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ABSTRACT 


There are increasing economic incentives within the chemical process industry towards 

demand driven operation with product diversification, requiring flexible operation in 

responsive plants. In continuous processes, this is realized through steady-state tran­

sitions but requires consideration of process dynamics arising from operation that is 

inherently transient in nature. The steady-state economic optimum is typically defined 

at the intersection of constraints, and requires multivariable control with optimal con­

straint handling capabilities. Thus, constrained model predictive control is well-suited 

to realize the profit potential at the economic optimum. 

In this thesis, feasible and optimal steady-state transitions are achieved using refer­

ence management with consideration of the closed-loop dynamics of constrained model 

predictive control. The supervisory control scheme is used to determine the optimal 

setpoint trajectory which is subsequently tracked by regulatory control, incorporating 

feedback for the rejection of high frequency disturbances and eliminating steady-state 

offset in the presence of model mismatch. The separation of economic and control ob­

jectives enables the lower level to be tuned for stability and the upper level to be tuned 

for performance. 

The mathematical formulation results in a multi-level optimization problem with an 

economic objective function at the upper level, and a series of control performance ob­

jective functions arising from constrained model predictive control at the lower levels. 

The solution strategy proposed converts the multi-level optimization problem into a 

single-level optimization problem using the Karush-Kuhn-Tucker conditions, and solves 

the resulting complementarity conditions using an interior point approach. 

Alternative objective formulations are investigated based on maximizing profit during 

transient operation. The first formulation is typically based on a quadratic objective 

function minimizing the transition time, indirectly improving economic operation by 

reducing the amount of off-specification product produced. The second formulation is 

based on the explicit consideration of economics. The profit calculated during transient 
iii 



operation is based on the difference between the revenue generated by the production 

of acceptable product within specified univariate product quality bands, and the op­

erational costs of raw materials and utilities. The resulting linear objective function is 

further extended to incorporate control performance considerations to improve condi­

tioning for gradient based optimization. 

The proposed methodology is applied to a single-input single-output linear system, 

demonstrating the potential benefits of simultaneous rather than sequential optimiza­

tion in terms of computational efficiency and solution reliability. Alternative objective 

function and constraint formulations are investigated, and the effect on the optimal so­

lution assessed. In particular, the possibility of indeterminacy is shown and handled 

using hierarchical optimization. The methodology is also demonstrated on additional 

examples including non-minimum phase systems and multi-input multi-output linear 

systems. 

Application to a multi-input multi-output nonlinear system corresponding to styrene 

polymerization using the proposed methodology is detailed. The set of differential and 

algebraic equations defining the process is discretized using orthogonal collocation on 

finite elements. The optimal operation during grade transitions based on explicit con­

sideration of economics is determined, and additional improvements realized by ma­

nipulating the production rate. 

Finally, reference management with online re-optimization is investigated for a single­

input single-output linear system based on a bias update, and the improvement in 

closed-loop performance assessed for output disturbances and model mismatch. The 

methodology is also demonstrated on a multi-input multi-output system based on a 

linear model when applied to the nonlinear process. 

The proposed methodology developed for steady-state transitions may also be applied 

to batch operation, startups and shutdowns. Future extensions include analysis of 

closed-loop stability due to the incorporation of feedback within the cascade control 

scheme, and the explicit consideration of uncertainty. 
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Chapter 1 

Introduction 

1.1 Motivation and Overview 

There are increasing economic incentives towards demand driven operation with prod­

uct diversification in the chemical industry (Backx et al., 2000). Thus flexible operation 

in responsive plants is required (Rowe et al., 1997), and is realized through steady-state 

transitions in continuous processes. Since the operation is inherently transient in nature, 

achieving feasible and optimal steady-state transitions requires dynamic optimization 

with consideration of the process dynamics. 

The determination of the open-loop input trajectory for optimal steady-state transitions 

has been proposed in literature, but may result in steady-state offset in the presence 

of model mismatch as discussed by McAuley and MacGregor (1992). An alternative 

approach is based on the determination of the optimal setpoint trajectory tracked by 

the underlying regulatory control layer. The resulting cascade-type control structure 

is capable of eliminating steady-state offset by incorporating feedback (McAuley and 

MacGregor, 1993), and is consistent with the standard control automation hierarchy 

shown in Figure 1.1. 
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Determines optimal steady-state production 
rate targets based on material inventory 

balances 

Determines optimal steady-state setpoint targets 
based on explicit consideration of plant ec anomies 

Addresses control perfonnance for setpoint 
changes and disturbance rejection by 

determining inputs applied to the process 

Figure 1.1: Conventional optimization ,and control hierarchy 

In the conventional approach outlined by Marlin and Hrymak (1997), real time opti­

mization is used to determine the steady-state economic optimum, typically defined 

at the intersection of active constraints. Thus, according to Cutler and Perry (1983), 

constrained multivariable control is required to hold the process at profitable operating 

conditions. Hence, constrained model predictive control is well-suited for achieving the 

maximum profit potential based on capabilities in the optimal handling of constraints 

(Qin and Badgwell, 2003). 

However, consideration of dynamics is necessary for operations that are inherently tran­

sient in nature and requires the determination of the optimal setpoint trajectory. Further­

more, the setpoint trajectory is tracked by the underlying regulatory control layer, and 

thus the closed-loop dynamics must be considered in addition to the process dynamics. 

Thus while conventional real time optimization uses steady-state models to determine the 
2 
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optimal setpoint target, the proposed supervisory controller uses closed-loop dynamic 

models to determine the optimal setpoint trajectory required to achieve target specifi­

cations. The proposed optimization and control hierarchy for steady-state transitions is 

shown in Figure 1.2. 

C V measurements and 
disturbance estimates 

Deterrnines optimal ecanomie setpoint targets 
subject to slow disturbances, input and output 
constraints, and a steadv-state process model .. ······························~··················· CV targets 

Deterrnines the optimal and feasible setpoint 
trajectory subject to input and output constraints, 

CV setpoints constrained J.IJPC and a dynamic process model 

Minimization of control objective function 
subject to fast disturbances, input and output 

constraints and dynamic process model 

OptimalMVs 

•\ 

···············································~·········· 
Under investigation for steady-state transitions --I 

Figure 1.2: Proposed optimization and control hierarchy for steady-state transitions 

The optimal setpoint trajectory is determined using reference management as devel­

oped by Kapasouris et al. (1989), and investigated by Gilbert et al. (1994) and Bemporad 

and Mosca (1994a). The cascade-type control structure enables tuning of the regulatory 

controller for stability, and the supervisory controller for performance. 

In this thesis, the supervisory control scheme is used to achieve feasible and optimal 

operation during steady-state transitions. The optimal setpoint trajectory is determined 

using reference management with consideration of the closed-loop dynamics of con­

strained model predictive control, and results in a multi-level dynamic optimization 

problem. The solution may be obtained using the sequential approach based on sepa­
3 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

rating optimization and integration of the closed-loop system, or the simultaneous ap­

proach based on reformulation into a single-level optimization problem. The alternative 

solution strategies are compared in Figure 1.3. 

Bi-Level Problem Single-Level Problem 

Outer optimizatinn 
... I 

~imize Cost I Performam:e Objecti;;:­Minimize Cost I Performam:e Objective "Optimizatinn 
Subject ta: .Step" I Subject to: 

Output constraints Output constraints 

I liilEr optimization 
KKT optimality conditions 

"Inmgratinn Minimize Control Perfonnance Objective ... Discretized process model 
Step" Subject to: 

4 Dynamic process model Input cons1raints 

Input cons1raints \.. :J 

Figure 1.3: Solution strategies for multi-level dynamic optimization 

The simultaneous approach is proposed, and is shown to result in reduced computa­

tional expense and increased solution reliability, particularly in the presence of deriv­

ative discontinuities introduced by input saturation. The solution strategy is based on 

discretization of the state profile using orthogonal collocation on finite elements and 

reformulation into a single-level optimization problem using the Karush-Kuhn-Tucker 

(KKT) conditions. The complementarity conditions arising from the optimality condi­

tions are handled using an interior point approach. 

1.2 Contributions to Research 

Brengel and Seider (1992) investigated controllability of a fermentation process based 

on the closed-loop response under constrained model predictive control. The dynamic 

backoff from active steady-sate constraints was determined within the framework of 

integrated control and design, and the multi-level optimization problem reformulated 

into a single-level optimization problem using the Karush-Kuhn-Tucker (KKT) condi­

tions. However, this was solved using differential arclength homotopy continuation 
4 
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methods and numerical difficulties were reported. Similarly, Soliman (2005) determined 

the dynamic backoff for steady-state operation of a fluid catalytic cracking (FCC) unit 

under constrained model predictive control, but solved the resulting multi-level opti­

mization problem using mixed integer programming. Subsequently, Baker and Swartz 

(2005) determined the dynamic backoff by solving the complementarity constrained 

system using an interior point approach. A significant reduction in computational ex­

pense was demonstrated in comparison to mixed integer programming. 

In this research, a similar interior point solution strategy is applied to reference man­

agement with consideration of the closed-loop dynamics of constrained model predic­

tive control, and is extended to the determine the optimal setpoint trajectory during 

transient operations. The mathematical formulation of the resulting multi-level opti­

mization problem is investigated with various objective function and constraint formu­

lations, and applied to linear and nonlinear systems. One of the proposed formulations 

is based on minimizing the transition time to reduce the production of off-specification 

product, and is similar to investigations of optimal grade transitions in literature, for 

example by McAuley and MacGregor (1992) and Chatzidoukas et al. (2003). However, 

formulations that explicitly consider the economics of transition are also investigated. 

Finally, a feedback mechanism was incorporated into the proposed methodology for 

updating the setpoint trajectory online to improve performance in the presence of dis­

turbances and model mismatch. 

1.3 Organization of Thesis 

Chapter 2: Literature Review 

This chapter details fundamental concepts in literature related to the motivation and 

development of this research. Conventional steady-state real time optimization is re­

viewed and incentives to incorporate dynamic considerations into the optimization and 
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control hierarchy identified. Since the steady-state optimum is typically determined at 

the intersection of active constraints, constrained model predictive control is well-suited 

to realize optimal operation, and is briefly described. The treatment of hard output con­

straints and the dynamic backoff from active constraints required to ensure feasibility 

are also discussed. Finally, the development of reference management for feasible op­

eration is reviewed and benefits in the decomposition of the optimization and control 

hierarchy summarized. 

Chapter 3: Mathematical Formulation 

This chapter details the mathematical formulation of reference management with con­

sideration of the closed-loop dynamics of constrained regulatory control. The algorithm 

of constrained model predictive control is reviewed, and the methodology of reference 

management based on sequential and simultaneous optimization presented. Additional 

descriptions of mathematical concepts required in the simultaneous approach are also 

detailed: orthogonal collocation on finite elements used for discretization, the Karush­

Kuhn-Tucker conditions for handling multi-level optimization, and the interior point 

approach to handling complementarity conditions arising from first order optimality 

conditions. 

Chapter 4: Application to Linear Systems 

This chapter details the application of the proposed methodology to linear dynamic 

systems. The objective function used in these simulations is based on maximizing eco­

nomic operation indirectly, by minimizing the production of off-specification product 

with suitable hard output constraints based on economic considerations. A single-input 

single-output system is used to demonstrate the potential benefits of the simultane­

ous relative to the sequential approach in terms of computational efficiency and solu­

tion reliability. The effect of various constraint formulations on the optimal solution 

is explored, and alternative objective function formulations investigated. The discrete 
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reference filter may be obtained from appropriate specification of setpoint constraints, 

and the effect on optimal operation is determined. The possibility of indeterminacy is 

shown and handled using a two-tiered approach, maximizing closed-loop performance. 

Finally, application of reference management to non-minimum phase and multi-input 

multi-output systems is demonstrated. 

Chapter 5: Application to Nonlinear Systems 

This chapter details the application of the proposed methodology to nonlinear dynamic 

systems. The multi-input multi-output control of styrene polymerization is described 

and grade transitions in literature summarized. The application of the methodology 

to the linearized system is demonstrated based on maximizing economic operation in­

directly, by minimizing the production of off-specification product with suitable hard 

output constraints based on economic considerations. The offline optimal input trajec­

tory is implemented on the nonlinear system to demonstrate steady-state offset, while 

the offline optimal setpoint trajectory is implemented to demonstrate online tracking of 

the constrained model predictive controller. The optimal reference trajectory is subse­

quently determined based on the nonlinear model discretized using orthogonal collo­

cation on finite elements. 

Finally, an objective function is formulated with explicit consideration of economics us­

ing product quality specification bands, and optimal economic operation during grade 

transitions determined. Further improvements are shown with the utilization of addi­

tional degrees of freedom, minimizing the production of off-specification product dur­

ing transient operation. 

Chapter 6: Online Implementation 

This chapter details the online implementation of the proposed methodology using a 

bias update for disturbance estimation. The performance of the scheme is demonstrated 

on a single-input single-output system under step disturbances, model mismatch and 
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pulse disturbances. In addition, application to a multi-input multi-output system is 

demonstrated. 

Chapter 7: Conclusions and Recommendations 

This chapter summarizes the results of this thesis, followed by a discussion of extensions 

for future research. 

Simulation results were obtained using using Simulink in MatLab 7.0 for sequential op­

timization, and using A Mathematical Programming Language (AMPL) for simultaneous 

optimization with the solver IPOPT-C 2.2.l.d compiled November 2004. Computations 

were conducted on a 1.7 GHz Intel Pentium IV processor with 256MB of RAM. 

8 




Chapter 2 

Literature Review 

This chapter details the motivation for the inclusion of dynamic models within the op­

timization and control hierarchy, and outlines the proposed solution strategy based on 

reference management. Conventional steady-state real time optimization is discussed 

in Section 2.1, and benefits in the incorporation of dynamic considerations stressed in 

Section 2.2. Constrained model predictive control is reviewed in Section 2.3 and hard 

output constraint formulations discussed in Section 2.4. The development of dynamic 

backoff from active constraints is summarized in Section 2.5, reference management 

described in Section 2.6, and decomposition of the optimization and control hierarchy 

discussed in Section 2.7. 

2.1 Steady-State Real Time Optimization 

Edgar (2004) reported substantial financial gains using steady-state optimization tore­

flect changes in operating conditions in industry since the 1970s. Successful application 

of steady-state optimization combined with control was detailed by (Cutler and Perry, 

1983), with estimated benefits of 6-10% for a given process. Conventional steady-state 

real time optimization is based on nonlinear models consisting of several thousand vari­
9 
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abies, and the optimal setpoint targets passed to the underlying regulatory controller, 

typically based on linear dynamic models (Biegler, 2000). 

However, Marlin and Hrymak (1997) remarked that steady-state real time optimization 

for increased profit is only possible in the presence of additional degrees of freedom 

after satisfying safety, product quality and production rate objectives. Furthermore, 

steady-state optimization requires data reconciliation and parameter estimation han­

dled by the updater, and determination of optimal setpoint targets based on the up­

dated process model, handled by the model optimizer. As described by Miletic and 

Marlin (1996), a results analyzer is required to ensure that input handles are still avail­

able for manipulation and that the system is still operating at steady-state before imple­

mentation of the optimal setpoint targets. Only significant changes are implemented, 

resulting in a reduction in the number of unnecessary changes, and an increase in profit 

as demonstrated by Miletic and Marlin (1998). This is particularly important if the dom­

inant cause for a change in operation is a result of noise and ill-conditioned optimiza­

tion. In fact, commercial real time optimization use trust region constraints to reduce 

unnecessary changes and increase profit (Zhang et al., 2001). 

Successful implementation of steady-state real time optimization in industry has been 

reported in literature. An industrial application in a petrochemical power plant at Mit­

subishi Chemicals was described by Emoto et al. (1998), and in an ethylene plant in 

Germany by Lauks et al. (1992). Implementation at the Hyundai Petrochemical Com­

pany in South Korea increased ethylene capacity by 4%, revenues by 12% and decreased 

energy and feedstock by 2.5% (Yoon et al., 1996). The steady-state effect of regulatory 

control was also considered in closed-loop steady-state real time optimization, and im­

plemented in industry in an ethylene plant at the Mobil Chemical Company, yielding 

a payback period of less than 9 months (Georgiou et al., 1998), and at the Bayernoil re­

finery in Germany yielding an additional profit of $1.5 million a year (Besl et al., 1998). 

Thus, the application of steady-state real time optimization has been successfully im­

plemented to improve economic operation in industry. 

10 
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However, while steady-state real time optimization determines the optimal setpoint tar­

get, a separate optimization is required to determine the optimal dynamic trajectory 

(Forbes and Marlin, 1994). Thus, consideration of dynamic models in real time op­

timization would be required to determine optimal transient operation to realize the 

profit potential at the optimal steady-state target. 

2.2 Dynamic Models in Real Time Optimization 

Similar to the logistics and supply chain revolution in consumer electronics and au­

tomotive industries twenty years ago, Backx et al. (2000) identify incentives for the 

chemical process industry to adjust towards market driven operation, particularly in 

saturated markets with growing demands for product diversification. Currently, actual 

production is not correlated with actual demand due to a focus on supply driven opera­

tion with centralized production based on minimizing fixed costs through economies of 

scale. Thus, several production plants are constructed for product diversification to re­

spond to changes in the market, but minimization of stock and maximization of margins 

is limited for production on demand. 

According to Rowe et al. (1997), this shift towards market driven operation requires 

responsive plants satisfying instantaneous demand, but resulting in frequent transi­

tions where feasibility of satisfying product specifications must be ensured to remain 

economically competitive. The design and operation of multi-product and distributed 

manufacturing plants for flexible operation has been receiving increased attention in 

the chemical process industry (Harold and Ogunnaike, 2000). Thus, there are economic 

incentives to achieve flexible operation to respond to market fluctuations but requiring 

consideration of dynamics to achieve optimal and feasible steady-state transitions. 

Within the literature, desirable characteristics required for optimal and feasible market 

driven operation are discussed based on similar concepts such as switchability, flexibil­

ity, controllability and resiliency. White et al. (1996) and Vu et al. (1997) use switchability 

11 
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to define the ability for a process to move between operating points, implicitly combin­

ing the properties of feasibility and optimality. Mohideen et al. (1996) investigated both 

flexibility, the ability to adjust to changing steady-state conditions, and controllability, 

the ability to recover from disturbances and dynamic behaviour. Similarly, Weitz and 

Lewin (1996) used resiliency as a more general definition to describe the ability for a 

process to attain design objectives in the presence of disturbances and parametric un­

certainty. 

In addition to investigations in academia, a similar shift in focus toward dynamic con­

siderations is evident in industry. Tosukhowong et al. (2004) demonstrated reduced 

performance with increasing frequency of conventional steady-state real time optimiza­

tion without ensuring steady-state operation. Similarly, Singh et al. (2000) observed that 

while steady-state real time optimization has been successful at a refinery using blends 

from well mixed storage tanks, frequent execution and time varying feedstock provided 

incentives for real time optimization based on dynamic models. The incorporation of 

dynamic models into real time optimization was capable of minimizing quality give­

away and the number of re-b lends required by using less expensive blend components, 

while meeting product specifications. 

Thus while the majority of installed process optimization applications are based on 

steady-state models, organizational changes towards a rolling approach to planning for 

just-in-time production is driving the need for dynamic considerations (Kleinschrodt 

and Jones, 1996). Investigations in research has shifted to reflect the technology required 

by industry under such market conditions, and dynamic real time optimization (D-RTO) 

based on fundamental dynamic models proposed (Kadam and Marquardt, 2004). 

Finally, frequent re-optimization and steady-state transitions provide strong incentives 

for the consideration of dynamics, but furthermore, conventional steady-state real time 

optimization is not applicable to batch operation. According to Rippin (1983) and Soroush 

and Kravaris (1993), batch processes are particularly flexible in operation and well­

suited for adjustment to changing market conditions with fluctuations in product de­
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mand. However, the operation of batch processes is inherently transient in nature, and 

the inclusion of dynamic models into the optimization and control hierarchy is essential. 

2.3 Constrained Model Predictive Control 

Optimal economic conditions typically call for operation at higher capacity than de­

sign specifications, resulting in unit operation at capacity constraints (Skogestad, 2004). 

Hence the optimal operating conditions are typically defined at the intersection of ac­

tive constraints, and require constrained multivariable control to hold the process at 

profitable operating conditions (Cutler and Perry, 1983). 

Input and output constraints are particularly important, leading the list of the top five 

control objectives in industry as reviewed by Qin and Badgwell (2003), followed by 

driving outputs to steady-state optimal values and inputs to steady-state target values, 

preventing excessive input movement, and robustness to actuator failure. Thus, con­

strained model predictive control is well-suited for addressing these objectives, and is 

the advanced control algorithm of choice in the chemical process industry. 

The general methodology of model predictive control is based on utilizing output pre­

dictions over a prediction horizon P using a dynamic model of the process to determine 

the optimal inputs over an input horizon M. The control performance objective func­

tion is typically formulated as a quadratic optimization problem based on minimizing 

the squared deviation of predicted outputs from target, weighted appropriately with 

penalty on input movement and subject to hard input constraints. The first input move 

calculated is implemented on the actual plant and the process is repeated at the subse­

quent sampling time, resulting in a receding horizon strategy with feedback to eliminate 

steady-state offset in the presence of uncertainty (Maciejewski, 2002). 

Quadratic dynamic matrix control (QDMC) was originally proposed using the step re­

sponse model (Garda and Morari, 1986) and is summarized for the single-input single­
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output case by the following equations: 

p M 

min ¢ = 2::: iiYsp (k + l)- f) (k + lik) II~+ 2::: ll~u (k + l- 1) II~ (2.1) 
Au(k),-·· ,Au(k+M-1) l=l l=l 

where Ysp represents the setpoint, f) (k + llk) the predicted output at time k + l with 

information available at time k, and ~u (k + l) = u (k + l) - u (k + l- 1) the optimal 

input move at time step k + l. Furthermore, Q E RPxP and R E RMxM are diagonal 

time invariant positive definite weighting matrices penalizing output deviation from 

setpoint and input moves respectively, where llxll~ = xTQx. The minimization problem 

in Equation 2.1 is subject to the following constraints: 

l n-l 

f) (k + llk) = 2::: Si~U (k + l- i) + 2::: Si~U (k + l- i) + SnU (k + [- n) +d(k + lik) 
i=l i=l+l 

(2.2) 
n-l 

d(k + lik) = Ym (k)- 2::: Si~u (k- i)- SnU (k- n) (2.3) 
i=l 

~u(k+l) = 0 Vl;:::: M (2.4) 

Umin :S U (j) :S Umax j = k, · · · , k + M - 1 (2.5) 

Ymin :S f) (jIk) :S Ymax j = k + 1, · " , k + P (2.6) 

where si, i = l..n represent the step response coefficients with truncation order n, Ym (k) 

the measured output at time k, and d(k + lik) the predicted value of additive distur­

bances in the output at time k + l given information at time k. In conventional dynamic 

matrix control (DMC), the predicted disturbance is assumed constant in the future and 

is estimated from the difference between the measured and predicted output (Garcia 
14 
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et al., 1989). The assumption of a step disturbance in the output is capable of eliminat­

ing steady-state offset but may result in sluggish disturbance rejection (Morari and Lee, 

1991). 

The inclusion of hard output constraints shown in Equation 2.6 is possible, but may 

result in infeasibility and may require constraint softening. A formulation for constraint 

softening is described by Zafiriou (1991) using slack variable Ei for output constraint i, 

and is given by 

Yi,min- Ei :S Yi (k + l) :S Yi,max + Ei l = 1, · · · , P (2.7) 

A penalty term wiE: is included in the quadratic control objective function where wi 

represents constraint violation weighting for output i. Hard constraints are typically 

softened in commercial algorithms by the slack variable formulation (Morari and Lee, 

1999). 

The soft constraint formulation described is based on the penalty method and may 

result in constraint violation. A consistent set of penalty weightings must be deter­

mined experimentally while ensuring controller stability, robustness and performance 

(Qin and Badgwell, 2003). Hence, the soft constraint formulation introduces difficulty 

in distinguishing between optimization of the objectives and satisfaction of constraints, 

where the weightings are also dependent on scaling and changing operating conditions 

(Garcia and Prett, 1986). Furthermore, stability problems are only minimized gradually 

and not eliminated by the softening of output constraints (Zafiriou, 1991). 

While constrained model predictive control has been applied to large scale problems, 

the formulation of a reasonable objective function is increasingly complicated with an 

increasing number of variables and competing objectives (Ricker, 1991). Despite these 

apparent limitations, commercial products such as DMC-Plus from AspenTech, Shell 

Multivariable Optimizing Controller (SMOC) from Shell Global Solutions, and Process 

Perfecter from Pavilion Technologies are popular in industry (Qin and Badgwell, 2003). 
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Thus, in this thesis, quadratic dynamic matrix control (QDMC) was chosen as the un­

derlying regulatory controller to realize feasible and optimal steady-state transitions. 

2.4 Hard Output Constraints 

According to Marlin (2000), control systems are designed to maintain conditions within 

an operating window defined by constraints where soft output constraints are defined 

to reduce the production of poor quality product, and hard output constraints to ensure 

plant safety and prevent equipment damage. The consideration of hard output con­

straints is also included in commercial products such as Hierarchical Constraint Con­

trol (HIECON) from Adersa, and NOVA nonlinear controller (NOVA-NLC) from DOT 

Products (Qin and Badgwell, 2003). 

However, the consideration of hard output constraints may result in infeasibility within 

the calculation of optimal inputs, and may require constraint softening (Brosilow and 

Joseph, 2002) as described in Section 2.3. Infeasibility results in suboptimality with the 

possibility of instability for open-loop unstable plants (Maciejowski, 2002). In fact, the 

inclusion of hard output constraints may result in closed-loop instability independent 

of tuning parameters (Oliveira and Biegler, 1994). In the event of infeasibility, Scokaert 

and Rawlings (1999) proposed relaxation of state constraints based on the minimum 

time or soft constraint approach. The minimum time approach identifies the minimum 

time beyond which state constraints may be enforced, leading to the earliest constraint 

satisfaction, but possibly resulting in large transient violations. The soft constraint ap­

proach penalizes constraint violations in the objective function with increasing weights 

to reduce the peak violation, but with sluggish return to the feasible region resulting in 

constraint violation over a longer period of time. 

Zafiriou (1990a) demonstrated the possibility of instability in the closed-loop response 

under model predictive control as a result of including hard output constraints in the 

presence of disturbances, otherwise resulting in minimal constraint violation using the 
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unconstrained formulation. Thus proper formulation of constraints and the effect of 

hard output constraints on closed-loop stability must be considered in control design 

(Zafiriou, 1990b). 

In this work, hard input constraints are handled within regulatory control while hard 

output constraints arising from economic considerations are handled within the frame­

work of supervisory control. Hard output constraints arising from safety considerations 

to ensure feasibility are only handled with a conservative formulation of constraints in 

developing an offline optimal operating strategy. Furthermore, the setpoint target is 

assumed to have incorporated dynamic backoff from active constraints to ensure feasi­

bility in the presence of uncertainty as further discussed in Section 2.5. 

2.5 Feasibility Based on Dynamic Backoff 

Ensuring feasibility may be more important than optimality in the chemical process in­

dustry (Bonvin et al., 2002). However, since the steady-state economic optimum is typi­

cally defined at the intersection of active constraints (Cutler and Perry, 1983; Garda and 

Prett, 1986), backoff is required to ensure feasibility in the presence of disturbances. Nar­

raway and Perkins (1993) estimated the maximum input and output constraint backoff 

using linear dynamic models and assuming perfect control in the context of control 

structure design. The backoff analysis was extended by Narraway and Perkins (1994) 

to nonlinear process models with dynamic path constraints. The resulting dynamic 

backoff was based on consideration of the dynamics of the underlying unconstrained 

regulatory control layer, and was used to ensure feasibility in the presence of distur­

bances. 

The backoff required for feasibility under the worst case scenario was typically deter­

mined using a sequential approach, but requiring integration of differential algebraic 

equations and objective and constraint evaluations at each time step (Bandoni et al., 

1994; Bahri et al., 1996a,b). While the integration error may be controlled using a se­
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quential approach (Figueroa et al., 1996; Bahri et al., 1997), a reduction in computational 

expense may be obtained using a simultaneous approach as demonstrated by Bahri 

et al. (1995). The size of the resulting dynamic backoff was used in ranking economi­

cally viable controllers, but with the possibility of several control configurations, Young 

et al. (1996) determined the dynamic backoff based on Q-parametrization to produce 

the upper bound of achievable performance for all linear feedback controllers. Addi­

tional applications included consideration of state observers (Figueroa, 2000) and vari­

able structure control (Contreras-Dordelly, 1999; Contreras-Dordelly and Marlin, 2000). 

The application of backoff for control structure design was also extended to the design 

of online optimization schemes. Loeblein and Perkins (1996) determined the average 

deviation between the true and calculated optimum based on the size of backoff re­

quired under a given range of parametric uncertainty. The analysis was used to estimate 

the economic benefit of implementing online steady-state optimization, determining 

the model structure in addition to the optimal selection of measurements and parame­

ters updated. A similar investigation on the economic benefit of using an approximate 

model for steady-state optimization was undertaken by Loeblein and Perkins (1998). 

Loeblein et al. (1997) extended the analysis of average deviation to estimate the eco­

nomic performance of batch optimization under parametric uncertainty. The size of the 

backoff required was reduced with increasing confidence in uncertain parameter esti­

mates. However, due to the dynamic nature of batch operation, time varying backoff 

from active inequality constraints must be determined (Loeblein et al., 1999). 

Thus the concept of average deviation from the optimum was further extended by Loe­

blein and Perkins (1999a), determining the dynamic backoff during transient operation 

with setpoint changes under unconstrained model predictive control. The dynamic eco­

nomic assessment was capable of identifying an alternative control structure yielding 

improved performance for a fluid catalytic cracker (FCC) unit (Loeblein and Perkins, 

1999b). 
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As investigated in literature, the determination of time varying dynamic backoff is use­

ful for control structure design, but the concept is also particularly important in address­

ing feasibility and optimality during transient operation, and is further discussed in the 

context of reference management as described in Section 2.6. 

2.6 Reference Management 

Reference management is a methodology based on modifying the reference signal re­

quired to attain a desirable closed-loop response while ensuring feasibility. Findeisen 

et al. (1978) proposed feasible control generation (FCG) to predict future constraint vi­

olation for a given command input and modifying it before implementation to ensure 

feasibility, thus defining a set of constraint admissible reference signals. The set of con­

straint feasible trajectories enabling a plant to be driven from one point to another, is 

also defined as the reachability envelope (Backx et al., 1998). 

Reference management was investigated in detail by Kapasouris et al. (1988), with the 

introduction of the error governor (EG) into the supervisory loop, as shown in Figure 

2.1. The error governor is used to modify the control signal to maintain characteristics 

of linear control by preventing input saturation in multi-input multi-output open-loop 

stable plants. In addition to reset windup, input saturation induces change in the con­

trol vector direction resulting in oscillations and large overshoot in the output. Thus, 

reference management was initially proposed as a strategy to effectively handle input 

saturation within conventional linear feedback control. 
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Figure 2.1: The error governor 

An improvement in performance compared to the classical approach of bandwidth re­

duction was demonstrated using the error governor, where the input signal was modi­

fied by determining the maximum scalar gain restricted to [0,1]. The scheme was sim­

ulated on an F8 aircraft following pitch and flight path angle commands, and resulted 

in an increase in rise time but maintaining a linear response. An additional scalar gain 

to handle input rate constraints was introduced by Kapasouris and Athans (1990), and 

the minimum gain calculated applied to the process to prevent control saturation in 

magnitude and rate. 

However, stability of the closed-loop compensated system could only be guaranteed 

for open-loop stable plants (Kapasouris et al., 1988), and hence an alternative formu,.. 

lation was proposed by Kapasouris et al. (1989) based on the reference governor (RG) 

as shown in Figure 2.2. The reference governor is a reference pre-filter that modifies 

the feedback error signal to prevent input saturation when necessary, such that the sys­

tem under linear control is stable. An artificial saturation limit was also introduced, 

reserving control action for disturbance rejection in addition to reference tracking. The 

supervisory scheme was simulated on an AFTI-16 aircraft where sudden, large input 

moves were translated into slower commands to enable stabilization. 

Output 

Figure 2.2: The reference governor 
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The discrete reference governor proposed by Gilbert et al. (1994) is a first order low pass 

filter with adjustable bandwidth gain, defined by a nonlinear relationship dependent 

on the states and reference target. At each time step, input and output constraint vio­

lations are predicted and the filter time constant modified to enforce point-wise in time 

constraints (Bemporad and Mosca, 1994a) based on an objective function minimizing 

the squared deviation between the setpoint and target (Bemporad and Mosca, 1995). 

The optimal filter time constant was determined using a grid approach (Bemporad and 

Mosca, 1994a,b) or using a bi-section algorithm (Bemporad, 1998b), but was extended by 

Bemporad et al. (1998) by solving a constrained quadratic programming (QP) problem. 

Thus, reference management was originally proposed to maintain linear behaviour by 

preventing input saturation to improve linear control (Casavola et al., 2004). Industrial 

applications are expected to improve setpoint tracking for linear controllers in the pres­

ence of constraints, and has also been extended to closed-loop model predictive control 

under stochastic disturbances as described by Hessem and Bosgra (2004). 

Since the development of the reference governor, research in reference management has 

increased under various terminology, such as the command governor (CG) as termed 

by Bemporad and Mosca (1995). Beneficial characteristics arising from the separation 

of objectives for feedback from constraint enforcement has been well discussed (Gilbert 

and Kolmanovsky, 1994), where constraint fulfillment is handled by the command gov­

ernor while the primal controller is designed for stability and tracking in the absence of 

constraints (Angeli et al., 1998, 2000). 

2.6.1 Improvements in Stability and Performance 

Reference management may also improve closed-loop stability since instability may 

result for open-loop unstable systems in the presence of input saturation. This was 

demonstrated on a helicopter model by Gilbert et al. (1994), and in the control of an in­

verted pendulum by Gilbert and Kolmanovsky (1995), where instability was prevented 
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by preventing input saturation. 

Calamai et al. (2000) also used the command governor (CG) for stabilization of the cart 

position of an inverted pendulum with constraints on motor voltage and rod angle. A 

high gain controller resulted in instability for large setpoint changes, while a low gain 

controller avoiding input saturation resulted in large cart and rod angle displacements 

during disturbance rejection. However, application of the command governor (CG) 

was capable of improving transient and steady-state performance without instability 

by enabling a high gain controller to be used. 

A similar scheme was proposed in adaptive control by Marroquin and Luyben (1972), 

where a cascade control structure adjusting the proportional gain of the slave controller 

according to the master loop error was shown to minimize the transition time and pre­

vent overshoot for a batch process. However, while flexibility is obtained by defining 

the tuning parameters as a function of feedback error, the response is difficult to pre­

dict and tuning complicated (Bequette, 1991). A similar scheme using gain scheduling 

to reduce overshoot was also proposed by Leung and Romagnoli (2000), but based on 

heuristics, where stochastic control was used at 70% completion of the transition while 

deterministic control was used to initiate the steady-state transition. 

Thus there are similarities between reference management and gain scheduling, with 

potential benefits in improving closed-loop stability and performance. Similar concepts 

have also been proposed in commercial products using filters to minimize overshoot 

and improve robustness to model mismatch by manipulation of the reference trajectory 

(Qin and Badgwell, 2003). 

2.6.2 Incorporation of Uncertainty Considerations 

The application of reference management must be capable of handling uncertainty, and 

is particularly important to realize applications in industry. Kolmanovsky et al. (1997) 

detailed the application of reference management to control the electric motor of turbo 
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charged diesel engines during load changes to prevent engine stall and visible smoke 

emissions in the presence of unknown but bounded disturbances on the engine crank­

shaft. Additional applications to the soft landing nonlinear problem and a second order 

electromagnetic actuator in the presence of unknown bounded disturbances were con­

sidered by Kolmanovsky and Gilbert (2001). 

Bemporad and Mosca (1998) considered the effects of uncertainty in reference man­

agement by utilizing bounded uncertainty in the impulse and step responses to deter­

mine the maximum lower bound and minimum upper bound restrictions on the filter 

time constant. The methodology was demonstrated in the control of a servomechanism 

model, where input constraint violations were prevented during transient operation in 

the presence of model uncertainty within the given bounds. An increase in the un­

certainty range was shown to result in conservative control action and a reduction in 

response time. The system was also considered by Casavola et al. (2000) with addi­

tional state constraints, and the optimal solution determined using quadratic program­

ming. Similarly, Gilbert and Kolmanovsky (1999) considered the effect of worst case dis­

turbances within reference management to control open-loop unstable non-minimum 

phase systems including an inverted pendulum and a bank-to-turn missile. 

Bemporad (1998a) extended the analysis with consideration of closed-loop predictions, 

where the effect of disturbances was reduced by regulatory control and taken into con­

sideration in modifying the filter time constant. The objective function was based on 

minimizing the squared deviation of the setpoint from target with penalty on the steady­

state tracking error and changes in the feedback gain. 

2.6.3 Additional Comments 

Hirata and Kogiso (2001) applied reference management on a position servomechanism, 

achieving an improvement in performance in addition to constraint fulfillment by min­

imizing the norm of the deviation between the output from target. Similarly, Sugie and 
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Yamamoto (2001) used a weighted objective function minimizing the squared devia­

tion between the output from target in addition to the setpoint from target. Additional 

studies in reference management are also discussed by Casavola and Mosca (1996), Be­

mporad et al. (1997), Angeli et al. (1999), Miller et al. (2000), Angeli et al. (2001), Gilbert 

and Kolmanovsky (2001), Gilbert and Kolmanovsky (2002) Kogiso and Hirata (2002), 

Kogiso and Hirata (2003), Oh-Hara and Hirata (2003), Hirata and Minemura (2004), and 

Hatanaka and Takaba (2005). 

Reference management was originally proposed to maintain linearity by preventing in­

put saturation, thus improving closed-loop performance for linear control. However, 

subsequent research has extended the methodology to include consideration of output 

constraints and the effects of uncertainty. Computational strategies for the determina­

tion of the optimal scalar gain, or filter time constant in the low order reference filter 

were also investigated in literature. Conditions for convergence were developed and 

improved closed-loop stability and performance demonstrated. 

2.7 Optimization and Control Hierarchy 

According to Shobrys and White (2000), there are significant economic incentives for the 

integration of optimization and control in the chemical industry with oil companies es­

timating benefits at $1 per barrel, and cost and inventory reductions of 20% reported by 

Exxon Chemicals. A strategy for integrating steady-state optimization and control was 

implemented by Guovea and Odloak (1998) in a fluid catalytic cracker (FCC) unit at the 

Petrobras refinery in Brazil. The economic and control objectives were combined into a 

single objective function, where control performance was heavily weighted for robust 

stability resulting in a smooth but slow response to economic change. However, solv­

ing the optimization and control problem simultaneously in the single-level approach 

may be intractable for large scale nonlinear processes due to computational limitations 

(Kadam et al., 2002). 
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Furthermore, although model predictive control has obscured the distinction between 

optimization and control, the hierarchical decomposition is inherently related to the fre­

quency of disturbances (Kookos and Perkins, 2004) and enables stationary and non­

stationary disturbance rejection to be handled under two time scales (Morari et al., 

1980). An additional advantage of multi-layer vertical decomposition is decomposi­

tion by functionality, thus simplifying regulatory control structure design and enabling 

intuitive interpretation of plant operation by operating personnel. 

2.7.1 Two Layer Approach with LP/QP-MPC 

The two layer approach of separating economic and control objectives is also imple­

mented in commercial products as described by Qin and Badgwell (2003), based on 

steady-state target optimization using linear programming (LP) or quadratic program­

ming (QP). Cascading steady-state optimization to update the setpoints used in model 

predictive control has been used in industry for several years for dynamic tracking of 

the optimum in the presence of disturbances (Ying and Joseph, 1999). In the presence 

of additional degrees of freedom, ideal resting values for inputs are also determined 

by optimization (Maciejowski, 2002). Thus the setpoint and input targets are typically 

updated based on a linear or quadratic economic objective function resulting in LP­

MPC and QP-MPC respectively (Ying et al., 1998). The sub-optimization within the con­

troller influences economic performance while ensuring feasible operation (Mizoguchi 

et al., 1995). The higher frequency compared to real time optimization is required to en­

sure the economic model and setpoints are consistent with current operating conditions 

(Tenny et al., 2004). 

The mathematical formulation for QP-MPC is given by Brosilow and Joseph (2002) as 

shown below, 

(2.8) 
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(2.9) 

(2.10) 

Ymin ~ Ysp ~ Ymax (2.11) 

where Wy and Wu are symmetric positive definite weighting matrices given to outputs 

and inputs based on relative costs. The steady-state optimizer based on economic or 

minimum movement objectives, is embedded within model predictive control, and may 

improve stability by providing feasible steady-state setpoints in the presence of unmea­

sured disturbances (Sorensen and Cutler, 1998). Furthermore, the economic objective 

may be based on unit objectives not considered by real time optimization (Becerra et al., 

1998), and ensures feasibility based on local constraints (Yousfi and Tourier, 1991). 

Nominal stability of LP-DMC and QP-DMC was discussed by Ying et al. (1998) and 

Ying and Joseph (1999), concluding that linear or quadratic programming with time 

invariant active constraints would not affect stability given stability of the underlying 

regulatory control layer. The theorem proposed was used to justify tuning the regula­

tory control for stability and subsequently using LP /QP optimization to improve per­

formance without affecting stability. However, while used in industry (Lee and Xiao, 

2000), LP /QP-DMC may result in suboptimal operation due to the absence of input 

saturation considerations within the regulatory controller (Ramos et al., 2002). 

Optimal economic performance is important in industry, particularly in the presence of 

changing disturbances. The industrial approach in the application of steady-state op­

timization to systems affected by persistent disturbances, is based on relaxing steady­

state assumptions, otherwise resulting in lost opportunity with low frequency of re­

optimization (Nath et al., 2000). However, suboptimality may result during transient 

operation due to violation of the steady-state assumption (Moro and Odloak, 1995). 

Thus, increasing the frequency of optimization, may not necessarily improve perfor­

mance. 
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Kozub (1997) described the industrial implementation of a monitoring scheme for a 

model predictive controller with an embedded LP steady-state optimizer, and identified 

stability problems arising from chattering as a result of rapid changes in the controller 

dimension due to frequent re-optimization. Similar trends were observed by Kassmann 

and Badgwell (2000) with inputs cycling at opposite ends of the feasible region as a 

result of model mismatch arising from optimization based on steady-state objectives 

under dynamic operation. A similar conclusion was drawn by Zanin et al. (2000) at a 

fluid catalytic cracking (FCC) unit in Brazil, attributing the noisy closed-loop response 

to conflicting steady-state economic and dynamic control objectives. Thus there are 

incentives to incorporate dynamic models within optimization. 

Despite the shortcomings of LP-MPC and QP-MPC, the ability to yield significant re­

turn on investment is recognized in industry. Vermeer et al. (1997) estimated benefits 

of $0.50 per m3 of gasoline produced as a result of lower value blend components, and 

reduced the number of re-b lends from 12% to less than 1% at Sunoco in Canada. Sim­

ilar benefits at British Petroleum Amoco in Australia estimated benefits of $1 million 

per year (Verne et al., 1999), and a composite LP steady-state optimizer in the Toledo 

refinery at Sunoco resulted in performance benefits of 30% (Jakhete et al., 1999). Sev­

eral commercial products are also available as detailed by Qin and Badgwell (2003). 

Commercial implementation of LP-MPC is used in such products as Control and Iden­

tification (Connoisseur) from Invensys, but susceptible to uncertainty which is partially 

addressed through filtering, detuning and move suppression. Commercial implementa­

tion of QP-MPC is used in such products as Robust Model Predictive Control (RMPCT) 

from Honeywell Hi-Spec, Predictive Functional Control (PCF) from Adersa, Aspen Tar­

get from AspenTech, Multivariable Control (MVC) from Continental Controls Inc. and 

Processs Perfector from Pavilion Technologies, where the quadratic objective function 

used is expected to reduce solution sensitivity to uncertainty. 
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2.7.2 Two Layer Approach with Consideration of Dynamics 

As discussed, the incorporation of dynamics may yield additional benefits and enable 

increased frequency of re-optimization. Thus, Kadam et al. (2002) proposed the two 

layer approach where the upper level determines the optimal trajectory based on a dy­

namic nonlinear economic model, tracked by lower level unconstrained model predic­

tive control based on a dynamic linear or nonlinear model. The resulting dynamic real 

time optimization (D-RTO) scheme was capable of meeting target objectives for the pro­

duction of methyl acetate in a semi-batch reactive distillation column. The proposed 

scheme based on plantwide dynamic optimization was also applied by Brempt et al. 

(2004) to improve grade transitions in polyethylene polymerization. The economically 

optimal reference trajectory was determined based on a rigorous dynamic nonlinear 

model, and model predictive control used for tracking. 

In this work, a similar decomposition is proposed where the upper level determines the 

optimal setpoint trajectory based on a closed-loop dynamic model, but tracked at the 

lower level by constrained model predictive control, which is taken into account in the 

computation of the optimal setpoint trajectory. 
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Chapter3 

Mathematical Formulation 

This chapter details the mathematical formulation and solution strategy for reference 

management based on closed-loop dynamic models. The calculation of the optimal 

setpoint trajectory results in a multi-level optimization problem when the closed-loop 

dynamics of constrained model predictive control are taken into account. The setpoint 

trajectory is optimized at the upper level using an economic or dynamic performance 

objective function while the plant inputs are determined at the lower level using the 

control performance objective function. The algorithm of quadratic dynamic matrix 

control is reviewed in Section 3.1, and the sequential and simultaneous solution strate­

gies for the proposed methodology presented in Sections 3.2 and 3.3 respectively. For 

further details on implementing the simultaneous approach, orthogonal collocation on 

finite elements is described in Section 3.4, the Karush-Kuhn-Tucker (KKT) conditions in 

Section 3.5, and interior point methods in Section 3.6. 

3.1 Constrained Model Predictive Control 

The general formulation of constrained model predictive control was discussed in Sec­

tion 2.3. Model predictive control is a model based receding horizon control algorithm, 
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calculating a sequence of inputs over a control horizon M of which only the first is 

implemented. Optimal inputs are determined by minimizing a least squares control 

performance objective function by penalizing the squared deviation between output 

predictions from setpoint, input deviation from the ideal resting value, and penalty on 

input movement over a prediction horizon P subject to a linear dynamic model, and 

input and output constraints. 

The algorithm for quadratic dynamic matrix control (QDMC) based on the finite step re­

sponse for open-loop stable systems is briefly outlined in Equations 3.1-3.12 for a single­

input single-output system, with further details provided in Garda and Morari (1986) 

and Bequette (2003). 

(3.1) 


where Q E ~PxP and R E ~MxM are positive definite weighting matrices, y E ~P a 

vector of output predictions over the prediction horizon P, and u E ~M and flu E ~M 

are vectors comprising of future inputs and input changes respectively. 

y = [Yk+b ... 'Yk+Pf (3.2) 

'U = [uk, · · · , Uk+M-lf (3.3) 

flu= [fluk, · · · , fluk+M-1f (3.4) 

The minimization in Equation 3.1 is subject to the following constraints, 

(3.5) 
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Ymin ::S Y ::S Ymax (3.6) 

Umin ::S U ::S Umax (3.7) 

(3.8) 

where YJ E ~P represents the free response depending only on past inputs, and A E 

~PxM represents the dynamic matrix given by 

0 0 

A= 
Sz 0 

(3.9) 

Sp Sp-1 

where si are the unit step response coefficients. The estimated disturbance is given as 

follows, with the standard conventional assumption of uncorrelated integrated random 

walk disturbances in the outputs (Morari and Lee, 1991), 

(3.10) 


where Yk denotes the actual measured output, and ddenotes the predicted disturbance 

assumed to be constant over the prediction horizon P. By recognizing that 

fj = YJ + A~u + d (3.11) 

Uk+l = Uk-1 + L
!+1 

~Uk+i-1 l = 0, ... 'M- 1 (3.12) 
i=1 
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Equations 3.1-3.8 may be expressed in terms of the vector of input changes ~u as given 

by Garcia and Morari (1986), 

(3.13) 


C~u~b (3.14) 

(3.15) 

where C and b refer to a matrix and vector corresponding to inequality constraints re­

spectively, and the Hessian H and gradient g of the objective function given by 

H=ATQA+R (3.16) 

g = ATQ (Ysp- YJ- d) (3.17) 

Equations 3.13-3.17 constitutes a quadratic programming (QP) problem and may be fur­

ther simplified using slack variables and reformulated as 

min XT fiX + fr X (3.18) 
X 

Ax=b (3.19) 

x~O (3.20) 

where A and b refer to a matrix and vector corresponding to equality constraints re­

spectively. The Karush-Kuhn-Tucker (KKT) conditions may be applied to the standard 
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quadratic optimization given in Equations 3.18-3.20, resulting in the following first or­

der optimality conditions, yielding the optimal solution for quadratic dynamic matrix 

control (QDMC), 

fix+g-ATv-w=O (3.21) 

Ax=b (3.22) 

(3.23) 

(w,x) ~ 0 (3.24) 

where v and w refer to the equality and inequality Lagrange multipliers respectively. 

The ability to handle input constraints is characteristic of second generation quadratic 

dynamic matrix control (Qin and Badgwell, 2003), while hard output constraints are 

typically softened in commercial algorithms by slack variables penalized in the objective 

function (Morari and Lee, 1999). 

In this thesis, inequality constraints on outputs and input changes are not considered at 

the regulatory control level. Furthermore, the controller formulation was based on the 

assumption of a constant setpoint trajectory over the future prediction horizon, since 

specification of a dynamic setpoint trajectory is not common in practice (Bemporad 

et al., 2004) and the focus of this research is the application of reference management 

with consideration of the existing regulatory control system. However, the general for­

mulation for model predictive control is capable of utilizing information about the fu­

ture setpoint trajectory to improve setpoint tracking. 

3.2 Sequential Optimization 

The application of reference management to determine the optimal setpoint trajectory 

such that the output attains target based on a cost objective function subject to hard 
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input and output constraints, requires solution to a multi-level optimization problem 

due to consideration of the closed-loop dynamics of input constrained model predictive 

control. 

Sequential optimization may be used to solve the multi-level problem, essentially sepa­

rating optimization in the upper level from integration in the lower level performed in 

MatLab 7.0 (Bemporad et al., 2004) via closed-loop simulations. The solution strategy 

parameterizes the setpoint profile using control vector parameterization with piecewise 

constant setpoints, but the state profile is determined at every iteration by the integra­

tion of the set of differential and algebraic equations (DAE) representing the process. 

Thus the feasible path method enables integration solvers to control the discretization 

error by adjusting the integration step (Vassiliadis et al., 1994). The mathematical for­

mulation of the two-layered algorithm to indirectly improve economic operation by 

minimizing the amount of off-specification product produced is given by 

N 
2

min¢ = L [ai (Ysp,i - Yt9t) 
2 + /3i (Yi - Yt9t) ] (3.25) 

Ysp i=l 

Xi+l = f (xi, Ui, d) (3.26) 

Yi = g (xi, ui, d) (3.27) 

Ui = h (yi, Up, Ysp) (3.28) 

where Ytgt 1 Ysp and y represent the target, setpoint and the measured output respectively 

over the simulation horizon N with weighting factors a and (3 to penalize the squared 

deviation between the setpoint and output from target. The states x given by Equation 

3.26 are determined from the integration of a system of differential and algebraic equa­

tions. The implemented inputs u are generated through the solution of an open-loop 

optimal control problem using constrained model predictive control and represented 

by Equation 3.28, where uP represents the inputs previously applied to the process. 
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In addition, hard output constraints and constraints on the admissible setpoints may be 

included at the upper level: 

Ymin "5:.Yi "5::. Ymax (3.29) 

Ysp,min "5:.Ysp,i "5::. Ysp,min (3.30) 

where min and max represent minimum and maximum values. Thus determination of 

the optimal setpoint trajectory using reference management results in a multi-level op­

timization problem as seen in Figure 3.1. The outer optimization problem is based on an 

economic or control performance objective function, and a series of inner optimization 

problems are solved at each time instant along the simulation horizon arising from the 

consideration of constrained model predictive control. 

Ysp,y(1) 

Ymin $; y(2) s yi!:W( 

• 
• 

• 

Figure 3.1: Multi-level optimization arising from model predictive control 

The sequential approach separates optimization of the setpoint trajectory and integra­

tion of a continuous state profile, solving the constrained regulatory control optimiza­

tion problems within the integration step through closed-loop simulations. However, 
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the sequential approach may be computationally expensive with 90% of the computa­

tional time attributed to model integration (Abel et al., 2000). Furthermore, handling 

path constraints directly within the optimizer and indirectly within the integrator may 

be inefficient requiring several iterations to ensure feasible states (Feehery and Barton, 

1996, 1998). The activation of inequality path constraints also introduces derivative 

discontinuities, slowing convergence of the optimization algorithm as a result of step 

length restrictions (Chen and Vassiliadis, 2005). 

However, according to Bloss et al. (1999), the main bottleneck in sequential dynamic op­

timization is the calculation of objective function and constraint gradients by finite dif­

ferencing or techniques based on sensitivity and adjoint equations. The computational 

expense incurred by the sensitivity equation approach is proportional to the number 

of decision variables, while the adjoint equation approach is proportional to the num­

ber of constraints. Furthermore, inefficiency in numerical integration at intermediate 

solutions also increases computational expense particularly for stiff systems (Tjoa and 

Biegler, 1991) and infeasibility may result with integration failure resulting from unsta­

ble intermediate points despite a stable final solution (Biegler, 1998). 

3.3 Simultaneous Optimization 

Simultaneous optimization, or direction transcription, is used to solve the multi-level 

problem by formulating the multi-level programming problem into a single-level pro­

gramming problem using the Karush-Kuhn-Tucker (KKT) conditions, similar to the so­

lution strategy used by Clark and Westerberg (1990). The solution strategy proposed 

parameterizes the setpoint and state profiles producing a large sparse system of alge­

braic constraints solved using an interior point approach. The general mathematical 

formulation is given as follows, 
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min¢ = L
N 

[CXi (Ysp,i - Ytgt) 
2 + f3i (Yi - Ytgt) 

2 
] (3.31) 

Ysp i=l 

Xi+l = j (xi, 'Ui, d) (3.32) 

Yi = g (xi, Ui, d) (3.33) 

(3.34) 


Ymin 5:.Yi $. Ymax (3.35) 

Ysp,min 5:.Ysp,i $. Ysp,min (3.36) 

where Ytgt' Ysp and y represent the target, setpoint and the measured output respectively 

over the simulation horizon N with weighting factors a. and f3 to penalize the squared 

deviation between the setpoint and output from target. Equation 3.32 represents the 

linear or possibly nonlinear dynamic process model, and Equation 3.34 represents the 

lower level optimization problem of constrained model predictive control. Hard output 

constraints are given in Equation 3.35, and constraints on the admissible setpoints in 

Equation 3.36. Constraints on the change between successive setpoints are not shown, 

but may also be included if desired, and are typically used in conventional steady-state 

real time optimization to enable time for the plant to move to the new operating point 

while preventing large changes in operation (Bailey et al., 1993). 

The reformulation of the multi-level optimization problem by replacing the inner prob­

lem with stationary conditions results in a mathematical program with equilibrium con­

straints (MPEC) as defined by Raghunathan and Biegler (2003), and is similar to the 

integrated control and design formulation used to handle input saturation by Baker 

and Swartz (2004a). The single-level formulation of the nested optimization problem 

results in a non-convex (Clark and Westerberg, 1990), and highly constrained problem 

(Raspanti et al., 2000). 
37 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

In this work, the complementarity conditions are solved using an interior point ap­

proach, where the complementarity conditions are relaxed with a positive barrier para­

meter which is gradually decreased to zero to obtain the optimal solution, thus recover­

ing the original complementarity constraints (Terlaky and Boggs, 2000). 

Thus the simultaneous approach is proposed to determine the optimal setpoint trajec­

tory by reference management, and quadratic dynamic matrix control implemented in 

AMPL (Pourer et al., 2002) based on development from Baker (2004) and Soliman (2005). 

3.4 Orthogonal Collocation on Finite Elements 

The simultaneous approach requires discretization of the state and output profiles, han­

dled through techniques such as orthogonal collocation on finite elements. For systems 

described by a linear dynamic model, the principle of superposition of finite step re­

sponse coefficients may be used at the desired sampling interval for discretization of 

the output, similar to dynamic matrix control. However, for systems described by a 

nonlinear dynamic model, orthogonal collocation is used to convert differential equa­

tions corresponding to state variables into algebraic equations over finite intervals by 

polynomial approximation as detailed by Biegler (1984). The time axis is scaled over 

each finite element k = 1, · · · , nFE: 

t- ;k-l E [0, 1]'T = (3.37) 

where nFE is the number of finite elements, and <5 the time interval between finite 

elements. The state over each finite element is approximated by 

nCOL+l 

x(t) = L x [k,j] ¢ [j, r] (3.38) 
j=O 
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where nCOLis the number of collocation points, and xthe approximate state. The collo­

cation points defined within the normalized intervals of each finite element were chosen 

to correspond with the zeros of the Legendre polynomial, and an additional collocation 

point was enforced at the finite element boundary. Then degree Jacobi polynomial of 

the form, 

p~a,/3) (x) = 2-n t ( n +a ) ( n + j3) (x- It-k (x + l)k (3.39) 
k=O k n -k 

is given by Funaro (1992), where a, j3 > -1 defines an orthogonal polynomial, thus en­

suring the existence of n distinct real zeros in the interval [ -1, 1] for n 2': 1 (Villadsen and 

Michelsen, 1978; Datta and Mohan, 1995). Equidistant placement of collocation points 

may result in divergence problems, while orthogonality ensures real and distinct zeros, 

although alternative polynomials may be used based on different weighting functions 

with slight differences in accuracy and convergence (Villadsen and Stewart, 1967; Vil­

ladsen, 1970). Improved accuracy in the approximation is obtained with an increase in 

the number of collocation points. 

The Legendre polynomial is classified as a Genebauer or ultraspherical (a = {3) Jacobi 

polynomial with a= j3 = 0 (Funaro, 1992) and the zeros determined from the following, 

pJO,O) (x) = 0 (3.40) 

(3.41) 

p(O,o) (x) = ~x2 _ ! (3.42)2 2 2 
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p(O,O) (x) = ~X (~x2 - ~) - ~X = :. (5x2 - 3) = 0 ==? Z = 0 ± ~ (3.43)3 3 2 2 3 2 , V5 

(0 0) 2n - 1 (o o) n - 1 (O o)
P ' (x ) = xP ' (x ) - --P ' (x) (3.44)n n-1 n-2 n n 

Hence, the state profile within a finite element with 3 collocation points is approximated 

by the 3rd degree Legendre polynomial with zeros determined at z = -0.775, 0, 0. 775 

as calculated in Equation 3.43. According to Vasantharajan and Biegler (1990), two or 

three collocation points are generally sufficient for an accurate approximation given a 

sufficient number of finite elements, although the approximation error may be further 

controlled using adaptive placement of finite elements. 

The Jacobi polynomials are defined within the intervaliPJa,f3) (x) I :S 1 for a bounded 

state lxl ::; 1 (Funaro, 1992), and within each finite element, the collocation points may 

be normalized to an arbitrary interval by linear transformation (Datta and Mohan, 1995}. 

Thus, the collocation points were normalized within the range of [0 , 1] resulting in col­

location points at T = 0.113, 0.500, 0.887. In addition to the interior quadrature points, 

the residuals of the differential equation are made to vanish at the element boundary 

at T = 0, 1. The Lagrange interpolation polynomial relative to the Legendre zeros, was 

used for approximation of the solution (Biegler, 1984). 

nCOL+ l 

qJ [j, T] = 
T-Tl 

. (3.45) II 
Tj- Tt 
l= O,l -j.j 

. {0 i=ljqJ [J, Ti] = (3.46) 
1 i = j 

Residual constraints are applied at each collocation point i = 1, · · · , nCOL and at knots 

defining the boundary of finite elements 
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nCOL + 1 ( [. l)L x [k, j] d¢ J,Ti - f (x [k , i]) 6 = 0 	 (3.47) 
dTt

j=O 

However, superelements consisting of collocation points on several finite elements may 

be used with breakpoint boundaries, and the adaptive placement of knots may be used 

to improve the accuracy of approximation without excessive increase in the number of 

additional finite elements (Cuthrell and Biegler, 1987). 

The derivative of the Lagrange polynomial function given in Equation 3.45 is required 

to evaluate the residuals and may be obtained using the Chain Rule with l -=/= j and 

n = nCOL, given by 

d¢[j,7i] = 	 72) ... (7i-7n) + ···(-1) (7i ­
dTi Tj - T1 7j - 72 Tj - 7	n 

1 ) (7i- 71) (7i- 7n-1) (3.48)
+ ( 7j - 7n , Tj - 71 . . . 7j - 7n-1 

Furthermore, function continuity constraints are imposed for smooth state profiles be­

tween finite elements at 7 = 0 and T = 1, 

X [0, 0] = Xo 	 (3.49) 

nCOL+1 

x[k, O]= L x[k-l,j] ¢ [),7=1] 	 (3.50) 
j=O 

The discretization of the state profile through the use of orthogonal collocation on finite 

elements is schematically presented in Figure 3.2. 
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Figure 3.2: Orthogonal collocation on finite elements 

3.5 Karush-Kuhn-Tucker Conditions 

The general formulation of the minimization problem is given by Nash and Safer (1996), 

mm f (x) (3.51) 
X 

hi(x ) = 0 (3.52) 

91 (x) 2:: 0 (3.53) 

where i = 1, · · · , m and j = 1, · · · , r denote equality and inequality constraints respec­

tively. The Karush-Kuhn-Tucker (KKT) conditions are used to transform a constrained 

optimization problem into a corresponding set of algebraic equations based on the La­

grangian defined by, 

m r 

(3.54) 
i=l j =l 
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The Karush-Kuhn-Tucker (KKT) first order necessary conditions for optimality are given 

by Nash and Sofer (1996) and Luenberger (1984), 

\lxL (x*, )..*, //*) = \l j (x*) - )..*T\lh (x*) - 1/*T\lg (x*) = 0 (3.55) 

V>.L (x* , )..* , //*) = h (x*) = 0 (3.56) 

gj (x*) ;:::: 0 (3.57) 

1/jgJ (x*) = 0 (3.58) 

where ).. * the lagrange multiplier for equality constraints, v* is the lagrange multiplier 

for inequality constraints and is sign restricted vj ;:::: 0, and x* is the local extremum 

point of f and a regular point of constraints. The regularity condition ensures that 

the gradients of active constraints are linearly independent, and is also known as lin­

ear independence constraint qualification (Nocedal and Wright, 1999). Violation of the 

regularity conditions may result in an iterate that i~ the only feasible point within its 

neighbourhood (Bell and Sargent, 2000) and may cause failure for global convergence 

particular interior point algorithms caused by iterates approaching their bounds prema­

turely (Wachter and Biegler, 2000; Byrd et al., 2004). 

The inequality constraints may be reformulated into equality and bound constraints 

using slack variables SJ as follows, 

gj (x)- Sj = 0 sJ -> 0 . (3.59) 

According to Forsgren et al. (2002), the reformulation results in additional expense only 

in storing and updating the slack variables. Although the introduction of slack vari­

ables increases the problem dimension, with interior point methods, it is simple tore­

tain feasibility with bound constraints since the step to the boundary may be calculated 

exactly, while several iterations are required for general inequality constraints. Also it 

enables interior point methods requiring a feasible initial point to be applied despite 
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an unknown initial point, thus the computational burden is shifted from inequality to 

equality constraint satisfaction, changing the behaviour of alternative formulations of 

interior point methods. Thus converting general inequality constraints into equality 

and bound constraints may improve the efficiency of interior point algorithms as also . 

used by Vanderbei and Shanno (1999), but resulting in an infeasible slack-based interior 

point method (Byrd et al., 2003). 

Optimization problems consisting of a quadratic objective function and linear equality 

constraints with variable bound constraints may be described by the standard quadratic 

programming problem of the form, 

(3.60) 


Ax= b (3.61) 

x~O (3.62) 

where A and b correspond to equality constraints, and His a symmetric positive semi­

qefinite matrix. Thus, the Lagrangian is given by 

(3.63) 


The corresponding Karush-Kuhn-Tucker (KKT) first order optimality conditions are 

given by 
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Hx+g+AT,\-v=O (3.64) 

Ax-b=O (3.65) 

(3.66) 


(x,v) ~ 0 (3.67) 

where ,\i and vJ are the equality and inequality lagrange multipliers. Thus the method­

ology described by Edgar et al. (2001) may be applied to quadratic dynamic matrix con­

trol (QDMC) which consists of a convex minimization problem based on a quadratic 

control performance objective function, linear equality constraints and variable bound 

constraints on inputs. Furthermore, the second order conditions for optimality are not 

required since convexity ensures a global minimum with the additional restrictions on 

H being positive semi-definite (Nocedal and Wright, 1999). Note that the complemen­

tarity condition given in Equation 3.66 may be written in vector notation due to non­

negativity conditions on vJ ~ 0 and xJ ~ 0. 

3.6 Interior Point Methods 

The resulting complementarity conditions shown in Equation 3.66 arising from the Karush­

Kuhn-Tucker conditions may be efficiently handled using interior point methods, which 

are used in commercial linear programming with additional applications in linear and 

nonlinear programming with complementarity conditions (Wright, 1998). The com­

plementarity conditions with Lagrange multipliers v corresponding to inequality con­

straints are relaxed with a positive barrier parameter p,, 

(3.68) 


which is gradually decreased to zero to obtain the optimal solution, thus recovering the 
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original complementarity constraints (Terlaky and Boggs, 2000). The barrier parameter 

is updated by 

(3.69) 

Interior point methods are based on barrier functions imposing a penalty on reaching 

the boundary of an inequality constraint (Nash and Sofer, 1996). The nonlinear con­

strained problem considered is given by 

min f (x) (3.70) 
X 

(3.71) 


where j = 1, · · · , r denotes inequality constraints. The barrier term prevents iterates 

from reaching the boundary by growing unbounded as approached from the interior, 

and may be implemented with the logarithmic function, 

m 

mln ,6 (x, J-L) = f (x) - J-L :L)og (gi (x)) (3.72) 
i=l 

or alternatively, with the inverse function, 

m 1 
min,6 (x, J-L) = f (x)- J-L 2:= -(-) (3.73) 

X i=l 9i X 

As the barrier parameter is decreased, it approaches the boundary such that the original 

complementarity conditions are closer to being satisfied, thus approaching the optimal 

primal-dual solution. However, the problem becomes increasingly difficult to solve due 

to ill-conditioning and numerical errors resulting in poor search directions where New­

ton's method is only effective in finding the approximate optimal solution at each iter­

ation. Hence, line search and trust region mechanisms with good initial starting points 
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are required to improve convergence. Furthermore, convergence criteria may be spec­

ified with the assumption of the existence of continuously parameterized families of 

approximate solutions asymptotically converging to the exact solution (Wright, 2004). 

Primal-dual interior point methods use a central path (Nocedal and Wright, 1999), 

Cpd = [x* (p,), >. (p,), v (p,), s (p,) 1M> OJ (3.74) 

to bias iterates such that complementarity products are decreased towards zero at the 

same rate, thus improving identification of the active set (Rico-Ramirez and Westerberg, 

2002). According to Roos et al. (1997) decreasing p, by a small amount at each iteration 

forces iterates to remain close to the primal-dual central path but resulting in slow con­

vergence in practice. A large update reduces the barrier parameter at a much faster 

rate (0 = 0. 75) although resulting in iterates further away from the central path, thus 

reducing the efficiency of Newton's method. 

According to Forsgren et al. (2002), primal-dual interior point methods are increasingly 

popular for solving general nonlinear programming problems, and efficient for non­

convex nonlinear programming with possible applications for large scale optimization 

as described Biegler et al. (2002). Interior point methods appear to be insensitive to 

problem size (Biegler, 1998), supported by experimental results obtained by Baker and 

Swartz (2004b ), demonstrating a significant increase in computational expense with in­

creasing number of binary variables used to represent logical conditions in comparison 

to a modest increase in solution time using an interior point approach. Similar exper­

imental results were obtained by Baker and Swartz (2005) in the application of an in­

terior point approach to handle complementarity conditions arising from the solution 

of multi-level optimization problems, and reliability in obtaining the global optimum 

demonstrated. 

The interior point algorithm IPOPT was developed by Wachter (2002) to solve non­

linear programming (NLP) problems. Raghunathan and Biegler (2003) extended the 
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algorithm to address mathematical programming problems with complementarity con­

straints (MPCCs) by developing IPOPT-C, and applied to determine optimal startup 

of batch distillation columns and multi-component separation of natural gas by Raghu­

nathan et al. (2004). Additional details of the implementation of the primal-dual interior 

point algorithm are given by Wachter and Biegler (2004), and the handling of comple­

mentarity conditions by Raghunathan and Biegler (2005). 

In this work, IPOPT-C 2.2.l.d was used to determine the optimal reference trajectory 

using the simultaneous approach. The solver was compiled November 2004 from open 

source code available by Wachter and Biegler (2004) under Common Public Licence 

(CPL} from the Computational Infrastructure for Operations Research (COIN-OP) repos­

itory, using Fortran subroutines available by Duff (2004) through the Harwell Subrou­

tine Library (HSL} archive from Hyprotech UK Ltd. 
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Chapter4 

Application to Linear Systems 

This chapter details the application of reference management under constrained model 

predictive control for steady-state transitions in linear systems. A single-input single­

output system is investigated in Section 4.1 demonstrating the benefits of the simulta­

neous rather than sequential approach in terms of reduced computational expense and 

increased solution reliability, particularly in the presence of input saturation. The si­

multaneous strategy is further investigated to determine the sensitivity of the optimal 

solution to the formulation of the objective function and constraints. The possibility of 

indeterminacy, resulting in non-unique solutions is shown and a two-tiered hierarchi­

cal approach is proposed to determine optimal operation. The discrete reference filter 

is also applied, and the limitations and potential benefits discussed. Reference man­

agement is also applied to non-minimum phase systems in Section 4.2, and multi-input 

multi-output systems in Section 4.3. 

4.1 Single-Input Single-Output Systems 

This case study is based on a single-input single-output nonlinear system modified from 

Marlin (2000), consisting of three continuously stirred tank reactors in series as shown 
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in Figure 4.1, with steady-state conditions summarized in Table 4.1. A given setpoint 

target of xA3=4 %, representing the mole fraction of component A in the product, was 

assumed for all simulations. 

Figure 4.1: Schematic of three continuously stirred tank reactors in series 

The steady-state conditions in Table 4.1 are represented by the inlet valve position v, the 

volume of the reactor V, the flow rate F, and the mole fraction of component A in stream 

A, XAAo, the mole fraction of component A in stream B, X ABo, and the mole fraction of 

component A in the final product stream, xA3. 

Table 4.1: Steady-state conditions for CSTRs in series 

Variables Value 

v 20% open 

Vi 35m3 

FA 0.14 m3 /min 

FE 6.9 m3 /min 

XAAO 100% 

XABO 0.5% 

XA3 3.0% 
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The mole fraction of component A in the outlet stream of the third mixing tank is con­

trolled by manipulating the valve controlling the inlet flow rate of stream A. The process 

transfer function given by 

0.039 
XA3 (s) = GP (s) v (s) = 3 v (s) (4.1)

(5s + 1) 

An open-loop simulation in MatLab 7.0 resulted in a settling time of 60 minutes. In this 

case study, an output constraint in product quality of xA3=4.0% species A was assumed, 

based on economic considerations. The target was assumed to have incorporated dy­

namic backoff based on worst-case disturbance considerations, such that placing the 

constraint at target would prevent constraint violation resulting from aggressive con­

trol. Thus the constraint would be enforced assuming similar disturbances during tran­

sient operation as steady-state operation. The output constraint may also be related 

to operational constraints, possibly arising from concentration limitations to prevent 

equipment damage due to precipitation. 

The system was controlled using constrained model predictive control such that the 

manipulated variable was constrained to [0, 100]% open, and the rate of input change 

unconstrained. The controller was executed every 2 minutes with a prediction horizon 

of 30 and an input horizon of 10. The initial tuning with an output to input move 

weighting ratio of 100:1 resulted in 8.72% overshoot relative to the setpoint change as 

seen in Figure 4.2(a). 

The output constraint violation resulting from the nominal controller tuning may be 

considered undesirable, and addressed by detuning the controller. However, while an 

output to input move weighting ratio of 100:30 is capable of preventing constraint vi­

olation, an increase in the transition time from 45 minutes to 100 minutes resulted as 

shown in Figure 4.2(b). 
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Figure 4.2: Comparison of tuning for feasibility and performance 

Thus, output constraint violation may be addressed by detuning, but at the expense of 

increased transition times and reduced controller performance in disturbance rejection. 

However, an alternative solution retains aggressive controller tuning while enforcing 

output constraints, through manipulation of the setpoint trajectory during transient op­

eration using reference management. 

4.1.1 Comparison of Sequential and Simultaneous Optimization 

The application of reference management is demonstrated based on the mathematical 

formulations detailed in Chapter 3, and the objective function based on minimizing the 

squared deviation between the setpoint and target. 

Sequential optimization is used to solve the multi-level problem in MatLab 7.0 where 

the setpoint trajectory is optimized using sequential quadratic programming via the 

'fmincon' function, and closed-loop simulations of constrained model predictive control 

using the the 'mpc' block in Simulink. 
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The resulting setpoint trajectory is shown in Figure 4.3, with a reduction in the transition 

time ts to 30 minutes. The optimal solution was obtained in 215.3 CPU seconds with 

initial conditions (IC) based on a constant setpoint trajectory. 

4.2 
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"' ·~ 3.8., 
g. 3.6 

c 3.4 

x':l. 3.2 
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Time(min) 

'2., 100 
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0 80 
~ 

c 60 ~ ~ ·u; 
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a.., 
> 
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> 
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0 
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Time(minl 

Figure 4.3: Sequential approach: Constraints satisfied with IC=l.OO a = 1 f3 = 0 

Solution sensitivity to the initial conditions was not evident, but computational effi­

ciency was affected as summarized in Table 4.2, where the response was simulated for 

100 minutes at a sampling time of 1 minute and with an objective function <P (a = 1 and 

f3 = 0). 

Identical results were obtained using simultaneous optimization, but requiring only 

13.4 CPU seconds. The optimal solution was also found to be insensitive to initial con­

ditions for optimization but the computational expense was significantly reduced as 

summarized in Table 4.3, where the response was simulated for 100 minutes at a sam­

pling time of 1 minute and with an objective function <P (a= 1 and {3 = 0). 

l7 
···-· 

' ­ ' ­ ' Setpoint 
--Output 

· Constraint 
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Table 4.2: Sequential optimization under different initial conditions 

IC rp Number of 

Iterations 

Number of 

Evaluations 

Computational Time 

(CPU seconds) 

0.00 

0.25 

0.50 

1.00 

1.50 

1.037924 

1.037925 

1.037924 

1.037924 

1.037924 

18 

11 

17 

13 

27 

1044 

635 

961 

727 

1535 

315.8 

186.1 

289.6 

215.3 

460.6 

Table 4.3: Simultaneous optimization under different initial conditions 

IC rp Number of 

Iterations 

Number of 

Evaluations 

Computational Time 

(CPU seconds) 

0.00 

0.25 

0.50 

1.00 

1.50 

1.037916 

1.037916 

1.037916 

1.037916 

1.037916 

40 

36 

40 

42 

47 

69 

57 

90 

62 

106 

13.6 

11.5 

13.4 

13.4 

16.0 

Thus the results obtained by simultaneous optimization are identical to results obtained 

by sequential optimization but at a fraction of the computational cost by avoiding the 

need to integrate a system of differential algebraic equations over the simulation hori­

zon at each iteration. The formulation of quadratic dynamic matrix control (QDMC) 

was based on step response coefficients of the linear process, but memory and compu­

tational expense may be significantly reduced using a state-space model representation 

(Lundstrom et al., 1995). 
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4.1.2 The Effect of Input Saturation 

Steady-state transitions were next investigated with the input valve bounds restricted 

to [20, 80] % open. Under such circumstances, the maximum constraint violation for 

a constant setpoint change was reduced to 7.14% of the setpoint change as a result of 

restrictions on allowable input action. 

The restricted input bounds may represent safety margins, also used by Glemmestad 

et al. (1997) for steady-state optimization of heat exchanger networks in the presence 

of uncertainty. Thus, restricting the inputs within optimization to reserve capacity for 

disturbance rejection is a viable but suboptimal alternative to the explicit consideration 

of uncertainty. The safety margins required under worst case disturbances may be de­

termined as detailed by Lear et al. (1995), based on the backoff from output constraints 

under open-loop operation, and backoff from input constraints under closed-loop oper­

ation. The use of safety margins is particularly important to maintain feasibility of oper­

ational constraints, but not required under economic considerations where suboptimal 

operation would be obtained in the presence of uncertainty in any event. Furthermore, 

in this work, dynamic backoff from active constraints was assumed to be incorporated 

into the target specifications. However, the restricted input bounds were chosen to in­

vestigate the effect of input saturation on solution reliability. 

However, the presence of input saturation resulted in derivative discontinuities in the 

objective function, reducing the reliability of gradient based optimization algorithms. 

Furthermore, the use of the sequential approach in the presence of input saturation may 

result in failure as seen in Table 4.4, where the response was simulated for 100 minutes 

at a sampling time of 1 minute and with an objective function¢ (a = 1 and f3 = 0). Non­

uniqueness in the solutions was also present when comparing the results under initial 

conditions (IC) based on a constant setpoint of 1.0 to the results obtained for a constant 

setpoint of 0.50; despite the same objective function value, differences in the setpoint 

trajectory were present. 
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Table 4.4: Sequential approach: Sensitivity under different initial conditions 

IC ¢ Number of 

Iterations 

Number of 

Evaluations 

Computational Time 

(CPU seconds) 

0.00 

0.25 

0.50 

1.00 

1.50 

1.025797 

1.127200 

1.025797 

1.025797 

failure 

30 

10 

27 

8 

18 

1692 

580 

1561 

467 

998 

456.5 

159.1 

466.1 

138.1 

305.7 

However, the results obtained by simultaneous optimization under the restricted inputs 

bounds, demonstrated solution insensitivity to initial conditions (IC) as summarized in 

Table 4.5, where the response was simulated for 100 minutes at a sampling time of 1 

minute and with an objective function¢ (a= 1 and (3 = 0). 

Table 4.5: Simultaneous approach: Insensitivity under different initial conditions 

IC ¢ Number of 

Iterations 

Number of 

Evaluations 

Computational Time 

(CPU seconds) 

0.00 

0.25 

0.50 

1.00 

1.50 

1.024462 

1.024625 

1.024625 

1.024625 

1.024625 

49 

61 

54 

61 

54 

50 

102 

78 

90 

78 

16.1 

21.8 

17.4 

21.6 

17.4 

While initial conditions (IC) based on a constant setpoint trajectory of 1.50 resulted in 

failure using the sequential approach, the simultaneous approach determined the opti­

mal solution in 17.4 CPU seconds as shown in Figure 4.4. 
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Figure 4.4: Constraints satisfied with IC=l.SO NAC=lOO SPH=2 a = 1 {3 = 0 

Thus under certain conditions, particularly in the presence of input saturation, the si­

multaneous approach may be computationally efficient and more reliable compared to 

the sequential approach. 

4.1.3 The Effect of the Number of Allowable Changes 

The simultaneous formulation with restricted input bounds was further explored under 

varying conditions in the number of allowable changes (NAC) in the setpoint trajectory 

as shown in Figures 4.5(a)-4.5(d). Thus, for a given setpoint hold (SPH) where the set­

point is held constant over a specified number of sampling times, the number of succes­

sive setpoint changes was manipulated to determine the effect on the optimal solution 

obtained. 

i7 
··-·• 

· - · - · Setpoint 
--output 

· · Constraint 
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Figure 4.5: Optimal reference trajectory dependent on the number of allowable changes 

The results are summarized in Table 4.6, where the response was simulated for 100 

minutes at a sampling time of 1 minute to calculate the integral square error (ISE) and 

integral absolute error (IAE) based on the deviation between the output and target, 

IC=l.OO, SPH=1, and an objective function¢ (a= 1 and f3 = 0). 

In the absence of end point constraints enforcing the desired steady-state transition, in­

creasing the time available for setpoint manipulation increased the flexibility of the sys­

tem to improve performance by reducing the dynamic backoff from steady-state active 
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constraints. The dynamic backoff from active constraints was expressed as a percentage 

of the desired setpoint change and represented the steady-state offset from the setpoint 

target required to ensure output constraint satisfaction during transient operation. Thus 

the steady-state offset may be eliminated by ensuring adequate degrees of freedom for 

setpoint trajectory manipulation. 

Table 4.6: Simultaneous approach: Dependency on the number of allowable changes 

NAC ¢ ISE IAE ts 

(min) 

Dynamic Backoff 

(%) 

Computational Time 

(CPU seconds) 

1 1.2204 9.1643 15.9233 40 6.64 14.8 

2 1.2141 9.1300 15.8686 40 6.61 37.1 

5 1.0956 8.9254 13.0363 38 2.74 20.8 

10 1.0251 8.7702 10.8768 35 0.02 25.7 

20 1.0246 8.7682 10.8768 35 0.02 20.6 

30 1.0246 8.7682 10.8717 35 0.00 20.7 

Further increasing the number of allowable changes is not expected to improve per­

formance, but may result in increased computational expense. Significantly decreasing 

the number of allowable changes may result in suboptimal transitions by reducing the 

capacity of the dynamic optimizer to avoid output constraint violation while attaining 

the desired setpoint target. Thus, a sufficiently large time horizon available for setpoint 

trajectory manipulation must be ensured such that the desired setpoint target may be 

attained. 

4.1.4 The Effect of the Setpoint Hold 

The simultaneous formulation with restricted input bounds was also explored under 

varying conditions in the length of the setpoint hold (SPH), an integer multiple of the 

control sampling time. Reducing the length of the setpoint hold improved performance 
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and reduced the transition time, since the effective deadtime for a corrective response is 

reduced as seen in Figures 4.6(a)-4.6(b). 
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Figure 4.6: Optimal reference trajectory dependent on length of setpoint hold 

The results are summarized in Table 4.7, where the response was simulated for 100 

minutes at a sampling time of 1 minute to calculate the integral square error (ISE) and 

integral absolute error (IAE) based on the deviation between the output and target, 

IC=l.OO, NAC=9, and an objective function 1> (a = 1 and f3 = 0). 

However, while optimality would not impose artificial, arbitrary constraints on the set­

point hold, it may be desirable for operators to implement less aggressive setpoint tra­

jectories. These additional constraints may also enable the optimizer to be invoked less 

frequently when implemented online with smoother profiles for tracking, and may pre­

vent inciting process dynamics by reducing sensitivity to model mismatch through a 

less aggressive setpoint trajectory. However, the effect of uncertainty on solution sensi­

tivity under the proposed methodology was not investigated. 
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Table 4.7: Simultaneous approach: Dependency on the length of setpoint hold 

SPH ¢ ISE IAE is (min) Computational Time (CPU seconds) 

2 

3 

4 

5 

1.0256 

1.0281 

1.0338 

1.0444 

8.7758 

8.7654 

8.7960 

8.8381 

10.9036 

10.9404 

10.9661 

11.3386 

35 

40 

40 

45 

23.7 

20.5 

15.5 

16.4 

4.1.5 The Effect of Objective Function Formulation 

The simultaneous formulation with restricted input bounds was also explored by pe­

nalizing combinations of the deviation between the output and setpoint and target as 

shown in Table 4.8, where the response was simulated for 100 minutes at a sampling 

time of 1 minute to calculate the integral square error (ISE) and integral absolute er­

ror (IAE) based on the deviation between the output and target, IC=l.OO, and with an 

objective function ¢. 

Note that the objective function based on minimizing the squared deviation between the 

output and target resulted in an increase in computational time, possibly resulting from 

indeterminacy in the setpoint trajectory. The objective function based on minimizing 

the squared deviation between the setpoint and target may improve conditioning of the 

optimization problem by increasing sensitivity of the objective function to the decision 

variables, and thus improving the efficiency of gradient based optimization algorithms. 
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Table 4.8: Simultaneous approach minimizing output deviation 

SPH NAC a {3 ISE IAE ts (min) Computational Time (CPU seconds) 

1 49 1 0 8.7682 10.8717 35 31.2 

1 49 0 1 8.7284 10.7482 35 126.5 

1 49 1 1 8.7436 10.7619 35 22.6 

5 9 1 0 8.8381 11.3386 45 16.4 

5 9 0 1 8.8333 11.5872 50 17.1 

5 9 1 1 8.8379 11.3402 45 18.7 

In the first set of simulations seen in Figures 4.7(a)-4.7(b ), an objective function based 

on minimizing the squared deviation between the output and target reduced the inte­

gral squared error (ISE), but with a significant increase in computational expense with 

minimal improvement in performance despite a more aggressive setpoint trajectory. In 

fact, performance may be reduced as a result of an increase in settling time as seen in 

the second set of simulations shown in Figures 4.8(a)-4.8(b). 

Simulations attempting to penalize the settling time based on a specified output tol­

erance bound about the desired steady-state increased computational expense without 

significant reduction in the settling time. In contrast, penalizing the squared deviation 

between the setpoint and target improved computational performance with minimal 

effect on the integral squared error, reducing the settling time indirectly. Thus the op­

timal solution is only optimal with respect to the objective function, hence indicating 

the importance and difficulty in defining and mathematically translating performance 

objectives into the optimization framework. 
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Figure 4.7: Optimal reference trajectory with SPH=l NAC=49 
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Figure 4.8: Optimal reference trajectory with SPH=S NAC=9 

4.1.6 Two-Tiered Hierarchical Optimization 

Investigation in the mathematical formulation of objective function and constraints indi­

cated the possibility of non-unique solutions, particularly when the objective was based 

on minimizing the squared deviation between the output and target. According to Gill 

et al. (2004), indeterminacy may yield identical objective function values with conver­
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gence to different optimal solutions based on initial conditions for the solution, while 

less robust optimization algorithms may fail to yield a solution. 

Thus, additional specifications are required for defining a unique solution, and a hier­

archical approach, similar to the strategy used by Bathazaar (2005), was proposed to 

preserve optimal closed-loop performance followed by minimizing the squared devia­

tion between the setpoint and target. The hierarchical formulation enables prioritization 

by introducing constraints into subsequent optimization problems without affecting so­

lution feasibility (Swartz, 1995). 

In this work, the initial conditions (IC) based on a constant setpoint trajectory were not 

altered, and thus the tolerance specified for constraints introduced into the subsequent 

optimization problem was relaxed to enable the hierarchical formulation to determine 

an optimal solution based on reducing setpoint variability with minimal degradation 

in the closed-loop performance. This is similar to multiple criteria decision making 

(MCDM) problems described by Alhammadi and Romagnoli (2004), consisting of mul­

tiple conflicting objectives and a set of alternative Pareto optimal solutions. One pos­

sible solution strategy utilizes scalarizing functions such as the parametric weighting 

function, where the multiple objectives are combined in a single objective function and 

weighted appropriately. However, the hierarchical E constraint method enabling objec­

tive prioritization was used, where one objective function is optimized while the other 

objectives are transformed into constraints with defined upper bounds. Thus, the hier­

archical multi-objective formulation was used where the squared deviation between the 

output and target is minimized by 

2
min 1>1 = L

N 

(Yi - Yt9t) (4.2) 
Ysp i=l 

Subject to the closed-loop response. The subsequent optimization requires an additional 

constraint satisfying the previous objective function value within a given tolerance of 

E ~ 0, and is given by 
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N 
2

min (h = L (Ysp,i - Ytgt) (4.3) 
Ysp i=l 

(4.4) 

in addition to constraints on the closed-loop response, and where ¢i is the optimal so­

lution to Equation 4.2. 

Relaxation of the constraints on allowable setpoints from Ysp E [0, 4] to [0, 5], resulted in a 

non-unique and aggressive setpoint trajectory based on the first optimization problem 

given in Equation 4.2. The optimal solution was obtained in 111.5 CPU seconds, and 

the closed-loop response shown in Figure 4.9(a). Thus a hierarchical multi-objective 

optimization problem was solved, with the subsequent optimization problem based on 

Equations 4.3-4.4. The previous objective function value was satisfied within a given 

tolerance of E = 0.01¢i, reducing variability in the setpoint trajectory without a signif­

icant reduction in the closed-loop performance. The final solution was obtained in an 

additional27.5 CPU seconds, and shown in Figure 4.9(b). 
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Figure 4.9: Hierarchical formulation based on setpoint 
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A modification of the subsequent objective function minimizing the squared setpoint 

change resulted in an optimal solution obtained in 18.8 CPU seconds, and a similar 

closed-loop response as shown in Figure 4.10(b). However, in comparison to Figure 

4.9(b ), the settling time was increased and the input does not reach steady-state for an 

additional 5 minutes. Hence, setpoint change suppression may result in a less desirable 

closed-loop response, while minimizing the setpoint from target directly reflects the 

overall objective of attaining target specifications and indirectly reduces the transition 

time. 
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Figure 4.10: Hierarchical formulation based on setpoint changes 

However, while the formulation ensures optimal performance in terms of minimizing 

the squared deviation between the output and target, additional computational expense 

is required to solve multiple optimization problems. Thus, an objective function based 

on minimizing the squared deviation between the setpoint and target is adequate for 

near optimal performance of the dynamic optimizer for this particular single-input 

single-output system. 
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4.1.7 The Discrete Reference Filter 

An alternative mathematical formulation for reference management is based on the in­

troduction of additional constraints on the setpoint trajectory. The first order low pass 

exponential reference filter is similar to the structure discussed within traditional refer­

ence management literature and in two degrees of freedom internal model control, and 

is given by 

(4.5) 


where the optimal closed-loop filter time constant fi is determined to detune the closed­

loop response. The tuning parameter is very appealing because it offers simplicity of 

design and tuning, and easily tuned online, but the arbitrary structure of the first order 

filter may limit performance. The difference equation in the time domain is given by 

Ysp (k) = (1- fi) Ytgt + fiYsp (k- 1) (4.6) 

The discrete reference filter in Equation 4.6 was implemented on the linearized sys­

tem using the simultaneous formulation with restricted input bounds, and the optimal 

solution obtained in 20.6 CPU seconds. The closed-loop response resulting from imple­

menting the optimal filter time constant of fi = 0.6856 is shown in Figure 4.11. 

The use of the reference filter resulted in less aggressive input moves but comparable 

transition times. However, hard output constraints were relaxed by 0.01% to prevent 

numerical instability arising from the specification of hard constraints at target. Alter­

natively, slight offset in the final steady-state may be acceptable to improve numerical 

conditioning. Thus while the filter may produce smooth reference profiles, the addi­

tional constraints on the setpoint structure may reduce the region of numerical stability 

within the dynamic optimizer. 
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Figure 4.11: Closed-loop response with first order low pass reference filter 

4.2 Non-Minimum Phase Systems 

The single-input single-output non-minimum phase system, 

G (s) = -1.20s + 0.1601 (4.7) 
P s2 + 0.40s + 0.16 

was taken from Bemporad et al. (1997). The system is controlled using input constrained 

model predictive control without consideration of output constraints. The open-loop 

simulation resulted in a settling time of 30 minutes, thus a prediction horizon of 30 

and an input horizon of 10 were chosen with a sampling time of 1 minute. The model 

predictive control tuning used an output to input move weighting ratio of 100:1, but 

the presence of inverse response characteristics resulted in output constraint violation. 

Detuning to an output to input move weighting ratio of 1:4 ensured the closed-loop 

response was within the range [-0.50, 1.0] but slightly increased the transition time by 

an additionalS minutes as seen in Figures 4.12(a)-4.12(b). 
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Figure 4.12: Comparison of tuning for feasibility and performance 

While detuning under such circumstances is a possibility, the nominal tuning was re­

tained to demonstrate the application of reference management to systems with non­

minimum phase characteristics, where output constraints were enforced and setpoint 

adjustment made possible every 1 minute. The dynamic optimizer determined an opti­

mal setpoint trajectory based on minimizing the squared deviation between the setpoint 

and target, such that the closed-loop response did not violate output constraints. The 

optimal solution using sequential optimization was obtained in 224.8 CPU seconds, and 

the closed-loop response shown in Figure 4.13. Slight violations of 2% of the setpoint 

change between sampling times were eliminated by reducing the output sampling time 

to 0.1 minutes and enforcing hard constraints at additional points in time without sig­

nificant additional computational expense. 

Note that the sequential approach used the 'fmincon' function in MatLab 7.0 to deter­

mine the optimal setpoint trajectory at the upper level, and the 'mpc' block in Simulink 

for closed-loop simulations at the lower level. 
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Figure 4.13: Enforcement of output constraints with IC=O NAC=60 SPH=1 

However, in the absence of input saturation, an explicit expression may be derived for 

unconstrained model predictive control, given by 

(4.8) 


(4.9) 


Consequently, the closed-loop simulation does not require the solution of quadratic pro­

gramming sub-problems. The solution is given by 

(4.10) 


The application of the explicit formulation resulted in a comparable settling time, but at 

a computational cost of 28.4 CPU seconds compared to 224.8 CPU seconds. 
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Further improvement in computational efficiency was demonstrated using simultane­

ous optimization, with the optimal solution, identical to Figure 4.13, obtained in 15.9 

CPU seconds. However, enforcement of output constraints at a sampling time of 0.10 

time steps increased the computational expense significantly, providing an optimal so­

lution in 419.7 CPU seconds. This was implemented by discretizing the process model 

at a different sampling rate than the sampling interval used by model predictive control, 

and enforcing output constraints on sub-sampled output predictions. 

The application of additional structural constraints on the setpoint trajectory based on 

the first order exponential reference filter was also investigated using the simultane­

ous approach. The optimal filter time constant of fi = 0.5575 was determined in 39.3 

CPU seconds resulting in a similar optimal setpoint trajectory and comparable transi­

tion times. However, the computational expense exceeds that required using the general 

formulation for reference management, despite a reduction in the dimension of decision 

variables. 

4.3 Multi-Input Multi-Output Systems 

The British Petroleum Company determined offline open-loop optimal control profiles 

in the operation of a distillation column using nonlinear dynamic models, determining 

the optimal switching time to introduce setpoint changes (Sargent and Sullivan, 1979). 

The transition time was reduced by minimizing the squared deviation between the out­

put and target, indirectly minimizing profit loss through a reduction in the amount of 

off-specification product produced. A direct economic objective function was not used 

because instantaneous product values were difficult to estimate before blending oper­

ations and fuel costs dependent on other units not considered. A similar study mini­

mizing transition time as an indirect economic objective function was conducted by Elf 

Company during distillation column changeovers (Fikar et al., 1999). 

Similarly, this section details the application of reference management based on an ob­
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jective function improving economic operation indirectly during setpoint transitions in 

the control of distillation columns. The pilot scale ethanol and water distillation column 

shown in Figure 4.14 was taken from Psarris and Floudas (1991). The linearized system 

is characterized by poor closed-loop response due to the presence of infinite right half 

plane zeros close to the origin. 

Figure 4.14: Schematic of distillation column 

The multi-input multi-output system is represented by the linear transfer function model 

-0.005 

Y1 (s) ] = G (s) [ u1 (s) ] = [ :~:;:!:s 9.06s+1 'U1 ( S) l ·(4.11)
0.87(11.6s+ 1)e - 28[ Y2 ( S) U2 ( 8) 8.1Ss+1 (3.9s+ 1)(18.8s+1) u2 (s)l[ 

where the outputs y1 and y2 represent the overhead ethanol mole fraction and the bot­

tom tray temperature (0C) respectively, controlled by inputs ·u1 and ·u2 representing the 

reflux flow rate (gpm) and the reboiler steam pressure (psig). The system was also stud­

ied by Ross (1997) and Ross and Swartz (1997) using the input constraints 
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-0.112 ~ u 1 ~ 0.065 (4.12) 

-4.40 ~ u2 ~ 14.00 (4.13) 

The output constraints proposed for investigation are given by 

-0.050 ~ Y1 ~ 0.050 (4.14) 

0.000 ~ Y2 ~ 4.000 (4.15) 

and are similar to constraints considered by Prett and Garcia (1987), where the top draw 

composition was bounded by economic constraints and the bottom column temperature 

by operating constraints. Total reflux operation for startups is common but may cause 

problems for products sensitive to high temperatures due to thermal degradation as a 

result of long residence times, and hence temperature constraints are particularly im­

portant during transient operation (Kruse et al., 1996). Hard constraints were enforced 

by Brosilow (1990) using hierarchical ranking based on the severity of maintaining the 

temperature constraint. Diverting control action to enforce the temperature constraint 

increased variation in the top draw composition, but such variations may be signifi­

cantly reduced if temporary violations are tolerable. Thus meaningful formulation of 

constraints is important, but not investigated further in this case study. 

The system was controlled using input constrained model predictive control without 

consideration of output constraints. The open-loop settling time was approximately 60 

minutes, thus a prediction horizon P of 30 and an input horizon M of 10 was used, 

executed every 2 minutes to attain the desired target specifications of y1 = -0.035 and 

Y2 = 3.0 given by Psarris and Floudas (1991). The relative output to input move weight­

ing ratio of [1000, 5] was used, also accounting for variable scaling. A settling time of 

30 minutes was obtained, but overshoot in the temperature was observed in the closed­

loop response as shown in Figure 4.15. 
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Figure 4.15: Closed-loop response for ethanol-water distillation column 

Ying and Joseph (1999) demonstrated reduced overshoot using LP-MPC for the Shell 

Control Problem, thus similar benefits may be expected for reference management based 

on closed-loop dynamic models. 

4.3.1 Application of Reference Management 

Reference management was applied with hard output constraints to limit temperature 

overshoot. The objective function used a relative weighting of 100:1 for the ethanol mole 

fraction compared to the bottom tray temperature, noting that variables were not scaled 

while minimizing the squared deviation between the output and target. Both setpoint 

trajectories were manipulated, and the optimal solution obtained in 22.1 CPU seconds, 

with the resulting closed-loop response shown in Figure 4.16. In addition to satisfying 

the upper temperature constraint, the settling time was also reduced from 25 minutes 

to 20 minutes. 
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Figure 4.16: Reference trajectory penalizing deviation between output and target 

Enforcing a single setpoint change in temperature resulted in a more aggressive closed­

loop response as seen in Figure 4.17. 
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Figure 4.17: Single setpoint change in temperature 

However, enforcing a single setpoint change in composition resulted in a highly aggres­

sive oscillatory closed-loop response as seen in Figure 4.18, with an increase in settling 

time to 80 minutes. 
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Figure 4.18: Single setpoint change in composition 

Thus improved closed-loop performance may be achieved by utilizing all available de­

grees of freedom and manipulating the setpoint trajectory of all controlled variables. 

4.3.2 Formulation with Alternative Objective Functions 

The formulation of the objective function was also investigated for multi-input multi ­

output systems. The objective function was modified to minimize the squared devia­

tion between the setpoint and target while manipulating both setpoint trajectories. The 

solution was obtained using simultaneous optimization in 52.8 CPU seconds, and the 

closed-loop response shown in Figure 4.19 with a settling time of 25 minutes. 

Comparing Figure 4.16 with Figure 4.19, the closed-loop performance may be signifi­

cantly improved when minimizing the squared deviation between the output and tar­

get compared to minimization of the squared deviation between the setpoint and target 

for this multi-input multi-output system. 
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Figure 4.19: Reference trajectory penalizing deviation between setpoint and target 

4.3.3 Alternative Design and Control 

Finally, reference management is a form of advanced control that is capable of improv­

ing closed-loop performance by manipulating the setpoint trajectory. However, addi~ 

tional benefits to improve dynamic operability may exist at the design stage. Psarris 

and Floudas (1991) used a delay compensation scheme to determine the minimal in­

crease in delay in off-diagonal elements required to reduce interaction and improve 

performance for disturbance rejection and setpoint changes. A similar analysis on the 

achievable closed-loop performance based on delay compensation resulted in a system 

of the following form as discussed by Ross (1997): 

68 - 68- 0.005e (s) l [ 0. 66eY ­1 _ 6.7s+ l 9.06s+ l l[u1 (s) ] (4.16) 
- - 34 7e- 6 8 0.87(11.6s+ l )e - 28

[ u2 (s) Y2 ( 5 ) 8. 15s+ l (3.9s+l)(18.8s+ l) 

The closed-loop response for the optimal delay distribution is shown in Figures 4.20(a)­

4.20(b ). Thus, while advanced process control may improve closed-loop performance, 

design considerations may yield further benefits resulting in simple solutions without 

the implementation of more complex control schemes. 
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Figure 4.20: Closed-loop response for optimal design of delay structure 

Similarly, classical feedback control in a series of continuously stirred tank reactors may 

result in overshoot, but may be avoided using a single reactor (Subramanian et al., 2001). 

Ross et al. (2001) described a high purity industrial distillation column with 15 years of 

operational problems, and demonstrated through integrated control and design with 

optimal equipment sizing and control tuning, savings of 6% corresponding to $300,000 

per year. Thus the incorporation of dynamic considerations for design and control is 

particularly important for realizing optimal economic operation, and may result in re­

duced operational difficulty and substantial savings. 

4.4 Summary of Results 

This chapter detailed the application of the proposed methodology to linear dynamic 

systems. The objective function used in these simulations was based on maximizing 

economic operation indirectly, by minimizing the production of off-specification prod­

uct with suitable hard output constraints based on economic or operational considera­

tions. Furthermore, the enforcement of hard output constraints at target during steady­

state transitions ensures feasibility assuming the disturbances during transient opera­
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tion are similar to the disturbances encountered during steady-state operation. 

A single-input single-output system was used to demonstrate the potential benefits of 

the simultaneous relative to the sequential approach in terms of computational effi­

ciency and solution reliability, particularly in the presence of derivative discontinuities. 

The effect of various constraint formulations on the optimal solution was determined, 

including adjusting the number of allowable setpoint changes, and the length of the 

setpoint hold in the parameterized piecewise constant setpoint trajectory. Alternative 

objective function formulations penalizing the output or setpoint from target were also 

investigated. The possibility of indeterminacy was demonstrated and handled using a 

two-tiered approach based on maximizing closed-loop performance. Additional struc­

tural constraints on the setpoint trajectory were enforced resulting in the implementa­

tion of the discrete reference filter, similar in structure to the development of reference 

management discussed in literature. Applications to non-minimum phase and multi­

input multi-output systems were also demonstrated. 
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Chapter 5 

Application to Nonlinear Systems 

This chapter details the application of reference management to multi-input multi-output 

nonlinear systems using the simultaneous formulation presented in Chapter 3. A dis­

cussion on optimal grade transitions for polymerization systems in literature is detailed 

in Section 5.1. A fundamental model for styrene polymerization is then detailed in Sec­

tion 5.2, reference management applied based on a linear model in Section 5.3, using the 

discrete reference filter in Section 5.4, and based on a nonlinear model in Section 5.5. 

Finally, the explicit consideration of economics during transient operation is presented 

in Section 5.6, and shown to result in further economic benefits by minimizing the cost 

of raw materials and the production of off-specification product. The formulation of 

the dynamic economic objective function is detailed and conditioned to consider con­

trol performance. Additional improvement in economic operation is also demonstrated 

with the manipulation of the production rate. 
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5.1 Optimal Grade Transitions in Literature 

According to Xie et al. (1994), polyethylene is the largest synthetic polymer in pro­

duction and is produced exclusively in continuous processes. As many as 50 differ­

ent grades must be produced in the same reactor in response to market demand, thus 

requiring regular grade changeover operations. A kinetic model was developed by 

McAuley et al. (1990), predicting the production rate, melt index and polymer den­

sity. Model reduction enabled the prediction of instantaneous properties online based 

on temperature and gas composition measurements (McAuley and MacGregor, 1991). 

Optimal grade transitions were investigated by McAuley and MacGregor (1992), mini­

mizing an objective function based on the squared deviation of cumulative output prop­

erties from target and the squared deviation of inputs from target, 

<!> ~ 1:! [~W; (y; (t)- Ytgt) 
2 + ~W; (u; (t) - U,gt)'] dt (5.1) 

The minimization of the squared deviation of instantaneous output properties from 

target was also included to minimize overshoot. Excessive overshoot may result in a 

degradation in quality since old polymer contained in the reactor is mixed with the new 

polymer leading to the undesirable broadening of the cumulative molecular weight 

distribution in the end product. Narrow molecular weight distributions are particu­

larly important in polyethylene film and injection molded applications, and thus the 

instantaneous rather than cumulative properties were chosen for control to improve the 

consistency of the product and to reduce variability in the end-use polymer properties 

(McAuley, 1991). 

81 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

5.1.1 Feedback Control Required 

The dynamic optimization problem corresponding to the objective function given in 

Equation 5.1 was solved using sequential optimization, to determine the optimal in­

put trajectory. McAuley and MacGregor (1992) used soft constraints to minimize over­

shoot but indicated consideration of hard output constraints may be desirable but may 

be more effectively handled through simultaneous optimization. The optimal input 

trajectory was implemented but significant deviation from the predicted response was 

demonstrated in the presence of disturbances and model mismatch, thus requiring feed­

back control. 

Thus, McAuley and MacGregor (1993) developed a nonlinear controller based on con­

trolling the instantaneous properties, tracking the offline optimal setpoint trajectory 

while the offline optimal trajectory for additional inputs was tracked open-loop. Sim­

ilarly, BenAmor et al. (2004) proposed nonlinear model predictive control for tracking 

the offline optimal setpoint trajectory in the presence of disturbances, assumed to be 

determined by dynamic optimization. 

Similar concepts of tracking the offline optimal trajectory for grade transitions may be 

found in literature with different variations. For example, Seki et al. (2001) developed 

nonlinear model predictive control for grade transitions in high density polyethylene 

polymerization where the optimal setpoint and input trajectories were determined at 

the upper level using a nonlinear model and unconstrained inputs, and feedback con­

trol implemented at the lower level with input constraints. A similar strategy was used 

by Wang et al. (2000), but the optimal input trajectory signals were used as feedforward 

elements in conjunction with feedback corrections from regulatory control in the pres­

ence of disturbances. 

In the presence of uncertainty, the implementation of the optimal input trajectory with­

out feedback may result in significant production of off-specification product; this is 

particularly important, but often neglected in literature. Lee et al. (1997) proposed a 
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two level hierarchical controller for vinyl-acetate polymerization during grade transi­

tions. The upper level determined the optimal steady-state inputs corresponding to the 

desired steady-state and an upper bound on the transition time, while the lower level 

determined the optimal input trajectory using genetic algorithms forced to approach the 

steady-state input. Lee et al. (1999) improved the calculation of the optimal inputs by 

using local search algorithms based on differencing to reduce computational expense. A 

similar strategy was demonstrated for grade transitions in polyethylene polymerization 

by Yi et al. (2003). However, feedback control was not incorporated to ensure the op­

timal input trajectory would be capable of attaining the desired target specifications in 

the presence of uncertainty. Takeda and Ray (1999) also determined the offline optimal 

input trajectory for grade transitions in olefin polymerization, but recognized the need 

for an online strategy due to the presence of disturbances. 

5.1.2 Solution Strategies 

The use of sequential optimization for dynamic optimization is prevalent in determin­

ing optimal grade transitions for polymerization processes in literature. However, the 

use of simultaneous optimization based on orthogonal collocation on finite elements 

was investigated for low density polyethylene polymerization by Cervantes et al. (2000). 

The optimal input trajectory was determined using interior point methods, based on 

minimizing the the squared deviation between the output and target, and was capa­

ble of reducing the transition time by 30%. However, significant computation time 

was required to calculate derivative information based on finite difference perturba­

tions within their implementation of the primal-dual interior point method (Cervantes 

et al., 2002). 
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5.1.3 Consideration of Economic Operation 

The objective function used for dynamic optimization in literature is typically based on 

minimizing the squared deviation between the output and target to minimize the transi­

tion time, thus improving economic operation indirectly by minimizing the production 

of off-specification product (McAuley and MacGregor, 1992; Chatzidoukas et al., 2003). 

However, the explicit use of an economic function has also been investigated in litera­

ture. Schot et al. (1999) proposed the use of an economic objective function to determine 

the optimal input trajectory using sequential optimization for optimal grade transitions 

in high density polyethylene polymerization. Similarly, Tousain and Bosgra (2000) pro­

posed an economic cost function based on minimizing raw material costs and maxi­

mizing production, with different pricing given to different operating regimes at fixed 

points in time, and further extended to include product quality specification bands by 

Tousain (2002). However, the objective function used for optimization combined eco­

nomic and control objectives using arbitrary weightings. 

Brempt et al. (2001) proposed dynamic optimization of a high density polyethylene 

reactor based on an economic cost function to determine the optimal setpoint trajec­

tory without consideration of the underlying regulatory controller. The optimal tra­

jectory was tracked by a model based controller, successively linearized depending on 

current operation, to compensate for deviations from the setpoint trajectory. The dy­

namic optimization was based on the sequential approach, and Backx (2002) demon­

strated improvements of up to €117,330 and subsequent applications investigated for 

a polystyrene plant in Belgium by Brempt et al. (2003). Bosgra et al. (2004) also inves­

tigated optimal economic operation during grade transitions in the production of high 

density polyethylene using mixed integer linear programming (MILP), where the offline 

optimal reference trajectory was tracked by model predictive control. 

84 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

5.1.4 Proposed Methodology 

Thus the dominant methodology in optimal grade transitions for continuous polymer­

ization processes discussed in literature is based on developing an offline optimal tra­

jectory using nonlinear dynamic models, subsequently tracked using feedback control. 

The methodology for dynamic optimization prevalent for polymerization grade transi­

tions is based on sequential optimization, minimizing a quadratic cost objective based 

on the squared deviation of controlled variables from target. 

The research undertaken and detailed in this chapter investigates the use of simulta­

neous optimization based on minimizing a quadratic cost objective with hard output 

constraints to minimize product variability caused by overshoot. The solution is ob­

tained using reference management based on closed-loop linear and nonlinear dynamic 

models. In particular, the closed-loop dynamics of quadratic dynamic matrix control 

(QDMC) is considered, and subsequently used for tracking the offline optimal setpoint 

trajectory. Finally, the explicit consideration of economics is also investigated and an 

alternative formulation of combining economic and control objectives is discussed and 

implemented. 

5.2 Process Description 

The free radical polymerization of styrene in a jacketed continuously stirred tank reactor 

considered and shown in Figure 5.1 is taken from Maner et al. (1996), and based on work 

done originally by Hidalgo and Brosilow (1990). The objective used by Maner et al. 

(1996) is based on controlling the number average molecular weight N AMW and the 

reactor temperature T by manipulating the initiator flow rate Qi and the coolant flow 

rate Qc at the lower stable steady-state. The rate of polymerization is constrained by a 

large reactor inventory, resulting in slow product changeovers and increased production 

of off-specification product (Meister and Cummings, 2003). 
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Figure 5.1: Styrene polymerization in continuously stirred tank reactor 

The system of equations describing the nonlinear pn?cess is given below. The change in 

the initiator concentration [I] and monomer concentration [M] are determined from 

d [I] = QditJ- Q [I] _ k [I] (5.2)
dt v d 

(5.3) 


where [I1] and [M1] represent the initiator and monomer feed concentration, [P] the 

concentration of growing polymer, and V the reactor volume. The total reactor flow 

rate Q is determined according to 

(5.4) 

where Qm represents the monomer flow rate and Qs the solvent flow rate. The simplifi­
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cation used by Maner et al. (1996) in Equation 5.4 adjusts the solvent flow rate to avoid 

nonlinearity caused by the gel effect (Hidalgo and Brosilow, 1990). 

The kinetic parameters ki follow Arrhenius' Equation with frequency factor Ai and ac­

tivation energy Ei for i = d, p, t given by 

(5.5) 


where kd represents the overall chain dissociation rate constant, kp the overall chain 

propagation rate constant, and kt the overall chain termination rate constant. 

The reactor temperature T and the coolant temperature Tc are determined from 

(5.6) 

(5.7) 

where T1 and Tcf represent the reactor and coolant feed temperatures, p and Pc the mean 

density of the reactor and coolant fluids, Cp and Cpc the heat capacity of the reactor and 

coolant fluids, Vc the volume of the cooling jacket, !:l.Hr the heat of reaction, A the heat 

transfer area, and h the overall heat transfer coefficient. The number average molecular 

weight may be determined from 

NAMW= D 1 (5.8)
Do 

d~o = 0.50kt[Pf- Q~o (5.9) 
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dD1 = M k [M] [PJ _ QD1 (5.10)dt m P V 

[P] = ( 2!~: [J]) o.so (5.11) 

where Do and D1represent the zeroth and first moment of chain length distribution for 

dead and living polymers respectively, Mm is the molecular weight of the monomer, 

and f the initiator efficiency. 

The initial conditions of operation are summarized in Table 5.1, and the reactor parame­

ters given in Table 5.2, taken from Maner et al. (1996) and Hidalgo and Brosilow (1990). 

The development of the process model and assumptions are detailed in Hidalgo and 

Brosilow (1990). 

Table 5.1: Styrene reactor initial conditions: Grade A 

Variable Initial Value Units 

[I] 6.6832x1o-2 mol/L 
[MJ 3.3245 mol/L 
Tc 305.17 K 
Do 2.7547x1o-4 mol/L 
D1 16.110 g/L 
Qi 0.03 L/s 
Qc 0.131 L/s 

NAMW 58.481 kg/mol 
T 323.5558 K 
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Table 5.2: Styrene reactor parameters 

Parameter Value Units 

Ad 5.95x1013 s-1 

AP 1.06x107 L/mol s 
At 1.25x109 L/mol s 
Ed 14897 K 
Ep 3557 K 
Et 843 K 
f 0.60 

hA 70 cal/Ks 
Mm 104.14 g/mol 
Qs 0.1275 L/s 
Qm 0.105 L/s 
v 3000 L 
Vc 3312.4 L 
Tt 330 K 
Tcf 295 K 

-l:l.Hr 16700 cal/mol 
pCp 360 cal/KL 
pCpc 966.3 cal/KL 
[It] 0.5888 mol/L 
[Mt] 8.6981 mol/L 

According to Kozub and MacGregor (1992), feedback causing overshoot and oscillations 

may not be desirable since the cumulative properties are not corrected by the production 

of off-specification product in the opposite direction. Thus, the instantaneous proper­

ties may be used for uniform quality control in free radical polymerization where the 

growth of co-polymer chains is short relative to the time constant of the reactor. In con­

trast, the polymer continues to grow throughout the reactor in condensation reactions, 

and using instantaneous properties to control cumulative properties is no longer valid. 

Thus, the production of polymer of constant number average molecular weight at each 

instant in time results in a narrow molecular weight distribution (Tsoukas et al., 1982). 

McAuley and MacGregor (1993) similarly used instantaneous rather than the cumula­
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tive properties for nonlinear control since the current operation can only affect newly 

produced polymer. Similarly, in this work, the instantaneous properties developed are 

used for control. 

The system of equations was simulated in MatLab 7.0, linearized at the initial steady­

state averaging positive and negative 25% input step tests as a percentage of the original 

steady-state values, and approximated by first order plus deadtime transfer function 

models. The scaled linear transfer functions, with time units in the order of hours, are 

given by 

NAMW (s) -0.4191e-L89 

(5.12)Gn (s) = Qi (s) = 6.1024s + 1 

58N AMW (s) 0.03705e-4· 
(5.13)

G12 (s)= Qc(s) = 10.292s+1 

91T (s) 0.0353e-0· 
(5.14)

G21 (s) = Qi (s) = 6.8485s + 1 

T (s) -0.01431e-2·06 

(5.15)
G22 (s) = Qc (s) = 9.0275s + 1 

Furthermore, the following constraints were imposed: 

U1 E [0, 150] , U2 E [0, 500] (5.16) 

Yl E [50, 80] , Y2 E [323, 324] (5.17) 

The hard input constraints given in Equation 5.16 were assumed, with upper and lower 

bounds based on valve limitations. The hard output constraints given in Equation 5.17 

were assumed, based on economically desirable specifications similarly discussed by 

McAuley (1991). Furthermore, according to Ohshima and Tanigaki (2000), time optimal 
90 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

operation with drastic changes in instantaneous properties may reduce the transition 

time but may also increase the production of off-specification material when the total 

product quality is taken into consideration, emphasizing the importance in maintaining 

the instantaneous properties within a certain range. Thus, hard output constraints were 

defined to maintain the instantaneous properties within the range spanned by the initial 

and final steady-states. 

5.2.1 The Importance of Temperature Control 

Safety constraints to prevent reaction runaway is also important, and temperature con­

trol for a semi-batch polymerization reactor within 1 °C was proposed by Clarke-Pringle 

and MacGregor (1997). Temperature limits are also based on an upper limit for thermal 

degradation and a lower limit based on the transition temperature. High temperature 

sensitivity for polymers is also known, where even the effects of short term exposure to 

high temperatures may be substantial (McKenna and Malone, 1990). The temperature 

must also remain above the lower limit to ensure adequate catalyst activity and above 

the dew point of reactants to prevent condensation, and below the upper limit of the 

melting point of the polymer to prevent particle agglomeration (McAuley and MacGre­

gor, 1992). Tight temperature control is particularly important for commercial gas phase 

ethylene polymerization, which otherwise results in low catalyst productivity and off­

specification product (Dadebo et al., 1997), and is required to prevent instability, limit 

cycles and excursion toward high temperature steady-states (McAuley et al., 1995). 

According to Crowley and Choi (1996), temperature control is also important for prod­

uct quality in methyl methacrylate polymerization where conventional controllers are 

detuned to prevent overshoot during rapid temperature transitions, but resulting in 

longer batch times. The activation of a temperature overshoot controller when operat­

ing close to the temperature setpoint was proposed to reduce conservatism in detuning. 

Campbell (1985) proposed gradually stepping up the setpoint to prevent temperature 

overshoot while maintaining a reasonable closed-loop response, and once stabilized, 
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controlling the temperature within 0.50°C. The narrow control band is desirable since 

consistent temperature results in high product quality with narrow molecular weight 

distributions and high transparency (Niessner and Gausepohl, 2003). Thus, while oper­

ational constraints exist, tight temperature control may be directly related to economics 

through demands for reduced variability in product quality specifications. 

5.2.2 Development of Regulatory Control 

The open-loop settling time for the system was approximately 40 hours. According to 

Maner et al. (1996), the order of the response time was comparable to studies by Conga­

lidis et al. (1989), and results due to operation at the lower steady-state with lower con­

version and a large reactor volume. Thus linear model predictive control was designed 

with a prediction horizon P of 20 and an input horizon M of 5, and relative output to 

input move suppression weighting of [10, 100], executed every 2 hours to attain the de­

sired target specifications for the number average molecular weight of 80 kg/mol and 

reactor temperature of 323.6 K given by Maner et al. (1996). The controller was input 

constrained but did not consider output constraints. 

Maner et al. (1996) used a sampling time of 0.03 hours for linear model predictive control 

and 1 hour for nonlinear model predictive control based on a truncated model. The step 

response model is typically approximated by truncating the step response at the time 

step with negligible change in the outputs. The sampling time used for this case study 

was chosen assuming lower level regulatory control such as proportional integral (PI) 

control is used for high frequency disturbance rejection, but not modelled. 

An overall settling time of 35 hours was obtained when the desired setpoint change was 

implemented on the linearized system, but undershoot in the temperature response was 

observed as shown in Figure 5.2. 
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Figure 5.2: Closed-loop response of linear system to constant setpoint change 

The effect of undershoot in the reactor temperature and overshoot in the number aver­

age molecular weight are more pronounced when linear model predictive control was 

applied to the actual nonlinear system, as seen in Figure 5.3. 
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Figure 5.3: Closed-loop response of nonlinear system to constant setpoint change 

Linear model predictive control is used in industry to control nonlinear systems but 

may result in poor performance (Lu and Arkun, 2002). Hence, applications of nonlinear 

model predictive control based on process gain scheduling have been developed for 
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small multivariable polymerization systems in industry, and solutions offered through 

commercial products such as Process Perfector from Pavilion Technologies (Henson, 

1998). 

Similarly, Sriniwas et al. (1995) demonstrated improved performance with nonlinear 

control when applied to an a-olefin polymerization reactor due to nonlinearity arising 

from slow purging rates. According to Doyle et al. (1995), nonlinear control may be 

used for more accurate approximation of nonlinearity to improve control performance 

for highly nonlinear systems. Second order volterra models integrated into model pre­

dictive control based on input-output data was implemented with reduced overshoot 

in the number average molecular weight when applied to the styrene case study by 

Maner et al. (1996). However, several parameters were required to model nonlinearity, 

and model validity must be monitored due to changes in curvature inherent in second 

order models. In contrast, the stability of linear model based control is maintained over 

a broad regime and may be less computationally expensive. 

5.3 Reference Management with Linear Models 

The offline approach for reference management was implemented to enforce output 

constraints by manipulating both setpoint trajectories determined through minimiza­

tion of the squared deviation of the output from target, weighting deviations in there­

actor temperature 100:1 relative to deviations in the number average molecular weight. 

The solution was obtained by simultaneous optimization in 35.0 CPU seconds, where 

setpoint changes were enabled at the control sampling time. Furthermore, setpoint 

changes near the end of the simulation horizon were held constant, similar to the tech­

nique used by Sargent and Sullivan (1979), since the process delay would result in in­

determinacy. The closed-loop response of the discrete linear system assuming a perfect 

model is shown in Figure 5.4. 
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Figure 5.4: Optimal reference trajectory for perfect linear model 

The temperature setpoint was available for manipulation, but was not adjusted exten­

sively indicating that effective prevention of constraint violation requires detuning the 

setpoint change in the number average molecular weight. 

To further minimize variability in the setpoint trajectory, the two-tiered hierarchical ap:. 

proach was used as discussed in Section 4.1.6. The subsequent objective function was 

based on minimizing the squared deviation between the setpoint and target, and subject 

to an additional constraint satisfying the the previous optimal objective function value 

of 1773.48 within a numerical tolerance of 1%. The optimal solution was obtained in 

56.8 CPU seconds, and the closed-loop response shown in Figure 5.5. 
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Figure 5.5: Optimal reference trajectory with reduced setpoint variability 

The application of reference management based on minimizing the squared deviation 

between the setpoint and target was also investigated. The optimal solution obtained re­

sulted in a similar closed-loop response without the two-tiered approach, thus reducing 

computational expense. 

5.4 Reference Management with Reference Filters 

The discrete reference filter was implemented for setpoint changes in the number aver­

age molecular weight, minimizing the squared deviation between the output and tar­

get while holding the temperature setpoint constant. The closed-loop response seen 

in Figure 5.6 was obtained in 319.8 CPU seconds with an optimal filter time constant 

of fi 1 = 0.5153 and a feasible setpoint target of Ytgt = 79.89. Implementation of the 

reference filter resulted in a smooth setpoint trajectory requiring less aggressive input 

movement. 
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Figure 5.6: Discrete reference filters holding temperature setpoint constant 

Allowing adjustments in the temperature setpoint, the actual target may be achieved 

with a slightly more aggressive filter time constant of fi 1 = 0.5200. The optimal solution 

was obtained in 212.5 CPU seconds, and the resulting closed-loop response shown in 

Figure 5.7. 
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Figure 5.7: Discrete reference filters with adjustment in temperature setpoint 

Implementation of the optimal solution shown in Figure 5.6, on the actual nonlinear 

system resulted in the closed-loop response seen in Figure 5.8. 
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Figure 5.8: Discrete reference filters implementation on nonlinear system 

The implementation of the offline optimal solution of reference management based on 

a linear model on the actual nonlinear system did not result in steady-state offset due 

to feedback handled by the regulatory controller, but undesirable characteristics in the 

closed-loop response was present due to model mismatch. 

5.5 Reference Management with Nonlinear Models 

The optimal solutions for reference management based on a linear model was devel­

oped in Section 5.3, but the application of the offline optimal solution to the actual non­

linear system results in model mismatch. However, several proposals for optimal grade 

transitions discussed in literature, detailed in Section 5.1, were based on determining 

the optimal input trajectory. Thus, while a regulatory controller has been constructed, 

steady-state offset due to model mismatch in the absence of feedback was demonstrated 

when the offline optimal input trajectory based on a linear model was implemented on 

the actual nonlinear system, as shown in Figure 5.9. 
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Figure 5.9: Optimal input trajectory implemented on nonlinear system 

In contrast, steady-state offset was eliminated when the offline optimal setpoint trajec­

tory based on a linear model was implemented on the actual nonlinear system, as shown 

in Figure 5.10. However, the closed-loop response was not accurately predicted due to 

model mismatch, resulting in undesirable characteristics. 
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Figure 5.10: Optimal reference trajectory implemented on nonlinear system 
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Thus assuming the availability of a nonlinear model, reference management based on a 

nonlinear process model using linear model predictive control was implemented. The 

set of differential and algebraic equations was discretized using orthogonal collocation 

on finite elements, and the objective function based on minimizing the squared devia­

tion between the output and target. The optimal solution was obtained in 1835.4 CPU 

seconds, and the closed-loop response shown in Figure 5.11. 
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Figure 5.11: Optimal reference trajectory for perfect nonlinear model 

The two-tiered approach was implemented to reduce setpoint variability by solving 

a subsequent optimization, minimizing the squared deviation between the setpoint 

and target, subject to an additional constraint satisfying the previous objective func­

tion value of 0.1210 x 104 within a numerical tolerance of 1%. The optimal solution was 

obtained in 11258.6 CPU seconds, and the closed-loop response shown in Figure 5.12. 
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Figure 5.12: Optimal reference trajectory with minimal setpoint variability 

Although input saturation was not encountered in the previous simulations, the general 

framework enables the capability of treating input constraints under constrained model 

predictive control. Thus the lower bound for the coolant flow rate was set at 280 L/h 

to demonstrate the effective handling of input saturation. The optimal solution was 

obtained in 1996.9 CPU seconds, and the closed-loop response shown in Figure 5.13. 

However, the reduced input constraints required relaxation of the constraints on allow­

able setpoints to the region spanned between the lower and upper output constraints. 

Thus, in the presence of input saturation, additional flexibility may be required to satisfy 

strict performance bounds. 
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The two-tiered approach was implemented to reduce the setpoint variability by solv­

ing a subsequent optimization, minimizing the squared deviation between the setpoint 

and target, subject to an additional constraint satisfying the previous objective function 

value of 0.1113 x 104 within a numerical tolerance of 1%. The optimal solution was 

obtained in 1285.1 CPU seconds, and the closed-loop response shown in Figure 5.14. 
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Figure 5.14: Optimal reference trajectory with minimal setpoint variability 
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Figure 5.13: Optimal reference trajectory for perfect nonlinear model 
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The application of reference management based on minimizing the squared deviation 

between the setpoint and target was also investigated, resulting in a similar closed-loop 

response without the two-tiered approach, thus reducing computational expense. 

Thus the methodology for reference management may similarly be applied to nonlinear 

models, but subject to the availability of such models for optimization and requiring 

significantly larger computational expense. 

5.6 Reference Management with Dynamic Economics 

In steady-state real time optimization, an improvement in profit is possible in the pres­

ence of excess optimization variables available for adjustment after satisfying safety, 

product quality, and production rate objectives (Marlin and Hrymak, 1997). However, 

economic improvement is possible even for square systems with the consideration of 

dynamic operation. Thus, Govatsmark and Skogestad (2005) differentiated between 

steady-state degrees of freedom, determined by subtracting the number of controlled 

variables from the number of manipulated variables, and dynamic degrees of freedom, 

determined by the number of manipulated variables. 

In the development of economic objective functions, consideration of the current market 

opportunities is important in defining operational objectives to increase profit. Prod­

uct quality control is particularly important for emerging industries where the pro­

duction cost to selling price ratio is low (Kravaris et al., 1989), and the quantity of off­

specification product must be reduced because product produced outside commercial 

product quality specifications must be sold at discount while product variability may 

eventually lead to loss of market share (McAuley and MacGregor, 1992). Furthermore, 

in periods of low demand improvement in profit is attained by the minimization of off­

specification product at the expense of a longer transition time (McAuley, 1991), while 

minimizing the transition cost (Tousain, 2002; Bosgra et al., 2004; Tousain and Bosgra, 

2006). 
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In contrast, yield optimization is particularly important in mature industries where the 

production cost to selling price ratio is high (Kravaris et al., 1989). Similarly, in periods 

of high demand, improvement in profit is attained by maximizing production and min­

imizing the transition time (McAuley and MacGregor, 1992; McAuley, 1991; Tousain, 

2002; Bosgra et al., 2004; Tousain and Bosgra, 2006). In highly saturated markets such 

as the refinery process, throughput is maximized at the expense of conversion in the 

presence of large feed inventory (Caldwell and Dearwater, 1991). 

Thus, market conditions define the appropriate operational response to increase profit, 

and must be considered in the formulation of appropriate economic objective functions. 

However, the explicit consideration of economic operation minimizes the distinction 

between the two market situations assuming adequate modelling of complex pricing 

schemes, and assuming that the resulting mathematical formulation is well-posed for 

optimization. 

5.6.1 Process Description 

The grade transition from an initial number average molecular weight of 80 kg/mol to a 

desired target of 58.481 kg/mol was considered to investigate competing objectives with 

the minimization of operating costs and maximization of product revenue. The initial 

conditions shown in Table 5.3 are determined by simulation of the nonlinear model in 

MatLab 7.0 using Simulink, and correspond with the final steady-state conditions in 

Sections 5.2-5.5. 
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Table 5.3: Styrene reactor initial conditions: Grade B 

Variable Initial Value Units 

[I] 3.6559x1o-2 mol/L 
[M] 3.3635 mol/L 
Tc 307.61 K 
Do 1.5069x10-4 mol/L 
D1 12.055 g/L 
Qi 0.0164 L/s 
Qc 0.0916 L/s 

NAMW 80.000 kg/mol 
T 323.5558 K 

The closed-loop response with a single setpoint change for grade transition on the lin­

earized system is shown in Figure 5.15. Thus, the potential for economic improvement 

during transient operation using reference management based on an explicit economic 

objective function was investigated. 
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Figure 5.15: Grade transition on linearized system 

The grade transition implemented on the actual nonlinear system with a single setpoint 

change resulted in more aggressive manipulation of the initiator flow rate with the given 

controller tuning as seen in Figure 5.16. 
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Figure 5.16: Grade transition on nonlinear system 

5.6.2 Development of the Economic Objective Function 

An economic objective function was proposed to take into account the loss in revenue 

for producing off-specification product outside the product quality tolerances around 

the desired targets as shown in Figure 5.17. 
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Figure 5.17: Polymerization univariate product quality specifications 

The revenue from the initial steady-state was not taken into account, and market sales 

for off-specification product was assumed to be negligible. The hyperbolic tangent 
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switching function with weighting parameter 'Y was used to identify product quality 

regimes without the introduction of integer variables, similar to the technique used by 

MacRosty (2005) to represent the activation of constraints. Tousain (2002) also consid­

ered using the hyperbolic tangent function to define product quality bands, as defined 

in Equation 5.18. 

1 1 {Ox<OR; = - tanh ("(X) + - ~ (5.18) 
2 2 1 x>O 

The effect of increasing the weighting parameter in the switching function is shown by 

comparing Figures 5.18(a) and 5.18(b). 

1.0,_---~~~-y-----, 

0.9 

OB 0.8 

0.7 

0.6 

>-0.5 

0.6 

(a) 'Y = 0.01 (b) 'Y = 1.00 

Figure 5.18: Switching functions where y = ~tanh "(X + ~ 

Thus, the given quality variable regime given in Figure 5.17 may be defined mathemat­

ically with a continuous objective function. The switching function R1 given by 

1 1 { 0 NAMW < NAMWt9t 
R1 = 2tanh["' (NAMW- N AMWt9t)] + 2 ~ (5.19) 

1 N AMW > N AMWt9t 

is zero for operation in Region 1, resulting in lost revenue because product quality is out­

side the desired control region for product quality specifications for the number average 

molecular weight. Region 2 represents the product quality band at the desired steady­
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state where the upper bound is 5% of the steady-state value. The switching function R2 

given by 

NAMW > 1.05NAMWt9t1 1 { 0R 2 = 2tanh [I (1.05NAMWt9t - N AMW)J + 2 :::::: 
1 NAMW < 1.05NAMWt9t 

(5.20) 

is zero for operation in Regions 3, resulting in lost revenue because product quality 

is outside the control region for product quality specifications for the number average 

molecular weight. The switching function R3 given by 

1 1 { 0 T < Tmin
R3 = 2 tanh [J (T- Tmin)] +- :=:::: (5.21) 

2 1 T > Tmin 

is zero for operation in Region 4, resulting in lost revenue because product quality is 

outside the control region of product quality specifications resulting from temperature 

effects. The switching function R4 given by 

1 1 { 0 T > Tmax
R4 = 2tanh[J(Tmax -T)] + 2 :=:::: (5.22) 

1 T < Tmax 

is zero for operation in Region 6, resulting in lost revenue because product quality is 

outside the control region of product quality specifications resulting from temperature 

effects. The switching functions were used with a weighting parameter of 1 = 0.01 to 

improve conditioning for gradient based optimization as discussed further in Subsec­

tion 5.6.4. Thus the revenue R obtained during transient operation is given by 

(5.23) 


consisting of the amount of product produced within the product quality specifications 
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at the desired steady-state sold at a market price of P=$0.1355/mol based on commod­

ity marginal spot market prices obtained from ICIS-LOR (2005), Q is the total product 

flowrate, and [F] is given by 

[F] = [P] + [MJ +[I] (5.24) 

representing the concentration of the product effluent without solvent recovery, and 

may be approximated by an average of 232 mol/L within the product band. In this 

work, a constant pricing scheme was assumed with the effluent treated as the final 

product stream. This simplification, however, results in complications in industry as 

discussed by Bailey et al. (1993), where multiple pricing is based on contract and spot 

market sales, and the determination of inter-process stream pricing requires estimates 

of value added and potential worth at each stage of the process. Dynamic pricing with 

lower initial pricing to establish demand, followed with subsequent increases in pric­

ing to yield an increase in cumulative profit as discussed by Fan et al. (2005) was not 

considered. 

Furthermore, the use of univariate specifications on instantaneous properties was as­

sumed to adequately reflect the cumulative end-use product quality. In reality, addi­

tional measurements would be required to classify quality based on the breadth and 

shape of the molecular weight and composition distributions (McAuley and MacGre­

gor, 1992), and product properties should be considered simultaneously due to the 

multivariate nature of product quality (Kourti and MacGregor, 1996). In fact, individ­

ual specification of desired target specifications without accounting for the correlation 

structure among quality variables may result in infeasibility (Jaeckle and MacGregor, 

1998). 

The switching functions used to represent production within product quality bands 

were squared, 
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(5.25) 


to improve numerical conditioning arising from small but negative solutions. An equiv­

alent formulation of Equation 5.23 used by Tousain (2002) is given by 

(5.26) 


However, consideration of numerical conditioning of Equation 5.26 would result in in­

creased inaccuracy, and was not considered further. The revenue obtained from off­

specification product was assumed to be negligible and the opportunity cost of pro­

ducing high quality product was not taken into account. The operating cost Cis given 

by 

(5.27) 


where C1=$0.1123 I mol based on commodity marginal spot market prices obtained from 

ICIS-LOR (2005), 0 2=$0.1200/mol for initiator costs and 0 3=$0.0400/L for cooling wa­

ter. The cost function is based on raw material feed and utility costs, assuming monomer 

in the effluent is not recovered and cooling water purchased and discharged. Thus there 

are economic incentives to operate at a low initiator flow rate due to high initiator costs 

as discussed by Lewin and Bogle (1996). Thus the economic objective function is given 

by 

tN 

min <I> = _L)C (t) - R (t)}.6.t (5.28) 
Ysp 

to 

assuming static incremental prices and utility costs integrated over a simulation horizon 

[to, tN]· Tousain and Bosgra (2000) proposed a similar economic cost function based 

on minimizing raw material costs and maximizing production, where different prices 
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were assigned at fixed points in time based on the expected closed-loop response during 

transitions, but was extended to include the use of product quality bands by Tousain 

(2002) and Bosgra et al. (2004). 

However, the economic objective function based on product quality specification bands 

did not result in a well-posed optimization problem due to the possibility of indetermi­

nacy within acceptable bands. Thus the objective function used for optimization was 

modified, and given by 

tN 

<P = L)C(t)- R(t) [1- (NAMW(t)- NAMWt9t) 
2 -lOO(T(t)- Tt9t) 2]}~t (5.29) 

to 

which includes a control penalty term to ensure the desired steady-state target is reached 

once product specifications are within acceptable product quality bands, where cost 

considerations are no longer as important. This improves convergence to the desired 

steady-state target without enforcing end point constraints at an arbitrary point in time. 

Furthermore, the end point constraints may not necessarily result in a smooth closed­

loop response since there is no penalty on deviation from target once within product 

quality bands. 

Thus the objective function is based explicitly on economics while a control performance 

objective dominates once product quality is within acceptable product quality bands. 

Note that the control performance objective does not contribute to the objective func­

tion value when outside the desired product quality specifications, since revenue is not 

generated. Furthermore, the constant term within the control performance term may be 

increased to a larger value than unity, but at the expense of increased variability within 

the product quality specification band. 

Tousain (2002) also investigated the use of an explicit economic objective function with 

consideration of a control performance objective function to optimize grade transitions 

for polyethylene polymerization. However, the proposed objective function was based 
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on an arbitrary weighting between the two objectives. Similarly, Becerra et al. (1998) and 

Zanin et al. (2002) proposed combining online optimization of economics with control 

objectives, using a single scalar objective function combining the linear and quadratic 

objective functions with arbitrary weightings. Bosgra et al. (2004) avoided indeter­

minacy and convergence difficulties by enforcing end point conditions to the desired 

grade, solved using mixed integer linear programming (MILP). 

In contrast, the formulation presented in this work avoided the use of integer variables 

by using a smooth approximation of the economic objective function. The resulting ob­

jective minimizes operational costs during transient operation, and minimizes product 

variability once within product quality specifications when control performance objec­

tives dominate economic considerations. 

5.6.3 Improvement in Profit in the Linear System 

The simultaneous optimization of transient operation was based on the developed eco­

nomic objective function without hard output constraints, and considering a perfect lin­

ear model. The optimal solution was obtained in 48.5 CPU seconds, and the closed-loop 

response shown in Figure 5.19. Comparison of Figure 5.19 to nominal operation in Fig­

ure 5.15, the supervisory controller based on an economic objective function minimized 

the amount of initiator used by transferring variability to the coolant flow rate, while 

the transition time was minimized to reduce the amount of off-specification product 

produced during transient operation. The economic improvement resulted in a profit 

of$ 1.2788 x 106 (US) compared to$ 0.5215 x 106 (US) for the single setpoint change on 

the linear system, based on Equation 5.28 evaluated every 2 hours over 100 hours. 
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Figure 5.19: Optimal economic operation for perfect linear model 

5.6.4 The Effect of the Weighting Parameter in Switching Functions 

Increasing the weighting parameter in Equations 5.19-5.22 to 1 = 0.05 from 1 = 0.01 

resulted in a suboptimal solution with an oscillatory setpoint trajectory that did not 

reach steady-state. Increasing the weighting parameter to 1 = 1 resulted in a suboptimal 

solution where the desired steady-state was not obtained as seen in Figure 5.20. 
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Figure 5.20: Suboptimal solution resulting with 1 = 1.00 
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The inclusion of an end point constraint at an arbitrary point in time, introduced half 

way into the simulation horizon, may improve the step length in the descent direction 
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of the true objective function. The optimal solution for a weighting parameter in the 

switching function of '"Y = 0.05 was obtained in 63.7 CPU seconds, and the closed-loop 

response shown in Figure 5.21. However, the solver terminated prematurely when the 

weighting parameter was increased to '"Y = 1 after 476.7 CPU seconds. 
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-Output 

Quality bound 
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20 25 30 35 40 45 500 5 10 15 20 25 30 35 40 45 50 
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Figure 5.21: Optimal solution obtained with '"Y = 0.05 using end point constraints 

The effect of increasing the weighting parameter in the switching function is shown 

in Figures 5.18(a)-5.18(b). It is believed that increasing the weighting parameter intro­

duced numerical problems with near-derivative discontinuities into the objective func­

tion causing difficulties in gradient based optimization, possibly resulting in subopti­

mal solutions. Schot et al. (1999) similarly considered product specification bands for 

grade transitions in a high density polyethylene plant and noted strong nonlinearity due 

to sharp edges in pricing between on and off-specification product, causing inefficient 

gradient based optimization requiring several iterations. 

5.6.5 Alternative Objective Function Formulations 

The use of the economic objective function without consideration of the control perfor­

mance term as in Equation 5.28 does not guarantee transition to the desired steady-state, 
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as seen in the closed-loop response shown in Figure 5.22. The solution was obtained in 

75.3 CPU seconds with a weighting parameter of 'Y = 0.01 used in Equations 5.19-5.22. 
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Figure 5.22: Suboptimal solution based on economics without conditioning 

Furthermore, the use of the economic objective function shown in Equation 5.28 in ad­

dition to an end point constraint does not guarantee a smooth transition to the desired 

steady-state. The solution was obtained in 88.3 CPU seconds, and the closed-loop re­

sponse is shown for a weighting parameter of 'Y = 0.01 in Figure 5.23. 
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Figure 5.23: Suboptimal solution obtained with end point constraints 
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Thus the incorporation of the control performance objective function in addition to the 

relaxation of pricing discontinuity is important to improve smooth convergence to the 

desired steady-state target when using gradient based optimization. The discontinuous 

nature of the objective function must be conditioned by smooth approximation, and is 

particularly important when using IPOPT-C (Wachter, 2005). 

Alternative solution strategies may be based on mixed integer programming (Bosgra 

et al., 2004) or derivative free optimization. Zyngier and Marlin (2006) used deriva­

tive free optimization for performance assessment of closed-loop real time optimization, 

solving a three-level optimization problem with derivative discontinuity introduced by 

an inner optimization problem. 

5.6.6 Improvement in Profit in the Nonlinear System 

The simultaneous approach to reference management for economic optimization was 

implemented on a perfect nonlinear model, with the closed-loop response shown in 

Figure 5.24. The optimal setpoint trajectory was determined in 1220.6 CPU seconds, 

with a weighting parameter of 'Y = 0.05 used in Equations 5.19-5.22. The economic im­

provement resulted in a profit of $1.3166 x 106 (US) compared to$ 0.9817 x 106 (US) for 

the single setpoint change on the nonlinear system, based on Equation 5.28 evaluated 

every 2 hours over 100 hours using average product properties within product specifi­

cations. The optimal transition minimized production of off-specification product to 10 

hours compared to 12 hours for nominal operation based on a single setpoint change. 
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Figure 5.24: Optimal economic operation for perfect nonlinear model 

5.6.7 Utilization of Additional Degrees of Freedom 

Common heuristics used in industry to improve grade transitions were discussed by 

Debling et al. (1994), including de-inventorying reactor contents by 50% to reduce off­

specification product by removal of on-specification product while minimizing the tran­

sition time. Similar proactive solutions were investigated by Bathazaar (2005) in re­

sponse to unit shutdown failure in pulp and paper production. 

However, in this work, the reactor bed level was not manipulated, but the production 

rate was adjusted as an additional degree of freedom to minimize the production of 

off-specification product by manipulating the monomer flow rate. 

Thus the monomer flow rate was incorporated as an additional degree of freedom and 

allowed to vary between [300, 378] L/h, while the solvent flow rate was ratio controlled 

and the reactor level maintained by manipulating the product flow rate. Thus inclusion 

of the monomer flow rate as an additional degree of freedom available for optimization 

enabled the total flow rate to vary throughout the grade transition, and would result in 

minimizing the production of off-specification product. Increasing the monomer flow 

117 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

rate had the effect of increasing the operating cost during transient operation, but would 

result in a net profit once within product quality specification bands. 

The objective function was based on Equation 5.29 with a switching function weighting 

parameter of 'Y = 0.05 used in Equations 5.19-5.22. Additional constraints forcing the 

setpoint to target were enforced approximately half way through the simulation time 

horizon of 100 hours to ensure the desired steady-state was reached. 

The optimal setpoint trajectory was obtained in 996.8 CPU seconds, and the closed-loop 

response when implemented on a perfect nonlinear model is shown in Figure 5.25. 
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Figure 5.25: Closed-loop response minimizing transient variability 

The production rate is shown in Figure 5.26, where a reduction in productivity was 

required to minimize cost and product variability during the transition. However, the 

reduction in productivity was sustained at the desired steady-state, thus resulting in 

suboptimal steady-state operation. 
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Figure 5.26: Productivity minimized to reduce costs 

The suboptimal solution was obtained as a result of using a weighting parameter of 

'Y = 0.05 in the switching functions causing ambiguity between the actual cost and 

revenue during the transition where the actual revenue was underestimated. To com­

pensate for the effect of the weighting parameter on the objective function, the concen­

tration of growing polymer contributing to the revenue term in Equations 5.23-5.24 was 

multiplied by a large scaling factor (S = lOu) shifting the objective towards maximizing 

productivity. The objective function was modified as shown by 

iN 

<~> = I)c- Q (S [PJ + [MJ +[I]) PRi~R~R~ [wo 
to 

(5.30) 

where the tolerance on control performance was relaxed, resulting in abrupt maximiza­

tion of production at the expense of a slight increase in output variability. The optimal 

setpoint trajectory was obtained in 577.0 CPU seconds, and the closed-loop response 

when implemented on a perfect nonlinear model is shown in Figure 5.27. 
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Figure 5.27: Optimal operation with productivity maximization 

The product flow rate is shown in Figure 5.28, where optimal operation at the desired 

steady-state resulted in maximizing productivity. The decreased production rate during 

transient operation reduced the amount of monomer consumed, thus lowering operat­

ing costs, while reducing the amount of off-specification product produced thus reduc­

ing variability in the product properties of the cumulative polymer in storage. 
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Figure 5.28: Maximizing productivity 
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A similar strategy to reduce the production of off-specification product during the ini­

tial transient operation for grade changes in polyethylene polymerization was proposed 

by McAuley and MacGregor (1992), however, by manipulating the reactor bed level. 

Chatzidoukas et al. (2003) demonstrated an additional reduction in transition time of 

5% and a reduction in the amount of off-specification product produced by 7.7% by ma­

nipulating the bed height and production rate. Similarly, startup of a continuous poly­

merization reactor was shown to result in reduced transition times compared to grade 

transitions as a result of the absence of polymer in the reactor (Cozewith, 1988). Thus 

additional improvements in closed-loop performance may be possible by manipulating 

the setpoint of the reactor bed level. 

Similar advantages utilizing available degrees of freedom were noted with Flender et al. 

(1996) demonstrating a 75% reduction in transition time for a distillation column oper­

ating under minimal reflux, thus resulting in near total removal of distillate during tran­

sient operation. A reduction in transition time for multi-effect batch distillation was also 

shown experimentally by (Noda et al., 2000) by allowing changes in holdup. Thus fur­

ther improvement in economic operation may be realized by manipulating additional 

degrees of freedom. 

5.6.8 Consideration of Initial Product Quality Bands 

The revenue obtained from production within the initial grade specification was also 

considered, defined by a 5% band below the initial specifications of the number average 

molecular weight, and described using the switching functions given by 

N AMW < 0.95NAMW01 1 { 0R5 = 2tanh[!' (NAMW- 0.95NAMWo)]+2 = (5.31) 
1 N AMW > 0.95NAMW0 
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1 1 { 0 N AMW > N AMW0
R6 = - tanh ['Y (NAMW0 - N AMW)] +- = (5.32)

2 2 1 NAMW < NAMW0 

The revenue B obtained from production within the initial product quality specifica­

tions before grade change is determined by 

(5.33) 


where PB = $0.131/mol based on commodity marginal spot market prices obtained 

from ICIS-LOR (2005). The switching functions were also squared to improve numer­

ical conditioning arising from small but negative solutions and a weighting function 

consistent with previous simulations of 'Y = 0.01 was used. 

The economic objective function, modified with consideration of control performance 

within the desired product quality specification bands was extended to 

tN 

<I>= I)c (t)- B (t)- R (t) [1- (NAMW (t)- N AMWtgt)2 
- 100 (T (t)- Ttgt)2]}~t 

to 
(5.34) 

The optimal solution was obtained in 1030.3 CPU seconds, resulting in a similar closed­

loop response as shown in Figure 5.24. However, the profit calculation was extended 

with the term given in Equation 5.33 and resulted in a profit of $ 1.3913 x 106 (US). 

Similarly, utilizing the monomer flow rate as an additional degree of freedom resulted 

in a similar closed-loop response as shown in Figures 5.27-5.28, with an optimal solution 

obtained in 406.4 CPU seconds. 
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5.6.9 Alternative Switching Functions 

An alternative switching function given by Tousain (2002) was used to represent prod­

uct quality specification regions based on the arctangent function given by 

1 1 i (i +"(X) 1 { 0 X< 0Ri = - arctan ("(X) + - = - log -.-- + - = (5.35)
7r 2 27r Z - "(X 2 1 X > 0 

This formulation introduces less discontinuity into the objective function in the limit as 

'Y -+ oo compared to the hyperbolic tangent function as seen in Figures 5.29(a)-5.29(b), 

but represents a less accurate description of the product quality specification bounds. 
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(a) 'Y = 0.01 (b) 'Y = 1.00 

Figure 5.29: Arctangent switching functions where y = ~ arctan "(X + ~ 

The objective function given in Equation 5.29 with revenue calculated according to 

Equation 5.25 using a weighting parameter of 'Y = 0.01 in Equations 5.19-5.22, was 

modified with the arctangent function given in Equation 5.35. The solution for a per­

fect nonlinear model was obtained in 1039.3 CPU seconds, and the closed-loop response 

shown in Figure 5.30. 

A reduction in performance was demonstrated in comparison with Figure 5.24 with in­

creased utilization of initiator and an aggressive setpoint trajectory. However, increas­

ing the weighting parameter to 'Y = 0.05 was capable of yielding a solution driven to the 

desired steady-state without the inclusion of end point constraints. The solution was 

obtained in 1702.6 CPU seconds, and the closed-loop response shown in Figure 5.31. 
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Figure 5.30: Use of arctangent switching functions with 1 = 0.01 
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Figure 5.31: Use of arctangent switching functions with 1 = 0.05 

The weighting function was further increased to 1 = 1.00, yielding a solution in 1045.9 

CPU seconds, and the closed-loop response shown in Figure 5.32. The conflicting objec­

tives for minimizing the transition cost and maximizing revenue at the desired steady­

state is evident. 
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Figure 5.32: Use of arctangent switching functions with "Y = 1.00 

Another alternative switching function given by Flores-Cerrillo and MacGregor (2005) 

was used for data smoothing, based on the sigmoidal function given by 

0 

(5.36)~ = 1 + exp [-6.;068 (~)] = { (0, 1) ::: < b 
1 x<a 

where the tuning parameters a = 100, b = 300 were chosen in Figure 5.33. This formula­

tion would enable specification of the range allowed to be relaxed. 
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Figure 5.33: Sigmoidal switching functions where y = {1 + exp [-6.9068 (a~~~2x)]}-1 
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The objective function given in Equation 5.29 with revenue calculated according to 

Equation 5.25 was used where the hyperbolic tangent switching function in Equation 

5.20 was replaced with the sigmoidal switching function given in Equation 5.36, with 

a= 1.05yt9t and b = 1.07ytgt· The solution was obtained in 523.2 CPU seconds, and the 

closed-loop response shown in Figure 5.34. 
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Figure 5.34: Use of the sigmoidal function with a = 1.05NAMWtgt b = 1.07N AMWtgt 

However, a solution was not obtained when the relaxation limits were decreased to a = 

1.05yt9t and b = 1.06yt9t due to difficulties in convergence. Thus, the use of the sigmoidal 

function may enable investigation of the range of relaxation required for convergence 

of the gradient based algorithm to an optimal solution. 

5.7 Summary of Results 

This chapter detailed the application of the proposed methodology to nonlinear dy­

namic systems, and summarized optimal grade transitions investigated in literature. 

The multi-input multi-output control of styrene polymerization was described, and ap­

plication of reference management to the linearized system demonstrated by minimiz­

ing the production of off-specification product with suitable hard output constraints de­

35 40 45 50 
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fined based on economic considerations. The discrete reference filter was implemented 

and alternative objective function formulations investigated. The resulting offline op­

timal input trajectory was implemented on the nonlinear system to demonstrate the 

presence of steady-state offset due to model mismatch, which was eliminated by online 

tracking of the offline optimal setpoint trajectory. 

Furthermore, the optimal setpoint trajectory was determined based on the nonlinear 

model discretized using orthogonal collocation on finite elements. An objective func­

tion was formulated with explicit consideration of economics using product quality 

specification bands, with control performance objectives once within product quality 

specifications. The optimal economic operation was determined for the linear and non­

linear systems during grade transitions, and the effect of weighting function parame­

ters, switching functions and objective function formulations on the optimal solution 

were investigated. Also, the utilization of additional degrees of freedom was shown to 

be capable of yielding further economic improvements. 
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Chapter 6 

Online Implementation 

Within the standard automation and control hierarchy, low frequency disturbances are 

rejected by real time optimization while high frequency disturbances are handled by 

regulatory control. In this work, quadratic dynamic matrix control (QDMC) was used 

for regulatory control with the standard assumption of unmeasured step disturbances 

in the output. Thus, disturbances are handled through feedback with bias update, elim­

inating steady-state offset arising from model mismatch, although suboptimally. In this 

chapter, updating the reference trajectory was investigated using a bias update for dis­

turbance estimation rather than online closed-loop model identification and estimation 

of stochastic states. The bias update is based on the difference between the actual output 

measured from the process and the output prediction within the supervisory controller 

at a given point in time. 

A single-input single-output system was investigated in Section 6.1, with the perfor­

mance of bias updating evaluated in the presence of step disturbances in the output, 

model mismatch and pulse disturbances in the output. The methodology implemented 

online was also demonstrated on a multi-input multi-output system in Section 6.2, cor­

responding to using the linear model to update the reference trajectory when applied to 

the nonlinear polymerization process. 
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Within the simulations conducted, the computational time required to determine the 

optimal trajectory was not taken into account. However, the methodology was investi­

gated using linear models to reduce computational expense. 

6.1 Single-Input Single-Output Systems 

The following linear single-input single-output system given by 

28
G (s) = -0.4191e­ (6.1) 

P 6.1024s + 1 

was used as a case study for improvement of closed-loop performance by updating the 

reference trajectory. The constrained model predictive control tuning used an output to 

input move weighting ratio of 10:1, a prediction horizon of 20, and an input horizon of 5 

at a sampling time of 2 time units. The setpoint target was y = 80 from an initial steady­

state of y = 58.481 and the input was constrained to [0, 500] from an initial steady-state 

value of u = 108. 

The linear system was discretized at a sampling time of 2 time units resulting in the 

difference equation which was used to represent the process within the dynamic opti­

mizer, 

y (k + 1) = 0.7206y (k)- 0.1171u (k- 1) + d (k + 1) (6.2) 

The optimal solution was obtained using simultaneous optimization in 3.4 CPU sec­

onds. The optimal setpoint trajectory was based on minimizing the squared deviation 

between the output and target every 2 time units for 50 time units, and the closed-loop 

response when applied to the discrete linear process model without model mismatch is 

shown in Figure 6.1. 
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Figure 6.1: Optimal reference trajectory without model mismatch 

6.1.1 Step Disturbances in the Output 

The implementation of the nominal setpoint trajectory on the discrete linear process 

model with a step disturbance in the output of d = 20 at 4 time units is shown in Fig­

ure 6.2, resulting in a cost objective function value of 1129.5924 based on the squared 

deviation between the actual output and target every 2 time units for 50 time units. 
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Figure 6.2: Implementation on the actual system with step disturbance 
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Assuming a perfect model with knowledge of the step disturbance, the optimal refer­

ence trajectory was determined and implemented on the actual continuous system. The 

closed-loop response is shown in Figure 6.3, representing the best achievable perfor­

mance possible with a cost objective function value of 928.4421. 
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Figure 6.3: Optimal reference trajectory with perfect process and disturbance model 

However, in the presence of the unmeasured step disturbances and using an online 

bias update to the system, the correct disturbance was estimated after implementing 

the first step change since the disturbance occurs at this point in time and no other 

disturbances were present. The disturbance was estimated as the difference between 

the actual measured output and the predicted output within the dynamic optimizer at 

the current time of 4 time units. 

The updated setpoint trajectory was implemented on the actual continuous system and 

the closed-loop response shown in Figure 6.4, resulting in an improvement in the cost 

objective function value to 1052.2700 with no further changes in the setpoint trajectory 

required. 
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Figure 6.4: Reference trajectory update with step disturbance estimate 

Thus updating the reference trajectory was capable of improving the cost performance 

objective function using a bias update on process model predictions for step distur­

bances in the measured output. An improvement of 38.44% of total benefits was realized 

as calculated by 

IMpROVEMENT = Actual = 1129.5924 - 1052.2700 = 0.3844 (6.3) 
TotalPossible 1129.5924 - 928.4421 

6.1.2 Model Mismatch 

While the bias update may handle step disturbances in the output effectively, the per­

formance of updating the reference trajectory may deteriorate in the presence of un­

certainty in the form of input disturbances, structural model mismatch and parametric 

model mismatch. Thus, the effects of parametric model mismatch was investigated 

where the process model used within constrained model predictive control and for ref­

erence management was based on Equation 6.1, while the actual process may be de­

scribed by 
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G ( ) = -0.6191e-28 

8 (6.4) 
P 6.1024s + 1 

The process gain was underestimated by approximately 47.72%, thus resulting in over­

shoot arising from a more aggressive closed-loop response. The implementation of the 

nominal setpoint trajectory on the actual system with model mismatch is shown in Fig­

ure 6.5, resulting in a cost objective function value of 1544.7404 based on the squared 

deviation between the actual output and target every 2 time units for 50 time units. 
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Figure 6.5: Implementation on the actual system with model mismatch 

Assuming a perfect model was available, the best achievable performance possible re­

sulted in a cost objective function value of 1397.2393 using the discretized process trans­

fer function corresponding to Equation 6.4 within calculations for reference manage­

ment: 

y (k + 1) = 0.7206y (k)- 0.173u (k- 1) (6.5) 

Reference management without model mismatch resulted in the closed-loop response 

shown in Figure 6.6. 
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Figure 6.6: Optimal reference trajectory with perfect model 

However, given model mismatch, the reference trajectory was subsequently updated 

online to account for gain mismatch by bias updating. The reference trajectory was up­

dated after implementation of the first setpoint change, but coincided with the previous 

predicted trajectory since the disturbance estimate was zero as a result of process delay. 

Note that the objective function was based on minimizing the squared deviation be­

tween the output and target using simultaneous optimization. Additional constraints 

were enforced to define previous setpoint changes, measured outputs and implemented 

inputs, while removing the corresponding process equations defining their relation­

ships. This was required to prevent overspecification of constraints while reducing 

computational expense and enabling a consistent process model to be used through­

out the simulation horizon within the supervisory controller. Conceptually, the degrees 

of freedom consist of the setpoint, input, output or disturbance vectors, only 2 of which 

are required to be specified for a unique solution to be defined. Additional specifica­

tions may result in infeasibility, and difficulty in convergence as a result of inconsistent 

constraints due to tolerances in numerical precision. 

Subsequent to implementation of the first setpoint change, the disturbance estimate of 

d = 6.0353 was assumed to be constant through the remaining simulation and repre­
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sented a positive step disturbance. The closed-loop response is shown in Figure 6.7, 

assuming the entire remaining trajectory is implemented without further model updat­

ing. The optimal solution attempted to reduce the effect of a positive disturbance by 

reducing the setpoint, and resulted in a cost objective function value of 1514.0942. 
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Figure 6.7: Second model update enforcing 2 setpoint changes 

The third model update was performed after implementing the next setpoint change, 

and a cumulative positive disturbance was estimated at d = 10.2699. Note that the 

current disturbance estimate was based on the difference between the predicted output 

within the supervisory controller and the actual measured output from the plant at the 

current time. However, the cumulative disturbance estimate would be required for the 

next model update since the current output prediction is based on the assumption of a 

constant step disturbance in the output using the previous disturbance estimate. The 

resulting closed-loop response is shown in Figure 6.8, assuming the entire remaining 

trajectory is implemented without further feedback for model updating. The implemen­

tation of the optimal solution resulted in a cost objective function value of 1538.1094. 
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Figure 6.8: Third model update enforcing 3 setpoint changes 

The benefit of successive model updates were progressively smaller, and the ninth model 

update resulted in near convergence as shown in Figure 6.9, assuming the entire remain­

ing trajectory is implemented without further feedback for model updating. 

Figure 6.9: Ninth model update enforcing 9 setpoint changes 

The implementation of the optimal solution resulted in a cost objective function value 

of 1536.1840, representing an improvement of 5.80% of total benefits being realized as 

calculated by 
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IMPROVEMENT= Actual = 1544.7404-1536.1840 = (6_6)O0580
TotalPossible 1544.7404- 1397.2393 · 

Thus the improvement realized by updating the reference trajectory through bias up­

dating was less effective in the presence of model mismatch than for step disturbances. 

However both simulations indicated the possible advantages of online updating due 

to the presence of uncertainty arising from unmeasured disturbances and model mis­

match, namely to improve performance towards the theoretical optimum during tran­

sient operation. 

6.1.3 Pulse Disturbances 

A large pulse disturbance d = -25 with a duration of 4 time units was simulated at 

time unit 4 causing temporary input saturation during the steady-state transition to 

Ytgt = 80. Implementation of the nominal setpoint trajectory on the actual system is 

shown in Figure 6.10, resulting in a cost objective function value of 4301.9270. 
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Figure 6.10: Implementation on actual system with pulse disturbance 
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The best achievable performance was determined with a cost objective function value of 

4250.8433 assuming the disturbance realization is known in advance. The closed-loop 

response is shown in Figure 6.11. 
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Figure 6.11: Reference trajectory with pulse disturbance under perfect model 

However, in the presence of the unmeasured pulse disturbance, an online optimization 

after implementation of the first step change resulted in a large negative disturbance 

estimate of d= -25, assumed to be constant in the future. Steady-state offset from tar­

get at Ysp = 78.7 4 79 was required to ensure feasibility due to predicted input saturation 

as seen in Figure 6.12, assuming the entire remaining trajectory is implemented with­

out further feedback for model updating. The implementation of the optimal solution 

resulted in an increase in the cost objective function value to 4576.0026, as a result of 

the predicted input saturation based on the disturbance estimate obtained using bias 

updating. 
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Figure 6.12: First model update enforcing 1 setpoint change to pulse disturbance 

The second model update after implementing the first two step changes did not signifi­

cantly alter the reference trajectory due to minimal changes in the disturbance estimate. 

However, within the next bias update, the system returned to target specifications since 

the cumulative disturbance estimate was reduced to d = -0.0026, and the resulting 

closed-loop response shown in Figure 6.13. 
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Figure 6.13: Third model update enforcing 3 setpoint changes to pulse disturbance 
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The implementation of the optimal solution resulted in a cost objective value of 4283.8866, 

and an overall improvement of 35.32% as calculated according to Equation 6.7. 

IMpROVEMENT = Actual = 4301.9270- 4283.8866 (6.7)= 0.3532
TotalPossible 4301.9270 - 4250.8433 

6.2 Multi-Input Multi-Output Systems 

The online adjustment of the reference trajectory was investigated to improve opera­

tion for the polymerization case study presented in Section 5.5. The optimal setpoint 

trajectory was determined based on minimizing the squared deviation between the out­

puts from target with suitable hard output constraints defined arising from economic 

considerations. The application of the offline optimal reference trajectory determined 

based on a linear process model on the nonlinear system resulted in model mismatch 

with undesirable characteristics in the closed-loop response, as shown in Figure 5.10. 

The updating strategy at the current time was based on the measured outputs, and the 

assumption of independent step disturbances in the output. The additional constraints 

include the current measured output and the current input implemented, while the set­

point change implemented over the next sampling period was determined in addition 

to the remaining setpoint trajectory through reference management. 

6.2.1 Online Reference Management 

The reference trajectory was optimized online after implementation of the first two set­

point changes using a bias update and assuming a constant step disturbance in the 

number average molecular weight of d1 = -1.8480 kg/mol and in the reactor tempera­

ture of d1 = 0.0462 K over the simulation horizon. The implementation of the updated 

setpoint trajectory is shown in Figure 6.14, assuming no further updates. 
140 




M.A.Sc. Thesis - David Lam, Chemical Engineering McMaster University 

80 
0 
:; 75 

~ 70 

~ 65 
z 

60 

• ,r, 

· - • - • Setpoint 
Predicted output 

--Actual output 

0 10 20 30 40 50 

_150 

~ 
-e" 1oo 
~ 
0 

"' 
! 50 

E 

Time(h) 

10 20 30 40 50 60 0 10 20 30 40 50 60 
Timelhl nmelhl 

Figure 6.14: First model update enforcing two setpoint changes 
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However, online updating with aggressive setpoint manipulation in the presence of 

model mismatch may deteriorate the closed-loop performance as a result of poor pre­

dictions in the closed-loop response despite the use of a bias update. The closed-loop 

response shown for seven updates in Figure 6.15, may be compared to implementation 

of the offline optimal solution in Figure 5.10. 
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Figure 6.15: Seventh model update enforcing fourteen setpoint changes 
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6.2.2 Enforcing the Successive Setpoint Change 

The online strategy was modified by implementing at each update, the setpoint as cal­

culated in the previous re-optimization calculation. The update procedure was carried 

out every second sampling period. 

The reference trajectory was optimized online after implementation of the first setpoint 

change using a bias update and assuming a constant step disturbance in the number 

average molecular weight of d1 = 2.5436 kg/mol and in the reactor temperature of 

d1 = 0.1573 Kover the simulation horizon. The implementation of the updated setpoint 

trajectory is shown in Figure 6.16, assuming no further updates. 
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Figure 6.16: First model update enforcing two setpoint changes 

Within the fifth model update, the disturbance estimate is negligible and the predicted 

and actual outputs converge. The implementation of the updated setpoint trajectory is 

shown in Figure 6.17, assuming no further updates. 
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Figure 6.17: Fifth model update enforcing ten setpoint changes 

There is only a slight improvement in the closed-loop response but the desired setpoint 

target was obtained. In contrast, the predicted and actual final steady-state input values 

did not correspond since uncertainty in the controlled variables arising from model mis­

match was shifted to the manipulated variables. The predicted steady-state input val­

ues were determined within the supervisory controller based on a linear time-invariant 

model of the nonlinear system. Thus using the approximate linear closed-loop dynamic 

model with the given bias update strategy did not satisfy point-wise model adequacy 

(Forbes and Marlin, 1994; Forbes et al., 1994; Forbes, 1994), but the benefit of alternative 

disturbance estimation strategies such as closed-loop model identification and parame­

ter estimation was not explored. 

The enforcement of the following setpoint change based on the previous solution was 

capable of improving the closed-loop response by comparison of Figures 6.15 and 6.17. 

The additional constraint was believed to have reduced the sensitivity of the cascade 

control system by restricting aggressive manipulation of the setpoint trajectory in the 

presence of uncertainty. 
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6.2.3 Effect of Increasing Frequency of Re-optimization 

Increasing the frequency of re-optimization may not necessarily result in an improve­

ment in the closed-loop response despite a more frequent disturbance update. The up­

date procedure was carried out every sampling period. 

The setpoint trajectory was updated after implementation of the first setpoint change 

using a bias update and assuming a constant step disturbance in the number average 

molecular weight of d1 = -2.8633 kg/mol and in the reactor temperature of d1 = 0.2250 

K over the simulation horizon. The implementation of the updated setpoint trajectory 

is shown in Figure 6.18, assuming no further updates. 

' ­ ' ­ ' Setpoint 
Predicted output 

-Actual output 

20 30 40 50 

~ 
!!!
8. 323.0 
E 
~ 

322.50 
10 20 30 

Time(h) nme(h) 

" 
;o 
~ 

g 
(.) 

2000 10 20 30 40 50 
TimeChl 

Figure 6.18: First model update enforcing one setpoint change 

The closed-loop response after the tenth model update is shown in Figure 6.19, assum­

ing no further updates. However, the performance has deteriorated in comparison to 

Figure 6.17. Thus, increasing the frequency of re-optimization may not necessarily result 

in an improvement in performance since the predicted optimal changes in the setpoint 

trajectory may actually introduce additional disturbances into the closed-loop system 

due to model mismatch. 
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Figure 6.19: Tenth model update enforcing ten setpoint changes 

6.3 Summary of Results 

This chapter detailed the online implementation of the proposed methodology using a 

bias update for disturbance estimation. The bias update was based on the difference 

between the predicted and actual output, as used in steady-state economic optimiza­

tion (Brosilow and Zhao, 1988; Yousfi and Tourier, 1991; Forbes, 1994). The efficiency of 

the scheme was demonstrated on a single-input single-output system under step distur­

bances, model mismatch and pulse disturbances. However, application to a nonlinear 

multi-input multi-output system using a linear model with bias updating, was shown 

to possibly worsen closed-loop performance. 

The online implementation of the proposed methodology may not necessarily yield 

significant improvement in operation. Abel and Marquardt (2000) and Abel and Mar­

quardt (2003) investigated the optimal operation of an industrial polymerization reactor 

in the presence of sudden changes in product pricing, but discovered online solutions 

were similar to offline solutions. Thus, the implementation of offline optimal solutions 

may be acceptable with minimal loss in performance. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

Reference management with consideration of constrained model predictive control was 

proposed to determine the setpoint trajectory required to achieve feasible and optimal 

operation during steady-state transitions. The supervisory controller required the solu­

tion of an optimization problem where an economic or dynamic performance objective 

function was considered at the upper level, and a series of control performance objective 

functions corresponding to the regulatory controller at the lower level. The mathemat­

ical formulation of the resulting multi-level optimization problem was described and 

a solution strategy developed based on a simultaneous approach using interior point 

methods. The benefits of the simultaneous compared to the sequential approach was 

demonstrated in terms of solution reliability and reduced computational expense, par­

ticularly in the presence of input saturation. The methodology was demonstrated on 

single-input single-output and multi-input multi-output systems with linear and non­

linear dynamics in addition to a system with non-minimum phase characteristics. 

One of the proposed formulations was based on a quadratic dynamic performance ob­

jective function minimizing the production of off-specification product. Minimizing the 
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squared deviation between the setpoint and target resulted in a similar closed-loop re­

sponse to that obtained by minimizing the squared deviation between the output and 

target, but without requiring a two-tiered approach to reduce setpoint variability aris­

ing from indeterminacy. The effect of various constraint formulations on the optimal 

solution was investigated, and the discrete reference filter shown to result with suitable 

constraints on the setpoint trajectory. 

The second proposed formulation was based on the explicit consideration of economics 

during transient operation. Univariate product quality specification bands were mod­

elled using switching functions and a control performance objective incorporated to 

improve solution convergence to the desired steady-state. Application to a polymer­

ization system was capable of reducing the transition cost, and further improvement in 

economic operation was demonstrated with the manipulation of additional degrees of 

freedom. 

Finally, a feedback mechanism was incorporated into the proposed methodology for 

updating the setpoint trajectory online in the presence of disturbances and model mis­

match. The bias update scheme resulted in an improvement in performance compared 

to tracking the offline optimal setpoint trajectory, particularly for step output distur­

bances in a linear system. 

7.2 Recommendations for Future Work 

7.2.1 State-Space Model Predictive Control 

The step response model may be formulated into state-space model predictive control 

(Ricker, 1991), and may result in reduced computational expense and improved per­

formance arising from state-space identification techniques such as Kalman filtering (Li 

et al., 1989) and the extended Kalman filter (Lee and Ricker, 1994). A significant ad­

vantage of the state-space formulation is the capability to control open-loop unstable 
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systems, and to improve closed-loop performance with flexibility in disturbance mod­

elling. The sluggish performance, particularly in the presence of disturbances affecting 

the output through slow dynamics, is a direct result of the disturbance assumption in 

dynamic matrix control (Morari and Lee, 1991). Thus, reference management under 

state-space model predictive control may enable extensions to additional applications 

for improved dynamic performance. 

7.2.2 Application to Startups and Shutdowns 

Ensuring feasibility and optimality during startups and shutdowns is a particularly im­

portant, yet challenging area for the application of advanced process control in indus­

try. Application of the methodology to startups and shutdowns is complicated by the 

need to consider plantwide dynamics (Verwijs et al., 1995) with material recycle, energy 

integration and inventory considerations (Luyben, 2004). Operation during startups 

and shutdowns are typically implemented open-loop and procedures followed care­

fully, particularly for polymerization systems characterized by exothermic reactions to 

prevent reactor runaway (Choi and Ray, 1985). However, significant improvement in 

performance may be possible if implemented successfully. 

7.2.3 Application to Batch Processes 

Multi-product batch processes are well-suited for flexible operation required to respond 

to short time to market constraints and rapid changes in demand (Rippin, 1983). How­

ever, modelling is rarely developed due to excessive costs and minimum time to market, 

and current operation of industrial batch processes is based on heuristics determined 

through trial and error (Terwiesch et al., 1994). Furthermore, advanced control may 

constitute 10% of process control and automation activities in the batch industry (Bon­

vin, 1998), and thus limiting applications of the proposed methodology in industry. 
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7.2.4 Multivariate Quality Specifications 

According to MacGregor and Kourti (1998), product quality is a multivariate prop­

erty and thus, multivariate specification regions are the ultimate objective function for 

multivariate control. However, according to Clarke-Pringle and MacGregor (1998) and 

Clarke-Pringle (1999), the indirect control of product quality by controlling a subset of 

quality variables is typical due to the high correlation between quality variables, par­

ticularly in polymerization, but may result in the inflation of the effect of disturbances 

onto the uncontrolled quality space. Thus the consideration of the multivariate nature of 

product quality is important to realize improvement in the control of end-use properties 

through optimization. 

7.2.5 Integration of Optimization, Control and Design 

While there are increasing benefits of reducing conservatism in competitive markets, 

significant investment in developing and maintaining advanced control may be re­

quired relative to the economic loss resulting from overdesign to provide margins of 

safe operation (Seider et al., 1990). Thus, the integration of control and design is impor­

tant in evaluating the potential improvement in performance for various design con­

figurations. For example, Chatzidoukas et al. (2003) investigated the optimal control 

structure pairing and operating policy for grade transitions in polymerization by solv­

ing a mixed integer dynamic optimization problem, reducing the transition time by 

17.7% and the amount of off-specification product by 15%. Thus, to improve economic 

operation during transient operation, the proposed methodology may be extended to 

consider integrated control and design. 

In addition to design considerations, improvement in dynamic operation is possible 

with integration into real time optimization and production scheduling, and particu­

larly important in response to instantaneous demand. However, incorporation of the 

proposed methodology into higher level optimization is complicated by successive ap­
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plication of the first order optimality conditions. An alternative strategy was investi­

gated by Tousain (2002), Bosgra et al. (2004) and Tousain and Bosgra (2006) to deter­

mine economic market oriented scheduling of high density linear polyethylene grade 

transitions considering market demand with long term and short term commitments, 

market opportunities, inventory and product storage control and internal supply chain 

management. The optimal operating policies for grade transitions were computed of­

fline using dynamic optimization, and subsequently modelled as discontinuous events 

using binary decision variables at specified time intervals, resulting in a mixed integer 

linear programming problem. The resulting flexible schedule was found to improve 

performance by 16.8% relative to a fixed duration production slate. 

The simplification of using fixed changeover times in scheduling (Mendez and Cerda, 

2000; Mendez and Cerda, 2002; Giannelos and Georgiadis, 2002; Munawar et al., 2003), 

however, may not necessarily reflect current plant operation and would otherwise re­

quire frequent updating of look-up tables. Similar strategies are used in parametric pro­

gramming for flexibility analysis in the optimal design problem by Bansal et al. (2000) 

and Bansal et al. (2002), and multi-parametric quadratic programming by Pistikopoulos 

et al. (2000) and Bemporad et al. (2000). But while convenient, the dimension would 

increase with consideration under various operating conditions. 

7.2.6 Incorporation of Feedback 

The proposed methodology was implemented online but possible extensions include 

application to multi-input multi-output systems and investigation of the effect of in­

put disturbances. Possible benefits of closed-loop model identification and parameter 

updating compared to the bias update may also be investigated. Furthermore, the in­

troduction of feedback into the cascade control system, may affect closed-loop stability 

although improvement may be possible due to the consideration of the closed-loop sys­

tem. Similarities with reference governors and two degrees of freedom internal model 

control, and LP/QP-MPC may provide insight in the analysis of nominal closed-loop 
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stability. However, consideration of the effect of uncertainty on robust stability repre­

sents a challenging area for future research. 

7.2.7 Explicit Consideration of Uncertainty 

Uncertainty within the framework presented may be handled by conservative output 

constraints or reserving additional capacity for disturbance rejection through conserv­

ative input constraints to maintain feasibility. However, the explicit consideration of 

uncertainty may improve closed-loop performance by reducing arbitrary conservatism 

introduced into constraint formulations. More importantly, consideration of uncertainty 

may improve economics operation during dynamic transitions. 

Hessem and Bosgra (2002) proposed closed-loop model predictive control in the pres­

ence of stochastic disturbances to determine the optimal input and state backoff re­

quired to prevent violation of linear inequality constraints. The solution strategy in­

volved the solution of second order cone programming solved using interior point 

methods, but was computationally expensive. Similarly, robust linear model predictive 

control without consideration of input saturation was investigated by Warren and Mar­

lin (2003) and Warren and Marlin (2004), to determine the optimal setpoint and input 

trajectories based on the expected performance subject to the closed-loop propagation 

of worst-case disturbances handled through probabilistic constraint satisfaction. Con­

servatism in future output uncertainty was reduced compared to conventional min-max 

control by considering control compensation in future inputs and outputs. 

The use of explicit uncertainty descriptions may improve closed-loop performance and 

extend the proposed methodology by considering robust performance, while retaining 

the separation of economic and control performance objectives. 
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7.2.8 Suitable Model Development for Optimization 

The development of suitable models for optimization and control must ensure accurate 

prediction of the optimum with reasonable computational expense. This may require 

model reduction for online implementation with increasing frequency of re-optimization. 

According to Roos et al. (1997), transparency in process modelling is important for 

model development but resulting in superfluous variables and redundant constraints, 

increasing memory storage and the number of arithmetic operations per iteration. An 

improvement in the sparsity structure may reduce the number of iterations required, 

while compact model formulation in a minimal representation may significantly affect 

the computational speed of interior point algorithms. 

In addition, there may be a well defined solution but the optimization problem may be 

poorly posed (Gillet al., 2004), and the formulation of constraints may affect the local 

optimum obtained in nonlinear programming (Tenny et al., 2004). The constraint for­

mulation may assist the determination of worthwhile solutions by steering the system 

to more attractive local optima. These considerations were required for the successful 

application of real time optimization to a hydrocracking fractionation plant at Sunoco 

by Bailey et al. (1993). Similarly, there are several considerations in model development 

based on ensuring accurate prediction of the true optimum and suitable for efficient 

optimization with minimal computational expense, necessary for the successful appli­

cation of the proposed methodology. In particular, an efficient mathematical formula­

tion for the explicit consideration of economics in the objective function requires further 

investigation. 
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Appendix A 

KKT Conditions for QDMC 

The mathematical algorithm for quadratic dynamic matrix control is derived for a single­

input single-output system as detailed in Bequette (2003) and Soliman (2005), and ex­

tended to consider penalty on input deviation from ideal resting values. The control 

performance objective function is given by, 

where Q = rrr E ~PxP, s = A~Ass E ~MxM and R = ATA E ~MxM are positive 

definite matrices defining the relative weighting for the vector of predicted outputs fJ E 

~P, optimalfuture inputs u1 E ~M and input moves ~u1 E ~M. The vector of setpoints 

Ysp E ~P and ideal input resting values Utgt E ~M are given by 

Ysp = [ Ysp,k+l Ysp,k+P ]T (A.2) 

Utgt = [ Utgt,k+l Utgt,k+P ] T (A.3) 

where the subscript k refers to the current time step and indicates a scalar variable. The 
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objective function in Equation A.l is subject to the following, 

(A.4) 

Ymin SY S Ymax (A.S) 

Umin SUJ S Umax (A.6) 

(A.7) 

where y E RP, u E RM and fluE RM with subscripts min and max represent vectors of 

the minimum and maximum bounds for the output, input and change in inputs respec­

tively: 

Ymin = [ Ymin,k Ymin,k ]T (A.8) 

Ymax = [ Ymax,k Ymax,k ] T (A.9) 

Umin = [ Umin,k Umin,k ]T (A.lO) 

Umax = [ Umax,k Umax,k ]T (A.ll) 

tlumin = [ flumin,k flUmin,k ] T (A.12) 

flUmax = [ flUmax,k flUmax,k ] T (A.13) 

In the following development, inequality constraints on outputs and input changes are 

not further considered. The change in inputs are partitioned into previous input moves 

and future input moves, defined by 
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(A.14) 

(A.15) 

The vectors of inputs up E ~P and u f E ~M are defined by 

Uk-N+P ] T 

(A.16) 

(A.17) 

where k represents the current time step, h E ~MxM is the lower triangular identity 

matrix and U £ E ~M given by 

1 0 0 


1 1 0 

(A.18)I L = 

1 1 1 

'UL = [ 'Uk - 1 Uk- 1 ] T (A.19) 

The predicted output is given by 

y = . . . Yk+P ]T (A.20)[ Yk+1 

The estimated disturbance, with the standard assumption of uncorrelated integrated 

random walk disturbances in the outputs (Morari and Lee, 1991), is given by 
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(A.21) 


where y and f) denote the actual measured and predicted outputs at the current time 

step k respectively, and the predicted disturbance d E ~P is assumed to be constant 

over the prediction horizon P (Bequette, 2003). The dynamic matrix consisting of step 

response coefficients si, is partitioned as shown below, 

where Spast E ~Px(N-2) and sf E ~PxM denote dynamic matrices of previous and fu­

ture step response coefficients si respectively. Thus reformulation of the optimization 

problem such that the decision variable is explicit in the objective function results in the 

following simplifications as detailed by Bequette (2003). 

Let the vector of unforced errors, the future errors without implementing control move 

changes, be defined by 

(A.24) 
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Thus, the objective function may be written as follows: 

(A.25) 

Expansion of Equation A.25 and multiplying through by ~ yields 

min [~ETrTrE- ETrTrs D..u + ~D..uTsTrTrs D..u 
LJ.uf 2 f f 2 f f f f 

1 TT 1 TT]+ 2 (utgt- hD..uf- uL) A88 Ass (utgt- hD..uf- uL) + 2D..u1A AD..uf 

(A.26) 

Omitting the constant terms and rearranging Equation A.26 yields 

(A.27) 

The input constraints are given by 

(A.28) 

Equation A.28 may be rearranged to the form given by 

(A.29) 

(A.30) 
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Hence the objective function written in the form given by Equation A.27 in conjunction 

with Equations A.29-A.30 constitute a quadratic programming (QP) problem. How­

ever, the inequality constraints in Equations A.29-A.30 may be converted into equality 

constraints using slack variables 8 1 , 8 2 ~ 0 E ~M as given below: 

hi}.uf + 'UL - 'Umax + 81 = 0 E ~M (A.31) 

-h!}.·uf + Umin- U£ + 82 = 0 E ~M (A.32) 

(A.33) 

Thus the objective function in Equation A.27 subject to the process description given 

in Equations A.14-A.24 and constraints presented in Equations A.29-A.30 define input 

constrained model predictive control. The Lagrangian function L is subsequently de­

fined by 

1
L- f}.ur (srrrrs + ArA) f}.u Errrrs f}.u-2 f f f f- f f 

+ l ('utgt- hf}.·uf- uLf A~Ass (utgt- hi}.uf- 'U£ ) 

+AI (hf}.uf + U£ - Umax + 81} 

+ Ar (-hf}.uf + 'Umin - 'UL + 82) - Ar81 - Ar82 (A.34) 

with equality lagrange multipliers >. 1 , >.2 E ~M and inequality lagrange multipliers 

>.3 , >.4 ~ 0 E ~M. Thus, the optimization problem may be reformulated into a set of 

algebraic equations using the Karush-Kuhn-Tucker (KKT) conditions shown below, 

(A.35) 
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JI = ~uJ (sJrrrsJ + ArA)- ErrrrsJ 

- (utgt- h~Uf- uLf A~Assh + A[h- Afh (A.36) 

J2 = (h~uf +U£- Umax + sif (A.37) 

J3 = ( -h~uf + Umin- U£ + s2f (A.38) 

J4 = (AI - A3f (A.39) 

J5 = (A2 - A4f (A.40) 

where JL refers to the Jacobian of the Lagrangian. Furthermore, from the above condi­

tions, AI = A3 and A2 = A4• The complementarity conditions are given by 

ArSI = 0 (A.41) 


Ars2 = o (A.42) 


(A3, A4, si, s2) ~ 0 E ~M (A.43) 


Thus the first order optimality conditions may be subsequently used to solve for the 

optimal input changes in constrained model predictive control. 
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