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Abstract 


Currently most batch processes run in an open loop manner with respect to final 

product quality, regardless of the performance obtained. This fact, allied with the 

increased industrial importance of batch processes, indicates that there is a pressing need 

for the development and dissemination of automated batch quality control techniques that 

suit present industrial needs. 

Within this context, the main objective of the current work is to exemplify the use 

of empirical latent variable methods to reduce product quality variability in batch 

processes. These methods are also known as multiway principal component analysis 

(MPCA) and partial least squares (MPLS) and were originally introduced by Nomikos 

and MacGregor (1992, 1994, 1995a and 1995b ). Their use is tied with the concepts of 

statistical process control (SPC) and lead to incremental process improvements. 

Throughout this thesis three different sets of industrial sets of data, originating 

from different batch process were analyzed. 

The first section of this thesis (Chapter 3) demonstrates how MPCA and multi­

block, multiway, partial least squares (MB-MPLS) methods can be successfully used to 

troubleshoot an industrial batch unit in order to identify optimal process conditions with 

respect to quality. Additionally, approaches to batch data laundering are proposed. 

The second section (Chapter 4) elaborates on the use of a MPCA model to build a 

single, all-encompassing, on-line monitoring scheme for the heating phase of a multi­

grade batch annealing process. Additionally, this same data set is used to present a simple 

alignment technique for batch data when on-line monitoring is intended (Chapter 5). This 

technique is referred to as pre-alignment and it relies on the use of a PLS model to predict 

the duration of new batches. Also, various methods for dealing with matrices containing 

different sized observations are proposed and evaluated. 

Finally, the last section (Chapter 6) deals with end-point prediction of a 

condensation polymerization process. 
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Chapter 1 

Introduction 

The last two decades have witnessed fast changing marketing conditions (Berber, 

1995); products are brought in and taken out of the market at a very quick pace. 

According to Edgar (1996), all areas of manufacturing are seeing more emphasis on the 

rapid delivery of differentiated products, resulting in smaller plants that are located closer 

to the customers. 

As a direct consequence of this setting, many chemical producers are moving 

from the relatively stable world of continuous plant production to the more versatile and 

turbulent environment of multi-product batch production (Bonvin, 1998). This fact, allied 

with the continuous growth of the net-worldwide product consumption, makes it so that 

batch and semi-batch processes play an important role in the current industrial 

environment. There is a strong tendency in the use of these processes to produce high 

added value substances (specialty chemicals) such as pharmaceuticals, polymers, 

semiconductors and biochemicals (Nomikos and MacGregor, 1995a). 

Today' s prevailing situation in the industry with respect to batch processes is 

characterized by: high final quality and safety requirements, short-time-to-market 

demands and tight economic investments (Friedrich and Perne, 1995). 

For most continuous processes, standard control and optimization techniques can 

be easily employed to achieve the tight product quality and time demands required by 

industry. However, technical and operational characteristics inherent to batch processes, 

such as dynamic and nonlinear behavior, infrequent quality related measurements and 
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time limited corrective actions, make the aforementioned objectives difficult to achieve 

(Flores-Cerrillo, 2003 and Bonvin, 1998). 

Reduction in product quality variability within a batch process can be 

accomplished by the successive elimination of sources of the disturbance through various 

levels of control efforts. These efforts are schematized in Figure 1.1 and described in the 

following paragraphs. 

Direction ofreduced 
product quality 

variability 
Within-Batch 

Quality Control 

Figure 1.1 Product quality control hierarchy for batch processes. 

Once a successful batch production recipe has been developed (normally in a 

laboratory setting), efforts have to be made in order to ensure that it is followed with as 

much precision as possible. This can be achieved by automation or sequence control; by 

coordinating the operations of the equipments required to implement recipe steps, batch­

to-batch variations caused by human error can be eliminated (Juba and Hammer, 1986). 

Within this logic, there is also need to guarantee that selected process variables 

are capable of tracking their pre-determined trajectories as tightly as required (lee et al., 

1999, Bonvin, 1998, Juba and Hammer, 1986 and Kaparissides and Shah, 1983). Thus, 

servo-regulatory control of these variables aims at reducing product quality variability by 

eliminating the effects caused by their deviations from set point values. 

2 




MA.Sc. Thesis- C. P. Rodrigues, McMaster University, Chemical Engineering Chapter 1 

Automation of the batch recipe and satisfactory trajectory tracking are very 

important in reducing variations in product quality (an industrial example is given in 

Yabuki et al., 2000). None the less, these types of control are not able to directly 

compensate for quality variability originating from impurities in the raw material, 

variations in shared utilities or processing problems such as equipment failure, fouling, 

mixing insufficiencies or lack of available downstream equipment (Bonvin, 1998 and 

Juba and Hamer, 1986). This can be obtained by what are known as batch quality control 

techniques. 

According to Flores-Cerrillo (2003 ), batch quality control techniques can be 

classified depending on their objective (optimization, regulatory control or monitoring) 

and type of information used (batch-to-batch and within batch). 

Batch-to-batch control techniques are capable of reducing variability in the final 

product quality by using information from previous, completed, batches to make 

corrections for the next ones (Wiel et al., 1992, Fillipi-Bossy et al.,1989, Clarke-Pringle 

and MacGregor, 1998 and Dong et al., 1996). So, only disturbances that are batch-to­

batch correlated can be potentially eliminated through the use of this technique, since it is 

essentially an off-line control strategy that is only employed between batches. In order to 

compensate for disturbances in a real time manner, within-batch control techniques must 

be applied (Kozub and MacGregor, 1992 and Flores-Cerrillo and MacGregor, 2004). 

Additionally, a set of control techniques that combine information from previous batches 

to that of the current batch are also available (Lee and Lee, 2003 and Flores-Cerrillo and 

MacGregor, 2003). 

Ultimately, the amount of variability reduction obtained by the implementation of 

each of these levels of control changes from process to process. Depending on how strict 

final product specifications are, only the most basic levels of control are required. 

However, currently most batch processes still only employ automation and trajectory 

tracking techniques, thus running in an unsupervised manner with respect to quality 

(Nomikos and MacGregor, 1995a), irrespective of the results obtained. This is mainly 
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due to the fact that most batch quality control techniques available are time consuming 

and thus do not suit current industrial needs. 

1.1 Thesis Objective 

Based on the importance of batch processes in the current industrial setting and on 

the fact that most of these systems run in an open loop manner with respect to final 

product quality, irrespectively of the performance obtained, it is concluded that there is a 

pressing need for the identification and dissemination of quality control techniques that 

fit present industrial requirements. 

Within this context, the main objective of the current work is to exemplify the use 

of empirical latent variable methods to reduce final product quality variability in batch 

processes. These methods are also known as multiway principal component analysis 

(MPCA) and partial least squares (MPLS) and were originally introduced by Nomikos 

and MacGregor (1992, 1994, 1995a and 1995b). 

The use of these latent variable models is tied to the concept of statistical process 

control (SPC). They are employed to identify, study and eliminate special cause 

variations, both in an off-line and on-line manner, through the analysis of historical 

datasets and/or monitoring ofcurrent batch trajectories. Corrective actions are determined 

and executed by plant personnel and can lead to incremental process improvements. 

The main advantage of empirical or data-driven models over fundamental ones is 

that, once the input/output data has been collected, the time required to build such models 

can be very short. This is especially true in the cases where software packages have been 

developed precisely for such purpose, as is the case with MPCA and MPLS. 

When compared to other empirical methods (i.e. neural networks, ARMAX-type 

identification, multivariate regressions, among others) the latent variable approach 

presents the following advantages (Flores-cerrillo, 2003) : i) capability of handling highly 

correlated data; ii) capability of handling missing data; iii) do not require large training 
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datasets; iv) are fast, easy to build and update; v) capability ofmodeling both theY and X 

space; vi) provide simple interpretation and data validity tools. 

1.2 Thesis Outline 

This thesis consists of seven chapters. 

Chapter 2 reviews the multiway, multivariate, latent variable methodology 

proposed by Nomikos and MacGregor (1992, 1994, 1995a and 1995b). 

Chapter 3 demonstrates how MPCA and multi-block, multiway, partial least 

squares (MB-MPLS) methods can be successfully used to troubleshoot an industrial 

batch unit in order to identify optimal process conditions with respect to quality. 

Additionally, approaches to data laundering of time-varying batch process variables are 

proposed. 

Chapter 4 elaborates on the use of a MPCA model to build a single, all­

encompassing, on-line monitoring scheme for the heating phase of a multi-grade batch 

annealing process. 

Chapter 5 presents a simple alignment technique for batch data when on-line 

monitoring is intended. This technique relies on the use of a PLS model to predict the 

duration of new batches and is again demonstrated on an on-line MPCA monitoring 

scheme built for an industrial batch annealing process. Additionally, various methods for 

dealing with matrices containing different sized observations are proposed and evaluated. 

Chapter 6 deals with the end-point prediction of a condensation polymerization 

process. 

Chapter 7 contains the main conclusions reached throughout this work. 
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Chapter 2 

Theoretical Description of Multiway Latent Variable 

Methods 

The objective of the current chapter is to review the empirical methodology 

proposed by Nomikos and MacGregor (1992, 1994, 1995a and 1995b) for the analysis of 

batch process data. This methodology is based on the use of multivariate latent variable 

or projection methods, mainly principal component analysis (PCA) and partial least 

squares (PLS), and supplementary data processing techniques (i.e. trajectory alignment 

and batch-wise unfolding). 

2.1 PCA and PLS 

In most industrial plants, massive amounts of process and quality measurements 

are continuously collected and stored with a frequency that ranges from seconds to hours, 

respectively. These variables are often highly correlated and prone to having missing 

values due to the occurrence of process or sensor faults. While ordinary linear regression 

techniques are incapable of handling data with these characteristics, traditional statistical 

process control (SPC) methods, such as Shewhart charts, do not take the multivariate 

nature of the data into account (Kourti and Macgregor, 1995 and 1996 and Undey and 

Cinar, 2002). 

Multivariate statistical methods such as principal component analysis (PCA) and 

partial least squares (PLS) have proven to be of great use in the analysis of industrial 
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process data (Eriksson et al., 1999). These techniques are capable of modeling the main 

variations in the original data set by projecting it onto a lower-dimensional space defined 

by new variables know as principal components (PCs) or latent variables (LV s ). 

Historical overviews of PCA and PLS and it's applications are given by Wold et al. 

(1987) and Geladi and Kowalski (1986), respectively. 

Prior to building any PCA or PLS model it is important that the original data set 

be mathematically pre-processed in order to transform the data into a form suitable for 

analysis. Conventional data pre-treatment consists of mean centering and scaling to unit 

variance. Batch data, however, requires additional processing steps, known as unfolding 

and alignment, which are described in sections 2.2 and 2.3 respectively. 

Mathematically, PCA is represented by (Kourti et al., 1995): 

A 

X= ..,L/aP~ +E (2.1) 
a=J 

Where: X is the original data set, composed ofJ variables and I observations; ta is 

a score vector and it represents the projection of each observation onto a particular latent 

variable (a); Pais a vector of loadings, which expresses the relative importance (weight) 

of each variable from the original data set to a particular latent variable (a); E describes 

the matrix of residuals; A is the number of latent variables used in the model. 

PLS models incorporate both process (X) and quality (Y) variables and aim at 

maximizing the covariance between them. These models consist of an outer relation 

(described by equations 2.1 and 2.2) and an inner relation (described by equation 2.3 for 

it's most common form, various other models that describe the association between X 

andY are presented by Geladi and Kowalski, 1986). 

A 

Y= 2:uac~ +F (2.2) 
a=J 

A 

Y= 2:tac~ +G (2.3) 
a=J 

7 




MA.Sc. Thesis- C. P. Rodrigues, McMaster University, Chemical Engineering Chapter 2 

Where: Ua is the score vector relative to the ath PC; Ca (or qa in some notations) is 

the Y -weight vector relative to the ath PC; F and G are the residual matrices. 

Overall, the quantitative relationship between X and Y is given by X-weight 

vectors (w/) andY-weight vector (ca). These weights are essential for the understanding 

of which X-variables are important in describing or predicting the Y-variables. 

Deviations from the X/Y correlation structure (outliers) and departures from linearity are 

normally uncovered by u/t-type plots (Eriksson eta!., 1999). 

For both PCA and PLS models, the process variable data set (X) can be broken 

into meaningful blocks (Xl, X2, ... ); each block may contain data from a single process 

unit or initial conditions such as raw material quality information. This approach is 

referred to as multiblock PCA or PLS (MB-PCA or MB-PLS) (Kourti and MacGregor, 

1996 and Westerhuis et al., 1998). 

Number ofPrincipal Components Selection 

Several methods are available for choosing the number of principal components 

(A) that should be used to parsimoniously describe the original data set (Jackson, 1991). 

According to Kourti et al. (1995), cross-validation is the perhaps the most reliable of 

these methods; a detailed description of this technique is given by Wold (1978) and 

Nomikos and MacGregor (1995a). In summary, this method consists of successively 

keeping portions of the data out of the model (developed with a certain number of PCs) 

and then using it to predict the omitted data. The objective is to determine when the 

addition of another PC does not improve the model's predictive power (i.e. find the value 

of A). This purpose can be achieved using various statistical procedures or criteria, some 

of which are described in Table 2.1 using PCA as a reference. For PLS models these 

calculations are normally performed based on the predictability ofY. 
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Table 2.1 Description ofvarious statistical tests for the cross-validation procedure. 

Criteria name Relations nsed Condition nsed in determining 

when no more PCs shonld be 

added to the model 

Minimum Press 

Where: PRESS is the predictive residual 

sum of squares corresponding to each 

PC (a) 

Minimum value of PRESS is 

achieved 

R (Wold, 1978) R =PRESSa I RSSa-1 

Where: RSSa-J is the residual sum of 

squares after a-1 PCs 

R becomes greater than 1 

w 
(Krazanowski, 

1983) 

W = (PRESSa-1 -PRESSa I Dm) 
(PRESS a I Dr) 

Where: Dm and Dr are the degrees of 

freedom required to fit and remaining 

after fitting the a1
h component, 

respectively 

W becomes greater than 1 

With relation to the cross-validation issue, Nomikos and MacGregor (1995a) 

emphasize that there is no sound statistical test for this procedure and thus, the number of 

PCs needed in a latent variable model should be based on the overall picture that these 

criteria give. Additionally, Eastman and Kraznowski (1982) state that the decision of how 

many latent variables should be retained is also dependent on the purpose of the model 

(i.e. troubleshooting or prediction). 

Model Building 

Once the number of PCs to be used in a model has been established, their 

sequential calculation can be performed using the NIPALS algorithm (Geladi and 

Kowalski, 1986 and Wold et al., 1987). This iterative algorithm can also be modified to 
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handle missing data that might be present in the original data set. An overview on the use 

of latent variable methods for missing data estimation purposes is given in Muteki et al., 

2005. 

Model performance can be evaluated by simultaneously considering the relative 

amount of variation that is explained (R2
) and predicted (Q2

) by such model (Eriksson et 

al., 1999): 

R2 =1- RSS I SSX (2.4) 

Q2 =1-PRESS I SSX (2.5) 

Where: SSX is the total variation in the X-matrix remaining after mean centering. 

When PLS is considered, R2 and Q2 values are normally calculated based on the 

Y data. It is also possible to calculate the explained variation of a single variable, be it a 

predictor or a response. 

Process Data Analysis Using a Reference Latent Variable Model 

Within multivariate SPC methods, a set of "in-control" or nominal data, subjected 

only to common cause variations, is used to build a reference model. This model can then 

used to either troubleshoot or monitor new data. New observations can be projected onto 

the latent variable plane defined by the reference model: 

(2.6) 


Projections on the X-model (ta,new) can be entered into the t/u PLS inner relation 

to calculate Ua,new (Eriksson et al., 1999). 

The location of an observation on the LV plane is given by it's score value or, 

alternatively, the Hotelling's T2 equivalent, and the squared perpendicular distance of the 

observation from the plane (residual) is given by the squared prediction error (SPE) or Q­

statistics (Kourti and MacGregor, 1995 and MacGregor, 2003): 

10 
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A 2 

T 2 = L ~~ (2.8) 
a=! sa 

Where s/ is the variance of the a1
h score. 

Control limits can be applied to the T2 and SPE values or charts (if on-line 

monitoring is intended). A description of these calculations is given by Nomikos and 

Macgregor (1995a). Violation of these control limits by the new data indicates a 

deviation from the nominal or modeled process conditions. It is normally expected that 

changes in relationships between variables, such as that caused by sensor failure, is 

detected by the SPE statistic, while changes in operating conditions, such as a grade 

change, are detected by the Hotelling's T2 chart (Lennox et al., 2000). 

A set of statistical tools have also been developed to aid in the determination of an 

assignable cause for any deviations from normality (Kourti and MacGregor, 1996). This 

is important so that appropriate actions can be taken to, either compensate for the fault in 

real-time, or to avoid future occurrences. The most widely used set of diagnostic tools are 

based on calculating the contribution that each variable has on individual scores or the 

residual space (MacGregor et al., 1994 and MacGregor, 2003): 

(2.9) 


(2.10) 

Where: Xj is process variable measurementj; Pa,J is the loading vector associated 

with the a1
h principal component and the /h variable; 
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2.2 MPCA and MPLS 

Batch processes are finite with respect to duration. Batch process data is thus 

characterized by being three-dimensional in nature: J process variables are repeatedly 

measured throughout K time intervals for I batch runs. Figure 2.1 provides a visual 

representation of this X (I x J x K) matrix. 

Multiway principal component analysis (MPCA) and multiway partial least 

squares (MPLS) are equivalent to performing PCA or PLS on a two-dimensional matrix 

obtained by unfolding and rearranging the original three-way matrix (Nomikos and 

MacGregor, 1994). There are six possible ways of performing this task; the choice of 

which one to use depends on the type of variation one wants to analyze in the data 

(Nomikos and MacGregor, 1995a). Nomikos and MacGregor (1992, 1994, 1995a and 

1995b) introduced a batch-wise unfolding technique, which results in an X (I x JK) 

matrix, while Wold et al. (1998) proposed a variable-wise unfolding technique, which 

results in a X (KI x J) matrix. 

For analyzing and monitoring of batch processes, batch-wise unfolding (arranging 

of vertical I x J slices side by side to the right, as shown in Figure 2.1) is considered as 

being the most significant method of matrix rearrangement since it allows for the 

modeling of the deviations of each batch from the mean trajectory (Nomikos and 

MacGregor, 1995a, Kourti et al., 1995 and Undey and Cinar, 2002). When combined 

with mean centering, this technique removes the main non-linear and dynamic 

components in the data, allowing for the use of linear modeling techniques. Due to these 

advantages, batch-wise unfolding will be performed throughout this work. 

Subsequent to unfolding, alignment (described in section 2.3), mean centering and 

scaling are performed on the original batch data set. PCA or PLS methods can then be 

applied to this unfolded and pre-treated data matrix. 

The main variations in batch trajectories captured by the latent variable model can 

be assessed in different manners due to the time varying nature of these observations 

(Garcia-Munoz, 2004). For the reference data set, each element of the score vector (ta) 
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corresponds to a single batch and depicts the overall variability of this batch, throughout 

it's whole duration, with respect to other batches in the data set. Loading matrices from 

the MPCA analysis indicate how the variable measurements deviate from their average 

trajectories under normal operation throughout the whole batch run (Nomikos and 

MacGregor, 1995a). In other words, variables with a higher absolute loading value have a 

higher contribution to that particular latent variable at that point in time. 

It is also possible to calculate overall values of SPE and T2 upon completion of 

each batch (i) (Nomikos and MacGregor, 1995a and Undey and Cinar, 2002): 

KJ 

SPE; = e;e{ = LE(i,c)2 (2.11) 
c=l 

(2.12) 


Where: S is the (A x A) estimated score matrix. 

In order to calculate SPE and T2 values throughout the batch, the following 

equations can be implemented for each observation (i) at each time interval (k) (Nomikos 

and MacGregor, 1995a and Undey and Cinar, 2002): 

SPEk ='"'ex - xk)
2 (2.13)

I L-A ijk I) 

(2.14) 


Equations 2.11 through 2.14 consider that the batch for which they were 

calculated has reached completion, in other words, all K sample points are known. When 

on-line monitoring of new batches is intended, this is not the case. 

In principal, for on-line monitoring of batch processes using LV techniques, K 

different reference MPCA models are needed to estimate the scores and residuals for 

each current time sample k. This approach is however very computationally intensive and 

several techniques have been proposed to fill in the missing values relative to the future 

observations in Xnew in order to allow for the construction of a single model (Nomikos 
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and MacGregor, 1995a): i) substituting all nussmg future values for zero and thus 

assuming that the batch will operate normally and not deviate from it's mean trajectory; 

ii) setting all future deviations from the mean trajectory equal to that at the last measured 

sample point (k); iii) treating all future values as missing within the MPCA model. 

Garcia-Munoz et al. (2004) shows that the missing data option (iii) yields superior 

performance relative to all others and thus this will be the method of choice throughout 

this work. 

14 




----------

-----­ -- ..... ..... ..... ..... ...... 
...... 

...... 
......... 

0 

Quality 
- Measurements 

MA.Sc. Thesis- C. P. Rodrigues, McMaster University, Chemical Engineering Chapter 2 

Initial Conditions orland 

additional Measurements 


Data for a Single .Batch 

xj [ill 
+ 
I 
I 

I 
I 

I 
'---'-'-------'; 

./-. I-.. __ ..-..,., 
/ 

/ 
/ 

./ _ _ ..... 

Data for Multiple 
Batches (Aligned) 

Batch-Wise Unfolding 

J 

Variables J 

~ .1 \,mple 1 IS•mple 2 1 Somplo k '\ 30 Data Matrix 
~ \ \ 

\ \ 

I ' 

\ I \ \ 

\ \ \ \ 


I \ \ ./ 
 ./I \ \ ./ /I \ \ ./
I \ \ //
I \ \ //
I \ \ //I \ \ //

1 \ J )(K ' //
,----------------------------------~----~ ;. ;.' 

\\..______-AIig _____~-ss Da ta Ma x_____, 1 8820 -_ned Pro e-_______!n-·
MPCAL-~-_j---~ 


L________ MPLS 

MB-MPLS 

Figure 2.1 Nature of batch data: collection, batch-wise unfolding and latent variable 

model building. 
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2.3 Batch Data Alignment 

One of the assumptions of MPCA and MPLS is that all batches have the same 

number of sample points (equal duration) and be synchronized or aligned in terms of 

variable trajectories (Nomikos and MacGregor, 1995b). Batches with equal number of 

sample points are essential due to matrix calculation rules and thus equalization of the 

batch lengths is mandatory prior to batch-wise unfolding. Additionally, alignment of the 

batch data is necessary to reduce extraneous variation in the variable trajectories. Models 

built with unsynchronized data will not provide as precise statistical results relative to 

fault detection as those built with synchronized data and will thus exhibit larger Type II 

error probabilities (Kassidas, MacGregor and Taylor, 1998). 

Such conditions or assumptions are, however, not inherently true of batch data. 

Several factors can contribute to variability in total batch duration and/or the duration of 

it's various stages: seasonal differences in heating/cooling capacity, shared utilities, 

impurities in raw materials, non-automated steps which can be performed at the 

discretion of the operators, among others (Kassidas, MacGregor and Taylor, 1998). 

The objectives of batch alignment or synchronization are thus to establish 

common start points at different phases of the run and to match variable trajectory shapes 

(Kourti, 2003). Additionally, it is necessary to ensure that all batches have the same 

number of sample points. Techniques proposed in the literature are: 

• 	 Trimming of the data set based on the batch of shortest duration (Marjanovic 

et al., 2006). 

• 	 Augmenting the absent part of short duration batches with missing data 

(Kourti, 2003) or scaled deviations notes at the end of the batch run 

(Lakshminarayanan et al., 1996). 

• 	 Crude linear interpolation over the entire batch time (Westerhuis et al., 1999). 

• 	 Usage of an indicator variable with the objective of trajectory re-sampling 

which permits alignment (Nomikos and MacGregor, 1995a). 
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• Dynamic time warping (Kassidas et al., 1998). 

• Usage of discrete events to determine the transition time between batch stages. 

Trimming and data augmentation methods are easy to apply but, while they 

guarantee that all batches have the same number of sample points, these techniques 

(when applied by themselves) do not contribute towards trajectory matching. 

Satisfactory results in terms of alignment will be achieved only if the batches have 

variable time duration but overlapping trajectories in the common time part. In practice, 

this is a very restrictive condition (Westerhuis et al., 1999, Kourti, 2003 and Kassidas et 

a/., 1998). Additionally, by trimming the data set based on the batch of shortest duration, 

all information relative to the end of the longer batches is lost. When data augmentation 

methods are used, restrictions exist relative to the percentage of missing data that can be 

handled by missing data algorithms. 

Crude linear interpolation over the entire batch time results in a linear 

compression or expansion of each batch over it's entire duration (Westerhuis et al., 

1999). Thus, once again, while all batches treated in this manner will have the same 

number of sample points, their trajectories will only match if the increase or decrease in 

total batch time can be attributed to a proportional increase or decrease of the time spent 

on each production stage. 

The use of an indicator variable for batch data synchronization was initially 

suggested by Nomikos and MacGregor (1995b) and has been successfully applied by 

Garcia-Munoz et. al (2003), Kourti et. al (1996), Neogi and Schlags (1998), among 

others. In order for this technique to be applicable, a monotonically increasing variable 

with fixed initial and end points must exist (Garcia-Munoz et al., 2003). Such variable is 

what is being referred to as an indicator variable. Common examples of indicator 

variables are: conversion, cumulative weight of a key reagent, temperature ramps, among 

others. When a single indicator variable does not exist for the whole batch duration, 

different indicator variables can be selected for each stage of the batch (Garcia-Munoz et 

al., 2003). Alignment using an indicator variable can be achieved by simply re-sampling 
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all other variable trajectories at pre-specified intervals of the indicator variable. This 

linear interpolation method is capable of guaranteeing both matching number of sample 

points and variable trajectories for all batches. 

An alternative to the indicator variable method is dynamic time warping (DTW). 

Such method, initially introduced in the area of speech recognition, is capable of aligning 

batch data by translating, expanding or contracting certain localized segments within a 

batch with the objective of minimizing the distance between trajectories (Kassidas et al., 

1998). 

When the initial and final points of each batch stage are known, it is possible to 

re-sample all variables within this interval with respect to time. Identification of batch 

stages can be done through the use of discrete events within a batch such as: charging of 

reagents, heating, cooling and product discharge. Kaisha and Moore (200 1) proposed a 

mathematical filter with the purpose of identifying such events from the batch data. 

Another procedure to help in phase identification is to take the derivative of a critical 

variable and verifying any changes in it's sign. Occasionally, such stages are recorded as 

an added variable in automated systems and thus a mathematical filter is not needed. 

With all the alignment methods presented it is possible to include a variable 

expressing batch evolution (i.e. cumulative batch time) by augmenting the original 

process data matrix with this information (Westerhuis et al., 1999), as shown in the 

following section. 

2.4 Batch Data Augmentation 

When additional information such as a batch progression indicator, stochastic 

variables, data from other units, among others, are thought to contribute to the diagnostics 

capabilities of the model, the original data matrix (X) used for PCA or PLS can be 

augmented with these new variables (Xc) in the following manner (Y oon and 

MacGregor, 2001): 

(2.15) 
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Chapter 3 

Troubleshooting of an Industrial Batch Process using 

Multiway Latent Variable Methods 

The purpose of this chapter is to illustrate how the multivariate latent variable 

methodology proposed by Nomikos and MacGregor (1994, 1995a and 1995b) and Kourti 

et al. (1995) can be utilized, together with data pre-processing, in order to analyze and 

troubleshoot an industrial batch process. 

More specifically, multiway principal component analysis (MPCA), multi-block 

multiway partial least squares (MB-MPLS) and batch alignment methods, were 

successfully used to troubleshoot a specialty chemical production unit in order to identify 

optimal process conditions with respect to quality. Additionally, approaches to data 

laundering of time-varying batch process variables were proposed. 

3.1 Process Description 

The process under study is composed of a reactor, which operates in semi-batch 

mode, a centrifuge and a storage tank. This unit is used to synthesize an organic specialty 

chemical referred to, in the present work, as LX. This production system is a critical step 

in a multi-step process and as such, LX is an intermediate product. A diagram of the LX 

production unit along with upstream and downstream process indications is shown in 

Figure 3.1. 
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Coolant Brine Outflow 
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Further
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Anal Product 

CENTRIFUGE 

LX DfyCaka 

Figure 3.1 LX production unit scheme. 

Recorded process variables for the LX batch process are listed bellow: 

• Xl- Total Reactor Weight; 

• X2, X12, X13 and X14 - Bulk LX temperatures in the reactor (X2 is the 

controlled variable); 

• X3 - Head space temperature within the reactor; 
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• 	 X4- Coolant (brine) temperature at the exit of the reactor jacket; 

• 	 X5 - Coolant flow rate (manipulated variable in bulk temperature control); 

• 	 X6 - Surface temperature within the reactor; 

• 	 X7 - Liquid level within the reactor; 

• 	 X8 -Feed rate of critical reagent (reagent 2); 

• 	 X9 -Agitator Speed; 

• 	 X10- Agitator Power; 

• 	 Y - Liquid level in the final product hold tank; 

LX synthesis occurs within the reactor and follows a production recipe that is 

divided into four distinct phases. These phases are defined by the occurrence of a 

determined sequence of critical process steps or events, described as follows: 

• 	 Phase 1- Addition of the first reagent (reagent 1) followed by initialization of 

agitation (which will be kept constant until the end of phase 4). Addition of 

reagent 1 is not directly measured; however, it can be inferred by an upward 

ramp in reactor weight (X1), as shown in Figure 3.2. 

• 	 Phase 2 - Addition of the second reagent (reagent 2) and control of the bulk 

temperature at a pre-defined, constant, set-point value. Reagent 2 is 

considered critical and yield determining and it's addition is marked by a 

second ramp in reactor weight (Figure 3.2) and recorded by variable X8. 

• 	 Phase 3 -Temperature rise to a new set-point value and addition of quench 

water (for dilution purposes). The increase in bulk temperature during this 

stage is due to an exothermic reaction between reagents 1 and 2. 

• 	 Phase 4 - Discharge ofmaterial to centrifuge. This is done in two steps, as can 

be seen by the two sudden drops in total reactor weight (X1) in Figure 3.2. 

The operators make the decision of when to discharge; delays maybe due to 

problems in the system (pump failures, equipment unavailability, among 

others). It was indicated by industrial personnel that if the diluted LX is held 
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in the reactor too long before discharge (1 or 2 hours) it becomes a bad 

intermediate material, due to degradation, and thus must be discarded. 
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Figure 3.2 Reactor weight (Xl) and bulk temperature (X2) trajectories during LX 

production phases. 

After being discharged from the reactor, the synthesized material is centrifuged . . 
No process measurements are taken during this production stage. 

This product (LX) is then transferred to a hold tank, where it' s total volume is 

indirectly measured by a tank level indication. This is the quality measurement (Y) for 

that particular batch run. 

3.2 Project Objective 

The present work aims at identifying optimal process conditions, with respect to 

final product quality, for the production unit under study. In practice, this translates to 

maximizing final LX liquid volume (Y) obtained per batch and minimizing it's variability 

throughout successive batches. 
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While no numerical target was set for such objective, it was indicated by 

industrial personnel that any incremental raise in Y values would lead to significant cost 

savings. 

3.3 Data Set Description 

The historical data set made available for the present study is composed of 58 LX 

batch runs. Each batch run contains thirteen process variables (Xl thought XlO and X12 

through X14), one quality variable (Y) and batch tag discriminations. All of these 

measurements were registered by the digital control system (DCS) at every minute. Time 

consumption throughout each batch is inferred from this knowledge. 

Batch tags are variables that give numerical indications that a discrete event or 

process step has occurred. There are 18 possible batch tags in all and these are executed 

in accordance with the process automation system. The operators are, however, able to 

overwrite this system by manual control. 

LX production is carried out in monthly campaigns. Batch identification numbers 

are coded so that the first digit indicates the month of the campaign (i.e. batch 1051 was 

produced in January). Only data referring to the months of January, March and May was 

collected. This information is relevant in the subsequent discussions. 

3.4 Data Pre-Treatment 

The steps taken in order to treat the LX data set, prior to the multivariate analysis, 

are described in the sub-sections that follow. 

3.4.1 Data Visualization 

The first step taken towards data analysis was to plot all variables, for all batches, 

against time and visualize process behavior. The result of such preliminary analysis was 
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the exclusion of a batch due to extreme abnormal behavior of most of it's variables; in 

this case, batch beginning and end points could not be identified. 

3.4.2 Alignment of the Batch Data 

Preliminary data analysis showed that the batch runs under study have different 

durations and un-matched trajectories, thus indicating the need for alignment. As 

previously discussed in Chapter 2, there are various ways to align batch trajectories and 

their applicability and performance are case dependent. 

Visual inspection of various LX trajectories, for both shorter and longer batches, 

indicated that these do not overlap in common time parts (Figure 3.5, left). Thus, neither 

crude linear interpolation with relation to total batch time or data augmentation of the 

shorter batches, are appropriate alignment methodologies. Additionally, the data does not 

present any single or combined process variables that can be used as indicator variables 

for the complete batch run. 

In order to satisfactorily align the different batches from the data set in question, 

the four pre-defined process phases were further divided into nine stages and cumulative 

time within each of these stages was treated as the indicator variable. 

Since the initial and final time of each stage is different for each batch, it is 

necessary to attribute a progression measure to allow for re-sampling. Thus, a specific 

stage was set as being 0% complete at it's first original sample point (beginning of the 

stage) and 100% complete at it's last original sample point (end of the stage). Each stage 

(s) of each batch (i) was then re-sampled at time increments given by ~Timeis = 

Timeisl(n-1), where n is the desired number of samples for that stage (Garcia-Munhoz et 

al., 2003). For the current work, re-sampling was done using linear interpolation. 

Identification of the stages to be used for LX data alignment was done through the 

recognition of discrete events that occurred throughout all batch runs. Since the 

occurrence of such events was registered in the historical data sets as an additional 

variable (batch tags), they were easily recognized and thus no mathematical filtering was 
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necessary, except in the identification of the discharge stages. For these last three stages 

(corresponding to phase 4) a second order derivative of total reactor weight (X I) with 

respect to time (T) was used to aid in the determination of beginning and end points of 

discharge in an automated manner. Such points show up as pronounced peaks or dips in 

plots of absolute values of d2XlldT2 versus time (T) (Figure 3.3). 

Various numerical techniques can be used to calculate derivatives and partial 

derivatives of batch trajectories with respect to their evolution index (Garcia-Munoz, 

2004). Such techniques vary in complexity and robustness to noise. In this work the 

approach taken was simply to calculate the difference between two adjacent elements of 

XI in time (single point derivative): 

ax1 1 = xl(k)- xl<k-1) ( 3.1) 

ar t=k I(k) -Tck-1) 

The new process stages defined for alignment are shown in Figure 3.4. 
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Figure 3.3 Plot of total reactor weight (XI) and absolute values of it's temporal second 

order derivative (d2XI/dT2
) versus time for the identification ofprocess stages 7-9. 
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Figure 3.4 Reactor weight (Xl) and bulk temperature (X2) trajectories during process 

stages (S) used for LX batch data alignment. 

The number of observation within each alignment stage (n) used during re-sampling 

was determined by the average number of observations before alignment for those 

batches considered "normal" (Table 3.1). This is done to avoid errors caused by 

interpolation resulting from having too many or too few actual measurements between 

two interpolated values (Kourti, 2003). 

Table 3.1 Vector of average number of observations within each alignment stage (n), 

prior to alignment. 

Stages 1 2 3 4 5 6 7 8 9 

Observations 13 4 56 30 8 25 5 28 5 

Visual inspection of plots of total reactor weight (Xl) and bulk temperature (X2) 

for all batches (Figure 3 .5), indicates that the alignment methodology used was successful 

at ensuring that all batches have the same number of sample points (174) and 

synchronized trajectories. 
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Figure 3.5 Plots ofvariables Xl , X2 and X16 for all batches, before alignment (Left) and 

after alignment (Right). 

3.4.3 Data Augmentation with Calculated Variables 

Subsequent to batch alignment, better fault detection and identification is possible 

through the inclusion of cumulative time as an extra variable in the data set (Westerhuis 

et a/. ,1999, Garcia et al. , 2003 and Kourti, 2003). Thus, in the current case-study, time 

usage per batch was incorporated as the 16th variable in the X matrix. Visual inspection 
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ofFigure 3.5 indicates that, prior to alignment, time evolves linearly for all batches while, 

subsequent to this transformation, it is "distorted" and incorporates information regarding 

how each batch "evolves" through time. 

With the intent of increasing data interpretability, new variables, expressing the 

cumulative sum of coolant and reagent 2 flow rates (X5 and X8), were also added to the 

X matrix as the 14th and 15th variables respectively. These new trajectories, referred to as 

X5s and X8s, rely on the use of previous knowledge in order to express in a more 

meaningful manner the total heat transfer from the reactor and the total amount of reagent 

2 added throughout the batch progression. 

Finally, based on knowledge gained from a preliminary MPCA study, the data set 

is augmented to contain an extra Z matrix allowing for an MB-MPLS analysis. This 

matrix will be better described in section 3.5.2 of this thesis. 

3.4.4 Unfolding, Scaling and Mean Centering 

The current work relied on the use of the software BatchSPC versiOn 2.0 

developed by the McMaster Advanced Control Consortium (McMaster University, 

Hamilton, Ontario, Canada). This program automatically unfolds the original data matrix 

in a batch-wise manner and auto-scales it (scales to unit-variance and mean-centers) in a 

column-wise manner. 

It is also worth mentioning that, throughout the course of this Chapter, cross­

validation was performed on the unfolded data matrix using Simca P+ version 11, 

developed by Umetrics. This software relies on R-statistics (described in Chapter 2) and a 

set of rules to determine the optimum number of principal components in a model. 
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3.5 Troubleshooting of the Batch Data 

The mam objective of this section is to build latent variable models usmg 

historical data from the LX production unit, to analyze the process and determine which 

variations in the process variables have the highest impact on final product quality. 

The analysis is presented in three sections. In the first section (3.5.1), an initial 

assessment of the data is performed using MPCA. Based on knowledge gained from this 

preliminary study, a second section (3.5.2) shows how the data set is augmented to 

contain an extra Z matrix and a multiblock, multiway, PLS model is fitted and analyzed. 

The third section (3.5.3) is aimed at applying data laundering techniques to extract further 

quality-relevant information from the historical data. 

Theoretical concepts relative do MPCA and MB-MPLS are described in Chapter 

2 of this thesis. 

3.5.1 Multiway Principal Component Analysis (MPCA) 

Even though the primary objective of the current project is to determine which 

variations in process conditions are the most influential on the quality variable (Y), it is 

also important to understand the variability within the process variables (X) as a whole. 

This allows for gain in process knowledge and the identification of clusters of operating 

conditions. Such clusters are indicative of any significant changes or deterioration in the 

process during the data-collection period. 

Detection and understanding of changes in operating conditions is of extreme 

importance since data based or inferential models are only valid for the set of process 

conditions for which they were identified (reference dataset). This is described in the 

literature as the fundamental assumption of comparable runs (Kourti et a/., 1995). 

Processes that run based on campaigns are especially prone to presenting shifts in 

operating conditions since they are normally used in multi-product synthesis and are thus 

subjected to contamination, alterations in operating set points and even mechanical 
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configurations. If a process shift is detected it must be carefully studied. Data from 

periods prior to the occurrence of such changes may have to be excluded, since they no 

longer represents "normal" operating conditions. 

With these objectives in mind, a MPCA model was built using a single X matrix 

containing all 57 pre-treated batches from the historical data set. Each batch contained all 

13 original process variables and the 3 calculated variables. 

Outlier Detection 

Methods for calculating the optimal number of principal components (PCs) a 

model ought to have, such as cross-validation, should not be applied on a first analysis of 

the historical data. This is due to the fact that, most likely, the data contains some outliers 

that will affect the performance of such techniques, depending on their robustness. 

Initial outlier identification was performed by building a model with the 2 

principal components (PCs) that captured the most variation in the historical data set, and 

evaluating the resulting overall Hotelling's T2 and SPE values for the individual batches. 

Batch 5121 was identified as a strong outlier due to the fact that it presented an overall 

Hotelling's T2 value significantly above the 99% confidence interval. A model built after 

the exclusion of batch 5121 was "interrogated" to determine what caused this batch to 

have a projection to the score plots (tl and t2) so different from all other batches. An 

overall contribution plot for the first score (t1) between this batch and averaged values 

from all other batches indicated that batch 5121 has an abnormal behavior with relation to 

variables X5s, X14 and time. This was confirmed through the inspection of the raw data 

plots and. Batch 5121was thus determined to be an outlier and excluded from the data set. 

Interpretation ofthe MPCA model 

A final MPCA model, containing data from the remammg 56 batches, was 

subsequently built. Such model uses 3 latent variables to capture 56% of the variance in 

the X matrix; 32% of this variance is captured by the first principal component alone. 
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Cross-validation initially showed that 8 PCs were optimal capture 78% of the 

variance in the process variables (Figure 3.6). Since the aim of the current section is to 

analyze the main variability in the data, only components that increased the fraction of 

the sum of squares explained (R2
) by more than 10% where kept. 

• R2X (cumulative) 
• Q2 (cumulative) 

Number of Principal Components 

Figure 3.6 Percent variance explained (R2
) and predictive power (Q2

) of the models 

containing the number of PCs listed in the horizontal axis. 

Figures 3.7 and 3.8 show the projections of.all 56 batches onto the score planes 

(tl/t2 and t1/t3) of the final MPCA model. Visual inspection of such plots shows the 

existence of four obvious data clusters in the tl /t2 score space and three, less obvious 

ones, in the tl/t3 score space. A couple of things are readily apparent when examining 

these clusters: (i) each cluster is composed mainly of batches run in the same production 

campaign; (ii) it is probable that two production campaigns were carried out in January; 

this is supported by the fact that the batch data identification numbers differ only in the 

third digit for those batches pertaining to different clusters; (iii) clusters are separated 

mainly along the direction of the first score space (tl), however, both t1 and t2 or t3 are 

needed to see the separation. 
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t [1) 

Figure 3.7 Score plot for tl /t2. 
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Figure 3.8 Score plot for tl /t3 . 

The existence of data clusters in the score plots indicates that batches run in the 

same production campaign have similar behavior in relation to their variable trajectories, 

while those that where produced at a different campaign, do not. It is thus necessary to 

further interpret the model to determine which variables are responsible for such 

disparity. However, due to the time varying nature of these observations, the main 
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variations in batch trajectories captured by the latent variable model can be assessed in 

different manners. 

The loadings relative to the first PC of the MPCA model in question (Figure 3.9) 

point to the importance of variables X1, X3, X5 (and X5s), X6, X9, and XlO in 

explaining the variations in the t1 direction. Furthermore, X4 and time also where shown 

to contribute to this purpose, even if not as significantly. While X4, X9 and time are all 

positively correlated with each other, X1, X3, X5, X6 and X10 are all negatively 

correlated with these first variables but positively correlated among themselves. This 

means that higher than average values ofX4, X9 will lead to an increase in t1 values and 

higher than average values ofX1, X3, X5, X6 and X 1 0 will lead to a decrease in t 1. 

-...... 
'"a:: 

0.02 

0.01 

0 

-0.01 

-0.02 

-0.03 

Batch Time Repeated For Each Variable 

Figure 3.9 MPCA loading plot for the first principal component. 

The final and most significant step taken in this troubleshooting exercise was the 

analysis of various contribution plots between batches belonging to different clusters in 

the t1 score space (Figure 3.1 0). The following conclusions were drawn from these 

graphs: i) batches produced in January (both clusters) have consistently lower values of 

X3, X5, X6 and XlO, and higher values ofX9 than both March (Figure 3.1 0, top left) and 

May (Figure 3.10top right); ii) batches produced in March have consistently lower values 

ofX3, X5, X6 and XlO and higher values ofX9 than May (Figure 3.10 bottom left); iii) 
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the mam difference between the January clusters is that the batches with lower 

identifications numbers have consistently higher values of X3 and X6 and than those with 

higher identification numbers (Figure 3.10 bottom right) ; iv) XI does not consistently 

vary between clusters. 

Batch Time Repeated For Each Variable 
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Figure 3.10 Contribution plots for the first score (tl) for all variables, over all time points, 

between batches: 1162 and 3171 (top left), 1022 and 5282 (top right), 3175 and 5291 

(bottom left) and 1021 and 1153 (bottom right). 

It is known that the LX product plant is located in a southern American state and 

thus subject to very hot summers and fairly cold winters. A crucial observation resulting 
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from the analysis of the contribution plots between clusters, is that most of the variables 

that were consistently lower in the earlier, and thus colder, months of the year are 

temperature related (X3, X5 and X6). This suggests that such variables are subjected to 

seasonal variation. Based on these observations, it is possible to explore potential 

scenarios for the LX process behavior depicted by the variables within this process: 

• As mentioned in the previous paragraph, ambient temperatures in May are 

warmer than those in March, which are, in turn, warmer than those in January. 

This may cause the inflowing coolant temperature to also rise in the summer 

months, possibly due to heat transfer during transportation within the pipes or 

even to lower brine refrigeration performance. Since the brine coolant is used to 

control the product bulk temperature within the reactor (X2, X12 and X13), a 

larger brine flow rate (X5) is needed to compensate for higher temperatures in the 

in-flowing coolant. Such phenomenon can also cause the out-flowing brine 

temperature (X4) to increase. 

The effect of seasonal changes in cooling water temperatures and, consequently, 

in heat removal capabilities has been previously described by Kassidas et a/. 

(1998). 

In hindsight, the seasonal effect on X5 can be seen univariately (Figure 3.11 left), 

however, such effect would be very difficult to pinpoint using this simpler 

approach. 

• Higher values of surface (X6) and headspace (X3) temperatures during 

summer month can be justified in two possible ways: i) in case the temperature 

sensors in question are located close to the reactor wall, they may be influenced 

by the brine flow temperature within the reactor jacket and thus present higher 

temperature readings for the summer months; ii) it is known that the LX reaction 

takes place in a nitrogen rich atmosphere and that the N2 is kept in exterior tanks 

with no temperature control. Thus, if X6 and X3 measurements are influenced by 
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the nitrogen temperatures within the tank, they will exhibit higher values in hotter 

production days. 

• The inverse relation between agitator speed (X9) and power (XI 0) observed 

between seasonal clusters is on a first analysis contradictory since, fundamentally, 

such variables are directly proportional. However, the following hypothesis can 

be used to explain such phenomenon: i) both metallic and polymeric parts are 

known to expand when submitted to warmer temperatures, thus, summer months 

could present higher friction between the motor rotational parts leading to an 

increase in power consumption (XI 0) and decrease in speed (X9); ii) differences 

in temperature can accentuate the formation of impurities within the raw material 

which could lead to changes in product viscosity and thus increase agitator power 

consumption and decrease speed. 

• As previously mentioned, increase in total reactor weight (XI) with increasing 

ambient temperatures is not fully proven due to lack of consistency. It maybe that 

more batches of the May cluster show higher values of XI and thus this variable 

is confounded with the seasonal effect on temperature. This claim is again 

supported univariately in Figure 3.II(right). 

It is important to note that the scenarios listed above are consistent with respect to 

the positive and negative correlations between variables described by the loadings plot. In 

this case, ambient temperature is a lurking variable and it plays a major role in affecting 

the relationship among X3, X4, X5, X6, X9 and XIO. 

Industrial personnel responsible for LX production indicated that the scenarios 

previously described to explain the patterns seen in the data, where very plausible. 

However, it should be noted that all causal statements are based on previous process 

knowledge; since they cannot be inferred form the multivariate models alone. 
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Figure 3.11 Seasonal effects on coolant flow rate (left) and total reactor weight (right). 

In summary, the MPCA model allowed for a significant gain in process 

knowledge relative to the seasonality of the LX production unit. However, it is not 

entirely correct to state that there was a shift in process conditions between production 

campaigns, since the differences observed may repeat themselves annually. It is, 

nevertheless, necessary to keep such changes and the resulting confounding effects in 

mind when proceeding with the data analysis. 

Additionally it was noted that changes in total reactor weight (Xl) play a major 

role in the variability of LX production. However, due to the cumulative nature of this 

variable it is not possible to explicitly distinguish which reagents contribute to such 

deviations. This observation is important and measures are taken in the following section 

to further facilitate diagnostic procedures with relation to product quality. The same 

observation applies to process time usage. 

3.5.2 Multi-block, Multiway, Partial Least Squares (MB-MPLS) 

The objective of the current section is to determine which variations m the 

process variables of the LX production unit are most influential on the final product 

quality. 
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As previously mentioned, both total reactor weight (XI) and time usage are 

believed to play a major role in the current analysis. However, the cumulative nature of 

these variables makes their interpretation difficult. In order to overcome this problem, 

selected information from the original XI and time vectors were added to a new block of 

data (Z). The information contained in the Z matrix is: total time necessary to complete 

stages I and 2 (tRI ), 3 (tR2), 4 (tReact), 5 (tW), 6 (tplato) and 7 to 9 (tdisch) and total 

weight of reagents 1 (RI), 2 (R2) and water (W) added per batch. 

In order to achieve the objective of this troubleshooting exercise and considering 

the nature of the data set, a multi-block, multiway PLS analysis was performed. This 

regression model is capable of simultaneously relating the final product quality data (Y) 

to the aligned process trajectory data (X) and the additional matrix (Z). 

Outlier Detection 

Outlier identification was performed through the inspection of a preliminary MB­

MPLS model fit with 2 PCs (equal weights were given to the X and Z matrices). Batches 

II 51, 5I21 and 5I5I were identified as having very high distances from the model 

(significantly above the 99% confidence interval for the SPE) with relation to the Z­

space, Y-space and X-space respectively. 

Overall contribution plots for SPE between batches 5I21 (X-space) and 1151 (Z­

space) and an average from all other batches, again shows that batch 5I2I has anomalous 

behavior with relation to variable XI4, while batch 1151 spends a much higher than 

average time in stage 5 (tReact). Inspection of the raw data for batch 1I5I indicated that 

the DCS system erroneously attributed the same batch tag for various stages. Both of 

these batches were excluded from the data set. 

Batch 515I presented an extreme distance from the model in the Z-space due to 

the fact that it has a much lower than average value of Y without having any deviations in 

the X-space that would cause this. This is an indication that there was probably some 

error in the collection of the quality data point for this batch and it was thus, also 

excluded from the data set. 
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Batch Classification 

With relation to batch classification, no direct indication of whether a batch 

progressed in a desired manner with relation to it's process or quality variables was 

given. LX industrial personnel only stated that batches that yielded higher product 

volume (Y) were extremely desirable. 

However, one of the fundamental assumptions of all inferential approaches is that 

of observable events (Kourti et al., 1995). In other words, it is crucial to establish if the 

model is capable of discriminating between "good" and "bad" batches from the 

measurements that were collected. 

Considering these statements, a decision was made to classify the batches within 

the LX data set based on their values of final hold tank level. Visual inspection of Figure 

3.12 shows that, due to their high values of Y, batches 5104, 5105, 5111, 5112, 5113, 

5114 and 5115 are, for the purposes of the current study, considered as being "very good" 

and batches 1031, 3161, 3171, 3172 and 5271 as being "very bad". 
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Figure 3.12 Batch classification based on values of the Y data. 
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Block Weight Selection 

In order not to bias the multi-block PLS model, it is important to attribute the 

right amount of "importance" to the X and the Z matrices; this can be achieved by 

attributing weights to them (Westerhuis et a/., 1998). To determine these weights, 

preliminary analysis or knowledge of the system can be used. MacGregor eta/. (1994) 

proposed a way of verifying that successful blocking has been achieved by comparing the 

predictions ofY achieved from the single and multi-block models for the same number of 

PCs. Essentially this is a trial-based approach; if the multi-block model provides lower 

predictability then the single-block PLS model, different weighting or blocking 

arrangement or an increase in the number of PCs included in the model, should be 

attempted. 

As an initial guess, equal weights were applied to both the X and Z matrices and a 

X-Z-Y MPLS model was fitted. In order to verify the validity ofthis choice, the results 

for this multi-block model along with those for the single X-Y MPLS and Z-Y PLS 

models are summarized in Table 3.2. 

Table 3.2 Summary of the results of various PLS models for block weighting. 

Model X-YMPLS Z-YPLS X-Z-YMPLS 

Component Rz Y (%) Q2 y (%) R2Y (%) Q2Y (%) R2 y (%) Q2Y (%) 

1 53.9 49.2 75.7 71.9 67.1 62.7 

2 83.8 79.2 80.7 74.5 83.9 78.6 

3 91.2 85.0 82.2 73.2 90.9 84.8 

Inspection of Table 3.2 shows that no significant predictive power is lost between 

the multi-block and the single models. Thus equal weights for the X and Z matrices are 

applied to the final multi-block model. 

Additionally, Table 3.2 also shows that the sum of the captured variance (R2
) and 

the predictive power (Q2
) for the multi-block model is practically the same as that of each 

of the single blocks. This indicates that the X and Z blocks are not orthogonal from each 
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other and of equal importance in describing the final quality variability. The first 

observation is expected since the Z matrix contains a subset of the information contained 

in X. The second observation is, however, not expected. This means that the variables 

selected to compose Z, which are much fewer than the ones contained in the X matrix, 

are very influential in the final product quality. 

MB-MPLS Model 

A MB-MPLS model, containing data from the remaining 54 batches and having 

equal X and Z block weights, was subsequently built using 2 PCs. The amount of 

variance in the Y vector captured by this model was very high (84%), especially 

considering that no process measurements were taken within the centrifuge. This 

indicates that variations within the reactor are almost exclusively responsible for the final 

quality achieved. 

The variance captured by the model in the X- space and Z-space were: R2X = 

38% and R2Z = 27%, respectively. Additionally, no departures from linearity between X, 

Z and Y were verified. 

Multi-block PLS models have two sets of scores: i) the super-scores (TT), which 

take all blocks into account in explaining Y; ii) the block scores, which will take one 

block (X or Z) into account at a time to explain Y (Garcia-Munoz, 2003). 

Visual inspection of the TT1/TT2 super-score plot (Figure 3.13) shows a clear 

clustering of batches 5103, 5105, 5111, 5112, 5113, 5114 and 5115. Also, clustering of 

the batches pertaining to the same production campaign is verified, but to a much smaller 

extent. 

With relation to quality, the batches pertaining to the cluster singled out in the 

super-score plot are those that were considered as the "good", or in this case "best", 

batches, due to their high values of Y. These batches have high TTl values. Inspections 

of the batches with the lowest TTl values shows that these are, for the most part, those 

that were considered as the "bad" batches due to their low values of Y. This proves that 
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the system is "observable" and thus that the process data collected is able to discriminate 

between "good" and "bad" batches. 
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Figure 3.13 Super-score plots TT1 /TT2, clustering ofthe "good" batches is identified . . 

In order to isolate the cause of the clustering of all the "good" batches, an absolute 

contribution plot for the first PC between one of these "good" batches (5115) and another 

batch (5123), with lowerY value, also produced in May was analyzed (Figure 3.14). This 

plot points to higher values of reagent 2 added to batch 5115 as being the main 

contributor to the difference in quality observed. This phenomenon was consistent for all 

batches in the cluster depicted in Figure 3.13: for all "good" batches the total weight of 

reagent 2 added to the reactor was significantly larger than for the remaining batches. 
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Figure 3.14 Absolute contribution plot for the first PC between batches 5123 and 5115. 

A time series plot of the quality data (Figure 3.15) shows that all the "good" 

batches occurred in the beginning of May. When inquired about this, and the fact that all 

such batches had considerably higher quantities of reagent 2, the operators of the LX 

plant confirmed that there had been a problem with the flow meter during this period. 
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Figure 3.15 Time series plot of the final quality (Y) for the LX data. Production 
campaigns are discriminated by month. 
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Retrospectively, the influence of the weight of reagents 1 and 2 added to the 

reactor on Y values can be seen univariately (Figure 3 .16). It is clear, however, that the 

latent models provided crucial aid at identifying the assignable cause related with the 

production of the "good" batches. 
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-
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Figure 3.16 Univariate influence of total weight of reagents added and Y. The values of 

reagent weight has been scaled so as to not disclosure proprietary information. 

MB-MPLS model with the exclusion ofthe cluster of "good" batches 

By identifying the special cause that led the batches produced in early May to 

have higher Y values than all other batches, the standard deviation of Y around it's mean 

decreased from± 0.90 to ± 0.54 tank level units. In other words, 36% of the variance of 

Yl, for the given data, is due to a loose control of Reagent 2 addition in batches 5104, 

5105, 5111, 5112, 5113, 5114 and 5115. 

Through the exclusion of these batches, which do not represent "normal" 

operating conditions, it is possible to determine which process variables are most 

influential in explaining the remaining variability in Y. 

A 2 PC model (as determined through cross-validation) captured 82% of the 

variance in Y, 20% of X and 21% of Z. The first latent variable alone is responsible for 

capturing 73.5% ofthe variance ofY. 
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The TTIITT2 super-score plot for this model indicates that the system is still 

observable since the batches with highest Y values (mostly produced in early January) 

have the largest TTl values, while those with the lowest Y values (mostly produced in 

March) have the values ofthis statistic (Figure 3.17). 

-1 .5 -1 0 0.5 15 
TT {1 I 

Figure 3.17 Super-score plots TT1 /TT2. 

Thus, in order to obtain high volumes of the final product (Y), values of TTl and, 

consequently, of tl for the individual blocks (tl x and tl z), must be maximized. Analysis 

of the weights for the first PC corresponding to the X block (wlp1) shows that 

maximization of tlx occurred when variables Xl , X3, X8s and time were kept above 

average while X5 and X5s where kept bellow average throughout the whole batch time 

(Figure 3.18). Other variables, such as the bulk (X2, Xl2 and Xl3) and brine (X4) 

temperatures, had time-shifting contributions to keeping t1 x high. 

The high relative value of the weights (wlp1) for total reactor weight (Xl) and it's 

persistency, makes this variable the main contributor to obtaining high Y values. 

However, inspection ofwlpt is not sufficient to discriminate which ofthe reagents has the 
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largest impact on the increase of Y. It is thus necessary to inspect the loadings for the Z 

block (wLc) for the first PC. Examination ofFigure 3.19 shows that high values ofY are 

obtained when above average amounts of reagent 2 and reagent 1 are added to the 

reactor. Furthermore, this plot shows that reagent 2 has a bigger impact on Y than reagent 

1. 

This last observation is in agreement with theoretical knowledge of the process 

smce reagent 2 is known to be the critical, yield determining, raw material in LX 

production. 

The following conclusions were also reached from the inspection of Figures 3.18 

and 3.19: 

• 	 Even though the cumulative total flow of reagent 2 (X8s) is positively 

correlated withY, it's correlation is much smaller than that of the total weight 

of reagent 2 added (R2). This indicates the need for the re-calibration of the 

flow meter. It is also worth questioning if, perhaps, a tighter control on 

reagent addition might be achieved through the use of the reactor scale. 

• 	 Brine flow (X5) is shown to be negatively correlated with Y. However, this 

does not hold true for batches produced within the same campaign 

(verification was done through the inspection of contribution plots between 

same-month batches), indicating that such effect is seasonal and correlated 

with Y due to the fact that the now "good" batches were produced in the 

colder month of January. 

If the temperature of the in-flowing and out-flowing coolant was measured, 

than the heat removed from the system could be calculated and no seasonal 

clustering would be observed. 

• 	 Variables X2, X3, X4, X6, X12 and Xl3 all show positive correlations with 

Y. This positive correlation is also seen in same-month contribution plots. 

This indicates that, with relation to quality, these effects are not seasonal. Due 

to the non-casual nature of empirical models, it is not possible to state if 
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higher than average temperature values lead to higher Y values or if, due to 

the fact that more reagents 1 and 2 were added, these temperatures were 

higher. 

This last statement is consistent with theoretical process knowledge since it is 

known that the LX reaction is exothermic. Thus, higher quantities of the 

critical reagent leads to higher conversion and, consequently, to higher heat 

generation. 

• 	 Time usage during the batch is positively correlated with Y for the initial 

stages and negatively correlated for the discharge stage. The fact that time of 

discharge should be short concurs with theoretical process knowledge that 

some product decomposition occurs if the material is kept in the reactor too 

long. However, the stage that is being depicted as having the highest influence 

on Y is the one in which addition of reagent 2 occurs. This could indicate that 

a higher time spent on that stage would allow for more material to react or, 

alternatively, it could just be a consequence of the fact that by adding more 

reagent 2 more time is spent on such phase. 

Plant experiments in which the reaction phase is prolonged are suggested as a 

mean to possibly increasing final product volume (Y). 
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Batch Time Repeated For Each Variable 

Figure 3.18 Weights for the first component in the X-space for the MB-MPLS. 
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Figure 3.19 Weights for the first component in the Z-space for the MB-MPLS. 

From the discussions regarding the potential scenanos for the LX process 

behavior, it is clear that the amount of reagents 1 and 2 added per batch play a major role 

in the final volume of product obtained (Y). Due to this fact, their behavior is modeled 

mostly by the first latent variables of the MB-MPLS model. In order to uncover further 
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variations in process variables that affect the variability in the Y data it is necessary to 

inspect the loadings of higher PCs. This, however, can sometimes be difficult to interpret 

since these effects maybe spread out among various latent variables. 

In order to facilitate the analysis for further process variables that impact Y and 

are uncorrelated with reagents 1 and 2, data laundering techniques will be applied to the 

LX data set. 

3.5.3 Data Laundering 

Data laundering or regression out method is a data pre-processing technique that 

removes "nuisance" or target effects of specific variables from the remaining data set, or 

from a selected group of variables. Thus, this method allows for the investigation of low 

frequency signals, uncorrelated with the "nuisance" variation. Examples of such un­

wanted variations are: ambient temperature, seasonal and daily effects and reactant 

concentration streams (Zavitsanou, 2002). 

Various methods of data laundering are discussed in the literature (Zavitsanou, 

2002). Target rotation (Christie 1995 and 1996) can be used to remove the effects of the 

target variable through constrained principal component decomposition. The constraint is 

set on the loading value of the target variable, which is forced to unity. The target rotated 

model matrix contains all the variations within the data set that are correlated to those of 

the target variable. The laundered data are contained in the residual matrix (Christie, 

1995); the values of the target variable column within this matrix are zero. 

Within the least squares solution (Zavitsanou, 2002), initially the laundering 

coefficients can be estimated by regressing the data matrix (X) on the target variable (xt) 

and, in sequence, the laundered matrix is calculated by subtracting the model matrix from 

the original matrix (residual matrix): 

(3.3) 

Xlaundered =X- xtf3 
~ 

(3.4) 
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If more than one target variable exists, Yoon (2001) suggested the use of PLS 

decomposition to overcome potential problems caused by ill-conditioning of the target 

matrix: 

X laundered =X- X PedictedbyPLSmodel (3.5) 

Application of data laundering techniques to batch processes must take into 

account their time-varying nature. To the best of the author's knowledge this specific 

issue has not been previously discussed in the literature. 

The method proposed to launder out a time-varying batch process variable from 

the remaining data set is to build one regression model for each sample or time point (k) 

of the batch-wise unfolded data matrix. This concept is illustrated within the least squares 

framework in Figure 3.20. With relation to this example, xtk is the target variable and Xk 

is the process data matrix at time k. The final laundered matrix is calculated by 

subtracting the model matrix from the original matrix for all time points. 

Time1 Time2 Timek 

.. . 

Figure 3.20 Illustration of the method proposed to launder out a time-varying batch 

process variable from the remaining data set. One regression model is built for each time 

sample point (k) of the batch-wise unfolded data matrix, following the notation given in 

equations 3.3 and 3.4. 
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In the case of the LX process, the "nuisance" or target variables are the total 

amounts of reagents 1 and 2 added per batch (Rl and R2). If total reactor weight (XI) is 

set as the target variable and the batch-laundering technique previously suggested is 

applied, the effect of quench water addition will also be laundered out of the remaining 

data set and this is not of interest. Thus, the method chosen to selectively remove the 

effects of Rl and R2, was to apply a PLS decomposition only to the Y data, using the 

total sum of reagents 1 and 2 per batch as the X data: 

(3 .6) ~aundered = Y- Y predictedbyPLS model 

The PLS model in question was capable of explaining, and thus excluding 46.8% 

of the variability ofY with one principal component. 

Visual inspection of the time series plot of the residuals of the Y data (Ylaundered) 

shows that these present a overall decreasing trend. Batches 1024, 1035 and 1034 are 

considered as being "good" and 3171 , 1031 , 3161 and 5282 "bad" batches (Figure 3.21 ). 
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Figure 3.21 Time series plot of the residuals ofthe Y data (Ylaundered). 

An MPLS model fitted to the LX process data X and the laundered quality data 

Ylaundered, was subsequently built using 2 latent variables (indicated by cross-validation). 
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The Z matrix was kept out of the model since it no longer is needed to discriminate the 

weight of the different reagents added. The final model was cable of explaining 66% of 

the variability of Ytaundered· This means that, with relation to the original data set, the 

variance of Y explained by the first principal component is 0.066 level units2 or, 

equivalently, a standard deviation of± 0.25 level units. 

Visual inspection of the weights for the total reactor weight (X1) for the first 

principal component shows that this variable is not correlated with Ytaundered for the first 

two-thirds of the batch (Figure 3.23). This proves that the data laundering technique 

applied was successful at eliminating the effects of R1 and R2 from Y and, 

consequentially, from the remaining data set. 

However, inspection of the tl/t2 score plot (Figure 3.22) shows that the system is 

only slightly observable. In general, batches produced in January have higher values of 

Ytaundered and t1 values, however, one is not able to distinguish, between batches 1024 

(good) and 1031 (bad) with relation to this last value. Furthermore, clustering among 

production campaigns is very obvious. This indicates that variations in the quality 

variable (Ytaundered) are not significantly explained by variations in the process variables. 

Since the variance of Ytaundered corresponds to only 8% of the original Y variance it 

is suspected that information content of the quality data is extremely low and further 

analysis will not yield conclusive results. 
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Figure 3_22 tl/t2 score plot for the laundered data set. 
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Figure 3.23 Weights for the first PC of the MPLS model. 
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3.6 Conclusions 

Multiway latent variable methods (MPCA and MB-MPLS) were successfully 

used to troubleshoot the industrial batch process under study. These methods were able to 

indicate that variations in the total weight of reagent 2 (and to some extent also of reagent 

1 ), added per batch of LX produced, were highly influential in the final product quality 

(Y). Thus, an increase in the amount of critical component added will lead to an increase 

in LX liquid volume obtained per batch. Also, reduction of variability in Y can be 

obtained through a tighter control of reagent addition. Calibration of the flow meter or the 

use of the reactor scale as an aid in controlling reagent addition is suggested. 

With relation to time usage, the latent variable methods indicated that an increase 

in the reaction time between reagents 1 and 2 (phase 4 shown in Figure 3.4) and a 

decrease in the time of discharge may lead to an increase in Y values. Plant tests are 

needed to further determine the causal nature of this observation. 

Additionally, the off-line MPCA analysis performed was capable of identifying a 

seasonal behavior in some of the LX process variables caused by changes in ambient 

temperatures. 

Data laundering techniques specific to batch processes were also suggested, so 

that further variations in the data set could be explored. However, their application to the 

current process led to inconclusive results since the information content in the data was 

low. 

Finally, an observation is made to the fact that the final quality data metric chosen 

for the LX unit (total product volume obtained per batch) is, most likely, not capable of 

sufficiently describing the true final product quality for this process. For an effective PLS 

analysis, the Y matrix should span a wide range of product properties: physical, chemical 

and relative to final application (Nomikos, 1995). In the case of the process under study 

measurements of the percentage of active material present in the final product, for 

example, would probably allow for greater process understanding, optimization, and 

possibly, mid-course corrections. 
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Chapter 4 

On-Line Monitoring of a Multi-Grade Batch Annealing 

Process using MPCA 

The purpose of the current Chapter is to present a novel, multi-grade, industrial 

application of the on-line multivariate monitoring methodology introduced by Nomikos 

and MacGregor (1994) for single-grade batch processes. More specifically, in the current 

work, this new methodology was successfully used to build a single, all-encompassing, 

on-line monitoring scheme for the heating phase of a multi-grade batch annealing 

process. 

4.1 Batch Annealing Process Description 

Annealing is an important heat-treatment process used to soften, relieve stress and 

increase ductility of cold-rolled steel (Moon and Hrymak, 1999). Physically this is 

achieved through mechanisms of recovery, recrystallization, and grain growth of 

deformed metal microstructures (Sahay and Kumat, 2002). 

Annealing can be either a continuous or a batch type operation. Due to their 

versatility, economics and ease of operation, the majority of the existing annealing 

facilities, including that under study, rely on batch type processes (Moon and Hrymak, 

1999). 

Batch annealing operations take place on a fixed base whereupon cylindrical steel 

coils, separated by convector plates, are stacked. This system is then enclosed by a 
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protective cover, followed by a furnace. An inert gas is circulated within the protective 

cover through the aid of a base fan. Depending on the type of fan installed, two different 

speed settings can be fixed throughout a batch run. Similarly, there are two different 

furnace types currently in use at the steel mill in question. 

Three temperature sensors (T1, T2 and T3) are located at different points of the 

annealing reactor and a fourth temperature measurement (T4) is inferred from the data 

collected by these sensors. A schematic of the process described is shown in Figure 4.1 

and typical temperature profiles for a single processing cycle are given in Figure 4.2. 

Each annealing cycle is composed of a heating and a cooling phase. The 

beginning of the heating phase is marked by the ignition of the furnace burners followed 

by a fast rate of increase in Tl. When this variable reaches it's set point value, soaking 

begins. The simultaneous end of the soaking step and the beginning of the cooling phase 

occurs when T4 reaches set point value. At the beginning of the cooling phase, the 

furnace is removed, with the aid of a crane, and replaced with a cooler. 

Fuel 

Convector 
Plates 

Figure 4.1 Schematic ofthe batch annealing process. 
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Figure 4.2 Typical batch annealing temperature profiles for a single processing cycle. T1 

values are not registered during the cooling phase. 

The existence of multiple bases, protective covers and furnaces, allow for 

different stacks of steel coils to be annealed independently. Each stack can contain from 1 

to 4 coils of the same steel grade. A total of 11 steel grades are processed at the facility 

under study. 

A complete annealing cycle takes anywhere from 3 to 7 days (Moon and Hrymak, 

1999). Soaking times and temperature set point values depend on steel grade and are 

generally pre-determined through plant trials and empirical methods (Sahay and Kumat, 

2002). During production, overall processing times and temperature trajectories are also 

subjected to batch-to-batch variations mainly depending on the number and geometry of 

the coils being annealed and, to varying degrees, on process equipment specifications 

(furnace type, base fan speed and base location). This is further discussed in Chapter 5 

for one particular grade type. 
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4.2 Project Incentives and Objectives 

High temperatures and long heating phase cycle times (30 to 60 hours) make 

batch annealing operations energy intensive (Sahay and Kumat, 2002). This issue, which 

has a large impact on processing cost, associated with high final product quality demands 

and a growing number of new steel grades, have led to a revival of interest in batch 

annealing studies. 

Perin et al. (1988) discuss the factors that have a direct effect on the performance 

of batch annealing equipment (mainly high convection heat transfer coefficients within 

the protective cover). Buckley et al. (1999) used sophisticated computational fluid 

dynamics (CFD) techniques to simulate the heat transfer phenomenon occurring in a high 

temperature coil annealing furnace (HTCA). Both of these technologies can be applied to 

the design of annealing furnaces to greatly increase productivity of conventional 

equipment and final product quality. However, save re-design, improvement of already 

installed processes is not addresses by these studies. 

Moon and Hrymak (1999) addressed short-term scheduling issues for batch . 
annealing processes with the objective of maximizing material throughput. Within this 

work a novel mixed-integer linear programming (MILP) model was successfully used to 

determine the optimal equipment movement plan capable of satisfying high utilization of 

shared equipment (i.e. cranes, furnaces and coolers). The general mathematical model 

developed for this optimization study is deterministic in nature and assumes, among other 

things, that no failures in utilities occur during an annealing cycle. The authors recognize 

that this assumption is not reasonable in real batch processes and that a further gain in 

process efficiency can be achieved through real-time fault identification. 

Shay and Kumar (2002) developed an integrated batch annealing furnace 

simulator (BAFSIM) capable of predicting temperature evolutions, microstructural and 

mechanical steel properties. The main purpose of this simulator is to optimize annealing 

process cycles in order to achieve an optimal balance between high productivity and high 

final product quality with a reduced number of plant trials. Additional potential uses of 
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this model include: online control, soft sensor, product development, trouble-shooting, 

statistical process control and information management. 

Although the models of BAFSIM are based on fundamental relations, tuning 

parameters are determined through the use of plant data. However, no description was 

given by the researchers regarding the number of batches necessary to accurately 

determine these tuning parameters and which factors, such as staking configuration and 

steel grade, impact them. 

The objective of the current project is to build a single, all-encompassing, data­

based, on-line monitoring scheme for the heating phase a multi-grade batch annealing 

process. Such scheme should, not only be capable of real-time fault detection for the 

various steel grades processed at this site, but also be able to handle the various coil 

staking configurations, furnace types, base locations and fan speed settings used. 

Due to it's ease of use and capability of handling large sets of noisy, correlated, 

batch process data, multiway principal component analysis (MPCA) is the empirical 

method ofchoice in building this monitoring model. 

Implementation of an efficient on-line monitoring scheme allows for early fault 

detection and, consequently, for faster corrective actions by the operators. Such actions 

can greatly improve efficiency of material throughput and process safety. Additionally, 

batch-to-batch final quality variability is reduced through the elimination of abnormal 

processing conditions. 

The advantage of having a single, all-encompassing, model (as opposed to one 

model for each steel grade) is the reduction of implementation and upkeep efforts. 

Champagne and Ivanov (2002) listed the necessity of building one model for each 

product grade produced in a given process as a major limitation of the use of multivariate 

analysis tools. These authors developed a multi-grade modeling technique which uses a 

PLS discriminant analysis (PLS-DA) model to extract and eliminate inter-grade 

variability from a continuous paperboard production dataset. The PLS-DA residuals are 

then used to capture intra-grade variability with a second PCA or PLS model. In 
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summary, this methodology is able to group families of similar, continuously produced, 

paperboard grades with two models. 

To the best of the author's knowledge, the current work is novel in the sense that 

it presents a multi-grade modeling technique, for monitoring batch processes. 

4.3 Description of the Data Set 

The data set provided by the annealing facility to build the reference PCA model 

included a total of 83 batch runs. Each batch run contains 4 process variables (Tl, T2, T3 

and T4) which are sampled at 5-minute intervals, during both the heating and cooling 

phases of the process. A total of four different steel grades (Gl, G2, G3 and G4) are 

represented within this data set, corresponding to 72% of all steel annealed in this facility. 

For each steel grade, staking arrangements of both 2 and 3 coils were included. Due to 

lack of data, arrangements of 1 and 4 coils were not included in the model set but were 

subsequently tested. 

In order to further test the monitoring scheme, data for 33 additional batch runs 

was provided. This new data set contained both batches under normal process operation 

(8 observations) and batches in which a fault had occurred (25 observations). The data 

pertaining to the "out-of-control" batches was carefully selected to contain examples of 

the most common faults (section 4.5.2) for all the different steel grades encompassed by 

the monitoring scheme. The new "in-control" data was purposefully collected months 

after the data used to build the monitoring scheme with the intent of picking up any slow 

drifts in the process that may have occurred throughout this time. 

As previously discussed, annealing temperature trajectories are subjected to 

batch-to-batch variations depending on steel grade, number and geometry of the coils 

being annealed and on process equipment specifications (furnace type, base fan speed 

and base location). It is important that an approximately equal number of batches with 

different combinations of such parameters be included in the reference data set. This is 
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done to avoid that the monitoring scheme be biased towards specific trajectory 

characteristics. 

Table 4.1 shows all the data sets used throughout this work as well as their 

distribution with relation to steel grade and staking configurations. Distribution with 

relation to all other parameters previously listed was considered satisfactory. 

Table 4.1 Description ofthe data sets provided. 

Data set purpose Total Number 
ofBatches 

Number of batches with 1,2,3 or 4 coils 
per steel grade 

01 02 03 04 
Reference model building 
"in-control" 

83 0,5,15,0 0,10,7,0 0,9,16,2 0,12,7,0 

Model testing for 1 and 4 coils 
"in-control" 

6 1,0,0,2 0,0,0,1 0,0,0,2 0,0,0,0 

Model testing for process drifts 
"in-control" 

8 0,0,2,0 0,2,0,1 0,1,1,0 0,2,0,0 

Model testing for faults 
"out of control" 

25 0,3,3,0 0,1,5,0 0,1,5,1 0,3,3,0 

4.4 Data Pre-treatment 

The steps taken in order to treat the batch annealing data set, prior to building the 

final PCA monitoring model, are described in the sub-sections that follow. The results of 

all individual steps are shown in Figure 4.4 for variables T1 and T4. 

4.4.1 Data Visualization and Trimming 

The first step taken towards data analysis was the graphical representation of all 

batches with the purpose of process behavior visualization (Figure 4.4, top, shows the 

raw data for T1 and T4). This preliminary analysis revealed that four batches presented 

outlying starting values of T1. These abnormal data points were substituted for missing 

data after plant personnel confirmed that they were in fact a result of sensor failure at 

such points. 
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In sequence, the heating phase of each batch run was identified based on inferred 

temperature measurements (T4). All batch cycles start at the same T4 value. The end of 

the heating phase occurs when the set point for T4 is reached. Since the objective of the 

current project is to monitor only the heating phase, all data not pertaining to this interval 

was trimmed and discarded. 

4.4.2 Data Alignment 

Due to variations in the time necessary for T4 to reach set point value, annealing 

heating cycles have different durations from batch to batch. One method of guaranteeing 

that all batch runs have the same number of samples and matching trajectories is to align 

the data by resampling it based on intervals of one or more indicator variables. 

For on-line monitoring purposes, it is necessary to choose a monotonically 

increasing indicator variable with known initial and final values. In the current data set, 

the only variable that satisfies this condition is T4. However, this variable is not 

monotonically increasing in the following situations: (i) the initial and final sections of 

most batch runs (ii) cases where a specific type of fault occurs causing this temperature to 

drop. In order to overcome these problems, the following procedures were adopted during 

the resampling portion of this work: 

1) 	 The first 15 samples are kept at 5 minute intervals to guarantee that important 

variations in initial process measurements are captured. 

2) 	 The value ofT4 at the 16th sample of each batch is set as being equal to 0% of 

batch completion. The final set point value ofT4, which depends on the grade 

of steel being annealed and is known before the start of the batch, is set as 

being equal to 1 00% of batch completion. 

Samples were taken at every 0.25% increase of T4 between 0% and 99% of 

batch completion and at every 0.05% increase of such variable for the 
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remammg of the batch run. This multi-rate sampling approach is done to 

compensate for the slower raise ofT4 at the end of the batch. 

For the sample rates chosen, all "in-control" batches had samples taken at a 

maximum of 5 minute intervals for the first half of the batch, 15 minute 

intervals from half to three-thirds of batch completion and 30 minute intervals 

in the remaining section. These sampling rates were considered acceptable by 

plant personnel. It is important to remember that, for the current process, data 

samples come from the process at 5 minute intervals and thus, resampling at 

smaller intervals will only lead to data interpolation and not acquisition of 

new information. 

3) 	 In order for new samples to be taken in cases where T4 values drop, a 

condition was added to the aligning program guaranteeing that, if a sample 

had not been collected by the monitoring scheme at time intervals superior to 

the maximum values exposed in the paragraph above, a sample is taken, 

independent ofT4 values. 

The results of this aligning technique can be seen in Figure 4.4 (Tl Aligned and 

T4 Aligned). 

4.4.3 Unfolding, Grade Specific Mean Centering and Scaling 

According to the theoretical discussion presented in Chapter 2, the next logical 

step to multiway, multivatiate latent variable data analysis is to mean center and scale to 

unit variance the full, batch-wise unfolded, process data matrix. In other words, the 

statistical parameters (row-wise means and standard deviations) necessary for this 

mathematical operation are calculated based on the reference data set which, in this case, 

is composed of4 different steel grades. 

A MPCA model, composed of two latent variables, was fitted using data pre­

processed using this standard approach. Visual inspection ofthe resulting tl/t2 score plot 
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(Figure 4.3, left) shows a clear clustering of batches in which the same steel grade was 

annealed. 

-100 -50 0 
t [1] 

50 100 

Figure 4.3 tl /t2 score plot for conventionally mean centered (left) and grade specific 

mean centered (right) batch data. 

This behavior is expected since temperature set points and processing times are 

grade dependent. Thus, batches where the same steel grade is annealed have similar 

behavior and are thus projected within the same cluster in the score plot. A direct 

consequence of this segregation is a widening of the statistical control limits calculated 

based on the reference data set. The monitoring scheme then becomes less sensitive in 

terms of fault detection. 

Kosanovich et al. (1999) showed how independent scaling of data sets collected 

from different reactors can be used to remove the segregation between them. A .similar 

concept can be applied to the multi-grade annealing process in the following manner: 

I) 	 Initially the reference data set matrix (X) is divided into sub matrices (Xai) 

containing only process data for those batches in which the same steel grade 

was annealed. 
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2) 	 The mean (row-wise) of each unfolded sub matrix (Xa) is then calculated and 

used to perform grade specific mean centering of batches that have similar 

steel grades. On-line mean centering of new batches is possible using this 

approach since the steel grades to be annealed are known ahead of time. 

3) 	 Posterior of grade-specific mean centering, the sub matrices (Xa) are once 

again united to form the full reference set (X), which is scaled to unit 

vanance. 

The results of this pre-processing technique can be seen in Figure 4.4 (Tl and T4 

mean centered). By comparing the data that has been simply aligned to that that has also 

been mean centered by steel grade; one observes that no segregation of the temperature 

trajectories occurs when this later technique is employed. Additionally, Figure 4.3 (right) 

shows that the grade specific mean centering technique applied was also successful at 

eliminating data clusters in the tl /t2 score plot. 

Additionally, grade specific scaling could also have been applied to this data set 

to further decrease grade-to-grade clustering in the latent variable space. However, all . 
grades presented approximately the same variance for all variables throughout the whole 

batch run and thus this additional pre-processing step was not considered necessary. 
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Figure 4.4 Data pre-processing techniques variables T 1 and T4 of the reference data set 

provided. 
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4.4.4 Data Augmentation 

With the purpose of enhancing overall fault detection and identification, 

cumulative time per batch (Time) was included as an extra variable in the X matrix 

(Westerhuis et a/.,1999, Garcia et al., 2003 and Kourti, 2003). In order to improve the 

detection of faults caused specifically by irregular fuel feed to the furnace, a new variable 

(T1var) was also incorporated to the original data set. This type of fault is characterized 

by an increase in the variation of Tl around it's mean value and normally indicates the 

existence of a sticky valve (see section 4.5.2 for further explanations and a visual 

representation of Tl and Tl var behaviors, both typically and during fault occurrence). 

Tl var reflects the cumulative variance of Tl at every sample point (k) and is calculated 

by: 
- 2 - 2 

(Tlk -TI(p:k)) (Tlk-! -Tl(p:k-1)) ( .l)
Tlvark + 	 + .... 4

k-p k-1-p 

Where: 	 k = current sample point; 

p = initial sample point; 

Tl(p:k) = Tl average calculated using all points between p and k; 

It should be noted that the use of equation 4.1 causes samples k to have a lower 

weight with relation to previous ones. Alternatively, a variable reflecting the variance at 

every time point could have been used. 

Empirical studies indicated that best fault detection results were achieved when 

the values of Tlvar are set to zero during the samples in which Tl has not reached set 

point value. 

Experimentally, models containing two new variables expressing the distance 

between Tl-T2 and T2-T3, at every sample point, were also fitted. However, fault 

detection capabilities of these models were not superior to that of models without these 

two variables. 
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Thus, the final X matrix contains a total of six variables: Time, Tl, T2, T3, T4 

and Tlvar. 

4.5 Reference MPCA Model 

This section describes the steps taken in building the reference MPCA model to 

which all new batches under production will be compared against, in real-time, and 

classified as normal or abnormal. Theoretical concepts regarding reference model 

building are further described in Chapter 2. 

4.5.1 Selection of "In-control" Batches 

Reference statistical models are built using a historical set of "good" or "in­

control" batches. All 83 batches included in the original data set were believed, by plant 

personnel, to be representative of the batch annealing process while under normal 

operation. This assumption was made due to the fact that the original monitoring scheme 

did not alarm during their production. 

In order to determine if these batches were truly "in-control", the following 

iterative process was used: i) a MPCA model, composed of2 PCs, is built - initially using 

all batches and subsequently only those remaining after step iii; ii) overall Hotelling's T2 

and SPE statistics were calculated for each batch (these plots provide a diagnostics to test 

if any unusual batches have been included in the reference data set and if a model that is 

representative of normal operation has been built [Nomikos and MacGregor, 1995]); iii) 

batches in which these statistics greatly exceeded their respective 99.9% confidence 

intervals (C.I.) were excluded; iv) the previous steps were repeated until all outliers were 

removed from the data set. 

At the end of the procedure described above, a total of 7 batches were excluded 

from the original data set. After visual inspection of the data from these batches, plant 

personnel verified that 4 of them presented faults that had not been diagnosed by the 
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original monitoring scheme. The remaining batches were considered as being "fast", due 

to the fact that all temperatures rose more rapidly than normal. Additionally, some of 

these batches presented shifts in furnace fuel operation. This, in itself, is not a fault; 

however, it is not depicted in other batches and thus leads to high overall SPE and 

Hotelling' s T2 values. Thus, due to their high leverage, all 3 batches were eliminated. 

Of the remaining 76 "in-control" batches, 2 were excluded for model performance 

testing. The final reference process data matrix is thus composed of 7 4 batches. 

4.5.2 Selection of the Number of Principal Components 

The optimal number of principal components (PCs) needed to parsimoniously 

describe the main variations in a given data set, can be calculated using different criteria 

(see section 2.1). Cross-validation is currently the mostly widely used method for this 

purpose. The results obtained from the use of various statistical tests in the cross­

validation procedure of the pre-processed batch annealing data, along with the software 

used, are listed in Table 4.2. 

Table 4.2 Description of the statistical tests used for cross-validation. 

Selection Criteria Software used Number of Principal Components 

selected to build the MPCA model 

R Simca P+ version 10 >20 

R Simca P+ version 11 10 

R Batch SPC version 2.0 3 

w Batch SPC version 2.0 10 

Minimum Press Batch SPC version 2.0 >20 

It is worth mentioning that, whenever Simca P+ was used during this exercise, the 

data set was previously unfolded in a batch-wise manner and treated as a normal project. 

This software has a different procedure for determining the number of PCs that best 

69 




MA.Sc. Thesis - C. P. Rodrigues, McMaster University, Chemical Engineering Chapter4 

describes variable-wise unfolded batch data. If these rules were applied to the current 

data set, 3 PCs would be selected. 

Inspection of Table 4.2 shows that there is a considerable difference in the results 

obtained for number of PCs selected as optimal for building the MPCA model. These 

results depend, not only on the statistical criteria that is applied, but also on which 

version of which software is used. This is due to the fact that additional rules, which vary 

from software-to-software (Eriksson et al., 1999) and even from version-to-version, are 

added to cross-validation procedures. These rules determine, among other things, the size 

of the data set that is kept out from the model at each step of calculations and the 

significance of the statistics on which the stop point is based. 

The main conclusion resulting from this exercise is that statistical tests used for 

cross-validation procedures are not sound. These criteria only supply a guideline for the 

selection of the necessary number of latent variables that should be used to build a 

reference model. In order to best estimate this parameter, it is necessary to consider the 

purpose of the model and the overall picture that different selection criteria give 

(Nomikos and MacGregor, 1995a and Eastment and Krzanowski, 1982). 

The MPCA model in question will be used for on-line monitoring and, as such, 

it's main purpose is to be able to distinguish, in real-time, when an abnormal process 

condition is occurring and when it is not. Charts based on Hotelling' s T2 (using A 

principal components) and on SPE statistics provide a very effective set of multivariate 

monitoring techniques (Y oon and MacGregor, 2000). Thus, these chats will be used to 

detect faults that may occur during an annealing cycle. When a fault occurs, the 

instantaneous values of the Hotelling' s T2 indicate the occurrence of larger than normal 

variations in measurements that are consistent with the model, while the instantaneous 

SPE statistics accounts for disturbances which are not represented in the reference data 

set and break normal process correlations (Qin, 2003). 

Figure 4.5 shows how the multivariate monitoring charts depict the occurrence of 

a fault during the production of a single batch. In this case both charts were able to detect 

the fault at around the 25th sample point. This dual detection can occur when the 
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abnormal behavior is captured to a small extent in the reference database but occurs with 

large intensity during a fault. 

Visual inspection of Figure 4.5 also shows that the size of the C.I. used can 

influence fault detection; delaying it when a wider C.I. is used. Thus, this parameter must 

also be taken into consideration during PC number selection. 
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Figure 4.5 Hotelling's T2 (left) and SPE (right) instantaneous monitoring charts for a 

batch in which a fault has occurred. 

The people who will be in closest contact with this model are the plant operators 

and thus, it is of crucial importance that they be satisfied with it. According to annealing 

plant personnel, operators rapidly lose confidence on a monitoring scheme if it alarms 

when no fault is present. Inevitably they start to ignore all alarms coming from this 

scheme, rendering it useless. 

With these issues in mind, metrics relative to delayed or missed fault detection 

(Type II error) and false alarms (Type I error) are chosen as criteria for latent variable 

number selection. The objective is to fit an MPCA model such that a reliable monitoring 

scheme is obtained (both types of errors are within acceptable limits). 

In order to indirectly determine the occurrence of Type II errors, a model with a 

randomly selected, high number, of principal components (11 PCs) was built using the 

annealing reference data set. In sequence, the number of samples it took for this model to 
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detect faults occurring m a few "out-of-control" batches was verified (using both 

Hotelling's T2 and SPE monitoring charts). The number of latent variables used to build 

this model was then sequentially reduced and the moment of fault detection was again 

determined for each new model. The delays of the alarm between the new models and the 

one built with 11 PCs was determined and are represented in Figure 4.6 (left) for both 

99% and 99.9% C.I. 

For batch processes, Hotelling's T2 and SPE values at successive times points are 

not independent and thus, Type I errors are not equal to the a values resulting from 

control limit tests applied to these statistics. Nomikos (1995a) suggests a procedure for 

determining Type I error for the control limits over an entire batch run: i) each batch in 

the reference data set is passed through the monitoring procedure; ii) the number of 

statistics (Hotelling's T2 and SPE values) falling the outside the control limits is 

determined; iii) the sum of these "outlying" points is divided by the total number of 

observations (I x K). The result of applying this procedure to the annealing data is shown 

in Figure 4.6 (right). 
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Figure 4.6 Distribution of Type I and Type II errors with an increasing number of 

principal components and different C.I. values. 
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Inspection of Figure 4.6lead to the following observations: 

1) 	 Type II errors decrease with an increasing number of PCs, while Type I errors 

generated by the Hotelling's T2 chart increases with this parameter. This is 

due to the fact that the greater the number of latent variables used to build a 

model, the more this model is capable of capturing behaviors inherent to 

specific section of specific batches (which, for all practical purposes may be 

characterized as noise). Thus, these models are more sensitive to deviations 

from these behaviors, both when they are in fact descriptive of a fault and 

when they are not. 

2) 	 It is interesting to note that the estimated Type I errors for SPE are close to the 

instantaneous a values for all combinations of PCs and C.l. parameters (a= 

1% for a 99% C.l. and a= 0.01% for a 99.9% C.l.). However, with relation to 

the Hotelling's T2 statistics, Type I error values become larger and larger then 

a values for increasing PC numbers. 

3) 	 Considering that the annealing process does not present faults that have a diret 

impact on process safety and that operator confidence on the monitoring 

system is of extreme importance, plant personnel stated that Type I errors 

above approximately 1% are not desired. 

4) 	 Models built using 4 or less PCs with 99.9% C.l. on Hotelling's T2 led to 

missed fault detection of one or more batches. Thus, this combination of 

parameters cannot be used in the final model. 

One way of verifying the statement made that principal components of higher 

order capture behaviors inherent to specific batches is to analyze the loadings of the each 

latent variable. Visual inspection of Figure 4. 7 shows how the loadings for the first and 

the fourth principal components are, for most variables, constantly positive or negative 

throughout the entire batch run. Alternatively, Figure 4.8 (left) shows that the loadings of 

the seventh principal component have alternating signs throughout the batch run. This is 
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due to the fact that the ih latent variable is mainly capturing the behavior of batch 

183171; which has the highest leverage with relation to this model. Examination of the 

temperature trajectories for this batch (Figure 4.8, right) shows that, for the end of the 

batch, T1 , T2 and T3 were low, as were the loadings for these variables. 
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Figure 4.7 Loading plots for all variables at all times for the first (left) and fourth (right) 

principal components. 
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Figure 4.8 Loading plot for all variables at all times for the seventh principal component 

(left) and process variable trajectories for the batch with the highest leverage in the 

seventh PC (right). 
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Figure 4.9 shows R2 and Q2 values for models built with a successively higher 

number of principal components. Close inspection of this plot indicates that, from 4 PCs 

on, R2 values do not significantly increase (5% or more) through the addition of an extra 

latent variable; for Q2 this occurs from 5 PCs on. 
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Figure 4.9 R2 and Q2 values for models built with a successively higher number of 

principal components. 

Taking all listed observations into account, 4 principal components were selected 

to build the reference model. Furthermore, a 99% C.I. on Hotelling's T2 and a 99.9% C.I. 

on SPE were used. 

The final MPCA model, built using 4 latent variables, is capable of capturing 

76.4% of the total variability in the data. Overall Hotelling' s T2 and SPE plots (Figure 

4.1 0) show that the outlier detection method applied in the previous section was 

successful at eliminating all abnormal batches. 
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Figure 4.10 Overall Hotelling's T2 and Q value plots for the reference data set. 

4.6 MPCA Monitoring Scheme Performance 

This section aims at evaluating the performance of the final MPCA monitoring 

scheme with relation to two aspects: number of false alarms and fault detection 

capabilities. This evaluation is performed in an off-line manner using all "in-control" and 

"out-of-control" test data sets. 

Additionally, the applicability of different fault identification methods are 

discussed. 

4.6.1 False Alarms 

As previously mentioned in subsection 4.4.2, it is important for any monitoring 

system not to present an excessive number of false alarms so as not to affect operator 

acceptability. In order to verify if the final MPCA model meets this requirement, an off­

line analysis is performed on a test set of 17 "in-control" batch data. None of these 

batches were previously used in building the reverence model. The test data set is 

composed of batches with different characteristics: i) 2 batches randomly excluded from 

the database which was later used to build the reference model; ii) 8 batches produced 
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around 4 months after those pertaining to the reference database; iii) 7 batches in which 

only 1 or 4 coils were annealed. 

In order to further desensitize the final model with relation to Type I errors, an 

alarm is only generated after three consecutive SPE values are above the 99.9% C.I. or 

one Hotelling' s T2 value ia above the 99% C.I. 

Of all ''test" batches passed through the monitoring procedure, only 4 generated 

an "out-of-control" signal. Two of these batches were considered as "fast" batches while 

the other two had slightly different behavior at the end portion of the Tl profile. These 

alarms can easily be eliminated from a future model through the addition ofmore batches 

that present these particular characteristics. This is characterizes the iterative nature of 

model building; the reference dataset can be repeatedly augmented until unwanted alarms 

are eliminated. 

From these results it is concluded that the final MPCA model does not present an 

excessive number of false alarms. Annealing plant personnel were satisfied with the 

MPCA model performance with relation to this metric. 

Additionally, it is verified that this model is capable of handling all coil staking 

configurations used and also that the plant in question does not present significant drifts 

in operating conditions through the period of a few months. In case drifts in operating 

conditions had been detected, the application of an adaptive MPCA model could have 

been attempted. 

4.6.2 Fault Detection 

Although control algorithms are used in order to perform set point tracking of 

selected temperature trajectories within the annealing process, each batch run is subjected 

to the possible occurrence of five main fault types: 
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• 	 Type 1 faults - Caused by a severe form of abnormality in furnace operation, 

as a consequence T1 values drop at a fast rate, followed by all other 

temperatures. 

• 	 Type 2 faults - Caused by a second form of abnormality in furnace operation. 

Ifthis occurs at the beginning of the batch, T1 is slow at reaching it's set point 

(and all other temperatures are sluggish in rising as well). If this happens later 

on in the batch, lower than normal T2 values are registered. 

• 	 Type 3 faults - Fault caused by an equipment failure within the protective 

cover. This impacts convective heat transfer and is characterized by higher 

than normal T2 and low T3 values. 

• 	 Type 4 faults - The cause of this fault is normally attributed to a sticky valve 

in the furnace fuel inflow line and is characterized by fluctuation in Tl values 

during soaking. 

• 	 Type 5 faults - The cause of this fault is not determined; one hypothesis is 

that this is the consequence of operator corrective actions prior to the 

development of faults types 1 or 2. This fault is characterized by short-lived 

drops in Tl. 

Currently at the batch annealing plant under study, detection of type 1 faults is 

done through the use of an on-line sensor. Detection of all other faults is carried out 

though a set of univariate, data based, check points that verify if the shape and values of 

the temperature trajectories are as expected. Both fault detection methods are subjected to 

failure and thus the operators are heavily relied upon to visually inspect the temperature 

trajectories of evolving batches. 

In order to evaluate the performance of the MPCA monitoring scheme with 

relation to fault detection, an off-line analysis is carried out using a test set composed of 

25 "out-of-control" batches. All of the most common fault types to which the batch 

annealing process is subjected to are represented within this data set. 
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When passed through the monitoring procedure these faults lead to an alarm in 

the Hotelling' s r and SPE monitoring charts. The batch time at which these alarms 

occurred can be compared to those generated by the monitoring scheme currently 

installed at the annealing plant and, through visual inspection of temperature trajectories, 

to those when it is though that the fault began (Figure 4.11). 

Visual inspection of Figure 4.11 indicates that, except for type 1 faults, the 

performance of the MPCA monitoring scheme is superior to that of the original (currently 

installed) monitoring scheme. Table 4.3 shows that this conclusion is representative of 

the entire test database. 
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Figure 4.11 Temperature trajectories and alarms generated by the MPCA and original 

monitoring schemes for each main type of fault to which the annealing process is 

subjected to. 
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Table 4.3 Comparison between the MPCA and the original monitoring scheme. 

Fault 

Type 

Monitoring scheme with superior 

performance 

(faster fault detection) 

Average time difference between the 

alarms (hours) 

1 Original 0.22 

2 MPCA 5.4 

3 MPCA 0.22 

4 MPCA 3.2 

5 MPCA 0.22 

Type 1 fault detection is currently performed by an on-line sensor and is thus 

always faster than any data-based approach. However, according to engineers working at 

the facility , this sensor is subjected to failure. In this scenario, the MPCA monitoring 

system is capable of signaling this fault within approximately 13 minutes of it's 

occurrence. 

' The gain in fault detection time by the MPCA model is very significant in the 

cases where fault types 2 and 4 occur (5.4 h and 3.2 h respectively). By detecting these 

faults sooner, faster corrective actions can be taken, total batch time reduced and final 

steel quality increased. 

Additionally, the MPCA scheme was capable of identifying 4 out of 83 batches in 

which faults, not picked up by the original monitoring system, occurred. Two of these 

faults are shown in Figure 4.12. It is observed that the severity of these faults 1s 

significant and, thus, their detection is important. 
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Figure 4.12 Temperature trajectories and alarm generated by the MPCA for faults which 

were not detected by the original monitoring scheme. See Figure 4.11 for the legend. 

Only one batch processed under abnormal conditions did not cause the MPCA 

system to signal (Figure 4.13). This batch exhibits and unknown fault. The original 

monitoring scheme only accused a type 4 fault at the beginning of the batch. One way of 

ensuring that this type of fault can be captured in the MPCA system is to include the sum 

of the variances of T3 as an extra variable. Due to the low occurrence of this fault the 

addition of this extra variable was not considered necessary. 

Figure 4.13 Temperature trajectories and alarm generated by the original monitoring 

scheme for an undiagnosed fault (not detected by the MPCA monitoring scheme). See 

Figure 4.11 for the legend. 

82 




MA.Sc. Thesis- C. P. Rodrigues, McMaster University, Chemical Engineering Chapter4 

Annealing plant personnel were very satisfied with the fault detection capabilities 

of the MPCA monitoring system. 

4.6.3 Fault Diagnosis or Isolation 

Posterior to fault detection, it is necessary to determine an assignable cause for the 

deviation. This is important so that appropriate actions can be taken to, either compensate 

for the fault in real-time, or to avoid future occurrences. 

The most intuitive way of tackling this problem is to plot and visually inspect, in a 

univariate manner, all process variables pertaining to the anomalous batch. However, the 

number of variables is often very large, making it practically impossible to determine 

which subset of them is responsible for an "out-of-control" signal. Additionally, 

multivariate correlations between variables, which maybe responsible for the fault, are 

missed. 

Kourti and MacGregor (1996) provide a review of various fault diagnosis 

procedures based on multivariate statistical methods. The most widely used (Qin, 2003) 

set of diagnostic tools are based on calculating the contribution that each variable has on 

individual scores (Miller et al., 1998 and MacGregor et al., 1994); as shown in Chapter 2. 

However, very often, more than one score can present high values and individual 

investigation of every score plot can be fastidious. For these cases, Kourti and 

MacGregor (1996) suggested that an "overall average contribution" per variable be 

calculated: 

where: 


t a,J = score vector associated with the ath principal component and the jth 


variable; 
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p a,J = loading vector associated with the ath principal component and the fh 

variable; 
2s = variance of the ath score· 

a ' 

x 1 = process variable measurements; 

Jlj = "in-control" population mean associated with the jth variable. 

Additional rules suggested by Kourti and MacGregor (1996) to increase the 

discriminating ability of the overall average contribution plots are: i) only the normalized 

scores with high values (K ~ n) should be included; ii) set all negative contributions to 

individual scores to zero (i.e. the sign is opposite to the value of the score t a ). 

All of the fault isolation methods mentioned in the previous paragraphs only 

cover the first of the two-step procedure involved in fault diagnosis: 1) find which 

variable(s) contribute to the "out-of-control" signal; 2) determine the root cause of the 

process upset. These methods rely on a causal relationship among the models and thus 

cannot provide direct fault isolation (Yoon and MacGregor, 2001). The second step is 

normally performed by a trained operators or engineer who use their process insight to 

provide feasible interpretations of the fault, on a case-by-case basis. 

Automated fault isolation is possible by comparing signatures of current faults 

against a database of reference fault signatures. Current automated fault diagnosis 

methods differ in the type of signature used to characterize the faults and in the manner of 

comparing them against the reference signature bank. Qin (2003) provides an overview 

and analysis of statistical process monitoring methods for fault detection, isolation and 

reconstruction. If there are plenty of historical records with a wide variety of fault 

categories, classification and clustering methods are also available. Y oon and MacGregor 

(200 1) propose an approach that extracts fault signatures that are vectors of movement of 

the fault in both the modeled and the residual space. Isolation is based on comparing the 

angles between the vectors of current and known faults. 
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However, due to their time-varying nature, application of automated fault 

isolation methods to batch data is not trivial. In order for these approaches to work, a 

fault library containing, not only all faults to which the process is subjected to, but also 

faults repeated at different moments of the batch, is necessary. This is due to the fact that 

faults affect the process differently when they occur at different parts of the batch. In 

some cases, not only the correlations between variables are different, but some variables 

may not even be measured at different batch sections. In the annealing process, the sum 

of Tl variability only starts once this variable has reached set point value. Thus, type 1 

faults will have different signatures depending on if they occur at the initial or final 

sections of the batch. 

In conclusion, for batch processes, reference fault signature banks can become 

prohibitively large. To the best of the author's knowledge, this issue has not been 

previously discussed in the literature. 

Thus, in order to provide fault diagnosis for the annealing process, overall average 

T2contribution plots for Hotelling's (Kourti and MacGregor, 1996) and plain 

contribution plots for SPE values were used. These statistics, calculated at the sample in 

which the MPCA scheme first detected a fault, are shown in Figure 4.14 for each fault 

type. 
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Figure 4.14 Overall average contribution plots for Hotelling' s T2 and plain contribution 

plots for SPE values were used. 

Inspection of both the contribution plots to the Hotelling's T2 and SPE, for all 

batches in the "out of control" test set, indicated that the contributions to the SPE 

statistics were much more informative at indicating the type of fault that occurred. Using 
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only the contribution to the SPE statistics it is verified that: i) fault types 1 and 2 both 

present lower than average values of T1; ii) fault type 3 presents higher than average 

values ofT2; iii) fault types 4 and 5 present higher than average values ofVarTl. These 

observations are in accordance with the theoretical descriptions of these faults given in 

4.6.2. 

It is not possible to distinguish faults 1 and 2 or 4 and 5 from each other due to the 

fact that, at their initial points, they progress in the same manner. Additionally, all type 1 

faults, included in the "out of control" test set, occurred in the beginning of the batch 

however, if they were to occur at a later point, the SPE contribution plot would be similar 

to those for faults 4 and 5. 

Even so, a decision-tree approach can be used to aid the operators or engineers in 

the fault identification process (Figure 4.15). 

Fault Occurs 

! 

Calculate 

Contribution plots to 
the SPE statistics 

Fault Types Fault Types 4 or 5 
1 or 2 or 1 

Fault Type 3 

Figure 4.15 Decision-tree for annealing fault identification. 

87 



MA.Sc. Thesis- C. P. Rodrigues, McMaster University, Chemical Engineering Chapter4 

4.7 Conclusions 

Multiway principal component analysis was successfully used to build a single, 

all-encompassing, on-line monitoring scheme for the heating phase of a multi-grade batch 

annealing process. 

The performance of this system was evaluated based on pre-established false 

alarm and fault detection metrics and considered adequate for industrial needs. The 

MPCA monitoring scheme also presented superior fault detection performance when 

compared to the system that is currently in place at the annealing plant under study. 

Issues relative to automated fault identification methods in batch process were 

also addressed within this work. Finally, a decision-tree based approach is suggested to 

aid in annealing fault isolation. 

Further work includes extending the model to monitor the cooling phase of the 

annealing process. 
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Chapter 5 

Pre-alignment ofBatch Data for On-Line Monitoring 

The purpose of the current Chapter is to present a simple alignment technique for 

batch data when on-line monitoring is intended. This technique relies on a PLS model, 

fitted to variables obtained prior to the beginning of each batch cycle (initial conditions), 

to predict the duration of new batches. The predicted time information is then used to set 

the sampling rate of in-coming process data. 

This pre-alignment method is demonstrated on an on-line MPCA monitoring 

scheme built for the heating phase of a single-grade industrial batch annealing process. 

Additionally, various methods for dealing with matrices containing different sized 

observations, in this case resulting from the existence of two possible steel stacking 

configurations, are proposed and evaluated. 

5.1 Process Description 

Section 4.1 contains a description of the multi-grade batch annealing process 

under study. However, for the current Chapter, only one grade type and stacking 

configurations ranging from 2 to 3 coils are considered. In addition, prior to the 

beginning of each batch annealing cycle, the following variables are registered: 

• 	 SH and SV - Measured geometry variables for the steel stack that will be 

annealed. 
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• 	 SDKF- Calculated variable which summarizes the geometry of the stack. 

• 	 CWTi and CTHKi- Measured weight and geometry variables (respectively) 

for each coil (i) within a stack. 

• 	 CKi - Calculated variable summarizing the geometry of each coil (i) within a 

stack. 

5.2 Project Incentives and Objectives 

Alignment or synchronization of batch data, necessary to achieve the assumptions 

of equal duration and matching trajectories inherent to MPCA and MPLS batch-wise 

unfolded models, is an issue still under discussion in the literature (Garcia-Munoz, 2004). 

While all of the alignment techniques listed in section 2.3 can be used for 

troubleshooting, when the purpose of the model is to monitor new batches, these options 

become restricted since the sampling rate must be set in advance. 

Within this scenario, crude linear interpolation over the entire batch time or over 

specific stages (as shown in Chapter 3) and use of discrete events, cannot be employed. 

While alignment for monitoring purposes might be easily achieved through the 

use of an indicator variable, often one cannot be found for every phases of the batch 

cycle. Even if a monotonically increasing variable is present, it's rate of increase may not 

be fast enough to allow the model to capture the variability of all other measurements. 

Additionally, whenever the indicator variable presents decreasing or missing values due 

to the occurrence of a process or sensor fault, monitoring is not possible. During the 

analysis of the batch annealing process data presented in Chapter 4, these practical issues 

were encountered and efforts had to be made to work around them. 

When an indicator variable is not present in the data set, a simple alternative is to 

pre-specify the size of the training matrix according to either the shortest batch (data 

trimming technique) or a set of the longer batches present in the historical data-set (data 

augmentation techniques). In both cases, all in-coming data that exceeds the size of this 
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matrix is discarded and thus not monitored. Also, while these methods guarantee that the 

assumption of equal duration is met, no effort is made towards trajectory matching. 

An evolving version of dynamic time warping (DTW) was introduced by 

Westerhuis et al. (2003) to allow for on-line alignment and monitoring of batch 

processes. Even though it is successful, the application of this technique is 

mathematically intensive. 

The objective of the current work is to present a simple alignment technique for 

batch data when monitoring is intended. The method here proposed is based on a 

suggestion made by Kourti (2003) for predicting batch lengths for those cases in which 

this variable is a function of only one other variable, which is known a priori (recipe, 

grade, etc.). The technique here considered, referred to as pre-alignment, relies on a PLS 

model, fitted to a set of historical data collected prior to the beginning of all batch runs 

(initial conditions), to predict the duration of new batches. The predicted time 

information is then used to set the sampling rate of the in-coming data (time divided by 

expected length). 

However, due to prediction errors, not all batches will automatically have the 

same number of sample points. Data trimming or augmentation techniques must also be 

used for this to be achieved. The advantage is that, the pre-aligned data have observations 

with more similar number of sample points then the raw data, thus leading to a reduction 

in samples that are discarded as a consequence of using complementary alignment 

techniques. More importantly still is that, by pre-aligning the data, trajectory matching is 

also being performed. The question of if the level of alignment achieved is satisfactory 

depends on the nature of the batch trajectories. This objective will be achieved for those 

sets of data in which a linear expansion or compression over the entire batch trajectory 

leads to synchronization. In all other cases an improvement in synchronization maybe 

achieved by compressing or expanding only a select number of stages. 

The pre-alignment technique proposed is demonstrated on an on-line MPCA 

monitoring scheme built for the heating phase of a single-grade industrial batch annealing 

process. Processes which are highly dependent on one or more cooling stages are also 
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good candidates for pre-alignment since the capacity of this utility, and thus the time it 

takes to achieve temperature set points, is normally seasonal and reliant on overall plant 

demand at a given time. Another suggested application for this technique is for cases 

when batch run durations depend on achieving final quality specifications that are a 

function of known raw material quality. 

5.3 Description of the Data Set 

The historical data set used for the current study included a total of 35 "in­

control" and 6 "out-of-control" batch runs. Each batch run contains: 

a) 	 9 to 12 variables (depending on the number of coils being annealed) reflecting 

the geometry of the steel stack and individual coils. These variables are 

individually detailed in section 5.1. 

b) 	 4 variables reflecting process equipment configurations - base location (Pn), 

furnace type (FT), furnace number (FN) and fan speed (FS)- that will be used 

to anneal a specific steel stack. Variables Pn and FT are qualitative variables 

with six and two levels, respectively. These were substituted for a total of 

seven new variables to which values of either zero or one were assigned 

(Montgomery and Runger, 1994). 

c) 	 4 process variables (T1, T2, T3 and T4) and 2 calculated variables which 

reflect cumulative time per batch (Time) and the variance ofT1 (T1 Var). 

The variables described in a and b are available prior to the beginning of each 

batch run and are included in the Z-matrix (initial conditions). The variables described in 

c are sampled at 5-minute intervals during the heating phase of the process and are, 

subsequent to alignment, included in the X-matrix (process variables). 

Additionally, in order to build the PLS predictive model, the total processing time 

for the annealing heating phase of each batch run was registered in theY-matrix (quality 

variable). 
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Throughout this work vanous software were used: SIMCA-P+ versiOn 10.0 

developed by Umetrics (sections 5.4.1-5.4.4); Batch SPC developed by McMaster 

University (section 5.5) and JYPLS developed by Munoz (section 5.4.5). 

5.4 Evaluation of PLS Predictive Models 

Batch data pre-alignment, as it is proposed, initiates with the use of a statistical 

model to obtain a prediction of the duration of new batches. 

With respect to the annealing process, a predictive model can be obtained by 

fitting the data available prior to the beginning of each annealing cycle (Z-matrix) to the 

heating cycle duration (Y -matrix) for a set of reference batch runs. Due to the 

multivariate and highly correlated nature of this data set, PLS is the statistical modeling 

method of choice. However, since the steel stacks can have either 2 or 3 coils, the 

complete Z-matrix is composed of observations (rows) of either 18 or 21 variables 

(Figure 5.1). This poses an additional challenge for building the predictive model. The 

current section explores and evaluates various techniques that, when combined with PLS, 

can be used to overcome this issue. 

Za Ya 

u 
y 

Figure 5.1 Representation of the complete Z andY matrices, matrices containing only 

data relative to steel stacks with 3 coils (Za and Ya) and matrices containing only data 

relative to stacks with 2 coils (Zb and Yb ). 

93 




MA.Sc. Thesis- C. P. Rodrigues, McMaster University, Chemical Engineering Chapter 5 

5.4.1 Separate PLS Models 

From a latent variable modeling perspective, the most natural approach to 

handling the four data matrices available (Za, Y a, Zb and Yb) is to fit two separate PLS 

models, one for each Z-Y matrix pair (Munoz et al. , 2005). Cross-validation indicated 

that 2 PCs were optimal to parsimoniously explain (R2Y) and predict (Q2
) the total 

variation in both Ya and Yb. An overview ofthese models is shown in Table 5.1. 

It should be noted that two observations were excluded from the Zb-Yb PLS 

model due to high leverage and distance from the model. 

Table 5.1 Overview ofthe PLS models for data sets with 3 (Za-Ya) and 2 coils (Zb-Yb). 

Data Set Modeled PLS R2Y (%) Q2Y (%) 

Za-Ya 84.4 70.9 

Zb-Yb 92.9 76.3 

Inspection of Table 5.1 shows that, in both cases, the batch-to-batch variation in 

annealing cycle time is well explained and predicted 'by process equipment configurations 

and physical and geometrical measurements of the steel stack and coils. It is of interest at 

this point to determine which of these variables have the highest impact on Y a and Yb. 

Plots of PLS weights and regression coefficients (B) are useful tools for 

determining the relationship between factors and responses. Regression coefficients are 

used to re-express the PLS solution through equation 5.1; equation 5.2 provides their 

relationship to PLS weights : 

Y=BX+F (5.1) 

B=W*C (5.2) 

In addition, a parameter called variable influence on projection (VIP) summarizes 

the importance of each factor, both for the Z- and Y -model parts, and aids in the 

interpretation of weight plots (Eriksson et al. , 1999). By definition VIP is a weighted sum 
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of squared PLS weights. Predictors with VIP values significantly larger than 1 are 

considered as being most influential on the model. 

Simultaneous inspection of the plots shown in Figures 5.2, 5.3 and 5.4 indicates 

that variables CK and CWT relative to coils 1, 2 and 3 are all positively correlated with Y 

and important predictors of this quality variable. Variable SV is also of some importance. 

Physically these results show that the heavier the coil, the longer it takes T4 to 

reach set-point value and thus, the more time-consuming the heating phase of the 

annealing process is. 
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Figure 5.2 PLS weights for the data sets with 3 (left) and 2 (right) coils. 
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Figure 5.3 PLS regression coefficients (right) and VIP plots (left) for the data set 

with 3 coils. 
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Figure 5.4 PLS regression coefficients (right) and VIP plots (left) for the data set 

with 2 coils. 

With the intent of increasing model performance and decreasing modeling efforts, 

the next three subsections focus on evaluating if a single PLS model can be used to 

predict batch cycle durations. 

5.4.2 Physical Parameter Value Substitution 

The first approach under evaluation for handling the different sized observations 

in the Z-matrix with a single model consists of considering that, for all stacks with only 

two coils, the third coil can be represented as having null mass and dimensions. In this 

manner, variables CWT3 and CTHK3, which are originally inexistent for stacks with 

only two coils, are set to zero. Calculated variable CK3, which is a function of both 

CWT3 and CTHK3 and tends to infinity when these tend to zero, is set to a high random 

number (1 00). 

PLS-modeling of this new Z-matrix and the original Y -matrix, both of. which 

contain all the observations within the historical data set, yielded a two-component model 

capable of explaining 84.5% (R2Y) and predicting 65.8% (Q2
) of the total variation of Y. 

No observations were excluded. 

Simultaneous inspection of weights, regression coefficients and VIP plots for the 

PLS model in question (Figures 5.5 and 5.6), indicates that only variables CK and CWT 

relative to coils 1 and 2 (and, to some extent, SV), are positively correlated with and 
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important predictors of Y. However, due to the similar nature between all CK and CWT 

variables and the results obtained in section 5 .4.1 , it is also expected that CK3 and CWT3 

have an analogous impact on Y. 
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Figure 5.5 PLS weights. 
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Figure 5.6 PLS regression coefficients (right) and VIP plots (left). 

By plotting CK and CWT versus cycle duration for all existing coils in a 

univariate manner (Figure 5.7), it is observed that, in fact, all these factors are equally 

important in explaining and predicting the variations in Y. Simple linear regression 

models indicated R2 values ranging from 26% to 46% for all coils. 

It is therefore concluded that the PLS model in question is not capable of correctly 

identifying all the predictors of the batch annealing heating cycle duration (Y). This 

occurred because, even though it makes physical sense to do so, by setting the 
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measurements of inexistent coils to 0 or 100, variables CK3, CTHK3 and CWT3 remain 

constant regardless of the value Y assumes. Thus an unwanted break in the correlation 

occurs, causmg the variable substitution method attempted to have non-satisfactory 

performance. 
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Figure 5. 7 Plots of CK (left) and CWT (right) versus Y for all existing coils. 

5.4.3 Missing Data Substitution 

One of the features that motivates the use ofPLS for modeling process data is it 's 

capability of handling missing information. Several latent variable techniques for 

estimating scores from data with missing measurements are presented by Nelson et al. 

(1996). Of the missing data methods, the one most widely used (and applied throughout 

this work) is based on the NIP ALS algorithm and is known as the single component 

projection method (SCP). This technique was first proposed by Wold in 1964 (Nelson et 

al., 1996) and within it, all iterative regressions necessary to determine PCA or PLS 

model parameters (scores, loadings and weights) are performed using only the data that is 

present and ignoring the missing points. This is equivalent to either: i) setting the 

residuals for all missing elements in the least squares function to zero in each iteration; ii) 

replacing the missing values by their minimum distance projections onto the current 

estimate of the loading or score vector at each iteration (Nelson et al., 1996). 
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A rule of thumb given by Eriksson eta/. (1999) for the relative amount of missing 

data that can be handled by the NIP ALS algorithm is 1 0% to 20% for an ordinarily sized 

matrix of 50-100 observations. According to Nelson et al. (1996), the matrix should have 

5 times as many observations in any row or column as the number of dimensions being 

calculated. However, it is important to remember that these are crude approximations; the 

amount of missing data one can have depends on the correlation patterns of the variable 

which contains the missing values relative to other variables in the data set. Additionally, 

data should not be missing according to a systematic pattern. 

The technique proposed in this section with the purpose of handling the unequal 

sized observations that compose the Z-matrix, consists of setting all measurements 

relative to inexistent coils as missing data. The resulting Z matrix contains 5% of 

missing data (overall), never exceeding 28% on a single column or 15% on a single row. 

These values are slightly above those recommended by the literature, thus requiring that 

the performance of the final PLS model be closely evaluated. 

By fitting a PLS model to the Z-Y matrices containing the missing data, it is 

verified that this model is capable of explaining 86.0% of the variance in the quality data 

(R2Y) and predicting 75.3% of it's total variation (Q2
) with two principal components. 

No observations were excluded. 

Simultaneous inspection of the plots shown in Figures 5.8 and 5.9 indicates that 

variables CK and CWT relative to coils 1, 2 and 3 and SV are all positively correlated 

with Y and important predictors of this quality variable. This result is in accordance with 

those obtained in section 5.4.1 and the observations made in section 5.4.2. 

It is thus concluded that the technique proposed in this section is capable of 

handling unequal sized observations with superior predictive power relative to all other 

methods considered. This is very impressive and indicates that missing data substitution 

is very useful when smaller, different sized and correlated, data sets are involved. 
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Figure 5.8 PLS weights. 
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Figure 5.9 PLS regression coefficients (right) and VIP plots (left). 

5.4.4 Joint-Y PLS 

Joint-Y PLS (JYPLS) is a latent variable regression method proposed by Munoz 

et al. (2005) with the purpose of modeling the common latent variable structure in 

multiple plants. This technique was initially conceived to solve product transfer pr?blems 

and, subsequently, a suggestion was made to apply it to parallel plant assessments. The 

purpose of the current section is to extend the use of JYPLS to handle matrices with 

unequal sized observations. 

The basic concept behind JYPLS is that Y a and Yb lie in a common latent 

variable plane and thus, can be jointly defined by a common loading matrix Qj if a single 

PLS model is built. While no size restrictions are imposed on the X-matrix (or Z-matrix, 
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according to the notation used for this chapter), JYPLS requires that both Y matrices 

have the same number of variables (columns). In their work, Munoz et al. (2005), also 

provide an overview of the diagnostic tools that can be used to assess a JYPLS model. 

According to these authors, basically, the only difference in the calculation of these 

values from separate PLS models is that the residuals for both of the Y matrices are 

computed using the same Qj loading matrix. 

The JYPLS model, fitted to the Za-Ya and Zb-Yb matrices, has overall R2Y and 

Q2 values of 82.5% and 60.0%, respectively. These values are somewhat lower than those 

obtained by the methods proposed in the previous sections. This disparity can be 

attributed to the fact that JYPLS is a more general algorithm. This method assumes that 

not all variables within Zb are the same as in Za; it considers that purposeful changes are 

made in operating conditions so that a difference in grades can be achieved (Munoz et al., 

2005). This differs from the missing data approach, wherein it is assumed that all 

"inexistent" data are actually missing values of the variables previously modeled; the 

correlation structure is thus defined by common cause variation. Since, for the annealing 

case, all missing data can be correctly described by the variables of existing third coils, 

incorporation of this previous knowledge leads to better results in terms ofpredictability. 

Comparing Figure 5.10 with 5.2 shows that JYPLS is capable of correctly 

identifying the predictors of both Y a and Yb. These are promising results and motivate 

future use and studies of JYPLS. 
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Figure 5.10 PLS weights for Za-Ya (left) and Zb-Yb (right). 
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5.5 MPCA Monitoring Scheme 

Since the purpose of pre-alignment is synchronization of batch data when on-line 

monitoring is intended, it is important to compare the performance of a monitoring model 

built and used with data pre-processed in this manner with that of models built using 

other alignment techniques. The following alignment techniques were chosen for 

comparative purposes: i) trimming of the data set based on the batch of shortest duration; 

ii) usage of an indicator variable with the objective of trajectory re-sampling; iii) crude 

linear interpolation over the entire batch time. Among all of these, crude linear 

interpolation is the only one that cannot be applied for on-line monitoring. It's purpose 

within this study is to illustrate the impact of the predictive error inherent to the pre­

aligning technique used. 

With the intent of allowing for a fair comparison between the methods, data 

trimming was also applied to the pre-aligned data based on the batch of shortest duration. 

Since only one grade type is present within this data set, no grade-specific mean 

centering was necessary. Fault type identification and control limits used for detection are 

the same as those described in Chapter 4. The results of the comparative study between 

monitoring models built using the different alignment techniques described are shown in 

Table 5.2. 

Additionally, Figure 5.11 shows the results of the application of these techniques 

for variables T4 and Time. Note how information regarding time usage throughout each 

batch run is successfully kept by variable Time when pre-alignment, crude linear 

interpolation and indicator variable methods are used. 
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Figure 5.11 Profiles for variables T4 and Time obtained from aligning the batch 

annealing data set using (from top to bottom): data trimming, pre-alignment, crude linear 

interpolation and indicator variable methods. 
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Table 5.2 Results of the comparative study between alignment techniques. 

Alignment 

Technique 

Pre-Alignment Data Trimming Crude Linear 

Interpolation 

Indicator 

Variable 

MPCA model results(%) 

R2X 78.8 84.6 82.7 80.8 

Time of fault identification (min) 

Fault Type 1 45 55 50 50 

Fault Type 2 135 135 135 130 

Fault Type3 30 40 40 40 

Fault Type 4 200 225 200 215 

Fault TypeS 210 215 200 210 

Fault Type 5 200 210 200 215 

Mean batch time not monitored due to data trimming (hours) 

3 14 0 0 

The data presented in Table 5.2 shows that the MPCA model built using the data 

trimming method of alignment is capable of explaining the highest amount of variability 

in the X-matrix. This is due to the fact that such a large amount of data had to be 

excluded from the model due to the limitation of the batch of shortest duration, leaving 

less variation in trajectory profiles to be modeled. The mean amount of time that is not 

monitored per batch due to the use of this technique is 13 hours or 32% of the total batch 

duration, value much larger than the 3 hours or 7.5% of the total batch duration not 

monitored by pre-alignment. Additionally, monitoring using pre-aligned data showed 

consistently superior performance with relation to fault identification when compared to 

data trimming. 

Pre-alignment showed a comparable performance relative to fault detection when 

compared with linear interpolation, indicating that the error in batch time prediction was 

not of practical consequence. With relation to the use of an indicator variable, pre­

alignment showed a slightly superior performance, mostly likely due to the fact that the 
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rate of increase in the indicator variable was not capable of capturing as much variability 

in other measurements, specially during the final few hours of the run. 

More significant deviations among these performance results might be verified if 

this comparison study is applied to a data set with larger batch-to-batch variations in 

terms of alignment. 

5.6 Conclusions 

In this Chapter, a data pre-alignment method was proposed and successfully used 

to synchronize batch data for on-line monitoring purposes. The performance of this 

technique relative to other, more traditional alignment methods, was evaluated. For this 

purpose, an on-line MPCA monitoring scheme, built for the heating phase of a single­

grade industrial batch annealing process, was used. The results of this comparative study 

indicated that data pre-alignment has a consistently superior performance relative to data 

trimming and an equivalent performance relative to crude linear interpolation and the use 

of an indicator variable. 

Various methods for dealing with matrices composed of different sized 

observations were also proposed and evaluated. The method which presented best overall 

performance (highest predictive and predictor identification abilities) consisted of a 

single PLS model fitted to a data set in which measurements relative to inexistent coils 

were set as missing. 
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Chapter 6 

End-Point Prediction of an Industrial Batch Process 

The main purpose of this chapter is to illustrate the use of the multivariate latent 

variable methodology proposed by Nomikos and MacGregor (1994, 1995a and 1995b ), 

together with a data pre-processing technique suggested by Marjanovic eta!. (2006) , in 

order to predict the end-point of an industrial batch process. Results of this study are 

presented and assessed based on the types of process variables included in the data set. 

Additionally, the importance of identifying product quality variables that correctly 

reflect those required by it's final application is exemplified. 

6.1 Process Description 

The process under study is composed of a batch reactor, a neutralization tank and 

a storage tank. Among other products, this unit synthesizes a polymeric additive which is 

used as a dispersant for cement or concrete admixture. This product is obtained through a 

three stage process: monomer production, condensation polymerization and 

neutralization, respectively. 

During the first stage, reagents 1 and 2 are added to the reactor, in a semi-batch 

manner, and the mixture is heated to a pre-specified set point value for a fixed number of 

hours. Once this point has been reached, the reaction is cut with quench water. In 

sequence, a third reagent is added and the temperature again raised to allow for polymer 

formation through condensation reactions (stage 2). This stage is again terminated after a 

106 




MA.Sc. Thesis - C. P. Rodrigues, McMaster University, Chemical Engineering Chapter6 

pre-specified number of hours through the addition of more quench water. Constant 

agitation is performed during the whole process. 

Figure 6.1 depicts typical bulk temperature behavior (within the batch reactor) 

and phase indications throughout a batch run. 

Quench Water 2 
ill!"" Reagent3 \ 

\ 
Reagents 1 

Viscosi~ 
Sampling 

and 2 

.---------------------·
Condensation Polymerization 

~-- / Quench Water 1 

. .
Monomer 
Production 

Time 

Figure 6.1 Typical bulk temperature behavior and phase indications for the production of 

the polymeric additive under study. 

After being cooled and discharged from the reactor, the synthesized material is 

transferred to the neutralization tank where a basic solution is added. Samples are taken 

at the end of this stage to verify if product pH and two other physical characteristics are 

within specification. If this is the case, the final product is transferred to a storage tank. 

Recorded process variables throughout stages 1 and 2 are listed bellow: 

• Temp- Bulk Temperature in the reactor; 

• Pres - Pressure in the reactor; 

• R1 W, R2W, R3W and WaterW- Cumulative weight of Reagents 1, 2 and 3 

and quench waters; 

107 




MA.Sc. Thesis - C. P. Rodrigues, McMaster University, Chemical Engineering Chapter 6 

• R1F, R2F, R3F and Water F -Flow rates for Reagents 1, 2 and 3 and quench 

waters; 

• Coolant Water- Coolant water flow through the reactor jacket; 

• CV1 and Temp CV 2 - Control valve readings, reflecting the alignment of 

either coolant water or vapor into the reactor jacket; 

• Vent Valve - Variable showing if the reactor vent is open or closed; 

• Agitator- Variable showing if the agitator is on or off; 

• Valve - Variable showing if the valve with liberates the addition of Reagent 2 

is open or closed; 

Posterior to a revamp of the unit under study, in which the original reactor was 

substituted for one with more than three times it's volume, customers identified a 

significant reduction in the overall performance of the polymeric additive and an increase 

in it' s variability. Product performance is quantified by the customers through a slump 

test. This type of test reflects the fluidity/workability of the concrete and basically 

consists of: i) preparing a concrete mixture contaip.ing a fixed amount of the additive 

under study; ii) placing the mixture in a mold; iii) withdrawing the mold; iv) measuring 

the height of the remaining concrete pile and subtracting this value from the height of the 

mold. In general, high slump values are indicative of good product performance; 

however, a lower bound for this measurement is also established. Further description of 

this test is given in Ramachandran (1997). 

Even though a loss in product performance was verified by customers through 

slump test values, no changes in measured process or laboratory tests were verifie~ by the 

production plant personnel. 

6.2 Project Objectives 

Project objectives are two-fold: initially the identification of a product quality 

variable which impacts slump test results, is required; in sequence, a control methodology 
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for this variable must be implemented. The control strategy should be possible to 

implement in the plant environment, require as little effort and be as safe as possible. 

6.3 Quality Variable Identification 

Literature research indicated that the molecular weight of a plasticizer is an 

important factor in determining the viscosity (and thus the slump value) of the cement 

paste or concrete mixture to which it is added. However, this only occurs up to a certain 

point, after which, any further increase in polymer molecular weight does not effect it's 

performance. Additionally, it was reported that polymeric additive producers often do not 

directly measure this variable due to it's inherent difficulties. These issues are clearly 

discussed in Ramachandran (1997) and Aitcin (2000), along with the information that 

polymer viscosity reflects an increase in it's molecular weight. 

Based on these facts, a control methodology was proposed in which simple 

Brookfield viscosity measurements of polymer samples taken at the end of the 

condensation phase, would be used to determine when the batch should be terminated. 

This method is also based on the prior knowledge that polymer molecular weight 

increases as the condensation reaction progresses in time. 

In order to test if this method would work and to determine an optimal target 

viscosity value, a bench-scale test was employed. This test is known as minislump and it 

holds a direct correlation to slump test results (Ramachandran, 1997). Minislump test 

procedures adopted throughout this work were based on those described by Monte 

(2003). 

Polymer samples were collected at various points throughout the condensation 

phase of the additive's production and their viscosity and minislump values were 

determined. The results of this study are shown in Figure 5.2 (left). It is important to note 

that, due to the fact that these samples were taken prior to the neutralization phase, they 

had to be neutralized in the laboratory prior to the minislump tests. 
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Figure 6.2 Correlation between the additive's acid phase viscosity and final product 

minislump (left) and slump (right) values. Optimal end-point viscosity values are also 

indicated. 

Visual inspection of Figure 6.2 (left) indicates that, in fact, minislump values 

increase with polymer viscosity up to a certain point. This point represents that which the 

condensation reaction should be stopped, since additional processing time will not impact 

product performance but will impact production costs. The target viscosity value was 

thus determined by cross-examining the minislump results with those of a small number 

of samples sent to a customer so that their slump values could be determined. 

In sequence, operators were trained to take hourly polymers samples until the 

desired final viscosity value is achieved in each batch run. When this point is reached, the 

reaction is terminated through the addition of quench water. In order to decrease the 

number of samples, these start being collected only after a fixed number of hours has 

passed since the beginning of the condensation phase. This is indicated in Figure 6.1. 

Figure 6.3 shows the results of controlling the batch end-point through viscosity 

measurements. This graph contains the slump values measured by a customer whenever a 

new production lot of the additive was received, over several months. The upper and 

lower limits indicated (U.L and L.L) were set by the customer. Lots falling outside this 

specification could potentially be returned. 
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Figure 6.3 Shewhart chart showing the slump values of the lots of additive received by a 

customer prior and posterior to the implementation of the viscosity-based end-point 

control. 

Inspection of Figure 6.3 indicates that the control methodology proposed was 

successful at specifying the additive in terms of it's final application. This shows the 

importance of identifying final product quality variables that correctly reflect those 

required by the customer's application. 

In spite of the success achieved m terms of quality control, the sampling 

technique used is very time consuming and involves operational and personal risks. 

Additionally, laboratory analysis of the samples usually take anywhere from 30 minutes 

to an hour. This occasionally leads to unnecessary reaction times and thus, non-optimal 

conditions in terms of processing costs. 

These factors serve as an incentive to attempt to use process data to build a soft­

sensor capable of predicting polymer viscosity. 
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6.4 End-Point Prediction 

This section describes the efforts made towards building a model capable of 

predicting polymer viscosity (Y) in a real-time manner and thus, determining when each 

batch should be terminated (end-point). 

6.4.1 Data Set Description 

The historical data set made available for the present study is composed of 4 7 

batch runs. Each batch run contains the following variables described in section 6.1: 

Temp, Pres, Rl W , R3W, WaterW, RlF, R3F, Water F and Valve. Additionally, four 

artificial variables were created to express the cumulative values of: coolant water and 

vapor flows used in the reactor jacket, gas purges through the vent valve and time 

consumption. 

Preliminary data analysis indicated that reagent 2 flow and cumulative weight 

measurements were wrong, pointing to a complete sensor failure for all batches in the 

data set. These variables were thus excluded from the data set and plant personnel 

notified. 

Additionally, flow and weight measurements relative to reagents 1, 3 and water, 

presented unjustified jumps for certain batches (probably due to the fact that these flow 

meters were also used to feed another reactor). These variables were thus filtered in order 

to eliminate false readings. 

6.4.2 Batch Data Alignment 

The structure of the data set under study does not allow for alignment according 

to traditional data trimming or indicator variable techniques. Data trimming is unsuitable 

due to the fact that measurements near the end of the batch, which are normally discarded 

when this methodology is used, are probably the most informative when end-point 
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prediction is intended. Additionally, indicator variables were not found for all phases of 

the batch run. 

Thus, a simpler alignment method, proposed by Marjanovic et a/. (2006), was 

applied. This technique consists of creating pseudo batches composed of batch-wise 

unfolded data, relative to, in this case, an hour before each viscosity sampling point. All 

data collected previous to this point is discarded. Consequently, in real-time, estimates of 

product quality (Y) will only be available during the condensation phase. 

Figure 6.4 schematically represents the pseudo batch technique applied to the 

process under study. In this Figure, two batches are represented: in the first batch (1), the 

desired viscosity is achieved prior to the first sampling point; in the second batch (2), two 

samples had to be collected before this was verified. 

Y1,1 

i! Unfolded Data from Batch 1 

X 

Discarded Data 

Unfolded Data from Batch 2 

t t 
Y2,1 Y2,2 

Figure 6.4 Representation of the pseudo batch technique, applied to the process under 

study. 

A preliminary inspection of the viscosity data (Y) indicated discrepancies 

between the time in which a sample was claimed to be taken and that in which this 

actually occurred. From personnel experience, it is know that these differences can be as 

high as one hour for all samples, except for the first one. Thus, as a proof of concept, only 
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data relative to the first sample of each batch was kept. If the model proves to be useful in 

predicting Y, operators can be re-trained and new data collected. 

6.4.3 MPLS 

Using the pseudo batch approach 

Following the generation of a data set composed of the pseudo batches, a standard 

MPLS model was built. Visual inspection of the resulting ul/t1 plot (Figure 6.5, left) 

points to a nonlinearity between the X and the Y data. 
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Figure 6.5 t1 /u1 plots for MPLS models build using: Y =viscosity (left) andY= 

log(viscosity) (right). 

In order to compensate for this nonlinear behavior, a logarithmic transfm:mation 

was applied to the response data, such that: Y = log (viscosity). Inspection of the u1 /t1 

plot (Figure 6.5, right), resulting from fitting a new MPLS model to the linearized data, 

set, showed that this objective was successfully achieved. 

This new MPLS model is capable of explaining 54.3% (R2Y) of the variations in 

the quality data and 21.8% (R2X) in the process data using 2 PCs. However, it's 

capability of predicting the variations in Y is very poor (Q2 = -21 %). This indicates that 
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the process data used to build the model does not contain sufficient information to allow 

for a prediction of the polymer viscosity. 

Using the X data throughout the whole batch run 

Perhaps by discarding all data relative to the beginning of the batches, in order to 

create the pseudo batches, important information was also removed. With the intention of 

verifying if this occurred, a new model was built using the full process data set and the 

linearized viscosity data (Y). Since this is essentially an off-line study, the alignment 

technique applied consisted of identifying the different batch phases and using 

cumulative time to resample the data within them (as described in Chapter 3). 

The resulting MPLS model is composed of 2 PCs and is summarized by: R2Y = 

72.8%, R2X= 14.3% and Q2 = -21%. Thus, this model also presents very poor predictive 

capabilities. 

This indicates that, in fact, the process data set does not contain sufficient 

information to allow for the prediction of polymer viscosity and, consequentially, the end 

point of batches under production. 

It is should be noted that the same Q2 value was obtained by both models (using 

the pseudo batches and the full data matrix). This is due to the fact that the software used 

(simca-P+, version 10), truncates this value when it is smaller than -0.1. Thus, the Q2 

values presented should be understood as a qualitative indication of poor Y predictability. 

6.5 Conclusions 

In this chapter, a control methodology is initially proposed and implemented in 

order to specify a chemical admixture in terms of it's final application. Despite the 

success achieved by this methodology, it is based on manually sampling the process at 

specific time intervals, and thus represents a very time-consuming and dangerous 
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practice. Therefore, the use of MPLS models is explored, with the intent of predicting the 

polymer viscosity (Y) form the process data (X), in a real-time manner. 

Due to the structure of the data set under study, the pseudo batch approach to data 

alignment (proposed by Marjanovic et a!., 2006), was initially applied. Additionally, a 

second MPLS model was built using data relative to the full batch runs. 

None of these models were capable of predicting the variations m Y. This 

indicates that the process data (X), currently collected during the additive's production, 

does not contain sufficient information to predict this polymer's viscosity during a batch 
I 

run. Consequentially, batch end-point times cannot be inferred. It is thus suggested that 

the process data set be enriched with measurements that indirectly reflect the 

consequences of an increase in polymer viscosity, such as the resulting electrical current 

in the agitator, in order for this objective to be achieved. 
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Chapter 7 

Conclusions 

Throughout this thesis multiway, multivariate, latent variable models and data 

preprocessing techniques were used in order to troubleshoot, monitor and predict data 

originating from industrial batch processes. In all, three different sets of data were 

studied and the main goal was to either reduce or infer product quality variability. 

In the first data set analyzed (Chapter 3), MPCA and MB-MPLS methods were 

successfully used to troubleshoot an organic peroxide-producing batch unit in order to 

identify optimal process conditions with respect to quality. It was verified that most of 

the variability present in the Y data originated from a loose control in reagent addition. 

Additionally, approaches to data laundering of the time-varying batch process 

variables, were proposed. To the best of the author's knowledge, this is the first time such 

issue has been discussed within the specific framework of batch analysis. 

In Chapter 4, MPCA was successfully used to build a single, all-encompassing, 

on-line monitoring scheme for the heating phase of a multi-grade batch annealing 

process. In order to eliminate clustering due to the existence of multiple grades, grade 

specific mean centering was applied. The performance of this system was evaluated 

based on pre-established false alarm and fault detection metrics. Additionally, the MPCA 

model showed superior fault detection abilities when compared to the system that is 

currently in place at the annealing plant under study. 

Issues relative to automated fault identification methods in batch process were 

also addressed within this work. It was verified that the distinction between certain fault 
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types, to which the annealing process is subjected to, is not clear. This is due to the fact 

that, at their initial points, these faults progress in a similar manner. Even so, a decision­

tree approach was suggested to aid the operators or engineers in the fault identification 

process. 

In Chapter 5, a data pre-alignment method was proposed and successfully used to 

synchronize batch data for on-line monitoring purposes. This technique is referred to as 

pre-alignment and it relies on a PLS model, fitted to variables obtained prior to the 

beginning of each batch cycle (initial conditions), to predict the duration of new batches. 

The predicted time information is then used to set the sampling rate of in-coming process 

data. 

The performance of this technique relative to other, more traditional alignment 

methods, was also evaluated. For this purpose, an on-line MPCA monitoring scheme, 

built for the heating phase of a single-grade industrial batch annealing process, was used. 

The results of this comparative study indicated that data pre-alignment has a consistently 

superior performance relative to data trimming and an equivalent performance relative to 

crude linear interpolation and the use of an indicator variable. 

Additionally, various methods for dealing with matrices containing different sized 

observations, in this case resulting from the existence of two possible steel stacking 

configurations, are proposed and evaluated. The method which presented best overall 

performance (highest predictive and predictor identification abilities) consisted of a 

single PLS model fitted to a data set in which measurements relative to inexistent coils 

were set as missing. 

In Chapter 6, a control methodology is initially proposed and implemented in 

order to specify a superplasticizer in terms of it's final application. In spite ofthe success 

achieved by this methodology, it is based on manually sampling the process at specific 

time intervals and thus, a very time-consuming and risky practice. Therefore the use of 

MPLS models, with the intent of predicting the polymer viscosity (Y) form the process 

data (X) in a real-time manner, is explored. 
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Due to the structure of the data set under study, the pseudo batch approach to data 

alignment (proposed by Marjanovic eta/., 2006), was initially applied. Additionally, a 

second MPLS model was built using data relative to the full batch runs. 

None of these models were capable of predicting the variations m Y. This 

indicates that the X matrices used to build these models, do not contain sufficient 

information to predict the polymer viscosity at a given time point. Consequentially, batch 

end-point times cannot be inferred from currently available process measurements. It is 

thus suggested that the process data set be enriched with measurements that indirectly 

reflect the consequences of an increase in polymer viscosity, such as the electrical current 

in the agitator. 
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