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Abstract 

Two topics related to near infrared (NIR) imaging technology are studied in this 

thesis. The first is on the calibration of line-scan NIR imaging systems, the second covers 

the feasibility of applying the NIR imaging technology for wheat grading. 

In the first study, a methodology is proposed to pretreat the NIR image data 

acquired by the line-scan NIR imaging system used in this thesis to reduce the systematic 

noise introduced by the imaging system. This calibration in a standardization 

methodology is shown to improve the result of multivariate image analysis (MIA) based 

on multi-way principal component analysis (MPCA). This method represents a practical 

and easily used tool for calibration of line-scan NIR imaging systems in that it does not 

employ expensive standard reflectance material. 

In the second study, two projects are accomplished. In the first project, NIR 

imaging is used to classify different classes of wheat kernels. Multivariate statistical 

algorithms, soft independent modeling of class analogy (SIMCA) and partial least square 

discriminant analysis (PLS-DA) are used to discriminate between different types of wheat 

kernels using spectral features from NIR images. A new strategy of implementing multi­

class PLS-DA algorithm is proposed in this part. The results from this study show that 

NIR imaging provides a potentially fast and objective method for qualitatively evaluating 

certain characteristics of wheat samples, such as fungal infection, sprout damage and 

foreign types of grain, which are now graded manually in wheat industry. In the second 

project, NIR imaging is used to predict the "falling number" (FN) of wheat samples. 

Three models are built between the features extracted from NIR images of the wheat 

kernels and the falling number measurements made on bulk samples. One uses a regular 

PLS algorithm, one uses the orthogonal partial least square (0-PLS) algorithm and the 

other uses the PLS plus canonical correlation analysis (PLS+CCA) algorithm. The 

models are analyzed and the performance of the algorithms is discussed. The errors in the 
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prediction of the 0-PLS model are investigated. The results from this study indicate that 

NIR imaging is a promising method for the rapid assessment of the FN of wheat samples. 
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Chapter 1 

Introduction 

Near infrared (NIR) spectroscopy represents a fast and non-destructive 

measurement technology that can predict certain properties of samples using a reference 

model, built in advance, between the NIR spectrum and the properties which are 

measured by other means. Its potential as an efficient analytical tool was recognized by 

Norris [1965], and NIR technology has since been one of the fastest growing analytical 

technologies with overwhelming application in virtually all fields of science [Tigabu, 

2003]. Especially since 1990's, the availability of efficient chemometric calibration 

method, light-fiber optics coupled with specific probes, and miniaturization has launched 

NIR spectroscopy into a new era for industrial quality and process control [Siesler et al., 

2002]. 

In recent years, NIR imaging technology has made its way from remote sensing 

into the laboratory and industry. NIR imaging has enabled people to obtain spatial and 

spectral information that characterize samples with unprecedented ease, speed and with 

both good spatial and spectral resolution. Its potential as an efficient sensor for process 

monitoring and quality control has been realized by industry and has been increasingly 

used in practice, for example, in the pharmaceutical industry. 

Two topics related to NIR imaging technology are addressed in this thesis. One is 

related to the equipment itself, that is calibrating line-can NIR imaging systems as used in 

this thesis; the other is on the feasibility of using this technology for wheat grading. 

It is important to standardize the NIR imaging instrument before using it to 

acquire NIR images, since for any given spectrometer equipment, accurate results from 

the calibration model require accurate spectra. All the literature published about 
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calibrating NIR imaging spectrometers use standard reflectance materials which are 

expensive and difficult to maintain in practice. It is therefore meaningful to develop a 

practical and economical method to calibrate the imaging system without the use of such 

standards. This is the initiative for the first study in this thesis. 

The wheat industry is an important industry in the prairie provinces of Canada. 

Canada is known for its superior quality wheat in the global market due to its stringent 

wheat inspection and grading process. Canadian wheat is currently qualitatively graded 

manually by its visual characteristics, which is slow, labor intensive and subjective. 

Intelligent machine vision systems (MVS) have been developed to take over the tedious 

work and provide fast and objective grading. However, the current MVS are based on 

Red-Blue-Green (RGB) color images, which are reported as being unable to accurately 

segregate certain classes of wheat, the sprouted kernels for example. Some important 

wheat quality indices related to the quality of final wheat products, such as wheat falling 

number (FN), are often required by wheat customers. The FN index is currently measured 

using a traditional wet chemistry method, the Hagberg falling number test, which is slow 

and not easily implemented in grain elevators. Therefore, there exists a need to develop · 

rapid and objective methods for quantitatively evaluating wheat quality. Most variation of 

wheat quality is related to chemical variation in the kernels. Based on this fact, MVS 

based on NIR imaging should be promising for grading wheat kernels. The feasibility of 

such an instrument is studied in this thesis. 

The organization of the thesis is as follows: 

Chapter 2 provides background knowledge on NIR spectroscopy technology. 

After a brief introduction to the NIR spectrum, the instrumentation, especially the NIR 

spectrometer used in this thesis is described. Multivariate calibration based on NIR 

spectral data is reviewed in the last section. Multivariate statistics based chemometric 

methods PLS, SIMCA, PLS-DA, which form the bac~bone of the methods used in the 

following chapters, are introduced. 
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Chapter 3 addresses the problem of calibrating NIR line-scan imaging systems. A 

simple methodology without using expensive standard reflectance materials is proposed. 

An example is used to show the benefit of the methodology to improve the result of 

multivariate image analysis (MIA) based on multi-way principal component analysis 

(MPCA). 

Chapter 4 and Chapter 5 are related to applying NIR imaging technology for 

wheat grading. 

In Chapter 4, NIR imaging is used to classify different classes of wheat kernels. 

Multivariate statistical algorithms, SIMCA and PLS-DA are used to discriminate sprouted 

wheat kernels from the healthy wheat. Multi-class PLS-DA is used to classify four classes 

of grain. A new strategy of implementing the multi-class PLS-DA algorithm, namely a 

one-vs-one strategy is proposed in this section. 

In Chapter 5, the NIR images of wheat kernels are used to predict the FNs of 

wheat samples. Three models, regular PLS, 0-PLS and PLS+CCA, are built between the 

features extracted from NIR images of the wheat kernels and the falling number 

measurements made on bulk samples. The interpretability of the 0-PLS and PLS+CCA is 

discussed. The errors in the prediction of the models are alsq. analyzed. 

Finally, Chapter 6 summarizes the results of this thesis, draws some conclusions 

and highlights topics for future work. 
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Chapter 2 

Review ofNIR Technology 

This chapter provides background knowledge on NIR technology. After a brief 

introduction of the principle ofNIR spectroscopy, the instrumentation, especially the NIR 

spectrometer used in this thesis is described. Multivariate calibration procedures based on 

NIR spectral data are reviewed in the last section. Multivariate statistics based 

chemometric methods PLS, SIMCA, PLS-DA which form the backbone of the methods 

used in the following chapters are introduced. 

2.1 Principle of NIR Spectrum 

The NIR spectrum is commonly defined as the region of light with wavelengths 

from 780 nm to 2500 nm. The NIR spectrum originates from radiation energy transferred 

to mechanical energy associated with the motion of atoms held together by chemical 

bonds in a molecule. When a molecule absorbs radiation, vibrations in the bonds occur 

either due to stretching or bending. Stretching is vibration in which there is a continuous 

change in the interatomic distance along the axis of the bond between the two atoms 

while vibration involving a change in bond angle is referred to as bending and 

deformation (Figure 2.1 ). The molecular bonds vibrate in a manner similar to a diatomic 

oscillator that can be explained using the quantum-mechanical model. According to the 

quantum selection rules, the only allowed vibrational transitions are those in which u (the 

quantum number) changes by one (~u = ± 1). The harmonic oscillator model, thus, 

explains the absorption bands observed in the infrared (IR) region (2500 nm to 5000 nm) 

due to fundamental modes of molecular vibration. However, real molecules do not behave 

exactly as predicted by the law of simple harmonic motion and real bonds do not strictly 

obey Hook's law due to Coulombic repulsion between the two nuclei and dissociation of 

bonds beyond the limit of elasticity that levels off the potential energy (Figure 2.2). 

Consequently, the harmonic criterion is not fulfilled at higher vibrational states, and 
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vibrations become rather anharmonic. Such anharmonic molecular vibrations allow 

energy transitions between more than one level, and thus creating overtone bands which 

provide the basis for the NIR spectrum (Figure 2.3). If two or three separate anharmonic 

vibrations absorb one part of each of the incident radiation, this type of absorption gives 

rise to combination bands in the NIR spectrum. So, absorption bands in the NIR spectra 

of chemical compounds can be observed as a consequence of overtones and combination 

of molecular vibrations. 

The main bands typically observed in the NIR regwn correspond to bonds 

containing light atoms such as X-H, where X is carbon, nitrogen, oxygen or sulfur, and H 

is hydrogen that, in tum, are the major molecular moieties in virtually all organic 

materials. This is because the hydrogen atom is the lightest, and therefore exhibits the 

largest vibrations and the greatest deviations from harmonic behavior. Other important 

functionalities in the NIR region include C=O, C-C, and C-Cl stretching vibrations, 

although the bands are much weaker [Shenk et al. , 2001]. Figure 2.4 illustrated a NIR 

absorptions chart, which indicates the major analytical bands and their relative peak 

positions in the NIR spectrum. Furthermore, it also illustrates the NIR absorption ranges 

of the above-mentioned groups. 
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Figure 2.1 . Modes of bond vibration for a hypothetical molecule AX2 
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Extracting useful information about the chemical content of organic compounds 

from their NIR spectrum using mathematical methods was first realized by Karl Norris 

[Norris and Hart, 1965], who is recognized as "father" of modem NIR technology. Since · 
' ... 

the bands of overtones and combinations for many functional' groups in the NIR spectrum 

of an organic compound overlap, they give a smooth spectrum with broad peaks, which 

makes the NIR spectrum more difficult to interpret as compared to its mid-IR spectrum. 

With the advent of digital technology NIR spectral readings are generally digitized into 
' 

many hundreds of narrow wavelength bands. Since the NIR spectrum is smooth these 

wavelength bands are highly correlated with each other. Multivariate statistics based 

chemometric techniques like PCA and PLS have excelled in efficiently extracting useful 

information and using this information to empirically model many sample properties. The 

field of multivariate calibration [Martens et al.1989] develops the theory and application 

of such chemometric techniques in spectral data. 

Compared with other analytical methods, NIR spectroscopy does have many 

advantages. First, there is hardly any need for sample preparation thus allowing the 
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technique to be applicable to a sample in any physical or chemical state. Second, NIR 

measurements are gathered rapidly in a non-invasive manner, thus allowing the sample to 

be re-used after being measured, and sent on for further analysis. The combination of 

these characteristics with improvements in instrumentation and the development of 

chemometric software has been making the NIR technology one of the fast growing 

analytical technologies in the world with an overwhelming application in virtually all 

fields of science [Tigabu, 2003]. 
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Figure 2.4. Near-Infrared absorptions chart indicating major analytical bands and their 
peak positions [Bharati, 2002] 

2.2 Instrumentation for NIR Spectroscopy 

2.2.1 General structure of NIR spectrometers 

Sample information of the near-infrared region is usually collected as an 

absorption spectrum through transmission measurements or diffuse-reflectance 

measurements with a NIR spectrometer. For multi-channel spectrometers, the basic 

instrumental configuration includes radiation source, wavelength selector/modulator, 

detector and output relay. (Fig. 2.5) 
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Tungsten-halogen lamps with quartz envelopes are the major energy sources for 

NIR instruments. These lamps provide high-energy output (10-200W) over the 360-3000 

nm region and last longer due to a bathing effect of the halide inside the lamp. Light 

emitting diodes (LED), laser diodes and lasers are non-thermal or 'cold sources', in which 

most of the energy consumed appears as emitted radiation over a narrow range of 

wavelengths. As the emitting wavelengths are predetermined, instruments based on such 

devices are usually dedicated for specific analysis, such as determination of moisture in 

samples. 

Radiation emitted from a source can be spectrally separated into individual 

wavelengths using different optical principles, namely, dispersive, interferometric and 

non-thermal [Siesler et al., 2002]. The spectroscope is a dispersive system where 

wavelengths of light are separated spatially. Prisms were the classic dispersing elements 

for many years. However, prism is an inefficient arrangement with low and non-linear 

dispersion, and a large prism is often needed to achieve better performance. As a result, 

most scanning spectrometers used in laboratories and in industries today employ 

diffraction gratings. 
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Figure 2.5 Basic components ofNIR instrumentation operating in transmittance and 
reflectance modes 

Another dispersive device incorporated into NIR spectrometers in recent years is 

Acousto-optically tunable filters (AOTF). AOTF choose wavelengths by using radio­

frequency signals to change the refractive index of a crystal made of Te02 (tellurium 

dioxide) in such a way that it transmits light of a given wavelength region or scans the 

whole spectral range. 

The second major optical principle used for wavelength selection in NIR 

spectroscopy is interferometry. This method, referred to as non-dispersive, does not cause 

angular dispersion, but instead uses a filter, often known as a interferometer for 

wavelength differentiation. Among family of interferometric systems is the Michelson 

interferometer; the Fabry-Perot interferometer and Fourier transform NIR instruments. 

For more detail about interferometric systems refer to Osborne et al. [1993] and McClure 

[1994]. 

9 



Radiation transmitted through or reflected from a sample is detected by 

semiconductor detectors. Lead sulfide (PbS) is the most widely used detector in the NIR 

over the range of 1100-2500 nm while silicon sensors are used for the 360-1000 nm range 

[McClure 1994]. In multi-channel system covering visible-NIR region (400-2500 nm), 

PbS detectors sandwiched with silicon photodiodes are often used to acquire spectral 

information over many wavelengths simultaneously. Another detector is a device 

composed of Indium gallium arsenide (InGaAs) which is sensitive in the wavelength 

range of 900nm to 1800 nm. This kind of detector is used in the spectrometer for this 

thesis. More recently, the IR camera market has seen the emergence of the uncooled 

microbolometer array using low-cost CMOS technologies [Lewis, 2004]. These detectors 

promise to set whole new performance levels for infrared focal plane arrays. Depending 

on the shape of the detector, the spectrometer can be categorized into traditional probe­

based multi-spectral spectrometer and multi-spectral imaging spectrometer. If the 

wavelength selection device disperses the light spatially, for the former one, the detector 

is a vector-shape array detector and a full spectrum of the sample is obtained; for the 

latter one, the detector is a rectangular matrix-shape area array detector, where a spatial 

dimension is added and a multi-spectral image is formed on it. _ 

Finally, computers are an indispensable part of NIR instrumentation for capturing 

spectral data as well as for process monitoring and analysis of spectral data. 

2.2.2 Details of the spectrometer used in the thesis 

The NIR spectrometer used in this thesis is a line-scan multi-spectral reflectance 

imaging spectrometer modified from a NIR digital camera. A direct imaging spectroscope 

[Hyvariann et al., 1998] was attached between the front optics lens and the camera back, 

which is an InGaAs charge-coupled devices (CCD) area array. The spectroscope consists 

of an entrance split, focusing lenses, and a Prism-Grating-Prism (PGP) element encased 

in a hollow tube. Light enters the spectroscope in a horizontal line through the entrance 

slit and gets vertically dispersed into its continuous spectral distribution as it goes through 

the lenses and PGP element. This results in an array of wavelength-specific horizontal 
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lines of light that are captured by the CCD area array detector in the camera back as a 2-

dimensional intensity images. The horizontal axis (i.e. columns) of the captured image 

represents the spatial dimension, whereas the spectral dimension is represented by the 

vertical axis (i.e. rows). Figure 2.6 illustrates the basic operating principle of the direct­

sight imaging spectroscope [ImSpector, 2003]. 

Enhance slit Lenses and PG P component !\ria trix detector 

Figure 2.6 Schematic of direct-sight imaging spectroscope used to 
convert an area array camera into an imaging spectrometer 

The pixel resolution of the CCD array in the NIR camera is 128 x 128 pixels. Thus 

the spectrally dispersed image captured by the InGaAs CCD array has dimensions of 128 

rows and 128 columns. As a result, the continuous NIR reflectance spectrum (900 nm to 

1700 nm) of 128 spatial pixels is vertically digitized into 128 discrete wavelength bands 

increasing from bottom to the top. Each band of the digitized spectrum (represented by a 

row ofthe 2-dimensional image) has a spectral resolution of approximately 6.25 nm. 

Thus, for each imaged line of a moving object the system records a spatial­

spectral (i.e. xvs.A.) intensity image. To capture the multi-spectral NIR image of an 

object, the second spatial dimension is obtained by recording multiple lines across a 

moving object at constant velocity in a perpendicular direction to the scan. In this thesis, 

this is realized with a scanner assembly. The speed of this scanner bed is controlled 

through a desktop computer. The x -A. images recorded by the imaging spectrometer per 

line scan are joined into a 3-dimensional multi-spectral image data cube; the 3rd 

dimension of which represents the other spatial dimension (y). Figure 2.7 illustrate the 

11 



working principle of the imaging spectrometer to capture the x-y spatial dimension of a 

sample on a moving web . 

Area camera 

lmSpec:tor 

Objective .. na 

.----- Grabber+ PC 

I.__---.~~ Ill 
l3 
Cl 
a. 

en Spatial axis [XJ 

Figure 2.7 Schematic picture of the line scan NIR imaging spectrometer [ImSpector, 2003] 

The resulting 3-dimensional dataset is a multi-spectral NIR reflectance image with 

2 spatial dimensions and 1 specral dimension ( y x x x A). The number of lines scanned 

across the moving object can control the pixel resolution of they dimension. Furthermore, 

the physical length of the scanned section of an object can be controlled through the 

number of lines scanned, whereas the distance between the object and the imaging 

spectrometer can control the width of the scanned section, and the resolution in this 

direction. 

As far as the radiation source is concerned, in Chapter 3, a halogen lighting source 

(150W) attached with fiber-optic cables arranged in a horizontal line has been used to 

illuminate the object at a 45° angle with respect to the scanner bed. Typically image 

acquisition requires a well-illuminated object with even lighting from at least two sources 

at opposite 45° angles to remove any shadows cast by the object. However in Chapter 3 

the objects being imaged are flat in nature, thus only a single source of lighting was 

deemed adequate. In chapter 4-7, since all objects imaged are seeds, two halogen bulbs 

(60W) are used to illuminate the seeds at opposite 45° to remove the effect of shadow. 
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This line-scan NIR imaging spectrometer was bought for the research of on-line 

monitoring the quality of the paper in pup and paper manufacturing industry [Bharati, 

2002]. It is still suitable for the off-line analysis as implemented in this thesis. Another 

type of imaging spectrometer often used for off-line analysis in laboratory is imaging 

spectrometers using tunable filters. They build multi-spectral images of an object by 

capturing individual 2-dimensional spatial images one wavelength at a time and changing 

wavelengths through a grating system. Because they require a stationary object at the 

grating scan through the wavelength spectrum to acquire the 3rd (..1) dimension of the 

muli-spectral image, they are not suitable for on-line use. 

2.2.3 Traditional probe-based NIR spectrometers vs. NIR imaging 

spectrometers 

NIR technology has been used in the laboratory and in industry as an analysis tool 

or a sensor for decades. Almost all the literature about this technology is based on the 

probe-based spectroscopes. The reading of these instruments is the averaged spectrum of 

one point or the average spectrum taken at multipoint over the local region of the sample 

being tested. 

One of the shortcomings of probe-based NIR spectrometers is their inability to 

provide simultaneous multiple point readings across solid samples. On the one hand, such 

information could be vital to determ~ne the homogeneity of the sample based on the 

spatial distribution of its chemical information across a certain area. For example, in 

pharmaceutical industry, it could be used to decide how the active pharmaceutical 

ingredients are distributed in the tablet, which affects the therapeutic performance of the 

medicine. On the other hand, if there were many samples need to be tested, it would take 

long time to obtain the spectrum of each sample sequentially thus greatly reducing the test . 

speed. 

In recent years, this issue has been addressed with the introduction of NIR 

imaging spectrometers. As mentioned in section 2.2.2, these instruments work on the 
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same principle as their older, conventional cousins except for their detector, which in this 

thesis is a NIR digital camera. This NIR imaging spectrometer acquires digitized NIR 

reflectance spectra at multiple spatial locations across the scanned section of the samples 

simultaneously. This is equivalent to multiple NIR probe-detectors spread across the 

surface of the solid sample. The acquired hyper-spectral data cube (i. e. the 3-dimensional 

image matrix) can be treated as a series of spatially resolved spectra (i.e. pixels) or, 

alternatively, as a series of spectrally resolved images (i.e. image planes or channels). 

Selecting a single pixel will yield the spectrum recorded that particular spatial location in 

the sample. Similarly, selecting a single image plane will show the intensity response of 

the scene at that one particular wavelength. (Figure 2.8) 

Image plane: m x n pixels at A-1 

X 

Figure 2.8 Schematic representation of a hyperspectral NIR image showing 

the relationship between spatial and spectral dimension 

The NIR imaging spectrometer can be used as a multi-point probe-based 

spectrometer when many samples need to be tested. Since all samples are imaged in one 

picture, the average spectrum of each sample can be calculated, the multivariate 

calibration methods used for the probe-based spectrometers could be adopted to analyze 

the data. This would remarkably improve the test speed. Multivariate image analysis 

methods could also be used for the data cube. The spatial variation of the content within 

the sample or between samples could be visualized in certain feature spaces. So, NIR 
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imaging spectrometer retains all the advantage of probe-based spectrometers and gain 

several more through the addition of spatial dimensions and parallel data collection. In 

recent years it has become an extremely powerful adjunction to NIR spectroscopy in a 

number of different ways [Lewis et al., 2004]. 

However, there is no free lunch. Compared with the probe-based instruments, the 

additional complexity of the NIR imaging instruments will bring into the 3-dimension 

hyper-spectral image data extra systematic instrument noise which must be considered. 

Firstly, the area CCD array is composed of many thousands of individual infrared sensors 

which may be slightly different. For an ideal line-scan NIR spectrometer used in this 

thesis, the CCD array should produce uniform pixel response to even light if there is no 

spatial variation in the sample. Variations between the sensors along the spatial axis 

x would produce a pixel-to-pixel intensity variation across the scanned image, which 

results in streaks in the final image along the direction of motion of the object. Such pixel 

anomalies were evident in the reflectance image taken by the line-scan spectrometer used 

in this thesis. (Figure 3.l(a)) Secondly, lighting variations across the line of light also 

cause contrast variations across the imaged line, which result in contrast difference (e.g. 

shadow trends) across the x-y plane of the resulting image. These shadowy trends are also 

evident in· the NIR images acquired by the imaging spectrometer used in this thesis 

(Figure 3.1(a)). Except for the effort for improving the hardware performance of the 

instruments by the spectrometer providers, some signal correction algorithm should be 

used to filter out the effects of such unwanted variations. This is the issue of instrument 

calibration and will be discussed in detail in Chapter 3. 
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2.3 Multivariate Statistics Based Chemometrics Techniques 

Using NIR spectroscopy 

2.3.1 Procedure of multivariate calibration and classification 

Since it is not possible to use absorbance at a single wavelength to predict the 

concentration of one of the absorbers due to the overlapping nature of NIR spectral peaks 

(the so called selectivity problem), NIR spectroscopic data are often recorded at several 

hundred wavelength channels, that is they are multidimensional. Because they are also 

highly collinear, multivariate statistics based chemometric techniques like PCA and PLS 

have excelled in efficiently extracting subtle differences in NIR spectra of multiple 

samples, and using this information to empirically model many sample properties. 

Multivariate chemometric methodologies fall in two categories: multivariate calibration 

(for quantitative application) and multivariate classification (for qualitative application). 

For the former one, a multivariate model based on the spectral data is built to quantify a 

property or a concentration whose measurement using the wet-chemistry methods is 

expensive or time consuming. Principal component regression (PCR) and partial least 

square (PLS) can be considered as standard calibration techniques for NIR spectroscopy. 

Multivariate classification is split into two equally important areas, cluster analysis and 

discriminant analysis. Cluster analysis methods can be used to find groups in the data 

without any predefined class structure. Cluster analysis is highly exploratory, but can 

sometimes, especially at the early stage of an investigation, be very useful. Discriminant 

analysis is a methodology which is used for building classifiers for allocating unknown 

samples to one of several groups. It has much in common with multivariate calibration. 

The difference lies in the fact that while multivariate calibration is used to predict 

continuous measurements, discriminant analysis is used to predict which class a sample 

belongs to, i.e. to predict a categorical variable. The most commonly used multivariate 

statistics based chemometric methods for discriminant analysis include soft independent 

modeling of class analogies (SIMCA) and partial least square discriminant analysis (PLS-
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DA). Figure 2.9 shows the principal steps followed during the development of a 

quantitative/qualitative model based on NIR spectroscopy. 

Sampling is the most important factor in making a robust calibration equation. 

The calibration sample set which is used to make a calibration equation should be 

representative of the population of future samples that will be predicted by NIR 

spectroscopy. For example, in case of agricultural products, the sample set should be 

sufficiently variable in respect of variety, producing area, producing year and maturity 

stage to meet the conditions mentioned above. The distribution of the constituent being 

calibrated for over the calibration samples is also important. The range of the variability 

should be as large as that expected in any future sample, and it is usually better to keep a 

more uniform spread of values over the whole range. 

NIR spectra are not usually amenable for direct analysis due to unwanted 

systematic variation that has no correlation with the response variable. Light scattering, 

base line shift, instrumental drift, and path length differences are among the common 

sources of systematic noise in the spectra, which should be removed from the raw spectral 

signals [Siesler et a., 2002]. Spectral pretreatments, also called spectral filters, are 

mathematic functions for handling such interferences in order to reduce, eliminate or 

standardize the impact of the above-mentioned effects on the spectral data. Carefully 

designed data pretreatment algorithms can help to reduce the model complexity so that 

more easily interpretable methods are achieved. Often these methods are more robust 

against unexpected perturbations in future spectra than model based on non-pretreated 

spectra. However, it is worthy to be point out that most pretreatment methods also bear 

the potential danger of influencing a useful part of spectral information. The most 

commonly used data pretreatment techniques in NIR spectroscopy are the use of first or 

second derivatives [Savitzky and Golay, 1964], multiplicative signal correction (MSC) 

[Geladi et al. 1985], piece-wise multiplicative scatter correction (PMSC) [Isaksson and 

Kowalski, 1993], standard normal variate transformation (SNV)(Barnes et al. 1989) and 

orthogonal signal correction (OSC) [Wold et al. 1998]. In section 2.3.2, these methods 
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will be reviewed. One algorithm of the OSC family, Orthogonal Partial Least Square (0-

PLS) will be used in Chapter 4 & 5 to eliminate the uncorrelated spectral features, and 

thereby simplifying models. Other approaches to handle systematic spectral variations 

can be found in Nres et al. [2002]. 

Laboratory Level 

1. Selection of the calibration and test 
set of samples (all physical /chemical 
variability must be contemplated) 

2. Determination of the 
concentration/property of interest 
using a reference method or the 
classification identities of the samples 

3. Collection ofNIR spectra (select 
the best mode of sample presentation 
and keep it constant for all samples in 
the future) 

Computer Level 

4. Pretreatment of the NIR spectrum 
(understanding the source of noise 
and choosing suitable pretreating 
algorithm) 

5. Development and optimization of 
the mathematical calibration model 
(selection of the multivariate 
technique and of the best number of 
variables) 

6. Validation of the calibration model 
(external set of samples 
recommended). 

7. Application of the model in prediction of unknown samples 

8. Maintenance of the model: tracing instrumental performance 
and inclusion for model upgrade ' 

Figure 2.9 Principal steps in the development, evaluation, use and maintenance of a 
quantitative model based on NIR spectroscopy 

PCR and PLS regression based multivariate analysis methods are generally used 

for NIR spectral analysis for their advantage in coping with variable nonselectivity and 

collinearity problems in the NIR spectral data. The structure of the calibration model, i.e. 

the number of principal components, is an important issue in model building and 

validation procedures. The criterion to evaluate underfit or overfit of the model is based 
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on how well the model fits observations not involved in the modeling procedure. Cross 

validation [Wold, S., 1978] is usually used when the dataset used for calibration and test 

is not very large. 

The final model, employed for routine analysis, needs to be periodically checked 

for performance along with long term instrumental fluctuations. Intensive use may dictate 

the necessity of inclusion of more samples and running the construction and optimization 

steps again to improve the robustness of the model. In addition, efforts in making a model 

work with spectral data generated by an instrument other than the one used for its 

development has become a topic of great importance in NIR spectroscopy, which is called 

instrument standardization or transference of calibration [Fearn, 2001]. 

2.3.2 Spectral pretreatment 

Among all the pretreatment methods, derivatives are used to remove or suppress 

constant background and to enhance the visual resolution. Background signals and global 

base-line variations are low-frequency phenomena, so derivatives can be interpreted as 

high-pass filters. The first derivative at wavelength w could be computed as: 

(2.1) 

xw is the spectral value at wavelength w in the spectrum sequence where the wavelength 

bands are equally spaced. The second derivative is the slope of the first derivative, and 

more similar to the original spectra; i.e., having peaks in nearly the same locations but 

inverted in direction. The second derivative is computed as the difference oftwo adjacent 

first derivatives, yielding the second derivative formula: 

(2.2) 

In spectroscopic applications, the second derivative is popular. It is a valuable tool 

for identifying weak peaks that are not visible in the original spectrum. The side effects of 

derivatives on spectroscopic data are the loss of the original shape of the spectral curve 
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and the reduction of the signal-to-noise ratio. To circumvent this problem, smoothing of 

the spectra prior to applying derivatives is essential. Savitzky and Golay (1964) described 

a more stringent approach based on fitting low-order polynomials. 

Multiplicative signal correction (MSC) was first proposed for cases where the 

scatter effect is the dominating source of variability, which is very typical in many 

applications of diffuse NIR reflectance spectroscopy. But the idea behind this method has 

been extended to correct for a more general class of systematic variations in the spectral 

data. In MSC, it is assumed that each sample spectrum has an offset and a slope due to 

interference effects, one can correct for this if the variability is systematic; i.e., constant 

over the spectral range. By plotting each spectrum, X;, against the reference spectrum, x, 

the offset (a; ) and the slope ( b;) are calculated using least squares of the equation: 

(2.3) 

Finally, the sample spectrum is corrected as follows: 

(2.4) 

The corrected spectra give a better prediction of the response not only due to removal of 

irrelevant information but also due to linearization of the relationship between the 

predictor and the response. 

This MSC method can easily be extended to a more flexible and general 

correction procedure in which each wavelength is corrected using individual additive and 

multiplicative terms. One way of doing this is by using the same idea as for MSC over a 

limited wavelength region, called piece-wise multiplicative scatter correction (PMSC) 

presented by Isaksson and Kowalski [1993]. In essence, PMSC corrects non-linear 

addictive and multiplicative scatter effects by fitting a linear regression in a local 

wavelength region. The assumption is that the scatter effects vary over the spectral range, 
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and hence the scatter correction should be performed piece-wise using a moving window 

along the wavelength range. 

Orthogonal signal correction (OSC) is unique from the spectral pretreatments 

discussed above in one major aspect: it takes the original response variable into account 

in its algorithm. OSC was introduced by Wold et al. [1998] in order to avoid removal of 

information that is important for prediction. In OSC the signal filtering is made in such a 

way that the removed parts are linearly unrelated (orthogonal) to the response matrix Y. 

Different implementation of this idea has been proposed [Anderson, 1999; Fearn, 2000; 

Trygg and Wold, 2002]. Orthogonal partial least square (0-PLS) [Trygg and Wold, 2002] 

is based on the PLS NIP ALS algorithm with one orthognalization step included in the 

algorithm. It is easy to be implemented and overcomes the overfit problem encountered 

in the other OSC methods. This method will be used in Chapter 4 and Chapter 5. 

Basically, the OSC-treatment was developed to generate a robust prediction model 

for quantitative analyses through removal of interferences that have no relevance for the 

analyte at hand. However, in qualitative analysis where no true response variables exist, 

for example in PLS-DA, discrete values can be assigned to each class and used to perform 

OSC filtering [Wold et al. 1998]. In this thesis, this is demonstrated in Chapter 4. 

2.3.3 Multivariate statistical methods for calibration 

PLS is the most widely used calibration technique in NIR spectroscopy owing to 

its capability to handle collinearity problems, its "built in" facility for outlier detection, 

the possibility to analyze multiple responses, the ease for visual interpretation of the data 

and its ability to cope with moderate missing data. Apart from quantitative analysis, PLS 

can be used for pattern recognition, the so-called PLS-DA [Sjostrom et al. 1986]. 

PLS analysis can be viewed as the regression extension of PCA. It establishes a 

relationship between the predictor block, X-matrix, and the response, Y, via an inner 

relation of their scores [Eriksson, 1999]. The X-scores, T, describe the object variation in 
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the predictor block (the spectral matrix in this thesis) and the corresponding variation in 

the response block by the Y-scores, U. What PLS does is to maximize the covariance 

between these inner variables (also called latent structures) T and U. A weight vector, w*, 

is calculated for each PLS component that tells us the contribution of each X-variable to 

the explanation of Y in that particular component. Thus, the matrix of weights, W*, 

contains the structure in X that maximizes the covariance between T and U over all 

model dimensions. Finally, the corresponding matrix of weights for theY-block, C, and 

the matrix of X-loadings, P, are calculated to perform the decomposition of X andY as 

follows: 

X=TP' +E (2.5) 

Y=UC' +F=TC' +G (2.6) 

T=XW* (2.7) 

E, F and G are residual matrices for X, Y and the inner relation, respectively left 

unexplained by the model. 

A matrix of regression coefficients, B, can then be computed according to the formula: 

B=W*C' (2.8) 

From the above equations, the PLS model can be expressed as 

Y = XW*C' = XB + G (2.9) 

Each new sample is predicted either using Eq. 2.9 or by computing the scores for the new 

samples and multiplying with the weight from the calibration model (Eq. 2.7 and 2.6). 

PLS offers many parameters and diagnostics for model interpretation, and 

evaluation of model performance and relevance. The scores, T and U, contain 

information about the observations and their similarities or dissimilarities in relation to 

the problem at hand. PLS score plots of the t/t-type are used to uncover outliers in the 
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descriptor matrix, X-space, while the u/u-type reveals deviation of observation in the 

responses matrix, Y -space. In addition, when PLS is used for classification/discrimination 

purposes, the t/t-type score plot for the descriptor matrix, X, is very useful to get an 

overview of the class discriminating ability of the computed PLS model. Finally, the t/u­

type score plots are valuable tools to examine deviations from the dominating X!Y 

correlation structure as well as to identify departures from linearity between X andY. 

Similarly, the variable related information is interpreted in several ways. A plot of 

X-weights shows how the original X-variables are linearly combined to form the score 

vectors, ta. Using X-weights, it is possible to understand which original variables are 

summarized by the new latent variable; i.e. X-variables that are highly correlated withY­

variables get higher weights. In NIR spectroscopy, line plot of X-weights is often used, as 

it allows analysis of which absorption peaks are modeled by each component. Also, as a 

linear regression model, the coefficient plots of the PLS model are always useful for 

explaining the correlation relationship between the X-variables and each Y -variable. 

The performance and relevance of PLS models -. are further evaluated by 

computing different statistics. The quantitative measure "of !he goodness of fit is given by 
. . I 

the parameter R2(x)cum and R2(y)cum. the explained variation fbr X andY, respectively that 

can be computed as: 

R2(x)cum = 1- SSX[A]/SSX[O] ··) (2.10) 

R2(Y)cum = 1- SSY[A]/SSY[O] (2.11) 

SSX[A] is the sum of squares ofthe X-residuals, O:::e! ), SSY[A] is the sum of squares of 

theY-residual, C'Lf/;, ), after extracting A components; SSX[O] and SSY[O] are total sums 
-, ' 

of squares for X and Y, respectively. 

The prediction ability of the computed PLS model; the goodness of prediction, is 

also quantified by a parameter called the predicted variation, Q2(y), using either cross 
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validation or prediction sets. The fraction of the total variation of the Y's that can be 

predicted by a component, Q2(y), is computed as: 

(2.12) 

PRESS is the prediction error sum of squares ( 2: (Y - f) 2 
) for the data not used to build 

the model and SS is the residual sum of squares of the previous dimension. This 

parameter is essential to determine the significance of each model dimension. The 

cumulative Q2(y) for all extracted components can be computed as: 

Q2(y)cum = (1.0 -ll(PRES8JSS)a) (2.13) 

ll(PRESS;SS)a is the product of PRESS;SS for each individual component, A Larger 

Q2(y)cum value for a given response indicates that the model for that response is good. As 

a rule of thumb, a model with Q2(y)cum > 0.5 is considered as good, Q2(Y)cum > 0.75 as 

very good and Q2(y)cum > 0.9 as excellent. The ultimate objective of developing a 

calibration model is to make predictions in the future. In all the studies in the thesis, the 

computed calibration models were applied to predict new samples in the prediction sets 

that were kept aside during model building. The modeling error and the prediction ability 

are further evaluated by computing the root mean square error of calibration (RMSEC) 

and the root mean square error of prediction (RMSEP), respectively; and can be 

computed as follows: 

RMSEC = ~l:(y- y)
2 I 
j(N -A-1) 

(2.14) 

RMSEP = ~l:(y- y)~ (2.15) 

y is the predicted value; y is the actual value; N is the number of samples in the validation 

sets (both for cross validation and test set) and A is the model dimension. The smaller the 

two values the better the calibration and prediction performance of the model. 
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2.3.4 Multivariate statistics methods for discriminant analysis 

SIMCA and PLS-DA are two main multivariate statistics based discriminant 

analysis methods often used for NIR spectrum data. 

SIMCA is based on a series of PCA models. For each group in the training set a 

PCA model is built. A new unknown item is assessed against each of the groups in tum 

by evaluating a criterion taking into account of the following factors: 

(1) The Euclidean distance of the new item to the principal component model for that 

group and 

(2) Where the new item lies relative to the training samples within the principal 

component model 

The nearest class of a sample is defined as the class model which results m a 

minimum "reduced" distance of sample ito modelj, dij 

(2.16) 

where E r = Ei / E0_95 among which Ei = ~Lk e~ ( eik is the component of the residual 

vector ei ') is the Euclidean distance of the sample i from the plane defined by the PCA 

model and E0_95 is the 95% confidence limit of the residual of the samples in the training 

set for the jth PCA model; Tr2 = T; 2 
/ T0

2
95 among which T; 2 = f ti; ( s;: is the variance of 

a=IS
10 

ta according to the PCA model) is the Hotelling statistic for sample i and T0~95 is the 95% 

confiden_ce limit of the Hotelling Y. of the training set. The distance measure dij gives 

equal weighting to distance in the model space ( T 2
) and residual space (E). A graphic 

illustration of SIMCA and the Euclidean distance and the Hotelling statistics is shown in 

figure 2.1 0. 
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Figure 2.10 Illustration of SIMCA and the two distances 

While SIMCA is often a very useful classification tool, it does have drawbacks. 

The main one of these is that the PCA sub-models in SIMCA are computed with the goal 

of capturing the variation within each class. PCA finds the directions in the multivariate 

space that represent the largest source of variation. However, it is not necessary the case 

that these maximum variations coincide with the maximum separation directions among 

the classes. Rather, it may be that other directions are more pertinent for discriminating 

among classes of observations. Therefore, the directions of the principal components in 

each model do not guarantee differentiating the classes. This issue is addressed by PLS­

DA, which rotates the direction of the projection to give latent variables that focus on 

class separation. This is realized by fabricating a dummy matrix which describes the class 

membership of each observation and using it as the Y -data for PLS. A dummy variable is 

an artificial variable that assumes a discrete numerical value in the class description. The 

dummy matrix Y has G columns (for G classes) with ones and zero, such that the entry of 

the gth columns is one and the entries in other columns are zeros for observations of class 

g. 
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PLS-DA is a linear discriminant analysis method, however, it does not works well 

in all situations where LDA works. Since only the values of one class are set to one and 

all the others are set to zeros in each column of Y, this indicates that all the observations 

corresponding to these zero values belong to one general class. Therefore, PLS-DA is 

equivalent to deciding a discriminant plane for each class to separate it from all the other 

classes and then the class boundaries defined by all the discrminant planes would be 

considered by the PLS2-DA model when performing classification. Therefore, PLS-DA 

works well only when such discriminant plane exists for each class. This issue will be 

addressed in detail in Chapter 4. 

Since PLS-DA is a special version of PLS implementing discrimination by 

regression, it enjoys all the advantages of PLS and can use all the parameters and 

diagnostics of PLS for model interpretation and evaluation as mentioned in section 2.3 .2. 

When PLS-DA is used for analyzing NIR spectrum of different samples, it would not 

only give the classification result but also the complementary information such as the 

contribution of each wavelength bands to one score variable, which would be a good 

indication of some quality information of the sample. In view of this advantage, PLS-DA 

will be employed as a main classification method for discriminating different kinds of 

wheat kernels in this thesis. 
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Chapter 3 

Calibration of Line-scan NIR Imaging Systems 

The NIR imaging instrumentation and its use are not free from problems [Geladi 

et al., 2004]. In this chapter we propose a method to pretreat NIR image data to reduce the 

systematic noise introduced by the line-scan NIR imaging system described in section 

2.2. It is observed that some detailed information blurred by the systematic noise can be 

visualized after the image is pretreated using the proposed method. An example is used to 

show the benefit of the methodology to improve the result of multivariate image analysis 

(MIA) based on multi-way principal component analysis (MPCA). This method 

represents a practical and easily used tool for the calibration of line-scan NIR imaging 

systems since it does not employ expensive standard reflectance materials. 

3.1 Introduction 

3.1.1 Standardization of NIR instruments 

As mentioned in section 2.3, data pretreatment is usually needed to reduce the 

nmse level before the NIR spectral data is used for, sample characterization or 

concentration determination. There are two sources of noise affecting the signal-to-noise 

ratio in the spectral data: one is from the instrumentation; the other is from the physical 

properties of the sample, such as light scattering effects caused by the particle size 

distribution of the sample. In this chapter, we will focus on data pretreatment methods to 

reduce the influence of the noise from the NIR spectroscopic instrument, namely the 

calibration (or standardization or correction) of the instrument. 

It is important to standardize the NIR spectroscopic instrument before using it to 

measure spectra on unknown samples. For any given spectrometer equipment, accurate 

results of the calibration model require accurate spectra. Any spectral changes, such as 
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wavelength shifts and baseline offsets resulting from inherent instabilities or aging parts, 

will lead to biased predictions from the multivariate calibration model. For multiple 

instruments, differences between instruments introduce the calibration model transfer 

problem, i. e. a calibration model developed on one instrument can not be used for other 

instruments ofthe same type [Wang et al., 1991]. 

Much work has been published regarding the standardization of probe-based NIR 

spectroscopic instruments and the transfer of multivariate calibration models [Wang et al., 

1991, 1992, Fearn, 2001, Feudale et al., 2002]. The general idea of standardization is to 

model the instrumental differences. The spectral response of a subset of samples 

measured on the primary instrument is regressed against the same subset measured on the 

secondary instrument. Thus, changes in the response variables between the two 

instruments can be corrected and the original model can be used for prediction on the 

secondary instrument without having to compute new regression coefficients [Feudale et 

al.,2002]. 

Standardization of NIR imaging spectrometers is subject to all the error 

contributions of conventional one-dimensional probe-based spectroscopy (noise, drift, 

non-linear response of detectors, wavelength-dependent errors) as well as the two­

dimensional or spatial error components associated with camera devices and illumination 

(readout errors, in-consistent detector responses, quantization errors, and non-uniform 

lighting) [Burger and Geladi, 2005]. This requires that the standardization of the imaging 

spectrometer must be done for each spatial or pixel position and also for each wavelength 

if there are wavelength-dependent errors. 

The standardization of the NIR 1magmg spectrometer has received attention 

recently as NIR imaging is making its way into laboratory practice. Geladi et al. [2004] 

published one paper addressing the standardization of a Spectral Dimensions ™ NIR 

imaging instrument using a liquid crystal tunable filter (LCTF) in combination with an 

InGaAs diode array detector. The results are based on calibration against known reference 

standards. Standard NIR reflectance materials, the calibration surfaces made of 
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Spectrolon [Pro-lite technology, 2005] with different levels of reflectance (99%, 75%, 

50% and 2% reflectance) and known reflectance spectra in units of reflectance 

percentage, were employed in his method. Each calibration surface was rotated to 

different positions by a rotating bearing, imaged several times and averaged so that the 

influence from the non-uniformity on the surface were eliminated and thus the noise in 

the image data (in units of signal intensity counts read out from the AID converter of the 

spectrometer) is only from the imaging instrument and illumination. Then a linear or a 

quadratic regression model was fitted between the true reflectance spectral value of the 

standard materials at each wavelength band and the measurement value at specific spatial 

positions at the same wavelength in the hyperspectral images taken by the NIR imaging 

spectrometer. Thus a linear or quadratic calibration model cube with the same dimension 

as the hyperspectral image was obtained and used to correct the readout from the 

spectrometer to the reflectance image in units of reflectance percentage. This method is a 

direct extension of the traditional standardization method for the probe-based NIR 

instruments to the imaging instrument by taking into account of the spatial dimensions of 

the image. Therefore, it is able to compensate for both the sensitivity difference of the 

InGaAs detector at different wavelengths and the illumination unevenness and detector 
' 

inhomogeneities in the spatial dimensions. Recently, Burge; and Geladi [2005] published 

another paper addressing further calibration of this instrument. External standards (i. e. 

the standard reflectance materials that are imaged separately from the images to be 

corrected) are used to correct pixel-to-pixel variances due to camera inconsistencies and 

variation in sample illumination, and internal standards (i. e. a mosaic of different 

standard reflectance materials imaged together with the objects of which the images need 

to be corrected) are used to compensate for signal drift over time due to changes in power 

or temperature effects. 

The shortcoming of the methods in Geladi [2004] and Burger and Geladi [2005] is 

that standard reflectance materials must be used. The ideal standard material for their 

methods is a kind of material with spatial and spectral uniformity. However, such 

standard materials are not easily found for the NIR region [Burger and Geladi, 2005]. The 
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Spectralon materials with different reflectance rates used in their papers are created by 

adding different amount of carbon black to a white Teflon-based material and appear 

inhomogeneous and textured at high resolution [Burger and Geladi, 2005]. Although the 

material was imaged several times and the images were averaged, it is not easy to 

guarantee the uniformity of the material. Maintenance of such material is another problem 

because their physical properties may deteriorate with time due to scratches on the 

surface and shape change affecting precision. Any errors in the reference standards will 

ultimately compromise the standardization result. In addition, the standard materials are 

usually very expensive. 

3.1.2 Error sources in line-scan NIR imaging spectrometers 

The line-scan NIR imaging spectrometer used in this thesis is converted from a 

monochrome area NIR camera by adding an ImSpector imaging spectrograph [ImSpector, 

2003] between the front optics lens and the back InGaAs area CCD array of the camera 

(section 2.2). For each scanned line across the sample, the reflected light is vertically 

dispersed into its continuous spectral distribution by the ImSpector spectrogragh and is 

captured by the area CCD array detector as a spatial-spectral ( x x A) intensity image. By 

moving the sample at a constant velocity in a perpendiculru: direction to the scan, multiple 

lines are recorded by the C9D array and a hY!Jerspectral image ( y x x x A) of the sample 

is obtained. A graphic representation of the imaging system is shown in figure 2. 7. 

-
At a given wavelength band along the spectral axis, any variations among the 

sensors along the spatial axis x will result in streak lines along the direction of motion (y) 

of the object in the monochromatic image at this wavelength band. Figure 3.1 shows the 

mono-spectral NIR image of a red plastic shim with uniform surface and thickness at the 

wavelength band around 1200 nm. The evident streak lines indicate the existence of non­

uniformity of the CCD array along the x axis in the line-scan NIR imaging spectrometer. 

Lighting variations across the lightline also compromise the image quality by 

resulting in contrast difference (e.g. shadowy trends) across the x-y plane of the resulting 

31 



y 

Image. These shadow trends are also evident on the right side of the image in figure 

3.1 (a). The baseline difference between the spectra (figure 3.1 (b)) of the two pixels 

highlighted in figure 3.1 (a) is caused by a combination of the illumination difference 

between the two positions, and the sensor differences between the CCD array elements at 

those locations. 

Furthermore, for a given pixel position in the x-y plane, if the corresponding 

sensors along the A. axis, giving the multi-band spectrum of this pixel, had different 

sensitivity to the light at different wavelength bands, its reflectance spectrum measured 

by the spectrometer would be different from its true reflectance spectrum. Standard 

illuminating sources with peaks at precisely known wavelengths are usually used to 

correct the spectrum [ImSpector, 2003]. 
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(a) (b) 
Figure3.1 (a) The monochromatic image of a red plastic shim with uniform surface and 
thickness at the wavelength around 1200 nm (b) the spectra of the two pixels in the 
image at the locations as marked in figure 3.1(a) 

The spectral data collected from the ND converter of the imaging spectrometer 

represents the signal intensity counts not actual reflectance values. The raw spectral data 

are mainly influenced by the light intensity of the lamp. As the lamp is used, the values 

decrease due to decreasing light intensity. On the other hand, the raw data do not reflect 
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the true intensity of the reflected light because the CCD detector generates charges even 

though there is no light exposure on the detector. These temperature generated charges 

cause a small signal, called dark current, typically varying from pixel to pixel. In precise 

measurements, this offset must be measured and deducted from the AID converter counts. 

In· practice, the raw spectral data are transformed into reflectance or absorbance 

units by comparing with spectra of standard materials. The usual transformation to 

reflectance values is obtained by correcting sample spectra for dark current and dividing 

by a similarly corrected total reflectance spectrum. This is also the inherent correction 

mechanism integrated into the data acquiring software of the NIR spectrometer, and 

completed at the start of an imaging run. The procedure is described as follows: first, a 

spatial-spectral ( x x A) image for a scanned line of the dark current is recorded with the 

lens cap in place to block light from entering the spectrometer; second, a spatial-spectral 

( x x A ) image for a scanned line of a white total reflectance standard is recorded. An 

optical diffuse material (OP.DI.MA.) 15/10 white diffuse plastic with 98% reflectance 

from Gigahertz-Optik (Germany) is used for this purpose [Gigahertz-Optik, 2005]. The 

sample NIR reflectance image R captured by the speCtrometer is separated from the 

system response by taking, pixel by pixel, the ratio of each sample to the white image 

using the following equation [Hyvarinen et al., 1998]:. 

(3.1) 

where ryx). is an element of the hyperspectral reflectance image cube R in the units of 

reflectance percentage, wx). is an element of the raw spatial-spectral image W of a 

scanned line of the total reflectance standard and dx;. is an element of the raw spatial­

spectral image D of a scanned line of the dark current imaged by blocking the lens. The 

above equation inherently compensates for both lighting spatial non-uniformity across the 

scene line, and light source color drift with aging. 

33 



1 
Equation (3.1) is a linear calibration where the coefficient ( ) is found 

WXA -dXA 

from one standard reference value only and therefore is often termed one-point 

calibration. Geladi et al. [2004] found that improvements were obtained by using four 

references including 2%, 50%, 75% and 99% reflectance standards. 

It is worthy to be pointed out that the methods of Geladi et al. [2004] and Burger 

and Geladi [2005] can not be used for line-scan imaging spectrometers because of the 

different image capturing mechanism between the filter based and the line scan imaging 

spectrometers (Section 2.2.2). Line scan imaging spectrometers take the image of a 

moving object. It is difficult to precisely image the same sample several times and then 

calculate the average image to eliminate the influence from the nonuniformity of the 

surface of the standard material. In industry, line-scan NIR imaging spectrometers are 

being used for on-line process monitoring and quality control. Thereby, a practical 

calibration method for line scan NIR imaging spectrometers is needed in practice. 

In this chapter, we develop a simple method for calibrating the line-scan imaging 

spectrometer to reduce the systematic errors along the spatial axis x and the spectral axis 

A, without using the expensive uniform reflectance standard materials with known 

spectra. 

3.2 Methodology 

Color-coded plastic shims were used for the calibration. Each shim looks uniform 

and has even thickness at different positions. For the NIR image of the plastic shim taken 

by the line scan imaging spectrometer, each scanned line is measured by the same line of 

sensors in the InGaAs CCD array of the camera. Due to the uniformity of the plastic 

shim, it is reasonable to assume that the variation between the scanned lines (in the y 

direction) is random noise. Calculating the average along the dimension of y in an image, 

we obtain the average spatial-spectral intensity image of the scanned lines (called average 

line image for the purpose of this thesis, with the spatial-spectral resolution of 
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126 x 110 pixels.). Based on the "uniformity" assumption, the noise from the physical 

variation in the plastic shim is almost eliminated by this averaging and thereby the noise 

in the average line image is only from the difference between the sensors on the InGaAs 

CCD array and the unevenness of the illumination. Then by calculating the average along 

the dimension of x in the average line image, we obtain the average multi-band spectrum 

(called average spectrum for the purpose of this thesis, with the spectral resolution 

110 x 1) of the 126 spectra in the average line image. This average spectrum is the 

average spectrum of all the pixels in the NIR image. The influence of the variation 

between the sensors on the CCD array along the spatial axis of x is reduced by the second 

averaging, and the influence from unevenness of the illumination which is not eliminated 

by equation 3.1 is also reduced. This average spectrum is almost free from the influence 

of variations in the imaging system and will be used as the reference spectrum for the 126 

spectra in the spatial-spectral average line image. Our objective is to get a correction 

factor for each element in the spatial-spectral average line image, which also means 

getting a correction factor for each sensor of the InGaAs CCD array. Each scanned line 

forming the hyperspectral image will be corrected by the factors and thereby each 

element in the hyperspectral image cube is calibrated. 

Four different plastic shims with the colors of coral, pink, white and yellow were 

imaged. Six images were taken, one at each of six different locations on each shim. 24 

images were taken totally. Each image had 200 scanned lines,in they direction. The NIR 

hyperspectral image had a y x x x A, dimension of 200 x 126 x 11 0 . The images were in 

the units of % reflectance ratio to the white reference OP.DI.MA. calculated with 

equation (3.1). The spatial-spectral average line image and the average spectrum of each 

image are calculated. Figure 3.2 illustrates the average line image using a false color 

image, figure 3.3 shows the plot of two spectra on the average line image and figure 3.4 

shows the average spectrum of the image. It is observed that the spectrum in figure 3.4 is 

less noisy than the spectra in figure 3.3. The average line images and the average spectra 

of the 24 images are used to estimate the correction factor for each sensor in the InGaAs 

CCD array. 
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Figure 3.5 (a) shows the relationship between the elements of the 24 average line 

images at the spatial-spectral position x = 30 and A= 90 and their reference, the average 

spectral values at A = 90. Figure 3.5 (b) shows the relationship between the elements of 

the 24 average line images at the position x = 100 and A = 70 and their reference values. 

Both plots indicate that there is a linear relationship between them as denoted by the 

straight line in the each figure. The same relationship is also observed between the 

elements of the average line images at other positions and their reference values. That 

relationship can be expressed as 

(3.2) 

Where s -t is the average spectral value at the wavelength band A , l x-t is the value 

of the average line image at the spatial-spectral coordinate position x and A, a x-t is the 

intercept coefficient and flx-t is the slope coefficient. The coefficients for all the elements 

in the average line image are obtained by fitting a line regression model by least squares 

between the average line images and the average spectra ofthe 24 images. Figure 3.6 and 

figure 3.7 illustrate the slope matrix p and the intercept matrix a by visualizing them as 

false color images. It can be observed that the streak lines also appear in a and p which 

indicates that the pixels along the axis x have different correction factors. The slope 

matrix p and the intercept matrix a then will be used to filter each scanned line in the 

NIR image R to counteract systematic errors from the imaging system using . the 

following equation: 

(3.3) 
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Figure 3.2 Average line image of the 

red plastic shim 

0.75,__,.-----,----.----.--.,..--;::::===::::;-J 

l- y=30 X=40 I 
- y=30,x= 11~ 

0.7 

0., 

0.<5 

o.~~----=,oo::-----:,:'=,oo---:-:,""''::------::::,300::-----:,:'=,oo=-c:,!500'::-------c':,.""cc------c:,oo 
Wavelength 

Figure 3. 3 Two spectra from the average line 
image of the red plastic shim at x =59 and 

x=60 
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Figure 3.4 Average spectrum of all the pixels in the NIR image of the red plastic shim 
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(a) (b) 
Figure 3.5 The elements in the average line images vs. their reference values (a) The 
elements in the 24 average line images at the spatial location x = 30 and A= 90 vs. 
their reference, the average spectral values at A = 90 . (b) The elements in the 24 
average line images at the spatial location x = 1 00 and A = 70 vs. their reference, the 
average spectral values at A = 70 . 
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Figure 3.6 Image presentation of the slope 
matrix {J ' 

3.3 Results 

L---------==~========~x 
Figure 3.7 Image presentation ofthe 

intercept matrix Ol ' 

Figure 3.8(a) shows the corrected result of the image in figure 3.1. It is observed 

that both the streaks caused by the non-uniformity of the CCD array and the shadow 

caused by the unevenness of illumination along the spatial axis x are reduced remarkably. 

The small thickness variation in the sample, which is submerged by the systematic noise 
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in the original images, is shown more clearly after the correction. Figure 3.8(b) shows the 

corrected results of the spectra of the two pixels in figure 3.1. Compared with the plots in 

figure 3.1 (b), the baseline shift is remarkably reduced and the two spectra look more 

consistent with each other, which illustrate the influence of the uneven illumination along 

the axis x and the sensitivity difference between the sensors along the spectral axis A, are 

reduced. 
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(a) (b) 
Figure3.8 Correction result (a) Corrected monochromatic image ofthe red plastic shim at 
wavelength band 1200 nm (b) The corrected spectra of the two pixels marked in figure 
3.1 (a) 

The calibration model is also tested on another image not used in building the 

calibration model. A yellow plastic shim with a fingerprint and some glue residual from a 

removed piece of adhesive tape at the center was imaged. Since the spectral channels are 

highly correlated, multivariate image analysis (MIA) technique using multi-way principal 

component analysis (MPCA) decomposition [Geladi et al., 1996] was used to extract the 

variations in the hyperspectral image. Two score images which explained 99.99% 

variation were adopted. Figure 3.9(a) shows the composite false color image by 

combining the first two score images. It can be observed that the streak lines blur the 

fmgerprint and the glue residual and make them less visible. This indicates that the spatial 

variation in the sensors of each pixel location is much greater than the signal arising from 
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the fingerprint and the glue residual. The corresponding t1-t2 score plot for this 

uncorrected image is shown below in figure 3.9 (b). It is observed that the pixels ofthe 

background scatter over a wide area in the t1-t2 score space. To delineate the background 

from the fingerprint and the glue residual, the masking/highlighting strategy is used by 

manually creating a mask in the score space scattering plot and highlighting the 

corresponding pixels in the composite false color score image space [Geladi et al., 1996] 

(figure 3.9 (c) and figure 3.9 (d)). Although the masking procedure has extracted the 

essence of the fingerprint and glue residual from the removed tape because of the 

influence of streak lines, the boundaries between the fingerprint and background and 

between the fingerprint and residual glue region are not clear. 

(a) (c) 

(b) (d) 
Figure 3.9 MIA result of the original NIR image of a plastic shim with a finger print and 
some glue residual at the center (a) Combined tl+t2 false color score image (b) tl-t2 
scattering plot (c) Combined t 1 +t2 false co lor score image with the background marked 
(d) tl-t2 scattering plot with the background pixels marked 

Figure 3.10 shows the result of the same MPCA-based MIA procedure after pretreating 

the NIR image by the calibration model, equation 3.3 . It is shown that the fingerprint and 
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the glue residual from the strip of adhesive tape are more clearly distinguished from the 

background and from each other in the composite false color image and the background 

pixels cluster much more tightly in the scattered t1-f2 score plot. Consequently, the 

masking/highlighting result is improved. 

(a) (c) 

(b) (d) 
Figure 3.10 MIA result of the corrected NIR image of a plastic shim with a fmger print and 
some glue residual at the center (a) Combined t1+t2 false color score image (b) t1-t2 
scattering plot (c) Combined t 1 +t2 false color score image with the background marked (d) 
t 1-t2 scattering plot with the background pixels marked 

3.4 Conclusions and Discussion 

From the visual difference between the images before and after the correction, it 

can be seen that the instrument calibration method proposed is an effective way to reduce 

the systematic errors from the line-scan imaging system and to improve the accuracy of 

the NIR image. Both of the inconsistencies along the axis x and the axis A, in the imaging 

system are corrected. The benefit to the result of subsequent image analysis is also 
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demonstrated with an example. The method provides a practical and inexpensive 

approach since it only employs homogeneous objects with even thickness instead of using 

reflectance standard materials which are very expensive and difficult to maintain. 
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Chapter 4 

NIR Imaging for Classification of Wheat Kernels 

This chapter is a preliminary feasibility study of applying NIR imaging for the 

classification of different wheat kernels. SIMCA and PLS-DA methods are employed for 

the classification. The implementation of these methods is also discussed. 

4.1 Introduction 

Canada is among the top exporters of gram m an increasingly 

sophisticated and competitive international market [CGC, 2005]. Canada has a stringent 

grain inspection and grading process and hence is known for its superior quality grain in 

the global market. The main gain is wheat in Canada [CGC, 2005]. Total wheat 

production was 25 .86 million metric tons in 2004 [USDA, 2004]. Based on the 

information of cultivars and the growing region, the wheat in Canada is designated to 

different classes, such as Canada Western Red Spring (CWRS), Canada Western Hard 

White Spring (CWHWS), etc. For each class, grades are carefully established by 

Canadian Grain Comrnision (CGC) to describe the processing qualities of the grain. 

Grading factors are associated with adverse growing conditions in Canada and affect the 

edibility and end-use performance of common wheat. The frequently encountered grading 

factors include fungal infections such as fusarium, ergot and mildew, insect infections 

like midge and the influences from growing and storing conditions, pre-harvest sprouting 

for example. CGC is responsible for providing the definition or standard of each grading 

factor and the extent or values of the factors in different grades. Generally, each class of 

Canadian wheat is graded in four levels. The lower the grade the better the quality. 

Wheat is graded by its visual characteristics. At present, wheat inspection and 

grading are carried out manually in Canada. When wheat is unloaded at the elevators, 

CGC staff grade the wheat samples by comparing them to the definition of different 

grades and to the standards that represent, as close as possible, the minimum level of 
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quality expected for a particular grade. The sample in review must be better than or equal 

to these resources, otherwise it is assigned to the next lower grade. This grading process 

is, however, subjective and is limited by experience and expertise of the individual. The 

decision making capabilities of a grain inspector can be seriously affected by his/her 

physical condition such as fatigue and eyesight, mental state caused by biases and work 

pressure and working conditions such as proper lighting, climate, etc. Human 

involvement induces problems like inconsistency, high labor cost, and fatigue. This can 

lead to economic losses due to poor grade determinations. As a result of the increased 

number of cultivars and amount of grain handled in recent times, it is difficult to train 

grain inspectors every year to grade all incoming grain objectively [Delwiche and Norris 

1993]. In addition, the manual process is usually time-consuming. 

These problems can be eliminated by the use of an automated system based on the 

principles of machine vision. Machine vision systems (MVS) and pattern recognition are 

used to determine external features and internal characteristics of products giving 

objective results rapidly. The feasibility of using MVS for identification and classification 

of seeds has been reported widely [Barker et al. 1992; Sapirstein and Bushuk, 1989; 

Symons and Fulcher, 1988; Zayas et al. 1986]. MVS based automated grain analysis 
' ·• could offer objective and rapid analysis of grain and reduce'the subjectivity inherent in 

the grain quality assessment process. Majumdar et' al. have published a series of papers 

[Majumdar et al., 1996, 1999, 2000a, 2000b, 2000c, 2000d] on classifying individual 

kernels of different species of Canadian grains using: the color, textural and 

morphological features from the color images. Many references on color machine 

imaging in the grain industry can be obtained from these papers. 

Recently, automated grain analysis instruments based on MVS have been 

developed and appeared in the market. One such product is the Dupont ™ Acurum ™ 

system. It can instantly analyze samples of over 3000 seeds at a time, measuring physical 

characteristics such as texture, length, width, as well as color characteristics. This 

information is then processed into judgments, using artificial intelligence and neural 
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network modeling. This system is capable of accessing most of the visual grading factors 

defined by the CGC. 

However, it is reported that RGB based MVSs do not work well in evaluating 

sprout damage, one of the most important grading factors affecting the processing 

performance of wheat. Sprout damage is due to pre-harvest germination. Under 

conditions of prolonged dampness or rain, wheat kernels may start to germinate while the 

wheat crop is lying in the swath. This may also occur in lodged stands or, under very 

warm and wet conditions, when the mature crop is still standing. Germination begins 

when mature kernels absorb water and generate enzymes that break down stored starch 

and protein in the endosperm. The enzymes release sugars from starch and amino acids 

from proteins which nourish the growing embryo. The most important of these enzymes 

is called a-amylase. Sprout damage is detrimental to bread quality because of the action 

of the starch degrading enzyme a-amylase which is present in very high levels in 

sprouted wheat [Dexter, 1998]. The a-amylase degrades starch during mixing and 

fermentation reducing the water holding capacity of starch. Baking absorption must then 

be reduced, lowering the number of loaves of bread obtained from a given weight of 

flour, an important economic consideration to bakers. Loaf volume is often not affected 

by sprout damage, and can actually increase due to more rapid gas production during 

fermentation [Dexter, 1998]. In addition, sprout damage leads to sticky dough and 

gummy crumb which,causes handling problems. Gummy crumb causes build-up on slicer 

blades and interferes with effective bread slicing (Fig. 4.1 ). All of the effects of a­

amylase are exaggerated for baking processes with long fermentation times because a­

amylase continues to degrade starch during the fermentation stage. Loafs of bread made 

from different levels of sprouted wheat are shown in figure 4.1. The influence of sprout 

damage of wheat kernels to the end-product quality can be easily observed. 
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sound sprouted severely sprouted 
Figure 4.1 The loafmade from sprouted wheat is sticky. When it is sliced, it shreds. The 
problem is exacerbated with the loaf made from severely sprouted wheat, Courtesy CGC 

Severely sprouted kernels Sprouted kernels Sound kernel 

Figure 4.2 Samples ofwheat kernels with different grades of sprout damage, courtesy 
CGC 

It is not surprising that sprout damage is a critical grading factor in Canada's 

grading system. All classes of Western Canadian wheat are assessed for sprouted and 

severely sprouted kernels. All classes of eastern Canadian wheat are assessed for sprouted 

kernels [CGC, 2006]. For each grade, CGC has specified the tolerance of (severely) 

sprouted kernels in term of the percentage of the weight of (severely) sprouted seeds to 

the whole sample. Currently sprout damage is assessed visually. Figure 4.2 demonstrates 

the definition sample of sprouted and severely sprouted wheat kernels from the website of 

CGC. It can be observed that: 

1) There is obvious wrinkle on the surface of the severely sprouted seeds. 
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2) The color changes after sprouting. There is grayish discoloration on the surface of 

the sprouted seeds. 

3) The germ can be observed at one end of the sprouted seed and is more obvious in 

the severely sprouted seed). 

However, it can be observed that there is large variation m the visual 

characteristics between different sprouting levels of wheat kernels. Detection of these 

features also depends on the orientation of the kernels when they are imaged. For 

example, it is easy to detect the germ and discriminate between the kernels if the dorsal 

side is on top, however if the crease side on top, it is hard to see the difference (illustrated 

in Figure 4.3). It seems that "visual" features are not a "robust" characteristic that can be 

used to distinguish the sprouted from the healthy wheat kernels. This is probably the 

reason why MVSs based on RGB images are not "smart" enough to discriminate the 

sprouted kernels from the healthy kernels. 

NIR images are a type of chemical image in which each pixel represents the NIR 

spectrum of the location on the object. The NIR spectrum has been widely used in 

industry to measure the chemical variation of organisms. It is noticed that most grading 

factors for wheat quality evaluation are involved with the chemical variations in or on the 

surface of the kernels. From this perspective, MVS based on NIR imaging should be a 

promising means for grading wheat kernels. Most literature and all the MVS for grain 

grading in industry focus on RGB imaging technology and no work has been reported on 

using NIR imaging technology. The objective of this chapter is to perform a preliminary 

feasible study using NIR imaging technology for the segregation of different kinds of 

kernels related to the wheat grading factors. In section 4.2, NIR imaging is used to 

separate the sprouted kernels from the healthy kernels. SIMCA and PLS-DA algorithms 

are employed to do the classification. In section 4.3, NIR imaging is used for separating 

four classes of grain kernels including healthy, sprouted, fusarium infected wheat kernels 

and barley kernels. Two implementation strategies of the PLS-DA algorithm are used for 
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this case. In section 4.4, the conclusions from the results are summarized. Some 

comments on the classification methods are given. 

(a) (b) 
Figure 4.3 RGB images ofwheat kernels: (a) sound kernels (b) sprouted kernels The 

kernels marked with red circles are sprouted kernels with the crease side on top 
when imaged; the kernels marked with blue circles are sprouted kernels with the 

dorsal side on top when imaged 

4.2 Discriminating Sprouted Wheat Kernels from Healthy 
Kernels 

The samples used in this study include 164 healthy Canada West Red Spring 

(CWRS) wheat kernels, 132 sprouted CWRS kernels, 93 fusarium infected CWRS 

kernels and 86 barley kernels. Six images are taken of them using the NIR imaging 

spectrometer described in section 2.2. The information about the images is listed in table 

4.1. Figure 4.4 shows the monochromatic NIR images of some healthy kernels and some 

sprouted kernels at the wavelength 1450 nm. Figure 4.5 shows the spectra of two pixels, 

one from a healthy kernel and the other from a sprouted kernel. Since we want to 

discriminate between the kernels in the images, the features extracted from the image 

should be able to represent the character of each kernel. In this case study, the average 

spectrum of all the pixels of the kernel is used as its feature. 

The kernels in Image 1 and Image 2 in table 4.1 are used as the training set to 

build the calibration model to separate the healthy kernels from the sprouted kernels and 
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the kernels in the other images are used as the test set for validating the model. SIMCA 

and PLS-DA are employed to classifY these two classes of wheat seeds. 

Image No. Class No. of kernels Utility 

1 Healthy 83 Training data 
2 Sprouted 64 Training data 
3 Healthy 81 Test data 
4 Sprouted 68 Test data 
5 Barley 86 Test data 
6 Fusarium infected 93 Test data 

Table 4.1 Information on the wheat kernels used in this chapter .. ,, 

(a) 
Figure 4.4 Monochromatic images at 
wavelength 1450 nm (a) healthy kernels 
(b) sprouted kernels 
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Figure 4.5 Reflectance spectra of two pixels 
in the left images 

4.2.1 Classification using the SIMCA algorithm 

A PCA model with three components, based on cross-validation, is built for the 

features from image 1 and denoted as "healthy model'. Another PCA model also with 

three components is built for the features from Image 2 and denoted as "spout model". 

The information of the two models is summarized in table 4.2. It is observed that more 

than 99% of variation in each class is explained. 
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Healthy model Sprout model 
Component 2 

R cum Component 2 
R cum 

1 0.9108 1 0.9137 
2 0.9893 2 0.9893 
3 0.9943 3 0.9944 

Table 4.2 Information of the two sub PCA models in the SIMCA 

To decide the class assignment of an unknown kernel, its feature is projected to 

each of the two models. The classification decision is made by comparing the distances of 

the feature to the two PCA models (DMoDX). The Euclidean distance is usually used. It 

describes the vertical distance from the sample to the hyper plane formed by the PCs of 

the PCA model and represents the variation not explained by the PCA model. It is 

calculated as the root ofthe sum of squares ofthe residual ofthe sample projected to the 

hyper plane. A small Euclidean distance indicates that the sample has characteristics that 

are similar to the model. In SIMCA, the classification decision for one sample is made 

following the rules as followed: 

1. If the Euclidean distances of the sample to both models are larger than the 

95% confidence limits of the distances (the statistics calculated using the 

samples in the calibration data set), the sample is recognized as not belonging 

to the two classes in the SIMCA model. 

2. If the Euclidean distance to one model is below the 95% confidence limit but 

the distance to another model is larger than the 95% confidence limit, the 

sample is assigned to the class descnbed by the former model. 

3. If the Euclidean distances to both of the two models are below the 95% 

confidence limits, the sample is assigned to the class with the smaller 

"reduced" Euclidean distance which is the ratio of the Euclidian distance to 

the 95% confidence limit. 

Figure 4.6 shows the "reduced" Euclidean distances ofthe sprouted kernels in the 

test set to the models. It can be observed that the distances of most kernels to the sprouted 
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models are below and to the healthy model are above the 95% confidence limit. 

According to the decision rules, most kernels are correctly classified (marked with green 

triangles). It also shows that 6 kernels (marked with blue triangles) are far from both 

models and not recognized by the models as belonging to either. Three sprouted kernels 

are close to both models but "relatively" closer to the healthy model and therefore are 

misclassified as the healthy kernels (marked with red triangles). The classification results 

of all the kernels both in the training set and in the test set are illustrated with false color 

images in figure 4.7. The results are summarized in table 4.3. However, it is observed 

that the classification result for samples not belonging to either of the two classes is not 

good. There are 18 barley and 14 fusarium-infected kernels inaccurately recognized as 

sprouted seeds. It is interesting to observe what they look like after being projected to the 

hyper plane formed by the PCs of the sprout model. Figure 4.8(b) illustrates the 

"reduced" Euclidean distances ofthe barley kernels to the sprout model and figure 4.8(a) 

shows their "reduced" Hotelling T2 (which is the ratio of the Hotelling T2 to the 95% 

confidence limit) in the hyper plane formed by the PCs of the sprout model. It is observed 

that all of the Hotelling T2s are outside the 95% confidence limits meaning that all the 

barley kernels are far from the center of the sprout model and are actually outliers. 

However, this information can not be detected by only using the Euclidean distance. 

Therefore, it is reasonable to take the Hotelling T2 statistic into account when judging the 

class belonging of the sample. A second usually used distance is called "combined 

distance" in the SIMCA algorithm. It is a combination of the Euclidean distance and the 

Hotelling' s T2 statistic. In the PLS _Toolbox 3. 5 for Mat lab [Eigenvector, 2004], these two 

distances are given the same weight. The "reduced" combined distance is calculated as 

[Eigenvector, 2004]: 

(EijJ
2 

+(Tij2J
2 

E1 Tf 
(4.1) 
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where Eu is the Euclidian distance of sample i to the PCA model j. 'F;} is the 

Hotelling T 2 of sample i in the PCA model j. E1 is the 95% confidence limit of the 

Euclidean distance calculated using the samples for building the PCA model j. Tf is the 

95% confidence limit of the Hotelling T 2 statistic of the PCA model j. From the 

geometric point of view, this distance represents the distance ofthe sample to the center 

ofthe hyper plane formed by the PCs ofthe PCA model. It is a distance standard which 

can be used to detect the outliers in two directions, one is vertical to the hyper plane and 

the other in the hyper plane. Figure 4.9 shows the combined distances of the barley 

kernels to the two PCA models. It is observed that all the distances are outside the 95% 

confidence limit. According to the decision rules, they are correctly assigned to neither of 

the two classes. The classification result based on the "combined" distance is illustrated in 

Figure 4.1 0. The results are summarized in table 4.4. Compared with the result of using 

the Euclidean distance to the model, it is observed that the accuracy rate is greatly 

improved for the barley samples in the testing dataset. However, the fusarium-infected 

samples still are not well separated from the healthy and sprouted classes. 
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(a) (b) 
Figure 4.6 (a) Reduced Euclidean distances ofthe sprouted samples in the test set to 

the healthy model. (b) Reduced Euclidean distances of the sprouted samples in the test 
set to the sprout model 
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Healthy Sprouted Healthy Sprouted Barley 
Fusarium 
infected 

Training set Test set 
Figure 4.7 Classification result ofthe SIMCA using the Euclidean distance 

Training set Test set 
Samples belonging Samples not belonging 

Classes Healthy Sprouted 
to the two classes to the two classes 

Fusarium 
Healthy Sprouted Barley 

infected 
No. ofkemels 83 64 81 68 86 93 

Classified as not 
belonging to 

4 4 8 6 68 79 
either class (blue 

color) 
Misclassified 0 0 1 3 18 14 

Accuracy rate 94.6% 87.9% 82.1% 

Table 4.3 Statistics of the classification result using the Euclidean distance in SIMCA 
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) of the barley samples to 
the healthy model (b) Reduced Euclidean distances of the barley samples to the sprout 

model 

Rt>duced cornbllltd dl3! ances Dfthe M rley umples to the healthy model 
18 

~ \6 .. 
e 
£' 14 

~ 12 .. 

i 10 .. 
• ~ 

11 • 
1i 6 
E 

• 

·~. • 
• 

.. . 
• • • ... • • • 

.. 
• 

.. 

• 

8 
11 4 
~ 

.. ... .. .. ........ ... . ... . ... ..... .. .... ~-..... ...· ...... """ ... . ....... 
J 2 . ... . ...... · ............ ., ~ :· 

0o~~~~o --~~~~~~~~~ro~~oo~~ro~~oo=-~oo 
Sample 

Rtduced Combmf'd d141tances of the bar1ey samples to ll'le sprout model 
14 • 

• not bilonetng 10 any clan j 

112 
a 
! 10 ... 

• 

. . 
;; .. 
~ G " 
~ .. ... .... 

.. .. 
t 4 ... -- ... !• ~ .. 8 ... • ... • • .. 

.. 
~ .. .. ~·... . .. 
11 2 ............. ,.,~.-.......... V"._."','l .... ~-
a • • ~ • 

0o~~~~o--~~~~~~~~~~ro~~oo~--ro=---oo=-~oo 
ample 

(a) (b) 
Figure 4.9 (a) Combined distances of the barley samples to the healthy model (b) 

Combined distances of the barley samples to the sprout model 
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Healthy Sprouted Healthy Sprouted Barley 
Fusarium 
infected 

Training set Test set 
Figure 4.10 Classification result of the SIMCA using the "combined" distance 

Training set Test set 
Samples belonging Samples not belonging 

Classes Healthy Sprouted 
to the two classes to the two classes 

Fusarium 
Healthy Sprouted Barley 

infected 
No. ofkemels 83 64 81 68 86 93 

Classified as not 
belonging to 

2 3 5 6 86 74 
either class (blue 

color) 
Misclassified 0 0 4 2 0 19 
Accuracy rate 96.6% 88.6% 89.4% 

Table 4.4 Statistics of the classification result usmg the "combmed" distance 

4.2.2 Classification using the PLS-DA algorithm 

The PCA sub models in SIMCA are computed with the goal of computing the 

nature of the variation within each class. It is not easy to obtain the information about the 

classification such as which wavelength range is important for discriminating the classes. 

This information is usually important in practice. For example it will be instructive for 

choosing new suitable instrumentation. PLS-DA is more suitable than SIMCA to achieve 

this objective. PLS-DA is a special version of the PLS regression algorithm with the 

55 



objective of classification by setting the dummy y variables to integer values of 0 and 1 

(Section 2.4). Therefore, PLS-DA also enjoys the advantages of ordinary PLS for 

continuous values of Y such as noise reduction and statistics that assist with variable 

selection. 

Based on cross-validation, a PLS-DA model is fitted to the training dataset in 

table 4.1. A model summary is shown in table 4.5. It is observed that the model is very 

complicated having 5 components. This indicates that there is much variation in the 

feature space that is not directly related to the classification. It is also noticed that the 

fraction ofthe variance explained in y, R2(y)cum and the cross-validated Q2(y)cum are quite 

low in the first two components compared with the fraction of the variance explained in 

the features, R2(x)cum· This means that the first PLS component is mainly used to explain 

the Y -uncorrelated variation in X. The regression coefficients of the PLS model for the 

dummy variable y, is plotted and shown in figure 4.11. It is shown that the important 

wavelength variables that contribute to the separation of the two classes are the 

wavelengths near 950 nm, lOOOnm, 1100 nm, 1200 nm and 1400 nm. 

Com. R2(x)cum 2 2 Misclassified in Misclassified in the 
R (Y)cum Q (Y)cum the training set test set 

1 0.904 0.152 0.14 51 61 
2 0.988 0.258 0.241 45 62 
3 0.993 0.811 0.797 5 8 
4 0.997 0.85 0.836 0 5 

5 0.998 0.869 0.852 0 3 
Table 4.5 Summary of the PLS-DA model for classification ofhealthy and sprouted 

kernels 

. 
~ .. 
I 

Figure 4.11 Regression coefficients of the original PLS-DA model for y 1 
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To simplify the PLS model, the OSC method [Wold et al. 1998] is employed to 

prefilter the feature data before fitting a simpler PLS-DA model. The 0-PLS algorithm 

[Trygg and Wold, 2002] is used in this case due to its advantage over the other OSC 

algorithms in solving the overfitting problem and also due to it using a similar framework 

with the NIPALS algorithm used in the PLS modeling. In 0-PLS, the number of the 

orthogonal components is decided by the ratio llw ortha ll !l~ll which represents the 

percentage ofthe y-uncorrelated variation of the feature data with respect to the variation 

in the covariance direction. It converges to zero if the "proper" number of orthogonal 

components has been calculated. The ratio llw orth a ll !l~ll of this study is shown in Figure 

4.12, which indicates three or four orthogonal components are reasonable. Four 

orthogonal components are used and 86.8% of variation in the X is eliminated(Table 4.6). 

0 2 

3 4 5 

0-PLS component number 

Figure 4.12 Ratio ofllworthoii/IIPII 
for each 0-PLS component 

The 0-PLS-DA model 

ComQ. R2(x)cum R
2
(Y)cum 

2 Q (Y)cum 
Ortho. Comp. 1 0.469 

Ortho. Comp. 2 0.837 

Ortho. Comp. 3 0.848 

Ortho. Comp. 4 0.868 

PLS Comp. 1 0.998 0.828 0.826 

Table 4.6 Summary of the 0-PLS-DA model 
for classification ofhealthy and sprouted 

kernels 

A new PLS-DA model is built between the 13.2% variation left in the feature 

space and the dummy matrix Y. One PLS component is used for this PLS-DA model 

(Table 4.6). The coefficient plot for variable YI is shown in figure 4.13. It is observed that 

the important wavelengths for separating these two classes are at the high wavelength 

range. It needs to be noted that the prediction variables in the simple PLS-DA model of 

0-PLS-DA are not the original wavelength variables, but the filtered wavelength 

variables. This issue is discussed in detail in Chapter 5. 
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wave lengt h 

Figure 4.13 Coefficient plot ofthe 0-PLS-DA model for y 1 

The class assignment of a new unknown sample is decided based on its predicted 

y values from the PLS-DA model. A threshold value for separating the two classes is 

calculated for each y variable using the predicted y-values from the training data. 

Figure 4.14 illustrates how the threshold is calculated for y 1 in this case. The red 

bars are a histogram of the predicted values of y, for the healthy samples in the training 

data set and the green bars are a histogram of the predicted values of y, for the sprout 

samples in the training data set. If a normal distribution is fitted to each of those 

histograms, they would cross at y 1-pred = 0.45. This means the probability of measuring a 

sample with the predicted y 1 value 0.45 for the healthy class is equal to the probability of 

measuring it for the sprout class. So, 0.45 is set as the threshold for separating the two 

classes based on the predicted values ofy,. 

Figure 4.14 Histogram of the predicted values of y 1 for the samples in the training set. 
The green plot is the normal distribution fitted to the predictions for the healthy class and 

the blue plot is the normal distribution fitted to the predictions for the sprout class 
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For an unknown sample, the normal distribution marked with the green line in 

figure 4.14 is used to calculate its prior probability of being classified as the healthy, 

P(y1 1 H) and the normal distribution marked with the blue line in figure 4.14 is used to 

calculate its prior probability of being classed as sproutP(y1 IS). Assuming that sample 

definitely belongs to one of the two samples, the posterior probability of this unknown 

sample being classified as the healthy is calculated as 

P(H I ) - P(yl I H) 
Yl - P(y l I H)+P(y l IS) 

(4.2) 

where YI is the y1-value predicted from the PLS-DA model for the sample in 

question. The probability of the sample being classed as the sprout class is calculated as 

P(S I ) - P(y l I S) 
yl - P(y l I H) + P(yl I S) 

(4.3) 

The sample is assigned to the class with higher posterior probability. 

Before using the above equations to calculate the probability for an unknown 

sample, its combined distance as expressed in equation 4.1 to the PLS-DA model is 

calculated. If its reduced combined distance to the model is larger than the 95% 

confidence limit, it is classified to neither of the classes. If below the 95% confidence 

limit, it is assigned to the class with higher posterior probability. This is the 

implementation ofPLS-DA in the PLS_Toolbox 3.5 for Matlab [Eigenvector, 2004]. 

The classification result for the samples in the test data set is shown in figure 4.15. 

Compared with the results from SIMCA (Figure 4.1 0), the results for the healthy and 

sprouted kernels are better, however the results for the barley and fusarium infected 

kernels are worse. 64 barley and fusarium infected kernels are incorrectly classified as 

healthy or sprouted kernels. This is because the combined distance is not an effective 

measure for PLS-DA to identity the sample from a third class. Unlike SIMCA, in which 

each sub-PCA model explains the nature of the variation of each class, the PLS-DA 
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model focuses on finding the score space that maximally separates between the two 

classes. Therefore a small combined distance to the PLS-DA model does not necessarily 

mean that the sample belongs to these two classes. Figure 4.16 illustrates the combined 

distances ofthe barley and fusarium infected wheat kernels and shows that the distances 

of some kernels are below the 95% confidence limit. When calculating the probability of 

the class assignment, these kernels are assumed defmitely belonging to one ofthe classes 

in the calibration set. This is the reason why so many barley and fusarium infected kernels 

are misclassified. This result indicates that all classes that will appear in the future should 

be included in the PLS-DA model so that the model can recognize them and provide 

accurate classification results . 
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Figure 4.15 Classification result ofthe 0-PLS-DA model for the samples in the 
test set 
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Figure 4.16 "Reduced" combined distances ofthe barley and fusarium infected kernels in 
the test set to the 0-PLS-DA model 

4.3 Multi-category Grain Classification Using PLS-DA 

Most of the factors related to wheat grading are involved with chemical changes 

inside or on the surface of wheat kernels. Therefore, it is expected that NIR imaging 

technology should work well in discriminating between them. In this section, we further 

evaluate the feasibility of NIR imaging to classify four classes of grain: healthy wheat, 

sprouted wheat, fusarium infected wheat and barley kernels. They will be classified using 

the PLS-DA algorithm based on the features from their NIR images. At the same time, 

this will be used as a case to study the performance of the PLD-DA algorithm for multi­

category classification. 

One image of 89 barley kernels and one image of 97 fusarium infected wheat 

kernels are used to build a multi-class PLS-DA model, together with the healthy and 

sprouted images used for the calibration data in the previous section. The test data used 

for the previous section is also used for validating the model. The average spectrum of the 

kernel is used again as its features. Based on cross-validation, a PLS-DA model with 8 

components is fitted for the training data. The classification result of applying the model 
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to the test data set is illustrated in figure 4.18(a) with false color images. It is observed 

that 14 kernels are misclassified. The accuracy rate is 95.75%. From this result, it can be 

said that NIR imaging technology is feasible for separating these four classes of grain. 

A single PLS-DA model for discrimination between multiple classes can be 

considered as a classifier combining K one-vs-rest sub-classifiers if the N x K dummy 

matrix Y is set up in the form where a one indicates that an observation belongs to a class 

and a zero that it does not (where K is the number of classes and also the number of the 

columns of the dummy matrix Y and N is the number of observations). For each column 

of the dummy matrix Y, at least one PLS component is needed to separate the samples 

withy-value one in this column from the other samples. The PLS components of the final 

PLS-DA model are the combination of the components of all the sub-classifiers. Figure 

4.17 illustrates the prediction from the final PLS-DA model for each column of the Y 

matrix and the threshold for separating the samples of one class from the other samples. It 

is observed that the sprouted kernels are not well separated from the other samples (figure 

4.17(b )). This indicates that when PLS-DA is used for multi-category classification, in 

some situations, it is not easy to find a discriminant line or plane in the score space to 

accurately separate each class from all the other classes. 

In the field of pattern recognition, most classifiers were initially designed for 

binary classification, such as support vector machine (SVM) [Vapnik, 1998] and multi­

layer perceptrons [Minsky, 1969]. Two strategies are usually used when they are used for 

the multi-class situation. One is the so called one-vs-rest strategy in which K binary 

classifiers that separate each class from all the others are built, the other one is the so 

called one-vs-one strategy in which K(K-1)12 binary classifiers are built between every 

two classes to separate between them. The class assignment of a sample is decided by 

combining the results of the K (or the K(K-1)12) classifiers. The Max-wins voting strategy 

is usually used to make the decision, i. e. the result of each binary classifier votes the 

sample to one class and the class with the highest number of votes is set as the sample's 

class assignment. It has been illustrated that the one-vs-one strategy usually gives better 
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results than the one-vs-rest strategy [ Statnikov et al., 2004 ]. The philosophy behind the 

advantage ofthe one-vs-one strategy is that "even if the entire multi-category problem is 

non-separable, while some of the binary sub-problems are separable, then the one-vs-one 

can lead to improvement of classification compared to one-vs-rest" [Statnikov et al., 

2004]. 

This strategy is applied here to PLS-DA. Instead of building a single PLS-DA 

model for all the classes, we build K(K-1)12 PLS-DA models between every two classes 

and then combine the results of all the models to make a classification decision. It should 

be easier to find a discriminating line or plane in the score space to separate one class 

from another class than to separate one class from all other classes. The max-win voting 

strategy is used to combine the results of the sub PLS-DA models and make the decision 

to assign the sample to one of the K classes. 

Six PLS-DA models are built between every two classes of grain in the training 

data. The number ofPLS components for each model is decided by cross validation. The 

classification result of applying the models to the test data is shown in figure 4.18(b ). It is 

observed that 9 kernels are misclassified and the result is much better than the result of 

the single PLD-DA model shown in figure 4.18(a). The classification result of each sub 

PLS-DA model is shown in figure 4.19. It shows that each model can separate one class 

from another class perfectly. It is these accurate results from each sub PLS-DA model 

that allows an accurate final classification result, and therefore the one-vs-one strategy is 

a good choice for implementing multi-category PLS-DA. 
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Figure 4.18 Classification result of multi-class PLS-DA for the test data 
(a) result of one-vs-rest strategy, 14 kernels rnisclassified (b) result of one-vs-one 

, 9 kernels rnisclassified. 
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Figure 4.19 Illustration of the classification result of the six sub PLS-DA models in the 
one-vs-one strategy (for the training data) 

4.4 Conclusions and Discussion 

The feasibility ofusing NIR imaging for the grading of wheat kernels was studied 

in this chapter. Multivariate statistical algorithms, SIMCA and PLS-DA were used to 

discriminate between different types of wheat kernels using spectral features from NIR 

images. The results show that NIR imaging technology is feasible for wheat grading. In 

view of the fact that RGB image based MVS is not robust in identifying some classes of 

wheat kernels, the sprouted kernels for example, NIR imaging can provide an improved 

separation of some classes. 

The results of different chemometric methods were compared. A summary of 

these results fo llows: 

1. In SIMCA, the "combined" distance should be used to decide the class 

assignment of an unknown sample. i. e. the distance of the sample to the 

center of the model should be used. 
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2. SIMCA performs better than PLS-DA in identifying an unknown sample not 

belonging to the modeled classes. 

3. The one-vs-one strategy is a better implementation of PLS-DA for multi­

class classification than traditional PLS-DA. 

The results from this feasibility study show that NIR imaging provides a 

potentially powerful new method for separating certain classes of abnormal fungal 

infections, types of seeds, and undesirable features such as sprouted seeds. 
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Chapter 5 

Predicting the Falling Number Index of Wheat Flour 

Using NIR Imaging Technology on Samples of Wheat 

Kernels 

The work reported in this chapter is intended to be a feasibility study of predicting 

the "falling number" of wheat samples using NIR imaging technology on samples of 

wheat kernels. Three models are built between the features extracted from NIR images of 

the wheat kernels and the falling number measurements made on bulk samples. Three 

multivariate regression methods are used: a regular PLS algorithm, the 0-PLS algorithm 

and a PLS plus canonical correlation analysis algorithm (PLS+CCA [Yu and MacGregor, 

2004]). Some useful information is obtained by analyzing the coefficients and loadings of 

the models. The performance of the algorithms is compared. The errors in the prediction 

of the PLS models are also analyzed. 

5.1 Introduction 

In section 4.1, we discussed the impact of sprout damage on wheat quality. 

However, sprout damage in wheat is difficult to assess. One simple assessment of sprout 

damage is to count the percentage of sprouted and severely sprouted kernels. CGC has 

established sprout damaged kernel tolerance for each class of Canadian wheat. The 

embryo and endosperm of wheat seeds produce the enzyme alpha-amylase at an 

accelerating rate when germination begins. A severely sprout-damaged kernel contains 

many thousands of times the amount of alpha-amylase than is present in the early stages 

of germination [CGC, 2002]. For the wheat quality assessor, it is not easy to accurately 

evaluate the extent of sprouting for each kernel by inspection. Therefore, it is easy for a 

cargo that appears to be high quality in terms of percentage of sprout damage to exhibit 

significant alpha-amylase activity which is what finally affects the quality of the wheat 
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flour. As a result, the percentage assessment of sprout damage is no longer the best 

indicator the milling and baking quality of a wheat sample [Canadian Wheat Board, 

2002]. A more accurate and complex method is to measure the wheat falling number 

(FN), an index correlated with the content of alpha-amylase. The bakers' and other 

customers now prefer buying on the basis of FN rather than the percentage of sprout 

damage [Canadian Wheat Board, 2002]. 

The Hagberg FN test is the internationally accepted measurement of sprout 

damage in wheat due to the amount of alpha-amylase [Canadian Wheat Board, 2002]. 

The FN is the time in seconds for a stirrer to fall through the hot slurry of milled wheat. 

The theory behind the test is that as the enzyme acts on the slurry, the slurry will become 

thinner. If the slurry is thinner, it will not be able to hold the weight of the 

plunger. Therefore, the more enzymes, the faster the plunger will fall. A high FN (or the 

longer it takes the stirrer to fall) indicates that the wheat is sound and satisfactory for most 

baking processes. A No.1 Canada West Red Spring (CWRS) normally has a FN greater 

than 350 seconds. The steps of Hagberg FN test are described below [Perten Instruments, 

2005]: 

1. Sample Preparation 

A 300 gram sample of wheat kernels is ground in a laboratory miller equipped 

with a 0.8 mrri sieve. 

2. Weighing 

7.0 ± 0.05g of flour, based on a 14% moisture basis, is weighed and put into a 

viscometer tube. 

3. Dispensing 

25 ± 0.2ml of distilled water is added to the tube. 

4. Shaking 

Sample and water are mixed by vigorously shaking the tube to obtain a 

homogeneous suspension. 
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5. Stirring 

The viscometer tube with the stirrer inserted is put into the boiling water bath 

and the instrument is started. After 5 seconds the stirring begins automatically. 

6. Measuring 

The stirrer is automatically released in its top position after 60 (5 + 55) seconds 

and allowed to fall under its own weight. 

7. The Falling Number 

The total time in seconds from the start of the instrument until the stirrer has 

fallen a measured distance (including the 60 second stirring time) is registered by 

the instrument. This is the FN. 

Since 2001 the CGC has been developing another method, the Rapid Viscosity 

Analysis (RVA) [CGC, 2003], which is based on the same principle as the Hagberg FN 

test. In the RV A method, steps in preparing wheat samples are similar to sample 

preparation in the Hagberg FN method. It uses a smaller sub-sample, 4 grams of flour. 

Instead of measuring the time of falling, a paddle is attached to a rotating calibrated motor 

which measures the force required to spin the paddle in the slurry. This produces a 

measurement of the viscosity of the slurry in scientific units, i.e., centipoises [3]. 

Compared with the FN test, the RVA test is faster. It can be completed in three minutes, 

independent of the degree of sprout damage. The Hagberg test, however, can take over 

seven minutes to complete. The grain research laboratory of the CGC has evaluated RVA 

under laboratory conditions using CWRS wheat. The Laboratory has generated a strong 

calibration formula between viscosity at three minutes and the Hagberg FN ·value. At 

present, this method is being evaluated under operating conditions in some country 

elevators and terminals in Canada [CGC, 2003]. 

However, both the Hagberg FN test and RV A are wet chemistry methods. They 

are labor intensive and need a lot of money and time in training the technical staff. 

Although both methods have been standardized and are performed according to the 

description in each step, the involvement of people introduces operator variability at each 
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step of the sample preparation. In addition, both methods are implemented in laboratories 

and are not easy to implement at elevator and terminal facilities at the ports where space 

for specialized laboratory equipment is limited and rapid turnaround is key. As a result, it 

is desirable in the market to develop a rapid and objective method which would ideally be 

able to test FN in a more rapid, less labor intensive, and more precise manner. 

The project in this chapter is designed in response to this desire of the wheat 

industry. It considers the feasibility of using NIR imaging of the wheat kernel samples to 

predict the FN using the method of Multivariate Image Regression (MIR). The 

organization of this chapter is as follows: In section 5.2, after a short introduction of the 

available wheat samples and the imaging procedure, features that are representative of the 

sample characteristics are extracted from the image. In section 5.3, the regular PLS 

algorithm, an 0-PLS algorithm and a PLS+CCA algorithm are employed respectively to 

build the reference model between the extracted features and the FN measurements. Some 

useful information is obtained by analyzing the related coefficients and loadings of the 

models. The sources of the prediction error are analyzed and the performance of the 

algorithms is compared. In Section 5.4, the main result is summarized and the conclusion 

is given. Possible research topics for the future are also discussed. 

5.2 NIR Imaging of the Samples of Wheat Kernels and 

Feature Extraction 

The wheat samples used in this study include 27 packages of CWRS wheat 

kernels with measured FNs tested at Intertek, a wheat quality control company in 

Winnipeg. The FN range is between 190 seconds and 400 seconds. For each sample, four 

tablespoons of kernels (around 12 grams in one tablespoon) are imaged separately to 

acquire 4 images. Totally, 108 images are taken for the 27 samples. During imaging, 

each tablespoon of wheat was evenly distributed in a rectangular area of 136mrn (L) x 

50mm (W) on a white tile (as shown in figure 5.l(a)) and imaged under the NIR imaging 

spectrometer with the scanner bed moving at a speed of 7rnrnlsec. NIR reflectance images 
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were captured with the spatial resolution of 650 pixels (y) x 126 pixels (x) and spectral 

resolution of 110 unique wavelengths spanning the 933run- 1663 run range. 

The shadow influence and background are removed by selecting a threshold at the 

wavelength of 1450run. The spectral values of the pixels with an intensity larger than 0.5 

at this wavelength were set as zero on the whole wavelength range from 933run to 1663 

run, and these pixels are excluded from the subsequent analysis. This background removal 

is illustrated in Figure 5.1. 

(a) (b) 
Figure 5.1 (a) Monochromatic intensity image of a sample at wavelength around 1200 run 

(b) Monochromatic intensity image of a sample at wavelength around 1200 run after 
removing the shadow influence and background 

Extracting relevant feature information from the NIR image is the crucial step of 

the overall MIR modeling scheme. The features extracted from the image should be 

representative of the overall characteristics of the wheat seed sample in the image as well 

as predictors of chemical information affecting the wheat property. 
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Two features are extracted from the images in this study. Both of the two features 

extracted are based on the assumptions that: (1) a weighted average NIR reflectance 

spectrum over the scanned area of the sample is an adequate feature vector representing 

overall chemical information, and (2) the chemical information captured by the feature 

vector is indicative of the FN. 

The first feature is the average spectrum of all the pixels of the kernels in the 

image. Because the variation of the spectrum is related to absorbance signatures of 

various functional groups, this feature is a good indicator of the variation in the organic 

content of the seeds, which is the chemical basis of wheat FN variation. 

The second feature is the 1st MPCA loading vector of the image. No mean 

centering of the image is performed in MIA. Therefore, the 1st PC explains the mean 

variability throughout the spectral data. Thus the 1st loading vector p 1 represents a 

normalized mean spectrum of all pixels throughout the un-sealed multivariate image. 

The MIR models based on these two features gave almost the same results. In the 

following sections, only the results using the first feature are shown and discussed. 

5.3 PLS Regression Modeling of FN Using Features from NIR 

Wheat Kernel Images 

After extracting the features, a PLS inferential mpdel is built by regressing these 

features against the FN measurements of the samples. 14 samples (labeled as 1, 3, ... , 27) 

are used for the training set, the other 13 samples (labeled as 2,4, ... 26) for the test set. 

The procedure of the MIR scheme for this study is illustrated in figure 5.2. 
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Figure 5.2 Schematic of proposed MIR strategy for predicting FN (y) from multi­
spectral NIR wheat seed images 00 

To reduce non-linearity and improve PLS model fit and prediction, the features 

are transformed by taking the negative logarithm (-logiOXreature), which means that the 

reflectance average spectra are transformed to the absorbance average spectra. 

Prior to application of PLS regression modeling, the NIR spectral data in Xreature is 

mean-centered with respect to the 110 wavelengths (columns). The data of y, i. e. the 

measurements of the FNs, are mean-centered and auto-scaled to unit variance. 

5.3.1 Regular PLS model 

Table 5.1 shows the summary of the regular PLS1 model. This model is good in 

that the amount of variation explained (R2(x)cum) is 86.8% and the amount predicted (by 

cross-validation, Q2(y)cum) is 71.2%. The information from the model indicates that there 

exists in Xreature a lot of unrelated variation with regard to y. Firstly, it can be seen that 

five PLS components are employed in the model. Only one component should be enough 

for the PLS 1 model if there were no y-unrelated variation in Xreature· However, in this 

case, extra PLS components are needed to explain the high uncorrelated variance and lead 

to a more complex model. Secondly, the variance explained in y, R2(y)cum and the cross­

validated Q2(y)cum are quite low in the first two components compared with the variance 

explained in Xreature, R2(x)cum· This means that the first two PLS components are 
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employed mainly to explain they-unrelated variation in Xreature· It is also noticed that the 

95% confidence intervals of most PLS1 regression coefficients (Figure 5.3) are very wide 

and many include zero, which makes the interpretation of the original PLS model 

ambiguous. Hence, Xreature is preprocessed to eliminate the y-uncorrelated variation to 

simplifY the PLS 1 model and to improve its interpretability. 

'00 

• 1 0 0 

Original PLS 1 model 

PLS comp. R2(x)cum R
2
(Y)cum 

2 
Q (Y)cum 

1 0.907 0.159 0.0351 

2 0.998 0.231 0.058 

3 0.999 0.586 0.433 

4 0.999 0.83 0.698 

5 0.999 0.868 0.712 

Table 5.1 Summary of the original PLS1 model 

Falllngnum ber . M 26 (PLS) , _ log ( 1 / x ), m ean . centered , 14 training , 14 test 
C o e ffC S [ L a s t c o m p } ( F N ) 

V a 1 10 (P r im a ty l 

Figure 5.3 Coefficients ofthe regular PLS1 model 

0-PLS and PLS+CCA are employed to solve this problem. These two methods 

are chosen because both of them overcome the over-fitting problem encountered in the 

OSC+PLS algorithm proposed by Wold [1998] where cross-validation and eigenvalue 
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criteria cannot be easily implemented to decide the appropriate number of orthogonal 

components. 

5.3.2 0-PLS model 

The 0-PLS model is summarized in table 5.2. It shows that 84.05% of the total 

variation in Xreature is removed by the four 0-PLS components orthogonal toy. Figure 5.4 

shows the original and the 0-PLS preprocessed feature spectra of fourteen images. It is 

easily observed from comparing figure 5.4(a) and (b) that the irrelevant baseline 

variations have been greatly reduced. It can also be seen that the difference between the 

features are more consistent with the FN variation between the samples. One can see the 

consistent trend ofFN change from the plots in Figure 5.4(b). 

The number of the orthogonal components is decided by the ratio llw ortho II 11~11 , 
which represents the percentage of the y-uncorrelated variation with respect to the y­

covariation in the feature space. It converges to zero if a "proper" number of orthogonal 

components has been calculated. The ratio llw ortholl!l~ll of this study is shown in Figure 

5.5, which indicates 4 orthogonal components are reasonable. 

A new PLS1 model is built between the 15.95% variation left in Xreature and the 

measurements of the FN. This PLSI model has only one PLS component, which indicates 

that almost all the uncorrelated variation in Xreature has been removed. Note that, as 

expected, the percent ofthe some of squares explained by the fit (R2(x)cum) is exactly the 

same as for the regular five component PLS1 model (Table 5.1). It is observed that 

Q\y)cum of the 0-PLS model is a little larger than one in the original PLS1 model. In fact, 

0-PLS does not contribute to improving the predictability of the model. The larger 

Q2(y)cum here is because it is the Q2(y)cumonlycalculated for the PLSI step ofthe 0-PLS. 

If the cross-validation is also used for the orthogonal component extraction step in the 0-

PLS, the Q2(y)cum will be almost the same as in the original regular PLS 1 model. 
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0.01 

<1.01 

0-PLS model 

Comp. R\x)cum R
2
(Y)cum Q

2
(Y)cum 

Ortho. Comp. 1 0.3988 

Ortho. Comp. 2 0.76362 

Ortho. Comp. 3 0.8331 

Ortho. Comp. 4 0.8405 

PLS Comp. 1 0.1595 0.868 0.861 

Table 5.2 Summary ofthe O-PLS1 model 
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The coefficients ofthe 0-PLS model are plotted in figure 5.6. These coefficients 

correspond to the 0-PLS filtered data (the data illustrated in figure 5.4(b) for example) 

and not the raw feature data (the data illustrated in figure 5.4(a) for example). It can be 

observed that the coefficients are not so noisy as in the original PLSl model. Since most 

of the variation in the feature that is orthogonal toy has been removed, the 0-PLS model 

built on the filtered data is focused only on the subspace that is highly correlated withy. It 

shows that all the filtered variables on the whole wavelength range from 933 nm to 1663 

nm are correlated with the FN. The fist 31 filtered variables in the low wavelength region 

(around 933 nm- 1133nm) are negatively and the other filtered variables are positively 

correlated with the FN. The filtered variables over the high wavelength range contribute 

more to the FN prediction than the other variables. 

It is important to note that the 0-PLS is between the filtered x variables and the 

original y variable. Thereby, any information observed by analyzing the coefficients or 

the loadings of the parsimonious model is about the variables in the filtered 

(correlated) subspace, not the original variables. If the information related to the 

original variables is needed, for example what are the interesting wavelengths for 

prediction of the response variable y, the coefficients or the loadings of the PLS model for 

the original variable space have to be analyzed. The only advantage of 0-PLS is to allow 

for interpretation of the orthogonal and correlated subspace. 

From table 5.2, it is observed that most of the y-uncorrelated information in 

Xreature is explained by the first two orthogonal components. The loading vectors of these 

two components are shown in figure 5. 7 and 5.8 respectively. Figure 5. 7 indicates that the 

first orthogonal component corresponds to the average baseline shift over the whole 

wavelength range among the features. Figure 5.8 indicates that the second orthogonal 

component explains a contrast between on the low wavelength range and on the high 

wavelength range, or a baseline trend that is not correlated withy. 
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Figure 5.8 Loading plot ofthe second orthogonal component ofthe 0-PLS model 

The 0-PLS model is tested by the test set including 52 images of 13 samples (four 

images for each sample) with different FN measurements. The predictions of the 0-PLS 

model vs. the measurement ofthe FNs are shown in figure 5.9. Every four markers at the 

same horizontal level in the figure denote four images of each sample. They have the 

same FN measurements. One can see that both the fit of the training set and the prediction 

of the test set are not bad. The root mean square error of prediction (RMSEP) of the test 

set is 26.56 seconds. It is worthy to be pointed out that the RMSEP represents the error 

originated from three sources: 

1. The error from the sample-to-sample variation, 

2. The error from the reference model, 

3. Large errors in the FN measurements themselves. 

The standard deviation of the four predictions for each sample in the test set is 

calculated and plotted in figure 5.1 0. The average of the standard deviations is 13.4 

seconds. It indicates that approximately half of the prediction error (described as RMSEP) 

is from the sample-to-sample variability. This is easy to understand because of severe 
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nonlinearity between sprout kernels and FN. Due to the widely varying amount of alpha 

amylase in a single severely sprouted vs. a sound kernel, the activity ranges from 5000 

units to literally 5 units [Hatcher, 2006], the difference between two samples say just one 

single severely sprouted kernel would introduce a large error to the prediction of the 0-

PLS model which is based on the average spectrum of the pixels. 

The average of the four predictions for each sample in the test set is calculated 

and plotted vs. the measurement in Figure 5.11. It can be observed that the average ofthe 

predictions follows the variation trend of the FN measurements reasonably well. The 

standard deviation ofthe average predictions from the measurement is 17.7 seconds. This 

value can be approximately looked upon as the prediction error with little sample-to­

sample variation. In the wheat industry, the acceptable deviation ofthe FN measurements 

without the sample-to-sample variation (That means the error is only from the error from 

step 2 -step 6 in the Hagburg FN test) is 20 seconds [Hatcher, 2006]. Compared with this 

standard, 17.7 seconds is acceptable implying that the NIR prediction precision is close to 

its lowest achievable bound, namely the standard deviation of the FN measurement itself 

In view of the fact that there is severe nonlinearity of the alpha amylase activity 

among the kernels with different degree of sprouting, the average spectrum of the pixels 

will not be the best feature to describe the chemical variation of the sample. To count for 

this nonlinearity one option is to predict the FN by extracting feature from separate 

kernels and then recombining them in a nonlinear manner. A problem is that the FN 

measurement is not evaluable for each kernel, only for a sample taken from the batch. 

Therefore, a nonlinear model relating the single kernel features to this overall sample FN 

will have to be built. This idea will be followed up in the future. 
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Figure 5.10 The standard deviation of the four predictions for each sample in the test set 
(approximate sample-to-sample variability) 
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Figure 5.11 The average of the four predictions for each sample in the test set vs. the 
measurements 

5.3.3 PLS +CCA 

The post processing method PLS+CCA was proposed by Yu and MacGregor 

[2004] as an alternative method to OSC + PLS. The incentive ofthis algorithm is the fact 

that all preprocessing methods based on OSC have the risk of overfitting except for 0-

PLS and Fearn's OSC [Fearn, 2000] in the case of one single response variable. Instead 

of using OSC as a preprocessing step to remove the orthogonal information from the 

predictor matrix X, A CCA is performed between the response matrix Y and the score 

matrix T obtained from an initial PLS model between X andY. The initial PLS step is 

employed to avoid ill condition problem when using CCA directly. 

In fact, 0-PLS and PLS+CCA are two opposite operations. The OSC step in 0-

PLS remove the uncorrelated variation from the PLS components; on the contrary, the 

CCA step in PLS+CCA extracts only the correlated variation from the significant PLS 

components ofthe initial PLS model. 
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A canonical correlation regression model is built between the five score matrix of 

the PLS model summarized in table 5.1 and the FN measurements. Since there is only one 

y variable, the CCA model has one canonical covatiate. 

They-related part of the feature matrix can be estimated as 

Where t cca is the score vector and Pcca is the loading vector of the CCA analysis, 

and P pis is the loading matrix of the initial PLS model. The correlated part of the 14 

features is shown in figure 5.12. It can be observed that these plots resemble the plots in 

figure 5.4(b), but a little less noisy. This is because the estimation from the above formula 

is based on the significant components of the initial PLS model, which is not as noisy as 

the original features. 

The coefficient ofthe CCA model is shown in Figure 5.13. It shows that the last 

three PLS components are more correlated with the FN than the first two PLS 

components. This is consistent with the analysis of the PLS model in section 5.3.1. The 

first two PLS components mainly explain they-unrelated variation in Xteature . 
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Figure 5.12 they-correlated variation in 
Xteature estimated by the PLS+CCA model 
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Figure 5.13 The coefficients ofthe CCA 
sub-model in PLS+CCA 



The PLS+CCA model is also tested by the same test set as in the 0-PLS model. 

The result is shown in Figure 5.14, The RMSEP is 27.29, a little larger than in the 0-PLS 

model. 

In this study, there is not much difference between the results of 0-PLS and 

PLS+CCA. However, it is worthy to be pointed out that PLS+CCA shows evident 

advantage over 0-PLS when there are more than one y variable [Yu and MacGregor, 

2004]. In this situation, there are no established rules to follow to decide how many OSC 

components should be removed in 0-PLS. 

Prediction vs. Measurement (PLS+CCA) 
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Figure 5.14 PLS+CCA model prediction and measurement 
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5.4 Conclusions and Discussion 

In this chapter, multivariate image regression methodology has been employed to 

develop models to predict the FN of wheat samples. This is the first attempt to measure 

this wheat property using NIR imaging technology based on a kernel sample. The average 

spectrum of the sample kernels in the NIR image is calculated as the feature representing 

the chemical character of the sample. PLS algorithms are employed to develop the 

reference models. The sources of the prediction error are analyzed. It is found 

approximately half of the prediction error originates from the sample-to-sample variation. 

Except for this part of error, the prediction error variance of the 0-PLS models 

comparable to the variance of the standard Hagberg FN test in the wheat industry. In 

conclusion, NIR imaging technology is a feasible and promising means to measure the 

wheat falling number. However, the method still requires more development to increase 

its robustness and accuracy. 

0-PLS and PLS+CCA algorithms are also tried and compared with the PLS 

algorithm. All three algorithms had essentially the same performance in this case study. 

Both 0-PLS and PLS+CCA were initially proposed to simplify the original PLS model 

with many components and increase the interpretability of the model. However, it is 

worthy to be pointed out that the parsimonious models obtained from both these methods 

are in the filtered subspace, not in the original variable space. Hence, the information 

obtained by analyzing the parsimonious model is about the subspace. However, the 

information about the original variable space is usually needed in practice. In this 

situation, one has to go back to the original PLS model or combines the two steps in 

either of the two methods to mine such information. 

To reduce the impact of nonlinearity effect on the prediction of the reference 

model, one promising method is to evaluate the FN on the level of separate kernels and 

then combine them. This idea will be implemented in the future. A NIR imaging 

spectrometer with higher resolution is necessary to examine separate kernels. In addition, 
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it is observed that there is texture variation on the kernel surfaces having sprouts. This 

feature can be extracted from images with higher resolution and used as part of the 

feature vector in modeling. 
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Chapter 6 

Summary and Conclusions 

6.1 Summary and Conclusions 

Two topics related to the NIR imaging technology are studied in this thesis. One 

is on the calibration of line-scan NIR imaging systems, the other covers the feasibility of 

applying the NIR imaging technology for wheat grading. 

In the first study, a simple methodology, that is not based on expensive standard 

reflectance materials is proposed to calibrate line-scan NIR imaging systems. The main 

idea of this method is to obtain a calibration model for each sensor on the InGaAs CCD 

array. The models are able to correct almost all the errors caused by the inconsistency 

between .the sensors along the spatial axis x and the spectral axis A., and the variation in 
, _ 

the illumination along the spatial axis x. The calibration results of the image are shown. 

Some detailed information blurred by the systematic noise from the imaging system can 

be clearly visualized after calibrating the image. The benefit of this method to the 

multivariate image analysis is illustrated with an example. The method can be used to 

calibrate any line-scan imaging system. The advantage of this method is that it does not 

employ the expensive standard reflectance materials which are also difficult to maintain. 

In the second study, two projects are accomplished: 

In chapter 4, NIR imaging is used to classify different classes of wheat kernels. 

The average spectrum of the kernel is used as its feature. In section 4.2, SIMCA and PLS­

DA is used respectively to separate the sprouted kernels from the healthy ones. The two 

distances used in SIMCA is compared. It is shown that the "combined distance" is better 

than the simple Euclidean distance to the model. The results of SIMCA and PLS-DA are 
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compared. PLS-DA works a little better than SIMCA in classifying the kernels within 

these two classes. However, SIMCA has the advantage over PLS-DA in discriminating 

the kernels from other class. In section 4.2, multi-class PLS-DA is used to classify four 

classes of grain. A new strategy of implementing multi-class PLS-DA algorithm, the one­

vs-one strategy is proposed in this part. It is shown that this strategy gives better result 

than the traditional multi-class PLS-DA, which is virtually a one-vs-rest strategy 

implementation. The good results from this study show that NIR imaging provides a 

potentially fast and objective method for qualitatively evaluating certain characteristics of 

wheat samples, such as fungal infection, sprout damage and foreign types of grain, which 

are now graded manually in the wheat industry. 

In chapter 5, the NIR images of wheat kernels are used to predict the FNs of the 

bulk wheat samples. Three models, regular PLS, 0-PLS and PLS+CCA, are built 

between the features extracted from NIR images of the wheat kernels and the falling 

number measurements made on bulk samples. The interpretability of the 0-PLS is 

discussed. It is pointed out that the only advantage of 0-PLS is to allow for interpretation 

of the orthogonal and correlated subspace. The errors in the RMSEP ofthe 0-PLS model 

are analyzed. It is shown that half of the prediction erro~ IS from the sampling errors. 

Except for that, NIR prediction precision is cl~se to the 'standard deviation of the FN 

measurement itself. The results from this study indicate that NIR imaging is a promising 

alternative tool other than the current Hagberg FN test for fast, objectively and non­

destructively measuring the FN index of wheat samples. 

6.2 Future work 

In this thesis, only spectral features from the NIR images are used for 

classification or prediction. It is noticed that there are texture features on certain classes 

of wheat kernels, the wrinkle on the severely sprouted kernel surface for example. The 

texture features are also related to the chemical variation in the kernels and should be 

helpful for the classification or prediction. Because of the low resolution of the 

spectrometer used in this thesis, this feature cannot be extracted and used in this thesis. In 
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the future, this idea can be implemented by using a NIR imaging spectrometer with 

higher resolution. 

To reduce the impact of nonlinearity of the alpha-amylase variation among the 

sprouted kernels on the prediction of the FN, one promising method is to evaluate the FN 

on the level of separate kernels and then combine them. A NIR imaging spectrometer 

with higher resolution is necessary to examine separate kernels. 
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