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ABSTRACT 

Model Predictive Control (MPC) algorithms are widely applied in the chemical process 

industry. The main advantage of these controllers over others is their ability to provide 

multivariable control of the process subject to specified constraints. The presence of de­

grees of freedom in the plant provide an opportunity for the introduction of an optimization 

level (Real-Time Optimization (RTO) level), to determine optimal set points and target val­

ues for controlled variables and manipulated variables respectively, and the constraints the 

plant should follow to provide maximum profit. 

Industrial MPC controllers typically include an upper level steady-state optimizer, which 

usually comprises a linear programming (LP) or quadratic programming (QP) problem. 

This local optimizer may serve either as an integrating level between the low frequency 

nonlinear steady-state RTO and regulatory level, or as an independent optimizer with an 

economic objective function. Many researchers have reported success of LP-MPC cascade 

control system implementations (Sorensen and Cutler, 1998; Verne et al., 1999). However, 

despite its apparent success, poor LP-MPC cascade system performance and possible insta­

bility have also been reported. In particular, Shah et al. (2002) show that in the presence 

of a steady-state LP optimizer, the set-points could have a large variation relative to the 

controlled variable variation; thus the LP could degrade the MPC performance by sending 

highly variable set-points to the controller. Kozub (2002) indicates that in a control sys­

tem with an LP steady-state optimizer, an LP instability problem may arise under certain 

conditions. 

These observations motivated research which aims to investigate the effect of the various 

factors on the stability and performance of the two-level LP-MPC cascade control system. 

Such factors include plant/model mismatch, the frequency of LP implementation, the LP 

objective function, constraints and type of disturbances. 
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Since the optimization can be executed at different frequencies, two most common sce­

narios are considered: (i) when the LP is implemented at steady-state only and (ii) when 

the LP is implemented at every MPC iteration. Initially, steady-state LP optimization only 

is considered and it is shown that the set-points may fail to converge to constant values 

in the absence of external disturbances under certain conditions. Then, the effects of op­

timization frequency and control structure on the closed-loop properties of the LP-MPC 

control system are investigated. Results of a number of case studies are shown, and root 

causes for observed behavior discussed. 

As a part of the regulatory level analysis, the calculation of the closed-loop equilibrium 

of a process controlled by constrained MPC is studied. This problem arises in process de­

sign and operations, and is often applied within an optimization framework. It is shown 

that the effect of the control system on the resulting steady-state must be explicitly ac­

counted for, and that in the general case, the use of a steady-state process model only is not 

sufficient for this calculation to be correctly executed. Two solution strategies, sequential 

and simultaneous, are presented and evaluated. 

The effect of high frequency noise-like disturbances on the two-level control system be­

havior is analyzed. The analysis which verified by case studies, showed that the LP may 

have an effect of amplifying the system noise through the bias term which is used for the 

model update. Such amplification may result in high variation of the LP set points provided 

to the MPC, thereby degrading the overall performance of the two-level system. 

IV 



ACKNOWLEDGEMENTS 

I would like to thank my thesis supervisor Dr. Christopher Swartz for his guidance and 

encouragement throughout the period of my studies. I am very grateful for his vision and 

advice, which inspired me and helped me gain insight into the research process. 

I also would like to thank Dr. Thomas Marlin and Dr. John MacGregor for the many 

interesting discussions and for the knowledge they have imparted to me. I consider myself 

very fortunate to have taken several of their courses. 

I wish to put on record my appreciation for the financial support I received from the McMas­

ter Advanced Control Consortium and the McMaster Chemical Engineering Department, 

without which this research would not have been possible. 

I am very grateful to all my fellow students in the Chemical Engineering Department and, 

in particular, in the Process Control Group for their friendship and support which have 

made these years brighter and more memorable. 

I would like to thank all my friends for their support. I would especially like to thank 

Galini Gavrilidou, for being such a wonderful person, for her kindness and for the encour­

agement she gave me during my studies. 

And last, but certainly not least, I would like to express a deep gratitude towards my 

family, especially to my parents Elena and Alexander, and my sister Maria, for their love 

and care. Their contributions are immeasurable, and I cannot thank them enough for 

everything they have done for me. 

v 



Table of Contents 

1 Introduction 

2 LP-MPC Cascade Control Systems 

2.1 The Basics of RTO . . . . . . . . . 

2.1.1 Main approaches for model-based RTO 

2.2 Composite LP . .. . 

2.3 LP-MPC Integration 

2.4 LP with Incorporated Economics 

2.5 State-Space Formulation of Model Predictive Control . 

2.5.1 Models 

2.5 .2 State and disturbance estimation 

2.5.3 Prediction calculation . . . . . . 

2.5.4 Optimization problem formulation 

1 


6 


6 


8 


10 


11 


19 


21 


22 


23 


24 


25 


VI 




27 2.5.5 Compact formulation 

3 Stability and Performance of LP-MPC Control Systems 	 32 

3.1 Steady-State Optimization . 	 34 

3.1.1 SISO case ..... . 	 34 

3.1.2 MISO case (1 x 2 system) 	 39 

3.1.3 MIMO case (2 x 2 system) 	 45 

3.2 LP Optimization between the Steady-States 	 50 

3.3 The Problem of the Control Structure Selection . 	 54 

3.4 Chapter Summary . . . . . . . . . . . . . . . . . 	 56 

4 Calculation of Closed-Loop Steady-State of Constrained MPC System 58 

4.1 Equilibrium Point Calculation using Steady-State Models 	 60 

4.2 Equilibrium Point Calculation using Dynamic Models . . 	 67 

4.3 	 Equilibrium Point Calculation using Nonlinear Equation Solver 70 

4.4 	 Equilibrium Point Calculation using the Stationary Conditions of Optimality 75 

4.5 	 Inclusion of the Steady-State Simulation into Two-Level Steady-State Opti­

mization ..... . 80 

4.6 	 Chapter Summary 85 

5 LP Sensitivity Analysis 	 87 

vii 



5.1 	 Introduction to LP Sensitivity . . . . 88 

5.2 	 Sensitivity Analysis of SISO System 92 


5.3 	 Sensitivity Analysis of MISO System. Effect of the Bias Noise on the Two-


Level Cascade Control System Behavior. 94 


5.4 	 Sensitivity Analysis of MIMO System . 102 


5.4.1 Sensitivity analysis of a 2 x 2 system. Case 1. . 	 106 


5.4.2 Sensitivity analysis of a 2 x 2 system. Case 2.. 	 109 


5.4.3 Sensitivity analysis of a 2 x 2 system. Case 3.. 	 112 


5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . 	 117 


6 Conclusions and Recommendations 	 119 


6.1 Conclusions . . . . . . . . . . . . . . 	 119 


6.2 Recommendations for Further Work 	 121 


References 	 122 


Vlll 



List of Figures 

2.1 	 Process optimization system structure 7 


2.2 	 Two-stage RTO system hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 18 


3.1 	 Two-level cascade system response. Bias uses the set points for update . 36 


3.2 	 Two-level cascade system response. Bias uses predictions for update 38 


3.3 	 Two level control system responses. Bias uses set points for update . . . . . 41 


3.4 	 Cascade system behavior for different values of model gains (effect of objec­

tive function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 


3.5 	 Cascade system behavior for different values of model gains (effect of the 


constraints) . . . . . . . . . . . . . . . . . . . . . . . . . 43 


3.6 	 Effect of the constraints on the two-level system behavior. Objective function 


maxy,u1 y- u2; LP constraints for the output: -0.2::; y::; 0.2 . . . . . . . . 44 


3.7 	 Bias update with model predictions . 44 


3.8 	 Shell heavy oil fractionator . . . . . . . . . . . . . 45 


3.9 	 Steady-state optimization. MIMO case. -0.5 ::; Y7 . . . . . . . . . . . . . . 48 


ix 




3.10 Steady-state optimization. MIMO case. -0.4::::; Y7 ..... . 	 48 

3.11 Steady-state optimization. No mismatch in the model for Y7 . 	 49 

3.12 Steady-state optimization. All outputs are controlled ( -0.4::::; Y7) 49 

3.13 Steady-state optimization 	 51 

3.14 Frequent LP optimization 	 52 

3.15 	Optimization at every iteration (-0.5::::; Y7) 53 

3.16 	Optimization at every iteration (-0.4 ::::; Y7) 54 

4.1 	 Case Study 4.2: Plant outputs and output prediction trajectories for yset = 

[0.8 	 0.8]T. Solid line: closed-loop output. Diamond: output prediction . . 64 

4.2 	 Case Study 4.3: Function F for different values of the input parameters 

(yset T = [0.8 0.8]). Solid line - responses without MVs moves constraints. 

Knot line - responses with input moves constraints . . . . . . . . . 73 

4.3 	 Dynamic responses for the multi-iteration steady-state simulation . 86 

5.1 	 LP solution as a function of bias . . . . . . . . . 91 

5.2 	 Case Study 5.2: LP solution as a function of bias 93 

5.3 	 Case Study 5.2: Effect of the noisy bias on the LP solution 94 

5.4 	 Two-level LP-MPC control system ....... . 95 


5.5 	 Case Study 5.3: LP solution as a function of bias 96 

X 



5.6 	 Two-level control system response in the presence of output white noise (per­

fect model and no step-like disturbances) . . . . . . . . . . . . . . . . . . . 97 


5.7 	 Two-level control system response in the presence of output white noise and 


output disturbance -2.5. Steady-state gains are larger than 1 . . . . . . . . 98 


5.8 	 Two-level control system response in the presence of output white noise and 


output disturbance. Steady-state gains are smaller than 1 . . . . . . . . . . 99 


5.9 	 Effect of the input noise on the bia..'> term . . . . . . . . . 101 


5.10 	Graphical representation of the LP optimization problem for a 2 x 2 system 105 


5.11 Effect of the bias on the LP solution: Case 1 	 106 


5.12 2 x 2 system sensitivity: Case 1 . . . . . . . . 	 108 


5.13 Effect of the bias on the LP solution: Case 2 	 110 


5.14 2 x 2 system sensitivity: Case 2 ... 	 112 


5.15 Two-level control system response: Case Study 5.5 	 113 


5.16 Effect of the bias on the LP solution: Case 3 ... 	 114 


5.17 2 x 2 system sensitivity: Case 3 . . . 	 116 


5.18 Two-level control system response: Case Study 5.6 	 117 


xi 




List of Tables 

3.1 	 Cascade System Responses for Different Values of Plant/Model Mismatch 


(Bias Uses the Set Points for Update) . . . . . . . . . . . . . . . . . . . . . 35 


3.2 	 Cascade System Responses for Different Values of Plant/Model Mismatch 


(Bias Uses Model Predictions for Update) . . . . . . . . . . . . . . . . . . . 37 


4.1 	 Case Study 4.1: Steady-State Results via Dynamic Simulation and Solution 


of Problem ( 4.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 


4.2 	 Case Study 4.2: Steady-State Results via Dynamic Simulation and Solution 


of Problem ( 4.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 


4.3 	 Case Study 4.2: Variation in Steady-State with Control Parameters for yset = 

[0.8 	 0.8jY ... 65 


4.4 	 Case Study 4.2: Future Input Moves at Steady-State 65 


4.5 	 Case Study 4.2: Variation in Steady-State for Different Move Suppression 


Weights for yset = [0.8 0.8jT . . . . . . . . . . . . . . . . . . . . . . . . . . 66 


4.6 	 Case Study 4.2: Steady-State Results via Dynamic Simulation and Solution 


of Optimization Problem (4.5) . . . . . . . . . . . . . . . . . . . . . . . . . 69 


xii 




4.7 	 Case Study 4.3: Steady-State Simulation using Solver "fsolve" and Different 

Initial Guesses for the Set Point yset T = [0.8 0.8] and l~ul :::; 0.2 . . . . . . 74 

4.8 	 Case Study 4.3: Comparison of the Dynamic Simulation and Steady-State 

Simulation using Nonlinear Equations Solver . . . . . . . . . . . . . . . . . 75 

4.9 	 Case Study 4.3: Comparison of the Dynamic Simulation and Steady-State 

Simulation using KKT Conditions for Optimality . . . . . . . . . 79 

4.10 Solutions of 	the Integrated LP - MPC System for Different LP Objective 

Functions ... 82 

4.11 Case Study 4.3: Steady-State Evolution of LP-MPC Cascade Control System 85 

xiii 



Chapter 1 

Introduction 

For a long time process control was considered as a two-layered structure, with the control 

system above the plant; its main purpose was to bring and maintain plant outputs at spec­

ified set points in the presence of measured and unmeasured disturbances. In a situation of 

strict product specifications, high resource costs and fast-changing market demands, such 

a structure is not able to work effectively. 

Recent progress in control algorithms, numerical calculations for simulation, and optimiza­

tion allowed this two-layered structure to be extended to a multi-level plant-wide optimiza­

tion and scheduling system (Qin and Badgwell, 2003; Marlin and Hrymak, 1997). This 

structure aims to provide optimal operation at different levels of the entire plant. Each 

level in the automation hierarchy is executed at higher frequency than the level above. The 

top level of this hierarchy is plant production and scheduling which is executed once in sev­

eral weeks according to changes in product demand and prices. The next level is real-time 

optimization (RTO), which comprises several optimizers each appointed to a single unit or 

a group of units. The optimizers at this level possess sophisticated nonlinear process models 

and the calculations are executed in terms of hours. The main goal of this level is to provide 

optimal set points and target values in the presence of degrees of freedom to the regulatory 

level below. The regulatory level interacts directly with the plant and is responsible for 
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process control. It is executed at a frequency of minutes or even seconds. Such a multilevel 

structure is able to provide efficient and economically optimal plant operation; it monitors 

the entire plant and makes required corrections according to observed changes. 

Within the past two to three decades Model Predictive Control (MPC) has become the 

advanced control strategy of choice within the chemical process industry. Key advantages 

of MPC over the other control algorithms are its ability to accommodate process interac­

tions and dead time directly; and its ability to explicitly handle constraints on manipulated 

and controlled variables. MPC is a control algorithm in which a dynamic model of the plant 

is explicitly incorporated. This permits future outputs to be predicted based on a future 

set of input moves, an estimate of the process state, and predicted disturbances. An opti­

mization problem is solved at every iteration to yield the set of input moves that minimize 

a (typically quadratic) performance objective. The inputs that correspond to the first time 

interval are implemented, and the process repeated at the end of the sampling period, with 

the difference between the measured and predicted plant outputs used to formulate a new 

disturbance estimate. In this thesis Quadratic Dynamic Matrix Control (Garcia and Mor­

shedi, 1986), using a state-space formulation of the internal dynamic model (Maciejowski, 

2002) is considered as the regulatory level control algorithm. 

An important issue in the design of the hierarchical control system is integration of its 

layers, since each of them has different models and frequency of execution. Great care must 

be given to the integration of RTO and the regulatory level (MPC) because improper de­

sign may result in poor operation performance and even instability which maybe unsafe for 

personnel and equipment. 

A linear programming (LP) and quadratic programming (QP) optimizer has been pro­

posed as an integrating link between nonlinear infrequently executed RTO and MPC. Also, 

a local LP optimizer may be used separately from RTO to accommodate plant degrees of 

freedom according to a specified economic objective function (Sorensen and Cutler, 1998). 

Performance of the LP-MPC cascade control system is analyzed in this thesis. 
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Motivation and Goals 

Despite its apparent success, unsatisfactory performance of LP-MPC cascade control sys­

tems have been reported. Shah et al. (2002) showed that in the presence of a steady-state 

LP optimizer, the set points could have a large variation in comparison with that of the 

controlled variables, which means that the LP can degrade MPC performance by sending 

highly variable set points to the controller. 

Economically optimal plant operation usually occurs at the intersection of constraints. If a 

disturbance enters the plant, the optimum operating point may shift; the LP updates the 

set points which push the plant to operate at a new set of constraints. Kozub (2002) men­

tioned that in an LP-MPC control system, the set of manipulated variables at constraints 

may fluctuate with unexpectedly high frequency. He further noted that it was unlikely that 

disturbances were responsible for such frequent optimum operating point shifts and there 

may be a stability issue in such a cascade system. 

These observations motivated the present investigation of the effect of the LP level on the 

two-level control system behavior. The major focus is on control performance with some 

consideration of the overall system stability. The main goal of the research presented in this 

thesis is to reveal primary factors which can affect the two-level control system behavior 

and show scenarios when undesirable behavior may occur. 

Main Contributions 

Main thesis contributions include the following: 

• 	 The performance of LP-MPC cascade control systems was explored under a variety of 

conditions. This included investigation of the effects of plant/model mismatch, bias 

update scheme, constraints, control structure, LP objective function and LP execution 

frequency. 
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• 	 LP sensitivity to high frequency disturbances was investigated. It was shown that 

poor two-level control system performance may be caused by output noise and the 

particular LP design. Three such designs for a 2 x 2 system were presented and 

discussed. 

• 	 To facilitate simulations in the case of steady-state optimization, dynamic simula­

tio.n can be substituted by plant steady-state calculation that includes the effects of 

constrained predictive controllers. It was shown that the use of steady-state models 

may not be sufficient and dynamic models should be incorporated into the calcula­

tion procedure. This thesis presented and evaluated two methods for calculating the 

closed-loop steady-state of a plant under MPC control in the general case. 

Thesis overview 

• 	 Chapter 2- LP-MPC Cascade Control Systems 

An introduction to the LP-MPC cascade control system with a literature review on 

the topic is given. The role and importance of using a local LP optimizer together 

with the standard MPC controller are highlighted. In this thesis, a state-space for­

mulation of the MPC algorithm and an LP with incorporated economics were chosen 

as components of the two-level LP-MPC cascade control system. Their formulations 

are presented in this chapter. 

• Chapter 3- Stability and Performance of LP-MPC Control Systems 

The effect of the optimization level (LP) on the regulatory level (MPC) is studied 

in this chapter and possible factors which may affect closed-loop stability and perfor­

mance are revealed and discussed. The cascade control system behavior was consid­

ered for two methods of the model bias update and their efficiency and performance 

are presented and compared. The effect of the control structure on the cascade system 

stability and performance is shown. 
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• 	 Chapter 4- Calculation of Closed-Loop Steady-State of Constrained MPC 

System 

This chapter is devoted to the problem of calculation of the closed-loop equilibrium 

point of a process controlled by constrained MPC. It was shown first, that the steady­

state calculation methods which use steady-state models only may not be sufficient in 

some cases. Then, two approaches, a sequential and simultaneous solution strategy 

are presented and analyzed. As a case study, the simultaneous solution method was 

used to study the interaction between LP and MPC levels in an iterative steady-state 

optimization procedure. 

• 	 Chapter 5 - LP Sensitivity Analysis 

The effect of high frequency noise-like disturbances on the performance of the cas­

cade system is studied in this chapter. The dependency of a linear programming 

problem solution on the bias term is presented first. Then, the effect of output noise 

on the two-level control system behavior in SISO and MISO systems is considered. 

Finally, sensitivity of a 2 x 2 cascade control system to nonconstant perturbations 

is investigated, and possible scenarios of performance degradation in the presence of 

output white noise are shown and discussed. 

• 	 Chapter 6 - Conclusions and Recommendations 

This chapter summarizes the main thrust of the thesis, highlighting the major re­

sults and achievements. Some recommendations and directions for future work are 

given. 



Chapter 2 

LP-MPC Cascade Control Systems 


2.1 The Basics of RTO 

Progress in digital computers and advances in modelling and optimization algorithms have 

allowed the application of plant-wide optimization systems, which aim to increase profitabil­

ity of the plant. Real-time optimization (RTO) is a feedback control system that maximizes 

a calculated, inferred estimate of the plant profit by adjusting selected optimization vari­

ables within specified bounds (Marlin and Hrymak, 1997). The scheme of general RTO is 

presented in Figure 2.1. It consists of three main components: data reconciliation and up­

date of model parameters, optimization problem solution and results analysis. Since RTO 

is a closed-loop system, it obtains the data from the plant, and this data is used to update 

model parameters. The model is a necessary component of any RTO system, since it is 

used in the optimization process for plant behavior imitation. Since model accuracy plays 

a crucial role in the optimization process, it is necessary to check that the data from the 

process coincides with that predicted by the model. If it is not true, the parameters in the 

model should be updated, to make the model valid. Clearly, such parameters update is 

possible only at steady-state, since the models used for optimization are usually nonlinear 

fundamental models (material and energy balances, thermodynamic and physical property 

equations and others) and they are valid for the stationary state of the plant. This gives 

6 
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parameters estimate Model-Based
Model Update ...... 

Optimizer 

~ 
measurements manipulated variable~ , 

Sensors Controllers 

J~ 

, 

Process 

Figure 2.1: Process optimization system structure 

rise to the following considerations. First, steady-state detection should be accomplished, 

which is not easy in the presence of noisy data and poor measurements. Second, active 

disturbances nmst be identified, otherwise the updated model will not be valid when these 

disturbances disappear. Also, it is important to detect and remove gross errors, such as 

instruments malfunctions, poor sampling, leaks etc, which also degrade the model quality. 

The optimization procedure employs the updated model to predict the optimum set points 

and target values. Generally this is a nonlinear optimization problem. The solution of this 

problem becomes even more difficult when ordinary differential equations (ODE) appear 

in the model. There exist several methods for solving such problems. Marlin and Hrymak 

(1997) cite the most commonly used as being augmented Lagrangian methods and reduced 

sequential quadratic programming. If the control system experiences saturation, the result­

ing process steady-state would be different than expected. To take the control system effects 

into account, the model should contain the steady-state effects of the process control system 

and any routine actions by the operators. It is not a problem for simple controllers which 

never experience saturation; however it is not straightforward for multivariable controllers 

with constraints, which can experience saturation effects. The effect of the control system 

on the steady-state plant behavior is considered in more detail in Chapter 4. 
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After a solution of the optimization procedure has been found, it must be analyzed to 

determine whether or not it should be passed down to the control level. For example, it 

should be checked that the plant is still at the steady-state, that the bounds of the opti­

mization variables are unchanged, i.e. the conditions under which the optimal solution has 

been found, and that the optimization variables are still available for manipulation. Also, 

the plant profit improvement should be evaluated and in the case when it is not important, 

the entire solution can be rejected. It is important to mention that it is inappropriate to 

apply a part of the solution, because it can lead to poor performance or even infeasible 

process operation. 

As it was mentioned above, the model in RTO is its "heart" and it must meet necessary 

requirements in order for RTO to work properly. Besides the fact that the model should be 

accurate, it must be adequate. Model adequacy means that it has such structure, that there 

exists a set of parameters (calculated operating conditions), which will coincide with the 

true plant optimal operating conditions. It does not mean that the calculated parameters 

provide true plant optimum, but it means that the model profit curve has a maximum at 

the same parameter vdlues as the true plant profit curve. Since the RTO calculates the 

operating conditions which maximize the profit, adequacy should be guaranteed at the op­

timum point, while beyond this point adequacy may not be preserved. This definition of 

model adequacy is called "point-wise" model adequacy and is well studied in Forbes and 

Marlin (1994a) (Forbes and Marlin, 1994b). The main requirement here is that for the RTO 

model based optimizer to yield the plant optimum, the optimality conditions for the model 

must be valid at the optimum plant conditions. The model is adequate if there exists a set 

of adjustable parameters, such that the statement above is preserved. 

2.1.1 Main approaches for model-based RTO 

In the previous section is was shown that the general RTO consists of two main levels: a 

lower level, comprised of a plant under a control system and an upper level, comprised 
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of a model update block and an optimizer. There can be more optimization levels above 

this two-level system, which would range in objectives, type of models used, frequency of 

implementation and so forth. The problem of coordination of these levels is one of the most 

challenging problems in the RTO research field. The difficulties here arise, since the levels 

employ different models for the calculation of optimal values, and each of these models is 

not perfect and must be regularly updated. 

According to the types of objective function formulation, the methods of the model up­

date, and the model type used, the following groups of RTO can be classified (Marlin and 

Mudt, 2004) (here and further, Model Predictive Control (MPC) is assumed as the control 

system): 

1. 	RTO is an LP(QP) optimization problem on top of MPC. This optimization level 

does not optimize the plant economics directly and is used to select the least costly 

manipulated variables (MV s). It uses the bias model update. The advantage of this 

approach is that it is simple in implementation, fast and does not cost much to install. 

The disadvantage is that it optimizes not the plant profit, but a surrogate variable 

(feed rate, conversion, etc) 

2. 	 RTO is an LP(QP) economic optimization problem on top of MPC. Coefficients in 

the optimization level are updated from the nonlinear model and a bias update is also 

employed. The optimum is usually at the corner point of the feasible region. Vermeer 

and Pederson (1996) give a blending process example. Since the parameters in the 

optimizer level are changed, the gains in the MPC controller should be changed also, 

which can affect the performance. This approach is also comparably cheap, since it 

requires for operation a nonlinear model obtained once. 

3. Nonlinear open-loop 	RTO. Here, RTO is represented by a nonlinear optimization 

problem which is not updated empirically. This RTO is placed on the top of MPC, 

which has its own local optimizer. Such an RTO scheme can optimize the set points 

for more than one MPC and if so, it is sometimes referred to as a "composite" level. 

The reported application of this method (Verne et al., 1999) uses Sequential Linear 
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Programming (SLP). 

4. 	 Full closed-loop RTO. RTO employs a nonlinear model for optimization and is placed 

above MPC which has its own local optimizer. Also, RTO provides parameter es­

timation using plant data. An example given in the literature is optimization of a 

hydrocracker complex (Pederson et al., 1995). 

This thesis considers primarily the first type of RTO, i.e. the RTO with a linear program­

ming problem and bias model update. 

2.2 Composite LP 

The composite LP application usually contains several MPC's, each having a local set of 

constraints. This LP is responsible for managing the distribution of plant-wide constraints 

among these advanced process controllers (APCs). 

The application of this technique was presented in Jakhete et al. (1999), where the au­

thors consider a composite LP optimizer which was designed and implemented to work 

with both FCCU (fluid cat cracking unit) and GPU (gas processing unit) multivariable 

predictive controllers at Sunoco's Toledo refinery. Placing one LP optimizer on the top of 

both units controllers allows all the process operation constraints to be considered simul­

taneously at the same frequency as the multivariable controllers. If units form a sequence 

in their operation, then a key requirement of the composite LP (CLP) is that independent 

variables in a downstream controller should not affect dependant variables in the upstream 

controller. The advantage of the composite LP is that it is able to optimize the production 

across both units and, therefore, there is no need to solve the problem of monitoring and 

control of intermediate stream variables. In this project, it was designed that the GPU 

controller handles its own constraints first, until all of its degrees of freedom are exhausted; 

the CLP then directs the FCCU controller to start cutting feed severity. The main objec­

tive of CLP here was to maximize feed or keep feed at or near maximum target rate, while 
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meeting all constraints in the FCCU and GPU. The authors report that for this project 

CLP normally does its job and decreases the feed from its maximum only to ensure that all 

constraints are satisfied. 

Friedman (2000) mentioned that economically speaking, CLP is not a proper optimiza­

tion technique because it relies on approximate linear models rather than rigorous ones. 

Also, as it was mentioned above, many industrial MPC's are already equipped with LP op­

timizer and therefore composite LP is just an extension of local LP. However, this approach 

allows the steady-state anticipation to be avoided and to implement set point changes in 

small steps. Also, the use of composite LP gives the opportunity to work with reasonable 

size MPC's and still keep a global view of the plant. 

The Honeywell solutions, such as Profit Controller and Profit Optimizer can be consid­

ered as applications of the composite LP. Indeed, the Process Optimizer contains the model 

of entire plant. At each controller iteration, the optimizer obtains the plant data and this 

frequent process feedback compensates for the plant/model mismatch. Nath et al. (1999) 

describes their algorithm in the following way: since the Optimizer and controller are im­

plemented at about the same frequencies, the plant is driven in small steps toward the 

optimum. Also, there is no need to implement a local optimizer at the MPC level, since 

the technology embeds so-called "bridge models" which relate interaction between multiple 

Profit Controllers. 

2.3 LP-MPC Integration 

In modern processing plants the MPC controller is a part of a multi-level hierarchy of control 

functions (Qin and Badgwell, 2003). At the top of this structure a plant-wide optimizer 

determines optimal steady-state settings for each unit in the plant. The optimizer computes 

an economic steady-state and passes this to the dynamic constraint control system for 

implementation. In many practical applications, the number of inputs is not equal to the 
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number of outputs and some techniques for the management of extra degrees of freedom 

should be applied. One approach is to use as many manipulated variables for control as it is 

necessary while driving the remaining to specified target values. It can be achieved posing 

the controller objective function in the following way: 

(2.1) 

where Q and R are symmetric positive definite penalty matrices, and S is a symmetric 

positive semidefinite matrix with the norms in (2.1) defined as llxll~ = xTQx. iJk, Uk and 

b.uk represent predicted outputs, future inputs and future input changes respectively over 

specified horizons and are related through a dynamic process model. 

Assume that the decisions about control structure (which manipulated variables have tar­

gets and which are used for control) are made, and that set points and target values are 

given. The following potential problems arise: 

• Since constrained predictive control is used, it is very possible that some of the ma­

nipulated variables will encounter constraints. In this case degrees of freedom are lost 

and it is no longer possible to track or keep all controlled variables at their set points, 

and non-zero offset will appear. 

• 	 Output set points and input target values relate to each other through the steady-state 

process model. Assume that initially process is at the steady-state and no unmeasured 

or measured disturbances affect the plant. Then the inputs and the outputs of the 

plant satisfy the equation: 

(2.2) 

and the set points and target values in objective function (2.1) satisfy this equation. 

If suddenly output unmeasured disturbance (for simplicity, step disturbance) d affects 

the plant, the steady-state parameters will shift and the new steady-state equation is: 

(2.3) 
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Comparing (2.2) and (2.3) it is obvious that either Yss = y;8 or u 88 = u;s but never at 

the same time. Therefore, it is not possible to achieve the set points for outputs and 

target values for inputs at the same time if they were calculated without knowledge of 

disturbance but it does appear during operation. This again leads to non-zero offset. 

• 	If the set points yset and target values utar are given from upper optimization level 

then they satisfy the steady-state model used at that level. Since the upper optimiza­

tion levels use more sophisticated (often nonlinear) models these values may not be 

consistent with controller steady-state model i.e.: 

Because of these potential problems and some others, an MPC controller with objective 

function (2.1) should not be implemented in practice without some modification. 

A local steady-state optimizer for MPC systems was proposed by many researchers as a 

remedy to avoid possible problems which can appear during control of excessive inputs 

(Yousfi and Tournier, 1991; Brosilow and Zhao, 1988; Muske, 1997) or as a link between 

optimization and regulatory levels (Ying and Joseph (1999)). Its role is not to substitute 

the unit optimizer but to coordinate the interaction between these levels. 

Such coordination first of all has supervisory purposes. This means that the local op­

timizer must guarantee operability of the MPC in the presence of disturbances and set 

point changes. Supervisory properties at the upper level must be present in any non­

square control systems. Among the supervisory "skills" of the controller are: monitoring 

of available degrees of freedom and checking if any of control variables are lost (for exam­

ple, saturated), making decisions about involving new variables into control process (for 

instance, based on analysis of plant directionality or interaction). However, in the pres­

ence of degrees of freedom, multiple choice is possible. Then, a decision can be based not 

only on the plant characteristics but also on the operation economics i.e. using cheaper 

resources for control while keeping the consumption of more expensive resources at a low 

level. Therefore, the upper level can also have economic objectives. It can be expressed in 
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a form of an optimization problem (usually LP or QP) and solved at different frequencies 

of MPC implementation. Since different formulations of supervisory and economic designs 

are possible, the two stage LP-MPC cascade control system can have different modifications. 

This thesis considers an LP with economics only. It is assumed that the sets of MVs 

which are used for optimization and for control do not change during simulations. The up­

per level makes decisions which are based only on the optimization problem solution and no 

other analysis is done then. The inclusion of the supervisory objectives into local optimizer 

has not been studied here; these are issues for future research. 

Soufian and Sandoz (1996) considered the use of a multivariable controller together with 

an LP steady-state optimizer for distillation process control. The linear programming op­

timizer is used for on-line evaluation of the economic optimum operating point. This runs 

at every controller execution time to provide a consistent optimum steady-state solution 

within the specified limits of the actuators and the measured variables. The optimization 

is carried out at a steady-state operating point using steady-state models. Calculated con­

trolled variable targets are transferred to the set points of the controller. The objective 

function here represents the economics of the process and is a linear combination of inputs 

and outputs. The simulation in this paper was implemented using incremental and absolute 

LP formulations. The incremental LP optimizer uses the long range of predicted values of 

the MVs and the actuator values to update its reference point at each control interval. This 

allows unconsidered disturbances to be taken into account. The absolute LP optimizer 

does not update its reference steady-state level, i.e. it is implemented at steady-states only. 

The comparison between the absolute and incremental LP formulations was done and the 

authors concluded that in terms of the quality of the composition control, the absolute LP 

optimizer is as good as the incremental form, but it is more expensive to operate since it 

uses more resources to achieve the same specification. 

Shah et al. (2002) considered the performance of an MPC controller with a steady-state 

LP optimizer. It was found here, that the use of such an optimizer can lead to performance 
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degradation. Among the reasons for such degradation the following were mentioned: bad 

models, inadequately designed LP in that the LP operates at the control frequencies, inap­

propriate choice of weightings, ill-posed constraints and steady-state bias updates. Several 

techniques for controller performance diagnosis and its improvement are also presented here. 

Sorensen and Cutler (1998) mention that embedding a linear program (LP) in dynamic 

matrix control brings many powerful new features to the algorithm. Using the equal con­

cern errors, the LP provides a feasible steady-state solution to the controller, which they 

report is necessary for the controller stability. However, the authors define the stability 

of the controller as the ability of the LP level to provide a feasible steady-state solution 

that satisfies all constraints. The definition does not consider the behavior of the process 

outputs directly. 

In many cases the steady-state gains between the manipulated variables (independent LP 

costs) and the controlled variables (dependent LP costs) can be calculated from the plant 

tests through identification procedures. Generally, the steady-state gain information iden­

tified from plant test data is sufficient to determine the cost factors in the LP. However, 

in the case when product yield and property data are not available from the plant test, an 

off-line engineering model can be used instead. Unfortunately, the independent variables 

used in the engineering model are usually not consistent with the manipulated variables 

in the controller. Sorensen and Cutler (1998) propose two methods to rearrange the vari­

ables to make them consistent. The first method uses a partial inversion technique that 

is done with basic algebra. The second method uses matrix algebra. Also, the authors 

devote some attention to the robustness and stability of such two-level controllers. They 

report that many stability problems for general multivariable controllers come from the 

inconsistency between the target values for the controller and what is actually obtained at 

the steady-state. Here, in the presence of optimizer, if an unmeasured disturbance enters 

the system, the update of the prediction vector is able to pick up the shift and change the 

predicted steady-state. The authors report that the controller is inherently stable since the 

LP provides a feasible set of targets and the dynamic part of the controller calculates the 
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trajectory the process will follow in sufficient amount of steps. However, this statement is 

not substantiated by any proof and, as it was mentioned above, the stability definition is 

inadequate. 

Optimization of a Residue Cracking Unit (RCU) at the BP refinery at K winana, West­

ern Australia is presented in Hall and Verne (1993). The uniqueness of this project is that 

the controller was placed within a distributed control system without a separate host com­

puter. This project consisted of seven manipulated variables and 22 controlled variables. 

The role of optimizer was to find such constraints of the controlled variables (CVs), which 

would guarantee safe operation as well as maximized profit. In 1980, an advisory optimizer 

was installed at the refinery, developed by BP Central Engineering. The optimizer used 

nonlinear process models, which were initially fitted to the observed plant data. However 

this optimizer was not able to handle the complex control issues, which precluded good 

unit operation performance. In 1989, after a plant inspection, a multivariable controller 

was recommended that would improve control performance by regulating all the MVs while 

considering the complex dynamics and variable interactions. To prioritize the constraints, it 

was required that an optimizer be integrated with the controller. The user-defined objective 

function could be any linear or/and quadratic combination of manipulated and controlled 

variables. By using prices as coefficients, the objective function has been set up to optimize 

the added value by the RCU. 

Two main problems appeared here. First, direct product rates measured off the fractionator 

had too much dead time and noise to be used directly as measured variables. To overcome 

this, the production was predicted based on the cracking severity. Second, the product 

value is dependent on the product utilization for the tail gas, C3 and C4 products. To solve 

this problem, a special pricing technique was used to appropriately value production. An 

external program then modified the user objective function coefficients on-line according to 

the predicted steady-state production. Then the optimizer converges to the optimal solu­

tion using successive linear programming. 
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Even though the multivariable controller improved the unit performance, the use of lin­

ear controller models limited its ability to achieve a true plant optimum. Consequently, 

a method for extending the degree of optimization beyond what can be achieved with the 

multivariable predictive controller alone was developed and described in Verne et al. (1999). 

A proprietary cracking model was integrated with the controller to calculate optimum so­

lutions. There were 11 MVs and 30 potential constraints. The controller contained process 

models, which provide steady-state and dynamic information about the process. These 

models had two purposes. The first was to achieve effective regulatory control and, the 

second to determine the best combination of limits that the unit should run against, the 

combination which corresponds to the maximum profit. This constraints combination is 

typically calculated by using a linear programming (LP) problem. The objective function 

of such LP is as follows: 
m n 

$rcu = L ai · Ii + L bJ · Ji 
i=l j=l 

where ai is the value of the i th independent variable, h and bj is the value of the j th 

dependent variable, JJ. 

The aim of LP is to effectively push the plant operation to the most profitable constraints. 

The productivity of this LP depends on the models it uses and, therefore, the predicted 

values need to be verified with the observed parameters and corrected if necessary. The 

important assumptions are that the model gains are at least the correct sign and that the 

relative magnitude between gains is correct. 

A study on LP (QP)- MPC cascade control is described in Ying and Joseph (1999). They 

consider a two stage optimizer presented in Figure 2.2. The second level is a local MPC 

optimizer and the top level is an RTO system, containing a nonlinear model of the plant. 

The local optimizer uses the disturbance estimate, obtained from MPC at every sampling 

time, and determines the set points and target values for MPC. In the absence of a local 

optimizer, the controller set points are calculated from RTO, which uses an economic objec­

tive function. According to the authors, the RTO infrequently updates the optimal nominal 

"targets" y* and u* and the cost parameters guiding the LP (QP). It can also update the 
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Real Time Optimization (RTO) 
(Infrequent) 

y{k) u{k) y(k) u{k) y{k)u{k) 

Figure 2.2: Two-stage RTO system hierarchy 

constraints for the LP (QP) if necessary. The RTO is based on nonlinear steady-state 

models. The LP (QP) is executed at the same frequency as the lower stage MPC. The 

objective function in the LP (QP) level does not contain any economics, but just penalizes 

the deviation of the controller set points around nominal "targets" y* and u* from RTO. 

The authors cite an LP of the form: 

min CT (yset - y*) + cr(Utar - u*) + C~ f 
yset ,utar Y 

subject to: 

d(k) = d(k- 1) + tl.(k) 

As = C (I - A)-lB 
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where d(k) is the estimated disturbance at time k, fl.(k) is the estimated disturbance change 

which is the difference between measurement y(k) and predicted output y(kik-1), Cy and Cu 

are cost parameters, E is used to guarantee a feasible solution to the LP, and cr is a tuning 

parameter. This LP formulation is a linear approximation of the RTO objective function. 

A quadratic objective may alternatively be used. They provide three stability theorems 

on the cascade LP(QP)-MPC stability for the case when the model in the LP and MPC 

are perfect. From this assumption it follows that the estimate disturbance at any time will 

be exact. This assumption would be unrealistic in practice because of unavoidable process 

uncertainty. The authors remark that in the case when an LP is used as the optimization 

problem, a disturbance entering the process may result in a jump from one intersection of 

constraints to another. This would cause the set points to change in an abrupt manner 

which is detrimental to the stability of the MPC. A case study with plant/model mismatch 

was considered in their paper, and even though an instability effect was not shown, the 

authors mention that the proposed stability theorems do not apply there. 

2.4 LP with Incorporated Economics 

If the local optimizer is used separately from the upper level RTO then it can also be 

based on the economics of the plant operation. Many researchers (Moro and Odloak, 1995; 

Ramos et al., 2002) point out that the optimal conditions of the operation appear at the 

intersection of constraints. Also, in many cases, the controlled variables do not have ex­

act set points but upper limits (for example, impurity or pressure control) or lower limits 

(temperature or level control). Therefore, employing some economics into local optimizer, 

the plant can be pushed to operate at such a set of constraints that is economically optimal 

according to the specified objective function. 

One of the possible formulations was proposed by Sorensen and Cutler {1998) and can 

be described in the following way. A local optimizer is placed on the top of the regulatory 

control level and executed at the same frequency. Using the current values of the manip­
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ulated variables, the LP calculates predicted steady-state values and then based on these 

calculates new set points for the controller by solving an optimization problem. Since opti­

mization is performed using the predicted values, waiting for steady-state can be avoided. 

Assume that the steady-state process model is: 

If the manipulated variables are changed by .6-u then the outputs will change by: 

If the variables are presented in deviation form (y = y88 + .6-y and u = U 
88 + .6-u) and 

disturbance d is constant at the steady-state than changes in outputs will be proportional 

to the changes in inputs and the coefficient of proportionality is just the steady-state gain: 

The LP objective function was proposed as the plant profit function: 

Profit = L Producti · Pvaluei L Feedstockj · Fcostj ­
j 

L Utilityk · Ucostk 
k 

where: Profit = Plant profit function ($/day); Producti = Product flow rate, 'i' (quan­

tity/day); Pvaluei = Product value, 'i' ($/quantity); Feedstockj = Feedstock flow rate, 

'j' (quantity/day); Fcostj =Feedstock cost, 'j' ($/quantity); Utilityk = Utility usage, 'k' 

(quantity/day); Ucostk =Utility cost, 'k' ($/quantity). 

Some researchers (Soufian and Sandoz, 1996; Moro and Odloak, 1995) proposed the use of 

a linear combination of manipulated and controlled variables at the predicted steady-state 

as the objective function such that it can be configured to economize the use of particular 

manipulated variables and increase production of specific outputs. 
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The formulation of the LP which was used in the thesis is as follows: 

L
p 

aiy'rt + L
m 

biu~ar 
i=l i=l 

subject to: 

(2.4) 

where: Km is the model steady-state gain; ai and bj are profit and cost coefficients respec­

tively; d is the LP bias. 

In all two-level LP-MPC cascade control system simulations throughout the thesis, it was 

assumed that the model steady-state gain matrix at the LP level is the same as the steady­

state matrix of the model which the controller uses for calculations, and that the constraints 

on inputs and outputs at both levels are identical unless noted otherwise. All simulations 

presented in this thesis were run with hard constraints on the outputs at both levels which 

sometimes may result in infeasibility of the corresponding optimization problems under cer­

tain circumstances. This may be avoided by the use of soft output constraints, but since 

infeasibility problems were not encountered in the case studies conducted in this thesis, this 

formulation was not considered. 

2.5 State-Space Formulation of Model Predictive Control 

Nowadays, Model Predictive Control (MPC) enjoys wide industrial application and signif­

icant interest from academia. This control algorithm belongs to the class of Model Based 

controllers, where the plant model is explicitly employed in the control calculation. The 

main advantages of MPC are its natural ability to regulate multivariable plants and handle 

different types of constraints directly. 
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MPC arose from the research by Richalet et al. (1978) and Cutler and Ramaker (1979), 

which led to commercialized control packages Identification and Command (IDCOM) and 

Dynamic Model Control (DMC) respectively. These control algorithms represent the plant 

by impulse response and step response models respectively. Since these models were chosen, 

integrating processes require special consideration. Also, treating the discrepancies between 

model predictions and true output values as a constant output disturbance may result in 

poor performance in some cases. 

Taking these shortcomings into account, the use of state-space models within the MPC 

algorithm was proposed (Li et al., 1989; Ricker, 1990; Yu et al., 1994). MPC with state­

space plant models is able to operate not only with linear stable but also linear unstable 

and integrating processes. Besides the constant output disturbances, the algorithm can 

handle input and state disturbances of various nature. Also, the state-space approach has 

been well studied in the linear optimal feedback control framework with ample theoretical 

results, and its combination with MPC can bring many potential benefits (Marquis and 

Broustail, 1998). 

2.5.1 Models 

The controller employs the process model together with estimations of the states and distur­

bances for future plant output predictions. The controller calculates the sequence of inputs 

u(k + i) such that the predicted output trajectories are optimal according to a specified 

criterion. This model is a part of the control system and its parameters are specified. 

Let the internal model have the following linear, time-invariant, state-space form: 

Axm(k) + Bu(k) 


Cxm(k) + Du(k) (2.5) 




23 

where k is the sampling instant, xm E ~n is a vector of model states, u E ~m is a vector of 

plant inputs, ym E ~P is a vector of model outputs, A E ~nxn, B E ~nxm, C E ~pxn and 

D E ~nxm are constant matrices. The model steady-state gain matrix can be found from 

(2.5) using the following equation: 

Km=C(I-A)- 1 B+D (2.6) 

Real plant dynamics are never known exactly. For simulation purposes the plant is modelled 

as a linear state-space model which may be different from the controller model: 

x(k + 1) Apx(k) + Bpu(k) 

y(k) Cpx(k) + Dpu(k) (2.7) 

x(O) xo 

where x E ~np is a vector of plant states, u E ~m is a vector of plant inputs and y E ~P 

is a vector of measured outputs. A E ~npxnp B E ~npxm C E ~pxnp and D E ~npxm
p ' p ' p p 

are constant matrices. 

Analogously to (2.6), process steady-state gain matrix can be calculated from (2.7) via 

the following equation: 

(2.8) 

2.5.2 State and disturbance estimation 

In order to calculate future output predictions, the current state and disturbances need to 

be estimated. 

State estimation techniques are well known because of their wide application in Linear 

Quadratic Gaussian (LQG) control (Astrom and Wittenmark, 1990; Kwakernaak and Sivan, 

1972). The theory of the state estimation leads to the concept of the observer- an element 

of the control system which provides the state estimation and the state predictions. There 

are two mainstreams in state estimation which are the stochastic approach with Kalman 
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filtering and the deterministic approach using the Luenberger observer. 

State estimation is related to unmeasured disturbance modelling. Since the exact value 

of the disturbance is never known, it is only possible to describe its nature, or its type of 

behavior. For quantitative analysis it is assumed that the process is considered at time 

instant k and the following parameters are known: y(k) - current plant output; u(k- 1) 

- last implemented input ; x(klk- 1) - the estimation of the current state, which has been 

made at the previous step k - 1. 

Although there are several approaches for unmeasured disturbance modelling and esti­

mation , this thesis employs the method which is implemented in the standard DMC and 

QDMC algorithms (Cutler and Ramaker, 1979; Garcia and Morshedi, 1986) . Here, the 

disturbance is modelled as a step output disturbance, the size of which is equal to the 

difference between measured and predicted output values. The state estimate used in the 

calculation of the predicted output is based on the controller model (2.5) and performed in 

the following manner: 

x(klk) x(klk ­ 1) 

x(klk- I) Ax(k- Ilk- 1) + Bu(k- 1) 

d(klk) y-y(klk-1) 

2.5 .3 Prediction calculation 

Output predictions can be calculated using the state and disturbance estimations. In.MPC 

with the state-space formulation, the predictions of the output trajectories are calculated 

using the internal model (2.5) for P steps ahead expressed in terms of M control moves. P 

is called "prediction horizon" and it shows how many steps ahead the future plant behavior 

is considered and the plant outputs are predicted, and M is the "control move horizon" and 

it shows how many control moves ahead are calculated. Generally, P is much larger than 

M and they both are tuning parameters of the controller. 
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Since the DMC disturbance estimation scheme is used, it is assumed that the future distur­

bance predictions are equal to current disturbance estimation: 

d(k + i/k) = d(k/k) i = 1, ... , p 

Output predictions can be calculated using the internal model (2.5): 

x(k + i/k) Ax(k +i- 1/k) + Bu(k +i- 1/k) (2.9) 

y(k + i/k) cx(k + i/k) + Du(k + i/k) + d(k + i/k) 

where y(k + i/k) E RP represents the predicted values of the outputs at time step k + i, 

based on information available at time step k. 

2.5.4 Optimization problem formulation 

Since the main purpose of the control is to track the output trajectory as close as possible 

to the reference trajectory, an optimization problem can be formulated, where the optimiza­

tion variables are unknown control moves. In the case when extra inputs are available, the 

same objective function can penalize their deviation from the target values given from the 

optimization level. 

At each sampling time the controller solves an optimization problem with the following 

objective function: 

P N-1

L liy(k + i/k)- Ysetll~i + L /lil(k + i/k)- Utarl/~i + 
i=l i=O 

M-1 

I: 11~u(k + i/k)l/~i (2.10) 
i=O 

Here, N is a horizon over which the future inputs are penalized from their target values; Qi 

and ~ are symmetric positive definite penalty matrices; si is a symmetric positive semidef­

inite matrix. Such matrices make the objective function convex. Even though it is possible 

to use different penalties at different sampling instants, usually these matrices are constant 
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over the horizons. 

Vector !:l.u represents the change in manipulated input, defined as: 

!:l.u(k!k) u(k!k)- u(k- 1) (2.11) 

!:l.ft(k + i\k) u(k + i\k)- u(k + i- 1\k), i = 1, ... , M- 1 

To regulate the smoothness of output responses, reference trajectories can be used instead 

of fixed set points. These trajectories may have different rates of approaching the set points 

with which they coincide at steady-state. In all simulations presented in the thesis, reference 

trajectories have not been used and actual set points were used in the objective function. 

Since the controller solves the optimization problem at every iteration, the upper and lower 

bounds of the controlled and manipulated variables can be taken into account explicitly. 

There are three sets of constraints: output constraints, input constraints and constraints 

on the input rates of change. The optimization problem searches for such solution that 

all future output predictions y(k + i\k), future inputs ft(k + i\k) and future input moves 

!:l.u(k + i\k) do not exceed their limits over the corresponding horizons. 

Ymin ::; y(k + i\k) ::; Ymax, i = 1, ... ,P 

umin ::; < umaxu(k+i!k) i = o, ... ,M -1 (2.12)
- ' 

f:l.U min ::; < !:l.umax!:l.ft(k + i\k) i = 0, ... ,M- 1 
- ' 
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The optimization problem which the controller solves at every iteration is to minimize 

objective function (2.IO) subject to equalities (2.9) and inequalities (2.I2): 

P N-1

L 111/(k +ilk)- ysetll~i + L llu(k +ilk)- utarll~i + 
i=1 i=O 
M-1 

I: ll~u(k + ilk)ll~i 
i=O 


subject to: 


x(k +ilk) Ax(k + i -Ilk)+ Bu(k + i- Ilk), i =I, ... , M 

x(k +ilk) Ax(k + i- Ilk)+ Bu(k +M-Ilk), i = M +I, ... , P 

y(k +ilk) Cx(k +ilk)+ Du(k +ilk)+ d(k +ilk), i =I, ... , P 

~u(klk) u(klk)- u(k- I) 

~u(k +ilk) u(k +ilk)- u(k + i- Ilk), i =I, ... , M- I 


u(k+ilk) u(k+M-IIk), i=M, ...,N-I 


Ymin < y(k +ilk)~ Ymax, i =I, ... , p 


umin < u(k+ilk) ~ umax, i = O, ... ,M -I 

~umin < ~u(k +ilk)~ ~umax, i = 0, ... , M- I (2.I3) 

The solution of the optimization problem is the sequence of M future control moves. How­

ever, only the first input move will be implemented and at the next iteration, the entire 

calculation procedure is repeated. 

2.5.5 Compact formulation 

We present here a formulation of MPC optimization problem expressed in terms of the 

manipulated variable changes, and in which the predicted states are eliminated. Equation 

(2.11) can be used to express the inputs in terms of input changes as 

u(k +ilk) = u(k- I)+ L
i 

~u(k + jlk) 
j=O 

Also, since only M first control actions are considered: 

~u(k +ilk)= o, i = M, ... , P 
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Then, using internal model (2.5), the following prediction equations can be written: 

x(k +Ilk) Ax(klk) + Bu(klk) 


x(k + 2lk) Ax(k +Ilk)+ Bu(k +Ilk)= A 2 x(klk) + ABu(klk) + Bu(k +Ilk) (2.I4) 


x(k + 3lk) Ax(k + 2lk) + Bu(k + 2lk) = 


A3x(klk) + A2Bu(klk) + ABu(k +Ilk)+ Bu(k + 2lk) 

x(k + Mlk) - AMx(klk) + AM-lBu(klk) + ... + ABu(k + M- 2lk) + Bu(k +M-Ilk) 

x(k + Plk) Ax(k + P- Ilk)+ Bu(k + P- Ilk)= 
P-M 

Apx(klk) + AP-lBu(klk) + AP- 2Bu(k +Ilk)+ ... + L AiBu(k +M-Ilk) 

This can be written in matrix-vector form: 

x(k +Ilk) 

x(k + 2lk) 

A 

A 2 

x(k + Mlk) 
x(klk) + 

x(k+ Plk) AP 

B 0 0 

AB B 0 

+ 
B 

i=O 

(2.I5) 

u(klk) 

u(k +Ilk) 

u(k+M-IIk) 
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According to (2.11), the vector of future inputs can be expressed as a linear combination of 

last implemented input and future control moves: 

I 0 0u(klk) I ~u(klk) 

I I I 0u(k +Ilk) ~u(k +Ilk)
u(k- 1) + (2.16) 

I I Iu(k+M -Ilk) I ~u(k +M-Ilk) 

where I is the identity matrix of size m. The same equation in compact form is: 

(2.17) 

Substitution of equation (2.16) into (2.15) produces the following expression for the future 

state predictions: 

:h = A*x(kJk) + B*u(k- 1) + C* b..uk (2.18) 

where: 

x(k + lJk) 

x(k + 2Jk) 

x(k + Mlk) 

x(k + PJk) 

B 

AB+B 

B*= 
LM-1 AiB 

t=O 

LP-1 AiB 
t=O 

; C* = 


A 

b..u(klk) ) 

( !lU(k +~~ilk) ; A' ~ 

B 0 

LM-1 AiB 
t=O B 

LM AiB
t=O AB+B 

LP-1 AiB LP-M AiB 
t=O t=O 
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If P is the prediction horizon then the vector of output predictions in matrix-vector form 

is: 

y(k + ljk) c 
y(k + 2jk) 0 

y(k + Pjk) 0 

D 0 0 

D D 0 
+ 

D D D 

0 0 x(k + ljk) D 

c 0 x(k + 2jk) D 
+ u(k -1) + 

D0 c x(k + Plk) 

I~u(kik) 

I~u(k + ljk) 
d(kik)+ 

I~u(k + M- ljk) 

or using the notation, proposed in equation (2.17) this can be represented as: 

(2.19) 

where n; = [Ip lp ... lp]T with lp the identity matrix of dimension P. 

Substitution (2.18) into (2.19) produces: 

fh = F*xk + n;nu(k- 1) + K* !:luk + n;d(kik) 


= F* [A*x(kik) + B*u(k- 1) + C* !:luk] + n;Du(k- 1) + K* !:luk + n;d(kik) 


= F* A*x(kik) + (F* B* + n;D) u(k- 1) + (F*C* + K*) !:luk + n;d(kik) 


resulting in: 

Yk = A**x(kik) + B**u(k- 1) + C** !:luk + n;d(kik) (2.20) 

Matrices A*, B* and C* in equation (2.17) and matrices A**, B**, C** and n; in equation 

(2.20) are constant during the entire simulation period and, therefore, they can be calcu­

lated off-line just once. Then, once these matrices are given the output predictions can be 

calculated at every iteration. 

The final formulation in matrix-vector form of the optimi:~mtion problem which the con­
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troller solves at every iteration is: 

subject to: 

Yk = A**x(kjk) + B**u(k- 1) + C** l:iuk + D;d(kjk) 

(2.21) 



Chapter 3 

Stability and Performance of 

LP-MPC Control Systems 

The aim of this chapter is to investigate the effect of the real-time optimization (RTO) level 

on the stability, performance and robustness on the combined RTO-MPC control system. 

The key focus here is on the LP-MPC scheme because of its widespread industrial imple­

mentation. Different formulations at the optimization and control levels will be considered 

and recommendations for appropriate two-level control system design will be determined 

and summarized. To consider the behavior of the two-level control system, simulations with 

different scenarios have been run and analyzed. 

A process steady-state model for use at the RTO level comprises equations (material and 

energy balances, etc) that contain variables as well as fixed and adjustable parameters. A 

simple and commonly used method in industry for model updating is the bias update, which 

is suitable for the model structure: 

f(y,u,a)- (3 = 0 

where: f is a vector function, y is a vector of dependant variables, u is a vector of ma­

nipulated variables, a are fixed parameters and (3 are adjustable parameters ("bias" term) 

32 
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(Forbes and Marlin (1994a)). Two methods for the bias update are presented and analyzed 

in the chapter. 

The main research in this chapter is focused on the problem of stability and performance. 

Asymptotic stability, rather than input-output stability is referred to here, although the 

classification is based on observations rather than rigorous proof. In the LP-MPC cascade 

control system, if there are no disturbances, the sequence of the set points and target val­

ues calculated by the LP and sent to the regulatory level should eventually stabilize at 

some constant values. If a disturbance suddenly enters the process, the plant optimum may 

change and it should take a limited number of re-optimizations to bring the plant to a new 

operating point by following a sequence of set points from the LP. If it does not occur i.e. 

the set points and/or target values from the LP do not become constant in time, the system 

is considered as unstable. If the system is stable but requires a significant number of LP 

runs for stabilization, then the performance of the cascade system is poor. If mild changes 

in the two-level control system design (for example, variation in constants, plant/model 

mismatch) cause significant degradation in performance or possible instability, then the 

system is considered as not robust. 

Two forms of steady-state model bias update were considered: (i) bias update using LP 

set points, d = y- yset, and (ii) bias update using model predictions, d = y- K 88 u for 

steady-state optimization only (Forbes and Marlin, 1994a) or d(k) = y(k) - y(kik- 1) for 

optimization during the transient (Ying and Joseph, 1999). Here, K 88 is the model steady­

state gain, y(k) is plant output measurement at step k and y(kik- 1) is the predicted plant 

output at step k based on information available at step k - 1. In both cases, the bias is 

the difference between the measured and predicted outputs; though, in the first case, the 

predicted output corresponds to the set point, calculated by the LP, while in the second 

case, the predicted output is calculated by applying the process inputs to the process model. 

Application of the first type of bias update was not found in open literature sources and its 

efficiency is studied in this chapter. 
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The stability and performance of the two-level control system with steady-state optimiza­

tion only is analyzed in Section 3.1. The effect of more frequent optimization is studied in 

Section 3.2. Then, in Section 3.3, the effect of the control structure on the performance and 

robustness of the overall cascade system is presented. Finally, the chapter's summary and 

the conclusions are given in Section 3.4. 

3.1 Steady-State Optimization 

The first issue addressed was to determine whether the cascade system was able to exhibit 

unstable behavior, and if so, what design parameters may cause it. 

In this section, the optimization at steady-state only was investigated. That is, the plant 

was allowed to reach steady-state before the next LP calculation was executed. 

Different simulation scenarios have been run to understand and analy:.~,e the two-level con­

trol system behavior, and determine the factors which can affect the stability, performance 

and robustness of the system. 

3.1.1 SISO case 

Case Study 3.1. 

Model Plant 

y(s) = 3~:[\u(s) y(s) = 3~!1 u(s) 

Constraints (at both levels): -1.0 ~ y ~ 1.0, -0.5 ~ u ~ 1.0 

MPC weights: Q = 1.0; S = 2.0; 

Simulation parameters: prediction horizon P = 50; control horizon M = 2; sampling time 

Ts = 0.3; 

LP objective function: maxy,u y 
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First, plant/model mismatch was considered. The bias was calculated using the set points 

and measured outputs. To represent the observations in a compact form, the observation 

results are presented in tables with the following notation: 

• 	 "0" - both set points from the LP and controlled variables are unstable; 

• 	 "0.5'' - set points from the LP and controlled variables stabilize; response initially 

oscillatory; 

• 	 "1" - Set points from the LP are unstable; controlled variables are constant; 

• 	 "2" - Controlled variables and given set points are constant or approach constants 

without oscillation. 

By "unstable" we mean that the response shows persistent variation and does not approach 

a constant value. For different values of the model steady-state gain, the resulting responses 

have been observed and summarized in Table 3.1. 

Gm 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 

Observation "2" "2" "2" "2" "2" "2" "2" "2" "1" "1" 

Table :~.1: Cascade System Responses for Different Values of Plant/Model Mismatch (Bias 

Uses the Set Points for Update) 

With Gm less than or equal to the plant steady-state gain, the set points from LP and plant 

output are constant (see Figure 3.1(a)). However, with the model gain larger than the plant 

gain, chattering in the LP set point is observed (see Figure 3.1(b)). 

The stability of the system response with the model gains smaller than the plant gains may 

be explained as follows. With identical constraints at both levels and the chosen objective 

function, the LP gives set points which can be archived at the regulatory level. The plant 

at each new steady-state arrives at the desired values and the bias which is updated at 
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Figure 3.1: Two-level cascade system response. Bias uses the set points for update 

the LP level is practically zero. The bias plot in Figure 3.l(a) confirms that. Conversely, 

when the model gain is larger than the plant gain, chattering in the set point from the LP 

is observed. It can be simply shown using a numerical example. Assume that the same 

case study is considered with model gain gm = 0.55. Then at the first iteration the set 

point from the LP is: y]et = gm · Umax = 0.55 · 1.0 = 0.55. The plant gain is smaller 

and therefore saturation takes place, and yflant = gp · Umax = 0.5 · 1.0 = 0.5. Then the 

bias is: d1 = yflant - Y'rt = -0.05. After the LP has been updated the new set point is: 

Y2et = gm · Umax + d1 = 0.55 · 1.0- 0.05 = 0.5. This set point is feasible for the MPC level 

and the new plant steady-state is: 'fh.lant = Y2et = 0.5 and bias2 = 0. With the zero bias the 

new cycle begins. This explains why the chattering occurs with a period of 2 steady-state 

increments. 

The simulations were repeated with the objective functions miny,u y, maxy,u u and miny,u u, 

and the qualitative behavior obtained is identical with the results presented in Table 3.1. 

Sometimes the LP constraints for the outputs are tighter than the constraints at the MPC 

http:1.0-0.05
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level. This is made to reduce the variability of the output product at steady-state. The 

effect of the constraints at the LP level can be analyzed in the same manner. 

The output disturbance can also contribute to the stability of the two level system. With 

the premises made above assume that there is an output disturbance with the steady-state 

value d88 = 0.2. That means that now maximum achievable value for y is Gp · Umax + d88 = 

0.5 · 1.0 +0.2 = 0. 7 and for all model gains in Table (3.1) the cascade system will be stable. 

However, with the model gains Gm > 0.7 the LP will generate non constant set points. The 

effect of the output disturbances with a negative steady-state value is straightforward. 

Often the bias is considered as the difference between the actual and predicted plant out­

puts (Forbes and Marlin (1994a)). At every steady-state, the obtained inputs and the plant 

model can be used to find the predicted outputs. Then, the bias is the difference between 

the plant outputs and these predictions. Using this form of the optimizer update the effect 

of plant/model mismatch on the stability and performance of the cascade control system 

has been studied. The same case study as described above was considered. The results are 

presented in Table (3.2). As we can see from the table, this LP bias update method can 

significantly improve the stability properties of the LP set points. The resulting sequence 

of the LP set points and plant responses are presented in Figure 3.2 for the model gains 

corresponding to Figure 3.1. 

Gm 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 

Observation "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" 

Table ~t2: Cascade System Responses for Different Values of Plant/Model Mismatch (Bias 

Uses Model Predictions for Update) 

A great difference between Figures 3.1(a) and 3.2(a) is that the plant is maintained at dif­

ferent operating points, and since the objective function is to maximize the output, then it 

indicates that bias update with model predictions is more profitable. When the plant gain 
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Figure 3.2: Two-level cascade system response. Bias uses predictions for update 

is smaller than the model gain, the plant operates at the same point; however in Figure 

3.2(b) the set points from LP do not experience chattering. 

When the plant gain is larger than the model gain (see Figure 3.2(a)), several iterations are 

needed to achieve a constant value in the set points and plant output. This can be explained 

using numerical values. At the first iteration when the bias is zero, the set point is deter­

mined by the model gain only and is equal to: y]_et = Gm · Umax = 0.35 · 1 = 0.35. Since the 

plant gain is larger, this set point can be achieved without input saturation (yflant = yrt) 

and the steady-state input value becomes equal to: uflant = yflant /GP = 0.35/0.5 = 0.7. 

Then the output prediction for this input is: fiflant = Gm · uflant = 0.35 · 0.7 = 0.2450. The 

bias is simply the difference between the mea...'lnred plant value and the predicted output 

using the model: d1 = yf_lant - flilant = 0.35 - 0.2450 = 0.1050. This value coincides with 

the value in Figure 3.2(a). After the bias has been updated, the solution of the LP at 

the next iteration is: y?,et = Gm · Umax + d1 = 0.35 · 1 + 0.105 = 0.455 etc. After several 

iterations, the set point from the LP approaches a constant value and that is consistent 

with the measured plant output. At the same time bias value reaches a constant value: 

1 
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d00 = (Gp- Gm) · Umax = 0.15 · 1 = 0.15. This shows that such a method of bias update 

sequentially introduces to the top level information about the plant and, eventually the LP 

set points and plant output settle down at the plant optimum level. 

When the model gain is larger than the plant gain one iteration is enough for the LP 

to start providing constant set points for the plant. Assume, that Gp :::;: Gm. At the first 

iteration the set point from the LP is: Y;et = Gm · Umax· Since the plant gain is smaller, this 

set point cannot be achieved, the plant input will saturate and the measured plant output 

will be: Yflant = Gp · Umax· The predicted outputs are: il{lant = Gm · Umax· Then the bias is: 

dl = y;tant- fl{lant = Gp. Umax- Gm .Umax. After this bias has been substituted into the LP, 

the new LP set point is: Y;et = Gm ·Umax+dl = Gm ·Umax+Gp·Umax-Gm ·Umax = Gp·Umax· 

After the first bias update, the LP will have effectively the same steady-state model as the 

plant does, and all further set points given from the LP will be consistent with the plant. 

Therefore, the bias value is: d1 = Gp · Umax - Gm · Umax = 0.5 - 0.6 = -0.1 and keeps 

constant after the first iteration. 

With such a bias update, the analysis of the effect of step-like output disturbances is 

straightforward. The steady-state disturbance value will be simply compensated by the 

bias value and it should not affect stability and performance. 

3.1.2 MISO case (1 x 2 system) 

After the SISO system has been considered, it is of interest to devote some attention to a 

MISO system. Since there are more inputs than outputs, some of them can be provided 

specified "ideal resting values". Also, even though several variables are controlled (output 

and some inputs), only one variable- the output, is involved in the bias update. 

Case Study 3.2. 

Model Plant 

() _Gil ()+Gi2 ()y S - 3s+l U1 S 3s+l U2 S y(s) = 3~~ 1 u1(s) + 3~~1 u2(s) 
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Constraints (at both levels): -1.0 ~ y ~ 1.0; -0.5 ~ u1, u2 ~ 1.0 

MPC weights: Q = 1.0; R = diag(l.O, 0.0); S = 5.0Im; 

Simulation parameters: prediction horizon P = 50; control horizon M = 2; sampling time 

T8 = 0.3; 

Controlled variables: y and u1 

Effect of objective function and plant/model mismatch on the stability and 

performance of the cascade control system. 

Simulations for different combinations of plant/model mismatch have been run to determine 

the effect of the objective function on the cascade control system behavior. The simulations 

have shown that the two-level control system can exhibit different responses. The responses 

were classified into four different cases, similar to those listed in Section 3.1.1. Examples of 

such responses are presented in Figure 3.3. Bias update scheme (i) was used, and different 

responses were obtained depending on the objective function and plant/model mismatch. 

Results of the simulations are presented in Figure 3.4. These figures indicate that two-level 

cascade control system could have different behavior for different values of the mismatch. 

Also, different types of behavior are not scattered randomly but form some distinct areas 

on the plots. In the case presented in Figure 3.4(a), for the amount of mismatch considered, 

the controlled variables are constant, although chattering in the set points is possible. In 

the case when u2 is not included in the objective function (Figure 3.4(b)), the two-level 

control system can exhibit severe oscillation (i.e. set points and plant outputs reach con­

stant values after many iterations of steady-state optimization. The number of iterations 

can be 20 and more). Some transient regions can be seen where changes in the mismatch 

can shift the system from stable operation to operation with sustained oscillation in the 

set points which could decay over long periods, resulting in poor performance. Although 

simulations were run for many different objective functions, the case when the set points 

from the LP and any of the controlled variables were unstable (never reach constant values 

as in Figure 3.3(c)) was not observed (for identical constraints at both levels). Even though 
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Figure 3.4: Cascade system behavior for different values of model gains (effect of objective 

function) 

the performance was very poor and it may have taken many iterations, the set points and 

the controlled variables eventually achieved constant values over time. 

Effect of the constraints and plant/model mismatch on the stability and per­

formance of the cascade control system. 

The use of different sets of constraints also has effect on the cascade control system be­

havior. In the simulations here, the constraints at the LP level for the output variable y 

have been shrunk to: -0.2 ::; y ::; 0.2. The results of the simulations are presented in Fig­

ure 3.5. The presented plots indicate that the performance of the two-level system depend 

on the constraints at the LP level. The simulation results for the case when both inputs 

and the output are included in the objective function are presented in Figures 3.4(a) and 

3.5(a). Results presented in Figure 3.4(a) are similar to the results presented in Table 3.1. 

If the model steady-state gains are smaller than the plant steady-state gains, the two-level 

control system is stable. Large model gains with this bias update method cause the set 

points from the LP to chatter although the plant outputs are constant . However, if the 

LP constraints for the output variable are shrunk, different two-level systerri responses for 

the same range of the plant/model mismatch were observed (see Figure 3.5(a)) . With the 

original constraints, the solution of the LP lies at the input variables constraint and the 
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output arrived at the steady-state with the offset which affected the LP solution at the next 

iteration causing chattering in the LP set points . Since now the LP constraints are tighter, 

the LP solution lies at the output constraint and chattering in the set point for the output 

was not observed. The resulting two level control system behavior now depends on the vari­

able u2 which is used for control. If it does not saturate, the output will be driven to the 

set point without offset providing a stable response for the two-level system. If saturation 

of u2 occurs, steady-state offset will appear cansing oscillation in the target value fur u1 

and consequently in the plant output (since u2 is saturated). Saturation of u 2 depends on 

the composition of the objective function and the value of the plant/ model mismatch. This 

explains why the area with chattering set points in Figure 3.4(a) parted into areas with 

stable response and oscillatory responses in Figure 3.5(a). With u2 not included into the 

objective function the effect of the constraints tightening at the LP level is not significant 

which can be seen in the similarity of Figures 3.4(b) and 3.5(b)) . 
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Figure 3.5: Cascade system behavior for different values of model gains (effect of the con­

straints) 

A case when instability of the two-level system with this bias update was observed occurs in 

the present case study with objective function maxy,u1 y- u2 and shrunk output constraints 

at the LP: - 0.2 ~ y ~ 0.2 (see Figure 3.6). 

A possible reason for such behavior is the absence of the controlled input in the objective 
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Figure 3.6: Effect of the constraints on the two-level system behavior. Objective function 
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function . 

The same case studies were considered with the bias update using the model predictions. 

With the bias update through the model predictions, instability was not observed. The 

results which correspond to problem parameters as in Figures 3.4 and 3.5 are presented in 

Figure 3.7(a). In this figure it can be seen that for the considered constraint shifts and the 

objective functions , the two-level control system with the bias update using model predic­

tions is stable and there is no oscillation. Figure 3. 7(b) corresponds to problem parameters 

as in Figure 3.6. Here, for a large g"{2 model gain and tighter output constraints, the set 

points and the controlled variables exhibit oscillation decaying in time. 
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(a) Case studies presented in Figures 3.4, 3.5 (b) Case study presented in Figure 3.6 

Figure 3.7: Bias update with model predictions 
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This indicates that the bias update through model predictions significantly improves perfor­

mance and stability of the two-level cascade control system. This result is consistent with 

the bias update formulation and use in Forbes and Marlin (1994a), and results presented in 

Ying and Joseph (1999), and accounts for discrepancies between the outputs and set points 

when input saturation occurs. It is also consistent with the use of the DMC disturbance 

estimation scheme, and is directly applicable when the LP is executed at higher frequencies. 

3.1.3 MIMO case (2 x 2 system) 

As the case study here, the Shell Standard Control Problem (Prett and Morari, 1986) is 

considered. This is a multivariable problem concerning control of a heavy oil fractionator. 

The column setup is shown in Figure 3.8. 

u
1

, Top draw 

11 , Upper reflux Y1, Top end point 

12 , Lower reflux 

y
2 

, Side end point 

u3 , Bottom reflux 

y
7

, Bottom reflux temperature 

Figure 3.8: Shell heavy oil fractionator 

T 

u2 , Side Draw 

Feed 

Case Study 3.3. Plant and model descriptions were taken from (Prett and Morari, 1986). 
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Plant transfer matrix: 

4.0500e- 275 1.770oe- 285 
5.8800e-27s l

50.0s+l 60.0s+l 50.0s+l 

5.3900e- 185 5.7200e- 14s 6.9000e- 15s 
50.0s+l 60.0s+l 40.0s+l 

4.380oe- 20s 4.4200e- 22" 7.2000 
33.0s+l 44.0s+l 19.0s+l 

Uncertainties in the gains of the model: 

{4.0500+2.llq )e-27s {1.7700+0.39£2)e-285 275 
(5.8800+0.59c3)e­ l

50.0s+l 60.0s+l 50.0s+l 
(5.3900+3.29q )e-lBs {5.7200+0.57£2 )e- 145 {6.9000+0.89E3)e- 15 s 

50.0s+l 60.0s+l 40.0s+l 

(4.3800+3.llq )e- 205 (4.4200+0.73E2)e- 22s (7.2000+1.33£3) 
33.0s+l 44.0s+l 19.0s+l 

where -1.0 :::::; q, E2, E3 :::::; 1.0. 

In this case study it was assumed that El = 0.85, E2 -0.6375, E3 -0.6375, which 

resulted in the following model transfer matrix: 

5.8435e- 27s 1.5214e- 285 
5.5039e-27s l

50.0s+l 60.0s+l 50.0s+l 

8.1865e-lBs 5.3566e- 14" 6.3326e- 155 

50.0s+l 60.0s+l 40.0s+l 

7.0235e- 205 3.9546e- 225 6.3521 
33.0s+l 44.0s+l 19.0s+l 

The control objectives and constraints were taken from Ying and Joseph (1999) and are 

stated as follows. 

Regulatory level constraints: 

-0.5:::::; Ui:::::; 0.5, l~uil:::::; 0.05/min, i = 1, 2, 3 

-0.5 :::::; Yl :::::; 0.5; -0.5 :::::; Y7 

LP constraints: 

-0.5 :::::; Ui :::::; 0.5, i = 1, 2, 3; 

-0.005 :::::; Yl :::::; 0.005; -0.005 :::::; Y2 :::::; 0.005; -0.5 :::::; Y7 

LP objective: 
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Controlled variables: 


Weights: Q = diag(2.0, 2.0, 0.0); R = diag(O.O, 0.0, 2.0), S = 2.0Im; 


Simulation parameters: prediction horizon P = 30, control horizon M = 2, sampling time 


Ts = 6.0 


In the previous section is was shown that the bias calculated using model predictions 


(scheme (ii)) results in significant improvement of the two-level control system performance 


and, therefore, this scheme is used in all further simulations throughout the thesis. 


Case Study 3.3 was considered for different values of the plant/model mismatch, and the 


simulations showed that the two-level cascade system is stable. Figure 3.9 shows the re­


sponse for the mismatch described in the case study; the controlled variables approach the 


given set points after the second iteration and the overall two-level control system perfor­


mance is good. 


Next, one of the constraints at the LP level was changed: 


-0.4::::; Y7 

This minor change at the LP level introduced significant changes in the overall system 

behavior. It can be seen in Figure 3.10 that MPC is stable and brings the plant to the 

new steady-state. However, every reoptimization of the set points drives the plant to a new 

steady-state without overall stabilization at particular constant values. The possible reason 

for such behavior is the fact that the output variable Y7 is not controlled but is used for 

the bias update. This assumption was confirmed by the simulation where the mismatch for 

Y7 was removed (presented in Figure 3.11). Stability of the system was achieved, although 

the performance was poor and it took many iterations to arrive to a constant steady-state. 

The steady-state equation which relate Y7 to the manipulated variables cannot be omitted 

at the LP level, because its steady-state value must be monitor to guarantee its presence 
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Figure 3.10: Steady-state optimization. MIMO case. -0.4:::; Y7 



49 

Ot.lputs
02,..--------r--------,------, 

~y2 
---------------------o--------------------­

-0.6o'------::5000::'=-:------:1-:cOOOOL:c:------:-:::'15000 

Time 

Manipulated Variables 
0.6.-------,--------,-------, 

oy-----~--~-~ -------:--- ---------------­
o:~::.:: ..::::::_;:~~::::::::t:::::::::::::::.::: 

-0.2~----+~---------i---------------------
-0.40.'-------::5000:f.:-:------:1-::0000~-----:-:!15000 

(a) Plant responses. 

X 10-3 

-4 

~; -5 
-6 

1 13 17 

-0004 

-;: -0.005 
-0.006 

1 13 17 
X 10.3 

6 

N~ 5 
4 

1 13 17 

0.006 
>.N Q OCl5 

0.004 
1 9 13 17 

steady slate increments 

(b) LP solutions and plant steady-states. 

Figure 3.11: Steady-state optimization. No mismatch in the model for Y7 

(-0.4 :S Y7 ). 

Outputs 
0.2,..----~---~----~----, 

~ . . .
"-.y : : : 

-0.2 ----------2 .. --f ------- ·--- -----~--------- ----- -+--· -----------­
_ ----· _____ __\ j _.--Y7 j :
04 

·0.6 '-----'----='c:-----::-:':..,-----c:'_
0 1000 :am 3000 4000 

Time 


Manipulated Variables 

0.6,-----..-----.----~-----, 

::~1:: ..!-:::::::::::::::J.:::::·::::_·::: 
-------------)-~2..~-------------)--------------· 

-o.2 ~- ~f_______u_3---!--------·-------L--- ·------·-­

-0.4o'-----:1::':ooo=----=Jl:l)=-----=3000=----=4ooo 

Time 

(a) Plant responses. 

li; -~~:::::::::::::::i :::::::::::::::i:::::::::::·::J
1 2 3 4 5 
)( 10-3 

; -550~_:_:-_::_-_-_-_::::·_ ::::::J.._:,.-_:::::::::::::::j<::~ _-------------1-----­ d 
1 2 3 5 
X 10-3: 
6,..-----..----~----,-------, 

!~ st----~----<:----~----; 
41~----7-----,3~----~---~ 

X 10-3 

~ !b---­
1 2 3 

4,M -0-Q~ ~r:=;---=-=+=--·~-----·==F+--=;=::: ______ =f==-l----=;=:::------~·----1______=;=::: 
-0 61~---7----~3~---~4----~5 

~M ~-~ F;;-j------··------ +---------·---+ -----j
-0.3 

1 2 3 4 5 
steady state increments 

(b) LP solutions and plant steady-states. 

Figure 3.12: Steady-state optimization. All outputs are controlled ( -0.4 :::; Y7) 

0 



50 

inside the bounds. Therefore, in case when the range control is implemented, the issue of 

the bias update using non-controllable outputs must be addressed. Also, simulations where 

control of all outputs (YI, Y2 and Y7 are controlled variables, u3 is used for control) with the 

original mismatch was considered. The system appeared to be stable and the performance 

was good despite the mismatch (See Figure 3.12). 

3.2 LP Optimization between the Steady-States 

Often in practice the LP is executed not only at steady-state but also during the transient. 

Since the process is not at steady-state, the set points cannot be used for the LP update, i.e. 

scheme (i) cannot be used in this case. At every iteration when the LP is implemented, the 

difference between the output measurements and the predicted output value is considered 

as the bias and is updated at the LP level. 

Ying and Joseph (1999) analyzed the stability of a two-level cascade control system for 

the perfect model case. Here, the effect of plant/model mismatch and the frequency of 

the LP optimization implementation is considered. Case Study 3.2 presented in Section 

3.1.2 was used for simulations. The following parameters were chosen for the simulations: 

Gil = 0.2, G"{2 = 0.25 and the objective function is maxy,u1 y. 

The results of the simulations with steady-state optimization only are presented in Fig­

ure 3.13(a). 

As discussed previously, since the model gains are smaller than the plant gains it takes 

several iterations for the system to reach a constant operating point. From iteration to it­

eration the bias accumulates the error between the predictions and the measurements. The 

bias steady-state value depends on the mismatch and the steady-state inputs and can be 

calculated as: dss = G1{1 · u].s +Gf2 · u2s- Gil ·ur- Gl2. ·u2s = 0.4 +0.3- 0.25- 0.2 = 0.25 

(this is confirmed by the data in the plot). The comparison of the bias values and the 
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(a) Plant responses. 

Figure 3.13: Steady-state optimization 

MPC controller disturbance values is presented in Figure 3.13(b ). With this bias update 

method, the bias value at steady-states is equal to the output disturbance estimated at 

steady-states. However, as can be seen during the transient, the bias does not approximate 

the disturbance well, and therefore, it requires several steady-state passes to start operating 

at the plant optimum. This motivates the idea to update the bias more often. 

Simulations have been run with different frequencies of the LP optimizer implementation. 

The resulting biases are presented in Figure 3.14(a). With more frequent LP implemen­

tation, the bias approaches steady-state faster as well as the set points from the LP. The 

LP implementation at every MPC iteration corresponds to the fastest way to the optimum 

operation. Also, frequent disturbance estimation makes the bias change smoothly. There­

fore, the set points from the LP do not change drastically contributing to the stability of 

the overall system. These can be the reasons why many researchers have proposed to use 

the optimizer at every iteration of LP implementation (Kassman et al., 2000; Sorensen and 

Cutler, 1998; Ying and Joseph, 1999). 

0 25 

................. :. ___ .. : -· 

MPC disturbance estimation 
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time 

(b) Bias values and MPC disturbance estimation. 
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Figure 3.14: Frequent LP optimization 

The effect. of the bias value on the LP solution is presented in Figure :t14(b). Here, the LP 

solution is presented as the function of the bias value. At the very first iteration, the bias is 

zero and the LP solution is 0.45 (this is consistent with the results in Figure 3.13(a)). From 

the Figure 3.14(a) it follows that in time the bias is increasing and reaches steady-state at 

0.25. This corresponds to the proportional changes in LP solutions from 0.45 to 0.7. The 

rate of the solution shifting depends on the frequency of the LP implementation. Also, this 

figure can be used for stability analysis. From the figure it follows that for every feasible bias 

value there exists a unique LP solution and with changes in the bias, this solution changes 

proportionally. In case of LP execution at every MPC iteration, the bias term changes 

smoothly along this line and so does the set point from the LP. This precludes erratic set 

point changes thereby contributing to the overall stability. Since for a fixed bias term the 

solution of the LP is unique, the two-level system instability requires permanent fluctuation 

of the bias over time. Observations showed that the important factor to avoid such behavior 

is to update the LP bias frequently. Even though the instability of the two-level system 

0.7 ......... . 

0.65 

0.6 

0.55 .......................... . . 

0.5 

0.45 ................................... 

0.4 

0.35 

. . . . 

. . 
. ~ .......... ·> ......... -:· .. . 

. . . . . . 
·'················· . . . . . . 

0.2 0.3 



53 

with the bias update at every iteration has not been observed, it cannot be deduced that 

such a scenario could never happen, and the rigorous stability proof is an open issue. 

Constraint shifts at the LP level should not affect the stability and performance prop­

erties of the system except for the case when the non-controlled outputs are used for the 

bias update. The MIMO system from the case study presented in Section 3.1.3 was consid­

ered to check this issue. For the case when the MIMO system exhibited a stable response 

(-0.5 ::; Y7 ), the LP optimization at every MPC iteration was also stable, although the 

performance of the system was poor (See Figure 3.15). 

Olltputs Outputs 
0.2 ,----,--~-----y----,-----, 

0 -~~~==~--~---=~-==4 

-025 -----­ -----~--- -------- ··t- ----------­ ~- ---------- ··t··---- ----­
y7 ! ' ! 

-05 

600 800 1000 0 200 400 600 800 1000 
Time Ttme 

Manipulated Vanables Manipulated Variables 

' ' 
0.5 ............ ; ........ ..
:.:.;;;.:--.:i:.·';=·-----:-----:------1 

200 400 600 800 0 200 400 600 800 1000 
Time Time 

(a) Yl, Y2 and U3 are controlled variables. (b) Y1, Y2 and Y7 are controlled variables. 

Figure 3.15: Optimization at every iteration (-0.5 ::; Y7) 

Unlike the steady-state optimization case, the two level system was stable with tighter con­

straints (-0.4 ::; Y7) (See Figure 3.16). In the case when all outputs were controlled and 

the LP was implemented at every iteration, the two-level control system was stable and 

had better performance than in case when Y7 was not controlled (See Figure 3.16(a)). The 

simulations showed that optimization at every iteration can provide stability to a system 
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Figure 3.16: Optimization at every iteration (-0.4 ::::; Y7) 

which exhibited unstable operation with steady-state optimization only. 

3.3 The Problem of the Control Structure Selection 

As mentioned in Section 3.1.3, the chosen control structure may have a significant impact 

on the stability and performance of the cascade system with steady-state to steady-state 

operation. Tight constraints at the LP level may cause unstable overall system steady-state 

operation. However, in the case when all outputs were controlled, the system stabilized, 

though the performance was poor. The other possible remedy to overcome the system in­

stability is more frequent LP execution. The responses for the same case study with LP 

execution at every MPC iteration were stable although the control performance was different 

for different sets of controlled and manipulated variables. In these simulations, even though 

at steady-state the plant operates at the same economic operating point (u38 = -0.2641) 

the transient response for the case when Y7 is controlled and u3 is not, is better than in the 

opposite case. 
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All these observations indicate that although the optimal steady-state operation corre­

sponds to minimum consumption of u3, this variable should not necessarily be included in 

the MPC objective function as a controlled variable, and there may be another set of CVs 

and MVs which are able to provide stable responses with better performance and operate 

at no worse economic operating point. However, determining a proper control structure 

is not a trivial problem. For this case study there are two reasonable combinations which 

can be compared using simulations. If there are many MVs and CVs and the LP objective 

function comprises many variables it may be a formidable task to consider each possible 

control structure since the number of the possible combinations increases significantly with 

an increase in plant dimension. This becomes even more difficult since for any chosen con­

trol structure the MPC objective function weights can affect the two-level control system 

response and, therefore, they need to be determined in a proper manner. 

This motivates the idea to formulate the problem of control structure selection within an 

optimization framework of optimal control system design. Significant amount of research 

devoted to optimization-based design uses PI and PID controllers (Schweiger and Floudas, 

1998; Mohideen et al., 1996; Kookos and Perkins, 2001). Kookos and Perkins (2002) studied 

the decision making control design problem on whether a centralized or decentralized con­

troller should be used in a system. The decision making framework for a two-level control 

system structure selection is required for the present problem. In such a framework, the 

decision variables are binary variables which represent the control system structure applied 

to a plant. The objective function in the problem may have different forms, for example, 

identical to the LP objective function (which means to find such a control structure which 

corresponds to the operation at the point where the LP has the best possible solution), the 

minimum squared error form for some of the controlled variables (to provide good control 

performance) or any other. The overall two-level closed-loop control system response can be 

modelled as a multilevel optimization problem, which may be transformed into a single-level 

problem with complementarity constraints using the Karush-Kuhn-Tucker conditions of the 

sub-problem as described in Baker and Swartz (2007). However, the problem now includes 
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binary variables associated with the control structure. The solution of the problem specifies 

which of the binary coefficients are unity, i.e. the corresponding variables are the controlled 

variables, and which are zeros, i.e. the corresponding variables are not controlled. In the 

case of steady-state optimization only, the plant dynamic responses between the optimiza­

tions can be substituted by steady-state simulations (for closed-loop stable plants) which 

would simplify the problem formulation. Two methods for such calculations are given and 

discussed in Chapter 5. 

3.4 Chapter Summary 

The performance of LP-MPC cascade control systems was explored under variety of con­

ditions. This included investigation of the effects of plant/model mismatch, bias update 

scheme, constraints, LP objective function, control structure and frequency of LP execu­

tion. 

The presented results have shown that in a deterministic system with step-like distur­

bances it is unlikely that two-level cascade system instability would occur if an appropriate 

bias model update is used. The bias calculated using model predictions contributes to the 

stability of the overall system; moreover, it guarantees system operation at the plant opti­

mum under certain conditions (Forbes and Marlin, 1994a). Plant/model mismatch did not 

appear to be a cause of two-level system instability; however, it has an effect on the system 

performance. 

More frequent LP execution than steady-state only, seemed to contribute to stabilization 

to a two-level control system and it also provided more rapid steady-state achievement. 

Chattering in the LP set points was observed in case when uncontrolled constrained outputs 

were used for the bias update. More frequent LP execution was able to stabilize the system; 

however, the performance was poor. Changes in the control structure were able to improve 
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the performance. These observations lead to opportunities for future research where the 

effect of the control structure and LP execution frequency on the stability and performance 

of the overall two-level control system may be studied. 



Chapter 4 

Calculation of Closed-Loop 

Steady-State of Constrained MPC 

System 

Steady-state simulations are an important stage of the system design where the mater­

ial and energy balances as well as equipment properties and machinery efficiency can be 

determined and checked. The control systems are usually designed and incorporated at 

later stages to achieve required performance. However, the process steady-state behavior 

depends not only on the process itself but also on the control system which maintains it at 

steady-state. Therefore, the effects of the control system on the steady-state plant behavior 

should be taken into account in steady-state simulations. 

As discussed in Section 2.1, steady-state optimization requires the plant to reach steady­

state prior to RTO implementation. In industry, steady-state detection criteria must be 

satisfied before the optimization may be executed. For research purposes the behavior of 

the two-level cascade system can be studied using computer simulations. In this case, the 

execution period for the RTO has to be long enough (this period can be estimated using 

knowledge about the plant dynamics) so that the plant may be assumed to have reached 

58 
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steady-state before the next re-optimization. Another approach is to pose some conditions 

on the simulation variables (for example, the increments of all manipulated (all controlled) 

variables between two controller executions should be smaller than some specified value) 

to shorten the duration of the simulations. However, even though such tests are able to 

reduce the duration of the simulation they may not be accurate. Also for plants with slow 

dynamics, the two-level RTO-MPC simulations can still take long time despite the fact that 

the RTO has been executed right after steady-state was achieved. 

These observations motivated the idea of substituting the dynamic plant operation between 

the steady-states with a calculation which yields the resulting closed-loop steady-state be­

havior in one execution. The advantage of using such a steady-state modelling method for 

process plants is not only the reduction of the excessive calculations, but also the possibility 

to integrate process and control systems into higher order optimization schemes. 

Marlin and Young (1998) proposed a method for including controllers in steady-state simula­

tion for multiple single-loop controllers. This method represents the steady-state controller 

algorithm within an open-form model as a set of equations which are solved simultaneously 

with the process model to find the steady-state plant behavior. The method is valid for the 

scenarios when the input has reached a constraint at steady-state and when it has not. 

This method was extended in Kassidas et al. (2000). Here, the proposed procedure was 

designed for multi-input, multi-output control systems (nonsquare, in the general case) 

under centralized multivariable Dynamic Matrix Control. Similarly to Marlin and Young 

(1998), the effect of the controller was introduced as a set of nonlinear equations represent­

ing the relationship between MVs and CVs at steady-state. At the optimum point, these 

equations are deemed equivalent to the optimization problem which the controller solves at 

every iteration at steady-state. 

This chapter proposes two methods for steady-state simulation of the non-square plant 

under constrained DMC control in the presence of mismatch between plant and model 
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steady-state gains. First it is shown that in general, use of a steady-state model is insuffi­

cient, as the optimal inputs and outputs as computed by the MPC controller may vary over 

the prediction horizon, even at steady-state. Then, two methods for finding the closed-loop 

steady-state of a non-square plant in the general case are proposed. Finally, the inclusion 

of the steady-state calculation into a two level LP - MPC cascade control system simulation 

is presented. 

This chapter considers the set point control problem only i.e no disturbances affect the 

plant during the transient and at steady-state. The modification of the proposed methods 

for closed-loop steady-state calculation in the presence of step-like disturbances is straight­

forward. Zero initial conditions (in deviation form) have been assumed for all simulations. 

The problem formulation involving a static process model is presented in Section 4.1. The 

more general formulation that includes dynamics within the MPC controller as well as 

plant/model mismatch is presented in Section 4.2. A description and discussion of the 

sequential and simultaneous solution strategies are provided in Sections 4.3 and 4.4 respec­

tively. This is followed by the LP-MPC application study in Section 4.5, and conclusions 

in Section 4.6. 

4.1 	 Equilibrium Point Calculation using Steady-State Mod­

els 

Assume that the plant has reached steady-state and the controller keeps solving the opti ­

mization problem (2.21) at every iteration. Then it is expected that its solution at every 

iteration is not any different from the solution at the previous iteration. In this case all the 

variables in (2.21) must have reached some steady-state values which remain constant from 

iteration to iteration. 

If the 	system is square and closed-loop stable and if the set points given to the plant 
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are achievable i.e. there are no steady-state offsets then by the integral action property of 

MPC, the steady-state inputs can be found trivially by: 

where u and y are plant steady-state input and output vectors respectively and Kp is the 

plant gain matrix. However, if one or more manipulated variables is saturated or if the 

number of the outputs is larger than the number of the inputs, then off-set free tracking 

is not possible and the calculation of the closed-loop steady-state requires inclusion of con­

troller equations and constraints. 

Consider a process controlled by MPC that is at steady-state. If (i) the plant model is 

perfect, (ii) the plant is open-loop stable, and (iii) the input trajectory computed by the 

MPC algorithm is constant over control move horizon, then optimization problem (2.13) 

reduces to 
P N-l 

minJ L IIY- Ysetllbi + L llu- Utarll~i 
y,u 

i=l i=O 

subject to: 

x=Ax+Bu 

y = Cx+Du 

(4.1) 

where u and y correspond to the steady-state inputs and outputs respectively. 

According to (2.8) the model equations in (4.1) may be replaced by 

y=Ku 

where K is the process steady-state gain. For N = P and constant weighting matrices, Qi 

and ~' the objective function reduces to 
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The ability of optimization problem ( 4.1) to find a plant's closed-loop equilibrium point was 

tested using the following case study: 

Case Study 4.1. Consider a plant described by the transfer function model: 

YI(s) = ~u1(s) + ~uz(s)
TS + 1 TS + 1 
-0.2 ( ) 0.5 ( ) y2 (s) = --u1 s + --u2 s 

TS + 1 TS + 1 

Constraints: -1.0 :::; Yb Yz :::; 1.0; -0.5 :::; u11 uz :::; 1.0 

Weights: Q = Ip; R = 0 

Simulation parameters: sampling time T8 = 0.3, prediction horizon P = 50, control horizon 

M = 2, plant time constant T = 3.0 

All possible combinations of the set points for Yl and Yz inside their steady-state limits 

(-1.0 ::=; y}et, Y2et ::=; 1.0) with mesh size of 0.1 were considered. The results, obtained from 

optimization procedure ( 4.1) were compared with the results obtained through dynamic 

simulations for corresponding set points and no discrepancies were revealed. The results for 

a number of different set-points are presented in Table 4.1. 

Set point Dynamic simulation Solution of problem (4.1) 

yset T YT UT YT UT 

[0.8 0.6] [0.63077 0.34615] [0.76923 1.0] [0.63077 0.34615] [0.76923 1.0] 

[0.8 0.8] [0.53846 0.40769] [0.46154 1.0] [0.53846 0.40769] [0.46154 1.0] 

[0.8 1.0] [0.44615 0.46923] [0.15385 1.0] [0.44615 0.46923] [0.15385 1.0] 

[0.6 0.8] [0.4 0.5] [0.0 1.0] [0.4 0.5] [0.0 1.0] 

[0.6 1.0] [0.30769 0.56154] [-0.30769 1.0] [0.30769 0.56154] [-0.30769 1.0] 

Table 4.1: Case Study 4.1: Steady-State Results via Dynamic Simulation and Solution of 

Problem (4.1) 
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Case Study 4.2. Case Study 4.1 was modified as follows: 

The only difference is in the dynamics of the transfer function element relating u1 and Y2· 

The same set of scenarios as in Case Study 4.1 were run, with identical problem parameters 

except for the transfer function element described above. The results of the simulations for 

the set points from Table 4.1 are presented in Table 4.2. 

Set point Dynamic simulation Solution of problem (4.1) 

Yset T YT UT YT UT 

[0.8 0.6] [0.64419 0.33721] [0.81396 1.0] [0.63077 0.34615] [0.76923 1.0] 

[0.8 0.8] [0.5592 0.39387] [0.53066 1.0] [0.53846 0.40769] [0.46154 1.0] 

[0.8 1.0] [0.47421 0.45053] [0.24736 1.0] [0.44615 0.46923] [0.15385 1.0] 

[0.6 0.8] [0.41586 0.48943] [0.05286 1.0] [0.4 0.5] [0.0 1.0] 

[0.6 1.0] [0.33087 0.54609] [-0.23044 1.0] [0.30769 0.56154] [-0.30769 1.0] 

Table 4.2: Case Study 4.2: Steady-State Results via Dynamic Simulation and Solution of 

Problem (4.1) 

Analyzing the results it was concluded that here, optimization problem ( 4.1) no longer 

generates the correct steady-state result. Case Study 4.1 is somewhat artificial in that the 

dynamics of all the transfer function elements in the open-loop plant model are the same. 

From Case Study 4.2 it can be concluded that optimization problem ( 4.2) would not be ex­

pected to yield the correct result for the general case of differing dynamics in the elements 

of the transfer function matrix. 

The reason for the discrepancies observed in Case Study 4.2 is that assumption (iii) in 

the formulation of optimization problem (4.1) is not valid for the general case, that is, the 

input and output trajectories in the MPC calculation cannot be assumed constant over the 

respective horizons, even with the system at steady-state. The closed-loop output trajecto­
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ries for the set point change yset = [0.8 0.8jT in Case Study 4.2 are shown in Figure 4.1, 

together with the output prediction trajectories at several points during the simulation. It 

can be seen that while the prediction trajectories do not change from one MPC calculation 

to another when the system is at steady-state, the values along the trajectory are not con­

stant. 

0.6 
·:!'!t+­ ~ ~....................... ~ .........................>++of
:r 

0.4 ··· ­
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•
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.. ·................................ .
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time 

Figure 4.1: Case Study 4.2: Plant outputs and output prediction trajectories for yset 

[0.8 0.8Jr. Solid line: closed-loop output. Diamond: output prediction 

The closed-loop steady-state is also dependent on the controller parameters in the general 

case. Table 4.3 shows the variation of steady-state for different values of the prediction 

horizon and sampling period for the set point yset = [0.8 0.8jT. All other parameters are 

as in Case Study 4.2. 
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p 10 30 50 70 90 110 130 

y 
0.51792 

0.42139 

0.56478 

0.39015 

0.55920 

0.39387 

0.55301 

0.39799 

0.54926 

0.40049 

0.54697 

0.40202 

0.54547 

0.40302 

u 
0.39306 

1.0 

0.54925 

1.0 

0.53066 

1.0 

0.51003 

1.0 

0.49754 

1.0 

0.48991 

1.0 

0.48491 

1.0 

Ts 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

y 
0.5124 

0.42506 

0.55424 

0.39718 

0.56596 

0.38936 

0.56619 

0.38921 

0.56294 

0.39137 

0.55920 

0.39387 

0.55588 

0.39608 

u 
0.37468 

1.0 

0.51412 

1.0 

0.55320 

1.0 

0.55396 

1.0 

0.54314 

1.0 

0.53066 

1.0 

0.51959 

1.0 

Table 4.3: Case Study 4.2: Variation in Steady-State with Control Parameters for yset = 

[0.8 o.8Jr 

The invalidity of assumption (iii) mentioned above was also supported by the following 

observation. For the set points where the optimization problem (4.1) solution and dynamic 

simulations gave different results, the vector of future control moves b.uk at steady-state 

was not a complete zero vector. The results for several simulations are presented in Table 

4.4 (all simulations have been run with the Case Study 4.2 nominal parameters). 

Set Points YT UT b.ur 

[0.8 0.6] [0.64419 0.33721] [0.81396 1.0] [0.0 0.0 -0.10185 0.0] 

[0.8 0.8] [0.5592 0.39387] [0.53066 1.0] [0.0 0.0 -0.15741 0.0] 

[0.8 1.0] [0.47421 0.45053] [0.24736 1.0] [0.0 0.0 -0.21297 0.0] 

[0.6 0.8] [0.41586 0.48943] [0.05286 1.0] [0.0 0.0 -0.12037 0.0] 

[0.6 1.0] [0.33087 0.54609] [-0.23044 1.0] [0.0 0.0 -0.17593 0.0] 

Table 4.4: Case Study 4.2: Future Input Moves at Steady-State 

Since the future input moves vector were taken at the steady-state, its first two components 

are zeros, as expected. However, the third element is non-zero. Simulations with larger 

control horizons have been considered and they showed that with an increase of the control 
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horizon, the number of nonzero components in vector Lluk at steady-state increases as well. 

The steady-state also appeared to be dependent on the values of the move suppression 

weights S = slm. For the set-points considered in Table 4.4, the inclusion of these weights in 

the MPC results in reducing of the l- oo norm of the future input moves vector; however, it is 

not zero at steady-state even for large weights. The steady-states of Case Study 4.2 with the 

set point yset = [0.8 0.8JT obtained through dynamic simulations for different values of s are 

displayed in Table 4.5. It can be seen that these equilibrium points are different from the so-­

lution of optimization problem (4.1) which is yT = [0.53846 0.40769], uT = [0.46154 1.0]. 

s yT UT Llur 

0 [0.55920 0.39387] [0.53066 1.0] [0.0 0.0 -0.15741 0.0] 

2 [0.51782 0.42145] [0.39273 1.0] [0.0 0.0 -0.00213 0.0] 

4 [0.51740 0.42174] [0.39132 1.0] [0.0 0.0 -0.00054 0.0] 

6 [0.51732 0.42179] [0.39106 1.0] [0.0 0.0 -0.00024 0.0] 

8 [0.51729 0.42181] [0.39097 1.0] [0.0 0.0 -0.00013 0.0] 

10 [0.51728 0.42182] [0.39092 1.0] [0.0 0.0 -0.00009 0.0] 

Table 4.5: Case Study 4.2: Variation m Steady-State for Different Move Suppression 

Weights for yset = [0.8 0.8jT 

All the simulations and observations presented above have clearly indicated that optimiza­

tion procedure (4.1) cannot be used for the equilibrium point calculation in the general 

case. First, the vector of future manipulated variable moves may not be entirely zero and, 

therefore, it must be presented in the computational procedure in a complete form. Second, 

not only the steady-state equations but also the model dynamics determine the resulting 

steady-state point. Finally, the controller tuning parameters may affect the steady-state 

plant behavior. From these observations it can be deducted that for the general case, the 

effects of model dynamics have to be included in the calculation of the dosed-loop steady­

state. 



67 

4.2 Equilibrium Point Calculation using Dynamic Models 


The simulations and the discussion presented in Section 4.1 have shown that the resulting 

equilibrium point depends on the controller's parameters and model. Therefore, the opti­

mization problem which is solved by the controller at every iteration is taken as a starting 

point in computational framework design. 

Let us consider optimization Problem 2.21. Assume, that the plant reached steady-state 

and the controller repeatedly calculates control inputs. Since the plant is at steady-state, 

then all the variables do not change from iteration to iteration and, therefore, (2.21) can be 

rewritten as follows: 

minJ 
~u 

subject to: 

u= D~u + E*t1il 

(4.2) 

where f) is a vector of the steady-state output predictions, u is a vector of the steady-state 

future inputs, u E Rm is a vector of the manipulated variables at steady-state, !1u is a 

vector of the steady-state future manipulated variable moves, xm E Rn is an estimation 

of the model state vector at steady-state, d E RP is an estimation of the disturbance at 

steady-state. 
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Since the plant is at steady-state, the following equations must be satisfied: 

xm = Axm +Bu 

ym = Cxm +Du (4.3) 

y=Kpu 

d= Y- Ym 

where all the parameters are as defined in Section 2.5.1. Controller solves problem (4.2) at 

every iteration, however, since the steady-state parameters are of interest, the steady-state 

condition must be satisfied: 

~u(i) = o, i= l, ... ,m (4.4) 

At steady-state the first control moves which are sent to the controller must be zero; how­

ever, as it has been observed, the other elements of the vector can be nonzero. 

It is important to recognize that equations ( 4.3) and ( 4.4) cannot be merely inserted into 

optimization procedure ( 4.2), and the unknown steady-state inputs, u, computed together 

with ~u. This destroys the integrity of what actually taking place in the control algorithm, 

resulting in erroneous solutions. 

The importance of separating the steady-state model and plant equations from the op­

timization procedure can be illustrated using the following study. Optimization problem 
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{ 4.2) together with equations (4.3) and (4.4) results into the following optimization problem: 

subject to: 

y = A**xm + B**u + C** b..u + DZd 

u = n:u + E*b..u 

!:!..u(i) = o, i= 1, ... ,m 

(4.5) 

This formulation contains controller tuning parameters as well as dynamics of the model. 

However, direct implementation of this calculation framework does not provide correct re­

sults for the steady-state parameters. This approach was applied to Case Study 4.2 with 

its nominal parameters and the results for different trials are summarized in Table 4.6. 

Set point Dynamic simulation Solution of problem (4.5) 

Yset T YT UT YT UT 

[0.8 0.6] [0.64419 0.33721] [0.81396 1.0] [0.7 0.3] [1.0 1.0] 

[0.8 0.8] [0.5592 0.39387] [0.53066 1.0] [0.7 0.3] [1.0 1.0] 

[0.8 1.0] [0.47421 0.45053] [0.24736 1.0] [0.7 0.3] [1.0 1.0] 

[0.6 0.8] [0.41586 0.48943] [0.05286 1.0] [0.57716 0.3819] [0.59052 1.0] 

[0.6 1.0] [0.33087 0.54609] [-0.23044 1.0] [0.56661 0.38893] [0.55537 1.0] 

Table 4.6: Case Study 4.2: Steady-State Results via Dynamic Simulation and Solution of 

Optimization Problem (4.5) 

This simulations show that integration of optimization procedure (4.2) and steady-state 

equations {4.3) into one optimization problem {4.5) is not the right approach of solving 
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the problem. Indeed, even though the controller solves optimization problem ( 4.2) at every 

iteration at steady-state, the steady-state model equations in ( 4.5) are not part of the con­

troller. Therefore, the entire problem must be reformulated in a way that conforms to 

operation in practice. 

Assume that the steady-state input vector u is known. Then all the variables in steady-state 

equations ( 4.3) can be calculated and, therefore, they may also be considered as known. If 

all these parameters are known, then optimization problem ( 4.2) can be entirely expressed in 

terms of flu only and solved. The solution of this optimization problem is vector lluopt, and 

if the plant is at steady-state, its first m elements should be zeros: lluopt(i) = 0, i = 1, ... , m. 

The problem of equilibrium point calculation can be formulated in "reversed" order. Finding 

plant equilibrium point is equivalent to finding such steady-state values of the manipulated 

variables u that the substitution of all the variables derived from the steady-state equations 

(4.3) into optimization problem ( 4.2) results in an optimal solution lluopt whose first m 

elements are zero. 

This thesis proposes two alternative methods of solving this problem. The first is to consider 

the problem as a system of nonlinear equations and solve it using numerical methods. The 

second method employs the KKT optimality conditions of the MPC optimization problem 

together with steady-state equations ( 4.3). 

4.3 	 Equilibrium Point Calculation using Nonlinear Equation 

Solver 

The procedure for calculation of the optimal MV moves can be presented as a nonlinear 

function "F" which argument and value are vectors of the same length. Indeed, if u is 

considered to be an argument of such a function, then all the variables in equations ( 4.3) 

are linear functions of u and, therefore, can be determined uniquely for any feasible value 
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of u. Since only stable closed-loop systems are considered here, with proper choice of the 

weights in the objective function, optimization problem ( 4.2) has a unique solution - the 

optimal vector of future control moves. Then the first m elements of this vector (denoted 

as ~u) can be considered as the value of the function: 

F(u) = ~u 

This can also be considered as a "black box" where only input and output parameters are 

known. With such a representation, the problem of the equilibrium point calculation is 

transformed into the problem of solving a system of nonlinear equations. It is necessary to 

find such values of the argument that the value of the function F is equal to zero: 

F(u*) = 0 (4.6) 

Since the dimension of u is also m, the dependency between u and ~u can also be consid­

ered as a square system of nonlinear equations, though not expressed explicitly. 

There are many methods of solving the system of nonlinear equations and most of them 

employ the derivatives of the equations with respect to the unknown variables. Since the 

equations in F are not given explicitly, these derivatives cannot be calculated analytically. 

However, the value of the function can be calculated for every feasible value of the argument 

which allows numerical calculation of the derivatives. Before proceeding to the method of 

solving the problem, it is worthwhile to devote some attention to studying the linearity of 

the problem. In case when the system is linear, or close to linear, the solution is expected to 

be rapid, precise and not strongly dependent on the initial guess. If the system is nonlinear, 

the convergence to the optimum is not guaranteed and the success of the solving procedure 

may be initial guess dependent. 

This method will be examined using the following case study: 

Case Study 4.3. 

Model Plant 


Yl(s) = ~;!51 u1(s) + 7~~1 u2(s) Yl(s) = 7~~1 u1(s) + 7~~ 1 u2(s) 


Y2(s) = 0:5~}!1 u1(s) + ~;~1 u2(s) Y2(s) = o.5~~!1 ul(s) + 7~! 1 u2(s) 
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Constraints: 


Weights: Q = Ip; R = 0; S = 2.0 Im 


Simulation parameters: prediction horizon P = 50, control horizon M = 2, sampling time 


Ts = 0.3, plant/model time constant T = 3. 


Since the equations are not known exactly, the linearity of the system will be studied using 

numerical methods. For this purpose, each component of the argument can be changed 

inside its bounds one in a time and the resulting curves can give an indication of the lin­

earity of the system. From dynamic simulations with the set point yset T = [0.8 0.8], it was 

found that the equilibrium point is: yT = [0.43698 0.47534], uT = [0.12328 1]. In the 

simulations, first u 1 was changed from 0 to 1 keeping u(2) at the optimal level and then vice 

versa. Two scenarios were applied: with constraints on the input moves (L1u :S 0.2) and 

with relaxed constraints on the input moves. The curves obtained are presented in Figure 

4.2. 

The results have shown that the constraints on the manipulated variable moves are an 

important issue here. If the constraints are tight, then large deviations of u around true 

plant steady-state u* may result in the non-smooth function output (knotted line in Fig­

ure 4.2) degrading the linear properties of the function. However, it was found that these 

constraints do not affect the equilibrium point; thus they can be relaxed. In this case the 

saturation of the function outputs does not occur (solid line in Figure 4.2). As it can be 

seen in Figure 4.2, the case study considered has good linear properties in the absence of 

the constraints on the control moves. In the presence of such constraints the system shows 

piece-wise linear behavior. 

Since the system has shown good linear properties, it is expected that the numerical methods 

for solving the system of nonlinear equations ( 4.6) will be successfuL To solve the system, 

nonlinear equation solver "fsolve" from M atlab© Optimization Toolbox (The MathWorks 

User's Guide, 2006) was used. For medium-scale problems this solver uses the Gauss-Newton 
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Figure 4.2: Case Study 4.3: Function F for different values of the input parameters (yset T = 

[0.8 0.8]). Solid line- responses without MVs moves constraints. Knot line- responses with 

input moves constraints 

or Levenberg - Marquardt methods with line search and for large-scale optimization it uses 

algorithms which are based on nonlinear least-squares methods. The medium-scale algo­

rithms were used in the case study presented. 

The effect of the constraints on the manipulated variable moves was considered first. The 

method was executed for different values of the MV move constraints with a set of 49 initial 

guesses which were evenly distributed inside the manipulated variable limits. With con­

straints "j~uj :S: 0.2" only 8 initial guesses resulted in finding the correct steady-state (in 

all other cases the algorithm terminated at a point, which was not a root of the system). 

Some results for different starting points are presented in Table 4.7. \Vhen the constraints 
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were relaxed to "l~ul ::::; 0.35", 23 starting points were successful, for "J~ul ::::; 0.5" 28 start­

ing points from the set led to the algorithm convergence to the optimum. For MV move 

constraints "l~ul ::::; 1.0", or more relaxed bounds the correct steady-state was found for all 

initial guesses from the set. 

Initial Guess YT UT 

[0.25 0.25] [0.1372 0.14952] [0.038226 0.31434] 

[0.25 0.5] [0.24961 0.25005] [0.10776 0.54321] 

[0.5 0.25] [0.17135 0.18006] [0.05935 0.38387] 

[0.5 0.5] (0.27643 0.27404] [0.12434 0.59781] 

[0.5 0.75] (0.43698 0.47534] [0.12328 1.0] 

[0.75 1.0] [0.625 0.35] [0.75 1.0] 

Table 4.7: Case Study 4.3: Steady-State Simulation using Solver "fsolve" and Different 

Initial Guesses for the Set Point yset T = [0.8 0.8] and J~uj ::::; 0.2 

This concludes that in order to achieve good performance of the method, the constraints on 

the manipulated variable moves in the optimization problem, which is solved inside function 

F, should be completely relaxed. 

Next, Case Study 4.3 with the initial guess [0.0 O.O]T was considered. Comparison of 

the equilibrium points calculated using fsolve solver and obtained through dynamic sim­

ulations for different set-points are presented in Table 4.8. Both the Gauss-Newton and 

Levenberg-Marquardt methods in the equation solver suite were used, and gave identical 

results. 

The presented results conclude, that the proposed method of finding the equilibrium point 

using the nonlinear system solver is successful in case when the constraints on the MV 

moves are relaxed. Otherwise, its performance becomes sensitive to the initialization. 
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Set point Dynamic simulation Solution using fsolve 

Yset T YT UT YT UT 

[0.6 0.6] [0.45052 0.46632] [0.16841 1.0] [0.45052 0.46632] [0.16841 1.0] 

[0.6 0.8] [0.32240 0.55173] [-0.25867 1.0] [0.32240 0.55173] [-0.25867 1.0] 

[0.8 0.4] [0.69323 0.30451] [0.97744 1.0] [0.69323 0.30451] [0.97744 1.0] 

[0.8 0.6] [0.56511 0.38993] [0.55036 1.0] [0.56511 0.38993] [0.55036 1.0] 

[0.8 0.8] [0.43698 0.47534] [0.12328 1.0] [0.43698 0.47534] [0.12328 1.0] 

[0.8 1.0] [0.30886 0.56076] [-0.30379 1.0] [0.30886 0.56076] [-0.30379 1.0] 

Table 4.8: Case Study 4.3: Comparison of the Dynamic Simulation and Steady-State Sim­

ulation using Nonlinear Equations Solver 

4.4 	 Equilibrium Point Calculation using the Stationary Con­

ditions of Optimality 

The method represented in Section 4.3 considers the relationship between the steady-state 

values of the MV and the first MV moves as a nonlinear vector function. This function was 

formulated implicitly because the equations were not know exactly and the system operated 

as a "black box", where for each feasible argument ("input") the system generated the cor­

responding unique function value ("output"). Since the function contained the optimization 

problem inside, numerical methods for finding the function's zero had to be applied. 

The method presented in this section formulates the problem of finding the cquilibrimn 

point as a solution of a system of nonlinear equations formulated explicitly. This approach 

replaces optimization problem (4.2) by a set of equations which are equivalent to the opti­

mization at the optimal solution (Karush-Kuhn-Tucker (KKT) conditions of optimality). 

First, let us consider optimization problem (4.2). Since the optimization variables are 

!1u and all the other variable are linearly dependent on !1u, then (4.2) can be formulated 
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in terms of Llu only: 

subject to: 

Ymin < n Llu +r < ymax- 1 1­

(4.7) 

where: 

~h = C** 

fb =E* (4.8) 

H = o[Qol + ofRo2 + s 

a= (ysetfQyset + (utarfRutar 

The constant term in the objective function may be ommitted; this does not affect the 

solution. The KKT conditions for problem ( 4. 7) can be derived in the following manner. 

The Lagrange function is first formed: 

-(>.If (ymax- 01/:lu- r1)- (.X2f (01/:lu + r1- Ymin) - (4.9) 

-(>.3f (umax- 02/:lu- r2)- (.A4)T (02/:lu + r2- Umin) 

-(>.5f(Llumax- Llu) - (>.6f(Llu- Llumin) 
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where AI, ... , A6 are Lagrange multipliers. The resulting KKT conditions for optimality are: 

Y'LluL = H ~ft + g + D[AI - DfA2 + nrA3 - nrA4 + A5 - A6 = 0 

max {) " r u 0Ay - HIL.lU- I -VI = 

n "A r min L 0HIL.lU + I - y - VI = 

max {) " r - u = 0U - H2UU-A 2 V2 

n2~ft + r2 - umin - vf = 0 

b.umax - ~ft- vf = 0 

b.ft- ~umin - vf = 0 

(AI)i(vf)i = 0; (A2)i(vf)i = 0; i = 1, ... , ni 

(A3)j(vf)j = 0; (A4)j(vf)j = 0; j = 1, ... , nj 

(A5)ivf)j = 0; (A6)j(vf)j = 0; j = 1, ... , nj 

(4.10) 

where vf, vf, vf, vf, vf, vf are nonnegative slack variables, ni is the dimension of vector 

AI (or A2), nj is the dimension of vector A3 (or A4, A5, A6) and (AI)i and (vf)i are the 

i- th elements in vectors AI and vf respectively with (A2)i, (A3)j, (A4)j, (A5)j, (A6)j, (vf)i, 

(vf)j, (vf)j, (vf)j, (vf)j similarly defined. 

Since optimization problem (4.2) is a convex quadratic programming problem, a local opti­

mum is a global optimum. 

Finally, the problem of the equilibrium point calculation can be formulated in the fol­

lowing manner: 

Find: 

u, y 
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which together with associated problem variables (xm, d, flu, etc.) satisfy the following 

system of nonlinear equations: 

Steady-state plant/model equations: 

y=Kpu 

d=y-Cxm -Du 

K a rush-Kuhn- Tucker optimality conditions : 

max n J\A r u 0Y - H}UU- 1 - Vl = 

nlflu +rl- ymin- vf = 0 

max n J\A r u 0
U - J '2UU - 2 - =V2 

n i\ r min L 0AH2UU + 2 - U - V2 = 

(.>.I)i(vf)i = 0; (.>.2)i(vf)i = 0; i = 1, ... , ni 

(.A3)j(v~\ = 0; (.>.4)j(v})j = 0; j = 1, ... , nj 

(.As)j(vf)j = 0; (.>.6)j(vf)j = 0; j = 1, ... , nj 

Non-negativity constraints: 

Plant steady-state operation condition : 

flu(i) = o, i = 1, ... , m (4.11) 

where A, B, C and D are as specified in (2.7); Kp as specified in (2.8); H, g, D1, D2, r1, 
r2 as specified in (4.8). 

This framework uses the linear equation y = Kpu which relates plant measured outputs 

with the manipulated variables at steady-state. However, instead of this equation, the non­

linear plant steady-state fundamental equations (for example, obtained from material or 
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energy balances) could be used here. This is also valid for all formulations proposed further 

which use steady-state plant equations and the conditions of optimality. 

The steady-state inputs u may be determined by solving the system of equations (4.11). A 

standard nonlinear equation solver would in general not be able to accommodate the non­

negativity constraints directly, and could result in convergence difficulties if one or more 

of the variables involved in the complementarity constraints in system (4.11) reaches zero 

prematurely. This has suggested the use of an interior point solution approach. AMPL© 

(Fourer et al., 1993) was chosen as a modelling language with the IPOPT-CC solver (Raghu­

nathan and Biegler (2003)) which has proven to be a reliable solver for such type of problems 

(Raghunathan and Biegler, 2003; Baker and Swartz, 2007). 

Different case studies with different set points have been considered. All simulations have 

shown that the proposed method of the equilibrium point calculation gives the same pa­

rameters that were obtained from dynamic simulations with a required precision. For all 

simulations zero initial guesses was used. Some results are summarized in Table 4.9. Here, 

Case Study 4.3 with the nominal parameters were considered with the set points from Table 

4.8. 

Set point Dynamic simulation Solution of problem (4.11) 

Yset T YT UT YT UT 

[0.6 0.6] [0.45052 0.46632] [0.16841 1.0] [0.45052 0.46632] [0.16841 1.0] 

[0.6 0.8] [0.32240 0.55173] [-0.25867 1.0] [0.32240 0.55173] [-0.25867 1.0] 

[0.8 0.4] [0.69323 0.30451] [0.97744 1.0] [0.69323 0.30451] [0.97744 1.0] 

[0.8 0.6] [0.56511 0.38993] [0.55036 1.0] [0.56511 0.38993] [0.55036 1.0] 

[0.8 0.8] [0.43698 0.47534] [0.12328 1.0] [0.43698 0.47534] [0.12328 1.0] 

[0.8 1.0] [0.30886 0.56076] [-0.30379 1.0] [0.30886 0.56076] [-0.30379 1.0] 

Table 4.9: Case Study 4.3: Comparison of the Dynamic Simulation and Steady-State Sim­

ulation using KKT Conditions for Optimality 
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4.5 	 Inclusion of the Steady-State Simulation into Two-Level 

Steady-State Optimization 

As discussed in Section 2.1, the LP optimization problem can serve as an RTO level for a 

plant with an MPC control system. The LP objective function represents either a profit 

or cost of the operation, with output set points and input target values related through 

the steady-state gain matrix. The effects of plant/model mismatch and disturbances are 

compensated for through a bias term which is updated at steady-state (in the case of steady­

state optimization) or more frequently. 

In this section, steady-state optimization only is considered. That means that the LP 

is not executed until the plant has reached steady-state. At steady-state the bias term is 

measured in the following manner: 

d=y-Kmu 	 ( 4.12) 

Once the bias is updated, the LP recalculates the set points which are thereafter sent to 

the plant. 

In the previous sections two methods for closed-loop steady-state calculation were pre­

sented. These methods allow calculation of the plant equilibrium point for a given control 

system and set points. Since the set points are sent to the plant from the LP level, it is 

possible to extend the steady-state calculation from the control system level to a two-level 

cascade system simulation. 

Let us consider optimization problem (2.4) which the LP solves at steady-state. At the 

optimum point, this optimization problem is equivalent to the following KKT optimality 
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conditions: 

a + )q + -\2 - -\3 = 0 

b- K~-\1 + A4 - A5 = 0 

tar Umin L _ 0
U - - v2­

(-X2Mvf)i = 0; (-X3)i(vf)i = 0, i = 1, ... , ni 

(-X4)j(vf)j = 0; (-X5)j(v§')j = 0, j = 1, ... , nj 

(4.13) 

where aT= [a1, ... , ap] and bT = [b1, ... , bm] are the coefficients in the LP objective function. 

Since in both systems ( 4.11) and ( 4.13) the number of the variables is equal to the number 

of the equations, they can be solved simultaneously. The system of nonlinear equations 

(4.13) is independent from system (4.11); therefore, its solution when it is solved separately 

is not any different from the solution when it is solved together with ( 4.11) as one system. 

However, the solution of (4.11) depends on the solution of (4.13), since it uses the set points 

and the target values calculated at the LP level as parameters. The simultaneous solution 

approach was followed in this study. 

The results of several simulations for Case Study 4.3 are presented in Table 4.10, where 

the LP objective function coefficients are included. Similarly to the calculations in Section 

4.4, these results were obtained using modelling language AMP£© and solver IPOPT-CC. 

Because of the plant/model mismatch, it may require several iterations of the steady-state 

optimization before the plant starts operating at the optimal level. At every such iteration, 

the bias term din the LP formulation will be updated according to (4.12) and the new 
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f =[aT bTj Yset T YT UT 

[-4 -2 2 I] [O.I75 0.575] [0.21087 0.55109] [-0.5 0.902I74] 

[-5 I I I] [0.55 0.2] [0.55 0.2] [0.847827 73913] 

[-1 - 2 I 10] [-0.275 - 0.1] [-0.275 -0.1] [-0.423913 - 0.369565] 

Table 4.10: Solutions of the Integrated LP- MPC System for Different LP Objective Func­

tions 

set points will be sent to the plant for implementation. The two-level LP-MPC cascade 

system with steady-state optimization can be successfully modelled as steady-state simu­

lations only. The steady-state simulation of one iteration has been discussed above. The 

same approach can be used for steady-state simulation of several sequential iterations. The 

bias term d relates all the iterations with each other: at each iteration starting from the 

second, the bias is calculated using the variables from the previous iteration; at the first 

iteration it is zero. The entire two-level LP-MPC system with steady-state optimization 

can be formulated as the following steady-state simulation framework. 

Find: 

Uk, Yk> k = 1, ... , N 

which satisfy the following system of nonlinear equations: 

Steady-state plant/model equations: 

xr =Axr+Buk 

Yk = KpUk 

dk = Yk- Cxk- Duk 
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Karush-Kuhn-Tucker conditions of optimality for the RTO level: 

a + >.fk + >.~k - >.f k = 0 

b- K~>.fk + >.f k- >.f k = 0 

Y
max Yset U _ 0 

- k - vl k-

Umax Utar VU _ 0 
- k - 2k­

tar umin L _ 0
U k - - v2 k­

(>.~kMvfk)i = 0; (>.fk)i(vfk)i = 0, i = 1, ... , ni 

(>.fk)j(vf k)j = 0; (>.fk)j(v~k)j = 0, j = 1, ... , nj 

,L ,L ,L ,L U L U L 0 
/\2 k' /\3 k' /\4 k' /\5 k' vl k' vl k' V2 k' V2 k 2: 

Control level steady-state equations: 
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Karush-Kuhn-Tucker conditions of optimality for the control level: 

max n A' f U 0y - H}Ll.Uk - lk - Vl k = 

n A, +f min L 0 
J 6 lLlUk lk - Y - vl k = 

max n A' f U 0
U - H2LlUk - 2k - V2 k = 

n A' + r min L 0H2LlUk 2k - U - V2 k = 

~umax - ~ilk - vfk = 0 

~ilk- ~umin- vfk = 0 

(.XlttMvf k)i = 0; (.X2tt)i(vfk)i = 0; i = 1, ... , ni 

(.X3tt)j(vfk)i = 0; (.X4tt)j(v~k)i = 0; j = 1, ... , nj 

(.X5tt)j(v!( k)J = 0; (.X6ttMvf k)i = 0; j = 1, ... , nj 

· · d. · , , , , , , U L U L U L ON on-negatwzty con ztwns: .1\lk, /\2k, /\3k> A4k, A5k, A6k1 v1 k' v 1 k' v2 k' v2 k' v3 k' v3 k 2': 

Plant steady-state operation condition: 

~uk(i) = o, i = 1, ... ,m 

Equation for bias terms: 

Initialization: 

where N is the number of iterations and the other parameters have been specified through­

out the chapter. In this framework matrices 01, 02 and H can be calculated off-line and 

sent to the calculation procedure as parameters. 

This framework was applied to find the steady-state parameters for a two-level LP-MPC 

control system. Case Study 4.3 was used as a lower level. The upper level LP had the follow­

ing objective function: f = [aTbTjT = [-1.0 -2.0 1.0 10.0jT. The results of the simulation 
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k yf.et T y[ UT 
k df 

1 [-0.275 - 0.1] [-0.275 - 0.1] [-0.4239 - 0.3696] [0 OJ 

2 [-0.3332 - 0.1397] [-0.3332 - 0.1397] [-0.4813 - 0.4719] [-0.0582 - 0.0397] 

[-0.0713 - 0.0477]3 [-0.3463 - 0.1477] [-0.3463 - 0.1477] [-0.4959 - 0.4937] 

4 [-0.3492 - 0.1495] [-0.3492 - 0.1495] [-0.4991 - 0.4986] [-0.0742 - 0.0495] 

5 [-0.3498 - 0.1499] [-0.3498 - 0.1499] [-0.4998 - 0.4997] [-0.0748 - 0.0499] 

[-0.075 - 0.05]6 [-0.35 - 0.15] [-0.35 - 0.15] [-0.5 - 0.4999] 

7 [-0.35 - 0.15] [-0.35 - 0.15] [-0.5 - 0.5] [-0.075 - 0.05] 

8 [-0.35 - 0.15] [-0.35 - 0.15] [-0.5 - 0.5] [-0.075 - 0.05] 

Table 4.11: Case Study 4.3: Steady-State Evolution of LP-MPC Cascade Control System 

are presented in Table 4.11. The steady-state simulation results have been confirmed by 

dynamic simulation of the same case study results of which are presented in Figure 4.3. 

4.6 Chapter Summary 

This chapter presented a computational procedure for determining the closed-loop steady­

state point of a system controlled by constrained MPC. It was shown that in the general 

case not only the steady-state controller and plant equations determine the equilibrium 

point but also the controller tunings and model dynamics. Two methods for closed-loop 

steady-state simulation in the presence of plant/model mismatch have been presented and 

evaluated. The first method uses numerical solvers for finding a solution of a system of 

nonlinear equations expressed implicitly. It was shown that the performance of this method 

is strongly dependent on the posed constraints on the manipulated variable moves. The 

second method employs the KKT optimality conditions to formulate the problem as the 

solution of a system of nonlinear equations expressed explicitly. This system of equations 

was solved using the solver, IPOPT-C, and the proposed method was shown to be robust 

and initial guess insensitive. The success and convenience of its implementation allowed 



86 
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Figure 4,3: Dynamic responses for the multi-iteration steady-state simulation 

the application of the method to be extended from the control system level to a two--level 

LP-MPC cascade steady-state simulation, 



Chapter 5 

LP Sensitivity Analysis 

This chapter summarizes further research results obtained in the area of stability and 

performance of LP-MPC cascade control systems. Effects of constant disturbances and 

plant/model mismatch on the cascade system behavior have been considered in Chapter 

3. For those cases implemented, simulations have shown that with a proper model up­

date scheme at the LP level, the two-level control system appears to be stable and its 

performance depends on the combination of the size of the disturbance and the amount of 

plant/model mismatch. Such observations motivated the idea of considering the two-level 

control system behavior in the presence of nonconstant perturbations (usually, noise) in­

stead of considering step-like disturbances. Stability of the deterministic two-level system 

can be achieved, if at steady-state plant/model mismatch and constant disturbances result 

in constant bias terms which arc effectively introduced at the LP level through a proper 

bias update scheme. Constant bias terms result in a constant sequence of the set points 

from the LP level providing the stability of the two-level system. However, the presence of 

noise in channels implies that the resulting bias term is never constant and therefore two­

level control system may result in significant variation in set points and possibly inputs and 

outputs as well. Before the effect of the noise on the entire two-level system is considered, 

it is worthwhile to study the effect of the noise on the LP solution, or LP sensitivity to 

the noise. This chapter summarizes the research results on this topic. First, the descrip­
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tion of LP and MPC is given, then the LP sensitivity for SISO , MISO and MIMO cases 

is considered and, finally, the effect of the noise on the t-wo-level control system is considered. 

Section 5.1 gives introduction to LP sensitivity. Sections 5.2, 5.3 and 5.4 present LP sensi­

tivity analysis and results for a SISO, MISO and MIMO system respectively. The summary 

of the chapter is given in Section 5.5. 

5.1 Introduction to LP Sensitivity 

For simplicity of analysis, an LP with one output (a MISO system) is considered first , since 

such a system has only one bias term in its formulation. This LP has the form: 

ayss + L
m 

f3iur 
i=l 

subject to: 
m 

yss = 2.:: grur + d, i = 1, ... , m 
i = l 

Umin < Uss < Umax · 1 
l - l - l ' z = ' .. . , m (5.1) 

where a and f3i are price coefficients and g:S are steady-state gains of the process . According 

to the properties of an LP solution, the solution of problem (5.1) lies at the boundary of 

the feasible region, which is determined by the inequality constraints. If upper and lower 

bounds on the optimization variables and the coefficients in the cost function are given, 

then the particular placement of the solution depends only on the value of the bias d. 

From this viewpoint the LP problem can be considered as a mapping JR1 ::=;. JRN , where 

N is the number of optimization variables (for problem (5.1) N = m + 1) i.e. each feasi­

ble value of d corresponds to the solution of the LP problem which is a vector with length N. 

Bias term d cannot be chosen randomly because for some values the LP is infeasible i.e . the 

value of dis such that it is impossible to find the solution which satisfies equality constraint 

Y88 = :L;:1 g:Suf8 + d and preserve all the variables y and ui inside their bounds at the 
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same time. Therefore, it is first necessary to find the feasible region for d. This can be done 

by reformulating the optimization problem (5.1), posing d as an optimization variable. The 

upper bound for d can be found as: 

maxa d 

subject to: 
subject to: 

(5.2) 

ymin :::; Yss :::; ymax 

d = Yss - L:,l g:Su:S 

The lower bound can be found analogously to (5.2) formulated as a minimization problem. 

If all steady-state gains g:S are the same sign, the solution of optimization problems (5.2) 

can be written analytically: 

_ "'m ss min _ "'m ss max (5.3)dmax - Ymax- L....i=l 9i Ui dmax - Ymax - L....i=l 9i Ui 

d _ "'m max d _ "'m ssss min
min - Ymin - L....i=l 9i ui min - Ymin - L....i=l 9i ui 

In all other cases the solution depends on the sign of each steady-state gain. Effect of the 

bias term on the LP solution can be illustrated using the following case study. 

Case Study 5.1. MISO process with 2 inputs described by following model: 

with constraints: 

-1.0:::; y:::; 1.0; -0.5:::; U}, U2:::; 0.5 

Objective function: 

maxf = y- u1 
y,ul 
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The corresponding LP has the following form: 

maxf = y- u1 
y,u1 

subject to: 

y = 0.4ul + OAu2 + d 

-1.0 :S y :S 1.0 

-0.5 :S U1 :S 0.5 

-0.5 :S U2 :S 0.5 (5.4) 

First, the range of the bias term d which corresponds to a feasible solution of the LP 

formulation (5.4) can be calculated. Since the steady-state gains are positive, formulas 

(5.3) can be used: 

m 

dmax = Ymax- L g:Suiin = 1.0- 0.4(-0.5) - 0.4( -0.5) = 1.4 
i=l 
m 

dmin = Ymin- L9:Suiax = -0.1- 0.4(0.5)- 0.4(0.5) = -1.4 
i=l 

If the bias term is within this range, the solution of the LP exists. The dependance of this 

solution on the bias is presented graphically in Figure 5.1. 

Each line in the figure represents an optimization variable. For any feasible value of d, at 

least two variables lie at their constraints. There are two particular values of bias ( d = -1.0 

and d = 1.0) where all three variables lie at their constraints. It is even more important 

to mention that at these points the constraints change their activity. When d < -1.0, 

constraint -1 :S y is active while -0.5 :S u1 is not active and when d > -1.0, constraint 

-0.5 :S u1 is active while -1 :S y is not active. This means that for any given bias value 

some constraints are active and some are not, and there are several special values of the 

bias where small deviations around these values cause such changes in the constraints. If 

the MPC controller's objective is to control the variables which are at their constraints and 

the steady-state bias value is equal to one of these values, then small changes in the bias 

(as an effect of white noise, for example) can cause some changes in the objective function 

which may result in poor control performance. 
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0 05 
d,b1as 

Figure 5.1: LP solution as a function of bias 

When an optimization variable is not at a constraint, its value is a linear function of the 

bias. The slope of this function can be found using simple calculations. For d < -1.0, 

y = ymin = -1.0 and u2 = umax = 0.5. Then, the relation between u1 and d can be 

expressed as follows: 

1 
Y = 91U1 + 92U2 + d ==? U1 = -(y- 92U2- d) ==? 

91 
1 1 1 

==> u1 = -y - -92u2 - -d (5.5) 
91 91 91 

1 f? 1 min 1 max 
u1 Id<-1.2 =ad + {3, where a=--, fJ = -y - -92u2 

91 91 91 

From formula (5.5) it follows that this linear function has the opposite sign and a reciprocal 

value of the corresponding steady-state gain. Since the steady-state gains for u1 and u2 are 

the same (9]_8 = 928 = 0.4), their solution lines are collinear. Therefore, if a steady-state 

gain is small then the linear function which represents the solution for the corresponding 

input has a large slope and vice versa. It is important to take this observation into account 

because if the bias has a steady-state at the point where constraints change their activity 
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and if the bias deviates around this value within some range, then the solution of the LP 

may have larger or smaller variation depending on the value of the corresponding steady­

state gains. 

From Figure 5.1 one can calculate that if y is not at the constraints its slope is equal 

to unity. This is consistent with the steady-state equation in (5.4) that if the output y is 

not at the constraints then it changes in exactly the same manner as the bias term d does. 

Analysis of the LP sensitivity will be conducted for three types of plant: SISO, MISO (1 x 2 

plant) and MIMO (2 x 2 plant). This analysis aims to study the effect of the bias values 

on the LP solution and, therefore, on the performance and stability of the two-level control 

system. 

5.2 Sensitivity Analysis of SISO System 

Case Study 5.2. SISO process described by the following model: 

y(s) = 0.4 u(s)
3s+I 

with constraints: 

-1.0:::; y:::; 1.0; -0.5:::; u:::; 0.5 

Objective function: 

maxf=y 
y 

At the optimization level the process is described by the following LP problem: 

minf = -y 
y 

subject to: 

y = 0.4u + d 

-1.0:::; y:::; 1.0 

-0.5:::; u:::; 0.5 
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The feasible range for the bias term d and the corresponding LP solutions are presented in 

Figure 5.2. From this figure it follows that if the bias is larger than 0.8 then the output is 

at its maximum constraint and if bias is less than 0.8, then the input is at its maximum 

constraint. 

1.5 r-------.----.--.--.----,---.-------,-----.----.---,----------,---, 

~ 
~ 

Figure 5.2: Case Study 5.2: LP solution as a function of bias 

The results of the simulations are presented in Figure 5.3. As it was predicted when the bias 

is larger than 0.8, the output is at the maximum constraint and when the bias is smaller 

than 0.8, the input is at the maximum constraint. Also, in the figure one can see that 

when the output is not at the constraint it perfectly replicates the bias. However, when 

the input is not at the constraint, its deviation is larger than the bias deviation. As it 

was explained above, this happens because the steady-state gain is g88 = 0.4 which cor­

responds to the slope of the solution for the input as -Ijg88 = -2.5 and, therefore, the 

input changes have the inverse direction and more than twice larger amplitude than the bias. 

If the steady-state bias value is not 0.8 and it is further from 0.8 than the noise ampli­

tude (constraints activity does not change) then only one variable deviates while another 
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Figure 5.3: Case Study 5.2: Effect of the noisy bias on the LP solution 

is at the constraint. If the input is at the constraint then the changes in the output are 

completely identical to the changes in the bias. If the output is at the constraint, then the 

input changes in the opposite direction to the bias changes and its amplitude is 2.5 time 

larger. 

5.3 	 Sensitivity Analysis of MISO System. Effect of the Bias 

Noise on the Two-Level Cascade Control System Behav­

tor. 

Case study 5.3. For the case study here two-level LP-MPC control system with 1 output 

and 2 inputs and output noise was chosen. Graphically, the system is shown in Figure 5.4. 

In this case study, the model is perfect which means that the LP bias value is simply the 

steady-state bias and noise applied to the output. 
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Figure 5.4: Two-level LP-MPC control system 

Lower (MPC) level: The plant is described by the transfer function model: 

with constraints: 

-1.0::; y::; 1.0; -0.5::; U1, U2::; 0.5 

Controlled variables: y and u 1 

Weights: Q = Ip, R = 0, S = 5.0Im 

Simulation parameters: sampling time Ts = 0.3, prediction horizon P =50, control horizon 

M=2 

Upper (LP) level: 

Objective function: 

maxf=y-ul
y,ul 

Constraints: identical to the lower-level constraints; 

Model: identical to the lower-level plant model. 
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The corresponding LP has the following form: 

maxf = y- u1 
y,ui 

subject to: 

y = 5.0Ul + 2.0U2 + d 

-1.0 ~ y ~ 1.0 

-0.5 ~ U} ~ 0.5 

-0.5 ~ U2 ~ 0.5 

The bias feasible range was calculated and the solutions of the LP for this range are pre­

sented in Figure 5.5. Now there are three regions and inside each region two optimization 

variables are at their constraints and one is not, and there are two points where active 

constraint set changes (d = -2.5 and d = 2.5). 

Figure 5.5: Case Study 5.3: LP solution as a function of bias 

First, simulations with a perfect model and in the absence of any sustained disturbances 

were run. The results obtained are presented in Figure 5.6. Since the model is perfect 

and there are no disturbances, the bias steady-state value is zero. Zero steady-state bias 
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Figure 5.6: Two-level control system response in the presence of output white noise (perfect 

model and no step-like disturbances) 

value corresponds to the following solution of the LP: y = 1.0, uiar = 0.0; this is confirmed 

by the data in Figure 5.5. According to Figure 5.5, if the bias fluctuates around the zero 

steady-state, it should not make any changes in the set points for the output. Also, the 

same changes in the bias should cause changes in input uiar. Since the steady-state gain 

g}8 = 5.0, the changes in uiar are simply transformation of the bias values with coefficient 

-0.2. This is confirmed by the results presented in Figure 5.6 which shows the operation 

of the two-level control system where the upper level LP is executed at every iteration of 

MPC after the transients have died out. The performance of input u 2 which is used for 

the output control depends on the intensity of the white noise in the channel, since it must 

compensate it to keep the controlled variable at its set point. 

In the next simulation, the steady-state bias value was chosen to be -2.5, since at this 
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value the LP active constraint set changes. A steady-state bias value can be specified either 

by a step-like output disturbance, appropriate plant/model mismatch or a combination of 

both. The results of simulations are presented in Figure 5.7 (only operation after the tran­

sient is shown). 
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Figure 5.7: Two-level control system response in the presence of output white noise and 


output disturbance -2.5. Steady-state gains are larger than 1 


According to Figure 5.5 when the bias is larger than -2.5, the output set point is at its 

maximum constraint. At the same time, the target value for input u1 is not at the con­

straint and it is equal to the bias taken with coefficient -0.2. When the bias is smaller than 

-2.5, the output set point drifts away from the maximum constraint and, as it is expected, 

replicates the bias trajectory while the target value for input u 1 is at its constraint. All 

these observations are confirmed by Figure 5.7. 

Now, for comparison, let us run the same simulation scenario using the model presented 
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in Case Study 5.1 with the steady-state bias -1.0 (obtained from Figure 5.1). Simulation 

results are presented in Figure 5.8. The main difference between these two case studies 

is the values of the steady-state gains. If the steady-state gain is larger than unity, then 

the proportion between the changes in bias and changes in target values for this input is 

smaller than unity. This means that the bias variance is larger than the variance of the 

target values and vice versa. 
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Figure 5.8: Two-level control system response in the presence of output white noise and 

output disturbance. Steady-state gains are smaller than 1 

Figure 5.8 represents the case when the steady-state gains are smaller than unity. For bias 

values larger than -1.0, target value for u1 is at the constraint and the output set point 

changes in the same manner as the bias. However, when bias values are smaller than -1.0 

the input target values are not at the constraints and since the steady-state gain is smaller 

than unity, the proportion between changes in the bias values and changes in the input is 

larger than 1 (I- 1/0.41 = 2.5) and, therefore, the variance of the target values for input u 1 

http:I-1/0.41
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is more than twice larger than the variance in the bias term. The fluctuating uiar causes 

rapid fluctuation in u1, which in turn affects the output. This results in poor performance 

in u2 which is used to regulate y. 

From these two simulations it can be concluded, that the steady-state gains and steady-state 

bias value may affect the two-level control system performance. If the output set point is 

not at the constraint, then its variation is totally determined by the variation of the noise in 

the channel. If the absolute value of the steady-state gain of the input which is associated 

with a target value is larger than unity, then its variation is smaller than the variation of 

the bias term. If the absolute value of the steady-state gain is smaller than unity, then 

the variation of the target value for this input is larger than the variation of the bias. If 

the variation of the input target value is sufficiently large, it can cause large variation of 

the inputs which are used for control. The LP formulation, together with the properties of 

the regulatory level which result in a steady-state bias, can cause poor performance of the 

manipulated variables. 

Sensitivity of the two-level control system to input noise. Sometimes noise affects 

not only output channels but also plant inputs. For simplicity, let us consider 1 x 2 control 

system which has the following model: 

Assume, that input u1 is subject to white noise of particular characteristics and it can be 

presented as a composition of deterministic and stochastic components: 

u(s) = u(s) +a 

If such an input is introduced into the plant, then the resulting output has the following 

form: 

(5.6) 
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From formula (5.6) it follows that the steady-state effect of stochastic component a on 

the output depends on the absolute value of the steady-state gain grs. If it is larger than 

unity, then input noise will be modified passing through the plant and its variance may 

increase resulting in the output disturbance with larger variance. If the absolute value of 

the steady-state gain is smaller than unity then the variance of the noise decreases as it 

passes through the plant. An important observation here is that input noise does not shift 

the bias steady-state valne and may affect its variance. In the simulations presented here, 

the noise affected the plant inputs only while the inputs which were used for the prediction 

calculation remained uncorrupted. This scenario is not quite realistic because in practice 

model predictions are calculated using the measurements of the inputs which were injected 

into the plant and, therefore, already contained noise. 

9, = 5.0 

time time 

(a) Absolute value of the steady-state gain is smaller (b) Absolute value of the steady-state gain is larger 

than unity. than unity. 

Figure 5.9: Effect of the input noise on the bias term 

In Case Study 5.3, white noise of variance 3.4526 · 10-4 was applied to input u 1 . In the 

control system without an LP (with set points: Yset = 0.1 and uiar = 0.1) at steady-state 

the variance of the output was 7.9694-10-5 which is smaller than the variance of the noise, 

even though the steady-state gains were larger than unity. In case of the two-level control 

system with the same noise applied to input u1, the variance of the output was 8.1415 · 10-5 

which is also smaller than the variance of the noise. The same scenario was applied to Case 

Study 5.1. Without LP implementation, for the same set points, the variance of the output 

was 5.1004 · 10-7 which was significantly smaller that the noise variance. In the two-level 
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control system, the output noise variance was 1.8080 · w-6 . The comparison of the outputs 

for Case Study 5.1 and Case Study 5.3 for the same set points and input noise presented 

in Figure 5.9. Figure 5.9(b) shows that even though the steady-state gains are larger than 

unity, the variation of the input noise is larger than the variation in the output which it 

caused. 

5.4 Sensitivity Analysis of MIMO System 

The sensitivity of the LP level in a MIMO system is studied using a 2 x 2 system. Consider 

a 2 x 2 system described using the following model: 

min < Y < YmaxY2 - 2- 2 

Umin < U < Umax
1 - 1 - 1 

umin < U < umax
2 - 2- 2 

The LP optimization level for such a system in the general case has the following formulation: 

subject to: 

min < Y < YmaxY 1 - 1- 1 

min < Y < YmaxY 2 - 2- 2 

umin < u < umax
1 - 1- 1 

umin < u < umax
2 - 2- 2 (5.7) 
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The major difference between this formulation and the formulations considered previously 

is that two bias terms are now involved, and they both are updated at every iteration. 

Problem 5. 7 has many parameters and their effect on the LP solution should be stud­

ied first. Since optimization variables Y1 and Y2 relate to u1 and u2 through the system of 

equality constraints, the entire optimization problem can be expressed in terms of u 1 and 

u2 only using direct substitution. Then, optimization problem (5.7) can be reformulated 

as: 

mm 
U],U2 

subject to: 


min < 9 ssu + 9 ssu + d < Ymax

Y 1 - 11 1 12 2 1 - 1 


min < 9 ssu + 9 ssu + d < Ymax
Y 2 - 21 1 22 2 2 - 2 


umin < U < Umax

1 - 1 - 1 

Umin < U < Umax
2 - 2- 2 

After simplification the optimization problem formulation is: 

subject to: 

min < 9ssu + 9ssu + d < YmaxY 2 - 21 1 22 2 2 - 2 


Umin < U < Umax

1 - 1 - 1 

umin < u < umax
2 - 2- 2 
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This could also be written as : 

subject to: 
.<>s yrnax_ dgu < _:..ll.u + 1 12 - g-'-< 1 g"" 
12 . 12pair 1 

gss y=in d 
u > - :..ll.u + . 1 - 1 

2 - gf:2 1 gf2 

pair 2 

Umin < U < Umax (5 .8) 2 - 2- 2 

Term o: 1d1 + o:2d2 in the objective function is omitted because it is constant for any given 

biases d1 and d2 and, it does not affect the solution. 

From formulation (5.8) several conclusions can be made regarding the feasible region of 

the problem and possible placement of its solution. First, on the feasible region plane the 

slope of the line which represents the objective function (so-called "isocost line" (Winston, 

2004)) does not depend on the bias terms. The slope of the objective function depends only 

on the cost coefficients corresponding to every input and output variable and the steady­

state gains of the process. Second, the output inequality constraints are presented in pairs 

where each pair consists of two collinear constraints. The slope of each pair of constraints 

depends on the ratio of the steady-state gains: 9il / 9fi,, i = 1, 2. If the steady-state gains 

9!{ and 9i2 are the same sign then the slope of the constraint is negative and vice versa. The 

distance between the constraints in each pair does not depend on the bias term and is only 

determined by the steady-state gains and the original output constraints. The distances 

between the constraints in pairs are: 

min d max ymin
Y1 - 1 Y1 - 1 

912 912 
Y2in - d2 Y2ax- Y2in 

922 922 
If d1 is an arithmetic mean of y}ax and y}in (or d2 for the pair y:;:ax and Y2in) then this pair 

of constraints is symmetrical around the origin. Otherwise it is shifted up (if di is closer to 
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yf'in) or down (if di is closer to yf'ax), on a u2 versus UJ plot (see Figure 5.10). The feasible 

area for each pair of constraints lies between the constraint lines. Third, the minimum and 

maximum constraints for the input variables form a rectangle with the feasible area inside. 

The resulting feasible region of the problem is the intersection of all constraints and it is 

schematically presented in Figure 5.10. 

Figure 5.10: Graphical representation of the LP optimization problem for a 2 x 2 system 

The solution of the optimization problem can be found by shifting the isocost line inside 

the feasible region in the direction of decreasing cost until it cannot be improved any 

further. The resulting position of the isocost line will determine the optimum values of the 

optimization variables. At every iteration the biases d1 and d2 are updated and therefore the 
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shape of the feasible region changes, and so does the solution of the optimization problem. 

As mentioned above, none of the slopes depends on the bias terms and the feasible region 

changes only because the constraint lines go up and down. Therefore, the LP problem 

solution sensitivity can be analyzed off-line if the steady-state process gains and the variable 

constraints are known. 

5.4.1 Sensitivity analysis of a 2 x 2 system. Case 1. 

Assume that two output constraints intersect as shown in Figure 5.11(a) and they bound 

the feasible region of the problem. If the combination of the steady-state gains is such 

that constraints are almost collinear and the isocost line slope is such that the solution of 

the optimization problem lies in the point of intersection of the constraints, then the LP 

solution is expected to be sensitive to the small changes in the biases. If one of the biases 

slightly changes, the constraint lines will shift up or down. Since the constraints are almost 

collinear, new intersection (and, therefore, new solution) will appear in some distance from 

the previous solution. Small bias fluctuations can make the LP solution migrate over a large 

region. 

t u, 
! • u, 
umax 

/ 2 / / umax 
.2 

u, 

/ / 

(a) (b) 


Figure 5.11: Effect of the bias on the LP solution: Case 1 
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Such a scenario was simulated using the following case study. 

Case Study 5.4. Model : 

1.2 14.4 
Yl(s) = - --u1(s) -- --u2(s)

3s + 1 3s + 1 

Y2(s) = ~u1(s) + ~u2(s)
3s + 1 3s + 1 

with constraints: 

- 1.0 :::; Y1 :::; 1.0 

-1.0 :::; Y2 :::; 1.0 

-0.5 :::; U1 :::; 0.5 

-0.5 :::; U2 :::; 0.5 

Objective function: 

min f = 0.9yl + l.Oy2 - 2.0u1 , 8.3733u2 
Yl ,U·2 

The corresponding LP has the following form: 

mm f = 0.9yl + l.Oy2 - 2.0u1 - 8.3733u2 
Yl,U2 

subject to: 

-1.0 :::; Yl :::; 1.0 

-1.0:::; Y2 :::; 1.0 

-0.5:::; U1 :::; 0.5 

-0.5 :::; U2 :::; 0.5 (5 .9) 

Bias steady-state values: 

dl = 0.7, d2 = 0.2 
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The solution of the LP in Case Study 5.4 is presented graphically in Figure 5.11. Its solution 

lies at the intersection of the upper constraints for Yl and Y2 which are almost collinear. 

Assume that the bias d1 is kept at its steady-state which means that the upper constraint 

for Yl is fixed. Then decrease in bias term d2 from its steady-state will make the upper 

constraint for y2 go up (as shown in Figure 5.11(a)), and vice versa, i.e. if d2 increases from 

its steady-state, the same constraint goes down (as shown in Figure 5.1l(b)). Since the so­

lution of this LP lies at the intersection of constraints y]wx and y'fax, and they are almost 

collinear, then even mild fluctuations in bias d2 may cause the LP solution to migrate over 

a vast region in the manipulated variable domain. This can be shown using simulations 

where it was assumed that the bias terms d1 and d2 are at their steady-states and that d2 is 

subject to white noise. The results of these simulations are presented in Figure 5.12, where 

Figure 5.12(a) shows the variation in the inputs and Figure 5.12(b) shows the response of 

the output set points. In these figures it can be seen that the noise in the bias d2 causes 

variation of the optimal input target values, especially in uiar, which appears to be much 

more sensitive to d2 than u~ar. In this simulation, noise in d2 has variation 0.0019 and the 

variation of the input target uiar is 0.0032. Therefore, if input u1 has a target value which 

is given by the LP, then its trajectory will be non smooth. 

1 .....---·-----~----------··..-·-""!'-·--­
0.5 

-0.5 .. 

-1 

time 

(a) Biases and input target values. (b) Biases and output set points. 

Figure 5.12: 2 x 2 system sensitivity: Case 1 
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The output set points obtained in this simulation are presented in Figure 5.12(b). Although 

the u1 target value has a large variation, the output set points are constant. They are con­

stant because even though the solution of the LP changes at every iteration, it still lies at 

the intersection of the output constraints. 

This case study concludes that even though the LP solution for input target values can 

appear to be sensitive to the changes in the bias terms, the output set points are not always 

sensitive to the same perturbations. 

5.4.2 Sensitivity analysis of a 2 x 2 system. Case 2. 

The case study considered above has shown that if the LP solution lies at the intersection of 

the output constraints only, the output set points are constant while the input target values 

can be sensitive to noise. Two possible situations when the solution of the LP lies at the in­

put constraint will be considered in the next two case studies. The first simulation scenario 

is graphically presented in Figure 5.13. The solution of the LP lies at the intersection of 

constraints u1ax and Y1ax which are close to collinearity with each other. Constraint u1ax 

is fixed, however, decrease in bias term d1 from its steady-state causes constraint Yl'ax go 

up (see Figure 5.13(a)) and vice versa (see Figure 5.13(b)). Therefore, if the bias term d1 

is subject to white noise, constraint Yl'ax shifts up and down, changing the LP solution at 

every iteration. 

The following case study investigates the effect of such solution changes on the resulting 

input target values and output set points. 

Case Study 5.5. Model: 

6.2 ( ) 0.25 ( ) 
Yl (s) = + 1u1 s + 1u2 s38 + 38 

1.3 ( ) 2.1 )Y2 ( ) s = ---u1 s + --u2(s
3s + 1 3s + 1 



llO 

u, 

(a) (b) 

Figure 5.13: Effect of the bias on the LP solution: Case 2 

with constraints: 

- 1.0 ~ Y1 ~ 1.0 

- 1.0 ~ Y2 ~ 1.0 

-0.5 ~ U} ~ 0.5 

-0.5 ~ U2 ~ 0.5 

Objective function: 

max f = 25.6ul + u2 
Yl ,Y2 
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The corresponding LP has the following form: 

max f = 25.6ul + u2 
Y1,Y2 

subject to: 

-1.0 :S Y1 :S 1.0 

-1.0 :S Y2 :S 1.0 

-0.5 :S U1 :S 0.5 

-0.5 :::; u2 :::; 0.5 (5.10) 

Bias steady-state values: 

dl = -2.1, d2 = 0.61 

Regulatory level parameters: 

Controlled variables: 

YI, Y2 

Weights: Q = l.Olp, R = O.Olm, S = l.Olm 


Simulation parameters: prediction horizon P =50, control horizon M = 2, sampling time 


Ts = 0.3 


The results of the simulation are presented in Figures 5.14(a) and 5.14(b). 


As expected, input u1 is at its maximum constraint. White noise in the bias term d2 


causes some variation in the input u2 target value and analytically this dependency can be 


expressed through the following equation if the y}ax constraint is active: 


originally : 

u2 as a function of d1 : 

if u1 is constant : 
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(b) Biases and output set points. 
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Figure 5.14: 2 x 2 system sensitivity: Case 2 

Therefore, the sensitivity of the solution for u2 depends on the absolute value of steady-state 

gain 9H· In this case study 912 = 0.25 and therefore, fluctuations in the the target values 

for u2 have about 4 times larger amplitude than the noise in d1. Since the solution of the 

LP lies at the intersection of the upper bounds for Y1 and u1 the latter are constants for the 

entire simulation period. However, the fluctuations in u2 result in non constant set points 

for Y2· If 922 is larger than unity, then any perturbations in u~ar will be amplified providing 

even larger oscillation in Y2et and vice versa. In this case study 922 = 2.1 and as it can be 

seen in Figure 5.15 the set points for y2 have larger variation than the target values for u2 

and much larger variation than the output noise in Y2· 

5.4.3 Sensitivity analysis of a 2 x 2 system. Case 3. 

Analogously to the previous case, the solution of the LP can become sensitive to the changes 

in the bias term if the constraint line for u2 in pair 1 or pair 2 in formulation (5.8) is almost 

collinear to the upper or lower bound for u2 . Then, if the solution of the LP lies at the 

intersection of these constraints, small changes in the bias term may result in a large vari­
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Figure 5.15: Two-level control system response: Case Study 5.5 

ation in the LP solution. This scenario is graphically presented in Figure 5.16. The upper 

constraint in pair 2 in formulation (5.8) is almost collinear to the upper bound on u2, and 

the objective function is such that the solution of the LP lies at the intersection of these 

constraints. A small decrease in bias term d2 will cause the constraints in pair 2 shift up (as 

shown in Figure 5.16(a)) and vice versa (as shown in Figure 5.16(b)). This will result in the 

LP solution fluctuating along the upper bound on u2, and since the constraints are almost 

collinear, these fluctuations can have much larger variation than the variation of bias d2. 

The scenario described was simulated using the following case study. 
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Figure 5.16: Effect of the bias on the LP solution: Case 3 

Case Study 5.6. Model: 

(5.11) 

with constraints: 

- 1.0 :S Yl :S 1.0 

-1.0 :S Y2 :S 1.0 

-0.5 :S U1 :S 0.5 

-0.5 :S U2 :S 0.5 

Objective function: 

max f = 0.3y1 + 0.5y2 + 0.6u1 + 8.3u2 
Yl ,yz,ul ,uz 
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The corresponding LP has the following form: 

max f = 0.3yl + 0.5y2 + 0.6u1 + 8.3u2 
Yl,Y2,UI,U2 

subject to: 

-1.0 ~ YI ~ 1.0 

-1.0 ~ Y2 ~ 1.0 

-0.5 ~ U1 ~ 0.5 

-0.5 ~ U2 ~ 0.5 {5.12) 

Bias steady-state values: 

dl = 0.4, d2 = -1.8 

Regulatory level parameters: 

Controlled variables: 

Yl, Y2 

Weights: Q = l.Olp, R = O.Olm, S = l.Olm 

Simulation parameters: prediction horizon P = 50, control horizon M = 2, sampling time 

T8 = 0.3 

In the simulation, bias d2 was subject to white noise, while bias d1 was kept at its steady­

state value. The results of the simulation for MV targets and CV set points are presented 

in Figure 5.16. Since the solution of the LP lies at the intersection of the constraints for 

Y2 and u2, the corresponding set points and target values are constant through the entire 

simulation period. Figure 5.17{a) shows that noise in d2 causes fluctuation of u1 with larger 

variation. Indeed, since yflet is always equal to y'!fax = 1 and u~ar = u'!fax then the LP 

solution for any value of bias d2 must satisfy the equality: 
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(a) Biases and input target values. (b) Biases and output set points. 

Figure 5.17: 2 x 2 system sensitivity: Case 3 

g2,} = 0.5 and therefore, any changes in d2 causes changes in u 1 that are twice as large and 

in the opposite direction. At the same time, since Yl is related to u1 through the steady 

state equation 5.12, and u2 and d1 are constants, any changes in u1 result in changes in Yl 

with coefficient gl1 (which is -1.2 in this case study). Summarizing both effects, it can be 

concluded that noise in d2 results in changes in Yl such that: Yl = -g}l/g2,}d2. In this case 

study -g}l/g2,f = 2.4, and it is confirmed by the results presented in Figure 5.17. 

The effect on the two-level control system behavior has also been considered. The process 

and the model were presented through equations (5.11), and the steady state bias values 

were achieved by introducing the output step-like disturbances passing through first-order 

filters with unity steady-state gains. Also, white noise was applied to output Y2, while out­

put YI was maintained uncorrupted. The results of the two-level control system operation 

after the transient effects have died out are presented in Figure 5.18. As expected, white 

noise with variance 0.0013 caused fluctuations in ufet with variance 0.0051 which resulted 

in oscillations in yf.et with variance 0.0074. This confirms that in this case study, white 

noise in the second output may cause the fluctuation of the output set points with much 

larger variation. Even though the set points for first output are severely corrupted by the 

1 ·----.------~--·---------------------

0.5 .... . ...... . . - .. . 
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Figure 5.18: Two-level control system response: Case Study 5.6 

noise, the control performance for the first output is quite good. The variance of the output 

(0.000493) is much smaller than the variance of the set points. However the performance 

of output Y2 is quite poor (its variance is 0.0018) considering that its set point is constant 

at steady state. This can be explained by fact that fast changes in yfet caused frequent 

changes in u 1 and at the same time, u2 was operating near its upper constraint and at some 

points in time it saturated and could not be used for control. 

5.5 Chapter Summary 

The obtained results have shown that in some cases the LP solution can be sensitive to 

the bias values provided from the regulatory level. In the general case for a SISO and a 
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MISO system, the noise in the bias term causes variation in the input target values which 

is inversely proportional to the corresponding steady-state gain. If the output is not at a 

constraint, its deviation replicates the deviation of the bias without any modification. 

The sensitivity of the 2 x 2 LP to the non-constant perturbations depends on the placement 

of the solution. If the solution lies at the intersection of the output constraints, then input 

target values can be sensitive to noise, although the output set points would stay constant. 

In case when the solution remains at the input constraints, the output set points can be 

sensitive to such variations if the plant steady- state gains are large. 



Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

This thesis is devoted to the analysis of the control performance of LP-MPC cascade control 

systems under a variety of conditions. 

Initially, two methods of LP bias update, a method which uses set points and a method 

with model predictions, were evaluated and compared. A variety of scenarios with different 

plant/model mismatch, constraints and LP objective function were considered. It was ob­

served that use of the steady-state process model directly in the bias update scheme resulted 

in stability of the two-level system and good dynamic performance in most scenarios con­

sidered, even with quite significant plant/model mismatch. In the case, where the bias was 

calculated using LP set points, cases of instability of the cascade system with steady-state 

optimization were observed. 

Different LP execution frequencies were studied, and more frequent LP execution appeared 

to have a stabilizing effect on the overall system, in addition to more rapid convergence to 

the final steady-state. 

119 




120 

A MIMO case study has shown that the chosen control structure may have an effect on the 

stability and control performance of an LP-MPC cascade control system. Chattering of the 

set points was observed when an auxiliary output was constrained but not controlled. The 

set points stabilized with an increased LP execution frequency, but poor dynamic perfor­

mance was observed. Changing the control structure to include the auxiliary output as a 

controlled variable resulted in superior performance. 

Sensitivity of the LP to noise-like perturbations was also considered. It was shown that 

the output noise can affect the LP solution through the bias term, and depending on the 

steady-state model gains, the LP set points may have larger variation than the noise itself. 

Large variation in target values for the manipulated variables from the LP can result in 

erratic fluctuations in the inputs, thereby degrading the performance of controlled outputs. 

With a 2 x 2 case study it was shown that in a MIMO system, constraints and bias steady­

state values can have a significant effect on LP sensitivity. Three scenarios for a 2 x 2 

system, where the LP solution appeared to be sensitive to the output noise were presented 

and discussed. Inclusion of such LP designs into a two-level cascade control system resulted 

in overall performance degradation. 

In addition to steady-state optimization studies, the problem of plant steady-state cal­

culation was considered. A computational framework for determining the equilibrium point 

of a closed-loop system under constrained MPC was provided. It was shown that use a 

steady-state model only is in general case insufficient for correct calculation, and that such 

a calculation in general cannot be generated as the solution of a standard quadratic pro­

gramming problem. The problem formulation developed accounts for the effects of the 

controller dynamics as well as plant/model mismatch. Two alternative solution strategies 

were proposed; a sequential and a simultaneous solution strategy. The sequential strat­

egy has discontinuous derivatives induced by an inner quadratic programming problem 

and application of standard gradient-based nonlinear equation solution techniques is con­

sequently expected to pose difficulties. The simultaneous strategy involves replacement 

of the quadratic programming problem by its equivalent Karush-Kuhn-Tacker conditions. 
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The resulting problem includes complementarity constraints which can pose computational 

difficulties if not carefully dealt with. An interior point method that is able to handle such 

constraints in the primary problem was shown to reliably converge to the solution. 

An application of the method to an LP-MPC cascade control system where the LP is 

executed only at steady-state was presented. The proposed method was used to compute 

the closed-loop steady-state of the MPC-controlled process for given set points. It was also 

shown how the equation system may be included within overall optimization setting which 

gives possibilities for its further use in applications such as design of real-time optimization 

systems. 

6.2 Recommendations for Further Work 

It was shown in Section 3.2 that control structure may have a significant effect on the per­

formance and even stability of LP-MPC cascade systems. Therefore, an interesting issue 

for further study is a thorough analysis of the effect of control structure on overall LP-MPC 

system performance. Some recommendations on this topic have been summarized in Section 

3.3. 

In this thesis, studies on LP sensitivity were made for 1 x 2 and 2 x 2 systems. In all 

simulations presented, the solution of the LP migrated over a wide area; however, the noise 

considered did not cause any changes in the active constraint set. It is possible, that in 

an LP with larger dimension, high frequency disturbances may cause switching of the LP 

solution between different constraint intersections and even different active constraint sets. 

In this case, the set of the variables used for control and the set of the variables which oper­

ate at constraints will be changing in a highly erratic manner. This could lead to potential 

stability problems of LP-MPC cascade system and is worth studying in future. 
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