
NONLINEAR DYNAMICS 


OF THE 


HEART RATE V ARIBILITY SIGNAL 




NONLINEAR DYNAMICS OF THE HEART RATE 


VARIABILITY SIGNAL 


By 

NESRENE SHA WKI SALEM, B.ENG 


A Thesis Submitted to 


the School ofGraduate Studies 


in Partial Fulfillment ofthe Requirements 


for the Degree 


Master ofEngineering 


McMaster University 


©Copyright by Nesrene Shawki Salem, August 2001 




Master ofEngineering (2001) McMaster University 

(Electrical and Computer Engineering) Hamilton, Ontario 

TITLE: Nonlinear Dynamics ofthe Heart Rate Variability Signal 

AUTHOR: Nesrene Shawki Salem, B.Eng. (The Arab Academy for 

Science and Technology) 

SUPERVISOR: Dr. Markad V. Kamath, Ph.D., P.Eng. 

NUMBER OF PAGES: xii, 97 



To my parents Shawki Salem and Samia Salem, 

and my sister Mayada. 

ii 




Abstract 

The heart rate variability (HRV) signal has been employed as a measure of 

sympathovagal balance in the human autonomic nervous system (ANS). It is known that 

aging affects the functional characteristics of the ANS. It has been suggested that 

complexity as measured by nonlinear dynamical indices, decays with age. We developed 

several algorithms and test protocols to characterize nonlinear dynamics in the HRV 

signal and to test the hypothesis that aging reduces the complexity within the HRV 

signal. 

Continuous HRV signal was obtained from 93 healthy subjects (41 males and 52 

females) ranging in age between 5 and 78 years under controlled laboratory conditions in 

supine state. Subjects were from pediatric (PED, 5-12 years, n=15, 9 male, 6 female), 

adolescent (ADO, 13-17 years, n=16, 6 male, 10 female), adult (ADL, 18-30 years, n=22, 

12 male, 10 female), middle aged (MDA, 31-60 years, n=21, 8 male, 13 female) and 

elderly (ELD, 61+ years, n=19, 6 male, 13 female) age groups. The length of data was 

1000 or more R-R intervals for adequate computation. Stationary Holter HRV data from 

these controls were also used for the present study. 

Our results are as follows: There is a continuous systematic decay in the power­

law scaling (p), which decreases from -1.162 ± 0.388 for the PED group to -1.95 ± 0.6 

for the ELD group (F = 6.649, p < 0.001; R = 0.475, p < 0.001. Approximate entropy 
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(ApEn) decreases with age from 1.456 ± 0.093 for the PED group to 1.272 ± 0.135 for 

the ELD group (F = 7.82, p < 0.001; R = 0.519, p < 0.001. The detrended fluctuation 

analysis (DFA) of short-term data yielded an increase in short-range DFA scaling 

exponent a 1 from 0.774 ± 0.204 for the PED group to 1.138 ± 0.289 for the ELD group 

(F = 7.535, p < 0.001), and in long-range DFA scaling exponent a2 increased from 0.667 

± 0.082 for the PED group to 0.86 ± 0.172 for the ELD group (F= 4.841,p < 0.001). The 

detrended fluctuation analysis (DF A) of long-term data yielded an increase in short-range 

DFA scaling exponent a1 from 1.052 ± 0.218 for the PED group to 1.204 ± 0.205 for the 

ELD group (F = 1.922), and in long-range DF A scaling exponent a2 increased from 

0.961 ± 0.081 for the PED group to 1.076 ± 0.102 for the ELD group (F = 4.06, p < 

0.01). Surrogate data analysis demonstrated that the hypothesis that the HRV signal is 

generated by a linear stochastic process is not always rejected. 

In summary, the HRV signal lends itself to an analysis using nonlinear dynamical 

methods and studies in patients may yield useful clinical information in the future. 
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Chapter 1 

Introduction 

1.1 Introduction 

There has been much recent interest in the analysis ofheart rate variability (HRV) 

signal in a variety of clinical settings. Several well-known techniques have been applied 

to analyze the HRV signal [1, 2, 3, 4]. These include the following: first, time domain 

measures of heart rate variability, and second, the spectral analysis that expresses the 

HRV signal in the frequency domain. Both time and frequency domain HRV measures 

have proven useful for clinical purposes. However, time and frequency domain measures 

of the HRV signal have limited value in uncovering more complex nonlinear systems 

[5,6]. It is likely that the HRV signal may contain elements of nonlinear dynamics, which 

may be better-understood using techniques of deterministic chaos. Therefore, a third 

group of techniques based on nonlinear system theory ('chaos theory and fractals') have 

been recently developed to quantify the complex HR dynamics and to complement the 

conventional measures ofHR variability [4]. 

The discipline of nonlinear dynamics has been applied to many areas of physical 

and biological sciences [7]. Its application to cardiology may provide an innovative tool 

to aid our understanding of many physiologic phenomena that heretofore were deemed 
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inexplicable usmg conventional methodologies [1]. The theories of "chaos" and 

complexity have been developed to understand diverse fields including physics, 

experimental mathematics, evolutionary biology and social sciences. The common theme 

from such research is to understand how systems, that are inherently complex, undergo 

changes over time. Traditional linear science describes scientific laws where, if we know 

the initial starting condition of a system and the linear laws governing its behaviour, we 

can predict its state over time with a fair degree of confidence. Linear theory in general, 

is the basis for many controlled experiments. However, the presence of 'chaos' and 

complexity suggest that much of the world, and in particular physiology, is not linear and 

small changes can produce dramatic transformation ofan entire system [2]. 

Physicians often describe the normal activity of the heart as ''regular smus 

rhythm". But it is now acknowledged that normal sinus rhythm in healthy individuals is a 

result of complex interactions between multiple regulatory processes that operate over 

different time scales. These include the sympathetic and parasympathetic nervous 

systems, which regulate beat-to-beat heart rate (HR) and blood pressure (BP), as well as 

cardiovascular volume, and body temperature [3]. Interactions between these control 

systems generate highly variable and complex beat-to-beat fluctuations that are consistent 

with deterministic chaos. We believe that, nonlinear dynamics and chaos theory provide 

techniques to measure the complexity of physiologic variability that enables us to study 

the effect ofage on neurocardiac control in healthy human subjects. 

The process of aging has a dramatic and profound impact on the complex 

dynamics of healthy physiologic function. This is evident in many physiologic systems, 
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but the cardiovascular system has received the most attention because of high morbidity 

and mortality associated with cardiovascular disease, and the current availability of 

continuous noninvasive hemodynamic data (e.g.: HR & BP) along with the development 

of sophisticated signal processing techniques. 

It is now believed that, when a physiologic system ages, it becomes less complex 

and its information content is reduced. As a result, such a system is less able to cope with 

the exigencies of a constantly changing environment [18]. Thus, a compelling argument 

can be made to employ nonlinear dynamics/chaos theory to the heart rate signal in order 

to gain insights into physiological mechanisms that are affected as the human being ages. 

Therefore, the purpose of this thesis is to analyze the HRV signal by means of 

methods derived from nonlinear dynamics, as well as to address a variety ofquestions: 

• 	 What does nonlinear dynamics offer the physician with regard to 

understanding normal physiology? 

• 	 How can nonlinear indices of HRV quantitate the effect of aging on HRV 

signal? 

• 	 Do nonlinear indices ofHRV have short-term predictive value, in addition 

to time and frequency indices? To address these questions, we studied 

ApEn, a measure of complexity, DFA, an index that describes the 

presence or absence of long-term fractal correlations, correlation 

dimension, and surrogate data analysis. 
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1.2 Organization of the Thesis 

We begin in chapter 2 by identifying some methodological issues of nonlinear 

dynamics and chaos theory. Chapter 3 descnbes some theoretical preliminaries, which 

describe basic concepts underlying the signals used herein, the ECG and the heart rate 

variability (HRV) signal. In chapter 4, a brief literature review on the effect of age on 

nonlinear complexity is presented. Nonlinear indices techniques are introduced in chapter 

5. The process of the ECG signal acquisition, computation of the heart rate variability 

(HRV) signal and testing ofthe various techniques are discussed in chapter 6. The results 

of applying nonlinear dynamical techniques to the heart rate variability (HRV) signal are 

described in chapter 7. In chapter 8 we will analyze and compare the results of these 

techniques. Finally we will summarize the results of our work on the effects of aging on 

the heart rate variability (HRV) signal in Chapter 9. 



Chapter 2 

Introduction to Nonlinear Dynamics and Chaos 

2.1 Background 

The possibility of applying nonlinear methods to describe dynamical systems was 

initially contemplated by the French mathematician Henri Poincare in the nineteenth 

century. However, the concept did not gain broad recognition amongst scientists until T. 

Y. Li and J. Yorke introduced the term "chaos" in 1975 in their analysis of the quadratic 

map [7]. Modeling of biological systems are often viewed as linear. The simplicity of 

linear systems is so attractive that investigators routinely attempt to "linearize" complex 

sets of data by various transformations. This practice, however, may misrepresent the true 

state of a system, and as a result, the underlying pathologic process, may be overlooked. 

Linear equations describe a one-to-one correspondence between input and output values 

of systems under study [1]. However, this is not the case with nonlinear equations, which 

are of two types, monotonic and folded. Monotonic equations are always decreasing or 

always increasing. In contrast, folded nonlinear equations change direction and therefore, 

a single output value can be associated with two or more input values. Such ambiguity 

gives rise to chaos under some conditions [1]. The search for chaotic dynamics in diverse 

physical and biological and medical fields, as well as the mathematical analysis of 

chaotic dynamics in nonlinear equations, has sparked extensive research into chaos, in 

recent years. 

5 
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2.2 Characteristics of Signals with Deterministic Chaos 

Chaos is best understood by comparing it to two other characteristics of signals ­

randomness and periodicity. A random waveform never repeats itself because it is 

inherently unpredictable and disorganized. We can predict the average behaviour of a 

random signal over a certain time frame but we cannot predict the behaviour of a single 

epoch of the signal. Similarly, we can compute and predict the mean heart rate, but we 

cannot predict future values of a set ofR-R intervals in a distant time. Periodic behaviour, 

on the other hand is highly predictable because it constantly repeats itself over some 

finite period of time. Systems exhibiting periodic behaviour are governed by an 

underlying deterministic process. Chaos is distinct from periodicity and randomness, but 

it has some characteristics of both. Although a chaotic signal may look like a random 

signal, it is deterministic to some extent, like a periodic signal [1]. 

Chaotic signal exlnbits a number of characteristics that distinguishes it from 

periodic and random signals. These include the following: 

1. 	 Chaos is both deterministic and aperiodic. Aperiodic patterns imply that the same 

state is not repeated. Deterministic behaviour suggests that there is a definite rule 

to descnre the signal with no random terms governing the dynamics. Hence, we 

conclude that there is an underlying set of mathematical equations that controls 

the behaviour of the system. If one knows these equations and the initial 

conditions, one can predict its behaviour to some finite time. However, a chaotic 

signal never repeats itself exactly [1,7]. 
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2. 	 Chaotic systems exhibit sensitive dependence on initial conditions. Very small 

differences in initial conditions will result in large differences in its behaviour at a 

later point in time. This is an essential aspect of chaos. It means that we may be 

able to predict what happens over a short time, but that over a longer time 

prediction is next to impossible [1, 7]. 

3. 	 Chaotic behaviour is constrained to a relatively narrow range. In other words, 

chaotic signals are bounded, implying, that although they appear random, on 

successive iterations the state/behaviour ofthe system stays within a finite range. 

4. 	 Chaotic behaviour has a definite form. There is a particular pattern to the 

behaviour. These patterns often take the form of bands - regions where behaviour 

preferentially occurs- and forbidden zones- regions where it does not exist- [1]. 



Chapter 3 

Origin of the Heart Rate Variability Signal 

3.1 Physiological Background 

3.1.1 Anatomy 

The heart is a prolate spheroid shaped, muscular organ lying obliquely in the 

thoracic cavity. The human heart is divided longitudinally by a partition into two halves 

between which there is no direct communication. The cavity of each side is further 

divided horizontally by an incomplete partition, which results in the formation of: 

Two upper chambers: the right and left atrium 

Two lower chambers: the right and left ventricles 

The right atrium receives venous blood from the whole body and pumps it to the 

right ventricle. The latter pumps the blood to the lungs for reoxygenation. The 

oxygenated blood returns to the left atrium by the pulmonary veins, where it is delivered 

to the left ventricle. The left ventricle in turn, pumps this blood with sufficient pressure to 

reach all parts ofthe human body. 

The heart muscle (myocardium) provides the main cardiac functions. Its rhythmic 

contractions provide the pumping force which contributes to the circulation. The 

myocardium has three physiologic properties: automaticity (the ability to initiate an 

8 
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electrical impulse), excitability (the ability to respond to an electrical impulse), 

conductivity (the ability to transmit an electric impulse from one cell to another). It is 

formed of involuntary but striated muscles which branch and fuse with each other. The 

muscle fibers of the atria are continuous and behave as a single mass, similarly, are those 

of the ventricles. This arrangement allows electrical impulses necessary for contraction to 

spread very quickly. Two small masses of specialized tissue lie within the atrial 

myocardium: 

(1). The sino-atrial (SA) node is located in the upper part ofthe right atrium. It is 

responsible for the initiation ofimpulses necessary for rhythmic heartbeats. 

(2). The atrioventricular (AV) node is located in the lower part of the interatrial 

septum. It is responsible for conduction of impulses from the atria to the ventricles. 

3. Bundle of His 

4. Left bundle 
branch 

~~---::::;......-

5. Purkinje 
fibers 

Inferior vena cava ;, 

~l ..... } 
<.~·:.:,; Copyright 1999. Howstuffv,•ork s.com, Inc. 

Figure 3.1: The Heart Structure 
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A bundle of fibers "the bundle of His" arises from the A V node and runs in the 

interventricular septum, where it divides into two branches the left and right bundle 

branches to supply each ventricle. Each bundle further divides into a fine network of 

fibers "The Purkinje fibers" which supply the ventricular myocardial cells. Cells of the 

SA node and A V node are specialized in initiating electrical impulses which are 

responsible for normal regular cardiac functions [10]. 

Occasionally, under special circumstances the heartbeat may originate in a region 

of the myocardium other than the SA node. These sites are termed ectopic pacemakers 

and the beats are labeled as ectopic beats. Ectopic beats are often premature and are 

followed by a compensatory pause (Kamath et al. 1996) [9]. 

3.1.2 Regulation of the cardiac activity 

Under normal physiological conditions the heart rate is subject to both autonomic 

neural and humoral regulation (Braunwald 1992; Guyton & Hall1996). The anatomical 

origins ofthe autonomic innervations of the heart are illustrated in Figure 3.2 [9]. 

Although the cardiac muscles are capable of generating their own impulses, nerve 

impulses from the parasympathetic and sympathetic divisions of the autonomic nervous 

system can modify and regulate these activities. Sympathetic neurons spread throughout 

the myocardium, innervating the SA and A V nodes as well as the atrial and ventricular 

myocardium. On the other hand, the parasympathetic impulses, which reach the heart via 

the vagus nerve, predominantly supply the SA and A V nodes, and to a lesser extent the 

atrial myocardium. At rest, the activity of the parasympathetic system predominates. In 
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general, sympathetic cardiac stimulation serves to increase the heart rate while 

parasympathetic input has the opposite effect [8,9,10]. 

SympatMtlc 

--- ---PreaanaRonlc neuron 
---·----~neuron 

Dorulmotor 
..a- of vaa------~w 

Inferior oen.1oal 
vaaal C8nlac 

Figure 3.2: Diagram depicts nerve supply to the heart from both branches of the 
autonomic nervous system. Preganglionic fibers from both branches are represented by 
solid lines. Postganglionic fibers from both branches are represented by dashed lines: 
terminals from the sympathetic branch are distributed to the pacemaker, conduction 
system, atrial and ventricular myocardium, and coronary vessels; and from the 
parasympathetic branch fibers terminate in the sinoatrial and atrioventricular nodes, atrial 
and ventricular musculature, and coronary vessels. (From Hockman C H, Essentials of 
autonomic function. Springfield IL, pp.42, 1987). 
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3.1.3 The electrocardiogram (ECG): 

Electrocardiography is the study of the electric activity associated with heart 

contraction. Each cardiac contraction results from electric currents, which spread from 

within the heart and can be monitored from the surface of the body. These currents, 

which reflect the electrical activity of the heart, are detected when electrodes are placed 

on the external surface of the body. The first ECG recordings were reported by Einthoven 

in 1912 [10]. ECG signal is the most easily observable signal from the human heart and 

as such has been subject to intensive analysis with regard to their significance in the 

context of pathologies. The recorded differences in electric potentials have a specific 

pattern in the cardiac cycle, each part of which represents the electric activity of a 

specific part ofthe heart: 

1. SANode 

2. Atrial Muscle 

3. AVNode 

4. Atrioventricular Bundle 

5. Left and Right Bundle Branches 

Traditionally the ECG cycle is labeled using the letters P, Q, R, S, T for the individual 

peaks ofthe cycle's waveform: 



13 

R 'o/9i1Ve 

Twave 

ECG cycleECG cycle 

Figure 3.3: QRS Complex 

P = atrial wave. 


QRS =wave ofrapid ventricular depolarization< 0.1 sec. 


T =wave ofventricular repolarization. 


3.2 The Heart Rate Variability Signal 

HRV refers to the changes in the length of time between consecutive 

heartbeats. A heartbeat is usually measured as the time (in msecs) from the peak of one 

R wave to the peak of the next. This time is referred to as the RR interval. Under resting 

conditions, the ECG of healthy individuals exhibits periodic variation in R-R intervals. 

Part of this rhythmic phenomenon, known as respiratory sinus arrhythmia (RSA), 

fluctuates with the phase of respiration -- cardio-acceleration during inspiration, and 

cardio-deceleration during expiration. RSA is predominantly mediated by respiratory 

gating of parasympathetic efferent activity to the heart: vagal efferent traffic to the sinus 

node occurs primarily in phase with expiration and is attenuated during inspiration. 
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Reduced HR.V has thus been used as a marker of reduced vagal activity. 

However, because HR.V is a cardiac measure derived from the ECG, it is not possible to 

distinguish reduced central vagal activity (in the vagal centers ofthe brain) from reduced 

peripheral activity (the contribution of the target organ -- the sinus node or the 

afferent/efferent pathways conducting the neural impulses to/from the brain). The 

analysis of HR.V offers a non-invasive method of evaluating vagal input into cardiac 

rhythm. 



Chapter4 

Chaos in Physiology and effects of Aging on the 

Heart Rate Variability Signal 

4.1 Introduction 

Constant internal environment within the human body, more commonly known as 

'homeostasis' is a result of multiple control systems and enables an individual to adapt to 

the external environment continuously. However, the internal milieu responds to the 

demands placed on it by external variables through both linear and nonlinear 

mechanisms. Therefore, the system may include both linear and nonlinear components. 

As human subjects age, it is hypothesized that there is a loss of dynamic range in the 

physiologic function with the resulting inability to adapt to stressful situations [20]. Such 

loss of dynamics is likely due to a loss of complexity of the organ or the function being 

measured. The concept that deterministic chaos is present in the physiological systems 

has been a major issue concerning researchers for the past several years. There is no 

direct evidence that the body operates strictly according the rules and algorithms of a 

nonlinear dynamical system. However, over the years, scientists have presented anecdotal 

observations and more recently, substantive evidence to support the hypothesis that 

characterizing a physiological system through nonlinear mathematical methods ~y 

provide a better representation of the underlying processes and permit us to understand 

IS 
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pathological conditions or effects of pharmacological and/or other therapeutic 

interventions. 

4.2 Evidence for the Presence of Chaos in Physiological Signals 

Nonlinear behaviour was first identified in cardiac tissue by Guevara et al. [11], 

and subsequently by Chialvi and Jalife [12] with similar results. Various researchers like 

Ritzenberg et al. [13], Chen et al. [14], Goldberger et al. [15], Shrier et al. [16], and 

Winfree et al. [17] examined various aspects of this hypothesis thereby demonstrating the 

power of applying principles of mathematical analysis (nonlinear dynamics) to cardiac 

physiology. 

While inter-individual measures of aging may be based on specific physiological 

experiments (e.g.: measurements on nerve conduction velocity, insulin sensitivity), it is 

likely that mathematical abstractions based on nonlinear dynamics may help us to 

quantify the aging process and pathological conditions more accurately. For example, 

there is a loss of high frequency waves in the EEG with age [41]. This loss of dynamic 

frequency range is attnbuted to a loss of neuron number, impaired cerebral energy 

metabolism, reduced cerebral perfusion and disrupted internal connections [42]. A loss 

of complexity in the regulation of anterior pituitary hormone secretion is also apparent 

with aging in humans. Pulsatile release of growth hormone, leuteinizing hormone, and 

thyrotropin are attenuated with aging. The standard deviation of the mean interval 

between thyrotropin pulses is smaller in healthy elderly subjects compared with healthy 

young subjects, suggesting a less complex pattern of hormonal secretion with aging [ 4 7, 

49]. 



17 

While the field of identifYing deterministic chaos in physiology is in infancy and 

the evidence is still being sought by various laboratories, it is of interest to ask, as to 

where the observed chaotic behaviour originates. This leads one to the following 

questions: 

a) Is the presence of nonlinear dynamical behaviour determined by the anatomical 

structure ofthe organs whose function we attempt to model? 

b) Do the brain and the central nervous system have a role to play in generating the 

observed chaotic signal? 

A promising advance in the contemporary understanding and quantification of 

healthy variability has been the introduction of fractal mathematics to study biological 

systems. The term fractal describes a wide class of complex shapes and processes in 

nature. Fractal shapes are irregular and have non-integer or fractional, dimensions. Unlike 

a smooth Euclidean line, a fractal line, which has a dimension between 1 and 2, is 

wrinkly and irregular. Examining these wrinkles closer, results in smaller wrinkles on the 

larger ones. Further magnification shows yet smaller wrinkles, and so on. A fractal is an 

object composed of subunits, and sub-subunits that resemble the larger scale structure, a 

property known as self-similarity [18]. 

Fractal processes generate irregular fluctuations on multiple time scales. 

Furthermore, such temporal variability is statistically self-similar. Qualitative 

appreciation for the self-similar nature of such fractal processes can be obtained by 

plotting the time series in question at different magnifications, as shown in Figure 4.1 

[18]. 
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Figure 4.1: A fractal object, like a tree (left) has self-similar branching such that the 
small-scale structure when magnified resembles the larger scale form. A fractal process, 
such as heart rate regulation (right), generates irregular fluctuations on different time 
scales that are statistically self-similar. It should be noted that while idealized fractals 
may be constructed with identical subunits, fractal objects are usually asymmetric and 
irregular. (From [18]). 
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Goldberger and his colleagues have argued in a number of publications that the 

self-similar structure within the anatomy of certain organs contributes to the genesis of 

chaotic behaviour [18]. For example, the bronchial tree has self-similar branches. Also in 

a myocardium, the fractal-like conduction tree is asymmetric and irregular, and therefore 

the aiTival times of these electrical impulses in the myocardium will be decorrelated, and 

may give rise to non-linear signals [19]. While the above argument is plausible, concrete 

scientific evidence (anatomic or otherwise) supporting the complexity hypothesis in 

physiology is still elusive. Regarding the role of the central nervous system in generating 

the chaotic signals waveforms, a stronger case may be made regarding the characteristics 

of the basic elements of the CNS, which contribute to the origin of the signals. It is well 

established that the individual neurons are nonlinear elements and act in a binary fashion. 

Therefore, it is not inconceivable that an organ (brain) made of non-linear elements (i.e. 

neurons) can give rise to non-linear properties at a macro-level and give out signals 

which may have a non-linear dynamic behaviour. 

4.3 HRV Signal and the Effect of Age 

While discrete impulses to generate the ECG signal originates in the sino-atrial 

node, regulation of the heart beat intervals on a beat-by-beat basis is under central 

command located within the mid-brain structures. For more than 20 years, analysis of the 

HR signal through time domain and frequency domain indices provided a number of 

insights into the modulatory mechanisms that determine the cardiovascular function. 

Recent addition of nonlinear indices to study the heart rate variability has enabled a study 
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of number of issues regarding the autonomic control of hemodynamic signals including 

effects ofaging. 

Literature on effects of aging on the autonomic function is vast and is spread 

among a number of journals in physiology, clinical medicine, cardiology and 

gerontology. We therefore, present a selected review of literature on both linear and 

nonlinear analysis of the HRV signal and which examines the effects of age. Since linear 

analysis has been around longer, several investigators have contributed to the literature 

on the subject. Only a handful of groups have evaluated the changes in non-linear indices 

with respect to age [20, 23, 43, 42]. 

Ryan et al. analyzed heart rate dynamics during 8-minute segments of ECG in 40 

men and 27 women of various ages while they performed spontaneous and metronomic 

breathing. This study attempts to quantifY complex dynamics of beat-to-beat heart rate 

fluctuations and determine if complexity differs with gender and age [ 44]. Power spectral 

analysis and approximate entropy were computed. It was found that high frequency 

power and the ratio of high/low frequency power within the HRV signal decreased with 

age. The high/low frequency power ratio during spontaneous and metronomic breathing 

was greater in women than men. Approximate entropy of the heart rate decreased with 

age and was higher in women than men. 

Fluckiger et al. [ 48] studied the differential effects of aging on heart rate 

variability and blood pressure variability in 65 healthy subjects aged between 18-80 

years. Their results suggest that there is a continuous decline with age of normalized LF 

power in the standing position and the normalized spectral power of HR during paced 



21 

breathing. Fluckiger et al. conclude that effect of aging on the ANS is progressive and 

continuous throughout the age groups studied. Although aging process diminished HR 

variability and diastolic BP variability, it had no influence on the systolic blood pressure 

variability. 

Yamasaki et al. [45] evaluated the diurnal HRV in 105 healthy subjects (ages: 20­

78 years, 63 males and 42 females) using Holter recorded ECG and power spectral 

analysis of the HRV signals. The investigators also examined the effects of gender on the 

effects of aging. It was noted that male subjects had consistently higher low frequency 

power and it correlated with age. The investigators conclude that sympathetic function is 

pronounced with age in younger healthy male subjects and that sympathetic function 

declines more linearly than parasympathetic function. Also, parasympathetic function is 

better retained in older females compared to older males. 

Sakata et al. [ 46] studied 62 healthy men aged 21-79 years in their laboratory to 

evaluate the effects of aging on the HRV. They studied log-log scaled spectra computed 

from 24- hour HRV signal. Authors state that there may be two independent contributors 

to the power spectral components which influence their decay with frequency, one 

determined by the age and the second determined by the dynamics ofthe individual. 

Pikkujamsa et al. [23] studied the effects of age on R-R intervals. ECG recorded 

on a 24 hour Holter from 114 healthy subjects (age: 1-82 years) was analyzed using time 

domain, frequency domain and nonlinear dynamical (chaos) indices. Investigators 

conclude that cardiac interbeat interval dynamics change markedly from childhood to old 

age in healthy subjects with a loss ofcomplexity with age. 
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Spectral analysis alone, a technique based on linear mathematics, is of limited 

value while assessing the complexity of nonlinear systems. The aging process in the 

absence of disease, appears to be marked by a progressive impairment in multiple control 

mechanisms that enable an individual to adapt to the unpredictable changes of everyday 

life, resulting in loss of dynamic range in physiologic function. This hypothesis, relating 

aging to loss of complexity suggests new ways to monitor the physiologic aging process 

based on nonlinear measurements [20]. These methods will be discussed in the next 

chapter. 

4.4 Conclusion 

Evidence for chaos in physiological signals is slowly emerging. However, an 

understanding of physiological mechanisms that are responsible for the genesis of 

deterministic chaos is still being developed. We have reviewed some relevant literature to 

support the hypothesis that deterministic chaos may be present in the heart rate variability 

signal. It is generally believed that aging reduces the complexity of the heart rate 

variability signal. 



Chapter 5 

Indices of Nonlinear Dynamics of the HRV Signal 

5.1 Introduction 

In this chapter, we will study and evaluate nonlinear indices that can be applied to 

test the hypothesis that deterministic chaos may be present in the heart rate variability 

signal and that aging may reduce the complexity ofthe signal. 

5.2 Power-Law Scaling 

The recent observation that heart rate variability demonstrates self-similarity 

across multiple orders of temporal magnitude, suggests that the mechanisms underlying 

heart rate regulation may have fractal properties [3]. 

Increasing attention is being focused on quantifYing various aspects of heart rate 

dynamics associated with beat-to-beat fluctuations due to limited information about 

autonomic control of heart rate obtained by traditional measures. Spectral analysis is a 

useful technique for quantifYing the overall heart rate variability. Specific components of 

this variability are associated with respiration, sympathetic nervous system activity and 

other physiological influences. Spectral analysis transforms the HRV signal into its 

constituent frequency components and quantifies the relative power (squared amplitude) 

ofthese components [21]. 
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Spectral analysis of HRV is characterized, in addition to very low frequency 

components (0 to 0.03 Hz), by 2 major oscillatory components at low frequency (LF-D.1 

Hz) and high (HF-D.25 Hz) frequency. The low frequency component at 0.1Hz, is used 

as an indirect index of sympathetic modulation, whereas the higher frequency component 

at 0.25Hz is used as an index of vagal modulation. Both LF and HF components account 

for up to 65% oftotal power when short-term recordings are considered [22]. 

To quantify the dynamic differences in the inter-beat interval time series, standard 

fast Fourier transform methods are applied to derive the power spectral density estimates 

of 20-minutes of the HRV signal. A presentation in a log-log plot demonstrates a 

decaying curve, in which the power is inversely proportional to the frequency (1/f~) in a 

range between 10·3 to 10-1 (the interval that most corresponds to very low (<0.01) and 

low frequency range (0.1Hz)). The exponent ~ in this power-law relationship between 

frequency and power is called scaling exponent ~- This exponent is calculated by a 

regression analysis of log(power) and log(frequency) plots of the smoothed power 

spectrum over the frequency range of 1o-3to 1o-I Hz. The value ~ of the exponent 

measures the degree of signal correspondence to a power-law process, a value of 0 

represents the flat spectrum of white noise, whereas other values suggest that there are 

correlations in the data [4,5,23,24]. For healthy control subjects, ~ranges between -1.18 

(for pediatric subjects) to -1.38 (for elderly subjects) [23]. 

Recent analysis of cardiac beat-to-beat intervals in healthy subjects over long time 

intervals, show scale-invariant long-range correlations. In subjects with severe heart 

disease, the distribution of heartbeat intervals is unchanged, but long-range correlations 
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are either diminished or lost. The 1/f nature of heart rate variability is rather poorly 

understood, but may be related to the interaction of multiple physiological control 

systems that operate over many different time scales. The regulation of the heart rate over 

multiple time scales may serve to broaden the frequency response of the cardiovascular 

systein and permit it to adapt to an unpredictable and changing environment. The 

breakdown of such long-range correlations may be associated with the development of 

disease states and an associated loss ofadaptive capacity [3]. 

Physiological aging is associated with a reduction in parasympathetic control of 

heart rate. Because we hypothesize that there is selectively greater loss of high-frequency 

heart rate variability in older than in younger subjects, we anticipate a more negative 

slope for older subjects, that is, ~would be greater in the older subjects when compared 

to those ofpediatric, young adult and middle aged subjects [21]. 
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Figure 5.1: Heart rate dynamics in the supine position are analyzed in 3 steps. Top: First, 
Heart rate is computed from the RR-interval vs. beat number to obtain HR. vs. time. 
Bottom left: Second, with a fast Fourier transform, the heart rate frequency is computed 
for the heart rate time series. Bottom right: last, the HR. spectrum is replotted on double­
log axes (log amplitude vs. log frequency), and a regression line is fit to the data points. 
This regression gives a 1/fr. plot (From [21]). 
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Figure 5.2: Heart rate spectral distribution for young and old subjects, quantified by log 
amplitude versus log frequency (lif 13) plots. Left: individual1if 13 regression lines for each 
subject. Right: average regression lines for young and old subjects (From [3]). 
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5.3 Approximate Entropy 

Approximate entropy (ApEn), has been recently introduced to quantify of 

regularity in time-series data, motivated by applications to relatively short length (20 

minutes- 1 hour) HRV signal available in human subjects. Research using ApEn helped 

to discriminated groups of subjects, in instances where classical [mean, standard 

deviation] statistics did not show clear group distinctions [30]. 

ApEn quantifies the predictability of fluctuations in a given time domain signal 

such as the heart rate. Intuitively, one may reason that the presence of repetitive patterns 

of fluctuation in a time series renders it more predictable than a time series in which such 

patterns are absent. ApEn measures the (logarithmic) likelihood that data points a certain 

distance apart (r) for a given number (m) of observations will remain within the same 

distance on the next incremental comparisons. A greater likelihood of remaining the same 

distance apart, i.e., a greater regularity or predictability, produces lower ApEn values. On 

the other hand, the more complex (less predictable) the process generating the HRV 

signal, the higher the ApEn value [29, 31]. 

Investigators [31, 32, 34] have associated sickness and aging with significantly 

decreased ApEn values, consistent with the hypothesis associating compromised 

physiology with more regular, patterned sinus rhythm HR tracings, and normative 

physiology with greater irregularity (randomness, more complexity). 

Two input parameters, m and r, must be fixed to compute ApEn: m is the "length" 

of compared runs, and r is effectively a filter. Given N data points {u(l)}, form vector 

sequences x(l) through x(N- m + 1), defined by x(i) = [u(i), ... ,u(i + m - 1)]. These 
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vectors represent m consecutive u values, commencing with the ith point. Define the 

distance d[x(i), x(j)] between vectors x(i) and x(J) as the maximum difference in their 

respective scalar components. Use the sequence x(1), x(2), ...... ,x(N- m + 1) to construct, 

for each i ::; N- m + 1: 

c~ (r) = (no. ofj ::;N- m + 1 such that d[x(i), x(j)]::; r)IN- m +1. 

The c~ (r) values measure within a tolerance r the regularity, or frequency, of patterns 

similar to a given pattern ofwindow length m. Define: 

N-m+l 

<t>m (r) = (N - m + 1)-1 L lnc~(r) 
i=l 

where In is the natural logarithm, and then define the parameter ApEn (m, r) = liillN--oo 

[<t>m (r) - <t>m+I (r)]. Given N data points, we estimate this parameter by defining the 

statistic ApEn (m, r, N) = <l>m (r) - <t>m+I (r) [32, 33, 34, 35]. On unraveling definitions the 

following essential observation is deduced: 

-ApEn = (f)m+J (r)- (f)m (r) =average over i ofln [conditional probability that 

Iu(j + m)- u( i + m) I::; r, given that Iu(j + k)- u( i + k) I::; r fork= 0, 1, ... , m-1] 

The flow here is that given a time series of N data points, we form an associated 

time series of N - m + 1 vectors, each vector consisting of m consecutive points. For 

example, with m =2 here, the first three vectors are [u(l), u(2)], [u(2), u(3)], and [u(3), 

u(4)]. Each vector serves, in turn, as a template vector for comparison with all other 

vectors in the time series, toward the determination of a conditional probability 

associated with this vector. The conditional probability calculation consists of first 

obtaining a set of conditioning vectors close to the template vector and then determining 
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the fraction of instances in which the next point after the conditioning vector is close to 

the value of the point after the template vector. Finally, ApEn aggregates these 

conditional probabilities into an ensemble measure ofregularity [32, 33]. 

There are two important issues while applying ApEn to experimental data: 

coinJiutational demands and noise effects. These issues determine the fixed values 

required as input parameters of ApEn, m and r [34]. These choices of m and rare made 

to ensure that the conditional probabilities are reasonably estimated from the N input data 

points. Theoretical calculations indicate that reasonable estimates of these probabilities 

are achieved with an N value from 1om to 30m data points, analogous to a result for 

correlation dimension reported by Wolf et al. [ref]. For r values smaller than 0.1 SD, one 

usually achieves poor conditional probability estimates as well, whereas for r values 

larger than 0.25 SD, too much detailed system information is lost [ref]. Therefore, it has 

been concluded that for m = 2 and N = 1024, values of r from 0.1 to 0.25 SD of the u(i) 

data produce good statistical validity ofApEn(m, r, N) for many models [32, 33, 35]. 

5.4 Detrended Fluctuation Analysis (DFA) 

The technique of detrended fluctuation analysis (DF A) was recently introduced, 

based on a modified root-mean-square analysis of a random walk, to assess the intrinsic 

correlation properties of a dynamic system separated from external trends in the signal 

[24]. DF A quantifies fractal-like correlation properties of a time domain signal. The root­

mean-square fluctuation of the integrated and detrended signal are measured in 

observation windows of various sizes and then plotted against the size of the window on 

a log-log scale. The scaling exponent a represents the slope of this line, which relates 
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(log) fluctuation to (log) window size. Two scaling exponents are calculated: a1. the 

short-term exponent (4 to 11 beats), and a 2, the intermediate-term exponent (>11 beats). 

In this study, the scaling exponents were calculated from segments of 1024 beats of 

supine ECG recording, and 8192 beats from 24-hour holter ECG recording [4, 23]. 

The DFA is used as a measure of the correlation properties of a signal. This 

method permits the detection of correlations embedded in a seemingly nonstationary 

signal and avoids the spurious detection of apparent long-range correlations that are due 

to artifacts (i.e. nonstationarity). Because the detrending procedure is implemented on all 

scales, DF A can be used to quantify the self-similar properties ofa signal [24, 26]. 

To illustrate the DFA algorithm, we use the interbeat R-R interval signal shown in 

Figure 5.3, as an example. The total length of the interbeat (i.e. R-R) interval time series 

(N) is first integrated as follows: 

k 

y(k) =L[RR(i)- RRavg] (5.1) 
i=i 

where RR(i) is the ith interbeat interval and RRavg is the average interbeat interval. Next, 

the integral time series is divided into boxes of equal length n (Figure 5.3 c). In each box 

of length n, a least-squares line is fitted to the data (representing the trend in that box) 

Figure 5.3. They-coordinate of the straight-line segments is denoted by Yn(k). Next, we 

detrend the integrated time series, y(k), by subtracting the local trend, Yn(k), in each box. 

The root-mean-square fluctuation of this integrated and detrended time series is 

calculated by 

N 

F(n) = 11 NL[y(k)- Yn(k)]
2 (5.2) 

k=i 
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This computation is repeated over all time scales (box sizes) to provide a 

relationship between F(n), the average fluctuation as a function of box size, and the box 

size n (Figure 5.3 c). Typically, F(n) will increase with box size (Figure 5.3 d). A linear 

relationship on a double-log graph indicates the presence of scaling, i.e., F(n) ~ na. Under 

such -conditions, the fluctuation can be characterized by a scaling exponent a, the slope of 

the line relating log F(n) to log n. An a of 0.5 corresponds to white noise, a = 1 

represents 1/fnoise, and a= 1,5 indicates Brownian noise or random walk. The exponent 

a is related top by a simple formula: p = 1 - 2a [24, 26, 27]. This relationship is valid at 

the infinite length limit. For time series with finite length, it is expected that discrepancies 

occur between p and a [25]. 

A good linear fit ofthe log F(n) vs. log n plot indicates that F(n) is proportional to 

na, where a is the single exponent describing the correlation properties of the entire range 

of time scales. However, the observation that the DFA plot was not strictly linear but 

rather consisted of two distinct linear regions of different slopes separated at a break 

point suggests there is short-range scaling exponent, at. over periods of4 to 11 beats, and 

a long-range exponent, a 2, over long periods [5]. 
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5.5 Correlation Dimension and Surrogate Data 

The null hypothesis that the HRV signal is generated by a linear stochastic 

process is tested using the following indices: a discriminating statistic representing the 

measured signal is derived. Often, the discriminating statistic is some parameter that can 

be computed from the measured time series (signal) and also from a time series that is 

consistent with the null hypothesis (i.e. surrogate data sets). In this study, the correlation 

dimension D is used as the discriminating statistic. 

We test if the measured HRV signal is consistent with the null hypothesis in the 

following way: First, calculate the value of the discriminating statistic from the HRV (the 

value of D). Then find the range of values of the discriminating statistic for a generated 

time series that is consistent with the null hypothesis. If D falls within this range of 

values, then the discriminating statistic cannot distinguish between the null hypothesis 

and the HRV signal. On the other hand, ifD falls outside this range, then the HRV signal 

is inconsistent with the null hypothesis [7]. 

5.5.1 Surrogate data analysis 

One way of finding the range of values of the discriminating statistic for a time 

series (signal) consistent with the null hypothesis is to generate many different time series 

that are consistent with the null hypothesis, and then calculate the value for the 

discriminating statistic for each these time series. Such data that are generated to be 

consistent with the null hypothesis are called surrogate data sets [7]. 

The method of surrogate data analysis was originally developed by Theiler et al. 

[51] to detect any nonlinearity present in the time series. Since nonlinearity is the 
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essential criteria for chaotic dynamics, the technique is widely applied [52, 53, 54] to rule 

out the presence of linear stochastic processes in an observed time series. In this study, 

random phase surrogate sets are generated and used to test the null hypothesis that the 

HRV signal is generated by a linear stochastic process [50]. 

The generation of random phase surrogate data addresses to a hypothesis that the 

original HRV signal is linearly correlated Gaussian noise. This type of surrogates are 

generated by the following steps: 

Step]: 	Compute the Fourier transform of the original HRV signal. This will 

consist ofan amplitude A(co) and a phase tP(co) at each frequency co. 

Step2: Replace the phases tP(co) with random numbers ranging between 0 and 21t. 

Note that this has no effect on the amplitude A(co). (Note that in the 

original time series, tP(co) = -tP(-co), and this symmetry should be 

maintained when assigning random phases.) 

Step3: 	Compute the inverse Fourier transform ofA(co) and the randomized tP(co). 

This produces a new signal, called the surrogate data. 

The surrogate data has the same amplitude spectrum A(co) as the original signal. 

Since the power spectrum is proportional to A2(co), the surrogate data time series has 

exactly the same power spectrum as the original signal [7, 50]. 

Because we want to find the range of values for the discriminating statistic for 

data consistent with the null hypothesis, we will want to make many different surrogate 

data time series. This is performed by applying the same process, however, using 
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different random numbers for the phases t/J(ro) in step 2. Typically, 10 to 100 different 

surrogate data sets may be generated. In the present study, we use 10 randomly generated 

surrogate data sets. The above procedure of generating surrogate data is tested in the next 

chapter to show that the spectrum of a signal before and after phase randomization is 

identical. 

5.5.2 Correlation dimension 

To compare the original and the surrogate data sets, a discriminating statistic is 

calculated for both signals. As pointed out by Theiler et al. [51], in principle any statistics 

can be used for this purpose. We use the correlation dimension D as our discriminating 

statistic [56]. 

The correlation dimension D, is one of the several types of dimensions in the 

dimension spectrum that characterizes the multi:fractal structure of the chaotic attractor. 

The Grassberger and Procaccia [57] algorithm with multivariate embedding is used to 

calculate the discriminating statistic in the present work [55]. 

For a time series oflength N, the vector x(i) is constructed where i= 1, 2, ..... , N, 

and the coordinates of x(i) are the sample values at time i. The correlation integral C(r) 

represents the fraction of distances smaller than r. The Euclidean distance metric is used 

as a measure ofdistance. C(r) is determined for a range ofr-values (rm;n to rmax) with 

2 N-1 N 

C(r) = L LE>(r-11 X; -x1 ID (5.3)
N(N -1) J=l i=J+I 

Where e< )is the Heaviside function given by 9(x) = 1 for X 2: 0 and 0 otherwise, and the 

norm is defined by II x II= max{! X; 1:1::;; i::;; m}. 
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When log C(r) is plotted against log r, the correlation dimension D can be 

calculated from the line fitting this curve, 

D =min logC(r) (5.4) 
r-+0 logr 

This process is repeated for embedded dimension m = 2 to 20. To compare results 

at various embedded dimensions, we normalize the time series. 

5.6 Conclusion 

In this chapter, we discussed in details the five nonlinear indices applied to the 

HRV signal. These techniques may give us insight into the cardiovascular system. 



Chapter 6 

ECG and HRV Signal Acquisition and Processing 

6.1 Introduction 

In this chapter, we present details of acquisition of the ECG and the HRV signals 

for testing the hypothesis presented in earlier chapters. ECG data from 93 subjects was 

acquired for the present study and the corresponding HR V signal was computed. Details 

ofrecording conditions and preprocessing are also provided below. 

6.2 Subjects -Recruitment & Screening 

The ECG and the HRV signals analyzed in this research were obtained from a 

study of linear signal processing conducted in our laboratory [9]. A total of 93 healthy 

subjects (41 males and 52 females) ranging in age between 5 and 78 years volunteered to 

participate in this investigation. Subjects were from pediatric (PED, 5-12 years, n=15, 9 

male, 6 female), adolescent (ADO, 13-17 years, n=16, 6 male, 10 female), adult (ADL, 

18-30 years, n=22, 12 male, 10 female), middle aged (MDA, 31-60 years, n=21, 8 male, 

13 female) and elderly (ELD, 61+ years, n=19, 6 male, 13 female) age groups. Subjects 

over the age of 55 years were recruited from the McMaster University Seniors Exercise 

Program. The remaining participants were recruited from the undergraduate/graduate 

student populations, faculty and staff at McMaster University or from local public 

schools. 

38 
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Participants were initially contacted and interviewed by phone to provide 

information regarding the purpose and procedures involved in the study and to ensure 

that all general inclusion criteria were met. The investigation required that all subjects 

were healthy, non-smokers with no history of cardiovascular disease (including 

hypertension) or diabetes mellitus. The presence of any of the aforementioned conditions, 

a seated resting blood pressure over 160/95mmHg [36], or a BMI of greater than 25 

kg/m2 resulted in exclusion from the study. In addition, subjects with allergies to 

adhesive or those who felt they would have difficulty abstaining from heavy physical 

activity during the 24-hour recording period were withdrawn from the study. Subjects 

were not on any cardioactive medication at the time of the recordings. Volunteers from 

the MAC seniors program (those over the age of 55 years) had all been subject to a 

symptom limited ECG stress test prior to entrance into the program to rule out the 

presence ofsilent heart disease. 

6.3 Testing Protocol 

All subjects were tested in the Clinical Neurocardiology lab at the McMaster 

University Medical Center (MUMC). On arrival at the lab subjects were provided with 

study details and consent form (Appendix A). Informed consent was obtained from all 

participants prior to the conunencement of any testing procedures. This investigation was 

approved by the research ethics committee at the MUMC. 

6.4 Acute Recordings 

All acute ECG signal recordings were performed between 8:30 a.m. and 10:30 

am. to minimize the influence of the circadian rhythms that exist in heart rate and HRV 
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indices [37]. Electrode sites were shaved if necessary and thoroughly cleaned with 

isopropyl alcohol to remove dirt and natural oils from the skin. The ECG signal was 

recorded through Medi Trace 130 Ag/AgCl stress electrodes in a bipolar lead II setup 

with the reference electrode positioned just inferior to the mid-line of the left clavicle. As 

a robust R-wave greatly facilitates identification of the QRS complex, care was taken to 

avoid DC interference (all nonessential electronic equipment was shut down) and gain 

settings were adjusted to obtain as clear a signal as possible. The contribution of 

respiratory sinus arrhythmia to high frequency heart rate variability [38] requires that 

breathing frequency be monitored along with ECG in studies utilizing power spectral 

analysis. Respiration was monitored through the same electrode placement by the method 

of impedance plethysmography. In this technique a 1kHz signal is passed through the 

subjects thoracic cavity and the impedance between two reference electrodes is 

monitored. Impedance is inversely proportional to the distance between two points. As 

such, the expansion of the chest cavity on inspiration would result in a decrease in 

impedance between two electrodes in the thoracic wall. The resultant respiratory related 

fluctuations in impedance were sampled at 500Hz and displayed concurrently with the 

ECG signal. 

ECG and respiration were initially recorded for 20 minutes in the supine position. 

The room was maintained in semi-darkness for the duration of the recording and blankets 

were provided to ensure a comfortable temperature for the participants. Subjects were 

encouraged to relax with their eyes closed but to attempt to remain awake for the entire 

20 minutes. No effort was made to control the rate or depth of breathing at any time 
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during this recording. Respiratory frequency was to verify the vagal peak but not used 

subsequently in this research [9]. 

Both ECG and respiratory signals were fed through analog recorders and 

amplified with an HP7807C amplifier. These signals were then digitized using a 1kHz 

(500-Hzlchannel), 12 bit analog-to-digital converter. The resultant waveforms from both 

channels were displayed simultaneously on a 486/66 MHz personal computer and 

recorded at 500 samples/sec using a commercially available data acquisition and 

processing software package (CODAS, DATAQ Instruments Inc. Akron, Ohio, USA). 

Data files were stored temporarily on the personal computer's hard drive. Following data 

analysis all file were transferred to long-term storage to digital mini-cassette (Verbatim 

Datalife) using Colorado backup software. File sizes for the supine data were 2400 Kb. 

6.5 Twenty Four-Hour Recordings 

Following the supine testing period subjects were requested to wear an 

ambulatory ECG "Holter" monitor (Model Oxford Medilog 4500 by Oxford Medical Ltd. 

Oxon, UK) for a period of 24 hours duration. Electrode application sites were shaved if 

needed and cleaned as per the acute recording procedure. The ECG signal was recorded 

via a two lead pre-cordial setup (V 1 and V 5) with the two reference electrodes placed just 

inferior to the mid-line of the right and left clavicles. The ground electrode was 

positioned on the right side of the lower abdomen in the supra-iliac region A brief signal 

test of approximately 20 seconds in duration was performed automatically prior to the 

initiation of the recording to ensure that a waveform of sufficient quality for analysis 

could be obtained on both channels. In the case of a poor quality signal on one or both 
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channels, the corresponding electrodes were repositioned and/or the existing sites were 

more thoroughly cleaned and prepared. Following a positive signal test the monitor 

performed a short calibration and the recording was subsequently initiated. The ECG 

electrodes were further secured to the chest with 3M Transpore™ hypoallergenic surgical 

tape -to minimize movement artifact and to reduce the chance of the wires becoming 

disconnected during the recording. ECG waveforms from both channels were 

simultaneously recorded at a rate of 125 samples/second and stored on a standard, normal 

bias 60-minute audiotape for a period of 24 hours. Upon completion of the recording 

subjects were instructed to remove and dispose of the electrodes, switch the monitor off 

and return it to the lab or MAC seniors program (for the elderly subjects) at a convenient 

time arranged during the initial phone interview). 

To aid in the analysis of the Holter tapes subjects were required to complete an 

activity diary concurrently with the 24-hour recording. Start and finish times for sleep, 

meals, visits to the bathroom and other activities were listed. Participants were 

encouraged to maintain their daily schedules but instructed to abstain from heavy 

physical activity or showering while wearing the monitor. 

6.6 Signal Processing & Data Analysis 

Data files from the acute recordings were visually inspected and the two signals 

(ECG and respiration) were separated through an advanced post-acquisition processing 

software. A detection algorithm was utilized to label the individual QRS complexes and 

compute R-R intervals from the raw ECG signal. An R-R tachogram was then 

constructed using the interval data. 
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The compensatory pause following an ectopic beat may be erroneously attributed 

to high frequency, vagally modulated heart rate variability and thus confound the results 

of power spectral analysis [39, 40]. As such, the R-R interval tachograms were visually 

inspected for the presence of ectopic beats prior to the application of autoregressive 

modeling procedures. In cases in which the data set was corrupted by an inordinate 

number of ectopics (>3 per 5 min), additional post-acquisition processing was performed 

to select and remove an uncontaminated segment of data. Files from which appreciable 

segments (>512 data points/~-5 minutes) of untainted data could not be extracted were 

excluded from the analysis. Small numbers of ectopics present in the accepted data 

segments were corrected for using an interpolation algorithm. Detection of ectopic beats 

by the algorithm was accomplished by setting a threshold value by which a beat may 

differ from the one immediately preceding it (e.g. 0.90-1.10xprevious R-R interval). 

Beats exceeding this value were labeled as ectopic and subsequently corrected. The 

amount of 'normal' variability inherent in the heart rate of a young subject can differ 

substantially from that of an elderly individual Figure 6.1. Therefore, the filter was 

individually adjusted to accommodate these age-related differences following the visual 

inspection ofthe data. 
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Figure 6.1: The R-R interval tachograms of (left) young subject, and (right) older subject 
[9]. 

6.6.1 Computation of power-law scaling 

Power-Law scaling is applied to the acutely recorded HRV signal recorded from 

healthy subjects for 20 minutes in the supine position. The acute data provided 1024 RR 

intervals and permitted a computation of the power spectra. The RR interval signal is 

then converted into a heart rate (HR) signal for analysis. Linear interpolation at a rate of 

1Hz is then applied to the HR signal to obtain adequate number of samples to perform a 

Fourier transform. Furthermore, Fourier transform and power spectral density analysis 

are applied to the HR signal for power-law scaling to be achieved. 

6.6.2 Computation of approximate entropy 

ApEn was computed using methods described in section 5.3. We used 1024 RR 

intervals obtained from the acute HRV signal recorded from healthy subjects. ApEn is 

obtained for m=2, and r=O.l5 of standard deviation. 
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6.6.3 Computation of detrended fluctuation analysis 

According to C. K. Peng et al. [28], DF A measure was applied to long signal 

length of 16384 and short sets of 4096 beats. They reported that a long data set results in 

improvement for the distinction between groups, hence the use ofdata sets of length 8192 

seemed to be a statistically reasonable choice. 

In this study, DF A measures are applied to two different signal lengths to explore 

the effect of data length on the measurement. The first data length is 1 024 beats from the 

acute recording. The box size for this data length ranged from 4 to ~ 861 beats. The 

second data length is 8192 beats from the twenty four-hour recording (approximately 2­

2.5 hours). The box size for this data length ranged from 4 to~ 6889 beats. For both data 

lengths, box sizes larger than the ones stated would give a less accurate fluctuation value 

because ofthe finite-length ofthe signal. 

6.6.4 Computation of surrogate data and correlation dimension 

Surrogate data analysis technique is applied to the acute data, allowing an analysis 

to be applied to 1024 points of RR interval. The RR interval signal is then converted into 

a heart rate (HR) signal for analysis. Fourier transform is then applied to the HRV signal 

length with a sampling frequency of 1Hz. Next, the phase of the data set is randomized 

and its power spectra is computed. This process is repeated 10 times, using different 

random seeds to acquire 10 different phase randomized surrogate data sets. 

Furthermore, correlation dimension is computed from the original HRV signal, as 

well as from its corresponding phase randomized surrogate data sets. The correlation 
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dimension is calculated for tolerances ranging from rmin to rmax for each embedded 

dimension. The embedded dimensions vary from m = 2 to 20 for each data set. 

6.7 Testing of Nonlinear Dynamic Indices 

To test different nonlinear indices, we need to generate data sets exhibiting 

chaotic behaviour. A simple system that produces a chaotic signal is the Logistic Map 

[1]. Also, we will be testing the nonlinear indices developed in the previous chapter on 

several models ofartificial signals that have different percentages ofadded noise. 

6.7.1 The Logistic map 

The logistic map is a recursive simple equation for a parabola: 

y = k x (1- x) (6.1) 

where xis a variable (0:::; x:::; 1) and k is a parameter (0:::; k:::; 4). The logistic equation 

contains both linear and nonlinear components that are better seen when the equation is 

expressed in another form: 

y=kx-kr (6.2) 

The kx term is the linear portion of the equation, while the ~ term is the nonlinear 

portion. If we choose particular values for k and x, we can substitute them into the 

equation and get a value for y. Ifwe now substitute y as the new value for x, we obtain a 

new value for y (k remains the same). When we run this recursion several hundreds of 

iterations, a graph representing the dynamic behaviour ofthe system can be obtained [1]. 

For the initial condition x = 0.05, k = 2.8, and iterate the equation 100 times, we 

see that after a short oscillation, the system settles into a predictable and stable output (a 

flat line, Figure 6.3(a)). The system is stable because the linear portion of the equation is 
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dominant. By increasing k to 3.3 and keeping the initial value of x the same, a sudden 

qualitative change in behaviour of the system occurs - it begins to oscillate between two 

different states as the nonlinear portion of the equation becomes manifest (Figure 6.3(b)). 

Increasing k further to 3.8, the system suddenly begins to exhibit strikingly aperiodic, 

seemingly random, behaviour - chaos - as the nonlinear term becomes dominant (Figure 

6.3(c)). The entire range of behaviour is summarized in the bifurcation diagram 

illustrated in Figure 6.2. 

Three models of the logistic map are introduced for testing to differentiate 

between regularity and irregularity (chaos). Model A, k=3.3 (regular, predictable) Figure 

6.3(b). Model B, k=3.6 (less regular, and less predictable). Model C, k=3.8 (irregular, 

chaotic) Figure 6.3(c). 

X 

1.5 2 2.5 k 3 3.5 4 

Figure 6.2: The bifurcation diagram ofthe logistic map. 
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6.7.2 Signal with added noise 

Similarly, the following five signal models are introduced to test the nonlinear 

indices: 

• 	 Model D, consists of a sine wave of amplitude 1 at a frequency of O.lHz and 

which was sampled at 68.33Hz. A 20% white noise was added. This signal is 

relatively regular and predictable. 

• 	 Model E, consists of the same sine wave with 50% added white noise (less 

regular, and less predictable). 

• 	 Model F, consists ofthe same sine wave with 90% added white noise (irregular). 

• 	 Model G, consists ofwhite noise (random). 

• Model H, consists ofBrownian noise (correlated). 

These signal models are shown in Figure 6.4. 

We anticipate that as the signal gets corrupted with increasing amounts of noise, 

the nonlinear indices will tend towards that ofrandom signal. 
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F 

ModeiG ModeiH 

Figure 6.4: The artificial signals used for testing are as follows: (top) sine wave+ 20% 
white noise. (middle left) sine wave + 50% white noise. (middle right) sine wave + 90% 
white noise. (bottom left) pure white noise. (bottom right) Brownian noise. 



51 

6.7.3 Testing of power-law scaling 

Tests were conducted to verify power-law scaling usmg white noise and 

Brownian noise. We find that for white noise, p = 0 (Model G), since the frequency is 

spread across the spectrum. As for Brownian noise, p::::: -3 (Model H), as shown in Figure 

6.5. 
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Figure 6.5: Testing power-law scaling on white noise (top), and on Brownian noise 
(bottom). 
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6.7.4 Testing of approximate entropy 

Approximate entropy is tested on the data generated through the logistic map 

(Figure 6.3) and then on the artificial signals (Figure 6.4). These results are stated in table 

6.1. We find that the results are consistent with our hypothesis, as the ApEn measure 

decreases with regularity. 

Signals for Testing 
-­ - - --­ - -- ---­ - - ------­ -­ --­ -

Logistic map ~ k = 3.3 (Model A) 

ApEn 

0.0 

Logistic map ~ k = 3.6 (Model B) 0.218 

Logistic map~ k = 3.8 (Model C) 0.449 

Artificial signal ~ sine + 20% noise (Model D) 
1.304 

Artificial signal ~ sine + 50% noise (Model E) 
1.531 

Artificial signal ~ sine + 90% noise (Model F) 1.543 

Table 6.1: Results acquired from testing the approximate entropy. 

6.7.5 Testing of detrended fluctuation analysis (DFA) 

Testing of the DF A algorithm is similar to that of testing the power-law scaling 

algorithm. Our results indicate that the scaling exponents a was 0.5 for white noise and 

was 1.5 for Brownian noise (Figure 6.6). These results agree with the predicted value, 

since Brownian noise has high correlation, while white noise has none. Therefore, we can 

conclude that a decreases with irregularity. 
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Figure 6.6: Testing the DFA scaling exponent on white noise (top), and on Brownian 
noise (bottom). 

6.7.6 Testing of surrogate data procedure 

The surrogate data technique was applied to three sets ofartificial data: 

• 	 The first data set consists of a summation of three sine waves. The signal is 

sampled at 1Hz. The first sine wave was at O.IHz, the second sine wave was at 

0.2Hz and the third sine wave was at 0.4Hz. 
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• 	 The second data set similarly consists of a summation of five sine waves. These 

were at frequencies ofO.l, 0.2, 0.3, 0.4, and 0.45Hz. 

• 	 The third data set consisted ofwhite noise (Model G). 

The results shown in Figure 6. 7 show that randomizing the phase will not affect the 

Fourier transform of the data set. Figure 6.7 shows that the FFT of the original data and 

the surrogate data (after phase randomization) are identical. 
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Figure 6.7: The numerical data ofmixed sine waves of(a) three (b) five frequency waveforms respectively, and of(c) white noise; 
also shown are the original data and surrogate data sets with their corresponding power spectra. 
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6.8 Statistics 

The nature of existing relationships between age and HRV parameters were 

examined with multiple regression analyses. The strength of these associations was 

characterized by R measures. Differences between age groups were tested using analysis 

ofvariance (ANOVA). Significance tests were performed withp::::::; 0.05 level. 

6.9 Conclusion 

In this chapter, we discussed the acquisition and processing of the signal used in 

this study. We also tested all the nonlinear indices used to test our hypothesis. Our 

findings suggest a consistency in our hypothesis. 



Chapter 7 

Effects of Aging on the Nonlinear Dynamics of the 

HRV Signal 

7.1 Introduction: 

In this chapter, we will examine the results of nonlinear analysis of the HRV 

signal to understand the effects ofaging in the human cardiovascular regulatory system. 

7.2 Effect of Aging on Power-Law scaling of the HRV signal 

The scatter plot of power-law scaling in relation to age is shown in Figure 7 .1. 

There is a linear reduction in the slope pwith age. The value of the F statistic (ANOVA) 

is 6.649 (p < 0.001), and R is 0.475 (p < 0.001). Table 7.1 shows the mean value of the 

power-law scaling p±standard deviation for each age group. 

7.3 Effect of Aging on Approximate Entropy of the HRV signal 

The scatter plot of approximate entropy in relation to age is shown in Figure 7 .2. 

We can observe a consistent decrease in the value of ApEn with age. The value of the F 

statistic (ANOVA) is 7.82 (p < 0.001), and R is 0.519 (p < 0.001). Table 7.2 shows the 

mean value ofthe approximate entropy ApEn ± standard deviation for each age group. 
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Age Groups 
---­ ---­ - - -­ ------­ ---~ -----­ ---------­

p 
" - -

5-12 years -1.162 ± 0.388 

13-17 years -1.483 ± 0.399 

18-30 years -1.52 ± 0.58 

31-60 years -1.78 ± 0.34 

61-78 years -1.95 ± 0.6 

Table 7.1: The values of paccording to each age group. pvalues are expressed as mean 
±S.D. 

Age Groups 
----------­

ApEn 
-----------­

5-12 years 1.4557 ± 0.093 

13-17 years 1.4275 ± 0.081 

18-30 years 1.395 ± 0.105 

31-60 years 1.349 ± 0.107 

61-78 years 1.272 ± 0.135 

Table 7.2: The values of ApEn according to each age group. ApEn values are expressed 
as mean± S.D. 
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Figure 7.1: Effect of age on power-law scaling. Scatter plot shows the slope pvs. age. 
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Figure 7.2: Effect ofage on approximate entropy. Scatter plot shows the ApEn value vs. age. 
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7.4 Effect of Aging on Detrended Fluctuation Analysis of the 

HRVsignal 

Two types of detrended fluctuation analysis are applied to the HRV signal in this 

stud)'. The short-term DFA, using only 1024 points acquired from acute recordings and 

the long-term DFA, using 8192 points acquired from twenty four-hour recordings were 

computed. The results ofthis technique on both short-term and long-term are as follows: 

7.4.1 Short-Term DFA 

The scatter plot of the short-term DFA scaling exponent is shown in Figure 7.3. 

This graph shows the short-range scaling exponent a 1 (<11 beats) vs. the long-range 

scaling exponent a2 (> 11 beats). The value of the F statistic used for the ANOVA of the 

short-range DFA scaling exponent a1 is 7.535 (p < 0.001). As for the ANOVA of the 

long-range DFA scaling exponent, a2 is 4.841 (p < 0.001). This shows statistical 

significance for both a1 and az. In Figure 7.3, we can observe the concentration of 

younger subjects at smaller a 1 and a2 while the older subjects are concentrated at larger 

a 1and az. Table 7.3 shows the mean values ofa1 and az and their corresponding standard 

deviation for each age group. 

7.4.2 Long-Term DFA 

The scatter plot of the long-term DFA scaling exponent is shown in Figure 7.4. 

This graph shows the short-range scaling exponent a 1 (<11 beats) vs. the long-range 

scaling exponent az (> 11 beats). The value of the F statistic used for AN OVA of the 

short-range DF A scaling exponent a1 is 1.922. As for ANOV A of the long-range DF A 
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scaling exponent, a2 is 4.06 (p < 0.01). The latter value, az, shows statistical significance. 

However, a 1 is not statistically significant between age groups for long-term DFA 

calculations. These results are also shown in Figure 7.4, where we can observe that both 

young and old subjects are spread all over the a1 spectrum. However, there is a higher 

concentration of older subjects at large a2 values, as well as a higher concentration of 

younger subjects at smaller values of az. Table 7.4 shows the mean value of a 1 and az 

and their corresponding standard deviation for each age group. 
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Age Groups 
--------­

(ll 

-------­
(12 

------­
5-12 years 0.774 ± 0.204 0.667 ± 0.082 

13-17 years 0.825 ± 0.191 0.809 ± 0.162 

18-30 years 0.923 ± 0.233 0.833 ± 0.107 

31-60 years 1.079 ± 0.252 0.847 ± 0.127 

61-78 years 1.138 ± 0.289 0.86 ± 0.172 

Table 7.3: The values of the short-term scaling exponents a1 and a2 according to each 
age group. a1 and a2 values are expressed as mean± S.D. 

Age Groups 
- - - - --­ ~ ------~-~ 

5-12 years 

Ut 
-

1.052 ± 0.218 

(12 

0.961 ± 0.081 

13-17 years 1.153 ± 0.21 0.989 ± 0.087 

18-30 years 1.152 ± 0.166 0.958 ± 0.104 

31-60 years 1.238 ± 0.187 1.003 ± 0.092 

61-78 years 1.204 ± 0.205 1.076 ± 0.102 

Table 7.4: The values of the long-term scaling exponents a1 and a2 according to each age 
group. a1 and a2 values are expressed as mean± S.D. 
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Scatter Plot of Scaling Exponent (Long-Term) 
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7.5 Correlation Dimension of the HRV Signal 

The objective of this technique is to test the general hypothesis that surrogate data 

technique can help identify if the heart rate variability signal is chaotic or not. Hence, 

correlation dimension is applied to both the original data set and to 1 0 different 

realizations of surrogate data sets. The results shown in Figure 7.5 are for two subjects 

from the pediatric group. The correlation dimension is plotted vs. the embedded 

dimensions that vary from 2 to 20 for each subject. Similarly, the results in Figure 7.6 to 

Figure 7.9 show results of such analysis for the adolescent group, the adult group, the 

middle-aged group, and the elderly group respectively. 
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Figure 7.7: Correlation dimension of two subjects from the adult group. The correlation 
dimension of the original data and for its corresponding surrogates (and their standard 
deviation) is plotted vs. the embedded dimension. 
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Chapter 8 

Discussion 

8.1 Introduction 

In this chapter we examine our results in light of literature available in the field. 

We will also suggest improvements to our techniques and indicate limitations we have 

encountered during this study. 

8.2 Effect of Age on Physiological Signals Implication: 

Nonlinear Techniques 

We have used power-law scaling (p), approximate entropy (ApEn), and short­

term and long term detrended fluctuation analysis (DFA)- for both short-range (ai) and 

long-range (a2) scaling exponents- as indices to characterize the nonlinear dynamics of 

the HRV signal as well as the effect of age on the autonomic nervous system. While the 

basic hypothesis that age brings about a change in the nonlinear dynamics of the HRV 

signal is answered, we believe that these are the optimum indices for the task with the 

current state ofknowledge. 

In the light of research conducted by our group and by Pikk:ujamsa et al. [23], 

Huikiri et al. [4], Iyengar et al. [24], and Lipsitz [3], we can say with a degree of 

confidence that power-law scaling (p) is the best predictor ofaging and its relation to loss 
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of complexity. Our findings of heart rate power spectra for healthy young and elderly 

subjects shows a downward shift and more negative slope of the regression line in the 

elderly. This observation indicates that relative magnitude is reduced and higher­

frequency fluctuations are more attenuated with advancing age. 

- Pincus et al. [34] proposes that greater regularity or decreased complexity of 

signals from physiologic processes represent the decoupling of physiological 

components. This loss of complexity results in the isolation of system components and 

breakdown of long-range correlations. Since the breakdown of networks within the 

cardiovascular system impairs its ability to rapidly adapt, a loss of complexity in HR. 

signals may be an important marker of susceptibility to disease. Such loss of complexity 

is characterized by approximate entropy. Results from our study, are consistent with this 

hypothesis, since approximate entropy has clearly declined with age. Similar results were 

observed by Lipsitz [3] and Pikkujamsa et al. [23]. These findings suggest that statistical 

measures such as ApEn that can summarize complex dynamics, may have diagnostic 

value in distinguishing patients at risk threatening cardiac disease from those with benign 

conditions [34]. 

In the detrended fluctuation analysis (DF A) method, the distribution of spectral 

characteristics at various frequencies and other features in HR. behaviour is measured. 

Peng et al. [26], Huikiri et al. [4], and Iyengar et al. [24] report a difference between the 

short range scaling exponents and the longer range for elderly healthy subjects. This loss 

of fractal organization in heartbeat dynamics may reflect the degradation of the integrated 

physiological regulatory systems with aging. For healthy young subjects, less crossover 
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was observed, this implies a balance between many different physiological inputs that 

operate over different time scales to regulate cardiac cycle times. Our findings are 

consistent with their results. However, for long-term DF A, we find statistical stability in 

the short-range scaling exponent for both young and elderly subjects. This suggests that 

the endocrine systems, metabolic processes, volume shifts causing the long-range 

fluctuation, are more susceptible to the effect ofage than other influences. 

Surrogate data testing has been used to detect nonlinearity and chaos in EEG and 

ECG [54]. We have evaluated the surrogate data testing procedure on mixed sine waves, 

white noise, and HRV from subjects of different age groups. However, we find that the 

test fails for several subjects, which shows inconsistency in our results. But, our results 

agree with those of other groups like Pradhan N. et al [54], Govindan R.B. et al. [50] and 

Kanters J. K. et al. [58]. We found that the hypothesis that the HRV signal is generated 

by a linear stochastic process is not always rejected. This result may have been due to the 

choice of ten as the number of surrogates, which reflects a compromise between reducing 

the statistical variance in the dimension estimate, and the computational and analytical 

burden. Even when the hypothesis is rejected, the method ofsurrogate data can be used to 

exclude certain classes of stochastic dynamics but a definite positive conclusion of chaos 

in the experimental data cannot be inferred. 
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8.3 Limitations 

While conducting this study, we have encountered various limitations: 

• 	 Long-term recordings contain a high number of ectopics. Such large number of 

ectopics may produce misleading results when applying nonlinear indices to 

quantify the HRV signal. 

• 	 There is a compromise between reducing the length of HRV data sets and the 

computation time. Generally, for some algorithms, longer data sets (>1024) 

require several hours ofcomputation time in a 500MHz Pentium computer. 

• 	 Applying techniques to real data may result in inconsistencies between different 

laboratories and between subjects due to the various factors that may contribute to 

error - e.g. motion of the subject while HRV is being recorded, or a change in 

recording may also influence the final results-. 

8.4 Future Research 

Nonlinear parameters can be applied to various diseases, for instance, before and 

after myocardial infarction (MI), congestive heart failure (CHF), etc. These indices can 

also be tested with various change in parameters to test the effect of these parameters on 

the indices - e.g. the length of data -. Further work may also involve a prediction of 

mortality. 



Chapter 9 

Conclusions 

There is substantial interest in the analysis of HRV signal in a variety of clinical 

setting. Such analysis provides an understanding of the neurocardiac regulation in healthy 

subjects and in patients with a variety of clinical disorders. Many investigators have 

examined the HRV signal for the presence of chaos. However, concrete physiological 

mechanisms to ascertain the presence of chaos are still elusive. The hypothesis on which 

this research is based states that the autonomic function as measured by nonlinear indices 

ofthe HRV signal decays with age. 

We developed several nonlinear indices to characterize and study the HRV signal. 

These include power-law scaling (IJ), approximate entropy (ApEn), detrended fluctuation 

analysis (DF A), surrogate data analysis and correlation dimension. These indices were 

tested using both the logistic map and simulated signals. The results of our testing 

suggest that the algorithms are robust and that with increasing randomness, the nonlinear 

indices degenerate. 

The evaluation of these indices on the HRV data recorded from 93 healthy 

subjects from various age groups yielded a number of contributions to our knowledge in 

this field. These are listed below: 

1. 	 Nonlinear dynamic indices decay with age as examined using power-law 

scaling (IJ) and ApEn. 
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2. 	 The DF A indices become decoupled with age. 

3. 	 The surrogate data techniques suggest that chaos is not always present in 

healthy control subjects. Further work is needed to identify if chaos is 

unequivocally present in the HRV signal. 

Based upon these results and those of others, we believe that nonlinear dynamics 

can provide an insight into the functioning of the cardiovascular system. Also, aging 

progressively diminishes the complexity of the neurocardiac control in healthy human 

subjects. 



BIBLIOGRAPHY 


[1] 	Denton T. A., Diamond G. A., Helfant R. H., KhanS., Karagueuzian H., "Fascinating 
rhythm: A primer on chaos theory and its application," Am Heart J 120: 1419-40 
(Dec. 1990). 

[2] Griffiths F., Byrne D., "General practice and the new science emerging from the 
theories ofchaos and complexity," Br JGen Pract48:1697-1699 (1998). 

[3] Lipstiz L. A., "Age-related changes in the complexity of cardiovascular dynamics: A 
potential marker ofvulnerability to disease," Chaos 5 (1): 102-9 (1995). 

[4] Huikiri H. V., Makikallio T. H., Peng CK., Goldberger A. L., Hintze U., Moller M., 
"Fractal Correlation Properties of R-R interval Dynamics and Mortality in Patients 
With Depressed Left Ventricular Function After an Acute Myocardial Infarction," 
Circulation 101: 47-53 (2000). 

[5] Ho K. L., Moody G. B., Peng CK., Mietus J. E., Larson M. G., Levy D., Goldberger 
A. L., "Predicting Survival in Heart Failure Case and Control Subjects by Use of 
Fully Automated Methods for Deriving Nonlinear and Conventional Indices of Heart 
Rate Dynamics," Circulation 96: 842-8 (1997). 

[6] Kurths J., Voss A., Saparin P., Witt A., Kleiner H. J., Wessel N., "Quantitative 
analysis ofheart rate variability," Chaos 5 (1): 88-94 (1995). 

[7] Glass L., Kaplan D., "Understanding Nonlinear Dynamics," 	New York: Springer­
Verlag (1995). 

[8] Berne 	R. M., Levy M. N., "Principles of Physiology," St. Louis: the C.V. Mosby 
Company (1990). 

[9] Harvey A. M., "Effect ofAge on Autonomic Neurocardiac Function in Healthy Males 
and Females," Ms. Thesis McMaster University, Dept. Kinesiology (Aug. 1997). 

[10] Barold S. S., "Modem Cardiac Pacing," New York: Future Publishing (1995). 

[11] 	 Guevara M. R., Glass L., Shrier A., "Phase-Locked rhythms in periodically 
stimulated heart cell aggregates," Am J Physiol254: Hl-HlO (1988) 

[12] 	 Chialvo D. R., Jalife J., ''Nonlinear dynamics of cardiac excitation and impulse 
propagation," Nature 330: 749-52 (1987) 

80 




81 

[13] Ritzenberg 	A. L., Adam D. R. Cohen R. J., "Period multiplying- evidence for 
nonlinear behaviour ofthe canine heart," Nature 307: 159-61 (1984) 

[14] Chen P. S., WolfP. D., Dixon E. G., Danieley N.D., Frazier D. W., Smith W. M., 
Ideker R. E., "Mechanism of ventricular vulnerability to single premature stimuli in 
open-chest dogs," Circ Res 62: 1191-209 (1988) 

[15] Goldberger A. L., Rigney D. R., Mietus J., Antman E. M., Greenwald S., ''Nonlinear 
dynamics in sudden cardiac death syndrome: heart rate oscillations and 
bifurcations," Experienta 44: 983-7 (1987) 

[16] 	 Shrier A., Dubarsky H., Rosengarten M., Guevara M., Nattel S., Glass L., 
"Prediction of complex atrioventricular conduction rhythms in humans with use of 
atrioventricular conduction curve," Circ 76: 1196-205 (1987) 

[17] 	 Winfree A. T., "Electrical instability in cardiac muscle: phase singularities and 
rotors," J Theor Biol138: 353-405 (1989) 

[18] Goldberger A. L., "Fractal variability versus pathologic periodicity: complexity loss 
and stereotypy in disease," Persp In Bioi & Med 40(4): 543-61 (1997) 

[19] Goldberger A. L., "Fractal electrodynamics of the heartbeat," Ann NYAcad Sci 402­
409 

[20] Lipsitz L. 	A, Goldberger A. L., "Loss of complexity and aging," JAMA 267(13): 
1806-09 (1992) 

[21] Lipsitz L. A, Goldberger A. L., Moody G. B., Mietus J., "Spectral Characteristics of 
Heart Rate Variability Before and During Postural Tilt," Circ 81(6): 1803-10 
(1990) 

[22] Lombardi F., Sandrone G., Mortara A., Torzillo D., La Rovere M. T., Signorini M. 
G., Cerutti S., Malliani A., "Linear and Nonlinear Dynamics of Heart Rate 
Variability After Acute Myocardial Infarction with Normal and Reduced Left 
Ventricular Ejection Fraction," Am J Cardiol77: 1283-88 (1996) 

[23] Pikkujamsa S.M., Makikallio T. H., Sourander L. B., Raiha I. J., Puukka P., Skytta 
J., Peng C. K., Goldberger A. L., Huikiri H. V., "Cardiac Interbeat Interval 
Dynamics from Childhood to Senescence," Circ 100: 393-399 (1999) 

[24] Iyengar N., Peng C. K., Morin R., Lipsitz L. 	A, Goldberger A. L., "Age -Related 
Alterations in the Fractal Scaling of Cardiac Interbeat Interval Dynamics," Am J 
Physiol271(40): R1 078-1084 (1996) 



82 

[25] Peng C. K., Mietus J., Hausdorff J. M., Havlin S., Stanley H. E., Goldberger A. L., 
"Long-Range Autocorrelations and Non-Gaussian Behaviour of the Heartbeat," 
Phys Rev Lett 70(9): 1343-1346 (March 1993) 

[26] Peng C. K., Havlin S., Stanley H. E., Goldberger A. L., "Quantification of scaling 
exponents and crossover phenomena in nonstationary heartbeat time series," Chaos 
5(1): 82-87 (1995) 

[27] Makikallio T. H., Hoiber S., Kober L., Torp-Pederson C., Peng C. K., Goldberger A. 
L., Huikiri V. H., "Fractal Analysis of Heart Rate Dynamics as a Predictor of 
Mortality in Patients with Depressed Left Ventricular Function After Acute 
Myocardial Infarction," Am J Cardio/83: 836-839 (1999) 

[28] Peng C. K., Havlin S., Stanley H. E., Goldberger A. L., "Fractal Scaling Properties 
in Nonstationary Heartbeat time series," AlP Conference Proceedings 375: 615-627 
(1996) 

[29] Goldberger A. L., Mietus J., Rigney D. R., Wood M. L., Fortney S. M., "Effects of 
head-down bed rest on complex heart rate variability: response to LBNP testing," 
Am Phys Soc 77(6): 2863-69 (1994) 

[30] Pincus S., "Approximate entropy as a complexity measure," Chaos 5(1): 110-116 
(1995) 

[31] Pincus S., Viscarello R., "Approximate entropy: a regularity measure for fetal heart 
rate analysis," Obstet Gyneco/79: 249-55 (1992) 

[32] Pincus S., Cummins T., Haddad G., "Heart rate control in normal and aborted-SIDS 
infants," Am J Physio/264(33): R638-R646 (1993) 

[33] 	 Pincus S., Goldberger A. L., "Physiological time-series analysis: what does 
regularity quantify," Am J Physio/265(35): H1643-H1656 (1994) 

[34] Pincus S., Cladstone I. M., Ehrenkranz R. A., "A regularity statistic for medical data 
analysis," J Clin Monit 7: 335-345 (1991) 

[35] Pincus S., "Approximate entropy as a measure 	of system complexity," Proc Nat/ 
Acad Sci 88: 2297-2301 (1991) 

[36] Kumar V., Cotran R. S., Robins S. L., "Basic Pathology," Toronto: W. B. Saunders 
pp 459 (1992) 



83 

[37] Fallen E. L., Kamath M. V., "Circadian rhythms 	of HRV," Malik M & Camm JA 
Heart Rate Variability. Armonk NY, Futura: 293-309 (1995) 

[38] Brown T. E., Beightol L. A, Eckberg D. L., "Important influence of respiration on 
human R-R interval power spectra is largely ignored," J Appl Physiol 75: 2310-7 
(1993) 

[39] Ori Z., Monir G., Weiss J., Sayhouni X., Singer D. H., "Heart rate variability­
frequency domain analysis," Cardiol Clin 10: 499-533 (1992) 

[40] Kamath M. V., Fallen E., "Power Spectral Analysis of Heart Rate Variability: A 
noninvasive signature of cardiac autonomic function," CRC Biomed Eng 21: 245­
311(1993) 

[41] Mandell A J., Shlesinger M. F., "Lost choices, parallelism and topological entropy 
decrements in neurobiological aging," Krasner S ed. The Ubiquity of Chaos. 
Washington DC: American Association for the Advancement of Science: 35-46 
(1990) 

[42] 	 Frolkis V. V., Bezrukov V. V., "Aging of the central nervous system," 
Interdisciplinary Top Gerontol16: 87-89 (1979) 

[43] Kaplan D. T., Furman M. 1., Pincus S.M., RyanS. M., Lipsitz L. A, Goldberger A 
L., "Aging and the complexity of cardiovascular dynamics," Biophys J 59: 945-949 
(1991) 

[44] 	RyanS. M., Goldberger A L., Pincus S.M., Mietus J., Lipsitz L. A, "Gender and 
age related differences in heart rate dynamics: are women more complex than 
men?," JACC24(7):1700-7 (1994) 

[45] Yamasaki Y., Kodama M., Matsuhisa M., Kishimoto M., Ozaki H., TaniA, Ueda 
N., Ishida Y., Kamada T., ''Diurnal heart rate variability in healthy subjects: effects 
ofaging and sex difference," Am J Physiol211(40): H303-H310 (1996) 

[46] 	 Sakata S., Hayano J., Mukai S., Okada A., Fujinama T., "Aging and spectral 
characteristics of the nonharmonic component of 24-h heart rate variability," Am J 
Physiol216(45): R1724-R1731 (1999) 

[47] Urban R J., Velduis J. D., Blizzard R M., Dufau M. L., "Attenuated release of 
biologically active luteinizing hormone in healthy aging men," J Clin Invest 81: 
1020-9 (1988) 

[48] Flukiger L., Boivin J. M., Quilliot D., Jeandel C., Zannad F., "Differential effects of 
aging on heart rate variability and blood pressure variability," J Gerontol 54A(5): 
B219-B224 (1999) 



84 

[49] Greenspan S. L., 	Klibanski A., Rowe J. W., Elahi D., "Age-related alterations in 
pulsatile secretion of TSH: role of doparninergic regulation," Am J Physiol 260: 
E486-E491 (1991) 

[50] Govindan R. B., Narayanan K., Gopinathan M. S., "On the evidence of deterministic 
chaos in ECG: surrogate and predictability analysis," Chaos 8(2): 495-501 (June 
1998) 

[51] Theiler J., Longlin A., Galdrikian B., Farmer D., "Testing for nonlinearity in time 
series: the method of surrogate data," Physica D 58: 77-94 (1992) 

[52] 	 Theiler J., "On the evidence for low-dimensional chaos in an epileptic 
electroencephalogram," Phys Lett A 196: 335-341 (1995) 

[53] Rapp P. E., Albano 	A. M., Zimmerman D., Jimenez-Monntano M. A., "Phase­
randomized surrogate can produce spurious identification ofnon-random structure." 
Phys Lett A 192: 27-33 (1994) 

[54] 	 Pradhan N., Sadasivan P. K., "Relevance of surrogate data testing in 
electroencephalogram analysis," Phys Rev E53: 2684- 2692 (1996) 

[55] 	 Lai Y. C., Lerner D., "Effective scaling regime for computing the correlation 
dimension from chaotic time series," Physica D 115: 1-18 (1998) 

[56] Rombouts S. 	 A. R., Keunen R. W. M., Starn C. J., "Investigation of nonlinear 
structure in multichannel EEG," Phys Lett A 202: 352-8 (1995) 

[57] Grassberger P., Procaccia 	1., "Measuring the strangeness of strange attractors," 
Physica D 9:189-208 (1983) 

[58] 	 Kanters J. K., Holstein-Rathlou N., Agner E., "Lack of evidence for low­
dimensional chaos in heart rate variability," J Cardiovasc Electrophysio/5: 591-601 
(1994 



APPENDICES 


85 




86 

APPENDIX A: 


Forms 
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Aqing & Gender Standards for Heart Rate Variabi1ity 

Subject Consent For.m 


• Adrian Harvey, B.Kin, Graduate Student, Dept. Human Biodynamics 
• Dr. Mark Kamath, Ph.D, Assistant Professor, Dept. Medicine 
• Dr. Neil McCartney, Ph.D, Professor, Dept. Kinesiology 

Purpose 

To establish heart rate variability standards for normal healthy 
subjects with respect to age & gender for future use in research & 

clinical practice. 

Out1ine 

Procedure will involve both short term, (approx. 45 minutes), and 24 
hour ECG recordings. Prior to the recording subjects will be asked to 
complete a short subject information sheet & a medical questionnaire, 
(including a standard noninvasive blood pressure measurement). The 
purpose of these measures is to ensure that the subject population 
consists of normal, healthy individuals. The short term procedure will 
involve a single lead setup, (requiring 3 chest electrodes), capable of 
recording both ECG, (electrical activity of the heart) & respiration. 
Recording will involve 20 minutes in the supine position & 10 minutes 
in the standing position, to assess the acute autonomic cardiovascular 
response to orthostatic stress, (drop in blood pressure on standing), 
in healthy subjects. The 24 hour recording will be performed with an 
Oxford Medilog 4500 holter monitor which can be worn with relative 
comfort on a belt or a shoulder strap. The monitor utilizes a 2 lead 
setup, (requiring 5 chest electrodes), and records only ECG. Subjects 
will also be required to fill out an activity diary listing start and 
finish times for significant activities, (e.g. meals, sleep, work... ), 
during the recording period. The purpose of this long term recording 
is to identify any age or gender related differences in the normal 
circadian rhythm known to exist in heart rate variability. The 
procedure is noninvasive and has no associated risks, (unless the 
subject has allergies to adhesives used to hold the electrodes and 
wires to the skin). Subjects that have difficulty tolerating adhesive 
bandages or any form of athletic or medical tape should not take part 
in this study. 

All collected data will be stored in the Heart Rate Variability Lab, 
(3E25), at the McMaster University Medical Center under the supervision 
of Dr. Mark Kamath, (Assistant Professor, Medicine). Data will be 
published or submitted for thesis credit in such a manner as to 
maintain the anonymity of those involved. No names or other 
information that might be used to identify any subjects will be 
included in these reports. Research findings will be available to the 
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subjects upon completion of the project. Subjects who wish to review 
their data should contact Adrian Harvey at 525-9140 xt27390. 
Participation in the study is on a volunteer basis and subjects are 
free to withdraw themselves as well as any of their previously 
collected data at any time during the study. Subjects may also choose 
not to answer any questions, (on the subject information sheet or 
medical questionnaire), or list any activity, (in the activity diary), 
if they do not feel comfortable doing so. 

-
I have read & understand the procedures & risks involved in this 
research & I am aware that I may withdraw myself or any of my data at 
any time during the study: 

Name: ______________________Signature: _____________________Date: __________ 

Witness: _________________________Signature: _________________________________ 
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Aging & Gender Standards for Heart Rate Variability 


Medical Questionnaire 


Name:____________ Subject#:_____ Date ofBirth: _____Age:___ 

1. Do you smoke, (currently or on a regular basis at any time during 
the past two years)? 

Yes: No: 

2. Do you have diabetes? 

Yes: No: 

3. Is there a history of heart disease in your family? 


Yes: No: 


If so, Who?, At what age did it start?: 


4. Have you ever been diagnosed with, or taken medication for 
hypertension, (high blood pressure)? 

Yes: No: 

5. Do you suffer from any form of heart disease, (angina, previous 
heart attack, valvular disease, congestive heart failure, congenital 
defects etc.)? 

Yes: No: 

If so what type?: 

6. Have you ever fainted in the last 5 years? 

Yes: No: 

7. Have you ever had a problem with high blood cholesterol? 

Yes: No: 

8. Please list all medications currently being taken: 

9. Blood Pressure, (SBP/DBP): 

Date of recording: Signature: _______________________ 
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Patient Information Profile 
Aqinq and Gender Standards in Heart Rate Variability 

Name: 
Date of Birth(age): 
Date of Recording: 
Gender:M( ) F( ) 

Subject#: 
( ) 

Time 
Height: 

of Recording: 
Weight: 

Medications?: 

Medical Questionnaire?:Yes( ) No( ) 

Other Tests: 

Acute-supine:Yes( ) No( 
Analyzed?:Yes( ) No( ) 

Backup?:Yes( ) No( ) Tape#: 

Acute-standing:Yes( ) No( 
Analyzed?:Yes( ) No( ) 

Backup?:Yes( ) No( ) Tape#: 

Holter:Yes( ) No( ) Backup?:Yes( 
Diary?:Yes( ) No( ) 
Time Domain Analyzed?:Yes( ) No( 
Circadian Analyzed?:Yes( ) No( ) 

) No( ) Tape#: 
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Age And Gender Standards in Heart Rate Variability 

Holter Diary 


Name: ____~J~oh~n~D~o~e_______ Subject*: N2696B 

Record start and finish times for the 24 hours during the holter 
recording, (i.e. Sleep, Meals, Medications, Work, Visits to the 
bathroom... ) 

Time-(Start-Finish) Description 

10:45-11:00 
11 :20-11 :35 
12:00-12:05 
1:15-1:55 
3:00-3:45 
4:00-4:05 
6:10-7:00 
7:15-7:25 
8:25-8:30 
9:12-9:17 
10:00-10:15 
11:30 
3:10-3:15 
8:25 
9:30-9:50 

Walk to Car 
Coffee 
Bathroom 
Lunch 
Walk to and from store 
Bathroom 
Dinner 
Dishes 
Bathroom 
Bathroom 
Snack 
Go to Bed 
Bathroom 
Wake up, Get out of bed 
Drive to McMaster, Walk from car to Lab 
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Raw Data 
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Data acquired from pediatric subjects, the results with their corresponding mean 
and standard deviation. 

10# Age (3 ApEn a1 
(1 024) 

a2 
(1 024) 

a1 
(8192) 

a2 
(8192) 

A13061 5 -1.3 1.457 0.68 0.668 0.547 0.984 

_A10072 6 -0.57 1.534 0.488 0.561 

A12061 6 -0.95 1.455 0.823 0.652 1.239 0.889 

A05072 7 -1.31 1.479 0.588 0.766 1.02 0.87 

A23082 7 -0.98 1.255 1.059 0.657 1.161 0.806 

A19061 8 -1.62 1.346 0.885 0.761 1.263 0.899 

A10071 9 -1.59 1.575 0.459 0.535 1.118 0.981 

A14081 9 1.482 0.879 0.774 1.137 1.027 

D2296A 9 -0.93 1.491 0.755 0.724 0.836 0.886 

A16082 10 -1.02 1.544 0.807 0.763 0.89 1.044 

A31052 10 -1.01 1.471 0.945 0.54 1.13 1.011 

A07062 11 -1.09 1.403 0.619 0.725 

A09081 12 -1.32 1.464 1.146 0.691 1.377 1.01 

A27061 12 -0.62 1.573 0.572 0.621 0.89 1.071 

A23083 12 -1.98 1.307 0.919 0.728 1.078 1.017 

Mean 
0.961-1.162 0.774 1.0521.455 0.677 

S.D. 0.388 0.218 0.0810.093 0.204 0.082 
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Data acquired from adolescent subjects, the results with their corresponding mean 
and standard deviation. 

10# Age ~ A pEn 
a1 

(1 024) 
a2 

(1 024) 
a1 

(8192) 
a2 

(8192) 

D2296B 13 -1.34 1.372 0.587 0.581 0.594 0.915 

A05071 13 -1.22 1.4106 0.709 0.585 1.002 1.069 

A310595 13 -1.31 1.466 0.713 0.617 1.042 1.058 

J1897A 13 -0.98 1.44 1.18 0.611 1.037 0.944 

A31071 14 -2.06 1.519 0.768 0.986 1.151 1.113 

A51072 14 -1.55 1.352 1.063 0.894 1.197 0.917 

A28081 15 -1.02 1.466 0.703 0.704 1.267 1.019 

A28061 15 1.397 0.602 0.92 1.291 0.829 

A28062 15 1.4707 0.909 0.897 1.265 0.999 

J2597B 15 -1.73 1.239 1.04 0.83 1.045 0.926 

A02081 16 1.437 1.013 0.778 1.344 1.041 

A24072 16 -1.52 1.456 0.702 0.931 1.263 1.007 

A24073 16 -0.87 1.552 0.987 0.666 1.438 1.014 

A21081 17 -2.03 1.469 0.776 0.959 1.306 0.869 

A26071 17 -1.9 1.298 0.908 0.893 1.32 1.148 

J2597A 17 -1.78 1.496 0.546 1.092 0.9006 0.9595 

Mean 
-1.483 0.9891.427 0.825 0.809 1.53 

0.081 0.191 0.21 0.087S.D. 0.399 0.162 
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Data acquired from adult subjects, the results with their corresponding mean and 
standard deviation. 

10# Age 13 ApEn o1 

(1 024) 
02 

(1 024) 
01 

(8192) 
o2 

(8192) 

F0397A 18 -1.3 1.331 0.836 0.689 1.069 1.046 

N0296A 18 -1.65 1.462 0.719 0.859 1.001 0.824 

N0596A 18 -1.04 1.427 0.91 0.713 1.15 1.084 

N2796A 18 1.414 0.908 0.892 1.3211 1.005 

02896A 18 -1.82 1.424 0.581 0.957 1.05 1.001 

01896A 19 -2.22 1.559 0.532 0.829 0.946 0.919 

N2696A 19 -0.45 1.3749 0.909 0.708 1.071 0.94 

A17071 20 -0.87 1.538 0.847 0.673 

N0796A 22 -1.69 1.456 0.7 0.784 0.936 0.878 

N1896A 22 -1.72 1.459 0.844 0.93 1.116 1.081 

N1196A 23 -2.53 1.35 1.073 0.986 

MA1597A 24 -1.25 1.382 1.248 0.799 1.4728 0.968 

N1296A 24 -0.78 1.477 0.7123 0.815 

N0696A 24 -0.93 1.343 1.133 0.876 1.334 1.048 

N0696A 24 -1.04 1.2141 1.26 0.934 1.334 1.048 

MA1297A 24 -2.08 1.092 1.251 0.86 1.1406 0.8962 

J1597A 25 -1.42 1.312 0.897 1.058 

MA1697A 25 -2.36 1.4037 0.881 0.862 1.194 0.88 

J2897A 26 -1.68 1.473 0.851 0.872 1.0569 1.1267 

D0396A 26 -1.63 1.516 0.685 0.633 0.919 0.774 

N1496A 27 -1.27 1.3466 1.361 0.757 1.405 0.934 

N0996A 27 -1.28 1.349 1.187 0.855 1.233 0.795 

Mean 
-1.52 1.395 0.923 0.833 1.152 0.958 

S.D. 0.58 0.105 0.233 0.1040.107 0.166 
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Data acquired from middle age subjects, the results with their corresponding mean 
and standard deviation. 

10# Age J3 ApEn 
a1 

(1 024) 
a2 

(1 024) 
a1 

(8192) 
a2 

(8192) 

F2597A 31 -2.24 1.309 1.062 1.127 1.326 0.8944 

M0697A 33 -1.46 1.287 1.224 0.795 1.275 1.022 

02396A 35 -1.58 1.33 1.11 0.759 1.124 1.047 

A0997A 35 -1.77 1.545 0.678 0.904 1.048 1.033 

M2597A 37 -2.49 1.182 1.051 1.02 1.221 0.9114 

N1996A 37 -1.99 1.46 0.898 0.83 1.379 1.0145 

M0397A 37 -2.03 1.422 0.767 0.794 

F1597A 40 -1.61 1.396 0.917 0.824 0.7195 1.0107 

MA0997A 42 -1.31 1.517 0.868 0.883 1.455 0.9223 

MA1397A 42 -1.83 1.312 1.166 0.948 1.257 1.037 

F1597B 44 -1.38 1.255 1.4 0.743 1.234 0.926 

A0297A 45 -1.56 1.33 1.309 0.781 1.3029 0.8759 

D1996A 45 -2.21 1.285 1.237 0.963 1.238 0.913 

A2297A 45 -1.59 1.187 1.442 0.822 1.258 1.2118 

A0897A 52 -1.87 1.471 0.534 0.916 1.514 0.921 

N2896A 56 -1.82 1.423 1.077 0.929 1.116 1.139 

A1597A 56 -1.64 1.472 1.022 0.575 1.211 1.128 

A0397B 57 -2.19 1.35 0.856 0.974 0.9868 1.0561 

A0397A 58 -1.09 1.327 1.311 0.641 1.425 0.946 

A2897A 59 -2.07 1.163 1.36 0.847 1.443 1.0585 

A2997A 59 -1.73 1.324 1.372 0.719 

! 

Mean 
-1.78 1.349 1.079 0.847 1.238 1.003 

S.D. 0.34 0.107 0.252 0.127 0.187 0.092 

I 
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Data acquired from elderly subjects, the results with their corresponding mean and 
standard deviation. 

10# Age ~ ApEn a1 

(1 024) 
a2 

(1 024) 
01 

(8192) 
a2 

(8192) 

D1696A 61 -1.3 1.457 0.68 0.668 0.547 0.984 

A02978 62 -0.57 1.534 0.488 0.561 

MA0897A 64 -0.98 1.255 1.059 0.657 1.161 0.806 

J3097A 65 -1.62 1.346 0.885 0.761 1.263 0.899 

A21978 65 -1.59 1.575 0.459 0.535 1.118 0.981 

J1097A 66 1.482 0.879 0.774 1.137 1.027 

MA0697A 66 -0.93 1.491 0.755 0.724 0.836 0.886 

F1897A 67 -1.02 1.544 0.807 0.763 0.89 1.044 

A1497A 67 -1.01 1.471 0.945 0.54 1.13 1.011 

F1397A 68 -1.09 1.403 0.619 0.725 

A2197A 68 -1.32 1.464 1.146 0.691 1.377 1.01 

010968 68 -0.62 1.573 0.572 0.621 0.89 1.071 

D1096A 69 -1.98 1.307 0.919 0.728 1.078 1.017 

F1197A 69 -1.24 1.142 1.398 0.674 1.44 1.16 

J2297A 69 -2.63 1.255 1.268 0.753 1.314 1.095 

D2096A 74 -1.94 1.509 0.848 1.009 

F0797A 74 -2.58 0.973 1.504 0.839 1.186 1.201 

J2097A 77 -2.47 1.117 1.229 1.088 1.028 0.979 

J3197A 78 -1.91 1.191 0.707 0.901 

Mean 
-1.95 1.272 1.138 0.86 1.204 1.076 

0.135 0.289 0.172 0.205 0.182S.D. 0.6 I 




