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ABSTRACT 

Electromyographic (EMG) signals contain both neural 

and muscle information. Consequently, EMG signals can be 

modelled as the composition of two component signals, one of 

these being a low frequency neural input, the other a 

relatively high frequency, constant spectrally shaped, 

stationary, unitary muscle response. Utilizing this model 

and homomorphic processing estimates of the two component 

signals can be obtained. These estimates contain neural 

and muscle information respectively. 

This thesis establishes the basis for the use of 

this multiplicative model. It also outlines the applica­

tion of multiplicative homomorphic processing to EMG signals. 

The results of this processing are shown to be valid and 

to contain useful information. 

The thesis concludes that the model is both appro­

priate and useful. It also points out that the use of this 

model and homomorphic processing allows the simultaneous 

extraction of both neural and muscle information from the 

EMG signal,a result which is not possible with other current­

ly used processing techniques. 
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CHAPTER 1 


INTRODUCTION 

It has been known for many years that muscle con­

traction is initiated and controlled by neural inputs. 

It has also been known that the contraction of muscle is 

accompanied by substantial electrical activity. This 

electrical activity can therefore be considered as an 

information source of both muscle activity and neural 

control. By the use of suitable electrodes and amplifi ­

cation, the electrical activity of muscles can be measured. 

This measured activity is called an electromyographic 

(EMG) signal. EMG signals then contain information about 

both the neural control and response during contraction of 

the muscle from which they were recorded. The work pre­

sented in this thesis was initiated in an effort to deter­

mine a signal processing technique to extract both the 

neural and muscle information present in EMG signals. 

To this end the physiology and physical parameters 

which are the basis of recorded EMG signals were investi ­

gated and are summarized in Chapter 2. This chapter con­

cludes with a discussion of the stochastic nature of 

recorded EMG signals. 
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Chapter 3 outlines the present uses of EMG signals 

as well as existing processing techniques and models used 

to analyse them. It also introduces a multiplicative model 

with new conceptualizations of the two component signals, 

one being a low frequency neural input, the other a rela­

tively high frequency unitary muscle response (UMR). The 

fundamental assumption on which this model is based is 

that, independent of the contraction level, the spectral 

shape of the EMG signal recorded during constant contrac­

tions does not change. The chapter concludes with the 

results of a study which investigated this assumption. 

Multiplicative processes are especially suited to 

the use of homomorphic processing, for the determination 

of their component signals. For this reason Chapter 4 

summarizes the general theory of homomorphic processing 

and discusses its application to multiplicative systems. 

Homomorphic processing is then compared to other techniques 

of processing EMG signals. The results of a comparison of 

the performances of homomorphic processing and rectifica­

tion followed by low pass filtering applied to simulated 

EMG signals are reported. 

In an effort to substantiate the proposed model and 

to establish the information content of the component sig­

nals real EMG signals were homomorphically processed. The 

results are presented ih Chapter 5. EMG signals recorded 
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during constant muscle contractions were processed and 

spectral parameters for the raw EMG data and their corres­

ponding UMRs were compared. The chapter continues with a 

discussion of the stationarity of these signals and their 

corresponding UMRs as assessed by the run test. Signals 

collected during phasic muscle contractions were also pro­

cessed and the information content of their component signal 

estimates is then addressed. It is shown that the extracted 

neural input estimate represents the phasic control of the 

muscle contraction. Further a relationship between UMR 

spectral parameters and the muscle being studied is esta­

blished. Finally the stationarity of the corresponding 

UMRs as determined by the run test is also assessed. 

The thesis ends with a concluding chapter outlining 

the suitability of the proposed model and summarizing the 

significance of the results. Future research directions 

for the application of the proposed model and homomorphic 

processing to EMG signals are also discussed. 



2.1 

CHAPTER 2 


THE EMG SIGNAL 

Introduction 

Electromyographic (EMG) signals are signals 

collected by suitable electrodes, which represent the 

electrical activity associated with muscle contraction. 

To understand the EMG signals collected and to use them as 

a source of information it is essential to have a knowledge 

of the basic structure and function of nerves and muscles. 

This chapter briefly summarizes the physiology of nerves 

and muscles. More comprehensive treatments of these topics 

can be found in standard texts such as Guyton (1977) and 

Katz (1966). It then relates the physiology to the EMG 

signals recorded from different electrode types and confi­

gurations. Finally it discusses the stochastic nature of 

the recorded EMG signal, 

2.2 Physiology of Nerve and Muscle 

2. 2. 1 The Nerve Cell 

Nerve cells or neurons are single specialized cells 

which perform the function of information transmission and 

processing. Processing of information is confined to the 

Central Nervous System (CNS), which is made up of the brain 

4 
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and the spinal cord. The transmission of information is 

primarily carried out by the Peripheral Nervous System 

(PNS), although some transmission obviously takes place in 

the processing action of the CNS. The PNS is further 

divided into two functional groups, that of afferent or 

sensory fibres (neurons) and that of efferent, or motor 

fibres. The sensory fibres relay the information from our 

sensory organs to the CNS. The motor fibres relay to 

muscles the activation intent of the CNS. 

Neurons have evolved into specialized cells capable 

of transmitting electrical signals which they use to commu­

nicate with each other. Anatomically, the nerve cell appears 

as in Figure 2.1. As can be seen from the figure, the neuron 

has a main cell body complete with nucleus, as do many other 

biological cells. However, the neuron•s intricate system of 

dendrites and long axon projection, (up to 1 meter in length) 

clearly show its structural adaptation. The axons of human 

nerve cells are about 1-10 microns in diameter. 

Functionally, the neuron is also quite different from 

other cells. Although the membrane of the nerve cell is a 

standard bilipid layer it is also capable of drastic ioni~ 

permeability changes which allow it to transmit electrical 

signals, as will be presently explained. The bilipid layer Qf the mem­

brane acts also as a biological capacitor, approximately 1 ~F/CM2 and 

is capable of withstanding extremely high electrical fields without 

breakdown and thus substaining a potential across it. 
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Afferent 
nerve 

termma! 

Figure2.1 The Nerve Cell 
(Katz 1966) 
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The nerve cells, due to concentration gradients of 

specific ions across the membrane, primarily high relative 

sodium (Na+) concentration outside the cell and high rela­

tively potassium (K+) concentration inside the cell, do 

posess a membrane potential (V ). The value of the membrane m 

potential is determined by the membrane relative conducti­

vity to the specific ions present on both sides of the mem­

brane and to the electro-chemical driving force acting on 

each ion species. The ions of main concern are again Na+ 

and K+. The equilibrium potential of Na+, ENa+ and EK+' are 

about +40 mV and -120 mV respectively. Subsequently the 

driving force for these ions are the respective differences 

between the membrane potential and the equilibrium potential 

for the ion of interest. v 
m 

2. 2. 2 The Action Potential 

At rest due to a high K+ conductivity (g K+) the cell 

membrane potential is approximately -85 mV (inside relative 

to outside). However, the Na+ and K+ conductivities, 

gNa+'gK+ of the membrane are sensitive to membrane voltage 

changes. As the membrane is depolarized (brought toward 

zero potential) the gNa+ is significantly increased, as 

well the gK+ is increased to a lesser degree. If the depo­

larization is sufficient for the net current to cause 

further depolarization, for more Na+ to move out of the 
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cell then K+ in, a positive feedback situation develops, 

in which a further increase in gNa+ and gK+ results in 

further depolarization. The membrane rapidly approaches 

ENa+, the equilibrium potential for Na+, at which point 

Na+'s driving force goes to zero. Also as time progresses 

gNa+' despite the membrane potential rapidly returns to its 

resting state while gK+ remains high. This forces the mem­

brane potential back to rest. The rapid transmembrane 

potential excursion just described is called the nerve 

action potential (AP). This all or none phenomenon reaches 

the same peak voltage (determined by ENa+) and has the same 

time course (approximately 1 msec. dependent on nerve cell 

diameter and temperature) each time a depolarization above 

threshold is reached. Threshold is defined as the minimal 

depolarization required to elicit an AP. The production of 

an AP obviously requires energy. This energy is supplied 

by the existing transmembrane concentration gradients. If 

many AP's are produced without recharging the system these 

chemical concentrations run down. To prevent this a complex 

metabolically driven process, the sodium potassium pump 

operates to maintain the concentration gradients. 

Once an AP has been elicited at a point on the nerve 

it will propagate in both directions along the fibre. This 

propagation is brought about by the depolarization, beyond 

threshold, of membrane sections, adjacent to site of the 
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initial AP, resulting from the local ionic current flows 

associated with creating the initial AP. The propagation 

velocity of the AP increases with cell radius. The approx­

imate velocity of transmission for bare neurons is in the 

1-5 m/s range. 

To speed up AP transmission, nature has provided 

nerve cells with insulating cells, i.e. myelinating Schwan 

or Glia cells. These cells wrap themselves around the axon 

only exposing it to the interstitial fluid at regular 1 mm 

intervals. These Nodes-of-Ranvier as they are called are 

the only points new AP's can be created. This causes the 

AP to be passively conducted, as through an electrical cable 

from node to node. Passive conduction is much faster, subse­

quently myelinated nerves conduct AP's at higher propagation 

velocities (50 m/s). The AP transmission in myelinated 

nerves appears to have the AP's jumping from node to node, 

thus the term saltatory conduction has been used for this 

mode of transmission. Myelination allows nerves to have 

high conduction velocities without becoming massively large 

or expending great amounts of metabolic energy to keep the 

chemical gradients intact. 

Neurons communicate with each other and muscle via 

synaptic connections. At a synapse, either electrically or 

chemically the information of a presynaptic A.P. is trans­

mitted by a depolarization or hyperpolarization of the post 
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synaptic membrane. Depolarizations are generally considered 

as excitatory (i.e. tending to elicit an AP). Hyperpolari­

zations are generally considered as inhibitory. 

The dendritic system, with its many synaptic connec­

tions to other nerve cells, is constantly integrating a 

barrage of excitatory and inhibitory signals. When the exci­

tatory inputs are sufficient to excite the cell (i.e. depo­

larization past threshold) an action potential is created 

at the axon hillock. The AP propagates down the axon to 

synapses at other neuronal dendrites or muscle fibres thus 

communicating with these structures. 

2. 2. 3 Muscle 

Muscle is a complex collection of individual muscle 

fibres and connective tissue. Muscle fibres are grouped 

into bundles (fasicles). The fasicles are grouped into whole 

muscles by connective tissue. Muscles are connected to bone 

by connective tissue called tendons. Each muscle fibre con­

sists of a chain of sacromeres, of about 10-80 microns in 

diameter. Each sacromere consists of several hundred to 

several thousand myofibrils. The myofibrils are the basic 

contraction elements. The exact chemical and physical 

mechanism of myofibril contraction is beyond the scope of 

this discussion, but further description can be found in 

Guyton (1977). The membrane of the muscle fibre 1 ike the 
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neuron is excitable. The membrane capacitance of the muscle 

is greater than that of the neuron at about 6 ~F/cm 2 . The 

increase is due to the muscles excitation contraction coupl­

ing mechanism. Depolarizations beyond threshold result in 

muscle action potentials (MAP's) which like AP's propagate 

in both directions from the initiation point. Muscle fibres 

are not myelinated and thus have conduction velocities of 

about 5 m/s. 

The initiation of muscle contraction is usually 

linked to the MAP. The depolarization of the muscle fibre 

membrane results in the release of calcium ions (Ca++) in 

the fibre. This results, through an excitation contraction 

coupling (ECC) mechanism, (Guyton 1977) in muscle contraction. 

Although the ECC is an extremely complex non-linear mechanism, in 

general, as the frequency of depolarizations increases the 

amount of contraction is increased. The complexity of the 

ECC, under dynamic muscle contraction makes attempts to 

relate muscle electrical activity and contraction state 

difficult. 

Muscle has associated with it a series and parallel 

mechanical compliance resulting from the connective tissue 

components, between muscle and bone and around the muscle 

fibre groups (fasicles). Any contraction level that is to 

be measured externally, must first stretch or energize this 

compliant component. This is similar to voltage readings 
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across series or parallel capacitors. 

2. 2. 4 Nerve-Muscle Interaction 

Since EMG signals result from muscle activity and 

muscles are activated by motor neurons of the PNS, the 

motor neuron muscle interactions is of primary interest in 

this discussion. The motor neuron is the sole PNS efferent 

path from the CNS to the muscle. The motor neuron cell 

body (anterior horn cell), located in the spinal cord, pro­

cesses via integration the activity of the synaptic connec­

tions to its dendrites. Upon suitable depolarization {past 

threshold) an AP is created which propagates along the axon 

and its distal branches to neuro-muscular junctions, one for 

each axon branch. At the neuro-muscular junction the axon 

forms a synapse with the muscle fibre. This is called the 

motor point. Here, via chemical transmission the post 

synaptic muscle fibre membrane is depolarized past threshold 

by suitable permeability changes, resulting in a muscle action 

potential (MAP) being created. The created MAP then propa­

gates in both directions from the motor point resulting in 

muscle fibre contraction at each point along the fibre, sub­

sequent to the MAP passing. The net effect is a smooth 

muscle fibre cont~action. 

Chemical rather than electrical transmission is used 

at the neuro-muscular junction because the nerve cannot 
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supply the required current directly, to depolarize the 

muscle membrane beyond threshold. This is due to the 

muscle membrane increased capacitance per square area and 

its increased size. The neuro-muscular junction chemical 

transmitter mechanism acts as a pulse transformer whose 

output provides sufficient electrical current to drive the 

low impedence muscle fibre membrane. 

The single motor neuron does branch as it reaches 

the muscle. Therefore, a single motor axon terminates at 

neuro-muscular junctions on a number of muscle fibres, one 

neuro-muscular junction per fibre. This means that a single 

motor neuron firing results in the essentially simultaneous 

creation of a number of MAP's on involved muscle fibres and 

in the 'synchronous' contraction of these muscle fibres. 

This group of muscle fibres 'synchronously' contracting and 

the motor neuron exciting them is called the motor unit. 

The individual MAP's of the muscle fibres of the 

motor unit summate to create what is called a motor unit 

action potential (MUAP). All the muscle fibres of a given 

motor unit are not actually synchronously excited because 

of different distances from the motor neuron cell body to 

specific fibres and due to different conduction velocities 

in the distal branches of the motor axon. These effects, 

however, are minimal and the motor unit fibre activity can 

be considered as synchronous. 
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2.2.5 Muscle Contraction 

The response to the single firing of a motor neuron 

is a brief contraction followed by relaxation called a 

muscle twitch. Twitch durations are measured as the time 

for the muscle to contract and relax. Muscle fibres are 

basically of two types. A muscle fibre may be a fast twitch 

(or phasic muscle) with twitch times of 10-20 ms (Guyton 

1977). Muscle with mostly phasic fibres are for fast res­

ponse movements, but fatigue quickly. A muscle fibre may 

also be a slow twitch (or tonic muscle) with twitch times 

of 80-120 ms (Guyton 1977). Muscle with mostly tonic fibres 

are usually postural muscle, slowly responding, but slow to 

fatigue. The muscles of man are usually of mixed fibre type 

and have intermediate total muscle twitch times. A motor 

unit has a conmon fibre type. 

It is important to differentiate between the muscle's 

electrical activity and its mechanical activity. The elec­

trical impulse, (MAP) has a time duration at any one site 

on the fibre, depending on the fibre diameter, in the range 

of several milliseconds. Therefore, the time constants of 

the electrical responses are at least an order of magnitude 

less than the time constants of the possible mechanical 

muscle responses. As well electrically there is no differ­

ence in fibre type responses. 
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2. 2. 6 Control of Muscle Contraction 

When a train of neuronal spikes are incident to a 

muscle or motor unit and the inter spike interval is less 

than the twitch duration greater muscle force than for a 

single twitch will be created. If the incoming spike train 

is above a critical frequency, the twitches are fused and 

tetanus or maximum muscle force will be created. This 

ability to produce greater force subsequent to closely 

following impulses is due to muscle compliance charging and 

++to ECC potentiation due to increased Ca release. 

Another method of increasing muscle tension produced 

is to simultaneously or within the same twitch times, stimu­

late more motor units. This is called recruitment of addi­

tional motor units or simply recruitment. The incremental 

increase in maximum force produced will depend on the 

recruited unit's size, its relative synchrony with the other 

active units and its impulse frequency upon activation. 

Dynamic control and maintenance of different levels 

of contraction is then effected by the two processes of 

recruitment of new motor units and/or the altering of the 

firing rates of the motor units already firing. Firing 

rates range from zero to greater than 50 Hz. Henneman et 

al (De Luca 1979) observed that recruitment usually starts 

with the smaller units. Milner-Brown et al (De Luca 1979) 

found that in some contractions recruitment order and impulse 
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frequency upon activation is such that the incremental force 

change ~F versus the total force F is constant. That is 

~F/F = K. The exact interplay of these two force variables, 

firing rate and recruitment is not exactly known. It is 

thought to change with different force rates of contraction, 

that is different velocity, accelerations and length of 

shorten i n g musc 1 e ( De Luca 1 9 7 9) . However , the 1 i t era t u r e 

does seem to indicate the following interplay between fir­

ing rate and recruitment for force-varying isometric con­

tractions. Recruitment plays the major role for contracion 

levels up to 30% of maximum voluntary contraction (MVC). 

From 30 to 75% MVC the increase of firing rate plays a 

larger role in force increase, with the recruitment effect 

diminishing. For contraction above 75% MVC firing rate 

increase has the primary role in force increase (De Luca 

1979). 

2. 3 Basis of Electromyographic Signal 

2. 3. 1 Signal Source 

The source of the electromyographic (EMG) signal 

is the individual MAP's of the active muscle fibres. Since 

all the fibres of a given unit are 'synchronously' active 

the source of the EMG signal can be considered to be the 

MUAP's of active motor units. Although the potentials of 

the MAP's are transmembrane potentials, the currents that 
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flow to create the MAP•s produce perceptable electric fields 

in the medium external to the muscle fibres. Suitable 

electodes placed in these fields will have potentials 

impressed upon them. The potential difference between elec­

trodes can then be differentially amplified to result in 

the electromyographic signal. The AP produced by nerves do 

not contribute significantly to the EMG signal due to the 

relatively small current involved. However, with special 

electrodes and recording sites very close to the nerve, elec­

troneurographic signals can also be recorded. 

2. 3. 2 Volume Conduction 

As just previously stated, the EMG signal is the 

difference in the measured electric field at two electrode 

sites. The electric fields are created by the currents 

that flow to produce MAP•s. The current involved to create 

a MAP flows in a circuit composed of the muscle membrane, 

the fibre internal solution, and the external medium. The 

membrane and internal current are not perceptable with 

standard EMG electrodes. Therefore the current of interest 

is that flowing in the external medium. 

The external medium is usually modelled as a volume 

conductor of homogeneous composition. The external medium 

is not purely resistive but has time constants that are 

extremely short compared to active fibre conduction veloci­
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ties. This means that phase delays due to distances to the 

recording site from MAP locations are negligible and that 

conduction speeds of travelling waves, are much greater in 

the external medium than in active fibres. 

The externally flowing current as it leaves the 

muscle fibre membrane disperses throughout the volume of 

the external medium. As the distance from the fibre increases 

so does the current dispersion. This means that as you move 

away from the fibre the current density decreases. The 

electric field in a homogeneous medium is proportional to 

the current density. Therefore, as the radial distance d 

from the fibre increases the electric field decreases. This 

means that the voltage difference across a given electrode 

pair will decrease as the distance from the active fibre to 

the recording site increases. Buchthal et al (De Luca 1979) 

reports that it is an approximately inversely linear (i.e. 

1 I d) re 1 at ions hip . 

During muscle activity many fibres are active at any 

one time. The external field at any one spot will then be 

the integration of the effects of all the active fibres at 

the recording site. The net external field is then depen­

dent on 

i) The number of active fibres. 

ii) The 
and 

size of the active fibres. MAP 
hence external field effects 

amplitude 
increase with 

the size of the fibre such that V ~ kal .7 where 
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k is a constant and a is the fibre radius as 
reported by Rosenfalck (De Luca 1979). 

iii) 	 The distances from the active fibres to the 
recording site. Distances may be such that no 
perceptable field effects occur at the recording 
site even though a fibre is active. 

iv) 	 The amount of synchronization between active 
fibre MAP's. 

2. 3. 3 Recorded Signal Factors 

The actual EMG signal recorded depends upon how the 

external fields created by the integration of the active 

fibre contributions, is sensed. The main factors affecting 

the characteristics of the signals recorded are: distance 

to recording site; size of electrodes used; spacing between 

electrodes; and electrode-external medium interface transfer 

function or filtering effects. 

The distance to the active muscle fibres has two 

main effects. As previously stated the first effect is to 

decrease the amplitude of the recorded signals due to 

reduced electric field strengths at the recording site. The 

second effect is that of low pass filtering. The impedance 

of the external medium is such that high frequency signals 

are more severely attenuated than low frequency signals. As 

the distance from the active muscle fibres increases the 

bandwidth of the low pass filter decreases (Lindstrom and 

Magnusson 1977). 
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The size of the recording electrodes will determine 

the electrode impedance and its effective field pickup area. 

Larger electrodes of similar physical composition will have 

reduced impedance due to increased surface area. Due to high 

electrode-external medium interface impedance, adjacent 

points along the electrode essentially see different electric 

field strengths, that is the electrode does not short out the 

electric field created. The net field the electrode detects 

is then, the spatial integration of the field adjacent to it, 

over its whole surface area. This means that larger elec­

trodes record over larger areas and their net effect is to 

detect the average field over their surface area. With 

travelling potential waves in space (i.e. time varying 

fields), as are created by the propagation of MAP's down active 

fibres, the amount of spatial integration will affect the frequency 

components of the detected signal. Spatial integration reduces the 

high frequency components of travelling field waves. 

With time varying electric fields, fields contain­

ing propagating wave fronts, the effect of electrode spac­

ing is that of differentiating. As the spacing decreases 

the recorded signal becomes closer and closer to being 

the derivative of the travelling wave. Consequently, 

reduced spacings increases recorded signal bandwidth. Gen­

erally reduced spacing causes reduced recorded signal ampli­

tude. This is because it is the potential difference between 
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electrodes which- is amplified. As the electrodes are moved 

closer together the potential difference between electrodes 

generally reduces. 

The electrode-external medium interface is very impor­

tant in determining the electrodes impedence per unit area 

and subsequently its filtering effects on the recorded sig­

nal. The type of materials used for the electrode and the 

electrolyte interfacing the tissue with the electrode deter­

mines the impedence per unit area of the electrode-external 

medium interface. 

2. 3. 4 Instrumentation 

Since the EMG signal is of the order of, at most 

several millivolts, differential amplification is necessary 

to remove common mode noise such as 60Hz power line signals. 

The common mode rejection ratio should be at least 80 dB. 

For EMG signal recording the differential amplifiers are A.C. 

coupled. The main reasons for this are as follows: 

i) No 
is 

EMG signal activity at D.C. The EMG 
essentially zero mean (Hogan 1980). 

signal 

ii) To remove instrumentation D.C. bias levels and 
offsets. 

iii) To remove electrode interface 
potentials if they exist. 

polarization 

The amount of amplification is determined by the recording 

situation. Any signal bandpass shaping is also determined 
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by the recording situation and output requirements. For 

example, in surface recorded EMG from dynamic movement a 

high pass filter is included to remove signal components 

below 15-20Hz. This removes motion artifact. A low pass 

filter is also used to remove the signal components above 

250Hz. Experiments have shown that little signal energy 

resides at these high frequencies, for this recording situ­

ation. Such band pass filtering effectively reduces the 

bandwidth of recorded noise and thus reduces its power. 

2. 3. 5 Recording Electrodes and Their Effects 

The most popular EMG recording electrode types and 

the i r effects on the s i g n a 1 record ed wi 11 now be add res sed . 

The main types of electrodes are: 

i ) Monopolar needle. 

i i ) Coaxial needle. 

i i i ) Bipolar needle. 

i v ) Bipolar fine wire. 

v) Bipolar surface. 

Monopolar Needle Electrode 

The monopolar needle electrode is .2 mm in diameter 

and is insulated but for the last .5mm at its tip. The mono­

polar needle uses a surface electrode, some distance away 

usually over inactive tissue, as a reference electrode and 

measures all potentials relative to it. This results in 
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relatively large amplitude signals. The exposed needle 
2area is small .3 mm , resulting in very little spatial 

averaging. Therefore, high frequency components of travell­

ing waves are recorded. The small area of the recording 

surface allows for precise single motor unit measurements. 

Co-axial Needle Electrode 

The co-axial needle electrode like the co-axial cable 

is composed of an outer cylindrical sheath conductor with a 

central inner conducting wire. The outer and inner conduc­

tor are insulated from each other. The co-axial needle is 

.3-.7 mm in diameter with the inner conductor (electrode) 

exposed only at its tip. The outer conductor (electrode) 

the cannula of the needle, is exposed the length of the 

needle. The inner electrode has very little surface area 

and does little spatial averaging. The outer electrode 

spatially averages over the length of the cannula inserted 

into the tissue. If this length is substantial the outer 

electrode acts like a reference electrode and results, 

similar to monopolar recordings are obtained (Lindstrom 

1977). 

Bipolar Needle Electrode 

Bipolar needle electrodes have two insulated conduc­

tors permanently fixed within the cannula of a needle. The 

cannula is about .7 mm in diameter. Signals are thus 

recorded over small areas very close together. This elec­
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trode type perform signal differentiation with low amplitude 

high frequency signals being recorded. 

Bipolar Fine Wire Electrode 

Like the bipolar needle electrode, fine wire elec­

trodes have two insulated wires inserted into the cannula 

o f a n e e d l e . T h e f i n e w i r e s of th i s e 1 e c t rod e howe v e r , a r e 

not permanently fixed to the cannula. After inserting the 

wires with the needle, the needle is withdrawn from the 

tissue. The fine wires, .003" in diameter are exposed at 

the ends and bent to stick to the muscle mass as the needle 

is withdrawn. The surface areas of the fine wire electrodes 

are small and the electrodes are close together. Although 

similar to bipolar needle electrodes, they have larger 

inter-electrode spacing and recording areas, making them 

less selective and performing less signal differentiation. 

Bipolar Surface Electrodes 

Bipolar surface electrodes as their name suggests 

are applied to the skin surface, dry or with a conductive 

gel, and collect signals in a differential mode from differ­

ent muscle areas. The area of surface electrodes ranges 

2from 7 - 110 mm . The size of the electrodes determines 

the amount of spatial averaging done and thus affects the 

bandwidth of the recorded signals. Spacing of electrodes 

determines the amount of differentiating of the detected 

fields, the volume of muscle mass recorded from and the bandwidth 
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of the recorded signal. Since distances between the surface 

electrodes and the muscle generator are relatively large, 

tissue filtering effects are significant, and affect the 

bandwidths of the signals recorded. 

In summary, surface electrodes record far away from 

the muscle source, perform substantial amounts of spatial 

averaging produce signals of lower bandwidths, and record 

from large muscle volumes. In contrast, needle electrodes 

are close to the signal generators, perform little spatial 

averaging, produce signals of higher bandwidth, and record 

from small muscle volumes. 

2.4 Stochastic Nature of Signals Recorded 

EMG signals recorded during muscle activity, are 

stochastic in nature. The signals are stochastic because 

they are the result or the sensing of the activity of a 

large number of muscle fibres or motor units, firing inde­

pendently. 

The recording of a single MUAP is also a stochastic 

event. The rate of firing of motor neurons is a random 

variable and thus the rate of MUAP creation is random in 

nature (Clamann, 1969). Also, any change in the relative positions 

of the recording electrodes and source will change both the 

shape and size of the MUAP measured, in a random way. 

When MUAP 1 s from more than one motor unit are 
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detected, the signal becomes more stochastic in nature. 

The individual motor units fire not only at a random rate 

but they fire independently of other motor units (C1amann, 

1969). This results in ~1UAP's from different motor units arriving 

or contributing at the recording site in an asynchronous 

fashion. Random distances of the fibres in a motor unit 

to the recording site leads to random MUAP shapes being 

recorded. Also, random distances from the motor unit to 

the recording site resu1t in random MUAP sizes. These 

combined with the temporal asynchrony of the motor unit 

discharges leads to the recording of completely stochastic 

EMG signals. 

The stochastic nature of the EMG signal as explained 

above is due to the physiology and anatomy of nerve and 

muscle and the way the signals are recorded. It is not 

due to instrumentation noise. Although instrumentation 

does introduce noise which is broadband and covers the 

signal bandwidth, its power is low and insignificant com­

pared to the EMG signals collected and good signal to noise 

ratios are obtained. Motion artifact and other biological 

signals (e.g. electrocardiogram) may have significant power 

in the EMG bandwidth and must be accounted for by other 

methods. 

For moderate muscle activity, the EMG signal is the 

integrated result of many independent simultaneously occurr­
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ing events. As such, it can be assumed to have a Gaussian 

probability density function by the Central Limit Theorem 

(Hogan l980a; Parker 1977). The E~1G signal is zero mean both by 

instrumentation constraints being A.C. coupled, and by 

experimental findings. (Hogan l980a; Parker 1977). The variance 

of the recorded EMG signal is related to the muscle's level 

of activation (Hogan 1980a; Parker 1977). The EMG signal does not 

have a white spectrum and successive samples of EMG signal 

are correlated. A Gaussian distribution is completely 

described by its mean and variance. Since the mean is zero, 

the EMG signal is completely described by knowing its 

variance and its intersample correlation. 

The autocorrelation function of sampled EMG signals 

and consequently the power spectral density has been found 

to be of constant shape for a given subject, muscle and 

recording situation for both needle (Parker 1977) and surface 

(Hogan 1980a) recordings for contraction levels above 5% of 

maximum voluntary contraction (MVC). Constant shape means 

no statistically significant change when the variance of 

the autocorrelation or power spectral density estimates and 

the variance of the EMG process itself are considered. The 

large numbers of asynchronously active muscle fibres and 

motor units contributing to the EMG signal result in an 

electric field which changes significantly in amplitude 

statistics only, as the level of activation changes. 
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Frequency changes are expected within subjects for differ­

ent muscles; when recording from different subjects; with 

different clinical states of the neuro-muscular system; and 

for different recording situations. 
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CHAPTER 3 


MULTIPLICATIVE MODEL FOR EMG SIGNALS 

Introduction 

The electromyographic (EMG) signal contains much 

information about the neuro-muscular system from which it 

was recorded. EMG signals are used for a wide variety of 

clinical, research and rehabilitative purposes. The type 

and amount of information extracted from the EMG is depen­

dent upon the processing techniques used to assess the 

recorded signals. This chapter summarizes briefly the major 

uses of EMG signals. It then discusses existing processing 

techniques and conceptual models of the recorded EMG signals, 

used to maximize the amount of information obtained. An 

existing two component multiplicative model is discussed and 

an alternate multiplicative model with new components is pro­

posed. One of these new components being related to neural 

input while the other is related to the unitary activity of 

the muscle(s) being recorded from. The chapter concludes 

with the results and conclusions of a study performed to 

assess the constancy, of the shape of the frequency spectra 

of EMG signals recorded with surface electrodes during iso­

metric-isotonic muscle contractions at selected percentages 

of maximum force. This study confirmed an essential assump­

tion of the multiplicative model. 

29 
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3.2 Uses of EMG 

The EMG signal, as an information source of muscle 

activity, is used for different reasons by different users. 

In myoelectrics, the signal is used to try to extract force 

information. Changes in the EMG are related to changes in 

the level of force being produced by the muscle. Kinesiolo­

gists and Human Locomotion (Gait) researchers use the EMG to 

try to determine phasic activity patterns of the muscles and 

how they relate to the neural control of body movements. 

They use the EMG as an indicator of relative muscle activity 

and neural input. Clinical Electromyographers are interested 

in the specifics of the EMG signals recorded. The character­

istics of the signals recorded, both amplitude and frequency, 

are used along with other clinical tests, in assessing the 

clinical state of the neuro-muscular system. Clinical elec­

tromyographers are interested in assessing the source of 

clinical problems, whether these are nerve or muscle related. 

Some neural problems are related to partial or complete 

conduction block of action potentials or demyelination of 

the motor neuron axons. Muscle problems are related to the 

number of motor units, the size of the motor units, the dis­

tribution of the motor units within the muscle and firing 

rates of the motor units for the muscle tested, compared to 

clinical normal values. These parameters can indicate 

muscle denervation whether chronic or acute, the amount of 
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lateral nerve sprouting that has taken place and whether 

muscle wasting has occurred. 

Clinical electromyographers quite commonly use 

needle electrodes to extract their information from small 

muscle volumes. This requires that many areas of the muscle 

must be sampled and averaged parameters considered. EMG for 

myoelectric controllers and kinesiologic EMG are usually 

collected with surface electrodes to obtain a representative 

signal of the whole muscle. 

3.3 Existing Processing Techniques and Models 

Processing or quantification of EMG signals for the 

purpose of information extraction has been investigated by 

many researchers. In clinical electromyography the attempt 

has been to extract signal parameters which are related to 

the clinical state of the neuro-muscular system. Buchthal 

and his co-worker, (1941, 1952, 1953a, 1953b, 1954a, 1954b, 

1955) have proposed methods of qualifying the recorded motor 

unit action potentials (MUAPs) and have examined physical 

and physiological factors responsible for the changes of the 

parameters of the MUAPs. Buchthal's parameters, while exact, 

are laborious to obtain and have been used only for special 

clinical diagnoses. Willison (1963, 1964) suggested quanti­

fing the EMG from moderate contractions, producing full inter­

ference patterns, by counting the frequency of the change of 
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direction of the signal (number of turns) and the average 

peak to peak amplitude. The process was automated by Fitch 

(1967) and shows some clinical promise. A different approach 

was taken by Kopec et al (1973). They have developed a 

specialized digital instrument which quantifies recorded 

signals by estimating the duration of the MUAPs and the number 

of phases in the MUAP per unit time. The technique uses 

minimal contraction levels and requires multiple sampling 

sites, but yet is not time'exhaustive and produces immediate 

results for interpretation. The quantification of EMG signals 

by frequency spectrum parameters has been studied by Richardson 

(1951 ), Walton (1952) and more recently Larsson (1968, 1975) 

and Lindstrom (1977). As suggested by these researchers 

the frequency spectrum holds much information about the EMG 

signal and the underlying neuro-muscular state. As frequency 

spectrum estimation techniques improve and obtained spectra 

are better understood, frequency analysis of EMG signals 

will become more useful in clinical electromyography. 

Much work has been done to identify the best method 

of extracting the level of force production from the EMG 

signal, e.g. Evans et al (1980); Hogan (1980a, 1980b); 

Kreifeldt (1974). In an effort to determine an optimum 

processor for extracting muscle force from the EMG, they 

have modelled the EMG signal as an amplitude modulation 

system. This model was based on the observation, that the 
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shape of the frequency spectra of the recorded signals 

varied little with level of muscle contraction. They suggest 

the output EMG is the result of the multiplication of two 

signals. One signal, the modulating signal, being the force 

signal while the other is white noise passed through a 

linear system. The transfer function of the linear system 

represents the tissue and electrode filtering effects. 

The resulting processors all used changes in signal 

amplitude statistics to represent the changes in the force 

levels. The processors most commonly used are all based on 

some form of amplitude demodulation. Amplitude demodulation 

is a process of extracting the modulating signal (low pass 

signal) from the composite signal. Demodulation is effected 

by processing the composite signal with a non-linear function 

and low pass filtering (LPF) the output. The output of the 

low pass filter, following relinearization, is the estimate 

of the modulating signal. Hogan suggested using the square 

of the signal followed by LPF and square root transformation 

(relinearization) as the optimum choice for force level 

extraction. However, he also reported identical performance 

for a processor which uses the full wave rectified signal 

followed by LPF as the force estimate. Kreifeldt tested 

processing with higher and lower powers of the signal such 

as l/2, 1/4, 2nd and 4th powers prior to LPF without any 

significant improvements. Relinearization, which is the 
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multiplying of the non-linear function output after LPF by 

the inverse of the non-linear function was tested by 

Kriefeldt and Hogan. They both report that if the reli­

nearization process overcompensates, that is multiplies by 

a higher order inverse function, smooth force estimates are 

obtained. This technique creates artificially smooth force 

records but reduces the system sensitivity to force changes. 

The results of this past research indicate: 
i) spectra1 shape changes with contraction leve 1 are 

in significant, 
ii) amplitude statistics, particularly changes in variance, 

are sensitive to changing activation levels, 
iii) the multiplicative (amplitude modulation) model 

for the EMG signal is a reasonable one. 

3.4 New Model 

As reported by Parker et al (1977) and Hogan (1980a, 

b), the autocorrelation function of EMG signals is of con­

stant shape for contractions above 5% MVC. This means that 

the frequency spectrum of these signals is of constant shape 

over this contraction range. This results from a 11 constant 11 

interference pattern at the recording electrode sites. 

Only the amplitude of the interference pattern changes with 

muscle activation level. Thus, it is proposed that the 

output EMG signal is the result of a muscle activation or 

neural input signal modulating (multiplying) a unitary 

muscle response (UMR) or interference pattern. The pro­

posed model is further described in Figure 3.1 and can be 
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expressed mathematically as follows: 

E(t) = N(t)·I(t) ( 3. 1 ) 

where E(t) is the recorded EMG signal 

N(t) i s the neural input 

I ( t) is the unitary muscle response 

The neural input or muscle activation level, N ( t) , 

is by physical definition always greater than zero and less 

than some maximum tetanic level. The unitary muscle response, 

I(t), is a Gaussian distributed zero mean stochastic process 

based on muscle physiology, structure and the recording 

situation, as discussed in Section 2.5. It has a variance 

dependent on the recording situation and the muscle being 

studied. 

The neural input is a low frequency signal since it 

relates to the muscle state of activation which as described 

in Section 2.2.2 is slowly changing. The unitary muscle 

response is a relatively high frequency signal. It is 

related to the high frequency changes in the electric field 

in the external medium of the active muscle fibres. These 

rapid changes occur as active motor units randomly fire and 

are dependent on the amount of spatial-temporal averaging 

of motor unit activity which is occurring to create the 

electric field in the external medium. These frequency com­

ponents of I(t) may change from muscle to muscle and from 

subject to subject. They may also change with different 
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clinical states of the muscle. Changes in this signal•s 

frequency spectrum might be used as an indicator of the 

number of active motor units and their size. The frequency 

content of this signal component can also be related to the 

type of electrodes used and their spacing,that is to the 

amount of spatial averaging and/or differentiation being 

performed by the recording electrodes. 

The model differs from those previously proposed 

in that it does not attempt to relate the level of muscle 

activity, as determined by its electrical activity, to the 

force being produced by the muscle. The relationship between 

muscle electrical activity and its level of force for iso­

metric contractions has been proposed to be both linear 

Milner-Brown and Stein (1975) and non-linear Vredenbregt 

and Rau (1973). This relationship, for dynamic, contrac­

tions, is certainly non-linear due to the complexities of 

the excitation contraction coupling mechanism, and the com­

pliance properties of the muscle. Therefore, any estimates of 

muscle force derived from muscle EMG activity recorded from 

dynamic contractions are destined to contain errors. Instead, 

the model suggests this low frequency component of the composite 

signal is related to the net neural input or is representa­

tive of the effective control. The model is thus applicable 

for analyzing EMG signals recorded during dynamic contractions 

such as gait. The model proposes that the high frequency 
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signal component, I(t), also contains useful information 

which was not previously considered. 

Stationarity is a property of stochastic systems 

and signals that requires that their statistics do not change 

over time. Stationarity in the wide sense states that the 

mean and autocorrelation function of a signal do not change 

with time (Papoul is, 1965). Strictly speaking, as the 

muscle fatigues, or its physiologic state changes the 

EMG signal will not be stationary even for isometric-iso­

tonic (constant) contractions. However, over periods of 

time where the muscle is in a constant physiological state, 

the EMG signal for constant contractions will at least be 

stationary in the wide sense. It is assumed that the unitary 

muscle response will satisfy the same stationarity conditions 

as the EMG signals recorded from constant contractions. 

This assumption will be tested later in this manuscript. 

3.4 EMG Power Spectra of Constant Contractions 

The assumption, that the frequency spectra of surface 

recorded EMG signals are of constant shape, independent of 

the contraction level was tested. EMG signals were recorded 

for isometric contractions at four different contraction 

levels for three subjects,sampled and stored on a digital 

computer. A Fnrtran IV program, FREQP5, was written which 

constructed estimates of the power spectrum of the sampled 
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data, based on Fast Fourier Transforms (FFT) calculated for 

overlapping windows of the data. THe final spectrum was an 

average over the windows taken. The program allows for a 

variable number of overlapping data segments (windows) to 

be chosen and variable length FFTs to be calculated. A 

more complete program description and Fortran listing are 

included in Appendix I. 

FREQP5 also calculated the median frequency as: 

N/2+1 
l: pi Lif(i-1 )Lif 


FM = i = l 

~N~/=2-+~l------------

L: p. Lif 
1i = l 

the statistical band width as: 

N/2+1 2 
[ L: p. Lif] 

i =1 1 

SB = N/ 2+ 1 


l: p. 2Lif 

i =l 1 


where: 

Lif = frequency resolution 

p . = ith spectral coefficient 
1 

N = number of data samples in the record 

and the percentage of total power in three selectable fre­

quency bands. 

These parameters were used to determine the homogeneity of 

the spectral shapes at different contraction levels. 
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The EMG signals were sampled at a 500Hz sampling 

rate and collected in 2000 sample data records. This 

allowed 4 seconds of the EMG signal to be sampled and col­

lected at a time. FREQP5 was used to read the collected 

records and process the data as follows. The data records 

were divided into three fifty percent overlapping 1000 point 

segments. The overlapping segments were weighted by a 

Hanning window to reduce frequency dispersion as per Brigham 

(1974) and Bergland (1969). Each segment was augmented with 

24 zeros and 1024 point FFTs, with .49 Hz frequency resolu­

tion, were calculated. The three spectra were averaged to 

achieve the final spectral estimate from which the median 

frequency, statistical band width and the percent power in 

prescribed frequency bands (0-50 Hz, 50-125 Hz and 125-250 

Hz) were calculated. Results can be found in Table 3-1. 

As can be seen from Table 3-1 there is a relatively 

small change in FM and SB with change in contraction level 

within subjects. Also note that there is more variation in 

FM and SB from subject to subject than from contraction level 

to contraction level within subjects. The range of variation 

observed in FM and SB agree with those reported by Hogan, 

(1980b) and Petrofsky (1980) respectively. The percent 

power in the selected frequency bands show similar variation 

patterns as those just described for FM and SB. The center 

frequency band 50-125 Hz was especially stable, even from 
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subject to subject. It is important to note that the changes 

from contraction level to contraction level within a subject, 

that did occur in the measured frequency spectrum parameters 

appeared to happen at random. These changes were probably 

due to the stochastic nature of the signals beinq recorded 

and showed no deterministic trend with contraction level. 

From these results it can be concluded that the frequency 

spectrum of the EMG signals recorded had a homogeneous 

shape independent of force level. The increasing signal 

power measured with increasing force level indicates that 

the EMG signal amplitude increases with force level. These 

two conclusions support the multiplicative model proposed 

for surface recorded EMG signals. 
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TABLE 3-1 
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90.5 101.6 31.2100 
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SPECTRAL ANALYSIS OF Ef~G SIGNALS RECORDED FROM RECTUS FEMORIS 

DURING ISOMETRIC CONTRACTIONS WITH THE KNEE AT 120°. 
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CHAPTER 4 


HOMOMORPHIC PROCESSING OF SURFACE RECORDED EMG SIGNALS 

Introduction 

The multiplicative model just proposed for electro­

myographic (EMG) signals is essentially a non-linear model. 

As such, it does not lend itself to the direct application 

of linear filtering techniques for component signal esti ­

mation or extraction. Therefore non-linear techniques must 

be utilized. One such technique is homomorphic signal 

processing. This chapter discusses the generalized theory 

of homomorphic processing, multiplicative homomorphic 

processing and hom~morphic processing of surface recorded 

EMG signals. The chapter concludes with a comparison of 

homomorphic processing to other techniques, complete with 

theoretical discussions and simulated tests. 

4.2 Homomorphic Processing 

The following discussion on homomorphic processing 

is essentially based on Chapter 10, Homomorphic Signal 

Processing, of Oppenheim and Schafer's book, Digital Signal 

·Processing 	(1975). An attempt will be made here to summa­

rize the important points involved in homomorphic process­

ing as outlined in that chapter. The reader is invited to 
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refer to the above mentioned book for a more detailed pre­

sentation of the material and listings of additional refer­

ence material. 

Homomorphic processing is a technique used to analyze 

non-linear systems based on the use of transformations. The 

transformations convert the non-linear system such that in 

the transformed space, the system acts as a generally linear 

system. This is to say that in the transformation space, the 

theory of generalized superposition holds. The theory of 

generalized superposition can be stated as follows for linear 

systems: 

= T[x 1 (n)] + T[x 2(n)] 

and 

T[Cx 1 (n)] = CT[x
1 

(n)] 

where T is the system transformation and x1 (n) and x2 (n) are 

any two system inputs. C is any scalar. 

Generalizing this, let A symbolize a rule for combin­

ing inputs with each other, and ~ a rule for combining inputs 

with scalars. Similarly, let ~ be a rule for combining 

system outputs with each other and § be a rule for joining 

system outputs with scalars. With H representing the system 

transformation generalized superposition can be stated as: 

= 

and 

H[C ~ x1 (n)] = C § H[x (n)]1 
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Linear systems are special cases of the above with A and s 

being addition and § and ~being multiplication. 

For the theory of linear vector spaces to be used, 

the input and output operations must be able to satisfy 

the algebraic rules of vector addition and scalar multipli­

cation. Therefore the input and output operations A and ~ 

must be both commutative and associative. That is, 

x 
1

(n) A x 
2

(n) = x2 (n) fl x1 (n) 

y 1 (n) r; y 2 (n) = y 2(n) s y 1(n) 

and 

x1 (n) A [x 2 (n) fl x3 (n)] = [x 1 (n) fl x2 (n)] t,. x3(n) 

y1 (n) c; [y 2{n) s y3{n)] = [y1 (n) r; y 2{n)] r; y3 (n) 

Other such rules must also be satisfied if a suitable vector 

space and transformation are to be defined. 

If the system inputs can be represented in a linear 

vector space where fl and ~ correspond to vector addition 

and scalar multiplication and the system outputs can be 

represented in a linear vector space with r; and § corres­

pending to vector addition and scalar multiplication, then 

the system can be represented in canonic form as shown in 

Figure 4-1. In this figure Dfl has the property that: 

DA[x 1(n) fl x2 (n)] = DA[x 1(n)] + DA[x 2(n)] = x
~ 

1 (n)+x
~ 

2(n) 

OA[c ·v x1(n)J = c OA[x 1(n)J = c x1(n) 
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A 
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t 
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L -----------­
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Canonic Representation of Homomorphic Systems 

Figure 4-1 

OA satisfies the theory of generalized superposition with 

an input operation of J\ and an output operation of add­

ition. DJ\ transforms the two signals combined by the rule 

J\ to a conventional linear space where the signals OJ\(x 1 (n)). 

and OA(x 2 (n)) are combined by addition. The system L is a 

standard linear system such that: 

L[~ (n) + ~ 2 (n)] = L[x 1 (n)J + L[x 2 (n)] = .Y 1 (n) + .Y 2 (n)1
 
L[c~ (n)] = cl[~ (n)] = cy 1 (n)1 1
 

The system 0-l transforms from the additive domain to the ~;;
I;; 

domain so: 

A A 

D~ 
1 

[cy1 (n)] = c§O~ 
1

[y 1(n)] = c § y1 (n) 

OA and 0~;: are fixed by their operations A, ~ and ~;;, § respec­

tively and are characteristic of their class of systems. OA 

and 0 are therefore called characteristic systems.
I;; 



47 

All homomorphic systems with the same input and out­

put operations (i.e. Di\ = Dr;) differ only in their linear 

part. This is because Di\ and Dr; are fixed by the input and 

output operations. Therefore, once the characteristic 

s y s t em f o r t h e c l a s s h a s b e e n de t e rm i n e d ( i . e . D1\ o r Dr; ) t h e 

remaining system determination becomes simply a linear 

filtering problem. 

Example: If x1(n) is needed from the composite 

signal 

x(n) = 

The following can be considered: 

Di\[x(n)] = Di\[x1(n) 1\ x2(n)] = Di\[x1(n)] + Di\[x2(n)] =x1(n) + x2(n) 

we now choose the linear system whose output is 

Then with =Dr; 

To achieve perfect separation of x1(n) and x2(n) we must be 

able to perfectly separate xl(n) and x2(n) by linear filter­

ing. How well this separation can be achieved depends on 

the A operation and the properties of x1(n) and x2(n). 

In practice, homomorphic systems usually have equal 

input and output operations. These operations are usually 

multiplication or convolution. 
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4.3 Multiplicative Homomorphic Processing 

The class of homomorphic systems that satisfy the 

generalized superposition rules in which the operation for 

joining inputs, A, is multiplication and the operation for 

joining inputs with scalars, ~, is exponentiation, has 

signals which can be expressed as 

( 4-1 ) 


The characteristic system for multiplication must have the 

property that 

D. [[X 1 (n)]a • [X (n)] 13 ] =a D. [X 1(n)] + s D. [X2(n)]2

A transform or system which f~rmally has these properties is 

the logarithm function. For Equation (4-1) 

log[X(n)] = a log[X 1 (n)] + s log[X 2(n)] 

where x1 (n) and x2(n) > 0 for all n 

X(n) may however not always be greater than zero. 

This forces the utilization of complex signal representation. 

In such cases, complex logarithms must be used. This leads 

to the general canonic form of homomorphic systems with 

multiplication as the input and output operation shown in 
A 

Figure 4-2. In this figure X(n), X(n), Y(n) and Y(n) are 

in general complex. 

When using multiplicative homomorphic processing to 

separate input signal components of composite input signals 

a suitable choice for the linear system must be made. The 
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extent to which x1 (n) and x2(n) can be separated from the 

composite input signal X(n) = x1 (n) • x2(n) depends on the 

amount of spectral overlap of x1 (n) and x2(n) the charac­

teristic system 1 S (i.e. logarithmic transform 1 s) outputs. 

If the spectral overlap of these signals is not significant. 

the signals can be separated with minimum error. 

4.4 Homomorphic Processing of Surface Recorded EMG Signals 

As postulated in Section 3.4, for moderate to maximum 

muscle contraction levels, surface recorded EMG signals can 

be modelled as a multiplicative process. This is due to the 

consistent shape of the frequency spectrum as shown in Sec­

tion 3.5. The sampled EMG signals can then be mathemati­

cally expressed as: 

E(n) = N(n) • I(n) 
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where E(n) i s the recorded EMG signal, 

N(n) is the modulating neural signal, 

I(n) i s the unitary muscle response, 

and n is the sample number. 

Note: Amplifier gain and electrical noise are not included 

in the model. The gain is omitted since it is an arbitrary 

scalar and the noise is omitted because under most recording 

conditions, it is small compared to the EMG signal being 

recorded. 

It has been shown experimentally that EMG signals re­

corded by suitable surface electrodes, suitably spaced, during 

isometric-isotonic (constant) muscle contractions are limited 

to a bandwidth of 10 to 250Hz (Shein, 1980). This bandwidth, 

however, is determined by the type of electrodes used, their 

configuration, and the filters employed to remove noise as 

stated in Chapter 2. Since constant muscle contractions can 

be represented by I(n) multiplied by a constant neural input 

a similar bandwidth for I(n) can be assumed. 

N(n) which represents the neural intent (control) 

of the contraction level is limited in its frequency compo­

nent make up by the contraction time constants of the 

muscle. For this reason, N(n) has little signal power 

above 10 Hz. N(n) is a positive only signal, since it repre­

sents neural input, which varies from minimal to maximal, 

but is always positive. The component signals I(n) and 
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N(n) as explained above occupy separate frequency bands. 

Therefore, they can be individually estimated from the 

composite signal, the recorded EMG, by homomorphic process­

; ng. 

The model is transformed from the multiplicative 

domain into the additive domain by taking the complex loga­

rithm of E(n). The complex logarithm is defined as: 

log[X(n)] = log[jX(n)j] + j arg[X(n)] 

where X(n) is some complex number 

The complex logarithm of E(n) then becomes 

log[E(n)] = log[jE(n)j] + j arg[E(n)] 

where jE(n)[ = JN(n) • I(N)j 

General superposition as outlined in Section 4.1 holds since 

N(n) is always positive and real. 

that is 

jE(n)j = N(n) • JI(n)j 

and arg[E(n)] = arg[N(n)] + arg[I(n)] 

= arg[I(n)] 

since arg[N(n)] = 0. 

This results in 

log[E(n)] = log[N(n)] + log[ji(n)j] + j arg(I(n)] (4-2) 

Since I(n) is either a positive or negative real number. 

arg[I(n)] = 0 if I(n), that is E(n) is positive 

= rr if I(n), that is E(n) is negative. 

Separation of E(n) into its component signals N(n) and I(n) 
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is now the linear filtering problem of separating log[E(n)] 

into appropriate component signals. Assuming the logarithm 

transformation has not significantly altered the component 

signals frequency bands, Equation 4-2 can be separated into: 
A A A 

log [N(n)] and log [II(n)j] + j arg [I(n)] 

by low pass filtering log [E(n)] with the appropriate cut-off 

frequency. 

The" notation is used, which represents estimate, 

because the logarithm transformation, mainly the absolute 

value operation on E(n), causes the spectra of log [N(n)] and 

log [II(n)IJ to overlap. The overlap is not significant 
A A 

however and estimates log [N(n)] and log [II(n) IJ with small 

errors can be obtained. The imaginary part of log [E(n)], 

namely j arg[I(n)], is included with log [II(n) IJ upon filter­

ing. This is because arg [N(n)] = 0 as stated above and the 

imaginary part of log [E(n)] is entirely due to I(n). 

The component signals log [N(n)] and log [II(n)IJ+j arg (I(n)] 

are transformed from the additive domain back into the multi­

plicative domain by complex exponentiation. 

This res u 1 ts in 
" " " N(n) = exp(log [N(n)]) = N(n) ( 4-3) 

" " I ( n) = exp(log [II(n) IJ + j arg [I(n)]) (4-4) 
" 

= I I ( n ) I exp(j arg[I(n)]) 

· Since a rg [I(n)] = 0 if E(n) is positive 

= 7f if E(n) is negative 
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Equation 4-4 becomes 
A 	 A 

I ( n) = +JI(n)l if E(n) is positive 
A 

= -ji(n)J if E(n) is negative 

or 
A A 

I ( n ) = II ( n) I • sign [E(n)] 

where sign [E(n)] is the algebraic sign of E{n). 

The above result allows the total homomorphic processing to 

be done using real arithmetic as shown in Figure 4-3. 

4. 5 	 Comparison of Homomorphic Processing to Other 

Techniques 

4. 5. 1 	 Theoretical Considerations 

Homomorphic processors are similar to other EMG pro­

cessors, mean rectified EMG (MRE), or root mean squared (RMS) 

processors, in that they process the composite recorded EMG 

signal in a non-linear fashion. This non-linear proce~sing 

followed by appropriate low pass filtering is similar to 

envelope demodulation techniques, used with amplitude modu­

lated (AM) radio waves. 

The multiplication of two signals in the time domain 

or amplitude modulation results in the convolution of the 

frequency spectra of the component signals. When the compo­

nent signals do not overlap in the frequency domain, the 

lower frequency signal, the modulating signal, is essentially 

shifted up into the frequency range of the modulated or 
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carrier signal. With AM radio waves the carrier is a single 

frequency and is represented in the frequency domain as an 

impulse at the carrier frequency and the modulating signal 

is a band of low frequency components. Thus multiplication 

in the time domain results in the convolution in the fre­

quency domain of the carrier impulse with the low pass modu­

lating signal. The resultant spectrum is that of the low 

pass signal, unchanged in shape but relocated or shifted in 

frequency to appear on either side of the carrier impulse. 

(See Figure 4-4.) The situation when conceptualizing the 

EMG mechanism as a multiplicative process is fundamentally 

the same. However, the carrier is now I(n) a high pass 

random signal composed of a band of high frequencies which 

are modulated by a low pass random signal N(n) composed of 

a band of low frequencies. The resultant convolved frequency 

spectrum is essentially located where the spectrum of I(n) 

is, but it is not simply the spectrum of N(n) shifted in 

frequency. The resultant spectral shape depends on the 

spectral shapes of N(n) and I(n). If N(n) is an impulse 

at zero frequency, which is approximately what is expected 

for constant muscle contractions, the convolved spectrum 

will be identical in shape to I(n) but of greater power. 

Figure 4-5 depicts the component one-sided spectra and the 

resultant convolved spectra, for EMG signals, surface 

recorded during normal human gait from the quadriceps 
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muscles. The changed shape of the convolved spectra, 

(changed from the spectral shape of N(n)) makes perfect 

determination of the component signals from the composite, 

impossible. 

Envelope demodulation of AM radio waves is effected 

by passing the composite signal through a non-linear device 

and then an appropriate low pass filter to extract the 

desired modulating signal. The carrier is known and there­

fore extraction of it adds no information. For signals 

created using single frequency component carriers the non­

linear processing shifts the convolved spectra both up in 

frequency and back to the frequency origin, without a change 

in shape. This results in the modulating signal, times a 

scalar, existing in its original frequency band. The modu­

lating signal times the above described scalar can then be 

extracted from the non-linear processed original composite 

signal by appropriate low pass filtering and subsequent 

relinearization. These events for square transformation 

are depicted in Figure 4-4c. Therefore, with AM radio waves 

or multiplication with a single frequency carrier, demodu­

lation is only limited by the ambient noise levels and the 

low pass filter characteristics. 

When a composite signal is created with a carrier 

consisting of a band of frequencies such as with I(n) of the 

EMG process, non-linear processing still results in shifting 
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of a component spectrum to the frequency origin. However 

the spectral shape of the shifted spectrum is not that of 

the modulating signal, but it is a spectral shape which has 

been distorted by the original convolution, as just dis­

cussed, as well as the subsequent non-linear processing. 

This distortion of the shifted spectrum is the source of 

errors when extraction of the modulating signal is attempted 

by low pass filtering and appropriate relinearization. 

Figure 4-6 shows the resulting problems when a carrier of 

two frequency components is modulated by a low pass signal 

and subsequently squared. As can be seen in Figure 4.6(b) 

the convolved spectrum is distorted. The further distortion 

resulting from non-linear processing can be seen in Figure 

4.6(c). Subsequent low pass filtering and square root trans­

formation will not extract the desired signal A(f) but the 
A +

estimate A(f) contaminated by noise terms centred at -t:,w where 

t:,w = lwc -we I· Thus modulating signals, such as N(n), 
1 2 

when convolved with carriers composed of frequency bands, 

such as I(n) will not be able to be uniquely retrieved due 

to the spectral distortion resulting from the convolution 

and subsequent envelope detection methods. The signal to 

noise response of the demodulation process will then depend 

on the bandwidth of the low pass filter used to extract the 

desired modulating signal as well as the amount of spectral 

distortion which has occurred. This spectral distortion 
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which occurs with EMG signals explains the poor signal to 

noise ratio's reported in the literature for force extrac­

tion as compared to signal to noise ratio's for conventional 

AM radio waves. A more rigorous analysis of the expected 

noise is beyond the scope of this thesis. Homomorphic pro­

cessing is not free of these spectral distortions and as 

such does not produce significantly better results, than 

other demodulation techniques. Homomorphic processing does 

however, allow the carrier I(n) to be estimated. 

Homomorphic processing of EMG signals, like the MRE 

demodulation technique, involves rectification and subsequent 

low pass filtering. However, the transformation of the data 

into the logarithmic domain before linear filtering allows 

both the modulating signal and the carrier to be extracted. 

The frequency spectra of the logarithms of the modulating 

signal, (N(n)), and the absolute value of the carrier, (I(n)), 

do overlap. This is due mainly to the spectral spreading 

effect of rectifying the carrier, (I(n)), but it is also due 

to the spectral spreading effect of the logarithmic trans­

formation. This spectral overlap of the two component sig-
A 

nals determines the amount of error to be expected in N(n) 

and I(n) defined in Equation 4.3 and 4.4. 

4. 5. 2 Simulation Tests 

It was decided to investigate the extent of this 
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spectral overlap and to compare homomorphic signal processing 

with the more common technique of MRE for modulating signal 

N(n) extraction. To accomplish this two Fortran IV programs 

HOMTST and RECTST were written. The programs simulate EMG 

signals collected from phasic activities. Each program 

reads a file containing raw EMG signals collected during 

controlled constant contractions and multiplies this signal 

by a simulated modulating signal. The modulating signal 

chosen is a sinusoid of selectable frequency which is off­

set by a D.C. bias to have values from zero to two. Such 

a modulating signal of 1 to 2 Hz frequency is quite similar 

to the phasic neural patterns seen in human gait for the 

quadricep muscles. The composite signal is then processed, 

homomorphically in HOMTST, and by rectification and low 

pass filtering (MRE) in RECTST, to extract the modulating 

signal. The extracted signals are multiplied by a constant 

such that they have mean values equal to those of the corres­

ponding input modulating signals. The root mean square 

difference or root mean square error (RMSE) between the 

input and extracted signals is then calculated. The ratio 

of root mean square (RMS) of the input signal to RMSE is 

defined as the signal to noise ratio (SNR). 

The cut-off frequency of the low pass filters (FC) 

was varied from 3 to 10 Hz for various modulating signal 

frequencies from 1 to 5 Hz. Figures 4.7 and 4.8 show typical 
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results obtained for homomorphic and MRE processing respec­

tively. A summary of the results is shown in Table 4-1. 

A complete listing of HOMTST and RECTST can be found in 

Appendix II. 

HOMOMORPHIC SNR MRE SNR 


CUT-OFF 
FREQUENCY 3 5 6 8 10 3 5 6 8 10 

Hz 

MODULATING 

FREQUENCY 


Hz 

1.0 6.4 5.1 4.4 3.4 2.9 5.1 4.3 3.9 3.4 3.0 

1.5 4.3 3.9 3.7 3.3 2.9 4.3 3.7 3.5 3.3 3.0 

3.0 4.0 3.9 3.8 3.2 2.8 3.9 4.4 4.1 3.5 3.0 

5.0 2.9 3.7 3.2 3.1 3.0 2.1 3.5 3.8 3.6 3.3 

TABLE 4-1 


SIGNAL TO NOISE RATIOS FOR SIMULATED SIGNALS 


As can be seen in this table, the amount of spectral 

overlap of the component signals in the logarithmic domain 

is not significant and signal to noise ratios comparable 

to those obtained by rectification and low pass filtering 

are obtained. As would be expected, based on the component 

signal spectra, the closer FC was to the actual modulating 

signal frequency, the better the obtained SNR was. In cases 

where FC was lower than the modulating signal frequency poor 
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SNRs resulted. This is as would be predicted from the 

previous theoretical discussion. 



5.1 

CHAPTER 5 

HOMOMORPHIC PROCESSING APPLIED 

TO SURFACE RECORDED EMG SIGNALS 

Introduction 

In this chapter the results of the application of 

homomorphic processing to surface recorded EMG signals will 

be discussed. To substantiate the model proposed in 

Section 3.4 the results of homomorphic processing of EMG 

signals recorded during isometric-isotonic (constant) 

muscle contractions are reported. The results of station­

arity testing of both 
; 

EMG signals recorded during constant 

muscle contractions and their corresponding processed unitary 

muscle responses (UMRs) are also presented. The results of 

homomorphic processing applied to EMG signals from phasic 

muscle contractions concludes the chapter. This includes 

the depiction of the processing of an example record giving 

the estimates of the component signals, the neural input 

and the UMR. This is followed by a comparison of the fre­

quency spectra and stationarity testing of, UMRs obtained 

from homomophic processing of EMG signals recorded bilaterally 

from four lower limb muscles, of a subject, walking at two 

different speeds. 

67 
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5. 2 Homomorphic Processing of EMG Signals 

From Constant Contractions 

5. 2. l Power Spectra Comparisons 

The proposed model (Section 3.4) suggests that any 

EMG signal recorded during a constant muscle contraction 

is composed of a UMR, I(n), multiplied by a constant neural 

input signal, N(n). In the frequency domain the equivalent 

conceptualization is the spectrum of the UMR convolved with 

an impulse located at the frequency origin. The magnitude 

of the impulse is dependent on the level of contraction, or 

level of constant neural input. The spectrum resulting 

from this convolution is simply the UMR spectrum times a 

constant. This means that the spectra of an EMG signal 

recorded during a constant contraction and of its corres­

ponding UMR should be identical but for this constant. The 

two spectra should have identical shapes but different 

powers. One way of testing this is to compare the median 

frequencies, statistical bandwidths and powers of the two 

spectra. The results of such a comparison for four differ­

ent contraction levels and three different subjects are 

shown in Table 5-l. 

Large disposable surface electrodes 1.2 em in dia­

meter with a constant spacing of 3.5 em were used over the 

rectus femoris for signal collection. The raw EMG data 

were collected and the raw EMG spectra estimated as in 
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UNITARY MUSCLE IRAW EMG RESPONSE 

MEDIANCONTRAC­ STATIS­ STATIS­MEDIAN 
TICALTION TICAL POWER POWERSUBJECT FREQ.FREQ.LEVEL % BAND­ BAND­ 1JV2]JiWIDTH Hz WIDTHMVC Hz 

Hz Hz 

I 

100 
 75. 1 
 90.6 . 128E 00 75.7 89.8 I .236E-04 I 


75 
 85.4 .240E-0482.2 . llSE 00 82.985.0 I
I F.s. 
50 
 81.1 85.4 82. 1 
 86.8 I .226E-04. 447E-01 

I 


25 
 75. 1 
 84.2 76.6. 772E-02 88.3 .206E-04I 

100 
 90.5 101.6 100.690.8.604E-01 . 318E-04 

75 
 89.9 116.6 .229E-01 91.2 117.5 .295E-04I K.K. 
88.5 119.550 
 .919E-02 90.8 120.9 .292E-04 I 


I 
 I
25 
 80.3 105.7 .313E-02 80.8 107.2 .305E-04 
! I 

I 

I 


! 
I 
 81.5 98.5100 
 . 360E-01 82.2 .225E-0496.6 
I 


75 
 79.3 89.8 81.2 .231E-04. 138E-Ol 94.5K.M. 
50 
 76.3 88.4 .344E-02 77.7 .239E-0490.5 
25 
 77.0 87.4 78.3 .266E-04. 934E-03 90.7 

i 


TABLE 5-1 


POWER SPECTRA COMPARISON BETWEEN EMG SIGNALS 

RECORDED DURING CONSTANT CONTRACTIONS AND THEIR 

CORRESPONDING UMRs. KNEE JOINT AT 120°. 
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Section 3.5. Homomorphic processing was carried out by the 

Fortran IV program HOMFIL (Appendix III). The cut-off fre­

quency of the low pass filter used for homomorphic processing 

was chosen to be 3 Hz. An example of the results of the 

processing for typical EMG data collected during constant 

muscle contraction are shown in Figure 5-1. The ripple in 

the neural input estimate is due to the spectral overlap of 

log[N(n)] and log[ji(n) IJ as described in Section 4.4, and 

is reduced with a decrease in the cut-off frequency of the 

processing low pass filter. The spectra of the processed 

UMR's were calculated using FREQR (Appendix I) as follows. 

The 1500 data point UMR files created by HOMFIL were divided 

into two 50% over-lapping 1000 point segments and weighted 

by a Hanning window. Each segment was then augmented by 

24 zero valued samples and 1024 point power spectra were 

calculated for each data window. The final spectrum, from 

which the power spectral parameters were calculated, was 

the average of these two spectra. 

As can be seen in Table 5-l the spectra for a given 

subject and contraction level are quite similar with differ­

ences only in the total signal powers. This substantiates 

the proposed multiplicative model. Homomorphic processing 

separates the constant level of contraction component, N(n), 

and the UMR component, I(n), from the composite signal. 
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Figure 5.1 	 Typical Results From Homomorphically Processing EMG Signals 
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The power of the UMR has little variance, within a subject 

for the different levels of contraction and the variance in 

signal power from subject to subject for any level of con­

traction is only slightly larger. This i$ to be expected 

for normal subjects, when recording from the same muscle 

with the same electrode configuration. 

5. 2. 2 Stationarity Testing of EMG Signals From Constant 

Contractions 

The stationarity of EMG signals recorded during con­

stant muscle contraction and their corresponding UMRs were 

tested using Bendat and Pi ersol 1 s ( 1971) run test as imple­

mented in the Fortran IV program RUNTST. For a description 

and a listing of RUNTST see Appendix IV. As suggested by 

Bendat and Piersol (1971) the segment lengths chosen for the 

run test should be such that they contain enough data to 

span many periods of the lowest frequency component of the 

signal being tested. By assumption and recording hardware 

constraints the minimum frequency component of the EMG 

signals recorded is 10Hz as described in Section 4.4. Since 

the data was collected at 500Hz and was analysed in 2000 

sample records, 4 second long data windows resulted. The 

run test program was therefore run with 20, 16, 12 and 8 

data segments per window corresponding to data segment 

lengths of .20, .25, .33 and .50 seconds. The results at 
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the .050 level of significance, of the stationarity tests, 

for the different segment lengths, of the raw EMG and UMR 

data used for Table 5-l are tabulated in Table 5-2. 

It can be seen from this table that the majority of 

the EMG and UMR data can be considered stationary. This 

agrees with results obtained for EMG signals recorded using 

similar sized electrodes, from the biceps brachii during 

constant contraction by Abdel Azim (1975). Visual inspection 

of data records which by the run test were deemed non-station­

ary appeared quite stationary. This apparent inconsistency 

may result from the low power of the run test under certain 

conditions. This is further discussed in Section 5.3.3. 

5.3 Homomorphic Processing of EMG Signals 

From Phasic Contractions 

5. 3. 1 Example Record 

To demonstrate the effects of homomorphic processing 

on EMG signals recorded during phasic muscle contractions a 

typical record from a gait study was chosen. The processing 

was performed by the Fortran IV program, HOMFIL, described 

in Appendix III, with a low pass filter cut-off frequency of 

5 Hz. The record chosen is one which contains a sampled 

EMG signal, collected as in Section 5.2.1., from the quadri­

ceps muscle, of a 16-year old normal male, during a normal 

gait of 1. m/sec. The input and processed signals are shown in 
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CONTR. NO. OF CONST. UMR CONTR. NO. OF CONST. U~1R 
SUBJECT LEVEL SECT. CONTR. RESULT SUBJECT LEVEL SECT. CONTR. RESULT 

% MVC RESULT % MVC RESULT 

20 s s 20 s s 
100 16 s s 100 16 s s 

12 s s 12 s s 
8 s s 8 s s 

20 Ns
1 
- s 20 Ns

1 
- s 

75 16 s s 75 16 s s 
12 s s 12 NS3­ s 

F.S. 8 s s K.M. 8 s 
20 s s 20 s s 

50 16 s s 50 16 s Ns 3+ 
12 s s 12 s s 
8 s s 8 s s 

20 s s 20 Ns1­ s 
16 s s 25 16 s s 
12 s s 12 s s 
8 s s 8 s s 

20 s s 
100 16 s s 

12 s s TABLE SYMBOLS 
8 s s 

20 s s s - Data is stationary. 
75 16 s s 

12 s s NS 1 - Data means not stationary 
K.K. 8 Ns 3+ s 

20 s s NS 2 - Data mean squares not 
16 NS - s stationary.

50 12 s1 s 
8 s s NS 3 - Data mean and means 

square not stationary.
20 s s 

25 16 s s Superscript - too few runs. 
12 s s 
8 s s Supercript + . too many runs. 

TABLE 5-2 

RUN TEST STATIONARITY RESULTS FOR EMG DATA RECORD DURING 

CONSTANT MUSCLE CONTRACTION AND THE CORRESPONDING UMRs 

AT A .050 SIGNIFICANCE LEVEL. 
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Figure 5.2. 

As can be seen in this figure, homomorphic processing 

separates the composite signal into a neural input estimate 

and an estimate of the UMR. The neural input signal esti ­

mates the neural control of the muscle activity. This 

signal is comparable to that obtained by rectification and 

low pass filtering of the composite EMG signal. As was 

determined in section 4.5.2, the errors in the estimates of 

the neural input, are of similar magnitude, for the two 

processing techniques. The UMR component is determined by 

both the electrode configuration and the muscle being examined. 

Therefore the UMR should change for different muscles. Con­

versely it should remain the same for particular muscles even 

though the phasic activity patterns are altered. This point 

is addressed in the next section. 

5.3.2 UMR Power Spectra Comparisons 

EMG signals were collected bilaterally from four 

lower limb muscles during normal gait at 1.0 m/s and 1.5 m/s, 

of the subject mentioned in section 5.3. 1. The four muscles 

studied were the quadriceps, biceps femoris, tibialis 

anterior and gastrocnemius. Although the same electrode 

configuration as in section 5.2. 1 was used for the quadri­

ceps muscle group, miniature Beckman electrodes with a dia­

meter of .3 em and a spacing of .9 em. were used for the 



FILE CPRLA PAT.EMG 

LPF FC 3.0 HZ REC NO 13 

RAW EHG 

PWR 

UMR EMG 

PWR .341E-04 

NEURAL ESTIMATE 

2
PWR .329E 03 llV 

........
Fiyure 5.2 	 Typical Results From Homomorphically Processing O'l 

EMG Signals From Pha~ic Contractions. 
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other muscles. Processing of these EMG signals was then 

performed by HOMFIL, with a 5 Hz low pass filter cut-off 

frequency. The UMR data files created by HOMFIL were then 

processed by FREQR as in section 5.2. 1. The power spectral 

parameters calculated can be found in Table 5-3. 

This table shows that the UMR spectra changed from 

muscle to muscle. Further the UMR spectra for specific 

muscles were essentially constant for the two walking speeds. 

The table also shows that the UMR spectra for the same 

muscle for both limbs were similar. This consistency of 

the UMR spectra, for a given muscle, for different phasic 

contractions, demonstrates a definite relationship between 

a muscle and its UMR. This relationship is further demon­

strated by the increased median frequency of the UMR from 

the tibialis anterior (TA) muscle compared to the median 

frequency of the UMR from the gastrocnemius muscle (GAST). 

The increased median frequency of the UMR for the TA muscle 

is expected, since it has fewer muscle fibres per motor unit 

on average (Oesmedt 1981), fewer total number of motor units 

and is less affected by the tissue filtering effects since 

it is more superficial, than the gastrocnemius muscle. The 

total power of the processed UMRs also varied from muscle 

to muscle and remained relatively similar, for specific 

muscles, for the two walking speeds. The overall variance 

in the power measurement, however, was small and clearcut 
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SUBJECT MUSCLE F. C. 
Hz 

S. B. 
Hz 

PWR. 
uv2 

R. F. 93.7 1 06. 2 .267E-04 
L.A. B. F. 11 0. 1 141 . 0 .321E-04 

Ll T.A. 128.0 140.7 .284E-04 
GAST 98.6 11 5. 8 .241E-04. 

R. F. 92.5 93.6 .237E-04 
L.A. B. F. 111. 3 138.8 .297E-04 

L2 T.A. 128.6 14 5. 1 .274E-04 
GAST 1 02. 9 130.0 .251E-04 

R. F. 89.2 98.9 .236E-04 
L.A. B. F. 11 0. 1 141 . 0 .394E-04 

Rl T.A. 121.5 151.9 .304E-04 
GAST 93.3 114. 5 .235E-04 

R. F. 90.5 1 08. 3 .258E-04 
L.A. B. F. 104.9 121.3 .270E-04 

R2 T.A. 125.8 154.6 .242E-04 
GAST 94.7 11 2. 3 .260E-04 

TABLE SYt~BOLS 

Ll -left side 1 m/s
L2 - left side 1.5 m/s
Rl - right side 1 m/s
R2 - right side 1. 5 m/ s 

TABLE 5-3 

POWER SPECTRA COMPARISONS 

EMG DATA RECORDED DURING 

UMR ; 

R. F. Rectus Femorus 
B. F. Biceps Femorus 
T.A. Tibialis Anterior 
GAST Gastrocnemius 

OF UMRs PROCESSED FROM 

PHASIC CONTRACTION. 
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power ranges for specific muscles were not evident with the 

limited amount of data analysed. Further studies which 

determine mean values together with expected variances, of 

the frequency parameters considered here, including total 

power, for specific muscles, for both normals and different 

pathological cases might establish a clinical use of the 

UMR. 

5. 3. 3 Stationarity Testing of the UMRs From Phasic 

Contractions 

The UMRs resulting from the homomorphic processing 

of the EMG data described in section 5. 3.1 were tested for 

stationarity using the program RUNTST, see Appendix IV. The 

number of segments was varied as in section 5. 2. 2 and th~ 

results are tabulated in Table 5-4. 

As with the UMRs tested in section 5.2.2 this data 

as summarized in Table 5-4 can also be considered stationary. 

This provides further evidence of the suitability of the 

proposed multiplicative model which states that a phasic 

EMG signal is the result of the multiplication of a non­

stationary neural input signal by a stationary constant 

muscle response. 

As was also found in section 5. 2.1 the run test con­

cluded that some data records were non-stationary and this 

was not apparent with visual inspection of these records. 
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I 
I 


I 

'I I 
I 

I 


l 
I 


SIDE MUSCLE NO. OF 
SECT. RESULTI SIDE MUSCLE NO. 0 F 

SECT. 
j 

RESULT ' 
' 

Left 

1 

RF 
20 
1 6 
12 

8 

s 
s 

Ns 3+ 
s 

Right 

1 

RF 
20 
1 6 
12 

8 

s 
s 
s 
s 

BF 
20 
1 6 
12 

8 

s 
s 
s 
s 

BF 
20 
1 6 
12 

8 

s 
s 
s 
s 

TA 
20 
1 6 
12 

8 

s 
Ns 3+ 

s 
s 

TA 
20 
1 6 
12 

8 

s 
s 
s 
s 

GAST 
20 
1 6 
12 

8 

s 
s 
s 
s 

GAST 
20 
1 6 
12 

8 

s 
s 
s 
s 

Left 

2 

RF 
20 
1 6 
12 

8 

Ns 3+ 
s 
s 
s 

Right 

2 

RF 
20 
1 6 
12 

8 

s 
s ' 
s ! 

s 

BF 
20 
1 6 
12 

8 

s 
s 
s 
s 

BF 
20 
1 6 
12 

8 

s 
s 
s 
s I 

I 

TA 
20 
1 6 
l 2 

8 

s 
s 
s 
s 

TA 
20 
1 6 
12 

8 

s 
s 
s 
s 

GAST 
20 
1 6 
12 

8 

s 
s 
s 
s 

GAST 
20 
1 6 
12 

8 

s 
s 
s 
s 

TABLE SYMBOLS AS PER TABLE 5-2 AND TABLE 5-3. 

1 -l.Om/sec 2-1.5 m/sec 

TABLE 5-4 
RUNTEST STATIONARITY RESULTS FOR UMRs PROCESSED FROM EMG DATA 
RECORDED DURING PHASIC CONTRACTIONS FOR SUBJECT L.A. AT A 
.050 LEVEL OF SIGNIFICANCE. 
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This might be due to an inherent weakness of the run test. 

This weakness being the apparent low power of the test under 

certain circumstances. Specifically, this results in arbi­

trary results for the run test when 
, 

the segment lengths 

become too short or too few segments are used. The weakness 

of segments which are too short is addressed by Bendat and 

Piersol (1971) and as suggested these authors can be overcome 

by taking segment lengths, corresponding to sufficient time 

periods, which are many times longer than the periods of the 

lowest frequency components of the data. Segment lengths 

chosen in this fashion can restrict the total number of 

segments from fixed length data records, resulting in too 

few segments, which also reduces the power of the test. 

Therefore, it is important to realize that to properly test 

the stationarity of data, data segments of suitable length 

and number must be used. 



CHAPTER 6 


CONCLUSIONS 

EMG signals result from the measurement of neuro­

muscular electrical activity and consequently contain 

information about both neural control and muscle state. 

The type of information extracted from EMG signals depends 

on the signal processing technique used. 

In an effort to maximize the amount of information 

that could be obtained from EMG data a multiplicative model 

for EMG signals was proposed. The model conceptualized 

the EMG signals as the product of two component signals, 

a low frequency neural input and a relatively high frequency 

unitary muscle response (UMR). The model is based on the 

assumption that EMG signals recorded during isometric­

isotonic (constant) muscle contractions have constant spec­

tral shapes independent of contraction level. This assump­

tion was proved to be true, by the consistency found in the 

power spectral parameters, median frequency and statistical 

bandwidth, of EMG signals recorded during constant muscle 

contractions at different levels of contraction. 

The particular nature of the multiplicative model 

required the consideration of non-linear processing algo­

rithms. The multiplicative process, when the component 

82 
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signals are of essentially different frequency content as 

with the proposed EMG model readily avails itself to homo­

morphic processing techniques. Homomophic processing was 

therefore applied to both simulated EMG data and data 

recorded during various muscle activities. The performance 

of homomorphic processing in extracting the neural input 

component was compared to that of the common EMG processing 

technique of rectification and low pass filtering (MRE). 

The comparison was performed using simulated EMG signals 

of known neural input and the parameter of interest was the 

signal to noise ratio of the respective processing algorithm. 

The two processing methods had similar signal to noise 

ratios with homomorphic processing having slightly improved 

ratios for low frequency neural inputs. Homomorphic pro­

cessing performance might be further improved by the appli­

cation of Kalman filtering techniques in the logarithmic 

domain, as suggested by Evans et al (1980) to better sepa­

rate the component signals. 

Homomorphic processing was also applied to EMG data 

recorded during constant muscle contractions and spectral 

parameters of the raw data and their corresponding UMRs 

were compared. The high degree of similarity found in 

these spectral parameters further substantiates the proposed 

multiplicative model. 

Additional homomorphic processing was performed on 
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EMG signals recorded from various lower limb muscles during 

human gait. The power spectra, as characterized by several 

spectral parameters, for the resulting UMRs were revealed 

to be somewhat unique for each muscle and constant for a 

specific muscle for different phasic contractions. These 

results again support the proposed multiplicative model and 

also suggest a possible clinical use for the unitary muscle 

response. 

The variations discovered in the spectral parameters 

for different muscles, suggests a relationship between the 

UMR and the corresponding muscle state. Further studies 

which determine expected values and variances for these 

spectral parameters of the UMR for specific muscles under 

normal and various pathological states, may establish the 

UMR as a source of clinical information. 

The stationarity of EMG signals recorded during 

constant muscle contractions and their corresponding pro­

cessed UMRs were tested using the run test for several 

different numbers and lengths of data segments. The majority 

of these EMG signals were found to be stationary. All the 

UMRs were found to be stationary, even those resulting from 

non-stationary EMG data. This confirms the model predic­

tion. Stationarity tests were also performed on the pro­

cessed UMRs corresponding to EMG data recorded from several 

lower limb muscles during human gait. All of these UMRs 



85 

were found to be stationary confirming this model assump­

tion. The stationarity testing revealed an inherent weak­

ness in the run test. This weakness being a loss of test 

power if too few or too short data segments are used. Thus 

long data records are required to assess stationarity with 

confidence if the data contains low frequency components. 

The results of this work suggest that the multipli­

cative model for EMG signals is a reasonable one for both 

phasic and constant contractions and that homomorphic pro­

cessing of EMG signals produces useful estimates of both 

the neural input and the muscle response. This means that 

with the application of homomorphic processing information 

about both neural control and muscle state can be extracted 

simultaneously, for both phasic and constant muscle contrac­

tions. The simultaneous extraction of both neural and 

muscle information from EMG signals is not possible with 

currently used processing techniques. 



APPENDIX I 

POWER SPECTRUM ESTIMATION 

The estimation of power spectra and the calculation 

of power spectral parameters for the EMG data analysed in 

this work were performed by the Fortran IV programs FREQP5 

and FREQR. This appendix describes the theoretical basis 

of these programs. The slight differences between the two 

programs is stated and a listing of FREQP5 is included. 

The programs calculate the power spectrum of the 

input data, by the method of averaging periodograms. This 

algorithm is based on a program suggested by Rabiner et al 

(1979). This technique of power spectral estimation was 

first proposed by Welch (1967). 

For a sampled data sequence X(n), the modified period­

ogram spectrum estimate is obtained by dividing X(n) into 

K overlapping segments of length L. This algorithm used 

an overlap of L/2 so that for an N length data sequence: 

K = [(N - L/2)/(L/2)] 

where the square brackets represent integer truncation. 

After appropriate weighting the ith data segment can be 

expressed as 

= x((i-l)L/2 + n)wd(n) 

< n < L, 1 ~ i ~ K 

86 
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where wd(n) is an L point Hamming or rectangular data weight­

ing window. The M point (M ~ L) discrete Fourier transforms 

(OFT) of the weighted segments xi(n) are defined as: 

m-1 . 2 7r k 

Xi (n) = ~ xi ( n ) e 

-J-
M 

n 


n=O 

1 ~ i ~ K 

These DFTs are calculated using an FFT routine where M must 

be an integral power of 2, (see listing following FREQP5 

listing). When L < M the sequence xi(n) is augmented with 

M - L zero valued samples. The power spectrum of the ith 

segment is: 

= 	 1 ~ k ~ M, 1 ~ i !: K 

The final spectrum estimate Sxx(27rk/M) at normalized radian 

frequency (27rk/M) is then obtained by averaging the indivi­

dual S;(k). 

1 K 
= 	 1 < k < MKu 	 ~ Si ( k)

i =1 

L 

where u = ~=l w~(n) is included to achieve an unbiased 

spectral estimate. 

The segment s pee t r a IX.(k)l 2 are computed two at 
1 

a time by suitably arranging the sequence X(n) into complex 

vectors as: 

x ( n ) = 
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0 :5 k :5 M/2 

where X(k) is the M-point OFT of the complex sequence, x(n) 

and Xi(k) and Xi+l (k) are theM-point DFT 1 s of xi(n) and 

xi+l(n). This procedure halves the number of FFTs required. 

These programs also calculate the following spectral 

parameters, median frequency, statistical bandwidth, percent 

of total power in selectable frequency bands, ratio of powers 

in separately selectable high and low frequency bands and 

total power. The program also calculates the signal mean 

rectified value and root mean square value (RMS) and allows 

specific subsets of data points in a record to be analysed. 

FREQR is identical to FREQP5 but it processes real 

data files instead of integer files and it processes a 

complete data record not allowing any specific subset selec­

tion. A listing of FREQP5 follows. 
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FREQP5 SOURCE LISTING 


C••..•. FREQ P5.FOR PROGR~M TO ESTIMATE AND PLOT THE POWER 
C•••••. SPECTRUM OF I NPUT DATA FILES r BASED ON AVEREGED 
C ,. , , , , , PEf, I ODOGt<:Ai'·lf.> ¥OF [J\J[ HLP I::. I l·J G I...J I l\IDDt.J~; ~·or-· l HE It·-!PUT 
c...... DATA.THE WINDOWS CAN BE WEI GH TED BY A HANNING 
C,,., •• OR RECTANGULAR DATA WINDOW.THE PROGRAM ALSO ESTIMATES 
C..•.• ,THE FOLLOWING POWER SPECTRUM PAR AMETERS: 
C•• • , •• MEDIAN FREQUENCY 
C•••••• ST ATISTIC AL BAN DWifTH 
C • .••.• PERCENT POWER I N THREE SELECTABLE FR EQ, BANDS 
C•••••• HIGH-LO W RATIO;RATIO OF POWER IN HIGH BrlND TO LOW BAND 
c . .... I TOTAL POWE R IN SIGNAL 

c ... ,, .. 

c .•.... THE FOLLOWING AMPLI .. UDE STATISTICS ARE ALSO _CALCULATED! 

C•••••• MEAN RECT FIED EMG VALUE CMRE> 

c ...... ROOT MEAN SQUARE VALUE <RMS) 

C • , o o ,. o I 

C. •••• .THE LENGTH OF THE WINDOWS CHOSEN AN I THE FFT'S 
C...... CALCULATED IS SELECTABLE.THIS ALLOWS VARIABLE 
C•••••• FRE QUE NCY RES OLUTIONS AND dTA TISTICA L VARIANCES OF 
C..•... RESULTI~G SPECTRUM ES TIMA TES.THE PROGRAM ALSO ALLOWS 
C ,, .,. , ••. TH E ~)F' EC::FIC F{,OtNC;E: DF D (~T,,~ F'CJit··J ·r;::; I!t::SIRED FRUr·t 
C •• •• •• THE INPUT TD BE CHDSEN. 

C.,,,, ,. NOlF!
C..... . FREQ R.FOR IS IDENTIC AL TO FREQP5,FOR EXCEPT 
C .• •••• TH AT IT READ S REAL UNFORMATTED SEQUENTIAL HCESS 
c. .. .. . FI LES RATHER THAN INTEG ER DIRECT ACESS FI LES. 

C, ,. , , • , IT (.,L ~3D DOCt3 NO T r:-1L.L.ObJ ANY Di~il1'0 ':)ELECT JUl.! 

C,. ,. , • • WITHHJ Cl··iDSEt'J FIL.CS , 


DIMENSION IDATt 200 Ql , IXC 1024)vSP ECC1024) 
l.i ll•iENSJON JldlN(2!•2 ) :' X~; (20 4F: 1 .,{:l)<J~:;<4!•4) 


DIMENSIO N IELC3r2l , IBFRE0 (3 ,2) ,I0AT1(~00 0; 


DIMENSION ABPTOT(J},IFIL E(7) , IHLBC 4l,I1HLBC 4l 

COMPLEX XC 1024> , XMN 

DATA JWIN(1,1),JWIN(1,2 l/ 'RE ' ,'CT' / 

0 (~ T ~~ J t·.H N ( 2 , 1 ) ;• J LJ H··! ( 2 ~ 2 ) ,/ · H~i ' :· ' i'W ' / 

DATA NN Ori YES/'NO','YE'/ 

f"i 1~ X N ""20 48 

L.Hi"i ::::N ~i )<h/ 2, l 

1'-! ··oT::::f:)O 


t-):::: 2'"00 

DEF I NE FILE 1 (f!TDT!! N,L .,JRECl 
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[,J l:( I TE ( }', 10 l ) 
101 FORMATC ' WHAT I S DATA F ILE NAME? '/' ** * : * * * ** * ·~**' / ) 

RE ADC 5 ,201> C IFILE (J), J =1~7l 
CALL AS S I GNC1 , IF ILE , 14 , 'RDO' ) 

201 FOR MAT!7AL) 
wr~ITE<7v 10 2) 

102 	 FO RMA T(' WHAT I S THE SAMPLE FREQ AND BAND , WI DTH?'/ 
+ 	 lX~· '****'?lXr-'****'> 

READC5r202)1SAMP·IBAND 
2 02 FORMAT(J4,1X?!4) 

vJR IT E <7 ?10 3} 
103 FORMAT(' WHAT ARE FREQ. BANDS CHZ.)?'/lX r '***-***') 

DO 300 J::::1,3 
300 READC5 r203lC IBFREQCirJlvJ=lr2) 
203 FORMATC2CI3r1Xr)) 

WF? ITE:</~· 10• .. ; 
104 FORMAT(' WHAT ARE FREQ. BANDS FOR H/ L RATIO CHZ. )?'/ 

+ 	 1X?'LOW BAND ' v2X,'HIGH BAND'/1Xr ' *** *** *** *** ' )
READ C5,204)CIIHLB'J)vJ=lv4> 

204 FORMrTC4CI3v2X,)J 
l,lf-( I TE: C./ ,?/)') 

777 FORMA T( ' DO YO U HAV E A ZERO MEAN SIGNAL?'$) 
READC5 r 201) IZERO 

c 
READ I N ANALYSIS PARAMETE:RS M,IWINrL 

c 

9999 FORMAT<' FF T LENGTH=' 
l,sx, • MUST BE A POWE:R OF:'/' ****'' 

4 READC5,999 7) M 
IF CM.GT .MA XM) WRITE (7,9998) 

9 998 FORMATC' M TOO LARGE- - REENTE R VALUE ') 
IFCM.GT.MAXM. GO TO 4 

9 997 FORMAT Cl4> 
WRITE:< 7 !' (:.l99ll) 

9996 FORMAT(' WINDOW TYPE l=RECTANGULAR, 2=H AMMING ' /' *'> 
READC5r9995 ) IWIN 

9995 FORMAT(ll) 
~ WRI TE: C7,9994) 
9994 FORMAT <' WINDOW LENGTH= 

1,5X , ' MUST BE LESS THAN 1025'/ ' ****') 
F~E:r1D <5, ''?99.? > 1... 

I F ( 1... • GT , 1'·1 ) GCl T() ~'i 


WRIT EC6r4000 ) (IFILE CJ),J:3,7) 

400 0 	 FORMATC5 X,'FILE ! ',5A2• /) 

!.~.JR I ·rE ( 6, 4:!. .:)() ) 
1·'i 1 0 () 	 r::· [I F' fvJ (1 T ( ;;.: / ' 1 F' EC ·' Y 4 X ' l '~ R[ Y 4 / )' .· I· d S 1 

' 4 X ' 1 F C / ' 4 X 1 

I 	 J I I !l sE: I )' ..:f >< !·' H/ 1... ~~ 6 X 1 I L. .· ' t )X !.' r1 ·' ' () >< !' ·' H .. ~~ EX r I p ,j R I I ) 
30 4 WRITEC7,106) 
10 6 FORMAT(' W~AT IS THE RE:C. NO. ?' /' ** ' ) 

F c ~~fJ ( ~~;, 2 06) I REC 
20 6 F OR~ATCI3> 

SCAL. =( 17 . / 19. 05lt1023. 
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DELTAF=ISA MP/Cl.O*M) 
INUM=(tiBAND*l.Ol/DELTAFl+l 
DO 306 I= J. ~3 
DO 305 J=l,2 

305 	 IEL(I,Jl=C(lBFREQCI,J>* l·) /DEL TA~)tl 

READC5,7511lNl,N2 

CONTINUE 
READ(l'IRECl CIDATl(J)~J=l , Nl 

75 10 
ld i~ I T E ( 7 ' 7 5 1 0 ) 
FORMAT(' WHAT DATA POINTS ARE DESIRED?' /' **** **** ' ' 

7511 	 FOR~ATCI4,1X,I4) 

IF(Ni . EQ,Oll\11=1 
IF CN2. EQ.OlN2=2000 
N==N2 ··· N 1. +l 

c 
c 
C NSE::CT ::= THE To · AL NUMBE R OF ANALYSIS SECTIONS 
c NF = THE TOTAL NUMBER OF SAMPL ES ACTUALLY USED 
c OVERLAP OF 2 TO 1 IS USED ON AD J ACEN T ANALYSIS SE CTIONS 
c NP = N lFCN-l/2)/( L/2) ~ AN INTEGER 
c 
c 

f··1H!...F 1 :=:f'·l /2 ·!- 1 
NSECT ~ CN-L/2)/( L/ 2) 
NP = NSECT*CL/2) + 1... /2 

c 
C READ IN DESIRED DATA. 
c 

DO :tO J::::l d'~ 
;< :.:::J+N1·..· 1 
IOAT(J):'=':J:l')f-~d· :J. (K) 

XA<J> =FLD ATCID AT:J. (K ) )/4C9.6 


0 CDNT I ~·JUF 

f' 

C CALCULATE DAT~ MEAN, 
c 

><S t.Jf" :::: A:S Ur1+XA ( J) 
20 CCWT IN UE 

><H Er.;i'J ::::><::; l.J11/N 
c 
CONLY FOR CA LCULATION OF MRE AJD RM S 
c 

DO 30 J :::: 1 ~· N 
XA (..!)'-"" X f.; ( J) - / r'iEJ·iN 

30 CONTI r·IU E 

C MAKE SIGNAL ZERn MEAN IF DESIRED 
C ~ E T XMN FOR LATER ~ROCESSii G 
f''..... 

XM N=CMPLX {X MEAN , XME AN) 
CO Hl 3 2 
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C SET XMN FOR LATER PROCESSING. 
c 
31 	 XMN=C MPLXCQ. O, O.Ol 
c 
C CALCULATE MRE AND RMS. 
c 

32 	 MRE =O. 
RMS=O. 
DO 40 J =lr N 
MRE=MRE+AB S (XA(J ll 
RMS=RMS+ XACJ >**2 

40 	 CONT INUE 
MRE =MRE/ N 
RMS =SQRTIR MS /Nl 

c 
C RESET N FOR REPEAT RUN S . 
c 

L 
C GENEhATE WINDOW 
c 

U=FLOATCL) 

IF (1WIN,NE.2> GO TO 60 

U=O. 

FL=FLOAT<L-1) 

TWOPI =8 .*ATAN C1. 0 ) 

DO 50 I=lrL 

FI=FLO AT CI-1) 

W D = .54 -. 4~*COSCTWOP I * Fl / FL) 

U=U+WDtWD 
5 0 CO NTI NU E 
60 CONTINUE 

c 
C LOOP TO ACC UMU LATE SP ECTR A 2 AT A TIME 
c 

SS=l. 
DO 70 I=lrMHLFl 

SPECCI >=O . 
70 CONT I NUE 

c 
C RE AD L/ 2 SAMPLES TO INIT I ALIZE BU FFER 
c 

L1 = L/2 
NRD=L/2 
L2=L/2 
CALL GETX( XA rL2,IDAT,N RDrS S) 
SS=SS +FL OAT(N RDl 
IMN=L/2+1 
KM X= (NSEC Ttl l/ 2 
NSFCT~=C	 C NSEC T t1) / 2 l * 2 

NRD=L 
DO 190 K=l r KMX 
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,c 

C MOV E DOWN UPPER HA LF OF XA BUFFER 

c 


DO 130 :1>1 :, L_ 1 

J :":L.:l +I 

X<I>=CMPL.X(XA(J),Q.l 


80 	 CONTINUE 

I FCK. NE , KMX , JR,NSECTP.EQ.NSECTl GO TO 95 

DO 90 J:== l r'iN ~1·'-lF~:O 

X(i(J) :::: 0.0 

90 CONTINUE 


NRD ::::L./2 
L. ::.~ :::: 0 

CALL GETXCXA,L2,IDAT,NRD,SS) 

no :t:J. o J::::::J.,Ll 


J :~" I +1_1. 

X(J)=CMPLX(XACJ),XA(J))-XMN 

XCil=CMPL.X(REA LC XCl )) , XACilJ -XMN 


110 	 CONTINUE 

IFCK.NE.KMX.OR . NSECTP.EQ.NSECT) GO TO 130 


c 
C AN ODD NUMBER OF SECTIONS -- ZERO OUT THE SECOND PART 
c 

X(l)= C~PLX< REALCX(l )J,O.) 


120 CONTINUE 

1.30 	 CONTINUE 

S S····S~~+ FL. OAT ( NF~D) 


IF CIWIN.NE.2) GO TO 150 

FL.. ""FL.Otll(L -1) 

.D D :J. 4 0 I :::: :1. , L. 


F~I :::: FL.CJ,CJT ( I·..· J) 


X< I >=XCI>*C . 54 -,46 * COSCTWOPI*FI/FL)) 

140 CONTINUE 
1 5 0 C	CJ !··! T I N .J E: 


IF CL.. EQ ,M) GO TO 170 

L_F):J.::::J...+:J. 

DO 160 I ===I...F' 1 ~· 1·1 


X(:J:):::(O.d),,) 


1.60 CONTINUE 

:1. ?0 COt'-lT INUE:: 


CALL FFT(X,!'-1~0) 


DO lHO I::<h MHL.F1 

J=Mt;.;.... I 
SPECCil = 2PECCI J + REALCX Ci l *CO NJ GCXC l)l + X< J )*CO NJG(XCJ) .: 

HlO CONTIN UE 

PECC1) = SP~C(l) + REALCX <1 l tCONJGCX(1 ) ))*2 


:1.? 0 CDNTINUE 


http:IFCK.NE.KMX.OR
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c 
C NOPM AL IZE SPECTRAL E3TIMAT E 
c 

FN OR M = 2 . t U * NSE CT 
DO ?10 I= l ·MHL F1 

SPEC<J> 	 = S~EC ( J) / FNORM 

210 	 CONTI NUE 

IF(IZ ERO.EQ. NNO > GO TO 4 1 

SPECCi ) =0 


c 
~ ~ ALCULATE TOTAL POWER AND STATISTICAL BAND WI DTt1 
c 

4 1 PTOT:O 

PT OT2=0 

DO 3 11 J= 2 , MHLF1 

PTOT =PTOT+SPEC(J)t(1/(1,0*M)J 

PTOT2=PTOT2+SPEC(Jl* * 2*C1 / (l. O*M >l 


3 11 	 CON TINUE 
PTOT=PTOT*2+SP EC(1)*(1/C1.0*Mll 
PTOT2=PT OT2* 4+CSPE C(1)**2*C 1 /Cl .O *M>l 
SB=P TOTt*21PTOT2*ISAMP 

c 
C CALCULATE PERCE~T POW ER IN SELECTED FREQ .BANDS. 
c 

DO 312 J =l , J 
ABPTOTCJ > =0. 
BPTOT =O • 
• F< I ELCJ , l ) .LE.1 . AND.IEL(Jr2l.LE . l, ) GO TO 312 
IST=IE L(J , l) 
IE T= I EL( J ,2> 
IBTOT = IE T- IST+l 
DO 3 13 JJ=IST,JET 

313 	 BPTOT =BFTOT+SPEC(JJ>*<liCl.O*Ml ) 
~P T OT = BPTOT*2 
IF<IST.EQ.1lB~TOT = BPTOT - SPEC(l)* r 1 /[l ,O*M)) 

A8PTO T ( J ) =BPTOT /PT OT*100 . 
312 CONTI NUE 
r 
c 
C CALCULATE MEDIAN FREQ. 
c 

SUM =O.O 
DO 315 I=2,~HLF1 

3 15 SUM=SUM ·2*SPECCI)*C l /C1 . 0*H )J*C I- 1 )*(1/11,0*M 1) 
FMED =SUM/PTOT#ISAMP 

c 
C CALCULAT E HIG~/LOW RAT I O 
c 

DO 31 6 J=1 ~4 
316 	 IHL BCJ. s ( JJHLB(J ) ~ l.) /DELTAF+l 

RATIO ;Q . 
HBPTOT=O, 
IF<IHLB ( l ) .L£.1,AND.IHLBC2).LE.l.) GO TO ~2 

http:AND.IEL(Jr2l.LE
http:IF(IZERO.EQ
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BBPTOTc::O. 

I L 1:::: I HI...B ( 1 >--1 

IL_=IHLB(2l-IHLBCilt1 

I H1"" IHLB<3)-1 

IH2 =I HLB<4> -IHL B<3>+1 

:00 31'7 I,-.::1 1 IL2 


317 	 BBPTOT=BBPTOT+SPECCILlti)*( ./Cl.O*M>> 
BB PTOT::::BBPTO"f*2 
I FC II...1 . EQ.OlBBPTOT=BBPTOT-SPEC C1ltC1 /C l.O*M ll 
DO 3l8 	1"::1 Y Tl-·12 

3 18 	 HBPTOT=HBPTOT +SPECCIH1+I>tC1/ ( 1,0tM)) 
HI·: F:· ·r Cl T :::: Hf: F:·T C I ·r >~~ ::' 
TFCIH1.EO.O>HBPTOT=HBPTUT-SPEC (1)* (1/(1.0tMll 
RATIO=HBPfOT/BBPTOT 
J i·'il..ii... f:::: J 

~RITE(6,4101>TREC,SRE,RMS,FMED,SB,RAfiO, 

1F5.1,2X, F5 .3,3C2X,F5.1),4X,E9,3,/) 
F;: F i).l I (.J D (:, 

:OU :\~'.'.:0 I =:::.':· i··iHI...F: 1 
==
 

SPECCI>=SPECCI>t2 

350 	 C:C:INT I i\i t..:L 


SCAI...D=(6.0/19.05)t1023 

CALl... REMAXCSPFC,2 , MHI...Ft,XMA X> 

SCAI...2=SCAI...D/XMAX 

325 	 CC)i''J r I i'.J I.JE 
l.dF;: I rC ( ·7 , .::·:.'.) 0 0 ) 

7500 	 FORMATC' WHAT IS 
r;: E(l I:! ( '.'5 !I .:.:-· ·=.:; () :1. ) I j•vj u1... T 

75 01 	 FORMAT CI3) 
3;;;;e, C:C:Ji'-.1 r I i·!UE 

c 
C PLOT POWER SPECTR UM 
c 

XTEt·iP===O, 

DO 307 I =<2 ~ I Nl.Jl'·i 


THE AMP. MUlf?'/' ttt') 

XTEMP=XTEMP+ DELTAF 
C MU I...T. BY 15 TO AVOI D INT.TRUNC. 

D« I }~XTE riF" *15. 
,3 07 Cor··,JTTNUE 

SMULT==~lCAL/IX ( INllf'-·i) 
C HAS H MhRK 5HZ FOR 1KHZ SAMPLE RATE 
C 10HZ FOR 2KHZ SAMPLE R ~TE 

IHASH =(I SAMP*15)/100 
c 

AX.T.S(:L~ :L ):::O, 

AX E > ( 1 ~ 2) :::: 1 7, 
AXIS0~3 =0.0 
A:X:IS<l~4)""0• 
XO=:I. , 

http:i�'il..ii
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"{ !:!::;: :!. .·. 

....:i __ ; J ..., 	 .... :: ·: , .::, -., Ui····~ 

C(I L L.. ~;:; C: (i l... ;::: ( I U(i f ··· ::.:: >:' (::< () ,, l ,, I (..llj i'·i ,, YU ,, l .•. ) 

(:, :·,L.L.. i::'i..UfFl<< T><' i. :• ,, T:Ut·,·r·r: :1) :.· Ti·..,ii..li''i:' J :·():• ()) 


4::.': 	 C(,!...!... F''i...CITCI< ( () ,, _? :;':():·I. ,, :1. ,, () :•(:>) 


C:til...l.. H!Ji ·iF 

1,<.1 F<: T rF ( ") ,, ·::,:. ·:.:.:- H·.:.:· ) ( J l.o..i J i"-·! ( J td T i··J ,, ....! ) ,, ... J.... J ., ::.:.:: ) 

FURMAT(' WINDOW TYPE~ ',2A2) 

WRTTF(9,998H) M,Np,L.,JSAMP 

r:- r:J h: i'-'i (:1 ·r < ' i"-'i .... ·· ,, :r ':·.:,.. ./ ,, ' (.J F' .... I , , :r ;••.: ., ./ ,, ' 1 


+ i ,, I 	 ::;)()/'-iF'!... J i'-1() Fh'E/)UCi..tC '{ .... . ,, I6 ,, / ) 
J,.J h: TTC <·.:.:. ,, -'1· <> 0 ) < I 1::· T1...F ( ... J ) :· .. ..! ... :::<: ,, .? ) ,, I r;: Ec:: ,, Ti·i 1..1L. T 

-<:. .:; o F Ci F: j·li ,-::·, r < '. :.: >< ., r :r 1... F :~ · ., '"; ;::, :::.' ... :•:: ;:: ,, ' F: ~::: c: uh:u i·! i:.'l .•. · ,, I :.·:": , '':: >< !1 ,. i'i u:... r .... I ,, r :·:•:;' I 

WRJTF<9,403)(\IBFREQ<I,J),J =:1.,2),J=l•3> 
FORM AT(/,5\,' FREQ. BANDS:'•6\,3CI3,' .. ,, J :.·:\ :• :'.'.i ><) ) 
WRTTF<9,404> <ABPTOT(J),J=J,3) 

1404 FURMAT<S\,'% POWER IN BAND: •6\,3(F4.0,9\)) 

:+ o:··.: F .J r<:f··i t l T < ,i ., ":.: x ,. ' ·r uT~~~ L.. F' ot..J:::: F;: J i\i ,, :r 4 ,, ·' H:;.:: • r: t, i'-! :u .... ·· ,, 1::: .:::- , :..•:; .I 	 .

•:f () (1) F' uF: j'lj (1 T ( :.:•;>< ,, I i···i E:::u I (:·, i'··! F I? [ f:.) ,. I ,, F :·.:; ,, :1. ,, ; H:.:-:: ; ; '! 

:1. :=.=_; >< ~; ... ~ : ;; "i" (:i ·r J ::;:; T I C: (:1 L :f·:-: (·t (.! :0 i..·..l JD·r H / ~-· F ~_:_ :_; -:· :!. '·' ... H ·,:.:.- ... 

!,J F;: J ..i' C ':: ') ,, .i:. () )' ) F~ (:l f I U ,, ( I J HL r-: ( ...! ) ,, ....i "" :i. ,, A ) 
.:} ().:.:· r: f) h: j···j (l ·r ( ~·_: ; >< ,, . T Hi::: H../ l... h: ;:>; T J Cl I:;:; .. ,.. r:· '.'.'i ·•· ~:•; I' .. 1:: Ci F: :H r\ (.l :u :;:; ,, .... ( .! ' :'•: '.' .· .....·· '.' i' ·:; '·' ·;:." 

;<F l,J.i I i·! :u 	 ·:.:. 

l.1J ::;.: I ·rE ( ·.:? ~.: ·.:.:-· ~ _:_:_i () :·:~: ) 


F CJ r;: i'·1(i r ( ·· !:I C) -y· Ct L.l hJ (:l i·! r r C) 1::H(< !·! Ci 1::: (·; i···i ;:: · ,. i''i i..J 1.. ·r , ;· \. 1':: :;::; c:: r:: i·.• Cl ' > 


l,d h' T f C :: .? " :i. 0 ·.::' > 

h: C('; fi <'.''.: ,, ::.:.:: () 7 ) J :u F C 

JF(JDEC.FQ.JYES) GU TO 304 

!. ..· 

\ (101... 2) ~ FLUAT<JDAT<I+SS -J JJt00°.6 
CONTINUE 

F: E:: ·rLi h~ i\! 
~: :: f'·-.!:0 

10 
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~~: ~::; u :::.:: r;z fj t .1 ·r I i\! E F F ·r 
.1J i·i CCl UL:::: Y .. ::; :;:; I i··i F> LE :;:· F: T r:·h' l:i c:; F: (:! j··j :.l :::: [ ~; :; C: CC I i·i ,.:, r T!::I i'i T(.! T I i··i F (:, L C:: ;::, h: I rHi·i 

I>< I::;; ,:·,N j\)::: ~:.:: >;<:i< i"i F:'C:II(.!T C::(J (·lF'LF >::: (:,i:;:F:(i ...( ·rH ,::,·r l i...!J TII...,L. L..( CIJ(! ·f, :iJi\l~:; fHE Ii.J F:· uJ 
c:: (:·, ii U C)(\1 0 U f F:·UT C: C) i'i ·r (i I (.! :::; f HC r F;: i'i i) ·:::.F UF;:(i 

·r HE 1::·(·i i :~ (i ivi E f EF: If\: t) ~::; F>ECIF JE.:C! .0 J h: i::~ C:. "(' ·rr;.:(t r·..! ~:: :- ;.:· ~J ,·;__ j-..·; .1: F '-.: (:: r) :u :!:1o.: :..: F j::.: ~: ;_. ;::: ·;: i·:· 

SUB ROUT I NE FFT( X,N,INV > 
CO MPLEX X( :l.), u,w , T, CMPL X 

c 
C X - CU MPL. CX AR RAY OF S IZ E N -- UN INPUT X CONT AINS 
C TH C SEQU ENCE TO BC TRANSFOR MED 
r· j\) ·- :::; TZE [ 1;::· r:· F f TU F:[ CUI"iF'I.JTE::n ........ i···! :::: :~:.:: ::< >:<i··i FOF: J .• L F ., i·ii , i.. E:: , J ".'.i 

C I NU - PARAM ET ERS TO DE TERMINE WHETH ER TO DO A DI REC T TRA NSF URM < I NV~C 

C OR AN INVERSE TRAN SFORM < I N V ~ J ) 

c 

M=ALO GCF LOAT CN)) / ALOG(2 ,) t , J 

j\~ i._) 2 .... j\ .! ....... ::? 

(.!(' i :1. :::: i) ... .i 

...J .... :1. 

{I I] /} •:) I ;;;; J f·' j•) jvj J. 


IF l i .G E, J ) GO TO :1. 0 

T:::: ><< J ) 

>< CJ) ::::>< <J) 

><cT > ·=·=·r 


:i. () I< :::: ( .! '·.) ::.:.:: 


20 IF CK .GE. J ) GO TO 30 
...J::::J ···· i··:.: 

30 ....: :::: J ··i··l< 
4 0 	 C:U NTif\!UE 


PI = 4.*A TAN< 1. 0) 

C! Cl ·;.:·0 L. ::: 1 !I i''i 


L F ::: :::.:: >:< *L 

L. E l •=•= L. [ ./· ::? 

u :::: ( 1 •·· () y 0 • 0 ) 

W = CMPL. X( CCJ S CPI/FLOAT ( L.E J)), -S J N(P I/FLOATCL.F::I.) ) ) 

I F(I NV. NF . O> W = CONJ G( W) 

.0 U .~·:: () J ::::1 11 L F :L 


Du '.".i ( •1 I :::: ....! !I i··.l !I L[ 

I F' ::: I :.. L1::: 1 

T :::: >< ( Tr:o ) >i< tJ 

">< ( :r F· ) :::: >< ( I ) ···· ..i. 

>< ( J) '"' ><(J> + ·r 


50 CON TI NUE 

U :::: 1.../:{~ I.J.] 


.~.(:· C:U(· i f l (.Jtl[ 


7 0 ·~:: I) ( ! r TiJ UL 

I r:·( J i.J ') ,. :::: I) , <) ) F: C f UF:(.! 


I! U H() J ::: 1 •1 i) 


X(J) = 	X(I ) /C MP LX< FL. UAT(N),Q,) 

!::r.Ju 

http:CUMPL.CX


APPE NDIX II 

HOMTST SOURCE LISTING 

C• .•• • • HOMTST.FOR PROGRA M TO TEST fHE PERFORMANCE OF 

C:: , ,. ,. , , ., HUi"'i Uh 0 F:1::· HI C: X' F: Cl CE:::; ~:; I i'' D F:·IJ F;: f HE C>: Th: (i CT I C) t-.! UF:· 

C,, ,,, ,N ERU AL INPUTS FROM COMPUSITE EMD SIGNALS. 

c ·> ,. ,•., ·> ., 


DIMENSION XDATC1500),ISGNC1500),YDA T'1500) 

DIMENSION IDATC1500l,IFILEC/l, X2DATC1500) 

DIMENSION RMDATC1500),IWORKC1500),IXC1500) 

EQUIVALENCE CISc-JN,I DATl 

I:!(, r (i Ni'-! Cl , I y·E ~; :; ...... i·! CJ ·' !' ,. ·y F ,. ../ 

1.... 

l.. 
J,J F: I ·r E ( / !' ·~.:o 9 \ .::;. ) 

' ~9 9 9 FORM AT( ,. EN TER UMREMG FILE NAME,./lX,,.ttt:tttttt,ttt ' ) 

9998 	 FORMAf(7A2l 
WRITE(6,6699l CIFILE ( J),J=3,/) 

(';. (:. (.::. ·:.:.:o 	 F:·cJ F ~ i'"-'i r:'i ·r ( ,. F I !... E t ' !' :2 :::< ., '.'.'.; (:i :~:.:o .............. > 

I·.JF;: I ·rE c6 !I .-:·:· .;;.:- ') '.? > 
I.s :)9 '.::· 	 F:· (JF;: j"··j (i ( ( ... F F' E Ci ; :.' ·:':. >< !I .· F: i'"··i ~::; E I !1 (:, >:: " ; F;: j···j ::::; l I !' :::; / 'I F< j··.·j ~:; C) ; !·' )' \ !I ... ~ : :; jo..i F:.: I 

t .:;:. ::< '' I ><(·j I I !' ·.:.:lx !1 ><i'iU / )I 

110 WRITE(7,7997 l 
7 997 FO RMA 'f ( ... WHA T IS SAMPLING FRECi? ' /' tttt ' /) 

7796 	 FO RMA T( I4) 

9960 FORMAT ( ' DO YUU WANT GRAPHICS DI SPLA Y OF DATA? YES? OR NU? ' ) 
READ(5,9 959)IANS4 

99 59 FURMA T( A2 l 

I F CI ANS4.EQ.I YES ) IF LAG2=1 
,···. 

c .. • .. . JN PUT LPF CUTOFF FREQ TO BE USED FUR PRO CESSING. 
!...: 

1..:..1 r;: :r ·rF < ~:.:-' ~~ ·.:.:.· ·.::-· ·:;:o :.:=j ) 

7795 	 FORMAT(' WH AT I S f HE LPF CUTOFF FREQ? ' / ' tt.t' 
F: C(:·,:o ( :'.'.! •·• ·.7 ·.:.:·') ..::;. ) F C 

7794 FORM ATCF4. 1 ) 

C, ,, , . ,R CA D UMR FILE 
I 

98 



c 

99 

c· 

8993 FOR MAT (F 5,1 ) 

c:: 

C• ••• • • CREATE SIMULATED NEURAL INPUT OF DESIRED 


c 
:;::F:· C ·t C: :::: ~.'.'j 0 () ., ./ F:· h: [ Cl 
( ,.0 D'"':3h0 ,i ~:;F·c; '(C 


FACT=180. / 3.14159 

DF:CF<CC====O •. 0 

>< :::: 0 \• () 
:o 0 t 0 I ::: 1 , i···! ~:; i"l 


YDA TCI )= SINCX>+1.01 

DEGREF:=DEGREE+ADD 

X:::: CIEG F;:EE:: /.F (~,c·r 


:1.0 	 COi'-1 f I r'UE 

IFCIFLAG2.EQ.O)G0 TO 815 


C•• • ••• PLOT UMR FILE AND OFFSET SINE WAVE. 
c 

GSCALE=1023/19.05 
SCALED=1.0*GSCALE 
>< ·r E i'·i i:> '"' o ...o 
ou .<}()() J::":l. !I :l.!'.'j()() 

I \ ( I ) :::: / T 1::: i'··i F:· 

>< ·r ci··i r:·::" ::< ·rcr··i r> ··:·· ,, :=.=.; 

IDAT(l)=YDAT(I)*100 

IWORK(I)=\2DATCI) 


400 CUi···i·r Ti'!UE 
CALL MINCIWORK,NSM,NSM,IMIN) 

CALL MA\CIWORK,NSM,NSM,IMAX) 

IF CIMAX . GE.IABSCIMIN>> GO TO 3 

YMULT= SCALED/( 1,*I MIN) 


3 	 YMU LT=SCALED/(:I.,*IMA XJ 
4 	 CA LL SCALE!IWORK,NSM · t ~NSM,11.5,YMULT ) 

CALL PLOTEKCIX(1),IW OR K(1 ),NSM,J,0,1 ) 
CALL MAXCIDA T,NSM,NSM ,J MAX> 
YMULT=S CA LED/Cl.*IMA X) 
CALL SCALE(lfiAT , NSM, 1 ,NSM,9.0rYMULTl 
CAL L PL o·r EKCIX(1),JDAT(1), NSM,1,Q,()) 

n1 ::-; c::c/r! ·r r uuc 
1...• 

C• • ••• . CRCAT E SIMUL AT ED EMG S I GNA L. 
/.... 

DU 1 1 :r ,,,, 1 !' r':::;r..i 
\D ATCI >=YCI AT CI ) *X2 DAT< l ) 
I i..d(J F: J< ( I ) ::::><{ I/) ·r ( I ) 

!. 1 	 ! ::;JN ,. Ti""-.i !..IE 

http:GSCALE=1023/19.05
http:SINCX>+1.01


100 

1..: 

, ... 

\' i\i U/... T:::: ~;; C(l I.. FD/. ( I. , :=:< I i···i I 1"--! ) 

C·! 0 "f' Cl :.:.:: 

1 YMUL.T=SCAI...FD/C1.*IMAX> 

2 CA/...1... SCA/...FCIWORK,NSM,1,NSM,7.0,YMU/...T) 


CALL. PI...OTEK(I/(J),IWORKC1),NSM,1,0,Q) 

c ...... PERFORM HOMOMORPHIC PROCESSING 

816 DO 20 I=1rNSM 

I :;;; Cl 1'-·l CI ) :::: :1. 

IFCXDATCI).EQ.O>XDATCil=XDAf(J)t,OI. 

IFCXDA TCI),/...T.O.O) ISGNCI>=-:1. 

XDAT CI>=ABSCXDAT(!)) 

XDA TCi l =ALOG<XDAT(I) ) 

r:~ t'i D(l ·r cI > ,,,, >< :o t• ·r cI ' 


20 	 C:UNT I 1\IUE 

Fr:::::: IF:·:;::: 


c 
c . I .,. :· ' :· c(, i .. L L() I,J F' (~ ~;; ~:; F:· I LTE F~ 

c ...... LOW PASS FI LT ER USED IS A DIGITALLY IMPLEMENTED 
C,,,, , .2ND ORDER BUTTERWORTH. DATA IS PASSED TWICE 
C •••••• THROUGH FILTER, UN CE FORWARDS AND ONCE BACKW ARD S 
c ...... THIS RESULTS IN AN EQUIVALENT 4TH ORDER RESPONSE 
c ...•.. WITH NO PHASE DELAY.SEE LISTING FOLLOWING TI~IS PROGRAM , 

Ci u ::.:: :1. I :::: I. ' i) ~:; h 

XDAT<I>=<XDAT( J )-RMDAT(I)) 

XDA T(I)=EXPCXDATCI)l*ISGN( J) 

RMDATCil=EXPCRMDAT(I)) 


::.·1 C:CII•lfii'-!U[ 
I""• 
'···· 
i"•. ... 

•••••• NOTE: RECTST.FOR IS IDE::NTICAL TO HOMTST.FOR BUT 
::: , , .,. ., , , l::·I:)F 'fHF l.. (i~;::r 1'''! L.li\1[::; l.~.iH I CH 1\I:::E F·E::F:·J. .. t,cE::c' 
C•• , ,,,BY THE FOLOW ING 1.0 LI NES. 

C•••••• PEPFORM RECFIL PROCESSING 
i. ..· 

DI) :::.:: 0 I :::: I. , (.! ::;:: i"i 
r· XDAT(ll =A8SCXD AT(I )) 

F:i•·i U(>, ·r ( J ) :::: :=< :o (; T ( T > 
2() 

C: F ~3 :::: I F ~::;; 
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l . 

c 
.. 

XDA T<Il =XDAT(ll-RMDAT(l 
RMDAT( I l =RMDAT(Il 

; ··. ::: ':1.1.,.· 

,· ··. 
l ..• 

c 

c: 

:::, i··.-jCJ::::O , 0 
::::;:::;I:::: () • 

DO )3 l =25:1. ,C NS M-:1. 00l 
~:; i"i :r ,,,, '/ :o (:~ r c:r l -:·· :::; i"l I 
SM O= RMDAT(Il +SMO 
SSI=YDATCI)**2+SSI 

XMI=SMl/(NS M- 350.) 

XMO=SMO/CNS M-350. ) 

RMSI =SOR T CSSI/CNSM-350 .)) 

RMSO =SQRTCSS0 /(NSM - 350. l l 


\..· 

C• • ••• • CORRECT FOR MEAN VALUE DIFF ERE NCES. 

>< i"i I<:::: >< i'-'i I ......- / i"-·1 U 
F~ I< :::::;:i'-i ~ :; I / F;: i"i ~;; U 
~: :: ~;; : ::: () ·.. 0 
DU ?4 I =25:J.,(N SM -:1.00l 

E:: ~ : ; :::: ( '( T1 () "i' ( I J .... \ i·i !".: :t F;: i"i :U r::1T ( T :' l ::{-::;)-:: :.:.' +E ~;:; 

:~:.~ •\ 	 COI'-.!T I ;\!i..JC 
RMSE=SQRTCES/CNSM-350.)) 
::::;i'i F: ,,,, 1:;.: i"i ~ : ; l /. h:i"i ~: ; E 
I F(JFL AG2. NC , :I.)G0 TO 640 

!...: 

l ''· 
'.... 

F: i"-·i :u () r \ J ) :::: () ... Cl 
c: n(.J·r I r-..1 u~::: 

IWO RK Cil = :I.OO *RM:UAf(Il 
IDA T(Jl =:I.OO*X:UAf( Il 

·r i;j o F;~!< ( ·r ) ==:= CJ 
Tn(:·i ·r ( I ) :::: () 

:~:.:: ~ : c 'J i'-' ·r :: i--1 t.J E 
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~ 	 CALL SCAL E CIDAf , NS M,1,N3M,4. Q,YMUL T ) 

C.:t·1l... i... ·::·!... 0 ·rEI·<< I >< < :i. ) ~· T :~::: (:·! ·r ( l ) .:: I\! ~: ::: (I ~,~ :i. :.. () ~~ () ) 

c: ( l L !. . t ir:·::<( I !.d Uh: i<:' i"! ::::i··i ~ · (..i ::::; i··i ., I i··in >< > 

·i 1"-"i i..i L. ·r ''":::;c: (:·,i... r::u/ ( :1. • *:r r·i r-';><> 


CALL PLUT EKCTX CJ), IW URK C1),NSM,1,0, 0 l 
CA L.i.. PLOTEK ( 0 , 780, 1 ,1,0 ,0 ) 
(:::t1 l..!. .. 	 I· ·! C! i'·.·JF 
!.dF J ·rF ( .:_? !-' .:-::. .:_~.:: ·.:? (_:) ) < I F J 1. .. E < .. .J > ~.. .,..i :::: :::::; ~.~ ·./ > ~-· F c:: !·' F F~ Fc.:! 


' .· -~' F C; r;:j····i ( i ·r ( ... F:· I !...E :; ... :.: :_:.=.; (·~ ::.:.~ ~~ !-' ·' !... ? F C::F:· T~::: ,.. !.' F :_::; -:· l r :::~; ><;.t 


l'I NPUT 	 FR EQ ',F5.1l 

FOR MATC/ / i / // • 40/ ,' UM R 

S0 2 WRIT E( 9,6 973 ) 


~ORMAT(/ // // , 40X,' N E U R AL OUTP UT ' ' 

C.[I j·J f J j-.iUF 
1 :;~ F I;.! I i·· i:u •::­

,;... ; 0 CU i.! T J j\_l l.J F 


FORMA T CtX ,F5. 1,1 X·6(3 / , E8.2)l 

FORMAT ( ' DO YOU WANT ANO THER RUN? YES OR NO ) 

7 5 J 1 	 FO RM Af CA2 l 
TF < I t ,i\' ·::;::J , 1:: C) .. I ·: :::: :::: > c-;u r 1] .::. . :o . ) 

Ei"-.!:U 
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:''·
'···· ~· {· ·:­ ,. ,:. .;. CAL L LPF(X~N,FC~FS) 
1...: X(Nl - DAT A 1'0 BE FILTERE D 
i'\ 
'···· CU TOFF FREQUENC Y OF THE FILTER 
c - SAMPLIG RATE OF THE S I GNAL 
c: 
c------ - --- - -------- - - -- -- - --------- ---------- --- ------·- -------- -- - - -- ­

suBROUTINE LPFC X ,NrFC~ FS ) 

DIME NSION XCN),TEMPC3) 

F I :::: ( F> T::{< F. C :1. ) ../ r:·~:; 
F~ s; N (F J)/COSC FI > 

I::· :::.'::::F ::l<F:· 

F:· F( ::·.:: ;;;; F :=:< :::>1J r;: ·r ' ::.:: .. > 


F:· t 1C::::F:· ·:.:.:: -:-F F;: :::.~ +:!. ,, 


D~ - <F2 t 1. -FR2) /FAC 

:1.0 TEMPCI) =X(l) 

X(J) ~A*T E M F'(3)t B* T E MP( 2 )tA*TEMPC :I.) +C*X(J - :I. ) tD*X(I - 2) 

JF(J, EQ. N)GO TO :1. 

f E i\i F' ( :1. ) :::: T E:: i'-"i F' ( :::.' ) 
TEi"iF' (2) ::::TFi"iF' ( :::; ) 
rC i"'i F' .: :::) l :::: / ( I :- :1. ) 

:1. C:: Ur!ll i'i UE 

lEMPCI)=XCN - 1+1) 

Di j ::' I :::: :·:;; !' i'-! 

:-:;::::N-.. I + :i. 


IFCK.EQ.:I.)GU TO 2 

TEi·iF' ( l :• ::::TEi"iF' ( :::.' ·:. 

r c i'·j F' c:2 ' ,,,, ·rc ~"~ r:· c:::'l ) 

·r E:r·i r:· c3 > ,,,, >< ' i< -· :1. ) 


J.:: Ui·! ·r T!'.!UE 

F<.::: Y' !.. JF:i·.,i 




APPENDIX III 


HOMFIL SOURCE LISTING 


( '· 
'···· .;- :· -~ -:· -~ ·:· 

c > <· ., .;••;. ' 

DIMENSION XDAT<2000)~SGN(2000),I3FIL E (7) 


DIMENSION ID AT<200Q),IFILE(7),J2FILE(7) 

:uTr··i[ i....J::;:; I 1Ji\J !:;.:i...·i I:i (:·i·r ::: ::.:.:: () <> () ) ~.. I l,:J fJ F: i·<( ::.:.:: () () () ) ~! I ·~::: ( ::.:.:: {) () () > 
DIMENSIO~ INS TRKC20) , JLAST(20),NSAMP<20) 

DATA NNO,IYES / 'NO ' • 'YE'/ 

C: ti !...I... (:: ::; ~: ;; I Ui'.! < :i. :' I F 1 !. .. :; :: ,, I. .::f :• .·· r:::U U.·· 
DEFINE FILE I. CNTOT,N,U , NREC) 


110 WRJTE(7 , 7997 ) 


;7 ~6 	 FORMAT (l 4) 

99~v 	 FORMAT( ' DO YOU WANT GRAPHICS DISPLAY OF DATA? YES~ OR i0 U?' 
READC5·9959>IANS4 

I F !... ;:·:~ C·:i .:::: ::·: ~, ) 

; ~(IANS4.EQ . IYES) IFLAG2~1 

..., ..._. ·....,. 

. . r ·· ,··· 
i ;::. ~ :;, fJ r :.~ ;·..J u ·· ·.~ 

104 


http:IANS4.EQ
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I F<I ANS2 . EQ,NN0) IFLAG1 ~ 0 

·..v ·..l ..· .·· 

RE AD l~ DATA FILE 

DC) :L () T:::: :!. ~' i"·-l 

i'--..! S(J:::: I ····1 

:l. :) CfJ (.J ·r I i'"-..! i...i E 
:u :] :i. :1. I :::: I. i\1 ·:; i'"i!I 

IFC IFLAG 2 .EQ. O) G0 TO 8 1 5 
:0 0 :i. :,:,; I :::: :1. !I :2 1.~:; 0 

TI:! (:·,T ( I >::::() 

CC:l NTI i) !..J :::: 

GS CALE = :I.0 2 3/ :1. 9.05 

I :< < 1 > :::><·r E(·i F> 

><TEr·'i F:· ::::><TEi"i f' .;.. ,. '.'.'.; 


CA LL MA X ( l f!ATrNSM ,NSM~I MAX ) 

YMU LT=SCALE:CJ /(:i. . t iMAX) 
\::: ;::·~ 1... !... ::;; c ,::l 1.. E < J: :u 1::1 ..r !I i'-·! ::;; i"! !' :1. !' r·..i :::; r·i !I <? ,, ;:) ,, y·i"- i i.. .l 1..·r > 

C::(:i 1..!.. :::· L. C::·r Ei·<::: T>< ( l ) ,, 1 Cl (',·r ' i. ) !' i.,J ::;:; i·'i :· :i :• () :• :1. 

;J :l. :_:_:; ~:< :;;::!..J(''j :::: () -~ 

{:::!.. .i :::::() i"-..! ..i. :i:r·.! l..l [ 

·:::· '? CJJ i··i T I i··Ji..J E 

PWRT ~PW RT/( NS M - 2 50) ;40 9.6 t t2 

IF(TFL.AG:i. . FQ.O ) GO TO S:i.l 
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cc: i'! r I i···' 1.1 ;:: 

r DO HGM OMO RPHIC PROCESSING 
i...· 

IF< XDATCil.EQ,Q,) XDAT<I>~XDAT(J)t,01 

IFC XDAT(l ), J... T. O,O l SGN(J) ~- 1.0 

XDATCil~ABS <XDAT (l)) 

::<::U(:l··, · (I) ::::(\ J...C:!Ci \ ::<:Ut1T (I)) 

h: i""''i :ur, ·r < 1 > ,,, >< :u ;:·:) ·r < 1 > 

:::.~ () C: Cl l"·· ! T I !'...! UF 


r:·:;::;: :: I F'::; 

CALL.. LPF<RMDAT,N SM,FC,FS ) 

Df) :::.: J I ::: :L ~ · 1'--! ::::; i"''i 


XDAT< I >~XDAT <Il - RM DAT(I ) 

XDAT(Il~1 0 0tEXPCXDAT(J))tSGN Ci l 

RMDAT (I) =100*EXP (RMDAT( J) J 

·:.:: J c:: :::::i ·! r 1 i-.l LJ :::: 


c: ,. ., .• ., ,. i··.JC: rc i: 
C,,,, , , RCCFIJ...,FOR IS IDENTICAL TO HOMFIL.FOR BUT FOR THE 

LAS T 15 LINES WHICH ARE RCPLACED BY TH C FOLLOWING 
:1. :) i...l i'-! E: :;; ~: 

c:: I .; ·:• ;. ;. I 

'-·· ' .·:· ' .; . 
c . ·> ·:· .;•• •;. RMDAT (l) =ABSCXDAT ( J)) 
c:: ·> ·:· ' .;. ·:· ·:· 

c: ' ·> .;. :· ·> ., 

. . .· . 	 C ;::1 i... l... L. ? F. ( F:: i"-i X::(:l f ,, i\i ::; i"i ~~ F:· ;::: ~~ r:· 3 ) 
:uu :) 1 1 ::::!. ~· j·.j :;:; j'-j 

~- ~ ~ 

XD AT<Il=10 0*XDAT(J) 
c:: ,. .. <· ... ·> ·:· RMfATCi l =10 0tRMDAT(J) 
.. .· ·: . . ·r ,_. ·~ " :..:.:: () C:CIil T I i·.J UE 

..· .;. ·=· ·=· \· .;. " 

. ..· -:- ·=· -:· ·=· ·=· 

1...' ·:· ..... ;. ·.· .;. 

>::: :o !:\ ·r ('i == :=<) -:· 

r:~ r·i :;::: ::·~~ :···i··.·i :::: o ·=· 

t ••· .::.: (, L.. ::: i.Ji... ;:~i ·r C F> (J L·.J C h: ::::; r::-~ () :o t.) (·, F;~ If:~~ i-...1 1.::: 1::: ::::: 

!::: 
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RMDAlM=RMD~fM+R MD AT(l) 

F:· t.J r:; ;-.1:::: F' l.J F;; f··.l ...... :1. 00()0 ,........ ( i··.J ~:; i' i ···· :2 ~::; () > 

XDAT M~XDAfM/FLOATCNSM-250) /:1.00. 

RMDA TM=R MDATM / 100./CNSM-250.) 
RNEVAR =PWRN - RMDATM* *2 
d N R~RMDATM/(SQRTCRN E VA R)) 

:u ;:) :2 ? 1::·::1. !! ::.:: ~'.'.; <> 

\ Dt i ·r ( I ) ::::() .,. 0 

:: :: i···i :0 (~, T CT >::::() .,. 0 


t:::Ui'-.1 ·r J (.IUE 

C:: (l I... I. .. F( F f···i (·,>< ( :::: i''i :o (:i ·r !' :::.) '.'.'.; :1. ? ( ..i ::::; ;·.-j ,, ;<j··j ( ·, >< ) 

CALL REMI NCRM:OAT,2 5:1.~NsM, XMIN) 

\ i'·i J i··) :::: \ j.-j J i·l ./ I. 0 () • 

JF ( JFLAGJ ,EQ .O) GO TU 8:1.2 
DD ~:'i () T:::: :i. Y j·.J~)ii 

RMDA TCT>=RMDAT(J) / :1.00. 
XDAT CJ)=\DAT(J)/ :1.00 . 

~::; 0 CC) i'··i ·r I i\1 UE 

l.dF;:I ·1· EC:·:<: > ( F: 1"-·i D(:, T( I ) !' I :::::::.':;''..;() !·' (.i ::::; 1'1 > 
WRIT E(2)(XDAT CI>,T= 250,NSM) 
0 D ~'5 i. I ::: I. !' i'.J :~ :; i'-1 

R M:OAT (J) ~ RMOAT C I)*:I.OO. 

~:'! :i. CC:ti'-J ·r I i·! UE 
D:i. ::::: C::U1i r J i iUF 


IFCJF LAG2.NE.:I.)G0 TD 640 

i,,• 

F':... DT UU 'TP L.i ·r :::;; 

:U CJ ::.:.:: ·.:.:· I '''' i. !' ;·.J ::::: ;··..i 
IWO RK( I) =RMDATCI) 
I :0 ;::, ·r ( I ) ::::X:o (:,·r ( I ) 

I Di ·i I (..1: I i···i I i.J 

http:CI)*:I.OO
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f : r, 1...L ··· · ;::-. i. .. c ,. TL.J i: :::. ;·:. ... i 1c::ri ... ::. ,, ,..':::: r··! ,. :..:. .,. <> ~.. ·( i'"i l...ii... ·r > 
I :•, • ' • • 

'.' .. ,l.il_,,i , '. ·.... j i ··.~ .: :·, 1 :! !·' .i. ~.! 1,.) !•' I\.) ) 

FORMAT(///!I////I////o40Xo'RAW EMG 

:::::<> .:~. C:: C) i\! ·r I 1\.! UE 
F: [ l...JI :\! X:: ·:,:;. 

· · /;/ / o40X,'NEURAi... II\.IF'i.. .!T 

,···, : ··. ; ··. I 
·_;: ".'! '7 D 

FORM AT(' DO YOU WANT ANOTHE::R 

IF(lANS . EO. l YES ) Gn TO 100 
Ci···.JI:i 

RE::C . FROM THIS FILE? YES OR NO' 



APPENDIX IV 


STATIONARITY TESTING 

Methods of assessing the stationarity of signals 

were investigated. These efforts lead to the conclusion 

that the non-parametric run test was the most commonly 

used, (Bendat and Piersol, 1971, Sugimoto et al 1978, 1977 

Wang and Vagnucci, 1980, Cohen 1977). 

The run test checks for non-random trends in the 

data. It involves dividing available records into M seg­

ments. A suitable parameter is then estimated for each 

segment. The parameter estimate is then compared to (sub­

tracted from) some constant value and a +or - sign is then 

assigned to that segment based on the algebraic outcome of 

the comparison. The number of runs is then determined for 

the resulting sequence of + and - signs. A run is defined 

as a string of identical observations (signs) that is 

followed and preceeded by a different observation or no 

observation at all. The number of runs in this sequence 

is an indication of the existence of a trend in the original 

data. If the sequence is composed of independent observa­

tions of the same random variable the number of runs will 

be a random variable r with mean ~r and variance a~ given 

as: (Bendat and Piersol 1971 ). 

109 
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r = 

2 
err = 

2N 1N2(2N 1N2 -

M2(M - 1 ) 

N) 

where M i s the number of segments (sequence length) 

Nl is the number of + signs 

N2 i s the number of - signs 

The number of runs compared to its expected value and vari­

ance leads to the determination of the existence of a trend 

at a selected level of significance. That is, it determines 

the rejection or acceptance of the hypothesis of independent 

observations of the same random variable in the normal sta­

tistical hypothesis testing fashion. Thus, too few or too 

many runs will lead to the rejection of the independent 

observations hypothesis and therefore to the acceptance of 

the existence of a trend in the data. 

The wide sense stationarity of data can be assessed 

by testing for trends in the data's mean and mean square 

values (Bendat and Piersol 1971). This allows the run test 

to be used to test for stationarity. The run test for this 

work was implemented by the Fortran IV program RUNTST. A 

listing of this program is found later in this Appendix. 

RUNTST divides the input data records into M segments, where 

M is restricted to being an even number. The mean and mean 

square values of each segment are then estimated and compared 
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to their corresponding median values of all the M segments 

with a + or - sign being assigned accordingly. The two 

resulting sequences are of length M and each have an equal 

number of + and - signs. For this special case the follow­

ing run probabilities exist, (Sugimot, 1977, 1978). If r 

is the number of runs 

for r = 2k 
( M/ 2- 1 ) ( M/ 2- 1 ) 

k-1 k-1Pr = M 
(M/2) 

for r = 2k+l 

2(M/2-1 )(M/2-1)
k k-1Pr = 

The number of runs R is then determined for these sequences 

and using these probabilities for specific numbers of runs 

the probability of at least R number of runs is calculated 

using R 

= i: 
r= 1 Pr 

The program then accepts the stationarity hypothesis if PR 

is greater than a/2 and less than 1 - a/2 for each sequence, 

where a is the level of significance. A listing of RUNTST 

follows. 
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RUNTST SOURCE LISTING 

;__: :: :; :,~ '··.: .. ..... _i_,_t("l. -:· . . 

•• -· ·.! ·_, '·' .. ... ;· ; . 

DA l A N0G,IYE S/'NO' r' YE' 
L.J ;:;.: I ·r C < ·.? ~· ·.:.:- (:_:. (:,:0 .:.::o ) 

FORM AT(' EN TER DATA FILE NAME ' /lXr ' ttt:******·*** ' 
READ(5,9998><IFILE(J),J=1 r 7) 
F DF' i"-~ ( ·t ·r ( -_/ t: :::.~ ) 

·I., / '·. 
.i..L '../ 1..-J i~\ J T[ ( ·.? ~ · ·:_:.:. 0:) ·::.:. .? ) 

'··..' '-·/ '·/ .. ·· 	 F Cl :: ;: i"l ,:; ..i. < ' f IJ f •. t·..J U •. UF F: EC ., t :i'·i :u i'i 1] •. Ci F' ::::; (:Ji·'i :::·L E ~:; 1:· F 1::: h: F C: , ·;: ' ,i :L << ~ · 

J99~ 	 FORMAl'(' HOW MAN Y DA TA SEGMENlS? MUST BE EVEN'/1\ 'tt') 

,--, ,.. \(' 't .... 
.. ·:-- '? ....i 

READ(7,9992) ALP HA 
r:· C:! F;~ i'·/i t·: ..i' ( F !:_:_; ,. :·:~; ) 

READ<5·9990)JREC 

99 78 	 FORMAT( ' FILE:'r5A2,5Xr'RECORD NO.'riJ,/) 
F;: ::::n:U ( 1 ' ..i :;;:E C: ) ( I :u ;::; f ( J ) ~· J :::: 1 ,, (..1 ) 

r:· C:l F;: i"i ,:·; T ( t ·1? ':< 

;::· ;::·1::· 
.__j.__) ...JIFC IANS5 .NE.IYFS ) GO TO 

DU .~::. I ·••• 1 ,, i'-! 

::::: i''i Ct : r-.i ,,,, ~:; LJ ( i i · i·.J 


:u Ci /. 1: :::: J ~~ i'-J 


IDA l( [)=IDA T(J )-XM EA N 

;:: c:: l'i ,· J (J I.. I :::: 


;::·1:······ 
,) ·.. .i , _.! •::: JJ'-.:TT i·ii..JC 

FILE:'r5A2,5Xr'RECORD
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j\i ? :;:: i·-..J ~; ;; F U::.;-::!'·) :u ~::; 1::: C.J 


·r C·..f' l :::: () ) 1.) 


T·J ·r ::? ==== <) -:· <> 

· . :·: 1.:! .:<.·,... 

XMN<I>~X M N(Il+IABS<IDAT(K)) 

XMSf i) =XMS<I>+FLOAT(lDAT(K)l**2 

XMN<I> ~XMNCJ>/NDSEG 

XMS<I> =XMS(J ) / ND SEG 
J C, r::f:;i'! T I i•.l lj ;: :: 

... . . ,. " .,. .,. i: :(i !... L.. F::l,i ( I :;:; l..i F·: ::::; l.i :H ;:;: Ul...i r I i·.i [: r !J C: (i!... C:: U1... (:i rF i> !':;C) I:~ ;::if·: I 1. .. I TI :;:: ·;;:: 
CALL RJNSUBCXMN~NSFG,I RUN 1,PROB T1 ~JND1·ALPHA > 
C: (·,!...I... r:: i..i !···! ~::; UF: ( / i"i S ,, (.J~:: [ : c:; ., I F: 1.! j···! :::o ,, F>F'C:l I:~ r ::.o:: ,, I r·i:u :? ,, (:,L. r:·H(, ) 

104 IFC I ND1.NE .1> GO TO 105 

105 IF<IND 2.NE .O> GO TO 106 
:,i r;:I TC ( .:::. :· c.;.:o ') H·,;:-· ) 

?787 FORMAT ~' DAT A MEAN SQUARE VALU CS SHO W TREND-TOO FCW RUNS'/l 
106 IF(IND2 . NC.1> GO TO 107 

FO RMAT( ' DATA MCAN SQUARE VALU ES SHOW TR END - TOO MANY RUNS ' / ) 
IF(IN D1 . EQ.2.AND.IND2. EQ.2) GO TO 10H 
c-:;u TD ::.1 ::,:,; 

108 WRITC(6,9 9H5) 

1 DATA IS STATIONARY '/ ) 

~ORMAT( / 5\, ' NO . OF RUNS OF ME ANS',)/,13/ 

15X• ' NU. OF RUNS OF MEAN SQUARCS',)/,J3 ) 


FORMAT( 	 / 5 /,'LEVE!... OF SIGNIFIGANC::C ' ,)X,F5. 3•/ 
:J. ~-=.:_; ::··:: :.1 ... r·..! [ I .. C) F ~:::; E CJ i.._..i[ j\.!·r ~:) ... ~-· :.._:::>< !·' I :::~ ~-' i' ~.=.:; :::< ~-· ... () 0 -:· () F .0 (~, ·r (:·~ F : ~ () I J') ··;. ~3 _.· ~, :2><~.: I ,.;':~ 

:: :. ·:.) .'? .:;.:. 	 F (Jh~ i...·i(:l "i' < ... ;::. r;.· f) J.:·: .; C)F l... E ::::::·:) ·r H( i i"-..! ,.. :.- T ~·:~; !·' ... F: i..J j\) ~: : ) C! F j··.··i E (:·! i\ !~ ;:: .L ~:: ) .. :: F <.) . ·' ,. ... 

:i. .·· F>j :; C:! f: •. i:) r:· !.. C :::; ~:; f H,::1i'-i / ,, I ,:::; ·· / r:: LJ ( .I:;:; !J r:· i"i C(:,( .1 ~; :: Cl I..J r::,F: !:::::;; I ~:;: / :· E:: c.;.:. •• ~:.) :· ./ ·. 

F:C l,J I i·J:u /. 

http:IF<IND2.NE
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c . • •. • . SUBROUTINE RUNSUBCVECT,N , IRUN,PROBTriND,ALPHA) 
1C , ,. ,..,. ., ,. f C) rE ~:; T F 0 h: r F~ F j\) D I i'-! 1'·1 -) E:: C f C)!::.: ;'; f: C) 1.1 f I ·r ::::: i··i E:: (:; (.i <)(;I. __ U::: 

C•••••• BY USING fHE RUN TEST. 

: ,. ,. ,. 1)i:C ( T(..IF'l...l T 1-)E 1.: f!Jh: 'f!) ):{ [ f[ :::; fEU r:· C)F: f! ::.:F !-1 U ., 

C,,,,,. N NO. OF DATA POINTS TN THE INPUT VECTOR. 

C, .,. ,..•., ,. Ih: i..!i'-! i·!CI.,.(Ji::· F:L.ii\i~:; (:·,HCIUT THC i···iCCIJ(:;j-1 1.),-:ii... I.IF C:IF. i)FC:f,. 

INDIC:ATD~ OF TREND 
0 VEC:T HAS TREND TOO FEW PUNS. 

1.••: ,_ ••,. ;. ., • 1 VECT HAS TREND TO O MANY RUNS. 
VCCT HAS NO TREND. 

C ,. .. , . •. ., r::i L.. i::·H;:i i..E 1.) CL. UF ::::;I Ci i··-! I !::· J c-:; (:i i\1 C[ C:l F:· ·r F ;::: f ,. 
SUBRO UTINE RUNSUBlVECTrNriRUNvPRUBf,INDrALPHA) 
DIMENSION VECTC1)rDIF<50 0 ),pRQB(500) ,SURTC500) 
DATA NNO,IYF::S/'NO ' ,'Y['; 

D!J :: :_:: l) T:::: :!. ,, j--..1 


~:; JJ i:.: r< I > " 1) ;:: : c:rc.r . 

. ,, C: Cii-...1 r I i'--11...!1::: 


:oCi ::.~~ :i. 1 :::: J. ~.~ i\! .... l 
UC1 ::_:::: ...J:::J+I ,, (.i 

I F. ( :::: C1i":: r ( I ) ,. i...L , :::; UF: r ( ...1 ) ' C< C) T (J ·_:_:: :.:_:: 
r E:: i'-i F ::::::; Cl r:: r t I ) 
:::::or:: r < :r i ... :;::;c:,r:_:--r <....1' 
::::: 1J r:: r c._.: >"" rF i".i e 

,' '';: ", 
...~. .·.'. , CUNT I i-...II.JC 


C:C1i·i f J i··-! UE 

XMF::D1=(SORT(N/ 2 )+SORTCN/2+1>)t2 


• •• ,UETERMINE THE NO, OF RUNS ABOUT fHE i·iECi I (;(I, 

DJF(l)= VECT<I> - XMED1 

DIF<I +1>=VEC T CI+l l-XMEDI. 

J F <:u IF <1 } -:- !.:·:iE ·=· <)) CiCl ..!. U J () () 


100 I F<DIF< I +I. l .GE.Ol GO TO 101 

101 CONfiNU~ 


' "'; C:: Ui! T I i'..i UF: 

I F;-~ l..Ji""--! :::: :;: i\ i. .J i\~ ..;.. :L 
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. • •••• I.E. NONSTATIONARifr~ 

j'··i ·::: ~ ....~ ....... _:_:_~ 


I :::· :- TF'!. .i r! •. ;::t),. i'-!1 t::;u ·ru J(:;,_::· 
t::: ,. ,. ,.•....• c: (1l... •::: 1..: 1. .. r:\ rc 1:: f:,,_::: H :::·!:::1J r·:::-:,r-: r L.. :r ·r ·i ::·:.::::-:: u:uu i:': ::1::, c:: ·r :..: ::! •. :::; J·· :::.: 1..' :··:·::: . 

l :::: ( i< .... :i. ) :".... ::.:_:: 

XT EMP=1,0/(2ti l*(M -I ) 

XT EMP=ALOG10C XTE MPl 


:u Cl i!. ·.:.:-· J -..i ••••J ~· i"·i ···· 1 
(:! :::: (:)l...C:i C:i :i. () ( :i. -:· () ::-;-:: l (·j ···· .. .J ...J ) ) 


C=A LOG:l0(1,0*(2tM-J-.J )) 

>< ·rE i'-'i:::·••••\ fL (·iF' ·:·t1 ····C 


.<:) ·.7 	 C:CJ f'..t T Ti··i i...! E:: 
(I C.t :•_:_;() ,J ....1:::: :!. :.. I ·· ·· :I. 


A= Al...UG l OC:!..O*(M - -..i-.J)) 

B=Al...UG:lO(:l,O*CI-J,J)) 

C=Al...OG:l0(1,0t(2*M - J-.J)) 


XTLMP =\TLMP+3*A -2* B- C 
:·.:; <> 	 c: u :\1 r I i'-·1uc 


XTEMP =1 0.0**\TEMP 

PRUB(Kl=2,0*XTEMP 


-:+~5 c:ur.J r I i-....1u~::: 

1:: ,.... , , ,, ,. C:(:, i. .. C::tJI... ( l r[ [(,C:H r:· F:U :t:-::(:1}:: I I. I ·ry CJF. [ 1-) E i·-1 E ::< 1"1C T i')Ct , CIF. F::I.JN:::: ,. 
DU 	 60 K=4,IRUN,2 


JF(K,GT.IRUNl GU TO 60 

I •••• i<....·:::· 


\TEMP=ALUG1 0 (J,OtX TCMPl 
UfJ ,--:-,"•.: ...J,.J:::::!. :1 I···· :i. 


A=ALOG 10CJ ,O t<M - ,JJ)) 

B=AI...OGJO(:l . OtCI - JJ)) 


XTCMP=XTCMP+3*A-2tB-C 
( ,:••_; CU i'· i ·r T 1'--! UF 


C!U .:?(:· ...J ..J:::: I :· i'-'i····:!. 

(, :::: ~:·:·, L.. (J C) t <> <1 ~- ():*((i ··- -..J....! ) ) 

C=A LOG 10(1,0tC2*M-JJ)) 

:::-: ·r !:': i"i r:····• >< r !": i-·iF +(:i ····c 


:.:-'0 	 CUf'lT 1 (.I I..J [ 


XTEM P= lO ,Ot*XTCMP 

PROB(K) =2 .*XTEMP 


6 :.) CCti".i ·r 11-.1 !...l :::: 
,... \ / ,..., ,···. ' ' (' 

1~" . ·:· ·: .:- C:: t\!... C:tJ J...~:~; ·rF ·r H[ f' F~ C) ·(~ r:\ f·: I i .. I ·r I F ~:) r::· C) F ;.~ :i !· ·) C:r F: ..:-:. r:..:·.. l"li.. .. l 

!... , .•. i'-IU •. UF F:i..Ji ·i~::; ,. 
F' ;: ~: U X·:-i < :1. ) :::: ( ) .:- ( ) 

Cl :::: J ·:· ~J 


:t:IC) .:.:-·•••.; ....! ...1•••• :i. :· i'-'i 




116 

10 ~ 

1 () '.'.'.i 

:. () (:, 

.L.:::. >' 

:iO C 

I :: . •.: •.::· 
!....... 


:D 1:.: f; () .. ..i .. .J :::: :L :.r I h:l..i i"-·.! 

r·· :: :: c:: ::-:·:·r ::'F' ;::: ::) ;::.: f ..•.. F:· ·::: C! .i.:: I' . .! .i i 

Tt-.! .C :::: ::~ 

i. 1: :· ( i::·i? !J Cl ·r ,. f::;E: , (i 1...r:·Ht1 ) ::-:;0 "I' U :i. F)/~ 


I N:IJ:::: () 

IF<PROBT. LE.1 -AL PH A) GO TU 105 

I i··.JLJ:::: 1 

I F ( I i'-J J:i • ;::: C.i ,. () ,. C) J·:: ,. I j\Jn .,. F U ,. l ) C·}Cl f U :i. () (::. 

J j\Jf: :::: :.:: 

c!J 11 r Ti·.l ur: 

f:;IJ ·r U :!. () H 

r:. F: o:t-:·: ·r ,,,, 1 .,. () 

J I"~ II ::I. 

C:: Ui\l fl(!UE 

r::cr t.i r:: i....' 
F (..1:o 
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