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Abstract 

The goal of this thesis is to investigate the possibility of using vibration analysis to detect 

and assess a very common joint disease known as osteoarthritis (OA). For this purpose, 

patients with various levels of OA, healthy to severe OA, were recruited and MRI and 

vibration recordings were made on both knees. MRI images were analyzed by a 

radiologist and different symptoms related to osteoarthritis in the knee were scored for 

each observation. Vibration signals of the patients' knees were recorded using 5 

accelerometers placed at different locations of the knee. 

This thesis divides into two major sections; the first section deals with design of an 

apparatus (a function specific brace and the electronic hardware) for acquiring and 

recording vibration data from a patient's knee. The second section deals with the analysis 

of the recorded data using a combination of signal processing techniques (Fourier and 

wavelet transforms) and multivariate statistical methods (principal component (PCA) and 

partial least square (PLS)). The brace designed and built for the purpose of this research 

has several unique properties not found in commercial knee braces. It provides a robust 

and secure base for attachment of the sensors to the knee and shows very good adaptation 

to the dynamics of the knee during motion. In the analysis section we show that 

combining signal processing and multivariate statistical techniques (such as PCA and 

PLS) provides strong tools for analysis of the data. 

The result of our analysis shows that there is a strong correlation between vibration 

analysis and some of the symptoms of osteoarthritis such as cartilage degeneration and 
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formation of osteophytes. We conclude that vibration signals of the knee joint (crepitus) 

during flexion/extension cycle of the knee, when it is under stress, can be a good 

indicator of the general severity of OA in patients. 

lV 



Acknowledgements 

I would like to thank Dr. John MacGregor for his expert supervision and support over the 

course of my studies. I would like to also thank Dr. Adachi for his help and support. I 

also like to thank Dr. Jim Reilly for his guidance throughout the project. I would like to 

thank Dr. Bobba and Dr. Karen Beattie for recruitment of patients and their help with the 

medical aspects of the research. I would especially like to thank Hao Wu my good friend 

for helping me through out the steps of the project and doing all the work related to MRI 

imaging and scoring. If it wasn't for him I would have not been able to finish this thesis. I 

would also like to thank all the graduate students in MACC and the staff of the chemical 

engineering department. 

I would like to thank all the volunteers who patiently participated in my study and spent 

their precious time for the sake of this research 

I would like to thank the department of chemical engineering (McMaster University), the 

McMaster Advanced Control Consortium (MACC). 

And finally, many thanks to my family, and especially my mother, for their support and 

encouragement over the course of this research. 

v 



Table of Contents 

AUTHOR'S DECLARATION ........................................................................................................ ii 


Abstract .......................................................................................................................................... iii 


Acknowledgements .......................................................................................................................... v 


Table of Contents ............................................................................................................................ vi 


List of Figures .............................................................................................................................. viii 


List of Tables................................................................................................................................ xiii 


Chapter 1 Introduction ..................................................................................................................... 1 


Chapter 2 Anatomy of human knee ..................................................................................................7 


2.1 Introduction ............................................................................................................................ 7 


2.2 Knee Structure ........................................................................................................................ 8 


2.2.1 Bones ...............................................................................................................................9 


2.2.2 The Joint ........................................................................................................................ IO 


2.2.3 Cartilage and meniscus .................................................................................................. 12 


2.2.4 Ligaments ...................................................................................................................... 14 


2.2.5 Muscle and nerves ......................................................................................................... 16 


2.3 Kinematics of knee ............................................................................................................... 17 


2.3.1 Surface motion of tibiofemoral joint ............................................................................. 20 


2.3.2 Surface motion of patellofemoral joint ......................................................................... 22 


2.3.3 Skin-bone movement ..................................................................................................... 23 


2.4 Summary .............................................................................................................................. 24 


Chapter 3 Knee diseases ................................................................................................................. 25 


3.1 Osteoarthritis ........................................................................................................................ 25 


3.1.1 Symptoms and stages of OA ......................................................................................... 27 


3.1.2 Symptoms of OA........................................................................................................... 30 


3.1.3 Clinical diagnostic tools of OA ..................................................................................... 31 


3.2 Meniscus and ACL damages ................................................................................................ 34 


3.3 Discussion and summary ...................................................................................................... 35 


Chapter 4 Analysis of joint using vibration .................................................................................... 36 


4.1 Clinical Studies .................................................................................................................... 36 


4.2 Brace Design ........................................................................................................................43 


Vl 



4.2.1 Mechanical Hardware ....................................................................................................43 


4.2.2 Electronic hardware .......................................................................................................49 


4.3 Summary .............................................................................................................................. 53 


Chapter 5 Analysis and results ....................................................................................................... 54 


5.1 PCA on Y Data .....................................................................................................................59 


5.2 Analysis of Fourier transforms ............................................................................................. 61 


5.2.1 FFf ................................................................................................................................ 61 


5.2.2 PCA on FFf ..................................................................................................................72 


5.2.3 PLS on FFf ................................................................................................................... 79 


5.2.4 Summary and conclusion .............................................................................................. 89 


5.3 Analysis of wavelet transforms ............................................................................................90 


5.3.1 Wavelet transforms ....................................................................................................... 90 


5.3.2 PCA on histograms of wavelet coefficients ................................................................ 100 


5.3.3 PLS on the wavelets .................................................................................................... 108 


5.3.4 Summary and conclusion ............................................................................................ 117 


Chapter 6 Summary and Conclusion ............................................................................................ 119 


6.1 Future work ........................................................................................................................ 122 


Appendix A Product Data ............................................................................................................ 124 


Appendix B Detecting the FE axis of the knee ............................................................................ 131 


vii 



List of Figures 

Figure I: Major structure of the knee. Knee is made of two major joints, tibiofemoral 

joint and Patellofemoral joint. The surface of the bone in these joints are covered with 

articular cartilage .............................................................................................................................. 9 

Figure 2: Knee joint from different views. Femoral condyles, fibula and patellar groove 

are shown clearly in the image ....................................................................................................... I 0 

Figure 3: location and structure of meniscus and articulating cartilage ......................................... 13 

Figure 4: pressure reduction effect of the meniscus, also known as the wedge effect.. ................. 13 

Figure 5: Tendon hierarchy, adapted from [50] ............................................................................. 16 

Figure 6: (a) anterior and posterior views of ligaments. (b) ACL, PCL ligaments. (c) 

Lateral and medial collateral ligaments (adopted from www.eorthopod.com) .............................. 16 

Figure 7: A) frontal, sagittal and transverse planes in the human body. B) Depiction and 

nomenclature of the six degrees of freedom of knee motion. Adapted from [50] ......................... 18 

Figure 8: A) Range of motion of the tibiofemoral joint in the sagittal plane during level 

walking in one gait cycle. The shaded area indicates variation among 60 subjects (age 

range 20 to 65). B) Range of tibiofemoral joint motion in the sagittal plane during 

common activities (adopted from [50]) .......................................................................................... 19 

Figure 9: locating the instant center. B) Semicircular instant center pathway for 

tibiofemoral joint in a I9-year old man with normal knee (in sagittal plane) (adopted 

from [50]) ....................................................................................................................................... 2I 

Figure I 0: A) Determining the instant center of patella in sagittal plane. B) The position 

of patella at different ranges of knee flexion motion (left). Contact areas during different 

degrees of flexion. Beyond 90° of flexion, the patella rotates slightly outwards. (adopted 

from [50]) ....................................................................................................................................... 23 

Figure II: A) schematics of healthy versus osteoarthritic joint. B) a closer look at the 

structure changes of the articular cartilage in OA (taken from [51]) ............................................. 28 

Figure 12: Tl-weighted 3D gradient echo images of a healthy knee joint (left) and a 

knee joint with severe damage to cartilage .................................................................................... 29 

Figure 13: x-ray images of OA knee. Left) angulation of the knee due to severe lateral 

compartment OA. Right) loss of joint space and appearance of osteophytes are present 

in the picture. Taken from [51] ...................................................................................................... 32 

Vlll 

http:www.eorthopod.com


Figure 14: MRI images of the knee at different machine settings; fat suppressed t I 


weighted 3D gradient echo (left), Proton density (middle) and t2 weighted (right) 


images ............................................................................................................................................ 33 


Figure 15: osteoarthritic (left) versus healthy knee (right). Damage to meniscus, 


cartilage surface and subchondral bone are clearly visible. Image has been colorized 


based on different T weights of MRI ............................................................................................. 34 


Figure 16: Left) meniscus tear shown in MRI Image, Right) different types of meniscus 


tear.................................................................................................................................................. 35 


Figure 17: MRI score sheet used for this study ............................................................................. .41 


Figure 18: universal commercial brace donated by Gil Orthotics Inc .......................................... .44 


Figure 19: final design of the brace with accelerometers attached to it.. ....................................... 46 


Figure 20: Left) Patella Sensor and the adjustable arm, Right) location of the sensors on 


the knee .......................................................................................................................................... 47 


Figure 21: Top view of the brace assembled to the knee .............................................................. .48 


Figure 22: Side and rear views of the brace when mounted on the knee ...................................... .48 


Figure 23 diagram of Data Acquisition hardware .......................................................................... 50 


Figure 24: PCB I 000 mv/g accelerometers and their circuit diagram (right) ................................ 51 


Figure 25: PCB miniature impact hammer and its frequency range diagram (right) ..................... 52 


Figure 26: a) Model overview plot of the Y Data. b) Variable overview plot for the first 


component ...................................................................................................................................... 59 


Figure 27: P1/P2 loading plot of theY Data................................................................................... 61 


Figure 28: Left) Wavelet decomposition of the original signal, Right) thresholded 


wavelet coefficients and the reconstructed signal .......................................................................... 66 


Figure 29: Periodogram of the knee signal before and after thresholding ..................................... 67 


Figure 30: Left: original signal. Right: signal after detrending ...................................................... 68 


Figure 31: Positive and Negative half cycles of a signal... ............................................................. 71 


Figure 32: Frequency spectrums for positive and negative half cycles .......................................... 72 


Figure 33: model overview plot of the Standing Data (Power Spectrum) ..................................... 73 


Figure 34: Component contribution plot for the first component (PCA on Frequency) ................ 74 


Figure 35: Component Contribution plot for the second component (PCA on Frequency) ........... 74 


Figure 36: Component contribution plot for the third component (PCA on Frequency) ............... 75 


lX 



Figure 37: tl/t2 and t3/t2 Scatter plots of the PCA model for frequency data ............................... 76 


Figure 38: component contribution plot (Camp 2) between healthy (0-1) and unhealthy 


(2-3) cartilage knees (X: Inverse of power spectra). (a: for all sensors, b: only patella 


sensor, positive half cycle .............................................................................................................. 77 


Figure 39: t2/t3 Scatter plot colored according to average severity of osteophyte 


formation in the knees .................................................................................................................... 78 


Figure 40: Variable Importance Plot (VIP), PLS model (Frequency Data) ................................... 81 


Figure 41: t/t2 scatter plot of the PLS components (Frequency Analysis Data), colored 


according to average severity of the cartilage damage ................................................................... 81 


Figure 42: Left) Loading Plot before pruning the variables, Right) Loading Plot after 


pruning the variables (Y: Average Cartilage score (SumCart)). PLS analysis on the 


frequency data ................................................................................................................................ 82 


Figure 43: Observed VS predicted Y (Ave. Level of cartilage degeneration) for PLS 


model (X =Frequency Data, Y =Ave. Cart. Degeneration) .......................................................... 83 


Figure 44: tllt2 scatter plot of the PLS model (Y= average osteophyte formation level). 


PLS on the frequency data ............................................................................................................. 85 


Figure 45: Observed VS Predicted average osteophyte formation level. PLS on the 


frequency data ................................................................................................................................ 85 


Figure 46: Loading plots (p llp2) for meniscus degeneration level after variable pruning. 


PLS on the frequency data ............................................................................................................. 86 


Figure 4 7: Short Time Fourier Transform (STFT) ......................................................................... 91 


Figure 48: A mother wavelet and convolution with s(t) ................................................................. 91 


Figure 49: db2 wavelet (tJI) at different scales (a) .......................................................................... 92 


Figure 50: Decomposition of the signal "s" into its detail and approximate (s =D 1 + A1 ) ............ 94 


Figure 51: DWT in two stages ....................................................................................................... 95 


Figure 52: DWT (Left) versus Packet Wavelet analysis (Right) ................................................... 96 


Figure 53: center frequency (Fe ) of a wavelet (adopted from wavelet toolbox tutorial, 


math works inc) ............................................................................................................................... 97 


Figure 54: different wavelet shapes ................................................................................................ 98 


Figure 55: distributions of wavelet coefficients at different levels for the coefficients of 


a stationary wavelet transform ..................................................................................................... 100 


X 



Figure 56: model overview plot (PCA on wavelet histograms) ................................................... I 02 


patella sensor variables shown); Comp. #I (PCA on wavelet histograms), Level 110 = 

approximate at level 10 (the numbers on the abscissa show the approximate range of 


variables for each detail) .............................................................................................................. I 03 


Figure 6 I: Contribution plot between healthy (0-1) and unhealthy (2-3) cartilage knees 


Figure 63:tit4 score plot of the PCA model for the wavelet dataset colored according to 


average osteophyte score .............................................................................................................. I 08 


Figure 57: Component Contribution plot for coefficient histograms at all details (only 


Figure 58: Component Contribution plot for coefficient histograms, at all details; Comp. 


#2 (PCA on wavelet histograms, only patella sensor variables shown), Level I 10 = 

approximate at level 10 (the numbers on the abscissa show the approximate range of 


variables for each detail) .............................................................................................................. 103 


Figure 59: Component Contribution plot for coefficient histograms, at all details; Comp. 


#4 (PCA on wavelet histograms, only patella sensor variables shown), Level I 10 = 

approximate at level 10 (the numbers on the abscissa show the approximate range of 


variables for each detail) .............................................................................................................. I 04 


Figure 60: t llt2 and t4/t2 score plots of the PCA model for wavelet dataset... ............................ 105 


(wavelet scales 2 to 10); a) for all sensors, b) only shown for the patella sensor. ....................... 106 


Figure 62: Contribution plot for the difference of unhealthy from healthy knee; Left: 


low frequency (Det. 6), Right: High Frequency (Det. 2) ............................................................. 107 


Figure 64: Model Overview Plot of the PLS model on the cartilage variables (after 


pruning extra variables) ................................................................................................................ I09 


Figure 65: ttft3 Score Scatter plot, colored according to average cartilage score ......................... I 10 


Figure 66: Y, Observed VS Predicted for cartilage score at a: Medial Femur (FMed), b: 


Lateral Femur (FLat) .................................................................................................................... I 10 


Figure 67: Y, Observed VS Predicted for cartilage scores at a: Medial Tibia (Tmed), b: 


Lateral Tibia (Tlat) ....................................................................................................................... 11 I 


Figure 68: Y, Observed VS Predicted for cartilage scores at a: Trochlea (FT), b: Patella........... I I I 


Figure 69: Model overview plot for PLS model on individual osteophyte scores (after 


Pruning) ........................................................................................................................................ 112 


xi 



Figure 70: t,/t2 (left) and t1/t3 (right) score plots of the PLS model colored according to 

average osteophyte score .............................................................................................................. 113 

Figure 71: Model Overview Plot for average cartilage and osteophyte scores ............................ 114 

Figure 72: X/Y Overview plot of the PLS model for average cartilage and osteophyte 

scores ............................................................................................................................................ 114 

Figure 73: Observed versus Predicted value for a: Average Cartilage Score, b: Average 

Osteophyte Score .......................................................................................................................... 115 

Figure 74: 3A AND 3B. (A) Diagrammatic representation of axes in AP view with axis 

parallel to the plate. A is the angle the FE axis makes with the shaft oft he femur; B is 

the angle between the FE and L.R axes in the AP plane. C is the angle between the LR 

axis and the tibial plateau. The distances D, W. and Tm are the distances between the 

FE axis and the joint surface, the AP width of the tibia, and the medial tibia and the LR 

axis respectively. (B) Diagrammatic representation of axes in axial lateral view with x­

ray beam parallel to the FE axis. E is the angle between the LR axis and the tibial 

plateau in the axial lateral plane; X is the distance between the anterior femoral shaft 

and the posterior-medial femoral condyle. R is the distance between the FE axis and the 

posterior-medial femoral condyle. Y is the perpendicular distance between the two axes. 

Z is the AP dimension of the tibia and Ta is the distance of the l.R axis from the 

anterior tibia ................................................................................................................................. 132 

xii 



List of Tables 

Table 1: X and Y variables obtained from MRI and vibration recordings of the knee .................. 42 


Table 2: "X matrix of the spectrum magnitudes for PCA and PLS analysis; Pat: Patella, 


FLat: Lateral Femur, FMed: Medial Femur, TLat: Lateral Tibia, TMed: Medial Tibia ................ 73 


Table 3: Quality of fit for different combination of sensors (PLS model, Y= Ave. 


Cartilage degeneration level, no variable pruning). PLS on Frequency data ................................. 83 


Table 4: quality of fit before and after data pruning for different combination of 


individual groups of Y variables (Cartilage and Osteophyte) ........................................................ 88 


Table 5: Scale frequency for levels l to lO of db I wavelet ......................................................... lO I 


Table 6: Percentage of error due to Pure Error and the component of it due to round-off ........... 117 


Table 7: A) Location of axes of rotation, B) Location of the axes described as a percent 


of femoral and tibial dimensions. Tm/W, percentage ration locating tibia axis on AP 


view; Ta/Z percentage ratio locating tibial axis on axial lateral view; Y/W percentage 


ratio depicting interaxial distance relative to tibial plateau width; RIX percentage ratio 


locating femoral axis on axial lateral view ................................................................................... 133 


Xlll 



Chapter 1 


Introduction 


Kuettner Et al [1] defines Osteoarthritis (OA) as "a result of both mechanical and 

biologic events that destabilize the normal coupling of degradation and synthesis of 

articular cartilage chondrocytes1 and extracellular matrix and subchondral bone. 

Although they may be initiated by multiple factors, including genetic, developmental, 

metabolic and traumatic, Osteoarthritis (OA) diseases involve all of the tissues of the 

diarthrodial2 joint. Ultimately, OA diseases are manifested by morphologic, biochemical, 

molecular and biomechanical changes of both cells and matrix which lead to a softening, 

fibrillation, ulceration3
, loss of articular cartilage, sclerosis4 and eburnation5 of 

subchondral bone, osteophytes and subchondral cysts. When clinically evident, OA 

diseases are characterized by joint pain, tenderness, limitation of movement, crepitus, 

occasional effusion, and variable degrees of inflammation without systemic effects6
". In 

other words OA refers to degenerative abnormalities in the joint area which in time 

would lead to pain and disability. 

1 Chondrocyte: A cartilage cell, Merriam Webster dictionary 
2 Diarthrodial: joints that are able to move in several directions, Encarta dictionary 
3 Ulcer: defects 
4 Sclerosis: Hardening and thickening of body tissue as a result of unwarranted growth, Encarta Dictionary 
5 Eburnation; an abnormal hardening of the surfaces of bones in a joint that have lost their cartilage, 

Encarta Dictionary 
6 Systemic effects are the disorders that will effect other parts of the body 
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Along with heart and chronic lung disease, knee OA is one of the major causes of 

disability [2]. It is anticipated that over 18% of US population alone would develop OA 

by 2020 [3]. Unfortunately OA is a persistent disease and there is no cure yet found for it. 

A majority of people over the age of 55 years will develop some symptoms of this joint 

disease. At least 10% of the population over the age of 60 suffers significant disability 

due to OA related symptoms [4]. Due to its importance in mobility and daily activity, 

knee OA is among the most noticeable types of OA. One of the main causes of OA 

development is aging. Like any other mechanical device, our joints have limited duration 

of healthy activity. Studies show [5, 6, 7] that the prevalence of knee OA in women 

increases from 1 to 4% in people between 24 to 45 years of age to more than 53% at the 

age of 80 years and over. There are also other factors that increase the risk of OA 

development. Among them the most related ones are physical injuries, nutrition, genetic 

factors and weight. More details and stats about these risk factors are given in chapter 3 

of this thesis. 

Since the articular cartilage of the knee does not have any sensory system, symptomatic 

signs of OA are not usually detected until the advance stages. Progression of the disease 

from cartilage surface to neighboring tissues (meniscus and bone) results in pain and 

inflammation of the joint. Overall, major symptomatic signs of OA include pain, 

inflammation, morning stiffness, bony enlargement and crepitus. The most common 

technological tools for detecting and studying OA are radiographic techniques and the 

most widely used is X-Ray imaging. Over time many protocols have been developed to 

2 
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enhance the readings and diagnosis of OA [8, 9, and 10]. However the drawback of X­

Ray imaging besides the harmful radiations is that it only shows the changes to bony 

tissue and the joint narrowing which are the signs of advance stages of OA and cannot 

visualize the changes to the soft tissue (starting at earlier stages). The other drawback of 

X-Ray imaging is its two dimensional nature which greatly reduces the ability to 

diagnose and localize OA related problems [11, 12]. Over the recent years there has been 

a shift towards magnetic resonance imaging (MRI). The ability of MR imaging in 

detecting soft tissue changes and the three dimensional visualization of the joint has made 

this technology extremely popular. Unfortunately high costs of MR Imaging still prevents 

it from wide spread use. 

As mentioned earlier, crepitus or the grinding sound generated during the knee joint 

movement is one of the symptomatic signs of OA. O'Rourke Et Al's Study [13], found 

strong correlation between crepitus and OA. Crepitus is usually a palpable sensation; 

however in patients with severe OA it is even audible. Using auscultation dates back to 

2000 years ago to Hippocrates [14]. In 17th century Robert Hookes used auscultation for 

detection and assessing the joint problems [14]. Invention of stethoscope opened a new 

era to this type of diagnostic method. Many scientists tried to use auscultation to identify 

joint diseases. In 1937, Steindler [15] used a combination of stethoscope and microphone 

to record knee joint sounds for analysis. With all the efforts using stethoscope and 

microphone combinations there was yet no robust method for detection or even recording 

of the joint vibrations. The low signal to noise ratio (SNR) in the recordings obtained by 

3 
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these methods prevented the scientists from recording useful data. In 1980 and in two 

separate studies, Mang et al and Mollan et al used accelerometers instead of microphones. 

They both indicated strong evidence in the ability of the knee joint vibration signals to 

detect OA. McCoy et al [16] concluded in their paper (published in 1987) that using 

vibration arthrography it is possible to categorize signals related to many knee symptoms 

especially meniscus lesions and even in some cases the type of meniscus lesion. In 1988 

Rangayyan et al used knee joint vibration analysis to investigate the correlation between 

knee vibrations and chondromalacia7 and meniscus lesions in 16 patients before 

arthroscopy. Their study showed such injuries have distinct frequency signature 

compared to the healthy knees [17]. In a more recent paper that they published in 2001, 

they used auditory display (sanification) of knee vibration signals to be used by 

orthopedic surgeons to detect OA in several healthy and unhealthy patients [18]. 

Rangayan and Krishman also published several other papers on automatic denoising and 

analysis of knee joint vibrations [19, 20, 21 and 22]. Despite all the efforts toward 

implementation of this technology, auscultation or vibration arthrography (VAG) has not 

yet become a useful technique in diagnosis of joint problems. There are several reasons 

for this misfortune; probably the main reason has been the lack of a robust method for 

analysis of VAG signals. The second reason might be due to the absence of technological 

instruments for recording and analysis of large quantities of data. 

7 Chondromalacia: Abnormal softness of cartilage, Merriam Webster dictionary 
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The aim of this project is to design and develop an apparatus to simultaneously record 

knee vibration signals from several locations on the knee and to analyze the signals to 

assess any correlation between VAG signals and OA related joint abnormalities detected 

by magnetic resonance imaging (MRI). According to the reviewed literature above, our 

hypothesis is that there is evidence of correlation between knee joint disease known as 

osteoarthritis and VAG signals. 

Throughout the upcoming chapters we will discuss and cover following topics and issues: 

Chapter two; anatomy of human knee: Having an understanding of the structure and 

functions of human knee is essential for understanding the rest of the topics in this 

project. Since many of the readers of the thesis belong to the engineering field and may 

not be familiar with the field of medicine, the concepts have been simplified to convey 

the essence of the topic. 

Chapter three; Osteoarthritis: in this chapter a brief overview of osteoarthritis, its risk 

factors and available diagnosis tools will be given. 

Chapter four; Analysis of joint vibration signals: this chapter divides into 3 sections: 

• 	 Section one; clinical studies, describes the methodology and procedure of the 

tests and signal recording. 

• 	 Section two; brace design, covers the process of designing the mechanical 

apparatus for securely attaching the sensors to the knee. It also discusses the 

problems faced and the solutions found in the design process. 

5 
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• Section three talks about the hardware setup and software developed for data 

acquisition in a Matlab environment. 

Chapter five; Results and discussion; this chapter divides into three major sections: 

• Section one discusses the analysis of the Fourier transforms of the data 

• Section two discusses the analysis of the Wavelet transforms 

• Section three contains the summary and conclusion 

6 
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Chapter 2 


Anatomy of human knee 


2.1 lntroduction8 

In order to better understand the function and properties of the knee joint, we need to 

understand its structure and components. The knee is the largest joint in the human body 

and bears the weight of the body as well as enables us to move and run. Unlike the 

general believe this joint has a complex set of motion. In addition to flexion/extension 

(varus/valgus9
) in the sagittal plane it also has rotational and rotational motion in the 

other two planes. As we will discus later, this joint has an axis of rotation that is not 

exactly perpendicular to the sagittal plane, and with the femoral condyles' conical shape, 

each flexion/extension (FE) cycle is a combination of rotation and flexion in and out of 

the sagittal plane. 

The articulating surface of the bones in the knee is covered with hyaline cartilage. This 

slippery glossy cartilage has very low coefficient of friction that enables it to smoothly 

articulate on the other surface. In some people as a result of aging or injury this smooth 

surface may start to degenerate, which will eventually lead to a very common disease 

known as Osteoarthritis (O.A). 

8 Most of the contents of this chapter has been adapted from following books referenced by numbers [23] 

and [50] in the bibliography 
9 Varus/valgus: t1exion/extension of the joint 
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In this chapter we will discuss some of the major components of the knee joint and their 

properties and functions. Further we will briefly discuss the kinetics of the knee. The 

content of this chapter will later be used in the design of the brace used to support the 

sensors for vibration measurements. Knowing the kinematics of the knee allows us to 

design the brace with proper flexibility and secure fit. 

2.2 Knee Structure 

The knee is made up of two joints; tibiofemoral and patellofemoral joints. On the lateral 10 

side of the knee we also have the tibiofibular'' joint. However since this joint does not 

come in contact with the knee itself, it is not considered part of the knee joint. The knee is 

a synovial joint. Synovial joints are enclosed by a ligament capsule and contain a fluid 

called synovium that lubricates the joints. As mentioned before, the articulating surfaces 

of the bone are covered with cartilage. In addition to that, another layer of cartilage 

known as meniscus lies in between the tibiofemoral joint space. Following figure (Figure 

1) shows the structure of the knee and its components. In the following subsections we 

will discuss each component more closely and in more detail. 

10 Lateral: outer side, Medial: inner side 
11 Relating to the tibia and fibula, the bones of the lower leg, Encarta dictionary 

8 
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of the Knee 


www.eorthopod.com 

Figure 1: Major structure of the knee. Knee is made of two major joints, tibiofemoral joint 

and Patellofemoral joint. The surface of the bone in these joints are covered with cartilage. 

2.2.1 Bones 

The knee joint consists of 3 bones; femur, patella and tibia. The femur or thigh bone is 

the only bone in the thigh. It is the heaviest and stro~gest bone in the body. The head of 

femur articulates with the acetabulum 12 of the hip bone in a deep secure socket [23]. 

Despite being the strongest bone in the body the neck of femur is a common fracture side 

especially in old age. The femur slants medially and it runs downward to join the leg 

bones; this brings the knee inline with the body's centre of gravity. The medial course of 

the femur is more noticeable in females because of the wider female pelvis. Distally 13 on 

the femur are the lateral and medial condyles. These round knobs sit on the surface of 

tibia called tibia plateau. The patella glides inside the groove between the two femoral 

12 Acetabulum: the cup-shaped socket in the hip bone, Merriam Webster dictionary. 
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condyles [24] . Ligaments and tendons attach these bones to each other. The patella is 

almost part of the patellar tendon. It acts as an extending lever of the quadriceps muscles 

and increases the momentum applied by these muscles during extension motion. Figure 2 

shows the bony structure of the knee from different views. 

www .eorthopod.com 

Figure 2: Knee joint from different views. Femoral condyles, fibula and patellar groove are 

shown clearly in the image. 

2.2.2 The Joint 

Except for the hyoid bone 14 of the neck every bone in the body forms a joint with at least 

one other bone. Joints, also called articulations, have two functions; they hold the bones 

together securely but also give the rigid skeleton mobility [23]. Joints are classified in 

13 Distal: Anatomy used to describe a body part situated away from a poi nt of origi n, Encarta dictionary 
14 Hyoid bone: a U-shaped bone posi tioned at the base of the tongue that supports the tongue and its 

muscles, Encarta Dictionary 
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two ways, functionally or structurally. Functional classification focuses on the amount of 

movement allowed by the joint. In functional basis the joints are divided into three 

groups; immovable, slightly movable and freely movable joints. Knee joints and the 

majority of the joints in lower limb belong to the latter class. Structurally there are 

fibrous, cartilaginous and synovial joints. This classification is based on whether fibrous 

tissue, cartilage or a joint cavity separates the bony regions at the joints. As a general rule 

fibrous joints are immovable and synovial joints are freely movable. Since the knee joint 

is a synovial joint we will discuss this type of joint in more detail. 

Synovial Joints 

Synovial joints are those in which articulating bone ends are separated by a joint cavity 

containing synovial fluid. They account for all joints in the limbs. All synovial joints 

have four distinguishing features: 

• 	 Articular cartilage: Articular (hyaline) cartilage covers the ends of the bones 

forming the joints. 

• 	 Fibrous articular capsule: the joint surface is enclosed by a sleeve or capsule of 

fibrous connective tissue and the capsule is lined by a smooth synovial 

membrane (the reason these joints are called synovial). 

• 	 Joint cavity: the articular capsule encloses a cavity called the "Joint cavity", 

which contains lubricating synovial fluid. 

• 	 Reinforcing ligaments: the fibrous capsule is usually reinforced with ligaments. 

11 
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2.2.3 Cartilage and meniscus 

Articular cartilage covering the knee bones is in fact hyaline cartilage. It can be 

distinguished by its bluish glossy surface. This type of cartilage is very smooth and has 

very low friction coefficient. The reason this cartilage has very low friction is the fact that 

it is mostly composed of water. It contains 68 to 85% water, lO to 20% collagen (type II) 

and 5 to lO% proteoglycan15 
• Under load, water is expelled from the surface of cartilage 

and the two surfaces actually articulate on a molecular layer of fluid. 

Meniscus, which is another type of cartilage (fibro-cartilage), lies in the tibiofemoral joint 

space. This type of cartilage is composed of 60 to 70% water, 15 to 20% collagen (type I) 

and 1 to 2 % proteoglycan. Although meniscus has a similar chemical composition as 

articular cartilage, its different collagen structure gives it different mechanical properties. 

The meniscus acts as a shock absorber and fills the curvature space between the two 

joints therefore providing more surface area and thus less pressure on the articulating 

surfaces. This effect is known as the wedge effect (Figure 4 ). Meniscus also provides 

stability for the leg. Patients with their meniscus removed feel less stability and control 

over the functions of the knee. Figure 3 shows the location and structure of the meniscus 

and articular cartilage of the knee. 

15 Proteoglycan: any of a class of glycoproteins of high molecular weight that are found in the extracellular 

matrix of connective tissue, are made up mostly of carbohydrate consisting of various polysaccharide side 
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Figure 3: location and structure of meniscus and articulating cartilage 

Wedge
effect 

©MMG 200I 

www.eorthopod.com 

Figure 4: pressure reduction effect of the meniscus, also known as the wedge effect 

chains linked to a protein , and resemble polysaccharides rather than proteins in thei r properties, Merri am 

Webster Dictionary 
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Like any mechanical surface, the meniscus and articular cartilage are subject to wear and 

tear. As people grow older, the cartilage starts to degenerate. Degeneration can also 

happen as a result of damage to the knee due to injury. Athletes who have torn their 

anterior cruciate ligaments (ACL) or meniscus are also in danger of developing 

osteoarthritis. We will discuss osteoarthritis in the upcoming chapters in more details. 

In medical literature the meniscus is divided into four regions; Medial Anterior16 Horn 

(MAH), Lateral Anterior Horn (LAH), Medial Posterior17 Horn (MPH) and Lateral 

Posterior Horn (LPH). In this document we also divide the cartilage area of the knee joint 

into six areas; cartilage covering the medial femur, lateral femur, medial tibia, lateral 

tibia, trochlea 18 and patella. 

2.2.4 Ligaments 

There are essentially four separate ligaments that stabilize the knee joint. On the sides of 

the joint, the Lateral Collateral Ligament (LCL) and the Medial Collateral Ligament 

(MCL) connect the "lower limb" 19 to the tibia and fibula. These two ligaments stabilize 

the side to side movements of the knee. MCL is a broader ligament and is actually made 

up of two ligaments. LCL has a distinct cord like structure. At the front part of the centre 

of the joint is the anterior cruciate ligament (ACL). This ligament is a very important 

16 Anterior: at or near the front of something (Encarta dictionary), front of the knee 
17 Posterior: situated at the rear or behind of something (Encarta dictionary), behind the knee 
18 Trochlea: an anatomical structure resembling a pulley: as the articular surface on the medial condyle of 

the humerus that articulates with the ulna. Merriam Webster Dictionary 
19 Lower limb: lower part of the leg, shin and foot 
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stabilizer of the femur on the tibia and prevents the tibia from rotating and sliding 

forward during agility20
, jumping and decelerating activities. Directly behind the ACL is 

its opposite, the posterior cruciate ligament (PCL). The PCL prevents tibia from sliding 

backwards [25]. Figure 6 shows the structure and location of the ligaments on the knee 

joint. Figure 5 shows the tendon hierarchy. 

Ligaments and tendons are composed of parallel fibred collagenous tissues. They have 

low cellularity (fibroblast < 20% of volume) and high water content (almost 70% of the 

wet weight matrix and 30% weight of solid matrix) [26]. Figure 5 shows the inter 

structure of the ligament. Structurally, tendons are similar to ligaments except that they 

connect muscle to bones where as ligaments connect bones to bones. The patellar 

ligament, located in the anterior21 of the knee, connects the tibia bone to the patella. It 

covers the patella and then connects it to the quadriceps muscles. At this point it is called 

the quadriceps tendon. 

20 Agility: a combination of physical speed, suppleness and skill, Encarta dictionary 
21 Anterior: relating to or situated near or toward the head or toward the part in headless animals most 

nearly corresponding to the head 

2 : situated toward the front of the body : VENTRAL -- used in human anatomy because of the upright 

posture of humans, Merriam Webster Dictionary 
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collagen molecule ~microfibril ~· 11bril ~ fascicle ~ tendon 

Basic biomechanics of the musculoskeletal system, ISBN; WE I 03B311200 I 

Figure 5: Tendon hierarchy, adapted from [50] 

(a) (b) (c) 

Figure 6: (a) anterior and posterior views of ligaments. (b) ACL, PCL ligaments. (c) Lateral 

and medial collateral ligaments (adopted from www.eorthopod.com) 

2.2.5 Muscle and nerves 

The quadriceps muscles extend the knee. They are connected to the tibia through the 

quadriceps tendon. The patella acts as an extending lever arm and therefore reduces the 

momentum needed for extension of the knee. People whose kneecap (patella) is removed 
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due to injury have less ability to extend the knee. Hamstring muscles on the back of the 

knee provide the flexion force. During the flexion/extension (FE) motion, the patella 

slides inside the patellar groove. During activities that require the knee to bend more than 

average, for example climbing up the stair forces, almost up to 3 to 4 times body weight 

are applied by the quadriceps muscles to lift the body. 

Muscle control is provided by the "popliteal nerve" that runs through the back of the 

knee. This large nerve also provides sensation to the knee. "The tibial nerve travels on the 

back of the leg and 'peroneal nerve' travels around the outside of the knee and down the 

front of the leg to the foot. Both of these nerves can be damaged by injuries around the 

knee" [24]. 

2.3 Kinematics of knee 

In this section we will discuss the range and surface motion of the knee. In the medical 

literature, motion is defined in three planes; the frontal (coronal), sagittal and transverse 

(horizontal) planes (Figure 7). The knee consists of two joints; patellofemoral and 

tibiofemoral joints. The range of motion in the tibiofemoral joint is maximal in the 

sagittal plane but also takes place in the two other planes. The sagittal motion of the knee 

from full extension to full flexion ranges from 0 to 140 degrees. The range of motion in 

the two other planes depends on the position (angle) of the knee in the sagittal plane. 

Because of the interlocking mechanism of the knee (also known as screw-home 

mechanism), the joint motion becomes very limited in the fully extended position. This 

interlocking mechanism occurs mainly because of the different radius of medial and 
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lateral condyles. This mechanism helps the knee to stabilize when the leg is fully 

stretched and reduces dependency of the knee on muscles to maintain stability. Off­

sagittal motion increases as the knee flexes from 0 to 90°. At 90° the range of rotation is 

from 45° internally to 30°externally. The range of tibiofemoral joint motion required for 

performing various activities is given in the following table. These tables are determined 

by conducting kinematics analysis on patients. Nordin and Frankel [26] indicate that the 

range of motion from 0 to 117° in tibiofemoral joint, in sagittal plane is required for a 

person to perform various daily activities (Figure 8). 

B 

Varus! 
valgus 

Proximal/ 
distal 

Basic biomechanics of the musculoskeletal system, ISB N; WE I03 B311 200 I 

Figure 7: A) frontal, sagittal and transverse planes in the human body. B) Depiction and 

nomenclature of the six degrees of freedom of knee motion. Adapted from [SO] 
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Let us assume tibia and femur are in the same plane when the tibia is flexed at 90°. As the 

knee starts to extend, tibia will depart from this plane and starts to move outwards. It also 

rotates externally during extension. In order to design an effective brace that would 

follow the knee movement from full flexion to full extension, we need to consider this 

outward rotation and departing. The brace should have enough flexibility to allow the 

knee to follow its natural path. Otherwise undesired forces will be applied to the knee and 

the sensors. 
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Figure 8: A) Range of motion of the tibiofemoral joint in the sagittal plane during level 

walking in one gait cycle. The shaded area indicates variation among 60 subjects (age range 

20 to 65). B) Range of tibiofemoral joint motion in the sagittal plane during common 

activities (adopted from [50]) 
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2.3.1 Surface motion of tibiofemoral joint 

Surface motion between articulating surfaces m a joint can be measured using 

stereophotogrammatic methods [27]. However due to the complexity of this technique an 

older yet simpler method developed by Reulaux (1878) is still being used. This method is 

called instant centre of motion and tends to find the centre of relative motion between two 

joints in the uniplanar space. In this method, the centre of motion is found in the sagittal 

or in the frontal plane. A centre of motion at each instance is a point in the space on the 

link (bone) that has zero velocity with respect to other link. 

Finding centre of motion for tibiofemoral joint: 

In order to find the centre of motion for tibiofemoral joint, after fixing one link (one of 

the bones, usually tibia) two fixed points are selected and marked on the moving link. 

XRAY images are taken from the knee at different positions (angles) and these points are 

marked on each image. After flexing the knee in several steps and marking the location of 

the two points on images, the pictures are overlapped and for each marker, adjacent 

points (identified after moving the knee several steps) are connected to each other with 

lines. For each angle (step) the bisector of these connecting links for each marker will 

give the instant centre of motion of the joint (Figure 9). This method however has a 

drawback; the centre of motion identified this way is a projection of the actual knee 

motion into the image (usually sagittal) plane. But the fact is that knee is rotating in the 

three dimensional space. Recording the centre of motion this way implies that knee 
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motion is a combination of sliding and gliding moves and does not have a fix axis of 

rotation. 

Figure 9: locating the instant center. B) Semicircular instant center pathway for 

tibiofemoral joint in a 19-year old man with normal knee (in sagittal plane) 

(adopted from [50]) 

Hollister et al [28] revealed that knee joint, in fact does have a fixed axis of rotation. 

Using mechanical axis finder they managed to find the axis of rotation for 7 fresh 

specimens. According to their paper, the flexion/extension (FE) axis runs through the 

collateral ligament origins and superior to the intersection of the cruciate ligaments. They 

also managed to confirm the results using MRI scanning. They conclude that motion of 

human knee occur about two fixed, non-orthogonal axes. The study claims that knee 

motion is pure rotation about these axes the FE axis is not in the coronal plane, nor is LR 

in the sagittal plain. Most of motion takes place in sagittal plane but there is still rotation 

and motion outside of this plane. For more details on this study refer to Appendix B. 
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2.3.2 Surface motion of patellofemoral joint 

The skin surface of patella is the most exposed surface of the knee. Therefore it is a very 

suitable spot for placing vibration sensors. However since the patella slides a significant 

distance under the skin it is important to be able to track its movement by the brace. It is 

also important to maintain a fixed amount of force on the sensors to avoid change of 

signal magnitude. Understanding the patellar motion and knowing its approximate centre 

of motion enables us to track its movement and maintain constant pressure on the sensor 

as well as minimize unwanted skin movement underneath the sensors. 

According to Nordin and Frankel, during FE motion, the patella articulates to both facets 

of the femoral condyle. The average articulation distance is about 7 em. At full extension 

the patella sinks into the inter-condylar groove (Good fellow et al). Beyond 90° flexion, 

patella rotates externally and only the medial side of the condyles articulates with the 

patella (see Figure lOb). The centre of motion for the patellofemoral articulation can also 

be found using the technique described in the last subsection (Figure lOa). 
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(A) (B) 

Figure 10: A) Determining the instant center of patella in sagittal plane. B) The position of 


patella at different ranges of knee flexion motion (left). Contact areas during different 


degrees of flexion. Beyond 90° of flexion, the patella rotates slightly outwards. 


(adopted from [50]) 


2.3.3 Skin-bone movement 

Sati et al [29] in 1995 conducted a set of experiments to measure and mathematically 

estimate the skin movement at various locations on the knee joint. They found that skin 

bone movement varies significantly over medial and lateral condyles (2 to 17 mm). This 

problem adds to the fact that patella moves a great distance under the skin. In other words 

it is not practical to maintain a constant fix position for the sensors as the knee is doing 

the FE cycle. We are required to maintain the position on the knee by tracking the 

movement of the bone underneath. The method for performing such task is discussed in 

the coming chapters. 
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2.4 Summary 

This anatomy and kinematics literature review indicates that FE cycle of the knee is not 

just a simple two dimensional, uniplanar motion. Because of the offset of the FE axis 

from sagittal plane and the conical shape of the femoral condyles, a combination of 

sagittal, varus/valgus and rotational motion is observed. As it will be discussed in the 

coming chapters, one of the problems of using rigid knee braces for securing sensing 

devices to the knee is that they only allow movement in sagittal plane with little 

flexibility in other directions. This is in addition to the fact that different people have 

different knee sizes and therefore different sizes of brace must be prepared for different 

people. 

Another issue that was raised here is the surface motion of the patellofemoral joint. As 

mentioned before the patella on average, moves a distance of 7 em on in the condylar 

groove under the skin. If a sensor was placed directly on the patella in the flexed position, 

after extension it will not maintain its position with respect to the patella. This is because 

the skin does not move as much as patella does. Another problem is maintaining constant 

forces being applied to the sensors through out the FE cycle or at least keeping them 

within a specific range to a have proper contact between the sensors and the bone. This 

problem can be solved by finding the approximate centre of motion for the patellofemoral 

joint. As we will see later, by placing the rotation axis of the force within a close 

proximity of joint's rotation axis we can reduce the variation of the force and keep its 

direction perpendicular to the surface. 
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Chapter 3 


Knee diseases 


3.1 Osteoarthritis22 

Osteoarthritis (OA) is referred to abnormalities; biological events and physical 

deformities that would lead to degeneration of articular cartilage matrix or the 

surrounding bone structures in synovial joints. This degeneration will restrict normal 

functions of the joint and will eventually lead to pain and disability. OA can be a result of 

both natural and imposed causes. Depending on the initiating source, OA is divided into 

two groups, primary and secondary; primary is the group of OA that has been initiated by 

natural causes such as genetic disorders or diseases that would lead to changes in the 

biomaterial or biochemical structure of the joints and thus their weakness. These changes 

will eventually lead to OA. Primary type of OA in general occurs in both knees 

simultaneously. The secondary type of OA usually happens in one knee rather than both. 

This type is usually caused by factors such as joint injury. There are several factors that 

affect development and progression rate of OA: 

Weight 

One of the major factors that accelerate development of OA is excessive body weight. 

Studies show that a higher body mass index (BMI) increases the risk of bilateral knee OA 

22 Most of the content of this chapter have been adapted from [51] please refer to the book for more 

information 
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[30]. Other studies show that development of OA due to higher BMI will involve both 

patellofemoral and tibiofemoral joints [31, 32]. 

Age 

As people grow older, many of the biological functions of the body including the 

reparability of the articular surfaces slow down. The composition of the articular cartilage 

changes and the muscles become weaker. These factors increase the risk of developing 

osteoarthritis. A longitudinal study on women between the ages of 50 to 70 done by Hart 

et al. [33] shows that knee osteophyte development increases 4% every year. 

Gender 

Women have more risk of developing OA than men [5, 7]. The reason for this increased 

risk could be due to various factors such as hormonal changes in the body, weaker muscle 

strength and higher BMI in women. The volume of cartilage in general is greater in men 

than women. However if the cartilage volume is adjusted for differences in height, 

weight, and bone size this difference greatly reduces [34]. In general the difference in 

cartilage volume between men and women is only because men have larger joint surface 

area and not because of thicker cartilage [35]. 

Activity and Sports 

Although the articular cartilage in synovial joints requires regular loading and exercise, 

extreme activities: that is prolonged and/or excessive loading of the joint can also 

increase the damage risk. Jobs that require regular knee bending such as carpentry and 
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floor laying can increase the risk of OA [7]. Kujala et al [36] studied development of OA 

among female athletes in different fields of sports. They realized that soccer players have 

higher risk of developing tibiofemoral OA and in the case of patellofemoral OA; weight 

lifters have the highest prevalence. Again sports that require prolong hours of kneeling 

and knee bending or lifting contribute to development of patellofemoral OA 

Injury 

Knee injury can directly or indirectly lead to development of OA. Direct damage to the 

cartilage surface or weakening of the meniscus or ligaments can be cause of primary or 

secondary types of OA. Patients who have torn meniscus or have their meniscus 

removed, almost double the rate of cartilage degeneration (14% total volume lost versus 

6% in patients with healthy meniscus, over a two year period study) [37]. 

3.1.1 Symptoms and stages of OA 

The factors mentioned above each can contribute in a different way to OA but overall, 

inability of the body to repair damaged cartilage at the same rate as degeneration leads to 

development of this disease. As mentioned previously, excessive loading, aging and some 

joint diseases can change the structure of cartilage and prevent it from performing as 

required. Also long term immobilization of the knee and not loading it regularly can 

make cartilage tissue vulnerable. There is no vasculature inside the articulating surface 

and it receives nutrients from circulation of synovium in the porous surface of the 

cartilage. Synovium circulates inside the cartilage tissue under regular loadings of the 

knee. Therefore when the knee is not loaded regularly and is immobilized for long term, 
27 




Master's Thesis- S. Salari Sharif McMaster University- Chemical Engineering 

nutrients can not reach the articular surface which in turn will lead to degeneration or 

death of the cartilage cells [38, 39]. Cartilage is a porous permeable surface reinforced by 

collagen fibers. This porous surface is filled with water (Figure 11 b). The surface of the 

cartilage is lubricated by synovium. Presence of cosminglycan molecules and special 

chemicals inside the articular cartilage, which increase the negative charge inside the 

cartilage surface, greatly influences its mechanical and osmosis properties. Formation of 

a film of water between the articulating surfaces is the result of this property and is the 

main reason for very low friction coefficient between articulating surfaces . Water acts as 

a bearing and therefore articulating surfaces hardly have any contact at all. And in case of 

any contact, the synovium t1uid acts as a lubricant which further more reduces any 

possible damage to cartilage. 
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Figure 11: A) schematics of healthy versus osteoarthritic joint. B) a closer look at the 


structure changes of the articular cartilage in OA (taken from [51]) 


The chemical and biomechanical properties of cartilage change as people age. Reduced 


level of osmosis leads to increased friction coefficient. The tensile strength of the 
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cartilage fibers also decreases, which in turn increases the risk of damage to articulating 

surfaces. Continuous damage to the cartilage and its inability to repair with the same 

speed eventually leads to destruction of the cartilage layer and exposure of the bone 

(Figure lla). Partially, some of the lost cartilage is replaced by "repair cartilage" but this 

cartilage has different characteristics; less proteoglycan in the matrix, which is of major 

importance in maintaining osmosis properties, decreases the ability to withstand loadings 

as well as the hyaline cartilage. Osteoarthritis starts by fibrillation of the articulating 

surface. These loose fibers eventually penetrate the cartilage surface and cause further 

damage. Chondromalacia or softening of articular cartilage and cartilage fibrillation are 

early signs of osteoarthritis. The following figure shows the MRI images of a healthy and 

a knee joint surface with severe damage to the cartilage. In the healthy joint the cartilage 

has a clear margin whereas the damaged joint the cartilage is lost in various locations and 

the signal is not clear. 

Figure 12: Tl-weighted 3D gradient echo images of a healthy knee joint (left) and a knee 

joint with severe damage to cartilage 
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An osteophyte is a formation of bone and cartilage at areas peripheral to articulating 

surfaces. In addition to osteophyte, subchondral bone; the underlying bony surface of 

cartilage also becomes affected by damage to articulating surfaces. Deformation of 

subchondral bone on the margins of bone constitutes osteophytes. It is not clear why 

osteophytes form but studies show that they may help stabilize osteoarthritic joints [40]. 

3.1.2 Symptoms of OA 

In osteoarthritis the symptoms vary from person to person but overall, pain, stiffness, 

limited motion and crepitus are common among patients. 

Pain 

Pain is the first and most dominant symptom of OA. However studies show that there is 

no direct correlation between pain and loss of cartilage. Study done by Felson et al shows 

bone marrow swelling or edema strongly correlates with pain in patients [41]. Another 

study done by Kijowsky etal [ 42] indicates that in addition to bone marrow edema (BME) 

there is a strong correlation between pain location and meniscus tear location. They point 

out that other factors than BME must be responsible for knee pain. In the early stages of 

OA the occurrence of pain is limited to extreme loading conditions and usually dissipates 

by resting and unloading the knee but at later stages of OA more frequent occurrence is 

reported. At the end stages the pain becomes chronic and persistent [43]. 

Stiffness and limited joint function 
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Stiffness of knee refers to slowness and tightness of the knee in the mornings and usually 

does not last for more than 30 minutes. OA may limit the joint function. Limited range of 

motion is associated with muscle weakness and increased cartilage friction, which makes 

moving the knee harder. It is sometimes accompanied by pain [44]. 

Crepitus 

"Crepitus is an audible or palpable sensation of roughness, crinkling or crackling over a 

joint during active or passive movement [26]. In a study done by O'Rourke et al on OA 

patients, they compared the crepitus felt at different compartments of knee joint with 

arthroscopic observations. They found very strong correlation between cartilage damage 

and crepitus when knee motion was assisted by stressing maneuvers [13] 

In addition to, the above factors, there are other signs such as musculature changes, joint 

malalignment and joint enlargement that would show up in OA patients. 

3.1.3 Clinical diagnostic tools of OA 

There are several tools and techniques that aid physicians in the diagnosis of 

osteoarthritis; one of which is radiography. Although routine radiography can detect 

changes such as bone deformation, presence of osteophytes and cyst and narrowing of 

joint space, it can not detect signs of early stages of OA such as fibrillation or meniscus 

damage. Figure 13 shows angulation and formation of osteophyte in two knees with 

severe osteoarthritis. 
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Figure 13: x-ray images of OA knee. Left) angulation of the knee due to severe lateral 

compartment OA. Right) loss of joint space and appearance of osteophytes are present in 

the picture. Taken from [51] 

Magnetic resonance imaging (MRI) is the state of the art in medical imaging. MRI is 

based on the response of paramagnetic atoms such as hydrogen to RF disturbances in the 

presence of strong magnetic fields. Based on the frequency and timing of the RF pulses, it 

is possible to create 3D images of different sections of the body. By changing the settings 

on the MRI machine it is possible take images at different contrasts for different types of 

tissue (see Figure 14). There has been much attention to the application of MRI in 

diagnosing osteoarthritis. Compared to radiography imaging, MRI can provide images 

from various depths of the body, and has the ability to visualize soft tissue clearly. Ability 

to visualize soft tissue enables physicians to detect changes to cartilage surface which are 

the earlier signs of osteoarthritis compared to X-Ray imaging signs (see for example 

Figure 15). Despite these facts even MRI imaging is not sensitive enough to detect 
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preclinical symptoms of OA such as cartilage softening and fibrilation [45]. MRI does 

not radiate any harmful radiation, which makes it one of the safest body imaging 

techniques that has been developed. On the other hand MRI is very expensive and is not 

as accessible as radiography machines. 

Figure 14: MRI images of the knee at different machine settings; fat suppressed t1 weighted 

3D gradient echo (left), Proton density (middle) and t2 weighted (right) images 

In addition to x-ray and MRI there are also other technologies, such as Cat~Scan and 

Ultrasound that have been used for diagnostic of OA but overall the most widely used 

technique still remains x-ray imaging. Since X-ray imaging can not detect OA at early 

stages, and MRI imaging still remaining a costly, not readily available procedure, there is 

need for other technologies and tools that would help physicians detect joint degeneration 

at early stages. 
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Figure 15: osteoarthritic (left) versus healthy knee (right). Damage to meniscus, cartilage 

surface and subchondral bone are clearly visible. Image has been colorized based on 

different T weights of MRI 

3.2 Meniscus and ACL damages 

Meniscus and ACL tears are usually results of extreme loading or actions m sports 

activities. Damage to either one can, in the long term, lead to degeneration of articular 

surfaces. Meniscus degeneration is very common in patients with osteoarthritis. Common 

symptoms of meniscus tear are knee pain, swelling of the knee, tenderness, popping and 

limited motion of the knee. Radiography is used to diagnose meniscus tear, however it 

can only show the after effects of meniscus tear such as degenerative or arthritic changes 

of the knee joint. MRI can visualize the soft tissues (cartilage and meniscus) but is 

expensive. 
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From: http ://www.orthop. washington.edu/uw 

From: yorkshirekneeclinic.co.uk 

Figure 16: Left) meniscus tear shown in MRI Image, Right) different types of meniscus tear 

3.3 Discussion and summary 

In this chapter we briefly discussed one of the major joint diseases; osteoarthritis, its 

progression and the factors that initiate and accelerate it. We also discussed the signs and 

symptoms that usually occur during development of OA. In the last section some of the 

tools and technologies that help physicians detect OA were discussed and it was 

concluded that there is still need for cheaper and more convenient tools and technologies 

for detection and diagnostic of OA, particularly in the early stages. 
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Chapter 4 


Analysis of joint using vibration 


4.1 Clinical Studies 

This chapter builds upon previous research done by Yacoub [ 14], who showed that there 

is a strong relationship between recorded knee vibrations and severity of osteoarthritis. 

The goal of this work was to further investigate this correlation with more advanced 

equipment and apparatus and to find correlation between knee vibrations and MRI scores. 

In Yacoub's work vibration from three different locations of the knee were recorded by 

hand holding the accelerometers on the skin. Holding the accelerometers on the skin is a 

subjective and tedious process and for each location on the knee it requires the patients to 

repeat the test. It was decided to improve this method by designing and building a brace 

that would firmly hold 5 sensors on the skin simultaneously. Sensors should be located 

on the patella, lateral and medial femur and lateral and medial tibia. More details about 

the brace are available in the next subsection. After the brace was successfully tested and 

ready for tests and ethics approval obtained for continuation of the research, we recruited 

50 volunteers for the study. Both knees of each patient were imaged by a radiologist (Hao 

Wu) using the one Tesla MRI machine (Ortho-One) available in St. Joseph Hospital's 

rheumatology clinic. After the MRI, their knee vibrations were recorded during a series 

of activities; swinging the knee, squatting and impact. Patients were recruited from a 

wide range of age groups (20 to 78) with different grades of osteoarthritis (healthy to 
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severe OA). Out of 50 patients 20 were men and 30 were women. In general, there is 

more occurrence of osteoarthritis in women than men [30]. 

For each knee, 4 sets of MRI images where captured: 

• Sagittal, fat-suppressed, T 1 weighted, 3D gradient echo 

• T 1 weighted, Fast Spin Echo in coronal plane 

• Sagittal inversion recovery FSE sequence 

• T2 weighted fat-suppressed FSE in axial plane 

These images were later analyzed by a radiologist (Hao Wu) to complete a score sheet 

that identified different problems and its level of severity at different compartments of 

each knee. Knee vibrations from both knees of each patient were recorded. In the first 

step of the vibration test, after putting the brace on the patient's knee, they were asked to 

sit on a bench and swing the knee from 0 (fully flexed) to approximately 90 degrees 

several times at an approximate rate of 0.5 cycle per second, continuously for 20 seconds. 

The accelerometers continuously recorded the vibrations and the instantaneous knee 

angle (angle between thigh and shin) of the knee. in order to have a measure of 

repeatability of the test, each test was repeated three times, and before each repeat, the 

sensors or the brace were displaced a little to make sure the results are repeatable and not 

corrupted because of improper skin-sensor contact. Due to the short time available for 

each test, it was not possible to dismount and remount the brace again. So we had to 
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restrict ourselves by just displacing the sensors. In the second part of the test, patients 

were asked to stand up with their weight evenly distributed on both legs. Then they were 

asked to squat for 20 seconds in a range of 0 (fully extended) to 45 degrees. Again like 

the previous part, this test was repeated 3 times with sensors or the brace displaced before 

each sequence. In the last part of the test, patients were asked to stand still with the knee 

bent (5 to 10 degrees from fully extended). Then they were gently tapped on the shin 

several times with an impact hammer. Both the impact hammers input signal and the 

response signals by the accelerometers were recorded during the test. Again like previous 

parts we displaced the sensors couple of times during the test to have a measure of 

repeatability of the test. 

Each set of MRI images were analyzed by a radiologist. The surface of the knee was 

divided into 5 compartments; lateral and medial femur, lateral and medial tibia and the 

patella. For each compartment, the following observations were graded based on the level 

of their severity: 

• 	 Cartilage grading; the level of damage to articular cartilage, with a zero to 

four grade: Grade 0: healthy with clear bright cartilage surface and completely 

visible edges, Grade 1: one adjacent images area of low signal intensity (SI) 

extending to normal cartilage surface, Grade 2: mild cartilage surface 

irregularity, with focal defect less than Y2 the thickness of the cartilage, Grade 3: 

sever surface irregularity or defect with more then half of the thickness of the 

cartilage but not exposed to bone, Grade 4: Cartilage defect exposing bone 
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MRI Scoring Sheet 

Patient ID: -,-------------- DmeofNUU: ~---
Date ofSccring: _________ Sca-ing Physician ___ 

Artifacts: Image Contrast: 
a) Motion Artifact 0 2 3 a) Cartilage and bone: 0 I 2 3 
b) Susceptibility Artifact: 0 2 3 b) Cartilage and fluid: 0 I 2 3 
c) Im age Noise: 0 2 3 c) Cartilage and fat 0 I 2 3 
d) Fat Saruration: 0 2 3 d) Cartilage and meniscus: 0 I 2 3 

e) Bone and fuid: 0 I 2 3 

Medial Femur Lateral Femur :Medialli bia Lateral Tibia Trochlea Patella 
Car Grad. (0-4) 
Sub Cyst (0- 3) 
B.ME(0 - 3) 
Osteophyte (0 -2) 

Cartilage Grading: 

Grade 0: normal 

Grade I: one adjacent images area of low SI extending to normal cartilage surfa::e 

Grade 2: mild cartilage surface irregularity, foca l defec t < 'h thickness 

Grade 3: severe surface irregularity or defect > 'h < full thickness 

Grade 4: Cartilage defect exposing bone 


Bone Marrow Edema (BME): 0: none I:mikl (<I em) 2= moderate( l-2cm) 3:severe(>2 em) 

Subchondral Cyst : 0 = nme, I =mill (<!em), 2 = mod<.-ate (1 -2 em) 3= severe (>2cm) 

Osteophyte 0= none, I = rresent (<0.5cm in length), 2 = Present (>0.5 in length) 


Meniscus: 

[O= normaL I= degeneration ( inter substarx:e high SI) ; 2= tear (high SJ extending to articular surface) ] 


Medial AH Media l PH Lateral AH Lateral PH 
0 I 2 0 I 2 0 I 2 0 I 2 

Ligaments: 

[0 =no tear, 0. 5 = pirtial tear I =tear] 


ACL PCL Patellar Tendon 
0 05 0 0.5 0 05 I 

Loo•e Body: Absent Present 

Popliteal Cyst . Absent Present 

Joint Effusion none mild moderate severe 

Figure 17: MRI score sheet used for this study 

Following table summarizes the X and Y variables used in this study: 
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of severity, meaning that if 80 percent of cartilage is healthy but 20% has grade 3 

degeneration, then grade three is assigned, as the score, to that cartilage region25
• Figure 

17 shows a sample of MRI score sheet used for the study. 

25 Since this method is not a strong indicator, it was corrected later for the future analysis. the analysis done 

in this thesis are based on the method mentioned in the text 
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MRI Scoring Sheet 

Patient ID: -:------------ ­ DateofNGU:~---
Date ofSccring: --------- Sccring Physician: ___ 

Artifacts: Image Contra\!t: 
a) Motion Artifact 0 I 2 3 a) Cartilage and bone: 0 I 2 3 
b) Susceptibility Artifact: 0 I 2 3 b) Cartilage and fluid: 0 I 2 3 
c) Image Noise: 0 I 2 3 c) Cartilage and fat 0 I 2 3 
d) Fat Saturation: 0 I 2 3 d) Cartilage and meniscus: 0 I 2 3 

e) Bone and fuid: 0 I 2 3 

Medial Femur Lateral Femur Medial TIIJia Lateral Tibia Troehlea Patella 
Car Grad. (0--4) 
Sub Cyst (0- 3) 
B.ME (0-3) 
Osteophyte (0 -2) 

Cartilage Grading: 

Grade 0: normal 

Grade I: one adjacent images area of low SI extending to ncrmal cartilage surfooe 

Grade 2: mild cartilage surface irregularity, focal defect< 'lz thickness 

Grade 3: severe surface irregularity or defect> Y, < full thickness 

Grade 4: Cartilage defect exposing bone 


Bone Marrow Edema (BME): 0: none l:mikl (<I em) 2= moderate(l-2cm) 3:severe(>2 em) 

Subchon<htl Cyst : 0 = nme, I = mikl (<I em), 2 = moderate (1-2 em) 3= severe (>2cm) 

Osteophyte 0 = none, I = p-esent ( <0. 5 em in length), 2 =Present (>0. 5 in length) 


Meniscus: 

[0= namaL I= degeneration (inter substance highS!); 2= tear (high SI extendng to articular surface)] 


Medial AH Medial PH Latera!AH Lateral PH 
0 I 2 0 I 2 0 I 2 0 I 2 

Ligaments: 

[0 =no tear, 0.5 = pa-tial tear I= tear] 


ACL PCL Patellar Tendon 
0 0.5 I 0 0.5 0 0.5 I 

Loose Body: Absent Present 

Popliteal Cyst : Absent Present 

Joint Effusion none mild moderate severe 

Figure 17: MRI score sheet used for this study 

Following table summarizes the X and Y variables used in this study: 
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X variables Y variables 

Sitting Vibration from: 
position: 

Patella 

Medial side of tibia 

Lateral side of tibia 

Medial side of femur 

Lateral side of femur 

Angle of the knee during cycle 

Standing Vibration from: 
Position: 

Patella 

Medial side of tibia 

Lateral side of tibia 

Medial side of femur 

Lateral side of femur 

Angle of the knee during cycle 

Impact test: Impulse response recorded at: 

Patella 

Medial side of tibia 

Lateral side of tibia 

Medial side of femur 

Lateral side of femur 

Input impulse transmitted by 
the hammer 

Patient's height, weight and age 

Medial femur: Cartilage grading; (0- 4) 

Osteophytes; (0- 3) 

BME; (0- 3) 

Subchondral cyst; (0- 2) 

Lateral femur: Cartilage grading; (0- 4) 

Osteophytes; (0- 3) 

BME; (0- 3) 

Subchondral cyst; (0- 2) 

Medial Tibia Cartilage grading; (0- 4) 

Osteophytes; (0- 3) 

BME; (0- 3) 

Subchondral cyst; (0- 2) 

Lateral Tibia Cartilage grading; (0- 4) 

Osteophytes; (0- 3) 

BME; (0- 3) 

Subchondral cyst; (0- 2) 

Patella Cartilage grading; (0- 4) 

Osteophytes; (0- 3) 

BME; (0- 3) 

Subchondral cyst; (0- 2) 

Meniscus Lateral posterior horn 
health: 

Medial posterior horn 
(0- 2) 

Lateral anterior horn 

Medial posterior horn 

ACL health, PCL health, Patellar tendon health 
(0- I) 

Presence of loose body (0 - I), Popliteal cyst: (0 
- 1), Joint effusion level (0- 3) 

Table 1: X and Y variables obtained from MRI and vibration recordings of the knee 
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4.2 Brace Design 

4.2.1 Mechanical Hardware 

The accelerometers used for this research project require a firm grip to the skin to record 

signals properly. These types of sensors are very sensitive to vibration (1000 mv/g) and 

even the slightest vibration transmitted through external equipment will be picked up by 

them. On the other hand the brace must be adjustable to different knee sizes and must 

adapt to the motion of the knee without restricting its natural movement. It must also be 

comfortable enough for patients to be put on for several minutes without causing pain. 

In the first attempt, a commercial brace was employed and the sensors were mounted on 

it. After carefully examining the brace on the knee, we noted several problems that 

required us to change the overall design. First problem was the noise generated by the 

rigid hinges of the brace. The noise could easily be picked up by the sensors and therefore 

corrupt the vibration signal from the knee. Another problem was the time and experience 

that was needed to put on and to adjust the brace on the knee. If the brace was not put on 

properly it would start moving on the knee and relocate the sensors. Because of its 

relatively heavy weight, the brace needed to be rapped around the thigh or otherwise it 

would slide down. During the flexion/extension (FE) cycles, the quadriceps muscles 

generate a lot of vibration due to expansion and contraction. Because of the rigid design 

of the brace, these vibrations are transmitted through the brace arms to the sensors. 
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Figure 18: universal commercial brace donated by Gil Orthotics Inc 

Because of the problems mentioned above, we realized it would be best if we designed 

our own brace from scratch and consider these essential characteristics into it. Overall the 

brace should have the following properties: 

1- provide a secure tight fit for the sensors on the knee 


2- be adjustable to different knee sizes 


3- should be comfortable for the patient 


4- produce minimum amount of mechanical noise and vibration 


5- be able to track the patellar movement under the skin 


6- adapt to the off-sagittal motion of the knee 


7- prevent/minimize displacement of the sensors on the skin 


The very first and most important feature that must be embedded in the brace design is 

the ability to hold the sensors on the knee at proper locations and to provide a firm grip 
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on the skin. The second important issue to the design is the adjustability of the brace for 

different knee sizes. We realized that the best solution to these problems would be to use 

stretchable rubber bands to hold the sensors around the knee. Using rubber bands also 

eliminates the mechanical noise generated by the solid hinges in the previous brace 

design. It also makes the brace very lightweight and eliminates the need for wrapping it 

around the thigh for more stability. It was also important that the brace adapt to the off 

plane motions of the knee. In the previous brace design, because of the solid rotational 

hinges used on the brace, the brace would have only allowed movement in the sagittal 

plane. Because of this inability to move off sagittal, stretching the knee could cause all 

the sensors to displace on the skin. In the new brace design, we solved this problem by 

separating the lower part of the brace from upper part. Lower part of the brace is 

supported by being wrapped around the shinbone using two rows of stretchable Velcro 

bands. Support for upper part of the brace is provided by a roller support on the back of 

the knee. The roller support also acts as a non-stationary hinge for the side arms; the ones 

that hold the accelerometers on the femur. During FE cycle, the only stationary point on 

the skin will be the sensors themselves and this prevents the sensors from sliding on the 

skin. Figure 19 to Figure 22 show the brace and its components and how it is mounted on 

the knee. 
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accelerometers \ 

'"--------! \ 

Patella 

accelerometer 

Roller support for 

the back of the 

knee 

ITilt Sensor 

Figure 19: final design of the brace with accelerometers attached to it 

As mentioned in previous section, the patella moves fairly a long distance on the femur 

and under the skin. If the patella sensor is only attached to the skin and not guided by 

external means, it would fail to track the patellar movement during the FE cycle. We 

discussed in the anatomy chapter that the patella is attached to the tibia by a ligament. 

During the FE cycle, the distance between patella and the attachment point on tibia 

always remains the same. With this knowledge we can solve the patella-tracking problem 

by extending an arm from patella sensor to the shinbone and securing it to the skin at the 
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attachment point of the patellar ligament and tibia. This extending arm is made of semi 

flexible plastic and can adapt to the bends and rotations of the patella but always keeps 

the same distance between the patella sensor and the tibia. This allows the patella sensors 

to always stay on top of the patella during the cycle. The length of the arm is adjustable 

through its lower end. This allows it to be adjusted for different patients. 

Adjustable 

arm 

Patella 

accelerometer 

Figure 20: Left) Patella Sensor and the adjustable arm, Right) location of the sensors on the 

knee 
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Figure 21: Top view of the brace assembled to the knee 

The lower part of the brace supports the tibia sensors. Again elastic rubber bands provide 

tight adjustable and noise free grip for the sensors. Two rows of elastic bands with Velcro 

on the ends makes mounting of the brace very fast and easy. 

Figure 22: Side and rear views of the brace when mounted on the knee 
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Providing momentum and stability for the sensors: 

The rubber bands holding the sensor in place, in addition to providing the vertical force 

on the accelerometer also provides horizontal force components in opposite directions 

that cancel each other. Since this source of horizontal force is at a distance away from the 

base of the sensor, any imbalance during the FE cycle can create a momentum that can 

cause the sensors to flip over. By increasing the base cross section of the sensors we were 

able to prevent the sensors from flipping over as a cause of these horizontal forces. 

Increasing the base cross section of the sensors also makes it more comfortable for the 

patient to wear. 

4.2.2 Electronic hardware 

The data acquisition hardware consists of 5 1000 mv/g ceramic shear ICP ® 

accelerometers (by PCB and Kjaer), two national instruments (NI) USB data acquisition 

boards, one miniature impact hammer and one electronic goniometer. Appendix A 

contains the details on electronic hardware used for this project. Figure 23 shows 

combination of these parts together: 
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Oara 
acquisition 
hardware 

D 

Figure 23 diagram of Data Acquisition hardware 

Accelerometers: 

5, 1000 mv/g accelerometers (Figure 24) are used to record the vibration from the surface 

of the skin. Inside each accelerometer there is a piezoelectric component that translates 

mechanical vibration into electronic voltage. These. accelerometers are powered by a 

constant current power source. Using this type of accelerometer with external current 

source has several advantages: 

• 	 Fixed voltage sensitivity makes the output independent of the voltage or 

cable length 

• 	 Low impedance output signal greatly reduces the loss of signal quality . 

• 	 Low wired operation using low cost coaxial data cables. 

• 	 Low noise voltage-output signal output makes them compatible with many 

data acquisition or signal processing equipment 
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Figure 24: PCB 1000 mv/g accelerometers and their circuit diagram (right) 

These accelerometers have high sensitivity and low susceptibility to external noise. The 

range of frequency related to knee joint problem has been reported to be in range of 0 to 

1000KHz [46]. However in order to prevent aliasing effects we need to record signals at 

much higher frequency rates. The recommended sampling rate is LO times the maximum 

frequency. For this project we chose a sampling rate of 6250Hz. 

Impact Hammer: 

Frequency response analysis is a method in which an input signal is introduced to a 

medium and the response traveling through the medium is recorded in another location. 

Analyzing the input/output relationship between the frequencies is called frequency 

response analysis. By analyzing the response of a system to an input signal it is possible 

to obtain information about its physical characteristics. For the purpose of this project we 

acquired a miniature, modally tuned impact hammer made by PCB® electronics (Figure 

25). This type of hammer transmits an impulse signal to the medium upon impact. The 

small force sensor inside the hammer measures the amount of force being applied as a 
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function of time and converts it into voltage. This voltage is send to the data acquisition 

device where it is converted into digital data and saved in to the computer's memory. 

These impact hammers are modally tuned and when they hit a hard surface, they transmit 

a near impulse force signal into the surface. Impulse input contains a wide range of 

frequencies. The range of frequency depends on the type of hammer tip and the surface 

hardness. As the signal travels through the system, depending on its physical 

characteristics some of the frequency components attenuate. By recording the output 

signal and comparing the output (accelerometer) frequency magnitudes to the input 

signal's frequency magnitude it is possible to calculate the impulse response of the 

system. 

1' MAG: 10 dB DIV 

-> LOG FREQUENCY 20KHZ 

Figure 25: PCB miniature impact hammer and its frequency range diagram (right) 

As a part of the tests, the patient is asked to stand still with knees slightly bent. The 

examiner then hits the patient carefully on the shin with the hammer. The response to this 

impulse is collected by the accelerometers and is saved into the computer's memory for 

later analysis. The aim is to see if the impulse response analysis can reveal any 
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information about the structure and quality of the knee joint such as cartilage thickness 

and meniscus health. 

Electronic Goniometer 

An electronic goniometer attached to the leg measures the relative angle between the 

thigh and the shinbone (Figure 23). The goniometer is composed of two tilt sensors, one 

placed on the shin and the other taped to the thigh. They are coupled in a series circuit 

and each accelerometer (tilt sensor) transmits a voltage proportional to its angle with the 

horizon. The difference between the two voltages from each tilt sensor will be 

proportional to the relative angle between the shin and thigh. 

4.3 Summary 

In the clinical studies section the procedures of the tests and the variables collected for 

each patient were described and discussed. In the next two sections of the chapter we 

talked about the hardware design for the project. Our experiments showed that 

commercial braces available in the market were not suitable for our purpose, therefore 

based on the previous findings in chapter 2; a brace was designed to securely mount the 

recording sensors to the knee. The newly designed brace was capable to mount the 

sensors securely to the knee, be flexible enough to follow movements of the knee without 

restricting it and was designed in such a way that could be mounted easily to the knee in a 

short time. In addition to the brace design we also talked about the electronic hardware 

employed for the study. 
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Chapter 5 


Analysis and results 


Analysis of data consists of two parts, preprocessing and feature extraction. In the 

preprocessing or preparation part, time domain data is converted into frequency or 

pseudo-frequency domain (using Wavelets) and then using PCA and PLS features related 

to responses (Y) and the "X" space are extracted from the ill conditioned data matrix. 

Principal Component Analysis 

In principal component analysis (PCA), principal directions that contain maximum 

amount of variance of the data matrix are found and used to reconstruct the data set or to 

regress against feature space variables. Mathematically speaking, finding principal 

components is equivalent to finding eigenvectors associated with largest eigenvalues of a 

matrix. Any matrix (X) regardless of its shape and condition number can be decomposed 

into: 

(5.1) 

Where U is an orthogonal matrix associated with eigenvectors of XXT; Vis an orthogonal 

matrix associated with eigenvectors of XTX and I: is a diagonal matrix with eigenvalues 

of X along its diagonal. Here, superscript T represents the transpose operator. 

O"l 0 0 

X =UI:Vr =U 
0 O"z 0 VT (5.2) 

0 0 0 
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Equation (5.2) can be written as the sum of outer products of U,1: and Vas: 

(5.3) 

Assuming ti = O"itii and Pi= Vi, above equations will translate into standard notations for 

PCA. With the new notation X can be rewritten as: 

(5.4) 

Or 

(5.5) 

Small t vectors are the principal component scores of matrix (X) and the p vectors are 

called the loading vectors. Several methods are available for calculating principal 

components of matrices and, depending on the size and application, they can be chosen. 

These methods include singular value decomposition, NIP ALS algorithm and kernel 

methods. When the matrix is large and it is not required to extract all the eigenvalues and 

eigenvectors, or when there are missing data in the matrix, then recursive methods such 

as NIPALS are the method of choice. Principal component analysis is used to extract the 

common cause of variation in a data set. When several variables in a dataset matrix are 

highly correlated, it is probably due to a common source of variation. Loading vectors 

and principal components can be interpreted as the common cause of these variations. 

Once the principal components of the data matrix are found, there are several graphs and 

tables that can be used to provide useful information about the nature of data. Some of 

these graphs and plots will be briefly discussed here: 
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Model overview plots: present the cumulative contribution of each component to overall 

fit in the model. 

XIY overview plots: present cumulative fit of variables (columns of the data matrix) by 

component. In other words shows that what percentage of variance of each variable has 

cumulatively been captured by the components. 

Component contribution plots: show what percent of each variable is explained and 

predicted by each component 

Component scatter plots: Scatter plots with respect to 2 or 3 components (3d) of a data 

matrix can show how the observations in that matrix are related to each other with respect 

to these components. For example observations with similar properties usually show up 

being close to each other in clusters in the score space (T) 

Loading Plots: 2 or 3 dimensional loading scatter plots that correspond to the component 

scatter plots among variables (columns of data matrix) that explain the variation seen in 

the component scatter plot. Variables with loadings lying close to one another are highly 

correlated. 

In addition to above plots, we will briefly talk about some of the definitions used in 

principal component analysis: 

R2x: is the percentage of fit by the first A principal components of the X matrix: 

R 2 = SS x calculated from principal components 
(5.6) 

X ss 
X 
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Q2
x : is the same as R2

x but the data used for prediction is not used for building the 

model. 

Q2 = SS x predicted 
(5.7) 

X ss 
X 

DmodX: or distance to the model is the distance of each observation to the n dimensional 

plane described by the A first principal components of the model. If this distance is large, 

that means the model cannot explain that observation using the first A set of components 

~ 2 Jl/2
DmodX = L....keik (5.8)( K-A-1 

The eik's are the elements of the residual matrix E= X - TPT. "A" is the number of 

components and k is the number of observations. Partial least squares or PLS is similar to 

PCA in nature. In PCA the goal is to find vectors Vi that maximize (5.9). The solution to 

(5.9) turns out to be the eigenvectors associated with largest eigenvalues of XTX 

(variation matrix of X) 

max ( viXr X vi) 
V; (5.9) 

S.T. vJ vi= I 

In PLS we try to maximize: 

m;x ( wixryyr Xwi) 
(5.10) 

S.T. WT w. = l 
I I 
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Where Y is the response matrix. Again the solution again turns to be largest eigenvectors 

associated with the xTyyTx matrix (covariance matrix of X and Y). Plots and graphs 

used for principal component analysis can also be used for PLS analysis. In PLS analysis, 

there are some additional terms and plots that will be briefly discussed here: 

R2 
y and Q2 

y show the amount of variance in the Y space explained and predicted by the 

model using the first n principal components. 

tulun scatter plots: show the linearity of correlation between X and Y space. If t0 /un plot 

is not linearly scattered then it means the correlation between X and Y is non-linear and 

therefore a non-linear PLS should be used to fit the data. 

Coefficient plots: describe the coefficients "W' of the prediction equation Y=X fJ . The 

larger the coefficient, the stronger the influence of that variable is on the prediction. 

Variable Importance Plots (VIP): Rearranging the variables based on the weighted root 

mean square of the loadings [SIMCA Tutorial by Umetrics Inc] gives the VIP plot. VIP 

plot is useful for determining most influential variables in the overall model, for the entire 

Y matrix. 

Contribution plots: show why an observation or a group of observations is different 

from another observation or group of observations in the score (t1, t2, ... ) space or in the 

residual (SPE) space. In other words these plots show which X variables contribute most 

to the changes in the score space, with changes from between two observations or 
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between the mean of two groups of observations in the score space or the residual (SPE) 

space. 

5.1 PCA on Y Data 

Principal component analysis (PCA) on the observed response data (Y in Table 1) gives a 

model with 1 component explaining 31% of the variation in Y space (Figure 26a). 

Model o>erliew plot (PCA on Y Data) 
1. 0 1-~-

0.2 ' 

0.0 

a: 151: 
0. 

E E 
0 0 
u u

• R2X(cum ) • 02(cum) 

(a) 

1.0 + 
0.8 

0.6 

0.4 

0.2 

0.0 

Over\1ew Plot • R2VX[1](cum) 
(PCA on Y Data , First Componen. Q2VX[1](cum) 

(b) 

Figure 26: a) Model overview plot of theY Data. b) Variable overview plot for the first 

component 

Although the second component does not increase the prediction (Q2
) of the model, it still 

improves the visualization of the plots and therefore is included. The X/Y overview plot 

shows that the first component is mainly capturing the variations caused by cartilage 

degeneration and osteophyte formation (Figure 26b). This plot also shows that the 

correlated behavior among cartilage and osteophyte scores explains the major variation in 

dataset. The P/P2 loading plot (Figure 27) shows that there is a strong positive 

correlation between osteophyte formation and cartilage degeneration, especially in the 
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medial compartment of the knee. It appears that meniscus degeneration in the medial 

anterior horn (M-AH) is also strongly correlated with cartilage degeneration and 

osteophyte formation. It also seems that Bone Marrow Edema (BME) in the medial 

compartment is related or correlated to osteophyte formation and cartilage degeneration. 

However BME in the lateral compartment of the knee does not appear to be correlated to 

osteophyte and cartilage problems. There is also some clustering towards the direction of 

the second loading axis but due to the small number of non-zero variables in this 

direction it is not really possible to assess the results. Perhaps increasing the number of 

patients in the study would improve interpretation of variations in this direction as well. 
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Figure 27: P1/P2 loading plot of theY Data. 

5.2 Analysis of Fourier transforms 

5.2.1 FFT 

A signal can be expressed in different domains . While time domain is appropriate for 

presenting local and spatial changes in a signal, the frequency domain will present the 

periodic reoccurrence of a phenomenon in the signal. For a continuous analog signal, 

Fourier transformation from time domain to frequency is defined by: 
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-
X (f)= FT(x(t)) = Jx(t)e-i 2tr11 dt (5.11) 

Where f is the frequency, j is H and tis time. X( f) can be written as: 

X(f) =IX(f)ieiLXUJ (5.12) 

where X (f) is called magnitude of the signal and LX(f) is called phase. The inverse 

of a continuous Fourier transform is written as: 

-x(t) = IFT(X (f))= fX (f)ei2trftdf (5.13) 

Definition: Impulse Function 

Impulse function; 8(t-t0) is a function with the following properties: 

(5.14) 

-J8(t-t0 )g(t)dt = g(t0 ) (5.15) 

Fourier transform of an impulse function is: 

-FT(8(t)) = f8(t)e-i2trfrdt = e-i2~rf<OJ = 1 (5.16) 
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This means that the frequency spectrum of an ideal impulse function is flat [47) pp20-21] 

and contains all frequencies. As it will be described in the upcoming sections, this 

property of the impulse function affects the overall shape of the frequency spectrum of 

the knee motion because of the impulse shaped clicks of the knee. 

In the real world, all signals are continuous. In order to work with these signals we need 

to transform them into digital signals sampled from original continuous signals. Nyquist 

or Shannon theory indicates that for a signal with maximum bandwidth of fc, the 

minimum sampling rate that is needed to fully reconstruct the original signal is fs ~ 2fc. If 

the signal is sampled at fs =2fc but it contains frequencies above fc then these frequencies 

above fc will be super imposed on the frequencies within the frequency range (0 < f ~ fs ). 

Therefore it is necessary to pre-filter the signal using analog filters and remove these high 

frequencies before digitally converting it and processing it using Fourier analysis. If there 

is no previous knowledge of the shape of the signal it is best to look at the power 

spectrum of the signal and if the power spectrum decays towards zero then it is unlikely 

that the signal contains any higher frequency components (Press et al 1992) [48]. 

Assuming N points have been sampled at a sampling rate of fs then the N point discrete 

· 10 f h · 1 10 f · f. n f from -/, to +/, can be Founer transtorm 0 t e stgna !Of requenctes: n = N s 2 2 

obtained as: 

-too . N-1 -j2Tc.f,k}__ 

X(fn) = Jx(t)e-12Jrfntdt~X(f,)=L~e I- (5.17) 
k=O 
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For fn from - J, to +J, . Equation (5.17) can alternatively be written as: 
2 2 

N-l -j2Jr'!'!_ -N +N 
xn = Ixke. N for n=- to (5.18) 

k=O 2 2 

If x(t) is real then the magnitude of frequency is symmetric about f =0 and only 1 half of 

the spectrum (for example from 0 to f/2) is needed for analysis. Inverse of discrete 

Fourier transform is: 

(5.19) 

Throughout the rest of this section we will use Fast Fourier Transform (FFT), which is a 

fast algorithm for calculating discrete Fourier transform of signals. 

In many people, during the FE cycle, the knee generates clicking sounds. These sounds 

are generated during the movement of the patella on the femur. This clicking sound is not 

associated with arthritis and is very common in physically active people. From signal 

processing point of view, these clicks resemble impulse signals and contain a wide range 

of frequency components and in a knee that clicks frequently, they can easily alter the 

frequency spectrum. According to equation (5.20) when two signals are summed, their 

Fourier transforms are also added: 

(5.20) 

Before analyzing the knee vibration signals, these clicks must be removed using 

thresholding techniques. As it will be discussed in the next subsection, wavelet transform 
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is a good candidate for this purpose. In wavelet thresholding, first, each signal is 

decomposed into its wavelet coefficients. After calculating the standard deviation of the 

coefficients at each level, any coefficient that has an absolute value larger than 3 standard 

deviations is trimmed to 3 standard deviations. Once all the coefficients have been 

thresholded, the original signal is reconstructed from the new coefficients. The following 

figure shows the process: 
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Wavelet thresholding of a knee signal (4 level, dbl) 
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Figure 28: Left) Wavelet decomposition of the original signal, Right) thresholded wavelet 

coefficients and the reconstructed signal 

The top graphs in Figure 28 are the original and the reconstructed signals after 

thresholding. We can see that the clicks in the reconstructed image have been removed. 

The following figure shows the change to the power spectrum of the above signal, before 

and after removing the spikes (clicks): 
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Frequency Spectrum of the a sample knee signal, before and after thresholding the signal 
.ffi ,-------.-----~~-------,~--~--.--------r--~~~======~ 
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·100 
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"­
~ 
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.Jffi 

-~0~------~~----~~~~------~~----~~------~~------~------~~~ ~~ ~ ~
Frequency (Hz) 

Figure 29: Periodogram of the knee signal before and after thresholding. 

The next step in preprocessing is de-trending or removing the linear trend of the signal. 

The reason is that some of the patients do not perform the FE cycles in the same angular 

range (as shown in Figure 30). Analysis showed that removing the linear trend from the 

signal provides better results. Detrending can be done by fitting a straight line into the 

signal and subtracting it from the signal. 
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Figure 30: Left: original signal. Right: signal after detrending 

Once the signal is corrected for the clicks it can be analyzed by a combination of spectral 


and principal component analysis. 


Power Spectral Density (PSD) of a signal is defined as: 


N 2} rp(m) =limE ___!__ Ix(k)e-icok 	 (5.21) 
N~~ { N k= l 

Where E is the expected value of the equation in the bracket, N is the number of samples, 

x(k) is the measured signal at time k and ffi is the angular frequency in radians. 

ffi is a periodic function (ffi = 2n:f) with period of 2n:, mE [-Jr,Jr] , frequency of the 

equation can be defined as f=ffi/2n:. This implies that the interval of F is between [ -F/2, 

F/2] . In real life the number of samples measured is always limited and therefore 
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equation (5.21) cannot be used directly. A Periodogram is a simplified form of PSD and 

is defined as: 

N 2 

rjJ(OJ) = _1 Lx(k)e-iwk (5.22) 
N k=i 

The problem with this method is that the magnitude of discrete Fourier transform is not a 

consistent estimate of the true power spectrum; i.e. its variance does not decrease with 

more data (increasing N). Increasing N rather provides estimates at more frequency 

points and not more accurate ones. However as N gets smaller the power spectrum 

estimates get biased26
. There are other methods of non-parametric PSD estimation that 

tend to minimize the variation and bias. The most common method is the Welch method. 

Simply put, in Welch method, the signal is split into S overlapping segments. Each 

segment is defined by: 

xi (t) =x((j -l)K + t) 


t=l, ... ,M (5.23) 


j=l, ... ,S 


where M is the size of the window or the segment. If K =M then the segments wouldn't 

overlap. Each segment of data is then multiplied by a smoothing window v(t) with the 

26 For more information on spectral analysis and PSD see "Introduction to Spectral Analysis" by Petre 

Stoica, ISBN: 0-13258419-0 
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same size of the segment and then periodograms of all segments are averaged. The 

windowed periodogram is computed as: 

A 1 M . 2 

r/J;(m) =­ Lv(t)x;(t)e-wx (5.24)
MP 1=1 

Here, P is calculated as: 

{ M

P=-IIvCt)l (5.25) 
M 1=1 

v(t) is the smoothing window and Sis the average of all periodograms for each segment: 

A A1 ~ 
rfJw (m) =S f;t ¢; (m) (5.26) 

Through out the rest of this chapter, the spectral analysis is done on the Welch power 

spectral estimations of the signals. Changing the size of the smoothing window, overlap 

of the segments and number of frequency points being selected can change bias and 

variance of the signal. 

Once the signals are preprocessed, the periodogram of each segment, ¢; (w), is calculated 

and averaged over the "half-cycles" of the knee. A half-cycle is part of a FE cycle that is 

confounded by two zeros (roots) of the signal. Roots of the signal are the approximate 

points where the signal value equals the overall average of the signal (Figure 31 ). In case 

of a mean centered signal this value is zero. Therefore equation (5.26) changes to: 
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A AI s. 
r/Jwf! (OJ) = S+ ~¢i (OJ) jE positive cycfes 

(5 .27) 
A I 5- A 

rAvN (OJ) =S L ¢/m) j E negative cycles 
- .t= l 

Half cycles of the Signal 
0.6 . . . 
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Figure 31: Positive and Negative half cycles of a signal 

The reason for dividing the signal into two mam portions (positive and negative half 

cycles) is to maintain some of the spatial information of the signal that might further help 

to localize symptoms such as meniscus tears. Since there is more information in the low 

frequency region of the spectmm than the high frequency region, frequencies are chosen 

in a Log-wise manner over a range of 0 to 3125 Hz (1/2 sampling range) at 150 points. 

Figure 32 shows the positive and negative spectrums for a sample signal. 
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Figure 32: Frequency spectrums for positive and negative half cycles 

Comparing the results showed that inverse of power spectra in the X matrix provides 

better information than X matrix itself. Therefore throughout the rest of this section 

power spectrum inverse is used for analysis as the X matrix. The positive and negative 

spectrum coefficients of the signals form the "X" variable matrix for PCA and PLS 

analysis. For PLS analysis, markers obtained from analysis of MRI data for each patient 

constitutes the "Y" matrix (Section 4. 1). 

5.2.2 PCA on FFT 

For standing position data, the "X" matrix contains 1500 variables; 300 variables for each 

sensor (accelerometer) and 150 variables for each half cycle of each accelerometer power 

spectrum (Table 2). These variables are the coefficients of the power spectrum inverse. 
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Pat+ Pat_ FLat+ FLat_ FMed+ FMed_ TLat+ TLat_ TMed+ TMed_ 

patient 1 

patient2 

patietnN 

Table 2: "X matrix of the spectrum magnitudes for PCA and PLS analysis; Pat: Patella, 

FLat: Lateral Femur, FMed: Medial Femur, TLat: Lateral Tibia, TMed: Medial Tibia 

After performing an initial PCA on the Data and removing outliers (4 observations), PCA 

analysis on the X data gave a model with 39 components (R2 =0.963, Q2 =0.833). The 

first 5 components of the model captured 66% of the variation (Q2 = 57%). Figure 33 

shows the model overview plot of the Data. 

Model O~.e~ew plot (PCA-X) • R2X(cum) 
Standing Data • 02(cum) 

R2X = 0.963, Q2 (cum) = 0.833 

SIMCA·P+ 11 · 6/9/2007 1:19: 54 AM 

Figure 33: model overview plot of the Standing Data (Power Spectrum) 

The component contribution plots (Figure 34 to Figure 36) show that component l is 

mainly capturing the difference in average amplitude of the spectra over all frequencies 
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and the second and third components are capturing the variations in very low and mid 

freq uency range. 
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Figure 34: Component contribution plot for the first component (PCA on Frequency) 
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Figure 35: Component Contribution plot for the second component (PCA on Frequency) 
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Component Contribution plot for the third component 

PFIFmTITmlogt.M1 (PCA-X), R2VX[Comp. 3] 
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Figure 36: Component contribution plot for the third component (PCA on Frequency) 

Figure 37 shows the t l/t2 and t3/t2 scatter plots of the model, colored according to the 

average severity of cartilage damage in the knee (O=healthy, 3=severe damage). It is 

evident that there is a trend from healthy to damaged cartilage. A contribution plot 

between healthy and damaged cartilage knees (Figure 38) shows that the power spectra of 

healthy knees has less energy (magnitude) in the high frequency region of the spectra 

(compared to damaged knees) . It should be noted that since these contribution plots have 

been obtained by performing PCA on the inverse of the power spectra, therefore the 

contribution plot is showing the inverse of the changes and not the true changes ln the 

power spectrum of the two groups. 
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Figure 37: tl/t2 and t3/t2 Scatter plots of the PCA model for frequency data 
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Figure 38: component contribution plot (Comp 2) between healthy (0-1) and unhealthy (2-3) 

cartilage knees (X: Inverse of power spectra). (a: for all sensors, b: only patella sensor, 

positive half cycle 
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The formation of osteophyte is strongly correlated with cartilage health. This can be 

shown by coloring Figure 37b according to average osteophyte growth level (0 to 2) 

(Figure 39). As mentioned in previous chapters, osteophyte formation is known to be 

some kind of defense mechanism for the knee to stabilize itself when cartilage surface is 

damaged or deformed (see section 3.1.1). 
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Figure 39: t2/t3 Scatter plot colored according to average severity of osteophyte form~tion 

in the knees. 

There are several methods that can be used to classify cartilage damage severity from the 

calculated scores (t). One method is to use "Soft Independent Modeling of Class 
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Analogy" or SIMCA. In SIMCA one model is built for each class of observations. Any 

new observation is fed to all class models and the distance from model (DModX) or the 

probability of belonging to each class (PModX) is calculated for all classes. Then using 

Cooman graphs or probability scatter plots the proper class is assigned to that observation 

(for more information see SIMCA-P manual). However since there is a strong 

interconnection between observations of different classes in our dataset, the above 

method, does not really provide a strong classifier. Another method would be to separate 

different classes using Kernel algorithms such Support Vector Machines (SVM). This 

method will further be investigated as the future work for this project. 

5.2.3 PLS on FFT 

A PLS analysis on the data, with the Y data being the average severity of damage to the 

cartilage gives a model with two components (R2Y =0.55, Q2 =0.33). In PLS analysis, 

sometimes when there is a large number of X variables it is possible to improve the 

quality of fit by removing or pruning variables that are less significant in building the 

model. Such data usually consists of variables that are not correlated with "Y" space or 

contain great level of noise. For this purpose one can draw the Variable Importance Plot 

(VIP) and remove the variables that are least significant to the overall model (Figure 40). 

Data pruning is done in several recursive stages. By doing so, it was possible to improve 

quality of fit by 4% and prediction rate by 18 %. The new R2 and Q2 increased to 59% 

and 51% respectively. Total number of variables remaining in the model after pruning 
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was 502 (from 1500 variables in the original model) Figure 41 shows the ttlt2 scatter plot 

of the PLS model. The colors are chosen according to the average severity level of 

cartilage degeneration (cartilage health scores). Then again there is a trend from healthy 

to damaged cartilage, mainly in the t1 direction. Figure 42 also shows the loading plot 

before and after pruning of the unimportant variables. It shows that the variables that are 

not very significant in building the model are the ones that have small w* values (low 

correlation with Y data) compared to the remaining variables. Most of the variables that 

remained in the model after pruning belong to the 0 to 1000 Hz group. It can also be seen 

that t1 is most explanative of Y and higher frequencies are positively correlated with 

larger Y's. 

It appears there are two separate classes of healthy joints, in two different areas of the 

component score plot (tt, t2), one on the top left and the other on the bottom left corner of 

the plot. Further analysis showed that the group of healthy people on the top left mainly 

consists of middle-aged patients in whom the articulating surface might have changed 

properties. The bottom left corner mainly consists of healthy and young patients. Further 

investigation on the contribution plots (on PCA of the spectra) showed that the difference 

is due to the power level of the spectra in higher frequency regions. However since there 

might be various reasons for such separation it is not possible to find a physical cause for 

this clustering. 
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Figure 40: Variable Importance Plot (VIP), PLS model (Frequency Data) 
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Figure 42: Left) Loading Plot before pruning the variables, Right) Loading Plot after 

pruning the variables (Y: Average Cartilage score (SumCart)). PLS analysis on the 

frequency data. 

Figure 43 shows the observed versus predicted values of Y (average level of cartilage 

degeneration). It seems the overall level of prediction is good, however the variation from 

one level to another is large and does not provide adequate level of prediction between 

levels. The observations marked by green triangles belong to the test set and were not 

used in building the model. The data available for the X matrix includes 5 sets of 

variables from 5 sensors around the knee. Table 3 shows the quality of fit when different 

combinations of sensor variables where used together in the PLS model before pruning 

the data. Best results were obtained when all variables where used in building the model. 
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Sensor(s) #ofComp. R \ ( %) Rzy ( %) Q ly (% ) 

Tibia Sensors 2 18 44 27 

Femur Sensors 2 50 47 22 

Patella Sensors 2 70 40 20 

Tibia & Femurs Sensors 2 47 51 27 

Tibia & Patell a Sensors 2 49 54 32 

Femur and Patella Sensors 2 51 53 31 

All Sensors 2 47 55 33 

Table 3: Quality of fit for different combination of sensors (PLS model, Y= Ave. Cartilage 

degeneration level, no variable pruning). PLS on Frequency data. 
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Figure 43: Observed VS predicted Y (Ave. Level of cartilage degeneration) for PLS model 

(X = Frequency Data, Y =Ave. Cart. Degeneration) 
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When the same recursive variable pruning procedure was applied to osteophyte formation 

level there was a 9% improvement in quality of fit and 15% improvement in Q2 (R2y = 

54% and Q2 
y =46%). Figure 44 and Figure 45 show the tl/t2 scatter plot and the 

Observed versus Predicted values of Y (osteophyte formation level). 

The results of the analysis show that for both cartilage degeneration and osteophyte 

formation levels, the low frequency region (0 to 1 KHz) is the range that conveys 

information. This of course makes sense because skin tissue attenuates the high frequency 

region and in the case of osteophyte formation, the deformation of the articulating surface 

is what is being recorded by the accelerometers. This hypothesis (very low frequency 

region conveying the information) also suggests that performing the tests in a manner 

that bounds the patients to perform the FE cycles within a specified speed range (number 

of cycles per minute) would improve the results. 
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Variable pruning is also an effective method for finding the influential variables in the 

model. When the meniscus damage level variables were used as the Y variables, pruning 

of variables showed that in addition to low frequency regions, parts of the mid and high 

frequency region are also important in building the model (Figure 46). The model used 

here was the log-wise model in which frequency components where chosen in a log-wise 

manner. This variable selection reduces the weights of high frequency while it puts more 

emphasis on lower frequency region. Pruning analysis suggests that log-wise selection of 

frequency components may not be a good method when it comes to building models for 

meniscus tear. 

Loading (p1/p2) plots for PLS (Y= meniscus degeneration) 	 • 1000 
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Figure 46: Loading plots (pl/p2) for meniscus degeneration level after variable pruning. 


PLS on the frequency data 


According to above statement, a data set that has more components of higher frequency 

range may give better results to modeling meniscus problems. A part of our future work, 
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m continuation of this thesis is to assess the correlation between memscus tear and 

frequency of recorded sound. This finding may help to build better models of the system 

in the future. 

There is a strong correlation between formation of osteophytes and cartilage health. PLS 

analysis was therefore performed between X data and Y variables related to cartilage 

health (MRI scores of cartilage at different compartments) and the Y variables related to 

osteophyte formation as well as using the combination of the two Y groups. The results 

are shown in Table 4. Data pruning was again used to improve the prediction rate of the 

model. 
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Before va ria ble pruning After variable pruning 

(l 
0 
3 

"0 

"*' 

XJY Overview Plot 

2 52 33 2 1 2 37 1 64 34 26 

1.0 

0 . 5 ~ 

0 .0 

R2Y[l] 

XIY Overview Aot 
for Cartilage Scores 

• R2VY[2](cum) 
• Q2VY[2](cum) 

= 0 . 3, R2Y[2] = 0.05 Q2Y[l] = 0.24 Q2Y[2] = 0.03 

5 69 44 02 2 378 58 32 20 

1.0 
L 

0.5 . 

0.0 

R2Y[l] 

XIY Overvew Aot 
for Osteophyte Vars. 

• R2VY[2](cum) 
• Q2VY[2](cum) 

= 0 . 24, R2Y[2] = 0.08 Q2Y[l] = 0.16 Q2Y[2] = 0.05 

4 66 39 14 2 475 56 32 2 1 

1.0 

l2Y[l] 

X/Y Overview plct for cartilag 
and osteophyte variables 

R2VY[2](cum) 
Q2VY[2](cum) 

= 0 . 25 , R2Y[2] = 0 . 07 Q2Y[l] = 0 . 17 , Q2 Y [2] = 0.05 

Table 4: quality of fit before and after data pruning for different combination of individual 

groups of Y variables (Cartilage and Osteophyte) 

PCA and PLS analysis on the data obtained from patients in the sitting position did not 

have noticeable correlation with the MRI scores. This is in agreement with the hypothesis 

that the recorded signals that correlate with MRI scores are mainly crepitus vibrations and 

the low frequency data that results as an imprint of the surface of cartilage and bone 
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abnormalities. These signature vibrations are generated under loaded condition, which 

supports findings of O'Rourke et al [ 13]. In the sitting position there is no load on the 

cartilage surface and therefore the signals recorded will not contain much useful 

information. 

5.2.4 Summary and conclusion 

In this section PCA and PLS analysis techniques were used on power spectra of the 

vibrations recorded from each patient's knees. Beforehand, the signals were preprocessed 

by detrending and then removing click sounds (using wavelet transforms). The signals 

were then analyzed using PCA and PLS to see if there is any correlation between the 

MRI scores and the power spectrum of the signals. The results for PCA analysis show 

that there is a trend from healthy to un-healthy joints. More specifically there is a strong 

correlation between this "health trend" and formation of osteophytes and cartilage 

damage level. The rest of the MRI scores such as bone marrow edema and subchondral 

cyst did not reveal any correlation to the vibration data. It also seems that there is a 

correlation between meniscus tear and the vibration data. However many patients with 

Osteoarthritis also have meniscus damage and therefore with the current set of 

observations it is not possible to comment on this issue. This issue needs further 

investigation with a more controlled set of observations. Data pruning plays an important 

role in enhancement of prediction here. There are many variables in the X space that are 

not correlated with Y variables, and their presence in the model can reduce predictability 
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of Y space. In some cases, data pruning increased prediction of Y space by up to 18 

percent. Because of the interconnectivity of features in the Y space and poor localization 

abilities of this technique it is not really possible to detect the specific location of a 

defect. However there is a good prediction of the overall level of joint health, specifically 

in case of cartilage damage and the presence osteophytes. In the case of PLS analysis, 

regressing X variables against average cartilage degeneration level, and after pruning, 

resulted in a model with Q2 less than 50%. Although this level of prediction may not be 

sufficient in diagnostics, the score plots of the PLS model can still provide useful 

information about the joint's health trend. These score plots can be used the same way as 

the PCA score plots are used. Although PLS score plots have a more structured 

appearance than PCA score plots, they are actually more sensitive to variations and using 

them must be with caution. Choosing between PCA or PLS score plots is one the issues 

that needs to be further more investigated. 

5.3 Analysis of wavelet transforms 

5.3.1 Wavelet transforms 

Wavelet transform is very similar to short-time Fourier transform (STFT) in nature. In 

STFT a moving window of fixed width is multiplied by the signal and then the Fourier 

transform of the windowed signal is calculated (Figure 47). The size of this window 

determines the compromise between time and frequency domain resolution. 
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Figure 47: Short Time Fourier Transform (STFT) 

In wavelet transform a waveform of limited duration is convolved with the signal at 

different scales. This waveform is called the mother wavelet (Figure 48) 

Jv- ;}JW\&\&\NV l

c==:) 2000 6000 ·10000 1 40CKl0 4000 6000 12000 

Mother wavelet 

(db2) 


Figure 48: A mother wavelet and convolution with s(t) 

The continuous Fourier transform frequency coefficients are obtained by: 

-
F((JJ) = ff(t)e -jax dt (5.28) 

Where ro is the angular frequency. A short time Fourier transform is defined by: 
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-
F, (m,t) = ff(u)g(t- u)e- i{t-'-' du (5.29) 

Fs( co,t) is the Fourier transform coefficient. In continuous wavelet transform, coefficients 

are defined by: 

-
C(Scale,Position) = f f(t)lj!"(Scale,Position)dt (5.30) 

Here, C is the wavelet coefficient at different scales and positions and 'V is the mother 

wavelet. 

Scales and translation: 

As mentioned above, wavelets operate on scales and position. The scale of a wavelet 

determines wavelet's level of stretch. Figure 49 shows a wavelet stretched at different 

scales. 

A.,. 

a= 0.5 a= 1.0 a = 2.0 

Figure 49: db2 wavelet(\}') at different scales (a) 
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The smaller the scale factor, the more compressed a wavelet is. Translation or shifting of 

a wavelet is shown by \f'(x/a-b ). Depending on the way "a" and "b" are selected the 

transformation is called continuous or discrete. In continuous wavelet transform (CWT) 

we have: 

-t-oo } (t b JA 
C(a,b) =_[s(t) ~If/ : rt 

(5.31) 

aED+-{O},bED 

The CWT however, sacrifices the computation time over accuracy. If the scales and 

translation are chosen as: 

-t-oo 1 (t b JA 
C(a,b) =_! s(t) ~If/ : rt 

(5.32) 

a E 2i, bE k2i, (j, k) E 0 2 

then this type of transformation is called discrete wavelet transform (DWT). 

The inverse of wavelet transform is defined by (continuous synthesis): 

s(t) = _1_ J+ JC(a,b)-1 lf/(t-b) da.~b (5.33) 
K 1 1 ~ a a

If/ 

where K'f' is a constant that depends on \f' . In case of discrete synthesis the above 

equation changes to: 

s(t) = IIc(j,k)lf/j.ku) (5.34) 
jE~ kE i 
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In discrete wavelet transform, the signal is decomposed into two components at each 

stage; a low frequency, high scale component called the "approximate" of the signal and 

a high frequency, low scale component called the "detail" of the signal. This is similar to 

filtering the signal using low-pass and high-pass fi lters (Figure 50) 

Detai l (0 1) 
( 12000 samples) Original Signal s(!):~fVVVV\~ j 

0 :.mJ 4l)JJ a::oo ocm 10COJ 1:.Jlll 1400J
I 

o : ~f j Aproximat i on lflole1 1. ~I ( 1200) ~cunpl es) I 
-0.5 

0 :.mJ 4l)JJ a::oo ocm 10COJ 1:.Jlll 14000 

Approx(A1) 02 1 I ,, I!.ow Pass ri llL,. ( 1200) scunples) Detail level t, 01 

I ·I ~ 0 I II I ~ It 11> 1 ~ : ~ ~ ~~~·: H. :f l.02 
0 :.mJ 4l)JJ a::oo 8llXI 10COJ 1:.Jlll 14000 

Pos ition (Time) 

Figure 50: Decomposition of the signal "s" into its detail and approximate (s =D 1 + A1 ) 

If "j" is kept fixed and CU,k) is summed over "k" then we get: 

Di (t) = Ic(j,k)lf/j .k (t) 
ke c 

(5 .35) 

Di is detail of the signal at level "j". The original signal will be the sum of all Df 

s= " DL...,.l 
je iJ 

(5.36) 

Let us assume "J" is chosen as a reference for "j". Now the approximate of the signal at level J 

can be written as: 

j> J 

(5 .37) 


And of course: 
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(5.38)s = A1 +"L.... DJ 
j<;, J 

It is interesting to note that Dj _l Di for j ::1= i. <1> is a function associated with \f'. This 

function is used to define the approximation of the signal. When the signal is decomposed 

into the approximate and the detail coefficients, the number of obtained sample points 

doubles. For example if the signal has 1000 pints, the resulting approximate and detail of 

the signal will each have 1000 points. It turns out that 1 out of every two consecutive 

coefficient points is enough to maintain all the information in the original signal. Thus at 

each decomposition level, only half the coefficients (for example odd numbered 

coefficients) are kept. This procedure is called downsampling. The downsampled 

coefficients at level "n" are called cAn and cD11 • Figure 5 L illustrates how a signal is 

decomposed at several stages using wavelet transform. For more information on wavelets 

and their applications refer to "Wavelet Toolbox User Guide, by Mathworks Inc. 

])o>Wl\.'l.illllpk 

Figure 51: DWT in two stages 
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Wavelet Packet Analysis (WPA) is similar to DWT except that at each level, in addition 

to the approximates of the signal, the details also get decomposed into new 

approximation and details as well. Figure 52 illustrates this idea. 

s 
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,, 

Figure 52: DWT (Left) versus Packet Wavelet analysis (Right) 

Wavelets come in different shapes. In general a function that is continuous, has null 

moments27 and decreases quickly towards zero can be a candidate to become a wavelet. 

However wavelets that have practical use, usually have more profound properties such 

has orthogonalilty, existence of <1>, having several vanishing moments and fvCx)dx =0. 

It is possible to define pseudo frequency for a wavelet scale. Fa or the scale frequency of 

a wavelet is defined as: 
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F;, (5.39) 
a 

where Fe is the center frequency of the wavelet (Fe is the frequency maximizing FFT of a 

wavelet modulus) . Fa is the pseudo frequency of the wavelet at scale "a" and L1 is the 

sampling period ( l/F5). Figure 53 shows how center frequency of a wavelet relates to its 

shape and period. 

db2 db7 

1.5 

Wavelet db7 (blue) and Center frequency based approximation 
1 . 5,---~-~-~--------, 

10 12 14 

Period: 1.5; Cent. Freq: 0.66667 Period: 1.4444; Cent. Freq: 0.69231 

Figure 53: center frequency (Fe) of a wavelet (adopted from wavelet toolbox tutorial, 

mathworks inc) 

There are several types of wavelet families and different criteria that define the properties 

and qualities of the wavelets and their families, such as speed of convergence to zero in 

both time and frequency domain, symmetry, number of vanishing moments, regularity 

and existence of scaling function <j>. Figure 54 shows some of the wavelets that are 

available for analysis. The simplest type of wavelets is the Haar wavelet (Figure 54). This 

27 A function 's k+ I moments are equal to zeros when: Jt i l,lf(t)dt =0 for j=O, ... ,k 
R 
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wavelet was the first wavelet ever created. Another set of wavelets that were named after 

their creator are the Daubechies family of wavelets. Dabechies wavelets are written as 

"dbN" where N is the order of the wavelet. Finding the proper wavelet for a specific 

application is more of a trial and error operation. Knowing properties of the wavelets and 

the characteristics we need to find in the signal may help to make a proper selection. In 

this project several different types of wavelets were tried and it appeared that the db 1 

(Haar) wavelet gives the best results. 
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Figure 54: different wavelet shapes 

Before using the wavelet transforms in PCA or PLS analysis they need to be prepared for 

the analysis. Perhaps the most popular method is to calculate the average power of 

coefficients [equation (5.40)] at each decomposition level (i). 
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Figure 55: distributions of wavelet coefficients at different levels for the coefficients of a 

stationary wavelet transform 

5.3.2 PCA on histograms of wavelet coefficients 

For each sensor (accelerometer) the recorded vibration signals were decomposed into 

their wavelet coefficients ( LO detail levels and one approximate; db 1 wavelet) and then 

the histograms of the coefficients at each level were calculated. Choosing 200 bins for 

each histogram (a range of -3.5 to 3.5 standard deviations) yielded 2200 variables for 

each accelerometer. When the centre frequencies of wavelets at each level were 
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Figure 55: distributions of wavelet coefficients at different levels for the coefficients of a 

stationary wavelet transform 

5.3.2 PCA on histograms of wavelet coefficients 

For each sensor (accelerometer) the recorded vibration signals were decomposed into 

their wavelet coefficients (10 detail levels and one approximate; dbl wavelet) and then 

the histograms of the coefficients at each level were calculated. Choosing 200 bins for 

each histogram (a range of -3.5 to 3.5 standard deviations) yielded 2200 variables for 

each accelerometer. When the centre frequencies of wavelets at each level were 
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calculated it was realized that the center frequency for level one detail coefficients is 3.1 

KHz. Since previous frequency analysis showed that this range of frequency does not 

contain useful information about cartilage damage or osteophyte formation, cD1 was 

omitted from the "X" variable data set. Hence the final X data set will contain 10000 

variables; 2000 variables for each accelerometer. Table 5 shows the scale frequency for 

levels 1 to 10 of db 1 wavelet. 

Detail CD to cD9 cD8 cD7 cD6 cD5 cD4 cD3 cD2 cD1 

Scale Frequency (Hz) 6 12 24 48 97 195 389 778 1550 3100 

Table 5: Scale frequency for levels 1 to 10 of db1 wavelet 

In the first step an initial PCA analysis was performed on the "X" dataset and the model 

was checked for any strong outliers. After removing the outliers ( 4 observations) and 

performing PCA again a model with R2 
x = 39% and Q2

x = 27% ( 11 components) was 

obtained. Figure 56 shows the model overview plot of the "X" dataset. 
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Figure 56: model overview plot (PCA on wavelet histograms) 

Component contribution plots (Figure 57 and Figure 58) show that component l is 

mainly capturing the variations in the lower details (higher frequencies) and the second 

component is capturing variations related to all levels but more specifically mid-level 

details. 
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Corrponent Contr ibution Plot; R2VX[Corrp. 1] 
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Figure 57: Component Contribution plot for coefficient histograms at all details (only 

patella sensor variables shown); Comp. #1 (PCA on wavelet histograms), LevelllO = 
approximate at levellO (the numbers on the abscissa show the approximate range of 

variables for each detail) 
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Figure 58: Component Contribution plot for coefficient histograms, at all details; Comp. #2 

(PCA on wavelet histograms, only patella sensor variables shown), LevelllO =approximate 

at levellO (the numbers on the abscissa show the approximate range of variables for each 

detail) 
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Another component that seems to have useful information for the score plots is 

component 4. The component contribution plot for this component is shown in Figure 59. 

1.0 
Component Contributim Plot, R2VX[Comp. 4] 
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Figure 59: Component Contribution plot for coefficient histograms, at all details; Comp. #4 

(PCA on wavelet histograms, only patella sensor variables shown), LevelllO =approximate 

at levellO (the numbers on the abscissa show the approximate range of variables for each 

detail) 

Figure 59 shows that this component is capturing some of the variation in detail levels 3 

to 7. Figure 60 (a & b) show the score plots of the PCA model colored according to 

cartilage damage severity. Figure 60b shows that there is a trend from the healthy knees 

to the knees with cartilage damage. The contribution plot (Figure 61) between healthy 

and damaged knees (unhealthy compared to healthy knees) shows that compared to the 

healthy knees (cartilage health), wavelet coefficients of unhealthy knees, at higher scales 

(lower frequencies), are more concentrated around zero and at lower scales (higher 

frequencies) they have a wider dispersion. 
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Figure 60: tl/t2 and t4/t2 score plots of the PCA model for wavelet dataset 

A wider dispersion corresponds to more energy content in that frequency regwn. 

Therefore it can be concluded that healthy knees have more energy in the lower 

frequency region and less energy m the higher frequency region of the spectra. These 

findings are m agreement with the resu lts obtained m prevwus section; Frequency 

analysis. 

105 




Master's Thesis - S. Salari Sharif McMaster University - Chemical Engineering 

Score Contrib(healthy - unheathy cartilage), Weight=p[2]p[4] 
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Figure 61: Contribution plot between healthy (0-1) and unhealthy (2-3) cartilage knees 

(wavelet scales 2 to 10); a) for all sensors, b) only shown for the patella sensor. 
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Figure 62 shows a blow-up of the histograms, shown in Figure 61, for some of the low 

and one of the high frequency regions of the wavelet histograms (low frequency region is 

assumed to be approximately less than 250 Hz or coefficient levels above 4 ). It shows 

how unhealthy knees (cartilage scores 2-3) have larger wavelet coefficients at higher and 

mid frequencies and vise versa. 

Contribution plot for unhealthy . healthy knee (for detail le>el 6 histogram) Contribution plot for unhealthy -healthy knee (for detail le~.e l 2 histogram) 
1 ­ 1.5 ­

-~ 

-1. 7 0 1.7 

_, 
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-1 ·­
-3.5 

L 

-1 .7 0 1.7 +3.5 

Coefficients Coefficients 

Figure 62: Contribution plot for the difference of unhealthy from healthy knee; Left: low 

frequency (Det. 6), Right: High Frequency (Det. 2) 

Figure 63 shows the t2/t4 score plot colored according to average osteophyte score. As 

mentioned before, osteophyte formation is strongly correlated with cartilage loss; the 

correlation between average cartilage damage and average osteophyte formation in our 

population was 80%. 
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Figure 63:t2/t4 score plot of the PCA model for the wavelet dataset colored according to 

average osteophyte score 

5.3.3 PLS on the wavelets 

After performing an initial PCA analysis and removing strong outliers (4 observations), a 

PLS model was obtained by analyzing the cartilage scores (Y space) and wavelet data (X 

space). The first 14 components captured 97% of the variability in Y space (R2y) with 

predictability (Q2y) of 39%. The model was then improved by removing th~ less 

significant variables . The improved model has 14 components, R2
x = 51 %, R2 

y = 96% 

and Q2 
y = 63 % (total 5500 variables in the X space). Figure 64 shows the overview plot 
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of this model. Model overview plot suggests that t1 and t3 contain the most useful 

information about the model. 
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Figure 64: Model Overview Plot of the PLS model on the cartilage variables (after pruning 

extra variables) 

Figure 65 shows the t llt3 score plot of the model. The color of the plot has been chosen 

according to the average severity of cartilage damage (average cartilage score). It seems 

that, overall, the model is capable of predicting average severity of cartilage damage. 

When individual Y-Predicted (Y =cartilage score) plots for each compartment (Figure 66 

to Figure 68) were observed, it was realized that modeling individual cartilage scores of 

the knee did not provide adequate predictability. It seems the model is more capable of 

predicting an overall degree or an average degree of cartilage damage. 
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•Scores Scatter Plot; tPS[Comp. 1]/tPS[Comp. 3] 
Colored according to Ave. Carti lage Score 
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Figure 65: t1/t3 Score Scatter plot, colored according to average cartilage score 
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Figure 66: Y, Observed VS Predicted for cartilage score at a: Medial Femur (FMed), b: 


Lateral Femur (FLat) 
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Figure 67: Y, Observed VS Predicted for cartilage scores at a: Medial Tibia (Trued), b: 


Lateral Tibia (Tlat) 
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Figure 68: Y, Observed VS Predicted for cartilage scores at a: Trochlea (FT), b: Patella 

Another model was obtained by regressing the "X" variables against individual scores for 

osteophyte formation. The model was again improved by pruning the less significant 

variables. The final model has 15 components with R2
x = 50%, R2 

y = 96% and Q2 
y = 

59%. Figure 69 shows the overview plot of the model. It shows that the first· three 

components are capturing most of the variations in the Y space. 
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Figure 69: Model overview plot for PLS model on individual osteophyte scores (after 

Pruning) 

Figure 70 shows the t 1/t2 and t1/t3 score plots of the model, colored according to average 

osteophyte score. It is evident that healthy knees (score = 0) are separated from knees 

with large formations of osteophyte (score 2). The scores that are enclosed in squares 

belong to the test set. 
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Figure 70: tdt2 (left) and t 1/t3 (right) score plots of the PLS model colored according to 

average osteophyte score 

The score plots show that although formation of osteophytes can be predicted (more 

accurately than the cartilage scores) , again localization of the osteophytes is not accurate 

and the model is more successful in predicting the average scores of different kne~ 

compartments. For this reason a PLS model based on the average scores of the cartilage 

and osteophyte (average of various compartments of the knee) was developed(# of Comp 

= 5, R\ =41 %, R2 
y = 89%, Q\ =70%). Figure 71 shows the model overview plot 
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• R2Y(cum)rvbdel Overview Plot 
• Q2(cum ) for Ave. Cartilage and Osteophyte scores 
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Figure 71: Model Overview Plot for average cartilage and osteophyte scores 

Figure 72 shows the X/Y overview plot of the model 
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Figure 72: X/Y Overview plot of the PLS model for average cartilage and osteophyte scores 

Figure 73 shows the observed versus predicted value for the average cartilage and 

osteophyte scores. Observations in green belong to the test set. 
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A few notes on the errors 

Scoring the MRI sheets is a sensitive and delicate job. The level of accuracy can change 

from person to person and therefore the scoring system by itself can introduce errors to 

the model. In order to have an estimate of the level of each model's predictability, we 

needed to have a measure of human error and a measure of the round off error due to 

scoring procedure. To measure the repeatability, several observations (MRI Images) were 

scored twice at different times. The variations of the scores were calculated by the 

fo llowing formula 

m n; 
2

SSP£ = LL(Y;u - Y;) (5.41) 
i=l u= l 

l iS 
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And the percentage of error due to pure error was calculated as: 

(]1 ss - SSPE 
70 PE- (5.42)

ss)' 

The results for osteophyte and cartilage scores are shown in Table 6. Although the 

observations were only repeated twice (for 28 observations), it still gives an idea of the 

scale of Pure Error in obtaining the cartilage and osteophyte scores from the MRI images. 

One source of error introduced into the Y space data is error due to round-off error. Since 

the scores are assigned as integer values (0 to 4 for cartilage and 0 to 2 for osteophyte), 

the discontinuity of the scores also introduces some error. If round-off error has a uniform 

distribution then: 

1
f(x)=-- a-::;,x-::;,b (5.43)

b-a 

The variance of the above distribution can be calculated from: 

z (b-a)z 
(j =--- (5.44)

12 

For "a-b = 1" (integer round off), percentage of variance due to round off can be 

calculated from: 

Iu
1 

%SSRE =-- (5.45) 
SSY 

116 


http:PE-(5.42


Master's Thesis- S. Salari Sharif McMaster University- Chemical Engineering 

Table 6 shows the percentage of error due to pure and round-off errors. It should be noted 

that round-off error is in fact part of pure error. It is evident that the percentage of human 

error is relatively high and part of this large pure error is because of the large round off 

error. However it should be noted that distribution of pure error here is not normal and 

this can in turn increase the error percentages calculated here. 

Cartilage Osteophyte 

Compartment Med Lat Med Lat Troch. Pat Med Lat Med Lat Troch. Pat Tib 

Fern Fern Tib Tib Fern Fern Tib Tib Spine 

Pure Error 0.36 0.45 0.28 0.44 0.53 0.33 0.39 0.6 0.59 0.3 0.65 0.18 0.35 

Round off Error 0.04 0.04 0.04 0.05 0.04 0.05 0.15 0.17 0.22 0.2 0.25 0.16 0.19 

Table 6: Percentage of error due to Pure Error and the component of it due to round-off. 

5.3.4 Summary and conclusion 

In this section PCA and PLS methods were used to extract features from the wavelet 

transforms of the vibration signals. Before the PCA or PLS analysis, the data had to be 

prepared. The method of choice here was to use the distributions of the wavelet 

coefficients. One of the benefits of using such distributions is that they have the ability to 

isolate the knee clicks; knee click usually contain much higher than average magnitudes 

and by using distribution plots for each coefficient level, the coefficients contributing to 

the clicks will be accumulated in the farthest bins of the histograms and therefore can be 

isolated. These knee clicks can seriously alter the results of the analysis, especially if 

Fourier transform is to be used. PCA analysis of the wavelet histograms showed that the 
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score plots of the model are able to show the difference between healthy and unhealthy 

knees for both the cartilage and osteophyte scores. It was realized that these two types of 

joint disorder are highly correlated with each other and the analysis shows there is an 

80% correlation between the averages of their scores. It was also found that this method 

does not provide adequate classification on the individual cartilage and osteophyte scores 

at different compartments of the knee but provides good results for the averages of them. 

The reason is that the development of these symptoms does not usually happen in one 

compartment of the knee and is rather spread through out the joint. Another reason is that 

vibration signals at such low frequencies do not really convey much information about 

location of the disorders. However as far as it is concerned with diagnostics of these 

disorders, what is important is the detection or estimation of the overall health of the 

joint. These PLS and PCA models can be used for estimation of the overall health status. 

In addition to this application, this method can be used as a tool to measure the friction in 

the joint, for monitoring purposes, which has application in pharma-tech industries the 

method can be used for observation of the effects of drugs or synovial injections on the 

overall friction level of the joint [ 14]. 
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Chapter 6 


Summary and Conclusion 


The aim of this research was to develop a technology to assess tissue health in patients 

suffering from osteoarthritis. Previous work done by Yacoub [ 14] and Rangayan [ 17, 19 

and 49] showed that there is a good correlation between the stage of the OA and vibration 

signals generated during the flexion/extension cycle. Our goal was to further analyze this 

hypothesis in more depth and to build an apparatus that would be practically and robustly 

used by the examiner to detect and monitor the health status of the knee. 

Based on a good understanding of the motions involved in the flexing of the human knee, 

an apparatus was built to house the sensors to measure the vibrations emitting from the 

knee during flexion/extension cycle. Five accelerometers located at medial & lateral sides 

of tibia, medial & lateral sides of femur and on the patella record the vibrations generated 

by the knee during a flexion/extension cycle. Due to the sensitivity of the accelerometers, 

this apparatus (brace) was designed to be as noiseless as possible, it attempted to 

minimize the movement of the sensors on the skin and tried to maintain the position of 

the sensors on the bone during the knee motion. The brace was also flexible enough that 

it did not restrict the motion of the knee and also had to be easy to put on. Most of the 

mentioned properties were successfully built into the design. However, because of the 

different anatomical shapes and sizes in people, it was not possible to make it completely 

autonomous and at some points required external force by the examiner to provide a 
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secure gnp for the patellar sensor. Except for this mmor problem, the rest of the 

requirements were met and we were able to successfully examine the patients with it. 

Volunteers were recruited for the study. Most of the volunteers were patients suffering 

various degrees of OA, referred by the physicians. We also included volunteers with 

healthy knees in the study as well. Overall 50 volunteers took part in the study with a 

range from healthy to severe OA. In collaboration with another research project, each 

patient underwent a complete MRI scan of each knee. The MRI images were later 

analyzed by a radiologist and scores were given to different symptoms of the 

osteoarthritis found at different compartments of the knee. After the MRI scan, vibration 

signals of both knees each patient were recorded under the loaded and unloaded 

conditions for a duration of 20 seconds of continuous extension/flexion of the knee. the 

sampling rate for data acquisition was 6250 Hz. 

The recorded vibrations were converted from time domain to frequency domain using 

Fourier and wavelet transforms. PCA and PLS analysis were then performed on the 

processed data (power spectrum density of the Fourier transforms and wavelet coefficient 

histograms). For the PLS analysis, the Y space data consisted of the MRI scores given to 

each compartment of the knee and the average over all compartments (for each of the 

symptoms). 

Our analysis shows that there is a strong correlation between cartilage health (cartilage 

scores), formation of osteophytes (osteophyte score) and the vibration signals recorded 

from patients' knees. For both cases of PCA and PLS analysis, we obtained better results 
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when wavelet transformation was used to transform the data from time domain to 

frequency domain. Our analysis shows that there is an obvious trend from healthy to 

unhealthy knees in terms of cartilage and osteophyte formation scores in the score plots 

(average values over all compartments of the knee). Because of the strong correlation 

between cartilage health and osteophyte formation (more than 80% in our population) it 

is not possible to distinguish the effects of each symptom in the analysis. We were also 

not able to isolate or localize the symptoms in each compartment of the knee. The reason 

is two fold; first OA usually develops in all compartments of the knee and second the 

frequency of the signals recorded is very low and does not have enough resolution to 

distinguish symptoms at different compartments of the knee. In the score plots, we also 

found a separation of knees with degeneration and/or tom menisci (medial anterior hom). 

However, again, because of the strong correlation between cartilage and meniscus health 

it is not possible to reliably point out to it. We did not find any other strong correlation 

between the vibration signals and the other symptoms of osteoarthritis observed from the 

MRI images (such as bone marrow edema or subchondral cyst). 

Overall, we conclude that there is strong correlation between vibration signals and some 

of the symptoms of osteoarthritis such as formation of osteophytes and cartilage health. 

This technique can be used in estimation of the overall health status of the joint. 
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6.1 Future work 

In order to validate this technology, it is essential to increase the number of observations 

(patients) and include observations from more categories and groups of people. It is 

suggested that the focus be put on three groups of people: 

Patients with Osteoarthritis (all ranges from healthy to severe OA); 

which will be used to improve detection of OA in the general 

population. 

Repeated measurements on patients with synovial injections: this group 

of people will be used to check the ability of this technology for 

monitoring of the injection performance before and after the injection of 

intra-articular therapeutic agents such as hyaluronic acid .. 

Young patients with meniscus tear: although the method was able to 

detect meniscus tear problems, because of the strong correlation 

between meniscus tear and cartilage damages it was not really possible 

to see the performance of this technology in this regard. By focusing on 

young patients who have no symptoms of OA, an independent 

assessment of meniscus effects can be performed. 

Another issue that needs to be followed up is the ability of the technology (software) to 

make decisions on the overall state of the patients; although score plots provide useful 

information about the state of health, this information needs to be interpreted in the form 

of classifications of patients into various classes, or in the form of predictions of the 

122 




Master's Thesis- S. Salari Sharif McMaster University- Chemical Engineering 

degree of OA, etc. Methods such as support vector machines or decision-making 

algorithms such as fuzzy logic can be useful here and their implication should be further 

studied. Yacoub (2006) has performed an initial study on classification methods applied 

to this problem. 

In addition to passive vibrations recorded from patients, active vibrations (impulse 

response of the joint) were also recorded which will later be analyzed. 
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Appendix A 

Product Data 

Product data for PCB accelerometers (model no. 333B52) 

Model 333852 

Product Type: Accelerometer, Vibration Sensor 

Modal array, ceramic shear ICP® accel., 1000 mV/g, 0.5 to 3kHz, 10-32 

side conn., adhesive mount 

View Spec Sheet (PDF) 

View photo and drawing . 

epcsPIEZOTRON/CS .. 
PERFORMANCE ENGLISH Sl 

Sensitivity(± 10 %) 1000 mV/g 102 mV/(m/s2) 

Measurement Range ± 5 g pk ± 49 m/s2pk 

Frequency Range(± 5 %) 0.5 to 3000 Hz 0.5 to 3000 Hz 

Resonant Frequency ~20kHz ~20kHz 

Phase Response(± 5 °}(at 70°F [21 °C]} 2.5 to 3000 Hz 2.5 to 3000 Hz 

Broadband Resolution(1 to 10,000 Hz) 0.00005 g rms 0.0005 m/s2 rms [1] 

Non-Linearity 51 % 51 % [2] 

Transverse Sensitivity 55 % 55 % [3] 

ENVIRONMENTAL 

Overload Limit ± 4000 g pk ± 39,000 m/s2pk 

Temperature Range 0 to +150 °F -18 to +66 oc 
Temperature Response See Graph See Graph [1] 

Base Strain Sensitivity 0.01 gill£ 0.1 (m/s2)11l£ [1 ] 

ELECTRICAL 

Excitation Voltage 18 to 30 VDC 18 to 30 VDC 

Constant Current Excitation 2 to 20 mA 2 to 20 mA 

Output Impedance 5 500 ohm 5 500 ohm 

Output Bias Voltage 7 to 12 VDC 7to12VDC 
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Discharge Time Constant 0.7 to 2.0 sec 0.7 to 2.0 sec 

Spectral Noise(1 0 Hz) 

(100Hz) 

3.8t-tgNHz 

1.1 t-tgNHz 

37 (t-tm/s2)NHz 

11 (t-tm/s2)NHz 

[1] 

[1] 

PHYSICAL 

(1kHz) 0.4t-tgNHz 3.9 (t-tm/s2)NHz [1] 

Sensing Element 

Sensing Geometry 

Ceramic 

Shear 

Ceramic 

Shear 

Housing Material Titanium Titanium 

Sealing Hermetic Hermetic 

Size (Length x Width) 

Weight 

0.68 in x 0.45 in 

0.26 oz 

17.3 mm x 11.4 mm 

7.5gm [1] 

Electrical Connector 1 0-32 Coaxial Jack 10-32 Coaxial Jack 

Electrical Connection Position 

Mounting 

SUPPLIED ACCESSORIES: 

Side 

Adhesive 

Side 

Adhesive 

Model 080A 109 Petro Wax (1) 

Model 080A90 Quick Bonding Gel (1) 

Model ACS-1 NIST traceable frequency response (10Hz to upper 5% point). (1) 

OPTIONAL VERSIONS 

T- TEDS Capable of Digital Memory and Communication Compliant with IEEE P1451.4 

Output Bias Voltage 7.5 to 13 VDC 

TLA- TEDS LMS International - Free Format 

Output Bias Voltage 7.5 to 13 VDC 
I 

TLB- TEDS LMS International -Automotive Format 

Output Bias Voltage 7.5 to 13 VDC 
I 

TLC- TEDS LMS International -Aeronautical Format 

Output Bias Voltage 7.5 to 13 VDC 
I 

All specifications are at room temperature unless otherwise specified. 

NOTES: 

[1] Typical. 

[2] Zero-based, least-squares, straight line method. 

[3] Transverse sensitivity is typically :53%. 

[4] See PCB Declaration of Conformance PS023 for details. 
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Typical Sensitivity Deviation vs Temperature2: 
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Product data for impact hammer used in this project 

Model 086080 

Product Type: Impact Hammer, Impulse Hammer 

Miniature Instrumented Impulse Hammer w/force tips, 0 to 50 lbf (includes 

Model 084A 17 & 018G1 0 cable} 


View Spec Sheet (PDF) 


View photo and drawing . 


*PCBPIEZOTRONJCS . 
PERFORMANCE ENGLISH Sl 

Sensitivity(± 15 %) 100 mV/Ibf 22.5 mV/N 

Measurement Range ±50 lbf pk ± 220 N pk 

Frequency Range(- 10 dB)(Hard Tip) 20kHz 20kHz [1][2][3] 

Resonant Frequency 2! 100kHz 2! 100kHz 

Non-Linearity $ 1 % $1 % [1] 

ELECTRICAL . 
Excitation Voltage 18 to 30 VDC 18 to 30 VDC 

Constant Current Excitation 2 to 20 mA 2 to 20 mA 

Output Impedance <100 ohm <100 ohm 

Output Bias Voltage 8to12VDC 8to12VDC 

Discharge Time Constant 2! 100 sec 2! 100 sec [1] 

PHYSICAL 

Sensing Element Quartz Quartz 

Sealing Epoxy Epoxy 

Hammer Mass 0.10 oz 2.9 gm [4] 

Head Diameter 0.25 in 6.3cm 

Tip Diameter 0.10 in 2.5 em 

Hammer Length 4.00 in 101.6cm 

Electrical Connection Position Bottom of Handle Bottom of Handle 

Extender Mass Weight 0.044 oz 1.25 gm 

Electrical Connector 5·44 Coaxial 5·44 Coaxial [5] 

Cable Type 035 Twisted Pair 035 Twisted Pair [4] 

Cable Length 10ft 3.05m [4] 
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SUPPLIED ACCESSORIES: 

Model 001A20 Case (1) 

Model 018G1 0 Miniature coaxial cable, vinyl insulation jacket, 1O-ft, 5-44 to 10-32 coaxial plug (1) 

Model 080A 1 09 Petro Wax ( 1 ) 

Model 084A13 Extender mass (1) 

Model 084A 14 Plastic handle assembly (2) 

Model 084A17 Aluminum handle with 5-44 connector (1) 

Model 084A28 Vinyl impact cap, red (3) 

Model HCS-2 Calibration of Series OB6B to 0860 instrumented hammers only (1) 

All specifications are at room temperature unless otherwise specified. 

NOTES: 

[1] Typical. 

[2] Varies depending on test structure. These values are from hitting a stiff steel mass. Hammer did not have 

extender mass attached. 

[3] When using the aluminum handle, the extender mass must be used. 

[4] With plastic handle attached. 

[5] With aluminum handle attached. 
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Appendix B 


Detecting the FE axis of the knee 


Hollister et al [28] revealed that knee joint, in fact does have a fixed axis of rotation. 

Using mechanical axis finder they managed to find the axis of rotation for 7 fresh 

specimens. According to their paper, the flexion/extension (FE) axis runs through the 

collateral ligament origins and superior to the intersection of the cruciate ligaments. They 

also managed to confirm the results using MRI scanning. They indicate that the FE axis 

passes through the origins of the medial collateral and lateral collateral ligaments in all 

dissected knees. The left/right (LR) axis passed through the intersection of the anterior 

cruciate ligament (ACL) on tibia and directed in the proximity of the intersection of PCL 

at the femoral notch. The length of patellar groove runs perpendicular to this axis (FE). 

One of the interesting findings of Hollister et al is that when the FE axis is viewed end 

on, the posterior femoral condyles are superimposed and appeared circular. They 

concluded that FE axis is fixed in the distal femur and is directed posteroinferiorly from 

medial to lateral. The offset from condylar surface averages 3° in the coronal and 

transverse planes. The surface of the femur that articulates with tibia is conical; the lateral 

condyle has a smaller radius than the medial condyle. Lateral joint surface is closer to FE 

axis. They also mention that the surface of condyles is rounded to allow movement about 

the LR axis. Their study concludes that motion of human knee occurs about two fixed 

non-orthogonal axes. The study suggests that knee motion is pure rotation about these 

axes. The FE axis is not in the coronal plane, nor is LR in sagittal plane. Most of motion 
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takes place in the sagittal plane but there is still rotation and varus/valgus motion outside 

of this plane. 

AXIAL LATERAL 

TRANSVERSE VtE\'v 

Anne M. Hollister, UCLA Medical Centre, "The axes of rotation of the knee", clinical orthopedics and related research number 290 

pp 259-268, 1993 

Figure 74: 3A AND 3B. (A) Diagrammatic representation of axes in AP view with axis 

parallel to the plate. A is the angle the FE axis makes with the shaft oft he femur; B is the 

angle between the FE and L.R axes in the AP plane. C is the angle between the LR axis and 

the tibial plateau. The distances D, W. and Tm are the distances between the FE axis and 

the joint surface, the AP width of the tibia, and the medial tibia and the LR axis 

respectively. (B) Diagrammatic representation of axes in axial lateral view with x-ray beam 

parallel to the FE axis. E is the angle between the LR axis and the tibial plateau in the axial 

lateral plane; X is the distance between the anterior femoral shaft and the posterior-medial 

femoral condyle. R is the distance between the FE axis and the posterior-medial femoral 

condyle. Y is the perpendicular distance between the two axes. Z is the AP dimension of the 

tibia and Ta is the distance of the l.R axis from the anterior tibia. 
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I" B" (" ~;·•o· 1il>ial .4.ri.~ F<'moral Axi.\ "'"'" 
so 89 89 Hl lU Km•c• Tmjll' fa!Z r;w R!X 

~ lG 81! 90 5.0 88 
.\ 87 87 88 s.o 88 43.3 35.7 35.7 29.2 
4 83 89 87 5.0 80 2 46.5 41.9 11.3 36.15 85 87 88 s.o 84 3 53.3 19.6 35.2 41.4
6 85 90 93 3.0 88 4 42.8 23.5 49.0 40.9Mc:an 84 88 89 4.3 85 5 49.3 25.0 30.8 31.6.tSD 2.4 1.2 2.1 1.0 3.5 

6 50.0 45.1 27.5 32.3 
Mean 47.5 31.8 31.6 35.3Measurements of the angles ofthe axes with the bones 

in tht• AP and axial lateral views. ::tSD 4.1 10.6 12.3 5.1 

Table 7: A) Location of axes of rotation, B) Location of the axes described as a percent of 

femoral and tibial dimensions. Tm/W, percentage ration locating tibia axis on AP view; 

Ta/Z percentage ratio locating tibial axis on axial lateral view; Y IW percentage ratio 

depicting interaxial distance relative to tibial plateau width; RIX percentage ratio locating 

femoral axis on axial lateral view. 
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