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Abstract 

A systematic control strategy is proposed for optimal operation of plants contain­

ing integrated process units in the event of unit shutdowns or failures. This entails 

manipulating the degrees-of-freedom available during and after a shutdown in such 

a way that production is restored in a cost-optimal fashion while meeting all safety 

and operational constraints. In this work, we investigate the problem of coordinating 

various buffer tanks and recycle streams during the period of transition to minimize 

production losses. The problem is cast in a dynamic optimization framework. 

The case studies in our work are based on a simulation of a Kraft pulp mill where a 

process unit is shut down and taken off-line for a period of time, and is subsequently 

restored. Based on an estimate of the downtime, our proposed control system then 

computes and implements a set of optimal control trajectories that accommodates 

the shutdown. 

This work extends prior studies ([8], [24]) by considering in addition two key issues 

- inclusion of feedback mechanisms to counter uncertainty, and the development of 

a software-based modeling tool. The downtime estimate is a crucial parameter for 

performing the control calculations. This estimate will usually be based on past 

operational experience or on direct information about the prognosis of the shutdown. 

In practice, this estimate will not correspond exactly to the actual downtime; thus 

we consider re-optimization based on revised downtime estimates. The remainder of 

the trajectory is re-optimized from the current state of the system, and the controller 

performs what is essentially a mid-course correction. This feedback approach has 

considerable advantages over a multi-scenario optimization approach for dealing with 

uncertainty in the estimated downtime, in that the resulting control trajectories are 

less conservative. The performance of this re-optimization scheme is studied in this 

work under various failure scenarios. 

Uncertainty also exists due to model imperfections and unmeasured disturbances. 

We therefore account for this uncertainty by considering the trajectory optimization 

problem within an integrated nonlinear predictive control framework. The type of 

operation under consideration (response to partial shutdown conditions) is inherently 

unsteady in nature, and the control horizon as measured from the onset of the failure 

is fixed. Among the distinctive features of the controller are: a shrinking prediction 
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horizon , an economics-driven objective function and the use of a nonlinear differential­

algebraic equation-based model. The controller is also "event-cognizant" in the sense 

that explicitly known future events such as shutdowns and startups can be specified 

and accommodated within the prediction algorithm. Case studies demonstrating the 

performance of the overall feedback strategy are presented. 

In the course of this work, we developed a specialized software-based modeling tool 

that simplifies the tasks of representing, discretizing, and solving dynamic optimiza­

tion problems. The main component of this tool is a domain-specific language named 

MLDO (Modeling Language for Dynamic Optimization). This tool is tailored to 

the representation of constructs specific to the dynamic optimization problem do­

main. Models written in MLDO are used as a precursors for generating intermediate 

AMPL-based models (discretized using an implicit Runge-Kutta method), which are 

subsequently solved using a large-scale nonlinear optimizer, IPOPT. 
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Chapter 1 

Introduction 

1.1 Objective 

Unit shutdowns in a plant frequently have an adverse effect on the operating economics 

of a plant, chiefly due to loss of production. One way of circumscribing the impact of 

a unit shutdown to a localized subset of a plant is to employ buffer capacities. Buffer 

capacities function to decouple one part of the plant from another, and by properly 

managing them one can minimize the losses incurred. 

Various methods have been proposed to optimally coordinate buffers in a plant. This 

work extends prior work by Balthazaar [8] and Dube (24], both of which take an open­

loop dynamic optimization approach to tackling the problem of computing optimal 

trajectories for control. In our work, the effect of uncertainty in the downtime estimate 

used in optimization is studied with the view of finding a means of accommodating 

it within the problem formulation. 

We also investigate the integration of dynamic optimization with a predictive control­

type algorithm for handling shutdowns. The predictive controller provides feedback 

to counter the effects of plant-model mismatch and process disturbances that occur 

during the transient shutdown and restoration periods. 

A subset of the Kraft Paper mill model was chosen as a basis for demonstrating 
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2 	 Zhiwen Chong, M.A.Sc. Thesis {Chemical Engineering) 

the above ideas in the presence of nonlinear dynamics and recycles. The model is 

composed of several departments, with main ones separated by buffer tanks. 

1.2 Main Contributions 

The major contributions of this thesis can be summarized as follows: 

1. 	Modeling Language for Dynamic Optimization (MLDO). The models 

in this work were developed using a domain-specific language called MLDO, 

a software tool created to ease the task of representing and solving dynamic 

optimization problems. MLDO was used to produce discretized code using 

Orthogonal Collocation on Finite Elements (OCFE), among other things. 

2. 	 Feedback of Downtime Estimate. The effects of uncertainty in downtime 

estimate and the use of re-optimization was studied. A method for representing 

fixed costs triggered by events (shutdowns, in particular) was proposed. 

3. 	Predictive Control. A study was done integrating dynamic optimization with 

predictive control, ai_ld applying it to the problem of unit shutdowns. The con­

trol algorithm includes various features such as a shrinking-horizon prediction 

horizon, economic objective function, and the ability to embed explicitly known 

events into the prediction model. 

1.3 Thesis Overview 

• 	 Chapter 2-Literature Review. 

This chapter begins with a process description, and is followed by a review of 

existing methodologies for handling shutdowns using buffer capacities, dynamic 

optimization and predictive control. 

• 	 Chapter 3-Development of the Model. 

This chapter describes the modeling involved in this work, and the details of the 

modeling language used to develop the models. Some modeling and formulation 

issues are considered. 
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• 	 Chapter 4-Reoptimization. 

This chapter describes several ways of dealing with the uncertainty in the 

downtime estimate, and demonstrates that re-optimization is the most suitable 

method for addressing the problem. Case studies are presented. 

• 	 Chapter 5-lntegrated Predictive Control for Shutdowns. 

This chapter describes an integrated predictive control system applied to the 

problems of shutdowns. Issues of plant-model mismatch and process distur­

bances were considered. 

• 	 Chapter 6-Conclusions. 

This chapter summarizes the findings on this work and provides recommenda­

tions for future work. 



Chapter 2 

Literature Review 

If I have seen farther it is by standing on the shoulders of giants. 

- Sir Isaac Newton 

If I have not seen as far as others, it is because giants were standing on my 

shoulders. 

- Hal Abelson, MIT" computer science professor 

This chapter aims to familiarize the reader with the body of work at large that is 

pertinent to this project. It begins with a precis of the fiber line of a Kraft mill, 

followed by a survey of the literature dealing with buffer-coordination techniques 

that have particular emphases on shutdown handling. The discipline of dynamic 

optimization is reviewed, and a detailed explanation of the method of orthogonal 

collocation on finite elements ( OCFE) is presented. An outline of relevant topics in 

constrained predictive control follows, and the chapter concludes by examining the 

issues that surround the integration of predictive control and dynamic optimization. 

2.1 Process Description- Kraft Mill Fiber Line 

The Kraft pulping process is composed of various production departments that are 

separated by buffer capacities. The major departments considered in this work are 

digestion, knotting, washing, screening and delignification. 

The Kraft process begins with digestion. The digester vessel is filled with wood chips 

and white liquor (a concentrated solution ofNa2S and NaOH) and heated according to 
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a predetermined schedule in a process known as "cooking". The wood chips eventually 

disintegrate into fibers, forming pulp. Lignin, the organic component that holds 

cellulose fibers in wood together, reacts wit4. the white liquor and is solubilized. The 

contents in the vessel are maintained at typical conditions of 170°C for 2 hours [24], 

and then discharged into an adjacent tank, called a blowtank. ·During this reaction, 

the white liquor turns into black liquor. The black liquor produced is channeled to a 

chemical recovery system which regenerates a fraction of it into white liquor [70] and 

uses the rest as fuel for producing steam. The off-vapors are sent to a heat exchanger 

where it used to heat water for pulp washing. The cooked pulp is then subjected to 

various physical and chemical separation processes designed to remove unprocessable 

wood, residual black liquor and lignin. 

The knotting department consists of knotter machines that function to remove undi­

gested chips and ill-sized wood pieces known as "knots" which hinder downstream 

processing. 

Following that, the pulp stream is directed to the washing department and undergoes 

a process known as brownstock washing (or simply, washing), where the residual 

black liquor is separated from the pulp in a carefully controlled process. This involves 

feeding the pulp into a series of counter-current vacuum drum washers, in which black 

liquor is displaced. 

The washed pulp is then conveyed to the screening department for removal of "shives", 

that is, wood pieces whose sizes lie between that of processable pulp and knots. 

Typically, vibrating pressure screens are employed for this task. 

At this stage, the pulp stream would have been adequately prepared for delignification­

the process by which the remaining lignin in the pulp is removed. The pulp stream 

is first mixed with chemical streams containing caustic soda and magnesium sulfate. 

This mixture is then fed in a counter-current direction with respect to an oxygen 

stream running within an 02-delignification reactor. A reaction occurs in which the 

lignin separates from the cellulose fibers in the pulp stream. The delignified pulp 

stream is then ready for bleaching, where the pulp is whitened in a chlorination re­

actor. 

In the Kraft fiber line, there are a number of recycles. The rejects from the last 

knotter are usually recycled to the digester, and the liquor in the brownstock washing 

stage is normally recycled to the agitated bottoms section of the blowtank, and also to 
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the header box (a mixing unit) in the washing department. Detailed model equations 

describing this plant are presented in the next chapter. 

We end this section by noting that there is a significant body of research related to the 

optimal operation, design and control of pulp and paper mills. Kayihan [47] discusses 

the benefits of taking an optimization-based approach with respect to describing, ana­

lyzing and improving the process systems and management structures in the pulp and 

paper industry. Castro and Doyle [17] describe a plantwide control design framework 

for pulp mills based on decentralized control and unit-based predictive control. 

2.2 	 Use of Buffer Capacities for Handling Unit Shut­

downs 

One of the benefits of having judiciously placed buffer capacities in a plant is the mit­

igation of process variation propagation along a production line. These intermediate 

storage units are not only able to dampen the effects of short term fluctuations, they 

are also able to deal with larger processing disturbances such as unit shutdowns if 

they can be coordinated correctly. 

In 1969, Pettersson (61] developed a scheme for coordinating production in a pulp 

and paper mill, which included a strategy for managing the buffer tanks. A system 

comprising nine processing units and ten buffer tanks was considered for optimiza­

tion, resulting in a production scheme for coordinating the plant in such a way that 

capacity restrictions were not violated. An example with a shutdown in the evapora­

tor system was shown. In a later publication, Pettersson (62] considered the problem 

of producing an optimal plantwide production scheme that could account for mainte­

nance shutdowns, limited buffer capacity and steam restrictions. The optimal control 

problem was solved using a scheme based on Pontryagin's Maximum Principle [63]. 

Lee and Reklaitis [51] proposed a method for systematically utilizing buffer capacities 

to decouple upstream equipment failures from downstream processes and vice versa. 

Using Fourier series constructions, they derived a set of analytical expressions for 

determining the minimum volume of intermediate storage required as a function of 

frequency of failure and of failure durations. In a related paper, Lee and Reklaitis 

[50] noted that intermediate storage has the effect of introducing delays in product 

change-overs, thus with respect to specifying storage capacities there is considerable 
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economic benefit to specifying only as much as is absolutely required. 

Dube [24] investigated a buffer storage operation strategy that minimizes time away 

from normal operation and prevents departmental shutdowns. This strategy was 

applied to a highly integrated Kraft pulp mill with the view of maximizing produc­

tion. The author addressed the issue of determining the longest feasible shutdown 

time (or "independence" time). The effect of preparation time on the production 

was also studied and the coordination of buffer capacities for handling planned and 

unplanned shutdowns was illustrated. A numerical optimization procedure was used 

in the solution process. 

Huang et. al. [41] advocated the idea of using a dynamic optimization approach for 

general fault accommodation and control redesign, as opposed to the manual table­

lookup approach typically adopted by operators. The authors categorized faults in 

three categories: 

1. 	 Gross Parameter Changes in Model. Changes to the parameters in the 

model that do not alter the model structurally, such as sudden drop in heat 

transfer coefficients. 

2. 	 Structural Changes in Model. Changes that alter a model's structure, such 

as equipment failure, stuck valves, controller failures, leaky pipes and so on. 

3. 	Malfunctioning Sensors and Actuators. Faults that lead to a constant 

bias, out-of-range failures or a fixed failure. 

Case studies for the first and third types of faults were presented. Unit shutdowns 

were deemed fall into the second category. This idea was augmented and generalized in 

a follow-up publication [42], where the issue of unit shutdowns was briefly addressed. 

With regard to optimizing dynamic models with unit failure representations, the 

authors suggested first removing all equations related to the unit, followed by the 

activation of a set of discrete transition equations triggered using integer variables. 

The authors emphasized that the integer variables only act as transition conditions, 

and are directly prescribed by a fault detection module, hence the final model to be 

solved does not contain integer variables. 

Allison [4] turned to an analytical approach for determining a policy for averaging the 

loads on a set of surge tanks in series during a transient event (which can be taken 



8 Zhiwen Chong, M.A.Sc. Thesis {Chemical Engineering) 

to include unit shutdowns). In this scheme, the impact of a surge on a single tank 

is distributed across the plant to avoid upper and lower level constraints on buffer 

capacities. Optimal control theory was employed in the solution process. 

Continuing along the line of DuM's work, Balthazaar [8] considered both a pre­

emptive and a reactive response to shutdowns in a Kraft paper mill. In the pre­

emptive case, the control problem is solved assuming knowledge of the shutdown ahead 

of time (as is the case in a scheduled maintenance scenario), thus allowing the plant 

to take preparatory action in anticipation of the shutdown. In the reactive case, the 

plant shutdown occurs without warning, and the control system is expected to respond 

immediately. Balthazaar also examined the problem of determining default steady­

state buffer tank levels that are optimal for handling shutdowns, using information 

on the likelihood of process unit failure. An economics-based objective function was 

employed in all the case studies. 

2.3 Dynamic Optimization 

A dynamic optimization problem can be qualitatively described in the following terms: 

given a dynamic model of a process, find a set of control actions that will extremize 

some specified performance criterion [65]. Dynamic systems (which includes chemical 

processes) are ordinarily modeled with a differential-algebraic equation (DAE) sys­

tem. The methods and means for solving such systems are described below. A DAE 

optimization problem can stated as follows: 

min <P(x(t), z(t), u(t), 8, tf)
u(t) 

s.t. 	 f(x(t), x(t), z(t), u(t), 8, t) = 0 

g(x(t), z(t), u(t), 8, t) = 0 

h(x(t), z(t), u(t), 8, t) < 0 

XL < x(t) < XU 

ZL < z(t) < ZU 

UL < u(t) :::; uu 

x(O) xo 
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where <P = scalar objective function, x = differential state vector, z = algebraic 

state vector, u = control vector, 8 = time-invariant parameter vector. L-subscripts 

represent lower bounds and U-subscripts upper bounds. 

The dominant means of solving dynamic optimization problems in the 1960s-70s were 

indirect methods based on calculus of variations and optimal control theory. Pon­

tryagin's Maximum Principle [63] uses first-order necessary conditions to locate the 

extremum of an objective functional. In unconstrained problems, this leads to a two­

point boundary value problem that is solvable via a number of standard methods. 

For constrained problems however, additional complementarity conditions have to be 

satisfied and multipliers determined. This results in a combinatorial problem that is 

computationally challenging even for relatively small problems. 

Direct methods on the other hand, seek to transform infinite dimension problems into 

finite dimensional nonlinear programs by parameterizing the continuous time profiles 

into discrete-time approximations. Direct methods generally fall under two categories, 

sequential and simultaneous methods. Sequential methods are those that discretize 

only the control profile, while simultaneous methods are those in which both the state 

and control profiles are discretized. These methods will be considered in turn below. 

2.3.1 Sequential Method 

The sequential method (also known as control vector parameterization) is a two-layer 

solution strategy. The nonlinear optimization and DAE integration steps are per­

formed separately. The control profile is first parameterized using typically piecewise 

polynomial or constant functions. Given a set of initial values for the DAE and a 

starting control profile, the DAE model is integrated (using specialized DAE solvers 

such as DASSL or DASPK [15]) and the objective function value evaluated. Based 

on the objective value and sensitivity information obtained from the system, the op­

timizer tries to find a set of control actions that will improve on the current solution. 

This new set of control actions are then inserted into the DAE problem, and the inte­

gration is repeated. This iterative procedure continues until a stipulated termination 

condition is met. 

One attractive advantage of the sequential method is that for problems in which the 

number of state variables far exceed the number of control variables (i.e. few degrees of 

freedom available), the nonlinear programming problem arising is usually manageably 
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small in size. Also, the sequential method does not succumb to discretization errors 

with respect to profiles of state variables, as the DAE solver usually uses variable step 

sizes when performing the integration. 

However, in practice, sequential methods often incur significant computational ex­

pense from having to integrate a DAE system on every iteration [1J. Bloss et. al. [13] 

point out that the calculation of constraint gradients by finite differencing or sensi­

tivity/adjoint equations also contributes greatly to computational load. Inefficiencies 

related to integration are particularly pronounced in stiff systems [73]. Biegler [12] 

states that the sequential method is only robust for systems with exclusively sta­

ble modes (defined as modes in which profiles remain bounded as the time goes to 

infinity); otherwise, the problem may fail prematurely due to integration failure at 

unstable intermediate points, even if a stable final solution exists. 

Because the optimization iterations are separated from the integration, bounds on 

the state variables cannot be directly enforced in the optimization step. Various 

methods for getting around this problem have been proposed, ranging from forcing 

a constraint violation penalty to zero through an endpoint constraint [78] to using 

initial point solvers that respect path constraints [30]. Huang et. al. [43] presented 

a decomposition-based method where the state variables are partitioned into two 

subsystems using an efficient maximum traversal algorithm [25]. The goal is to iso­

late control variables and state variables affected by path constraints into a separate 

subsystem. This subsystem is discretized and solved in the NLP phase using the 

simultaneous method, and thus path constraints on the state profiles are enforced 

within the optimization framework. The rest of the system is solved using the se­

quential method. Two obvious advantages of this method are: 1) The size of the 

resulting NLP is moderately small; and 2) Path constraints on the state variables are 

handled naturally. 

2.3.2 Simultaneous Method 

In the simultaneous method, both state and control profiles are discretized, resulting 

in a large scale sparse NLP that may benefit from special solution strategies [11J. 
Of note is the fact that no explicit integration step is performed because both the 

integration and optimization problems are converged simultaneously at the solution 

point. 
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A widely-used method for performing full discretization is orthogonal collocation on 

finite elements (OCFE). OCFE converts the DAE system into an algebraic equation 

system that can be solved with a conventional NLP solver. We have elected to use 

this method in our work, and it is described in some detail in the next section. 

Simultaneous methods enjoy several advantages over sequential methods. First, path 

constraints are handled naturally within the optimization formulation. Further, be­

cause the DAE system is only solved once, unstable or nonexistent intermediate so­

lutions are bypassed [11]. 

There are however some disadvantages associated with simultaneous methods. As 

stated before, large scale NLPs arise from this method and they can be challenging to 

solve. Reduced space methods have been proposed to alleviate some of the difficulties 

related to large-scale problems. It is worth noting that large scale solvers that exploit 

the sparsity of the problem have been developed [81] and have proven to be successful 

in finding the solutions to these types of problems. Model reduction techniques that 

employ a combination of projections and system identification have also been proposed 

[72]. 

The other issue with simultaneous methods relates to stability problems that arise 

from high-index constraints and singular arcs. Several practical methods to address 

these issues have been proposed [12]. 

2.4 Orthogonal Collocation on Finite Elements (OCFE) 

Orthogonal Collocation on Finite Elements (OCFE) is a weighted-residual method 

for transforming a DAE system into a set of algebraic equations that are admissible as 

constraints in an optimization problem. It has been demonstrated that OCFE essen­

tially corresponds to a well-conditioned implicit Runge-Kutta method for integrating 

DAEs [20]. Implicit Runge-Kutta methods have been shown to have good numerical 

properties such as having matrices that possess smaller condition numbers and that 

are less susceptible to rounding errors [6]. 

The basic idea behind OCFE is the segmentation of the continuous-time solution 

profile of the DAE system into components called finite elements. Within each finite 

element, a residual function containing a polynomial approximation of the solution is 
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forced to be exactly zero at collocation nodes (Figure 2.1). These collocation nodes are 

chosen as roots of an orthogonal polynomial family, such as the Jacobi polynomials. 

Function (and in some cases, derivative) continuity is imposed at the boundaries of 

finite elements (continuity nodes, Figure 2.1). Details of this method can be found 

in Cuthrell and Biegler [20]. On a practical note, according to Vasantharajan and 

>E-----­ ------x 
v-----­ ----x....

,-" ....... 
 ---- v ___.x-------­
---"f•···)(._____ _____,.,..X 

------x----x-------­

Trajectory 
Initial Value o 
Collocation Nodes X 
Continuity Nodes • 
Knots X 

knots 0 2 0 2 0 2 0 2 0 2 

FE 2 3 4 5 

Figure 2.1: Example of OCFE on x = f(x, t), nFE = 5, nCOL = 2. 

Biegler [77], two or three collocation points are generally sufficient for an accurate 

approximation, given a adequate number of finite elements. Approximation error can 

be further controlled using adaptive knot placement techniques [20]. 

Consider a differential algebraic equation system of the following form: 

dx 
= f(x(t), z(t), u(t)) with x(t) = xo (2.1)

dt 

h(x(t), z(t), u(t)) = 0 (2.2) 

where 

x = vector of differential variables 

z = vector of algebraic variables 

u =vector of control input variables (decision variables in an optimization problem) 

The collocation procedure is described below. 

Time scaling equation 

For convenience, the time ordinate is rescaled to the [0,1] interval in each finite element 
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using the following equation: 

t- tq-1
T = ---:-'--'- for tq-1 ~ t ~ tq, q = {1, ... , nFE} (2.3)

8 
where q =finite element counter, tq-1 =left-hand side boundary of the current finite 

element q, 8 =finite element length (assumed uniform), nFE =total number of finite 

elements. The scaled collocation points will be denoted as Ti for i = 1, ... , nCOL, 

where nCOL = the total number of collocation points per finite element. To is the time­

scaled left-hand boundary point (i.e. To = 0). All references to temporal variables 

henceforth will be made in terms of the variable T. 

Method of Ordinates: Lagrange Interpolation Polynomials 

Each differential and algebraic variable is approximated as a polynomial. In lieu of the 

standard coeffients-based representation for polynomials, P(x) = ao+a1x+ ...+anxn 

(method of coefficients), Lagrange interpolation polynomials are employed in what is 

known as the method of ordinates. The variables are represented thus: 

( ) nCOL ( )
dx q h) __ "' x(_q) d</>j Ti 

~ (2.4)3
dT j=O dT 

nCOL 

x(q)h) = L x)q)</>j(Ti) (2.5) 
j=O 

nCOL

L z)q)</>ih) (2.6) 
j=O 

and 
nCOL 

</>j(Ti) = Dj II (Ti-T!) (2.7) 
l=O 
l=h 

nCOL nCOL 

= Dj L II (Ti -Tt) (2.8) 
k=O 1=0 
k=h l=lj,l-:fk 

nCOL 
1 

(2.9)II (T·- Tt)
l=O J 
l=h 

where </> = Lagrange polynomial basis function, D = Lagrange polynomial denomi­

nator. 

Observe that equation (2.7) can be simplified into the following form: 

when l = j (2.10) 

when l =/= j (2.11) 
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It follows that the polynomial coefficients of x(q)(ri) and z(q)(ri) correspond simply 

to the values of the states at the collocation points, thus equations (2.5-2. 7) can be 

dropped from the problem. 

Residual equations 

To obtain the residual equations, we replace the continuous differential and algebraic 

variables in (2.1-2.2) with their discretized forms using the following discretization 

mapping (expressions 2.12-2.15). 

dx [ dx(q)(Ti) ldT ~ [nfL X(q)d<f>;(T;)] !- --t (2.12)
dt dr dt j=O J dr l5 

x(t) --t x(q) (Ti) = x;q) (2.13) 

z(t) --t z(q)(ri) = z~q) (2.14) 

u~q)u(t) --t (2.15)
~ 

The following residual equations are obtained: 

with q = 1, ... , nFE, i = 1, ... , nCOL 

(2.16) 

with q = 1, ... , nFE, i = 1, ... , nCOL (2.17) 

X (l) = X 
0 0 (2.18) 

Control Input Vector 

The control input vector is represented by the following equation: 

up where p =sampling instance= {0, 1, ... , nSamples- 1} (2.19) 

p - Lq-
1J where 'f/ =finite elements per sample, LJ =floor functi{ili20) 

"' The temporal ordinate of the control inputs is measured in terms of sample units 

(p). In a standard OCFE implementation, the length of one sample time corresponds 

exactly to the length of one finite element. In this implementation, multiple finite 

elements per sample may be specified (through the 'f/ parameter) for the purpose of 

improving accuracy [7]. 

Continuity equation 

Continuity between finite elements is enforced in the differential variables by using 

http:2.12-2.15
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the polynomial approximation derived for the previous finite element to calculate the 

value of the differential variable at. the left-hand side boundary of the current finite 

element (at the continuity node, refer to Figure 2.1) . 

nCOL 

x~q) = L xjq-1)<f;>j(1) for q = 2, ... , nFE (2.21) 
j=O 

Jacobi Collocation Points 

Collocation points are optimal knot placement points, which can be shown to cor­

respond to the roots of an orthogonal polynomial family [20]. The Jacobi family of 

orthogonal polynomials is commonly used. The following recursion formula, called 

Rodrigues' formula, can be used to generate Jacobi polynomials: 

n 

p~a,f3)(x) = L(-l)n-i/iXi (2.22) 
i=O 

(n - i + 1)(n + i + a + (3)
li = with /0 = 1 (2.23),'i(i + (3) /i-1 

Efficient FORTRAN routines for generating Jacobi roots can be found in Villadsen 

and Michelsen (79]. 

2.5 Feedback using Predictive Control Algorithms 

In order for a control strategy to be applied successfully, the controller needs to 

possess an accurate and up-to-date view of the plant. Uncertainties in the process 

can distort the picture however. These uncertainties usually enter the plant in the 

following forms (53]: 

1. Plant-model mismatch 

(a) Structural mismatches- arising from incomplete or erroneous models 

(b) Parametric mismatches - arising from incorrectly identified parameters 

2. Disturbances 

(a) Fast- high frequency variations in the feed, conditions etc. 

(b) Slow - process drifts 
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3. Unknown initial conditions 

4. Measurement Noise 

There are a wide variety of methods and means to accommodate and counter these 

uncertainties, but for the purpose of this work we will concentrate on one particu­

lar methodology, that is, model-based feedback control using a nonlinear predictive 

control algorithm. 

2.5.1 Model Predictive Control 

Model Predictive Control (MPC) is an umbrella term for a family of algorithms that 

exploit a model to predict the future response of a plant given a set of manipulated 

variable adjustments [64]. The control scheme incorporates an optimization routine 

which computes a sequence of control actions required to drive the plant to some 

operating point in an optimal fashion. The first of this sequence of computed control 

actions is implemented in the plant and process measurements are taken. The feed­

back is introduced through a bias update on the disturbance estimate. This procedure 

is repeated at each control interval. 

MPC has many favorable properties that have contributed to it becoming one of 

the most widely-used advanced control schemes today [64]. It is an inherently mul­

tivariable controller, therefore interaction effects are handled naturally through the 

model. In most variants of MPC, operating constraints are handled easily through 

hard constraints in the optimization problem or soft constraints via penalty terms in 

the objective function. 

One of the earliest algorithms in the MPC family is Dynamic Matrix Control (DMC), 

presented by Cutler and Ramaker [21] in 1979, an algorithm which had already been 

successfully implemented in a real plant several years prior. DMC incorporated step­

response models and was capable of handling linear dynamics. Uncertainties are 

handled through feedback. However, because the optimization problem in DMC was 

posed as an unconstrained one, constraint-handling was somewhat ad hoc, which led 

Garcia to extend DMC by reformulating the optimization problem as a quadratic 

program (QP) in which linear constraints are admissible [34]. This gave rise to an 

algorithm known as quadratic dynamic matrix control (QDMC). 
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Despite the fact that many chemical process exhibit inherently nonlinear behavior, 

linear MPC continues to be pervasive, especially in continuous processes where the 

predominant objective is to maintain the plant at certain operating points (known 

as a regulation problem) [64]. In batch and transient processes processes however, 

the ability to move rapidly from one operating point to another (servo problem) is 

more important and hence nonlinear models are better suited for these applications. 

An early application of MPC to a nonlinear (batch) process can be found in Garcia 

[33], where QDMC was applied to a nonlinear time-varying process modeled using 

differential equations. The nonlinear model was integrated to calculate the the future 

projection and a local linearization was simultaneously performed to obtain the step 

coefficients for the dynamic matrix, required for optimization. 

The local linearization approach however is only suited to mildly nonlinear processes. 

Patwardhan et. al [60] presented a formulation of nonlinear MPC where control 

actions are computed by optimizing a full nonlinear model at every control interval. 

The model is discretized using orthogonal collocation and solved as a constrained 

nonlinear program. 

2.5.2 Control of Transient Processes using MPC 

Much of the work in the area of applications of MPC to transient processes have been 

on batch processes. Krothapally and Palanki [49] showed an online application of 

MPC to a batch polymerization process. Nagy and Braatz {56] developed a shrinking­

horizon MPC algorithm which uses an economic objective function, and showed an 

example of an application of their algorithm to a batch crystallization simulation. 

Hillestad and Anderson [39] applied nonlinear predictive control to the problem of 

grade transitions in polymerization reactors. The work of Wang et. al. [82] in­

volved the use of nonlinear model predictive control to manage grade transitions on 

a polyethylene reactor. Feather et. al. (29] described a hybrid predictive control 

approach for the polymer grade transition problem. The nonlinearity in the process 

was modeled using approximate linear models, and an algorithm based on integer 

variables was used to switch between them, based on what the operating conditions 

were. A case study based on a propylene loop reactor simulation was presented. 
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2.5.3 Incorporating Economics into the Control Algorithm 

In many large chemical plants today, economic optimization is typically performed by 

a Real-Time Optimization (RTO) module that computes the optimal operating point 

of a plant and sends the relevant setpoints to a lower-level MPC controller, whose 

duty is to track them. RTO systems are typically based on steady-state models. 

These work sufficiently well for steady-state operations, but there is some indication 

that they are inadequate for nonlinear dynamic processes such as grade transitions 

and batch systems [45]. In view of that, there has been a move towards exploring the 

use of dynamic models in RTO systems and making them computationally tractable. 

Several strategies exist for performing economic optimization using dynamic models. 

Tosukhowong et. al. [74] suggested that a dynamic RTO model be used, but with 

the provision that the dynamic optimization be performed at a frequency that is 

significantly lower than that of the predictive controller in order to keep the compu­

tational requirements low enough for real-time applications. Reduced-order models 

for a chosen optimization frequency were also discussed. 

In a similar vein, Kadam et. al. [45] proposed the hierarchical decomposition of 

the optimization problem into a higher-level economic optimization problem (with 

dynamic models) and lower level control problem. Instead of performing the economic 

optimization at a fixed frequency, Kadam suggested that reoptimization be performed 

contingent upon the detection of disturbances whose magnitudes exceed a certain 

pre-determined threshold. This disturbance detection is done through a disturbance 

sensitivity analysis of the optimal reference trajectories. 

On smaller plants, there has been some interest in integrating the economic optimiza­

tion problem directly with the predictive controller itself. Zanin et al. [86] proposed a 

1-layer approach where the economic optimization problem is solved together with the 

MPC optimization problem. This is accomplished by adding an economic function 

as a penalty term in the objective function of the MPC controller. Their motivation 

for taking a 1-layer approach as opposed to a traditional 2-layer approach (where 

economics and dynamics are separated) is to address what they consider a major 

deficiency associated with traditional layered optimization strategies, that is, because 

the controller and the optimizer are not dealing with exactly the same pieces of in­

formation, conflicts may arise and the predicted optimal operational point may turn 

out to be suboptimal. Zanin reported success in applying this algorithm to an in­
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dustrial process. The 1-layer approach suffers from several drawbacks however: 1) 

difficulty in apportioning of weights (in the optimization problem) for achieving reg­

ulation and economic objectives; 2) integral action is generally not achieved if inputs 

are penalized. 

Another study of the single-level strategy can be found in Becerra et. al. {10]. The 

authors carried out simulations of Tennessee-Eastman process where an economics­

based MPC controller was applied to the process. 



Chapter 3 

Development of the Model 

The ultimate purpose of computing is insight, not numbers. 

- Richard Hamming, applied mathematician 

In this chapter, a detailed description of an in-house developed modeling language 

for representing dynamic optimization problems is presented. This is followed by the 

development of the Kraft paper mill model. This chapter concludes with an brief 

account of the various formulation and modeling issues encountered. 

3.1 A Modeling Language for Dynamic Optimization (MLDO) 

One of the primary contributions of this work to the corpus of modeling and opti ­

mization techniques at large is a domain-specific language for describing dynamic op­

timization problems, MLDO (Modeling Language for Dynamic Optimization). Model 

code written in MLDO is used to generate dynamic optimization code in a commercial 

mathematical programming language called AMPL [31]. This code is subsequently 

passed to an NLP solver for optimization. 

The advantages of using the AMPL language in an intermediate step are many. AMPL 

provides facilities such as efficient automatic differentiation (exact first and second 

derivatives), bounds checking (via its presolve phase), interoperability with different 

solvers, problem reduction, and other features that aid in the efficient solution of 

nonlinear optimization problems. 

20 
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MLDO is designed for dynamic optimization problems of the following form: 

min cp(x(t), z(t), u(t), t) (3.1)
u(t) 

subject to 

f(x(t), x(t), z(t), u(t), t) = 0 (3.2) 

g(x(t), z(t), u(t), t) = 0 (3.3) 
h(x(t), z(t), u(t), t) < 0 {3.4) 

XL :::; x(t):::; xu (3.5) 

ZL :::; z(t) :::; zu (3.6) 

llL :::; u(t):::; uu (3.7) 

x(O) = xo (3.8) 

MLDO takes a representation of the above problem and generates the requisite code 

for optimization. Only first-order differential terms are supported in the problem 

formulation, but it is trivial to reduce the order of higher-order differential terms by 

introducing dummy variables. 

Because it uses code to generate code, MLDO functions well as a rapid prototyping 

tool that allows for experimentation with various configurations and ideas. In contrast 

to software like DynoPC [85] and gPROMS [9] which are aimed at the practitioner, 

MLDO exposes lower-level code and gives the modeler the flexibility to extend dy­

namic optimization models in novel ways while saving them from writing repetitious 

"boilerplate" code. 

To solve the NLP problem, we opted to use IPOPT 3.1.0, a primal-dual interior point 

solver originally developed at Carnegie-Mellon University. IPOPT [81] is a large-scale 

sparse nonlinear optimizer for continuous problems that implements a primal-dual 

interior point method. It performs line-searches based on "filter" methods originally 

proposed by Fletcher and Leyffer [80]. These methods have garnered attention in the 

research community for their simplicity and have managed to generated a flurry of 

research [36] in a short time. Filter techniques aim to promote global convergence 

without the need for a penalty function. The concept of a filter is based on the 

optimizer accepting a step if it reduces either the objective function or a constraint 

violation function. IPOPT also uses efficient sparse matrix routines for factorizing 
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large-scale sparse linear systems, and is capable of solving fairly large scale nonlinear 

problems. IPOPT is released under the Commons Public License, an open-source 

type license. 

In the course of our work, several other solvers were tested, including MINOS, SNOPT, 

KNITRO and LOQO. The NEOS Server [22] was instrumental in this effort. 

The solution data were channeled into MATLAB for visualization via a custom­

developed AMPL-MATLAB interface. 

The primary machine used for computation was an Intel Pentium 4 (3 GHz) computer 

with 1 GB RAM, running the Debian Linux (kernel version 2.4.27-2) operating system. 

3.1.1 Features of MLDO 

Discretization using Orthogonal Collocation on Finite Elements 

(Simultaneous Method) 

In order to solve a dynamic optimization problem within an optimization-type frame­

work, it is necessary to discretize the differential-algebraic equation (DAE) system. 

MLDO generates code for solution using a simultaneous method. Discretization is 

performed using Orthogonal Collocation on Finite Elements (OCFE) [20]. 

One of the features of the OCFE implementation in MLDO is that the number of 

Finite Elements (FE) that correspond to one sample period is unrestricted [7]. The 

major advantage of this feature is that it allows one to capture rapidly changing 

dynamic behavior without affecting the sample period. 

Concatenation of Multiple MLDO Models 

Figure 3.1: Model concatenation with MLDO. 
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A logical way of developing a plantwide process model is build the models of individual 

process units separately (with independent inputs and outputs) before combining 

them into one monolithic process model. This leads to a decoupled design. MLDO is 

capable not only of merging multiple process unit models into one model, it is also 

able to generate "arrays" of unit models. This feature saves the modeler the effort 

of writing duplicate model code for multiple instances of the same process unit. For 

example, in Figure 3.1, a model of a reactor can be treated as a template, and the 

modeler is allowed to derive multiple instances of it. At the final stage, models are 

concatenated to form a monolithic model from which a large-scale NLP problem is 

generated. 

Models are linked to one another using "connection equations". Connection equations 

relate the outputs of one model to the inputs of another. For instance, the modeler 

can specify a connection between a tank and reactor by equating the material stream 

exiting the tank to the inlet of the reactor: 

ptank = p:eactor
out ~n 

In collaborative optimization, where models are developed by different design teams, 

one may also choose to first perform a feasibility optimization to reconcile the models 

[3]. In simplistic terms, this entails performing a relaxation by specifying a penalty for 

the discrepancies arising and subsequently minimizing the penalty in the optimization 

problem. For example, the above connection may be written as: 

ptank = p:eactor + E 
out m 1 

where EI =discrepancy penalty to minimize. 

NLP Initialization 

One of the prerequisites for successfully solving large-scale NLPs (especially those 

arising from DAE systems) is starting a suitable initialization point. In the case of 

process models, such a point can be obtained through a process simulation. MLDO 

has the facility to translate model code written in MLDO syntax into the gPROMS [9] 

modeling language. This allows the modeler to run a parallel model in the gPROMS 

environment and exploit its DAE integration and nonlinear equation solver capabili­

ties to obtain a nominal (unoptimized) profile. The results of the gPROMS simulation 

can then be used as an initial point for the dynamic optimization problem in AMPL. 
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MLDO provides the facility to read the output of a gPROMS simulation (in the form 

of a gPLOT file) and automatically generate code to initialize the dynamic optimiza­

tion problem. 

Automatic Generation of Documentation 

Because MLDO model code closely resembles mathematical notation, it can easily be 

converted to a mathematically-typeset document via the route of a typesetting lan­

guage, Jb.'IEX. This feature (also known as "pretty-printing" in the computing world) 

essentially makes MLDO code self-documenting, in that human-readable documenta­

tion can be instantly generated from model code. This also facilitates the exchange 

of model descriptions with parties who have no knowledge of MLDO syntax. 

Miscellaneous features 

The following methods are implemented in MLDO and they warrant a brief mention. 

1. 	Multi-period method for Optimization Under Certainty. In this method 

[67], uncertain model parameters are treated as discrete variables. A set of 

parallel models, each corresponding a certain value of each parameter, are solved 

simultaneously in the same NLP problem to find a set of control inputs that are 

feasible for all the cases. These parallel model descriptions typically result in a 

high-dimensional optimization problem. The ability to automatically generate 

these parallel model descriptions is built into MLDO. 

2. 	Homotopy Methods. Balthazaar (8] encountered computational difficulties 

when introducing drastic disturbances such as shutdowns. Homotopy was pro­

posed as a numerical method for gently initializing trajectory profiles. The basic 

idea behind homotopy (first articulated by Henri Poincare in 1900) is the con­

tinuous transformation of one function to another. In an optimization context, 

this idea is used to initialize NLPs by warm-starting the problem from a nu­

merically benign point (such as a steady-state solution) and then slowly moving 

that point closer and closer to the actual solution (i.e. one that contains drastic 

changes in the trajectory, in our case) through the use of a forcing function. The 

solution of the previous solve stage is used as the initialization for the current 

solve stage. 
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3. 	 Two-tiered Solution Method. Balthazaar [8] discovered that it was possible 

to obtain different trajectories that returned the same objective function value 

upon solving the nonlinear problem, suggesting that there are multiple solutions 

the same problem or that the solution was non-unique. This is a common 

occurrence in problems where there are a large number of degrees of freedom. 

They may also occur when: 

• 	 2 or more variables in the objective have equal weights 

• 	 2 or more variables have no weights in the objective function 

• 	 2 or more variables have unequal weights in the objective function, but 

the allowable trade-off between them does not cause any change in the 

objective value. 

To counter this type of ill-conditioning, Balthazaar proposed a two-tiered ap­

proach where the optimization is performed twice. In the first tier, the optimiza­

tion is performed using an economics-based objective function. In the second 

tier, the economics-based objective function is converted into a constraint, where 

it is equated to the objective value obtained in the first tier optimization (thus 

locking down the economics of the system), and a new objective function that 

minimizes control moves is soived. The trajectories resulting from this second 

tier optimization is deemed to have maximized the economics and minimized 

the control actions required to achieve that level of economics, and is regarded 

as a unique solution. 

4. 	Visualization with Sparklines. The smallest meaningful result unit in a 

dynamic optimization solution is typically a trajectory. In an ordinary-sized 

problem the number of trajectories in the solution generated may range in the 

hundreds. Therefore it is necessary to devise some means of visualizing a large 

number of trajectories on screen and on the printed page. One such means is 

the use of a compact word-sized graphic format (proposed by the statistician 

Edward Tufte [75]) for displaying trend information, known as "Sparklines". 

MLDO has the ability to generate pages of Sparkline figures (Figure 3.2) for the 

trajectories obtained from the solution of a dynamic optimization problem. 

3.1.2 Design of MLDO 
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dlgester(1).1n1 40.0 Min: 0 .0 Max: 40.0 
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Figure 3.2: Use of Sparklines for displaying variable trajectories. 

MLDO was developed using Python [55] (version 2.4.1) , an open-source object-oriented 

programming language originally developed at the Centrum voor Wiskunde en Infor­

matica (CWI) in the Netherlands. A number of software tools in process engineering 

have been written in Python, including a model integration tool (originating from 

RWTH-Aachen [69]) and a high-fidelity multidisciplinary design optimization (MDO) 

package [5]. 

MLDO is a domain-specific language built on the software engineering concept of 

"metaprogramming", a technique by which code in one programming language is 

used to generate code in another. There has been a great deal of interest in recent 

years in the use of metaprogramming techniques to improve the quality of software 

engineering. This trend has not escaped the attention of the process control com­

munity, as witnessed by the existence of control-applications-specific languages such 

as ControlH [28] (a control specifications language developed at Honeywell that is 

capable of emitting C or Ada code). 

Metaprogramming is particularly suited to situations where large amounts of com­

plicated and highly customized computer code is required to solve a problem, and 

where such code is susceptible to human errors if written manually. Metaprogram­

ming proposes to transfer the task of writing the code to the computer. The user 

is required to only specify the particular problem in a specially defined language 

(called a domain-specific language) that is processable by a program known as a code 

generator. The code generator analyzes the structure of the specified problem and 

generates the requisite lower-level programming code for solving the problem. In 

contrast to conventional programming languages, the input to the code generator is 

usually declarative rather than imperative; that is, it contains a problem definition 

rather than the explicit computer instructions required to solve the problem. 

There have been a number of precedents in chemical engineering where metapro­

gramming techniques were used for rapidly producing computer codes that are main­
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tainable and reliable. Pantelides {59], in his description of the Speedup™ process 

simulation tool, mentions an example in which the Pascal programming language was 

leveraged to write routines which generated lower-level FORTRAN code for calculat­

ing derivatives. 

In a similar vein, the chief purpose of MLDO is to allow the modeler to write dynamic 

optimization models/problems a compact canonical form that can be subsequently be 

transformed into another language (in our case, AMPL) for solution. This transforma­

tion process involves operations such as generation of code for performing orthogonal 

collocation, running two-tiered methods, imposing failure constraints and so on. 

MLDO was designed to have a syntax that closely resembles the mathematical no­

tation of dynamic optimization. Its syntax is illustrated in the following example. 

Consider the following mathematical description of a simple dynamic optimization 

problem: 

min-[1- Za(tj)- Zb(tj)]
U(t) 

dza(t)
s.t. = U(t) · [10 · zb(t)- Za(t)]

dt 
dzb(t) 

= U(t) · [za(t) - 10 · Zb(t)]- [1 - U(t)] · Zb(t)
dt 


Za(O) - 1 


Zb(O) = 0 


0 < U(t) < 1 


where U(t) =control input variable, Za, Zb =differential variables, t1 =terminal time. 

The transcription of the above problem in MLDO syntax is as follows: 

minimize: 
-(1 - za(tf_) - zb(tf_)); 

statevars: 

za; zb; 

controlvars: 

U; 
dae: 

$za = U*(10*zb- za); 

$zb = U*(za - 10*zb) - (1 - U)*zb; 

init: 

za(O) = 1; 
zb(O) = 0; 

constraints: 
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0 <= u <= 1; 


ocfe: 


tf_ = 0.4; nFE_ = 16; nCOL_ = 2; 


The syntax is largely self-explanatory. The objective function resides in the minimize 

section. Differential variables are declared in the statevars section, while control input 

variables are declared in the controlvars section. The dae section contains the differen­

tial algebraic equation (DAE) system, and init section, their initial values. The s sign 

denotes the differential operator. Operating constraints are written in the constraints 

section. The ocfe section allows the modeler to specify parameters for orthogonal col­

location on finite elements, such as the terminal time (tf_), number of finite elements 

to use (nFE_) and the number of collocation points (ncoL_) in each finite element. The 

complete syntax is documented in an internal technical report [18]. 

AMPL Code 

The AMPL code that is generated from the above problem description (with the table 

of Jacobi roots omitted) appears below: 

# ======== OCFE Parameters ======== 


param tf_; 

param nCOL_; 


param nFEperSample_; 


param sampleSize_; 


param nSamples_ := tf_/sampleSize_; # number of samples 

param nFE_ := nFEperSample_ * nSamples_; # number of finite elements 

param delta_ := tf_/nFE_; # size of finite element 

param JacobiRoots_{COL_ in 0 .. 9, NCOL_ in 1.. 8}; #table of roots of the Jacobi polynomial 

param tau_{COL_ in O..nCOL_} := JacobiRoots_[COL_,nCOL_]; #collocation points 

param FELowerBounds_{FE_ in 1.. nFE_} :=(FE_- 1) *delta_; #lower bounds of finite elements 

param t_{FE_ in 1.. nFE_, COL_ in O.. nCOL_} := FELowerBounds_[FE_] + JacobiRoots_[COL_,nCOL_]•delta_; 
param fe2samp_ {FE_ in 1.. nFE_} = floor((FE_- 1)/nFEperSample_); 

# ==== Lagrange Interpolation Polynomials ==== 


param LagrangeDenom_{j_ in 0 ..nCOL_} := # Lagrange polynomial denominator 

prod{l_ in O.. nCOL_: 1_ != j_} (tau_[j_]- tau_[l_]); 


param LagrangeDiff_{j_ in O..nCOL_, COL_ in O..nCOL_} := # Lagrange polynomial derivative 

1/LagrangeDenom_[j_] * 

sum{k_ in O.. nCOL_: k_ != j_} (prod{l_ in O.. nCOL_: 1_ != j_ and l_ != k_}(tau_[COL_] - tau_[l_])); 

param LagrangeContinuity_{j_ in O.. nCOL_} := #Expression for continuity equations 


1/LagrangeDenom_[j_] * prod{l_ in 0 .. nCOL_: l_ != j_}(1- tau_[l_]); 
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# ======== Trial Function I Variable Declarations ======== 

var za{FE_ in 1.. nFE_, COL_ in O..nCOL_}; 

var Derivative_za_{FE_ in 1.. nFE_, COL_ in O.. nCOL_}; 


var Continuity_za_{FE_ in 1.. nFE_-1}; 


var zb{FE_ in 1..nFE_, COL_ in O.. nCOL_}; 

var Derivative_zb_{FE_ in 1.. nFE_, COL_ in 0 .. nCOL_}; 

var Continuity_zb_{FE_ in 1..nFE_-1}; 


var U{Sample_ in 0 .. nSamples_-1}; 


# ==== Objective Function ==== 

minimize obj: -(1 - za[nFE_,nCOL_] - zb[nFE_,nCOL_]); 


subject to 


# ==== Trial Function Definitions === 

constraint! {FE_ in 1.. nFE_, COL_ in 0 .. nCOL_}: 


Derivative_za_[FE_,COL_] = sum{j_ in O.. nCOL_}(za[FE_,j_] * LagrangeDiff_[j_,COL_]); 
constraint2 {FE_ in 1..nFE_, COL_ in O.. nCOL_}: 

Derivative_zb_[FE_,COL_] = sum{j_ in O.. nCOL_}(zb[FE_,j_] * LagrangeDiff_[j_,COL_]); 

# ======== Differential Algebraic System - Residuals ======== 
constraint3 {FE_ in 1.. nFE_, COL_ in 1.. nCOL_}: 

Derivative_za_[FE_,COL_]/delta_ = U[fe2samp_[FE_]]*(10•zb[FE_,COL_] - za(FE_,COL_]); 

constraint4 {FE_ in 1.. nFE_, COL_ in 1.. nCOL_}: 

Derivative_zb_[FE_,COL_]/delta_ = U[fe2samp_[FE_]]*(za[FE_,COL_] - 10•zb(FE_,COL_]) 
- (1 - U[fe2samp_[FE_]])•zb[FE_,COL_]; 

# ======== Initial Conditions ======== 
constraintS: za[1,0] 1; 
constraintS: zb[1,0] 0; 

# ======== Operating Constraints ======== 

constraint7 {FE_ in 1.. nFE_, COL_ in 0 .. nCOL_}: 0 <= U[fe2samp_[FE_]] <= 1; 


# ======== Continuity Constraints 

constraintS {FE_ in l ..nFE_-1}: 


Continuity_za_[FE_] = sum{j_ in O.. nCOL_}(za[FE_,j_] * LagrangeContinuity_[j_]); 

constraint9 {FE_ in 1..nFE_-1}: Continuity_za_[FE_] = za[FE_+1,0]; 
constraint10 {FE_ in 1..nFE_-1}: 

Continuity_zb_[FE_] = sum{j_ in O.. nCOL_}(zb[FE_,j_] * LagrangeContinuity_[j_]); 
constraint11 {FE_ in 1..nFE_-1}: Continuity_zb_(FE_] = zb[FE_+1,0]; 

data; 

# ====== OCFE parameters 

param tf_ := 0.4; 


param nCOL_ := 4; 


param nFEperSample_ : = 1; 

param sampleSize_ := 0.05; 
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[Table containing Jacobi Roots) 

# ====== Solver Parameters ====== 

solve; 


gPROMS Code 

To demonstrate the ability of MLDO to generate gPROMS model code, we present 

the gPROMS MODEL and PROCESS code generated from the above problem description. 

(The objective function and constraints are specified in the graphical environment of 

gPROMS and are omitted in the generated code.) 

# gPROMS MODEL: mdl 
VARIABLE 

za AS notype 
zb AS notype 
U AS notype 

EQUATION 
$za = U*(10*zb- za); 
$zb = U*(za - 10*zb) - (1 - U)*zb; 

# gPROMS PROCESS: proc 
UNIT 

mdl as mdl 
INITIAL 

mdl.za = 1; 
mdl.zb = 0; 

SOLUTIONPARAMETERS 
gPLOT := ON; 

SCHEDULE 
CONTINUE FOR 0.4; 

~'JEXCode 

Finally, to demonstrate MLDO's self-documentation capability, we present the IE\'!EX typesetting 

code generated from the original problem description. This code can then be compiled 

into a mathematically-typeset document (PDF file). 
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% ====================== Standard preamble ====================== 

\documentclass[10pt]{article} 


\usepackage{geometry} 


\geometry{letterpaper} 


\usepackage{amssymb,amsmath,amsfontsJ 


% ====================== Document ====================== 

"\b!!gl,n{document} 


\section{Model - mdl} 


\textbf{Differential Variables} \begin{quote}$za$, $zb$\end{quote} 


\textbf{Control Input Variables} \begin{quote}$0$\end{quote} 


\textbf{Differential and Algebraic Equation System}\\ 


\begin{eqnarray} 


\frac{d}{dt} za t=t U \cdot (10 \cdot zb - za)\\ 


\frac{d}{dt} zb t=t U \cdot (za - 10 \cdot zb) - (1 - U) \cdot zb 


\end{eqnarray} 


\textbf{Initial values}\\ 


\begin{eqnarray} 


za(O) t=t 1\\ 


zb(O) t=t 0 


\end{eqnarray} 


\textbf{Constraints}\\ 


\begin{eqnarray} 


0 \leq U \leq 1 


\end{eqnarray} 


\end{doc)l!D.ent} 


The resulting document is shown in Figure 3.3. 

1 Model- mdl 

Differential Variables 

za, zb 

Control Input Variables 

u 
Differential and Algebraic Equation System 

Initial values 

d 
-za 
dt 

izb 
dt 

U·(10·zb'-za) 

U · (za- 10 · zb)- (1- U) · zb 

(1) 

(2) 

Constraints 

za(O) 

zb(O) 0 

(3) 
(4) 

0 ~ u ~ 1 (5) 

Figure 3.3: MLDO-generated documentation (using :fb.'JEX). 
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3.1.3 The Code Generation Process 

In order to create this domain-specific language, two techniques from computer science 

were employed: 

1. 	Context-free Grammar 

In human languages, a grammar defines the syntax of a language. Similarly, for 

a computer, a context-free grammar [2] is the formal way of defining a program­

ming language. A context-free grammar is a set of rules applied to a language 

to break it down into smaller parts called tokens, through a process called to­

kenization. These tokens can then be manipulated using text transformation 

rules. 

Context-free grammars are usually specified using a strict notation known as 

Backus-Naur form (BNF) [83]. The grammar of MLDO was expressed in a 

alternative form of the BNF. For instance, the following string: 

unitDefn = Word(alphanums+"$ 11 
, alphanums+ 11 

_ 
11 

) 

defines the syntax of a unit token. The above declaration can be read as follows: 

(a) 	the token must take the form of a "word" . A word is defined as a sequence 

of characters; 

(b) 	 the word may start with any alphanumeric character or the dollar sign; 

(c) 	 the sequence of characters past the 1st character must be either an al­

phanumeric character or an underscore. 

Consider the following equation in MLDO: 

$za = U*(10*zb- za); 

Tokenization of this equation (with the above definition of a unit token, plus a 

few other declarations) will produce the following array of tokens: 

['$za', 'U', '10', 'zb', 'za'] 

In this example, the tokens represent the basic elements in an equation. To 

illustrate how these tokens are used to generate code, we present this illustra­

tion from OCFE. In OCFE, collocation is usually only applied to differential 

and algebraic variables, whereas control action variables are represented by 
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piecewise constant functions. In order to uniquely define the position of a dif­


ferential/algebraic variable, 2 pieces of information are required (current Finite 


Element [FE], and current Collocation Point [COL] within that element). On 


the other hand, control input variables only require 1 piece of information to 


pinpoint (current Sample Time). In the AMPL code, these two categories of 


variables require different handling. 


In MLDO, the user is required to explicitly declare each variable as either 


a differential, algebraic, or control input variable. This is known as "type­


declaration". When an equation is broken up into tokens, it is easy to map each 


token back to their type by doing a simple look-up on the type-declaration table. 


In the above case, "$za", "za" and "zb" are differential variables, whereas "U" 


is a control input variable. A routine is used to map the tokens to their types, 


and with the types correctly assigned, appropriate transformations can be per­


formed (either with a simple string replacement, or with regular expressions, 


described below). 


$za -+ Derivative_za_ [FE_, COL_] 


za -+ za [FE_ , COL_] 


zb -+ zb [FE_, COL_] 


U -+ U[fe2samp_ [FE_] 


Note: fe2samp_ is an internal function that returns the sample time that cor­


responds to the current finite element. 


Mapping tokens of an equation to their correct types ensures that the different 


elements in an equation receive the appropriate treatment. Once the trans­


formation is performed, the tokens are reassembled into a complete AMPL 


constraint equation. 


2. Regular expressions 

Regular expressions [40] originated from two branches of theoretical computer 

science, automata theory and formal language theory. Regular expressions are 

used define a pattern for matching specific patterns in a set of strings. From a 

practical standpoint, they are used to transform strings, e.g. in our case, from 

MLDO notation to the keywords in the target language. 

For example, the following regular expression: 

/\$([A-Za-z0-9_]+)\b/\\frac{d}{dt}\1/ 

is used in the fb'IEX- generation procedure to transform all MLDO derivative 
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variables to its mathematical counterpart, expressed in lb-'JEX code. The above 

regular expression converts an MLDO token, say $za, to a Ib-'JEX string in a 

precise and unambiguous manner: 

$za ~ \frac{d}{dt} za 


The regular expression can be read as follows: 


(a) 	I is a delimiter that marks the boundaries of regular expression patterns. 

Regular expressions are typically specified in the form lp/rI, where p 

denotes the pattern to search for, and r denotes the replacement string; 

(b) 	 \$ matches a literal dollar sign, $; 

(c) 	 () captures the expression enclosed in parentheses and assigns the results 

to a variable called a "backtracking" variable that can be referred to later; 

(d) 	 [A-Za-z0-9_] matches the class of characters contained within the brack­

ets. In this case, matches the following character classes: letters A to Z, a 

to z, numbers 0 to 9 and the underscore character; 

(e) 	 + matches the preceding expression 1 or more times; 

(f) 	 \b matches the start or end of a word; 

(g) 	 \1 is a backtracking variable, returns the value of the expression matched 

within parentheses; 

If a regular expression is defined rigorously enough, very precise transformations 

can be performed. This technique is extremely powerful and can be used to do 

symbolic manipulation, syntax rearrangement and so on. 

MLDO model 

Figure 3.4: Simplified diagram of the code generation process. 

The code generation essentially proceeds as follows (Figure 3.4): Given an MLDO 

model, the parser (that is, the part of the program that processes the model) reads the 
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code and passes it through the context-free grammar, a process which produces tokens. 

These tokens are then transformed using text-transformation techniques which include 

regular expression transformations. After the transformations are applied, an AMPL 

(or gPROMS or I¥JEX) file is produced. 

3.2 Modeling the Kraft Mill Fiber Line 

digester( 1 ). F' " ' 

Digestion Buffer Knotting, washing and screening Delignlfication 

Figure 3.5: Simplified schematic of plant model. 

The purpose of this section is the acquaint the reader with the Kraft Mill model used 

in the case studies. This model is based on prior work done by Balthazaar [8] and 

Dube [24], with extensions based on various literature sources. The modeling effort 

was focused on a suitably chosen subset of the Kraft Paper Mill (i.e. the fiber line) 

which provided a reasonable representation of the process dynamics under shutdown 

conditions. The majority of the units are modeled with steady-state equations, with 

the major dynamics represented in the tanks. 

The diagram in Figure 3.5 shows a simplified schematic of the Kraft Mill fiber line 

topology. (For a full schematic, the user is referred to Appendix A) The main de­

partments in this section of the plant are the digestion, knotting & washing, and 

delignification departments. These departments are separated by buffer tanks, whose 

levels are manipulated in order to keep the plant operational when any unit in any 

given department is shut down. 



36 Zhiwen Chong, M.A.Sc. Thesis {Chemical Engineering) 

In the following sections, we will give an brief explanation of the model equations 

that describe the major units in these departments. The complete set of equations 

and parameters are available in Appendix A. 

In this model, we assume that the initial conditions of the system are only related 

to the dynamic equations (due to the pseudo-steady state assumption). In practice, 

each individual unit has a set of initial conditions from which it operates from. 

3.2.1 Conventions and Nomenclature 

The main variable names used in this model that are related to flow are constructed 

as follows: 

where 

F = flowrate (t/h) 

x = mass fraction 

s = stream name 


i =component in stream= {P: Pulp, DS: Dissolved solids, W: water} 


Only three types of component streams are considered in the model: pulp (P), dis­

solved solids (DS) and water (W). The pulp component consists of celullose, bound 

lignin, knots and shives. The dissolved solids component contains organic and inor­

ganic subcomponents. 

In pulp and paper parlance, the term consistency refers to the mass fraction of pulp 

fibers (dry) in a process stream. White liquor refers to a concentrated solution of 

chemicals, usually Na2S and NaOH, used for cooking. Black liquor refers to the spent 

white liquor and dissolved organic material that remain after the cooking process. 

3.2.2 Kraft Digester 

The primary function of a digester is to convert solid wood chips (obtained by debark­

ing and chipping softwood logs) into a pulp stream. It accomplishes this by cooking 

the chips and reacting them with white liquor. Cooking involves heating the mix and 

maintaining it at an elevated temperature. In the present model, the mix is heated 
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Figure 3.6: Digester model. 

from 70°C to 170°C. During cooking, the organic component, lignin (the glue that 

bonds cellulose fibers together) is partially removed. 

The steady-state section of the digester model is derived from the model developed 

by Wisnewski and Doyle (84] and Balthazaar (8]. The nominal wood chip charge rate 

is 80 tons/hr at steady state. As lignin is removed from the cellulose fibers in the 

cooking process, there is a loss in pulp mass that needs to be accounted for. This 

loss is captured using a parameter defined as the "pulp shrinkage factor". The pulp 

shrinkage factor is related to another quantity(, the production factor, defined as the 

ratio of the prevailing production rate to the nominal production rate. The nonlinear 

relationship between these two variables was developed in Balthazaar's (8] work. The 

two pulp shrinkage regression equations are given below: 

3
ashrinkl ao + a1 · ( + a2 · ( 

2 + a3 · ( (3.9) 
3

ashrink2 = bo + b1 · ( + b2 · ( 
2 + b3 · ( (3.10) 

where ao, a1, a2, a3 and bo, b1, b2, b3 are empirically-determined coefficients (8]. ashrinkl 

represents the pulp shrinkage occurring in the top portion of the digester, while 

ashrink2 is a similar quantity for the bottom part of the digester. A simple mass 
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balance (with shrinkages) governs the material flow in the top portion of the digester. 

Ffl - (1- ashrink!/100) · Finl · xf (3.11) 

Ff./ Finl · xf8 + F/?J + (ashrink!/100) · Finl · xf (3.12) 

F w D w pW pST
81 L'inl · X1 + in2 - outl (3.13) 

The typical composition of softwood (in terms of mass fractions) is xf = 0.43, xf8 = 
0.04 and xf = 0.53 [37]. Because the complexities within a digester are not fully 

understood, it is a common practice in industry to maintain a constant liquor-to-wood 

fiowrate ratio [37]. The liquorwoodratio parameter, which regulates the proportion 

of liquor used relative to the amount of wood chips fed, is set at 3.6 by mass ([24], 

[37]). 

Fin2 = liquorwoodratio · Finl (3.14) 

A pressure relief valve at the top of the digester releases steam during the cook process. 

The amount of steam vented from the digester, F!,11 is related to the inlet water flow 

(24] by a proportionality factor, asr = 0.04. 

(3.15) 

The mass fraction of dissolved solids in the liquor stream entering the digester was 

obtained by a stoichiometric unit conversion on the concentration of its constituents, 

1.0 M NaOH and 0.8M Na2S [37]. The dissolved solids fraction works out to 0.212, 

therefore it follows that the water fraction in the stream is (1 - 0.212) = 0. 788. 

D pW pDS 
r in2 - in2 + in2 (3.16) 

Fi~ = 0.788 · (Fi~ + Fi~f) (3.17) 

The material transfer in the bottom part of the digester is modeled by mass balances 

(accounting for shrinkage). 

FJ'ut3 - (1 - ashrink2/100) · Ffl (3.18) 

FJjJ3 F£8 + (ashrink2/100) · Ffr- FJjJ2 (3.19) 

F!t3 = F:{ - Fo~t2 (3.20) 

The blowlinewater fraction quantity has a value of 0.62, based on industrial data [8]. 

The relative composition of the liquor exiting the digester in stream 2 is taken to be 

identical to that in stream 3, and this is modeled using a bilinear equation. 

F!t3 = blowlinewaterfraction · F:{ (3.21) 

F DS pW __ pW pDS
out2 · out3 out2 · out3 (3.22) 
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The Fout3 stream is connected to the exit stream: 

pP pW pDSFexit = exit + exit + exit (3.23) 

F!xit Ff:ut3 (3.24) 

F~t = F!t3 (3.25) 

pDS pDS
exit = out3 (3.26) 

The output of the digester is channelled to an adjacent tank called a blowtank. One 

of the assumptions made for the purposes of this thesis is that it is possible to set 

the chip feed·to zero to simulate a shutdown. This is only done as a mathematical 

approximation, and in industrial practice, it is necessary to verify this assumption in 

order for the results obtained to be practicable. 

3.2.3 Buffer Tank Units 

Dynamic 

'---+out2 

in1 51-----, 
From·­ .......___-­

V,M 

h x2P, x2W, x2DSI
'----52 

" 
(a) (b) -· 

Figure 3.7: (a) Schematic of integrated tank system; (b) Expanded diagram of the 

dynamic section of the tank. 

In this section, the equations that define the operation of a buffer tank are laid down. 

In order to ensure that the model is generalizable, it is modeled after an integrated 

blowtank unit, which comprises three sections, two steady-state sections and one 

dynamic section. The top of the tank, where steam is vented (in a blowtank-type 

configuration), is assumed to be steady-state. The bottom portion of the tank is 

agitated and is also assumed to operate at steady state. 
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The amount of steam vented from the tank (for tank pressure relief) is proportional 

to the mass fraction of water in the stream entering the tank, and the proportionality 

factor steamfraction is 0.02 [24]. The material balance equations for the top part of 

the tank is as follows: 

pP pW pDS
ini + ini + ini (3.27) 

Fi~l - Ffi (3.28) 

Fi~l +Fi~ - F~I +F~ (3.29) 

F DS pDS pDS
ini + in2 SI (3.30) 

steamfraction · Fi~ (3.31) 

pW pDSFin2 in2 + in2 (3.32) 

Fi~ - X~2 · Fin2 (3.33) 

pDS DS Fin2 Xin2 · in2 (3.34) 

Psi - Ffi +F£8 +F~ (3.35) 


Ffi - xf ·Fsi (3.36) 


F§{8 xf8 ·Psi (3.37) 


F~ - xf ·Psi (3.38) 


The dynamic portion of the tank is governed by the equations below. This part of 

the tank exhibits the dynamic behavior of the buffer capacities. 

V · Pavg M (3.39) 

v A·h (3.40) 

!!:_M Fs1- Fs2 (3.41)
dt 
d p

M·-X2 = Fsi· (xf- xf) (3.42)
dt 

d DSM·-x2 p SI. ( - DS)- XIDS X2 (3.43)
dt 

xf +xr +xfl8 1 (3.44) 

where V = volume of material in tank, h = tank level, M = mass holdup, A = area of 

the base oftank (the tank is assumed to be perfectly cylindrical). Pavg is the average 

density of the material in the tank (about 0.900 tonsjm3). Strictly speaking, the 
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overall density of materials in the tank depends on instantaneous dynamic composi­

tions, but the simplifying assumption that the materials are of constant density was 

made for numerical reasons. 

Concentration quantities like xf (mass fraction of pulp in the tank) and x!]8 (mass 

fraction of dissolved solids), which are state variables in our system, are measurable. 

The former can be measured on-line using a myriad of methods {19], some of which 

are: 

• pulp slurry conductivity 

• pressure drop cause by flow through a fixed length of pipe 

• intensity of transmitted microwaves/ultrasonic waves/reflected light 

• load on a motor operating an agitator mixer 

• head needed to maintain consistent flow through viscosity tube 

The mas~ fraction of dissolved solids is typically measured using conductivity mea­

surements or measurements taken with auto-titrators [57]. With xf and x!]8 known, 

xf is trivially obtained. 

The differential equations are initialized with the following values: 

V(O) Vo (3.45) 

xf (0) = xf (0) (3.46) 

x!]8 (0) = xf8 (0) (3.47) 

where Vo = 2050 m3 . The initial mass fractions of the pulp and dissolved solids 

streams are assumed to be the same as their respective compositions in the inlet 

stream (which essentially means that the system is starting from a steady-state point). 

This tank model is used as a template for both blowtanks (the tank adjacent to the 

digester) and standard tanks. Instances of this tank models are derived from this 

template, and configured to represent specific types of tanks. 

3.2.4 Knotting Department 

Knotters are designed to screen and remove large undigested chips and wood knots. 

The rejected knots are collected and recycled to the digester. In our model, we 
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Figure 3.8: Hi-Q knotter. 

consider two types of knotters operating in series, a Hi-Q knotter (manufactured by 

companies such as Ingersoll-Rand and GL&V) and a Jonsson knotter (manufactured 

by companies like Bird and Lamort). The pulp entering the Hi-Q knotter is mixed 

with wash liquor and the coarse, undigested chips are screened from the pulp stream. 

Accepted pulp is channeled to the brownstock washing department, while rejects are 

sent to the second (Jonsson) knotter for further screening. 

Because the Jonsson knotter is functionally the same as the Hi-Q knotter, we will 

restrict our description to the Hi-Q knotter equations. The reader is is referred to 

Appendix A for the equations describing the Jonsson knotter. The Hi-Q knotter is 

governed by the following overall and component mass balances: 

pP pW pDSFinl = inl + inl + inl (3.48) 

pW pDSFin2 in2 + in2 (3.49) 

pP pW pDSFoutl - outl + outl + outl (3.50) 

pP pW pDSFout2 = out2 + out2 + out2 (3.51) 

Ffn1 - F!utl + F!ut2 (3.52) 

Fi~ +Fi~ - F~n +F~t2 (3.53) 

pDS pDS pDS pDS
inl + in2 - outl + out2 (3.54) 

The ratio of the Fin2 stream to the Finl stream is measured by the dilution fac­

tor, adill = 0.05 [24]. The pulp loss is represented using a knot rejection factor, 
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aknotrejl = 0.10 [37]. The pulp/water and water/dissolved solids ratios are as­

sumed to be equal in streams Fautl and Fout2, and this is enforced using two bilinear 

equations. 

Fin2 = adill· Finl (3.55) 

F!v_t2 = aknotrejl · Fi~l (3.56) 

F!n·F!v_t2 = F!v_tl·F!t2 (3.57) 

pW pDS
out2 · outl = pDS pW

out2 · outl (3.58) 

Fi~ water fraction· Fin2 (3.59) 

Stream Fin2 is assumed to be made up of 95% water, therefore water fraction= 0.95. 

3.2.5 Washing Department 

in1 ~out1 -- ... in1~out1 

in2 

+ ~ Lin2 

out2 
in1 

out1 
outmix 

Figure 3.9: Washing department. 

Washing (also known as brownstock washing) is a process for removing residual lignin 

in the pulp stream. The washing department is composed of three major process units: 

a header box, a vacuum drum washer and a seal tank. The header box mixes the 

contents of the incoming pulp and liquor streams and channels it to the vacuum drum 

washer for washing. The washer sprays the pulp stream with wash liquor and rejects 

are pushed to the seal tank. The contents of the seal tank are recycled to the header 

box and in some cases, conveyed to the agitated bottoms section of the blowtank 

as well. Washing stages are usually set up in a counter-current configuration. In a 

normal pulp mill, there may exist one or more washing stages. For simplicity, we will 

confine ourselves to a description of a single stage washing department. A detailed 

dynamic model of the washing system can be found in Kempe [48]. 
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The equations for the header unit [8] are found the Appendix A, and are omitted 

here. The following subsections contain a description of the vacuum drum washer 

and the seal tank unit cum splitter, where streams are split and recycled. 

Vacuum Drum Washer 

in1 
From 
header 

out2 
wash liquor 

To seal 
tank 

Figure 3.10: Vacuum drum unit washer. 

The material flows in the vacuum drum washer is described by the following equations: 

Fi~l = F:Un (3.60) 

Fi~ +Fi~ = F!n +F!t2 (3.61) 

pDS pDS pDS pDS
inl + in2 = outl + out2 (3.62) 

We assume that the consistency of the pulp exiting the washer (stream F!un) is 

perfectly controlled and has a value of outletconsistency = 0.12 [76] and that the 

amount of dissolved solids in the shower water stream is shower fraction= 0.02. 

F:Un - outletconsistency · (F!un +F!n + F/;J1) (3.63) 

Fi~~ - shower fraction · (Fi~ + Fi~~) (3.64) 

Stream Fin2 is known as the shower stream, and it conveys liquor to a set of showers 

to spray washing liquor over the pulp. We assume the mass fraction of water in the 

Foutl stream to be equal that of the Fout2 stream, and this is expressed in a bilinear 

equation: 

(3.65) 

The displacement ratio (DR) measures the washing efficiency of the solid in terms of 

percent dissolved solids removal [57]. This ratio can easily be obtained by collecting 
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samples on the washers. Unlike the Norden efficiency (below), this measure varies 

significantly with operating conditions (liquor concentration in shower, dilution factor, 

etc.) 

DR 
(xb- xd) 

(xb- Yc) 
(3.66) 

Xd 
pDS

outl 

(Ffufl + F!n) 
(3.67) 

Xb 
pDSinl 

(Fi~f + Fi~) 
(3.68) 

Yc showerfraction (3.69) 

The Norden efficiency [58] represents the number of countercurrent ideal mixing stages 

required to achieve the same washing performance as the one in the process. One 

property of the Norden efficiency that makes it suitable as a modeling specification 

is its lack of sensitivity to changes in the washing process. This allows it to be 

approximated as a constant over a certain range of operation. In order to calculate 

the Norden efficiency (Neff), two quantities, Rand W need to be defined. 

R is the wash liquor ratio (ratio of liquor entering to liquor leaving the pulp): 

(Fi~ + Fi~f)R = (3.70)
(F!n + F£fl) 

and W is the liquor weight ratio (ratio of filtrate to liquor in the entering stream): 

W = (F~;? + F~f) (3.71) 
(Finl + Finl ) 

The Norden efficiency (Neff) is defined implicitly in this equation: 

DR· (W · RNeff- 1) = (W · RNeff- R) (3.72) 

The value of the Norden efficiency for the washer is assumed to be 3.00 (an average 

value based on Turner et. al. [76].) 

One of the assumptions made is that it is possible to set turn off all flows to the washer 

in order to simulate a shutdown. This assumption needs to be examined further when 

applying the results to a real plant. 

3.2.6 Seal Tank and Splitter 

The seal tank serves to create sufficient vacuum through the drop leg for proper 

washer operation. It is also used to store filtrate necessary for startup and functions 
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outmix 

Figure 3.11: Seal tank and splitter. 

as a buffer as well. The seal tank can be modeled simply as a continuous stirred tank. 

The basic component mass balances are as follows: 

Finl - pW pDSinl + inl (3.73) 

Foutmix - pW pDS
outmix + outmix (3.74) 

X~1 · Finl = Fi~ (3.75) 

F!tmix X~tmix · F outmix (3.76) 

The dynamic portion of the seal tank is as follows: 

!!_Mdt - Finl ­ Foutmix (3.77) 

M · ! X~tmix - Finl · (x~l - X~tmix) (3.78) 

(x~tmix + x:?u1mix) - 1 (3.79) 

The splitter connected to the seal tank is modeled as follows: 

F!tmix = F!n + F!t2 (3.80) 

pDS pDS pDS (3.81)outmix outl + out2 

F!t2 · (F!n + F/}Jl) = F!n · (F!t2 + F/}J2) (3.82) 

The Fout2 stream is returned to the header box of the washing stage while Foutl stream 

is recycled (not modeled). 

3.2.7 Screening Department 

Shives refer to wood whose size is between that of processable pulp and knots. They 

hinder the bleaching process and cause deformities in formed sheets, and therefore 
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Figure 3.12: Screening department. 

need to be removed via the screening process. A simplified pressure screen model is 

described here. The function of pressure screens is to filter shives from the process 

stream. Balthazaar [8] offers a three-step screen model, which we have simplified into 

a one stage model while retaining the macro-effects and properties of the process. 

The screening model is composed of a component mass balance: 

Fi~l = F~n + F~t2 (3.83) 

Fi";;l + Fi~ = F!n +F!t2 (3.84) 

pDS pDS pDS pDS (3.85)inl + in2 outl + out2 

The pulp/water arid pulp/dissolved solids compositions between streams Foun and 

Fout2 are taken to be equal: 

F~n · F!t2 - F!n · FJ:ut2 0 (3.86) 

F poutl · 
pDS

out2 -
pDSoutl · pP

out2 
= 0 (3.87) 

5% of pulp is lost in a screening unit due to the extraction of shives, therefore the 

pulp loss coefficient, pulplosscoeff = 0.05. The mandated acceptable output consis­

tency for downstream processing in 02-delignification unit is 4.5%, which leads to 

outletconsistency = 0.045. The dilution stream is taken to have a water content of 
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95%, which means waterfraction = 0.95. 

F:Un pulplosscoeff · Fi~l (3.88) 

F:Un = outletconsistency · (F:Un + F!n + F{;/.,l1) (3.89) 

Fi~ waterfraction · (Fi~ + Fi~f) (3.90) 

The rejects from the screening department are discarded. 

3.2.8 Delignification Department 

.--o/2 feed out101 press 1 -~ 

I 
in2 in3 

out2 I 

I in2.----
I •I in1 in4

• 
ln1out1 

I 
+ out2 

--- ..... 
out1 

0 2 feed press 
filtrate tank 

..I 
in~ 

Generic Tank0 1 blowtank 

out1 

Delignificatlon Post 0 2 filtrate 
tank 

Figure 3.13: Delignifi.cation department. 

At this stage of the process, the pulp is typically still dark in color (due to the bound 

lignin) and will need to undergo bleaching. Unfortunately bleaching entails the use of 

chlorine, the emissions of which have a deleterious effect on the environment. In order 

to reduce the utilization of chlorine in bleaching, oxygen delignification is performed 

to remove as much as of the residual lignin as possible. This has the positive effect of 

reducing the amount of chlorine required by the chlorination reactor in the bleaching 

department downstream. 
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In delignification, the pulp stream is heated with steam and mixed with caustic. It 

is then run down the 02 reactor in a counter-current fashion. In this process, the 

impregnated pulp stream reacts with oxygen and a separation of lignin from the cel­

lulose fibers occurs. It should be mentioned if this is carried out too far, carbohydrate 

degradation also occurs, which results in an undesirable drop in viscosity. Process 

conditions must therefore be tightly controlled to preserve the integrity of the pulp. 

The 0 2 delignification department is made up of several units. The major ones are the 

0 2 feed presses, mixer, reactor and the post-02 washer. The 02 feed press functions 

to raise the consistency of the pulp from 4.5% to 30% and is modeled by a simple mass 

balance. The mixer mixes the pulp with steam and caustic, while the reactor is the 

main vehicle for performing the delignification. Generic tanks have fast dynamics and 

are modeled without accumulation. The post-02 washer removes remaining dissolved 

solids and is modeled by a straightforward mass balance. 

In this section, we will focus on the models of the delignification mixer and reactor. 

The equations for the other models can be found in Appendix A. 

Delignification Mixer 

in2 in3 

Delig. Mixer 1+--- in4in1 

out1 

Figure 3.14: Delignification mixer. 

The delignification mixer is modeled as a perfect steady-state mixer [8]. A mass 
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balance around the mixer yields the following equations: 

Fi~l - F:Utl (3.91) 

pDS pDS pDS pDS
inl + in2 + in3 outl (3.92) 

pW pW pW pST =inl + in2 + in3 + in4 F!n (3.93) 

pP pW pDS
Finl - inl + inl + inl (3.94) 

pW pDS
Fin2 - in2 + in2 (3.95) 

pW pDS
Fin3 in3 + in3 (3.96) 

pP pW pDSFoutl - outl + outl + outl (3.97) 

The pulp stream (Find enters the mixer at 25°C, and likewise for the caustic (Fin2) 

and magnesium sulfate (Fin3) streams. Magnesium sulfate is added for pulp protec­

tion. Fi~T is the stream containing medium-pressure steam. The energy balance is 

used to calculate the steam consumption of the system. 

£1 - 0 (3.98) 


£2 - 0 (3.99) 


£3 - 0 (3.100) 


£4 - Fi~T · (Hstm- Href) (3.101) 


R1 = Faun· cppulp1 · (Tset- Tref) (3.102) 


(£1 + £2 + £3 + £4) = R1 (3.103) 


where £1, £2,£3 and £4 are the enthalpies of streams Finb Fin2 1 Fin3 and Fin4 re­

spectively. R1 is the enthalpy of the Foun stream. Using a reference temperature of 

Tref = 25°C, the reference enthalpy of saturated steam is Href = 2547.3MJ ft. The 

enthalpy of medium-pressure steam, H stm = 3267.5MJ jt at 49 bar and 415°C. This 

steam is used to heat the mixture to the required temperature of a setpoint tempera­

ture of Tset = 100°C. cppulpl is the average heat capacity of the exiting pulp, whose 

value is 3.972 MJ/t·°C. 

The chemical dosage equations which determine the composition of the inlet streams 



Zhiwen Chong, M.A.Sc. Thesis (Chemical Engineering) 51 

are as follows: 

pDS
in2 NaOHdosage · Fi~l (3.104) 

pDS
in2 

Fi~ +F{/J 
= 0.08 (3.105) 

pDS
in3 MgS04dosage · Fi~l (3.106) 

0.045 (3.107) 

(3.108) 

pDS
in3 

where NaOHdosage = 0.02 t NaOH/t pulp and MgS04dosage = 0.002 t MgS04/t 

pulp [37]. The concentrations of the NaOH and MgS04 streams are 8% and 4.5% 

respectively. 

0 2 delignification reactor 

02 

delignification 

reactor 

'----+out1 

Figure 3.15: Delignification reactor. 

The 02 delignification reactor is a counter-current reactor where the lignin in the 

pulp stream reacted with oxygen. The following equations are derived from a mass 
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balance in the reactor. 

pP pW pDSFinl = inl + (3.109)inl + inl 

F~n = (1 - 1 x 10-2 · ao2) · Fi~l (3.110) 

pDS
outl - F/!J. + 1 x 10-2 · ao2 · Fi~l (3.111) 

F!n = Fi~l (3.112) 

where a02 is a shrinkage factor to account for the fact that pulp shrinkage occurs in 

the reactor. This factor is related to the production factor (() through the following 

regression equation derived from industrial data [8] 

(3.113) 

where the values of the coefficients are a1 =-0.0022, ao=2.301, aa=-0.0113, and a2=0.0116. 

3.3 Formulation Issues and Modeling Techniques 

In this section, techniques related to the modeling of DAE systems are discussed. A 

brief summary of numerical pitfalls is provided. 

3.3.1 Objective Functionals with Integral Terms 

Objective functionals containing integral terms are easily accommodated in our dy­

namic optimization problem structure. The following objective functional: 

ft! 
max Jo il!(t) dt (3.114) 

can easily be rewritten into the standard DAE optimization form by introducing a 

dummy variable z, as follows: 

max z(tt) (3.115) 

s.t. 

dz(t) = il!(t) with z(O) = 0 (3.116)
dt 
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3.3.2 Numerical Issues 

A significant portion of the modeling effort was devoted to detecting and overcoming 

numerical problems with the model. We present here a list of selected numerical 

pitfalls and their corresponding solutions. 

1. A voiding subtly degenerate constraints. Constraints that enforce the non­

negativity of variables abound in chemical process modeling, e.g. x :;:::: 0. In the 

presence of such constraints, tacking on additional constraints x = 0 (to simu­

late failures, for instance) may give rise to degeneracy in the constraint set. A 

strategy to circumvent this is to rewrite the constraints as follows: x :;:::: 0 and 

X :S; E, where E is a small number, e.g. 1 X 10-4 • 

2. 	 Scaling. When values of certain variables/expressions are orders of magnitude 

larger or smaller than the rest of the equation system, the linear systems (Jaco­

bians, Hessians) required to solve the nonlinear problem become ill-conditioned. 

A standard way of treating this problem is to multiply both the left and right­

hand-sides of equations by an appropriate scaling factor that will bring their 

magnitudes into a reasonable, uniform range, such as {0.01, 100]. Most solvers 

perform some degree of automatic scaling internally, but manual equation scal­

ing tends to be preferable as it almost always leads to better results because the 

modeler deemed to have more insight into the model than the solver has. The 

reader is referred to McCarl (54] for more information on this topic. 

3. 	Avoiding complex-valued expressions. Suppose we have an expression 

where the variable x raised raised to n-th power, xn (where x, n :;:::: 0). Certain 

solvers like IPOPT perform relaxations on user-supplied bounds (i.e. x :;:::: 0 =? 

x :;:::: -E, where E = 1 x 10-8 ) that render the evaluation of this expression 

impossible in some cases. We observe this behavior when the value of x is 

negative and n is non-integral, where the xn expression veers into the complex 

realm, thus causing an evaluation error in the solver. A remedy is to declare 

bounds that are slightly positive, i.e. X :;:::: 1 X 10-S instead of X :;:::: 0. 

4. 	 Division by Zero errors. The division of any variable by another variable 

(e.g. xjy = 2) is to be avoided in general. During solver iterations, it is possible 

for the denominator to take a value of zero, thus inadvertently triggering a 

division-by-zero operation. An effective strategy is to eliminate denominators 
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by multiplying both sides of the equation by denominator terms (e.g. x = 2y). 

A side benefit of this is that the derivatives of the pre-multiplied expression 

become much simpler. 

5. 	 A voiding x = 0 as the initial guess. It is commonly recognized that the 

zero vector (x = 0) is poor initialization point for nonlinear systems. One of 

the reasons for this, apart from the fact that the 0 point may be very far away 

from the solution, is the effect it has on derivatives of product terms. Consider 

the bilinear expression, f(x, y) = x · y, whose gradient is the following: 

When a vector of zeros is used to initialize this system, the initial derivative 

vector becomes 0. This gives the solver the wrong impression that the function 

does not depend on the variable [23]. The solution is to initialize the problem 

with a feasible point. In our case, we supplied the output of a process simulator 

as an initial guess. 

6. 	Simpler expressions are better than complex ones. It is better for com­

pound expression such as f = exp (F(G(x)) to be broken up and rewriten simply 

as follows: 

!I = exp(h) 

h = F(f3) 

is G(x) 

This latter form results in simpler derivatives and sparser Hessians. 

7. 	 Relaxing equalities. When one encounters infeasibilities caused by equality 

constraints that are too tight (e.g. x = 40), the following relaxation is often 

helpful: 40 - E ~ x ~ 40 + E. This relaxation was instrumental in aiding 

problem convergence in the presence of level-restoration constraints (described 

in the next chapter). 

3.4 Chapter Summary 

In this chapter, we described the details of the Kraft paper mill model and the assump­

tions that are made in the course of its development. We described our computational 
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environment and gave a brief sketch of the features in our in-house developed modeling 

language for dynamic optimization, MLDO. We concluded the chapter by discussing 

numerical issues related to model formulation and supplied a list of common pitfalls 

associated with modeling. 



Chapter 4 

Dynamic Optimization under 

Shutdown Conditions 

In theory, there is no difference between theory and practice. 


But, in practice, there is. 


-Jan L.A. van de Snepscheut, Dutch computer scientist 

This chapter describes a control scheme for optimal handling of unit shutdowns in 

a plant. Dynamic optimization under shutdown conditions is briefly introduced, fol­

lowed by various approaches used to handle uncertainty in the downtime estimate, 

with the primary method being re-optimization. Several case studies are presented. 

The issue of avoiding policies that induce multiple shutdowns is considered and several 

methods for penalizing shutdowns are described. 

4.1 Introduction 

In a typical chemical plant, process units are shut down from time to time either 

for maintenance or due to equipment failure. From an operations perspective, unit 

shutdowns can be classified as either critical or non-critical, with the former being 

those that lead to the shutdown of the entire plant and the latter, those that do not. 

In the case of critical shutdowns, the entire system is invariably forced to shut down, 

and under such circumstances the usefulness of an optimal control policy is limited. 

56 
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Under non-critical shutdown scenarios however, it is frequently possible for an op­

erator to pursue certain courses of action that will permit the unaffected units to 

continue operating to some degree. Possible courses of action include reconfiguring 

the process pathways, re-routing material streams, slowing down production, making 

use of buffer capacities and so on. 

One way to determine if the type of shutdown in a plant is of the critical or non­

critical variety (which has direct consequences as to whether our proposed control 

scheme is viable under that particular situation) is to verify if the model of the plant is 

feasible under optimization. For a correctly modeled plant with shutdown constraints 

enforced, an infeasible solution is often an indication that the shutdown is critical, 

possibly signifying that critical dependencies are not available or that the plant is not 

dynamically operable in some way, and thus a system shutdown is imminent. 

The case studies in our work are based on a model of a subset of a Kraft paper mill 

(described in the modeling chapter) where a process unit is shut down and taken 

off-line for a period of time, and is subsequently restored. Based on an estimate of 

the downtime (specified by the operator), our proposed control scheme is used to 

compute and implement a set of optimal control trajectories that accommodates the 

shutdown. 

In this study, we will be examining the optimal use of buffer capacities and the 

manipulation of production rates and recycles during the shutdown period. The 

essential goal of our control scheme is to arrive at a set of optimal control inputs for 

controlling the process transitions during the shutdown and restoration periods. This 

work represents our preliminary progress towards this goal. 

A critical parameter in the control scheme is the downtime estimate. A few approaches 

for dealing with the uncertainty in the downtime estimate will be considered in detail, 

with an emphasis on re-optimization. 

There are two types of policies for handling process unit shutdowns: 

1. 	Pre-emptive Policy, where the shutdown is known in advance, so the con­

trol system is able to anticipate it and make advance preparations. Example: 

scheduled maintenance of a reactor. 

2. 	Reactive Policy, where the shutdown is unscheduled. Example: equipment 

failure. 
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In this study, we will only be considering reactive shutdown policies in order to con­

centrate on issues surrounding uncertain downtime estimates. However, it should be 

noted that accommodation of pre-emptive type policies is straightforward within the 

proposed framework below. 

4.2 Dynamic Optimization Problem Formulation 

The problem of determining optimal control inputs for operating the plant under 

shutdown conditions is cast into a dynamic optimization framework. The formulation 

is as follows: 

Objective 

max [cl?economics - cp] (4.1)
u(t) 

subject to 

Economics-based Objective Function 

(4.2) 

Model Equations and Constraints 

f(x(t), x(t), z(t), u(t), t) = 0 (4.3) 

g(x(t), z(t), u(t), t) 0 (4.4) 

h(x(t), z(t), u(t), t) < 0 (4.5) 

Variable bounds 

XL :S: x(t) :S: XU (4.6) 

ZL :S: z(t) :S: ZU (4.7) 

UL ::; u(t) ::; uu (4.8) 

fortE [0, ttl 

Initial conditions 

x(O) = xo (4.9) 
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Restoration constraints 

xo- E:::; x(t) :::; xo + E for tres < t ::S: t 1 (4.10) 

zo-E:::; z(t) :::; zo + E for tres < t ::S: t1 (4.11) 

uo- E:::; u(t) :::; uo + E for tres < t ::S: t f ( 4.12) 

Shutdown constraints 

Fin,unit(t) = 0 for tstart ::S: t ::S: tend ( 4.13) 

where 

t1 = final time 

tres = time at the end of restoration period 

tstart = time at which shutdown commences 

tend = time at which shutdown ends 

cp = general penalty function. Penalty function forms for preventing induced shut­

downs are described in section 4.5 

x(t) = differential state vector 

z(t) = algebraic state vector 

u(t) = control input vector 

E = relaxation parameter 

Fin,unit(t) = mass flow into a process unit, where unit denotes a specific process unit 

that is shut down 

<!>economics = profit function 

m = materials produced or consumed = {pulp, chips, chemicals, steam, liquor} 

Cm = price of material m 

Fm = flowrate of material m 

Material Model Variable, Fm Prices, Cm ($/ton) 

Pulp posto2washer(1).out2P 725 

Chips digester(1).in1 -25 

Chemicals deligmixer(1).in2 -100 

Steam deligmixer(1).in4ST -7.31 

Energy from Black Liquor digester(1).out2DS 0.348 

Table 4.1: Prices of Materials, based on ([8], [27], [35]) 

The model used in this work was a differential-algebraic equation (DAE) system, 

but the present formulation readily admits other model types, such as state-space 
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steady-stm:e Shutdown Restoration St••dy-81:ilte 

·I 


Figure 4.1: Phases of the shutdown process - steady-state, shutdown (tstarctend), 

restoration (tend-tres), steady-state. 

models (obtained for example via subspace identification), Laplace transform transfer 

function models (for which a state-space realization is possible), and others. 

Figure 4.1 shows the different phases of the shutdown process. Initially, a plant will 

be running at a certain steady-state operating point. The shutdown phase begins at 

tstart, when all input and output flows to a failing/shut-down process unit are forced 

be 0. The shutdown phase continues until tend· In between tstart and tend, we assume 

measures are taken to restore or repair the unit. At time tend• the unit is deemed to be 

ready for for operation, and the restoration phase begins. In the restoration phase, 

control actions are prescribed to the plant to return it to its original steady-state 

operating point. The restoration phase terminates at time tres, a juncture at which 

the plant has been successfully restored to normal steady-state operation. 

The sample time used in our simulations was 0.5 hour. State and input restoration 

constraints (equations 4.10-4.12) are imposed for the purpose of bringing the system 

to its pre-shutdown steady-state at the end of the restoration period. This is impor­

tant as there are reliability and economic implications to not restoring the process to 

its original state, discussed below. 

From the viewpoint of reliability, it is imperative that the buffer tank levels be re­

stored to their original levels after the shutdown/restoration transition period so that 

the system is at a state where it is prepared to accommodate subsequent shutdowns 

should they occur. Balthazaar [8] demonstrated that the effect of these constraints 

corresponds to enforcing integral action. The restoration of constraints also has a 

http:4.10-4.12
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bearing on the optimality of the problem. Without these restoration constraints, the 

optimizer will prescribe control actions to empty out the tanks to obtain as much 

product as possible out of the last unit (due to the pulp production throughput's in­

fluence on the objective function). Allison [4] demonstrated that the optimal solution 

for such problems over a fixed horizon is to drive the storage vessels empty. This 

is clearly undesirable as it deprives the plant of the ability to anticipate any further 

shutdowns. Also, in such scenarios, inventory costs need to be taken into account. 

From an economic standpoint, compositions in the tanks must also be restored to 

their pre-shutdown levels. In the simulations, it was discovered that if the pulp 

concentrations in the buffer tanks were not required to return to their original values 

after the restoration period, the optimizer may prescribe a set of input actions that 

maximizes the pulp throughput on the outlet of the system while also diluting the 

pulp concentrations in the tanks, which is undesirable. 

4.2.1 Assumptions 

A simplifying assumption is made where either the startup procedure of a unit (i.e. 

a sequence of discrete actions such as switching or priming pumps, redirecting flows, 

etc.) is executed off-line or that start-up time is small relative to the overall process 

dynamics. The implication of both these assumptions is that a unit is deemed to be 

immediately ready for operatio~ at the end of a shutdown phase (i.e. at tend, refer to 

Figure 4.1). In our view, this appears to be a reasonable assumption in cases where 

unit startup dynamics are fast. In other cases, it may be necessary to model the 

dynamics of startup. 

Another assumption made is that the shutdown of a unit is perfectly modeled by 

turning off the inlet/outlet flows to that unit, and that the relevant shutdown proce­

dure for a unit is followed. This shutdown procedure is not modeled; we assume that 

a manual or an automated procedure for start-ups and shutdowns is in place [42]. 
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4.3 	 Case Study 1: Individual Shutdowns in Different 

Units 

In this case study, the effect of shutdowns triggered at various locations relative to 

the buffers is investigated. In all the cases below, the shutdown duration is 6 hrs. 

The simulations are performed for a 24 hour period. The three individual failures are 

in three different units situated before (digester), between (Hi-Q knotter) and after 

(02-delignification reactor) the buffer capacities (refer to the simplified schematic in 

Figure (4.2)). There is also a buffering tank (the sealtank) in the washing department 

which determines the internal recycle fl.owrates. When a process unit shuts down, an 

entire department is typically usually forced to shut down unless there is internal 

buffering capacity in the departments. The manipulated variables and their bounds 

are given in Table 4.2. The capacities of the tanks are listed in Table 4.3. 

digester(l).F.,.. 

Digestion Buffer Knotting, washing and screening Buffer Delignlfication 

Figure 4.2: Simplified schematic of plant model. 

The plant is assumed to be operating at steady-state initially, when the shutdown 

suddenly occurs. The economics-driven objective function was used for this prob­

lem. A slight move suppression penalty (equation 4.14) was found to significantly 

aid convergence and improve the robustness of the solution, therefore is it is applied 

throughout for consistency. Balthazaar's two-tiered approach was not applied in the 

examples due to numerical difficulties encountered. 

Ninp Nsamp 

<p = P L L D.ur,k 	 (4.14) 
i=l k=l 
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Manipulated Variables Min (t/h) Max (t/h) 

digester(!) .Finl 0 80 

blowtank(l).Fs2 0 456 

sealtank(l ).Foutmix 0 600 

tank(I).Fs2 0 456 

Table 4.2: Manipulated Variables 

Tank Name Capacity (m3 ) Min (m3) Nominal (m3 ) Max (m3 ) 

blowtank(l) 2050 205 1025 1845 

sealtank(l) 310 20 130 280 

tank( I) 2050 205 1025 1845 

Table 4.3: Tank Capacities, Nominal Levels And Upper/Lower Bounds 

where p = 0.1, u = control input variable, Ninp = total number of input variables, 

Nsamp = total number of sample periods. 

The cases are: 

1. 	 Case 1: Failure in digester only 

This failure occurs upstream of all buffer tanks. The chip feed stream is shut 

off by setting the value of the flow variable digester(l).Finl to zero. As a con­

sequence, the white liquor inlet stream is automatically shut off because it its 

value is held in proportion to the chip feed stream. In a digester cleanout, all 

residual material is rerouted and disposed, therefore no new material enters the 

blowtank during the shutdown. 

Observations 

A shutdown in the digester has a significant impact on the process, as no pulp 

can be sent to downstream units for processing. Referring to trajectories in Fig­

ure 4.3, the output from the digester (digester(l).Fexit) is zero during the failure, 

therefore no material is blown into the blowtank during this time. In order to 

keep downstream units running, the blowtank needs to continue discharging its 

contents, albeit at a lower rate to avoid from emptying itself out. This decrease 

in flowrate can be seen in the trajectory for blowtank(l).Fs2 where the outlet 

flowrate is gradually decreased and the blowtank's accumulation level (repre­

sented by the volume of material, blowtank(l).V) steadily descends. After the 
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failure period is over, the contents of the blowtank are built up again by keeping 

the blowtank discharge rate low (blowtank(l).Fs2) and the digester production 

high (digester(l).Fexit) for a period. This continues until the level of blowtank 

reaches its original steady state. 

During the failure phase, the flowrates into downstream units such as the Hi-Q 

knotter (hiq(l).Finl) and vacuum drum washer (drumwasher(l).Finl) decrease, 

which reflects a lowered production caused by the upstream failure. In the 

restoration phase, production is gradually restored and the flowrates of these 

units are returned to their original levels. 

It is observed that the volume of the material in the sealtank (sealtank(l).V) 

increased during the failure and restoration phases. This is a result of control 

actions that constrict the amount of material discharged from the sealtank, 

which essentially corresponds to limiting the recycle flowrate to the header box 

of the washing department and to blowtank(l). This is done in order to satisfy 

restoration constraints. During the digester failure and restoration, the feed to 

the 02 delignification experienced a transient drop, but does not shut down. 

Thus, we can see that throughout the shutdown and restoration of the digester, 

the downstream units manage to remain in operation. 

2. 	 Case 2: Failure in Hi-Q knotter only 

This failure occurs in between buffer tanks. The flowrate into the Hi-Q knotter, 

hiq(l).Finl is shut off for this failure, effecting a shutdown in the knotter. 

Observations 

The reader is refered to trajectories in Figure 4.4. During the failure, the di­

gester continues to produce pulp at a high rate and production is not severely 

impacted. The production rate of the digester is scaled down briefly (by de­

creasing the chip feed, refer to digester(l).Finl trajectory) in order to enable 

the blowtank to operate within its volume constraints. The blowtank dis­

charge (blowtank(l).Fs2) which is connected to the inlet of the Hi-Q knotter 

(hiq(l).Finl) is shut off to accommodate the failure. This leads to a build-up of 

material in the blowtank, as witnessed by the increase in the volume of mate­

rial accumulated (blowtank(l).V), which is subsequently discharged as the Hi-Q 

knotter is restored. 

This effect of this failure cascades to the washing and screening departments, 

as there are no buffer capacities separating the knotter from these downstream 

units. One of the consequences of this is that the recycle loop from the sealtank 
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to washing department and to the blowtank has to be shut off during this failure 

(illustrated in the sealtank(1) .Foutmix trajectory). The shut off of the recycle 

causes the material volume in the seal tank to plateau (sealtank(l).V). As the 

knotter is being restored, the contents of the sealtank are depleted further in 

order to start the recycle again. Once the restoration is complete, the sealtank 

level is restored to its previous state. 

Throughout the failure and restoration, the volume of material in the tank(l) 

buffer capacity drops temporarily but inventory is built up again once the knot­

ter is restored. The delignification reactor experiences a decrease in its feed 

(reactor(1).Finl) but is prevented from shutting down. 

3. 	 Case 3: Failure in 0 2-delignification reactor only 

This failure occurs downstream of the major buffer tanks. The flow through the 

02 reactor, reactor(l).Finl is shut off for the failure period. 

Observations 


Refer to trajectories in Figure 4.5. The digester is continues operating at 


steady-state and is not affected by the shutdown. The inventory in tank(1) 


(see tank(l).V) downstream is built up in the anticipation of the 02 delignifi­


cation reactor resuming its processing as soon as it comes up. 


As soon as the shutdown phase is over and the 02 delignification reactor is 

up and running, the restoration phase kicks in and the blowtank material levels 

(blowtank( 1). V) are made to rise to their original levels through a decrease in the 

blowtank discharge flowrate (blowtank( 1) .Fs2). Meanwhile, tank(1) discharges 

material from its storage to the 02 reactor. The reactor experiences a surge 

in its feed, which gradually decreases as the system reaches the end of the 

restoration phase. This type of system behavior tracks with intuition, and is a 

clear demonstration of how the optimal control policy is able coordinate buffer 

capacities to minimize overall production losses in the event of shutdowns. 

General Results 

One general observation that can be made from these results is that the further 

downstream a failing unit is, the less of a loss of production is incurred (that is, the 

higher the overall profit achievable by the optimization), as shown by the profits and 

pulp produced in the 3 cases (Table 4.3). 
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Failure in Figure Profit ($) Pulp Produced (t) 

Digester 4.3 81,164 150 

Hi-Q knotter 4.4 102,106 189 

02-delignification 4.5 111,294 206 

Table 4.4: Plant Profits and Throughputs under Unit Failures 

When a failure occurs upstream, it will invariably result in loss of material for the 

downstream processing. If adequate stored material is available, then the downstream 

train can continue processing. In order to meet restoration constraints, the processing 

rate may need to be reduced or throttled up in some cases. 

4.4 Uncertainty in Downtime Estimate, dest 

The estimated duration of the shutdown (dest) is a important parameter in calculation 

of the optimal trajectories because it dictates the shape of the resulting trajectories 

and has a negative correlation with the overall pulp throughput achievable. 

The downtime estimate would typically be provided by the operator to the control 

system, based on past operational experience or direct information about the prog­

nosis of the shutdown. In practice, this estimate will not correspond exactly to the 

actual downtime (dact) for various reasons, not least the fact that it may be very dif­

ficult in some cases to make an accurate prediction of a unit's downtime. Therefore it 

is necessary to look into ways to either account for the uncertainty in the downtime 

or including some feedback mechanism so that the initial estimate may be revised 

and the original trajectories corrected. 

In this section, we will study a few approaches for dealing with the uncertainty in the 

downtime parameter: 

1. Implementing the initial trajectory with naive adjustments (4.4.1) 

2. Optimization Under Uncertainty using a multi-scenario approach (4.4.2) 

3. Trajectory Re-optimization using Feedback of Downtime Estimate (4.4.3) 
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Figure 4.3: Failure in digester (digester(l).Finl = 0 fortE [2, 8]). 
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Figure 4.4: Failure in Hi-Q knotter (hiq(l).Finl = 0 fort E [2, 8]). 
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Figure 4.5: Failure in 02-delignification reactor (reactor(l).Finl = 0 fort E [2, 8]). 
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4.4.1 Implementing the initial trajectory with nai"ve adjustments 

One of the most obvious things that can be done to correct for an incorrect downtime 

estimate is to either shift the initial trajectory (the trajectory calculated for the initial 

dest) backwards or forward. For instance, if at some point during the the shutdown 

period it is discovered that the actual downtime (dact) is either longer or shorter than 

the initial downtime estimate dest, the control system can take the following actions 

based on the situation: 

1. 	 Case 1 (dest < dact) Shift trajectory backwards in time: This is a case 

in which the estimated downtime is shorter than the actual (refer to Figure 

4.6). The optimizer is instructed to hold the last input action (at test) until the 

system is ready to come online. This is equivalent to delaying and shifting the 

original trajectories backwards. 

2. 	 Case 2 (dest > dact): In this case, the estimated downtime is longer than the 

actual downtime. 

(a) 	 Subcase 1: Implement original trajectory (refer to Figure 4.7). The 

optimizer is instructed to continue implementing the original trajectories. 

(b) 	Subcase 2: Shift· trajectory forward in time (refer to Figure 4.8). 

The optimizer is instructed to shift the original trajectories forward. 

This approach, while seemingly simple, is problematic. Simulations to test these cases 

were performed, where the Hi-Q knotter is shut down. The overall horizon used was 

24 hours. The results are summarized in table below (Table 4.5): 

Case dest (hrs) dact (hrs) Results 

1 (Shift Trajectory Back­

wards) 

6 7.5 infeasible 

2, subcase 1 (Implement origi­

nal trajectory) 

6 4.5 feasible, suboptimal 

2, subcase 2 (Shift trajectory 

forward) 

6 4.5 infeasible 

Table 4.5: Simulation Results for Trajectory Adjustment Method 
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In Case 1, the optimizer reported infeasibilities because despite the hold, there were 

inadequate degrees of freedom to satisfy other constraints (particularly the restoration 

constraints). This is largely due to the fact that when the trajectories were shifted, 

the system states after the shift were no longer the same as the original, therefore the 

control actions had become invalid. 

In Case 2 (subcase 1), the optimizer returns a suboptimal result because the system 

is being shut-down longer than it has to be. 

In Case 2 (subcase 2), the optimizer reported infeasibilities because the states at tact 

are not the states at test (with which the initial trajectory was calculated), which led 

to constraints being violated. 

It is clear that the solutions obtained with this method are impractical (due to their 

suboptimality and infeasibility), therefore we abandon this approach. 

4.4.2 	 Optimization Under Uncertainty using a multi-scenario ap­

proach 

In this approach, the uncertainty in the downtime estimate is accounted for from the 

onset. This requires two pieces of information: 1) the initial downtime estimate, desti 

2) uncertainty bounds on de8 t, i.e. d~~t ::; dest ::; ~~t· 

The upper-bound and lower-bound information on dest is used in a multi-scenario 

optimization formulation to come up with a control trajectory that is optimal for 

the nominal case, while simultaneously remaining feasible for any downtime duration 

between the given bounds. Thus, the optimizer will try to find a solution that will 

satisfy the worst case scenario. As a result, the resulting control trajectories are 

conservative in nature. 

The problem is formulated by solving a set of parallel models, with the downtime 

estimate as the uncertain parameter. This may result in a very high dimensional 

DAE optimization problem, depending on the number of scenarios considered. 

Objective Function (Nominal case) 

max <P(x(o), Z(o)(t), u(t), t) 
u(t) 

s.t. 
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Model Equations - Nominal Case 

f(x(o)(t),x(o)(t), Z(o)(t), u(t), t) 0 (4.15) 

g(x(o)(t), Z(o)(t), u(t), t) < 0 (4.16) 

h(x(o)(t), z(o)(t), u(t), t) = 0 (4.17) 

Model Equations - Feasible Cases 

f(X(s)(t), X(s)(t), Z(s)(t), u(t), t) = 0 (4.18) 

g(x(s)(t), Z(s)(t), u(t), t) < 0 (4.19) 

h(x(s)(t), Z(s)(t), u(t), t) = 0 Vs E {1,2} (4.20) 

Shutdown constraints 

F (O),in,unit(t) = 0 for tdown :S t :S fstart + dest ( 4.21) 

F (l),in,unit( t) = 0 for tdown :S t :S fstart + d~~t (4.22) 

F(2),in,unit(t) = 0 for tdown :S t :S fstart + d~~t ( 4.23) 

where 

s = scenarios 

subscripted (0) = the nominal scenario, i.e. where the downtime estimate is dest 

It is found that when there is only one uncertain parameter (i.e. dest in our case) 

and the trajectories are directly dependent on this parameter, the solution will cor­

respond to that obtained when dest = d~~t (i.e. the worst case, which encompasses 

all cases). This is confirmed by the results of our simulations below where the trajec­

tories obtained using the multi-scenario are identical to those obtained by assigning 

dest = d~~t (worst case). It follows that the more conservative the upper bound is, the 

more suboptimal the result will be, because the optimizer has to maintain feasibility 

for a larger region. 

It has to be mentioned that in general, the solution of a multiscenario optimization 

problem does not necessarily corresponding to _picking the worst case in each un­

certain variable. In a 1983 paper, Grossman and Morari [38] demonstrated in their 

study of a network of heat exchangers that oversizing every heat exchanger (the most 

conservative case) does not lead to optimal flexibility. 

Scenario 

The Hi-Q knotter is shut down. The actual duration of the shutdown is dact = 6 
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hours. The estimated duration is in the range d~~t :::; dest :::; d~~t' where d~~t = 4.5 

hours and d~~t = 7.5 hours. The horizon is 24 hours. The goal is to solve the problem 

to obtain a set of trajectories that is feasible for any downtime estimate that lies 

within the range 4.5 :::; dest :::; 7.5. 

Results 

The resulting trajectories can be seen in Figure 4.9. From Table 4.6, it is observed 

Case Profit ($) 

Ideal ( dact is known exactly) 102,106 

M ultiscenario optimization 93,021 

Optimization assuming worst case ( dest = ~~t) 93,021 

Table 4.6: Comparison of Profits from Multiscenario Optimization and Others 

that the solution from the multiscenario optimization produces a 24-hour profit that 

is lower than if the operator had perfect knowledge of the actual duration of the 

shutdown. The lower profit seen in the multiscenario optimization (Table 4.6) is due 

to fact that in order to be feasible for a longer downtime, the Hi-Q unit is forced to 

shut down for a longer period (hiq(1).Finl), which lowers overall production. This 

also induces a shutdown in the digester (as seen in digester.Finl), which further lowers 

the throughput of the system in order to meet constraints. The lower throughput 

is most clearly reflected in the lowered feed rate to the 0 2 delignification reactor 

(reactor(1 ).Finl)· 

Conclusion 

This approach yields conservative trajectories that are suboptimal but feasible within 

the given bounds. The advantage of this method is that only a one-time calculation 

is required. 

4.4.3 	 Trajectory Re-optimization using Feedback of Downtime Es­

timate 

This approach allows the operator to revise any downtime estimates dynamically. At 

any time during the shutdown, the operator can enter corrected downtime estimates 

as information arrives and the remainder of the trajectory is re-optimized from the 

current state of the system, and the controller performs what is essentially a mid­
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obtained from multiscenario optimization (solid lines). 
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course correction. 

The effectiveness of active reoptimization depends on: 

1. 	 the degrees-of-freedom available to the system (amount of buffering capacity 

that is available, for instance) 

2. how early the reoptimization is done 

3. where the failing unit is situated with respect to buffers. 

This feedback approach has considerable advantages over a multi-scenario optimiza­

tion approach for dealing with uncertainty in the estimated downtime, in that the re­

sulting control trajectories are less conservative. The performance of this re-optimization 

scheme is studied in this work under various failure scenarios. 

Case studies: Trajectory Re-optimization - Effect of a one-time reopti ­

mization at various stages 

This case study considers the effect of early reoptimization on the optimal throughput. 

The failure occurs in the Hi-Q unit, between two buffer tanks. A 24 hour horizon was 

used for the simulations. In each case, the reoptimization is performed once and only 

once. 

Case 1: Actual downtime is longer than estimated downtime, Figure 4.10 

(dact > dest, where dact = 10 hrs and dest = 8 hrs) 

' steady-state Shutdown Restoration Steady-state 
i 

············~·..-+------1.. 
:' 

I I 
!estimatedl 

I ./
I •

! ........ 
100%1 •••.. 

Figure 4.10: Case 1: Reoptimization at various stages, given that dact > dest· 
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1. Case 1.1: Re-optimize 25% into the estimated shutdown duration (Figure 4.12) 

2. Case 1.2: Re-optimize 50% into the estimated original shutdown duration 

3. Case 1.3: Re-optimize 75% into the estimated shutdown duration 

4. Case 1.4: Re-optimize 100% into the estimated shutdown duration (Figure 4.13) 

5. Case 1.5: Ideal trajectory (assuming dact was known from the onset) 

Case 2: Estimated downtime is longer than actual downtime, Figure 4.11 

(dest > dact, where dact = 6 hrs and dest = 8 hrs) 

steady-state Shutdown Restoration 

i 
d., I 

: 

./···.. 
·········· 

..... 
.i.. 

....... 

.:·estimated 

Figure 4.11: Case 2: Reoptimization at various stages, given that dest > dact· 

1. Case 2.1: Re-optimize 25% into the estimated shutdown duration (Figure 4.14) 

2. Case 2.2: Re-optimize 50% into the estimated original shutdown duration 

3. Case 2.3: Re-optimize 75% into the estimated shutdown duration (Figure 4.15) 

4. Case 2.4: Ideal trajectory (assuming dact was known from the onset) 

Table 4.7 below summarizes the results: 

Trajectory Re-optimization: Findings 

The general trend that can be gleaned from the data in Table 4.7 is that the later a 

reoptimization is performed, the poorer the result will be. The later a reoptimization 

is performed, the fewer the degrees of freedom that is available to the optimizer. 
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dact > dest dest > dact 

Reoptimize at Case/Fig. Profit ($) Case/Fig. Profit ($) 

25% 1.1 I Fig 4.12 110,358 2.1 I Fig 4.14 111,288 

50% 1.2 I­ 109,760 2.2 1­ 111,287 

75% 1.3 I­ 109,752 2.3 I Fig 4.15 111,287 

100% 1.4 I Fig 4.13 92,164 - I - -

Ideal trajectory 1.5 I­ 111,250 2.4 I­ 111,312 

Table 4.7: One-time Reoptimization at Various Stages into dest 

Generally, except for Case 1.4, the degradation of performance with respect to the 

lateness of the reoptimization was not large, which is an indication of the system's 

flexibility in responding to shutdowns. This is attributable to the fact that inventory 

movements are largely reversible actions (through either the manipulation of recycles 

or by manipulating production rates). The optimizer recognizes this and exploits the 

degrees of freedom available to drive the system to optimality, even after suboptimal 

control actions steps have been implemented. 

As a side note, it should be noted that reoptimization cannot always reverse the effects 

of erroneous control. This is often true for reacting systems with irreversible reac­

tions. For instance, if a certain set of control actions (performed before the downtime 

feedback) gives rise to a change in the feed of a reactor and if the reaction proceeds in 

an undesired direction, then the product is considered to be off-specification. In such 

instances, it is impossible for the control system to steer a system back to a desirable 

operating point. 

In Case 1.1 (Figure 4.12), the optimizer receives information (at t=3.5 hrs) that 

the shutdown is longer than expected, and thus the build-up in the blowtank is 

higher than expected. Therefore it prescribes a slight drop in the digester output 

(digester(1) .F exit) in order to prevent the blowtank from overflowing (the blowtank 

level, blowtank(1).V, is operating close to its upper bound of 1845 m3 at t=12 hrs). 

In Case 1.4, the effect of reoptimization (performed at t=8hrs) is most clearly seen 

in the material flowrates into the delignification reactor. If the reactor(1) .Finl trajec­

tories in Figures 4.12 and 4.13 were to be compared, one notices that in the former 

case, the material flowrate into the reactor drops significantly for a period but makes 

a rapid ascent before returning to the original steady-state. In the latter case (when 
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reoptimization is performed later , at t=8hrs), the input into the reactor stays within 

a small band (±10 t/hr), and the tank(1).V level is allowed to drop a little lower than 

in Fig 4.12. Another indicat ion of the reoptimization taking place can be seen in 

the sealtank(1) .Fautmix trajectory. At t=8hrs, seal tank begins to discharge material 

(sealtank(1) .Foutmix) again after shutting down, but when given the information that 

the downtime is longer than originally predicted, the control system shuts off the 

flow once more and keeps the sealtank discharge at zero until the end of the actual 

downtime. The profit obtained, $92,164, (Table 4.7) is significantly below the ideal 

profit. We deduce that in this case, the system has moved past a certain threshold 

and is unable to successfully reverse most of the effects of past control, therefore the 

profit suffers. 

In Case 2.1 (Figure 4.14) and Case 2.3 (Figure 4.15), the trajectories are almost iden­

tical. In these cases, the estimated downtime is longer than the actual (i.e. the reality 

is less severe than projected). This means that the original policy was a conservative 

one, and when reoptimization is performed, the extra degrees of freedom gained are 

used to effect a less conservative solution. As such, reoptimization at various stages 

does not have as big an effect as in the case where the estimated downtime is shorter 

than the actual. The profits in Table 4.7 show very little profit degradation at various 

stages of reoptimization. However, the degree to which reoptimization may benefit 

the operation would be difficult to ascertain a priori wit hout rigorous optimization. 

Simple Comparison of Reoptimization and Multiscenario Optimization 

Consider a scenario in which the digester shuts down. The estimated failure time 

is d est = 8 hours, with uncertainty being ±2 hours. The actual downtime is dact 

= 9 hours. The operator is given the actual downtime information 1 hour into the 

shutdown, and the system reoptimizes based on the new information. 

Results 

From Table 4.8, reoptimization emerges as the best-performing method for handling 

the uncertainty in downtime estimates by a considerable margin. The control policy 

from multiscenario optimization is necessarily conservative for all dact < 10 = d~~t 

(and optimal for dact = 10) . Reoptimization, on the other hand, attempts to arrive at 

the optimal trajectory solution using the best available information at a given time 
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Method Profit ($) 

Reoptimization 66,485 

M ultiscenario Optimization 61,783 

Ideal Scenario 66,506 

Table 4.8: Comparison of Reoptimization and Multiscenario Optimization 

and thus usually delivers good performance. 

4.5 	 Computational Issue: Avoiding Control Policies that 

Induce Shutdowns 

The optimizer will occasionally yield an optimal policy that prescribes shutting off 

material flows to certain units (essentially shutting them down) to accommodate the 

original shutdown. Henceforth we shall denote this type of shutdown a "induced 

shutdown". 

Induced shutdowns usually occur in response to long shutdown durations. A single 

buffer tank has the capacity to buffer shutdowns for a limited time before it overflows 

or empties. Therefore, when a long shutdown occurs, it is sometimes necessary to 

throttle down the production upstream in order to keep from violating the level 

constraints in the buffer capacities. 

However, instead of reducing production upstream over a long horizon, the optimizer 

may find it more profitable to completely shut down upstream production for a short 

period of time. 

Induced shutdowns are undesirable because each shutdown incurs both a fixed cost 

(in terms of the manpower, time and resources required to start a unit up again) 

and variable cost (in the form of lost production over time). In order to force the 

optimizer to avoid this scenario, it is necessary to penalize induced shutdowns in the 

objective function. In this section, we investigate the use of a barrier function to 

penalize shutdowns. 
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4.5.1 Barrier method 

In this approach, we formulate a penalty that activates as soon as unit outlet flowrates , 

Fi reach their shutdown flowrate, Fi ,shut (a flowrate at which a unit is said to have 

shut down). 

max [<I>economics - <p]
F(t) 

s.t. 
Nunits [ {tf ] 

(4.24)<p = tt lo wi(t) dt 

for Fi(t) = Fi,shut (4.25) 

for Fi(t) > Fi,shut ( 4.26) 

(4.27) 

for i = l..Nunits 

where 

i = index denoting the i-th process unit in the plant 

t 1 = final time, end of prediction horizon 

Ai = barrier weight for flowrate in process unit i, an indicator of the relative severity 

of the shutdown in unit i with respect to other units 

Fi(t) = flowrate i, through a process unit 

Fi,shut = shutdown threshold flowrate i, a flowrate value at which a shutdown is 

forced. Wi ( t) = barrier function 

Nunits = number of process units with manipulated variables 

In this formulation , whenever Fi(t) = Fi,shut, wi(t) activates and takes on a value 

of Ai. The integral of wi(t) over the time horizon will yield a penalty representing 

the shutdown length multiplied by the barrier weight. However, the function wi(t) is· 

discontinuous, therefore in order to solve it as a continuous optimization problem, we 

propose the following barrier function approximation. 

Use of an Exponential Barrier Function to Approximate Switching 

Barrier functions are often used in interior-point algorithms to steer the algorithm 

away from constraints. They do this by causing the objective to degrade dramatically 
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if the current iterate moves towards a constraint boundary. Here, we will attempt to 

use this concept to formulate a penalty which will activate if the optimizer induces 

a shutdown. The following is a function that tends to Ai when Fi is close to Fi,shut, 

and closely approximates the behavior of equations ( 4.25 - 4.26). 

Vi E {l..Nunits} ( 4.28) 

where 


k = tuning parameter for sharpness of switching interval (positive number) 


0.8 

0.6 

0.4 

0.2 

0 	 0.5 1.5 2.5 3.5 4.5 5 
F1(t) 

Figure 4.16: Exponential barrier function, with A= 1, k = 10 and Fshut = 0. 

The main advantages of this function are: 

1. Continuous, differentiable everywhere 

2. Provides good approximation of switching. 

3. All terms are bounded within the domain of interest 

The disadvantage of this function is that it: 

1. Requires trial-and-error to fix the tuning parameter 
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2. 	 Is a purely numerical construct, and does not accurately represent the economic 

cost of failure. The penalty term amounts to the product of the barrier weight 

and the total shutdown length over all process units, which is not a true repre­

sentation of the actual cost of shutdown. 

4.5.2 Case Study: Penalizing Induced Shutdowns 

Description 

In this case study, we investigate the effect of penalizing induced shutdowns. The 

drum washer is shut down for for a duration of 8 hours. The fixed cost associated 

with this shutdown is $1000. The fixed cost associated with a digester cleanout is 

$3000. A nominal trajectory is obtained by solving the problem. The shutdown of 

the digester upstream is triggered. The problem is then solved again with the Barrier 

method, with weights Adigester=3000 and Ai=1000 where i represents units other 

than the digester. It is important to recognize that the barrier weights merely reflect 

the relative severity of a shutdown, and is not representative of the true economic 

cost. The flowrate corresponding to a shutdown is Fi ,shut = 0 in all cases. 

Results 

The results are summarized in Table 4.9, with references to the figures containing 

corresponding trajectories. "Apparent Profit" refers to the economic objective func­

tion in the optimization problem. "Adjusted Profit" refers to the true profit after 

accounting for the fixed cost of shutdowns. 

Fig. Apparent 

Profit ($) 

Shutdown 

Costs($) 

Adjusted 

Profit ($) 

No penalty 4.17 89,990 4000 85,990 

Barrier 4.18 89,938 1000 88,938 

Table 4.9: Penalty Method for Induced Shutdowns 

The total fixed cost of shutdowns in the first case is $4,000 ($3,000 due to the induced 

shutdown in the digester [digester(1).F exit], $1 ,000 due to the shutdown in the vacuum 

drum washer fdrumwasher(1).FinlJ, refer to Figure 4.17). The digester production 

(digester(l).Fexit) was shut down temporarily in order to prevent the blowtank (which 

was operating close to its upper bound) from overflowing. 
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The total fixed cost of shutdowns in the second case (Barrier) is $1,000 (due to the 

shutdown in the vacuum drum washer [drumwasher(l).FinlJ, Figure 4.18). The di­

gester production (digester(!) .Fexit) was reduced but stopped short of shutting down. 

The reader's attention is drawn to the fact that the apparent profit (which is being 

maximized in the NLP) when the induced shutdown is allowed to occur is higher than 

if the digester were kept running. This suggests that the induced shutdown leads to 

a higher profit. However, the apparent profit disregards the fact that there is a cost 

($3000) incurred every time the the digester is shut down. When one factors in the 

cost of shutting down the digester (adjusted profit), the solution with the barrier 

function applied is the actual optimal solution. In general, induced shutdowns tend 

to be highly undesirable and should be penalized in almost all instances. 

The question that will inevitably arise is why the true shutdown costs were not taken 

into account in the objective function in the first place. While the barrier method 

provides a means of guiding the optimizer away from an induced shutdown, it is merely 

a numerical construct and the barrier term is not a representation of the true cost of 

a shutdown. The true cost is represented by two components: fixed and variable. The 

variable cost associated with a shutdown is typically in the form of lost production­

this cost is captured implicitly in the NLP. The fixed cost of a shutdown, however, 

comprises costs that are incurred per shutdown, regardless of length. Examples include 

manpower costs, use of cleaning chemicals, and so on. In order to account for this, we 

require a way to count the number of shutdowns that occur (Nshutdown) and multiply 

it with its fixed costs. However, since induced shutdowns are the result of the solution 

of an NLP and we have no way of knowing the total number of induced shutdowns 

a priori , it stands to reason that the counting of Nshutdown must be done within the 

NLP itself. 

It is possible to obtain Nshutdown within an NLP formulation (refer to Appendix B 

for a derivation of a method for counting shutdowns). Unfortunately, the resulting 

formulation is highly nonlinear. While this formulation is suitable for moderate-sized 

problems, it produces difficulties for large-scale ones due to its use of hyperbolic 

continuous switching functions. It is possible to replace the continuous switching 

functions with integer variables, with the consequence that the resulting problem is 

a mixed-integer nonlinear program, which will likely be intractable for large-scale 

systems. 



100 

Zhiwen Chong, M.A.Sc. Thesis (Chemical Engineering) 89 

~ [-----------'------:--,\ /~~----·. 

·l·\ J 
QL---~----~~~~----~--~ 

0 5 10 15 20 25 

digester(1 ).Fin

1 
[tlhr] vs. time [hr] 


2000~--~----~----~----~--~ 

1500 


1ooo....-L----'----'---'--.3ilo---..J 
0 5 10 15 20 25 


blowtank(1 ). V [m~ vs. time [hr] 


200 

0~------------~--~--~0 	 5 10 15 20 25 

hiq(1 ).Fin

1 
[tlhr] vs. time [hr] 


6oo r-:-:-:-:-~-:-:-:-:-T==:=::====::;;:::-~ 
:~ 	 i 


... J ... 4oon···· 	
l_ 

I
~- .... ·.J ...
200 

I·

! i· 
r'·0 't 

0 5 10 15 20 25 

sealtank(1).F t . [tlhr] vs. time [hr] 


oumrx 

1200.---~----~----~----~---. 

6QQL---~----~----~----~--~ 

0 5 10 15 20 25 


tank(1).V [m3
] vs. time [hr] 


160 


140 


12QL---~--~~--~~--~----~ 
0 5 10 15 20 25 


reactor(1 ).Fin1 [tlhr] vs. time [hr] 


100 ............ . 

50 

QL---~----~~..~----~--~ 


0 5 10 15 20 25 

digester(1).Fexit [tlhr] vs. time [hr] 


300 
 . . . . . . . . . . . . . . . . . . .. 


2oon·· ........... .:r~~~c-

I


100 
 · T 
1 ·j· 

i i 


o~--~-----L----~----~--~ 
0 5 10 15 20 25 


blowtank(1 ).F [tlhr] vs. time [hr] 

82 


1000.---~----~----~--~----~ 

500 


0~------------~--~--~0 5 10 15 20 25 

drumwasher(1 ).Fin1 [tlhr] vs. time [hr] 


200.---~----~----~--~----~ 

5 10 15 20 


sealtank(1).V {m~ vs. time (hr] 


80r-:~···:········:········:········:··;_;..;-:_ 

60·····~~~~······ 
40 ...................................... . 


20 


o~--~----~----~----~--~ 
0 5 10 15 20 25 


tank(1 ).F [tlhr] vs. time [hr] 
82 


Figure 4.17: No penalty method applied to avoid induced shutdowns. 
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Figure 4.18: Exponential penalty applied to avoid induced shutdowns. 
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4.6 Chapter Summary 

In this chapter, we looked into the use of dynamic optimization for generating policies 

for operating a plant under unit shutdown conditions. The location of the shut down 

unit relative to the buffers was studied. Various ways of handling the uncertain 

downtime estimate parameter were presented, and re-optimization based on operator 

feedback of downtime estimate was found to be the most effective. A method for 

addressing the problem of induced shutdowns was presented. 



Chapter 5 

Integrated Predictive Control 

Framework for Shutdowns 

Life can only be understood backwards, but it must be lived forwards. 

- 8l1)ren Kierkegaard, existentialist philosopher 

In the previous chapter, the idea of using dynamic optimization for obtaining optimal 

operating policies for shutdown scenarios was put forward. In this chapter, we will 

be extending the idea by proposing an integrated predictive control framework where 

measurement-based feedback is used to deal with plant-model mismatch and distur­

bances. This framework consists of ideas drawn from the domains of model predictive 

control and nonlinear optimization. Case studies that demonstrate the performance 

of this scheme under parametric mismatch and process disturbance scenarios are pre­

sented. 

5.1 	 Applying Predictive Control to the Shutdown Prob­

lem 

Operating a plant undergoing a unit shutdown requires a suitable transient-control 

scheme. In the previous chapter, policies for operating the plant were generated 

using dynamic optimization. During the period of transience, unforeseen process 

disturbances and model mismatch can invalidate these policies, therefore some kind 

92 
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Figure 5.1: Hierarchy of control, integrated dynamic optimization and control. 

of feedback mechanism is imperative in order for the control scheme to be practicable. 

Toward this end, we propose an integrated framework based on model predictive 

control and dynamic optimization as a means of implementing abnormal-situation 

control on the plant. The predictive control algorithm was selected for its centralized 

multivariate structure and constraint-handling capabilities. 

We envisage a scenario where the operator switches the plant mode from "normal 

operation" to "abnormal operation" when a shutdown occurs, in which the proposed 

integrated control system below kicks in and takes over from the standard control 

system. The goal of our study is to demonstrate this framework in the role of a 

controller for the fiber line of the Kraft paper mill under a shutdown scenario. 

Referring to Figure 5.1, the dynamic optimization component embedded within the 

predictive controller performs an open-loop model-based optimization based on the 

current states of the system. A set of control trajectories is obtained and the first 

step of the calculated trajectories is implemented. To carry out the control actions, 

the predictive controller can either send setpoints to lower-level PID controllers in 

local control loops or send control signals to the plant itself to drive it to the desired 

operating point. Plant measurements are taken and fed into the state estimator, 

which typically takes the form of an Extended Kalman Filter (EKF). The estimate of 

the states is then conveyed back to the predictive controller, where it is used as initial 

values for the next iteration. This process is repeated until the system is restored to 

its nominal steady state operation. 
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It is important to note that the predictive controller here is distinct from a conven­

tional MPC controller in that its objective is not to track given setpoints, but instead 

to implement manipulated variable adjustments to optimize an economic objective. 

5.2 Features of the Integrated Framework 

5.2.1 Nonlinear Control of Transient Processes 

Transient chemical processes have several characteristics which demand special at­

tention. Firstly, they exhibit unsteady-state behavior which is generally nonlinear, 

and thus entails the use of some form of a nonlinear model in order to obtain a rea­

sonably accurate characterization of the nonlinear dynamics in the system. In our 

scheme, the predictive controller is integrated with a dynamic optimizer (based on 

first-principles DAE models) where a series of general nonlinear programs (NLPs) are 

solved in succession. 

General NLPs can be challenging to solve. Due to the nonlinear character of NLPs, 

a feasible starting point is crucial to obtaining a good solution. There are many ways 

of obtaining such a feasible initial point, including steady-state simulations, homo­

topy continuations or multiphase warm-starts. In addition, most general nonlinear 

problems in engineering have nonconvex formulations, which implies the existence 

of local optima [71], therefore global optimality cannot be guaranteed. Global opti­

mization is one means to guarantee a global optimum but current global optimization 

software such as BARON [68] are currently only able to solve problems of a modest 

scale at great computational expense, effectively disqualifying them from medium to 

large-scale on-line applications. 

In spite of these issues, solving repeated NLPs holds some appeal because the solution 

of the previous time step represents a good starting point for the current time instant, 

and by exploiting this property, successive NLPs can be solved efficiently [14]. In this 

work, single NLPs with 35,000 variables and 35,000 constraints were routinely solved 

in 0.5-2 minutes. 

The transient processes we are considering are finite in duration, therefore the predic­

tion/control horizon length in the controller is finite. Therefore, in lieu of the ordinary 

receding prediction/control horizon, a shrinking horizon (in which the prediction and 
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control horizons decrease as the the controller advances toward the end of the time 

horizon) seems to be the more natural choice and is adopted in this framework. 

In the shutdown problem, the prediction horizon length for optimal control needs to 

correspond to the duration of the shutdown and restoration combined. If a shorter 

length is chosen, suboptimal control may result from the controller not having an 

adequate picture of the full transient process. 

5.2.2 Economics-based objective function 

Economics optimization is integrated directly into the predictive controller, which 

constitutes a 1-layer MPC with economics approach (in contrast to a multi-tier Dy­

namic RTO approach). 

5.2.3 Events 

A rudimentary mechanism for representing certain process events is built into the 

predictive controller. In this work, we consider two types of events: 

1. 	Explicitly-known events 

Due to integration with the dynamic optimizer, explicitly known discrete events 

(such as startups and shutdowns, or in our case, restoration) can be embedded 

directly into the prediction model. These events can be specified either through 

operator invention or automatically via monitoring subsystem, such as a process 

fault monitoring module. This form of process event anticipation is distinct 

from traditional feedforward control in which disturbances are detected solely 

through plant measurements. 

The temporal entry and exit points of this type of transient event are usually 

specified relative to the left-hand boundary of the prediction window. Because 

the shrinking-horizon causes this reference boundary to move as it advances to 

the end of the time horizon, the entry/exit points of the transient event must 

be shifted accordingly as time progresses. 

For a process that runs from t E (0, t,], suppose a transient event T(t) occurs 

between tstart and tend, and the left-hand boundary of the prediction horizon 

is currently at time tcurr. In the predictive control optimization problem, these 
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variables take the following form: 

t(opt) E [0, t1- tcurr] 	 (5.1) 
t(opt) 
start = tstart - tcurr (5.2) 

t(opt) 
tend- tcurr 	 (5.3)end 

for 	t(opt) E [t(opt) t(opt)] (5.4)start' end 

where the superscript (opt) indicates variables within the optimization problem 

solved at time instant tcurr· As tcurr moves beyond tstart (i.e. tcurr > tstart), 

equation 5.2 is dropped and t~:;~ = 0. As tcurr moves beyond tend (i.e. tcurr > 
tend), equations 5.3 and 5.4 are dropped. 

2. 	 Optimization Induced events 

Through the use of barrier functions discussed in the previous chapter (and 

other similar continuous switching functions), the predictive controller is able 

to deal with simple optimization-induced events, such an induced shutdown or 

a discontinuity in operation, without resorting to mixed-integer programming. 

Process interlocks and stream redirections can be specified using continuous 

switching functions. For instance, if a shutdown is triggered and procedure 

dictates that under such circumstances, the flow of material in outlet F1 (which 

normally connects F2) is required to redirect to stream Femergency, the following 

mathematical representation is possible: 

F1 = (1- w)F2 + wFemergency 

w = { 1, when failure occurs (5.5) 

0, otherwise (5.6) 

where w is approximated using some continuous switching function. 

In either case, no integer variables are introduced and no hybrid structure is used, 

therefore the resulting optimization problem is solvable in principle using a conven­

tional continuous NLP solver. 

5.3 Algorithm and Software Implementation 

The predictive control algorithm was implemented by interfacing a Python program 

and the dynamic optimization model (MLDO-generated AMPL model). A schematic 
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0 

Controller and Coordinator (Python) 

Send events/x0(k)k=k+l shrink horizon 

Dynamic Optimizer (AMPL) 

u(k)y(k) 

Plant (AMPL) 

Figure 5.2: Software implementation of predictive control algorithm. 

of the interactions between the different software is presented in Figure 5.2. The 

algorithm proceeds as follows: 

1. 	 Controller and Coordinator. The coordinator program invokes MLDO and 

generates the dynamic optimization model. The initial state vector x(O) and 

events such as shutdowns are embedded in the model. 

2. 	 Dynamic Optimizer. The dynamic optimizer has two parts: the AMPL mod­

eling software and the IPOPT optimizer. Given a suitable model, the solution 

of the dynamic optimization problem is computed, and the control actions u(k) 

for the current time k are sent to the plant model. Note: only the first step is 

implemented. 

3. 	Plant. The plant model is integrated for 1 time step, and the measured variable 

vector y(k + 1) is extracted and sent to the coordinator. The value of k is 

incremented by 1. The prediction/control horizons are reduced by 1 step. 

Since the dynamic optimization problem is a nonlinear one, initializing the problem 

with a feasible starting guess is of paramount importance. The starting guess has the 

potential to dictate the region in which the optimizer moves and has a huge bearing 

on problem convergence. In the predictive control problem, the solution from the 
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previous optimization (at time k - 1) is used as an initial guess for the optimization 

problem at time k. 

5.4 Interaction with Local Control Loops 

In our Kraft model,the assumption is that the dynamics of the local controllers are 

fast in relation to the sampling rate, and may therefore be neglected. In our view, 

this is a reasonable assumption because all of the local loops considered are related 

to the control of flowrates, which have fast dynamics. 

With respect to local level loops, they are required to deactivate during a shutdown 

because their role is subsumed by the dynamic optimizer, which controls the levels 

directly by manipulating the outlet flowrates of buffer units. 

In general however, it may be desirable to take PID controller dynamics into account 

in the optimization problem [42]. PID control equations are easily accommodated in 

the dynamic optimization framework. Consider the following PID equations: 

u = Kp · e + Kr j edt+ Kv ~: (5.7) 

e = Yset- Y (5.8) 

where 

u = manipulated variable 

Kp, K 1 , Kv =proportional, integral and derivative gains, respectively. 

e = error term 

y = controlled variable 

Yset = reference or setpoint value 

These equations can be cast into a form amenable to solution with a DAE-based 

method as follows: 

dz 
dt 

= e, with z(O) = 0 (5.9) 

K de 
Ddt u- Kp · e- Krz, with e(O) = 0 (5.10) 

e - Yset- Y (5.11) 

These equations can be enforced as constraints in the dynamic optimization problem. 
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5.5 State Estimation of a DAE System 

The nonlinear predictive controller requires knowledge of the current state in order to 

compute the optimal trajectories for the remainder of the horizon. Frequently, only 

certain state variables are measurable1 Some means of inferring the state information 

from the measurements must thus be employed. One algorithm that has been applied 

widely since the 1970s is the Kalman filter (46], which is an optimal linear estimation 

technique originally developed to estimate the states of stochastic processes. In view 

of the fact that our proposed framework uses nonlinear models, we will describe the 

nonlinear variant of this filter, the Extended Kalman Filter (EKF) (44]. 

The primary goal of an EKF is to be able to reconstruct state information from a set 

of (noisy) measurements. The EKF combines the variance of the measurements and 

the variance of the model states to estimate the the true process states and variance 

in a way that minimizes the variance of the true process estimate (16]. The basic idea 

is that given a vector of plant measurements at time k (denoted Yk), a stochastically­

optimal estimate of the state vector xk+lik (states at time k + 1, given information at 

time k) can be derived. This estimate is then used as the initial values of the DAE 

system in the predictive control problem. The covariance matrix Pk is updated at 

every time step. 

In order to apply the EKF, we require the model of the system to be in a state-space 

type representation. Given a continuous DAE model of the following form: 

:X= F(x,z, u) (5.12) 

where x = differential states, z = algebraic states, u = control inputs, the model can 

be rewritten in discretized form as follows: 

(k+l)~t 

xk+l = Xk + F(x,z, u)dt = f(xk, Uk,k) (5.13)lk~t 
where tlt = system sample time. The integration of the DAE model is performed 

implicitly using Orthogonal Collocation on Finite Elements. Combining this with 

plant measurements (Yk), and adding stochastic noise terms, we obtain a state-space 

1In this work, which is based on the Kraft mill fiber line model, the use of the EKF state estimator 

is bypassed because the values of the differential algebraic states necessary to uniquely determine the 

current operating point of the system are directly measurable. 
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type representation below. 

xk+l - f(xhuk, k) + wk (5.14) 

Yk - g(xk, k) + vk (5.15) 

where Wk rv N(O, Q) and Vk rv N(O, R). 

Initialization 

At time 0, the state vector x is assigned a vector of values (obtained by some rea­

sonable means) whose function is that of a "first guess" . The Q matrix is used the 

initial covariance matrix. 

PolO - Q (5.16) 

Xo!O - XO (5.17) 

Estimation 

The state estimation involves two phases, an update phase and a predict phase (Hen­

son, [26]). The nonlinear equation system is linearized at each instant through the 

use of Jacobians. 

1. 	Update Phase 

In the update phase, the Kalman gain (Kk) is calculated using equation 5.18. 

This gain is primarily for updating the covariance matrix (through equation 

5.19) and for determining how the feedback measurements are used to update 

the current states (equation 5.20). 

T T 1
Kk -

A A 	

(5.18)Pklk-1Gk(GkPklk-1Gk +R)­

pklk = (I- KkGk)Pklk-1 (5.19) 

xklk = xklk-1 + Kk(Yk- g(xklk-1, k)) (5.20) 

2. 	Predict Phase 

In the predict phase, the state covariance matrix is updated (equation 5.21) and 

the current state is propagated nonlinearly using equation 5.22. In a discretized 

DAE model, the propagation function is an implicit function in the form of 

equation 5.13. 

A T 
- FkPklkFk + Q (5.21) 

- f(xk1k, uk, k) (5.22) 
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where 

8g(x, k) I
Gk = (5.23)

8x A

x=xklk-1 

8f(x, u, k) I
Fk = (5.24)8x A

x=xklk•u=uk 

Xalb = state vector at time a, given information at time b. 


Q, R =covariance matrices of wk and vk, respectively. 


F, G = Jacobians off and g, respectively. 


P alb = state covariance matrix at time a, given information at time b. 


Yk =plant measurement vector at time k 


Kk = Kalman gain at time k 


I = Identity matrix 


Kozub and MacGregor demonstrate that the augmentation of the state-space equa­


tions with random-walk stochastic states provides the state estimator with integral 


action, which is essential for handling process nonstationarity [52]. Without inte­


gral action, the model is unable to account for say, a transition to a different steady 


state. From a practical point of view, Froisy et al. [32] stress that a minimum 


set of stochastic states should be used. Kozub and MacGregor also demonstrate a 


"reiterative"-EKF, where the first few measurements are used to estimate the initial 


states of the system (xo), which are frequently not known. 


Froisy et. al. [32] make the comment that in large-scale applications where there are 


thousands of states, it is impractical to update all of them, therefore the selection of 


which states to update is dependent on the strength of the connection between the 


measurements and the set of states. 


In order for state estimation to be effective, it is vital for the system to possess 


the quality of observability. While the observability of a linear system is a global 


property, the observability of nonlinear system can only be determined around the 


neighborhood of a given state or equilibrium point by means of a linearized test (26]. 


Ray (66] notes however that observability of nonlinear systems is often dictated by 


the structure of a system and does not depend on the state in a complex fashion, 


hence linearized observability tests are usually sufficient. 
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5.6 	 Case Studies 

In this section, the performance of the predictive control algorithm is examined under 

different scenarios. In all of the cases below, the vacuum drum washer was shut down 

for 8 hours (between hours 2-10 in the figures) and controller is expected adjust 

the production rate and outlet flowrates of buffer tanks in order to achieve optimal 

operation. The length of each simulation is 24 hours. In this study, the effects of 

step disturbances and plant-model mismatch are considered. We also present a case 

where reoptimization is performed to account for an updated estimated downtime 

to demonstrate the use of the reoptimization scheme under predictive control. The 

simplified schematic of the plant is repeated here for the reader's convenience (Figure 

5.3). 

digester(l).F.,. 

Digestion Buffer Knotting, washing and screening 

: 

f 
i 
: 
: 
j 
i

Ireactor(l).F. _......__, 
......__~--~ 

J 
! 
: 
: 
i 
i_-r"'"__.i 
: 

Buffer Delignificatlon 

Figure 5.3: Simplified schematic of plant model. 

5.6.1 	 Case 1: Implementing the Optimal Control Policy from Dy­

namic Optimization (Nominal Case) with the Predictive Con­

troller 

Description 

In case 1, the trajectories obtained from the dynamic optimization problem were 

implemented on the plant, under perfect model conditions. This case is used as a 

benchmark for the other cases. 
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Figure 5.4: Case Study 1: Dynamic Optimization Solution, closed loop. 
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Results 

In the nominal case (refer to Figure 5.4), the application of the predictive control 

algorithm produced results that were identical to those computed with the open-loop 

dynamic optimizer. During most of the shutdown period, the digester is seen to be 

operating normally. Because the vacuum drum washer is shut down, the blowtank 

discharge (blowtank(l).Fs2) is shut off. The material entering the blowtank from the 

digester causes the material level in the blowtank to rise during this period. 

The recycle is shut off during most of the shutdown period, as can be seen in the 

sealtank(1) .Foutmix trajectory. The controller anticipates the end of the shut down 

time by slowly starting up the recycle by increasing the sealtank(l).Foutmix fl.owrate, 

which in turn causes a sudden drop in the level of the sealtank (sealtank(l).V). 

This drop allows the sealtank to accommodate more material during the restoration 

phase, and we can see that as the system is restored, the output from the blowtank 

(blowtank(l).Fs2) surges and the sealtank level is pushed to its upper bound before 

being restored to its original level. 

Throughout the shutdown and restoration, the delignification reactor experienced 

spikes and a temporary decline in production. 

5.6.2 Case 2: Step Disturbance in Chip Feed 

Description 

The chip feed stream in the digester units comprises chipped softwood lumber, dis­

solved solids and water. A feed disturbance is simulated by effecting a transient step 

change in the wood concentration (see Table 5.1) from time 11-21 hrs, during the 

restoration phase. The composition levels are subsequently restored to their original 

values after the 21st hour. The purpose of this case study is demonstrate how t.he 

predictive controller handles step disturbances. 

Original Composition Composition during Disturbance 

Wood 0.43 0.20 

Water 0.53 0.76 

Dissolved solids 0.04 0.04 

Table 5.1: Composition of Chip Feed Stream 
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Results When a step disturbance enters the plant (refer to Figure 5.5), the dynamic 

optimizer in the predictive controller immediately becomes cognizant of it through the 

plant measurements and calculates a trajectory that compensates for the effect of the 

disturbance. Because the white liquor feed is locked to the pulp component flowrate 

of the chip feed (typically, perfect control is assumed based on the liquor-wood ratio 

parameter, set at 3.6), this step change causes the white liquor flowrate to experience 

a transient drop. This is reflected in a drop in the overall digester outlet flowrate, 

digester(l).Fexit during the transient disturbance period (11- 21 hrs). (This can be 

seen by comparing the ideal and actual trajectories of digester(l).Fexit in Figure 5.5; 

the ideal trajectory being the nominal trajectory that would have been implemented 

if the disturbance had not occurred.) 

The delignification reactor experiences a spike followed by a gradual slowdown in 

production (see reactor(l).Finl) during the disturbance. During the disturbance, the 

amount of material entering the blowtank from the digester is decreased, therefore the 

blowtank's discharge rate is slowed down in order to build up the blowtank inventory. 

This slowdown is propagated through to tank(l) unit, which in turn limits its outlet 

flowrate to ensure that it is able to return to its original inventory level. This finally 

trickles down to the delignification reactor, where a temporarily reduced feed rate is 

experienced. The reduction here is more severe than in the ideal case in order to ensure 

that tank(l).V is able meet restoration constraints. All feed rates are subsequently 

restored to their original levels at the end of the restoration phase. 

The blip in the chip feed (digester(l).Finl) is due to the fact that the flowrate is 

allowed to vary within a envelope around the steady-state point. 

5.6.3 Case 3: Parametric Model Mismatch 

Description 

In this case, the presence of plant model-mismatch is evaluated. The consistency 

(i.e. mass fraction of pulp) measurement of the outlet stream from the vacuum drum 

washers is a critical parameter that is used to control the shower stream of the drum 

washer, which in turn influences the amount of material that exits the washer and 

enter the adjacent tank. A 20% mismatch was introduced (see Table 5.2) to test how 

the control system would react. 

Results 
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In Model In Plant 

Drum Washer Consistency 0.12 0.10 

Table 5.2: Plant-Model Mismatch 

Although one would expect a plant model-mismatch in the consistency parameter 

to be insignificant due to its small value, the contrary is true. The trajectory for 

tank(1).Fs2 in Figure 5.6 is appreciably different from that in the ideal case (the 

ideal case being the case in which the model was perfect). The consistency value 

is used indirectly to calculate the amount of shower water required to remove the 

residual lignin from the pulp. A lower outlet consistency is achieved by increasing the 

shower flowrate (in order to dilute the outlet stream). This in turn increases the total 

flowrate to the adjacent tank (tank(1)), due to the additional water from the shower. 

Likewise, a higher consistency corresponds to a lower shower flowrate. In this case, 

the model was overestimating the consistency value, which meant that in the plant, 

the flowrate of material going to the adjacent blowtank was actually higher than 

estimated by the model. The controller detects this through level measurements (in 

tank(1).V), and accordingly prescribes control actions to accommodate the mismatch. 

However, it was found that a larger mismatch in either direction (i.e. 0.12±0.3) gave 

rise to severe infeasibilities in the predictive control simulations. Infeasibilities due to 

large plant model-mismatches can be a serious matter in nonlinear problems. There 

are several ways to counter infeasibilities: 

1. 	Ad hoc softening of the major hard constraints through a penalty (or prioriti­

zation of constraints) 

2. 	 Ad hoc shrinkage of the sample time 

3. 	Extension of restoration time 

However, there is some difficulty in applying some of these strategies to a large scale 

DAE system. Further study is required to determine a robust and general strategy 

for handling severe plant-model mismatches. 

5.6.4 Case 4: Reoptimization upon feedback of downtime estimate 
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Description 

In this scenario, a shutdown occurs at t=2 hrs. The estimated downtime (dest) is 8 

hours, but the actual downtime (dact) is 11 hours. The operator is apprised of the 

the actual downtime at t=5 hrs. This information is fed to the predictive controller, 

and it reoptimizes the remainder of the trajectory to account for the extended down­

time. A disturbance in the feed (of the type described in Case 2, above) enters the 

system between t=8-14 hrs. This case study demonstrates the application of the 

reoptimization scheme under a predictive control framework. 

Results 

The blips in the chip feed (digester(l).Finl) are due to the flowrate being allowed to 

vary within a envelope around the steady-state point. The disturbance in the feed 

causes a step down of the digester output in the digester(l).Fexit trajectory between 

t=8-14 hrs. 

The trajectory of tank(l).Fs2 in Figure 5.7 shows visible indications of a mid-course 

correction at time t=5 hrs. This is propagated to the inlet of the delignification 

reactor, seen in the reactor(l).Finl trajectory. This was done to control the descent 

rate of the volume level in tank(l) and to aid in the restoration of the system to the 

original steady-state. 

This case demonstrates two kinds of feedback in action: downtime feedback to correct 

for an incorrect downtime estimate, and feedback to deal to with disturbances. 

5.7 Chapter Summary 

In this chapter, a predictive control framework for implementing shutdown policies 

was proposed. This framework comprises a nonlinear predictive control system which 

is able to accommodate events and an objective function based on economics. Inter­

action with local PID loops and the use of a state estimator within this framework 

was discussed. The case studies showed successful applications of this control scheme 

to feed disturbance, plant-model mismatch and uncertain downtime scenarios. 



Chapter 6 

Conclusion 

The primary focus of this work has been on the use of dynamic optimization for 

coordinating the buffer capacities in a plant in order to mitigate the effects of a 

unit shutdown. The model employed was a large-scale differential algebraic equa­

tion system which was solved using a simultaneous-type method. Uncertainty in the 

downtime estimate parameter, a parameter which has a significant effect on the op­

timality of the problem, was considered. Methods to handle this uncertainty were 

proposed and compared. A predictive control framework for implementing the above 

optimal control policies was tendered for the detection and correction of disturbances 

and/or plant-model mismatch. Several case studies illustrating its application were 

presented. 

Key findings from this work include: 

1. 	Modeling Language for Dynamic Optimization. A modeling language 

for describe dynamic optimization problems was presented in this thesis. Code 

written in this canonical form can be used to generate code in other languages. 

Examples include AMPL code for collocation of finite elements, gPROMS code 

for NLP initialization, Jb.'IEjX code for automatic documentation, etc. The mod­

eling environment, which is based on the principles of text transformations, 

enables the process control researcher to do rapid prototyping and feature ex­

perimentation without writing an excessive amount of boilerplate code. 

2. 	Reoptimization - Feedback of Downtime Estimate. Because the down­

time estimate is a parameter required from the onset, and because there is often 

111 
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no means of obtaining this number a priori apart from the prognostications of 

operators and maintenance personnel (based on their experience), it therefore 

becomes necessary to develop some means of addressing the uncertainties of 

the initial estimate. One way is to assign uncertainty bounds to the estimate, 

and optimize to obtain a set of trajectories that are feasible for any estimate 

that lie within those bounds through multiscenario optimization. This results 

in fairly conservative trajectories. The more optimal way is to allow the op­

erator to input an initial estimate, and then to update that estimate as new 

information arrives. The control system performs a reoptimization upon the 

update and prescribes a midcourse correction to the plant. In our studies, this 

method performs significantly better than multiscenario optimization in terms 

of economics. 

3. 	Restoration of states and inputs. Essentially, it is important to recognize 

that a unit shutdown is a transient event which ought not to permanently shift 

the original operating point of the process. As such, it is mandatory that states 

and inputs are made to return to their original pre-shutdown values through 

restoration constraints. This ensures that the result obtained from the opti ­

mization is meaningful; if the states and inputs were not restored, the optimizer 

would pursue avenues for optimizing the objective by coercing the system to 

a new operating point, which violates the mandate of a control system that is 

designed to handle only the transient event. It is also complicates the quan­

tification of the economics of the system as inventory deviation costs will then 

have to be accounted for. 

4. 	 Induced shutdowns. Induced shutdowns are triggered by long shutdowns 

in a specific unit. When a unit shutdown is very long, it is liable to trigger 

the violation of level constraints in buffer capacities (that is, either the tanks 

overflow or empty). The optimizer responds to this by lowering or increasing 

the rate of production in upstream units. In the case where a reduction in 

upstream production is needed, instead of throttling down the production over 

the horizon, the optimizer may prescribe shutting off the upstream production 

completely for a limited time. This is typically undesirable as the costs and 

manpower requirements of a shutdown often exceeds the losses incurred through 

a reduced production rate. In this study, we showed that induced shutdowns 

can and need to be penalized appropriately in the objective function. 

5. 	Predictive Control. Disturbances and model uncertainties during the shut­
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down can cause the trajectories to deviate from the optimal control policy. A 

predictive control algorithm encompassing a dynamic optimizer was proposed 

for countering these effects by means of feedback. Because a dynamic opti ­

mizer is encapsulated within the framework, economic objective functions and 

anticipation of explicitly known future events are possible. Case studies were 

presented to illustrate the performance of this scheme. 

6.1 Recommendations for Further Work 

This section lists several possibilities for extensions to this work. 

1. 	Quasi-sequential Approach for DAE Optimization. One of the biggest 

problems in terms of solving the problems with shutdowns with the simultane­

ous method is finding a suitable initialization for the NLP. Currently, the NLP is 

initialized with a steady-state profile obtained from a process simulation. How­

ever, due to the fact that shutdowns entail drastic changes in the shape of the 

trajectory, initialization with a steady-state profile can occasionally fail because 

it does not adequately capture the actual shape of the optimal state profiles. 

The simultaneous method generally works well with fairly well-behaved profiles 

but the profiles in this work are far from well-behaved. The sequential method, 

on the other hand, does not suffer from the problem of poor initialization due to 

its use of an integrator to obtain profiles. There have been attempts to hybridize 

the two approaches, resulting in a quasi-sequential type approach. This type 

of approach appears to be a promising candidate method for solving shutdown 

optimization problems. 

2. 	Multiple Shutdowns in Series. In this thesis, apart from induced shutdowns, 

only individually occurring shutdowns were considered. However it is possible 

for two or more units to shutdown independently of each other. Depending on 

the level of integration, this may result in a very challenging buffer coordination 

problem. 

3. 	Dynamic Recovery from Infeasibilities. In nonlinear predictive control 

applications, particularly in shutdown situations when drastic control actions 

are prescribed, severe plant model-mismatch can trigger infeasibilities in the 
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problem. The conventional way to ensure a feasible problem is through con­

straint softening, but in a large scale problem determining which constraints to 

soften (and assigning them appropriate penalty weights) may be problematic. 

Improperly chosen penalty weights can also affect the optimality of the problem. 

Finding a method that reconfigures the problem dynamically upon hitting an 

infeasibility is a subject for further study. 

4. 	Models with Heat and Mass Transfer. In our model, only the problem 

of managing material inventories was considered. The framework however, is 

general and can be extended to processes that involve chemical reactions or 

physical separations. For instance, it may sometimes (albeit rarely) be possible 

to slow down a reaction by limiting catalyst addition to a reactor in response to 

the need to throttle down production rate in order to accommodate a shutdown 

in some unit. 

5. 	 Minimization of Restoration Time. In most cases, it is desirable to min­

imize restoration time (the time taken to return a shut down system to its 

initial operating point). One conceivable way of doing this is to successively 

solve the dynamic optimization problem, decrementing tres by 1 unit each time, 

and terminating when the problem becomes infeasible. However, if there is a 

process disturbance or model mismatch, minimization of restoration time may 

give rise to infeasibilities (arising out of the failure to meet restoration con­

straints), therefore there needs to be a mechanism to extend restoration time 

when infeasibilities are detected. 

6. 	Relaxation of Pseudo-Steady State Assumption. In this work, most of 

the process units (apart from the tanks) were assumed be in pseudo-steady state 

operation. Inclusion of actual dynamics in process units may lead to improved 

performance in actual industrial application. 

7. 	 Inclusion of Startup and Shutdown Dynamics. In an industrial setting, 

there is usually an explicit procedure in place for starting up or shutting down 

a process unit. This procedure may be in the form of a sequence of manual 

operator actions from a look-up table, or a set of control actions from a process 

automation system. In order to fully capture the effects resulting from the 

implementation of a startup or shutdown procedure, it is recommended that 

the dynamics of the startup and shutdown included in the model. 



List of References 

[1] 	 0. Abel and W. Marquardt. Scenario-integrated modeling and optimization of 

dynamic systems. AIChE Journal, 46(4):803- 823, 2000. 

[2] 	 A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and 

Tools. Addison Wesley, 1986. 

[3] 	 N. M. Alexandrov and R. M. Lewis. Analytical and computational as­

pects of collaborative optimization ( ftp: I /techreports .larc. nasa. gov/pub/ 

techreports/larc/2000/tm/NASA-2000-tm210104.pdf). Technical report, 

NASA Langley Research Center, Hampton VA, 2000. 

[4] 	 B. Allison. Averaging level control for surge tanks in series. In Control Systems 

Conference. Technical Association of the Pulp and Paper Industry Press, 2004. 

[5] 	 J. J. Alonso, P. LeGresley, E. Van Der Weide, J. R. R. A. Martins, and J. J. 

Reuther. pyMDO: A framework for high-fidelity multi-disciplinary optimization. 

Collection of Technical Papers - 1Oth AIAA/ISSMO Multidisciplinary Analysis 

and Optimization Conference, 3:2001- 2019, 2004. 

[6] 	 U. M. Ascher and L. R. Petzold. Projected implicit Runge-Kutta meth­

ods for differential-algebraic equations. SIAM Journal on Numerical Analysis, 

28(4):1097- 1120, 1991. 

[7] 	 R. Baker and C. L. E. Swartz. Rigorous handling of input saturation in the 

design of dynamically operable plants. Industrial and Engineering Chemistry 

Research, 43(18):5880- 5887, 2004. 

[8] 	 A. K. S. Balthazaar. Dynamic optimization of multi-unit systems under failure 

conditions. Master's thesis, McMaster University, 2005. 

115 




116 	 Zhiwen Chong, M.A.Sc. Thesis {Chemical Engineering) 

[9] 	 P. I. Barton and C. C. Pantelides. gPROMS- a combined discrete/continuous 

modelling environment for chemical processing systems. International Confer­

ence on Simulation in Engineering Education. Proceedings of the 1993 SCS West­

ern Simulation Multiconference on Simulation in Engineering Education, pages 

25 - 34, 1993. 

[10] 	 V. M. Becerra, Z. H. Abu-El-Zeet, and P. D. Roberts. Integrating predictive 

control and economic optimisation. lEE Colloquium (Digest), (96):11-15, 1999. 

[11] 	 L. T. Biegler, A.M. Cervantes, and A. Wachter. Advances in simultaneous strate­

gies for dynamic process optimization. Chemical Engineering Science, 57(4):575 

- 593, 2002. 

[12] 	 L. T. Biegler and I. E. Grossmann. Retrospective on optimization. Computers 

and Chemical Engineering, 28(8):1169- 1192, 2004. 

[13] 	 K. F. Bloss, L. T. Biegler, and W. E. Schiesser. Dynamic process optimization 

through adjoint formulations and constraint aggregation. Industrial and Engi­

neering Chemistry Research, 38(2):421 - 432, 1999. 

[14] 	 D. Bonvin. Optimal operation of batch reactors- a personal view. Journal of 

Process Control, 8(5-6):355- 368, 1998. 

[15] 	 P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Using Krylov methods in 

the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 

(USA), 15(6):1467- 88, 1994. 

[16] 	 R. G. Brown and P. Y. C. Hwang. Introduction to Random Signals and Applied 

Kalman Filtering. Wiley and Sons, 1992. 

[17] 	 J. J. Castro and F. J. Doyle III. A pulp mill benchmark problem for control: 

application of plantwide control design. J. Process Control (UK), 14(3):329- 47, 

2004. 

[18] 	 Z. Chong. Technical Report on a Modeling Language for Dynamic Optimization 

(MLDO). Technical report, McMaster University, 2006. 

[19] 	 Thermo Electron Corporation. Gamma based consistency measurement in 

the pulp and paper industry (http: I /www. thermo. com/ eThermo/CMA/PDFs/ 

Product/productPDF-14149. pdf). Technical report, Thermo Electron Corpo­

ration, 2006. 



Zhiwen Chong, M.A.Sc. Thesis (Chemical Engineering) 117 

(20] 	 J.E. Cuthrell and L.T. Biegler. On the optimization of differential-algebraic 

process systems. AIChE J. (USA}, 33(8):1257- 70, 1987. 

(21] 	 C. R. Cutler and B. L. Ramaker. Dynamic matrix control- a computer control 

algorithm. AIChE 86th National Meeting, Houston, TX, I, 1979. 

(22] 	 J. Czyzyk, M.P. Mesnier, and J. J. More. NEOS server. IEEE Computational 

Science & Engineering, 5(3):68 - 75, 1998. 

(23] 	 A. Drud. GAMS: The Solver Manuals (CONOPT). GAMS Development Cor­

poration, 2004. 

(24) 	 J. F. H. Dube. Pulp mill scheduling: Optimal use of storage volumes to maximize 

production. Master's thesis, McMaster University, 2000. 

(25] 	 I. S. Duff. On algorithms for obtaining a maximum traversal. ACM Transactions 

on Mathematical Software, 1981. 

(26] 	 T. Edgar and K. Muske. Nonlinear Process Control. Prentice-Hall, 1996. 

(27] 	 Energy Efficiency and Renewable Energy. How to calculate the true cost of 

steam. Technical report, U.S. Department of Energy, 2003. 

(28] 	 M. Englehart. High quality automatic code generation for control applications. 

In Proceedings., IEEE/IFAC Joint Symposium on 7-9 March 1994, pages 363­

367, Tucson, AZ, USA, 1994. 

(29] 	 D. Feather, D. Harrell, R. Lieberman, and F. J. Doyle III. Hybrid approach to 

polymer grade transition control. AIChE Journal, 50(10):2502- 2513, 2004. 

(30] 	 W. F. Feehery and P. I. Barton. Dynamic optimization with state variable path 

constraints. Comput. Chem. Eng. (UK), 22(9):1241- 56, 1998. 

[31] 	 R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for mathe­

matical programming. Manage. Sci. (USA), 36(5):519- 54, 1990. 

(32] 	 B. Froisy, C. Hart, S. Lingard, and S. Papastratos. Industrial application of 

online first principle dynamic models using state estimation. In AIChE Annual 

Meeting, 1999. 

[33] 	 C. E. Garcia. Quadratic/dynamic matrix control of nonlinear processes - an 

application to a batch reaction process. AIChE 91st National Meeting, San 

Francisco, CA, 1984. 



118 Zhiwen Chong, M.A.Sc. Thesis {Chemical Engineering) 

[34] 	 C. E. Garcia and A. M. Morshedi. Quadratic programming solution of dy­

namic matrix control (QDMC). Chemical Engineering Communications, 46:73­

87, 1986. 

[35] 	 R. Gebart, L. Westerlund, and I. Landalv. Black liquor gasification-the fast lane 

to the biorefinery. In Energy Conference (Ris¢ National Laboratory), 2005. 

[36] 	 N. I. M. Gould and Ph. L. Toint. How mature is nonlinear optimization? (ftp: I I 
ftp. numerical. rl. ac. uklpublreportslgtFUNDP0304. pdf). Technical report, 

Rutherford Appleton Laboratory and University of Namur, 2004. 

[37] 	 T. M. Grace, B. Leopold, and E. W. Malcolm. Pulp and paper manufacture­

alkaline pulping. vol 5. In The Joint Textbook Committee of the Paper Industry, 

Montreal, QC, Canada, 1989. 

[38] 	 I. E. Grossmann and M. Morari. Operability, resiliency and flexibility - process 

design objectives for a changing world. In Proceedings of the 2nd International 

Conference on Foundations of Computer-Aided Process Design, 1984. 

[39] 	 M. Hillestad and K. S. Andersen. Model predictive control for grade transitions 

of a polypropylene reactor. Fourth European Symposium on Computer Aided 

Process Engineering. ESCAPE 4, page 41.6, 1994. 

[40] 	 J. E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, 

Languages, and Computation (2nd Edition). Addison Wesley, 2000. 

[41] 	 Y. J. Huang, G. V. Reklaitis, and V. Venkatasubramanian. Dynamic opti­

mization based fault accommodation. Computers and Chemical Engineering, 

24(2):439- 444, 2000. 

[42] 	 Y. J. Huang, V. Venkatasubramanian, and G. V. Reklaitis. A model-based 

fault accommodation system. Industrial and Engineering Chemistry Research, 

41(16):3806- 3821, 2002. 

[43] 	 Y. J. Huang, V. Venkatasubramanian, and G. V. Reklaitis. Model decomposition 

based method for solving general dynamic optimization problems. Computers 

and Chemical Engineering, 26(6):863- 873, 2002. 

[44] 	 A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 

New York, 1970. 



Zhiwen Chong, M.A.Sc. Thesis (Chemical Engineering) 119 

(45] 	 J. V. Kadam, M. Schlegel, W. Marquardt, R. L. Toussain, D. H. van Hessem, 

J. van den Berg, and 0. H. Bosgra. A two-level strategy of integrated dynamic 

optimization and control of industrial processes- a case study. Technical report, 

Lehrstuhl fiir Prozesstechnik, RWTH Aachen, 1999. 

(46] R. E. Kalman. A new approach to linear filtering and prediction problems. 

Transactions of the ASME Journal of Basic Engineering, pages 33-45, 1960. 

(47] 	 F. Kayihan. Process systems management in the pulp and paper industries: an 

optimization approach. Pulp and Paper Canada, 98(8):37-40, 1997. 

[48] 	 M.J. Kempe. Dynamic modelling of a vacuum drum washing system. Master's 

thesis, McMaster University, 1995. 

[49] 	 M. Krothapally and S. Palanki. On-line optimization of batch polymerization 

processes. Proceedings of the American Control Conference, 2:1187- 1190, 1997. 

[50] 	 E. S. Lee and G. V. Reklaitis. Intermediate storage and operation of batch 

processes under batch failure. Computers and Chemical Engineering, 13(4-5):491 

-498, 1989. 

[51] 	 E. S. Lee and G. V. Reklaitis. Intermediate storage and the operation of periodic 

processes under equipment failure. Comput. Chem. Eng. (UK), 13(11-12):1235 

- 43, 1989. 

[52] 	 J. F. MacGregor, D. J. Kozub, A. Penlidis, and A. E. Hamielec. State estimation 

for polymerization reactors. Dynamics and Control of Chemical Reactors and 

Distillation Columns. Selected Papers from the IFAC Symposium, pages 147 ­

52, 1988. 

(53] 	 R. D. M. MacRosty. Modeling, Optimization and Control of an Electric Arc 

Furnace. PhD thesis, McMaster University, 2005. 

[54] 	 B. A. McCarl. GAMS user guide http: I /www. gam.s. com/dd/docs/bigdocs/ 

gam.s2002/mccarlgam.suserguide. pdf. Technical report, Texas A and M Uni­

versity, 2002. 

[55] 	 A. Mione. A look at Python. Digit. Syst. Rep. (USA), 20(2):1 -7, Summer 1998. 

[56] 	 Z. K. Nagy and R. D. Braatz. Robust nonlinear model predictive control of batch 

processes. AIChE Journal, 49(7):1776- 1786, 2003. 



120 Zhiwen Chong, M.A.Sc. Thesis {Chemical Engineering) 

[57] 	 A. Noel, M. Savoie, H. Budman, and L. Lafontaine. Advanced brownstock washer 

control: Successful industrial implementation at James McLaren. In 2nd IEEE 

Conference on Control Applications, Vancouver B. C., Sep. 13-16, 1993. 

(58] 	 H. V. Norden and M. Jarvekainen. Analysis of a pulp washing system consisting 

of unequal stages in series. Kemian Toellisuus, 23(4):344-351, 1966. 

(59] 	 C. C. Pantelides. SpeedUp -recent advances in process simulation. Comput. 

Chem. Eng. (UK), 12(7):745- 55, 1988. 

(60] 	 A. A. Patwardhan, J. Rawlings, and T. Edgar. Nonlinear model predictive con­

trol. Chemical Engineering Communications, 87:123-141, 1990. 

[61] 	 B. Pettersson. Production control of a complex integrated pulp and paper mill. 

TAPPI Journal, 52(11):2155-2159, 1969. 

[62] 	 B. Pettersson. Optimal production schemes coordinating subprocesses in a com­

plex integrated pulp and paper mill. Pulp and Paper Canada, 71(5):59-63, 1970. 

[63] 	 L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidge, and E. Mishchenko. The 

mathematical theory of optimal processes. Interscience, NY, 1962. 

[64] 	 S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control 

technology. Control Engineering Practice, 11(7):733- 764, 2003. 

[65] 	 W. F. Ramirez. Process Control and Identification. Academic Press, 1993. 

[66] 	 W. H. Ray. Advanced Process Control. McGraw-Hill, New York, 1981. 

[67] 	 D. Ruppen, C. Benthack, and D. Bonvin. Optimization of batch reactor opera­

tion under parametric uncertainty- computational aspects. Journal of Process 

Control, 5(4):235- 240, 1995. 

[68] 	 N. V. Sahinidis. BARON: A general purpose global optimization software pack­

age. Journal of Global Optimization, 8(2):201 - 205, 1996. 

(69] 	 G. Schopfer, A. Yang, L. von Wedel, and W. Marquardt. Cheops: a tool­

integration platform for chemical process modelling and simulation. Int. J. Softw. 

Tools Technol. Transf. (Germany), 6(3):186- 202, 2004. 

[70] 	 G. A. Smook. Handbook for Pulp and Paper Technologists. Angus Wilde Publi­

cations, 2nd edition, 1999. 



Zhiwen Chong, M.A.Sc. Thesis (Chemical Engineering) 121 

[71] 	 B. Srinivasan, E. Visser, and D. Bonvin. Optimization-based control with im­

posed feedback structures. In ADCHEM Proceedings, 1997. 

[72] 	 C. Sun and J. Hahn. Reduction of stable differential-algebraic equation systems 

via projections and system identification. Journal of Process Control, 15(6):639 

- 650, 2005. 

[73] 	 I. B. Tjoa and L. T. Biegler. Simultaneous solution and optimization strategies 

for parameter estimation of differential-algebraic equation systems. Industrial 

and Engineering Chemistry Research, 30(2):376- 385, 1991. 

[74] 	 T. Tosukhowong, J. M. Lee, J. H. Lee, and J. Lu. An introduction to a dy­

namic plant-wide optimization strategy for an integrated plant. Computers and 

Chemical Engineering, 29(1):199- 208, 2004. 

[75] 	 E. Tufte. Sparklines: theory and practice (http: I /www. edwardtufte. com/ 

bboard/q-and-a-fetch-msg?msg_id=00010R&topic_id=1). Technical report, 

2006. 

[76] 	 P. A. Turner, A. A. Roche, J.D. McDonald, and A. R. P. van Heiningen. Dynamic 

behavior of a brown stock washing plant. Pulp and Paper Canada, 94(9):37-42, 

1993. 

[77] 	 S. Vasantharajan and L. T. Biegler. Simultaneous strategies for optimization of 

differential-algebraic systems with enforcement of error criteria. Computers and 

Chemical Engineering, 14(10):1083- 1100, 1990. 

[78] 	 V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. Solution of a class of 

multistage dynamic optimization problems. 2. problems with path constraints. 

Industrial and Engineering Chemistry Research, 33(9):2123- 2133, 1994. 

[79] 	 J. Villadsen and M. Michelsen. Solution of differential equation models by poly­

nomial approximation. Prentice-Hall, 1978. 

[80] 	 A. Wachter and L. T. Biegler. Line search filter methods for nonlinear pro­

gramming: Local convergence. SIAM Journal on Optimization, 16(1):32 - 48, 

2006. 

[81] 	 A. Wachter and L. T. Biegler. On the implementation of an interior-point fil­

ter line-search algorithm for large-scale nonlinear programming. Mathematical 

Programming, 106(1):25- 57, 2006. 



122 Zhiwen Chong, M.A .Sc. Thesis (Chemical Engineering) 

[82] 	 Y . Wang, H. Seki, S. Ooyama, K. Akamatsu, M. Ogawa, and M. Ohshima. Non­

linear predictive control for optimal grade transition of polymerization reactors. 

Advanced Control of Chemical Processes 2000 (ADCHEM 2000}. Proceedings 

volume from the !FAG Symposium, vol.3:701- 6, 2001. 

[83] 	 N. Wirth. What can we do about the unnecessary diversity of notation for 

syntactic definitions? Technical report, Communications of the ACM, 1977. 

[84] 	 P. A. Wisnewski, F. J. Doyle III, and F. Kayihan. Fundamental continuous-pulp­

digester model for simulation and control. AIChE Journal, 43(12):3175 - 3192, 

1997. 

[85] 	 L. T. Biegler Y. D. Lang, A. Cervantes. DynoPC: A dynamic optimization tool 

fqr process engineering. In INFORMS National Meeting, Seattle, WA, October, 

1998. 

[86] 	 A. C. Zanin, M. T. de Gouvea, and D. Odloak. Integrating real-time optimization 

into the model predictive controller of the FCC system. Control Engineering 

Practice, 10:819-831, 2002. 



Appendix A 

Model of Kraft Paper Mill 
Fiber Line 

in2 

out3 

To-· 
Figure A.l: Digester Model 

Description: Digester Model, Digestion Department 

A.l Model - digester 

Differential Variables 

pulpout, chipusage, blackliquorproduction 

123 

'-----exit 
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Control Input Variables 

Algebraic Variables 

ashrinkb ashrink2, zeta, Fin2, Fin2, Fin2, Foutl, Fs1, Fsb Fs1, Fout2, Fout2, 
Fout3 1 Fout3, Fout3, Fout3, Fexit, F!xit' F~it' FI/x:ft 

Parameters 

a0 =14.2390, asr=0.04, maximumproduction=80, liquorwoodratio=3.6, 

a1 =-3.9384, 

blowlinewaterfraction=0.62, a3=0, a2=0.3512, bo=12.444, b1 =-5.2384, 

b2=2.5357, b3=-0.5588, xf=0.43, xf8 =0.04, xr'=0.53 


Differential and Algebraic Equation System 

pP pW pDSFexit = exit + exit + exit (A.1) 

F!xit Fout3 (A.2) 

F~t Fout3 (A.3) 
pDS

exit = Fout3 (A.4) 

zeta = Finl / maximumproduction (A.5) 
3

a shrink! = ao + a1 · zeta+ a2 · zeta2 + a3 · zeta (A.6) 
3

ashrink2 bo + b1 · zeta+ b2 · zeta2 + b3 · zeta (A.7) 


Fin2 = liquorwoodratio · Finl · xf (A.8) 


Fs1 = (1 - ashrinki/100) · Finl · xf (A.9) 


Fs1 Finl · xf8 + Fin2 + ( ashrinki/100) · Finl · xf (A.10) 


Fs1 Finl · xf + Fin2- Foutl (A.ll) 


Foutl asr · (Finl · xf + Fin2) (A.12) 


Fin2 = 0.788 · (Fin2 + Fin2) (A.13) 


Fin2 Fin2 + Fin2 (A.14) 


Fout3 - (1 - ashrink2/100) · Fs1 (A.15) 


Fout3 Fs1 + (ashrink2/100) · Fs1 - Fout2 (A.16) 


Fout3 = Fs1- Fout2 (A.17) 


Fout3 = blowlinewater fraction· Fs1 (A.18) 


Fout2 · Fout3 = Fout2 · Fout3 (A.19) 


Fout3 Fout3 + Fout3 + Fout3 (A.20) 


http:fraction=0.62
http:asr=0.04


Initial values 

Constraints 

Zhiwen Chong, M.A.Sc. 

d 
dtpulpout 

ddtch"zpusage 

! blackliquorproduction = 

pulpout(O) 


chipusage(O) 


blackliquorproduction(O) 


F!xit 

Fe~t ~ 0 
Ffxft ~ 0 

0 S zeta S 1 

0 S Finl S maximumproduction 

Fin2 ~ 0 

Fin2 ~ 0 

Fin2 ~ 0 

Faun~ 0 

Fs1 ~ 0 

Fs1 ~ 0 

Fs1 ~ 0 

Fout2 ~ 0 

Fout2 ~ 0 

Fout3 ~ 0 

Fout3 ~ 0 

Fout3 ~ 0 
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Fout2 

= 0 

- 0 

0 

~ 0 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

(A.43) 



126 Zhiwen Chong, M.A.Sc. Thesis (Chemical Engineering) 

in1 
From 
digester 

S1 

"___,,-----------4 

V,M 

h 

x2P, x2W, x2DS 

L.----• S2 

~....--_____,. out2 

To 
knollers 

(a) (b) 

Figure A.2: (a) Schematic of integrated blowtank system; (b) Expanded diagram of 
the dynamic section of the blowtank. 

Description: Tank Model (Blowtank and Tank) 

A.2 Model- blowtank 

Differential Variables 

out1 
Steam 

in2 
recycle 

Dynamic 

Control Input Variables 

Algebraic Variables 
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Parameters 

A=100, rhoP=0.600, rhoDS=l.100, steamfraction=0.02, rhoW=0.998, 
V0=0.3*2050, blowtankvol=2050, rhoAverage=0.900 

Differential and Algebraic Equation System 

Fin2 

100 · xf + 100 · xf + 100 · xf8 

F%1 
pDS

Sl 

F~ 
Finl 

Fi~l 
Fi~ +Fi~ 

pDS pDS
inl + in2 

F!n 

V · rhoAverage 

v 
!!_M 
dt 
d p

M·-X2
dt 

d DSM·-x2dt 
100 · xf + 100 · xf + 100 · xf8 

F~ 
pDS

S2 

F~ 
Fout2 

F[ut2 

F!t2 
pDS

out2 

Initial values 

V(O) ­

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

-

vo 


pW pDS
in2 + in2 (A.44) 

100 (A.45) 

xf · Fs1 (A.46) 
DS FX1 · Sl (A.47) 

xf ·Fs1 (A.48) 
pP pW pDS

inl + inl + inl (A.49) 

F%1 (A. 50) 

F!n +F~ (A.51) 
pDS (A.52)Sl 

steamfraction · Fi~l (A.53) 

M (A. 54) 

A·h (A.55) 

Fs1- Fs2 (A. 56) 

Fs1 · (xf- xf) (A. 57) 

F ( DS DS)Sl. xi - x2 (A. 58) 

100 (A.59) 

xf · Fs2 (A.60) 
DS FX2 · S2 (A.61) 

xf ·Fs2 (A.62) 
pP pDS pW

out2 + out2 + out2 (A.63) 

F~ (A.64) 

F~ (A.65) 
pDS

S2 (A.66) 

(A.67) 

xf(O) = xf(o) (A.68) 

xf8 (0) xfs(O) (A.69) 

http:steamfraction=0.02
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Constraints 

Fs2:::; 456 

0.1 · blowtankvol :::; V :::; 0.9 · blowtankvol 

M 2:: 0 
h2::0 

0 :::; xf :::; 1 

0 < XDS < 1 - 2 ­

0:::; xr :::; 1 

F!n 2:: 0 
Fout2 2:: 0 

F::Ut2 2:: 0 
F!t2 2:: 0 
F~~ 2:: 0 

Fs1 2:: 0 

Ffl 2:: 0 
F~ 2::0 

FDS > 0Sl ­

0 :::; xf :::; 1 

0 < XDS < 1 - 1 ­

0:::; xr' :::; 1 

Fs2 2:: 1 x w-s 
F~ 2:: 0 

F~ 2:: 0 


FDS >0

82 ­

(A.70) 

(A.71) 

(A.72) 

(A.73) 

(A.74) 

(A.75) 

(A.76) 

(A.77) 

(A.78) 

(A.79) 

(A.80) 

(A.81) 

(A.82) 

(A.83) 

(A.84) 

(A.85) 

(A.86) 

(A.87) 

(A.88) 

(A.89) 

(A.90) 

(A.91) 

(A.92) 
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From 
bleach 
plant 

in2 

Hi-Q 
in1 

Knotter
From out2 
blowtank Rejects 

Accepts 

out1 
To 
washers 

Figure A.3: Hi-Q knotter 

Description: Hi-Q Knotter Model, Knotting Department 

A.3 Model- hiq 

Algebraic Variables 

Parameters 

amoist=0.101, aknotrej1=0.668, adil1=0.05, waterfraction=0.95, adil2=0.10 

http:adil2=0.10
http:waterfraction=0.95
http:adil1=0.05
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Differential and Algebraic Equation System 

pP pW pDSFinl = inl + inl + inl (A.93) 
pW pDSFin2 in2 + in2 (A.94) 
pP pW pDSFout2 - out2 + out2 + out2 (A.95) 
pP pW pDSFoutl outl + outl + outl (A.96) 


Fin2 - adill · Finl (A.97) 


F/:ut2 aknotrej1 · Fi~l (A.98) 


Fi~l F/:ut1 + Ftu_t2 (A.99) 

Fi~l +Fi~ F!n +F!t2 (A.100) 
pDS pDS pDS pDSinl + in2 outl + out2 (A.101) 

100 · Fo~l · F/:ut2 - 100 · F/:utl · F!t2 (A.102) 

100 · F!t2 · F!;J1 = 100 · F!;J2 · F!n (A.103) 

Fi~ water fraction· Fin2 (A.104) 

Constraints 

Finl 2 0 (A.105) 

Fi~l 2 0 (A.106) 

Fi~ 20 (A.107) 

F[/J 2 0 (A.108) 

Fin2 2 0 (A.109) 

Fi~ 20 (A.llO) 

F[(tf 2 0 (A.111) 

Fout2 2 0 (A.112) 

F/:ut2 2 0 (A.113) 

F!t2 2 0 (A.114) 

F~f2 2 0 (A.115) 

F/:un 2 0 (A.116) 

F!n 2 0 (A.117) 

F~f1 2 0 (A.118) 
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Wash 
liquor 

in2 

Jonsson 

in1 Knotter 
out1 

Rejects 

out2 
Wood 
stream 

Figure A.4: Jonsson knotter 

Description: Jonsson Knotter Model, Knotting Department 

A.4 Model - jonsson 

Algebraic Variables 

Parameters 

aknotrej2=0.05, amoist=O.lOl, water fraetion=0.95, adil2=0.10 

http:adil2=0.10
http:fraetion=0.95
http:aknotrej2=0.05
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Differential and Algebraic Equation System 

pP pW pDSFinl inl + inl + inl (A.119) 
pW pDSFin2 = in2 + in2 (A.120) 
pP pW pDSFoutl = outl + outl + outl (A.121) 
pP pW pDSFout2 = out2 + out2 + out2 (A.122) 


Fin2 adil2 · Finl (A.123) 


F:Un = aknotrej2 · Fi~l (A.124) 


Fi~l F:Un + F%ut2 (A.125) 


Fi~ +Fi~ = F!n +F!t2 (A.126) 

pDS pDS pDS pDSinl + in2 = outl + out2 (A.127) 

pW pDSoutl + outl = amoist · (F:Un + F~~ + Fo~l) (A.128) 

100 · F!n · F£~ 100 · F£f1 · F!t2 (A.129) 

Fi~ water fraction · Fin2 (A.130) 

Constraints 

Fout2 ?: 0 (A.131) 

F:Ut2?: 0 (A.132) 

F!t2?: 0 (A.133) 

F£f2?: 0 (A.134) 

Finl ?: 0 (A.135) 

Fi~l ?: 0 (A.136) 

Fi~?: 0 (A.137) 

F/!J?: 0 (A.138) 

Foutl ?: 0 (A.139) 

F:Un ?: 0 (A.140) 

F!n?: 0 (A.141) 

F~~?: 0 (A.142) 

Fin2 ?: 0 (A.143) 

Fi~?: 0 (A.144) 

F/!J?: 0 (A.145) 
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in1 
From 
Hi-Q 
knotter 

... Header 1----1:::• out1 

in2 

Figure A.5: Header box 

Description: Header Box Model, Washing department 

A.5 Model- header 

Algebraic Variables 

Differential and Algebraic Equation System 

F p pW pDS
inl + inl + inl (A.146) 

= F[utl (A.l47) 

= F!tl (A.l48) 
F DS 

outl (A.149) 

= outletconsistency · (F[utl + F!n + F/;J1) (A.150) 
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Constraints 

Fi~l ~ 0 


Fi~l ~ 0 


Fi~ ~0 


F/!J ~ 0 

F:Ut1 ~ 0 


F/;//1 ~ 0 

F!t1 ~ 0 


Fi~ ~0 


Fi~~ ~ 0 


(A.151) 

(A.l52) 

(A.153) 

(A.154) 

(A.155) 

(A.156) 

(A.157) 

(A.158) 

(A.159) 
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in1 
From 
header 

~ 
Washer 

t 
~ out1 

in2 
out2 

wash liquor 
To seal 
tank 

Figure A.6: Vacuum Drum Unit washer 

Description: Vacuum Drum Washer Model, Washing Department 

A.6 Model- drumwasher 

Algebraic Variables 

Finb Fi~1 , Fi~' F/?J, Fi~' Fi~~' F!uw F!tu F{l//1 , F!t2, F[lJ2, outletconsistency, 
shower fraction, DR, R, W, xb, Xd, Yc 

Parameters 

nominalconsistency=0.12, N ef f=3 

Differential and Algebraic Equation System 

= pP +FW +FDS (A.160)inl inl inl 
= F~tl (A.l61) 

= F!tl +F!t2 (A.162) 

F DS pDS
outl + out2 (A.163) 

= F~tl / outletconsistency (A.164) 

shower fraction· (Fi~ + Fi~~) (A.l65) 

F!t2 · (F!n + F{l_Jl) (A.166) 

http:nominalconsistency=0.12
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F W pDSR · (F!n + F£f1) in2 + in2 (A.167) 
+FDSW · (Fi~ + F//J) = pW 

out2 (A.168)out2 

100 ·DR· (W. RNeff- 1) = 100 · (W · RNef f - R) (A.169) 

100 ·DR· (xb - Yc) - 100 · (xb- xd) (A.170) 

xd · (F£f1 + F!n) F£~ (A.171) 

F DS
Xb • (Fi~f + Fi~) - inl (A.172) 

Yc - shower fraction (A.173) 

Constraints 

Fi~l ~ 0 (A.174) 

Fi~f ~ 0 (A.175) 

Fi~ ~0 (A.176) 

F!un ~ 0 (A.177) 

F!n ~ 0 (A.178) 

F£f1 2:: 0 (A.179) 

F!;'t2 ~ 0 (A.180) 

F/1J2 ~ 0 (A.181) 

Fi~~o (A.182) 

Fi~f ~ 0 (A.183) 

Fi~ ~ 6000 (A.184) 

DR~O (A.185) 

0 ~ R::; 40 (A.186) 

0 ~ w::; 40 (A.187) 

0 ~ Xb ~ 1 (A.188) 

0 ~ Xd ~ 1 (A.189) 

0::; Yc ~ 1 (A.190) 
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out2 in1 
A~ 

.... Seal Tank out1 <~~~~1-----t 

outmix 

Figure A.7: Seal Tank 

Description: Seal Tank Model, Washing Department 

A.7 Model - sealtank 

Differential Variables 

M,xw 

Control Input Variables 

Foutmix 

Algebraic Variables 

. p. pW pDS pW pDS pW pDS pW pDSV 'Xmw, xvs, ml, inl' inl' outmix' outmix' outU outl' out2' out2 

Parameters 

M0=133, rho=l.049 
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Differential and Algebraic Equation System 

pW pDSFinl - inl + inl 
pW pDS

Foutmix - outmix + outmix 

XinW · Finl Fi';il 

F!tmix - XW · Foutmix 

v - rho·M 

.!!:_M Finl - F outmix dt 
d 

M·-xw - Finl · (XinW- XW)dt 
100 · (xw + XDs) - 100 

F!tmix F!n +F!t2 
pDS pDS pDS

outmix - outl + out2 
F!t2 · (F!n + F~fl) - F!n · (F!t2 + F~f2) 

Initial values 

M(O) - MO 

xw(O) = Xinw(O) 

Constraints 

20 :::; M :::; 266 

Foutmix :S 500 

F!tmix ~ 0 

F~fmix ~ 0 

XinW ~ 0 

XDS ~ 0 

Fi~ ~0 
Fi~r ~ o 
Fo~tl ~ 0 

F~f1 ~ 0 

F!t2 ~ 0 

F~f2 ~ 0 

(A.191) 

(A.192) 

(A.193) 

(A.194) 

(A.195) 

(A.196) 

(A.197) 

(A.198) 

(A.199) 

(A.200) 

(A.201) 

(A.202) 

(A.203) 

(A.204) 

(A.205) 

(A.206) 

(A.207) 

(A.208) 

(A.209) 

(A.210) 

(A.211) 

(A.212) 

(A.213) 

(A.214) 

(A.215) 
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in2 

r 

Screening 
in1 ... ...

Dept. out2From 
tank Rejects 

Accepts 

out1 
To 
Delignification 

Figure A.8: Screening Department 

Description: Screening Unit Model, Screening Department 

A.8 Model - fullscreen 

Algebraic Variables 

pP pW pDS pW pDS pP pW pDS pP pW pDS
inl' inl' inl ' in2' in2 ' outl' outl' outll out2' out2' out2 

Parameters 

outletconsistency=0.045, water fraction=0.8, pulplosscoeff=0.95 

http:pulplosscoeff=0.95
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Differential and Algebraic Equation System 

Fi~l = F:Un + F:Ut2 (A.216) 

Fi~ + Fi';!; = F!n +F!t2 (A.217) 

F DS+pDS = F DS pDS
inl in2 outl + out2 (A.218) 

F:Utl · F!t2 - F!tl · F:Ut2 = 0 (A.219) 

F p pDS pDS pP
outl · out2 - outl · out2 0 (A.220) 


F:Utl = pulplosscoeff · Fi~l (A.221) 


outletconsistency · (F:Un + F!n + F!;J1) = F:Un (A.222) 


water fradion · (Fi';!; + Fi~~) = Fi';!; (A.223) 


Constraints 

Fi~l 2: 0 (A.224) 


Fi~ 2: 0 (A.225) 


Fi~f 2: 0 (A.226) 


Fi~ 2:0 (A.227) 


Fi~~ 2:0 (A.228) 


F:Un 2: 0 (A.229) 


F~1 2:0 (A.230) 


F~fl 2:0 (A.231) 


F:Ut2 2: 0 (A.232) 


F~2 2:0 (A.233) 


F~f2 2:0 (A.234) 


outletconsistency ;:::: 0 (A.235) 
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in1 out1 

out2 

Figure A.9: 02 Feed Press 

Description: Oxygen Feedpress Model, Delignification Department 

A.9 Model - o2feedpress 

Algebraic Variables 

pP pW pDS pP pW pDS pW pDS
inl' inll inl' outll outl' outl' out2' out2 

Differential and Algebraic Equation System 

- Ff:utl (A.236) 

F!n +F!t2 (A.237) 
_ pDS +FDS 

outl out2 (A.238) 

= 0.3 · (F/:un + F!n + F~f1 ) (A.239) 

F W pDS
out2 · outl (A.240) 

Constraints 

Fi~l ~ 0 (A.241) 


Fi~ ~0 (A.242) 


F{!J. ~ 0 (A.243) 


F/:un ~ 0 (A.244) 


F!n ~ 0 (A.245) 


F~f1 ~ 0 (A.246) 


F!t2 ~ 0 (A.247)
.· 
F~~ ~0 (A.248) 
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in1 I 
Generic 

---t.-t~o~L--T-a_nk_ __.l---•_. out1 

Figure A.lO: Generic Tank 

Description: Generic Tank Model, Delignification Department 

A.lO Model- generictank 

Algebraic Variables 

pP pW pDS pP Fw pDS
inl' inl' inl ' outl' out!' outl 

Differential and Algebraic Equation System 

Fi~l 
Fi~ 
pDSinl 

-

-

F~n 
F!n 
pDS

outl 

(A.249) 

(A.250) 

(A.251) 

Constraints 

Fi~ 2:0 
Fi~f 2: 0 

F!n 2:0 
FJ;;fl 2: 0 

(A.252) 

(A.253) 

(A.254) 

(A.255) 
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in2 in3 

out1 

Figure A.ll: Delignification mixer 

Description: Mixer Model, Delignification Department 

A.ll Model - deligmixer 

Differential Variables 

chemicalusage, steamusage 

Algebraic Variables 

F pP pW pDS F pDS pW F pDS pW pST F. pP
ml, inl' inl' inl' m2, in2' in2' m3, in3' in3' in4' outl, outll 

F!'t1, F!}/fi, Fxo, cppulpO, Fx1, cppulpl, Ll, L2, L3, L4, Rl 

Parameters 

Tset=lOO, Na0Hdosage=0.02, Tinchem=25, MgS04dosage=0.002, Tref=25, 
Href=2547.3, H stm=3267.5, cpwater=4.18, cppaper=l.34, Tinpulp=25 

Differential and Algebraic Equation System 

pP pW pDSFinl inl + inl + inl (A.256) 
pW pDS

Fin2 - in2 + in2 (A.257) 
pW F.DSFin3 = in3 + in3 (A.258) 
pP pW pDS

Foutl out1 + outl + outl (A.259) 

Fi~l F~n (A.260) 
pDS pDS pDS pDS

inl + in2 + in3 outl (A.261) 
pW pW pW pST

inl + in2 + in3 + in4 = F!n (A.262) 

http:cppaper=l.34
http:cpwater=4.18
http:Na0Hdosage=0.02
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£1 = 

L2 

L3 

£4 

R1 = 

(£1 + L2 + L3 + £4). 1 x 10-4 

100 · Fi~f 
Fir.;;2 = 

100 · Fi~ff 
Fi% = 

Fxo · Finl 

Fx1 · Foutl = 
d .
-chemzcalusage = 
dt 

d 
dt steamusage 

Initial values 

Constraints 

chemicalusage(O) 0 

steamusage(O) 0 

Finl;::: 0 

Fi~l;::: 0 

Fi~;::: 0 

Fi~f;::: 0 

Fin2;::: 0 

Fi~f;::: 0 

Fi~;::: 0 

Fin3;::: 0 

Fi~ff;::: 0 


Fi%;::: 0 


Fi~I;::: 0 


Foutl;::: 0 


F:Un ;::: 0 


F!n;::: 0 

F/]/{1 ;::: 0 


0 (A.263) 

0 (A.264) 

0 (A.265) 

Fi~I · (Hstm- Href) (A.266) 

Foutl · cppulp1 · (Tset- Tref) (A.267) 

R1. 1 x 10-4 

100 · NaOHdosage · Fi~l 

11.5 · Fi~f 
100 · M gS04dosage · Fi~l 
21.222 · Fi~f 

100 · Fi~l 
100 · F:Un 

Fin2 

pST
in4 

(A.268) 

(A.269) 

(A.270) 

(A.271) 

(A.272) 

(A.273) 

(A.274) 

(A.275) 

(A.276) 

(A.277) 

(A.278) 

(A.279) 

(A.280) 

(A.281) 

(A.282) 

(A.283) 

(A.284) 

(A.285) 

(A.286) 

(A.287) 

(A.288) 

(A.289) 

(A.290) 

(A.291) 

(A.292) 

(A.293) 
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Fxo 2: 0 (A.294) 

cppulpO 2: 0 (A.295) 

Fx1 2: 0 (A.296) 

cppulpl 2: 0 (A.297) 

Tset 2: 0 (A.298) 

Tinchem 2: 0 (A.299) 

Tinpulp 2: 0 (A.300) 
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in1 

02 

delignification 

reactor 

Figure A.12: Delignification Reactor 

Description: Oxygen Delignification Reactor Model, Delignification Department 

A.12 Model - reactor 

Algebraic Variables 

Parameters 

a1=-0.0022, a0=2.301, a3=-0.0113, a2=0.0116 

Differential and Algebraic Equation System 

pP pW pDSFinl = inl + inl + inl (A.301) 

F:Ut1 = (1 - 1 X 10-2 . a02) . Fi~l (A.302) 
pDS w- 2

outl Fi~f + 1 X . a02 . Fi~l (A.303) 

F!t1 Fi~ (A.304) 
3a02 = aO + a1 · zeta + a2 · zeta2 + a3 · zeta (A.305) 



Constraints 

Zhiwen Chong, M.A.Sc. 

zeta ;::: 0 

a02;::: 0 

Fi~l 2: 0 
Fi~f 2: 0 

Fi';!'l 2: 0 

F~n 2:0 
F;?J1 2: 0 
F!n;::: 0 

Thesis (Chemical Engineering) 147 

(A.306) 

(A.307) 

(A.308) 

(A.309) 

(A.310) 

(A.311) 

.(A.312) 

(A.313) 
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in2 

Post 0 2 t---.,.out2in1 washer 

out1 

Figure A.l3: Post 02 Washer 

Description: Post Oxygen Washer Model, Delignification Department 

A.13 Model - posto2washer 

Differential Variables 

totalpulpout 

Algebraic Variables 

pP pW pDS pW pDS pW pDS pP pW
inl• inl• inl' in2• in2' outl• outl• out2• out2 

Parameters 

outletconsistency=O.lO, adil=0.05, water fraction=0.98 

Differential and Algebraic Equation System 

Fi~l = F!ut2 (A.314) 

Fi~ +Fi~ F!'n + Fo~t2 (A.315) 

F DS pDS pDS
inl + in2 outl (A.316) 

F!ut2 = outletconsistency · (F!ut2 + F!'t2) (A.317) 

F W pDS
in2 + in2 adil · (Fi~l + Fi~l + F//J) (A.318) 

Fi~ water fraction· (Fi~ + F//J) (A.319) 
d 
dt totalpulpout F!ut2 (A.320) 

http:fraction=0.98
http:adil=0.05
http:outletconsistency=O.lO
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Initial values 

totalpulpout(O) 0 (A.321) 

Constraints 

Fi~l ~ 0 (A.322) 

Fi~ ~ 0 (A.323) 

Fi~f ~ 0 (A.324) 

Fi~ ~0 (A.325) 

Fi~f ~ 0 (A.326) 

Fo~tl ~ 0 (A.327) 

F~fl ~ 0 (A.328) 

F::Ut2 ~ 0 (A.329) 

Fo~t2 ~ 0 (A.330) 
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Connections 

Description: Material stream connections 

digester(!) .F:'xit 

digester(!) .Fe~ft = 

digester(l).Fe~t 
blowtank(l).F:Ut2 

blowtank(l).F!t2 

blowtank(l).F~f2 
hiq(l).F:Ut2 

hiq(l).F!t2 ­

hiq(l).F~f{2 = 

hiq(l) .F:Un = 

hiq(l).F!n 
hiq(l).F~f{1 

header(!) .outletconsistency ­

sealtank(l).F!t2 

sealtank(l).F~f2 

sealtank(l).F!n = 

sealtank(l) .F~f1 = 

header(!) .F:Un 

header(l).F!n = 

header(l).F~f{1 
drumwasher(1) .outletconsistency 

drumwasher(l) .showerfraction = 

drumwasher(l) .F!t2 

drumwasher(l) .F~~ = 

drumwasher(l) .F:Un 

drumwasher(l).F~f{1 
drumwasher(l).Fo~tl 

blowtank(2) .Fi% 

blowtank(2) .Fi~f ­

blowtank(2) .Fi~3 = 

blowtank(2) .Fi~ 
blowtank(2) .Fi~f 

blowtank(l).Fi~l (A.331) 

blowtank(l) .Fi~f (A.332) 

blowtank(l) .Fi~l (A.333) 

hiq(1) . Fi~l (A.334) 

hiq(l).Fi~ (A.335) 

hiq(1) .Fi~f (A.336) 

jonsson(l) .Fi~l (A.337) 

jonsson(l) .Fi~l (A.338) 

jonsson(l) .Fi~f (A.339) 

header(!) .Ffn1 (A.340) 

header (1) .Fi~l (A.341) 

header(!) .Fi~f (A.342) 

0.02 (A.343) 

header( l).Fi% (A.344) 

header (1) .Fi~f (A.345) 

blowtank(l).Fi% (A.346) 

blowtank(l).Fi~f (A.347) 

drumwasher(l).Fi~l (A.348) 

drumwasher(l).Fi~l (A.349) 

drumwasher(l).Fi~f (A.350) 

drumwasher(l).nominalconsistency (A.351) 

0.02 (A.352) 

sealtank( l).Fi~ (A.353) 

sealtank(l).Fi~f (A.354) 

blowtank(2) .Fi~l (A.355) 

blowtank(2) .Fi~f (A.356) 

blowtank(2) .Fi~l (A.357) 

0 (A.358) 

0 (A.359) 

0 (A.360) 

0 (A.361) 

0 (A.362) 
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blowtank(2) .F:Ut2 fullscreen(l) .Fi~l (A.363) 

blowtank(2) .F0~t2 fullscreen(1) .Fi~l (A.364) 

blowtank(2) .Ffuf2 = fullscreen(1) .F/!J (A.365) 

fullscreen(1) .F:Utl o2feedpress(1) .Fi~l (A.366) 

fullscreen(1 ):F!tl o2feedpress(1) .Fi~ (A.367) 

f ullscreen(1) ._Ffufl o2feedpress(1).F/!J (A.368) 

generictank(1) .Fi~l 0 (A.369) 

o2feedpress(1) .F!t2 generictank(1) .Fi~ (A.370) 

o2feedpress(1 ).Ffuf2 generictank(l) .F/!J (A.371) 

o2feedpress(1).F:Utl deligmixer(1).Ffn1 (A.372) 

o2feedpress(1) .Fo~tl = deligmixer(1) .Fi~ (A.373) 

o2feedpress(1 ).Ffuf deligmixer(1).F/!J (A.374)1 = 
reactor(! ).zeta = digester(1).zeta (A.375) 

deligmixer(1) .F:Utl = reactor(1).Fi~l (A.376) 

deligmixer(1 ).F!tl reactor(1).Fi~ (A.377) 

deligmixer(1) .Ffufl reactor(1).Fi~f (A.378) 

reactor(1).F:Utl = generictank(2) .Fi~l (A.379) 

reactor(1).Fo~tl generictank(2) .Fi~ (A.380) 

reactor(1).Ffuf1 generictank(2) .Fi~f (A.381) 

generictank(2) .F:Utl posto2washer{1) .Fi~l (A.382) 

generictank(2) .F!tl posto2washer (1) . Fi~l (A.383) 

generictank(2) .Ffufl posto2washer (1) .Fi~f (A.384) 

generictank(3) .Fi~l 0 (A.385) 

posto2washer(1).Fo~tl generictank(3) .Fi~ (A.386) 

posto2washer (1) .Ffuf1 generictank(3) .Fi~f (A.387) 

http:reactor(1).Fi


•• 
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Figure A.l4: Overall system up to washers 
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Appendix B 

Characterizing the fixed cost of 

shutdowns in an NLP 

B.l Counting the number of shutdowns 

A shutdown is characterized by the flows to a unit going below the minimum pro­

duction flow, i.e. F::; Fshut· Apart from a time-dependent variable cost (a quantity 

which is usually implicitly captured in the problem as lost production), every shut­

down has an associated fixed cost that is independent of the duration of the shutdown. 

Each fixed cost is directly related to the exact number of shutdown instances. For 

instance, for every shutdown that occurs, there is a manpower/resource cost of start ­

ing the system up again, which is a fixed cost that is independent of the shutdown 

period. 

In order to accurately represent these fixed costs in the optimization problem, it is 

necessary to come up with a way to count the number of shutdowns that occur. We · 

propose the following method for counting the number of shutdowns that are actually 

occurring or are induced, and penalizing them appropriately. Note: this method only 

works in discrete time. 

Nv.ni t s l 
max <Peconomics - L Ni ,shutdown. Ci ,shutdown
F(k) [ . 

t 

155 
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s.t. 

1, for 0 ::; Fi (k) < Fi,shut (B.1) 
Wi(k) = { 0, for Fi (k) 2: Fi,shut (B.2) 

Wi(k + 1)- Wi(k) Vk E {0 .. nsamples- 1} (B.3) 

~ [w;(O) + n,.%,-l [Llw;(k)]']Ni,shutdown (B.4) 

for i = 1. .Nunits 

where 

k = discrete time index, where t = ki:::J.t 

F (k) = fiowrate variable vector 

<I>economic = economics-based objective function 

Nshutdown = number of shutdowns in unit i 

Cshutdown = cost ($) per shutdown in unit i 

nsamples = number of samples 

Nunits = number of process units 

The advantage of this method is that it avoids the arbitrariness of assigning numerical 

weights, because the penalty term is a purely economic term. 

In this work, we propose using the modified hyperbolic equations (B.7, B.8) below as 

a continuous approximation for Wi. 

A Modified Hyperbolic Tangent Switching Function 

We investigated the use of a variant of the widely-known hyperbolic tangent switch­

ing function (also known as a parameterized logistic function), commonly used as a 

continuous approximation for a step function. This function behaves as follows: if 

a certain fiowrate is at or below a value Fshut, the function activates and returns a 

value of 1, otherwise it returns a value of 0. 

Wi = [-~tanh ['Y(Fi(k)- Fi,shut)] + ~] Vi E {l..Nunits} (B.5) 

where 

'Y =tuning parameter, correlates with the sharpness of the switching interval (positive 

number) 
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The advantages of this type of function are: 

1. Continuous, differentiable everywhere 

2. Provides good approximation of switching. 

Unfortunately, this function (and its gradient) is likely to cause numerical overflows 

in the optimizer. To show this, we rewrite equation function (B.5) as follows: 

Vi E {l..Nunits} (B.6) 

In order to obtain a good approximation, it is necessary to choose a value of 1 that 

is sufficiently high. A value of r = 30 was found to be adequate for inducing a sharp 

switch. With nominal values for the expression (Fi(k)- Fi,shut) being in the range of 

400 during steady-state, the exponential function value becomes exp(2·30·400), which 

is a number that is sufficiently big to cause a numerical overflow in most optimizers1 . 

We note that the type of hyperbolic switching functions that are reported in literature 

as having been successfully applied are those of the positive variant (i.e. having a 

positive sign associated with the first ~ in equation B.5). The positive sign leads 

to bounded exponential terms by virtue of the fact that the a negative number is 

exponentiated. In the above case however (equation B.6), the exponential term tends 

to infinity which leads to a numerical overflow when evaluated. 

Therefore, in order to condition the function, we propose modifying the above switch­

ing function by replacing the expression (Fi(k) - Fi,shut) with another function, Ti 

whose range is a moderate (-7r/2,7r/2) and intercepts the x-axis at Fi(t) = Fi ,shut: 

Wi = [-~tanh (r · ri) + ~] Vi E {l..Nunits} (B.7) 

'ri = tan- 1 (Fi(k)- Fi ,shut) (B.8) 

This new function has virtually the same behavior as the previous except that the 

evaluation of large exponential terms is bypassed in this case. It has to be noted that 

1The problem stems from the fact that numerical software are forced to adhere to the PEM­

DAS (Parentheses Exponents Multiplication Division Addition Substraction) rule when evaluating 

expressions, thus the expression within the exp term is invariably evaluated first. 
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Figure B.1: Modified Hyperbolic Switching Function with arctangent function, given 

1 = 50 and Fshut = 2 

there is one major disadvantage arising from the use of the arctangent function, that 

is, it introduces severe nonlinearities into the problem. 

Derivation: Counting the number of shutdowns 

Since fixed-costs only apply once per shutdown, we propose an algebraic formulation 

for counting the number of shutdowns within an NLP formulation. This formula­

tion does not require integer variables, therefore it can be executed in a standard 

continuous NLP solver package. The logic is as follows: 

1. 	 First, we require a switching function that will yield a value of 1 when Fi(k) ::::; 

Fi ,shut and 0 elsewhere. (Equations B.1 - B.2) . In order to avoid integer 

variables, this discrete function is approximated by an appropriate continuous 

switching function . In our case, we chose to go with the modified hyperboVc 

switching function (Equations B.7- B.8). 

2. 	 We then require another function that represents the number of times F(k) 

changes its value from 0 to 1 and vice versa. (Equation B.3). 

3. To 	count the number of shutdowns that occur, equation B.3 is squared (to 

discard all negative values) and the sum of the squared values over the time 

horizon is taken. Since a shutdown and subsequent startup requires two changes 

in value, this sum is divided by 2 to obtain the number of shutdowns. 
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Note: we also add w(O) to account for the fact that a system may start at a 

shutdown state. If it the system starts from a state of shutdown, then w(O) = 1, 

else w(O) = 0. Thus, we arrive at the shutdown count equation, eqn (B.4) 

Assumption: we assume that the final state of the system is a non-shutdown 

state, therefore the expression below evaluates to an even number, and is there­

fore divisible by 2. 

( w;(O) +"••%·-• [&.;(k) ]2
) 

Example 

To illustrate this, consider a trajectory F(t) that touches Fshut exactly 4 times (Figure 

B.2). Using equations (B.l - B.4), we obtain a value for Nshutdown that represents 

the number of shutdowns that occur (see the Nshutdown graph in Figure B.2, where 

Nshutdown = 4) · 
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Figure B .2: Procedure for deriving constraints to count shutdowns 
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