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Abstract

Anticipations of personalized medicine are primarily attributed to the recent advances in
computational science and high-throughput technologies that enable the ever-more realistic
modeling of complex diseases. These diseases result from the interplay between genes and
environment that have limited our ability to predict, prevent, or treat them. While many en-
vision the utility of integrated high-dimensional patient-specific information, basic research
towards developing accurate and reliable frameworks for personalized medicine is relatively
slow in progress. This thesis provides a state-of-the-art review of current challenges towards
personalized medicine. There is a need for global investment in basic research that includes
1) cost-effective generation of high-quality high-throughput data, 2) hybrid education and
multidisciplinary teams, 3) data storage and processing, 4) data integration and interpreta-
tion, and 5) individual and global economic relevance; to be followed by global investments
into public health to adopt routine personalized medicine. This review also highlights that
unknown or unadjusted interactions result in true heterogeneity in the effect and relevance
of patient data. This limits our ability to integrate and reliably utilize high-dimensional
patient-specific data. This thesis further investigates the true heterogeneity in marginal ef-
fects of known BMI genetic variants. This involved the development of the novel statistical
method, meta-quantile regression (MQR), to identify variants with potential gene-gene /
gene-environment interactions. Applying MQR on public and local data (75,230 European
adults) showed that FTO, PCSK1, TCF7L2, MC4R, FANCL, GIPR, MAP2K5, and NT5C2
have potential interactions on BMI. In addition, a gene score of 37 BMI variants shows that
the genetic architecture of BMI is shaped by gene-gene and gene-environment interactions.
The computational cost of fitting MQR models was greatly reduced using unconditional
quantile regression. The utility of MQR was further compared to variance heterogeneity
tests in identifying variants with potential interactions. MQR tests were found to have a
higher power of detecting synergetic and antagonistic interactions for skewed quantitative
traits while maintaining nominal Type I error rates compared to variance heterogeneity
tests. Overall, MQR is a valuable tool to detect potential interactions without imposing
assumptions on the nature of interactions.
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Notation and Abbreviations

BF - Brown-Forsythe
BGI - Beijing Genomics Institute
BMI - Body Mass Index
CI - Confidence Interval
CPU - Centeral Processing Units
CQR - Conditional Quantile Regression
dbGaP - Database of Genotypes and Phenotypes
DNA - Deoxyribonucleic acid
EA - European Ancestry
GS - Gene Score
GPU - Graphic Processing Units
GWAS - Genome Wide Association Study
GWIS - Genome Wide Interaction Study
HIV - Human Immunodeficiency Virus
HWE - Hardy Weinberg equilibrium
IDB - Identity by descent
MAF - Minor Allele Frequency
MCQR - Meta Conditional Quantile Regression
MODMatcher - Multi-Omics Data Matcher
MONA - multi-level ontology analysis
MQR - Meta-Quantile Regression
MR - Meta-Regression
MUQR - Meta Uconditional Quantile Regression
NW - Normal Weight
OLS - Ordinary least-squares
OW - Over Weight
QC - Quality Control
QR - Quantile Regression
RNA - Ribonucleic acid
SN - Skew-Normal
SNP - Single nucleotide polymorphism
T2D - Type 2 Diabetes
UQR - Unconditional Quantile Regression

vii



Contents

Abstract iv

Acknowledgements v

Declaration of Academic Achievement vi

Notation and Abbreviations vii

1 Introduction and Problem Statement 1

2 From big data analysis to personalized medicine for all: challenges and
opportunities 4
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The rich get richer and the poor get poorer . . . . . . . . . . . . . . . . . . . 6
Omics data: the shifting bottlenecks . . . . . . . . . . . . . . . . . . . . . . 9
Personalized medicine needs hybrid education . . . . . . . . . . . . . . . . . 10
Management and processing of omics data . . . . . . . . . . . . . . . . . . . 12
Integrative methods of omics data . . . . . . . . . . . . . . . . . . . . . . . . 14
Coping with to the curse of dimensionality . . . . . . . . . . . . . . . . . . . 14
Mixing apples and oranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Separate the wheat from the chaff . . . . . . . . . . . . . . . . . . . . . . . . 18

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Penetrance of polygenic obesity susceptibility loci across the body mass
index distribution 27
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Subjects and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Participants and Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Sample Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SNP Selection and Marker QC . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Gene Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Meta Quantile Regression: A Novel Method for Detecting Potential Gene
Interactions using Sample Distributions of Complex Traits 51
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Model Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Modeling QR Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Conclusion 75

Appendix A 78
Supplemental Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Supplemental References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Supplemental Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendix B 252
The differences between CQR and UQR . . . . . . . . . . . . . . . . . . . . . . . 252
Motivational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Multiple Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Meta-regression of QR Estimates Under no Interactions . . . . . . . . . . . . . . 261

ix



List of Tables

3.1 BMI-Associated SNP Information and Results from OLS Models. 37 BMI-
predisposing SNPs were selected for analysis. The effect and other (E and
O, respectively) alleles were based on original discovery studies (PMID), and
SNPs were coded by BMI-increasing or obesity-predisposing alleles. The in-
dicated positions are based on GRCh37, and all alleles are on the positive
strand. The association between these SNPs and BMI was assessed by OLS
models that were adjusted for age, age squared, sex, and study. b OLS is
the effect size (kg/m2 per effect allele), and 95% CIs are the 95% confidence
intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Quantifying the Effect of BMI Percentile on CQR Estimates. MR was used to
model variability in the CQR estimates across BMI percentiles. Note that the
percentiles were re-centered around the 50 th percentile so that the intercept
from MR models would correspond to the main effect of the SNP at the me-
dian. Asterisks (*) denote statistical significance at the Bonferroni-adjusted
threshold of p < 1.32 × 10−3, RI 50 is the re-centered intercept of the MR
models, b MR is the effect of BMI percentile on CQR estimates (kg/m2 per
effect allele per BMI percentile), and 95% CIs are the 95% confidence intervals. 48

3.3 Analysis of GS-BMI and GS-Height . . . . . . . . . . . . . . . . . . . . . . . 50
A1 Subject characteristics. Subject characteristics of the studies included in the

analysis of BMI and height; sample size (N), height (mean ± sd), BMI (mean
± sd), age (mean ± sd), the proportion of women, the proportion with dia-
betes, and the proportions of BMI categories including normal weight (NW),
overweight (OW), and obesity classes I (Ob-I), II (Ob-II) and III (Ob-III);
within each study and overall are presented. . . . . . . . . . . . . . . . . . . 112

A2 Study and quality control information. Additional details on the studies that
were included in this report including, funding sources, study design, which
populations were retained for analysis, datasets from which phenotypes and
genotypes were extracted, citations detailing these studies (PMID), pre-QC
sample size (N), QC criteria and number of samples that did not pass these
thresholds, post-QC sample size (post-QC N), and average sample call rate
(Mean CR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



A3 BMI/Obesity-associated SNP information. (A) Detailed information on the
BMI/obesity-associated SNPs from CARe studies including, effect alleles /
other alleles (E/O), minor alleles (MA), minor allele frequency (MAF), call
rate (CR) and Hardy-Weinberg Fisher’s Exact p-value (HWE). Where Proxy
SNP is indicated, the R2 correlation to the original SNP is presented and all
remaining details pertain to the proxy SNP. E/O for proxies were determined
from phasing with the original SNP. (B) Same as (A) except for non-CARe
studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A4 Height-associated SNP information. (A) Detailed information on the height-
associated SNPs from CARe studies including, effect alleles / other alleles
(E/O), minor alleles (MA), minor allele frequency (MAF), call rate (CR) and
Hardy-Weinberg Fisher’s Exact p-value (HWE). Where Proxy SNP is indi-
cated, the R2 correlation to the original SNP is presented and all remaining
details pertain to the proxy SNP. E/O for proxies were determined from phas-
ing with the original SNP. (B) Same as (A) except for non-CARe studies. . . 124

A5 Conditional quantile regression (CQR) models of BMI/obesity-associated SNPs
and GS-BMI across the sample distribution. CQR models were fitted every
5th percentile of BMI and adjusted for age, age-squared, sex and study. β
from ordinary least squares (OLS) and CQR models at each percentile are the
effect sizes (kg/m2 per Effect Allele). 95%CI are the 95% confidence intervals.
In addition, the proportion of BMI variance that is explained by the GS-BMI
was estimated, Variance Explained (%). . . . . . . . . . . . . . . . . . . . . . 155

A6 Height-associated SNP information and results from ordinary least squares
(OLS) models. 125 height associated SNPs were identified for analysis. The
Effect / Other (E/O) alleles were based on original discovery studies (PMID)
and SNPs were coded by height increasing alleles. Indicated positions were
based on GRCh37 and all alleles were on the positive strand. The association
of these SNPs with height was assessed using OLS models that were adjusted
for age, sex and study. βOLS is the effect size (cm per Effect Allele) and
95%CI are the 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . 180

A7 Conditional quantile regression (CQR) models of Height-associated SNPs and
GS-Height across the sample distribution. CQR models were fitted every 5th
percentile of height and adjusted for age, sex and study. β from ordinary
least squares (OLS) and CQR models at each percentile are the effect sizes
(cm per Effect Allele). 95%CI are the 95% confidence intervals. In addition,
the proportion of height variance that is explained by the GS-Height was
estimated, Variance Explained (%). . . . . . . . . . . . . . . . . . . . . . . . 184

xi



A8 Quantifying the effect of height percentile on conditional quantile regression
(CQR) estimates using meta-regression (MR). MR was used to model variabil-
ity in the CQR estimates across height percentiles. Note that the percentiles
were re-centered around the 50thpercentile so that the intercept from MR
models corresponds to the main effect of the SNP at the median. (∗) Denotes
statistical significance at the Bonferroni-adjusted p-value (p < 3.85 × 10−4),
RI50 is the re-centered intercept of the MR models, MR is the effect of height
percentile on CQR estimates (cm per Effect Allele per Height Percentile),
95%CI are the 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . 239

A9 Sensitivity analysis. Conditional quantile regression (CQR) models for 37
BMI/obesity SNPs were conducted before except that models were fitted with
adjustment for diabetic status or age-linear. Meta-regression (MR) analysis
was applied to examine the association between CQR estimates and the BMI
percentile as above. In addition, CQR estimates were obtained every 10th per-
centile rather than every 5th percentile of BMI. The results from Table 2 are
included for comparison. (∗) Denotes statistical significance at the Bonferroni-
adjusted p-value (p < 1.32×10−3), RI50 is the re-centered intercept of the MR
models, βMR is the effect of BMI quantile on CQR estimates (kg/m2 per Effect
Allele per BMI Percentile), 95%CI are the 95% confidence intervals. These
conditions had little effect on the outcome of MR analysis, which supports the
robustness of the main findings. Note that 3 SNPs with significantly increas-
ing effects across the sample BMI distribution showed nominal effects when
diabetic status adjustments were applied including, MAP2K5 (rs997295, FTO
(rs6499653) and NT5C2 (rs3824755); while CDKAL1 (rs9356744) showed sig-
nificantly increasing effects across the sample BMI distribution only when
CQR models were fitted with diabetic status adjustment. . . . . . . . . . . 243

A10 BMI was divided into BMI categories, and the effects of SNPs on the risk
of overweight, obesity class I, class II and class III relative to normal weight
(Controls) were tested using logistic regression. Models were adjusted for age,
age-squared, sex and study. OR is the odds ratio and 95%CI are the 95%
confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

xii



List of Figures

2.1 Distributions of populations and global health expenditure according to WHO
2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 A basic framework of personalized medicine. The integration of omics profiles
permit accurate modeling of complex diseases and opens windows of oppor-
tunities for innovative clinical applications to subsequently benefit the patient 22

2.3 An interdisciplinary cloud-based model to implement personalized medicine.
The consecutive knowledge and service swapping between modeling and soft-
ware experts in research and development units is essential for the manage-
ment, integration, and analysis of omics data. Thorough software and model
development will derive updates upon knowledge bases for complex diseases,
in addition to clinical utilities, commercial applications, privacy and access
control, user-friendly interfaces, and advanced software for fast computations
within the cloud. This translates into personalized medicine via personal
clouds that upload wellness indices into personal devices, electronic databases
for health professionals, and innovative medical devices . . . . . . . . . . . . 23

2.4 The bias-variance tradeoff with increasing model complexity . . . . . . . . . 24
2.5 Noise and true heterogeneity within complex systems. Source of noise include

measurement error and sampling variability. True heterogeneity however, is
the result of true differences of effect sizes due to 1) the dynamic biological
nature which encompasses feedback loops and temporal associations; and 2)
multi-factorial complexity. Increasing the sample sizes is one solution to by-
pass noise and attain precise effect sizes, but true heterogeneity can only be
adjusted during analysis when possible and via standardizations and calibra-
tions that limit generalizability of the conclusions . . . . . . . . . . . . . . . 25

2.6 Bottleneck toward personalized medicine. The collective challenges to make
the transition from conventional to personalized medicine include: i) gener-
ation of cost-effective high-throughput data; ii) hybrid education and mul-
tidisciplinary teams; iii) data storage and processing; iv) data integration
and interpretation; and v) individual and global economic relevance. Massive
global investment in basic research may precede global investment in public
health for transformative medicine . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



3.1 Working example of conditional quantile regression. BMI (kg/m2) was plotted
against the number of effect alleles of FTO (rs1421085) in the ARIC CARe
study (top-left). An ordinary least squares (OLS) model of the mean effect of
this SNP on BMI was plotted (solid-green line). Conditional quantile regres-
sion (CQR) models, fitted every 5th percentile of BMI, show the effects of this
SNP at these BMI percentiles (solid-grey lines). The slopes (βOLS, horizontal-
dashed-green line; βCQR, thick-black line; kg/m2 per Effect Allele) from these
models were then plotted against BMI percentile at which they were fitted
(middle-right). 95% confidence intervals for these estimates are also plotted
(OLS, horizontal-dotted-green line; CQR, shaded-grey region). The change
in CQR estimates across BMI percentiles was modeled using meta-regression
(MR). The MR slope (βMR, kg/m2 per Effect Allele per BMI percentile, thin-
magenta line) and the 95% confidence intervals (dotdashed-magenta lines)
were plotted (bottom-left). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The effects of BMI/obesity-associated SNPs across the sample BMI distribu-
tion. CQR models of BMI-associated SNPs were fitted every fifth percentile
of BMI and adjusted for age, age squared, sex, and study. Estimates of the
change in BMI (kg/m2) per effect allele (βCQR) from these models were plotted
against the BMI percentile (thick black line) along with the 95% confidence
intervals (shaded gray region). The results from OLS models (βOLS, kg/m2

per effect allele, horizontal dashed green line) and the 95% confidence inter-
vals (horizontal dotted green lines) were also plotted for comparison. The
change in CQR estimates across BMI percentiles was modeled with MR, and
estimates from MR (βMR, kg/m2 per effect allele per BMI percentile, thin
magenta line) and the 95% confidence intervals (dotted magenta lines) were
plotted. MR analysis detected significant (p < 1.32 × 10−3) increases in the
effects of these SNPs across the sample BMI distribution. . . . . . . . . . . . 45

3.3 The effects of GS-BMI and GS-Height across the sample distribution of BMI
and height, respectively. As in Figure 2, CQR models of the GS-BMI and GS-
Height were plotted against the BMI percentile and height percentile, respec-
tively. The thick-black line is the estimated change in each trait per effect al-
lele (GS-BMI, βCQR, kg/m2 per Effect Allele; GS-Height, βCQR, cm per Effect
Allele) and shaded-grey region represents the 95% confidence intervals. Also
plotted are the OLS regression estimates (GS-BMI, βOLS in kg/m2 per Effect
Allele; GS-Height, βOLS, cm per Effect Allele, horizontal-dashed-green line)
and 95% confidence intervals (horizontal-dotted-green lines). The change in
CQR estimates across outcome percentiles was modeled using meta-regression
(MR). Estimates from MR (GS-BMI, βMR, kg/m2 per Effect Allele per BMI
Percentile; GS-Height, MR, cm per Effect Allele per Height Percentile; thin-
magenta line) and the 95% confidence intervals (dotdashed-magenta lines)
were also plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiv



4.1 Type I error rates for test statistics of potential interactions. The error bars
corresponds to the binomial confidence interval for R = 10, 000 replications.
R2
G corresponds to the variance explained by the genetic variant’s main effect.

The variance explained by the interacting variable is fixed at 24%. The G×E
test corresponds to the reference direct interaction using median CQR. Levene
and BF correspond to the variance heterogeneity tests by Levene and the
Brown-Forsythe F-tests respectively. Unadj-MUQR and MUQR corresponds
to UQR models fitted on the raw and residuals scale of the response variable 72

4.2 Power of detecting interaction effects for 2 and 3 genotype group levels . . . 73
4.3 Power of detecting synergistic interaction effects. Power is presented for when

the error distribution is symmetric (αε = 0) or asymmetric (αε = 20). The
interacting variable is simulated from a standard normal relevance variance
explained fixed at R2

X = 24%. MAF was fixed at 5% as there are no to minor
differences in power due to re-adjustment of interaction effects to keep RG×E
fixed as intended. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A1 Simulation study of the power to detect unadjusted interactions using con-
ditional quantile regression (CQR) and meta-regression (MR). The power to
detect unadjusted interactions between a SNP (G) and a continuous variable
(X) was simulated in a sample of 10,000 individuals. Unless otherwise indi-
cated, the simulation conditions were minor allele frequency (MAF) = 0.2,
variance explained by G (R2G) = 0.004, variance explained by X (R2

X) =
0.25, and the variance explained by the interaction between G and X (R2

G×X)
was varied between 0 and 0.004. CQR models were fitted at every 10th per-
centile of the distribution of Y from the 5th to the 95th percentiles and MR
was used to model the relationship between variation in CQR estimates and
the Y percentiles. The power to detect unadjusted interactions at a threshold
of p < 0.05 was computed from 1,000 replicates of each simulation condition
and plotted against the value of R2

G×X . The power to detect interactions at
different values of R2

G MAF, R2
X and the number of interactions was investi-

gated (A, B, C and D, respectively). When more than one interaction was
considered, R2

X was divided equally between all interaction covariates, while
each additional interaction was equal to R2

G×X . Overall the power to detect
unadjusted interactions was not affected by the main effects of G or the MAF,
but was enhanced by the main effects of X and the number of interactions. 97

xv



A2 Sample stratification and the detection of unadjusted interactions in simula-
tions. (A) A schematic representation of the model described by equations 1,
9, 10 and 11 in Appendix A. (B) Investigating the effects of sample stratifica-
tion on the power to detect unadjusted interactions using conditional quantile
regression (CQR) and meta-regression (MR) in a simulation study. The sim-
ulation conditions were minor allele frequency (MAF) = 0.2, variance of Z
explained by G (R2

G[Z]) = 0.01 (equivalent to OR ∼ 1.4 of G on D), variance

Z explained by Y (R2
Z) = 0.2 (equivalent to OR 2.5 of Y on D), variance of

Y explained by G (R2
G[Y ]) = 0.004, variance of Y explained by X (R2

X) = 0.25

and the variance of Y explained by the interaction between G and X (R2
G×X)

was varied between 0 and 0.004. A population of 100,000 individuals was
generated with disease prevalence (n0) = 10%. A sample population of 10,000
individuals with pre-specified proportion of cases was randomly selected from
this population. The power to detect unadjusted interactions between the
SNP (G) and the continuous variable (X) in this sample was computed and
plotted as in Figure A1, except that CQR models were adjusted for disease
status (D). Overall the power to detect unadjusted interactions was not af-
fected by sample stratification when CQR models were adjusted for disease
status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A3 The effects of BMIl obesity-associated SNPs across the sample BMI distri-
bution (continued). As in Figure 2, estimates of the change in BMI per
effect allele (βCQR, kg/m2 per Effect Allele) from conditional quantile re-
gression (CQR) models of BMI/obesity-associated SNPs was plotted against
the BMI percentile (thick-black line) along with the 95% confidence intervals
(shaded-grey region). The results from ordinary least square (OLS) (βOLS
, kg/m2 per Effect Allele, horizontal-dashed-green line) and the 95% confi-
dence intervals (horizontal-dashed-green lines) were also plotted for compari-
son. The change in CQR estimates across BMI percentiles was modelled using
meta-regression (MR) and estimates from MR (βMR , kg/m2 per Effect Al-
lele per BMI Percentile, thin-magenta line) and the 95% confidence intervals
(dotdashed-magenta lines) were plotted. MR analysis did not detect signifi-
cant (p < 1.32×10−3) increases in the effects of these SNPs across the sample
BMI distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xvi



A4 The effects of height-associated SNPs across the distribution of height. Condi-
tional quantile regression (CQR) models of height-associated SNPs were fitted
every 5th percentile of height and adjusted for age, sex and study. Estimates of
the change in height per effect allele (βCQR , cm per Effect Allele) from these
models was plotted against the height percentile (thick-black line) along with
the 95% confidence intervals (shaded-grey region). The results from ordinary
least square (OLS) models (βOLS , cm per Effect Allele, horizontal-dashed-
green line) and the 95% confidence intervals (horizontal-dotted-green lines)
were also plotted for comparison. The change in CQR estimates across height
percentiles was modelled using meta-regression (MR) and estimates from MR
(βMR , cm per Effect Allele per Height Percentile, thin-magenta line) and the
95% confidence intervals (dotdashed-magenta lines) were plotted. . . . . . . 107

A5 Sensitivity analysis of GS Results. (A) CQR models of GS-BMI (Stringent),
GS-BMI (No Imputation) and GS-Height (No Imputation) fitted as in Figure
2 and plotted against respective outcome percentiles. The thick-black line
is the estimated change in each trait per effect allele (BMI, βCQR, kg/m2

per Effect Allele; Height, βCQR, cm per Effect Allele) and shaded-grey region
represents the 95% confidence intervals. Also plotted are the OLS regression
estimates (BMI, βOLS in kg/m2 per Effect Allele; Height, βOLS, cm per Effect
Allele, horizontal-dashed-green line) and 95% confidence intervals (horizontal-
dotted-green lines). The change in CQR estimates across outcome percentiles
was modeled using meta-regression (MR). Estimates from MR (BMI,βMR,
kg/m2 per Effect Allele per BMI Percentile; Height, βMR, cm per Effect Allele
per Height Percentile; thin-magenta line) and the 95% confidence intervals
(dotdashed-magenta lines) were also plotted. (B) The results from OLS and
MR modelling of GS-BMI (Stringent), GS-BMI (No Imputation) and GS-
Height (No Imputation). (∗) denotes statistical significance, RI50 is the re-
centered intercept of the MR models and 95% CI are the 95% confidence
intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A6 Comparing patterns from subgroup analysis and conditional quantile regres-
sion (CQR). BMI was divided into BMI categories, and the effects of each
SNP on the risk of overweight (OW), obesity class I (Ob-I), class II (Ob-II)
and class III (Ob-III) relative to normal weight (NW) were tested using lo-
gistic regression. Models were adjusted for age, age- squared, sex and study.
Bar plots of the odds ratio (OR, left axis) for these categories were plotted
and bar widths were defined by the percentile cut-offs of each category. Error
bars correspond to the 95% confidence intervals. These bar plots were then
overlaid with the results from similarly adjusted CQR models (thick-red line,
right axis). The patterns from subgroup analysis correspond closely to those
from CQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B1 Genetic effects across percentiles for interacting variables with different scale
and shape parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

xvii



B2 Computational Efficiency of UQR over CQR. The computational time for
UQR scales well with all number of snps, sample size, percentiles, and covari-
ates compared to CQR. CPU time for UQR included time required for RIF
transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

B3 Type I error rate for the number and range of percentiles by sample size. UQR
estimates (blue) are more asymptoticly efficient than CQR estimates (red) . 258

B4 Power of detecting interaction effects for 4 and 5 genotype group levels. . . . 259

xviii



Chapter 1

Introduction and Problem Statement

Multifactorial complex diseases such as obesity, clinical depression, anxiety, type 2 dia-

betes, hypertension, dyslipidemia and cancer have all turn into global epidemics in recent

years [1, 2, 3, 4, 5, 6, 7]. They all include genetic, environment and genetic-environment

interaction components that all contribute to the incident and prognosis of disease cases [8].

The recent advances in our ability to measure and record large multidimensional amount

of individual data (e.g. demographic, clinical, environmental, and genetic profiles) have en-

abled us to envision the emergence of personalized medicine. That is routine evidence-based

medicine via the integration of ones unique genetics and environmental exposures to proac-

tively optimize our well-being [9]. Hence, the primary progress steps towards personalized

medicine include the integration of heterogeneous data in the from of “bench to bed” and

“bed to bench” frameworks.

The advent of personalized medicine depends in large part on the availability of accurate

and reliable predictive models that incorporate the influence of relevant genetic, environ-

mental factors, and their corresponding interactions. While much progress has been made

identifying the genetic components of complex traits, the amount of phenotypic variance

(i.e. heritability) explained by genome-wide significant associations remains minor [10]. On
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the other hand, heritability estimates of complex traits could be inflated by genetic inter-

actions (i.e. single or multiple gene x gene / gene x environment interactions) that require

large sample sizes to detect. Genetic data embody a large mixture of modest signals and

random errors, where our current ability to identify genetic interactions comes at the cost

of tolerating larger error thresholds. Both unknown and or unadjusted genetic interactions

are problematic as they result in true heterogeneity in the marginal effect of variants on

complex diseases. Increasing the sample size only bypasses random error, but true hetero-

geneity between samples can only be bypassed via standardizations and calibrations that

limit generalizability. It is nontrivial to distinguish random from systematic differences in

effect of variants on complex traits between well-phenotyped and high-quality sample stud-

ies. Our inability to reliably detect genetic interactions limits the predictive value of models

for complex diseases. There is an urgent need for robust statistical methods to reliabil-

ity detect genetic interactions under heterogeneous systems of gene-gene, gene-environment

interactions.

This thesis includes two peer-reviewed published articles and one unpublished paper. The

second chapter of this thesis is the first paper published in BMC Medical Genomics. It is

a state-of-the-art review on current challenges and opportunities for personalized medicine

given that it is a broad and rapidly advancing research field. There is a large diversity in

recent advances towards personalized medicine that make it difficult to follow and assess the

status-quo of current challenges and recent advances. The primary notable challenges include

overcoming the growing gaps in 1) socioeconomics and scientific progress between developed

and undeveloped nations that threaten the social pillars of stability, and 2) our ability to

generate compared to analyzing interoperating that is currently stagnating information from

omic data (i.e. genomic, methylomic, metabolomic,..., etc). These challenges are discussed

in Chapter 2 in more details.

The third chapter includes the paper published in the American Journal of Human Ge-

netics. It investigates the heterogeneity in the impact of genetic variants across the sample
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distribution on BMI as a complex trait. It proposes the use of a novel framework based on

meta-regression and quantile regression to demonstrate the BMI includes a large genetic-

environment interactions, and show that four BMI variants show potential interactions in

which no-interactions are ruled out.

The fourth chapter contains unpublished work that is to be submitted to Plos Genetics

or Genetic Epidemiology. The paper provides the novel method with a name, Meta-Quantile

Regression (MQR), and it expands on its utility by substantially reducing the computational

cost. It further provides a simulate study to compare the power of MQR to detect potential

interactions compared with variance-heterogeneity tests. MQR is shown to have higher power

than variance heterogeneity tests for asymmetric distributions and antagonistic interactions

while maintaining nominal Type I error rates
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Chapter 2

From big data analysis to

personalized medicine for all:

challenges and opportunities

Abstract

Recent advances in high-throughput technologies have led to the emergence of systems bi-

ology as a holistic science to achieve more precise modeling of complex diseases. Many

predict the emergence of personalized medicine in the near future. We are, however, moving

from two-tiered health systems to a two-tiered personalized medicine. Omics facilities are

restricted to affluent regions, and personalized medicine is likely to widen the growing gap

in health systems between high and low-income countries. This is mirrored by an increasing

lag between our ability to generate and analyze big data. Several bottlenecks slow-down

the transition from conventional to personalized medicine: generation of cost-effective high-

throughput data; hybrid education and multidisciplinary teams; data storage and processing;

data integration and interpretation; and individual and global economic relevance. This re-

view provides an update of important developments in the analysis of big data and forward
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strategies to accelerate the global transition to personalized medicine.

Introduction

Access to large omics (genomics, transcriptomics, proteo-mics, epigenomic, metagenomics,

metabolomics, nutrio-mics, etc.) data has revolutionized biology and has led to the emer-

gence of systems biology for a better understand-ing of biological mechanisms. Systems

biology aims to model complex biological interactions by integrating in-formation from inter-

disciplinary fields in a holistic man-ner (holism instead of the more traditional reductionism).

In contrast to treating a mixture of factors as single entities leading to an endpoint, systems

biology relies on experimental and computational approaches in order to provide mechanistic

insights to an endpoint [9]. Trad-itional observational epidemiology or biology alone are not

sufficient to fully elucidate multifaceted heterogeneous disorders and this directly limits all

prevention and treat-ment pursuits for such diseases [11, 12]. It is widely recog-nized that

multiple dimensions must be considered simultaneously to gain understanding of biologi-

cal sys-tems [13]. Systems approaches are driving the leading-edge of biology and medicine

[14, 15]. The use of deterministic networks for normal and abnormal phenotypes are thought

to allow for the proactive maintenance of wellness specific to the individual, that is predic-

tive, preventive, personalized, and participatory medicine (P4, or more generally speaking,

personalized medicine) [9].

Many predict the emergence of personalized medicine in the near future, but it is not

likely to come about as quickly as the scientific community and the media may think [16].

In parallel to an escalating two-tiered health system at the global level, a similar two-tiered

phenomenon is observed with regard to our ability to generate and analyze omics data

that may delay even further the transi-tion to personalized medicine. The generation and

manage-ment (storage, and computational resources) of omics data remain expensive despite

technological progress. This im-plies that personalized medicine could be restricted to the
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wealthier countries [17]. This is mirrored by a growing gap in our abilities to generate and

interpret omics data. The bottleneck in omics approaches is becoming less and less about

data generation and more and more about data man-agement, integration, analysis, and

interpretation [18]. There is an urgent need to bridge the gap between advances in high-

throughput technologies and our ability to manage, integrate, analyze, and interpret omics

data [19, 20, 21]. This review addresses the growing gaps in socioeconomic and scientific

progress toward personalized medicine.

Review

The rich get richer and the poor get poorer

The developing world is home to 84 % of the worlds population, yet accounts for only 12

% of the global spending on health [22]. There is a large disparity between the distribution

of people and global health expenditures across geographical regions (Figure 3.1). While

public financing of health from domestic sources has increased globally by 100 % from 1995

to 2006, a majority of low and middle-income countries experienced a reduction of funding

during the same time [23]. Several life-threating but easily preventable or treatable diseases

are still prevalent in developing countries (e.g. malaria). Personalized medicine will further

increase these dispar- ities and many low and middle-income countries may miss the train

of personalized medicine [24, 25, 26], unless the international community devotes important

efforts towards strengthening health systems of the most disadvantaged nations.

Systems medicine, the application of systems biology to human diseases [27], requires

investments in infrastructures with cutting-edge omics facilities and analytical tools, ad-

vanced digital technologies (high computing performance and storage resources), and highly-

qualified multi-disciplinary teams (clinicians, epidemiologists, biologists, computer scientists,

statisticians and mathematicians) in addition to investments in security and privacy. On the

bright side, technology is evolving quickly and new developments are producing data more
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efficiently. A few examples include the development of high-throughput next generation se-

quencing and microarrays in genomics and transcriptomics, mass spectrometry-based flow

cytometer in proteomics, real-time medical imaging, and more recently, lab-on-a-chip tech-

nologies [28]. Some predict that a technological plateau may be reached for different reasons

(reliability, cost-effectiveness), but these projections are not validated by historical trends

in science as novel technological developments can always occur [29]. However, there is a

consensus that most of the cost in omics studies will come from data analysis rather than

data generation [18].

The economic value of omics networks as personalized tests for future disease onset or

response to specific treatments / interventions remains largely unknown. A recent study

by Philips et al. reflects this issue and highlights a lag between clinical and economical

value assessment of personalized medical tests in current research [30]. Very few studies

have incorporated an economic aspect in the evaluation of personalized tests. These tests

range from those available in clinical use or in advanced stage of development, genetic tests

with Food and Drug Administration labels, tests with demonstrated clinical utility, and tests

examining conditions with high mortality or high health-associated expenditures. Economic

evaluations of personalized tests are needed to guide investments and policy decisions. They

are an important pre-requisite to hasten the transition to personalized medicine. In addition,

those few personalized tests that included economic information were found to be relatively

cost-effective, but only a minority of them were cost-saving, suggesting that better health

is not necessarily associated with lower expenditures [30]. In summary, the costs associated

with personalized medicine transition remain unclear, but personalized medicine may further

widen the economic inequality in health systems between high and low-income countries.

This jeopardizes social and political pillars of stability, and highlights the need for a broader

translation-oriented focus across the globe [31].

Several ideas for stimulating sustainable innovations in developing nations include micro-

grants as proposed by Ozdemir V. et al. [32]. Although 1, 000 micro-grants are relatively
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small, they far exceed the annual income of individuals below the poverty line of 1.25/day

as de-fined by the World Bank. Recipients of these grants may go a long way in connecting

and co-producing know-ledge based innovations to broaden translational efforts. Type 1

micro-grants which are awarded through funding agencies may support small labs and local

scholars to connect personalized medicine with new models of dis-covery and translation

[32]. Type 2 micro-grants funded by science observatories and/or citizens through crowd-

funding mechanisms may facilitate developments of glo-bal health diplomacy to share novel

innovations (i.e. therapeutics, diagnostics) in areas with similar burdens [32]. There is an

overall need to support local scholars in promoting knowledge and innovation within low

and middle-income countries [33]. This includes for ex-ample, the case of advocating for

treatment of persons with Human Immunodeficiency Virus (HIV) infections where their

peers may not recognize their illness as an endemic that affects society [33]]. One successful

ex-ample of personalized medicine for HIV patients in low and middle-income countries

include personal text mes-sages for improving adherence to antiretroviral therapy in Kenya

and Cameroon [34].

Interdisciplinary programs for global translational science such as the Science Peace Corps

are another promising catalyzing agent for research and developments in low and middle-

income countries (http://www.peace-corps.gov/) [31]. The present Peace Corps program

entails volunteer work (6 weeks minimum and up to 2 years) in various regions across the

globe to serve as a steady flux of knowledge for translational research. Junior or senior

scientists may cover topics from life sciences, medicine, surgery, and psychiatry. This program

is bi-directional as it serves both the rich and poor to elucidate the concept of health and

integrate personal-ized medicine within various environments. Lagging developments in low

and middle-income countries are in fact open opportunities with rewards for intellectual

individuals given the simple fact that it is where the majority of the human populations

reside.

The tragedy of the commons is a conceptual economic problem where the benefits of

8



P.hD. Thesis - Akram Alyass McMaster University - CSE

common and open re-sources are jeopardized by individuals self-interest to optimize personal

gains [26]. The 2009 Economics Nobel Laureate, Elinor Ostrom, has shown that this issue

is not actually common among humans since individuals work through establishing trust,

and tend to find solutions to common problems themselves [35]. Societies do systematically

develop complex sustainable regulations to collectively benefit each other where assurance

is a critical factor for cooperation [36]. There is a need to understand institutional diversity

if humans are to act collectively to benefit each other. Diverse applications of personalized

medicine can be envisioned to cope with the diversity of the world by allowing multi-tier

personalized health care systems at multiple scales and avoiding a single top-tier health

care system that may instead compromise resource management. This also brings about

the need for nested regulation systems for both science and ethics (i.e. ethics-of-ethics) as

the assurance factor for cooperation [37, 38]. Transparency and accountability need to be

imposed on all scientists, practitioners, ethicists, sociologists, and policymakers. No one

should be above the fray for account-ability if a sustainable transition towards personalized

medicine is to occur.

Omics data: the shifting bottlenecks

In parallel to the gap in health systems between rich and poor countries that personalized

medicine may widen, an increasing lag has been observed in our ability to generate versus

integrate and interpret omics data these last ten years [18]. New technologies and knowledge

emerging from the Human Genome Project, fueled by biotechnology companies, led to the

omics revolution in the beginning of the 21th century [39]. Using high-throughput tech-

nologies, we are now able to perform an exhaustive number of measurements over a short

period of time giving access to individuals DNA (genomics), transcribed RNA from genes

over time (transcriptomics), DNA methylation and protein profiles of specific tissues and cells

(epigenomics and proteomics), metabolites (metabolomics), among other types of omics data

[40]. Even histopathological and radiological images which are traditionally evaluated and
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scored by trained experts are now subjected to computational quantifications (i.e. imaging

informatics) [19, 20, 21, 41]. Business models based on returns on investments have driven

ongoing technological developments to accelerate the generation of omics data at increased

affordability in comparison with existing technologies. As a consequence, omics platforms

and individual omics profiles are expected to be-come fairly affordable and data generation is

no more a bottleneck for most laboratories, at least in the middle and high-income countries

[42].

Initially, there were great expectations for omics data to provide clues on the mechanisms

underlying disease initiation and progression as well as new strategies for disease prediction,

prevention and treatment [9]. The idea was to translate omics profiles into subject-specific

care based on their disease networks (Figure 3.2). However, our ability to decipher molecu-

lar mechanisms that regulate complex relationships remains limited despite growing access

to omics profiles. Biological processes are very complex, and this coupled with the noisy

nature of experimental data (e.g. cellular heterogeneity) and the limitations of statistical

analyses (e.g. false positive associations) poses many challenges to detecting interactions

between net-works and networks of networks. As an illustration, only a minority of the ge-

netic variants predisposing to type 2 diabetes have been identified so far, despite large-scale

studies involving up to 150,000 subjects [9, 43]. It becomes more and more obvious that

the bottleneck in laboratories has shifted from data generation to data management and

interpretation [44].

Personalized medicine needs hybrid education

Although solutions for the challenges of big data already exist and are adopted by companies

such as Google, Apple, Amazon, and Facebook to tackle the fairly homogenous big data (i.e.

user data) [45], the heterogeneous nature of omics data presents a new challenge that re-

quires sufficient understanding of the underlying biological concepts and analysis algorithms

to carry out data integration and interpretation [46]. It is important for the working scientist
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to understand 1) the underlying problem, 2) the methods of data analysis, and 3) the advan-

tages, and disadvantages of different computational platforms to carry out explorations and

draw inference. Expertise in biology provides a foundation to contextualize causal effects

and guide identification and interpretation of interaction signals from noise. There is also no

uniformly most powerful method to analyze omics data and the use of various approaches

to infer biological interactions requires modeling expertise [47]. Otherwise, research quality

is sacrificed to avoid the logistical challenges of modeling in exchange for the use of more

straightforward approaches [48]. Lastly, computer programing skills are necessary to navigate

explorations and analyze omics data accordingly. There is a need for reliable and maintain-

able computer codes through best prac-tices for scientific computing [49]. Approximately

90% of scientists are self-taught in developing software and one may lack basic practices such

as task automation, code review, unit testing, version control and issue tracking [50, 51].

Barriers between disciplines still exist between informaticians, mathematicians, statisticians,

biologists, and clinicians due to a too divergent scientific background. Cutting-edge science

is integrative by essence and innovative strategies in universities to educate and train fu-

ture researchers at the interface of traditionally partitioned disciplines is urgently needed for

the transition to personalized medicine. Johns Hopkins University is leading this evolution

by changing the teaching plans and establishing new programs in the school of medicine

that integrate the notion of personalized medicine [52]. Although increased know-ledge at

the population level is a key factor in development of modern societies, there is an upper

limit to the wealth of knowledge and expertise a single individual can hold [53]. This is the

reason why, in addition to multidisciplinary individual training, initiatives by universities,

research funding agencies, and governments are encouraged to connect researchers from di-

verse scientific backgrounds on interface topics related to systems biology and personalized

medicine. The recent shift by the Canadian Institutes of Health Research from distinct dis-

cipline (e.g. genetics) to multidisciplinary ex-pert panels in funding biomedical research is

a step in the right direction. The creation of interdisciplinary research institutes, such as
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the Steno Diabetes Center in Denmark that combine clinical, educational and multifaceted

re-search activities to lead translational research in diabetes care and prevention, is another

sensible initiative that could prefigure what may become personalized medicine institutes in

the future.

Management and processing of omics data

Major investments need to be made in bioinformatics, biomathematics, and biostatistics

by the scientific community to accelerate the transition to personalized medicine. Classic

research laboratories do not possess sufficient storage and computational resources for pro-

cessing omics data. Laboratory-hosted servers require investments in informatics support for

configuring and using software. Such servers are not only expensive to setup and maintain,

but do not meet the dynamic requirements of different workflows for processing omics data,

leading to either extravagant or sub-optimal servers. One promising technology to close the

gap between generation and handling of omics data is cloud computing [54, 55]. It is an

adaptive storage and computing service that exploits the full potential of multiple comput-

ers together as a virtual resource via the Internet [56]. Examples include the EasyGenomics

cloud in Beijing Genomics Institute (BGI), and Embassy clouds as part of ELIXIR project in

collaboration with multiple European countries (UK, Sweden, Switzerland, Czech Republic,

Estonia, Norway, the Netherlands, and Denmark) [57]. The focus is currently placed on

developing cloud based toolkits and workflow platforms for high-throughput processing and

analysis of omics data [57, 58, 59, 60]. More recently, Graphics Processing Units (GPUs)

have been proposed for general-purpose computing in a cloud environment [61]. GPUs pro-

vide faster computations as accelerators by one or two orders of magnitudes compared to

general Central Processing Units (CPUs) and have been exploited to cope with exponen-

tially growing data [62, 63, 64]. MUMmerGPU for example, processes queries in parallel

on a graphics card, achieves more than a 10-fold speedup over a CPU version of the se-

quence alignment kernel, and outperforms the CPU version of MUMmer by 3.5-fold in total
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application time when aligning reads [65]. However, a significant amount of work will be

required for developing parallelization algorithms considering the heterogeneous framework

of omics data that present challenges in communications and synchronizations [45]. There

are tradeoffs between computational cost (floating-point operations), synchronization, and

communications to consider while developing parallelization algorithms [66]. Moreover, de-

veloping error-free and secure applications is a challenging and labor-intensive, yet critically

important task. Examples of programming errors and studies outlining wrongly mapped

SNPs in commercial SNP chips have been reported in literature [67, 68, 69]. There is a

need to validate the reliability of research platforms before considering the clinical utility of

omics data. For instance, ToolShed, a feature of the Galaxy project that draws in software

developers worldwide to upload and validate software tools, aims to enhance the reliability

of bioinformatics tools. Novel tools and workflows with demonstrated usefulness and in-

structions are publically available (http://toolshed.g2.bx.psu.edu/) [70]. Both storage and

computing platform such as Bioimbus [71], Bioconductor [72], CytoScape [73], are made

available by scientists to exchange algorithms and data. There are many questions and

methodologies that researchers may wish to consider, and this continuously drives on novel

bioinformatics tools. Ultimately, light-weight programing environments and supporting pro-

grams with diverse cloud-based utilities are essential to enable those without or with limited

programing skills to investigate biological networks [74]. Figure 3.3 illustrates a cloud-based

framework that may help to implement personalized medicine. Much more programing ef-

forts are still needed for the integration and interpretation of omics data in the transition

to personalized medicine. Potential downstream applications are not always apparent when

data are generated, promoting sophisticated flexible programs that may be regularly updated

[75].
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Integrative methods of omics data

Lastly, the depiction of biological systems through the integration of omics data requires

appropriate mathematical and statistical methodologies to infer and describe causal links

between different subcomponents [48]. The integration of omics data is both a challenge

and an opportunity in biostatistics and biomathematics that is an increasing reality with

the decreasing costs of omics profiles. Aside from the computational complexity of analyzing

thousands of measurements, the extraction of correlations as true and meaningful biological

interactions is not trivial. Biological systems include non-linear interactions and joint effects

of multiple factors that make it difficult to distinguish signals from random errors. Caspase-

8 for example, has opposing biological functions as it promotes cell death by triggering

the extrinsic pathway of apoptosis, while having beneficial effects on cell survival through

embryonic development, T-lymphocyte activation, and resistance to necrosis induced by

tumor necrosis factor- (TNF-) [76]. Genes may carry out different functions in different cell

types / tissues, which adds to the already substantial inter-individual variability. Biological

complexity presents a challenge in extracting useful information within high-dimensional

data [77]. Both computational and experimental methodologies are needed to fully elucidate

biological networks. However, in contrast to experimental assays, computational models rely

on biologic-ally driven variables and have inherent pitfalls of omics data.

Coping with to the curse of dimensionality

High-dimensionality is one of the main challenges that biostatisticians and biomathemati-

cians face when deciphering omics data. It is the issue of large p, small n, where the number

of measurements, p, is far greater than the number of independent samples, n [41, 77].

The analysis of thousands of measurements often leads to results with poor biological inter-

pretability and plausibility. The reliability of models decreases with each added dimension

(i.e. increased model complexity) for a fixed sample size (i.e. bias-variance dilemma, see

Figure 2.4) [77]. All estimate instability, model overfitting, local convergence, and large
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standard errors compromise the prediction advantage provided by multiple measures. A

better understanding of these inherent caveats comes from the key concept behind statisti-

cal inference that is the distribution of repeated identical experiments. This distribution can

be characterized by parameters such as the mean, and variance that quantify the average

value (i.e. effect size), and degree of variability (i.e. biological or experimental noise). These

parameters are estimated from observed data drawn from the true distribution (i.e. a finite

number of independent samples). The reliability of estimates from a small sample size is low

where it is more likely to observe estimates that deviate from the true distribution parame-

ters. The chance of encountering such deviations also increases with the number of different

measurements in a fixed sample. It is difficult to reliably estimate many parameters, and

correctly infer associations from multiple hypotheses tested simultaneously. As a result, the

analysis of both single and integrative omics data is prone to high rates of false-positives

due to chance alone. This requires researchers to adjust for multiple testing to control for

type 1 error rate using various methods based on the family-wise error rate (e.g. Bonferroni

corrections, Westfall and Young permutation), and the false-positive rate (e.g. Benjamin

and Hochberg) that are under strict assumptions [78, 79, 80, 81, 82, 83]. Another solution

to overcome multiple testing issues is to reduce dimensionality via sparse methods that pro-

vide sparse linear combinations from a subset of relevant variables (i.e. sparse canonical

correlation analysis, sparse principal components analysis, sparse regression) [84, 85]. Both

mixOmics and integrOmics are publically available R packages for utilizing sparse methods

on omics data [85, 86]. There are several approaches to derive optimal tuning parameters

to dictate the number of relevant variables to pursue [87, 88]. However, stochastic processes

to select best subsets of variables inferred from a given sample population may not contain

the best information on another independent study, and certainly not at an individual level

(i.e. selection-bias) [89, 90]. Reducing dimensionality is problematic as key mechanistic

information could be lost. There is an overall tradeoff between false positive rates and the

benefit of identifying novel associations within biological process that align with that of bias
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and variance (Figure 2.4) [78].

The multi-level ontology analyses (MONA) is one ap-proach that bypasses the high-

dimensionality as de-scribed by Sass et al. [91]. This method integrates multiple omics

information (DNA sequence, mRNA and protein expressions, DNA methylation, and other

regulation factors) and copes with redundancies related to multiple testing problems by ap-

proximating marginal probabilities using the expectation propagation algorithm [92]. The

MONA approach allows for biological insights to be incorporated into the defined network

as prior knowledge. This can address overfitting or uncertainty issues though reducing the

solutions space to biological meaningful regions [93, 94]. This approach, however, relies on

predefined known biological networks (i.e. proteinprotein interactions) or on the accuracy of

mechanistic models (i.e. network models). Another strategy to analyze omics data involves

integrating multiple data types into one single data set that holds maximum information.

This reduces the complexity of omics data to the analysis of a single high-dimensional data

set. Co-inertia analysis for example, has been used to integrate both proteomic and gene

expression data to visualize and identify clusters of networks [95, 96]. It was initially intro-

duced by Culhane et al. to compare gene expression data provided by different platforms,

but has been further generalized to assess similarities between omic data sets [97]. The

basic principal is to apply within and between principal component analysis, correspon-

dence analysis, or multiple correspondence analysis while maximizing the sum of squares of

covariances between variables (i.e. maximizing co-inertia between hyperspaces). The omi-

cade4 package in R is available for exploring omics data using multiple co-inertia analysis

[98]. Other similar, but conceptually different approaches include generalized singular value

decom-position [99], and integrative bioclustering methods [100, 101]. An integrative omics

study by Tomescu et al., have utilized all three approaches to characterize networks within

Plasmodium faclicparum at different stages of life cycles [102]. Although the basic mathe-

matical assumptions are different, the overlap in their results was considerable. The relative
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importance and incremental value of individual omics data on one another may also be con-

sidered when predicting specific outcomes. For instance, Hamid et al. recently pro-posed a

weighted kernel Fisher discriminant analysis that accounts for both quality and informativity

of each individual omics data to integrate [103]. Significant improvements however, may not

occur when data are redundant (i.e. correlated) or of low quality.

Mixing apples and oranges

Another challenge for integrating omics data lies in deriving meaningful interpretable cor-

relations. For ex-ample, direct correlation analyses between transcriptomics and proteomics

profiles are not valid in eukaryotic organisms. No high correlations between the two do-mains

were observed as reported by multiple studies, and this was attributed to post-transcriptional

and post-translational regulations [104, 105, 106, 107]. The advantage of inte-grating tran-

scriptomic and proteomic data may diminish without accounting for regulation factors as

the resulting inflated variability may limit reliability and reproducibility of findings [108].

Many complex traits are tightly reg-ulated and incorporating regulation factors may explain

a relevant portion of observed variations due to true heterogeneity (i.e. true differences in

effect sizes). Unlike the impact of noise on estimate precision which could be minimized

by increasing the sample size, true heterogeneity may only be adjusted for during analysis

when possible or via standardizations that limit generalizability. True heterogeneity poses a

problem given biological complexity in the pursuit of precise effect size estimations (Figure

2.5). Hence, there is a need for network analysis to account for protein-protein and protein-

DNA interactions in the context of integrating transcriptomics and proteomics data alone.

An early study by Hwang et al. utilized network models to identify protein-protein and

DNA-protein interactions with experimental verifications [109].

Bayesian networks are graphical models that involve structure and parameter optimiza-

tion steps to represent probabilistic dependencies [110]. This modeling strategy that eluci-

dates biological networks has been utilized in various studies [111, 112]. A seminal example
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includes the use of dynamic Bayesian networks trained on chroma-tin data to identify ex-

pressed and non-expressed DNA segments in a myeloid leukemia cell line [113]. This was

done by integrating position of histone modifications, and transcription factors binding sites

at multiple intervals. It is however, a computationally demanding approach that requires

advanced computing methods such as parallel computing and acceleration via GPUs [114].

Network models may serve as meaningful statistical results to be integrated with the biologi-

cal domain. It has the potential to generate insight and a number of hypotheses on biological

interactions to be experimentally and/or independently verified through a follow-up valida-

tion set. The ultimate goal is to continuously provide insight into biological interactions to

subsequently build upon.

Separate the wheat from the chaff

It is important to minimize sources of error with omics data as it is challenging to dis-

tinguish between random error and true interaction signals. Hence, it is necessary to utilize

statistical methods to account for sources of error. For example, the quality of omics data

may vary between high-throughput platforms. Hu et al. have pro-posed quality-adjusted

effect size models that were used to integrate multiple gene-expression microarray data given

heterogeneous microarray experimental standards [115]. Omic studies are also prone to er-

rors such as sample swapping and improper data entry. New methodologies for assessing

data quality include Multi-Omics Data Matcher (MODMatcher) [116]. Moreover, complex

diseases are often evaluated using a single phenotype that compromises statistical analysis by

introducing errors such as misclassifications, and/or lack of account-ability for disease sever-

ity [117]. Modeling images for example, requires multiple phenotypes to properly capture

image features [118]. Joint modeling of multiple responses to accurately capture complex

phenotypes has been shown to increase power of discovery in genome-wide association stud-

ies [119]. There are even novel net-work methodologies to account for within-disease hetero-

geneity [120, 121]. Network approaches in model-ing complex diseases may provide a map of
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disease pro-gression and play a major role in the proactive maintenance of wellness [122]. All

reproducibility and validations of complex interaction signals are essential in the pursuit of

personalized medicine. This highlights the growing need for metadata as the science of hows

(i.e. data about data) to help harmonize omics studies and enable proper reproducibility

of research results [123]. Examples of a metadata checklist and a metadata publication are

available [124, 125]. Metadata may also serve as open innovations for integrative sciences,

and may prove to be valuable for diversifying models of discovery and translation in high,

and more importantly, low and middle-income countries. Altogether, validations on multi-

ple data sets are required as evidence of stability, and that theoretically sound new methods

outperform existing ones [126]. Both descriptive and mechanistic models for determining

relevant biological networks require handling with care [127]. Software that integrate and

interpret omics data are currently developed by competing companies in the private sector

(e.g. Anaxomics, LifeMap), which may rapidly advance the field in the near future.

Conclusion

This review aims to stimulate research initiatives in the field of big data analysis and inte-

gration. Omics data embody a large mixture of signals and errors, where our current ability

to identify novel associations comes at the cost of tolerating larger error thresholds in the

con-text of big data. Major investments need to be made in the fields of bioinformatics,

biomathematics, and biostatistics to develop translational analyses of omics data and make

the best use of high-throughput technologies. New generations of multi-talented scientists

and multidisciplinary research teams are required to build accurate complex disease models

and permit effective personal-ized prevention, diagnosis and treatment strategies. Our ability

to integrate and interoperate omics data is an important limiting factor in the transition to

personalized medicine. Overcoming these limitations may boost the nation-wide implemen-

tation of omics facilities in clinical settings (Figure 2.6). The subsequent economies of scale
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may in turn favor the access to personalized medicine to disadvantaged nations, repelling

the growing shadow of two-tiered personalized medicine.
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Figure 2.1: Distributions of populations and global health expenditure according to WHO
2012
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Figure 2.2: A basic framework of personalized medicine. The integration of omics pro-
files permit accurate modeling of complex diseases and opens windows of opportunities for
innovative clinical applications to subsequently benefit the patient
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Chapter 3

Penetrance of polygenic obesity

susceptibility loci across the body

mass index distribution

Abstract

A growing number of single nucleotide polymorphisms (SNPs) have been associated with

body mass index (BMI) and obesity, but whether the effect of these obesity susceptibility

loci is uniform across the BMI distribution remains unclear. We studied the effects of 37

BMI/obesity-associated SNPs in 75,230 adults of European ancestry along BMI percentiles

using conditional quantile regression (CQR) and meta-regression (MR) models. The effects

of 9 SNPs (24%) increased significantly across the sample BMI distribution including, FTO

(rs1421085, p = 8.69 × 10−15), PCSK1 (rs6235, p = 7.11 × 10−6), TCF7L2 (rs7903146, p =

9.60× 10−6), MC4R (rs11873305, p = 5.08× 10−5), FANCL (rs12617233, p = 5.30× 10−05),

GIPR (rs11672660, p = 1.64×10−4), MAP2K5 (rs997295, p = 3.25×10−4), FTO (rs6499653,

p = 6.23× 10−04) and NT5C2 (rs3824755, p = 7.90× 10−4). We showed that such increases

stem from unadjusted gene interactions that enhanced the effects of SNPs in persons with
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high BMI. When 125 height-associated were analyzed for comparison, only one (< 1%), IGF1

(rs6219, p = 1.80 × 10−4), showed effects that varied significantly across height percentiles.

Cumulative gene scores of these SNPs (GS-BMI and GS-Height, respectively) showed that

only GS-BMI had effects that increased significantly across the sample distribution (BMI:

p = 7.03 × 10−37, Height: p = 0.499). Overall, these findings underscore the importance of

gene-gene and gene-environment interactions in shaping the genetic architecture of BMI and

advance a method to detect such interactions using only the sample outcome distribution.

Introduction

Obesity is a prominent risk factor for osteoarthritis, hyper-tension, type 2 diabetes (T2D),

cardiovascular disease, and certain psychological disorders and cancers [128, 129].The rise

in obesity has coincided with ‘obesogenic’ societal and environmental changes that include

increased consumption of high-calorie foods, an increasingly sedentary lifestyle, and urban-

ization [129, 130, 131]. Genetic factors are also known to play an important role in obesity,

given that 50% - 80% of body mass index (BMI) variation can be ascribed to genetics (her-

itability) [132, 133]. Moreover, genome-wide association studies (GWASs) have identified

140 polygenic loci that are directly associated with BMI or obesity [134].

The role of individual and compound gene-environment (G×E) and gene-gene (G×G)

interactions in determining BMI has not been fully elucidated. The study of BMI-associated

G×G interactions has been impeded by statistical and computational limitations, although

promising new approaches have recently been proposed [135, 136, 137]. On the other hand,

several lines of evidence suggest that G×E interactions could play an important role in

shaping BMI. First, estimates of the heritability of BMI are influenced by environmental

exposures [138]. One study reported that the heritability of BMI is increased in persons

born after the obesogenic transition, whereas another reported that the heritability of BMI
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is correlated with the population prevalence of obesity [139, 140]. More recently, the cumu-

lative gene score from 29 BMI-associated single-nucleotide polymorphisms (SNPs) showed

a positive interaction effect with birth year [141]. Interactions between the genetic deter-

minants of BMI and obesogenic environmental factors readily explain why both estimates

of BMI heritability and cumulative SNP effects are enhanced in permissive environments.

Second, specific interactions between BMI-associated SNPs and environmental factors have

been documented [138]. Physical activity and energy intake have been reported to modify

the effects of SNPs within the fat-mass- and obesity-associated gene FTO (MIM: 610966)

[142, 143, 144, 145, 146]. Importantly, FTO (rs1421085) has been shown to jointly interact

with diet, physical activity, salt and alcohol consumption, and sleep duration [147]. Thus, a

subset of genetic variants could affect BMI through a mixture of direct effects and compound

interactions. As such, investigating individual environmental factors might not capture the

full range of environmental modification for a given SNP [148, 149].

In this report, we advanced a statistical framework to assess the effects of single and mixed

G×E and G×G interactions on the association between SNPs and BMI. Specifically, we ap-

plied conditional quantile regression (CQR) to investigate the effects of 37 BMI-associated

SNPs at multiple percentiles of the sample BMI distribution in 75,230 adults of European

ancestry (EA) [150, 151]. Variability in SNP effects across these BMI percentiles was demon-

strated to result from unadjusted interactions and was modeled by meta-regression (MR)

[152, 153]. In this way, we used CQR and MR to collect evidence of unadjusted interactions

directly from the sample distribution of BMI without measures of specific environmental

factors. A secondary analysis of 125 established height-associated SNPs is also included for

comparison.
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Subjects and Methods

Participants and Phenotypes

The sample population included participants from the following studies: Atherosclero-

sis Risk in Communities (ARIC; phs000280.v3.p1 ), Coronary Artery Risk Development in

Young Adults (CARDIA; phs000285.v3.p2), Cardiovascular Health Study (CHS; phs000287

.v6.p1 ), EpiDREAM, the Framingham Cohort (phs000007.v29.p10), Multi-Ethnic Study of

Atherosclerosis (MESA; phs000209.v13.p3 ), Genetic Epidemiology of COPD (COPDGene;

phs000179.v5.p2), Electronic Medical Records and Genomics (eMERGE) II (phs000888.v1.p1),

and the Women’s Health Initiative (WHI; phs000200.v10.p3). Measurements collected from

participants below the age of 18 years or above the age of 92 years were excluded (< 1%

collectively). For studies with repeated measures across multiple time points or visits, the

median height and the median weight were extracted along with the corresponding age at

these median values. We calculated BMI by dividing the median weight (in kg) by the

square of the average measures of height (m). Diabetic status was indicated by one of the

following criteria: (1) physician report or self-report of physician diagnosis, (2) report of

taking diabetes medication, (3) fasting plasma glucose ≥ 126 mg/dL (7 mM), or (4) 2 hr

glucose ≥ 200 mg/dL (11 mM) during an oral glucose-tolerance test [154]. Obesity cat-

egories including normal weight (NW) and over-weight(OW),as well as obesity classes I,

II, and III (Ob-I,Ob-II,and Ob-III, respectively), were specified according to World Health

Organization guidelines [155]. Analyses were restricted to participants of self-reported EA

with a combined sample size of n = 75, 230. Summary statistics are presented in Table

A1. This project was approved by a local ethics committee (Hamilton Integrated Research

Ethics Board), and participant-level data access was granted through the Database of Geno-

types and Phenotypes (dbGaP) after approval was provided by study-specific data-access

committees. All analyses are consistent with study-specific data-use certifications.
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Sample Quality Control

Detailed genotyping procedures for EpiDREAM and studies from the Candidate Gene As-

sociation Resource (CARe) project, including ARIC (phs000557.v2.p1), CARDIA ( phs000613.

v1.p2 ), CHS (phs000377.v4.p1), the Framingham Cohort ( phs000282. v17.p10 ), and MESA

(phs000283.v7.p3), are presented elsewhere [156, 157]. Genotyping was performed with the

gene-centric HumanCVD Genotyping BeadChip with 49,320 markers concentrated in ∼2,100

loci related to metabolism and cardiovascular disease [158]. This limited scope of analysis

was motivated by the availability of a greater sample size, as well as the high computational

cost of fitting CQR models. Samples with sex discordance, an array-wide call rate below

95%−98%, and/or an average heterozygosity beyond 3 standard deviations of the mean het-

erozygosity were removed [159, 160]. Family members were defined by identity by descent

(IBD, π̂) above 0.5, and those with a lower call rate were removed so that only one mem-

ber of each family group was retained for analysis (Table A2). Samples from COPDGene

(phs000765.v1.p2) were genotyped with the Illumina HumanHap550 (v3) genotyping Bead-

Chip (Illumina) with 561,466 markers, and QC procedures were performed as above except

that cryptic relatedness was defined by IBD π̂ > 0.1875 [161, 162]. Genotypes from the

WHI study (phs000746.v1.p3) and eMERGE II (phs000888.v1.p1) were composed of an im-

puted dataset, and samples from related or duplicate participants were removed. Analyses

of the WHI dataset were conducted on each sub-study (WHI Memory Study [WHIMS],

WHI Genomics and Randomized Trials Network [GARNET], HIPFX [Hip Fracture GWAS],

MOPMAP, and Genetics and Epidemiology of Colorectal Cancer Consortium [GECCO]).

A summary of sample quality control (QC), along with a complete list of datasets (and

accession numbers) and additional details on these studies, is provided in Table A2.

SNP Selection and Marker QC

We identified SNPs that had previously been associated with BMI, obesity, and height by

searching the GWAS Catalog and GIANT Consortium data files and screening the literature
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[163, 164, 165, 166]. A.A. and D.M. conducted literature screening independently to maxi-

mize SNP attainment. For GWAS SNPs, only associations with p < 5×10−8 were considered.

These SNPs were sorted into correlated linkage disequilibrium (LD, R2 > 0.1) blocks on the

basis of genomic sequences from EA populations (1000 Genomes Project phase 3), and the

strongest association SNP on the HumanCVD Genotyping BeadChip was selected [158, 167].

Proxy SNPs (R2 > 0.9) were identified for SNPs not represented on the array. Thus, 39 BMI-

and 129 height-associated SNPs were identified. For studies that used different genotyping

platforms, the original association SNPs (39 BMI and 129 height) were screened and proxied

as described above on each genotyping platform. For SNPs that mapped to the same gene,

we screened them jointly with conditional regression analysis to test for independent associ-

ations with quantitative traits (BMI or height), and only SNPs that maintained associations

were retained [168]. However, SNPs in FTO (rs1421085 and rs6499653) and PCSK1 (MIM:

162150; rs6232 and rs6235) were exempted from exclusion as a result of prior evidence in

the literature of independent associations with BMI [169, 170, 171]. In total, 37 BMI- and

125 height-associated independent SNPs were identified and selected for further analysis.

SNP call rate, minor allele frequency (MAF), and exact tests of Hardy-Weinberg equilib-

rium (HWE) in EA populations are presented in Tables A3 and A4. Within each study,

SNPs with a call rate < 90% or HWE p value < 1 × 10−6 were excluded from analysis. In

addition, only SNPs imputed with high quality were retained for analysis (R2 > 0.7 for WHI

and info score > 0.7 for eMERGE II) [172]. SNP genotypes were encoded per the effect

alleles and modeled additively for individual analyses.

Gene Scores

The cumulative gene score (GS) was calculated for all BMI- and height-associated SNPs

(GS-BMI and GS-height, respectively). An un-weighted GS was utilized because weights

can be biased and context dependent [173, 174]. No GS was calculated for participants

with more than 10% missing genotypes; otherwise, missing SNP genotypes were imputed
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with the arithmetic average genotype at each missing SNP. In addition to being associ-

ated with BMI, GIPR (MIM: 137241; rs10423928, LD R2 = 1 with rs11672660 in EA),

TCF7L2 (MIM: 602228; rs7903146), TOMM40 (MIM: 608061) and APOE (MIM: 107741)

(both rs2075650), HMGCR (MIM: 142910; rs4604177, LD R2 = 0.63 with rs6453133 in

EA), PCSK1 (rs6235), CDKAL1 (MIM: 611259; rs9356744), and KCNQ1 (MIM: 607542;

rs2283228) have also been associated with several co-morbidities of obesity, including glu-

cose homeostasis, T2D, increased lipid levels, and heightened C-reactive protein (CRP) levels

[175, 176, 177, 178, 179, 180, 181, 182]. To mitigate potential biases stemming from these co-

morbidities at higher BMI percentiles, we also calculated a GS excluding these seven SNPs:

GS-BMI (stringent). Finally, GSs for both BMI and height were calculated without im-

putation of missing genotypes: GS-BMI (no imputation) and GS-height (no imputation).

GS-BMI (stringent), GS-BMI (no imputation), and GS-height (no imputation) were tested

by sensitivity analysis.

Statistical Analysis

A statistical framework combining CQR and MR was used to model variation in the

effects of SNPs under single and mixed G×E and G×G interactions (see Supplemental Note)

[151, 153]. Like ordinary least-squares (OLS) models, CQR models can assume a linear

relationship and provide intercept and slope estimates for a series of pre-specified percentiles

[150, 151]. Therefore, CQR can be applied to produce a comprehensive evaluation of the

effects of a SNP across the sample distribution of a quantitative trait (e.g., BMI or height).

A piecewise linear plot for the series of CQR estimates at different percentiles provides a

useful visual summary of their variation along the sample distribution [150, 151]. Figure 3.1

shows a working example of CQR and MR in comparison with OLS for FTO (rs1421085) in

the ARIC CARe study.

33



P.hD. Thesis - Akram Alyass McMaster University - CSE

Under conditions where true single and mixed G×E and G×G interactions are unad-

justed, SNPs will shift both the location and scale (variance) of the sample outcome distri-

bution (see Supplemental Note) [183]. These shifts in scale result in detectable variations of

CQR estimates collected from percentiles across the sample outcome distribution. It follows

that CQR estimates for a SNP are constant (i.e., equal) across percentiles if all unadjusted

interaction effects are zero. Thus, the association between SNPs and an outcome under

unadjusted interactions essentially reduces to modeling variability in CQR estimates. This

can be effectively achieved with MR [152, 153]. In this context, MR is basically a regression

model where the CQR estimates from across the sample outcome distribution represent the

dependent variable, and the percentiles at which these CQR estimates were calculated rep-

resent the independent variable (Figure 3.1). Additional details on CQR and MR, as well

as simulations and an analytic description of this statistical framework, are presented in the

Supplemental Note and Figures A1 and A2.

OLS models were used to verify the associations of SNPs and GSs with BMI and height

in the sample populations included in this study. CQR models were fitted at every fifth

percentile of the distribution of BMI and height for each SNP. We used a total of 10,000

Markov-chain marginal-bootstrap replicates to compute confidence intervals (CIs) and the

cross-percentile variance-covariance matrix for CQR estimates [184, 185, 186]. The propor-

tion of the trait variance explained by GS-BMI and GS-height in CQR models was also

calculated [187]. We computed hypothesis test statistics in MR (by assuming normality) to

estimate the effects of percentiles on changes in mean CQR estimates for each SNP. The set

of percentiles (5th − 95th) was re-centered at the 50th percentile so that the intercept of the

MR models corresponded to the main effect of the SNP at the median. Lastly, the effects

of each SNP and the GS on the risk of specific BMI categories (NW versus OW, NW versus

Ob-I, NW versus Ob-II, and NW versus Ob-III) were estimated with logistic regression.

All regression models were performed by one-step individual- participant-data meta-

analysis (also known as ‘joint-analysis’ or ‘mega-analysis’) [188, 189]. This method was
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chosen on the basis of access to individual participant data and the fact that CQR analyses

refer to the conditional sample distribution [190]. This means that analyses on separate

studies correspond to their conditional distributions, and it would not be appropriate to

combine them by using meta-analysis of their summary statistics. All models were adjusted

for age (years), sex (female = 0, male = 1), and study (factor). For BMI analysis, age was

modeled quadratically (age and age squared) as in previous reports [141, 147]. Analyses of

the associations of SNPs and GSs with BMI (37 SNPs + GS = 38) and height (125 SNPs

+ GS = 126) were subject to multiple-testing correction using Bonferroni-adjusted p value

thresholds of p < 0.05/38 = 1.32 × 10−3 and p < 0.05/126 = 3.97 × 10−4 , respectively.

64 QC and statistical analyses were conducted with PLINK v1.90b3.42 and R v3.3.2 [159,

160, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201]. CQR models were fitted with

quantreg, and MR models were fitted with metafor [202, 203]. Additional packages used in

the analysis include pracma, doParallel, foreach, and data.table [204, 205, 206, 207]. An

extended version of this work appears online [208].

Results

Figure 3.1 depicts a step-by-step analysis of FTO (rs1421085) in the ARIC CARe study.

In the top left panel, we fitted an OLS model (green) to determine the mean effects of the

FTO genotype on BMI (βOLS, kg/m2 per effect allele) and fitted CQR models (gray) evenly

across the sample BMI distribution (every fifth percentile) to determine the effects of the

FTO genotype at each BMI percentile (βCQR , kg/m2 per effect allele). In the middle right

panel, the estimates (βOLS and βCQR ) and 95% CIs from these models are collected and

plotted against the BMI percentile at which they were fitted. In the bottom left panel,

MR analysis (magenta) models variation in the CQR estimates across the sample BMI

distribution, and MR estimates (βMR , kg/m2 per effect allele per BMI percentile) are plotted

along with 95% CIs. Presenting the results of OLS, CQR, and MR in this way is useful for
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summarizing the purpose of each analysis and contrasting possible differences between them.

Initially, OLS models were fitted for each of 37 BMI-associated SNPs, and all but one

were verified to increase BMI in this study sample (Table 3.1). We then fitted CQR models

at regular intervals of the BMI distribution to explore whether the effects of SNPs on BMI

varied across the sample distribution (Table A5). We plotted CQR estimates for each SNP

against the BMI percentiles at which they were produced to provide a visual summary of the

CQR results (Figure 3.1 and Figure A3). Several SNPsincluding rs1421085 (FTO), rs6235

(PCSK1), rs7903146 (TCF7L2), rs11873305 (MC4R [MIM: 155541]), rs12617233 (FANCL

[MIM: 608111]), rs11672660 (GIPR), rs997295 (MAP2K5 [MIM: 602520]), rs6499653 (FTO),

and rs3824755 (NT5C2 [MIM: 600417])had effects that appeared to increase across the dis-

tribution of BMI.

Single or mixed SNP interactions that are not adjusted in regression models will produce

variability in CQR estimates along the distribution of the outcome (see Supplemental Note).

This variability can be detected and quantified with MR [152, 153]. Simulations showed

that the power to detect such interactions by using CQR and MR was not affected by the

MAF or the main effects of the SNPs, but it increased with the number of interactions as

well as the main effects of the interacting covariate (see Supplemental Note and Figure A1).

Yaghootkar et al. recently showed that differences in the prevalence of disease outcomes (e.g.,

the outcome of T2D) between sample and general populations can bias regression estimates

of the main effects of SNPs on risk factors (e.g., BMI) [209]. However, the variability of

CQR estimates across the sample distribution is not affected by biased main effects when

CQR models are adjusted for disease status (see Supplemental Note). This was supported

by simulations showing that the prevalence of disease outcomes in sample populations had

negligible effects on the power and type I error rate for detecting unadjusted interactions

when CQR models were adjusted for disease status (see Supplemental Note and Figure A2).

We fitted MR models to assess the variability in the CQR estimates of BMI-associated
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SNPs along the sample distribution of BMI (Table 3.2, Figure 3.2, and Figure A3). Signifi-

cant positive associations (p < 1.32×10−3) between BMI percentile and CQR estimates were

detected for 9 of 37 SNPs (24%): rs1421085 (FTO; βMR [95% CI] = 0.49 [0.37, 0.62], p =

8.69×10−15 ), rs6235 (PCSK1; 0.32 [0.18, 0.46], 7.11×10−6), rs7903146 (TCF7L2; 0.30 [0.17,

0.44], 9.60× 10−6), rs11873305 (MC4R; 0.60 [0.31, 0.89], 5.08× 10−5), rs12617233 (FANCL;

0.26 [0.13, 0.39], 5.30 × 10−5), rs11672660 (GIPR; 0.29 [0.14, 0.45], 1.64 × 10−4), rs997295

(MAP2K5; 0.23 [0.10, 0.35], 3.25×10−4), rs6499653 (FTO; 0.25 [0.11, 0.40], 6.23×10−4), and

rs3824755 (NT5C2; 0.36 [0.15, 0.57], 7.90 × 10−4). The estimates from MR (βMR) quantify

changes in the impact of each SNP on BMI across the sample distribution. For these 37

SNPs, the median βMR value [Q1, Q3] was 0.135 [0.094, 0.217] kg/m2 per effect allele per

BMI percentile. In this statistical framework, βMR is equal to zero if all SNP interaction

effects are also equal to zero (see Supplemental Note). Positive βMR estimates indicate that

the effects of SNPs vary systemically by BMI percentile because unadjusted interactions are

inflating the effects of SNPs in participants with a high BMI.

Given that height is known to be highly heritable, analyses were extended to height for

comparison with the BMI results [149, 210, 211]. OLS models were fitted for each of 125

height-associated SNPs, and all but two were verified to increase height (Table A6). CQR

and MR were used to estimate variation in the effects of these SNPs on height as described

previously (Figure A4 and Table A7). Only one height-associated SNP, rs6219 (IGF1 [MIM:

147440], βMR = [95% CI] = 0.48 [0.23, 0.73], p = 1.80 × 10−4), showed significantly (p

< 3.97×10−4 ) increased effects along the sample height distribution (Table A8). For height-

associated SNPs, the median βMR value [Q1, Q3] was 0.002 [-0.056, 0.085] cm per effect allele

per height percentile. Thus, CQR estimates for height-associated SNPs were predominantly

consistent across height percentiles, and < 1% showed evidence of unadjusted interactions,

whereas 24% of BMI-associated SNPs did.

We combined BMI- and height-associated SNPs into GSs (GS-BMI and GS-height, re-

spectively) to examine the overall association of these SNPs across the sample distribution.
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OLS models were used to verify the positive association between GS-BMI and GS-height

and their respective traits (Table 3.3). CQR models for GS-BMI showed steadily increasing

effects with increasing percentiles, whereas CQR models for GS-height did not vary across

percentiles (Figure 3.3). MR analysis indicated that percentiles were significantly and pos-

itively associated with CQR estimates for GS-BMI (βMR [95% CI] = 0.15 [0.13, 0.17], 7.03

×10−37) but not GS-height (0.01 [-0.01, 0.02], 0.499) (Table 3.3). At the 10th and 90th BMI

percentiles, each additional effect allele of GS-BMI increased BMI by 0.054 and 0.167 kg/m2

(3.1-fold increase), respectively, whereas each additional allele of GS-height increased height

by 0.172 and 0.180 kg/m2, respectively (Tables A5 and A7). Thus, in 1.73-m-tall persons

at the tenth BMI percentile, carrying ten additional BMI-increasing alleles was associated

with 1.6 kg of extra weight, whereas at the 90th BMI percentile, this was associated with

5.0 kg of extra weight. Furthermore, at the 10th and 90th BMI percentiles, the proportion

of trait variance explained by GS-BMI increased (2.7-fold from 0.130% to 0.357%), whereas

that of GS-height was stable (1.825% to 1.822%) (Tables A5 and A7). These results support

the conclusion that the impact of BMI-associated SNPs was larger for individuals with high

BMI, whereas the impact of height-associated SNPs varied little by height.

Excluding seven SNPs that have also been associated with comorbidities of obesity from

the gene score GS-BMI (stringent) did not alter the pattern of increasing effects across the

sample BMI distribution (Figure A5) [175, 176, 177, 178, 179, 180, 181, 182]. Moreover, MR

analysis indicated that BMI percentile was significantly and positively associated with the

CQR estimates for GS-BMI (stringent) (βMR [95% CI] = 0.14 [0.11, 0.16], p = 2.18×10−23).

In addition, CQR models were re-fitted with adjustment for diabetic status because this had

been shown to mitigate the effects of possible stratification within the sample population

(see Supplemental Note and Figure A2). Of the nine SNPs whose effects showed significant

increases across the sample BMI distribution (Table 3.3 and Figure 3.2), three have also

been associated with glucose homeostasis and T2D, namely, GIPR (rs11672660), TCF7L2

(rs7903146), and PCSK1 (rs6235) [175, 177, 180]. Refitting CQR models with adjustment for
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diabetic status had little impact on the results from MR analysis of these SNPs or GS-BMI

(Table A9). Additional sensitivity analysis that included linearly modeling the effects of age

or testing fewer percentiles (i.e., every 10th percentile from the 5th to 95th BMI percentiles)

also showed no substantial changes to MR results (Table A9). Furthermore, calculating the

GS for each trait without imputing missing genotypes did not affect results for GS-BMI or

GS-height (Figure A5). Finally, the results from CQR were compared with those obtained

from conventional subgroup analysis. To this end, the effect of genotype on the risk of OW,

Ob-I, Ob-II, and Ob-III was evaluated separately with logistic regression (Table A10). The

odds ratios of each SNP for each category were plotted against the BMI percentiles of the

corresponding category, and CQR estimates were then overlaid on these bar plots. The

patterns from logistic regression models across BMI categories were qualitatively consistent

with the patterns from CQR models at comparable BMI percentiles (Figure A6).

Discussion

The aim of this study was to investigate variations in the effect of 37 BMI-associated

SNPs across the distribution of BMI. We introduced a method that applies CQR to model

the effects of SNPs at different percentiles of the sample BMI distribution and estimates

variability in these effects by using MR. CQR estimates at different percentiles were shown

to be uniform if all unadjusted SNP interactions were zero (see Supplemental Note). It follows

that SNPs whose CQR estimates vary significantly across the sample BMI distribution are

regulated by such interactions.

CQR analysis revealed distinct profiles of associations of BMI SNPs across the sam-

ple BMI distribution. Several of these SNPs had effects that increased steadily at higher

BMI percentiles, whereas others had uniform effects that varied little across BMI percentiles

(Figure 3.2 and Figure A3). One other study has used CQR to investigate the association

between BMI and FTO (rs1558902) and a GS in a modest sample of adults [212]. The
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patterns reported by that study are consistent with the results reported here [212]. Two

other studies used CQR to investigate the effects of SNPs on BMI in European children,

and their results are also comparable with those here [213, 214]. Overall, the high degree of

correspondence between previously reported CQR results from European children and those

from adults presented here emphasizes the robustness of these findings. Furthermore, the

patterns observed with CQR analysis were compared with those from conventional logistic

regression (subgroup analysis), given that Berndt et al. have demonstrated that the genetic

architecture of BMI strongly overlaps BMI categories (Table A10) [215]. Across BMI cat-

egories, the patterns from logistic regression were largely consistent with those from CQR

(Figure A6). CQR overcomes several of the limitations of subgroup analysis by utilizing

all sample data to estimate regression parameters on the same scale as the continuous out-

come, and comparing CQR estimates from different quantiles is relatively intuitive and easy

[150, 215]. 23,89

MR was applied in order to model changes in the effects of BMI SNPs across the sample

BMI distribution [152, 153]. Results from MR showed that BMI percentile was positively and

significantly associated with CQR estimates for 9 of 37 SNPs (24%). In addition, nominal

associations were also observed for several other SNPs, and the median βMR [Q1, Q3] was

0.135 [0.094, 0.217] kg/m2 per effect allele per BMI percentile (Table 3.2 and Figure A3).

This is supported by the GS-BMI analysis, which also showed significantly increasing effects

across the sample BMI distribution (Figure 3.3 and Table 3.3). These findings indicate that

unadjusted interactions enhanced the effects of BMI-associated SNPs at higher BMI levels.

Modeling the effects of age linearly or considering fewer BMI percentiles (i.e., every tenth

rather than every fifth percentile) had minimal effects on these results (Table A9).

There is evidence that differences in disease prevalence (e.g., in T2D) between sample

and general populations can result in the stratification of secondary traits (e.g., BMI) that

are risk factors for disease [209]. This stratification can compromise regression estimates of

the main effects of SNPs on secondary traits, and naively adjusting regression models for
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disease status might not adequately address this [209]. Although the main effects of SNPs

from disease-adjusted regression models are susceptible to stratification bias, the variation of

SNP effects across the sample distribution is not (see Supplemental Note). This was evident

in simulations showing that stratification had little effect on the power and type I error rate

of MR analysis when CQR models were adjusted for disease status (Figure A2). Because

GIPR (rs11672660), TCF7L2 (rs7903146), and PCSK1 (rs6235) have been associated with

glucose homeostasis and T2D, CQR models were refitted with adjustment for diabetic status

and analyzed by MR [175, 177, 180]. These SNPs and the GS continued to show significantly

increasing effects across the sample BMI distribution with this adjustment, demonstrating

that the results were not an artifact of possible sample stratification (Table A9). Although

estimating the variability of disease-adjusted CQR estimates across the sample distribution

by using MR is robust to stratification bias, future studies aimed at estimating the main

effects of SNPs by using CQR should implement methods to address this potential source

of bias [216]. A total of 7 of the 37 obesity-predisposing loci that were selected for analysis

have also been associated with comorbidities of obesity, including glucose homeostasis, T2D,

increased lipid levels, and heightened CRP levels. Excluding these SNPs from the GS did

not alter the pattern observed across the sample BMI distribution or affect the results from

MR analysis, suggesting that these findings do not stem from the influence of comorbidities

at high BMI levels (Figure A5).

Although BMI was the primary focus of this report, these analyses were also applied to

height. This was important because analysis of height could shed light on the nature of the

unadjusted interactions that were detected. BMI is a composite of both height and weight-

height is one of the most heritable complex human traits, and weight is strongly influenced

by environmental exposures and behavior [138, 217]. If unadjusted interactions in the effects

of BMI-associated SNPs are predominantly due to G×G interactions, then it is reasonable to

suppose that these unadjusted interactions would be detected at a similar frequency in other

quantitative traits such as height. On the other hand, if G×E interactions predominate, then
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these unadjusted interactions might be less frequently detected in quantitative traits with a

smaller environmental component (i.e., height). CQR models for 125 height-associated SNPs

were mostly uniform and exhibited little variability across height percentiles (Figure A4).

Only one significant association between height percentiles and CQR estimates for height

SNPs was detected by MR, and the median βMR [Q1, Q3] was 0.002 [-0.056, 0.085] cm per

effect allele per height percentile (Table A8). Moreover, the effects of GS-height did not

vary along the sample height distribution, which suggests that unadjusted interactions do

not affect the genetic architecture of height to the same extent that they do for BMI (Table

3.3 and Figure 3.3). The simplest explanation for the discrepancy between the results for

GS-BMI and GS-height is that the unadjusted interactions detected from GS-BMI were

predominantly G×E interactions.

G×E interactions for SNPs in FTO have been reported for physical activity, food intake,

dietary salt,alcohol consumption, and sleep duration [218, 219, 220, 221].In addition, the as-

sociation between TCF7L2 (rs12255372) and BMI was modulated by fat intake in a weight-

loss trial [222]. Our analyses also pointed to significant interactions for FTO (rs1421085)

and TCF7L2 (rs7903146) but suggested that such interactions might extend to additional

BMI-associated SNPsincluding rs6235 (PCSK1), rs11873305 (MC4R), rs12617233 (FANCL),

rs11672660 (GIPR), rs997295 (MAP2K5), rs6499653 (FTO), and rs3824755 (NT5C2)and

GS-BMI. This is entirely consistent with a report showing that the effects of GS-BMI (29

SNPs) were enhanced by increased greater exposure to obesogenic environments and an-

other demonstrating interactions between GS-BMI (69 SNPs) and several obesogenic drivers,

including socio-economic status, TV watching, ‘Westernized’ diets, and physical activity

[141, 223]. These reports also support the argument that the unadjusted interactions de-

tected for BMI SNPs are predominately G×E interactions. Environmental modification

of the effects of genetic variants raises the possibility that preventive measures, sustained

lifestyle modifications, and therapeutic interventions could attenuate some of the genetic pre-

disposition to unhealthy BMI. Indeed, the overall effect of BMI SNPs is minimal at low BMI
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levels (Figures 3.2 and 3.3). If weight gain leads to a genetically driven ‘vicious circle,’ then

weight loss can lead to a genetically driven ‘virtuous circle.’ Investigating additional BMI-

associated SNPs by using CQR and MR to uncover the full extent of unadjusted interactions

in the architecture of BMI will be the focus of future studies.

This study is the largest yet to apply CQR to examine how the effects of SNPs vary with

BMI, and it establishes quantitative support for hitherto qualitative descriptions of CQR.

The combined utility of CQR and MR presents a contemporary statistical framework to cue

hypotheses on gene interactions, better define clinical risks associated with genetic profiles,

and prioritize clinical targets. Future studies aimed at distinguishing variants whose effects

are modified by unadjusted interactions from those with fixed effects could advance the field

of precision medicine. With the combined application of CQR and MR, this can now be

achieved solely with information contained within the sample outcome distribution.
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Figure 3.1: Working example of conditional quantile regression. BMI (kg/m2) was plotted
against the number of effect alleles of FTO (rs1421085) in the ARIC CARe study (top-left).
An ordinary least squares (OLS) model of the mean effect of this SNP on BMI was plotted
(solid-green line). Conditional quantile regression (CQR) models, fitted every 5th percentile
of BMI, show the effects of this SNP at these BMI percentiles (solid-grey lines). The slopes
(βOLS, horizontal-dashed-green line; βCQR, thick-black line; kg/m2 per Effect Allele) from
these models were then plotted against BMI percentile at which they were fitted (middle-
right). 95% confidence intervals for these estimates are also plotted (OLS, horizontal-dotted-
green line; CQR, shaded-grey region). The change in CQR estimates across BMI percentiles
was modeled using meta-regression (MR). The MR slope (βMR, kg/m2 per Effect Allele per
BMI percentile, thin-magenta line) and the 95% confidence intervals (dotdashed-magenta
lines) were plotted (bottom-left).
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Figure 3.2: The effects of BMI/obesity-associated SNPs across the sample BMI distribution.
CQR models of BMI-associated SNPs were fitted every fifth percentile of BMI and adjusted
for age, age squared, sex, and study. Estimates of the change in BMI (kg/m2) per effect
allele (βCQR) from these models were plotted against the BMI percentile (thick black line)
along with the 95% confidence intervals (shaded gray region). The results from OLS models
(βOLS, kg/m2 per effect allele, horizontal dashed green line) and the 95% confidence intervals
(horizontal dotted green lines) were also plotted for comparison. The change in CQR esti-
mates across BMI percentiles was modeled with MR, and estimates from MR (βMR, kg/m2

per effect allele per BMI percentile, thin magenta line) and the 95% confidence intervals
(dotted magenta lines) were plotted. MR analysis detected significant (p < 1.32 × 10−3)
increases in the effects of these SNPs across the sample BMI distribution.
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Figure 3.3: The effects of GS-BMI and GS-Height across the sample distribution of BMI
and height, respectively. As in Figure 2, CQR models of the GS-BMI and GS-Height were
plotted against the BMI percentile and height percentile, respectively. The thick-black line
is the estimated change in each trait per effect allele (GS-BMI, βCQR, kg/m2 per Effect
Allele; GS-Height, βCQR, cm per Effect Allele) and shaded-grey region represents the 95%
confidence intervals. Also plotted are the OLS regression estimates (GS-BMI, βOLS in kg/m2

per Effect Allele; GS-Height, βOLS, cm per Effect Allele, horizontal-dashed-green line) and
95% confidence intervals (horizontal-dotted-green lines). The change in CQR estimates
across outcome percentiles was modeled using meta-regression (MR). Estimates from MR
(GS-BMI, βMR, kg/m2 per Effect Allele per BMI Percentile; GS-Height, MR, cm per Effect
Allele per Height Percentile; thin-magenta line) and the 95% confidence intervals (dotdashed-
magenta lines) were also plotted.
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Table 3.1 BMI-Associated SNP Information and Results from OLS Models. 37 BMI-
predisposing SNPs were selected for analysis. The effect and other (E and O, respectively)
alleles were based on original discovery studies (PMID), and SNPs were coded by BMI-
increasing or obesity-predisposing alleles. The indicated positions are based on GRCh37,
and all alleles are on the positive strand. The association between these SNPs and BMI was
assessed by OLS models that were adjusted for age, age squared, sex, and study. b OLS is
the effect size (kg/m2 per effect allele), and 95% CIs are the 95% confidence intervals.

SNP Gene (OMIM) Chromosome Position E/O PMID βOLS [95% CI] p Value
rs1421085 FTO (610966) chr16: 53,800,954 C/T 17658951 0.512 [0.451, 0.572] 5.88×10−62

rs10767664 BDNF (113505) chr11: 27,725,986 A/T 20935630 0.246 [0.172, 0.319] 5.89×10−11

rs11672660 GIPR (137241) chr19: 46,180,184 C/T 25673413 0.234 [0.159, 0.309] 8.16×10−10

rs4788099 SH2B1 (608937) chr16: 28,855,727 G/A 23001569 0.180 [0.113, 0.246] 1.13×10−7

rs7903146 TCF7L2 (602228) chr10: 114,758,349 C/T 25673413 0.167 [0.102, 0.232] 5.36×10−7

rs2075650 TOMM40 (608061) chr19: 45,395,619 A/G 23001569 0.218 [0.131, 0.305] 9.75×10−7

rs11873305 MC4R (155541) chr18: 58,049,192 A/C 25673413 0.384 [0.229, 0.539] 1.23×10−6

rs997295 MAP2K5 (602520) chr15: 68,016,343 T/G 23001569 0.131 [0.070, 0.191] 2.40×10−5

rs3824755 NT5C2 (600417) chr10: 104,595,849 C/G 25673413 0.218 [0.115, 0.321] 3.32×10−5

rs12617233 FANCL (608111) chr2: 59,039,998 C/T 23001569 0.128 [0.067, 0.190] 4.34×10−5

rs6499653 FTO (610966) chr16: 53,877,592 T/C 25673413 0.142 [0.073, 0.211] 5.19×10−5

rs1788826 NPC1 (607623) chr18: 21,154,024 G/A 25673413 0.124 [0.061, 0.186] 1.08×10−4

rs17066846 MC4R (155541) chr18: 58,044,818 G/T 25673413 0.144 [0.068, 0.220] 2.09×10−4

rs6453133 HMGCR (142910) chr5: 74,692,776 A/G 25673413 0.124 [0.058, 0.189] 2.18×10−4

rs739564 IQCK chr16: 19,740,237 A/G 25673413 0.147 [0.067, 0.227] 2.97×10−4

rs2272903 TFAP2B (601601) chr6: 50,786,571 G/A 23001569 0.173 [0.076, 0.270] 4.77×10−4

rs7553158 TNNI3K (613932) chr1: 75,005,238 G/A 25673413 0.102 [0.042, 0.162] 8.40×10−4

rs11570094 SPI1 (165170) chr11: 47,359,706 A/C 25673413 0.107 [0.041, 0.172] 1.37×10−3

rs4946932 FOXO3 (602681) chr6: 108,974,746 C/A 25673413 0.107 [0.041, 0.174] 1.57×10−3

rs2819347 LMOD1 (602715) chr1: 201,884,288 G/C 25673413 0.101 [0.037, 0.165] 1.89×10−3

rs2836754 ETS2 (164740) chr21: 40,291,740 C/T 25673413 0.099 [0.033, 0.164] 3.20×10−3

rs2984618 TAL1 (187040) chr1: 47,690,438 T/G 25673413 0.087 [0.026, 0.148] 5.17×10−3

rs11208662 LEPR (601007) chr1: 65,987,164 C/G 23563609 0.139 [0.037, 0.242] 7.66×10−3

rs6235 PCSK1 (162150) chr5: 95,728,898 G/C 18604207 0.090 [0.023, 0.158] 8.82×10−3

rs9356744 CDKAL1 (611259) chr6: 20,685,486 T/C 22344219 0.071 [0.005, 0.137] 0.035
rs7988412 MTIF3 chr13: 28,000,282 T/C 25673413 0.090 [0.005, 0.175] 0.037
rs1780050 NEXN (613121) chr1: 78,400,540 A/C 25673413 0.063 [0.002, 0.124] 0.042
rs526134 USP37 chr2: 219,402,371 G/A 25673413 0.066 [0.000, 0.132] 0.049
rs980828 NOS1AP (605551) chr1: 162,306,415 G/T 25133637 0.050 [ 0.010, 0.110] 0.100
rs17001561 SCARB2 chr4: 77,096,118 A/G 25673413 0.070 [ 0.017, 0.157] 0.113
rs6232 PCSK1 (162150) chr5: 95,751,785 C/T 18604207 0.095 [ 0.041, 0.232] 0.172
rs749767 KAT8 (609912) chr16: 31,124,407 A/G 25673413 0.042 [ 0.022, 0.105] 0.199
rs1211166 NTRK2 (600456) chr9: 87,285,992 A/G 23001569 0.041 [ 0.034, 0.116] 0.289
rs2535633 ITIH4 (600564) chr3: 52,859,630 G/C 24861553 0.024 [ 0.037, 0.085] 0.437
rs10144353 PRKCH (605437) chr14: 61,911,157 T/C 23563609 0.044 [ 0.067, 0.155] 0.441
rs1561288 ADCY3 (600291) chr2: 25,369,002 C/T 23669352 0.024 [ 0.047, 0.095] 0.507
rs2283228 KCNQ1 (607542) chr11: 2,849,530 C/A 24861553 0.037 [ 0.159, 0.085] 0.550
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Table 3.2: Quantifying the Effect of BMI Percentile on CQR Estimates. MR was used to
model variability in the CQR estimates across BMI percentiles. Note that the percentiles
were re-centered around the 50 th percentile so that the intercept from MR models would
correspond to the main effect of the SNP at the median. Asterisks (*) denote statistical
significance at the Bonferroni-adjusted threshold of p < 1.32×10−3, RI 50 is the re-centered
intercept of the MR models, b MR is the effect of BMI percentile on CQR estimates (kg/m2

per effect allele per BMI percentile), and 95% CIs are the 95% confidence intervals.

SNP Gene(MIM) RI50 βMR

[
95%CI

]
p Value

rs1421085 FTO(610966) 0.473 0.495
[
0.370, 0.620

]
8.69× 10−15∗

rs6235 PCSK1(162150) 0.078 0.320
[
0.180, 0.459

]
7.11× 10−6∗

rs7903146 TCF7L2(602228) 0.144 0.303
[
0.169, 0.437

]
9.60× 10−6∗

rs11873305 MC4R(155541) 0.344 0.603
[
0.311, 0.895

]
5.08× 10−5∗

rs12617233 FANCL(608111) 0.129 0.261
[
0.134, 0.387

]
5.30× 10−5∗

rs11672660 GIPR(137241) 0.227 0.294
[
0.141, 0.447

]
1.64× 10−4∗

rs997295 MAP2K5(602520) 0.131 0.228
[
0.103, 0.352

]
3.25× 10−4∗

rs6499653 FTO(610966) 0.121 0.253
[
0.108, 0.398

]
6.23× 10−4∗

rs3824755 NT5C2(600417) 0.222 0.362
[
0.151, 0.574

]
7.90× 10−4∗

rs7553158 TNNI3K(613932) 0.099 0.196
[
0.071, 0.322

]
2.12× 10−3

rs10767664 BDNF(113505) 0.247 0.217
[
0.064, 0.370

]
5.50× 10−3

rs4788099 SH2B1(608937) 0.151 0.194
[
0.057, 0.332

]
5.59× 10−3

rs17066846 MC4R(155541) 0.124 0.215
[
0.063, 0.367

]
5.61× 10−3

rs9356744 CDKAL1(611259) 0.063 0.186
[
0.050, 0.322

]
7.35× 10−3

rs6453133 HMGCR(142910) 0.13 0.177
[
0.040, 0.314

]
0.011

rs2819347 LMOD1(602715) 0.111 0.137
[
0.004, 0.269

]
0.044

rs2075650 TOMM40(608061) 0.283 0.161
[
0.019, 0.341

]
0.079

rs4946932 FOXO3(602681) 0.106 0.120
[
0.016, 0.256

]
0.084

rs2984618 TAL1(187040) 0.069 0.108
[
0.019, 0.235

]
0.095

rs980828 NOS1AP(605551) 0.024 0.095
[
0.030, 0.220

]
0.135

rs1788826 NPC1(607623) 0.109 0.094
[
0.036, 0.224

]
0.156

rs11570094 SPI1(165170) 0.103 0.096
[
0.039, 0.231

]
0.163

rs7988412 MTIF3 0.088 0.109
[
0.062, 0.280

]
0.212

rs2283228 KCNQ1(607542) 0.003 0.147
[
0.094, 0.388

]
0.232

rs739564 IQCK 0.122 0.100
[
0.065, 0.265

]
0.234

rs526134 USP37 0.062 0.079
[
0.055, 0.212

]
0.247

rs2272903 TFAP2B(601601) 0.145 0.113
[
0.084, 0.310

]
0.261

rs2836754 ETS2(164740) 0.086 0.073
[
0.060, 0.206

]
0.28

rs2535633 ITIH4(600564) 0.016 0.068
[
0.059, 0.194

]
0.296

rs11208662 LEPR(601007) 0.142 0.111
[
0.105, 0.327

]
0.314

rs6232 PCSK1(162150) 0.075 0.133
[
0.137, 0.404

]
0.334

rs749767 KAT8(609912) 0.048 0.058
[
0.075, 0.191

]
0.39

rs1561288 ADCY3(600291) 0.027 0.037
[
0.185, 0.112

]
0.627

rs10144353 PRKCH(605437) 0.043 0.049
[
0.171, 0.269

]
0.662

rs1211166 NTRK2(600456) 0.029 0.027
[
0.179, 0.126

]
0.731

Continued on next page
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Table 3.2 – Continued from previous page
SNP Gene(MIM) RI50 βMR

[
95%CI

]
p Value

rs17001561 SCARB2 0.068 0.020
[
0.194, 0.154

]
0.824

rs1780050 NEXN(613121) 0.045 0.010
[
0.117, 0.136

]
0.883
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Table 3.3 Analysis of GS-BMI and GS-Height

OLS Models MR Models
SNP βOLS

[
95%CI

]
p Value RI50 βMR

[
95%CI

]
p Value

GS-BMI 0.119
[
0.108, 0.130

]
3.48× 10−93 0.112 0.151

[
0.128, 0.175

]
7.03× 10−37∗

GS-height 0.176
[
0.169, 0.182

]
2.2× 10−308 0.176 0.005

[
0.010, 0.021

]
0.499
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Chapter 4

Meta Quantile Regression: A Novel

Method for Detecting Potential Gene

Interactions using Sample

Distributions of Complex Traits

Abstract

Background: The effect of genetic variants on complex traits includes interaction compo-

nents that are challenging to reliably detect. Meta-Quantile Regression (MQR) is a frame-

work that combines conditional quantile regression (CQR) and meta-regression to infer po-

tential interactions by modeling variations in genetic effects across the sample distribution

of quantitative traits.

Objectives: Compare the utility of MQR and variance heterogeneity tests for detecting

potential interactions.

Methods: The relationships between variance per genotype and MQR were analytically

investigated. MQR fitted using CQR were termed as MCQR to differentiate them from MQR
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models fitted using unconditional quantile regression (UQR) which were termed as MUQR.

The computational cost and asymptotic convergence rate of MCQR and MUQR estimates

were compared using simulations. Variance heterogeneity tests investigated include Levene’s

and Brown-Forsythe F -tests for a total of 4 tests of potential interactions (Levene, Brown-

Forsythe, MCQR, and MUQR). Simulations were conducted to compare their type I error

and power by 1) the number of genotype group levels; 2) symmetric, asymmetric error, and

inverse-normal rank transformation to treat skewness; and 3) synergistic and antagonistic

interactions.

Results QR estimates were analytically shown to be influenced by unadjusted interac-

tions that capture the change in distribution spread by genotypes. MUQR models were found

to use less CPU time to fit and provide estimates that asymptotically converge faster than

MCQR models. Furthermore, rank-transformations were shown to inflate type I error rates

for 4 four tests on genotypes with main effects. Both MCQR and MUQR were found to have

higher power of detecting potential interactions with the number of genotype group levels;

under asymmetric error, and antagonistic interactions compared to variance heterogeneity

tests.

Conclusions: MQR models are useful for identifying potential interactions and MUQR

is a computationally feasible framework for genome-wide association studies.

Introduction

Complex traits are influenced by a combination of environmental and genetic compo-

nents. Over the past decade, a growing number of genetic variants have been associated with

complex traits using genome-wide association studies (GWAS) [165, 164, 224]. Nonethe-

less, a large proportion of the heritability for many complex traits remains unexplained

[225, 226, 227]. For example, the heritability of body mass index (BMI) is estimated at 40-

75%, but variants discovered using GWAS only account for 2.7% of the overall variability in
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BMI [164, 132, 133, 228]. While many variants directly associated with such traits are yet to

be discovered, it is likely that genetic interactions (e.g. gene×gene / gene×environment) con-

stitute a substantial proportion of the missing of heritability [227, 229]. Identifying genetic

interactions is important for elucidating the genetic architecture and biological networks that

underlie complex traits.

Genetic interactions refer to circumstances where an interacting variable modifies the

effects of a genetic variant on a phenotype. Interacting variables could be other genetic vari-

ants (i.e. epistasis), environmental (e.g. pollutants), biological (e.g. sex or age), behavioral

exposures (e.g. smoking or unhealthy eating) or medical conditions (e.g. chronic diseases).

Genome-wide interaction study (GWIS) designs have been developed to detect interactions

by exploring complex genetic models with interaction components in a regression framework

[230, 231, 232]. Interactions are modeled assuming multiplicative (i.e. classic two-way in-

teractions), threshold-based effects (i.e. conditional effects of variants given an exposure

threshold), or as part of an intermediate latent model (i.e. structural equation models via

relational graphs). GWIS designs are conceptually appealing but face challenges in repro-

ducibility that are exacerbated by heterogeneity across studies (i.e. differences by the degree

in exposures of the interacting variable) [225, 233, 234, 235, 236, 237]. Several studies have

shown that the detection of interaction effects requires larger sample sizes compared to main

effects with similar effect sizes [238, 239, 240]. The power to detect interactions depends on

multiple factors other than the magnitude of interaction effects. The nature (i.e. antago-

nistic vs synergetic interactions) and degree of exposure to the interacting variable(s) (i.e.

low vs high variability of exposure to the interacting variables in the sample population)

can significantly influence the power to detect them [241]. In addition, current approaches

for the development of novel statistical methods to detect interactions are limited by prior

assumptions to leverage power that include 1) independence of gene and environment for

case-only analyses of binary traits, 2) the presence of main effects for interacting variants

to enable filtering via marginal genetic associations [242, 243]. Lastly, accurate and reliable
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measurement of environmental exposures remains an area of active investigation [218]. For

example, collecting dietary intake data that is representative of real behavior faces critical

methodological limitations [244]. As a net result, few GWIS have been successful in iden-

tifying interactions while many claims have failed to replicate [234, 245, 246]. There is an

urgent need for robust statistical methods to detect genetic interactions at a more general

level without the need for measurement of known or hypothesized interacting variables. Such

methods would provide a means for detecting potential interactions reliably at the cost of lim-

iting the knowledge and specifications on the source and nature of interactions. Examples

for the nature of interactions include multiplicative or threshold-based interactions, while

examples for the source of interactions is the unmeasured or unknown interaction variable

(e.g. unmeasured diet or physical activity levels). The detection of variants with potential

interaction would help draw further investigations into them without limiting the scope of

explorations on all variants by a single type of interaction and interaction variable.

Differences in phenotype variance across genotypes have recently gained attention as a

potential statistic for detecting interactions [247, 248, 183, 249]. For example, if a bi-allelic

genetic variant (e.g. single nucleotide polymorphisms - SNPs) interacts with physical ac-

tivity to affect BMI, then the variability in BMI will be higher in subjects carrying the

BMI-increasing allele given that a portion of these carriers will engage in some level of

physical activity. Hence, testing for differences in variance across genotypic categories can

provide evidence of gene interactions. However, variance heterogeneity tests rely on sub-

group location and variance estimates that are affected by sample size per level and group

imbalances [250]. Group imbalance refers to the degree of disparity in proportions of factor

levels may results in ill-representation of levels that is further jeopardized with increasing

number of factor levels for a fixed sample size. Hence, variance heterogeneity tests will have

lower power of detecting potential interacting variants with a high group imbalance (e.g.

rare variants) or number of genotype levels (e.g. triallelic genotypes or genotypes of species

with more than 2 chromosome copies). However, the variance is only one of several measures
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for a distribution’s spread which include the range and, interquartile range. It is therefore

possible for phenotype distributions to have similar variances across genotypes but different

interquartile range, minimum and maximum values by genotype. The variance may not

be the most robust statistic for the spread of asymmetric distributions due to sensitivities

towards distribution tails. Many phenotypes of interest have skewed or heavy-tailed dis-

tributions (e.g. BMI, plasma glucose, or protein expression data) for which the mean and

variance are not necessarily the best measurements of location and shape.

An alternative approach to capture differences between distributions by genotype is to

model the effect of variants across the sample distribution using quantile regression (QR).

This is based on the principle that genetic interactions induce changes in the strength of

genetic effects across percentiles of a trait. QR models the effect of a predictor on the

position of a specified quantile of the outcome distribution [251]. By examining multiple

quantiles, QR can produce a comprehensive picture for the effect of a predictor on the out-

come distribution. First degree differences in QR estimates across percentiles denote changes

to distribution spread (e.g. variance or the inter-quartile range) [186]. They can be mod-

eled using meta-regression (MR). Combining QR and MR to model how QR estimates of

genetic variants change across the response distribution similar to heteroscdasticity tests

[186]. We term framework as Meta-Quantile Regression (MQR), and it is useful for identi-

fying genetic variants with potential interactions. MQR does not require knowledge of the

interacting variable(s). It utilizes phenotype and genotype information is necessary to infer

potential interactions similar to variance heterogeneity tests. We have recently applied MQR

using conditional quantile regression (CQR) to demonstrate that a substantial proportion

of BMI/obesity-associated SNPs (24% - 9/37 SNPs) show evidence of genetic interactions

[208]. While CQR is useful for investigating a limited number of genetic variants, the com-

putational cost of fitting CQR models is prohibitive at scale. CQR parameters have no

closed form solution and therefore require optimization methods for their estimation. In

addition, the asymptotic variance-covariance matrix of estimates is challenging to evaluate
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because it depends on an unknown response density and has a slow asymptotic convergence

rate. Hence bootstrapping methods are required to reliably estimate the variance-covariance

matrix, which limits the utility of QR methods in genome-wide analysis [252].

This study assesses the utility of modeling QR estimates from unconditional quantile

regression (UQR) instead of CQR for identifying variants with potential interactions [253].

UQR parameters and their respective variance-covariance matrix have a closed solution and

can potentially scale better with the number of variants, sample size, number of percentiles

and number of covariates (Supplementary Material). A short description of the difference

between CQR and UQR is provided in the supplementary material. This study applied

simulations to assess type I error and the power to detect potential interactions compared

with tests of variance heterogeneity tests.

Materials and Methods

Model Formulations

To formally introduce and illustrate the utility of QR in genome-wide association analysis,

consider the response vector Y from n independent and identical distributed (i.i.d) samples

with cdf FY (y). Assume the following linear model

yi = β0 + β1xi + β2gi + β3xigi + εi (4.1)

where xi corresponds to an interacting variable with X ∼ FX(µx, σ
2
x); gi is the observed

genotype of the genetic variant, G, under HWE with the population allele frequency, p,

where G ∼ Bin(2, p); and εi is the random error with ε ∼ Fε(0, σε). β0, β1, β2 and β3

correspond to the intercept, marginal effect of the interacting variable, marginal effect of the

genotype, and the interaction effect between them, respectively. The conditional distribution

of Y can be described as FY |X=x,G=g ∼
(
β0 + β1x+ β2g + β3xg, σ

2
y

)
. Assuming that X and
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G are independent, then the conditional density of Y given G can be shown to have a mean

and variance:

E [Y | G = g] = (β0 + β1µx) + (β2 + β3µx)g (4.2)

V ar(Y | G = g) = σ2
x(β1 + β3g)2 + σ2

ε
(4.3)

Note that c = β1 + β3g is an amplification factor for the conditional variance that corre-

sponds to the remaining variability in Y given G. Under an additive genetic model, response

variances by genotypes are all equal if and only if β3 = 0. Hence, tests of differences in

response variance per genotype can identify variants with potential interactions. Note that

the conditional variance per genotype has a minimum at β3 = −β1. If the marginal and

interaction effects are in opposite directions, then the power to detect potential interactions

is reduced. Hence, failure to identify differences in variance by genotype effects does not rule

out interactions effects [247]. Equation 4.3 indicates that gene interactions will increase or

decrease variance consistently across genotype categories. identify true interaction under the

genetic model of inHowever, tests for variance heterogeneity detect variance inconsistency

rather than variance structure (i.e. direction of change). Therefore, variance heterogeneity

is not specific to interaction signals, but includes conditions where no consistent direction for

increasing or decreasing variance per genotype is observed. Modeling relationship between

variance and genotypes assuming a structure (i.e. linear trend) could help improve power to

detect variants with potential interactions if the assumtions are met. This can be done as a

reformulation of heteroscedasticity in equation 4.3 into the QR framework. The linear scale

model of heteroscedasticity [i.e. σ(x) = (1 +xθ)σ] is a special case of QR models with linear

conditional quantile functions. Note that other models of systematic heteroscedasticity can

be approximated for small θ by a linear expansion [186]. This includes multiplicative het-

eroscedasticity in the form of σ(x) = exθ [254, 255]. Hence, assuming a linear heteroscedastic
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function is reasonable for variants with small interaction effects. Nonetheless, modest in-

teraction effects require the correct heteroscedasticity function (i.e. linear, or nonlinear)to

detect, while small interaction effects may remain difficult to identify and/or non-clinically

relevant.

To reformulate heteroscedasticity into the QR framework, let εx be the partial error for the

unadjusted interacting variable X with mean zero and variance σ2
x. Then the conditional

distribution FY |G(y | G = g) can be translated into a heteroscedastic linear model with

partitioned residuals where σεx(g) = (β1 + β3g). That is

yi =
(
β0 + β1µx

)
+
(
β2 + β3µx

)
gi +

(
β1 + β3gi

)
εx,i + εi (4.4)

The conditional quantile function for the heteroscedastic model under i.i.d errors is

QY (τ | G = g) = β0(τ) + βG(τ)g (4.5)

where

β0(τ) = β0 +Qε(τ) + β1
[
µx +Qεx(τ)

]
βG(τ) = β2 + β3

[
µx +Qεx(τ)

]
Again, assuming that X and G are independent (i.e. E

[
X | G = g

]
= E

[
X
]
), the effects

of genetic variant G on the τ -th quantile of Y are equal (i.e. βG(τ) = β2 for all τ ∈ (0, 1))

if and only if β3 = 0. βG(τ) is in fact a linear function of Qεx(τ) with slope given by

interaction coefficient β3. Note that the independence assumption between X and G is used

for simplification and illustration purposes. Overall, βG(τ) inherits properties of Qεx(τ) that

include monotonicity with τ and captures both variability, and skewness of the interacting

variable X. An example is provided in the Supplementary Material.
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Modeling QR Estimates

Modeling and testing the dependency structure of βG(τ ) with τ can be used as an overall

robust indicator of potential interactions. Note that no parametric assumptions on partial

errors due to interaction variables are required. Let β̂G(τ) and Σ̂G denote the subset of

QR regression estimates and their corresponding variance-covariance matrix of the genetic

variant in the model. The relationship between genetic effects and percentiles τ centered

at the median can be investigated using MR (also known as generalized least squares). Let

A =

(
1

′
τ ∗
)

be the design matrix, where τ ∗ = τ − 0.5. The regression coefficients of

MR models are given by

β̂M =
(
AtΣ̂−1G A

)
AtΣ̂−1G β̂G(τ)

=

(
β̂G β̂τ

) (4.6)

with variance-covariance matrix of the estimates

Σ̂M = AtΣ̂−1G,τA

In this formulation, β̂G and β̂τ correspond to the variant’s marginal and change in marginal

effects with percentiles respectively. We provide an analytical demonstration for the rel-

evance of MR estimates on potential interactions using QR under the null hypothesis of

no interactions (Supplementary Material). Moreover, CQR estimates have been shown to

asympototically converge to a normal distribution under i.i.d errors [186, 256, 257]. These

asymptotic properties of CQR estimates have varying converegnce rate that weaken with

extreme distribution tails [258]. As a result, modeling extreme quantiles may require bias

corrections and inference using simulations and suitable bootstrap methods [259]. Hence,

bootstrap methods via re-sampling to estimate β(τ) and ΣM provide robust inference and

characterize the joint normal density of estimates across quantiles. Nonetheless, bootstrap

methods can be computatally intensive for large models and sample data as in classic GWAS
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study designs. Hence, we only focus on the original asymptotic estimator of Σ̂G by Koenker

and Bassett 1978 for i.i.d error [251]. Up to our knowledage, there are no studies assessing

the asymptotic convergence rate of β̂(τ) and Σ̂G from UQR models. Note that Σ̂G from

UQR models using least-squares regression is the covariance-variance matrix of multivariate

regression errors given as ε
′
ε/(n−r−1), where r is the number of predictors. The estimated

Σ̂G, β̂G(τ) follows a Student’s t distribution with df = n − r − 1 which is approximately

normal for large sample sizes. Hence, applying MR result in the modelling of normally

distributed estimates with their corresponding variance-covariance matrix. Hence, provided

that ΣM was estimated correctly, a test for marginal effect of variants is simply testing for

H0 : βG = 0:

ZG =
β̂G
SEβ̂G

∼ N(0, 1) (4.7)

A linear trend with τ can be tested using H0 : βτ = 0 as,

Zτ =
β̂τ
SEβ̂τ

∼ N(0, 1) (4.8)

Supplementary Figure B3 shows the convergence of Zτ from on CQR and UQR estimates

toward nominal Type I error rate of 0.05. Deviations from the null distribution mainly occur

when modeling extreme quantiles and by the number of quantiles modeled to a lesser extent.

Nonetheless, hypothesis tests for Zτ using UQR estimates converge much faster to the correct

null distribution compared to CQR estimates.

Overall, the modeling of βG(τ ) with τ provides estimates and inference for marginal

and potential interaction effects. βG is interpreted similarly to the classic median change in

the response by one unit change in the number of allele copies. On the other hand, βτ is

interpreted as the one unit change in the marginal effect with one unit change in percentile.

That is, βτ correspond to the inflation or deflation of marginal effects due to unadjusted

interactions. Hence, when βτ is zero, there is no evidence of potential interactions. A positive

value indicates that marginal effects of the genetic variant are greater for samples at the upper
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side of the response distribution compared to those at the lower side, while a negative value

indicates the opposite. The linearity assumption of βG(τ ) with τ is used to summarize the

overall inflation or deflation of marginal effects due to interacting variables that are present

in the sample population. The magnitude and direction of βτ reflect quantiles of the partial

error(s) density, εX , which vary according to the variance-covariance matrix of interacting

variables, ΣX and multiplicatively amplified by interaction effects. The density of interacting

variables is specific to sample population of interest, and one may consider that differences

in βτ between populations may reflect differences in the density of interacting variables (i.e.

differences in exposures of different populations to interacting variables). For simplicity,

the use of MR to estimate the variability of QR estimates by τ will henceforth be referred

to as meta-quantile regression (MQR), meta-conditional quantile regression (MCQR), and

meta-unconditional quantile regression (MUQR) as needed.

Simulations

Data Generation

Genotypes were generated from Bin(η, p) centered at µg = 0 with σg = ηp(1−p), where η

is one plus the number of chromosomes (i.e. η = 2 for two levels of an indicator for whether

the single chromosome contains the reference allele) and p is the allele frequency. For sim-

plicity purposes, genotypes are generated from η = 2, unless otherwise specified. Genotypes

were investigated under an additive genetic effect with allele frequencies ranging from 0.05

to 0.95. The interacting variable X was generated from a standard normal distirbution.

The response variable, Y , was simulated from the linear model in equation 4.1. Coefficients

of individual covariates were calculated as a function of pre-defined % variance explained

(R2) by individual marginal and interaction variables denoted as R2
G, R2

X , and R2
G×X . Re-

gression coefficients were specified as β0 = 0, β1 =
√
R2
X , β2 =

√
R2
G
/
(
ηp(1− p)

)
, and

β3 =
√
R2
G×X/

(
ηp(1− p)

)
[183, 249]. The random error ε was simulated from skew-normal

distribution with means equal to zero and and variance equal to 1−R2
G−R2

X −R2
G×X . The
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error was simulated with shape parameters αε = 0 and 20 to denote symmetric and asymet-

ric distributions respectively. The treatment of skewness using rank-based inverse-normal

transformation were also assessed. The variance explained by the interacting variable X was

fixed at R2
X = 24% for all simulations while R2

G and R2
G×X were varied from 0 to 0.4%. A

total of R = 10, 000 replications were performed for all simulated datasets with each hav-

ing a sample size of n = 10, 000 independent observations. Both sample size and percent

variance explained by genetic variants are within the realistic contexts of GWAS and GWIS

study designs [260]. Large sample sizes are often required due to severe multiple testing

corrections.

Tests Statistics

Variance Heterogeneity Tests for equality in variance by genotype included Levene’s

mean-based F-test, and the Brown-Forsythe F-test [247]. Both test statistics are given by

T 2 =
(n− k)

∑k
i=1 ni(Z̄i. − Z̄..)2

(k − 1)
∑k

i=1

∑ni
j=1(Z̄ij − Z̄i.)2

(4.9)

where n1, ..., ni are the sample size of the i-th group, yij is the j-th observation of the i-th

group and Zij = |yij− ȳi.|. The global and subgroup location summary statistics correspond

to the mean in the case of Levene’s F-test, or the median for Brown-Forsythe’s F-test . Both

test statistics follow an F distribution under the null hypothesis of variance homogeneity

with df1 = k−1 and df2 = n−k, where n is the sample size and k is the number of subgroups.

Heterogeneity of QR Estimates The two other test statistics for potential interactions

include Zτ from CQR and UQR. The process of computing Zτ for UQR is different from

CQR. UQR requires adjustment for the main effect of genotypes where Zτ is computed

on residuals of Y regressed against G. To explain why, consider take the earlier example

in equation 4.5 and consider the special case where β0 = β1 = 0, β2 6= 0 and β3 6= 0.

The implication of the heteroscedasticity function σx(g) = β3g on the conditional quantile
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function of Y is

Pr
[
Y > qτ | G = g

]
= Pr

[
g(β2 + β3εx) + ε) > qτ

]
= Pr

[
εx >

qτ − β2g − ε
β3g

]
= 1− Fεx

(qτ − β2g − ε
β3g

) (4.10)

where a change in G corresponds to a change in both the numerator and denominator

given the directions and magnitudes of β2 and β3. The presence of both marginal and

interaction effects complicates the relationship between genotypes and the ‘unconditional’

quantiles of Y that UQR models. UQR utilizes observed sample quantiles as approximations

to the unobserved unconditional quantiles of Y for re-centered influence function (RIF)

transformations at a given vector of percentiles, τ . This is problematic because sample

quantiles are ‘contaminated’ by g where the mixture of marginal and interaction effects

compromise trends in βG(τ ) with τ (See Suppelmentary). This can be overcomed using the

residuals of the response adjusted for genotype effect. The marginal effect of g is treated as

a nuisance parameter using a two-step estimation approach through modeling quantiles of

Y ∗ = Y − gβ̂(τ = 0.5), where β̂(τ = 0.5) is the marginal effect estimated using UQR. Note

that CQR models the conditional quantile function of Y , and hence, do not suffer from this

limitation of UQR. Nonetheless, UQR is more practical in genome-wide analysis given its

computational efficiency over CQR.

Moreover, choosing the appropriate number and range of τ to consider for CQR and

UQR depend on the sample size given that our framework assumes that βG(τ ) converges to

the true population estimates and are normally distributed. All sample quantiles converge

to normality at different rates, with the median being the fastest, and extreme quantiles

having the slowest convergence rate with sample size [261]. Deviations from normality will

occur when quantiles at the extreme distribution tails are modeled using an insufficient

sample size. To help guide the selection of the number and range of τ , a diagnostic for
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plots for deviations from normality can be made by constructing the null distribution. A

simple strategy is to apply permutation tests for all variants include the random generation

of genotypes and fitting CQR and UQR on the response of interest for different number and

range of percentiles with R = 10, 000 replicates to compute Zτ and assess Type I error rates

assuming normality. Supplementary Figure B3 shows the convergence of Type I error rate to

the nominal level of 0.05. The true distribution of Zτ deviates from normality when modeling

extreme distribution tails. On the other hand, increasing the number of percentiles over-

parameterizes the covariance matrix and slightly increases the rate of false positives. Both

CQR and UQR were fitted for 10 percentiles across 5% ≤ τ ≤ 95% given the convergence of

Type I error rate to nominal level for n = 10, 000.

Type I Error

Type I error rates for individual tests were computed as the proportion of false positives

of R = 10, 000 replications at a nominal level of 0.05. False positive rates were assessed while

varying the symmetry of error distribution (symmetric or asymmetric), and on rank-based

inverse normal transformation of the asymmetric error (i.e. skewed response variable). R2
G

was varied between 0% and 0.4%. All p, R2
X and R2

G×X were fixed at 5%, 24% and 0%,

respectively. The false positive rate of unadjusted UQR for marginal effects of G was also

provided to demonstrate the effect of mixtures of marginal and interaction effects on trends

of βG(τ) with τ for UQR. A direct interaction test using CQR is also applied as a reference

for other tests.

Power to Detect Associations

The power of each test for detecting potential interactions was computed as the propor-

tion of replications that correctly reject the null hypothesis at a nominal significance level

of α = 0.05. Power was computed to assess the impact of 1) the number of genotype levels,

2) skewness, and 3) antagonistic interactions on the ability of variance heterogeneity tests

64



P.hD. Thesis - Akram Alyass McMaster University - CSE

(Levene’s F-test, and BF test) and MQR-based tests (MCQR, MUQR) to detect a single

unadjusted two-way interaction. The number of genotype levels was varied from 2 (i.e. single

chromosome) to 5 levels (i.e. 4 chromosomes) where allele frequency is varied from 0.05 to

0.95. The effect of skewness on power was assessed by varying error distribution (symmetric,

or asymmetric), and R2
G×X (0% to 0.4%). The effect of antagonistic interaction effects was

assessed similarly, but with an interaction coefficient having opposite direction compared to

main effect of the interacting variable. The main effect of the interacting variable is set to be

positive, while the coefficient for interaction effect is negative to correspond to antagonistic

interaction effects.

Results

False Positives

Figure 4.1 shows Type I error rates for test statistics under symmetric and asymmetric

errors in addition to rank-transformation to treat skewed response variables when R2
G = 0%

and 04%. Levene’s F-test showed an increased Type I error rate for asymmetric error in

comparison to BF F-test that was near nominal levels in all scenarios. MCQR showed

a slightly elevated Type I error rates that were stable across the scenarios investigated.

This results from the range and the number of percentiles considered which produced slight

deviations from normality (Figure B3). The variance-covariance matrix for CQR estimates

have a slow asymptotic convergence rate and require bootstrap methods to properly estimate

[252]. Nonetheless, CQR was fitted for the same range and number of percentiles as UQR

for valid comparisons. In addition, MUQR unadjusted for genotype effects had an increased

Type 1 error rate resulting from marginal and interaction effects of G as discussed earlier.

Adjusting for the marginal genotype effect resulted in a near nominal level of false positives

for UQR. Lastly, rank-based inverse-normal transformation on skewed response variables

where variants include a marginal effect at R2
G = 0.4% have resulted in increase Type I error
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rates for all reference CQR G × E interaction test, variance heterogeneity tests, and MQR

tests.

Power Comparisons

By Group Levels Figures 4.2 and B4 show the power of detecting potential interactions

with increasing number of group levels (e.g. mono, bi, tri, and quad allelic genotypes).

MCQR and MUQR show higher power compared to variance heterogeneity tests when geno-

types include more than two genotype levels. The difference in power is even greater for

4 and 5 group levels (e.g. tri and quad allelic genotypes) as shown in the Supplementary

Figure B4. This can be explained by the fact that variance heterogeneity relies on subgroup

analysis for variance per-genotype whereas MCQR and MUQR utilize the whole sample to

compute Zτ . The power remains constant across allele frequency due to the change in inter-

action effects with allele frequency to maintain the same variance explained by interaction

effects (at R2
G×X = 0.1%).

By Distribution Shape and Type of Interaction Figure 4.3 shows the power of de-

tecting potential synergistic and antagonistic interactions under both symmetric (αε = 0)

and asymmetric (αε = 20) error distributions. Genotypes correspond to allele copies from

two chromosomes (i.e. 3 levels) under an additive genetic model effect. Both MCQR and

MUQR were found to have more power of detecting unadjusted two-way interactions under

symmetric error distribution compared to variance heterogeneity tests. This is due to the

effect of genotype group levels. However, this difference in power increased greatly under

an asymmetric error distribution. This is due to the sensitivity of variance estimates to

skewness that increases their sampling error for variance estimates for skewed distributions

[262]. In contrast, MCQR and MUQR, on the other hand, are not affected by skewness as

much given that they rely on distribution quantiles instead. Moreover, the power of all four

tests under antagonistic interactions have decreased compared to synergistic interactions.
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However, the difference in power between MQR based tests and variance heterogeneity tests

have increased for antagonistic compared to synergistic interactions. This difference is even

larger under asymmetric error distributions. Note that treatment of skewness using a rank-

based inverse-normal transformation was not applied since it increases in Type I error rates

of all reference G × E interaction test and potential interaction tests (Levene, BF, MQR,

and MUQR) for genotypes with main effects.

Discussion

This study expands the application of MQR to detect evidence of potential interactions in

the context of genetic association analysis. We show that using MR to model heterogeneity

in QR estimates across an outcome distribution is a robust and powerful approach for detect-

ing potential interactions. We show that MUQR overcomes the computational limitation of

MCQR. UQR was 2.5-8.5 times faster than CQR via Frisch-Newton approach after prepro-

cessing. Hence, MUQR is more practical for large-scale genome-wide association analyses.

MQR methods were also shown to maintain nominal Type I error rate and achieved greater

power when compared to variance heterogeneity tests with increasing number of group levels,

asymmetric error distributions, and antagonistic interactions.

This study shows how the shape of QR estimates captures information on the quantile

density function of interaction variable(s) (Figure B1). Fitting MR models on QR estimates

using re-centered percentiles around the median allows for estimation of 1) an intercept

parameter that corresponds to the marginal effect of genotypes, and 2) a slope parameter

that corresponds to the mean change in QR estimates with one-unit change in percentiles

and denotes the presence of potential interactions. The effect of SNPs across the sample

distribution is a function of error quantiles that assume the same density of the interacting

variable(s) (Equation 4.5). In the case of a single interaction variable, the quantile function

of a univariable error density is increasing by definition. In the case of multiple interacting
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variables, the quantile function of a multivariate error density is equivariant and thus not

strictly increasing in a linear fashion (Supplementary Material) [263, 264]. Identifying the

best model to fit QR estimates across percentiles can, however, be challenging in the context

of genome-wide analysis. Assuming a linear trend provides a simple analog of correlation,

which implies associations while acknowledging that more complex relationships (i.e. multi-

ple interacting variables with certain types of non-increasing quantile functions) may not be

detected given the limited robustness of linear models for detecting non-linear relationships.

The approach follows merely the natural association analysis using linear regression in which

correlation implies association but not causation, while acknowledging that causation implies

association but not correlation [265].

Heteroscedasticity resulting from gene interactions have been characterized previously,

where testing for differences in variance per genotype was proposed as an indicator of poten-

tial interactions [247, 183]. Two well-known tests for variance heterogeneity include Levene’s

F-test and the Brown and Forsythe test [266, 267]. Brown and Forsythe highlighted that

Levene’s statistic is not robust when the underlying population distribution is skewed and

proposed additional treatments to address this problem [267]. However, variance as a mea-

sure of distribution spread is less informative when applied to skewed phenotypes. As such,

variance heterogeneity tests are prone to higher Type I error rates (in the case of Levene’s

F-test) and have decreased power of detecting differences in distribution spread for skewed

distributions as confirmed by Figure 4.3. This is because the confidence intervals for variance

estimates are larger for skewed distributions [262]. Instead, modeling distribution quantiles

using QR is more suitable for testing differences in the distribution spread for asymmetric

phenotypes by genotype levels. Many biological traits are skewed including those that are

harmful at low quantities but tolerated at high quantities (i.e. right skewed blood glucose

measures, or BMI) or vice versa.

Location-scale-shift models of QR estimates to assess differences in distribution by re-

gressors have been previously proposed [268, 269, 270]. These approaches enable inference on
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global differences between distributions by genotype but do not compare location and scale

shifts separately. This problem is shared by other non-parametric tests such as Kolmogorov-

Smirnov test and other derivatives [271, 272]. Current quantile-based tests rely on computed

reference null distributions (i.e. permutations) that provide p-values with 4 or less significant

digits or, else, require approximations of extreme distribution tails [273]. To our knowledge,

there are currently no quantile-based tests that exclusively focus on differences in scale shifts.

Hence, MQR as first utilized by Abadi et al. 2017 and elaborated further here in this study,

is the first to reliably and efficiently enable robust statistical inference on scale differences

[208]. It allows for the objective modeling of scale change with genotypes (i.e. linear het-

eroscedasticity due to one or multiple two-way interactions) as well as more complex terms.

Its utility may not only be limited to genetics but to research at large as it provides esti-

mates of both marginal and potential interaction effects. MQR is not restricted to genetic

epidemiology alone in the pursuit of precision medicine but applies to all research fields alike.

This study includes simulations to compare the power of the proposed approach against

tests for variance heterogeneity by genotype with 1) number of group levels, and 2) symmetric

and asymmetric error distributions, synergistic and antagonistic interactions. The simulation

results show that MQR-based tests are robust to skewness and maintain nominal Type I

error rates under asymmetric, symmetric error distributions. Treating distribution skewness

using inverse-normal rank-transformation was found to inflate Type I error for genotypes

with main effects. Furthermore, MCQR and MUQR were shown to have higher power of

detecting potential interactions compared to variance heterogeneity tests for genotypes with

3 or more group levels. Variance heterogeneity tests require sub-group estimates that become

less reliable with increasing group levels for the same sample size. On the contrary, MCQR

and MUQR utilize the whole sample and are not affected by the number of factor levels. More

importantly, variance heterogeneity tests are limited to the analysis of factors, while MQR-

based tests can be applied to both factors and continuous variables alike. Furthermore, both

MCQR and MUQR were shown to have a higher power of detecting potential interactions
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under skewed phenotype by a large margin (Figures 4.3). This is because the skewness

increase sampling error of variance estimates. Furthermore, both MCQR and MUQR were

found have a higher power of detecting antagonistic interactions. Note that the conditional

variance given in equation 4.3 is a sum of weighted variance components given genotypes.

The observed conditional variance is diluted by error variance where QR differentiates the

change in QR estimates exclusively to change in quantiles of partial errors due to interactions

from quantiles of the random error as in equation 4.5. Altogether, the proposed approach

handles scale-shifts per genotypes more efficiently than tests of variance heterogeneity for

skewed phenotypes and for antagonistic interactions effects.

This study extends the utility of QR by developing the formal connection between the

density of interacting variables with QR estimates and providing tests of associations be-

tween QR estimates and percentiles with direction and magnitude. This approach, however,

is not without limitations. The modeling of QR estimates using CQR, as previously proposed

in Abadi et al. 2017, is computationally intensive [208]. Details on the computational chal-

lenges for CQR can be found in Chen et al [274]. Bootstrap methods are required to reliably

estimate variance-covariance matrix of CQR estimate. CQR, as an optimization problem, is

computationally infeasible in the context of genome-wide analysis. The recent development

of UQR by Firpo et al 2009 provides a window of opportunity for a scalable approximation of

univariable CQR estimates in the context of genome-wide analysis. A brief description of the

differences between CQR and UQR are presented in the supplementary material. Both UQR

parameters and their corresponding variance-covariance matrix have a closed-form solution

and are, therefore, easily computed compared to CQR which requires bootstrap methods

for proper estimation due to slow asymptotic convergence [252]. An assessment of CPU

time required to for estimating QR parameters alone shows that UQR scales well with the

number of SNPs, sample size, number of percentiles, and number of covariates compared to

all optimization algorithms for CQR (Figure B2) [273, 275, 251]. However, UQR relies on

kernel density estimates and may require careful considerations for highly sparse or bounded

70



P.hD. Thesis - Akram Alyass McMaster University - CSE

distributions [276]. Hence, the computational advantages of UQR or CQR for sparse phe-

notypes are limited by proper kernel density estimations. Moreover, inference for potential

interactions is based on the asymptotic results of CQR and UQR estimates. The asymptotic

normality of our test statistic is jeopardized by the use of insufficient sample sizes and the

modeling of extreme quantiles. Violations in the normality assumption lead to an increase

in Type I error rates. The number and range of percentiles to choose from depends on the

research’s objective and sample size, and population representation. Nonetheless, a diagnos-

tic plot is provided for assessing the normality assumption and overparameterization issues

for estimating the covariance-variance matrix of CQR and UQR estimates given the range

and number of percentiles to fit. We confirm that CQR under the naive i.i.d assumption,

requires large sample sizes (i.e. n ≥ 1000) to correctly estimate the asymptotic variance-

covariance matrix. Hence, bootstrap methods are essential to appropriately compute the

variance-covariance matrix of CQR estimates for proper inference.

In conclusion, MQR methods for detecting scale-shifts by genotypes are more purpose-

ful compared to variance heterogeneity tests. While MCQR is computationally expensive,

MUQR achieves similar desired power and Type I error rates without the computational

overhead. Hence, MUQR could be utilized in large-scale genome-wide analysis for clinically

relevant phenotypes to identify variants with potential interactions.
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Figure 4.2: Power of detecting interaction effects for 2 and 3 genotype group levels
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Figure 4.3: Power of detecting synergistic interaction effects. Power is presented for when the
error distribution is symmetric (αε = 0) or asymmetric (αε = 20). The interacting variable
is simulated from a standard normal relevance variance explained fixed at R2

X = 24%. MAF
was fixed at 5% as there are no to minor differences in power due to re-adjustment of
interaction effects to keep RG×E fixed as intended.
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Chapter 5

Conclusion

This thesis provides a review on the challenges and opportunities for personalized medicine.

It tackles the growing gaps in healthcare quality between developed and undeveloped na-

tions that jeopardize social stability and ethical standards. It tackles the growing gap in our

ability to generate data compared to our ability to analyze and extract useful reproducible

associations. There is a need for global investment in basic research that include 1) cost

effect generation of high-quality high-throughput data, 2) hybrid education and multidisci-

plinary teams, 3) data storage and processing, 4) data integration and interpretation, and 5)

individual and global economic relevance; to be followed by global investments into public

health to adopt routine personalized medicine. This is, however, not the case given the

recent funding cuts for the National Institutes of Health (NIH) budget. The review further

identifies that the lack of robust statistical methods as the primary bottleneck and challenge

in basic research towards personalized medicine. It highlights that unknown or unadjusted

interactions result in true differences in the marginal effects which are only mitigated through

adjustments or standardizations that limit generalizability. Hence, while increasing the sam-

ple size of observational studies may help reduce the effect of random error on the precision

of estimates, systematic heterogeneity requires careful treatments in order to improve model

accuracy and reliability. To this end, the heterogeneity of the marginal effects of known
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BMI variants were investigated in the third chapter. A novel statistical framework based

on Quantile regression, and Meta-regression was developed to identify variants with true

heterogeneity that indicate the presence of potential interactions, termed, Meta-quantile

Regression (MQR).

In chapter 3, the genetic architecture of genetic effects on BMI was shown to have a

strong evidence of potential interactions. In addition, all FTO, PCSK1, TCF7L2, MC4R,

FANCL, GIPR, MAKP2K5, and NT5C2 were found to have potential interactions. On

the contrary, height was found to have no evidence of a genetic architecture that includes

environmental interactions. The analyses performed on height served as a control to BMI

results given that height is a highly heritable trait that is fixed during adulthood. However,

all SNP analyses were formed assuming an additive effect and no assessments on deviation

from this assumption were performed. In addition, there is a notable relationship between

the marginal and MQR effect sizes for BMI variants, which require further investigations.

In chapter 4, the computational cost and slow asymptotic convergence rates limitations

of MQR based on conditional quantile regression were discussed, and overcome using un-

conditional quantile regression in the fourth chapter. MQR was also found to have higher

power of detecting potential interactions compared to the variance heterogeneity tests for

asymmetric population distributions and antagonistic interaction effects while maintaining

nominal false positive rates. MQR is, however, not without limitations. It assumes a linear

quantile-widening effect of variables, which is simple, but may not capture complex scale

effects. There is also a need to emphasize that potential interactions may not reflect true

interactions with other variables. Interaction effects simply reflect deviation from additive

effects, and this can occur as a result of nonlinear effects. This also includes gene-gene in-

teractions that may not involve environmental factors. Furthermore, it is not sufficient to

simply identify potential interactions in the context of personalized medicine. Here is a need

to show the nature of interactions. There is a need to further extend the utility of MQR to

help identify and characterize interactions.
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Although it is difficult to predict the future, it is helpful to consider emerging trends

together with the current challenges to foresee the new opportunities. In the coming years,

it is likely that the challenges of homogenous and heterogeneous sample population recruit-

ment,deep phenotyping, and model developments will be key objectives towards personalized

medicine. As such, it is likely that 1) individuals will be more precisely characterized with

increasing precision, 2) study populations will grow to allow millions of samples for observa-

tional study designs, 3) new statistical method will be developed to discover and reproduce

relationships from these data, 4) far more complex diagnostic and prognostic categories that

are currently in use will arise using multidimensional characterization of patients, and 5)

analytical and algorithmic models will be useful for clinical purposes even when they defy

easy summary in language to most clinicians [277].
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Appendix A

Supplemental Note

Analytical Description: Ordinary least squares (OLS) regression is the classic method

to estimate mean effects of SNPs on a quantitative trait. OLS models are particularly useful

when the assumptions of linearity, normality, and homoscedasticity are met, but otherwise,

require proper corrections in order to allow unbiased parameter estimation and valid in-

ference. These models are developed on the basis of true fixed effects and do not capture

true variability in the effects of genetic risk factors in the presence of single and mixed

gene-environment (G×E) and gene-gene (G×G) interactions. If such interactions are unad-

justed, OLS models will produce estimates with limited reproducibility that depend on the

context of the sample population and the degree of exposure to interacting variables (e.g.

environmental exposure).1 Reproducibility is a well-known problem in genetic epidemiology

for complex phenotypes that involve interactions.2 Alternatively, GWAS may use case/con-

trol designs to compare BMI categories, where binary logistic regression is used to estimate

the fixed effects of SNPs on the probability of belonging to either of two factor levels (e.g.

normal-weight vs. obesity subgroups). However, subgroup analysis not only reduces statis-

tical power due to loss of sample size and uneven group levels, but also limits interpretation

to pair-wise comparisons. In addition, logistic regression profiles pre-selected segments of

the BMI distribution, which can be problematic to assign a priori.

Conditional quantile regression (CQR) is an alternative regression technique that permits
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the assessment of associations at the full scope of the outcome distribution by examining the

effects of regressors at a series of quantiles of the outcome distribution without dividing the

sample into subgroups.3,4 CQR models the effects of a change in one unit of a predictor on the

position of a given quantile of the outcome. It also utilizes the entire data set for parameter

estimation, confidence interval construction and hypothesis testing regardless of the specified

quantiles and does not suffer the statistical limitations of subgroup analysis. This regression

framework has recently gained traction in clinical epidemiology to generate fetal, childhood

and adolescent growth curves.5-7 Recent reports have highlighted the potential applications

of CQR in genetic epidemiology.8-10 To our knowledge, CQR has not been applied to model

the variability in effect size estimates along the sample outcome distribution in the presence

of single and mixed G×E and G×G interactions.

Variations in effect size estimates due to unadjusted interactions can be modelled using

CQR as a re-formulation of heteroscedastic OLS models.3,11,12 Lets consider a sample of n in-

dependent and identical distributed (i.i.d) variables Y1, ..., Yn with cdf FY (y), where y1, ..., yn

are their respective observed values. Lets also assume they follow a linear relationship with

an interaction term given as

yi = β0 + β1xi + β2gi + β3xigi + εi (5.1)

where xi corresponds to the unknown/unmeasured interacting variable, X ∼ FX(µx, σ
2
x);

gi is the observed genotype of the genetic variant G under Hardy-Weinberg equilibrium

(HWE) with a population allele frequency, p, where G ∼ B(2, p); and εi is the random

error with ε ∼ Fε(0, σε). The coefficients β0, β1, β2 and β3 represent the intercept, the

marginal effect of X, the marginal effect of G and the interaction effect of G and X, re-

spectively. The conditional distribution of the response variable Y can be described as

FY |X=x,G=g ∼
(
β0 + β1x+ β2g + β3xg, σ

2
y

)
. If the interacting variable, X, is not adjusted
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then the conditional density of Y given G can be shown to have a mean and variance:

E [Y | G = g] = (β0 + β1µx) + (β2 + β3µx)g (5.2)

V ar(Y | G = g) = σ2
x(β1 + β3g)2 + σ2

ε
(5.3)

The resulting conditional distribution FY |G(y | G = g) simply translates to a heteroscedastic

linear model with partitioned residuals where σ(g) = (β1 + β3g). That is

yi =
(
β0 + β1µx

)
+
(
β2 + β3µx

)
gi +

(
β1 + β3gi

)
εi,1 + εi,2 (5.4)

where ε1 ∼ Fε1(0, σ
2
x) and ε2 ∼ Fε2(0, σ

2
ε ). The conditional quantile function for the het-

eroscedastic model under i.i.d errors is

QY (τ | G = g) =
[
β0 + β1µx + β1Qε1(τ) +Qε2(τ)

]
+ g
[
β2 + β3µx + β3Qε1(τ)

]
= β∗0(τ) + β∗1(τ)g

(5.5)

which is a CQR model with the true fixed parameters β∗0(τ) and β∗1(τ). τ can be any quantile

of the sample outcome distribution of Y . This formulation can be generalized further for a

set of k independent interacting variables in matrix form as

QY (τ | G = g) = Aβ(τ) (5.6)

where A ∈ Rn×2 is the design matrix
[
1, G

′]
and

β(τ) =

 β0 +
∑k

j=1 βxjµj

βg +
∑k

j=1 βintjµj

+

∑k
j=1 βxjQεj(τ) +Qεk+1

(τ)∑k
j=1 βintjQεj(τ)

 (5.7)

Here, βg and βxj are the main effects of the genetic variant and j ∈ 1, .., j are the
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unknown/unmeasured variables with their respective interaction coefficients βintj . The cu-

mulative two-way interactions of k variables results in a linear function with τ as a re-

sult of the symmetric heteroscedasticity function 1
′
γ where 1 ∈ Rk×1 and γ has elements

σj(g) = βxj + βintjg. Under an additive genetic model, the main effect of the genetic vari-

ant β(τ) is a fixed constant for all τ ∈ τ1, ..., τm if and only if all interacting effects are

zero, i.e. βintj = 0. It is possible to further break down the independence assumption be-

tween interacting variables using a variance-covariance matrix of partial errors, but the above

formulation serves as a simple analytical demonstration for the use of CQR in modelling un-

adjusted interactions. A linear trend of estimates with τ corresponds to cumulative two-way

interactions, while quadratic curves supports complex higher order interactions. Hence, the

association of genetic variants under unadjusted interacting variables simply reduces to the

modelling of CQR estimates along the distribution of the outcome at τ ∈ τ1, ..., τm.

This is accomplished by using meta-regression (MR) to model the heterogeneity of CQR

estimates across the sample outcome distribution and estimate the change in CQR estimates

with τ .13,14 That is, fitting the MR model

β(τ) =

(
1

′
τ

′ − 0.5

)βm
βτ

+ ε (5.8)

where βm is the median effect of the genetic variant, βτ is the slope coefficient for the

change in the median effect with τ , and ε ∈ Rn×1 are random errors with the cross-quantile

variance-covariance matrix of the estimates under i.i.d errors. This framework provides both

location-shift and change in location-shift estimates to further decipher the nature of complex

genetic associations.

Simulations: The power to detect unadjusted interactions using CQR and MR was

explored using simulations. Equation 1 describes the effects of an interaction between a

SNP, G, and a variable, X, on a quantitative trait, Y . Without loss of generality, G was

assumed to be biallellic with a MAF, p, under HWE and an additive genetic effect on Y .
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Moreover, G was encoded such that mean genotype was zero (−2p, 1− 2p, or 2− 2p).11 The

total variance of Y was assumed to be 1 and the variance of each component of equation 1

was partitioned accordingly. Specifically, the proportion of the variance (R2) of Y that was

explained by G, X and the interaction between G and X was R2
G = 2p(1 − p)β2

2 , R2
X = β2

1

and R2
G×X = 2p(1 − p)β2

3 , respectively. The error term, ε, was assumed to have a normal

distribution with a mean of 0 and a variance of 1 − R2
G − R2

X − R2
G×X . Unless otherwise

specified, the simulation conditions were MAF = 0.2, N = 10,000, R2
G = 0.004, R2

X = 0.25,

and R2
G×X was varied between 0 and 0.004. When more than one interaction was considered,

R2
X was divided equally between all interaction covariates, while each additional interaction

was equal to R2
G×X . All regression models were fitted with Y as the dependent variable

and G as the independent variable. CQR models were fitted at every 10th percentile of

the distribution of Y from the 5th to the 95th percentiles. A total of 1,000 Markov chain

marginal bootstrap (MCMB) replicates were used to compute confidence intervals and the

cross-percentile variance-covariance matrix for CQR estimates.12,15,16 Variability in the CQR

estimates of G at these percentiles was modelled using MR, assuming normality, to determine

the effects of percentiles on mean CQR estimates. The power to detect interactions at a

threshold of p < 0.05 was computed from 1,000 replicates of each simulation condition.

Sample Stratification and Interactions: The analysis of secondary traits (e.g.

BMI) collected from case-control studies with disease status (e.g. T2D) as a primary outcome

can be prone to artifacts if potential stratification of secondary traits is not addressed.17 This

stems from the fact that secondary traits are often strong risk factors for disease status and

can thus be stratified in cases and controls. Since effect alleles of disease-associated SNPs

are typically enriched in cases and depleted in controls, the stratification of allele frequencies

and secondary traits can correspond. The coinciding stratification of secondary trait distri-

butions and allele frequency distributions may result in spurious associations between these

disease-associated SNPs and secondary traits. This phenomenon has also been observed in

population-based designs when disease prevalence differs between the sample and general
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populations.18 Yaghootkar, et al., have recently developed an analytical model relating re-

gression estimate bias to differences between disease prevalence in the sample and general

populations.18 This model described regression estimate bias in the main effects of SNPs as

a function of the partitioning of allele frequencies by disease status as well as the partition-

ing of variance by genotype (i.e. heteroscedasticity). They also extended this description

to include regression models fitted with adjustment for disease status and show that the

bias persists even after this adjustment.18 Importantly, when regression models are adjusted

for disease status the bias in regression estimates is not a function of the partitioning par-

titioning of variance by genotype.18 This is critical because it means that while estimates

of the main effects of SNPs from CQR models may be affected by sample stratification in

the same way as estimates from OLS models, the variation of CQR estimates across the

sample distribution is not a function of differences in disease prevalence between sample and

general populations. The analytical model presented here is not primarily concerned with

main effects of SNPs on continuous outcomes, rather with modelling the variation of CQR

estimates across the sample outcome distribution.

The effect of sample stratification on the power to detect of unadjusted gene interactions

with CQR and MR was assessed in simulations. Consider the disease outcome (Z), the

continuous risk factor (Y ) and the SNP (G), whose relationship is described using a liability

scale disease (probit) model.18

zi = β4gi + β5yi + ϕi (5.9)

where the coefficients β4 and β5 represent the respective marginal effects of G and Y on

Z, ϕi is the random error with ϕ ∼ Fϕ(0, σϕ), and yi is specified in equation 1. Disease

status (D) is defined as follows;

α = Φ−1(1− π0) (5.10)
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D =


1 if zi > α

0 if zi ≤ α

(5.11)

where π0 is the disease prevalence in the general population. Figure S2A shows a

schematic representation of this model. A population of 100,000 individuals was simulated

with the following conditions; π0 = 0.1 (i.e. population disease prevalence of 10%), MAF =

0.2, R2
G[Y ] = 0.004, R2

X = 0.25, R2
G[Z] = 0.01 (equivalent to OR ∼ 1.4 for G on D), R2

Y =

0.20 (equivalent to OR ∼ 2.5 for Y on D) and R2
G×X[Y ] was varied between 0 and 0.004. A

random sample of N = 10,000 individuals was then drawn from this population with pre-

specified proportion of cases (5, 10, 25 and 50%) and then disease adjusted CQR models

(y ∼ g + D) were fitted across the distribution of Y as in simulations above. Variability in

the CQR estimates of G at these percentiles was modelled using MR to determine the effects

of percentiles on mean CQR estimates. The power to detect interactions at a threshold of p

< 0.05 was computed from 1,000 replicates of each simulation condition.
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The datasets used for the analyses described in this manuscript were obtained from dbGaP

at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000170.v1.p1.

Northwestern University samples and data used in this study were provided by the

NUgene Project (www.nugene.org). Funding support for the NUgene Project was provided

by the Northwestern Universitys Center for Genetic Medicine, Northwestern University, and

Northwestern Memorial Hospital. Assistance with phenotype harmonization was provided

by the eMERGE Coordinating Center (Grant number U01HG04603). This study was funded

through the NIH, NHGRI eMERGE Network (U01HG004609). Funding support for genotyp-

ing, which was performed at The Broad Institute, was provided by the NIH (U01HG004424).

Assistance with phenotype harmonization and genotype data cleaning was provided by the
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eMERGE Administrative Coordinating Center (U01HG004603) and the National Center for

Biotechnology Information (NCBI). The datasets used for the analyses described in this

manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through db-

GaP accession number phs000237.v1.p1. Vanderbilt University funding support for the

Vanderbilt Genome-Electronic Records (VGER) project was provided through a cooperative

agreement (U01HG004603) with the National Human Genome Research Institute (NHGRI)

with additional funding from the National Institute of General Medical Sciences (NIGMS).

The dataset and samples used for the VGER analyses were obtained from Vanderbilt Uni-

versity Medical Center’s BioVU, which is supported by institutional funding and by the

Vanderbilt CTSA grant UL1RR024975 from NCRR/NIH. Funding support for genotyping,

which was performed at The Broad Institute, was provided by the NIH (U01HG004424).

Assistance with phenotype harmonization and genotype data cleaning was provided by the

eMERGE Administrative Coordinating Center (U01HG004603) and the National Center for

Biotechnology Information (NCBI). The datasets used for the analyses described in this

manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through db-

GaP accession number phs000188.v1.p1. Geisinger Health System samples and data

in this obesity study were provided by the non-alcoholic steatohepatitis (NASH) project.

Funding for the NASH project was provided by a grant from the Clinic Research Fund of

Geisinger Clinic. Funding support for the genotyping of the NASH cohort was provided

by a Geisinger Clinic operating funds and an award from the Clinic Research Fund. The

datasets used for the analyses described in this manuscript were obtained from dbGaP at

http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000380.v1.p1. Sam-

ples and data in this study were provided by the abdominal aortic aneurysm (AAA) project.

Funding for the AAA project was provided by a grant from the Clinic Research Fund of

Geisinger Clinic. Funding support for the genotyping of the AAA cohort was provided

by a Geisinger Clinic operating funds and an award from the Clinic Research Fund. The

datasets used for the analyses described in this manuscript were obtained from dbGaP at
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http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000387.v1.p1. Sam-

ples and data in this study were provided by the Geisinger MyCode Project. Funding for

the MyCode Project was provided by a grant from Commonwealth of Pennsylvania and

the Clinic Research Fund of Geisinger Clinic. Funding support for the genotyping of the

MyCode cohort was provided by a Geisinger Clinic operating funds and an award from

the Clinic Research Fund. The datasets used for the analyses described in this manuscript

were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession

number phs000381.v1.p1. Mount Sinai School of Medicine samples and data used in

this study were provided by the Mount Sinai School of Medicine (MSSM) Biobank Project

funded by The Charles R. Bronfman Institute for Personalized Medicine (IPM) at Mount

Sinai School of Medicine. The Coronary Artery Disease study (IPM BioBank GWAS) is

a genome-wide association study funded by the Charles R. Bronfman Institute for Per-

sonalized Medicine. The datasets used for the analyses described in this manuscript were

obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession num-

ber phs000388.v1.p1. The Childrens Hospital of Philadelphia (CHOP) samples and

associated genotype and phenotype data used in this study were provided by the Center for

Applied Genomics at the Childrens Hospital of Philadelphia. Genotyping for this project was

performed at the Center for Applied Genomics and supported by an Institutional Develop-

mentAwardfromTheChildrensHospitalofPhiladelphia. Wegratefullythankallthe children and

their families who enrolled in this study, and all individuals who donated blood samples for

research purposes. The datasets used for the analyses described in this manuscript were ob-

tained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number

phs000490.v1.p1. Boston Children’s Hospital (BCH) samples and data used in this

study are provided by The Gene Partnership (TGP) (http://www.genepartnership.org/)

a prospective longitudinal study to study the genetic and environmental contributions to

childhood health and diseases, collect genetic information on a large number of children who
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have been phenotyped, and implement the Informed Cohort and the Informed Cohort Over-

sight Board (ICOB). Children’s Hospital Boston (CHB) has committed $10 million for the

start-up of the TGP. The datasets used for the analyses described in this manuscript were

obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession num-

ber phs000495.v1.p1. Cincinnati Childrens Hospital Medical Center (CCHMC)

CCHMC is a participating Pediatric Institution for Phase II of the eMERGE network, a na-

tional consortium formed for the purpose of integrating electronic medical records with DNA

and sera repositories for large scale, high throughput genetic research. Multiple CCHMC

PIs have contributed genome wide association data with various funding support mech-

anisms. These support mechanisms can be categorized into two groups: disease specific

awards (PI initiatives) which focus on particular samples and phenotypes and non-specific

awards which contributed to a clinical service. Disease specific awards: 1. Juvenile idiopathic

arthritis (JIA): Samples were collected and genotyping was performed by Dr. David Glass

with funding support from N01AR42272 and P01AR048929 (PI: Glass). Additional support

and genotyping for systemic JIA has been provided by Dr. Dan Kastners laboratory at the

NIH. As of the date of submission, the JIA GWAS data have not been published. 2. Absence

seizures: Samples were collected by Dr. Tracy Glauser and genotyping was performed with

the support of 5 U01 NS045911 (PI: Glauser) from the National Institute of Neurological

Disorders and Stroke. 3. Autism Spectrum Disorder (ASD): Samples were collected by Drs.

Cynthia Molloy and Patricia Manning-Courtney and genotyping was performed with the

support of Award 1984, Genome-wide Association Study of Autism Characterized by Devel-

opmental Regression (PIs: Molloy & Manning), from Autism Speaks Inc. 4. Eosinophilic

Esophagitis: Samples were collected and genotyping was performed by Dr. Marc Rothenberg

with funding support of 5 U19 AI066738 Project 3, Eosinophilic esophagitis and food allergy

(PI: Sampson, Co-PI & Project 3 PI: Rothenberg). As of the date of the submission, the

eosinophilic esophagitis data have not been published. 5. Bicuspid Aortic Valve: Samples
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were collected and genotyping was performed by Dr. Woodrow Benson with funding sup-

port from NIH/NHLBI award HL69712, Genetic mechanisms of cardiac disease in the young

(PI: Benson), and NIH/NHLBI award HL74728, SCCOR in Pediatric Heart Development

and Disease titled Molecular mechanisms of valve development and disease (PI: Benson).

Non-specific awards: 1. The Cincinnati Control Cohort is a collection of biological samples

that have been collected and genotyped through a multidisciplinary approach and with col-

laboration of more than twenty divisions within CCHMC, supported by the Cincinnati Chil-

drens Research Foundation. Lead PIs responsible for this collection are Drs. David Glass and

Ardythe Morrow. 2. Clinical cytogenetics samples. Since 2007, more than 2000 samples, en-

riched for developmental delay, autism and various rare or common genetic diseases as well as

specific chromosomal abnormalities such as deletions and duplications, have been genotyped

for the purpose of uncovering chromosomal abnormalities. The extraction of data from the

EPIC electronic medical record into the de-identified data warehouse, i2b2, was made possi-

ble by institutional resources and 1UL1RR026314, Cincinnati Center for Clinical and Trans-

lational Sciences and Training Grant (PI: Heubi). The datasets used for the analyses de-

scribed in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap

through dbGaP accession number phs000494.v1.p1. Assistance with phenotype harmo-

nization and genotype data cleaning was provided by the eMERGE Administrative Co-

ordinating Center (U01HG004603) and the National Center for Biotechnology Informa-

tion (NCBI). The datasets used for the analyses described in this manuscript were ob-

tained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession num-

ber (phs000888.v1.p1,pht004678.v1.p1, pht004677.v1.p1, pht004680.v1.p1, pht005581.v1.p1,

pht005587.v1.p1, phg000569.v1, phg000896.v1).

WHI (phs000200.v10.p3): The WHI program is funded by the National Heart, Lung,

and Blood Institute, National Institutes of Health, U.S. Department of Health and Human

Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C,

HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C. This manuscript
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was not prepared in collaboration with investigators of the WHI, has not been reviewed

and/or approved by the Women?s Health Initiative (WHI), and does not necessarily re-

flect the opinions of the WHI investigators or the NHLBI. WHI PAGE is funded through

the NHGRI Population Architecture Using Genomics and Epidemiology (PAGE) network

(Grant Number U01 HG004790). Assistance with phenotype harmonization, SNP selec-

tion, data cleaning, meta-analyses, data management and dissemination, and general study

coordination, was provided by the PAGE Coordinating Center (U01HG004801-01). GAR-

NET funding support for WHI GARNET was provided through the NHGRI Genomics

and Randomized Trials Network (GARNET) (Grant Number U01 HG005152). Assistance

with phenotype harmonization and genotype cleaning, as well as with general study co-

ordination, was provided by the GARNET Coordinating Center (U01 HG005157). As-

sistance with data cleaning was provided by the National Center for Biotechnology In-

formation. Funding support for genotyping, which was performed at the Broad Institute

of MIT and Harvard, was provided by the NIH Genes, Environment and Health Initia-

tive [GEI] (U01 HG004424). WHISP the Women?s Health Initiative Sequencing Project

(WHISP) was funded by Grant Number RC2 HL102924. This study was part of the NHLBI

Grand Opportunity Exome Sequencing Project (GOESP). Funding for GO-ESP was pro-

vided by NHLBI grants RC2 HL103010 (HeartGO), RC2 HL102923 (LungGO) and RC2

HL102924 (WHISP). The exome sequencing was performed through NHLBI grants RC2

HL102925 (BroadGO) and RC2 HL102926 (SeattleGO). SHARe funding for WHI SHARe

genotyping was provided by NHLBI Contract N02-HL-64278. WHISE the WHI Sight

Exam and the Memory Study was funded in part by Wyeth Pharmaceuticals, Inc, St.

Davids, PA. The datasets used for the analyses described in this manuscript were obtained

from dbGaP at http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through dbGaP acces-

sion (phs000200.v10.p3, pht000998.v5.p3, pht001019.v5.p3, pht000987.v5.p3, pht000998.v5.p3,

phg000592.v1).The authors would like to thank the participants, investigators and staff of

the WHI study for their important contributions.
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Figure A1: Simulation study of the power to detect unadjusted interactions using conditional
quantile regression (CQR) and meta-regression (MR). The power to detect unadjusted in-
teractions between a SNP (G) and a continuous variable (X) was simulated in a sample of
10,000 individuals. Unless otherwise indicated, the simulation conditions were minor allele
frequency (MAF) = 0.2, variance explained by G (R2G) = 0.004, variance explained by X
(R2

X) = 0.25, and the variance explained by the interaction between G and X (R2
G×X) was

varied between 0 and 0.004. CQR models were fitted at every 10th percentile of the distri-
bution of Y from the 5th to the 95th percentiles and MR was used to model the relationship
between variation in CQR estimates and the Y percentiles. The power to detect unadjusted
interactions at a threshold of p < 0.05 was computed from 1,000 replicates of each simu-
lation condition and plotted against the value of R2

G×X . The power to detect interactions
at different values of R2

G MAF, R2
X and the number of interactions was investigated (A, B,

C and D, respectively). When more than one interaction was considered, R2
X was divided

equally between all interaction covariates, while each additional interaction was equal to
R2
G×X . Overall the power to detect unadjusted interactions was not affected by the main

effects of G or the MAF, but was enhanced by the main effects of X and the number of
interactions.
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Figure A2: Sample stratification and the detection of unadjusted interactions in simulations.
(A) A schematic representation of the model described by equations 1, 9, 10 and 11 in
Appendix A. (B) Investigating the effects of sample stratification on the power to detect
unadjusted interactions using conditional quantile regression (CQR) and meta-regression
(MR) in a simulation study. The simulation conditions were minor allele frequency (MAF)
= 0.2, variance of Z explained by G (R2

G[Z]) = 0.01 (equivalent to OR ∼ 1.4 of G on D),

variance Z explained by Y (R2
Z) = 0.2 (equivalent to OR 2.5 of Y on D), variance of Y

explained by G (R2
G[Y ]) = 0.004, variance of Y explained by X (R2

X) = 0.25 and the variance

of Y explained by the interaction between G and X (R2
G×X) was varied between 0 and 0.004.

A population of 100,000 individuals was generated with disease prevalence (n0) = 10%. A
sample population of 10,000 individuals with pre-specified proportion of cases was randomly
selected from this population. The power to detect unadjusted interactions between the SNP
(G) and the continuous variable (X) in this sample was computed and plotted as in Figure
A1, except that CQR models were adjusted for disease status (D). Overall the power to
detect unadjusted interactions was not affected by sample stratification when CQR models
were adjusted for disease status.
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Figure A3: The effects of BMIl obesity-associated SNPs across the sample BMI distribution
(continued). As in Figure 2, estimates of the change in BMI per effect allele (βCQR, kg/m2 per
Effect Allele) from conditional quantile regression (CQR) models of BMI/obesity-associated
SNPs was plotted against the BMI percentile (thick-black line) along with the 95% confidence
intervals (shaded-grey region). The results from ordinary least square (OLS) (βOLS , kg/m2

per Effect Allele, horizontal-dashed-green line) and the 95% confidence intervals (horizontal-
dashed-green lines) were also plotted for comparison. The change in CQR estimates across
BMI percentiles was modelled using meta-regression (MR) and estimates from MR (βMR

, kg/m2 per Effect Allele per BMI Percentile, thin-magenta line) and the 95% confidence
intervals (dotdashed-magenta lines) were plotted. MR analysis did not detect significant
(p < 1.32× 10−3) increases in the effects of these SNPs across the sample BMI distribution.
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Figure A4: The effects of height-associated SNPs across the distribution of height. Con-
ditional quantile regression (CQR) models of height-associated SNPs were fitted every 5th

percentile of height and adjusted for age, sex and study. Estimates of the change in height per
effect allele (βCQR , cm per Effect Allele) from these models was plotted against the height
percentile (thick-black line) along with the 95% confidence intervals (shaded-grey region).
The results from ordinary least square (OLS) models (βOLS , cm per Effect Allele, horizontal-
dashed- green line) and the 95% confidence intervals (horizontal-dotted-green lines) were also
plotted for comparison. The change in CQR estimates across height percentiles was modelled
using meta-regression (MR) and estimates from MR (βMR , cm per Effect Allele per Height
Percentile, thin-magenta line) and the 95% confidence intervals (dotdashed-magenta lines)
were plotted.
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Figure A5: Sensitivity analysis of GS Results. (A) CQR models of GS-BMI (Stringent),
GS-BMI (No Imputation) and GS-Height (No Imputation) fitted as in Figure 2 and plotted
against respective outcome percentiles. The thick-black line is the estimated change in each
trait per effect allele (BMI, βCQR, kg/m2 per Effect Allele; Height, βCQR, cm per Effect
Allele) and shaded-grey region represents the 95% confidence intervals. Also plotted are the
OLS regression estimates (BMI, βOLS in kg/m2 per Effect Allele; Height, βOLS, cm per Effect
Allele, horizontal-dashed-green line) and 95% confidence intervals (horizontal-dotted-green
lines). The change in CQR estimates across outcome percentiles was modeled using meta-
regression (MR). Estimates from MR (BMI,βMR, kg/m2 per Effect Allele per BMI Percentile;
Height, βMR, cm per Effect Allele per Height Percentile; thin-magenta line) and the 95%
confidence intervals (dotdashed-magenta lines) were also plotted. (B) The results from OLS
and MR modelling of GS-BMI (Stringent), GS-BMI (No Imputation) and GS-Height (No
Imputation). (∗) denotes statistical significance, RI50 is the re-centered intercept of the MR
models and 95% CI are the 95% confidence intervals.
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Figure A6: Comparing patterns from subgroup analysis and conditional quantile regression
(CQR). BMI was divided into BMI categories, and the effects of each SNP on the risk of
overweight (OW), obesity class I (Ob-I), class II (Ob-II) and class III (Ob-III) relative to
normal weight (NW) were tested using logistic regression. Models were adjusted for age,
age- squared, sex and study. Bar plots of the odds ratio (OR, left axis) for these categories
were plotted and bar widths were defined by the percentile cut-offs of each category. Error
bars correspond to the 95% confidence intervals. These bar plots were then overlaid with
the results from similarly adjusted CQR models (thick-red line, right axis). The patterns
from subgroup analysis correspond closely to those from CQR.
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Table A3 BMI/Obesity-associated SNP information. (A) Detailed information on the
BMI/obesity-associated SNPs from CARe studies including, effect alleles / other alleles
(E/O), minor alleles (MA), minor allele frequency (MAF), call rate (CR) and Hardy-
Weinberg Fisher’s Exact p-value (HWE). Where Proxy SNP is indicated, the R2 correlation
to the original SNP is presented and all remaining details pertain to the proxy SNP. E/O
for proxies were determined from phasing with the original SNP. (B) Same as (A) except for
non-CARe studies.

Part A - Panel 1: QC of BMI SNPs in CARe Studies

SNP Gene Proxy SNP R2 Chr:Position E/O MA
rs2984618 TAL1 NA NA 1:47690438 T/G T
rs11208659 LEPR rs11208662 0.97 1:65987164 C/G C
rs7553158 TNNI3K NA NA 1:75005238 G/A G
rs1780050 NEXN NA NA 1:78400540 A/C C
rs347313 NOS1AP rs980828 1 1:162306415 G/T T
rs2819347 LMOD1 NA NA 1:201884288 G/C G
rs1561288 ADCY3 NA NA 2:25369002 C/T T
rs12617233 FANCL NA NA 2:59039998 C/T T
rs492400 USP37 rs526134 0.99 2:219402371 G/A G
rs2535633 ITIH4 NA NA 3:52859630 G/C G
rs17001561 SCARB2 NA NA 4:77096118 A/G A
rs6453133 HMGCR NA NA 5:74692776 A/G G
rs6235 PCSK1 NA NA 5:95728898 G/C G
rs6232 PCSK1 NA NA 5:95751785 C/T C
rs9356744 CDKAL1 NA NA 6:20685486 T/C C
rs2272903 TFAP2B NA NA 6:50786571 G/A A
rs9400239 FOXO3 rs4946932 1 6:108974746 C/A A
rs1211166 NTRK2 NA NA 9:87285992 A/G G
rs11191560 NT5C2 rs3824755 0.92 10:104595849 C/G C
rs7903146 TCF7L2 NA NA 10:114758349 C/T T
rs2237892 KCNQ1 rs2283228 0.92 11:2849530 C/A C
rs10767664 BDNF NA NA 11:27725986 A/T T
rs2856650 SPI1 rs11570094 0.97 11:47359706 A/C A
rs7988412 MTIF3 NA NA 13:28000282 T/C T
rs1957894 PRKCH rs10144353 1 14:61911157 T/C T
rs997295 MAP2K5 NA NA 15:68016343 T/G G
rs8056711 IQCK rs739564 0.95 16:19740237 A/G G
rs4788099 SH2B1 NA NA 16:28855727 G/A G
rs749767 KAT8 NA NA 16:31124407 A/G G
rs1421085 FTO NA NA 16:53800954 C/T C
rs6499653 FTO NA NA 16:53877592 T/C T
rs1788826 NPC1 NA NA 18:21154024 G/A G
rs17066846 MC4R NA NA 18:58044818 G/T G
rs11873305 MC4R NA NA 18:58049192 A/C C
rs2075650 TOMM40 NA NA 19:45395619 A/G G
rs11672660 GIPR NA NA 19:46180184 C/T T
rs2836754 ETS2 NA NA 21:40291740 C/T T116
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Part A - Panel 2: ARIC CARe

SNP MAF CR HWE
rs2984618 0.392 98.8 0.871
rs11208659 0.095 100 0.764
rs7553158 0.438 99.9 0.433
rs1780050 0.428 100 0.6
rs347313 0.445 99.9 0.755
rs2819347 0.338 99.9 0.251
rs1561288 0.229 100 0.126
rs12617233 0.407 100 0.873
rs492400 0.414 100 0.711
rs2535633 0.382 99.6 0.744
rs17001561 0.166 100 0.063
rs6453133 0.306 99.8 0.762
rs6235 0.28 99.9 0.308
rs6232 0.055 100 0.02
rs9356744 0.308 97.7 1
rs2272903 0.103 100 0.266
rs9400239 0.306 100 0.809
rs1211166 0.205 100 0.875
rs11191560 0.106 99.9 0.222
rs7903146 0.299 100 0.501
rs2237892 0.078 97.6 1
rs10767664 0.213 99.9 0.759
rs2856650 0.297 99.9 0.538
rs7988412 0.2 99.9 0.936
rs1957894 0.092 100 1
rs997295 0.41 99.9 0.367
rs8056711 0.188 100 0.933
rs4788099 0.357 99.7 0.287
rs749767 0.37 100 0.956
rs1421085 0.405 100 0.012
rs6499653 0.27 97.8 0.018
rs1788826 0.353 100 0.311
rs17066846 0.192 99.7 0.135
rs11873305 0.042 100 1
rs2075650 0.143 99.7 0.833
rs11672660 0.218 100 0.327
rs2836754 0.364 99.1 0.084
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Part A - Panel 3: CARDIA CARe

SNP MAF CR HWE
rs2984618 0.392 98.8 0.871
rs11208659 0.095 100 0.764
rs7553158 0.438 99.9 0.433
rs1780050 0.428 100 0.6
rs347313 0.445 99.9 0.755
rs2819347 0.338 99.9 0.251
rs1561288 0.229 100 0.126
rs12617233 0.407 100 0.873
rs492400 0.414 100 0.711
rs2535633 0.382 99.6 0.744
rs17001561 0.166 100 0.063
rs6453133 0.306 99.8 0.762
rs6235 0.28 99.9 0.308
rs6232 0.055 100 0.02
rs9356744 0.308 97.7 1
rs2272903 0.103 100 0.266
rs9400239 0.306 100 0.809
rs1211166 0.205 100 0.875
rs11191560 0.106 99.9 0.222
rs7903146 0.299 100 0.501
rs2237892 0.078 97.6 1
rs10767664 0.213 99.9 0.759
rs2856650 0.297 99.9 0.538
rs7988412 0.2 99.9 0.936
rs1957894 0.092 100 1
rs997295 0.41 99.9 0.367
rs8056711 0.188 100 0.933
rs4788099 0.357 99.7 0.287
rs749767 0.37 100 0.956
rs1421085 0.405 100 0.012
rs6499653 0.27 97.8 0.018
rs1788826 0.353 100 0.311
rs17066846 0.192 99.7 0.135
rs11873305 0.042 100 1
rs2075650 0.143 99.7 0.833
rs11672660 0.218 100 0.327
rs2836754 0.364 99.1 0.084
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Part A - Panel 4: CHS CARe

SNP MAF CR HWE
rs2984618 0.394 99.7 0.674
rs11208659 0.098 100 0.335
rs7553158 0.44 100 0.684
rs1780050 0.427 100 0.156
rs347313 0.445 100 0.552
rs2819347 0.315 100 0.198
rs1561288 0.219 100 0.786
rs12617233 0.394 100 0.771
rs492400 0.434 100 0.051
rs2535633 0.394 99.5 0.746
rs17001561 0.164 100 0.31
rs6453133 0.304 99.3 0.187
rs6235 0.275 100 0.296
rs6232 0.052 100 0.428
rs9356744 0.323 97.2 0.032
rs2272903 0.109 100 0.342
rs9400239 0.298 100 0.825
rs1211166 0.203 100 0.536
rs11191560 0.103 100 0.559
rs7903146 0.305 100 0.512
rs2237892 0.068 99.4 0.389
rs10767664 0.226 99.9 0.309
rs2856650 0.315 99.8 0.352
rs7988412 0.177 100 0.525
rs1957894 0.088 100 0.848
rs997295 0.428 100 0.9
rs8056711 0.184 100 0.918
rs4788099 0.377 99.9 0.599
rs749767 0.398 100 0.384
rs1421085 0.413 100 0.065
rs6499653 0.259 97.3 0.087
rs1788826 0.355 100 0.266
rs17066846 0.189 99.3 0.39
rs11873305 0.04 100 0.22
rs2075650 0.122 100 0.249
rs11672660 0.213 100 0.712
rs2836754 0.368 99.8 0.921
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Part A - Panel 5: EpiDREAM CARe

SNP MAF CR HWE
rs2984618 0.398 100 0.222
rs11208659 0.098 100 0.812
rs7553158 0.44 100 0.949
rs1780050 0.419 100 0.492
rs347313 0.455 100 0.302
rs2819347 0.33 99.9 0.394
rs1561288 NA NA NA
rs12617233 0.403 100 0.587
rs492400 NA NA NA
rs2535633 0.407 100 0.745
rs17001561 NA NA NA
rs6453133 0.302 100 0.234
rs6235 0.265 100 0.284
rs6232 0.049 100 1
rs9356744 0.331 100 0.795
rs2272903 0.107 100 0.382
rs9400239 0.319 100 0.597
rs1211166 0.193 100 0.347
rs11191560 0.1 100 0.223
rs7903146 0.31 100 0.017
rs2237892 0.073 100 0.087
rs10767664 0.216 99.9 0.241
rs2856650 0.309 100 0.864
rs7988412 NA NA NA
rs1957894 NA NA NA
rs997295 0.409 100 0.352
rs8056711 0.182 99.9 0.361
rs4788099 NA NA NA
rs749767 0.391 100 0.843
rs1421085 0.432 100 0.014
rs6499653 0.26 99.8 0.264
rs1788826 0.349 100 0.102
rs17066846 0.183 99.9 0.575
rs11873305 0.039 100 0.329
rs2075650 0.139 100 0.896
rs11672660 0.209 100 0.681
rs2836754 NA NA NA
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Part A - Panel 6: Framingham CARe

SNP MAF CR HWE
rs2984618 0.399 100 0.096
rs11208659 0.08 100 0.772
rs7553158 0.443 100 0.172
rs1780050 0.413 100 0.434
rs347313 0.454 100 0.799
rs2819347 0.331 100 0.703
rs1561288 0.22 100 0.328
rs12617233 0.399 100 0.793
rs492400 0.378 100 0.72
rs2535633 0.364 100 0.856
rs17001561 0.176 100 0.885
rs6453133 0.286 99.9 0.836
rs6235 0.278 100 1
rs6232 0.051 100 1
rs9356744 0.313 99.2 0.277
rs2272903 0.112 100 0.832
rs9400239 0.328 100 0.392
rs1211166 0.226 100 0.81
rs11191560 0.09 100 0.434
rs7903146 0.319 100 0.846
rs2237892 0.069 100 0.505
rs10767664 0.225 100 1
rs2856650 0.324 100 0.386
rs7988412 0.18 100 0.668
rs1957894 0.085 100 1
rs997295 0.434 100 0.04
rs8056711 0.191 99.8 0.338
rs4788099 0.388 100 0.929
rs749767 0.408 100 0.727
rs1421085 0.434 100 0.346
rs6499653 0.252 100 0.371
rs1788826 0.372 100 0.719
rs17066846 0.188 99.7 0.891
rs11873305 0.042 100 0.616
rs2075650 0.111 100 0.667
rs11672660 0.198 100 0.185
rs2836754 0.379 100 0.421
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Part A - Panel 7: MESA CARe

SNP MAF CR HWE
rs2984618 0.38 99.8 1
rs11208659 0.094 100 0.72
rs7553158 0.448 100 0.367
rs1780050 0.426 100 0.199
rs347313 0.458 100 0.165
rs2819347 0.316 100 0.925
rs1561288 0.217 100 0.72
rs12617233 0.4 100 1
rs492400 0.425 100 0.384
rs2535633 0.396 100 0.082
rs17001561 0.167 100 0.189
rs6453133 0.306 99.8 0.063
rs6235 0.261 100 0.834
rs6232 0.042 100 0.798
rs9356744 0.335 96.9 0.963
rs2272903 0.124 100 0.926
rs9400239 0.29 100 3.67E-03
rs1211166 0.194 100 0.218
rs11191560 0.106 100 0.669
rs7903146 0.296 100 0.355
rs2237892 0.079 99.6 0.889
rs10767664 0.224 99.2 1.88E-03
rs2856650 0.305 99.7 0.114
rs7988412 0.172 99.9 0.522
rs1957894 0.094 100 0.905
rs997295 0.442 99.9 0.118
rs8056711 0.193 100 0.697
rs4788099 0.371 100 0.318
rs749767 0.392 100 0.865
rs1421085 0.417 100 0.134
rs6499653 0.254 99.1 0.668
rs1788826 0.358 100 0.217
rs17066846 0.184 99.5 1
rs11873305 0.041 100 0.186
rs2075650 0.136 100 0.389
rs11672660 0.214 100 0.904
rs2836754 0.38 100 0.112
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Part B - COPDGene

SNP Gene Proxy SNP R2 Chr:Position E/O MA MAF CR HWE
rs2984618 TAL1 rs977747 0.99 1:47684677 T/G T 0.395 99.7 0.76
rs11208659 LEPR NA NA 1:65979280 C/T C 0.095 98.8 0.569
rs7553158 TNNI3K NA NA 1:75005238 G/A G 0.448 100 0.844
rs1780050 NEXN rs11162405 0.99 1:78469660 A/G G 0.41 99.9 0.638
rs347313 NOS1AP rs347306 1 1:162302635 C/T T 0.438 100 0.322
rs2819347 LMOD1 rs2820312 0.94 1:201869257 A/G A 0.318 100 0.525
rs1561288 ADCY3 rs6718083 1 2:25362194 G/A A 0.225 100 0.163
rs12617233 FANCL NA NA 2:59039998 C/T T 0.406 100 0.686
rs492400 USP37 NA NA 2:219349752 C/T C 0.425 99.3 0.894
rs2535633 ITIH4 rs2256332 0.94 3:52855865 A/G A 0.392 100 0.233
rs17001561 SCARB2 NA NA 4:77096118 A/G A 0.165 99.9 0.376
rs6453133 HMGCR NA NA 5:74692776 A/G G 0.295 99.8 0.369
rs6235 PCSK1 rs6234 0.99 5:95728974 C/G C 0.273 99 0.538
rs6232 PCSK1 NA NA 5:95751785 C/T C 0.049 99.8 0.727
rs9356744 CDKAL1 rs9350271 1 6:20683164 G/A NA NA NA NA
rs2272903 TFAP2B NA NA 6:50786571 G/A A 0.105 100 0.729
rs9400239 FOXO3 NA NA 6:108977663 C/T NA NA NA NA
rs1211166 NTRK2 rs1147199 0.97 9:87275895 G/A A 0.197 99.6 0.027
rs11191560 NT5C2 NA NA 10:104869038 C/T C 0.084 100 0.045
rs7903146 TCF7L2 NA NA 10:114758349 C/T T 0.293 99.9 0.273
rs2237892 KCNQ1 NA NA 11:2839751 T/C T 0.066 99.8 0.792
rs10767664 BDNF rs11030104 0.9 11:27684517 A/G G 0.202 100 0.451
rs2856650 SPI1 rs11570094 0.97 11:47359706 A/C A 0.293 99.8 0.256
rs7988412 MTIF3 rs10220056 0.92 13:28003781 G/T NA NA NA NA
rs1957894 PRKCH rs1957895 0.97 14:61908332 G/T G 0.088 99.8 0.687
rs997295 MAP2K5 NA NA 15:68016343 T/G G 0.4 99.7 0.839
rs8056711 IQCK rs950928 1 16:19824638 T/C C 0.176 99.9 0.955
rs4788099 SH2B1 NA NA 16:28855727 G/A G 0.386 100 0.81
rs749767 KAT8 rs9925964 0.95 16:31129895 A/G NA NA NA NA
rs1421085 FTO NA NA 16:53800954 C/T C 0.414 99.9 0.547
rs6499653 FTO NA NA 16:53877592 T/C T 0.257 98.5 0.113
rs1788826 NPC1 rs1429934 0.95 18:21162288 C/T C 0.346 99.7 0.078
rs17066846 MC4R rs17773774 0.94 18:58060126 A/C A 0.196 99.9 0.027
rs11873305 MC4R NA NA 18:58049192 A/C C 0.037 100 0.174
rs2075650 TOMM40 NA NA 19:45395619 A/G G 0.133 100 0.833
rs11672660 GIPR NA NA 19:46180184 C/T T 0.206 100 0.655
rs2836754 ETS2 NA NA 21:40291740 C/T T 0.375 100 0.225
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Table A4: Height-associated SNP information. (A) Detailed information on the height-
associated SNPs from CARe studies including, effect alleles / other alleles (E/O), minor
alleles (MA), minor allele frequency (MAF), call rate (CR) and Hardy-Weinberg Fisher’s
Exact p-value (HWE). Where Proxy SNP is indicated, the R2 correlation to the original
SNP is presented and all remaining details pertain to the proxy SNP. E/O for proxies were
determined from phasing with the original SNP. (B) Same as (A) except for non-CARe
studies.

Part A - Panel 1: QC of Height SNPs in CARe Studies
SNP Gene Proxy SNP R2 Chr:Position E/O MA

rs451061 PRKCZ NA NA 1:2075068 C/G C
rs212517 ECE1 NA NA 1:21577159 A/T T
rs1738475 HTR1D NA NA 1:23536891 C/G G
rs2229712 RPS6KA1 NA NA 1:26883511 A/C NA
rs17106235 FAF1 NA NA 1:50943370 G/C G
rs551219 COL24A1 NA NA 1:86519721 T/C T

rs12145922 PKN2 NA NA 1:89146234 A/C C
rs660240 PSRC1 rs602633 0.94 1:109821511 T/G T
rs7522692 PIGC NA NA 1:172436835 G/A G
rs1342586 TGFB2 NA NA 1:218597859 T/C T
rs10185680 MFSD2B NA NA 2:24275306 G/A A
rs1866146 POMC NA NA 2:25380573 G/A G
rs780094 GCKR NA NA 2:27741237 C/T T
rs7557989 THADA NA NA 2:43630657 T/C T
rs1822469 PPP3R1 NA NA 2:68454685 C/T T
rs6731022 EIF2AK3 NA NA 2:88917035 C/G C
rs3821009 PDE11A NA NA 2:178682471 T/C T
rs6718902 STAT1 NA NA 2:191838204 T/C T
rs6758561 NOP58 rs2176167 0.98 2:203100918 C/T C
rs526134 USP37 NA NA 2:219402371 A/G G

rs10208728 IHH NA NA 2:219917303 A/G G
rs3100776 IHH NA NA 2:219921200 C/T C
rs4973410 NCL NA NA 2:232331734 C/T T
rs2679178 NPPC NA NA 2:232797861 C/T T
rs7578199 HDLBP NA NA 2:242192848 T/C C
rs7572476 BOK NA NA 2:242496325 C/T T
rs2450855 MKRN2 rs2633442 0.91 3:12609937 G/A A
rs9857730 VILL NA NA 3:38051941 C/T C
rs3915129 CTNNB1 rs13076290 0.99 3:41260369 T/C T
rs490634 CISH NA NA 3:50640830 C/T NA

rs13072536 ITIH4 NA NA 3:52861211 A/T T
rs4955526 EPHB1 NA NA 3:134317337 C/T T
rs9844666 PCCB NA NA 3:135974216 G/A A
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rs572169 GHSR NA NA 3:172165727 T/C T
rs17754 RFC1 NA NA 4:39289308 C/G G

rs17472113 ZAR1 NA NA 4:48495662 A/T NA
rs4864548 CLOCK NA NA 4:56413803 A/G A
rs3796529 REST NA NA 4:57797414 T/C T
rs12503378 NUDT6 NA NA 4:123810734 C/G G
rs17541471 NPR3 NA NA 5:32755589 C/T C

rs6180 GHR NA NA 5:42719239 A/C C
rs832575 MAP3K1 NA NA 5:56161787 A/G G
rs41132 AP3B1 NA NA 5:77408842 A/C C

rs2247870 GPR98 NA NA 5:90151589 A/G G
rs17085675 PCSK1 NA NA 5:95727664 T/A T
rs17622208 SLC22A5 NA NA 5:131717050 A/G A
rs9366637 HFE NA NA 6:26089098 C/T T
rs2853977 HCP5 NA NA 6:31379304 A/T A
rs2229642 ITPR3 NA NA 6:33659472 G/C NA
rs1776897 HMGA1 NA NA 6:34195011 G/T G
rs4946932 FOXO3 NA NA 6:108974746 C/A A
rs1476387 PPIL6 NA NA 6:109764535 G/T T
rs7756224 NMBR NA NA 6:142406840 C/T T
rs2234693 ESR1 NA NA 6:152163335 C/T C
rs2982712 ESR1 NA NA 6:152358179 C/T C
rs1074287 OPRM1 rs510769 0.97 6:154362019 T/C T
rs1636255 GNA12 NA NA 7:2892804 C/A A
rs864745 JAZF1 NA NA 7:28180556 T/C C
rs3812265 CNOT4 NA NA 7:135048804 T/C T
rs1800783 NOS3 NA NA 7:150689397 T/A A
rs6999671 RPS20 rs7004280 0.9 8:56894350 C/G C
rs2145923 NPR2 NA NA 9:35788239 C/T C
rs3814115 PCSK5 NA NA 9:78504729 C/T C
rs7853859 CENPP NA NA 9:95151377 T/C C
rs3739707 LPAR1 NA NA 9:113792706 C/A A
rs7020782 PAPPA NA NA 9:119106881 A/C C
rs803932 ASTN2 NA NA 9:119458020 C/T C

rs11102986 RXRA NA NA 9:137285503 G/A A
rs291979 GRK5 NA NA 10:121129797 A/G A
rs2735469 MRPL23 NA NA 11:2022804 A/G A
rs4320932 IGF2 NA NA 11:2171601 T/C C
rs900147 ARNTL rs1481892 0.98 11:13301921 G/C G
rs948847 APLNR rs10736682 0.91 11:57008536 G/A G
rs174547 FADS1 rs1535 0.97 11:61597972 A/G G
rs3736228 LRP5 NA NA 11:68201295 C/T T
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rs7396866 NEU3 rs12225387 0.9 11:74604767 G/A G
rs674424 ABCG4 NA NA 11:119030752 T/C T
rs2282537 POU2F3 NA NA 11:120187971 G/A A
rs6487088 PDE3A NA NA 12:20588382 T/C C
rs7137534 PDE3A NA NA 12:20831777 T/C T
rs2066807 PAN2 NA NA 12:56740682 G/C G
rs2291617 METTL1 NA NA 12:58166403 T/G G
rs1042725 HMGA2 NA NA 12:66358347 C/T T
rs3782415 SOCS2 NA NA 12:93967755 C/T C

rs6219 IGF1 NA NA 12:102790192 T/C T
rs10861148 HSP90B1 NA NA 12:104340080 A/C A
rs907482 KNTC1 rs7963565 0.94 12:122703014 T/C T
rs1051431 MPHOSPH9 NA NA 12:123645803 G/A G
rs1950500 NFATC4 NA NA 14:24830850 T/C T

rs696 NFKBIA NA NA 14:35871093 C/T T
rs709939 SAMD4A NA NA 14:55249345 T/C C
rs3783937 FBLN5 NA NA 14:92407693 C/T T
rs1036477 FBN1 NA NA 15:48914926 A/G G
rs12050767 CYP19A1 NA NA 15:51557257 C/T C
rs7163907 PTPN9 NA NA 15:75845097 C/T C
rs17599989 SEC11A rs1051168 0.91 15:85200520 T/G T
rs1516796 ACAN NA NA 15:89353798 A/C A
rs8033670 IGF1R rs8038415 0.96 15:99499434 C/T C
rs5015437 LMF1 NA NA 16:987371 A/G A
rs258281 RAB26 NA NA 16:2191734 G/A A
rs2023693 ERI2 rs9930741 0.99 16:20695486 T/C C
rs8055190 LRRC36 NA NA 16:67391618 C/T T
rs7359336 NFAT5 NA NA 16:69733460 G/A G
rs8071847 POLR2A NA NA 17:7407327 G/A G
rs2909430 TP53 NA NA 17:7578645 T/C C
rs11080149 NF1 NA NA 17:29623288 T/C T
rs2715553 RARA NA NA 17:38496320 A/G G
rs752313 EZH1 NA NA 17:40901824 C/T T

rs12603813 PLCD3 NA NA 17:43196584 T/C C
rs12603582 ITGB3 NA NA 17:45377577 G/T T

rs46522 UBE2Z NA NA 17:46988597 C/T C
rs9892365 TBX2 NA NA 17:59491384 A/G A
rs12940055 MAP3K3 NA NA 17:61722142 C/T T
rs2854207 CSH2 NA NA 17:61947107 G/C G
rs2053156 GRB2 NA NA 17:73378440 T/G G
rs25656 NFATC1 NA NA 18:77227476 A/G NA
rs891088 INSR NA NA 19:7184762 G/A G
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rs4808199 GATAD2A NA NA 19:19545099 G/A A
rs4803520 GRIK5 NA NA 19:42500373 G/A A
rs2682552 XRCC1 NA NA 19:44069741 A/T A
rs158676 CDK5RAP1 NA NA 20:31974395 A/G G
rs2425019 MMP24 NA NA 20:33819415 G/A G
rs1780616 LBP NA NA 20:36972942 C/T T
rs11086538 MC3R rs6127698 0.95 20:54823416 G/T T
rs2057291 GNAS NA NA 20:57472043 A/G A

Part A - Panel 2: ARIC CARe

SNP MAF CR HWE
rs451061 0.385 100 0.377
rs212517 0.402 99.9 0.351
rs1738475 0.412 100 0.622
rs2229712 NA NA NA
rs17106235 0.093 99.3 0.174
rs551219 0.293 98.1 5.76E-04

rs12145922 0.43 98.3 0.346
rs660240 0.219 99.9 1
rs7522692 0.216 99.9 0.597
rs1342586 0.217 99.9 0.953
rs10185680 0.465 99.4 0.547
rs1866146 0.339 99.9 0.578
rs780094 0.4 100 0.3
rs7557989 0.33 100 0.115
rs1822469 0.4 99.8 0.081
rs6731022 0.343 100 0.233
rs3821009 0.08 99.8 0.685
rs6718902 0.244 100 0.117
rs6758561 0.348 100 0.228
rs526134 0.427 100 0.173

rs10208728 0.101 100 0.35
rs3100776 0.042 99.8 1
rs4973410 0.47 99.9 0.646
rs2679178 0.082 100 0.693
rs7578199 0.242 100 0.175
rs7572476 0.456 100 0.779
rs2450855 0.437 100 0.642
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rs9857730 0.212 99.5 0.742
rs3915129 0.452 98.8 0.258
rs490634 NA NA NA

rs13072536 0.233 99.9 0.759
rs4955526 0.354 100 0.811
rs9844666 0.238 99.8 0.891
rs572169 0.312 99.9 1
rs17754 0.429 100 0.382

rs17472113 NA NA NA
rs4864548 0.364 100 0.683
rs3796529 0.195 98.2 0.823
rs12503378 0.168 100 0.212
rs17541471 0.196 100 0.393

rs6180 0.464 100 0.459
rs832575 0.119 99.8 0.037
rs41132 0.241 99.3 0.623

rs2247870 0.458 100 0.378
rs17085675 0.29 100 0.79
rs17622208 0.462 100 0.888
rs9366637 0.064 100 0.507
rs2853977 0.454 99.8 0.047
rs2229642 NA NA NA
rs1776897 0.085 100 0.18
rs4946932 0.305 100 0.1
rs1476387 0.417 100 0.566
rs7756224 0.426 100 0.166
rs2234693 0.456 100 0.092
rs2982712 0.434 100 0.037
rs1074287 0.26 100 0.127
rs1636255 0.289 99.8 1
rs864745 0.499 100 0.349
rs3812265 0.248 100 0.04
rs1800783 0.379 100 0.409
rs6999671 0.034 100 0.049
rs2145923 0.178 100 0.76
rs3814115 0.317 100 0.301
rs7853859 0.371 99.4 0.638
rs3739707 0.247 100 0.284
rs7020782 0.303 100 0.724
rs803932 0.333 99.3 0.15

rs11102986 0.178 99.7 0.919
rs291979 0.229 100 0.978
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rs2735469 0.156 100 0.162
rs4320932 0.2 99.6 0.366
rs900147 0.292 99.9 0.289
rs948847 0.432 100 6.08E-04
rs174547 0.334 100 0.42
rs3736228 0.147 99.6 0.131
rs7396866 0.281 100 0.961
rs674424 0.256 100 1
rs2282537 0.141 100 0.15
rs6487088 0.196 100 0.507
rs7137534 0.328 100 0.223
rs2066807 0.067 99.8 0.751
rs2291617 0.335 97.7 0.542
rs1042725 0.492 100 0.437
rs3782415 0.203 100 0.622

rs6219 0.101 100 0.87
rs10861148 0.105 99.9 0.312
rs907482 0.343 100 0.691
rs1051431 0.216 100 0.207
rs1950500 0.293 100 0.414

rs696 0.372 99.5 0.624
rs709939 0.443 100 0.84
rs3783937 0.239 100 0.477
rs1036477 0.105 100 0.09
rs12050767 0.44 100 0.984
rs7163907 0.242 98.8 0.785
rs17599989 0.273 99.9 0.209
rs1516796 0.48 100 0.106
rs8033670 0.498 99.9 0.705
rs5015437 0.382 98.4 0.718
rs258281 0.183 99.8 0.594
rs2023693 0.412 99.3 0.55
rs8055190 0.044 100 0.474
rs7359336 0.425 100 0.555
rs8071847 0.213 100 0.423
rs2909430 0.131 99.4 0.19
rs11080149 0.132 100 0.761
rs2715553 0.445 100 0.242
rs752313 0.479 100 0.14

rs12603813 0.247 98.8 0.346
rs12603582 0.223 99.9 0.841

rs46522 0.466 99.4 0.065
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rs9892365 0.33 100 0.544
rs12940055 0.113 100 0.082
rs2854207 0.273 100 0.16
rs2053156 0.171 99.9 9.22E-03
rs25656 NA NA NA
rs891088 0.262 100 0.625
rs4808199 0.183 100 0.258
rs4803520 0.116 100 0.559
rs2682552 0.19 100 0.155
rs158676 0.313 100 0.594
rs2425019 0.463 100 0.873
rs1780616 0.343 100 0.27
rs11086538 0.492 99.7 0.216
rs2057291 0.336 100 0.894

Part A - Panel 3: CARDIA CARe

SNP MAF CR HWE
rs451061 0.391 100 0.106
rs212517 0.397 99.9 0.788
rs1738475 0.426 100 0.752
rs2229712 NA NA NA
rs17106235 0.108 98.7 0.789
rs551219 0.29 98.8 0.66

rs12145922 0.412 97.6 0.334
rs660240 0.227 99.8 0.341
rs7522692 0.205 99.9 0.156
rs1342586 0.219 99.8 1
rs10185680 0.442 98.5 0.227
rs1866146 0.349 100 0.611
rs780094 0.403 99.6 0.218
rs7557989 0.343 100 0.531
rs1822469 0.4 99.9 0.362
rs6731022 0.33 99.9 0.352
rs3821009 0.073 99.9 0.701
rs6718902 0.246 100 1
rs6758561 0.347 100 0.461
rs526134 0.414 100 0.711

rs10208728 0.101 99.9 0.015
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rs3100776 0.039 97.5 0.021
rs4973410 0.469 99.9 0.034
rs2679178 0.087 100 0.254
rs7578199 0.251 100 0.452
rs7572476 0.452 100 0.049
rs2450855 0.418 99.9 0.751
rs9857730 0.2 99.6 0.421
rs3915129 0.437 96.6 0.202
rs490634 0.132 99.4 0.262

rs13072536 0.239 99.9 0.832
rs4955526 0.35 100 0.337
rs9844666 0.241 99.1 0.138
rs572169 0.287 99.9 0.802
rs17754 0.448 99.9 0.35

rs17472113 0.195 86 0.659
rs4864548 0.379 100 1
rs3796529 0.182 98.2 0.163
rs12503378 0.171 100 0.928
rs17541471 0.201 100 0.936

rs6180 0.451 99.9 0.835
rs832575 0.125 99.9 1
rs41132 0.242 99.6 0.779

rs2247870 0.446 100 0.835
rs17085675 0.297 99.9 0.296
rs17622208 0.472 99.7 0.679
rs9366637 0.063 99.7 0.829
rs2853977 0.424 99.7 0.833
rs2229642 NA 0 1
rs1776897 0.097 99.2 0.46
rs4946932 0.306 100 0.809
rs1476387 0.433 100 0.753
rs7756224 0.42 100 0.246
rs2234693 0.467 100 0.109
rs2982712 0.428 100 0.528
rs1074287 0.246 100 0.406
rs1636255 0.285 100 0.45
rs864745 0.495 100 0.472
rs3812265 0.239 100 0.525
rs1800783 0.369 99.9 1
rs6999671 0.036 100 0.719
rs2145923 0.189 100 0.867
rs3814115 0.331 100 0.523
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rs7853859 0.377 99.3 0.51
rs3739707 0.254 100 0.309
rs7020782 0.299 99.9 0.806
rs803932 0.308 99.1 0.364

rs11102986 0.191 99.1 0.055
rs291979 0.211 100 0.644
rs2735469 0.161 100 0.634
rs4320932 0.21 95 0.874
rs900147 0.295 100 1
rs948847 0.422 100 0.792
rs174547 0.319 99.9 0.315
rs3736228 0.135 99.7 0.66
rs7396866 0.27 100 0.031
rs674424 0.251 100 0.413
rs2282537 0.143 100 0.296
rs6487088 0.189 100 0.315
rs7137534 0.311 100 0.904
rs2066807 0.06 99.7 0.111
rs2291617 0.339 96.7 0.382
rs1042725 0.495 100 0.644
rs3782415 0.196 100 0.253

rs6219 0.099 99.9 1
rs10861148 0.112 99.9 0.897
rs907482 0.336 100 0.454
rs1051431 0.228 100 0.381
rs1950500 0.277 99.8 0.653

rs696 0.374 99.8 0.442
rs709939 0.482 100 1
rs3783937 0.254 100 0.839
rs1036477 0.112 100 0.699
rs12050767 0.449 100 0.64
rs7163907 0.246 96.6 0.888
rs17599989 0.26 99.9 0.23
rs1516796 0.482 100 0.837
rs8033670 0.484 100 0.757
rs5015437 0.385 98.2 1
rs258281 0.181 99.7 0.862
rs2023693 0.436 99.1 0.529
rs8055190 0.043 100 5.66E-03
rs7359336 0.419 99.9 0.874
rs8071847 0.219 100 0.822
rs2909430 0.125 97.8 0.189
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rs11080149 0.125 100 0.814
rs2715553 0.454 100 0.12
rs752313 0.488 100 0.607

rs12603813 0.235 99.7 1
rs12603582 0.228 100 0.011

rs46522 0.499 94.2 0.072
rs9892365 0.325 100 0.953
rs12940055 0.1 100 0.474
rs2854207 0.293 99.7 8.97E-03
rs2053156 0.194 99.9 0.138
rs25656 NA NA NA
rs891088 0.262 100 0.073
rs4808199 0.168 100 0.067
rs4803520 0.121 100 0.228
rs2682552 0.198 100 0.935
rs158676 0.338 100 1
rs2425019 0.441 99.9 0.23
rs1780616 0.355 100 0.955
rs11086538 0.476 99.8 0.502
rs2057291 0.345 100 0.955

Part A - Panel 4: CHS CARe

SNP MAF CR HWE

rs451061 0.373 100 1

rs212517 0.412 99.8 0.252

rs1738475 0.414 99.9 0.427

rs2229712 NA NA NA

rs17106235 0.102 99 0.126

rs551219 0.278 98.7 0.877

rs12145922 0.427 96.2 0.034

rs660240 0.21 99.7 0.429

rs7522692 0.203 99.8 0.418
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rs1342586 0.218 99.9 0.821

rs10185680 0.475 99.2 0.78

rs1866146 0.329 99.6 0.442

rs780094 0.42 99.9 0.825

rs7557989 0.33 100 0.531

rs1822469 0.404 99.7 0.387

rs6731022 0.328 99.9 0.133

rs3821009 0.081 99.9 0.214

rs6718902 0.251 100 0.049

rs6758561 0.356 100 0.662

rs526134 0.434 100 0.041

rs10208728 0.103 99.9 0.803

rs3100776 0.037 99.5 0.661

rs4973410 0.474 100 0.017

rs2679178 0.09 100 0.509

rs7578199 0.248 100 0.934

rs7572476 0.462 100 0.926

rs2450855 0.427 100 0.469

rs9857730 0.21 100 0.609

rs3915129 0.438 98.1 0.975

rs490634 0.116 98.6 1

rs13072536 0.236 99.4 0.764

rs4955526 0.357 100 0.867

rs9844666 0.23 99.6 0.24
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rs572169 0.305 100 0.586

rs17754 0.443 100 0.876

rs17472113 0.207 88.2 9.21E-05

rs4864548 0.366 100 0.666

rs3796529 0.186 97.1 0.098

rs12503378 0.174 100 0.519

rs17541471 0.198 100 0.012

rs6180 0.462 100 0.369

rs832575 0.129 100 1

rs41132 0.236 99.3 0.898

rs2247870 0.476 100 0.805

rs17085675 0.291 100 0.126

rs17622208 0.467 99.6 0.226

rs9366637 0.069 99.9 0.185

rs2853977 0.42 99.9 5.84E-05

rs2229642 NA 0 1

rs1776897 0.093 99.7 0.36

rs4946932 0.298 100 0.796

rs1476387 0.429 100 0.208

rs7756224 0.428 100 0.22

rs2234693 0.458 100 0.71

rs2982712 0.415 100 0.172

rs1074287 0.248 100 0.967

rs1636255 0.287 99.9 0.547
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rs864745 0.496 99.9 0.926

rs3812265 0.246 100 0.051

rs1800783 0.39 98 0.432

rs6999671 0.036 100 0.27

rs2145923 0.19 100 0.134

rs3814115 0.336 100 0.836

rs7853859 0.388 99.3 0.871

rs3739707 0.257 100 0.628

rs7020782 0.302 100 0.144

rs803932 0.333 97.8 0.551

rs11102986 0.185 99.3 0.041

rs291979 0.239 100 0.641

rs2735469 0.157 99.6 0.77

rs4320932 0.212 98.8 0.61

rs900147 0.292 100 0.823

rs948847 0.418 100 0.975

rs174547 0.325 100 0.276

rs3736228 0.141 99.9 0.408

rs7396866 0.286 100 0.029

rs674424 0.249 100 0.174

rs2282537 0.143 100 0.38

rs6487088 0.204 100 0.184

rs7137534 0.314 100 0.198

rs2066807 0.061 99.6 1
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rs2291617 0.312 99.6 0.943

rs1042725 0.476 100 0.194

rs3782415 0.204 100 0.506

rs6219 0.104 100 0.62

rs10861148 0.117 100 0.551

rs907482 0.336 100 0.604

rs1051431 0.226 99.8 0.454

rs1950500 0.277 99.9 0.281

rs696 0.38 99.4 0.768

rs709939 0.443 100 0.779

rs3783937 0.262 100 0.402

rs1036477 0.111 100 0.815

rs12050767 0.446 100 0.803

rs7163907 0.27 98.6 0.107

rs17599989 0.261 100 0.472

rs1516796 0.468 100 0.337

rs8033670 0.498 100 0.498

rs5015437 0.373 99.4 0.741

rs258281 0.198 99.8 0.12

rs2023693 0.419 99.5 0.241

rs8055190 0.048 100 0.178

rs7359336 0.416 99.9 0.657

rs8071847 0.21 100 0.745

rs2909430 0.137 99.1 0.896
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rs11080149 0.121 100 0.31

rs2715553 0.451 100 0.152

rs752313 0.491 100 0.805

rs12603813 0.248 99.8 0.773

rs12603582 0.215 99.9 0.235

rs46522 0.476 98.6 0.455

rs9892365 0.331 100 0.676

rs12940055 0.124 100 0.832

rs2854207 0.274 100 0.907

rs2053156 0.195 99.9 0.018

rs25656 NA NA NA

rs891088 0.26 100 0.016

rs4808199 0.172 100 0.871

rs4803520 0.124 100 0.943

rs2682552 0.194 100 0.623

rs158676 0.308 100 0.587

rs2425019 0.461 99.9 0.264

rs1780616 0.355 99.9 0.788

rs11086538 0.474 99.9 0.951

rs2057291 0.342 100 0.811
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SNP MAF CR HWE
rs451061 0.384 100 0.192
rs212517 0.408 99.9 0.88
rs1738475 NA NA NA
rs2229712 NA NA NA
rs17106235 NA NA NA
rs551219 0.292 97.8 0.026

rs12145922 0.417 99.6 0.401
rs660240 NA NA NA
rs7522692 NA NA NA
rs1342586 0.229 99.9 0.459
rs10185680 0.454 97.8 0.418
rs1866146 0.349 100 0.322
rs780094 0.415 100 0.667
rs7557989 NA NA NA
rs1822469 0.416 99.7 0.203
rs6731022 0.318 99.9 0.682
rs3821009 0.086 100 0.083
rs6718902 0.244 99.9 0.977
rs6758561 0.339 99.4 0.574
rs526134 NA NA NA

rs10208728 NA NA NA
rs3100776 NA NA NA
rs4973410 NA NA NA
rs2679178 0.087 100 0.646
rs7578199 0.255 100 0.458
rs7572476 0.469 100 0.231
rs2450855 NA NA NA
rs9857730 0.208 98.4 8.74E-03
rs3915129 0.449 98.3 0.101
rs490634 0.13 99.6 0.816

rs13072536 0.254 99.8 0.082
rs4955526 NA NA NA
rs9844666 0.244 100 0.887
rs572169 0.293 100 0.143
rs17754 0.426 99.9 0.305

rs17472113 0.263 99 0.356
rs4864548 0.368 100 0.088
rs3796529 0.191 99.7 0.378
rs12503378 0.171 100 0.172
rs17541471 0.193 100 1

rs6180 0.457 99.9 0.689
Continued on next page
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rs832575 0.128 100 0.348
rs41132 0.236 99.9 0.908

rs2247870 0.456 100 0.146
rs17085675 0.28 100 0.392
rs17622208 0.462 100 0.366
rs9366637 0.067 100 0.315
rs2853977 0.402 100 0.048
rs2229642 0.48 95.5 0.019
rs1776897 NA NA NA
rs4946932 0.319 100 0.597
rs1476387 0.416 100 0.426
rs7756224 NA NA NA
rs2234693 0.46 100 0.933
rs2982712 0.422 100 0.48
rs1074287 NA NA NA
rs1636255 NA NA NA
rs864745 NA NA NA
rs3812265 0.241 100 0.841
rs1800783 0.386 99.9 0.643
rs6999671 NA NA NA
rs2145923 0.174 100 2.74E-05
rs3814115 0.325 100 0.886
rs7853859 0.369 99.9 0.637
rs3739707 0.26 100 0.957
rs7020782 0.303 100 0.729
rs803932 NA NA NA

rs11102986 0.181 99.3 0.75
rs291979 0.22 100 0.903
rs2735469 0.162 100 0.644
rs4320932 0.202 100 0.184
rs900147 0.298 100 9.30E-03
rs948847 0.413 99.9 0.504
rs174547 0.333 99.9 0.073
rs3736228 0.13 99.9 0.488
rs7396866 NA NA NA
rs674424 0.263 100 0.808
rs2282537 NA NA NA
rs6487088 0.197 100 0.197
rs7137534 0.323 100 0.261
rs2066807 0.067 99.8 0.314
rs2291617 0.316 98.5 0.942
rs1042725 0.487 100 0.818
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rs3782415 0.214 100 0.153
rs6219 0.096 100 0.336

rs10861148 0.11 100 0.79
rs907482 0.331 100 0.741
rs1051431 0.22 100 0.738
rs1950500 NA NA NA

rs696 0.387 99.7 0.612
rs709939 0.472 100 0.785
rs3783937 0.24 100 1
rs1036477 0.11 100 0.748
rs12050767 0.444 100 0.597
rs7163907 0.253 100 0.782
rs17599989 NA NA NA
rs1516796 0.48 100 0.706
rs8033670 0.485 100 0.933
rs5015437 NA NA NA
rs258281 0.182 98.5 0.916
rs2023693 0.419 96.6 0.407
rs8055190 NA NA NA
rs7359336 0.42 100 0.035
rs8071847 0.207 100 0.022
rs2909430 0.138 100 0.174
rs11080149 0.119 100 0.842
rs2715553 0.455 99.8 0.752
rs752313 0.495 100 0.268

rs12603813 0.252 100 0.471
rs12603582 0.22 100 0.903

rs46522 NA NA NA
rs9892365 0.33 100 0.018
rs12940055 0.12 100 0.692
rs2854207 0.275 100 0.753
rs2053156 0.184 100 0.095
rs25656 NA NA NA
rs891088 0.262 100 0.978
rs4808199 NA NA NA
rs4803520 0.116 99.7 1
rs2682552 0.184 100 0.25
rs158676 0.323 100 0.038
rs2425019 0.474 100 0.295
rs1780616 0.355 100 0.891
rs11086538 0.485 99.8 9.41E-03
rs2057291 0.328 99.9 0.776
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Part A - Panel 6: Framingham CARe

SNP MAF CR HWE
rs451061 0.358 100 1
rs212517 0.386 100 1
rs1738475 0.412 100 1
rs2229712 NA NA NA
rs17106235 0.102 99.8 0.495
rs551219 0.276 99 0.915

rs12145922 0.448 99.1 0.798
rs660240 0.226 99.8 0.47
rs7522692 0.195 100 0.348
rs1342586 0.189 100 0.129
rs10185680 0.464 99.5 0.235
rs1866146 0.316 99.2 0.625
rs780094 0.427 100 0.731
rs7557989 0.32 100 0.699
rs1822469 0.407 100 0.257
rs6731022 0.302 100 0.549
rs3821009 0.068 100 0.738
rs6718902 0.23 100 0.475
rs6758561 0.356 100 0.714
rs526134 0.378 100 0.72

rs10208728 0.102 100 0.643
rs3100776 0.038 100 0.565
rs4973410 0.481 99.8 0.354
rs2679178 0.093 100 0.614
rs7578199 0.235 100 0.725
rs7572476 0.457 100 0.308
rs2450855 0.437 100 0.392
rs9857730 0.224 99.9 0.04
rs3915129 0.448 100 0.932
rs490634 0.13 98.6 0.344

rs13072536 0.22 99.9 0.269
rs4955526 0.361 100 0.171
rs9844666 0.244 99.9 0.306
rs572169 0.297 99.9 0.02
rs17754 0.45 100 0.552

rs17472113 0.265 98.7 1
rs4864548 0.342 100 0.049
rs3796529 0.188 99.3 0.403
rs12503378 0.177 100 0.385
rs17541471 0.217 100 0.457

rs6180 0.456 99.9 0.31
Continued on next page
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rs832575 0.14 99.9 0.727
rs41132 0.227 99.6 1

rs2247870 0.463 100 0.866
rs17085675 0.288 100 0.681
rs17622208 0.495 100 0.354
rs9366637 0.068 100 0.738
rs2853977 0.442 100 3.69E-03
rs2229642 NA 0 1
rs1776897 0.089 99.9 0.606
rs4946932 0.328 100 0.392
rs1476387 0.41 99.9 0.434
rs7756224 0.438 100 0.266
rs2234693 0.464 100 0.799
rs2982712 0.426 100 0.932
rs1074287 0.225 100 0.118
rs1636255 0.296 99.8 0.686
rs864745 0.478 100 0.129
rs3812265 0.229 100 0.031
rs1800783 0.398 100 0.482
rs6999671 0.03 100 1
rs2145923 0.194 100 0.179
rs3814115 0.295 100 0.42
rs7853859 0.388 99.9 0.214
rs3739707 0.262 100 0.128
rs7020782 0.296 100 0.92
rs803932 0.348 97.3 0.302

rs11102986 0.205 100 0.796
rs291979 0.246 100 1
rs2735469 0.167 100 1
rs4320932 0.209 100 0.799
rs900147 0.291 100 0.262
rs948847 0.408 100 0.663
rs174547 0.344 100 0.455
rs3736228 0.147 100 1
rs7396866 0.277 100 0.295
rs674424 0.252 100 0.502
rs2282537 0.139 100 1
rs6487088 0.211 100 0.011
rs7137534 0.308 100 0.114
rs2066807 0.066 99.9 1.69E-03
rs2291617 0.324 99.3 0.382
rs1042725 0.47 100 0.076
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rs3782415 0.188 100 1
rs6219 0.085 100 0.278

rs10861148 0.106 100 0.662
rs907482 0.334 100 1
rs1051431 0.229 100 0.721
rs1950500 0.291 100 0.152

rs696 0.398 99.8 0.726
rs709939 0.428 100 0.731
rs3783937 0.234 100 0.814
rs1036477 0.118 100 0.415
rs12050767 0.424 99.9 0.301
rs7163907 0.241 99.1 0.489
rs17599989 0.272 99.9 0.033
rs1516796 0.464 99.9 0.672
rs8033670 0.488 98 0.932
rs5015437 0.338 99.6 0.22
rs258281 0.173 100 1
rs2023693 0.456 100 0.397
rs8055190 0.053 100 1
rs7359336 0.4 99.9 0.792
rs8071847 0.226 100 0.335
rs2909430 0.13 99.9 0.024
rs11080149 0.111 100 0.524
rs2715553 0.442 100 0.201
rs752313 0.477 100 0.866

rs12603813 0.239 95.1 0.057
rs12603582 0.252 99.8 0.911

rs46522 0.457 100 0.932
rs9892365 0.331 100 0.341
rs12940055 0.134 100 1
rs2854207 0.273 100 0.29
rs2053156 0.198 100 0.791
rs25656 NA NA NA
rs891088 0.289 100 0.307
rs4808199 0.163 100 0.537
rs4803520 0.114 100 1
rs2682552 0.207 100 0.442
rs158676 0.338 100 0.707
rs2425019 0.426 100 0.121
rs1780616 0.37 100 0.471
rs11086538 0.464 99.9 0.352
rs2057291 0.342 100 0.709
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SNP MAF CR HWE
rs451061 0.373 100 0.436
rs212517 0.415 100 0.113
rs1738475 0.439 100 0.249
rs2229712 NA NA NA
rs17106235 0.104 99.9 0.512
rs551219 0.292 99.4 0.589

rs12145922 0.422 99.6 0.261
rs660240 0.204 99.8 0.416
rs7522692 0.19 100 0.742
rs1342586 0.223 99.9 0.907
rs10185680 0.456 99.7 0.252
rs1866146 0.334 99.8 0.964
rs780094 0.424 99.8 0.967
rs7557989 0.325 100 0.309
rs1822469 0.416 100 0.113
rs6731022 0.321 100 0.403
rs3821009 0.083 100 0.284
rs6718902 0.247 100 0.05
rs6758561 0.351 100 0.563
rs526134 0.425 100 0.384

rs10208728 0.098 100 1
rs3100776 0.031 99.7 1
rs4973410 0.493 100 0.57
rs2679178 0.1 100 0.501
rs7578199 0.259 100 0.399
rs7572476 0.472 100 0.329
rs2450855 0.428 100 0.482
rs9857730 0.2 99.8 0.31
rs3915129 0.44 99.6 0.773
rs490634 0.12 99.5 0.924

rs13072536 0.251 100 0.281
rs4955526 0.373 100 0.762
rs9844666 0.244 99.9 0.226
rs572169 0.283 100 3.21E-03
rs17754 0.433 100 0.71

rs17472113 0.238 95.2 0.059
rs4864548 0.371 100 0.224
rs3796529 0.192 97.1 0.098
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rs12503378 0.177 100 0.835
rs17541471 0.209 100 0.22

rs6180 0.467 99.9 0.807
rs832575 0.126 99.9 0.408
rs41132 0.222 99.8 0.379

rs2247870 0.462 100 0.684
rs17085675 0.276 100 0.723
rs17622208 0.472 99.9 0.569
rs9366637 0.06 99.9 0.371
rs2853977 0.406 99.7 7.05E-03
rs2229642 NA NA NA
rs1776897 0.088 99.8 0.705
rs4946932 0.29 100 3.67E-03
rs1476387 0.425 100 0.804
rs7756224 0.418 100 0.505
rs2234693 0.47 100 0.44
rs2982712 0.402 100 0.833
rs1074287 0.251 100 0.161
rs1636255 0.274 99.4 0.168
rs864745 0.48 100 0.019
rs3812265 0.236 100 0.736
rs1800783 0.38 100 0.699
rs6999671 0.034 100 0.759
rs2145923 0.192 100 0.434
rs3814115 0.319 100 0.889
rs7853859 0.396 99.8 0.498
rs3739707 0.264 100 0.322
rs7020782 0.306 100 0.924
rs803932 0.322 97 0.066

rs11102986 0.19 100 0.742
rs291979 0.223 100 0.907
rs2735469 0.172 100 0.476
rs4320932 0.21 99.8 0.222
rs900147 0.315 100 0.639
rs948847 0.406 100 0.706
rs174547 0.33 100 0.855
rs3736228 0.133 99.9 0.66
rs7396866 0.271 100 0.918
rs674424 0.256 100 0.671
rs2282537 0.14 100 1
rs6487088 0.201 100 0.9
rs7137534 0.31 100 0.107
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rs2066807 0.063 99.9 0.49
rs2291617 0.32 100 0.852
rs1042725 0.484 100 0.746
rs3782415 0.2 100 0.376

rs6219 0.11 100 0.146
rs10861148 0.12 100 0.502
rs907482 0.326 100 0.712
rs1051431 0.24 100 0.375
rs1950500 0.284 100 0.398

rs696 0.386 100 0.932
rs709939 0.472 100 0.113
rs3783937 0.265 100 0.212
rs1036477 0.11 100 0.918
rs12050767 0.438 100 0.967
rs7163907 0.262 96.5 0.67
rs17599989 0.277 100 0.117
rs1516796 0.461 100 0.935
rs8033670 0.488 100 0.24
rs5015437 0.366 99.9 0.965
rs258281 0.192 100 0.514
rs2023693 0.444 99.8 0.084
rs8055190 0.046 100 0.642
rs7359336 0.431 100 0.679
rs8071847 0.206 100 0.62
rs2909430 0.13 99.3 1
rs11080149 0.116 100 0.323
rs2715553 0.444 100 0.742
rs752313 0.5 100 0.598

rs12603813 0.241 99.8 0.618
rs12603582 0.241 99.9 0.868

rs46522 0.484 99.9 0.062
rs9892365 0.327 100 0.782
rs12940055 0.112 100 0.36
rs2854207 0.285 99.9 0.655
rs2053156 0.199 100 0.227
rs25656 NA NA NA
rs891088 0.254 100 0.24
rs4808199 0.166 100 0.77
rs4803520 0.116 100 0.692
rs2682552 0.182 100 0.786
rs158676 0.321 100 0.125
rs2425019 0.454 99.9 9.23E-04
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rs1780616 0.346 100 0.395
rs11086538 0.473 99.2 0.142
rs2057291 0.341 100 0.528

Part B - COPDGene

SNP Gene Proxy SNP R2 Chr:Position E/O MA MAF CR HWE

rs451061 PRKCZ rs424079 1 1:2071340 C/A C 0.389 99.9 0.142

rs212517 ECE1 rs212524 0.98 1:21583311 C/T T 0.403 100 0.12

rs1738475 HTR1D rs627304 1 1:23537555 T/C C 0.413 100 0.315

rs2229712 RPS6KA1 NA NA 1:26883511 A/C NA NA NA NA

rs17106235 FAF1 rs17106184 1 1:50909985 A/G NA NA NA NA

rs551219 COL24A1 rs618555 0.98 1:86481084 T/C T 0.288 100 1

rs12145922 PKN2 rs1002436 0.96 1:89146852 G/A NA NA NA NA

rs660240 PSRC1 NA NA 1:109817838 T/C T 0.215 99.8 0.47

rs7522692 PIGC rs1129942 1 1:172437592 G/A NA NA NA NA

rs1342586 TGFB2 rs10482796 0.99 1:218605635 C/T NA NA NA NA

rs10185680 MFSD2B NA NA 2:24275306 G/A A 0.456 99.9 0.28

rs1866146 POMC NA NA 2:25380573 G/A G 0.323 100 0.393

rs780094 GCKR NA NA 2:27741237 C/T T 0.416 100 0.92

rs7557989 THADA NA NA 2:43630657 T/C T 0.332 100 0.942

rs1822469 PPP3R1 rs687 0.99 2:68415767 G/A NA NA NA NA

rs6731022 EIF2AK3 rs11684404 1 2:88924622 C/T NA NA NA NA

rs3821009 PDE11A rs1946812 1 2:178674935 A/G NA NA NA NA

rs6718902 STAT1 rs2066804 0.98 2:191841759 A/G A 0.251 100 0.3

rs6758561 NOP58 NA NA 2:203126559 A/G A 0.345 99.9 0.35
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rs526134 USP37 rs1516086 0.99 2:219431535 A/G NA NA NA NA

rs10208728 IHH rs10445823 0.99 2:219910164 T/C C 0.099 100 0.316

rs3100776 IHH rs6436122 0.96 2:220036390 A/G A 0.041 100 0.408

rs4973410 NCL NA NA 2:232331734 C/T T 0.468 100 1

rs2679178 NPPC rs2580821 1 2:232804155 C/A A 0.086 99.9 0.606

rs7578199 HDLBP NA NA 2:242192848 T/C C 0.247 100 0.206

rs7572476 BOK NA NA 2:242496325 C/T T 0.46 100 0.493

rs2450855 MKRN2 NA NA 3:12602494 G/A NA NA NA NA

rs9857730 VILL NA NA 3:38051941 C/T C 0.209 99.9 0.588

rs3915129 CTNNB1 NA NA 3:41243742 G/T G 0.461 99.9 0.414

rs490634 CISH rs201194 0.99 3:50642975 C/T C 0.127 100 0.509

rs13072536 ITIH4 rs2276817 1 3:52860936 C/T T 0.245 100 0.38

rs4955526 EPHB1 NA NA 3:134317337 C/T T 0.357 99.9 0.548

rs9844666 PCCB NA NA 3:135974216 G/A A 0.241 100 0.79

rs572169 GHSR NA NA 3:172165727 T/C T 0.314 99.9 0.105

rs17754 RFC1 rs1057807 0.99 4:39289473 A/G G 0.436 99.9 0.121

rs17472113 ZAR1 rs9993088 0.99 4:48494546 A/C A 0.275 99.9 0.903

rs4864548 CLOCK NA NA 4:56413803 A/G A 0.366 100 0.162

rs3796529 REST NA NA 4:57797414 T/C T 0.192 100 0.272

rs12503378 NUDT6 rs1048201 0.98 4:123814308 C/T T 0.169 100 0.728

rs17541471 NPR3 rs10053636 1 5:32760375 C/T NA NA NA NA

rs6180 GHR NA NA 5:42719239 A/C C 0.459 99.9 0.974

rs832575 MAP3K1 NA NA 5:56161787 A/G G 0.124 99.9 0.1

rs41132 AP3B1 rs252749 1 5:77389973 G/A A 0.246 100 0.57
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rs2247870 GPR98 NA NA 5:90151589 A/G NA NA NA NA

rs17085675 PCSK1 NA NA 5:95727664 T/A NA NA NA NA

rs17622208 SLC22A5 NA NA 5:131717050 A/G A 0.462 99.9 0.492

rs9366637 HFE NA NA 6:26089098 C/T T 0.061 100 0.396

rs2853977 HCP5 NA NA 6:31379304 A/T NA NA NA NA

rs2229642 ITPR3 rs2296742 1 6:33659793 A/G A 0.468 100 0.948

rs1776897 HMGA1 NA NA 6:34195011 G/T G 0.089 99.9 0.088

rs4946932 FOXO3 rs2153960 0.92 6:108988184 A/G G 0.306 99.9 0.939

rs1476387 PPIL6 NA NA 6:109764535 G/T T 0.415 100 0.593

rs7756224 NMBR rs4577816 1 6:142423810 T/C NA NA NA NA

rs2234693 ESR1 NA NA 6:152163335 C/T NA NA NA NA

rs2982712 ESR1 NA NA 6:152358179 C/T C 0.415 100 0.525

rs1074287 OPRM1 rs589046 0.91 6:154393138 T/C T 0.256 99.9 0.831

rs1636255 GNA12 rs1636249 0.9 7:2884283 T/G G 0.302 99.8 0.59

rs864745 JAZF1 rs849138 0.93 7:28177338 G/A NA NA NA NA

rs3812265 CNOT4 NA NA 7:135048804 T/C NA NA NA NA

rs1800783 NOS3 rs10247107 0.94 7:150683083 G/A A 0.37 99.9 0.834

rs6999671 RPS20 rs16920326 1 8:56995782 A/G A 0.035 99.9 0.144

rs2145923 NPR2 rs7873145 1 9:35786616 T/C NA NA NA NA

rs3814115 PCSK5 NA NA 9:78504729 C/T C 0.336 99.2 0.29

rs7853859 CENPP rs1053441 0.99 9:95147840 T/A NA NA NA NA

rs3739707 LPAR1 NA NA 9:113792706 C/A A 0.264 100 0.452

rs7020782 PAPPA NA NA 9:119106881 A/C C 0.298 100 0.087

rs803932 ASTN2 NA NA 9:119458020 C/T C 0.325 99.9 0.63
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SNP Gene Proxy SNP R2 Chr:Position E/O MA MAF CR HWE

rs11102986 RXRA NA NA 9:137285503 G/A A 0.185 99.8 0.42

rs291979 GRK5 rs291970 0.99 10:121123633 T/C T 0.23 100 0.582

rs2735469 MRPL23 rs2735971 0.91 11:2021649 T/C NA NA NA NA

rs4320932 IGF2 NA NA 11:2171601 T/C C 0.206 100 0.457

rs900147 ARNTL rs900145 1 11:13293905 C/T C 0.298 99.6 0.726

rs948847 APLNR NA NA 11:57004344 G/T G 0.432 99.8 0.766

rs174547 FADS1 NA NA 11:61570783 T/C C 0.337 99.8 0.561

rs3736228 LRP5 NA NA 11:68201295 C/T T 0.152 100 0.9

rs7396866 NEU3 rs10793108 0.91 11:74695212 G/A NA NA NA NA

rs674424 ABCG4 NA NA 11:119030752 T/C T 0.256 100 0.798

rs2282537 POU2F3 NA NA 11:120187971 G/A A 0.142 100 0.039

rs6487088 PDE3A NA NA 12:20588382 T/C C 0.207 99.9 0.488

rs7137534 PDE3A NA NA 12:20831777 T/C T 0.308 100 0.703

rs2066807 PAN2 NA NA 12:56740682 G/C G 0.063 100 0.053

rs2291617 METTL1 NA NA 12:58166403 T/G G 0.325 99.7 0.683

rs1042725 HMGA2 NA NA 12:66358347 C/T T 0.494 100 0.745

rs3782415 SOCS2 NA NA 12:93967755 C/T C 0.189 100 0.792

rs6219 IGF1 NA NA 12:102790192 T/C T 0.105 99.9 0.729

rs10861148 HSP90B1 rs4135054 0.99 12:104363610 T/C T 0.111 99.9 0.934

rs907482 KNTC1 rs7970027 0.99 12:122780375 C/T C 0.339 99.9 0.192

rs1051431 MPHOSPH9 NA NA 12:123645803 G/A G 0.226 100 0.151

rs1950500 NFATC4 NA NA 14:24830850 T/C T 0.275 99.9 0.308

rs696 NFKBIA rs8904 0.99 14:35871217 G/A A 0.369 100 0.117

rs709939 SAMD4A rs2281652 0.98 14:55253864 A/G G 0.449 100 0.189

Continued on next page
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Table A4 – Continued from previous page

SNP Gene Proxy SNP R2 Chr:Position E/O MA MAF CR HWE

rs3783937 FBLN5 NA NA 14:92407693 C/T T 0.261 100 1

rs1036477 FBN1 NA NA 15:48914926 A/G G 0.109 99.2 0.933

rs12050767 CYP19A1 rs749292 1 15:51558731 A/G A 0.434 100 0.792

rs7163907 PTPN9 rs11636031 1 15:75815758 C/T C 0.264 100 0.05

rs17599989 SEC11A rs11637142 0.99 15:85295927 G/A G 0.289 99.8 0.692

rs1516796 ACAN rs8041863 1 15:89359689 A/T NA NA NA NA

rs8033670 IGF1R rs9672965 0.96 15:99498433 T/C T 0.478 100 0.091

rs5015437 LMF1 rs5015441 1 16:987256 T/C T 0.375 99.9 0.488

rs258281 RAB26 NA NA 16:2191734 G/A NA NA NA NA

rs2023693 ERI2 rs11074476 1 16:20886385 C/A A 0.43 99.7 0.26

rs8055190 LRRC36 rs16957358 0.95 16:67394541 A/G G 0.044 99.9 0.704

rs7359336 NFAT5 NA NA 16:69733460 G/A G 0.417 100 0.316

rs8071847 POLR2A NA NA 17:7407327 G/A G 0.206 99.9 0.692

rs2909430 TP53 rs1625895 0.99 17:7578115 C/T T 0.136 99.9 0.032

rs11080149 NF1 NA NA 17:29623288 T/C T 0.119 100 1

rs2715553 RARA NA NA 17:38496320 A/G G 0.453 100 0.694

rs752313 EZH1 rs11868496 1 17:40881162 T/C NA NA NA NA

rs12603813 PLCD3 NA NA 17:43196584 T/C C 0.248 100 0.965

rs12603582 ITGB3 NA NA 17:45377577 G/T T 0.228 99.9 1

rs46522 UBE2Z rs318095 1 17:46974734 T/C T 0.472 100 0.948

rs9892365 TBX2 rs2079795 0.98 17:59496649 T/C T 0.335 99.9 0.466

rs12940055 MAP3K3 NA NA 17:61722142 C/T T 0.114 100 0.468

rs2854207 CSH2 rs2854201 0.96 17:61947754 A/G NA NA NA NA

rs2053156 GRB2 rs959260 1 17:73369422 T/C C 0.178 99.6 0.617

Continued on next page
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Table A4 – Continued from previous page

SNP Gene Proxy SNP R2 Chr:Position E/O MA MAF CR HWE

rs25656 NFATC1 NA NA 18:77227476 A/G NA NA NA NA

rs891088 INSR NA NA 19:7184762 G/A G 0.262 99.9 0.9

rs4808199 GATAD2A NA NA 19:19545099 G/A A 0.18 99.9 0.956

rs4803520 GRIK5 NA NA 19:42500373 G/A NA NA NA NA

rs2682552 XRCC1 rs2682587 0.97 19:44082429 A/C A 0.184 100 0.33

rs158676 CDK5RAP1 NA NA 20:31974395 A/G G 0.322 100 0.158

rs2425019 MMP24 NA NA 20:33819415 G/A NA NA NA NA

rs1780616 LBP rs7273717 0.9 20:36971709 T/C C 0.37 100 0.223

rs11086538 MC3R NA NA 20:54817822 G/T T 0.471 99.8 0.648

rs2057291 GNAS NA NA 20:57472043 A/G A 0.338 99.9 0.31
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Table A6: Height-associated SNP information and results from ordinary least squares (OLS)
models. 125 height associated SNPs were identified for analysis. The Effect / Other (E/O)
alleles were based on original discovery studies (PMID) and SNPs were coded by height
increasing alleles. Indicated positions were based on GRCh37 and all alleles were on the
positive strand. The association of these SNPs with height was assessed using OLS models
that were adjusted for age, sex and study. βOLS is the effect size (cm per Effect Allele) and
95%CI are the 95% confidence intervals.

SNP Gene E/O PMID βOLS
[
95%CI

]
p-value

rs1042725 HMGA2 C/T 17767157 0.565
[
0.500, 0.631

]
6.56E-64

rs2853977 HCP5 A/T 25282103 0.636
[
0.554, 0.717

]
1.01E-52

rs3782415 SOCS2 C/T PMC3014369 0.464
[
0.383, 0.545

]
4.01E-29

rs780094 GCKR C/T 25282103 0.372
[
0.306, 0.439

]
8.74E-28

rs9892365 TBX2 A/G PMC3014369 0.356
[
0.286, 0.426

]
2.28E-23

rs7137534 PDE3A T/C 25282103 0.352
[
0.282, 0.421

]
6.03E-23

rs1776897 HMGA1 G/T 20397748 0.610
[
0.488, 0.732

]
1.15E-22

rs572169 GHSR T/C 20881960 0.351
[
0.280, 0.422

]
3.14E-22

rs2679178 NPPC C/T PMC3014369 0.527
[
0.410, 0.644

]
1.17E-18

rs2053156 GRB2 T/G 25282103 0.371
[
0.286, 0.456

]
1.15E-17

rs9930741 ERI2 T/C 25282103 0.285
[
0.219, 0.352

]
3.92E-17

rs2854207 CSH2 G/C 25282103 0.314
[
0.237, 0.392

]
2.11E-15

rs4320932 IGF2 T/C 25282103 0.336
[
0.252, 0.419

]
4.11E-15

rs752313 EZH1 C/T 25282103 0.258
[
0.191, 0.326

]
4.78E-14

rs709939 SAMD4A T/C 25282103 0.248
[
0.181, 0.314

]
2.37E-13

rs1036477 FBN1 A/G 25282103 0.377
[
0.272, 0.483

]
2.34E-12

rs158676 CDK5RAP1 A/G 25282103 0.254
[
0.183, 0.325

]
2.39E-12

rs1822469 PPP3R1 C/T 25282103 0.243
[
0.175, 0.312

]
4.23E-12

rs258281 RAB26 G/A 25282103 0.308
[
0.220, 0.397

]
1.06E-11

rs9366637 HFE C/T 25282103 0.470
[
0.334, 0.606

]
1.22E-11

rs551219 COL24A1 T/C 25282103 0.249
[
0.177, 0.321

]
1.30E-11

rs13072536 ITIH4 A/T 25282103 0.265
[
0.188, 0.342

]
1.71E-11

rs7522692 PIGC G/A 25282103 0.290
[
0.205, 0.375

]
2.24E-11

rs13076290 CTNNB1 T/C 25282103 0.225
[
0.158, 0.291

]
3.23E-11

rs1636255 GNA12 C/A PMC3014369 0.261
[
0.184, 0.338

]
3.58E-11

rs3796529 REST T/C 25282103 0.277
[
0.194, 0.361

]
7.85E-11

rs1866146 POMC G/A 25282103 0.229
[
0.160, 0.299

]
8.47E-11

rs9844666 PCCB G/A 20881960 0.254
[
0.177, 0.331

]
9.23E-11

rs8071847 POLR2A G/A 25282103 0.264
[
0.184, 0.344

]
1.10E-10

rs3783937 FBLN5 C/T 25282103 0.249
[
0.173, 0.326

]
1.72E-10

rs11080149 NF1 T/C 25282103 0.319
[
0.221, 0.418

]
2.48E-10

rs17472113 ZAR1 A/T 25282103 0.270
[
0.186, 0.354

]
3.23E-10

rs490634 CISH C/T 25282103 0.346
[
0.238, 0.455

]
4.04E-10

rs17622208 SLC22A5 A/G 25282103 0.209
[
0.143, 0.275

]
5.08E-10

rs2982712 ESR1 C/T 23563607 0.209
[
0.143, 0.275

]
6.50E-10
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SNP Gene E/O PMID βOLS

[
95%CI

]
p-value

rs1950500 NFATC4 T/C 20881960 0.240
[
0.163, 0.317

]
1.09E-09

rs1476387 PPIL6 G/T 25282103 0.206
[
0.139, 0.272

]
1.32E-09

rs4946932 FOXO3 C/A 25282103 0.220
[
0.148, 0.291

]
1.61E-09

rs1800783 NOS3 T/A 25282103 0.214
[
0.144, 0.284

]
1.71E-09

rs6718902 STAT1 T/C 25282103 0.233
[
0.157, 0.309

]
1.98E-09

rs2425019 MMP24 G/A PMC3014369 0.205
[
0.138, 0.272

]
2.55E-09

rs6731022 EIF2AK3 C/G 25282103 0.220
[
0.147, 0.292

]
2.65E-09

rs12940055 MAP3K3 C/T 25282103 0.311
[
0.207, 0.416

]
5.15E-09

rs864745 JAZF1 T/C 25282103 0.213
[
0.141, 0.284

]
5.21E-09

rs6487088 PDE3A T/C 25282103 0.246
[
0.163, 0.328

]
5.63E-09

rs4973410 NCL C/T 25282103 0.205
[
0.136, 0.275

]
7.37E-09

rs451061 PRKCZ C/G 25282103 0.201
[
0.132, 0.270

]
9.78E-09

rs832575 MAP3K1 A/G 25282103 0.287
[
0.187, 0.386

]
1.58E-08

rs4955526 EPHB1 C/T 25282103 0.207
[
0.135, 0.280

]
1.94E-08

rs8038415 IGF1R C/T 25282103 0.189
[
0.123, 0.255

]
2.12E-08

rs7578199 HDLBP T/C 25282103 0.215
[
0.139, 0.291

]
2.85E-08

rs7020782 PAPPA A/C 25282103 0.202
[
0.130, 0.274

]
3.48E-08

rs2229712 RPS6KA1 A/C 25282103 0.263
[
0.168, 0.357

]
5.06E-08

rs7572476 BOK C/T 25282103 0.186
[
0.119, 0.253

]
5.45E-08

rs2066807 PAN2 G/C 20881960 0.232
[
0.147, 0.317

]
8.76E-08

rs1516796 ACAN A/C 25282103 0.180
[
0.112, 0.247

]
2.04E-07

rs6180 GHR A/C 25429064 0.175
[
0.109, 0.240

]
2.11E-07

rs8055190 LRRC36 C/T 25282103 0.449
[
0.279, 0.620

]
2.30E-07

rs17106235 FAF1 G/C 25282103 0.316
[
0.195, 0.436

]
3.11E-07

rs3739707 LPAR1 C/A 25282103 0.197
[
0.121, 0.272

]
3.22E-07

rs674424 ABCG4 T/C 25282103 0.189
[
0.112, 0.265

]
1.32E-06

rs12225387 NEU3 G/A 25282103 0.199
[
0.118, 0.280

]
1.39E-06

rs3812265 CNOT4 T/C 25282103 0.191
[
0.113, 0.270

]
1.72E-06

rs10208728 IHH A/G 25282103 0.285
[
0.167, 0.402

]
1.92E-06

rs291979 GRK5 A/G 25282103 0.189
[
0.110, 0.267

]
2.37E-06

rs2715553 RARA A/G 25282103 0.156
[
0.088, 0.225

]
7.30E-06

rs2057291 GNAS A/G 25282103 0.159
[
0.088, 0.230

]
1.18E-05

rs4803520 GRIK5 G/A 25282103 0.235
[
0.129, 0.341

]
1.45E-05

rs10736682 APLNR G/A 25282103 0.143
[
0.077, 0.210

]
2.31E-05

rs2909430 TP53 T/C 25282103 0.209
[
0.110, 0.308

]
3.57E-05

rs12050767 CYP19A1 C/T 25282103 0.139
[
0.073, 0.205

]
3.62E-05

rs602633 PSRC1 T/G 25282103 0.179
[
0.094, 0.264

]
3.64E-05

rs1738475 HTR1D C/G 20881960 0.142
[
0.072, 0.213

]
7.70E-05

rs17754 RFC1 C/G 25282103 0.130
[
0.063, 0.197

]
1.29E-04

rs17541471 NPR3 C/T 25282103 0.165
[
0.080, 0.250

]
1.34E-04

rs1342586 TGFB2 T/C 25282103 0.157
[
0.075, 0.238

]
1.69E-04

rs3814115 PCSK5 C/T 25282103 0.133
[
0.063, 0.203

]
2.02E-04
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[
95%CI

]
p-value

rs1780616 LBP C/T 25282103 0.130
[
0.061, 0.200

]
2.28E-04

rs3736228 LRP5 C/T 25282103 0.175
[
0.081, 0.269

]
2.74E-04

rs212517 ECE1 A/T 25282103 0.126
[
0.058, 0.195

]
2.94E-04

rs7359336 NFAT5 G/A 25282103 0.120
[
0.053, 0.187

]
4.64E-04

rs2682552 XRCC1 A/T 25282103 0.148
[
0.064, 0.232

]
5.35E-04

rs17085675 PCSK1 T/A 25282103 0.131
[
0.057, 0.206

]
5.54E-04

rs11102986 RXRA G/A 25282103 0.151
[
0.064, 0.238

]
6.49E-04

rs12603813 PLCD3 T/C 25282103 0.135
[
0.057, 0.212

]
6.61E-04

rs6219 IGF1 T/C 25282103 0.190
[
0.080, 0.299

]
7.01E-04

rs2234693 ESR1 C/T 25282103 0.113
[
0.045, 0.180

]
0.001

rs46522 UBE2Z C/T 25282103 0.115
[
0.046, 0.185

]
0.001

rs891088 INSR G/A 20881960 0.123
[
0.049, 0.197

]
0.001

rs9857730 VILL C/T 25282103 0.132
[
0.052, 0.213

]
0.001

rs10185680 MFSD2B G/A 25282103 0.108
[
0.042, 0.173

]
0.001

rs7163907 PTPN9 C/T 25282103 -0.121
[
− 0.196,−0.046

]
0.002

rs2176167 NOP58 C/T 25282103 0.109
[
0.040, 0.179

]
0.002

rs7557989 THADA T/C 25282103 0.114
[
0.040, 0.188

]
0.003

rs510769 OPRM1 T/C 25282103 0.123
[
0.043, 0.204

]
0.003

rs7756224 NMBR C/T 25282103 0.111
[
0.038, 0.184

]
0.003

rs2282537 POU2F3 G/A 25282103 0.152
[
0.052, 0.252

]
0.003

rs7853859 CENPP T/C 25282103 0.105
[
0.036, 0.175

]
0.003

rs2229642 ITPR3 G/C 25282103 0.112
[
0.033, 0.190

]
0.005

rs5015437 LMF1 A/G 25282103 0.102
[
0.030, 0.174

]
0.006

rs7963565 KNTC1 T/C 25282103 0.097
[
0.028, 0.167

]
0.006

rs696 NFKBIA C/T 25282103 0.092
[
0.024, 0.160

]
0.008

rs25656 NFATC1 A/G 25282103 0.114
[
0.029, 0.199

]
0.009

rs3100776 IHH C/T 25282103 0.243
[
0.061, 0.426

]
0.009

rs12145922 PKN2 A/C 25282103 0.088
[
0.020, 0.156

]
0.011

rs526134 USP37 A/G 25282103 0.094
[
0.022, 0.167

]
0.011

rs7004280 RPS20 C/G 25282103 0.207
[
0.018, 0.396

]
0.032

rs4808199 GATAD2A G/A 25282103 0.098
[
0.007, 0.189

]
0.035

rs3821009 PDE11A T/C 25282103 0.129
[
0.006, 0.252

]
0.040

rs2291617 METTL1 T/G 25282103 0.073
[
0.003, 0.144

]
0.042

rs1051168 SEC11A T/G 25282103 0.080
[
0.002, 0.157

]
0.043

rs803932 ASTN2 C/T 25282103 0.073
[
− 0.001, 0.147

]
0.054

rs2247870 GPR98 A/G 25282103 0.066
[
− 0.001, 0.134

]
0.055

rs12503378 NUDT6 C/G 25282103 0.077
[
− 0.011, 0.166

]
0.085

rs2145923 NPR2 C/T 25282103 0.076
[
− 0.011, 0.163

]
0.088

rs12603582 ITGB3 G/T 25282103 0.060
[
− 0.019, 0.139

]
0.137

rs4864548 CLOCK A/G 25282103 0.045
[
− 0.022, 0.113

]
0.190

rs2735469 MRPL23 A/G 25282103 0.061
[
− 0.033, 0.154

]
0.204

rs1051431 MPHOSPH9 G/A 25282103 0.038
[
− 0.041, 0.117

]
0.341

Continued on next page
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[
95%CI

]
p-value

rs41132 AP3B1 A/C 25282103 0.037
[
− 0.040, 0.115

]
0.344

rs6127698 MC3R G/T 25282103 0.030
[
− 0.035, 0.096

]
0.368

rs1481892 ARNTL G/C 25282103 0.033
[
− 0.039, 0.105

]
0.370

rs2633442 MKRN2 G/A 25282103 0.023
[
− 0.049, 0.095

]
0.527

rs1535 FADS1 A/G 25429064 -0.011
[
− 0.081, 0.059

]
0.754

rs10861148 HSP90B1 A/C 25282103 0.005
[
− 0.099, 0.110

]
0.921
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Table A8: Quantifying the effect of height percentile on conditional quantile regression
(CQR) estimates using meta-regression (MR). MR was used to model variability in the
CQR estimates across height percentiles. Note that the percentiles were re-centered around
the 50thpercentile so that the intercept from MR models corresponds to the main effect of the
SNP at the median. (∗) Denotes statistical significance at the Bonferroni-adjusted p-value
(p < 3.85 × 10−4), RI50 is the re-centered intercept of the MR models, MR is the effect of
height percentile on CQR estimates (cm per Effect Allele per Height Percentile), 95%CI are
the 95% confidence intervals.

SNP Gene RI50 βMR

[
95%CI

]
p-value

rs6219 IGF1 0.162 0.479
[
0.229, 0.730

]
1.80E-04 ∗

rs1866146 POMC 0.235 0.282
[
0.120, 0.443

]
6.17E-04

rs551219 COL24A1 0.241 -0.277
[
− 0.444,−0.109

]
0.001

rs9930741 ERI2 0.285 -0.203
[
− 0.359,−0.047

]
0.011

rs3821009 PDE11A 0.096 0.336
[
0.062, 0.610

]
0.016

rs7963565 KNTC1 0.110 0.190
[
0.029, 0.350

]
0.021

rs3100776 IHH 0.304 0.501
[
0.070, 0.933

]
0.023

rs17085675 PCSK1 0.121 -0.199
[
− 0.373,−0.026

]
0.024

rs2853977 HCP5 0.624 -0.218
[
− 0.409,−0.026

]
0.026

rs1051431 MPHOSPH9 0.050 0.208
[
0.024, 0.392

]
0.026

rs258281 RAB26 0.305 -0.234
[
− 0.440,−0.029

]
0.026

rs526134 USP37 0.091 0.188
[
0.016, 0.360

]
0.032

rs1476387 PPIL6 0.191 -0.163
[
− 0.318,−0.008

]
0.040

rs11102986 RXRA 0.138 -0.203
[
− 0.404,−0.003

]
0.047

rs7557989 THADA 0.118 -0.169
[
− 0.340, 0.001

]
0.051

rs6718902 STAT1 0.251 -0.171
[
− 0.345, 0.003

]
0.054

rs1036477 FBN1 0.375 -0.240
[
− 0.485, 0.006

]
0.055

rs12603582 ITGB3 0.057 -0.181
[
− 0.370, 0.008

]
0.060

rs803932 ASTN2 0.076 -0.162
[
− 0.334, 0.009

]
0.064

rs9892365 TBX2 0.357 0.153
[
− 0.010, 0.316

]
0.067

rs1776897 HMGA1 0.595 0.264
[
− 0.023, 0.551

]
0.072

rs3814115 PCSK5 0.127 0.150
[
− 0.013, 0.313

]
0.072

rs1051168 SEC11A 0.087 0.144
[
− 0.028, 0.316

]
0.100

rs2854207 CSH2 0.296 0.153
[
− 0.031, 0.337

]
0.103

rs41132 AP3B1 0.022 0.150
[
− 0.031, 0.331

]
0.105

rs1738475 HTR1D 0.148 -0.136
[
− 0.304, 0.032

]
0.112

rs2682552 XRCC1 0.133 0.152
[
− 0.037, 0.342

]
0.115

rs3796529 REST 0.275 -0.151
[
− 0.341, 0.039

]
0.120

rs3812265 CNOT4 0.197 0.145
[
− 0.040, 0.329

]
0.125

rs46522 UBE2Z 0.122 -0.122
[
− 0.284, 0.040

]
0.140

rs4808199 GATAD2A 0.099 0.155
[
− 0.052, 0.362

]
0.142

rs6180 GHR 0.188 -0.111
[
− 0.259, 0.037

]
0.143

rs17754 RFC1 0.134 0.105
[
− 0.048, 0.258

]
0.177
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]
p-value

rs2735469 MRPL23 0.074 0.147
[
− 0.074, 0.368

]
0.192

rs4864548 CLOCK 0.036 0.104
[
− 0.055, 0.262

]
0.200

rs7137534 PDE3A 0.362 0.106
[
− 0.059, 0.272

]
0.209

rs2282537 POU2F3 0.154 0.145
[
− 0.083, 0.374

]
0.213

rs709939 SAMD4A 0.245 0.100
[
− 0.057, 0.257

]
0.213

rs2715553 RARA 0.166 -0.101
[
− 0.261, 0.059

]
0.215

rs2291617 METTL1 0.081 0.104
[
− 0.062, 0.270

]
0.221

rs9857730 VILL 0.115 -0.112
[
− 0.294, 0.070

]
0.227

rs2229642 ITPR3 0.103 0.109
[
− 0.071, 0.290

]
0.236

rs6731022 EIF2AK3 0.225 0.100
[
− 0.066, 0.266

]
0.237

rs3739707 LPAR1 0.191 -0.107
[
− 0.285, 0.071

]
0.240

rs8038415 IGF1R 0.201 -0.092
[
− 0.247, 0.063

]
0.245

rs25656 NFATC1 0.115 -0.120
[
− 0.323, 0.083

]
0.246

rs17106235 FAF1 0.340 0.168
[
− 0.120, 0.456

]
0.253

rs2909430 TP53 0.213 -0.130
[
− 0.360, 0.100

]
0.266

rs490634 CISH 0.374 -0.133
[
− 0.386, 0.120

]
0.304

rs12603813 PLCD3 0.144 0.089
[
− 0.090, 0.268

]
0.329

rs17541471 NPR3 0.169 0.099
[
− 0.101, 0.299

]
0.333

rs1636255 GNA12 0.256 0.088
[
− 0.092, 0.267

]
0.338

rs7756224 NMBR 0.107 -0.080
[
− 0.250, 0.090

]
0.358

rs1822469 PPP3R1 0.258 -0.075
[
− 0.236, 0.087

]
0.364

rs7163907 PTPN9 -0.111 0.080
[
− 0.096, 0.256

]
0.371

rs10736682 APLNR 0.136 -0.070
[
− 0.224, 0.085

]
0.377

rs1042725 HMGA2 0.569 -0.069
[
− 0.224, 0.085

]
0.379

rs7004280 RPS20 0.229 0.180
[
− 0.235, 0.594

]
0.396

rs674424 ABCG4 0.198 -0.077
[
− 0.256, 0.102

]
0.398

rs17622208 SLC22A5 0.203 0.067
[
− 0.090, 0.224

]
0.401

rs2247870 GPR98 0.092 -0.065
[
− 0.228, 0.098

]
0.434

rs1342586 TGFB2 0.128 -0.070
[
− 0.263, 0.122

]
0.474

rs12145922 PKN2 0.076 0.056
[
− 0.100, 0.212

]
0.484

rs1516796 ACAN 0.173 0.056
[
− 0.103, 0.215

]
0.486

rs752313 EZH1 0.262 -0.057
[
− 0.218, 0.103

]
0.486

rs10208728 IHH 0.300 0.090
[
− 0.178, 0.358

]
0.509

rs1481892 ARNTL 0.041 0.056
[
− 0.111, 0.223

]
0.514

rs2145923 NPR2 0.074 0.065
[
− 0.132, 0.261

]
0.519

rs572169 GHSR 0.350 -0.054
[
− 0.221, 0.112

]
0.521

rs2176167 NOP58 0.114 -0.050
[
− 0.209, 0.108

]
0.534

rs1780616 LBP 0.121 -0.052
[
− 0.217, 0.113

]
0.537

rs2982712 ESR1 0.206 0.049
[
− 0.108, 0.205

]
0.541

rs696 NFKBIA 0.094 0.049
[
− 0.110, 0.208

]
0.546

rs2679178 NPPC 0.536 0.087
[
− 0.195, 0.368

]
0.546

rs2066807 PAN2 0.231 0.062
[
− 0.140, 0.265

]
0.546
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p-value

rs451061 PRKCZ 0.207 -0.049
[
− 0.206, 0.109

]
0.546

rs891088 INSR 0.121 0.053
[
− 0.120, 0.227

]
0.548

rs5015437 LMF1 0.104 -0.048
[
− 0.214, 0.118

]
0.572

rs7020782 PAPPA 0.203 -0.048
[
− 0.218, 0.122

]
0.577

rs4946932 FOXO3 0.227 0.045
[
− 0.120, 0.210

]
0.593

rs4320932 IGF2 0.347 -0.051
[
− 0.250, 0.147

]
0.612

rs864745 JAZF1 0.204 0.043
[
− 0.124, 0.209

]
0.615

rs1800783 NOS3 0.212 0.041
[
− 0.120, 0.201

]
0.619

rs7359336 NFAT5 0.128 -0.037
[
− 0.193, 0.118

]
0.636

rs4803520 GRIK5 0.243 -0.058
[
− 0.302, 0.185

]
0.638

rs6127698 MC3R 0.045 0.037
[
− 0.117, 0.191

]
0.638

rs510769 OPRM1 0.119 0.044
[
− 0.145, 0.233

]
0.651

rs9844666 PCCB 0.251 -0.038
[
− 0.217, 0.141

]
0.677

rs10861148 HSP90B1 0.017 0.049
[
− 0.192, 0.289

]
0.690

rs212517 ECE1 0.137 0.032
[
− 0.127, 0.191

]
0.694

rs13076290 CTNNB1 0.233 -0.029
[
− 0.183, 0.126

]
0.717

rs1950500 NFATC4 0.241 0.032
[
− 0.145, 0.208

]
0.724

rs13072536 ITIH4 0.252 -0.032
[
− 0.214, 0.149

]
0.725

rs17472113 ZAR1 0.291 0.036
[
− 0.165, 0.236

]
0.727

rs602633 PSRC1 0.170 -0.031
[
− 0.227, 0.166

]
0.760

rs1535 FADS1 0.005 -0.025
[
− 0.190, 0.139

]
0.762

rs780094 GCKR 0.368 -0.021
[
− 0.177, 0.135

]
0.790

rs12503378 NUDT6 0.075 0.028
[
− 0.182, 0.238

]
0.792

rs12940055 MAP3K3 0.283 -0.030
[
− 0.275, 0.215

]
0.808

rs2425019 MMP24 0.217 -0.019
[
− 0.179, 0.141

]
0.815

rs2053156 GRB2 0.351 0.023
[
− 0.172, 0.217

]
0.821

rs6487088 PDE3A 0.247 -0.022
[
− 0.216, 0.173

]
0.827

rs9366637 HFE 0.433 0.035
[
− 0.285, 0.355

]
0.829

rs2633442 MKRN2 0.005 -0.018
[
− 0.184, 0.147

]
0.831

rs158676 CDK5RAP1 0.237 0.017
[
− 0.147, 0.182

]
0.835

rs832575 MAP3K1 0.280 0.024
[
− 0.212, 0.260

]
0.843

rs7522692 PIGC 0.298 0.019
[
− 0.182, 0.221

]
0.852

rs2057291 GNAS 0.176 -0.014
[
− 0.182, 0.154

]
0.868

rs8071847 POLR2A 0.250 -0.016
[
− 0.203, 0.171

]
0.868

rs7853859 CENPP 0.106 -0.014
[
− 0.177, 0.150

]
0.871

rs2234693 ESR1 0.114 -0.013
[
− 0.174, 0.148

]
0.871

rs7578199 HDLBP 0.200 -0.014
[
− 0.196, 0.169

]
0.883

rs3782415 SOCS2 0.455 -0.013
[
− 0.205, 0.178

]
0.892

rs3736228 LRP5 0.139 -0.014
[
− 0.236, 0.209

]
0.904

rs4955526 EPHB1 0.221 0.010
[
− 0.164, 0.183

]
0.914

rs10185680 MFSD2B 0.107 0.007
[
− 0.146, 0.160

]
0.928

rs4973410 NCL 0.201 -0.007
[
− 0.169, 0.155

]
0.935
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rs291979 GRK5 0.167 0.006
[
− 0.175, 0.188

]
0.945

rs11080149 NF1 0.306 -0.008
[
− 0.235, 0.219

]
0.945

rs3783937 FBLN5 0.245 -0.006
[
− 0.185, 0.173

]
0.947

rs8055190 LRRC36 0.472 0.014
[
− 0.388, 0.415

]
0.947

rs12050767 CYP19A1 0.143 0.003
[
− 0.151, 0.156

]
0.973

rs12225387 NEU3 0.202 0.002
[
− 0.184, 0.188

]
0.981

rs2229712 RPS6KA1 0.270 -0.002
[
− 0.223, 0.218

]
0.983

rs7572476 BOK 0.190 0.002
[
− 0.155, 0.159

]
0.984
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Table A9: Sensitivity analysis. Conditional quantile regression (CQR) models for 37
BMI/obesity SNPs were conducted before except that models were fitted with adjustment
for diabetic status or age-linear. Meta-regression (MR) analysis was applied to examine the
association between CQR estimates and the BMI percentile as above. In addition, CQR
estimates were obtained every 10th percentile rather than every 5th percentile of BMI. The
results from Table 2 are included for comparison. (∗) Denotes statistical significance at
the Bonferroni-adjusted p-value (p < 1.32 × 10−3), RI50 is the re-centered intercept of the
MR models, βMR is the effect of BMI quantile on CQR estimates (kg/m2 per Effect Allele
per BMI Percentile), 95%CI are the 95% confidence intervals. These conditions had little
effect on the outcome of MR analysis, which supports the robustness of the main findings.
Note that 3 SNPs with significantly increasing effects across the sample BMI distribution
showed nominal effects when diabetic status adjustments were applied including, MAP2K5
(rs997295, FTO (rs6499653) and NT5C2 (rs3824755); while CDKAL1 (rs9356744) showed
significantly increasing effects across the sample BMI distribution only when CQR models
were fitted with diabetic status adjustment.

Part 1 - Original Model

SNP Gene RI50 βMR

[
95%CI

]
p-value

rs1421085 FTO 0.473 0.495
[
0.370, 0.620

]
8.69E-15 ∗

rs6235 PCSK1 0.078 0.320
[
0.180, 0.459

]
7.11E-06 ∗

rs7903146 TCF7L2 0.144 0.303
[
0.169, 0.437

]
9.60E-06 ∗

rs11873305 MC4R 0.344 0.603
[
0.311, 0.895

]
5.08E-05 ∗

rs12617233 FANCL 0.129 0.261
[
0.134, 0.387

]
5.30E-05 ∗

rs11672660 GIPR 0.227 0.294
[
0.141, 0.447

]
1.64E-04 ∗

rs997295 MAP2K5 0.131 0.228
[
0.103, 0.352

]
3.25E-04 ∗

rs6499653 FTO 0.121 0.253
[
0.108, 0.398

]
6.23E-04 ∗

rs3824755 NT5C2 0.222 0.362
[
0.151, 0.574

]
7.90E-04 ∗

rs7553158 TNNI3K 0.099 0.196
[
0.071, 0.322

]
0.002

rs10767664 BDNF 0.247 0.217
[
0.064, 0.370

]
0.006

rs4788099 SH2B1 0.151 0.194
[
0.057, 0.332

]
0.006

rs17066846 MC4R 0.124 0.215
[
0.063, 0.367

]
0.006

rs9356744 CDKAL1 0.063 0.186
[
0.050, 0.322

]
0.007

rs6453133 HMGCR 0.130 0.177
[
0.040, 0.314

]
0.011

rs2819347 LMOD1 0.111 0.137
[
0.004, 0.269

]
0.044

rs2075650 TOMM40 0.283 0.161
[
− 0.019, 0.341

]
0.079

rs4946932 FOXO3 0.106 0.120
[
− 0.016, 0.256

]
0.084

rs2984618 TAL1 0.069 0.108
[
− 0.019, 0.235

]
0.095

rs980828 NOS1AP 0.024 0.095
[
− 0.030, 0.220

]
0.135

rs1788826 NPC1 0.109 0.094
[
− 0.036, 0.224

]
0.156

rs11570094 SPI1 0.103 0.096
[
− 0.039, 0.231

]
0.163

rs7988412 MTIF3 0.088 0.109
[
− 0.062, 0.280

]
0.212

rs2283228 KCNQ1 0.003 0.147
[
− 0.094, 0.388

]
0.232
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[
95%CI

]
p-value

rs739564 IQCK 0.122 0.100
[
− 0.065, 0.265

]
0.234

rs526134 USP37 0.062 0.079
[
− 0.055, 0.212

]
0.247

rs2272903 TFAP2B 0.145 0.113
[
− 0.084, 0.310

]
0.261

rs2836754 ETS2 0.086 0.073
[
− 0.060, 0.206

]
0.280

rs2535633 ITIH4 0.016 0.068
[
− 0.059, 0.194

]
0.296

rs11208662 LEPR 0.142 0.111
[
− 0.105, 0.327

]
0.314

rs6232 PCSK1 0.075 0.133
[
− 0.137, 0.404

]
0.334

rs749767 KAT8 0.048 0.058
[
− 0.075, 0.191

]
0.390

rs1561288 ADCY3 0.027 -0.037
[
− 0.185, 0.112

]
0.627

rs10144353 PRKCH 0.043 0.049
[
− 0.171, 0.269

]
0.662

rs1211166 NTRK2 0.029 -0.027
[
− 0.179, 0.126

]
0.731

rs17001561 SCARB2 0.068 -0.020
[
− 0.194, 0.154

]
0.824

rs1780050 NEXN 0.045 0.010
[
− 0.117, 0.136

]
0.883

GS-BMI 0.112 0.151
[
0.128, 0.175

]
7.03E-37 ∗

Part 2 - Linear Age Adjusted Model

SNP Gene RI50 βMR

[
95%CI

]
p-value

rs1421085 FTO 0.477 0.489
[
0.362, 0.617

]
5.61E-14 ∗

rs6235 PCSK1 0.081 0.292
[
0.151, 0.432

]
4.61E-05 ∗

rs7903146 TCF7L2 0.138 0.296
[
0.164, 0.429

]
1.14E-05 ∗

rs11873305 MC4R 0.343 0.613
[
0.300, 0.927

]
1.26E-04 ∗

rs12617233 FANCL 0.128 0.255
[
0.126, 0.384

]
1.08E-04 ∗

rs11672660 GIPR 0.236 0.275
[
0.117, 0.432

]
6.23E-04 ∗

rs997295 MAP2K5 0.145 0.210
[
0.084, 0.337

]
1.13E-03 ∗

rs6499653 FTO 0.117 0.270
[
0.127, 0.414

]
2.13E-04 ∗

rs3824755 NT5C2 0.219 0.331
[
0.123, 0.538

]
0.002

rs7553158 TNNI3K 0.087 0.219
[
0.095, 0.344

]
5.68E-04 ∗

rs10767664 BDNF 0.238 0.217
[
0.065, 0.370

]
0.005

rs4788099 SH2B1 0.164 0.202
[
0.065, 0.338

]
0.004

rs17066846 MC4R 0.136 0.211
[
0.051, 0.371

]
0.010

rs9356744 CDKAL1 0.075 0.232
[
0.098, 0.365

]
6.58E-04 ∗

rs6453133 HMGCR 0.134 0.198
[
0.061, 0.334

]
0.005

rs2819347 LMOD1 0.100 0.111
[
− 0.023, 0.244

]
0.104

rs2075650 TOMM40 0.195 -0.003
[
− 0.181, 0.175

]
0.972

rs4946932 FOXO3 0.106 0.092
[
− 0.042, 0.226

]
0.178

rs2984618 TAL1 0.064 0.075
[
− 0.055, 0.205

]
0.259

rs980828 NOS1AP 0.024 0.098
[
− 0.028, 0.224

]
0.128

rs1788826 NPC1 0.108 0.069
[
− 0.062, 0.200

]
0.303
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[
95%CI

]
p-value

rs11570094 SPI1 0.093 0.057
[
− 0.078, 0.192

]
0.411

rs7988412 MTIF3 0.093 0.080
[
− 0.091, 0.252

]
0.358

rs2283228 KCNQ1 -0.033 0.094
[
− 0.148, 0.336

]
0.445

rs739564 IQCK 0.111 0.093
[
− 0.070, 0.257

]
0.263

rs526134 USP37 0.054 0.072
[
− 0.067, 0.212

]
0.310

rs2272903 TFAP2B 0.132 0.106
[
− 0.092, 0.304

]
0.295

rs2836754 ETS2 0.107 0.106
[
− 0.028, 0.239

]
0.121

rs2535633 ITIH4 0.011 0.019
[
− 0.108, 0.147

]
0.768

rs11208662 LEPR 0.125 0.085
[
− 0.131, 0.300

]
0.442

rs6232 PCSK1 0.061 0.136
[
− 0.122, 0.394

]
0.300

rs749767 KAT8 0.059 0.070
[
− 0.061, 0.202

]
0.294

rs1561288 ADCY3 0.021 -0.040
[
− 0.190, 0.110

]
0.599

rs10144353 PRKCH 0.052 0.045
[
− 0.174, 0.265

]
0.685

rs1211166 NTRK2 0.039 0.008
[
− 0.149, 0.165

]
0.919

rs17001561 SCARB2 0.058 -0.078
[
− 0.263, 0.108

]
0.410

rs1780050 NEXN 0.038 0.019
[
− 0.111, 0.148

]
0.776

GS-BMI 0.110 0.148
[
0.124, 0.172

]
1.60E-32 ∗

Part 3 - Diabetes Adjusted Model

SNP Gene RI50 βMR

[
95%CI

]
p-value

rs1421085 FTO 0.432 0.397
[
0.271, 0.523

]
6.57E-10 ∗

rs6235 PCSK1 0.082 0.289
[
0.153, 0.425

]
3.11E-05 ∗

rs7903146 TCF7L2 0.221 0.408
[
0.276, 0.539

]
1.25E-09 ∗

rs11873305 MC4R 0.315 0.515
[
0.209, 0.821

]
9.62E-04 ∗

rs12617233 FANCL 0.115 0.239
[
0.115, 0.363

]
1.53E-04 ∗

rs11672660 GIPR 0.234 0.288
[
0.136, 0.440

]
2.04E-04 ∗

rs997295 MAP2K5 0.113 0.185
[
0.060, 0.309

]
0.004

rs6499653 FTO 0.109 0.227
[
0.083, 0.372

]
0.002

rs3824755 NT5C2 0.205 0.304
[
0.107, 0.500

]
0.002

rs7553158 TNNI3K 0.097 0.183
[
0.058, 0.307

]
0.004

rs10767664 BDNF 0.240 0.215
[
0.065, 0.365

]
0.005

rs4788099 SH2B1 0.148 0.188
[
0.053, 0.322

]
0.006

rs17066846 MC4R 0.112 0.164
[
0.010, 0.319

]
0.037

rs9356744 CDKAL1 0.094 0.235
[
0.101, 0.368

]
5.54E-04 ∗

rs6453133 HMGCR 0.109 0.166
[
0.033, 0.299

]
0.014

rs2819347 LMOD1 0.091 0.099
[
− 0.031, 0.230

]
0.136

rs2075650 TOMM40 0.200 0.014
[
− 0.167, 0.194

]
0.882

rs4946932 FOXO3 0.085 0.080
[
− 0.056, 0.216

]
0.250
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[
95%CI

]
p-value

rs2984618 TAL1 0.060 0.080
[
− 0.044, 0.205

]
0.205

rs980828 NOS1AP 0.031 0.120
[
− 0.003, 0.242

]
0.056

rs1788826 NPC1 0.090 0.080
[
− 0.047, 0.206

]
0.218

rs11570094 SPI1 0.085 0.050
[
− 0.079, 0.180

]
0.448

rs7988412 MTIF3 0.079 0.057
[
− 0.117, 0.230

]
0.523

rs2283228 KCNQ1 -0.019 0.158
[
− 0.086, 0.402

]
0.205

rs739564 IQCK 0.100 0.058
[
− 0.104, 0.219

]
0.484

rs526134 USP37 0.072 0.056
[
− 0.078, 0.191

]
0.411

rs2272903 TFAP2B 0.110 0.078
[
− 0.124, 0.280

]
0.447

rs2836754 ETS2 0.080 0.088
[
− 0.046, 0.222

]
0.200

rs2535633 ITIH4 0.025 0.053
[
− 0.071, 0.177

]
0.404

rs11208662 LEPR 0.134 0.157
[
− 0.053, 0.367

]
0.143

rs6232 PCSK1 0.081 0.138
[
− 0.144, 0.421

]
0.338

rs749767 KAT8 0.068 0.088
[
− 0.044, 0.220

]
0.193

rs1561288 ADCY3 0.022 -0.034
[
− 0.177, 0.110

]
0.646

rs10144353 PRKCH 0.029 0.065
[
− 0.164, 0.294

]
0.578

rs1211166 NTRK2 0.030 0.002
[
− 0.150, 0.153

]
0.982

rs17001561 SCARB2 0.079 -0.033
[
− 0.208, 0.141

]
0.709

rs1780050 NEXN 0.042 0.000
[
− 0.125, 0.125

]
0.997

GS-BMI 0.111 0.136
[
0.112, 0.160

]
1.12E-29 ∗

Part 4 - Every 10th Perecentile (5th to 95th)

SNP Gene RI50 βMR

[
95%CI

]
p-value

rs1421085 FTO 0.467 0.495
[
0.365, 0.624

]
8.00E-14 ∗

rs6235 PCSK1 0.084 0.336
[
0.194, 0.478

]
3.49E-06 ∗

rs7903146 TCF7L2 0.147 0.314
[
0.177, 0.452

]
7.12E-06 ∗

rs11873305 MC4R 0.384 0.629
[
0.332, 0.926

]
3.26E-05 ∗

rs12617233 FANCL 0.132 0.270
[
0.141, 0.400

]
4.34E-05 ∗

rs11672660 GIPR 0.229 0.316
[
0.161, 0.471

]
6.24E-05 ∗

rs997295 MAP2K5 0.125 0.210
[
0.082, 0.338

]
0.001

rs6499653 FTO 0.123 0.269
[
0.119, 0.419

]
4.43E-04 ∗

rs3824755 NT5C2 0.218 0.356
[
0.139, 0.573

]
1.30E-03 ∗

rs7553158 TNNI3K 0.093 0.189
[
0.060, 0.318

]
0.004

rs10767664 BDNF 0.248 0.216
[
0.056, 0.375

]
0.008

rs4788099 SH2B1 0.168 0.219
[
0.077, 0.361

]
0.002

rs17066846 MC4R 0.117 0.209
[
0.051, 0.368

]
0.009

rs9356744 CDKAL1 0.070 0.202
[
0.060, 0.345

]
0.005

rs6453133 HMGCR 0.128 0.160
[
0.021, 0.299

]
0.024

Continued on next page

246



P.hD. Thesis - Akram Alyass McMaster University - CSE

Table A9 – Continued from previous page
SNP Gene RI50 βMR

[
95%CI

]
p-value

rs2819347 LMOD1 0.102 0.134
[
− 0.003, 0.270

]
0.055

rs2075650 TOMM40 0.275 0.161
[
− 0.021, 0.343

]
0.082

rs4946932 FOXO3 0.091 0.077
[
− 0.066, 0.219

]
0.292

rs2984618 TAL1 0.066 0.107
[
− 0.022, 0.237

]
0.104

rs980828 NOS1AP 0.025 0.092
[
− 0.036, 0.219

]
0.158

rs1788826 NPC1 0.105 0.088
[
− 0.046, 0.223

]
0.198

rs11570094 SPI1 0.098 0.108
[
− 0.032, 0.248

]
0.131

rs7988412 MTIF3 0.112 0.124
[
− 0.057, 0.305

]
0.178

rs2283228 KCNQ1 -0.023 0.080
[
− 0.176, 0.336

]
0.540

rs739564 IQCK 0.121 0.100
[
− 0.068, 0.269

]
0.244

rs526134 USP37 0.059 0.094
[
− 0.042, 0.231

]
0.177

rs2272903 TFAP2B 0.132 0.082
[
− 0.118, 0.282

]
0.422

rs2836754 ETS2 0.087 0.061
[
− 0.076, 0.197

]
0.384

rs2535633 ITIH4 0.023 0.069
[
− 0.060, 0.198

]
0.297

rs11208662 LEPR 0.129 0.123
[
− 0.101, 0.347

]
0.283

rs6232 PCSK1 0.070 0.151
[
− 0.131, 0.434

]
0.294

rs749767 KAT8 0.060 0.086
[
− 0.051, 0.222

]
0.217

rs1561288 ADCY3 0.035 -0.041
[
− 0.194, 0.112

]
0.596

rs10144353 PRKCH 0.051 0.098
[
− 0.132, 0.329

]
0.403

rs1211166 NTRK2 0.042 0.008
[
− 0.152, 0.168

]
0.920

rs17001561 SCARB2 0.078 -0.038
[
− 0.220, 0.145

]
0.686

rs1780050 NEXN 0.045 0.008
[
− 0.121, 0.136

]
0.907

GS-BMI 0.111 0.150
[
0.126, 0.174

]
5.79E-34 ∗

Table A10: BMI was divided into BMI categories, and the effects of SNPs on the risk of
overweight, obesity class I, class II and class III relative to normal weight (Controls) were
tested using logistic regression. Models were adjusted for age, age-squared, sex and study.
OR is the odds ratio and 95%CI are the 95% confidence intervals.

SNP Gene RI50 βMR

[
95%CI

]
p-value

Normal Weight vs Overweight
rs1421085 FTO 27437/21507 1.096

[
1.067, 1.125

]
1.32E-11

rs2075650 TOMM40 27273/21339 1.102
[
1.061, 1.144

]
4.01E-07

rs10767664 BDNF 27247/21329 1.061
[
1.028, 1.095

]
2.62E-04

rs4788099 SH2B1 23391/19340 1.034
[
1.005, 1.064

]
0.021

rs4946932 FOXO3 26055/20518 1.034
[
1.004, 1.064

]
0.025

rs11672660 GIPR 26538/20708 1.038
[
1.005, 1.071

]
0.025

rs2819347 LMOD1 27432/21508 1.030
[
1.002, 1.059

]
0.037
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SNP Gene Case/Control OR

[
95%CI

]
p-value

rs12617233 FANCL 27438/21507 1.028
[
1.001, 1.056

]
0.045

rs6453133 HMGCR 27394/21474 1.026
[
0.997, 1.056

]
0.074

rs17001561 SCARB2 24172/20030 1.033
[
0.995, 1.073

]
0.086

rs526134 USP37 23431/19389 1.025
[
0.996, 1.054

]
0.087

rs10144353 PRKCH 24005/19863 0.959
[
0.914, 1.007

]
0.090

rs11570094 SPI1 27419/21503 1.024
[
0.996, 1.054

]
0.097

rs749767 KAT8 25891/20351 1.022
[
0.995, 1.051

]
0.113

rs3824755 NT5C2 27434/21508 1.034
[
0.988, 1.082

]
0.149

rs11208662 LEPR 27422/21495 1.033
[
0.988, 1.081

]
0.153

rs17066846 MC4R 27388/21474 1.024
[
0.991, 1.059

]
0.162

rs739564 IQCK 26653/20816 1.025
[
0.990, 1.061

]
0.165

rs1788826 NPC1 27435/21504 1.019
[
0.991, 1.047

]
0.186

rs7988412 MTIF3 22626/18870 1.023
[
0.986, 1.061

]
0.219

rs2984618 TAL1 27417/21483 1.016
[
0.990, 1.044

]
0.228

rs7903146 TCF7L2 27437/21508 1.016
[
0.988, 1.046

]
0.260

rs9356744 CDKAL1 25837/20317 0.984
[
0.956, 1.012

]
0.260

rs6235 PCSK1 27418/21498 0.984
[
0.955, 1.013

]
0.274

rs2272903 TFAP2B 27437/21505 1.022
[
0.980, 1.066

]
0.306

rs7553158 TNNI3K 27437/21508 1.013
[
0.987, 1.040

]
0.335

rs2283228 KCNQ1 26658/20845 0.977
[
0.926, 1.030

]
0.381

rs997295 MAP2K5 27429/21505 1.011
[
0.985, 1.038

]
0.404

rs2836754 ETS2 24165/20021 1.010
[
0.982, 1.039

]
0.470

rs2535633 ITIH4 27422/21491 0.990
[
0.964, 1.017

]
0.477

rs1780050 NEXN 27435/21507 1.008
[
0.982, 1.035

]
0.539

rs1561288 ADCY3 27436/21506 1.007
[
0.977, 1.039

]
0.654

rs1211166 NTRK2 27431/21504 0.994
[
0.962, 1.026

]
0.696

rs6232 PCSK1 27435/21505 0.993
[
0.936, 1.054

]
0.826

rs6499653 FTO 27303/21389 0.997
[
0.967, 1.027

]
0.833

rs980828 NOS1AP 27431/21506 0.998
[
0.972, 1.024

]
0.860

rs11873305 MC4R 27437/21507 0.995
[
0.931, 1.063

]
0.881

GS-BMI 27434/21507 1.019
[
1.014, 1.024

]
2.86E-13

Normal Weight vs Obesity Class I
rs1421085 FTO 15821/21507 1.167

[
1.132, 1.204

]
8.07E-23

rs2075650 TOMM40 15746/21339 1.120
[
1.071, 1.171

]
5.33E-07

rs10767664 BDNF 15732/21329 1.093
[
1.053, 1.134

]
2.73E-06

rs2819347 LMOD1 15819/21508 1.070
[
1.036, 1.105

]
4.24E-05

rs11672660 GIPR 15248/20708 1.068
[
1.028, 1.109

]
6.76E-04

rs2836754 ETS2 13258/20021 1.053
[
1.019, 1.089

]
2.28E-03

rs6453133 HMGCR 15803/21474 1.053
[
1.019, 1.089

]
2.31E-03

rs11873305 MC4R 15820/21507 1.127
[
1.040, 1.220

]
3.40E-03

rs4788099 SH2B1 12831/19340 1.049
[
1.014, 1.085

]
5.94E-03

rs3824755 NT5C2 15820/21508 1.075
[
1.020, 1.133

]
6.95E-03
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SNP Gene Case/Control OR

[
95%CI

]
p-value

rs11570094 SPI1 15815/21503 1.046
[
1.012, 1.081

]
8.20E-03

rs749767 KAT8 14899/20351 1.043
[
1.010, 1.078

]
0.010

rs7553158 TNNI3K 15820/21508 1.040
[
1.008, 1.072

]
0.012

rs997295 MAP2K5 15818/21505 1.039
[
1.007, 1.071

]
0.016

rs1788826 NPC1 15819/21504 1.039
[
1.007, 1.073

]
0.018

rs739564 IQCK 15387/20816 1.049
[
1.008, 1.093

]
0.020

rs11208662 LEPR 15805/21495 1.061
[
1.007, 1.117

]
0.027

rs17066846 MC4R 15806/21474 1.044
[
1.004, 1.085

]
0.029

rs7988412 MTIF3 12341/18870 1.049
[
1.004, 1.095

]
0.030

rs10144353 PRKCH 13188/19863 1.061
[
1.004, 1.122

]
0.036

rs6499653 FTO 15762/21389 1.037
[
1.002, 1.074

]
0.040

rs17001561 SCARB2 13263/20030 1.046
[
1.001, 1.093

]
0.046

rs4946932 FOXO3 14974/20518 1.035
[
1.000, 1.070

]
0.049

rs12617233 FANCL 15820/21507 1.030
[
0.998, 1.062

]
0.068

rs2984618 TAL1 15814/21483 1.027
[
0.995, 1.059

]
0.096

rs1780050 NEXN 15820/21507 1.021
[
0.990, 1.053

]
0.191

rs7903146 TCF7L2 15821/21508 1.022
[
0.989, 1.056

]
0.201

rs1561288 ADCY3 15819/21506 1.022
[
0.986, 1.060

]
0.233

rs526134 USP37 12760/19389 1.019
[
0.985, 1.054

]
0.270

rs2272903 TFAP2B 15821/21505 1.019
[
0.970, 1.070

]
0.449

rs6235 PCSK1 15812/21498 1.013
[
0.979, 1.048

]
0.469

rs980828 NOS1AP 15820/21506 1.010
[
0.980, 1.042

]
0.508

rs1211166 NTRK2 15818/21504 1.010
[
0.972, 1.050

]
0.600

rs2535633 ITIH4 15816/21491 1.006
[
0.975, 1.037

]
0.724

rs9356744 CDKAL1 14868/20317 1.003
[
0.970, 1.037

]
0.856

rs6232 PCSK1 15820/21505 0.998
[
0.931, 1.069

]
0.946

rs2283228 KCNQ1 15308/20845 1.001
[
0.941, 1.065

]
0.977

GS-BMI 15818/21507 1.041
[
1.035, 1.047

]
5.80E-42

Normal Weight vs Obesity Class II
rs1421085 FTO 6545/21507 1.293

[
1.240, 1.347

]
4.36E-34

rs11672660 GIPR 6273/20708 1.141
[
1.083, 1.202

]
7.45E-07

rs10767664 BDNF 6497/21329 1.122
[
1.067, 1.181

]
8.71E-06

rs4788099 SH2B1 5243/19340 1.109
[
1.059, 1.161

]
9.33E-06

rs2075650 TOMM40 6510/21339 1.123
[
1.058, 1.193

]
1.44E-04

rs7903146 TCF7L2 6545/21508 1.090
[
1.042, 1.140

]
1.76E-04

rs1788826 NPC1 6543/21504 1.083
[
1.037, 1.130

]
2.69E-04

rs2819347 LMOD1 6544/21508 1.082
[
1.036, 1.130

]
3.49E-04

rs2272903 TFAP2B 6545/21505 1.115
[
1.042, 1.193

]
1.60E-03

rs6453133 HMGCR 6542/21474 1.072
[
1.025, 1.121

]
2.48E-03

rs17066846 MC4R 6538/21474 1.078
[
1.024, 1.135

]
4.10E-03

rs3824755 NT5C2 6545/21508 1.105
[
1.030, 1.185

]
5.05E-03

rs7553158 TNNI3K 6545/21508 1.059
[
1.016, 1.103

]
6.53E-03
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[
95%CI

]
p-value

rs11873305 MC4R 6545/21507 1.163
[
1.043, 1.299

]
7.11E-03

rs997295 MAP2K5 6542/21505 1.055
[
1.012, 1.100

]
0.011

rs11208662 LEPR 6540/21495 1.089
[
1.015, 1.167

]
0.016

rs739564 IQCK 6373/20816 1.065
[
1.008, 1.125

]
0.025

rs12617233 FANCL 6545/21507 1.046
[
1.003, 1.091

]
0.036

rs2836754 ETS2 5409/20021 1.050
[
1.003, 1.099

]
0.036

rs4946932 FOXO3 6192/20518 1.049
[
1.002, 1.098

]
0.042

rs526134 USP37 5174/19389 1.045
[
0.999, 1.095

]
0.058

rs2984618 TAL1 6540/21483 1.041
[
0.999, 1.085

]
0.058

rs9356744 CDKAL1 6155/20317 1.034
[
0.988, 1.083

]
0.145

rs6232 PCSK1 6545/21505 1.065
[
0.971, 1.166

]
0.180

rs749767 KAT8 6157/20351 1.029
[
0.985, 1.075

]
0.198

rs7988412 MTIF3 5024/18870 1.038
[
0.978, 1.101

]
0.221

rs980828 NOS1AP 6545/21506 1.025
[
0.984, 1.068

]
0.235

rs1780050 NEXN 6542/21507 1.024
[
0.983, 1.068

]
0.259

rs11570094 SPI1 6544/21503 1.025
[
0.980, 1.072

]
0.275

rs6499653 FTO 6528/21389 1.026
[
0.979, 1.075

]
0.281

rs6235 PCSK1 6541/21498 1.019
[
0.973, 1.067

]
0.428

rs2535633 ITIH4 6543/21491 0.989
[
0.948, 1.031

]
0.589

rs2283228 KCNQ1 6304/20845 0.982
[
0.903, 1.068

]
0.675

rs1211166 NTRK2 6543/21504 0.994
[
0.944, 1.046

]
0.813

rs10144353 PRKCH 5377/19863 1.009
[
0.934, 1.090

]
0.813

rs1561288 ADCY3 6545/21506 1.006
[
0.958, 1.056

]
0.819

rs17001561 SCARB2 5412/20030 1.001
[
0.942, 1.063

]
0.980

GS-BMI 6545/21507 1.058
[
1.050, 1.066

]
1.33E-44

Normal Weight vs Obesity Class III
rs1421085 FTO 3919/21507 1.340

[
1.273, 1.410

]
3.18E-29

rs10767664 BDNF 3898/21329 1.147
[
1.076, 1.223

]
2.87E-05

rs4788099 SH2B1 3119/19340 1.120
[
1.058, 1.186

]
1.04E-04

rs12617233 FANCL 3920/21507 1.108
[
1.051, 1.167

]
1.34E-04

rs11672660 GIPR 3802/20708 1.123
[
1.053, 1.198

]
4.24E-04

rs7903146 TCF7L2 3919/21508 1.097
[
1.038, 1.161

]
1.19E-03

rs6499653 FTO 3912/21389 1.095
[
1.034, 1.160

]
1.90E-03

rs4946932 FOXO3 3700/20518 1.092
[
1.031, 1.157

]
2.94E-03

rs7553158 TNNI3K 3920/21508 1.077
[
1.023, 1.133

]
4.65E-03

rs2272903 TFAP2B 3920/21505 1.128
[
1.037, 1.229

]
5.12E-03

rs2984618 TAL1 3919/21483 1.074
[
1.020, 1.130

]
7.02E-03

rs997295 MAP2K5 3920/21505 1.073
[
1.020, 1.130

]
7.03E-03

rs1788826 NPC1 3919/21504 1.075
[
1.020, 1.134

]
7.42E-03

rs11570094 SPI1 3919/21503 1.078
[
1.020, 1.139

]
7.77E-03

rs739564 IQCK 3836/20816 1.083
[
1.011, 1.160

]
0.023

rs3824755 NT5C2 3920/21508 1.102
[
1.009, 1.202

]
0.029
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[
95%CI

]
p-value

rs2836754 ETS2 3201/20021 1.064
[
1.005, 1.127

]
0.035

rs6235 PCSK1 3914/21498 1.063
[
1.003, 1.125

]
0.038

rs6453133 HMGCR 3915/21474 1.061
[
1.003, 1.122

]
0.039

rs11873305 MC4R 3920/21507 1.149
[
1.001, 1.323

]
0.050

rs17066846 MC4R 3914/21474 1.059
[
0.993, 1.129

]
0.079

rs11208662 LEPR 3915/21495 1.069
[
0.980, 1.164

]
0.130

rs2075650 TOMM40 3898/21339 1.057
[
0.982, 1.138

]
0.139

rs526134 USP37 3105/19389 1.041
[
0.983, 1.102

]
0.172

rs1780050 NEXN 3920/21507 1.035
[
0.983, 1.090

]
0.191

rs1211166 NTRK2 3917/21504 1.043
[
0.978, 1.112

]
0.205

rs2819347 LMOD1 3920/21508 1.034
[
0.980, 1.092

]
0.220

rs980828 NOS1AP 3920/21506 1.032
[
0.981, 1.085

]
0.230

rs10144353 PRKCH 3180/19863 0.942
[
0.853, 1.040

]
0.240

rs9356744 CDKAL1 3686/20317 1.031
[
0.974, 1.091

]
0.298

rs7988412 MTIF3 2960/18870 1.039
[
0.964, 1.119

]
0.315

rs2283228 KCNQ1 3818/20845 0.950
[
0.855, 1.054

]
0.341

rs749767 KAT8 3678/20351 1.027
[
0.972, 1.084

]
0.341

rs2535633 ITIH4 3917/21491 1.023
[
0.971, 1.078

]
0.383

rs1561288 ADCY3 3920/21506 1.021
[
0.962, 1.085

]
0.493

rs17001561 SCARB2 3202/20030 1.025
[
0.951, 1.104

]
0.517

rs6232 PCSK1 3920/21505 1.026
[
0.914, 1.150

]
0.660

GS-BMI 3920/21507 1.069
[
1.059, 1.080

]
1.25E-40
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Appendix B

The differences between CQR and UQR

The terms “conditional” and “unconditional” refer to the type of quantiles modeled by

each of the two methods. CQR models quantiles of the response variable in the form of a

conditional distribution (i.e. QY |X1,X2(τ | X1 = x1, X2 = x2), where X1 and X2 are two

explanatory variables). The coefficients of explanatory variables in CQR models are condi-

tional effects. They are average effects on population quantiles given information on all other

explanatory variables. There is a growing consensus in the literature that many researchers

have misused CQR by misinterpreting coefficients [278]. Unfortunately, the law of iterative

expectations do not apply for conditional quantile functions. Hence, integrating out other

conditioning explanatory variables is necessary to obtain an interpretable marginal effect.

However, the difficulty shifts from coefficient interpretations to integration methods that

may not work (i.e. sparse data) and their computational overheads. Examples of integration

approaches are provided by Melly B. and Powell D. [279, 280]. The marginalization of CQR

coefficients remains an active research area [281, 282]. Other methods for marginalizing

quantile regression estimates include UQR that was introduced by Fripo 2009 [253]. UQR

is based on the concept of re-centered influence functions (RIF) that transform the response

into a new variable having asymptotic mean and variance statistics equal to that of the

sample quantile. Hence, the transformed variable can be modeled as a function of explana-

tory variables using OLS regression where coefficients are interpreted as marginal effects (i.e.

E
[
RIF (Y, τ) | X1 = x1, X2 = x2

]
= β0 + β1x1 + β2x2) [253]. In short, UQR approximates

and models unconditional quantile of the response variable post removal of ’contamination’

by the explanatory variables [253]. It is straightforward and is computationally inexpensive
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given closed form solutions.

Overall, both CQR and UQR models provide similar unadjusted estimates using univari-

able models where both estimates are marginal effects. This is because CQR estimates are

not conditioned on other explanatory variables that need to be integrated out. The differ-

ence between CQR and UQR lies in adjusted estimates using multvariable regression models

with two or more explanatory variables.
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Motivational Example

Quantile regression estimates of genetic variants across the sample distribution capture the

location, scale, and shape of interacting variables. To show this, let’s consider simulating

the interacting variable, X, from a skew-normal distribution, SN(ζ, ω, α), with location (ζ),

scale (ω), and shape (α) parameters. The mean and variance of X are given as

µx = ζ + ωδ
√

2/π

σ2
x = ω2

(
1− 2δ2/π

) (5.1)

where

δ = α/
√

1 + α2 (5.2)

The partial residual, εx, follows the same distribution family of X but with a mean of

zero. That is, a skew-normal distribution with a location parameter, ζ = −ωδ
√

2/π, such

that µεx = 0. We simulated independent and identically distributed (i.i.d.) samples from X,

and G, with error ε. The response , Y , is generated as given in equation 4.1 with coefficients

β1 = 1, β2 = 0, β3 = 1, 0, or −1 under different scale and shape parameters for the interacting

variable X. Interaction effects with the same direction as the marginal effects are called

synergistic interaction effects (e.g. β1 = 1 and β3 = 1), where as interactions with opposite

direction of effects are called antagonistic interaction effects (e.g. β1 = 1 and β3 = −1). The

sample size was set to n = 10000. G and ε are simulated from a binomial with minor allele

frequency (MAF ) of 0.5 and a standard normal distribution, respectively. Lastly, CQR

and UQR were fitted and compared to the truth given in equation 4.5. Note that CQR and

UQR produce similar estimates for univeriable models (Supplementary Material). Figure B1

shows CQR and UQR estimates under an unadjusted interacting variable X with different

scale and shape parameters. An increase in the scale parameter of X results in a larger slope

of β(τ) with τ , while the increasing the skewness shifts β(τ) vertically corresponding to the

direction of the interaction effect as ωδ
√

2/π. Note that in the case of perfect antagonistic

interactions where β1 = −β3, the resulting QR estimates correspond to a shift in interacting

variable (ωδ
√

2/π). This can be easily seen if we consider the effect of such interactions on

the heterosdastic model in equation 4.4 where yi becomes
(
β0 + β1µx

)
+
(
β2 + β3µx

)
gi + εi.
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Hence, QR curves characterize the distribution of interacting variables(s), where we note

that skewness results in vertical shifts similar to marginal effects.
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Figure B1: Genetic effects across percentiles for interacting variables with different scale and
shape parameters.
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Figure B2: Computational Efficiency of UQR over CQR. The computational time for UQR
scales well with all number of snps, sample size, percentiles, and covariates compared to
CQR. CPU time for UQR included time required for RIF transformation.
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Figure B4: Power of detecting interaction effects for 4 and 5 genotype group levels.
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Multiple Interactions

The formulation of heteroscedasticity due to unadjusted interactions as given in equation

4.5 can be generalized further for a set of k independent interacting variables in matrix form

as

QY (τ | G = g) = Aβ(τ) (5.3)

where A is the design matrix

(
1 G

′

)
and

β(τ) =

 β0 +
∑k

j=1 βxjµxj

βg +
∑k

j=1 βintjµxj

+

∑k
j=1 βxjQεj(τ) +Qεk+1

(τ)∑k
j=1 βintjQεj(τ)

 (5.4)

Here, βg and βxj are the marginal effects of the genetic variant and k interacting variables,

while βintj are their respective interaction coefficients. The cumulative two-way interactions

of k variables results in a linear heteroscedastic function 1
′
γ where γ has elements σj(g) =

βxj + βintjg.

We can further break down the independence assumption between interacting variables

given a joint CDF FX with their corresponding mean vector and variance-covariance matrix

ΣX . The multivariate density of their corresponding errors εX , FεX , captures the same

shape and scale of FX with a mean vector of zero and variance-covariance matrix ΣX . In

this case, βG(τ) changes with the multivariate quantile function QεX [283]. This formulation

highlights that QR estimates of βG(τ) represent contour lines at τ given the joint density of

k interacting variables weighted by degree of interaction effects. In this regard, the modeling

of QR estimates across phenotype distributions can be useful for identifying variants with

potential interactions.
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Meta-regression of QR Estimates Under no Interactions

This section aims to compute the MR parameter estimates to verify how the compares

with the original linear model of two-way interactions given in equation 4.1. Let’s define A

and ΣG as the design matrix and the cross-distribution variance-covariance matrix for βG(τ)

estimates. The closed solution for MR coefficients are given as:

β̂M =
(
A

′
Σ−1G A

)
A

′
Σ−1G βG(τ )

=

(
β̂G β̂τ

) (5.5)

where β̂G and β̂τ correspond to the variant’s marginal and slope for percentiles respectively.

Under the null hypothesis of no interactions(H0 : β3 = 0), βG(τ)
′

=

(
βg · · · βg

)
. The

design matrix of MR, A is given by

A =


1 τ1
...

...

1 τm

 (5.6)

Let’s further denote the inverse matrix of ΣG as

Σ−1 =


w11 · · · w1m

...
. . .

...

wm1 · · · wmm

 (5.7)

The initial matrix computations as parts can be given as:

A
′
Σ−1A =


∑m

i=1wi1 · · ·
∑mm

i=1 wim
...

. . .
...∑m

i=1 τiwi1 · · ·
∑mm

i=1 τiwim




1 τ1
...

...

1 τm


=

 ∑m
i=1

∑m
j=1wij

∑m
i=1 τi

∑m
j=1wij∑m

i=1

∑m
j=1 τiwij

∑m
i=1 τi

∑m
j=1 τiwij


(5.8)
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Note that

(A
′
Σ−1A)−1 =

1

C

∑m
i=1 τi

∑m
j=1 τiwij −

∑m
i=1 τi

∑m
j=1wij

−
∑m

i=1

∑m
j=1 τiwij

∑m
i=1

∑m
j=1wij

 (5.9)

where C =
(∑m

i=1

∑m
j=1wij

)(∑m
i=1 τi

∑m
j=1 τiwij

)
−
(∑m

i=1 τi
∑m

j=1wij
)(∑m

i=1

∑m
j=1 τiwij

)
Furthermore,

A
′
Σ−1Aβ(τ) =


∑m

i=1wi1 · · ·
∑mm

i=1 wim
...

. . .
...∑m

i=1 τiwi1 · · ·
∑mm

i=1 τiwim



βg
...

βg


=

 βg
∑m

i=1

∑m
j=1wij

βg
∑m

i=1

∑m
j=1 τiwij


(5.10)

Hence,

β̂M = (A
′
Σ−1A)−1A

′
Σ−1Aβ(τ)

=
1

C

∑m
i=1 τi

∑m
j=1 τiwij −

∑m
i=1 τi

∑m
j=1wij

−
∑m

i=1

∑m
j=1 τiwij

∑m
i=1

∑m
j=1wij


 βg

∑m
i=1

∑m
j=1wij

βg
∑m

i=1

∑m
j=1 τiwij


=

1

C

βg[((∑m
i=1

∑m
j=1wij

)(∑m
i=1 τi

∑m
j=1 τiwij

)
−
(∑m

i=1 τi
∑m

j=1wij
)(∑m

i=1

∑m
j=1 τiwij

)]
βg
[
−
(∑m

i=1

∑m
j=1 τiwij

)(∑m
i=1

∑m
j=1wij

)
+
(∑m

i=1

∑m
j=1wij

)(∑m
i=1

∑m
j=1 τiwij

)]


=
1

C

βgC
0


=

βg
0


(5.11)

262



Bibliography

[1] M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz, C. Margono, E. C. Mullany,

S. Biryukov, C. Abbafati, S. F. Abera, et al., “Global, regional, and national preva-

lence of overweight and obesity in children and adults during 1980–2013: a systematic

analysis for the global burden of disease study 2013,” The lancet, vol. 384, no. 9945,

pp. 766–781, 2014.

[2] B. H. Hidaka, “Depression as a disease of modernity: explanations for increasing preva-

lence,” Journal of affective disorders, vol. 140, no. 3, pp. 205–214, 2012.

[3] N. R. F. Collaboration et al., “Worldwide trends in diabetes since 1980: a pooled

analysis of 751 population-based studies with 4· 4 million participants,” The Lancet,

vol. 387, no. 10027, pp. 1513–1530, 2016.

[4] K. T. Mills, J. D. Bundy, T. N. Kelly, J. E. Reed, P. M. Kearney, K. Reynolds, J. Chen,

and J. He, “Global disparities of hypertension prevalence and control,” Circulation,

vol. 134, no. 6, pp. 441–450, 2016.

[5] A. Aguilar, “Hypertension: Global blood pressure trends,” Nature Reviews Nephrology,

2016.

[6] F. Farzadfar, M. M. Finucane, G. Danaei, P. M. Pelizzari, M. J. Cowan, C. J. Paciorek,

G. M. Singh, J. K. Lin, G. A. Stevens, L. M. Riley, et al., “National, regional, and

global trends in serum total cholesterol since 1980: systematic analysis of health ex-

amination surveys and epidemiological studies with 321 country-years and 3· 0 million

participants,” The Lancet, vol. 377, no. 9765, pp. 578–586, 2011.

263



P.hD. Thesis - Akram Alyass McMaster University - CSE

[7] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer

statistics,” CA: a cancer journal for clinicians, vol. 61, no. 2, pp. 69–90, 2011.

[8] J. M. Gohlke, R. Thomas, Y. Zhang, M. C. Rosenstein, A. P. Davis, C. Murphy, K. G.

Becker, C. J. Mattingly, and C. J. Portier, “Genetic and environmental pathways to

complex diseases,” BMC Systems Biology, vol. 3, no. 1, p. 46, 2009.

[9] L. Hood and M. Flores, “A personal view on systems medicine and the emergence of

proactive p4 medicine: predictive, preventive, personalized and participatory,” New

Biotechnology, vol. 29, no. 6, pp. 613–624, 2012.

[10] B. Maher, “Personal genomes: The case of the missing heritability,” Nature News,

vol. 456, no. 7218, pp. 18–21, 2008.

[11] M. J. Khoury, M. L. Gwinn, R. E. Glasgow, and B. S. Kramer, “A population ap-

proach to precision medicine,” American Journal of Preventive Medicine, vol. 42, no. 6,

pp. 639–645, 2012.

[12] G. Taubes and C. C. Mann, “Epidemiology faces its limits,” Science, vol. 269, no. 5221,

p. 164, 1995.

[13] R. J. Loos and E. E. Schadt, “This i believe: gaining new insights through integrating

old data,” Frontiers in Genetics, vol. 3, 2012.

[14] E. E. Schadt and J. L. Björkegren, “New: network-enabled wisdom in biology,

medicine, and health care,” Science Translational Medicine, vol. 4, no. 115, pp. 115rv1–

115rv1, 2012.

[15] E. E. Schadt, “Molecular networks as sensors and drivers of common human diseases,”

Nature, vol. 461, no. 7261, pp. 218–223, 2009.

[16] M. Tremblay-Servier, J. Tremblay, P. Hamet, C. Lenfant, M. Kalia, J. E. Manson,

B. S. McEwen, L. Getz, R. J. Wurtman, T. B. VanItallie, et al., “The medicine of

tomorrow,” Personalized Medicine, vol. 62, no. 1 Suppl 1, 2013.

264



P.hD. Thesis - Akram Alyass McMaster University - CSE
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[215] S. I. Berndt, S. Gustafsson, R. Mägi, A. Ganna, E. Wheeler, M. F. Feitosa, A. E.

Justice, K. L. Monda, D. C. Croteau-Chonka, F. R. Day, et al., “Genome-wide meta-

analysis identifies 11 new loci for anthropometric traits and provides insights into

genetic architecture,” Nature Genetics, vol. 45, no. 5, p. 501, 2013.

[216] Y. Wei, X. Song, M. Liu, I. Ionita-Laza, and J. Reibman, “Quantile regression in the

secondary analysis of case–control data,” Journal of the American Statistical Associa-

tion, vol. 111, no. 513, pp. 344–354, 2016.

[217] J. Yang, A. Bakshi, Z. Zhu, G. Hemani, A. A. Vinkhuyzen, S. H. Lee, M. R. Robinson,

J. R. Perry, I. M. Nolte, J. V. van Vliet-Ostaptchouk, et al., “Genetic variance estima-

tion with imputed variants finds negligible missing heritability for human height and

body mass index,” Nature Genetics, vol. 47, no. 10, p. 1114, 2015.

[218] H. Reddon, H. C. Gerstein, J. C. Engert, V. Mohan, J. Bosch, D. Desai, S. D. Bailey,

R. Diaz, S. Yusuf, S. S. Anand, et al., “Physical activity and genetic predisposition to

obesity in a multiethnic longitudinal study,” Scientific Reports, vol. 6, p. 18672, 2016.

[219] D. Corella, D. K. Arnett, K. L. Tucker, E. K. Kabagambe, M. Tsai, L. D. Parnell, C.-Q.

Lai, Y.-C. Lee, D. Warodomwichit, P. N. Hopkins, et al., “A high intake of saturated

fatty acids strengthens the association between the fat mass and obesity-associated

gene and bmi–,” The Journal of Nutrition, vol. 141, no. 12, pp. 2219–2225, 2011.

[220] T. Lappalainen, J. Lindström, J. Paananen, J. G. Eriksson, L. Karhunen, J. Tuomile-

hto, and M. Uusitupa, “Association of the fat mass and obesity-associated (fto) gene

287



P.hD. Thesis - Akram Alyass McMaster University - CSE

variant (rs9939609) with dietary intake in the finnish diabetes prevention study,”

British Journal of Nutrition, vol. 108, no. 10, pp. 1859–1865, 2012.
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