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Abstract

Commonly experienced bad weather conditions like fog, snow and rain generate pixel

intensity changes in images and videos taken in outdoor environment and impair

the performance of algorithms in outdoor vision systems. Hence, the impact of bad

weather conditions need to be processed to improve the performance of outdoor vision

systems.

This thesis focuses on three most common weather conditions: fog, snow and rain.

Their physical properties are first analyzed. Based on their properties, traditional

methods are introduced individually to remove these weather conditions’ effect on

images or videos. For fog removal, the scattering model is used to describe the fog

scene in images and estimate the clear scene radiance from single input images. In this

thesis two scenario are discussed, one with videos and the other with single images.

The removal of snow and rain in videos is easier than in single images. In videos,

temporal and chromatic properties of snow and rain can be used to remove their

impact. While in single images, traditional methods with edge preserving filters were

discussed.

However, there are multiple limitations of traditional methods that are based on

physical properties of bad weather conditions. Each of them can only deal with one

specific weather condition at a time. In real application scenarios, it is difficult for
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vision systems to recognize different weather conditions and choose corresponding

methods to remove them. Therefore, machine learning methods have advantages

compared with traditional methods. In this thesis, Generative Adversarial Network

(GAN) is used to remove the effect of these weather conditions. GAN performs the

image to image translation instead of analyzing the physical properties of different

weather conditions. It gets impressive results to deal with different weather condi-

tions.

v



Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. T.

Kirubarajan for his guidance, encouragement and support. Thank you Dr. Kiruba

for your patience and help in the past two years.

I would also like to thank Dr. Ratnasingham Tharmarasa, Dr. Qingsong Wu, Dr.

Yuanhao Yu, Yinghui Wang and Keqi Wei for their invaluable help and support and

for providing me with many great ideas. I thank them for so generously sharing with

me the knowledge and skills that I needed to succeed.

I would like to thank my friends David Schonborn, Saeid Rostami, Wenqi Mu,

Xiafei Zhang and Xiaoxuan He for helping me transition into life in Canada and for

their constant support at McMaster.

Last but not least, I want to thank my parents, all my friends, roommates and all

the staff at the ECE department for all their support I relied on.

vi



Notation and abbreviations

A — Intensity value of general sky light in images

Ah — Horizontal angle of view

Av — Vertical angle of View

b — Breadth of rain or snow streaks

CNN — Convolution Neural Network

D — The possibility that the input image is ground truth

e — Euler’s number, the base of the natural logarithm

f — Focal length of the camera

G(z) — The generated image

GAN — Generative Adversarial Network

GA — Gaussian Filter

GF — Guided Filter

I(x) — Intensity value of input image at pixel x

I(x, y)t — Intensity value of pixel at position (x, y) of frame t

Iref — Intensity of reference image

J(x) — Intensity value of recovered image at pixel x

minc — Minimum intensity value among RGB channels

M(x) — Intensity of rain or snow mask image at pixel x

vii



n — Number of raindrops or snowflakes in unit volume

N — Number of raindrops or snowflakes

p(x) — Intensity value of Perlin noise at pixel x

ps — Size of the camera sensor pixels

prb — Probability density function of raindrops or snowflakes

Q — Precipitation intensity in millimeter per hour

r — Radius of raindrops or snowflakes

RGB — Red, green and blue channels in images

t(x) — Intensity value of atmospheric transmission at pixel x

t0 — The threshold value for computing the recovered clear image in fog removal

v — Terminal velocity of raindrops or snowflakes

θ — Falling orientation of raindrops or snowflakes
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Chapter 1

Introduction

1.1 Background

In computer vision, a common assumption is that the air is clear. Therefore, the

intensity of each pixel in the image reflects the true brightness of the scene. Many

existing algorithms are designed under this assumption. However, for outdoor vision

systems, including the ones for tracking, navigation and surveillance, the impact of

bad weather like fog, snow and rain need to be considered.

Fog can be classified as steady weather condition as its effect does not change

with time. Fog is composed of particles and water droplets that float in the air. The

appearance of fog in images is the result of interaction between lights from objects and

the atmosphere that contains millions of water particles. Fog scatters and attenuates

light from objects in the background and blur the scene of images. In contrast, rain

and snow are dynamic weather conditions. Raindrops and snowflakes generate effect

that changes with time in images or videos. Snow and rain contain snowflakes and

raindrops that fall from the sky and usually have high terminal speed. And their high
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velocity make them appear as snow or rain streaks instead of individual snowflakes

or raindrops in images or videos [4].

All these bad weather effects will degrade the quality of images and videos taken

by the vision systems and will impair the performance of the algorithms in these

systems. For example, fog decreases the scene depth of the image and obscures the

objects in the field of view. Snow and rain generate snow streaks or rain streaks,

which impair the detection of the edges or contours and cause many false alarms in

tracking algorithms. Therefore, the goal here is to find applicable methods to remove

the effect of these bad weather conditions from images and videos.

1.2 Previous Research

1.2.1 Fog Removal

Many methods have been proposed for fog removal with single images. It is an under-

constrained problem and contains many unknown parameters that need estimating.

In [5], Srinivasa et al, exploited the physics-based model to remove fog in images.

Their method requires to select the sky region, a good color region and point out the

vanish point in the image before it recovers the clear scene. To estimate parameters

from input images instead of manual selection [6, 1] adapted the following scattering

model to describe the foggy scene in images

I(x) = J(x)t(x) + A[1− t(x)] (1.1)
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where I(x) is the observed fog image intensity at pixel x and A is the general atmo-

spheric light. J(x) is the clear scene radiance, which is what we want to recover. t(x)

is the atmospheric transmission, which describes the exponential relationship with

the scene depth.

t(x) = e−βd(x) (1.2)

where β is the scattering coefficient of the air, d(x) is the scene depth at position x

in images.

The scattering model in equation (1.1) describes two parts of light that reaches the

camera. The first term J(x)t(x) is the scene light attenuated by fog, and the second

term A[1− t(x)] is the scattering of the general atmospheric light. In equation (1.1),

only the observed image I(x) is known. To recover J(x), the main task is to figure

out the atmospheric light A and the atmospheric transmission t(x). It is challenging

to estimate t(x) since a single image does not offer sufficient information of the scene

depth. In [1], He and et al, used the dark channel prior and image matting to estimate

and refine atmospheric transmission t(x). [3, 7, 8, 2] made the assumption that t(x)

should preserve edges with large depth jumps while pixels between sharp edges with

similar scene depth should be smoothed. This is reasonable as objects with different

scene depth usually have sharp edges to separate them. So, [3, 7, 8, 2] used edge

preserving filters to estimate t(x) successfully. In [3], Tarel et al, used median filter

and He et al, in [2] applied guided filter and Gibson in [9] chose local adaptive Wiener

filter to refine t(x). Yu et al, used bilateral filter and weighted least square filter to

estimate t(x) in [7, 8].
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1.2.2 Snow and Rain Removal

Compared with steady weather conditions like haze or fog, snow and rain are more

complicated to remove from images or videos. Significant amount of research has

been done on these dynamic weather conditions. Kshitiz and Shree [6, 5, 10, 11, 4]

have focused on the relationship between vision and rain. They analyzed the physical

properties of raindrops and the photographic and chromatic properties of rain streaks

that appear in images and videos. Their research also focused on the relationship

between camera parameters and the appearance of rain streaks. And they built a

model to describe rainy scene that can be captured by camera. Furthermore, Kshitiz

and Shree also proposed a novel method that adjusts the camera parameters to reduce

the effect of rain when taking pictures. Most of their research focused on the removal

of rain in videos, which has the temporal properties, as consecutive frames in videos

offer prior information. Based on their research, [12, 13, 14] took advantage of this

temporal dependency of videos to remove rain and snow.

However, it is harder to address this problem in single images as they lack the

prior information that exists in videos. Xu et al, [15, 16] focused on the edge features

of rain streaks and applied the Guided Filter [2] to remove rain or snow streaks from

single images. But the drawback of Xu’s method is that it blurs the background and

cannot remove snowflakes that appear as white dots in images. Peter [17] proposed

another method that processed rain and snow in frequency space as rain or snow

streaks belong to the high frequency domain.

With the development and success of machine learning algorithms in recent years,

they are used to address the weather effect removal problem. Kang et al, and Yang

et al, [18, 19] both introduced dictionary learning and sparse coding to remove rain
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streaks in images. And [20, 21, 22, 23, 24] all applied deep convolutional neural

network (CNN) to address this problem and got impressive results. There are two

main challenges in their models. One is to build the network, and the other is to get

the training dataset. In order to have training dataset, Fu et al, [20, 21], Zheng et al,

[23] and Zhang et al, [24] generated synthetic rainy images from clear images so that

they can have the ground truth to conduct the supervised training of CNN.

1.3 Organization

This thesis is organized as follows. In the first section, the background and previous

research of this problem are discussed. In section 2, traditional methods based on the

physical properties of various bad weather conditions are discussed. In section 3, the

machine learning method of the Generative Adversarial Network is introduced. And

finally, the conclusion is given in the last section.
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Chapter 2

Traditional Methods for Bad

Weather Removal

2.1 Introduction

In this chapter, methods based on the physical properties of fog, snow and rain are

discussed. They are defined as traditional methods because these methods take ad-

vantage of special properties and features of each weather condition to remove weather

impact in images or videos. Three traditional methods are introduced individually

for fog, snow and rain removal.

For fog removal, the proposed method used scattering model to describe the fog

image and applied Gaussian filter to refine the estimation of medium transmission

t(x). The maximum intensity value of the input image is chosen as the estimation

of general sky light A. The proposed method is easier to apply and faster to process

the removal of fog.
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2.2 Fast Fog Removal of Single Image in the Log

Space

To describe the fog scene in images, the proposed method adopted the scattering

model in equation (1.1), where the atmospheric transmission t(x) and the general

atmospheric light A are the unknown parameters that need to be uncovered. In the

proposed method, the atmospheric transmission t(x) is first estimated and refined.

Then the general atmospheric light A is estimated from the input fog image. Finally,

with both these estimated parameters, the clear scene radiance J(x) and the recovered

foggy images can be calculated with the equation (1.1). Additionally, in the method

proposed in this thesis, all images are normalized with intensity value range of (0, 1].

2.2.1 Estimating the Atmospheric Transmission t(x)

In the proposed method, atmospheric veil was first introduced to get the coarse

estimation of atmospheric transmission t(x). It is defined as [3]

V (x) = 1− t(x) (2.1)

Considering its physical properties, the follow constraints can be applied

V (x) ≤ mincI(x) (2.2)

7
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where mincI(x) is the minimal intensity in all the RGB channels of observed image

at position x. Inspired by [1, 7], the atmospheric veil is estimated as

V (x) = α×mincI(x) (2.3)

The coefficient α in this paper is chosen as 0.95 to get a satisfying estimation result.

Then the coarse estimation of t(x) is

t̂(x) = 1− αmincI(x) (2.4)

In the scattering model of equation (1.1), t(x) = e−βd(x) is exponential to the

scene depth. It means that objects with the similar scene depth should have similar

transmission value, while objects with different scene depth should have distinguished

values of t(x). In most situations, objects with different scene depth have sharp edges

shown in the image to separate them. In other words, edges in t(x) can be the

boundary of the depth. So to estimate t(x) more accurately, it is necessary to smooth

pixels between sharp edges and preserve the edges that indicate huge depth jump at

the same time. This is the reason why [3, 7, 8, 2] all applied edge preserving filters

to refine the estimation of t(x).

A more intuitive and faster way to do the edge preserving smoothing to refine t(x)

is introduced in this thesis. t(x) can be transformed into log space as

logt(x) = −βd(x) (2.5)

This shows the linear relationship between the scene depth d(x) and the value of

8
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(a) (b) (c)

Figure 2.1: Intensity Difference in Log Space: (a) grey scale image, (b) intensity
distribution in common space, (c) intensity distribution in log space.

t(x). The depth boundaries, like sharp edges, have intensity difference with their

neighbor pixels. And in this thesis, all images are treated in double type, which

means t(x) ∈ (0, 1]. Since the log function has very steep figure in this range, it

enlarges the intensity difference between the edge pixels and their neighborhood. In

Figure 2.1, one row of the gray scale image is sampled to compare difference between

common and log space, which is indicated by the white line on the top of the image.

Images (b) and (c) show intensity values of pixels on this line individually in common

space and log space. It is shown that pixels in log space have larger intensity value

difference around edges. The covariance of these pixels’ intensity is about 0.0980 in

log space, while covariance of the pixels in common space is only 0.0282.

In my method, Gaussian filter is used to smooth t(x) in log space. Gaussian filter

puts more weight to the pixels closer to the center of the filter kernel, it can smooth

pixels close to each other with similar intensity value. Besides, in log space, the

intensity difference between edges and their neighborhood has been enlarged. Hence,

after the smoothing with the Gaussian filter, most sharp edges are still preserved.

Based on the above analysis, the raw estimate t(x) was first transformed into the

9
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log space

L(x) = logt̂(x) (2.6)

Then the Gaussian filter is applied to smooth L(x)

B(x) = GA(L(x)) =
1

|wi|
1

2πσ2

∑
xi∈wi

e
−l(xi)

2

2σ2 (2.7)

where wi is the patch of the image centered at position xi, |wi| is the number of pixels

in the patch, σ is the standard deviation of pixels in patch wi and l(xi) is the position

distance between the center xi and other pixels in the patch. After smoothing, t(x)

needs to be transformed back to the common space.

t(x) = eB(x) (2.8)

In Figure 2.2, (a) is the original image. (b) is the refined estimation of t(x) by

applying 5 × 5 Gaussian filter. (c) is the refined t(x) by applying 5 × 5 Gaussian

filter three times. (d) is t(x) refined by 15 × 15 Gaussian filter and (e) is refined by

Gaussian filter with 41 × 41 kernel. It can be seen that (b) still contains too many

sharp edges and objects in the same scene depth are not well smoothed. Image (e)

is over-smoothed; the whole depth scene information is ruined. (c) and (d) are both

acceptable. So, in the proposed method, small size Gaussian filter is applied multiple

times in log space to get better refined estimation of t(x).

10
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Atmospheric Transmission t(x): (a) input fog image, (b) t(x) refined by
5 × 5 Gaussian filter, (c) t(x) refined three times by 5 × 5 Gaussian filter, (d) t(x)
refined by 15 × 15 Gaussian filter, (e) t(x) refined by 41 × 41 Gaussian filter, (f)
recovered clear scene

2.2.2 Estimating the Atmospheric Light A

After estimating the atmospheric transmission t(x), the general atmospheric light A

still needs to be estimated to remove the fog. In images with sky area, A is the

intensity of the sky pixels. In [7, 8], Yu et al, used the Canny edge detector and

set brightness threshold to find the sky area to estimate A. However, this is only

applicable for images containing sky areas, and it is computationally expensive. He

et al, [1] estimated atmospheric light A with the dark channel prior. In [3], Tarel et

al, first balanced the brightness of the image and then set A as the largest intensity

in the image. In [25], Tan et al, directly estimated A as the maximum value of image

pixels’ intensity range.

11
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Upon observation, images taken under foggy weather look brighter than the same

scene under clear weather. This is because fog particles scatter and attenuate light and

increase the average brightness of the whole scene. Hence, the scene that is recovered

from the foggy image should have smaller brightness. So, if the atmospheric light

value A is estimated as the largest intensity value in fog image, the recovered scene

will be too dark. As a result, [3] applied tone mapping to make the results more

visually pleasing.

Hence, to get more natural recovered image, the proposed method first found

the largest intensity value tmax of the input image and then estimated the general

atmospheric light as A = k× tmax, where k ∈ (0.8, 0.95). The smaller k will make the

recovered scene brighter. In the method proposed in this thesis, k = 0.85 so that the

result is natural and visually appealing.

2.2.3 Restore the Fog-free Image

After the estimation of atmospheric light A and the estimated atmospheric transmis-

sion t(x), the fog-free scene radiance can be recovered based on equation (1.1).

J(x) =
I(x)− A

max(t(x), t0)
+ A (2.9)

where t0 is the lower boundary in case the denominator is zero. In this experience,

t0 = 0.01. And the restoration result of the proposed approach is in Figure 2.2 (e).

12
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Figure 2.3: Fog Removal Results: columns from left to right, the original image,
recovered scene by our method, the recovered scene by dark channel method [1], the
recovered scene by guided filter [2], the recovered scene by median filter [3].

2.2.4 Result and Analysis

In the method proposed in this thesis, Gaussian filter was applied multiple times with

small kernel size so that sharp edges can be preserved while pixels between edges will

be smoothed. This generates better estimation of t(x). In results of this thesis,

Gaussian filter with kernel size of 5× 5 was applied three times to refine atmospheric

transmission t(x). The result was compared with the output of methods proposed in

[1, 2, 3].

Figure 2.3 shows the fog removed images using the proposed method in comparison

with results obtained using He and Tan’s methods. The proposed method in this

thesis have brighter recovered scene, less blue hue in the sky area and less halo artifacts

around edges compared with other results. Furthermore, the proposed method is

significantly faster than existing ones. It takes only 0.487 seconds to deal with 1024×

768 image with Intel Core i7 7th Gen 7700HQ (2.80 GHz). It is faster than [3] without

13
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tone mapping, approximately 8 times faster than [2] and nearly 100 times faster than

[1].

2.3 Snow Removal in Videos

2.3.1 Temporal Property of Snow and Rain Fall in Videos

Compared to single images, videos are composed of multiple frames, which offer us

more information. And the temporal properties of falling snow or rain in the video

can be taken as the prior information to remove the effect of snow or rain. Snowflakes

and raindrops both have high terminal speed, compared with the exposure time of

common cameras. They generate considerable falling distance during the exposure

time. Hence, snowflakes or raindrops usually appear as snow or rain streaks in images.

Their high terminal velocity avoids the same streak to appear at the same position

in consecutive frames. If the pixel p(x, y) contains rain or snow at current frame in

videos, the pixels at the same position in the previous and next frame will not be

affected by rain or snow. Furthermore, due to the random distribution of raindrops

and snowflakes, one pixel in the video will not always be covered by rain or snow

streaks [10].

2.3.2 Chromatic Property of Snow and Rain Fall in Videos

Snow and rain can be detected in images or videos because snowflakes and raindrops

generate intensity changes in the background scene. As snowflakes and raindrops

reflect the light from the environment towards the camera, they increase the intensity

in all RGB channels. They will make the pixels they pass look brighter than the

14
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background and appear white in color.

According to research by Garg and Nayar [4] on vision of rain, individual rain-

drops without motion blur will generate intensity changes that are independent of

the background intensity value. If the raindrop causes motion blur in the image, the

rain streak will have linear relationship with the background intensity. Furthermore,

in [14], Zhang et al, observed that the intensity changes caused by rain streaks are

different than that caused by object motion. Intensity changes in all red, green and

blue channels caused by rain streaks have approximately the same value, while those

caused by object motion are significantly different. Suppose the intensity of pixels

in the current frame is It(x, y) and the intensity of the same position in the previ-

ous and next frame are It−1(x, y) and It+1(x, y). Based on the temporal property of

snow and rain, if the pixel of current frame contains snow or rain, then It−1(x, y)

and It+1(x, y) will not be polluted by rain or snow. If the background is stable, then

It−1(x, y) = It+1(x, y). So the absolute intensity changes of It(x, y) − It−1(x, y) and

It(x, y)−It+1(x, y) should be the same in RGB channels. If the background is moving,

only pixels around edges will have significant intensity changes.

2.3.3 Snow Removal in Videos

Removing snow from videos is based on the above analysis of the temporal and

chromatic properties. Considering the temporal property, the proposed method used

three consecutive frames to detect snowflakes. To filter the false alarms of object

motion, the chromatic property is applied to find true snowflake detections instead

of the object motion pixels.

Taking three consecutive frames, a threshold of the intensity change is set to detect
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the candidate pixels of snowflakes and snow streaks [10]

It(x, y)− It−1(x, y) > c, It(x, y)− It+1(x, y) > c (2.10)

where Ic(x, y) is the intensity of pixel at (x, y) of current frame, and Ip(x, y) is the

intensity of pixel at the same position of the previous frame. c is the threshold value

and in this experience, it was set at 3 following Nayar’s method.

To filter out more accurate result, two intensity changes between the three con-

secutive frames are computed.

Dt−1,t = It(x, y)− It−1(x, y), Dt,t+1 = It(x, y)− It+1(x, y) (2.11)

These two intensity changes in each channel should have similar values, otherwise,

they are treated as false alarms caused by object motion.

To remove these detected snow pixels in current frame, their intensities were

replaced by the average intensity value of pixels at the same position of the previous

and next frames.

Inew(x, y) = [It−1(x, y) + It+1(x, y)]/2 (2.12)

2.3.4 Result and Analysis

This introduced method is tested with both stable background videos and moving

background videos. In Figure 2.4, the first row shows results from stable background,

it was taken by a cellular phone in the campus of McMaster University. The back-

ground is the Information Technology Building. The result shows that this method
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Figure 2.4: Snow Removal in Videos: columns from left to right, original image,
detected candidate pixels with snow, refined pixels with snow, snow removed image.
The first row is images with stable background and the second row is images with
moving background

successfully detected most of the snowflakes in the image and obtained clear snow-

removed result. The second row shows a video taken on the street, and the background

is moving vehicles. The second image in the second row shows that using only the

intensity change, candidate pixels of snow contain many false alarms caused by the

motion of vehicles. After applying the chromatic property filtering, most of the false

alarm pixels caused by object motions such as pixels on the car’s front door and the

bus’s door are removed.

There are several drawbacks of the introduced method. One is that if the mov-

ing background is white such as the white bus showed here, it will be difficult to

distinguish between pixels of snow and moving objects in background. Figure 2.4

also shows that there are more false alarms in the area of the white bus. Another

problem is that this proposed method does not work well for rain or heavy snow.

Compared with snowflakes, raindrops are more transparent and have higher termi-

nal speed. They appear as rain streaks in images and cause motion blur and their
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intensity has linear relationship with the background’s intensity. These properties

make rain streaks difficult to detect as the intensity difference is too small to set an

appropriate threshold to detect them. Furthermore, the defocus affects the visibility

of rain streaks significantly [11]. When the camera focuses on specific objects in the

rainy scene, rain streaks that are out of focus do not appear in the image. Hence, it

is hard to detect rain streaks in videos.

2.4 Single Image Snow and Rain Removal

In videos, temporal and chromatic properties of snow and rain offer the prior informa-

tion that can be used to remove their effect but those properties do not exist in single

images. So the problem needs to be addressed in other ways. Peter et al, offered

a novel idea for solving this problem [17] in frequency space. He processed single

images as signals composed of both high and low frequency components. His method

is independent of other supporting frames and is not affected by the background mo-

tion. Other methods focus on streaks generated by snow and rain in images. These

streaks are edges and can be treated as high frequency component of the image while

the background belongs to the low frequency part. So, Xu et al, [15] and Zheng et al,

[26] used methods that segmented rain or snow images into high and low frequency

parts to smooth out the streaks in the high frequency domain.

In [15], Xu et al, mentioned that rain streaks have higher intensity value than that

of background pixels. Their color is close to white. This means that the intensity

value of rain streaks in RGB channels are similar. In contrast, background pixels,

especially edges, have significantly different intensity value in each RGB channels. So
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Xu et al, computed the reference image for guided filter as

Iref (x, y) = Ibmax(x, y)− Ibmin(x, y) (2.13)

where Ibmax(x, y) is the maximum intensity value among all RGB channels at position

(x, y) and Ibmin(x, y) is the minimum intensity value. The reference image did not

have the rain streaks while preserving background edges. Then this reference image is

used for the guided filter to smooth the original image. However, the reference image

is not accurate enough with all background details. After applying guided filter to

smooth the input image, the result is blurred.

Zheng et al, [26] used a similar method but he optimized it by using multiple

guided filters. Their method first separated the high frequency part from the low

frequency background with the guided filter. Then both the high frequency and

low frequency parts are refined. Rain streaks in high frequency are smoothed with

guided filter again. Edges in low frequency part are extracted as the final reference

image. Method of Zheng et al, gets better result than that of Xu et al, but it is too

computationally expensive.

2.4.1 Fast Single Image Rain and Snow Removal

The proposed method is the combination and compromise of methods mentioned

above. It first applied guided filter to get the low frequency component of the input

image. The high frequency part is subtracted from the input image by the low

frequency part.

H(x, y) = I(x, y)−GF (I(x, y)) (2.14)
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(a) (b) (c) (d) (e)

Figure 2.5: High and Low Frequency Components: from left to right, input image with
rain, high frequency component of the image, reference image for the high frequency,
rain removed high frequency component, recovered image.

where I(x, y) is the input image with rain or snow. The rain or snow streaks are

contained in this high frequency component. The proposed method also applied

guided filter to smooth away rain streaks and the reference image of the guided filter

is computed based on equation (2.13). After the high frequency component was

smoothed, it was added back with the low frequency component as the output.

The method proposed in this thesis keeps more details of the input image as it

only processed the high frequency part. And it is much faster compared with Zheng’s

method.

2.4.2 Result and Analysis

Image (b) in Figure 2.5 shows that the reference image removes most rain streaks while

keeping other non-streak edges of the background. After applying guided filter, image

(c) shows that most of the rain streaks disappear in the high frequency component

image.

The proposed method was tested with real snow and rain images. In Figure 2.6,
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(a) (b) (c) (d)

Figure 2.6: Snow and Rain Removal in Single Images: (a) input image with snow,
(b) snow removed image by the proposed method, (c) input image with rain and (d)
rain removed image by the proposed method.

it can be seen that the proposed method removed most of the snow and rain streaks

successfully. However, the drawbacks of the proposed method is also obvious. It

performs better to remove snow streaks than rain streaks. As shown in images (c)

and (d) of Figure 2.6, many rain streaks far away in the scene still remain in the image.

This is because rain streaks cause motion blur and have non-linear relationship with

the background intensity, which makes them difficult to be filtered away. Furthermore,

the removal of snow or rain streaks caused the loss of some edge information in the

background. It can be seen from Figure 2.6 that the name board became blurred in

the processed image (b).
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Chapter 3

Deep Learning Method for Bad

Weather Removal

3.1 Introduction

Bad weather conditions like fog, snow and rain have their individual physical proper-

ties and generate different textures and appearance in images and videos. Traditional

methods of bad weather removal focus on weather’s features separately and can only

deal with one weather condition at a time. However, in real scenarios, outdoor vi-

sion systems have no idea of what weather condition is contained in current input.

This will limit the application of traditional methods. Moreover, traditional meth-

ods are based on the models that describe the features of these different weather

conditions. But those models are not accurate enough to uncover all the details of

given weather conditions. For example, the rainy scene is a nonlinear summation of

the background and rain streaks. During heavy rain, humid air and water droplets

splashed by raindrops will generate haze floating near the ground. Then the scene
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becomes a complicated combination of both rain and fog, which leads both traditional

rain removal methods or fog removal methods to fail.

To address this problem, machine learning model has been introduced to translate

rainy images into clear images directly. Fu et al. [20, 21] proposed two machine

learning models: the traditional convolutional neural network and the ResNet network

[27]. To reduce the computation cost of the network, Fu et al. first applied guided

filter to segment the mask of rain streaks from the background and then input the rain

mask images into the network for training. Their methods have impressive output

and they skip the process of detecting rain streaks so that they are more flexible to

deal with different levels of rain. But their methods need to subjectively decide the

parameters for the guided filter. If inappropriate parameters are chosen for guided

filter, it will not get the satisfying results.

Zheng et al. [23] proposed a method to remove the misty rain from single image.

He used the convolutional neural network similar to Fu’s but built a joint loss function

that considered both the rain and the fog features. There are other methods that

considered the heavy rain situation. Zhang [24] used a method with the supporting

information of density levels. He labeled the density levels of rain in the training

dataset, and used a multi-stream dense network to discriminate rain levels and remove

rain from images. But none of them considered to deal with all kinds of bad weather

conditions together.

With traditional methods, it is challenging to have one model that can deal with

all these bad weather conditions as they have different physical properties. Hence, the

applicable method is to abandon the focus of specific weather conditions and consider

image to image translation. In this thesis, the Generative Adversarial Network is used
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to transform the images with fog, snow or rain effect into clear images.

3.2 Generative Adversarial Neural Network

In image to image translation, one challeng is to build the loss function to guide

convolutional neural network to get the sharp and realistic images. Since this is

a high level goal, it is different from dealing with local patches of images. Many

traditional popular loss functions will cause the output images to blur [28]. Generative

Adversarial Network (GAN) does not have this problem because it deals with images

in higher level [29]. It not only trains the network to generate images, but also trains

the discriminator to optimize the generator.

The framework of GAN consists of two parts: the generator G and the discrimina-

tor D. It is similar to a game between the generator and discriminator. In this case,

the generator needs to generate fake images of clear weather as realistic as possible.

And the discriminator should be trained to discriminate the fake generated images

from the real clear images. Both G and D could only control their own parameters,

but can use the output of each other for training. The solution of the game is a Nash

Equilibrium [30].

The most common structure of generator G and discriminator D is deep CNN.

For the discriminator, it is similar to a classifier. So in [31, 32] the structures of

VGG16 or VGG19 were adopted with the addition of batch normalization layer and

changing of activation layers. For example, in [33], Christian used blocks consisting

of convolutional layer, batch normalization layer and Leaky ReLU layer to build the

discriminator. The structure of generator varies a bit for different applications. In

[33], He et al. used residual CNN, whose input will be added to the last layer to
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generate output [27]. This architecture is suitable for deep CNN layers and can avoid

degradation. Phillip proposed a new idea of using U-Net [34] structure in [28]. U-Net

is a novel architecture that has impressive performance with limited training samples.

Another important component of GAN is the objective function. The classic

objective function is in the minmax form [29, 33, 32]

min
G

max
D

J(G,D) = Ex pdata [logD(x)] + Ey py [log(1−D(G(y))] (3.1)

where y is the input image with latent random variables, x is the ground truth. D

represents the probability that the output image is from the ground truth x instead

of from the generated data G(y). The purpose of this loss function is to train D

to successfully discriminate generated images between ground truth images. In other

words, it trains D(x) to get value near 0 if the input is generated image from generator

and have value of 1 if the input is ground truth. At the same time, it trains the G

to make D(G(y)) close to 1 to pass the discrimination. In other words, the generator

is good enough to generate clear images. There are other forms of loss functions for

GAN. Zhu et al. proposed a new loss function [31] that used least square error in the

minmax function considering the stability of training procedure. Phillip et al. [28]

applied L1 norm to replace log functions.

3.3 Synthesizing Training Dataset

The GAN model needs training samples that have ground truth of background and

different weather images with the same background. In real scenarios, it is impossible
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to get images in different weather conditions with identical background. The move-

ment of objects, the shaking of the camera and the change of light all cause intensity

differences. Hence, to generate training dataset, the practical method is to synthesize

weather effect in clear images. In this section, I introduced the proposed methods to

generate training dataset.

3.3.1 Fog Rendering

Fog consists of tiny water particles floating in the air. These water particles scatter

and attenuate the light reflected from objects. It decreases the visual distance and

makes the objects appear blurred. The visibility of a fog scene has close relationship

with the scene depth. Objects that are farther away are blocked by more fog particles

so that they are less visible. Inspired by the scattering model used in fog removal,

the proposed method of synthesizing fog effect adopted it to describe the fog image

and synthesize the fog effect. To get better results, Perlin noise [35] at the end is

introduced to generate texture of fog.

3.3.1.1 Model of Fog Scene

The scattering model is adopted to describe the fog effect in images.

F (x) = I(x)t(x) + A[1− t(x)] (3.2)

where I(x) is the input clear image, t(x) is the medium transmission and A is the

general atmospheric light of the whole image. The estimation process of t(x) and A

is introduced in the fog removal part in the previous chapter. To simulate the fog
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Figure 3.1: For Rendering: from left to right, clear image, medium transmission
matrix t(x), scene radiance J, fog added image with 0.5 noise ratio, fog added image
with 0.75 noise ratio

view better, Perlin noise [35] is added to get the final output.

fog(x) = (1− α)F (x) + αp(x) (3.3)

where p(x) is the Perlin noise, which is a type of gradient noise that can produce

natural appearing textures. α is the summation weight.

3.3.1.2 Perlin noise

Perlin noise has random appearance and is widely used in computer graphics to

generate synthetic textures. The shape of Perlin noise is determined by its frequency

and amplitude. In the proposed method, multiple frequencies and amplitudes were

chosen to generate different shapes of the features and they were merged together to

simulate the natural appearance of fog.

3.3.2 Rendering Rain and Snow

Rain and snow can be treated as particle systems, since both are made of water

or ice particles in the air. In this section, atmospheric properties of raindrops and

snowflakes, such as their size distribution in 3D space, terminal velocity and their

intensity are first discussed. Then a project model to generate the rain or snow mask
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images is proposed based on their physical properties. Finally these mask images of

snow or rain are added to input clear images to render the rain or snow effect in clear

images.

3.3.2.1 Density and Distribution of Rain and Snow in Space

Raindrops and snowflakes are uniformly distributed in the 3D space [36]. In meteorol-

ogy, people use the precipitation rate (millimeter per hour) to measure the intensity

of the precipitation. Rain intensity is classified according to the rate of precipitation.

Light rain has the precipitation rate smaller than 2.5 mm/hr. The moderate rain

has precipitation among 2.5 − 10 mm/hr and the heavy rain has precipitation rate

more than 10 mm/hr [37]. We also classify snow intensity based on the precipita-

tion rate. The light snow usually has intensity smaller than 1 mm/hr. Moderate

snow’s intensity is among 1 − 2.5 mm/hr and heavy snow has intensity larger than

2.5 mm/hr.

3.3.2.2 Raindrop Shape, Terminal Velocity and Falling Orientation

Due to air pressure, when raindrops fall with high speed, their shape will be distorted.

The bigger the raindrop, the more flattened the raindrop is at the side of its falling

direction. According to Beard and Chuang [38], the shape of the raindrop can be

described by a complicated 10th order cosine function. However, most of raindrops

have radius smaller than 2mm. With this small size, the distortion of the sphere

shape is very tiny [37]. Hence, raindrops can be assumed to have the sphere shape.

Another important property is the terminal velocity of raindrops, since it affects

the appearance of the rain streaks in images. As raindrops fall, they will be affected
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by air resistance, which is proportional to the square of the velocity. Higher speed will

cause larger air resistance force and the air resistance force will finally balance with

the gravity of raindrops. So, when raindrops reach the ground, they have constant

terminal velocity. Approximately, the terminal velocity of raindrops can be estimated

as [39]

v = 200
√
r (3.4)

where r is the radius of the raindrop. The terminal velocity of raindrops is usually

multiple meters per second. When pictures were taken in rain, during the exposure

time, raindrops that are close to the camera will move a considerable distance. And

they will appear as rain streaks in pictures instead of individual raindrops.

In ideal situation, raindrops fall vertically. But raindrops are very light and can

be easily driven by wind. Most of the time, raindrops fall with an angle. The value

of the angle depends on how strong the wind is. Sometimes raindrops even fall

nearly horizontally, but it is very rare to see in real scenarios. Hence, in the method

proposed in this thesis, the vertical direction is defined as 0 degree, and raindrops’

falling orientation degree is supposed to range from −45 to 45.

3.3.2.3 Snowflake Shape, Terminal Velocity and Falling Orientation

Compared with raindrops, snowflakes have more complicated shapes. Since snowflakes

are forms of ice crystals, they have thousands of different shapes such as plates, nee-

dles, dendrites and columns. In this thesis, they are assumed as thin pieces of ice

crystal. Additionally, snowflakes usually have bigger size than raindrops. However,

since they are ice crystals, they are lighter and more sensitive to wind force. This

makes them have smaller terminal velocity compared with raindrops. Based on [40],
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the terminal velocity of snowflakes can be estimated by the following equation

v =
100

r0.2
(3.5)

where r is the radius of the snowflake in the unit of meter.

Since snowflakes are more sensitive to wind force, their falling orientation has

more variance among individual snowflakes. In snow fall, snowflakes have similar

orientation in general but are not as ordered as raindrops. The kth orientation can

be defined as

θ(k) = θmean + θvar(k) (3.6)

where θ is the falling orientation of an individual snowflake, θmean is the general mean

and θvar is the variance of orientation degree of all snowflakes in the field of the view.

3.3.2.4 Raindrop Size

Raindrops have widely distributed size. The percentage of raindrops with one specific

size is determined by the rain intensity. But generally, based on Marshall and Palmer’s

research [41], a major percentage of raindrops have radius less than 2 mm. It is rare

to see raindrops with radius larger than 5 mm because when raindrops reach this

large size, they are easily to get separated when falling in the air. The raindrop size

distribution is modeled as

n(r) = 8000e−82Q
−0.21r (3.7)

where r is the radius of the raindrop, Q is the rain intensity given in mm/hr and

n(r) is the number of raindrops per unit volume in the space. After taking integral

of n(r) over all radius values, the general raindrop number density in the space can
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be described as

n =

∫ ∞
0

8000e−82Q
−0.21rdr (3.8)

For the given rain intensity Q, the probability density function of raindrops’ size

distribution is described as

prb(r) = 82Q−0.21e−82Q
−0.21r (3.9)

The probability density function of equation (3.9) shows that the majority of rain-

drops have very tiny size. Although millions of raindrops can be captured by the

camera sensor when an image is taken, only small percentage of them will appear as

rain streaks in the image.

3.3.2.5 Snowflake size and its distribution

Similar to raindrops, snowflakes also have a distribution that is exponential to the

intensity. Based on Sekhon and Srivastava’s research [42] the relationship between

snowflake intensity and its number density in unit volume is given as

n(d) = 250Q−0.94e−22.9Q
−0.45d (3.10)

where d is the diameter in mm of the snowflake and the Q is the snow intensity

in mm/h. Based on the Liquid Water Equivalent (LWE) measurement, the com-

mon snow fall intensity is smaller than 5 mm/hr. n(d) is the number density of

snowflakes with specific size in unit volume. And the probability density function of

31



M.A.Sc. Thesis - Pengfei P. Kan McMaster - Electrical Engineering

this distribution can be get from

prb(d) = 1− e−22.9Q−0.45d (3.11)

It is very similar to raindrops’s distribution as most of the snowflakes have small size.

Common snowflakes have diameter smaller than 10 mm.

3.3.2.6 Projection Model

Both raindrops and snowflakes distribute in 3 dimension space but they are recorded

by images and video frames only in 2 dimension space. To render the effect of rain

or snow, a projection model is introduced to project raindrops or snowflakes from 3D

space into the 2D surface.

3.3.2.6.1 The Appearance Shape of Raindrops and Snowflakes

The shape of rain or snow streaks depends on the size of the raindrops or snowflakes,

the cameras parameters and the distance away from cameras’ lens. Based on the

optics theory [17], if the raindrop or snowflake is in-focus, the breadth of the streak

that appears in the camera sensor is

b =
r × f
z

(3.12)

where r is the radius of the raindrop or snowflake, f is the focal length of the camera

and z is the distance to the camera. And the length of the streak is

l = (r + vt)
f

z
(3.13)
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where v is the terminal velocity of the raindrop or the snowflake and t is the exposure

time of the camera.

Besides, raindrops and snowflakes are transparent. They reflect large angle of

light from the background and blur the area where they pass. Hence, their streaks is

modeled as Gaussian motion blur

g(x, y) =

∫ l

0

e−
(x−a×cos(θ)−µx)2+(y−a×sin(θ)−µy)2

b2 da (3.14)

where (µx, µy) is the start position of the streak in the image. b is the breadth of the

streak, l is the length and θ is the orientation.

3.3.2.6.2 Field of View

Every image has its corresponding camera parameters such as the sensor size, the

focal length and the exposure time. With these parameters, the field of view of the

image can be specified. Since only raindrops or snowflakes that can be captured by

the camera sensor matter, the distance of the field of view is computed as

Zm =
2rmf

ps
(3.15)

where rm is the maximum radius of raindrops or snowflakes. And f is the focal

length, ps is the size of the sensor pixels of the camera. To appear in images, rain

or snow streaks should cover at least one pixel on the camera sensor. So, raindrops

or snowflakes that are farther away than Zm are ignored as they will not appear in
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images. Furthermore, the angle of the view is calculated as

Ah = 2 arctan
ws
2f
≈ ws

f
(3.16)

Av = 2 arctan
hs
2f
≈ hs

f
(3.17)

where Ah is the horizontal angle of view and Av is the vertical angle of view, ws and

hs are the width and height of the camera’s sensor.

The field of view is modeled as a pyramid area with the camera as the vertex.

The total number of raindrops or snowflakes in this space is

N =
1

3
× 2Zm tan(

Ah
2

)× 2Zm tan(
Av
2

)× Zm × n (3.18)

where n is the number density of raindrops or snowflakes. But N is not the number

of streaks that finally appear in the image. Since raindrops and snowflakes vary in

size, if the particle cannot generate a streak or dot wider than one pixel on camera’s

sensor, they will not appear in the rain or snow images.

3.3.2.6.3 The Rain or Snow Added Image

Rain or snow streak mask images can be rendered with the above model and then

added to input images as

R(x) = I(x)α +M(x)(1− α) (3.19)

where I(x) is the input clear image, M(x) is the rain mask image. α is the weight

used to balance the brightness of the output image so that the result will not look
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over-whiten. And α is chosen as the general mean intensity value of the input image

[43].

To generate the rain or snow mask image M(x), which contains rain or snow

streaks and has the same size as the input image, the image field of view is first

estimated by equation 3.15, 3.16 and 3.17. Then the number of rain streaks or snow

streaks are computed based on equation 3.18. Considering raindrops and snowflakes

are uniformly distributed in space, the start positions of streaks are chosen randomly

by uniform distribution. The breadth and length of the streak is computed by equa-

tion 3.12 and 3.13. At last, the streaks are drawn using equation 3.14 to have the

blur appearance.

An image taken by iPhone 5s and the added rain and snow effect are demonstrated

in Figure 3.2. The camera sensor size is 4.896 × 3.673mm2, the pixel size is 1.5um

and the focal length of the iPhones camera is 4.12mm. The shutter speed is 1/406

second when the image was taken.

3.3.2.7 Weather Effect Added Results

Rendering of the fog effect in the image does not need the camera parameters. But

to generate the snow or rain effect, the corresponding camera parameters of the

input image are needed to estimate the number and shape of rain or snow streaks.

However, for most images the corresponding camera details are unknown and it is

hard to estimate those parameters if they are not recorded. In the proposed method,

default camera parameter values for the projection model are set to generate weather

effect. The popular 35mm full frame sensor with 24 million pixels is chosen as the

default camera sensor. The sensor size is 36× 24 mm and the pixel size is 6 um. To
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.2: Rain and Snow Rendering: (a) clear image, (b) rain mask image with rain
intensity of 5 mm/hr, (c) rain added image with rain intensity of 5 mm/hr, (d) rain
mask image with rain intensity of 30 mm/hr, (e) rain added image with rain intensity
of 30 mm/hr, (f) snow mask image with snow intensity of 1.5 mm/hr, (g) snow added
image with snow intensity of 1.5 mm/hr, (h) snow mask image with snow intensity
of 4.0 mm/hr, (i) snow added image with snow intensity of 4.0 mm/hr.

have a natural appearance in human view, 45 mm is set as the default focal length

since it matches best with full frame camera sensor. Exposure time is chosen based

on the shutter speed table from International Standard Organization. Using this

projection model, the following weather effect added images are shown in Figure 3.3.
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Figure 3.3: Synthesized Weather Effect Results: The first row is clear images, the
second row is images with rendered fog, the third row is images with generated rain
and the last row is images with snow added
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3.4 GAN Network Model for Weather Effect Re-

moval

GAN Network does the image to image translation instead of focusing on the specific

weather properties. By training GAN with image pairs that contain ground truth and

images with different weather conditions, the GAN model will learn features of rain

or snow streaks and the background. Then the well-trained GAN model can generate

clear images from input images based on its previous learning.

The framework of the GAN network consists of two main components: the gen-

erator and the discriminator. Considering Zhang et al. [44] got impressive result by

using GAN to do the removal of rain, this thesis takes reference of his GAN model

structure, which is adopted from [45]. The generator uses 6 convolutional layers and 6

deconvolutional layers. For each convolutional and deconvolutional layer, batch nor-

malization is added. Batch normalization will make the parameters of current layer

to have zero mean and unit covariance, which will decrease the influence from the

previous layers and make the model more stable to train [46]. To improve the stability

of the generator, in this thesis, LeekyReLU is used as the activation function for each

layer in Generator because LeekyReLU avoids the spare gradient matrix, which dam-

ages the stability. Considering the limited training dataset [34] and recovering more

details in deconvolutional layers [47], each convolutional layer’s output is connected

directly with the deconvolutional layer’s input.For the structure of discriminator, it

is similar to a common classifier. It classifies the input data between the generated

group and the ground truth group. So, the discriminator has a deep CNN structure

with 5 convolutional layers and the sigmoid layer as the final layer to output the
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possibility. To improve the stability of the whole GAN model, LeekyReLU is added

to the first 4 convolutional layers in this thesis.

The general objective function to train GAN is in equation (1). Both D and G are

discriminable functions. G represents the mapping from input image to the output

fake image. D represents the probability that the output image is from the ground

truth x instead of the generated data G(z). The purpose is to train D to make D(x)

close to 0 while train G to make D(G(z)) approximate 1. The game between D and

G ends at the saddle point of the minmax problem. And this minmax problem can

be solved with Stochastic Gradient Descent (SGD) [29]. The generated images and

the ground truth images are sampled to update the gradient of the discriminator. On

the other hand, the output of the discriminator is also used to train the generator.

Furthermore, since in the image to image translation, the traditional pixel to pixel

loss function like Mean Square Error (MSE) cannot learn the high level feature well

[48]. Zhang et al. [44] applied a loss function that combined pixel to pixel Euclidean

loss, adversarial loss and perceptual loss function for G and D. This thesis also

adopted that to measure the high level features in images.

Compared with traditional methods, GAN model deals with heavy rain and snow

much better. As shown in Figure 3.4, GAN model uncovers clearer background details

and has more natural results while the traditional methods cannot handle the heavy

rain and snow well.

3.5 Result and Analysis

The experimental results in Figure 3.4 are real images and the GAN model produces

great results. There are no numerical criteria to evaluate the results since it lacks the
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Figure 3.4: Results of GAN: first row from left to right is image with fog, image with
light snow, image with heavy snow, image with light rain and image with heavy rain.
The second row is images processed by traditional methods using log space method
for fog removal and edge preserving filter for snow and rain removal. The last row is
results from the GAN model

ground truth to compute common evaluation criteria such as the classic Peak Signal to

Noise Ratio (PSNR), Structural Similarity Index [49] and Visual Information Fidelity

[50]. These criteria all need ground truth of images to compute the value. Hence,

the results could only evaluated visually here. Figure 3.4 shows that the GAN model

removes most part of the fog, snow and rain effect in single images and preserved the

background details well. And this GAN model can also be applied to videos since it

can process each frame individually to remove bad weather conditions.

40



Chapter 4

Conclusion

Bad weather removal in images and videos is a challenging problem in computer

vision. Physical models of common weather conditions like fog, snow and rain are

complicated. And their appearance in images are not linear combination with the

background. So it is hard to address this problem.

In this thesis, both traditional and machine learning methods of fog, snow and rain

removal in images and videos are discussed. The traditional methods take advantage

of the physical model and the photometric properties of these weather conditions.

This thesis proposed a fast fog removal method based on scattering model and has

better performance compared with other published methods. Methods of snow re-

moval in videos, snow and rain removal in single images are also introduced in this

thesis.

However, each traditional method focuses on one type of weather condition. Hence,

the Generative Adversarial Network model is introduced in this thesis to solve the

problem. It performs the image to image translation and generates clear images from

input images polluted by bad weather conditions. GAN model produces great results
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and makes up for the limitation of traditional methods. Well-trained GAN model can

deal with fog, snow and rain images well. This gives it advantage in real world appli-

cation, as outdoor vision systems does not need to detect current weather conditions

in images or videos.

There are also some drawbacks of the GAN model. It needs synthetic images with

different weather effect to train the model. And it is hard to get large size of the high

quality training dataset. This impairs the performance of the GAN model. It is also

time consuming and unstable to train the GAN model. So, in my future work, I will

focus on the improvement of the GAN model or other machine learning algorithms

to address this problem better.
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