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ABSTRACT

Electromyographic (EMG) signals contain both neural
and muscle information. Consequently, EMG signals can be
modelled as the composition of two component signals, one of
these being a low frequency neural input, the other a
relative]y high frequency, constant spectrally shaped,
stationary, unitary muscle response. Utilizing this model
and homomorphic processing estimates of the two component
signals can be obtained. These estimates contain neural
and muscle information respective]y{

This thesis establishes the basis for the use of
this multiplicative model. It also outlines the applica—
tion of multiplicative homomorphic processing to EMG signals.
The results of this processing are;shown to be valid and
to contain useful information.

The thesis concludes that the model is both appro-
priate and useful. It also points out that the use of this
model and homomorphic processing allows the simultaneous
extraction of both neural and muscle information from the
EMG signal,a result which is not possible with other current-

ly used processing techniques.
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CHAPTER 1
INTRODUCTION

It has been known for many years that muscle con-
traction is initiated and controlled by neural inputs.

It has also been known that the contraction of muscle is
accompanied by substantial electrical activity. This
electrical activity can therefore be considered as an
information source of both muscle activity and neural
control. By the use of suitable electrodes and amplifi-
cation, the electrical activity of muscles can be measured.
This measured activity is called an electromyographic
(EMG) signal. EMG signals then contain information about
both the neural control and response during contraction of
the muscle from which they were recorded. The work pre-
sented in this thesis was initiated in an effort to deter-
mine a signal processing technique to extract both the
neural and muscle information present in EMG signals.

To this end the physiology and physical parameters
which are the basis of recorded EMG signals were investi-
gated and are summarized in Chapter 2. This chapter con-
cludes with a discussion of the stochastic nature of

recorded EMG signals.



Chapter 3 outlines the present uses of EMG signals
as well as existing processing techniques and models used
to analyse them. It also introduces a multiplicative model
with new conceptualizations of the two component signals,
one being a low frequency neural input, the other a rela-
tively high frequency unitary muscle response (UMR). The
fundamental assumption on which this model is based is
that, independent of the contraction level, the spectral
shape of the EMG signal recorded during constant contrac-
tions does not change. The chapter concludes with the
results of a study which investigated this assumption.

Multiplicative processes are especially suifed to
the use 6f homomorphic processing, for the determination
of their component signals. For this reason Chapter 4
summarizes the general theory of homomorphic processing
and discusses its application to multiplicative systems.
Homomorphic processing is then compared to other techniques
of processing EMG signals. The results of a comparison of
the performances of homomorphic processing and rectifica-
tion followed by low pass filtering applied to simulated
EMG signals are reported.

In an effort to substantiate the proposed model and
to establish the information content of the component sig-
nals real EMG signals were homomorphically processed. The

results are presented ih Chapter 5. EMG signals recorded



during constant muscle contractions were processed and
spectral parameters for the raw EMG data and their corres-
ponding UMRs were compared. The chapter continues with a
discussion of the stationarity of these signals and theijr
corresponding UMRs as assessed by the run test. Signals
collected during phasic muscle contractions were also pro-
cessed and the information content of their component signal
estimates is then addressed. It is shown that the extracted
neural input estimate represents the phasic control of the
muscle contraction. Further a relationship between UMR
spectral parameters and the muscle being studied is esta-
blished. Finally the stationarity of the corresponding

UMRs as determined by the run test is also assessed.

The thesis ends with a concluding chapter outlining
the suitability of the proposed model and summarizing the
significance of the results. Future research directions
for the application of the proposed model and homomorphic

processing to EMG signals are also discussed.



CHAPTER 2
THE EMG SIGNAL

2.1 Introduction

Electromyographic (EMG) signals are signals
collected by suitable electrodes, which represent the
electrical activity associated with muscle contraction.

To understand the EMG signals collected and to use them as
a source of information it is essential to have a knowledge
of the basic structure and function of nerves and muscles.
This chapter briefly summarizes the physiology of nerves
and muscles. More comprehensive treatments of these topics
can be found in standard texts such as Guyton (1977) and
Katz (1966). It then relates the physiology to the EMG
signals recorded from different electrode types and confi-
gurations. Finally it discusses the stochastic nature of

the recorded EMG signal.

2.2 Physiology of Nerve and Muscle

2.2.1 The Nerve Cell

Nerve cells or neurons are single specialized cells
which perform the function of information transmission and
processing. Processing of information is confined to the

Central Nervous System (CNS), which is made up of the brain



and the spinal cord. The transmission of information is
primarily carried out by the Peripheral Nervous System
(PNS), although some transmission obviously takes place in
the processing action of the CNS. The PNS is further
divided into two functional groups, that of afferent or
sensory fibres (neurons) and that of efferent, or motor
fibres. The sensory fibres relay the information from our
sensory organs to the CNS. The motor fibres relay to
muscles the activation intent of the CNS.

Neurons have evolved into specialized cells capable
of transmitting electrical signals which they use to commu-
nicate with each other. Anatomically, the nerve cell appears
as in Figure 2.1. As can be seen from the figure, the neuron
has a main cell body complete with nucleus, as do many other
biological cells. However, the neuron's intricate system of
dendrites and long axon projection, (up to 1 meter in length)
clearly show its structural adaptation. The axons of human
nerve cells are about 1-10 microns in diameter.

Functionally, the neuron is also quite different from
other cells. Although the membrane of the nerve cell is a
standard bilipid layer it is also capable of drastic ionic
permeability changes which allow it to transmit electrical
signals, as will be presently explained. The bilipid layer of the mem-
brane acts also as a biological capacitor, approximately 1 uF/CM2 and
is capable of withstanding extremely high electrical fields without

breakdown and thus substaining a potential across it.
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The nerve cells, due to concentration gradients of
specific ions across the membrane, primarily high relative
sodjum (Na+) concentration outside the cell and high rela-
tively potassium (K+) concentration inside the cell, do
posess a membrane potentia](VmL The value of the membrane
potential is determined by the membrane relative conducti-
vity to the specific ions present on both sides of the mem-
brane and to the electro-chemical driving force acting on
each ion species. The ions of main concern are again Na+
and K+. The equilibrium potential of Na+,ENd+and EK+,are
about +40 mV and -120 mV respectively. Subsequently the
driving force for these ions are the respective differences
between the membrane potential and the equilibrium potential
for the ion of interest. V_ - Enat OF Vo - Ep+.

m

2.2.2 The Action Potential

At rest due to a high k* conductivity (gK+)the cell
membrane potential is approximately -85 mV (inside relative
to outside). However, the Na* and k' conductivities,
Inat+>Ik+ of the membrane are sensitive to membrane voltage
changes. As the membrane is depolarized (brought toward
zero potential) the gNa+ is significantly increased, as
well the gy + is increased to a lesser degree. If the depo-
larization is sufficient for the net current to cause

further depolarization, for more Na® to move out of the



cell then K+ in, & positive feedbéck sitﬁation develops,
in which a further increase in gNa+ and gK+ results in
further depolarization. The membrane rapidly approaches
ENa+’ the equilibrium potential for Na+, at which point
Na+'s driving force goes to zero. Also as time progresses
Inats despite the membrane potential rapidly returns to its
resting state while gK+ remains high. This forces the mem-
brane potential back to rest. The rapid transmembrane
potential excursion just described is called the nerve
action potential (AP). This all or none phenomenon reaches
the same peak voltage (determined by ENa+) and has the same
time course (approximately 1 msec. dependent on nerve cell
diameter and temperature) each time a depolarization above
threshold is reached. Threshold is defined as the minimal
depolarization required to elicit an AP. The production of
an AP obviously requires energy. This energy is supplied
by the existing transmembrane concentration gradients. If
many AP's are produced without recharging the system these
chemical concentrations run down. To prevent this a complex
metabolically driven process, the sodium potassium pump
operates to maintain the concentration gradients.

Once an AP has been elicited at a point on the nerve
it will propagate in both directions along the fibre. This
propagation is brought about by the depolarization, beyond

threshold, of membrane sections, adjacent to site of the



initial AP, resulting from the local jonic current flows
associated with creating the initial AP. The propagation
velocity of the AP increases with cell radius. The approx-
imate velocity of transmission for bare neurons is in the
1-5 m/s range.

To speed up AP transmission, nature has provided
nerve cells with insulating cells, i.e. myelinating Schwah
or Glia cells. These cells wrap themselves around the axon
only exposing it to the interstitial fluid at regular 1 mm
intervals. These Nodes-of-Ranvier as they are called are
the only points new AP's can be created. This causes the
AP to be passively conducted, as through an electrical cable
from node to node. Passive conduction is much faster, subse-
quently myelinated nerves conduct AP's at higher propagation
velocities (50 m/s). The AP transmission in myelinated
nerves appears to have the AP's jumping from node to node,
thus the term saltatory conduction has been used for this
mode of transmission. Myelination allows nerves to have
high conduction velocities without becoming massively large
or expending great amounts of metabolic energy to keep the
chemical gradients intact.

Neurons communicate with each other and muscle via
synaptic connections. At a synapse, either electricaily or
chemically the information of a presynaptic A.P. is trans-

mitted by a depolarization or hyperpolarization of the post



10

synaptic membrane. Depolarizations are generally considered
as excitatory (i.e. tending to elicit an AP). Hyperpolari-
zations are generally considered as inhibitory.

The dendritic system, with its many synaptic connec-
tions to other nerve cells, is constantly integrating a
barrage of excitatory and inhibitory signals. When the exci-
tatory inputs are sufficient to excite the cell (i.e. depo-
larization past threshold) an action potential is created
at the axon hillock. The AP propagates down the axon to
synapses at other neuronal dendrites or muscle fibres thus

communicating with these structures,

2.2.3 Muscle

Muscle is a complex collection of individual muscle
fibres and connective tissue. Muscle fibres are grouped
into bundles (fasicles). The fasicles are grouped into whole
muscles by connective tissue. Muscles are connected to bone
by connective tissue called tendons. Each muscle fibre con-
sists of a chain of sacromeres, of about 10-80 microns in
diameter. Each sacromere consists of several hundred to
several thousand myofibrils. The myofibrils are the basic
contraction elements. The exact chemical and physical
mechanism of myofibril contraction is beyond the scope of
this discussion, but further description can be found 1in

Guyton (1977). The membrane of the muscle fibre like the
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neuron is excitable. The membrane capacitance of the muscle
is greater than that of the neuron at about 6 pF/cmZ. The
increase is due to the muscles excitation contraction coupl-
ing mechanism. Depolarizations beyond threshold result in
muscle action potentials (MAP's) which like AP's propagate
in both directions from the initiation point. Muscle fibres
are not myelinated and thus have conduction velocities of
about 5 m/s.

The initiation of muscle contraction is usuaily
lTinked to the MAP. The depolarization of the muscle fibre
membrane results in the release of calcium ions (Ca++) in
the fibre. This results, through an excitation contraction
coupling (ECC) mechanism, (Guyton 1977) in muscle contraction.
Although the ECC 1is an extremely complex non-linear mechanism, 1in
general, as the frequency of depolarizations increases the
amount of contraction is increased. The complexity of the
ECC, under dynamic muscle contraction makes attempts to
relate muscle electrical activity and contraction state
difficult.

Muscle has associated with it a series and parallel
mechanical compliance resulting from the connective tissue
components, between muscle and bone and around the muscle
fibre groups (fasicles). Any contraction level that is to
be measured externally, must first stretch or energize this

compliant component. This is similar to voltage readings
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across series or parallel capacitors.

2.2.4 Nerve-Muscle Interaction

Since EMG signals result from muscle activity and
muscles are activated by motor neurons of the PNS, the
motor neuron muscle interactions is of primary interest in
this discussion. The motor neuron is the sole PNS efferent
path from the CNS to the muscle. The motor neuron cell
body (anterior horn cell), located in the spinal cord, pro-
cesses via integration the activity of the synaptic connec-
tions to its dendrites. Upon suitable depolarization (past
threshold) an AP is created which propagates along the axon
and its distal branches to neuro-muscular junctions, one for
each axon branch. At the neuro-muscular Jjunction the axon
forms a synapse with the muscle fibre. This is called the
motor point. Here, via chemical transmission the post
synaptic muscle fibre membrane is depolarized past threshold
by suitable permeability changes, resulting in a muscle action
potential (MAP) being created. The created MAP then propa-
gates in both directions from the motor point resulting in
muscle fibre contraction at each point along the fibre, sub-
sequent to the MAP passing. The net effect is a smooth
muscle fibre contraction.

Chemical rather than electrical transmission is used

at the neuro-muscular junction because the nerve cannot
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supply the required current directly, to depolarize the
muscle membrane beyond threshold. This is due to the
muscle membrane increased capacitance per square area and
its increased size. The neuro-muscular junction chemical
transmitter mechanism acts as a pulse transformer whose
output provides sufficient electrical current to drive the
low impedence muscle fibre membrane.

The single motor neuron does branch as it reaches
the muscle. Therefore, a single motor axon terminates at
neuro-muscular junctions on a number of muscle fibres, one
neuro-muscular junction per fibre. This means that a single
motor neuron firing results in the essentially simultaneous
creation of a number of MAP's on involved muscle fibres and
in the 'synchronous' contraction of these muscle fibres.
This group of muscle fibres 'synchronously' contracting and
the motor neuron exciting them is called the motor unit.

The individual MAP's of the muscle fibres of the
motor unit summate to create what is called a motor unit
action potential (MUAP). A11 the muscle fibres of a given
motor unit are not actually synchronously excited because
of different distances from the motor neuron cell body to
specific fibres and due to different conduction velocities
in the distal branches of the motor axon. These effects,
however, are minimal and the motor unit fibre activity can

be considered as synchronous.



2.2.5 Muscle Contraction

The response to the single firing of a motor neuron
is a brief contraction followed by relaxation called a
muscle twitch. Twitch durations are measured as the time
for the muscle to contract and relax. Muscle fibres are
basically of two types. A muscle fibre may be a fast twitch
(or phasic muscle) with twitch times of 10-20 ms (Guyton
1977). Muscle with mostly phasic fibres are for fast res-
ponse movements, but fatigue quickly. A muscle fibre may
also be a slow twitch (or tonic muscle) with twitch times
of 80-120 ms {Guyton 1977). Muscle with mostly tonic fibres
are usually postural muscle, slowly responding, but slow to
fatigque. The muscles of man are usually of mixed fibre type
and have intermediate total muscle twitch times. A motor
unit has a common fibre type.

| It is impdrtant to differentiate between the muscle's

electrical activity and its mechanical activity. The elec-
trical impulse, (MAP) has a time duration at any one site
on the fibre, depending on the fibre diameter, in the range
of several milliseconds. Therefore, the time constants of
the electrical responses are at least an order of magnitude
less than the time constants of the possible mechanical
muscle responses. As well electrically there is no differ-

ence in fibre type responses.
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2.2.6 Control of Muscle Contraction

When a train of neuronal spikes are incident to a
muscle or motor unit and the inter spike interval is less
than the twitch duration greater muscle force than for a
single twitch will be created. If the incoming spike train
is above a critical frequency, the twitches are fused and
tetanus or maximum muscle force will be created. This
ability to produce greater force subsequent to closely
following impulses is due to muscle compliance charging and
to ECC potentiation due to increased Ca++ release.

Another method of increasing muscle tension produced
is to simultaneously or within the same twitch times, stimu-
late more motor units. This is called recruitment of addi-
tional motor units or simply recruitment. The incremental
increase in maximum force produced will depend on the
recruited unit's size, its relative synchrony with the other
active units and its impulse frequency upon activation.

Dynamic control and maintenance of different levels
of contraction is then effected by the two processes of
recruitment of new motor units and/or the altering of the
firing rates of the motor units already firing. Firing
rates range from zero to greater than 50 Hz. Henneman et
al (De Luca 1979) observed that recruitment usually starts
with the smaller units. Milner-Brown et al (De Luca 1979)

found that in some contractions recruitment order and impulse
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frequency upon activation is such that the incremental force
change AF versus the total force F is constant. That is
AF/F = K. The exact interplay of these two force variables,
firing rate and recruitment is not exactly known. It is
thought to change with different force rates of contraction,
that is different velocity, accelerations and length of
shortening muscie (De Luca 1979). However, the literature
does seem to indicate the following interplay between fir-
ing rate and recruitment for force-varying isometric con-
tractions. Recruitment plays the major role for contracion
levels up to 30% of maximum voluntary contraction (MVC).
From 30 to 75% MVC the increase of firing rate plays a
larger role in force increase, with the recruitment effect
diminishing. For contraction above 75% MVC firing rate
increase has the primary role in force increase (De Luca

1979).

2.3 Basis of Electromyographic Signal

2.3.1 Signal Source

The source of the electromyographic (EMG) signal
is the individual MAP's of the active muscle fibres. Since
all the fibres of a given unit are 'synchronously' active
the source of the EMG signal can be considered to be the
MUAP's of active motor units. Although the potentials of

the MAP's are transmembrane potentials, the currents that
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flow to create the MAP's produce perceptable electric fields
in the medium external to the muscle fibres. Suitable
electodes placed in these fields will have potentials
impressed upon them. The potential difference between elec-
trodes can then be differentially amplified to result in

the electromyographic signal. The AP produced by nerves do
not contribute significantly to the EMG signal due to the
relatively small current involved. However, with special
electrodes and recording sites very close to the nerve, elec-

troneurographic signals can also be recorded.

2.3.2 Volume Conduction

As just previously stated, the EMG signal is the
difference in the measured electric field at two electrode
sites. The electric fields are created by the currents
that flow to produce MAP's. The current involved to create
a MAP flows in a circuit composed of the muscle membrane,
the fibre internal solution, and the external medium. The
membrane and internal current are not perceptable with
standard EMG electrodes. Therefore the current of interest
is that flowing in the external medium.

The external medijum is usuaily modelled as a volume
conductor of homogeneous composition. The external medium
is not purely resistive but has time constants that are

extremely short compared to active fibre conduction veloci-
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ties. This means that phase delays due to distances to the
recording site from MAP locations are negligible and that
conduction speeds of travelling waves, are much greater in
the external medium than in active fibres.

The externally flowing current as it leaves the
muscle fibre membrane disperses throughout the volume of
the external medium. As the distance from the fibre increases
so does the current dispersion. This means that as you move
away from the fibre the current density decreases. The
electric field in a homogeneous medium is proportional to
the current density. Therefore, as the radial diétance d
from the fibre increases the electric field decreases. This
means that the voltage difference across a given electrode
pair will decrease as the distance from the active fibre to
the recording site increases. Buchthal et al (De Luca 1979)
reports that it is an approximately inversely linear (i.e.
1/d) relationship.

During muscle activity many fibres are active at any
one time. The external field at any one spot will then be
the integration of the effects of all the active fibres at
the recording site. The net external field is then depen-
dent on

i) The number of active fibres.

ii) The size of the active fibres. MAP amplitude

and hence external field effects increase with
the size of the fibre such that V = kal-7 where
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k 1is a constant and a is the fibre radius as
reported by Rosenfalck (De Luca 1979).

iii) The distances from the active fibres to the
recording site. Distances may be such that no
perceptable field effects occur at the recording
site even though a fibre is active.

iv) The amount of synchronization between active
fibre MAP's.

2.3.3 Recorded Signal Factors

The actual EMG signal recorded depends upon how the
external fields created by the integration of the active
fibre contributions, is sensed. The main factors affecting
the characteristics of the signals recorded are: distance
to recording site; size of electrodes used; spacing between
electrodes; and electrode-external medium interface transfer
function or filtering effects.

The distance to the active muscle fibres has two
main effects. As previously stated the first effect is to
decrease the amplitude of the recorded signals due to
reduced electric field strengths at the recording site. The
second effect is that of low pass filtering. The impedance
of the exferna] medium is such that high frequency signals
are more severely attenuated than low frequency signals. As
the distance from the active muscle fibres increases the
bandwidth of the low pass filter decreases (Lindstrom and

Magnusson 1977).
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The size of the recording electrodes will determine
the electrode impedance and its effective field pickup area.
Larger electrodes of similar physical composition will have
reduced impedance due to increased surface area. Due to high
electrode-external medium interface impedance, adjacent
points along the electrode essentially see different electric
field strengths, that is the electrode does not short out the
electric field created. The net field the electrode detects
is then, the spatial integration of the field adjacent to it,
over its whole surface area. This means that larger elec-
trodes record over larger areas and their net effect is to
detect the average field over their surface area. With
travelling potential waves in spéce (i.e. time varying
fields), as are created by the propagation of MAP's down active
fibres, the amount of spatial integration will affect the frequency
components of the detected signal. Spatial integration reduces the
high frequency components of travelling field waves.

With time varying electric fields, fields contain-
ing propagating wave fronts, the effect of electrode spac-
ing is that of differentiating. As the spacing decreases
the recorded signal becomes closer and closer to being
the derivative of the travelling wave. Consequently,
reduced spacings increases recdrded signal bandwidth. Gen-
erally reduced spacing causes reduced recorded signal ampli-

tude. This is because it is the potential difference between
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electrodes which-is amplified. As the electrodes are moved
closer together the potential difference between electrodes
generally reduces.
The electrode-external medium interface is very impor-

tant in determining the electrodes impedence per unit area

and subsequently its filtering effects on the recorded sig-
nal. The type of materials used for the electrode and the
electrolyte interfacing the tissue with the electrode deter-
mines the impedence per unit area of the electrode-external

medium interface.

2.3.4 Instrumentation

Since the EMG signal is of the order of, at most
several millivolts, differential amplification is necessary
to remove common mode noise such as 60 Hz power line signals.
The common mode rejection ratio should be at least 80 dB.

For EMG signal recording the differential amplifiers are A.C.
coupled. The main reasons for this are as follows:

i) No EMG signal activity at D.C. The EMG signal
is essentially zero mean (Hogan 1980).

ii) To remove instrumentation D.C. bias levels and
offsets.

iii) To remove electrode interface polarization
potentials if they exist.

The amount of amplification is determined by the recording

situation. Any signal bandpass shaping is also determined
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by the recording situation and output requirements. For
example, in surface recorded EMG from dynamic movement a
high pass filter is included to remove signal components
below 15-20 Hz. This removes motion artifact. A low pass
filter is also used to remove the signal components above
250 Hz. Experiments have shown that 1ittle signal energy
resides at these high frequencies, for this recording situ-
ation. Such band pass filtering effectively reduces the

bandwidth of recorded noise and thus reduces its power.

2.3.5 Recording Electrodes and Their Effects

The most popular EMG recording electrode types and
their effects on the signal recorded will now be addressed.
The main types of electrodes are:

i) Monopolar needle.

ii) Coaxial needle.
iii) Bipolar needle.
jv) Bipolar fine wire.

v) Bipolar surface.

Monopolar Needle Electrode

The monopolar needle electrode is .2 mm in diameter
and is insulated but for the last .5mm at its tip. The mono-
polar needle uses a surface electrode, some distance away
usually over inactive tissue, as a reference electrode and

measures all potentials relative to it. This results in
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relatively large amplitude signals. The exposed needle

area is small .3 mmz, resulting in very little spatial
averaging. Therefore, high frequency components of travell-
ing waves are recorded. The small area of the recording
surface allows for precise single motor unit measurements.

Co-axial Needle Electrode

The co-axial needle electrode 1ike the co-axial cable
is composed of an outer cylindrical sheath conductor with a
central inner conducting wire. The outer and inner conduc-
tor are insulated from each other. The co-axial needle is
.3-.7 mm in diameter with the inner conductor (electrode)
exposed only at its tip. The outer conductor (electrode)
the cannula of the needle, is exposed the length of the
needle. The inner electrode has very little surface area
and does 1ittle spatial averaging. The outer electrode
spatially averages over the length of the cannula inserted
into the tissue. If this length is substantial the outer
electrode acts 1ike a reference electrode and results,
similar to monopolar recordings are obtained (Lindstrom
1977).

Bipolar Needle Electrode

Bipolar needle electrodes have two insulated conduc-
tors permanently fixed within the cannula of a needle. The
cannula is about .7 mm in diameter. Signals are thus

recorded over small areas very close together. This elec-
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trode type perform signal differentiation with low amplitude
high frequency signals being recorded.

Bipolar Fine Wire Electrode

Like the bipolar needle electrode, fine wire elec-
trodes have two insulated wires inserted into the cannula
of a needle. The fine wires of this electrode however, are
not permanently fixed to the cannula. After inserting the
wires with the needle, the needle is withdrawn from the
tissue. The fine wires, .003" in diameter are exposed at
the ends and bent to stick to the muscle mass as the needle
is withdrawn. The surface areas of the fine wire electrodes
are small and the electrodes are close together. Although
similar to bipolar needle electrodes, they have larger
inter-electrode spacing.and recording areas, making them
less selective and performing less signal differentiation.

Bipolar Surface Electrodes

Bipolar surface electrodes as their name suggests
are applied to the skin surface, dry or with a conductive
gel, and collect signals in a differential mode from differ-
ent muscle areas. The area of surface electrodes ranges
from 7 - 110 mm2. The size of the electrodes determines
the amount of spatial averaging done and thus affects the
bandwidth of the recorded signals. Spacing of electrodes
determines the amount of differentiating of the detected

fields, the volume of muscle mass recorded from and the bandwidth
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of the recorded signal. Since distances between the surface
electrodes and the muscle generator are relatively large,
tissue filtering effects are significant, and affect the
bandwidths of the signals recorded.

In summary, surface electrodes record far away from
the muscle source, perform substantial amounts of spatial
averaging produce signals of lower bandwidths, and record
from large muscle volumes. In contrast, needle electrodes
are close to the signal generators, perform little spatial
averaging, produce signals of higher bandwidth, and record

from small muscle volumes.

2.4 Stochastic Nature of Signals Recorded

EMG signals recorded during muscle activity, are
stochastic in nature. The signals are stochastic because
they are the result or the sensing of the activity of a
large number of muscie fibres or motor units, firing inde-
pendently.

The recording of a single MUAP is also a stochastic
event. The rate of firing of motor neurons is a random
variable and thus the rate of MUAP creation is random in
nature (Clamann, 1969). Also, any change in the relative positions
of the recording electrodes and source will change both the
shape and size of the MUAP measured, in a random way.

When MUAP's from more than one motor unit are
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detected, the signal becomes more stochastic in nature.
The individual motor units fire not only at a random rate
but they fire independently of other motor wunits (Clamann,
1969). This results in MUAP's from different motor units arriving
or contributing at the recording site in an asynchronous
fashion. Random distances of the fibres in a motor unit
to the recording site leads to random MUAP shapes being
recorded. Also, random distances from the motor unit to
the recording site result in random MUAP sizes. These
combined with the temporal asynchrony of the motor unit
discharges leads to the recording of completely stochastic
EMG signals. |

The stochastic nature of the EMG signal as explained
above is due to the physiology and anatomy of nerve and
‘muscle and the way the signals are recorded. It is not
due to instrumentation noise. Although instrumentation
does introduce noise whichlis broadband and covers the
signal bandwidth, its power is Tow and insignificant com-
pared to the EMG signals collected and good signal to noise
ratios are obtained. Motion artifact and other biological
signals (e.g. electrocardiogram) may have significant power
in the EMG bandwidth and must be accounted for by other
methods.

For moderate muscle activity, the EMG signal is the

integrated result of many independent simultaneously occurr-
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ing events. As such, it can be assumed to have a Gaussian
probability density function by the Central Limit Theorem
- (Hogan 1980a; Parker 1977). The EMG signal is zero mean both by
instrumentation constraints being A.C. coupled, and by
experimental findings. (Hogan 1980a; Parker 1977). The variance
of the recorded EMG signal is related to the muscle's level
of activation (Hogan 1980a; Parker 1977). The EMG signal does not
have a white spectrum and successive samples of EMG signal
are correlated. A Gaussian distribution is completely
described by its mean and varijance. Since the mean is zero,
the EMG signal is completely described by knowing its
variance and its intersample correlation.

The autocorrelation function of sampled EMG signals
vand consequently the power spectral density has been found
to be of constant shape for a given subject,.musc1e and
recording situation for both needle (Parker 1977) and surface
(Hogan 1980a) recordings for contraction levels above 5% of
maximum voluntary contraction (MVC). Constant shape means
no statistically significant change when the variance of
the autocorfe]ation or power spectral density estimates and
the variance of the EMG process itself are considered. The
large numbers of asynchronously active musclte fibres and
motor units contributing to the EMG signal result in an
electric field which changes significantly in amplitude

statistics only, as the level of activation changes.
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Frequency changes are expected within subjects for differ-
ent muscles; when recording from different subjects; with
different clinical states of the neuro-muscular system; and

for different recording situations.



CHAPTER 3
MULTIPLICATIVE MODEL FOR EMG SIGNALS

3.1 Introduction

The electromyographic (EMG) signal contains much
information about the neuro-muscular system from which it
was recorded. EMG signals are used for a wide variety of
clinical, research and rehabilitative purposes. The type
and amount of information extracted from the EMG is depen-
dent upon the processing techniques used to assess the
recorded signals. This chapter summarizes briefly the major
uses of EMG signals. It then discusses existing processing
techniques and conceptual models of the recorded EMG signals,
used to maximize the amount of information obtained. An
existing two component multiplicative model is discussed and
an alternate multiplicative model with new components is pro-
posed. One of these new components being related to neural
input while the other is related to the unitary activity of
the muscle(s) being recorded from. The chapter concludes
with the results and conclusions of a study performed to
assess the constancy, of the shape of the frequency spectra
of EMG signals recorded with surface electrodes during iso-
metric-isotonic muscle contractions at selected percentages
of maximum force. This study confirmed an essential assump-
tion of the multiplicative model.

29



3.2 Uses of EMG

The EMG signal, as an information source of muscle
activity, is used for different reasons by different users.
In myoelectrics, the signal is used to try to extract force
information. Changes in the EMG are related to changes in
the level of force being produced by the muscle. Kinesiolo-
gists and Human Locomotion (Gait) researchers use the EMG to
try to determine phasic activity patterns of the muscles and
how they relate to the neural control of body movements.

They use the EMG as an indicator of relative musclie activity
and neural input. Clinical Electromyographers are interested
in the specifics of the EMG signals recorded. The character-
istics of the signals recorded, both amplitude and frequency,
are used along with other clinical tests, in assessing the
clinical state of the neuro-muscular system. Clinical elec-
tromyographers are interested in assessing the source of
clinical problems, whether these are nerve or muscle related.
Some neural problems are related to partial or complete
conductioﬁ block of action potentials or demyelination of

the motor neuron axons. Muscle problems are related to the
number of motor units, the size of the motor units, the dis-
tribution of the motor units within the muscle and firing
rates of the motor units for the muscle tested, compared to
clinical normal values. These parameters canyindicate

muscle denervation whether chronic or acute, the amount of

30



31

1atera1vnerve sprouting that has taken place and whether
muscle wasting has occurred.

Clinical electromyographers quite commonly use
needle electrodes to extract their information from small
muscle volumes. This requires that many areas of the muscle
must be sampled and averaged parameters considered. EMG for
myoelectric controllers and kinesiologic EMG are usually
collected with surface electrodes to obtain a representative

signal of the whole muscle.

3.3 Existing Processing Techniques and Models

Processing or quantification of EMG signals for the
purpose of information extraction has been investigated by
many researchers. In clinical electromyography the attempt
hés been to extract signal parameters which are related to
the clinical state of the neuro-muscular system. Buchthal
and his co-worker, (1941, 1952, 1953a, 1953b, 1954a, 1954b,
1955) have proposed methods of qualifying the recorded motor
~unit action potentials (MUAPs) and have examined physical
and physiological factors responsible for the changes of the
parameters of the MUAPs. Buchthal's parameters, while exact,
are laborious to obtain and have been used only for special
clinical diagnoses. Willison (1963, 1964) suggested quanti-
fing the EMG from moderate contractions, producing full inter-

ference patterns, by counting the frequency of the change of
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direction of the signal (number of turns) and the average

peak to peak amplitude. The process was automated by Fitch
(1967) and shows some clinical promise. A different approach
was taken by Kopec et al (1973). They have developed a
specialized digital instrument which quantifies recorded
signals by estimating the duration of the MUAPs and the number
of phases in the MUAP per unit time. The technique uses
minimal contraction levels and requires multiple sampling
sites, but yet is not time exhaustive and produces immediate
results for interpretation. The quantification of EMG signals
by frequency spectrum parameters has been studied by Richardson
(1951), Walton (1952) and more recently Larsson (1968, 1975)
and Lindstrom (1977). As suggested by these researchers

the frequency spectrum holds much information about the EMG
signal and the underlying neuro-muscular state. As frequency
spectrum estimation techniques improve and obtained spectra
are better understood, frequency analysis of EMG signals

will become more useful in clinical electromyography.

Much work has been done to identify the best method
of extracting the level of force production from the EMG
signal, e.g. Evans et al (1980); Hogan (1980a, 1980b);
Kreifeldt (1974). In an effort to determine an optimum
processor for extracting muscle force from the EMG, they
have modelled the EMG signal as an amplitude modulation

system. This model was based on the observation, that the
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shape of the frequency spectra of the recorded signa]s.
varied 1ittle with level of muscle contraction. They suggest
the output EMG is the result of the multiplication of two
signals. One signal, the modulating signal, being the force
signal while the other is white noise passed through a

linear system. The transfer function of the linear system
represents the tissue and electrode filtering effects.

The resulting processors all used changes in signal
amplitude statistics to represent the changes in the force
levels. The processors most commonly used are all based on
some form of amplitude demodulation. Amplitude demodulation
is a process of extracting the modu]afing signal (low pass
signal) from the composite signal. Demodulation is effected
by processing the composite signal with a non-linear function
énd low pass filtering (LPF) the output. The output of the
low pass filter, following relinearization, is the estimate
of the modulating signal. Hogan suggested using the square
of the signal followed by LPF and square root transformation
(relTinearization) as the optimum choice for force Tevel
extraction. However, he also reported identical performance
for a processor which uses the full wave rectified signal
followed by LPF as the force estimate. Kreifeldt tested
processing with higher and lower powers of the signal such
as 1/2, 1/4,2nd and 4th powers prior to LPF without any

significant improvements. Relinearization, which is the
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multiplying of the non-linear function output after LPF by
the inverse of the non-linear function was tested by
Kriefeldt and Hogan. They both report that if the reli-
nearization process overcompensates, that is multiplies by
a higher order inverse function, smooth force estimates are
obtained. This technique creates artificially smooth force
records but reduces the system sensitivity to force changes.

The results of this past research indicate:

i) spectral shape changes with contraction Tlevel are
insignificant,

ii) amplitude statistics, particularly changes in variance,
are sensitive to changing activation levels,

iii) the multiplicative (amplitude modulation) model
for the EMG signal is a reasonable one.

3.4 New Model

As reported by Parker et al (1977) and Hogan (1980a,
b), the autocorrelation function of EMG signals is of con-
stant shape for contractions above 5% MVC. This means that
the frequency spectrum of these signals is of constant shape
over this contraction range. This results from a "constant"
interference pattern at the recording electrode sites.
Only the amplitude of the interference pattern changes with
muscle activation level. Thus, it is proposed that the
output EMG signal is the result of a muscle activation or
neural input signal modulating (mu]tip]ying) a unitary
muscle response (UMR) or interference pattern. The pro-

posed model is further described in Figure 3.1 and can be
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expressed mathematically as follows:
(t) = N(t)-I(t) (3.1)
where E(t) 1is the recorded EMG signal

N(t) 1is the neural input

(t) 1is the unitary muscle response

The neural input or muscle activation level, N(t),
is by physical definition always greater than zero and less
than some maximum tetanic level. The unitary muscle response,
I(t), is a Gaussian distributed zero mean stochastic process
based on muscle physiology, structure and the recording
situation, as discussed in Section 2.5. It has a variance
dependent on the recording situation and the muscle being
studied.

The neural input is a low frequency signal since it
relates to the muscle state of activation which as described
in Section 2.2.2 is slowly changing. The unitary muscle
response is a relatively high frequency signal. It is
related to the high frequency changes in the electric field
in the external medium of the active muscle fibres. These
rapid changes occur as active motor units randomly fire and
are dependent on the amount of spatial-temporal averaging
of motor unit activity which is occurring to create the
electric field in the external medium.  These frequency com-
ponents of I(t) may change from muscle to muscle and from

subject to subject. They may also change with different
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clinical states of the muscle. Changes in this signal's
frequency spectrum might be used as an indicator of the
number of active motor units and their size. The frequency
content of this signal component can also be related to the
type of electrodes used and their spacing,that is to the
amount of spatial averaging and/or differentiation being
performed by the recording electrodes.

The model differs from those previously proposed
in that it does not attempt to relate the level of muscle
activity, as determined by its electrical activity, to the
force being produced by the musclie. The relationship between
muscle electrical activity and its level of force for iso-
metric contractions has been proposed to be both linear
Milner-Brown and Stein (1975) and non-linear Vredenbregt
and Rau (1973). This relationship, for dynamic, contrac-
tions, is certainly non-linear due to the complexities of
the excitation contraction coupling mechanism, and the com-
pliance properties of the muscle. Therefore, any estimates of
muscle force derived from muscle EMG activity recorded from
dynamic contractions are destined to contain errors. Instead,
the model suggests this low frequency component of the composite
signal is related to the net neural input or is representa-
tive of the effective control. The model is thus applicable
for analyzing EMG signals recorded during dynamic contractions

such as gait. The model proposes that the high frequency
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signal component, I(t), also contains useful information
which was not previously considered.

Stationarity is a property of stochastic systems
and signals that requires that their statistics do not change
over time. Stationarity in the wide sense states that the
mean‘and autocorrelation function of a signal do not change
with time (Papoulis, 1965). Strictly speaking, as the
muscle fatigues, or its physiologic state changes the
EMG signal will not be stationary even for isometric-iso-
tonic (constant) contractions. However, over periods of
time where the muscle is in a constant physiological state,
the EMG signal for constant contractions will at Teast be
stationary in the wide sense. It is assumed that the unitary
muscle response will satisfy the same stationarity conditions
&s the EMG signals recorded from constant contractions.

This assumption will be tested Tater in this manuscript.

3.4 EMG _Power Spectra of Constant Contractions

The assumption, that the frequency spectra of surface
recorded EMG signals are of constant shape, independent of
the contraction level was tested. EMG signals were recorded
for isometric contractions at four different contraction
levels for three subjects,sampled and stored on a digital
computer. A Fortran IV program, FREQP5, was written which

constructed estimates of the power spectrum of the sampled
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data, based on Fast Fourier Transforms (FFT) calculated for
overlapping windows of the data. THe final spectrum was an
average over the windows taken. The program allows for a
variable number of overlapping data segments (windows) to
be chosen and variable Tength FFTs to be calculated. A
more complete program description and Fortran listing are
included in Appendix I.

FREQPS5 also calculated the median frequency as:

N/2+1
) P AF(i-1)af
FM - = =1
N/2+1
E Af
i=1

the statistical band width as:

N/2+1 2
[z p; Af]
S = i=1
N/2+1 5
z p. Af
i=1 ]
where:
Af = frequency resolution
Py = ith spectral coefficient
N = number of data samples in the record

and the percentage of total power in three selectable fre-
~quency bands.
These parameters were used to determine the homogeneity of

_ the spectral shapes at different contraction levels.
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The EMG signals were sampled at a 500 Hz sampling
rate and collected in 2000 sample data records. This
allowed 4 seconds of the EMG signal to be sampled and col-
lected at a time. FREQP5 was used to read the collected
records and process the data as follows. The data records
were divided into three fifty percent overlapping 1000 point
segments. The overlapping segments were weighted by a
Hanning window to reduce frequency dispersion as per Brigham
(1974) and Bergland (1969). Each segment was augmented with
24 zeros and 1024 point FFTs, with .49 Hz frequency resolu-
tion, were calculated. The three spectra were averaged to
achieve the final spectral estimate from which the median
frequency, statistical band width and the percent power in
prescribed frequency bands (0-50 Hz, 50-125 Hz and 125-250
Hz) were calculated. Results can be found in Table 3-1.

As can be seen from Table 3-1 there is a relatively
small change in FM and SB with change in contraction Tevel
within subjects. Also note that there is more variation in
FM and SB from subject to subject than from contraction level
to contraction level within subjects. The range of variation
observed in FM and SB agree with those reported by Hogan,
(1980b) and Petrofsky (1980) respectively. The percent
Apower in the selected frequency bands show similar variation

patterns as those just described for FM and SB. The center

frequency band 50-125 Hz was especially stable, even from
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subject to subject. It is important to note that the changes
from contraction level to contraction level within a subject,
that did occur in the measured frequency spec@rum parameters
appeared to happen at random. These changes were probably
due to the stochastic nature of the signals being recorded
and showed no deterministic trend with contraction Tevel.
From these results it can be concluded that the frequency
spectrum of the EMG signals recorded had a homogeneous

shape independent of force level. The increasing signal
power measured with increasing force level indicates that

the EMG signal amplitude increases with force Tevel. These
two conclusions support the multiplicative model proposed

for surface recorded EMG signals.



TABLE 3-1
SUBJECT | CONTRACTION| FM SB % POWER IN FREQ. BANDS PWR
LEVEL % MVC 0-50 |{50-100{ 125-250 W2
Hz Hz Hz Hz Hz
100 75.1{ 90.6{ 32.9 | 55.5 12.6 .128E-00
Fs 75 82.2| 85.0] 26.3 | 60.0 13.7 .T15E-00
50 81.1| 85.4{ 26.9 | 59.7 13.4 L447E-0A
25 75.11 84.21 31.0 | 58.1 10.9 T72E-02 ¢
100 |90.5[101.6] 31.2 | 45.5 23.3 .604E-0]7 |
KK 75 89.9|116.6| 29.6 | 47.0 - 23.4 229E-G 1|
50 88.51119.5! 30.3 | 46.83 272.9 .919E-02
25 80.3(105.7( 35.8 | 44.5 19.7 .313E-02
100 81.5} 98.5| 32.7 | 49.8 17.5 .360E-01
K 75 79.3| 89.8| 31.6 | 51.0 17.4 .138E-01
50 76.3] 88.4| 35.0 | 49.4 15.6 ,344E-02
25 77.0) 87.81 34.2 | 50.0 15.8 .934€-03

SPECTRAL ANALYSIS OF EMG SIGNALS RECORDED FROM
DURING ISOMETRIC CONTRACTIONS WITH THE KNEE AT

120°.

RECTUS FEMORIS
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CHAPTER 4
HOMOMORPHIC PROCESSING OF SURFACE RECORDED EMG SIGNALS

4.1 Introduction

The multiplicative model just proposed for electro-
myographic (EMG) signals is essentially a non-linear model.
As such, it does not lend itself to the direct app]icétion
of lTinear filtering techniques for component signal esti-
mation or extraction. Therefore non-linear techniques must
be utilized. One such technique is homohorphic signal
processing. This chapter discusses the generalized theory
of homomorphic processing, multiplicative homomorphic
processing and homomorphic processing of surface recorded
EMG signals. The chapter concludes with a comparison of
homomorphic processing to other techniques, complete with

theoretical discussions and simulated tests.

4.2 Homomorphic Processing

The following discussion on homomorphic processing
is essentially based on Chapter 10, Homomorphic Signal

Processing, of Oppenheim and Schafer's book, Digital Signal

Processing (1975). An attempt will be made here to summa-

rize the important points involved in homomorphic process-
ing as outlined in that chapter. The reader is invited to
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refer to the above mentioned book for a more detailed pre-
sentation of the material and Tlistings of additional refer-
ence material.

Homomorphic processing is a technique used to analyze
non-linear systems based on the use of transformations. The
transformations convert the non-linear systém such that in
the transformed space, the system acts as a generally linear
system. This 1is to say that in the transformation space,‘the
theory of generalized superposition holds. The theory of
generalized superposition can be stated as follows for linear
systems:A

TIxy(n)+x,(n)] = Tlxq(n)] + Tlx,(n)]
and

T[Cx](n)] = CT[x](n)]
where T is the system transformation and x](n) and x2(n) are
any two system inputs. C is any scalar.

Generalizing this, let & symbolize a rule for combin-
ing inputs with each other, and ~ a rule for combining inputs
with scalars. Similarly, let 7 be a rule for combining
system outputs with each other and s be a rule for joining
system outputs with scalars. With H representing the system
transformation generalized superposition can be stated as:

Hxq(n) Ax,(n)] = HIxq(n)Jz HIx,(n)]
and

H[C ~ x](n)] = C s H[x](n)]
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Linear systems are special cases of the above with A and
being addition and s and ~ being multiplication.

For the theory of linear vector spaces to be used,
the input and output operations must be able to satisfy
the algebraic rules of vector addition and scalar multipli-
cation. Therefore the input and output operations p and ¢
must be both commutative and associative. That is,

x](n) A xz(n) = x2(n) A x1(n)

yi(n) ¢ yy(n) = y,(n) ¢ yy(n)
and

x1(n)A [xz(n) A x3(n)] = [x](n) A xz(n)]'A x3(n)

yi(n) 2 Ly,(n) ¢ ys(n)] = [y;(n) ¢ y,(n)] 2 ys(n)

Other such rules must also be satisfied if a suitable vector
space and transformation are to be defined.

If the system inputs can be represented in a linear
vector space where A and ~ correspond to vector addition
and scalar multiplication and the system outputs can be
represented in a linear vector space with  and s corres-
ponding to vector addition and scalar multiplication, then
the system can be represented in canonic form as shown in
Figure 4-1. In this figure DA has the property that:

0,[xq(n) 4 x,(n)] = 0, [x;(n)] + 0, [x,(n)] = x{(n)+x,(n)

DA[C N x1(n)] = ¢ DA[x1(n)] = c Q](n)
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D x(n) Linear &(n) 0 f y(n)

A System r

Canonic Representation of Homomorphic Systems

Figure 4-1

DA satisfies the theory of aeneralized superposition with

an input operation of A and an output operation of add-
ition. DA transforms the two signals combined by the rule

A to a conventional linear space where the signals DA(x](n))'
and DA(xz(n)) are combined by addition. The system L is a

standard Tinear system such that:
L[xy(n) + %,(n)] = LIx;(n)] + LIx,(n)T = y;(n) + y,(n)
Llexq(n)T = cLlx{(n)] = cyq(n)

The system D;] transforms from the additive domain to the ¢

domain so:

C D (5,1 = 07 I 0 T [y, ()] = v gy, (n)

Ly ()1 = cs07 5] = ¢ 5 yp(n)

DA and Dc are fixed by their operations A, ~ and ¢, s respec-

tively and are characteristic of their class of systems.DA

D

D

and D§ are therefore called characteristic systems.
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AT11 homomorphic systems with the same input and out-
put operations (i.e. DA = DC) differ only in their Tlinear
part. This is because DA and Dc are fixed by the input and
output operations. Therefore, once the characteristic
system for the class has been determined (i.e. DA or DC) the
remaining system determination becomes simply a linear
filtering problem.

Example: If x](n) is needed from the composite
signal

x(n) = xq(n) & x,(n)

The following can be considered:

D,[x(n)] = D,[x4(n) A x,(n)] =D,[x;(n)]+ D [x,(n)] = Xx;(n) + x5(n)

we now choose the linear system whose output is

LLX;(n) + X,(n)] = X;(n) = D,[x;(n)] = y(n)

Then with D

]
o
-
o
Y )
]
Lws )

g A

y(n) = 07 [5(m T = 07100, [xq(m) 1] = xq(n)
To achieve perfect separation of x](n) and x2(n) we must be
able to perfectly separate ii(n) and iz(n) by linear filter-
ing. How well this separation can be achieved depends on
the A operation and the properties of x](n) and xz(n).

In practice, homomorphic systems usually have equal
input and output operations. These operations are usually

multiplication or convolution.
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4.3 Multiplicative Homomorphic Processing

The class of homomorphic systems that satisfy the
generalized superposition rules in which the operation for
joining inputs, A, is multiplication and the operation for
joining inputs with scalars, ~, is exponentiation, has

signals which can be expressed as

X(n) = [X;(n)1% ¢ [X,(n)7° (4-1)
The characteristic system for multiplication must have the
property that
D, [LX{(m)I% o [X,(n)1%] = a0, IX{(n)] + gD, [Xy(n)]

A transform or system which formally has these properties is
the logarithm function. For Equation (4-1)
Tog[X(n)] = o Tog{X;(n)] + 8 ToglX,(n)]

where X](n) and Xz(n) >0 for all n

X(n) may however not always be greater than zero.
This forces the utilization of complex signal representation.
In such cases, complex logarithms must be used. This leads
to the general canonic form of homomorphic systems with
multiplication as the input and output operation shown 1in
Figure 4-2. 1In this figure X(n), X(n), Y(n) and Y(n) are
in general complex.

When using multiplicative homomorphic processing to

separate input signal components of composite input signals

a suitable choice for the linear system must be made. The
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Canonic Representation of Homomorphic System With Multipli-
cation as the Input and Output Operations

Figure 4-2

extent to which XT(") and X2(n) can be separated from the
composite input signal X(n) = X](n) . Xz(n) depends on the
amount of spectral overlap of i](n) and iz(n) the charac-
teristic system's (i.e. logarithmic transform's) outputs.

If the spectral overlap of these signals is not significant,

the signals can be separated with minimum error.

4.4 Homomorphic Processing of Surface Recorded EMG Signals

As postulated in Section 3.4, for moderate to maximum
muscle contraction levels, surface recorded EMG signals can
be modelled as a multiplicative process. This is due to the
consistent shape of the frequency spectrum as shown in Sec-
tion 3.5. The sampled EMG signals can then be mathemati-

cally expressed as:
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where E(n) 1is the recorded EMG signal,

N(n) 1is the modulating neural signal,

I(n) s the unitary muscle response,
and n is the sample number.
Note: Amplifier gain and electrical noise are not included
in the model. The gain is omitted since it is an arbitrary
scalar and the noise is omitted because under most recording
conditions, it is small compared to the EMG signal be%ng
recorded.

It has been shown experimentally that EMG signals re-
ﬁorded by suitable surface electrodes, suitably spaced, during
isometric-isotonic (constant) muscle contractions are Timited
to a bandwidth of 10 to 250 Hz (Shein, 1980). This bandwidth,
however, is determined by the type of electrodes used, their
Eonfiguration, and the filters employed to remove noise as
stated in Chapter 2. Since constant muscle contractions can
be represented by I(n) multiplied by a constant neural input
a similar bandwidth for I(n) can be assumed.

N(n) which represents the neural intent (control)
of the contraction level is 1imited in its frequency compo-
nent make up by the contraction time constants of the
muscle. For this reason, N(n) has little signal power
above 10 Hz. N(n) is a positive only signal, since it repre-
sents neural input, which varies from minimal to maximal,

but is always positive. The component signals I(n) and
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N(n) as explained above occupy separate frequency bands.
Therefore, they can be individually estimated from the
composite signal, the recorded EMG, by homomorphic process-
ing.

The model is transformed from the multiplicative
domain into the additive domain by taking the complex loga-
rithm of E(n). The complex logarithm is defined as:

Tog[Xx(n)] = Tog[|{X(n)|] + J arg[X(n)]
where X(n) is some complex number
The complex logarithm of E(n) then becomes

Tog[E(n)] = Tog[|E(n)|] + J arglE(n)]
where |E(n)| = |[N(n) - I(N)]

General superposition as outlined in Section 4.1 holds since

N(n) is always positive and real.

that is
[E(n)| = N(n) - [I(n)|
and arg[E(n)] = arg[N(n)] + arg[I(n)]
= arg[I(n)]

since arg[N(n)] = 0.
This results in

1og[E(n)] = Tog[N(n)] + Tog[|I(n)|] + J arg(I(n}]  (4-2)
Since I(n) is either a positive or negative real number.

arg[I(n)] 0 if I(n), that is E(n) is positive

r if I(n), that is E(n) is negative.

Separation of E(n) into its component signals N(n) and I(n)



52

is now the Tinear filtering problem of separating log[E(n) ]
into appropriate component signals. Assuming the logarithm
transformation has not significantly altered the component

signals frequency bands, Equation 4-2 can be separated into:

log [N(n)] and log [If(n)ll + 3§ arg [I(n)]
by Tow pass filtering log [E(n)] with the appropriate cut-off
frequency.

The ~ notation is used, which represents estimate,
because the logarithm transformation, mainly the absolute
value operation on E(n), causes the spectra of log [N(n)] and
log [|I(n)|] to overlap. The overlap is not significant
however and estimates 1log [N(n)] and log [lf(n)|] with small
errors can be obtained. The imaginary part of log [E(n)],
namely j arglI(n)], is included with log []|I(n)]|] upon filter-
ing. This is because arg [N(n)] = 0 as stated above and the
imaginary part of log [E(n)] is entirely due to I(n).

The component signals log [N(n)] and Tog [|I(n)]|]+j arg (I(n)]
are transformed from the additive domain back into the multi-
plicative domain by complex exponentiation;

This results in

N(n)

exp(log [N(n)1) = N(n) (4-3)

exp(log [|I(n)|]1 + j arg [I(n)]) (4-1)
I1(n)| . exp(j arg[I(n)1)
" Since arg [I(n)]

f(n)

0 if E(n) is positive

m if E(n) is negative
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Equation 4-4 becomes

f(n) = +]f(n)[ if E(n) is positive
= -]f(n)] if E(n) 1s negative
or
I(n) = |L(n)| « sign [E(n)]

where sign [E(n)]is the algebraic sign of E(n).
The above result allows the total homomorphic processing to

be done using real arithmetic as shown in Figure 4-3.

4.5 Comparison of Homomorphic¢ Processing to Other

Techniques

4,5.1 Theoretical Considerations

Homomorphic processors are similar to other EMG pro-
cessors, mean rectified EMG (MRE), or root mean squared (RMS)
processors, in that they process the composite recorded EMG
signal in a non-linear fashion. This non-linear processing
followed by appropriate low pass filtering is similar to
envelope demodulation techniques, used with amplitude modu-
lated (AM) radio waves.

The multiplication of two signals in the time domain
or amplitude modulation results in the convolution of the
frequency spectra of the component signals. When the compo-
nent signals do not overlap in the frequency domain, the
lower frequency signal, the modulating signal, is essentially

shifted up into the frequency range of the modulated or
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carrier signal. With AM radio waves the carrier is a single
frequency and is represented in the frequency domain as an
impulse at the carrier frequency and the modulating signal
is a band of low frequency components. Thus multiplication
in the time domain results in the convolution in the fre-
quency domain of the carrier impulse with the low pass modu-
lating signal. The resultant spectrum is that of the low
pass signal, unchanged in shape but relocated or shifted in
frequency to appear on either side of fhe carrier impulse.
(See Figure 4-4.) The situation when conceptualizing the
EMG mechanism as a multiplicative process is fundamentalily
the same. However, the carrier is now I(n) a high pass
random signal composed of a band of high frequencies which
are modulated by a low pass random signal N(n) composed of

a band of low frequencies. The resultant convolved frequency
spectrum is essentially Tocated where the spectrum of I(n)
is, but it is not simply the spectrum of N(n) shifted in
frequency. The resultant spectral shape depends on the
spectral shapes of N(n) and I(n). If N(n) is an impulse

at zero frequency, which is approximately what is expected
for constant muscle contractions, the convolved spectrum
will be identical in shape to I(n) but of greater power.
Figure 4-5 depicts the component one-sided spectra and the
resultant convolved spectra, for EMG signals, surface

recorded during normal human gait from the quadriceps
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muscles. The changed shape of the convolved spectra,
(changed from the spectral shape of N(n)) makes perfect
determination of the component signals from the composite,
impossible.

Envelope demodulation of AM radio waves is effected
by passing the composite signal through a non-linear device
and then an appropriate low pass filter to extract the
desired modulating signal. The carrier is known and there-
fore extraction of it adds no information. For signals
created using single frequency component carriers the non-
linear processing shifts the convolved spectra both up in
frequency and back to the frequency origin, without a change
in shape. This results in the modulating signal, times a
scalar, existing in its original frequency band. The modu-
lating signal times the above described scalar can then be
extracted from the non-linear processed original composite
signal by appropriate low pass filtering and subsequent
relinearization. These events for square transformation
are depicted in Figure 4-4¢c. Therefore, with AM radio waves
or multiplication with a single frequency carrijer, demodu-
lation is only Timited by the ambient noise levels and the
low pass filter characteristics.

When a composite signal is created with a carrier
consisting of a band of frequencies such as with I{(n) of the

EMG process, non-linear processing still results in shifting
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of a component spectrum to the frequency origin. However
the spectral shape of the shifted spectrum is not that of
the modulating signal, but it is a spectral shape which has
been distorted by the original convolutjon, as just dis-
cussed, as well as the subsequent non-linear processing.
This distortion of the shifted spectrum is the source of
errors when extraction of the modulating signal is attempted
by Tow pass filtering and appropriate relinearization.
Figure 4-6 shows the resulting problems when a carrier of
two frequency components is modulated by a low pass signal
and subsequently squared. As can be seen in Figure 4.6(b)
the convolved spectrumis distorted. ‘The further distortion
resulting from non-linear processing can be seen in Figure
4.6(c). Subsequent low pass filtering and square root trans-
formation will not extract the desired signal A(f) but the
estimate A(f) contaminated by noise terms centred at wa where

Aw = |w - W Thus modulating signals, such as N(n),

Cq czl'
when convolved with carriers composed of frequency bands,
such as I(n) will not be able to be uniquely retrieved due
to the spectral distortion resulting from the convolution
and subsequent envelope detection methods. The signal to
noise response of the demodulation process will then depend
on the bandwidth of the low pass filter used to extract the

desired modulating signal as well as the amount of spectral

distortion which has occurred. This spectral distortion
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which occurs with EMG signals explains the poor signal to
noise ratio's reported in the literature for force extrac-
tion as compared to signal to noise ratio's for conventional
AM radio waves. A more rigorous analysis of the expected
noise is beyond the scope of this thesis. Homomorphic pro-
cessing is not free of these spectral distortions and as
such does not produce significantly better results, than
other demodulation techniques. Homomorphic processing does
however, allow the carrier I{(n) to be estimated.

Homomorphic processing of EMG signals, like the MRE
demodulation technique, involves rectification and subsequent
low pass filtering. However, the transformation of the data
into the logarithmic domain before linear filtering allows
both the modulating signal and the carrier to be extracted.
The frequency spectra of the logarithms of the modulating
signal, (N(n)), and the absolute value of the carrier, (I(n)),
do overlap. This is due mainly to the spectral spreading
effect of rectifying the carrier, (I(n)), but it is also due
to the spectral spreading effect of the logarithmic trans-
formation. This spectral overlap of the two component sig-
nals determines the amount of error to be expected in ﬁ(n)

and I(n) defined in Equation 4.3 and 4.4.

4,5.2 Simulation Tests

It was decided to investigate the extent of this
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spectral overlap and to compare homomorphic signal processing
with the more common technique of MRE for modulating signal
N(n) extraction. To accomplish this two Fortran IV programs
HOMTST and RECTST were written. The programs simulate EMG
signals collected from phasic activities. Each program
reads a file containing raw EMG signals collected during
controlled constant contractions and multiplies this signal
by a simulated modulating signal. The modulating signal
chosen is a sinusoid of selectable frequency which is off-
set by a D.C. bias to have values from zero to two. Such
a modulating signal of 1 to 2 Hz frequency is quite similar
to the phasic neural patterns seen in human gait for the
quadricep muscles. The composite signal is then processed,
homomorphically in HOMTST, and by rectification and low
pass filtering (MRE) in RECTST, to extract the modulating
signal. The extracted signals are multiplied by a constant
such that they have mean values equal to those of the corres-
ponding input modulating signals. The root mean square
difference or root mean square error (RMSE) between the
input and extracted signals is then calculated. The ratio
of root mean square (RMS) of the input signal to RMSE is
defined as the signal to noise ratio (SNR).

The cut-off frequency of the Tow pass filters (FC)
was varied from 3 to 10 Hz for various modulating signal

frequencies from 1 to 5 Hz. Figures 4.7 and 4.8 show typical
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results obtained for homomorphic and MRE processing respec-
tively. A summary of the results is shown in Table 4-1.

A complete 1isting of HOMTST and RECTST can be found in
Appendix II.

HOMOMORPHIC SNR MRE SNR
CUT-OFF
FREQUENCY 3 5 6 8 10 3 5 6 8 10
Hz
MODULATING
FREQUENCY
Hz
1.0 6.4 5.1- 4.4 3.4 2.9 5.1 4.3 3.9 3.4 3.0
1.5 4.3 3.9 3.7 3.3 2.9 4,3 3.7 3.5 3.3 3.0
3.0 4.0 3.9 3.8 3.2 2.8 3.9 4.4 4,1 3.5 3.0
5.0 2.9 3.7 3.2 3.1 3.0 2.1 3.5 3.8 3.6 3.3
TABLE 4-1

SIGNAL TO NOISE RATIOS FOR SIMULATED SIGNALS

As can be seen in this table, the amount of spectrai
overlap of the component signals in the logarithmic domain
is not significant and signal to noise ratios comparable
to those obtained by rectification and low pass filtering
are obtained. As would be expected, based on the component
signal spectra, the closer FC was to the actual modulating
signal frequency, the better the obtained SNR was. In cases

where FC was lower than the modulating signal frequency poor



SNRs resulted. This is as would be predicted from the

previous theoretical discussion.
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CHAPTER 5
HOMOMORPHIC PROCESSING APPLIED
TO SURFACE RECORDED EMG SIGNALS

5.1 Introduction

In this chapter the results of the application of
homomorphic processing to surface recorded EMG signals will
be discussed. To substantiate the model proposed in
Section 3.4 the results of homomorphic processing of EMG
signals recorded during isometric-isotonic (constant)
muscle contractions are reported. The results of station-
arity testing of bofh EMG signals recorded during constant
muscle contractions and their corresponding processed unitary
muscle responses (UMRs) are also presented. The results of
homomorphic processing applied to EMG signals from phasic
muscle contractions concludes the chapter. This includes
the depiction of the processing of an example record giving
the estimates of the component signals, the neural input
and the UMR. This is followed by a comparison of the fre-
quency spectra and stationarity testing of, UMRs obtained
from homomophic processing of EMG signals recorded bilaterally
from four lower 1imb muscles, of a subject, walking at two

different speeds.
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5.2 Homomorphic Processing of EMG Signals

From Constant Contractions

5.2.1 Power Spectra Comparisons

The proposed model (Section 3.4) suggests that any
EMG signal recorded during a constant muscle contraction
is composed of a UMR, I(n), multiplied by a constant neural
input signal, N{(n). In the frequency domain the equivalent
conceptualization is the spectrum of the UMR convolved with
an impulse located at the frequency origin. The magnitude
of the impulse is dependent on the level of contraction, or
level of constant neural input. The spectrum resulting
from this convolution fs simply the UUMR spectrum times a
constant. This means that the spectra of an EMG signal
recorded during a constant contraction and of its corres-
ponding UMR should be identical but for this constant. The
two spectra should have identical shapes but different
powers. One way of testing this is to compare the median
frequencies, statistical bandwidths and powers of the two
spectra. The results of such a comparison for four differ-
ent contraction levels and three different subjects are
shown in Table 5-1.

Large disposable surface electrodes 1.2 cm in dia-
meter with a constant spacing of 3.5 cm were used over the
rectus femoris for signal collection. The raw EMG data

were collected and the raw EMG spectra estimated as in
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UNITARY MUSCLE
RAN EMG RESPONSE
CONTRAC- | MEDIAN| STATIS-| MEDIAN |STATIS-
SUBJECT | TION FREQ. | TICAL | POHER |goeo  |TICAL POWER
LEVEL % | BAND- 2 " |BAND- 2
MVC Hz WIDTH H Hz WIDTH H
Hz Hz
100 75.1 | 90.6 | .128E 00/75.7 89.8 | .236E-04
Fs. 75 82.2 | 8.0 |.115E 00/82.9 85.4 .240E-04
50 81.1 | 85.4 | .447E-01|82.1 86.8 .226E-04
25 75.1 | 84.2 | .772E-02|76.6 88.3 .206E-04
100 90.5 | 101.6 | .604E-01]90.8 | 100.6 .318E-04
KK 75 89.9 | 116.6 | .229E-01/91.2 | 117.5 .295E-04
50 88.5 | 119.5 | .919E-02{90.8 | 120.9 .292E-04
25 80.3 | 105.7 | .313E-02/80.8 | 107.2 . 305E-04
100 81.5 | 98.5 | .360E-01!82.2 96.6 .225E-04
M. 75 79.3 | 89.8 |.138E-01/81.2 94.5 .231E-04
50 76.3 | 88.4 |.344E-02/77.7 | 90.5 .239E-04
25 77.0 | 87.4 |.934E-03|78.3 | 90.7 .266E-04
TABLE 5-1

POWER SPECTRA COMPARISON BETWEEN EMG SIGNALS
RECORDED DURING CONSTANT CONTRACTIONS AND THEIR

CORRESPONDING UMRs. KNEE JOINT AT 120°.
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Section 3.5. Homomorphic processing-was carried out by the
Fortran IV program HOMFIL (Appendix III). The cut-off fre-
quency of the Tow pass filter used for homomorphic processing
was chosen to be 3 Hz. An example of the results of the
processing for typical EMG data collected during constant
muscle contraction are shown in Figure 5-1. The ripple in
the neural input estimate is due to the spectral overlap of
Tog[N(n)] and log[|I(n)|] as described in Section 4.4, and
is reduced with a decrease in the cut-off frequency of the
processing low pass filter. The spectra of the processed
UMR's were calculated using FREQR (Appendix I) as follows.
The 1500 data point UMR files created by HOMFIL were divided
into two 50% over-lapping 1000 point segments and weighted
‘by a Hanning window. Each segment was then augmented by

24 zero valued samples and 1024 point power spectra were
calculated for each data window. The final spectrum, from
which the power spectral parameters were calculated, was
~the average of these two spectra.

As can be seen in Table 5-1 the spectra for a given
subject and contraction level are quite similar with differ-
ences only in the total signal powers. This substantiates
the proposed multiplicative model. Homomorphic processing
separates the constant level of contraction component, N(n),

and the UMR component, I(n), from the composite signal.
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The power of the UMR has little variance, within a subject
for the different Tevels of contraction and the variance in
signal power from subject to subject for any level of con-
traction is only slightly larger. This is to be expected
for normal subjects, when recording from the same muscle

with the same electrode configuration.

5.2.2 Stationarity Testing of EMG Signals From Constant

Contractions

The stationarity of EMG signals recorded during con-
stant muscle contraction and their corresponding UMRs were
tested using Bendat and Piersol's(1971) run test as imple-
mented in the Fortran IV program RUNTST. For a description
and a listing of RUNTST see Appendix IV. As suggested by
Bendat and Piersol (1971) the segment lengths chosen for the
run test should be such that they contain enough data to
span many periods of the lowest frequency component of the
signal being tested. By assumption and recording hardware
constraints the minimum frequency component of the EMG
signals recorded is 10 Hz as described in Section 4.4. Since
the data was collected at 500 Hz and was analysed in 2000
sample records, 4 second long data windows resulted. The
run test program was therefore run with 20, 16, 12 and 8
data segments per window correspondihg to data segment

lengths of .20, .25, .33 and .50 seconds. The results at
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the .050 level of significance, of the stationarity tests,
for the different segment lengths, of the raw EMG and UMR
data used for Table 5-1 are tabulated in Table 5-2.

It can be seen from this table that the majority of
the EMG and UMR data can be considered stationary. This
agrees with results obtained for EMG signals recorded using
similar sized electrodes, from the biceps brachii during
constant contraction by Abdel Azim (1975). Visual inspection
of data records which by the run test were deemed non-station-
ary appeared quite stationary. This apparent inconsistency
may result from the low power of the run test under certain

conditions. This is further discussed in Section 5.3.3.

5.3 Homomorphic Processing of EMG Signals

From Phasic Contractions

5.3.1 Example Record

To demonstrate the effects of homomorphic processing
on EMG signals recorded during phasic muscle contractions a
typical record from a gait study was chosen. The processing
was performed by the Fortran IV program, HOMFIL, described
in Appendix III, with a Tow pass filter cut-off frequency of
5 Hz. The record chosen is one which contains a sampled
EMG signal, collected as in Section 5.2.1., from the quadri-
ceps muscle, of a 16-year old normal male, during a normal

gait of 1. m/sec. The input and processed signals are shown in
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CONTR. [NO. OF[CONST.| UMR CONTR. [NO. OF[CONST.[ UMR
SUBJECT|LEVEL |SECT. |CONTR.|RESULT|SUBJECTILEVEL |SECT. |CONTR. |RESULT
% MVC RESULT % MVC RESULT
20 S S 20 S S
16 S S 16 S S
100 | 43 s | s 100142 s 5
8 S S 8 S S
20 NS1' S 20 NS1' S
16 S S 16 S S
AR 3 | s ol1z NSy | s
F.S. 8 SH B 8 >
20 S S 20 S S .
16 S S 16 ) NS3
01 s | s 50 |92 S 5
8 S S 8 S S
20 S S 20 NS ™ S
16 S N) 25 16 S S
12 S S 12 S S
8 S S 3 S S
20 S S
100 16 S S
12 S S TABLE SYMBOLS
8 S S
20 S S S - Data is stationary.
75 16 S S
12 S S NS] - Data means not stationary.
8 NS3*t| S
K.K. 3
20 S S NS2 - Data mean squares not
- stationary.
16 NS; S
0 112 s s
8 S S NS3 - Data mean and means
square not stationary.
20 S S
16 ) S Superscript - : too few runs.
25 12 s | s
8 S S Supercript + : too many runs.
TABLE 5-2

RUN TEST STATIONARITY RESULTS FOR EMG DATA RECORD DURING
CONSTANT MUSCLE CONTRACTION AND THE CORRESPONDING UMRs
AT A .050 SIGNIFICANCE LEVEL.
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Figure 5.2.

As can be seen in this figure, homomorphic processing
separates the composite signal into a neural input estimate
and an estimate of the UMR. The neural input signal esti-
mates the neural control of the muscle activity. This
signa]‘is comparable to that obtained by rectification and
low pass filtering of the composite EMG signal. As was
determined in section 4.5.2, the errors in the estimates of
the neural input, are of similar magnitude, for the two
processing techniques. The UMR component is determined by
both the electrode configuration and the muscle being examined.
Therefore the UMR should change for different muscles. Con-
versely it should remain the same for particular muscles even
though the phasic activity patterns are altered. This point

is addressed in the next section.

5.3.2 UMR Power Spectra Comparisons

EMG signals were collected bilaterally from four
lower 1imb muscles during normal gait at 1.0 m/s and 1.5 m/s,
of the subject mentioned in section 5.3.1. The four muscles
studied were the quadriceps, biceps femoris, tibialis
anterior and gastrocnemius. Although the same electrode
configuration as in sectijon 5.2.1 was used for the quadri-
ceps muscle group, miniature Beckman electrodes with a dia-

meter of .3 cm and a spacing of .9 cm. were used for the
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Figure 5.2 Typical Results From Homomorphically Processing
EMG Signals From Phasic Contractions.
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other musc]es; Processing of these EMG signals was then
performed by HOMFIL, with a 5 Hz low pass filter cut-off
frequency. The UMR data files created by HOMFIL were then
processed by FREQR as in section 5.2.1. The power spectral
parameters calculated can be found in Table 5-3.

This table shows that the UMR spectra changed from
muscle to muscle. Further the UMR spectra for specific
muscles were essentially constant for the two walking speeds.
The table also shows that the UMR spectra for the same
muscle for both limbs were similar. This consistency of
the UMR spectra, for a given muscle, for different phasic
contractions, demonstrates a definite relationship between
a muscle and its UMR. This re1étionsh1p is further demon-
strated by the increased median frequency of the UMR from
the tibialis anterior (TA) muscle compared to the median
frequency of the UMR from the gastrocnemius muscle (GAST).
The increased median frequency of the UMR for the TA muscle
is expectad, since it has fewer muscle fibres per motor unit
on average (Desmedt 1981), fewer total number of motor units
and is less affected by the tissue filtering effects since
it is more superficial, than the gastrocnemius muscle. The
total power of the processed UMRs also varied from muscle
to muscle and remained relatively similar, for specific
muscles, for the two walking speeds. The overall variance

in the power measurement, however, was small and clearcut



UMR
SUBJECT MUSCLE F.C. S.B. . PWR.
Hz Hz uv2
R.F 93.7 106.2 .267E-04
L.A. B.F 110.1 141.0 .321E-04
L1 T.A 128.0 140.7 .284E-04
GAST 98.6 115.8 .241E-04
R.F. 92.5 93.6 .237E-04
L.A. B.F. 111.3 138.8 .297E-04
L2 T.A. 128.6 145.1 .274E-04
GAST 102.9 130.0 .251E-04
R.F 89.2 98.9 .236E-04
L.A. B.F 110.1 141.0 .394E-04
R1 T.A 121.5 151.9 .304E-04
GAST 93.3 114.5 .235E-04
R.F 90.5 108.3 .258E-04
L.A. B.F 104.9 121.3 .270E-04
R2 T.A 125.8 154.6 .242E-04
GAST 94.7 112.3 .260E-04
TABLE SYMBOLS
LT - Teft side 1 m/s R.F. - Rectus Femorus
L2 - left side 1.5 m/s B.F. - Biceps Femorus
R1 - right side 1 m/s T.A. - Tibjalis Anterior
R2 - right side 1.5 m/s GAST - Gastrocnemius
TABLE 5-3

POWER SPECTRA COMPARISONS OF UMRs PROCESSED FROM
EMG DATA RECORDED DURING PHASIC CONTRACTION.
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power ranges for specific muscles were not evident with the
Timited amount of data analysed. Further studies which
determine mean values together with expected variances, of
the frequency parameters considered here, including total
power, for specific muscles, for both normals and different
pathological cases might establish a clinical use of the

UMR.

5.3.3 Stationarity Testing of the UMRs From Phasic

Contractions

The UMRs resulting from the homomorphic processing
of the EMG data described in section 5.3.1 were tested for
stationarity using the program RUNTST, see Appendix IV. The
number of segments was varied as in section 5.2.2 and the
results are tabulated in Table 5-4.

As with the UMRs tested in section 5.2.2 this data
as summarized in Table 5-4 can also be considered stationary.
This provides further evidence of the suitability of the
proposed multiplicative model which states that a phasic
EMG signal is the result of the multiplication of a non-
stationary neural input signal by a stationary constant
muscle response.

As was also found in section 5.2.1 the run test con-
cluded that some data records were non-stationary and this

was not apparent with visual inspection of these records.
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NO. OF NO. OF ?

SIDE | MUsCLE| §o. 07| RESULT| s1DE| muscLe | 0. OF) RESuLT
20 5 20 S
16 S 16 S
RF 12 NS3* RE 12 S
8 S 8 S
20 S 20 S
16 S 16 S
BF 12 S BF 12 S
8 S 8 S
Left 20 s |Right 20 S
16 NS 16 S
TA 12 53 TA 12 S
: 8 S : 8 S
20 S 20 S
16 S 16 S
8 S 8 S
20 NS3* 20 S
16 S 16 S
RF 12 S RF 12 s
8 S 8 5
20 S 20 S
S A R A
Left 8 S Right 8 S
20 S 20 S
16 S 16 S
TA 12 S » TA 12 s
2 8 S 8 S
20 S 20 S
16 S 16 S
8 S 8 S

TABLE SYMBOLS AS

1-1.0m/sec

PER TABLE 5-2 AND TABLE 5-3.

2-1.5m/sec
TABLE 5-4

RUNTEST STATIONARITY RESULTS FOR UMRs PROCESSED FROM EMG DATA

RECORDED DURING PHASIC CONTRACTIONS FOR SUBJECT L.A. AT A

.050 LEVEL OF SIGNIFICANCE.
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This might be due to an inherent weakness of the run test.
This weakness being the apparent low power of the test under
certain circumstances. Specifically, this results in arbi-
trary results for the run test whgn the segment lengths
become too short or too few segments are used. The weakness
of segments which are too short is addressed by Bendat and
Piersol (1971) and as suggested these authors can be overcome
by taking segment lengths, corresponding to sufficient time
periods, which are many times longer than the periods of the
lowest frequency components of the data. Segment lengths
chosen in this fashion can restrict the total number of
segments from fixed length data records, resulting in too
few segments, which also reduces the power of the test.
Therefore, it is important to realize that to properly test
the stationarity of data, data segments of suitable length

and number must be used.



CHAPTER 6
CONCLUSIONS

EMG signals result from the measurement of neuro-
muscular electrical activity and consequently contain
information about both neural control and muscle state.

The type of information extracted from EMG signals depends
on the signal processing technique used.

In an effort to maximize the amount of information
that could be obtained from EMG data a multiplicative model
for EMG signals was proposed. The model conceptualized
the EMG signals as the product of two component signals,

a low freauency neural input and a relatively high frequency
unitary muscle response (UMR). The model is based on the
assumption that EMG signals recorded during isometric-
isotonic (constant) muscle contractions have constant spec-
tral shapes independent of contraction level. This assump-
tion was proved to be true, by the consistency found in the
power spectral parameters, median frequency and statistical
bandwidth, of EMG signals recorded during constant muscle
contractions at different levels of contraction.

The particular nature of the multiplicative model
required the consideration of non-linear processing algo-

rithms. The multiplicative process, when the component
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signals are of essentially different frequency content as
with the proposed EMG model readily avails itself to homo-
mofphic processing techniques. Homomophic processing was
therefore applied to both simulated EMG data and data
recorded during various muscle activities. The performance
of homomorphic processing in extracting the neural input
component was compared to that of the common EMG processing
technique of rectification and low pass filtering (MRE).
The comparison was performed using simulated EMG signals

of known neural input and the parameter of interest was the
signal to noise ratio of the respective processing algorithm.
The two processing methods had similar signal to noise
ratios with homomorphic processing having slightly improved
ratios for low frequency neural inputs. Homomorphic pro-
cessing performance might be further improved by the appli-
cation of Kalman filtering techniques in the logarithmic
domain, as suggested by Evans et al (1980) to better sepa-
rate the component signals.

Homomorphic processing was also applied to EMG data
recorded during constant muscle contractions and spectral
parameters of the raw data and their corresponding UMRs
were compared. The high degree of similarity found in
these spectra] parameters further substantiates the proposed
multiplicative model.

Additional homomorphic processing was performed on
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EMG signals recorded from various lower 1imb muscles during
human gait. The power spectra, as characterized by several
spectral parameters, for the resulting UMRs were revealed
to be somewhat unique for each muscle and constant for a
specific muscle for different phasic contractions. These
results again support the proposed multiplicative model and
also suggest a possible clinical use for the unitary muscle
response.

The variations discovered in the spectral parameters
for different muscles, suggests a relationship between the
UMR and the corresponding muscle state. Further studies
which determine expected values and variances for these
spectral parameters of the UMR for specific musclies under
normal and various pathological states, may establish the
UMR as a source of clinical information.

The stationarity of EMG signals recorded during
constant muscle contractions and their corresponding pro-
cessed UMRs were tested using the run test for several
different numbers and lengths of data segments. The hajority
of these EMG signals were found to be stationary. ATl the
UMRs were found to be stationary, even those resulting from
non-stationary EMG data. This confirms the model predic-
tion. Stationarity tests were also performed on the bro—
cessed UMRs corresponding to EMG data recorded from several

lower 1imb muscles during human gait. A1l of these UMRs
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were found to be stationary confirming this model assump-
tion. The stationarity testing revealed an inherent weak-
ness in the run test. This weakness being a loss of test
power if too few or too short data segments are used. Thus
long data records are required to assess stationarity with
confidence if the data contains low frequency components.
The results of this work suggest that the multipli-
cative model for EMG signals is a reasonable one for both
phasic and constant contractions and that homomorphic pro-
cessing of EMG signals produces useful estimates of both
the neural input and the muscle response. This means that
with the application of homomorphic processing information
about both neural control and muscle state can be extracted
simultaneously, for both phasic and constant muscle contrac-
tions. The simultaneous extraction of both neural and
muscle information from EMG signals is not possible with

currently used processing techniques.



APPENDIX I
POWER SPECTRUM ESTIMATION

The estimation of power spectra and the calculation
of power spectral parameters for the EMG data analysed in
this work were performed by the Fortran IV programs FREQP5
and FREQR. This appendix describes the theoretical basis
of these programs. The slight differences between the two
programs is stated and a listing of FREQP5 is included.

The programs calculate the power spectrum of the
input data, by the method of averaging periodograms. This
algorithm is based on a program suggested by Rabiner et al
(1979). This technique of power spectral estimation was
first proposed by Welch (1967).

For a sampled data sequence X{n), the modified period-
ogram spectrum estimate is obtained by dividing X(n) into
K overlapping segments of length L. This algorithm used
an overlap of L/2 so that for an N length data sequence:

K = [(N-L/2)/(L/2)]
where the square brackets represent integer truncation.
After appropriate weighting the ith data segment can be
expressed as

x.{(n)

1

]

x((i-1)L/2 + n)wd(n)

1 < n <L, 1 < i < K
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where wd(n) is an L point Hamming or rectangular data weight-
ing window. The M point (M < L) discrete Fourier transforms

(DFT) of the weighted segments xi(n) are defined as:

These DFTs are calculated using an FFT routine where M must
be an integral power of 2, (see listing following FREQP5
listing). When L < M the sequence xi(n) is augmented with
M - L zero valued samples. The power spectrum of the ith
segment is:

S;(k) = ]xi(k)}2 1 SksM, 1 s=54s2K

The final spectrum estimate SXX(an/M) at normalized radian
frequency (2nk/M) is then obtained by averaging the indivi-
dual Si(k).

K
- L <
SXX(an/M) o §=1S1(k) s, 1 <k =M
L
where u = §=1 wg(n) is included to achieve an unbiased

spectral estimate.

The segment spectra [Xi(k)l2 are computed two at
a time by suitably arranging the sequence X(n) into complex
vectors as:

x(n) = xs(n) + 3 x;4q(n)
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then X(k) X (k) + X(m-k) X" (m-k) = 2[|x,(k)|?
0 £ k £ M/2

where X(k) is the M-point DFT of the complex sequence, x(n)

and Xi(k) and X1+]

xi+1(n). This procedure halves the number of FFTs required.

(k) are the M-point DFT's of xi(n) and

These programs also calculate the following spectral
parameters, median frequency, statistical bandwidth, percent
of total power in selectable frequency bands, ratio of powers
in separately selectable high and low frequency bands and
total power. The program also calculates the signal mean
rectified value and root mean square value (RMS) and allows
specific subsets of data points in a record to be analysed.

FREQR is identical to FREQP5 but it processes real
data files instead of integer files and it processes a
complete data record not allowing any specific subset selec-

tion. A listing of FREQP5 follows.
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FREQP5 SOURCE LISTING

» +FREGFS.FOR PROGRAM TO ESTIMATE AND PLOT THE POWER
«»SPECTRUM OF INPUT DATA FILES,BASED ON AVEREGED
»WPERICDOGRAMS y OF OVERLPPING WINDOWS,O0F THE INPUT

e LATETHE WINDOWS CaM BE WEIGHTED BY A& HANNING

+ +OR RECTANGULAR DATA WINDOW.THE PROGRAM ALSQD ESTIMATES
+o+ THE FOLLOWING POWER SPECTRUM PARAMETERS!:

++ MEDIAN FREQUENCY

STATISTICAL BANDWIDTH

» PERCENT POWER IN THREE SELECTABLE FREQ., BANDE
. HIGH-LOW RATICHRATIO OF POWER IN HIGH BAND TO LOW BAND

THE FOLLOWING AMPLITUDE STATISTICS ARE ALSO CALCULATED:
MEAN RECTFIED EMG VALUE (MRE)D

»e e ROOT MEAN SQUARE VaLUE (RMS)

cTHE LENGTH OF THE WINDOWS CHOSEN AND THE FFT'S

LCALCULATED IS SELECTABLE.THIS ALLOWS VARIABLE

SFREQUENCY RESOLUTIONS AND STATISTICAL VARIANLCES OF

+RESULTING SPECTRUM ESTIMATES.THE PROGRAM ALSO ALLOWS

o THE SPECIFIC RANGE OF DATA FPOINTS DESIRED FROM

+« THE | INEUT TO BE CHOSEN.

.+ TOTAL POWER IN SIGNAL

-1«

+

%

B

¢ & 9

v -

i o3

%

3
L 4
R S

GO0

«+ NOTE:
“ » FREGR.FOR 1% IRENTICaL TO FREGPS5.FOR EXCERT

v ¢ THAT IT READS REAL UNFORMATTED SEQUENTIAL ACESS
pusil FILES RATHER THAN INTEGER DIRECT ACESS |
v IT ALSO DOES NOT ALLOW ANY DATA SELECTION

ele WITHIN CHOSEN FILES.

-

DIMENSION IDAT(2000)»IX(102408PECILI024)
ODIMENSTION JWIN(2:2):XA(2048) :AXTIS (404
DIMENSTON IEL{(3+2) IBFREG{Z 20y IDATL (2000
DIMENSION aBPTOT(3) y IFILE(?) v IHLB(43ITHLB(4)
COMPLEX X{1024) »%MN

DaTa JWINCL 32 JWINCL2)/"RECT 2

DATA JWIN(2:10 s JUINC2:2)/HAT » MG/

DATA NNO-IYES//NO'» ' YE'/

MK =2048

LHM =MAXM 241

NTOT=60

N=2000

DEFINE FILE 1 (NTOT:N2U«JREC)




101

201

102

&

2999

P96
2995

PGGA

4000

4100

106

206

WRITE(Z7101)
FORMAT (" WHAT IS
READ(S5:201) (IFILEC(J) v J=1+7)
CalLlL ASSIGN(1yIFILE«14» RDO)
FORMAT(742)
WRITE(7,102)
FORMATC Y WHAT IS THE
IR ERE 26+ AR SR 5 & S
READ(E 2021 TSAMP » IBAND
FORMAT (T4 41X T4)
WRITE(7+103)

FORMAT (Y WHAT ARE FREQ.
Do 300 I=1:3

READC(S 203 (IBFREQ(I»JY v d=1:2)
FORMAT(2(I3,1Xy 1))

WRITE(Z»104)

FORMAT (Y WHAT ARE FREQ. BANDE FOR
1X» "LOW BAND  »2X» "HIGH BAND /1Xy "%
READ(S 204 (TIHLBCD) vy d=1»4)
FORMATC(A4(TI3y 2K

WRITEC(Z7+777)

FORMATC ¢ DO YOU HAVE & ZERO MEAN
READCS »201) IZERD

SAMPLE FREG A

BANDS (HZ.

é READ IN ANALYSIS PARAMETERS MeTWINyL

WRITE(7y9999)
FORMATC(? FFT LENGTH =

JeaXr? MUST BE & POUWER BF 2127
READ(S»9997) M

IF (M.GT.MAXM) WRITE
FORMAT (" M TOD LARGE --
IF(M.GT.MAXM)Y GO TD 4
FORMAT (149
WRITE(7+9996)

FORMAT (7 WINDOW TYPE 1=RECTANGULAR
REAL(S»92995) TWIN
FORMATCLL)

WRITE(Z »9994)

FORMATO WINDOW LENGTH =
1y5¥s " MUST BE LESS THaN
READ{(S:9997) L

IFE Bl eST wM) N GR T 1B
WRITEC(A-4000) (IFILECS) » U=327)
FORMAT(SX» "FILE: v35A2:/)
WRITE(A«4100)
FORMAT(2%y "REC”

ES

(7:2998)
REENTER VA

1E290 45 X

y4Xy "SRE’ v 4Xy "RME

¥
L78B 24X "HAL 26Xy L 06Xy "M ybXr H'

WRITE(Z7108)
FORMATC " WHAT IS THE
READ(S»206) IREC
FORMAT(IZ)

SCAL=(17./19.08%:

REL . NO® 27
b le NUG T

K1023.

DAaTA FILE NAMET /7

A HORAAER RRR TS

WIDTH? "/

ND BAND.

JPIALK y TREK-ERK )

Hicl ReT IONCHZ )0t/

ko kK okdEw kR )
STGNALT %)

*7)

LUE 7))

» 2=HAMMING/’ %7%)

Hkk )

4X s 'FQ /s 4Xy
fBXe "PWR’ /)
% i
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DELTAF=I5AMP/(1.0%M)
INUM=( {IBAND*1.0)/DELTAF)+1
DO 306 I=1.3
DO 305 J=l.2
303 TELCI» J)=((IBFREQ(I»J)%1.)/DELTAF)+1
306 CONTINUE
READ(1"IREC) (IDATI(J) J=1l:N)
WRITE(7+7510)
7510 FORMAT (" WHAT DATA POINTS ARE DESIRED? /7
READCE PELLINL o N2
wanck FORMAT(TI4»1X14)
IF(N1.EQ.Q)N1=1
IF(NZ.EQ.0IN2=2000

BoRAKk KkEk )

N=NZ-~NL+1
£
C
C NSECT = THE TOTAL NUMBER OF ANALYSIS SECTIONS
0 NP = THE TOTAL NUMBER OF SAMPLES aCTUALLY USED
C OQVERLAP OF 2 TD 1 IS USED ON ADJACENT ANALYSIS SECTIONS
1 NP = N IF(N-L/s2)Y/(L/2) = AN INTEGER
C
C
MHLF1 =M/2+1
NSECT = (N-L/2}/¢CL72)
NP = NSECTX(L/2) + L/2
C
C READ IN DESIRED DATA.
i

0o 10 J=1smM

Ko J4Ml~1

TOAT (I =TDATL(K)
XKALD=FLOAT(IDATLIIK) ) /409, 6

10 CONTINUE
KSUM=Q .

G

CCaLCULATE DaTha MEAN.

&

Do 20 J=1isN
XEUM=XSUM+XA (d)
20 CONTINLUE
HMEAN=XSLUM N
C
C ONLY FOR CALCULATION OF MRE AND RMS
c .
TF(LZERD »EQ. NNO) RO 0 31
DO 30 J=lsN
XA (J)=XA(d)~XMEAN
30 CONTIMUE

C MAKE SIGNAL ZERO MEAN IF DESIRED

C SET XMN FOR LATER PROCESSING

C
KMMN=CMPLY (CXMEAN » XMEAN)
GO TO 32
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SET XMN FOR LATER PROCESSING.
AMN=CMPLX (0. 00,0)

CALCULATE MRE AND RMS.

OO0

MRE=0.

RS =0 .

no 40 J=1sN
MRE=MRE+ABS (Xa{J))}
RME=RMS+XA (J) k%2
40 CONTINUE
MRE=MRE/N
RME=SQRT (RME/N)

0
L]

g I

RESET N FOR REPEAT RUNS.

N=2000

GENERATE WINDOW

{10 O

U=FLOAT (L)
IF (IWINGNE.2) GD TO &0
U=0.,
FL=FLOAT(L~13
TWOPT =8.%xaTaN{Ll.0)
Do ¢ I=l.L
FI=FLOAT(I~1)
W=, 84~ dARCASCTWOP TRFLAFL S
Ul WD

30 CONTINUE

&0 CONTINUE

£33

LOOP TO ACCUMULATE SPECTRA 2 AT A TIME

GE=1,
DO 70 I=1sMHLF1
SPEC(I)=0.,

70 CONTINUE

READ L/2 SAMPLES TO INITIALIZE BUFFER

£y 03

LA = L2

MRD=L/2

L2=L/2

CALL GETX(XA-L2:IDAT NRIR,S3)
GE=58+FLOATINRD)

IMN=L/2+1

KMX=(NSECT+1)r2

NSECTP=( (NSECT+1)/2) %2

MR =L

DO 190 K=1yKMX
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20

25

110

€ 020
s
> A

120
130

140
150

160
170

180

150

MOVE

93
DOWN UPPER HALF OF XA BUFFER

DO 80 I=1:L1

JulL 141

X(T)=CMPLX(XAa(J)»0.)
CONTINUE
IF{K.NE.KMX .OR.NSECTP.EQ.NSECT) GO 10O 95
Do 90 Is=IMN:NRD

KAi(Ll= 0.0
CONTINUE

NRD=1. /2
L2 = 0
Call GETX{XArLZ2:IDATNRD,SE)
00 110 Is=L.L1

J= I+L1

XD =CMPLXCKACT) o XACL) ) - XMN

X(I)=CMPLX(REAL (X(I})XA(I))-XMN
CONTINUE
IF(K+NE«KMX.0R.NSECTP.EQ,NSECT) 6O TO 130

QUD NUMBER OF S8ECTIONS ~~ ZERQ QUT THE SECOMND FART

DO 120 I=1rL

X(I)= CMPLY(REAL(X(IY) 0.3
CONTINUE
CONTINUE

SE=G8+FLOAT (NRD)
IF (IWIN.NE.2) GO TO 150
FL = FLOAT(L—-1)
DO 140 I=1sL
FL =5l 0aicl~1) :
X(II=X{(I)*%(.54 ~.44 % COS(TWOPIXFI/FL))
CONTINUE
COMTINUE
1F CLEG.M) GO TO 170
LP1=L+1
DO 160 I=LP1+M
X(IY={(0Q.v0.)
CONTINUE
CONTINUE

CALL FFT(XsMs0)
DO 180 I=2¢MHLF1
J=M+2-T1
SPEC(I) = SPEC(I) + REAL(X(IIXCONJGIX(I)) + X(JIRCONJIGIX(JI) )]

CONTINUE
SPEC(1)> = GPEC(1) + REAL(X{1)¥CONJGIX(1)I%2
CONTINUE


http:IFCK.NE.KMX.OR

C
C NORMALIZE SPECTRAL ESTIMATE
~
FNORM = 2. % U % NSECT
DO 210 I=1sMHLF1
SPEC%Y? = SPEC(I)/FNORM
210 GHMTI%L
IF( kﬁU.EQ NNOY GO TO 41
?Ptt(i’ =4
e
L CALCULATE TOTAL POWER AND STATISTICAL BANDWIDTH
c

41 PTOT=0

PTOT2=0
DO 311 J=2,MHLF 1
PTOT=PTOT+SPEC () ¥ (1/ (1., 0%M) )
PTOT2=PTOT24SPEC (JIXK2K(1/ (1. 0%M))

311 CONTINUE
PTOT=PTOTKZ4SPEC(1)XK(1/(1.,0%XM))
PTOT2=PTOT2%44 (SPEC(1)XX2% (1/(1,0%M)))
SB=PTOT**2/PTOT2XISAMP

CALCULATE PERCENT POWER IN SELECTED FREQ.BA&MDS.

OO0

BQ 312 J=1:3
ARPTOTOLY =0,
BPTOT=0Q.
IF(IEL(Jy1).LE.1.AND,IEL(J2).LE.21.) GO TO 312
ISTREEL L Jad )
IET=IEL(Jd:2)
IBTOI=IET-IST+1
DO 313 JJ=I8T»1ET

313 BRPTOT=BRTOTHSPEC(JIIR(L /(1. OKM) )
BPTOT=BPTOTX2
IF(IST.EQ.1)BPTOT=BPTOT-SPEC(L1IX(1/{1.0%M})
ABPTOT(J)=BFTOT/PTOTH100.

312 COMTINUE
C
€
G CALCULATE MEDIaAN FREQ.
c
SUM=0.0
50 315 I=2s:MHLF1
%15 SUM=SUM+2KSPECC(I k(1 / (1. 0%MI )R (T-1)RL1I/01,0%M))
FMFD«’LM/PTUTXI S M E
G
C CAHELCULATE MWIGHALOW RATIO
C
o 3is J=1:+4
316 IHLBO D) =(TIHLB(JY %1, ) /DELTAF+1

RATIO =0.
HBPTOT=0.
IF(IHLB(1).LE.1.AND.IHLB(2).LE.1.) GO TO 42


http:AND.IEL(Jr2l.LE
http:IF(IZERO.EQ

BT

318

4101

350

7501

326
0

BBPTOT=0.
IL1=THLB(1)-1
IL2=THLB{2)-IHLB(1)+1

IHI=THLB(3)-1

IH2=IHLB(4)-IHLB(32+1

po 317 I=1,IL2
BBPTOT=BBPTOT+SPECC(ILI+I % (1/(1.0%M))
BEPTOT=BBPTOTHE
IFCIL1.EQ.O0)BBPTOT=BBPTOT-SPEC{1)%(1/(1.0%M))
DO 318 I=1,IH2

ST Y mEPEL TR
CONT TNUE
BOALTE (.01
L REMAX BREC
AL XMAK

(© WHaT IS THE mRPe MULTRS 27 %R )

C PLOT POWER SPECTRUM

C

07

L4

T S 2

IK(1 =0

XKTEMP=0.,

DO 307 I=2Z»INUM
XTEMP=XTEMP+DEL TAF

MULT. BY 15 TO AVOID INT.TRUNC.
IXCTDI=XTEMPX1S,

CONTINUE

SMULT=8CAL/IX (INUM?

HASH MARK 5HMZ FOR 1KHZ SAMPLE RATE
10HZ FOR 2KHZ SAMPLE RATE
IHASH=(ISAMP%135)/7100

AXIS(1212=0.
AXIs(1,2)=17,
AXIS(1,3)=0.0
AXISOL 1 4)=0.
X0=1.
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APPENDIX II
HOMTST SOURCE LISTING

CREFORMSNCE OF

ClRATTION OF

STENGLS .

DIMEMETON XDaTOLE00) » 1
BT OM TDATOLE0G)
HETOM RMDAT (18

WO e TS

voob e d MPEE SLELTRARLE UMK FLLE .

Dol

sy
S o AR
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Lo RS e N

ol ¥ VT R deadenfonte &/
F 0 ORRRK )

R NOT )

DIsFLAY OF




400

& aves RILGET LIRS BT

0o 400
IX(T)e
M

TOmT I y=
THORRK (T )=

CONT INUE
T TN J
Calll
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o

=T

LR L

sl

i

FQa Qain TO

LE AMD OFF

ERPd . 5
YORT L R100
X20aTOLD)

ththS’

I WWCIM]

ENELT OF BESTRER

uﬂuho

815

STHE WaVE,

P!"lﬁn!*f*-

THHu.uIloﬁvYHM

f&lﬁﬁmQMvmvﬂvl}

99


http:GSCALE=1023/19.05
http:SINCX>+1.01

100

FLOT SIMULATED E

TSt
(TWOF
i

<,

: YEULT 3
L

120s0)

Go v s o s PERFORM HOMOMORFHIC PROCESSTNG

214 RN

Toslow NEM

AL QiKDAT Dy = 0AT I+, 01
.07 I8GBNCT ) =1

BORDATOL Y )

IGCXKDATCL Y )

20 CONT INUE
Fei=]

i
Ees
s Sa IEET

Do eie o0 s vl QR BUTTERWORTH . DETa TS

LG et ONCE FORWARDE AND
AN EQUIVALENT 4TH
DELAY  BEE LISTIMNG FOLLOWING

3L
er e e s WETH MO RS

LFF ORMIAT » NEMe F L FED

] e N

ATCTY-RMOAT (L))
CHUATOT 2y IEEM DD
S ORMOATOD )

ADTOT )
AT T

il CONT TRUE

=
L
2
s

sl et LS LDENTLCAL T0

BT
LINES WHICH ARE REPLS

G WECELL FROCGESS NG




101

Casns sl CULaTTE STENAL TO T I0,
e
Gir )
g%
ey
32
Daove s« CORRECT FOR MEAN UalLUE RBIFFERENTDES.

e 00 )

AR EMDAT O ) 24




102




103

I

HUS )RR TEMPC 20k TEMPC LI tER X Ch-1 VPR e L2

1




APPENDIX III
HOMFIL SOURCE LISTING
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APPENDIX IV
STATIONARITY TESTING

Methods of assessing the stationarity of signals
were investigated. These efforts lead to the conclusion
that the non-parametric run test was the most commonly
used, (Bendat and Piersol, 1971, Sugimoto et al 1978, 1977
Wang and Vagnucci, 1980, Cohen 1977).

The run test checks for non-random trends in the
data. It involves dividing available records into M seg-
ments. A suitable parameter is then estimated for each
segment. The parameter estimate is then compared to (sub-
tracted from) some constant value and a + or - sign is then
assigned to that segment based on the algebraic outcome of
the comparison. The number of runs is then determined for
the resulting sequence of + and - signs. A run is defined
as a string of identical observations (signs) that is
followed and preceeded by a different observation or no
observation at all. The number of runs in this sequence
is an indication of the existence of a trend in the original
data. If the sequence is composed of independent observa-
tions of the same random variable the number of runs will
be a random variable r with mean ur and variance o? given

as: (Bendat and Piersol 1971).
109
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_o N,
r = M + ]
2 2N N, (2NN, - N)
r ME(M - 1)

where M is the number of segments (sequence length)
N] is the number of + signs

N2 is the number of - signs

The number of runs compared to its expected value and vari-
ance leads to the determination of the existence of a trend
at a selected level of significance. That is, it determines
the rejection or acceptance of the hypothesis of independent
observations of the same random variable in the normal sta-
tistical hypothesis testing fashion. Thus, too few or too
many runs will Tead to the rejection of the independent
observations hypothesis and therefore to the acceptance of
the existence of a trend in the. data.

The wide sense stationarity of data can be assessed
by testing for trends in the data's mean and mean square
values (Bendat and Piersol 1971). This allows the run test
‘to be used to test for stationarity. The run test for this
work was implemented by the Fortran IV program RUNTST. A
1isting of this program is found later in this Appendix.
RUNTST divides the input data records into M segments, where
M is restricted to being an even number. The mean and mean

square values of each segment are then estimated and compared
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to their corresponding median values of all the M segments
with a + or - sign being assigned accordingly. The two
resulting sequences are of length M and each have an equal
number of + and - signs. For this special case the follow-
ing run probabilities exist, (Sugimot, 1977, 1978). 1If r

is the number of runs

for r = 2k
L D
M
(my2)
for r = 2k+1
M/2-1,,M/2-1
L 2T A
M

(wy2)
The number of runs R is then determined for these sequences
and using these probabilities for specific numbers of runs
the probability of at least R number of runs is calculated
using

P =

R r Pr

I~ A0

1
The program then accepts the stationarity hypothesis if PR
is greater than o/2 and less than 1 - «/2 for each sequence,
where o is the level of significance. A Tisting of RUNTST

follows.
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