X2} =
d→0

min
1

2
log
|Σ|
|D|

subject to: 0 � D = (Θ + A−1
1 )−1,

tr(D) ≤ 2d,

(3.2)

where D is the distortion matrix and A1 is the noise covariance matrix

0 � A1 =

a11 0

0 a22

 . (3.3)

17
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By rearranging D, we have

D =
(
Θ + A1

−1
)−1

=
(
A1
−1 + Θ

)−1

=
[
A1
−1
(
I + A1Θ

)]−1

=
(
I + A1Θ

)−1
A1.

(3.4)

According to Sherman/Morrison formula, one can further expand this inversion:

(3.4) =
[
I−A1Θ +

n=∞∑
n=2

(−1)n
(
A1Θ

)n]
A1

= A1 −A1ΘA1 +
n=∞∑
n=2

(−1)n
(
A1Θ

)n
A1.

(3.5)

Then substituting Θ (3.1) and A1 (3.3) into (3.5), we have

D =

a11 0

0 a22

−
a11 0

0 a22


θ11 θ12

θ12 θ22


a11 0

0 a22

+O(A1
3)

=

a11 0

0 a22

−
 a2

11θ11 a11a22θ12

a11a22θ12 a2
22θ22

+O(A1
3)

=

a11 − a2
11θ11 +O(a3) −a11a22θ12 +O(a3)

−a11a22θ12 +O(a3) a22 − a2
22θ22 +O(a3)

 ,

(3.6)

where O(A1
3) means the absolute-value of the error (the error when D is estimated

by the first two terms in Equation 3.6) is at most some constant times A1
3, O(a3)

has a similar meaning. As shown in (3.2), in order to minimize log |Σ||D| , |D| needs

to be maximized subject to the trace constraint: tr(D) ≤ 2d. The equivalent trace

18
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constraint can be expressed as

D =

εd1 ..

.. εd2

 , (3.7)

where d1ε+ d2ε ≤ 2d. Based on (3.6) and (3.7), we can get an equation

a11 − a2
11θ11 +O(a3) −a11a22θ12 +O(a3)

−a11a22θ12 +O(a3) a22 − a2
22θ22 +O(a3)

 =

εd1 ..

.. εd2

 , (3.8)

where the corresponding diagonal entries are equal

aii − a2
iiθii +O(a3) = εdi, i = 1, 2. (3.9)

The solution of this quadratic equation is

aii =
1±

√
1− 4θii [εdi −O(a3)]

2θii

=
1±

√
1 + 4θii [−εdi +O(a3)]

2θii
, i = 1, 2.

(3.10)

As ε approaches 0, εdi also approaches 0. Therefore the left hand of (3.9) reaches 0

at the same time, that is

lim
ε→0

εdi = lim
ε→0

(
aii − a2

iiθii +O(a3)
)

= 0. (3.11)

One conclusion can be drawn from (3.11) which is

lim
ε→0

aii = 0. (3.12)
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Thus, there is only one solution for aii which is

aii =
1−

√
1 + 4θii [−εdi +O(a3)]

2θii
, i = 1, 2. (3.13)

The Taylor series expansion of
√

1 + x is given by

√
1 + x = 1 + x

1

2
− x2 1

8
+
∞∑
n=3

xn(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2
, (3.14)

similarly, we can find the Taylor expansion of
√

1 + 4θii [−εdi +O(a3)] which is

√
1 + 4θii [−εdi +O(a3

i )] = 1 + 4θii
[
−εdi +O(a3)

] 1

2
−
{

4θii
[
−εdi +O(a3)

] }2 1

8

+
∞∑
n=3

{
4θii

[
−εdi +O(a3)

] }n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2

= 1 + 2θii
[
−εdi +O(a3)

]
− 2θ2

ii

[
−εdi +O(a3)

]2
+
∞∑
n=3

{
4θii

[
−εdi +O(a3)

] }n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2
.

(3.15)

After substituting the expansion back into (3.13), we have

aii =
1

2θii

{
1− 1− 2θii

[
−εdi +O(a3)

]
+ 2θ2

ii

[
−εdi +O(a3)

]2
−
∞∑
n=3

{
4θii

[
−εdi +O(a3)

]}n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2

}

=
[
εdi −O(a3)

]
+ θii

[
−εdi +O(a3

i )
]2

− 1

2θii

∞∑
n=3

{
4θii

[
−εdi +O(a3)

] }n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2
.

(3.16)
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Consider the limit of aii
ε

, given by

lim
ε→0

aii
ε

= lim
ε→0

1

ε
{
[
εdi −O(a3)

]
+ bii

[
−εdi +O(a3)

]2
− 1

2θii

∞∑
n=3

{
4θii

[
−εdi +O(a3)

]}n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2
}

= di.

(3.17)

We are interested in the difference of these two rate distortion functions (Equation

2.6 and 3.2) when d (or ε) is small enough and this problem can be stated as follows

lim
ε→0

R(D){X1},{X2} −R(D){X1,X2}

ε2

= lim
ε→0

1
2

log |Σ|
|(Θ+A1

−1)−1| −
1
2

log |Σ|
d2

ε2

= lim
ε→0

1
2

log d2

|(Θ+A1
−1)−1|

ε2
,

(3.18)

where the denominator in the logarithm |(Θ + A1
−1)−1| can be calculated as

|(Θ + A1
−1)−1| = ε2d1d2 −

[
a11a22θ12 +O(a3)

]2
, (3.19)

this is because in (3.7) we rewrite the constraint and in (3.8) we found an equation

about D. By substituting the determinant in (3.19) and flipping the fraction in the
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logarithm, the limit in (3.18) becomes

lim
ε→0

1
2

log d2

|(Θ+A1
−1)−1|

ε2
= lim

ε→0

1
2

ln d2

ε2d1d2−
[
a11a22θ12+O(a3)

]2
ε2

= lim
ε→0

−1
2

ln
ε2d1d2−

[
a11a22θ12+O(a3)

]2
ε2d1d2

ε2

= −1

2
lim
ε→0

ln

{
1−

[
a11a22θ12+O(a3)

]2
ε2d1d2

}
ε2

.

(3.20)

Note that ε and d approach zero at a similar speed and ε2d1d2 is replaced by d2 in the

second step, this is because the diagonal entries of matrix D are much greater than

off-diagonal entries, thus, the product of diagonal elements contributes the most to

the determinant of D. Then, the determinant of D which can be approximated by the

product of all diagonal entries needs to be maximized subject to a trace constraint,

which is the same optimization problem in (2.4). Thus by a similar argument we can

conclude that εd1 ≈ εd2 ≈ d and εd1d2 ≈ d2.

It is known that L’Hospital’s Rule can help evaluate limits involving indeterminate

forms, one example is

lim
x→0

ln(1− x)

x
= lim

x→0

−1
1−x

1
= lim

x→0
−(1 +

x

1− x
) = −1. (3.21)
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Similarly L’Hospital’s Rule can be applied to the limit in (3.20)

(3.20) = −1

2
lim
ε→0

ln

{
1−

[
a11a22θ12+O(a3)

]2
ε2d1d2

}
[
a11a22θ12+O(a3)

]2
ε2d1d2

[
a11a22θ12+O(a3)

]2
ε2d1d2

ε2

= −1

2
lim
ε→0

(−1)

[
a11a22θ12+O(a3)

]2
ε2d1d2

ε2

=
1

2
lim
ε→0

[
a11a22θ12+O(a3)

]2
ε2d1d2

ε2

=
1

2
lim
ε→0

{
a2

11a
2
22θ

2
12 +O(a6)− 2a11a22θjkO(a3)

ε4d1d2

}
=

1

2
lim
ε→0

{
a2

11a
2
22θ

2
12 +O(a6)−O(a5)

ε4d1d2

}
,

(3.22)

where the first step is rearranging the limit to form an indeterminate form of 0
0

and

the second step applies the result in (3.21), the remaining steps follow the square

formula. As shown in (3.12) and (3.17), a approaches zero when ε is small enough

and they approach zero at a similar speed. Thus the limit in (3.22) can be calculated

as

lim
ε→0

R(D){X1},{X2} −R(D){X1,X2}

ε2
=

1

2
lim
ε→0

[
a2

11a
2
22θ

2
12

ε4d1d2

+
O(a6)

ε4d1d2

− O(a5)

ε4d1d2

]
=

1

2

[
d2

1d
2
2θ

2
12

d1d2

+ 0− 0

]
=

1

2
d1d2θ

2
12.

(3.23)

Where θ12 is the off-diagonal entry in the information matrix and d1 and d2 are the

corresponding diagonal element in the distortion matrix.
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3.2 The Three-Source Case

Assume the joint distribution of three sources X1, X3 and X3 is multivariate normal

with mean vector µ = [µ1, µ2, µ3]T , variance covariance matrix Σ, and information

matrix Θ, where

Σ =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 , Θ = Σ−1 =


θ11 θ12 θ13

θ12 θ22 θ23

θ13 θ23 θ33


and entries in Θ are nonzero. A Markov network of X1, X2 and X3 can be drawn in

Figure 3.4,

Figure 3.4: The Markov network of X1, X2 and X3.

in which there are three nodes which are X1, X2 and X3 and three edges between the

nodes because none of the off-diagonal entries is zero.
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Figure 3.5: One encoder which observes X1, X2, and X3 simultaneously.

Figure 3.5 shows the coding system with a centralized encoder which can also be

considered as the most powerful encoder structure since it can observe all sources

simultaneously. As a result, this centralized coding structure can observe all the

edges in the Markov network between X1, X2 and X3. The rate distortion function

of this coding system is shown in (2.7). In this section, four coding systems with

non-centralized encoders will be discussed.

3.2.1 Coding system 1

The second most powerful encoder is shown in Figure 3.6. There are three encoders

and each one can observe two different sources. All the edges in the Markov network

between X1, X2 and X3 can be observed by this coding setup.
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Figure 3.6: Three encoders which observe {X1, X2}, {X1, X3}, and {X2, X3}.

In Chen et al. (2007), it was shown that the rate distortion limit of this coding

system is exactly the same with the centralized coding system which is

R(D){X1,X2},{X1,X3},{X2,X3} =
d→0

1

2
log
|Σ|
d3
. (3.24)

It is surprising to find that even though this decentralized coding system seems to

be less powerful than the centralized coding system, the optimized results of rate

distortion limit are the same; that is, we can say that they are equal powered for

quadratic Gaussian source coding.
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3.2.2 Coding system 2

Figure 3.7: Two encoders which observe {X1, X3} and {X2, X3}.

The coding system in Figure 3.7 consists of two encoders each of which observe two

sources. The edges between X1, X3 and X2, X3 can be observed by this coding setup,

but the edge between X1 and X2 is not observed. The rate distortion function of this

system is

R(D){X1,X3},{X2,X3} =
d→0

min
1

2
log
|Σ|
|D|

subject to: 0 � D = diag
((

Θ1,2 + diag(a11, a22)−1
)−1

, a33

)
,

tr(D) ≤ 3d,

(3.25)
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where Θ1,2 is the 2nd order leading principal submatrix of information matrix Θ, i.e.,

Θ1,2 =

θ11 θ12

θ12 θ22

 .

D can be listed in a matrix form which is

D =



 θ11 θ12

θ12 θ22

+

 a11 0

0 a22


−1

−1

0

0T a33

 (3.26)

where 0 = [0, 0]T . Similarly, the trace constraint here can be equivalently written in

a matrix equation form like



 θ11 θ12

θ12 θ22

+

 a11 0

0 a22


−1

−1

0

0T a33

 =


εd1 .. ..

.. εd2 ..

.. .. εd3

 , (3.27)

which can be further split into two submatrix equations given by

(1)


 θ11 θ12

θ12 θ22

+

 a11 0

0 a22


−1

−1

=

εd1 ..

.. εd2

 ,

(2) a33 = εd3.

(3.28)
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Therefore, this system can be transferred into a 2× 2 case which is exactly the same

as the one in (3.2), thus the result should be the same with (3.23) which is

lim
ε→0

R(D){X1,X3},{X2,X3} −R(D){X1,X2,X3}

ε2
=

1

2
d1d2θ

2
12. (3.29)

3.2.3 Coding system 3

Figure 3.8: Two encoders which observe {X1, X2} and {X3}.

Figure 3.8 shows the coding system consisting of two encoders which observe {X1, X2}

and {X3} separately. This coding system can see the edge between X1 and X2, but

not the edge between X1, X3 and X2, X3 in their Markov network. The rate distortion
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function of this system was found by Wang and Chen (2013) given by

R(D){X1,X2},{X3} =
d→0

min
1

2
log
|Σ|
|D|

subject to: 0 � D =
(
Θ + diag

(
A1,2, a33

)−1
)−1

,

tr(D) ≤ 3d,

(3.30)

where A1,2 is a 2× 2 positive semidefinite matrix. Denote diag
(
A1,2, a3

)
as A2 with

the form of

0 � A2 = diag
(
A1,2, a3

)
=


a11 a12 0

a12 a22 0

0 0 a33

 . (3.31)

By the Sherman/Morrison formula, D can be expanded as

D = (Θ + A2
−1)−1

= A2 −A2ΘA2 +
n=∞∑
n=2

(−1)n(A2Θ)nA2,
(3.32)
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then we can substitute A2 and Θ and calculate the matrix entries, (3.32) becomes

(3.22) =


a11 a12 0

a12 a22 0

0 0 a33

−

a11 a12 0

a12 a22 0

0 0 a33



θ11 θ12 θ13

θ12 θ22 θ23

θ13 θ23 θ33



a11 a12 0

a12 a22 0

0 0 a33

+O(A2
3)

=



a11 −
(
a2

11θ11+

2a11a12θ12 + a2
12θ22

) a12 −
(
a11a12θ11 + a2

12θ12

a11a22θ12 + a12a22θ22

) −
(
a11a33θ13+

a12a33θ23

)
a12 −

(
a11a12θ11 + a2

12θ12

a11a22θ12 + a12a22θ22

) a22 −
(
a2

12θ11+

2a12a22θ12 + a2
22θ22

) −
(
a12a33θ13+

a22a33θ23

)
−
(
a11a33θ13+

a12a33θ23

) −
(
a12a33θ13+

a22a33θ23

) a33 − a2
33θ33


+O(A2

3)

(3.33)

by which one can get the order of each entry

D =


O(a) O(a12 − a2 + a3) O(a2)

O(a12 − a2 + a3) O(a) O(a2)

O(a2) O(a2) O(a)

 . (3.34)

where a11, a22 and a33 are close and represented by a here. The trace constraint on D

in (3.30) can be rewritten in matrix form, the equation for these two representations
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can be found as

D =


O(a) O(a12 − a2 + a3) O(a2)

O(a12 − a2 + a3) O(a) O(a2)

O(a2) O(a2) O(a)

 =


εd1 .. ..

.. εd2 ..

.. .. εd3

 (3.35)

where εd1 + εd2 + εd3 = 3d. Based on this equation one can say that all the corre-

sponding diagonal entries are equal to each other, specifically

O(a) = εdi, i = 1, 2, 3 (3.36)

which means that aii approaches zero at a similar speed with ε. In order to achieve

the goal of reaching the rate distortion limit in (3.30), 1
2

log |Σ||D| needs to be minimized

which is equivalent to maximizing |D|. The determinant can then be calculated based

on (3.34)

|D| = O(a)3 − 2O(a2)2O(a)−O(a)O(a12 − a2 + a3)2 + 2O(a2)2O(a12 − a2 + a3)

= O(a3)− 2O(a5)−O(a)O(a12 − a2 + a3)2 + 2O(a4)O(a12 − a2 + a3)

(3.37)

Since a is positive and close to zero, we know that the higher order a term is, the

smaller it will be. Thus one can conclude that a12 is equivalent to a second order

term of a in order to cancel the second order term in the entry O(a12 − a2 + a3) and
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maximize the determinate of D. The maximized determinant of D is

|D|max = O(a3)− 2O(a5) +O(a7)

≈ O(a3)

= εd1d2d3

(3.38)

Now we can calculate the limit of rate distortion difference given by

lim
ε→0

R(D){X1,X2},{X3} −R(D){X1,X2,X3}

ε2

=
1

2
lim
ε→0

log d3

|D|

ε2

= −1

2
lim
ε→0

log |D|
ε3d1d2d3

ε2

(3.39)

where the last step is because εd1d2d3 ≈ d3. The reason that we can replace d3 by

εd1d2d3 is shown in (3.38), the main contribution to the determinate of D is O(a3),

thus |D| can be approximated by the product of diagonal elements (εd1d2d3), and this

becomes a product optimization problem subject to a summation constraint. This

type of optimization problem was discussed in Chapter 2 (Equation 2.4), where the

result contains equal elements, i.e. εd1 ≈ εd2 ≈ εd3 ≈ d and 1d2d3 ≈ d3. Then after

calculating the determinant of D and substituting it into (3.39), we have

(3.39) = −1

2
lim
ε→0

log ε3d1d2d3−d11d23d32−d22d13d31−d33d12d12+d12d23d31+d13d21d32
ε3d1d2d3

ε2

= −1

2
lim
ε→0

log
(

1− d11d223+d22d213+d33d212−2d12d23d13
ε3d1d2d3

)
ε2

(3.40)
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where dij is the entry in the ith row and jth column. By rearranging the expression

and applying L’Hospital’s Rule, the limit becomes

(3.40) = −1

2
lim
ε→0

log
(

1− d11d223+d22d213+d33d212−2d12d23d13
ε3d1d2d3

)
d11d223+d22d213+d33d212−2d12d23d13

ε3d1d2d3

×
d11d223+d22d213+d33d212−2d12d23d13

ε3d1d2d3

ε2

=
1

2
lim
ε→0

d11d223+d22d213+d33d212−2d12d23d13
ε3d1d2d3

ε2
.

(3.41)

From (3.38), we can also see limε→0
aii
ε

= di, substituting this conclusion and the

order of each entry from D, we are able to get

(3.40) =
1

2
lim
ε→0

d11d
2
23 + d22d

2
13 +O(a7)− 2O(a7)

ε5d1d2d3

=
1

2
lim
ε→0

d11d
2
23 + d22d

2
13

ε5d1d2d3

=
1

2
d1d3θ13 +

1

2
d2d3θ23.

(3.42)
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3.2.4 Coding system 4

Figure 3.9: Three encoders which observe X1, X2, and X3 individually.

The system in Figure 3.9 is considered the weakest one where X1, X2, and X3 are

observed by three different encoders individually. None of the edges in the Markov

network of X1, X2 and X3 is captured by this coding system. Wang et al. (2010)

studied the distortion function of this system which is of similar form with (3.2)

R(D){X1},{X2},{X3} =
d→0

min
1

2
log
|Σ|
|D|

subject to: 0 � D = (Θ + A−1
3 )−1,

tr(D) ≤ 3d,

(3.43)
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where D is the distortion matrix and A3 is the noise covariance matrix with a diagonal

form

0 � A3 =


a11 0 0

0 a22 0

0 0 a33

 .

By following these steps one can find the limit: lim
ε→0

R(D){X1},{X2},{X3}−R(D){X1,X2,X3}
ε2

.

First expand the matrix D by the Sherman/Morrison formula, then rewrite the con-

straint and solve the equation on this constraint. Finally, after solving the equation

and finding it’s Taylor expansion, the limit can be calculated as

lim
ε→0

R(D){X1},{X2},{X3} −R(D){X1,X2,X3}

ε2
=

1

2
(d1d2θ

2
12 + d1d3θ

2
13 + d2d3θ

2
23). (3.44)

Since this three sources coding system is a special case of the L sources coding system

shown in Chapter 4 (when L = 3 ), more details about solving process can be found

in the following section.

3.3 The Multi-Source Case

In this section, we will discuss multi-source generalized multiterminal source coding

for quadratic Gaussian cases. The combinatorial problem discussed in Chapter 1

showed there are almost infinite non-equivalent coding structures. However, in this

section only two cases will be discussed and compared, one is the most powerful coding

system with a centralized encoder and the other is the least powerful system with L

encoders which can only observe one distinct source. Assume the joint distribution

of sources X1, X2, · · · , XL is multivariate normal with mean vector µ, variance
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covariance matrix Σ, and information matrix Θ which is the inverse of Σ given by

Σ =



σ11 σ12 . . . σ1L

σ12 σ22 . . . σ2L

...
...

. . .
...

σ1L σ2L . . . σLL


, Θ = Σ−1 =



θ11 θ12 . . . θ1L

θ12 θ22 . . . θ2L

...
...

. . .
...

θ1L θ2L . . . θLL


(3.45)

and entries in Θ are nonzero. A Markov network of X1, X2, · · · , and X3 can be found

which is a pairwise Markov network, this is shown in Figure 3.10.

Figure 3.10: The Markov network of X1, X2, · · · , XL.

The most powerful coding system with L sources is shown in Figure 2.2, in which

X1, X2, · · · , XL are observed jointly by one Encoder and forwarded to a centralized

decoder where the compressed information is reconstructed. The least powerful cod-

ing system is shown in Figure 3.11 which can not observe any edge in the Markov

network of X1, X2, · · · , XL. There are L encoders and each one observes one distinct

source.

37



M.Sc. Thesis - Xiaolan Tu McMaster - Mathematics & Statistics

Figure 3.11: L encoders which observe X1, X2, · · · , XL individually.

The distortion function of this coding system was found by Wang et al. (2010) which

is

R(D){X1},{X2},··· ,{XL} =
d→0

min
1

2
log
|Σ|
|D|

subject to: 0 � D = (Θ + A−1
4 )−1,

tr(D) ≤ Ld,

(3.46)

where D is the distortion matrix and A4 is the noise covariance matrix which captures
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the structure of encoders

0 � A4 =



a11

a22

. . .

aLL


.

The equivalent trace constraint can be expressed as the following equation

D = (Θ + A4
−1)−1 =



εd1 .. . . . ..

.. εd2 . . . ..

...
...

. . . ..

.. .. . . . εdL


, (3.47)

where the diagonal elements εd1 + εd2 + · · · ,+εdL ≤ Ld. However, the non-diagonal

elements are unknown. Similarly, the Sherman/Morrison formula can be used to

expand the inversion, in order to apply Sherman/Morrison formula, D needs to be

rearranged first. These steps are

D = (Θ + A4
−1)−1

= (A4
−1 + Θ)−1

=
[
A4
−1(I + A4Θ)

]−1

= (I + A4Θ)−1A4

= A4 −A4ΘA4 +
n=∞∑
n=2

(−1)n(A4Θ)nA4.

(3.48)
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After substituting the matrices D and A4 in to (3.48), we have

(3.48) =



a11

a22

. . .

aLL


−



a11

a22

. . .

aLL


×



θ11 θ12 . . . θ1L

θ12 θ22 . . . θ2L

...
...

. . .
...

θ1L θ2L . . . θLL



×



a11

a22

. . .

aLL


+O(A4

3),

(3.49)

where O(A4
3) refers to the big O notation. In (3.50) summation and multiplication

is calculated as follows:

(3.49) =



a11

a22

. . .

aLL


−



a2
11θ11 a11a22θ12 . . . a11aLLb1L

a11a22θ12 a2
22θ22 . . . a22aLLb2L

...
...

. . .
...

a11aLLθ1L a22aLLθ2L . . . a2
LLθLL


+O(A4

3)

=



a11 − a2
11θ11 +O(a3) −a11a22θ12 +O(a3) · · · −a11aLLθ1L +O(a3)

−a11a22θ12 +O(a3) a2 − a2
2θ22 +O(a3) . . . −a2aLθ2L +O(a3)

...
...

. . .
...

−a11aLLθ1L +O(a3) −a22aLLθ2L +O(a3) . . . aLL − a2
LLθLL +O(a3)


(3.50)

Based on (3.47) and (3.50), an equation can be set
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

a11 − a2
11θ11 +O(a3) −a11a22θ12 +O(a3) · · · −a11aLLθ1L +O(a3)

−a11a22θ12 +O(a3) A4 − a2
2θ22 +O(a3) . . . −a2aLθ2L +O(a3)

...
...

. . .
...

−a11aLLθ1L +O(a3) −a22aLLθ2L +O(a3) . . . aLL − a2
LLθLL +O(a3)


=



εd1 .. . . . ..

.. εd2 . . . ..

...
...

. . . ..

.. .. . . . εdL


(3.51)

where corresponding diagonal entries are equal

aii − a2
iiθii +O(a3) = εdi, i = 1, 2, · · · , L. (3.52)

Solutions to this quadratic function are

aii =
1±

√
1 + 4θii [−εdi +O(a3)]

2θii
, i = 1, 2, · · · , L. (3.53)

As ε approaches 0, εdi also approaches 0, thus we have

lim
ε→0

εdi = lim
ε→0

(
aii − a2

iiθii +O(a3)
)

= 0. (3.54)

From (3.54) we can conclude that

lim
ε→0

aii = 0, (3.55)

this is because (aii − a2
iiθii +O(a3)) is a polynomial form of aii. Thus, there is only

one solution for ai which is

aii =
1−

√
1 + 4θii [−εdi +O(a3)]

2θii
. (3.56)
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The Taylor expansion of
√

1 + 4θii [−εdi +O(a3)] can be found as

√
1 + 4θii [−εdi +O(a3)] = 1 + 2θii

[
−εdi +O(a3)

]
− 2θ2

ii

[
−εdi +O(a3)

]2
+
∞∑
n=3

{
4θii

[
−εdi +O(a3)

]}n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2
.

(3.57)

After substituting this Taylor expansion into (3.56), aii becomes

aii =
[
εdi −O(a3)

]
+ θii

[
−εdi +O(a3)

]2
− 1

2bii

∞∑
n=3

{
4θii

[
−εdi +O(a3)

]}n
(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2
.

(3.58)

We then consider the limit of aii
ε

,

lim
ε→0

aii
ε

= lim
ε→0

1

ε

{[
εdi −O(a3

i )
]

+ bii
[
−εdi +O(a3

i )
]2

− 1

2bii

∞∑
n=3

{
4bii

[
−εdi +O(a3

i )
] }n

(−1)n−1 (2n− 3)!

n!(n− 2)!22n−2

}

= di,

(3.59)

which shows that aii becomes small and approaches zero at a similar speed with ε

and d. Our interest is in finding the limit of the difference of two distortion functions:

lim
ε→0

R(D){X1},{X2},··· ,{XL} −R(D){X1,X2,··· ,XL}

ε2

= lim
ε→0

1
2

(
ln |Σ|
|(Θ+A4

−1)−1| − ln |Σ|
dL|

)
ε2

= lim
ε→0

1
2

ln dL

|(Θ+A4
−1)−1|

ε2

(3.60)
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where R(D){X1,X2,··· ,XL} can be found in (2.5) and |(Θ + A4
−1)−1| can becalculated

as

|(Θ + A4
−1)−1| = εL

L∏
i=1

di −
∑
j 6=k

εL
∏L

i=1 di
ε2djdk

[
− ajjakkθjk +O(a3)

]2

+
L∑
n=3

O(a6+2nεL−n),

(3.61)

where the first part is all the diagonal terms, the second part is the summation of

those terms with the two off-diagonal terms, and the last part is the summation of

the rest of the terms with three or more off-diagonal terms. Substitute (3.61) into

(3.60), and the limit becomes

(3.60) = lim
ε→0

1
2

ln dL

εL
∏L
i=1 di−

∑
j 6=k

εL
∏L
i=1

di

ε2djdk
[−ajjakkθjk+O(a3)]

2
+
∑L
n=3O(a6+2nεL−n)

ε2

= lim
ε→0

−1
2

ln
εL

∏L
i=1 di−

∑
j 6=k

εL
∏L
i=1 di

ε2djdk
[−ajjakkθjk+O(a3)]

2
+
∑L
n=3O(a6+2nεL−n)

εL
∏L
i=1 di

ε2

= −1

2
lim
ε→0

ln

{
1−

∑
j 6=k

[−ajjakkθjk+O(a3)]
2

ε2djdk
+
∑L

n=3O(a
6+2n

εn
)

}
ε2

(3.62)

where the second step is flipping the fraction in the logarithm and the third step

is simplifying it further. Note that dL is replaced by εL
∏L

i=1 di in the second step

because of a similar reason with the 2 × 2 case on Page 22. Clearly, the limit is an

indeterminate form of 0
0
, L’Hospital’s Rule should be considered. Similarly, rearrange

the limit to get the form lim
x→0

ln(1−x)
x

because this limit can be calculated by L’Hospital’s
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Rule which equals −1,

(3.62) = −1

2
lim
ε→0

ln

{
1−

[∑
j 6=k

[−ajjakkθjk+O(a3)]
2

ε2djdk
−
∑L

n=3O(a
6+2n

εn
)

]}
∑

j 6=k
[−ajjakkθjk+O(a3)]

2

ε2djdk
−
∑L

n=3 O(a
6+2n

εn
)

×

∑
j 6=k

[−ajjakkθjk+O(a3)]
2

ε2djdk
−
∑L

n=3O(a
6+2n

εn
)

ε2

(3.63)

where the first term is the form of lim
x→0

ln(1−x)
x

, then one can substitute lim
x→0

ln(1−x)
x

= −1

to get

(3.63) = −1

2
lim
ε→0

(−1)

∑
j 6=k

[−ajjakkθjk+O(a3)]
2

ε2djdk
−
∑L

n=3O(a
6+2n

εn
)

ε2

=
1

2
lim
ε→0

∑
j 6=k

[−ajjakkθjk+O(a3)]
2

ε2djdk
−
∑L

n=3O(a
6+2n

εn
)

ε2
.

(3.64)

After applying L’Hospital’s rule, we get a simplified expression without a logarithm

term. We can further split the fraction into two terms and then expand the quadratic

term which are shown here

(3.64) =
1

2
lim
ε→0

{∑
j 6=k

[−ajjakkθjk +O(a3)]
2

ε4djdk
−

L∑
n=3

O

(
a6+2n

εn+2

)}

=
1

2
lim
ε→0

{∑
j 6=k

a2
jja

2
kkθ

2
jk − 2ajjakkθjkO(a3) +O(a6)

ε4djdk
−

L∑
n=3

O

(
a6+2n

εn+2

)}

=
1

2
lim
ε→0

{∑
j 6=k

[
a2
jja

2
kkθ

2
jk

ε4djdk
− 2ajjakkθjkO(a3)

ε4djdk
+
O(a6)

ε4djdk

]
−

L∑
n=3

O

(
a6+2n

εn+2

)}
(3.65)
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Substitute (3.59) into (3.65), the limit becomes

(3.60) =
1

2

{∑
j 6=k

[
d2
jd

2
kθ

2
jk

djdk
+ 0− 0

]
−

L∑
n=3

0

}

=
1

2

∑
j 6=k

djdkθ
2
jk

(3.66)

where j = 1, 2, · · · , L, k = 1, 2, · · · , L and j 6= k.
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Chapter 4

Conclusion

This thesis started off by considering the effect of different encoding setups on the

rate distortion function. Chapter 1 showed that as L increased, the number of unique

inequivalent source coding systems quickly inflated. For this reason, rate distortion

for all L = 2 and L = 3 sources coding systems were first explored, and only two

special cases for the general L sources setup. By comparing all the rate distortion

difference limits for two and three source coding systems, one conclusion can be

made. If there is an edge between Xj and Xk in the Markov network which is not

captured by any encoder, then the term djdkθ
2
jk should be considered in the limit,

where θjk is an off-diagonal entry in the information matrix Θ and dj and dk are

the corresponding diagonal element in the distortion matrix. In the 3 sources case,

some coding setups were also shown to approach zero in the rate distortion limit

difference which means the centralized system can be matched by ostensibly weaker

decentralized ones. Specifically speaking, some decentralized coding systems can

achieve the Shannon lower bound in the high-resolution regime.

For L sources, one special case had similar results in the difference of rate distortion
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function limit. For this case, the most powerful (centralized) was compared with

a ostensibly less powerful (distributed) one. It was shown that the difference in

rate distortion limits could approach the same term (djdkθ
2
jk) provided the necessary

encoding setup.

One may want to extend this conclusion to generalized Gaussian multiterminal

source coding systems with some other coding topological structures. Intuitively this

theorem seems correct; however, the conjecture needs to be proved further for other

systems which are not included here.
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