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ABSTRACT 

This thesis is concentrated on parallelizing a sequential algorithm for finding 

k best non-intersecting local sequence alignments. 

In this thesis, the DNA local sequence alignment and the related problems 

are formally defined and efficient algorithms for solving these problems are 

presented. The problem have important applications in molecular biology. Based 

on the analysis of the characteristics of the local sequence alignment problem and 

a multi-transputer system, the problem was partitioned into subproblems and nicely 

mapped onto the transputer nodes. Then, an efficient parallel program is designed 

and implemented. 

By comparing the outputs of the sequential program and the parallel 

program, the performance of the parallel program is estimated. An average speed

up of 6.3 is achieved on a 8-node configuration and an average speed-up of 11 is 

achieved on a 16-node configuration. 
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CHAPTER 1 


INTRODUCTION 


The central dogma of modem biology is that DeoxyriboNucleic Acid (DNA) is the 

primary genetic material. It encodes the information necessary to understand life. From 

a biologist's point of view, DNA is a molecule composed of four nucleotides: adenine, 

cytosine, guanine, and thymine, which, conceptually, are linked linearly to form long 

chains called polynucleotides. Often these chains are called DNA sequences (or 

sequences, for simplicity). 

The coming of new DNA sequencing technologies has led to an explosive growth 

in the quantity of biological sequence information available to researchers, a trend that 

is likely to accelerate in the near future [1, 20]. The benefits of this sequence information 

have already been clearly established, with gains in knowledge of the biological structure 

and function of many genes and the proteins they encode, resulting in important insights 

into human biochemistry, physiology, and disease processes. 

The biologists' ultimate goal is to discover the semantics of DNA sequences, i.e., 

the meaning of the DNA. To understand the semantics, one needs to know the 

relationship between DNA and proteins. Proteins are sequences made from 20 animo 

acids. A piece of DNA can encode a protein. This means that each triple of nucleotides 

corresponds to an amino acid. Each of these triples is called a codon. The code (mapping) 
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from the 64 possible triples to the amino acids is redundant. That is, some amino acids 

correspond to more than one triple. Since proteins are responsible for important 

biochemical functions within a living cell, it is important to know which parts of the 

DNA encode proteins as well as what the proteins do. 

When two or more sequence are displayed with one sequence written over another, 

the resulting configuration is known as an alignment of the sequences[27]. These displays 

are very common in molecular biology as they communicate information about proposed 

common evolution or function of the nucleotide positions found in any given column of 

an alignment. 

The topic of sequence alignments has received much attention as the advent of 

molecular biology. One application of sequence alignment is the study of evolutionary 

relationship, where we need to assess the degree of similarity between sections of DNA 

often belonging to different species or genes. Now there are many biological sequence 

database systems to store genetic information, e.g., Genbank and EMBL, and they are 

expanding very fast. The Genbank and EMBL contain 186x106 nucleotide organized in 

143x103 entries. The average length of the sequence is about 1,000 and the longest one 

is 172,282 [ 4]. The study of these biological sequences using sequence alignment has 

provided insights into topics such as disease and heredity. An example is the discovery 

of similarities between human growth factors and cancer-causing genes that may show 

how the genes cause uncontrolled cell growth [19]. 

The multiple sequence alignment is usually based on alignments of pairs of 

sequences. In this thesis, we are only interested in alignments of a pair of sequences. The 
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basic algorithms for this problem all use the dynamic programming technique. Thus, an 

alignment of two (long) DNA sequences may require extensive computation since the 

time complexity of these algorithms is E>(m•n), where m and n denote the lengths of two 

input sequences, respectively. For example, we have to spend 17 hours to find 20 local 

alignments between a 73,360-nucleotide sequence, containing human beta-like globin 

cluster, and a 44,594-nucleotide sequence, containing rabbit beta-like globin cluster, on 

a SUN-4/280 computer. To achieve a better running time, one may look for new 

algorithms, or use more powerful computers. Our study is to investigate the efficiency of 

the transputer system in solving the sequence alignment problem. 

A multi-transputer system (or transputer system, for simplicity) is a popular 

coarse-grain MIMD multiprocessor system. Its building block, transputer, has build-in 

communication links and large memory. The goal of our study has two folds. One is to 

attempt to solve the sequence alignment problem in shorter time; The other is to study 

the transputer system architecture to see if it is suitable for implementing dynamic 

programming kind of algorithms. 

There are seven chapters in this thesis. In the second chapter we formally define 

the sequence alignment problem and give a literature survey in this area. A summary of 

our results is also given. Chapter 3 introduces the platform of our study. Chapter 4 

introduces the local sequence alignment algorithm used in our study. Chapter 5 gives an 

efficient implementation of the algorithm on the transputer system. Chapter 6 provides 

some empirical results and discussion on them. Chapter 7 is the conclusion of this thesis. 



CHAPTER 2 


THE SEQUENCE ALIGNMENT PROBLEM 


AND LITERATURE SURVEY 


In this chapter, we formally define the sequence alignment problem and survey the 

previous works on efficient algorithms for the problem. From now on, let L be a fixed 

alphabet. (For DNA sequences, L = {A(adenine), C(cytosine), G(guanine), T(thymine) 

}.) By a sequence or string, we mean a sequence of characters from I. 

We first give an overall idea of sequence alignments. An alignment between two 

sequences (or strings), as illustrated in figure 2.1(a), consists of a matrix of two rows. The 

upper row consists of the source sequence X, possibly interspersed with null symbol, 

which is represented by a blank. The lower row consists of the target sequence Y, 

possibly interspersed with null symbol too. The column [ b] is a deletion and the column 

[a] is insertion. The column [ b] is the match, if a =b, or mismatch, if a ::;: b. The 

column [ ] is not permitted. 

Actually, two versions of the sequence alignment problem are of importance: the 

global sequence alignment problem, aiming at finding an alignment between two full 

input sequences, and the local sequence alignment problem, aiming at find segments (i.e., 

subsequences) of the two input sequences that can be well aligned. The global sequence 

4 
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alignment problem is of interest when protein evolution is being studied. Since the 

genome is a mosaic of variously sized blocks of DNA, to detect evolutionary relationships 

and important homologies, it is essential to search for well-matched the segments in the 

given sequences, i.e., to find a best local alignment. The global sequence alignment 

problem is actually well-known in computer science, but under a different name - string 

edit. In the following, we define the string edit problem and local sequence alignment 

problem separately. 

2.1 String Edit 

Assume all symbols in the strings are from the fixed alphabet :L. Given two strings 

X, of length m, and Y, of length n, and edit operations 

a) insert symbol a into the string X with cost I8 , 

b) delete symbol a from the string X with cost D8 , 

c) replace symbol a of the string X by symbol b in Y with cost ~.b, 

we want to transform string X into string Y in minimum editing cost. For example, let 

strings X= abaa andY= abba, and operations Ia = 2, Ib = 3, D8 = 1, Db= 1, Ra,b = 2 and 

Rb,a = 1. We can transform X into Y in two ways: 

1: : : :l 
( 1) ( 2) 
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The first transformation cost is Ra,b = 1 and the second transformation cost is Ib+ Da = 4. 

The first transformation is better. 

The string edit problem has applications to file comparisons and revisions 

maintenance. For example, there may be several versions of a same computer program, 

and, if the versions are similar and all of them need be stored, it is more efficient to store 

only the differences than to store all versions. In this case, we need find differences 

between the versions first. This is essentially a string edit problem with uniform edit 

costs. 

2.2 Local Sequence Alignment 

A local sequence alignment of two biological sequences is an alignment found in 

some conserved regions of sequences. That is, a local sequence alignment is an alignment 

between two subsequences, one from each given sequence. In the local alignment 

problem, the subsequences are selected to maximize the similarity score, which is a kind 

of measure of the quality of the alignment. The alignments in figure 2.1 (c) are two 

typical local sequence alignments. The numbers outside the matrices indicate the starting 

position of each subsequence in its parent sequence. For convenience, we first give some 

necessary terminology here. Then we define the local sequence alignment problem. 

Formally, let nil be a unique symbol for null sequence, i.e., the sequence with zero 

character. Denote an aligned pair as <a,b>, where a and b can be any character from the 

alphabet 1: or nil. An alignment is a finite sequence of aligned pairs. In each aligned pair, 

the first symbol is from the first sequence and the second symbol is from the second 
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sequence. So 

<a, a> <nil, c> <b, b> <g, nil> 

denotes an alignment of sequence abg and sequence acb. An aligned pair with nil as 

its first element is called an insertion pair and an aligned pair with nil as its second 

element is called a deletion pair. A consecutive sequence of insertion pairs is called an 

insertion gap and a consecutive sequence of deletion pairs is called a deletion gap. 

Since deleting character a from sequence X can be considered as inserting 

character a into sequence Y, we treat an insertion and a deletion as an indel, or an 

extend-gap. So, the score for an indel is called an extend-gap-penalty. Another meaningful 

penalty is the open-gap-penalty. The open-gap means that, in the alignment, a non

deletion pair is followed by a deletion pair, or a non-insertion pair is followed by an 

insertion pair. The former is called an open-deletion-gap and the later is called an open

insertion-gap. The open-gap-penalty may be assessed as a barrier to allowing the gap. 

That is no gap would be allowed in the local alignment unless the benefit of allowing that 

gap would exceed the barrier. Figure 2.1 (b) and (c) are two examples of local alignments 

of sequences SEQ3 = aaagctaacgtac and SEQ4 = aagtacg using different scores. The 

open-gap-penalty in (c) is smaller than that in (b). In fact, the benefit gained by allowing 

that gap exceeds the open-gap-penalty in (c). So the best local sequence alignment in (c) 

is longer than the local sequence alignment in (b). 

A score is assigned to an alignment based on a user-specified scoring function 

WEIGHT(a, b) and the open-gap-penalty. The range of WEIGHT is divided in to 3 
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classes of values: 

match-values a=b & a,b e L; 

WEIGHT(a,b) = mismatch-values a:t:b & a,b e L; 
{ 

extend-gap-penalties a=nil & b:t:nil or 
b=nil & a:t:nil 

In the WEIGHT function, match-value is greater than zero and the others are less or equal 

to zero. An insertion gap or deletion gap with length of k is scored as the sum of one 

open-gap-penalty and k extend-gap-penalties. 

alignments 


an~ lignedpa rts SEQl J a 


aaa,gctaacgte~,c ···· sEQ2[ an 

aagtacg 

The. best
ib:cal ·· · 
al;Lgrtment 

SEQ3 

SEQ4 

SEQ3 

SEQ4 :I: a · c 

a 

g 

9: t 

similarity-score = 40 

·< ~h~ ~e¢9tg . s~oJ
best local 
ai4§iirrierit ·. 9EQ4 

similarity-score = 30 

match ~ 1 0 
mismatch = -10 
ope n-·gap - penalty = -15 . 
e xtend- gap-penalty = - 5 

Figure 2.1 Examples of sequence alignment 
(a) is a global sequence alignment; (b) is an example of 2 best non
intersecting local sequence alignments. (c) is another 2 best non
intersecting local sequence alignments. Note open-gap-penalty are 
different in (b) and (c). 
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Formally, we can state the local sequence alignment problem as: given two 

sequences X andY, the operation score function WEIGHT(a,b) and the open-gap-penalty, 

find a local sequence alignment with the highest similarity score. 

A natural extension of this problem is the k best non-intersecting local alignment 

problem. Here, non-intersecting means that if an aligned pair appears in an alignment it 

will not appears in other alignments. After finding the best local alignment, people often 

also want the next largest scoring local alignment that does not intersect with the best 

one. Since intersecting alignments are too many and are very similar to each other, they 

tell us nothing new. So, people are interested in best non-intersecting alignments [14]. 

Two examples of the second best non-intersecting alignment are given in Figure 2.1 (b) 

and (c). The k best non-intersecting local alignment problem is defined here: 

Given two sequences X andY, the score function WEIGHT(a,b), and the open

gap-penalty, find k local alignments which have the k highest similarity scores and do not 

share a same aligned pair. 

2.3 Previous Works 

For the string edit problem, Wagner and Fischer obtained an O(m•n) time and 

space sequential dynamic programming algorithm[25], where m and n are the lengths of 

the two input strings respectively. Edinston and Wagner proposed an O(m) processor 

pipeline architecture for string edit which takes O(n+m) time. Ranka and Sahni found an 

algorithm on SIMD hypercube machine, which has O(((n•logn)/P)0
·
5+log2n) time 

complexity when n2•P processors are available, and O((nt.5/P)•(logn)0
'
5

) time when P2 
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processors available[23]. Ibarra, Jiang and Wang showed if edit cost are discrete the string 

edit problem can be solved in O(m+n) time on a one-way linear iterative array using 

m+n nodes. In a more practical setting, Lipton and Lopresti proposed an algorithm 

solving the string edit problem on a (2•P-1)-node systolic array in O(m•n/P) time[18]. 

In the area of sequence alignments, Needleman and Wunsch applied the dynamic 

programming method to the sequence comparison problem in 1970 [22]. Their algorithm 

takes O(m•n) time to find an optimal global alignment using O(m•n) space. Later, Smith 

and Waterman gave an O(m•n) time algorithm for finding a pair of segments from two 

sequences with largest similarity score[24]. This is the first local alignment algorithm. 

Gotoh[lO] introduced multiple-sized gaps into Smith & Waterman's algorithm. Huang and 

Miller proposed an O(m+n+K) space and O(m•n + :E L2
) time algorithm[8] for finding 

k 

k best non-intersecting local alignments, where K is the total length of the k local 

alignments. This algorithm still takes a lot of time to run when k is large (e.g., 50). 

Edmiston, Core, Saltz and Smith[4] studied two algorithms, Needleman & 

Wunsch's and Smith & Waterman's, and implemented the algorithms on two 

multiprocessor systems, Intel's iPSC/1 Hypercube and Thinking Machine's Connection 

Machine (CM-1). The algorithm for Hypercube needs O(m•n/P) space, which may cause 

problems when very long sequences are used. The algorithm for the Connection Machine 

needs O(max(m,n)) space and O(m+n) time. But a problem occurs when min(m, n) is 

larger than the number of processor in the Connection Machine. 

Lander and Mesirov[ 16] implemented a dynamic programming sequence alignment 

algorithm on Connection Machine CM-11 for exhaustively comparing one protein with all 



11 

proteins in a database. The algorithm allocates one sequence to each processor and then 

broadcasts a selected sequence, Each processor compares its sequence with the 

broadcasted sequence. So, the space requirement is O(m), where m is the length of the 

resident sequence at each node. The problem of this algorithm is the loss of efficiency 

since the lengths of sequences are very different. 

Arendt[2] studied a concurrent file system for parallel genome sequence 

comparison. He used the dynamic programming method and the k-tuple heuristic, which 

is developed by Wilbur and Lipman[28], to implement a sequence comparison program 

on iPSC/2. Intel CFS (concurrent file system) was used in his study as sequences 

input/output device. The program execution time on a 16-node iPSC/2 is sometimes faster 

than on a Cary X-MP in scalar mode. 

The most recent work was done by Huang[6]. He introduced a parallel algorithm 

to find an optimal alignment. He put much effort on task partition among processors to 

balance the computation load and reduce space requirement. The algorithm takes 

O((M+Nf/P) time and O((M+N)/P) space when P s; max(M, N). Another paper of Huang, 

Miller, and Hardison presents an algorithm for finding k best non-intersecting local 

alignment algorithm on Intel's hypercube[9]. They used linear array topology to 

implement the algorithm and got an average speed-up around 10. 

2.4 A Summary of Our Results 

We have implemented the algorithm for finding k best non-intersecting local 

sequence alignments on a 16-node transputer system. To get the speed-up, also we moves 
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Huang's sequential program for the same problem to the single node of the transputer 

system. We have performed tests on 3 real DNA sequence pairs and 4 random sequence 

pairs using 8-node and 16-node configuration. Totally, 44 tests were done and the 

sequences' length range from 4•103 to 45•103
• The results are compared with the results 

of Huang's sequential algorithm running on a single-node transputer system. The 

comparison shows that the average speed-up is around 11 on the 16-node transputer 

system and around 6.3 on the 8-node transputer system. The memory requirement is 

O(m+n) on each node. 

Our parallel sequence alignment program greatly reduces the time for finding k 

best non-:intersecting local sequence alignments. For instance, it takes 11 hours (CPU 

time) to find 5 optimal local sequence alignments for rabbit and human beta-like globin 

clusters on a SUN4/280, while our parallel program can solve this problem in less than 

two hours. According to our experiences, we believe that the transputer system is a good 

candidate for the sequence alignment problems using dynamic programming method. It 

provides a smoothly scalable performance by allowing for easy addition or deletion of 

nodes. 



CHAPTER 3 

THE MULTI-TRANSPUTER SYSTEM 

Transputer is a microprocessor chip product of !NMOS. The first 32-bit transputer 

was introduced in September 1985. Since the goal of the transputer design is to support 

the concurrent processing, it has got much attention and there are many systems using 

transputer as its processor. More often, many transputers are connected to form a 

multiprocessor system. 

Relet 
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System 
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Figure 3.1 Transputer architecture. 
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3.1 The Transputer Architecture 

Transputer is a microprocessor with links for connecting one transputer to another 

transputer and has a 4kB on-chip memory. Figure 3.1 is the transputer architecture [13]. 

Except the block of application specific interface, the other blocks in Figure 3.1 are on 

the same VLSI chip. 

The CPU of a transputer is a 32-bit stack oriented processor. It has only three 

registers as the top three positions of the stack. The transputer instruction set supports 

high level programming languages such as OCCAM, C and Fortran. The latest transputer 

has an embedded the floating-point coprocessor on the chip, which improves the floating

point processing performance in graphic applications. 

The on-chip memory is a special feature of the transputer. Since communication 

within device is much faster than between devices and memory is the most frequently 

accessed device, putting processor and memory on one chip improves the system 

performance. Transputer T800 has a 4 Kbyte on-chip RAM and its off-chip memory 

addressing space is 232
- 1. 

The communication links on the transputer are another important feature. To 

provide maximum speed with minimal wiring, the transputer uses point-to-point serial 

communication links for direct connection to other transputers. Each transputer link has 

two lines, one for input and one for output. A transputer has four links to connect with 

others. So, one transputer can directly connect to four transputers at most. It is very easily 

to organize transputers into two dimensional network, as shown in Figure 3.2. So, in this 

thesis, the transputer system denotes the multi-transputer system. 
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Figure 3.2 The Transputer Network 

The ideal language for transputer system is OCCAM, a concurrent language based 

on the Communicating Sequential Processes. In OCCAM the assignment is indicated by 

II := 11 
• The example 

v := e 

sets the value of variable v to value of expression e. The input is indicated by symbol 11?11 
• 

The example 

c?x 

inputs a value from the channel c, assigns it to the variable x. The output is indicated by 

II! II. The example 


c!e 
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outputs the value of the expression e to the channel c. If we use the terminology of 

communication, symbol "?" is to receive and symbol "!" is to send. OCCAM allows an 

application to be described as a collection of processes operating concurrently and 

communicating through channels which are implemented as links on the transputer. 

People can construct different systems depending on the processes of an application. For 

example, if the application is control system that has processes of input, output and 

computation, we can assign one process to a transputer. Then we use three transputers in 

this system. The input transputer receives input and sends data to the computation 

transputer through transputer link. The computation transputer sends the output data to the 

output transputer. The communications among processes are the communications among 

transputers. 

3.2 Why Do We Choose Transputer System as the Platform 

Transputer based multiprocessor system is a coarse-grain MIMD system. That is, 

each node of this system has a powerful processor and a large local memory. Several 

programs may run on the system at the same time. 

According to the product Databook, T800 transputer can run at 30 MHz and 

provide 30 MIPS (peak) and 3.3 Mflops (peak) processing power. Its floating point unit 

is 64 bit wide, which can support graphics applications. 

3.2.1 Flexible Connection 

Transputer's hardware supported links offer flexible connection ability. Usually, 

the transputer system can be configured when booting the system. The configuration can 
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be defined by user or by system program. After booting, in the application program, user 

can define virtual circuits or data links to connect nodes according to special topology. 

In a medium or large application, the algorithm may consist of many parts and each part 

may need a special optimal topological network. For this kind of application, the 

transputer system is a good choice. 

The sequence alignment algorithm that we are interested in is actually composed 

of several algorithms. Some of them behave well in the linear structure and some require 

the mesh structure. So, we prefer a transputer system because it can satisfy all these 

algorithms well. What we did is that we configured the transputer network to a mesh 

structure with special naming of nodes. Then to form a linear array, we used data link 

layer communication. 

3.2.2 Message Passing on Transputer System 

Message passing is one of the synchronization mechanisms on the concurrent 

process management. The basic idea of message passing is that when two processes need 

exchange information in the middle of the processing, the message passing commands are 

inserted where the exchange is planned to happen. At that point one process sends data 

and the other receives data. So, if one of the processes arrives at the point first, it must 

wait until the other process reaches the point. Then message passing occurs. 

In a uni-processor computer the message passing is among the processes, while 

in the transputer system, the message passing may occur between processes on the same 

transputer or between processes on different transputers. The message passing technique 

is a well-understood mechanism and is widely used in multiprocessor systems, such as 
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Intel iPSC Hypercube and Thinking Machine CM/2. 

The transputer system uses the message passing since its hardware is designed for 

message passing directly. The OCCAM language, designed for transputer, uses message 

passing as its basic synchronization mechanism. 

Many languages exist on the commercial transputer system and the concept of the 

message passing mechanism is very intuitive. So it is not too hard to do programming on 

a transputer system. Since the communication network protocols have embedded in the 

languages on the transputer system, programmers can call these communication related 

functions to do message passing. The system will take care of message packaging, routing 

and buffering. There are many utilities on a transputer system, such as the utility for 

configuring topological layout and the debugger. 

Most previous works on parallel sequence alignment were done on message 

passing system, e.g., CM/1 and iPSC hypercube. This means message passing is a reliable 

synchronization method. 

As far as we know, there is no previous work related to sequence alignment on 

a transputer system. So, we choose transputer as the platform to investigate the efficiency 

of the transputer system in solving the sequence alignment problem. 

3.3 The DCSS Transputer System 

In Department of Computer Science and Systems, McMaster University, there is 

a 16-node transputer system running GENESYS on MACCS (SUN-4/280). The DCSS 

transputer system, outlined in Figure 3.3, is the product of TransTech Parallel Systems 
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Ltd., named as MCPlOOO. It is composed of four self-contained blocks which are called 

sites physically and NAS logically. Each site houses four T8 transputers, two of them are 

boundary nodes with 4 MByte memory and the other two are internal nodes with 2 Mbyte 

memory. Users can set the software controlled switches, implemented in 32x32 crossbar, 

on the MCPlOOO board to construct the specific network topology required by their 

applications. Since each site is self-contained, it can be assigned to a user. Thus four users 

can work on the MCPlOOO simultaneously. 

NASO 

N' 

~ 

i 
NASI VMS BUS 

SUN-4 

i NAS2"' 

1 
NAS3 

site3 : 

Figure 3.3 DCSS Transputer System 
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The supporting software for transputer system is GENESYS which is a concurrent 

operating system. It runs on the host and the transputer. Programming languages on 

transputer are Transputer C (tee) and Transputer Fortran (tfl7). Along with these 

languages, there are some procedure libraries providing transputer-oriented functions, e.g., 

communication related functions. 



CHAPTER 4 


THE ALGORITHMS FOR SEQUENCE ALIGNMENTS 


In this chapter, we present the algorithms for solving the problems of string edit, 

finding the best local sequence alignment and finding k best non-intersecting local 

sequence alignments. 

4.1 String Edit 

The string edit problem has been defined before. Now let us consider how to solve 

this problem. Recall that the three allowed edit operations are: 

(1) insert -- insert symbol a into the X with cost Ia; 

(2) delete -- delete symbol a from the X with cost Da; 

(3) replace -- replace symbol a of the X by symbol b of the Y with cost Ra,b· 

There are usually many ways to edit a string into another. For example, to change string 

abbe into the string babb, we can delete the first a, forming the string bbe, then insert an 

a between the two b' s yielding babe, and then replace the last e with a b for a total cost 

of Da+Ia+Rc,b· However, we can also insert a new bat the beginning forming babbe, and 

then delete the last e, for a total cost of Ib+De. Our goal is to find a transformation from 

X to Y with the minimum cost. The basic technique to solve this problem is dynamic 

programming. Dynamic programming procedure builds on previous trial solutions to 
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generate a solution that satisfy the specified conditions. 

We denote the string X as a one-dimensional array X = ~ •••• ~ and string Y a1 

as a one-dimensional array Y = b1 b2 ••••• b
0 

The matrix CC is a cost matrix and CC[i,j] • 

denote the minimum cost of changing a1 a2 •••• a; to b1 b2 •••• bi . Let us consider how 

to compute CC[i,j]. At point [i,j], the last operation which leads to the minimum cost can 

be delete, insert, replace or no operation (i.e., match). 

delete: if delete a; is the best change, then the minimum-cost transformation from 

a1 ~ ••• ai to b1 b2 ••• bi is the minimum-cost transformation from a1 ~ ••• a;_1 to 

b1 b2 ••• bi plus one more deletion. In other words, CC[i,j] = CC[i-1,j] + Dai· 

insert: if insert bi is the best change, then the minimum-cost transformation from 

a1 a2 ••• ai to b1 b2 ••• bi is the minimum-cost transformation from a1 ~ ••• ai to 

b1 b2 ••• bi-l plus one more insertion. In other words, CC[i,j] = CC[i,j-1] + Ibj· 

replace: if replace ai with bi is the best change, then the minimum-cost 

transformation from a1 ~ ••• ai to b1 b2 ••• bi is the minimum-cost transformation 

from a1 a2 ••• ai-l to b1 b2 ••• bi_1 and a replace. In other words, CC[i,j] =CC[i-1,j

1] + ~i.bj' 

match: if a; matches bi, CC[i,j] = CC[i-1,j-l] since the cost of a match is zero. 

Based on the above analysis, we have the formula: 

CC[i-l,j] + Dai 

CC[i,j-1] + Ibi 
CC[i,j] = min (4.1) 

CC[i-1j-1] + Rai,bi 

CC[i-l,j-1] if a;= bi 
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Figure 4.1 shows the dependency of CC[i,j]. 

Insertion 

Match or Replacement 

CC[i-lj]CC[i-lJ-1] 

Deletion 

CC[ij·l] 

Figure 4.1 Dependency in matrix CC. 

The algorithm for string edit is given in Figure 4.2. In the algorithm, we have to 

remember the best transformation from a1 ••• ~ to b1 ••• bi for every i,j. M is a record 

matrix. M[i,j] stores the last transformation step which leads to position [i,j] with cost 

CC[i,j]. The complexity of this algorithm is O(m•n) in terms of space and time. 

4.2 Local Sequence Alignment Algorithms 

Now we consider the local sequence alignment problem, i.e., the problem of 

finding the best alignments between a segment of one sequence and a segment of another 

sequence. We will discuss two algorithms. They are Smith-Waterman's algorithm for 
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finding the best local sequence alignment and an algorithm for finding k best non-

intersecting local sequence alignments. 

Algorithm Optimal_Edit (X, m, Y, n); 


Input : X (a string of size m) andY (a string of size n); 


Output: CC (the cost matrix) and M (the record matrix); 


Begin 


for i:=O to m do CC[i,O] :=i; 


for j:=1 to n do CC[O,j] :=j; 


for i:=1 tom do 


for j:=l to n do 

x:=CC[i-1 ,j] + Dai; 

y:=CC[i,j-1] + lbj; 

if~= bj then z:=CC[i-l,j-1] 

else z:=CC[i-1,j-l] + Rai,bj; 

CC[i,j] = min (x, y, z); 

if CC[i,j] = x then M[i,j] = -1; 

if CC[i,j] = y then M[i,j] = 1; 

if CC[i,j] = z then M[i,j] = 0; 

Print out transform using M; 


end. 


Figure 4.2 The String Edit Algorithm. 


4.2.1 Smith-Waterman's Algorithm 

Recall the definition of the local sequence alignment problem, the WEIGHT 

function, and the open-gap-penalty. The goal is to find a local alignment with the 
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maximum similarity score. 

Smith-Waterman's algorithm also uses the dynamic programming technique to find 

the best local sequence alignment. A difficulty arised here since we have the open-gap

penalty, which is added to the score only at the opening of a (deletion or insertion) gap. 

To solve this problem, we need the history information of each move to determine if we 

should apply open-gap-penalty to the score at position [i,j]. So, several matrices are 

needed. 

In Smith-Waterman's approach, three matrices are used. Assume again that the 

two input sequences have lengths m and n. Then the size of each matrix is (m+ 1)•(n+ 1). 

Matrix C is the alignment score matrix as before; Matrix D is a score matrix keeping 

track of the best alignments which end with a deletion pair, and matrix I is a score matrix 

keeping track of the best alignments which end with an insertion pair. 

Let us see how to compute matrices C, I and D. C[i,j] is the maximum score of 

an alignment ending at point [i,j]. It may equal the value of I[i,j], if an alignment ending 

with a insertion pair has the maximum score, or D[i,j], if the alignment ended with a 

deletion pair has the largest score, or C[i-1,j-1] + WEIGHT(~,bj), if a mismatch or a 

match leads to the largest score. Thus we have the formula: 

C[i,j] =max { I[i,j], D[i,j], C[i-1,j-1] + WEIGHT(ai,bj) } (4.2) 

Again, here, I[i,j] is the maximum score of an alignment ending with an insertion pair at 

position [i,j] and D[i,j] is the maximum score of an alignment ending with a deletion pair 
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at position [i,j]. 

At the position [i,j], I[i,j] may equal the value of I[i,j-1] plus an extend-gap

penalty (i.e., WEIGHT(nil,bj)), if the next-to-last aligned pair is an insertion pair, or C[i,j

1] plus the sum of an open-gap-penalty and an extend-gap-penalty (i.e., WEIGHT(nil,bj)), 

if the next-to-last aligned pair is a match, mismatch, or deletion pair. So, we have the 

formula: 

I[i,j] =max { I[i,j-1], C[i,j-1]+open-gap-penalty } + WEIGHT(nil,bj) (4.3) 

Similiarly, D[i,j] may equal the value ofD[i-1,j] plus an extend-gap-penalty (i.e., 

WEIGHT(ai,nil)), if the next-to-last aligned pair is a deletion pair, or C[i-1,j] plus the sum 

of an open-gap-penalty and an extend-gap-penalty (i.e., WEIGHT(~,ni1)), if the next-to

last aligned pair is a match, mismatch, or insertion pair. So, we have the formula: 

D[i,j] =max { D[i-1,j], C[i-1,j]+open-gap-penalty } + WEIGHT(~,ni1) (4.4) 

The relationship or dependency among C, I and D can be described by an 

alignment graph. Figure 4.3 shows the graphical explanation of the relationship among 

matrices C, I and D, when the input sequences are X = ab and Y = ab. 

In Figure 4.3, the alignment graph has 3•(m+ 1)•(n+ 1) vertices denoted C[i,j], 

D[i,j] and I[i,j], where O$i$m, O$j$n. The edges represent the dependencies between 

vertices. The edges are divided into 7 classes: 
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1) delete edge D[i-1,j] ~D[i,j], labelled <~,nil>, where 1~~m, O~j~n. 


2) open delete edge C[i-l,j] ~D[i,j], labelled<ai,nil>, where l~~m, O~j~n. 


3) insert edge I[i,j-1] ~I[i,j], labelled <nil,bj>, where O~i~, 1~j~. 


4) open insert edge C[i,j-1] ~l[i,j], labelled <nil,bj>, where 0~~. 1~j~. 


5) replace edge C[i-1,j-1] ~C[i,j], labelled <~,bj>, where 1~~. 1~j~. 


6) null edge D[i,j] ~C[i,j], where O~i~m, O~j~. 


7) null edge I[i,j] ~C[i,j], where O~i~m, O~j~n. 


Figure 4.3 Graphical explanation of relations among C, 

I and Don sequences ab and ab. 
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Algorithm Local_Alignment(X, m, Y, n) 

Output: score_max, i_best, j_best and the best local aligmment; 

Begin 


D[O,O] = 1[0,0] = -oo 


C[O,O] = 0; 


score_max = i_best = j_best = 0; 


for j:=1 to n do 


D[O,j] := -oo; 


I[O,j] := WEIGHT(nil,bj) - g; !* g is the open-gap-penalty */ 


C[O,j] := 0; 


for i:=1 to m do 


l[i,O] := -oo; 


D[i,O] := WEIGHT(ai,nil) - g; 


C[i,O] := 0; 


for j:=1 ton do 


D[i,j] :=max {D[i-1,j],C[i-1,j]- g} + WEIGHT(ai,ni1); set MD[ij]; 

I[i,j] := max { I[i,j-1] ,C[i,j-1] - g} + WEIGHT(nil,bj); set MI[ij]; 

C[i,j] :=max {O,D[i,j],l[i,j],C[i-1,j-1]+WEIGHT(ai,bj); set MC[ij]; 

if C[i,j] > score_max then 

i_best := i; 


j_best := j; 


score_max := C[i,j]; 


write "A best local alignment with score" score_max "ends at" 


(i_best,j_best); 


trace MI, MD and MC to display the best local alignment; 


end. 

Figure 4.4 The Smith-Waterman Local Alignment Algorithm. 
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To summarize the above discussion, the recurrence formulas for computing C, I, 

Dare 

C[i,j] =max { I[i,j], D[i,j], C[i-l,j-1] + WEIGHT(ai,bj) } 

I[ij] =max { I[i,j-1], C[i,j-1]+open-gap-penalty } + WEIGHT(nil,bj) 
{ 

D[i,j] = max { D[i-1,j], C[i-l,j]+open-gap-penalty } + WEIGHT(~,nil) 

Figure 4.4 is the Smith-Waterman's local alignment algorithm. In the algorithm, matrices 

MC, MD, and MI are used to remember the path. The best local sequence alignment is 

displayed by tracing these three matrices backward. The space and time complexities of 

Smith-Waterman's algorithm are O(m•n). 

4.2.2 The Linear Space K Best Non-intersecting Local Alignments Algorithm 

The biggest drawback of Smith-Waterman's algorithm is the space complexity. 

When a program running on a computer, the running time is limited by the electronic 

components life time which can be very long, but the space of computer is limited by the 

memory size. Certainly, the virtual memory system can provide large memory space, but 

it involves mechanical operation which not only takes at least 10 times the memory 

access time but also increases the possibility of system errors. 

A linear space algorithm for finding k best non-intersecting local alignments is 

given by Huang[8]. Let us see how to find just one best local alignment using linear 

space. Huang's approach is based on Smith-Waterman's algorithm and Myers-Miller's 

algorithm [21]. Since in the dynamic programming approach, the element C[i,j] of the 

matrix depends only on C[i-1,j-1], C[i-l,j] and C[i,j-1] and the computation is done row 
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by row, Huang uses three one dimension arrays C, I and D to save the row scores. In this 

way, the space requirement is reduced from 3•(m+l)•(n+l)+S to 3•(n+l)+S, where S 

is the extra space to store sequences and parameters. 

Since this algorithm uses only linear space, it can not remember the actual best 

alignment when doing dynamic programming. Huang defined the starting point arrays E, 

F, V and W to remember the starting points of the best local alignments. The best local 

alignment at position [i,j] starts at [E[j], F[j]] and the best local alignment ending with 

a deletion at position [i,j] starts at [V[j], W[j]]. To remember the starting point of the best 

local alignment ending with an insertion, instead of arrays, a pair of varaibles are used 

because the computation order is row by row. By keeping trace of the position yielding 

the max score and starting point of the corresponding alignment, this algorithm can find 

the best local alignment's starting and ending points at the end of the dynamic 

programming. To display the result, Huang uses Myers-Miller's algorithm on the two 

subsequences to find an optimal global alignment in linear space. So, the space 

requirement for finding the best local alignment algorithm is O(m+n). 

The algorithm of Myers and Miller for actually finding an optimal (global) 

alignment in linear space is a recursive algorithm using divide-and-conquer. Suppose that 

the input sequences are X = a1 ••• ~ and Y = b1 ••• b0 , C, I and D will be the cost arrays 

as before for the upper-half matrix, and C', I' and D' are the corresponding cost arrays 

for the lower-half matrix. 

This algorithm begins with picking a mid-point of sequence X (midi). The arrays 

C, I and D are then computed in the area [l,midi]x[l,n] and the arrays C', I' and D' are 
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computed in the area [midi+l,m]x[l,n] reversely, i.e., starting from position [m,n] to the 

position [midi+l,l]. Here, it uses Smith-Waterman's algorithm to find the maximum 

alignment scores in the two areas. (Because the algorithm aims at finding the position that 

the alignment pass, only cost arrays are needed.) At the boundary of two regions, the 

adjacent elements of D and D' are added, and the adjacent elements of C and C' are 

added, since only deletion, match and mismatch can cross the boundary of upper and 

lower regions. The mid-point of the sequence Y (midj) is where C + C' or D + D' - oper

gap-penalty is the largest. Thus, [midi, midj] is the point where the best alignment passes. 

At this point, the problem is split into two subproblems. One is finding the best global 

sequence alignment of the subsequences a1 ••• !l,nidi and b1 ••• bmidj· The other is finding the 

best global sequence alignment of the subsequences !l,nidi+l ... !l,n and bmidj+l ... bn. Then, 

the algorithm recursively finds middle point and splits the subproblem, until an input 

sequences of the subproblem has just one symbol. Figure 4.5 shows the splitting of a 

problem into subproblems. 

To find the k best non-intersecting local sequence alignment, a list, denoted LIST, 

is used to save the k best alignments. Each element of LIST is a tuple defined as 

AL_tuple = <SCORE, START[i,j], i, j, T, B, L, R>, where 

SCORE -- the score of the alignment; 

START[i,j]- the start point of the alignment ending at [i,j]; 

[i, j] the end point of the alignment; 

[T,B]x[L,R] - a region covering the alignments with the same starting point and 

scores greater than the minimum score in the current LIST, i.e., the 

region that is affected by the alignment starting from START[i,j]. 
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Figure 4.5 Splitting the problem into subproblems. 

midi 

So, an element of LIST defines an alignment with its specific starting point and ending 

point, as well as a region which contains all alignments sharing the same starting point 

and having score greater than the smallest score in LIST. 

LIST is maitained by the function adnd(score, st_pt, i, j, list_size) that creates an 

AL_tuple with score, start point, end point, and the boundary values ofT, B, L, R, in case 

the score of the alignment is greater than the minimum score in the current LIST. If the 

alignment at current position has score greater than the minimum score in LIST and the 

entry with same starting point exists in LIST, function adnd modify the all data in the 

AL_tuple except starting point. So, each entry of LIST has a different starting point. In 

the meantime, the function adnd() keeps track of the minimum score in LIST. 
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In Huang's algorithm, the AL_tuples are filled with alignments found using Smith

Waterman's algorithm and the function adnd(). When finishing the last row of C matrix, 

k promising alignments are saved in LIST. These alignments must be non-intersecting 

because each entry of LIST has a unique starting point. If two alignments intersect at 

position [i,j], at most one of them can survive and enter LIST, due to the definition of 

adnd(). After finding k promising local alignments, the alignment with maximum score 

is the best local alignment. Then the Myers-Miller's recursive divide-and-conquer 

algorithm is called to find the aligned pairs in the best local alignment. 

The rest k-1 alignments in LIST may not include the second best alignment since 

the best alignment may mask the second best. We can recompute the C matrix. However, 

it may cost too much because only a small region is really needed to recompute. Huang's 

algorithm has a function to find this region, which is called the masked region. 

The condition of non-intersecting is secured by a linked list of used aligned pairs 

that remembers those already output. This list is expended when the aligned pairs are 

displayed. 

Huang's linear space local alignment algorithm is outlined in Figure 4.6. (Note 

that the real implementation is different than the outline; it uses arrays instead of 

matrices.) The algorithm has four parts. First, using dynamic programming technique, find 

the k promising alignments; Second, display the best alignment and fill the used aligned 

pairs list; Third, find the masked region that needs recomputed; Fourth, if there is any 

promising alignment in this region, recompute this region. 
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Function Fisrt(i,j) can find the starting point of the alignment ending at position 

[i,j]. As we mentioned the above, this funtion is implemented by using several arrays. 

Function maxtuple() finds the AL_tuple with largest similarity score in LIST. 

Algorithm k_best_alignment (X, m, Y, n, k) 


Output: k best non-intersecting alignments 


Begin 


min_score := 0; 


for i:=O to m do 


for j:=O to n do 

compute C[i,j] and First(i,j); 

if C[i,j] > min_score then 

min_score := adnd(C[i,j], First(i,j),i,j,k); 

for r:=l to k do 

S := maxtuple(); 

display _alignment(S ); 

if r != k then /* T' -- Top, B -- Bottom, L' --Left, R - Right. *I 

Determine the affected region [T', B] x [L', R] in which there 

are alignments with score greater than min_score; 

for i:= T' to B do 

for j:= L' toR do 

Compute C[i,j] and First(i,j); 

if C[i,j] > min_score then 

min_score = adnd(C[i,j],First(i,j),i,j,k-r); 

end. 

Figure 4.6 Outline of Huang's Linear Space Alignment Algorithm. 
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As we mentioned above, the best local alignment may mask some other 

alignments. Let us see how it could happen. For some i,j, the alignment found at [i,j] 

(with score C[i,j]) may intersect the the best local alignment. Thus, other alignments (with 

scores less than or equal to C[i,j]) are not recorded in LIST. These other alignments are 

masked by the best local alignment. Recall the meaning of the [T,B]x[L,R] region. We 

can say that the region [T,B]x[L,R] covers the masked alignments or part of the masked 

alignments. There are four cases of the coverage (refer to the Figure 4.7). 

Case 1: The masked alignment is totally covered. 

Case 2: The part of the masked alignment, from the middle to the end, is covered. 

Case 3: The part of the masked alignment, from the start to the middle, is covered. 

Case 4: The middle part of the masked alignment is covered. 

Case4 

I 
Cast 1 

Case 3 

Figure 4.7 The masked region and the masked alignments 
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Actually, case 3 and 4 will not happen. In case 3, if the alignment could extend longer, 

those part would be included in [T,B]x[L,R] region, since the similarity score may 

increase and be greater than the minimum score of the LIST. For the same reason, the 

case 4 can not happen. Now, we know that the lower and the right boundaries of the 

masked region are B and R. The only task left is to find the upper and left boundaries of 

the masked region. To find the upper and left boundaries of the masked region, Huang 

uses Smith-Waterman's algorithm in the region [T,B]x[L,R] reversely, and extends the 

T and L boundaries, until there is no alignment starting outside the current region 

[T,B]x[L,R] and ending inside the region. 

Figure 4.8 is a graphical explanation of finding the masked region. The dark 

shaded area in the Figure is the original [T,B]x[L,R] region. When the above process 

reaches the upper-left corner of [T,B]x[L,R], the alignment S' is still extending. So, the 

T and L are decreased, until the score of S' is less than the minimun score of the current 

LIST at position [T',L']. Now, the masked region is [T',B]x[L',R]. Note that, the 

alignment S" starts and ends outside the region [T',B]x[L',R]. Thus it does not affect the 

reverse computation. 

Up to now, we know how to find the k best non-intersecting local sequence 

alignments in linear space. We will discuss the implementation of this algorithm on a 

multi-transputer system in the next chapter. 
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Figure 4.8 A graphical explanation of finding the masked region 



CHAPTER 5 


PROGRAMMING ON THE MULTI-TRANSPUTER SYSTEM 


In this chapter we present our main considerations in mapping Huang's sequential 

algorithm for finding k best local alignments to a parallel system. We mainly concentrate 

on the parallelization of the algorithm to create an efficient implementation. 

5.1 The Transputer Sequence Alignment Program 

A transputer program usually has two subprograms OTB and ITB. OTB (Outside 

The Box) is a host program running on the host computer and ITB (In The Box) is a real 

transputer program running on the computing nodes. 

OTB is a user interface of the transputer program. It accesses file system for input, 

supports user interface, and prints out alignments. ITB is the main part of the program. 

It has six sections. Please refer to Figure 5.1 which outlines our program structure. We 

use node_O as the leader of all computing nodes. The head file list is in Appendix I, the 

ITB transputer program list is in Appendix II, and the OTB program is in Appendix I. 

The first section uses the dynamic programming approach to find k promising 

alignments. All computing nodes are involved in this process and each node uses 

neighbourhood communication only, i.e., each node receives data from one neighbour and 

sends its result to another neighbour after computing. 

38 




39 

OTB Program 

begin 

input parameters; 

input two sequences; 

prepare messages; 

send messages to all nodes in transputer network; 

for i=l to k do 

receive alignment and display it on screen 

end; 

ITB Program 

begin 

receive messages from host; 

receive two sequences from host; 

compute k best promising alignments and save them in LIST; 

for i=l to k do 

construct a global LIST in node_O and find max alignment with max score; 


recursively find optimal alignment; 


send alignment to host; 


mark all used aligned pairs and inform the other nodes; 


find masked region; 


if there is promising alignment then 


compute k-i best promising alignments in the region of [T',B]x[L',R] 

and modify LIST; 

end; 

Figure 5.1 Outline of transputer program 
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The second section merges the local LIST to the global LIST in node_O, finds the 

maximum score and maintains the LIST of k promising alignments. On the first sight this 

section is sequential, but we use two-way merge to boost the concurrency. 

The third section finds the aligned pairs using Myers and Miller's algorithm. This 

divide-and-conquer algorithm is implemented in a recursive fashion, which allows the 

system to run at its top speed and all node work in parallel in the ideal case. At the 

meantime, the aligned pairs are marked using a linked list. 

The fourth section does book-keeping works. In each computing node, there is a 

used-aligned pair list. When an aligned pair is sent to OTB, it is added to the used

aligned pair list. In this section, nodes exchange information about the used-aligned pair 

list for the later reference. 

The fifth section finds the masked region of previous output alignment. It involves 

dynamic programming too and this part is somewhat similar to section one. The different 

point is that after finishing the rectangle, several rows or several columns are added. 

Those operations are sequential. Please refer to Figure 4.8. 

The sixth section recomputes the masked region. In this section, the first division 

of program applies to a small region. 

Data structures used in the parallel program are several arrays to save scores and 

starting points, a list to save k promising local alignments and a list to save aligned pairs. 

The list for saving k promising local alignments and arrays were defined in the previous 

chapter. The aligned pair list is actually a set of lists. It is implemented as a pointer array. 

Each element corresponds to a position in input sequence X. When an aligned pair is 
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outputted, an list element, that contains a position in input sequence Y and a pointer, is 

attached to a list according to the first element of the aligned pair. 

5.2 Selection of the Network Topology 

The computer network topology affects the efficiency of the system solving a 

specific problem. For example, image processing is better on mesh connected system 

rather than on a ring system. 

H 

0 

s 

T 

Figure 5.2 DCSS transputer system under my configuration. 
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Basically, there are four main topological choices: mesh, ring, linear array and 

star. Our DCSS transputer system can be configured in any one of the four structures due 

to the connection flexibility of the transputer. Which one is good for the sequence 

alignment problem? 

Ring, linear array and star are simple networks and require a small number of 

links, which may lead to a efficient communication since the reduction of routing and 

buffering, while mesh connection offers a powerful and flexible system. In the sequence 

alignment problem, linear connection seems to work better when doing dynamic 

programming, and mesh connection is better for doing sorting and recursion. So, we select 

mesh connection and use data link layer commands to form linear connection when doing 

dynamic programming. 

5.3 Parallelization 

So the topology we have chosen is mesh. Figure 5.2 shows the interconnection 

between nodes and the host under my configuration. We number the node differently from 

the default since we plan to use linear structure to do dynamic programming. In Figure 

5.2, the dark lines connect the 16 nodes as a linear array. Below, we discuss all the 

problems related to boosting concurrency. 

5.3.1 Task and Data Allocation 

The task and data allocation is a key issue when programming parallel computer 

systems. The basic rule suggests partitioning along data dependencies without cutting 

dependencies, which in turn reduces the amount of communication between partitions[29]. 
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The objective of task allocation is to reduce communication overhead and the idle time 

for each node. 

The main part of the k best non-intersecting local alignment algorithm is a 

dynamic programming program which uses a matrix as its platform. We can cut the 

matrix into squares or slices and assign squares or slices to each transputer. If we cut the 

matrix into squares, we can implement the parallel algorithm in two ways. Suppose that 

we have 4 processors TO, Tl, T2 and T3 (refer to Figure 5.3). 

TO Tl 
-I

I'-.. I 
t ['.. t 
-I

T2 T3 

time TO Tl T2 T3

D D ~----1 ------ 8 
D 
(a) 

-- r -r-

TO Tl T2 T3 

time TO Tl T2 T3 

Doo 0 
Arrow denotes dependency (b) 

Figure 5.3 Different partitioning strategies for the problem 

The first approach is to follow the row-by-row order, i.e., TO processes its square 

row by row, and at the end of each row, TO sends data to Tl. Then Tl can start to work. 

When TO works on the last row, T2 can start. After T2 finishes one row and Tl works 

on its last row, T3 can start. Let us estimate the wait time of T3. Suppose that the matrix 
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is m•m and each element needs one step to process. T3 has to wait m•n/4 steps. So, if 

we do not consider the impact of communication, the run time is m•n/4 + m•n/4 steps. 

Figure 5.3 (a) shows the parallelism by rectangles in solid line. 

The second approach is to follow the diagonal order, i.e., TO processes its matrix 

one row and then one column alternatively. In this order, T3 will start working after Tl 

and T2 reach the last row and last column. The wait time for T3 is m•n/4 steps since TO 

has to finish the last element of its sub-matrix before Tl and T2 can start their last row 

and last column. So the run time of this approach is also m•n/4 + m•n/4 steps. Figure 

5.3 (a) shows parallelism by rectangles in dot line. 

5=3 

m PO Pl P2 P3 PO Pl P2 P3 PO Pl P2 P3 

11-
(n/s/p) 

Figure 5.4 Example of task allocation for a 4-processor system. 

Another possibility is that we cut the matrix into slices, as shown in Figure 5.3 

(b). After TO finishes a quarter of the first row, Tl starts working. T3 starts working after 

three quarters of the first row are finished. Then the wait time for T3 is 3•m/4 steps. So, 
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the run time is 3•m/4 + m•n/4 steps, which is better than cutting the matrix into squares. 

Thus we choose to cut the matrix into slices. 

Now an issue is how many slices we should have. Suppose we have p transputers, 

we can cut matrix to p or s•p slices, where s is an integer that represents the number of 

sections. Each section contains p slices. It seems that the more the sections the partition 

has, the less the setup time is involved in the computation. Assume that 

Tc - the computation time for one step; 

Tcom - the communication time for sending one message; 

n, m - lengths of the two sequences; 

s number of sections that the score matrix is divided into; 

p number of transputer nodes in the system. 

We cut this matrix into s sections, i.e., totally s•p slices, and assign a slice to a node in 

a round-ribbon fashion, as shown in Figure 5.4. In the Figure, again we assume that there 

are 4 processors. 

According to this job partition among the transputer nodes, the system has a set-up 

stage, i.e., the period between the time when the first node starts working to the time 

when the last node starts working, and a clean-up stage, i.e., the period from the 

termination of the first node to the termination of the last node (refer to Figure 5.5). The 

total program run time, including communication and computation, is 

( n/s ) n 
-- • (p-1) • Tc + - • m • Tc + s • m • Tcom + (p-1) • Tcom 

p p 
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The first two terms are computation related and the other two are communication related. 

The first term is the computation set-up time; The second term is the parallel computation 

time; The third term is the communication time in parallel computation; The last term is 

the communication time in the computation set-up stages. Figure 5.5 is the interpretation 

of the run time estimation. 

We want to find how many sections, s, the matrix should be divided into to keep 

the program run time the smallest. Clearly, 1 $ s $ n/p. There are two terms involving 

s. When s=l, i.e., each node has one slice, the third term becomes the smallest and first 

term goes to its maximum. When s = n/p, i.e., each node has s slices and each slice has 

only one column, the third term reaches to its largest value and the first term goes to its 

minimum. By looking at the sequential program and the transputer Databook, we can 

estimate Tc and Tcom· In the sequential program, there are about 350 machine instructions. 

We assume that the average instruction time is 2.25 machine cycles. So 

Tc ,., 800 machine cycles. 

The preparation of data for sending a message needs about 40 instructions (i.e., 90 

machine cycles) and the transputer instructions IN and OUT need 50 machine cycles each. 

So 

Tcom ,., 200 machine cycles. 

So, Tc = 4•Tcom· We pick out the two terms involving s below. 
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p. s 
+ s • m • Tcom 

n 
,_, ( 4. + m • s) • Tcom 

s 

To keep formula (5.2) the smallest, we should set s to (4•n/m)0
·
5

• Since m and n usually 

have the same magnitude, for simplicity, we will choose s to be 1. 

w===================================~=======----SPACE 

Processor 
0 Processor 

Processor 

2 

TIME 

Processor 

3 Processor 

4 

Set-L time 

Para lel 
run time 

Figure 5.5 Interpretation of run time estimation. 

5.3.2 Load Balancing 

The second part of the program solves a merge problem on a multi-processor. That 

is, we want to merge p local k promising alignments LISTs to construct the global k

promising-alignments LIST in node_O. The intuitive way is to insert each tuple of one 
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local LIST to another local LIST, until there is one LIST left. This final LIST is the 

global LIST. For example, suppose that we have three transputers NO, N1 and N2. N2 

sends its list to Nl. N1 inserts the received elements into its own list, then sends resulting 

list to NO. After inserting the list from N1, NO holds the global k promising alignment 

list. This method is simple, but is sequential in nature. When one node is working, the 

others have to wait. Another approach is the reverse-binary-tree-merge, i.e., we suppose 

that the local LISTs are the leaves of a tree. The merge starts by merging each pair of 

leaves and then the resulting lists, until the root is reached. Using this method, it takes 

only logz(p) steps, while the sequential method takes p steps. In our system there are 16 

transputers, i.e., p = 16. The parallel merge takes 4 steps and keeps most nodes working 

at most of the time. In general, keeping load as even as possible is one important aspect 

in the design of parallel programs. 

5.3.3 Reduction of the Communication Overhead 

As we choose the partition with more dependencies and more parallelism, we also 

need to reduce the communication overhead. Although a transputer has the 

communication hardware embedded on the chip, the communication impact can not be 

ignored. The communication instructions OUT and IN take 19 + 2•W machine cycles to 

execute, where W is the number of the words in the message. This does not include the 

sending time. Since transputer links are serial ports, sending a message needs machine 

cycles equal to the number of bit in the message. Certainly, the sending of a message may 

be overlapped with other instructions. Also, here we do not take into account of the three 

communication protocol layers: logical, data link and network, which route and buffer 
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messages. Sometimes, the data type conversion may be involved in the network layer. 

Generally speaking, there are two factors that have direct effect on communication 

time. One is the size of the message. The other is the number of the messages (due to 

protocol overhead), i.e., how many times an application program calls the communication 

function which may in turn call routing and buffering. In our program we try to reduce 

the effect of these two factors. To reduce the first factor, we decided that the messages 

passing through the computing nodes will have a message header only. The method to 

reduce the effect of the second factor will be discussed later. 

In transputer C, the facility for communication is data structure of a message and 

functions Send and Receive. The message data structure is a structure in C language. It 

has the form shown below. 

struct nmsg { 

int nh_dl_event, I* datalink event *I 
nh_node, I* destination node *I 
nh_event, I* message event *I 
nh_type, I* message type *I 
nh_length, I* length of message *I 
nh_flags, I* option flags *I 
nh_data[8]; I* data pouch *I 

char *nh_msg; I* pointer to message buffer *I 
} 

Here, nh_event and nh_type form the identification of a message; nh_dl_event is used to 

specify the port (link) for an outgoing message when data-link communication is used; 
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nh_flag specifies the data types of the message and data pouch; nh_msg is a pointer to 

the buffer where the message is stored. A message consists of two parts, the header, 

which is the structure described above, and the message buffer. The header is the essential 

part of the message. The message buffer contains the actual message known as the body 

of the message. To send a message, a node has to fill in the above header and the 

message buffer first, then call function Send using this header as the parameter. 

In our program, we try to use message header only. However, eight integers are 

not enough to pass the information required by computation. To solve this problem we 

compressed the required data to eight integers before it is sent and uncompress them after 

receiving them. Since the operations compression and uncompression are bit-oriented 

operations, they take less time than using the message body instead. 

The second factor on communication time is fixed after the partition of the 

problem. However, we can use broadcast to reduce the number of messages needed. In 

the broadcast mode, a message is propagated to all nodes in the system. On the other 

hand, if broadcasting is not used, some nodes may have to pass the same message many 

times! For example, suppose that we have a linear array of p nodes, and we want to send 

a message to all nodes. In the broadcast mode, the message passes through the nodes like 

a wave front. The total number of messages involved is the number of the nodes, p. If 

p 
broadcast is not used, L i messages are required to achieve the same goal. 

1 

Another approach is using data link communication protocol instead of using 

network communication protocol to reduce the communication overhead. In the network 
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layer, there are routing and data type conversion functions. Routing function is called very 

often. If the network has many connections, the route table will be big. Looking up a path 

in a large table needs time. Using data link communication reduces the overhead of 

communication. 

5.4 Recursion on a Multiprocessor 

Recursion is a widely used technique in computer science. How to write a 

recursive function on a multiprocessor system is a question we meet when writing the 

sequence alignment program. 

Generally speaking, we can use two kinds of recursion when solving a problem 

using divide-and-conquer approach, the space recursion and the time recursion. On a uni

processor computer, only time recursion is possible. In other words, the processor solves 

each smallest sub-problem in one time slice. On a multiprocessor computer, the recursion 

can be the time or the space recursion. The space recursion means allocating each 

smallest sub-problem to a processor to achieve parallelism. This is feasible only when the 

system has a large number of processors, which is hard to achieve in practice. Maybe we 

can do it on the next generation of Connection Machine. The time recursion on a multi

processor system is similar to that on a single processor computer. However, it lacks 

parallelism. Thus, the best strategy is to combine the two kinds of recursion in to the so

called space-time recursion. 

How does the space-time recursion work? The key point here is to allocate a part 

of the problem to a processor and then let each processor solve its sub-problem by the 
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time recursion. So, there are two phases in the space-time recursion, the recursion on 

processors phase and the recursion within a processor phase. 

In our sequence alignment program we use the space-time recursion to implement 

Myers-Miller's algorithm for finding an optimal alignment in two phases. The first phase 

begins with 16 nodes working in one group. The 16 nodes divide the problem into two 

subproblems and reorganize themselves into two 8-node groups, with each group holding 

one subproblem. Then each 8-node group divide its subproblem into two sub-subproblems 

and split themselves into two 4-node groups, with each group holding one sub

subproblem. This process keep going, until each group contains one node. In the second 

phase, each node does the time recursion till the solution of the its assigned problem is 

found. 

5.5 Deadlock 

Deadlock is not a new issue in the computer operating system design. We have 

met this problem when we worked with GENESYS, the transputer system control kernel. 

The phenomena are that the nodes wait for messages from each other and thus block each 

other, or the node GENESYS process blocks itself. It seems that GENESYS has bugs. 

5.6.1 Deadlock Caused by Communication 

Most deadlocks on GENESYS are caused by communication. Our experience tells 

us that the problem is in the communication protocol implementation or the buffer 

management procedure. In GENESYS, the buffer management procedure has several 

workers (processes) that handle messages. Once a node receives a message which is 
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stored in the buffer, the buffer management procedure calls a worker to receive it. The 

worker then tries to pass the message to the application program. If the program does not 

need this message at this moment, the worker is occupied by the message. The occupied 

worker enters the wait state and remains in the wait state until the program wants to 

receive this message. The trouble occurs when all workers are in the wait state and a new 

message is coming and this message is expected by the program. In this situation, 

although the message can enter the buffer, it can not reach the program. The result is that 

many messages are blocked in buffer and that node enters a deadlock. 

After many tries and errors we know that deadlock in our initial program was 

also caused by using different level communication protocols alternatively. For example, 

we used a lot of data link communications and some network communications. The 

network communication is slower than data link communication because network 

communication calls the routing function. An explicit example is the conflict between the 

1/0 statements and data link communications. 1/0 statements are implemented by sending 

the data to the GENESYS on the host using network layer communication. Our program 

uses only data link layer communication to do computation. Since the 1/0 statements are 

inserted in the program to do debugging, the deadlock occurs and the nodes are blocked 

by the messages which are sent right after 1/0 statements. The explanation is that a 

network layer operations may delay the data link layer operation right after it. So, if a 

node send three messages ml, m2 and m3 to the same destination, and ml is sent via 

network layer and m2 and m3 are sent via data link layer. m2 may arrive after m3 

because of ml, although m2 is sent before m3. 
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In our final program, we scheduled sending and receiving of messages carefully 

so deadlocks would not happen. 

5.6.2 Virtual Circuit 

Two processes can establish a virtual circuit that will remain in effect for the 

transmission of several messages. The processes can be on the same node or on different 

nodes. Virtual circuit sounds good because when it is established it transmits the message 

with specific event I.D.. However, it may cause deadlocks when used for network 

message passing if you do not implement the program properly. 

When the virtual circuit is established it blocks all message except those with 

specific event I.D .. Even the system messages cannot pass through. Our experience is that 

do not use virtual circuit in a long period of time. Usually, set virtual circuit and send 

several messages then clean virtual circuit. If virtual circuit lasts too long it may conflict 

with GENESYS system control messages. 

5.6 Debug Tools on GENESYS 

The debugging tools on GENESYS is the symbolic debugger tdb. The tdb is not 

a good debugger compared with dbx on Unix. 

One main problem with tdb is that it cannot debug parallel programs. You can use 

it to debug a program running on one node. If the program involves 8 nodes, it can do 

nothing. Although, it provides ability to run several debugger simultaneously on several 

terminals, the cooperation among these debuggers does not work properly. A debugger 

may become dead somewhere in the program without any error report. 



55 

Because of the problem with debugger, we had many troubles in debugging the 

program. Every time, before running the program, we had to make sure it works well, 

otherwise the transputer system may die. So often we had to do what people did many 

years ago when there is no debugger: insert many printing statements in the program and 

check the printed message. Then we had the problem of deadlock, since printing message 

requires communication. This is why we spent several months to complete our transputer 

sequence alignment program. 



CHAPTER 6 


EMPIRICAL RESULTS AND DISCUSSIONS 


In this chapter, we present the results of our experiment on the transputer system. 

We have implemented two programs for finding k best non-intersecting local sequence 

alignments. One is the sequential program using single node and the other is the parallel 

program using either 8-node or 16-node on the DCSS transputer system. The single node 

program is based on Huang's program, SIM, for finding k best non-intersecting local 

sequence alignments. We have run these two programs on several sets of real DNA 

sequences and artificial sequences, and compared their performance and time efficiency. 

6.1 Some Considerations in the Design of the Tests 

The tests are designed to achieve the goals. Our first goal is to verify the 

correctness of the parallel program. The second goal is to determine the real efficiency 

of the parallel program. As we have the sequential program, SIM, from Huang, we can 

compare the outputs of SIM with the outputs of our parallel program to show the 

correctness. To show the efficiency of our parallel program, we try to determine the 

speed-up of the parallel program over the best sequential program. This is done by 

comparing the single transputer node program run time with the parallel program run 

time. 

56 
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GENESYS provides a function for reading the current value of the system timer 

in a portable fashion. This function can be called from the OTB and ITB programs when 

GENESYS is running. To find the run time, we record the program's starting time and 

ending time. Note that the transputer system is a multi-user system. Recall that our 

transputer system has four NASs, each has 4 nodes. Thus GENESYS allow four users to 

use the computing nodes simultaneously. However, users occupy an NAS exclusively, i.e., 

if we occupy an NAS, say NASO, the other users can not use NASO until we release it. 

So, we can find the actual run time of our program by simply subtracting the starting time 

from the ending time. Recall that OTB is the user interface and it starts ITB by sending 

a message to ITB. We insert the time reading functions in the OTB right after the input 

is read and before the end of the program. In this way, we can measure the run time of 

our two programs. 

6.2 Testing the k Non-intersecting Local Sequence Alignments Program 

To test our parallel transputer program, we selected 3 pairs of real DNA sequences 

and 4 pairs of pseudo-DNA sequences. Following Huang's papers, we obtained the real 

DNA sequences from Genbank. The lengths of the real sequences range from lOk to 50k. 

The first pair is the beta-like globin cluster of Human and rabbit. (For simplicity 

we call them the beta-like pair.) This pair of sequences are reported of having high degree 

of similarity and Huang already has done some test using these sequences. The lengths 

of the human and rabbit sequences are 73,360 and 44,594, respectively. Since in the 

DCSS transputer system, nodes do not have sufficiently large memory, we only used a 
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segment from each beta-like globin cluster. The lengths of the two segments are 21,000 

and 42,000, respectively. 

The second pair is the alpha globin cluster of Human and rabbit. (Again, we 

simply call them the alpha-like pair.) This pair are also reported of having high degree 

of similarity. The lengths of human and rabbit sequences are 19,862 and 10,621 

respectively. 

Table 6.1 Test results for the 8-node configuration 

unit: second 

pair name k og eg mxn sequencial parallel 
speed

up 

tob-liv 5 50 60 38,400x54,000 81270 11463 7.1 

tob-liv 1 30 5 24,000x45,540 96684 14370 6.7 

beta-like 5 50 60 21,000x42,000 42596 5613 7.6 

beta-like 5 30 5 21,000x42,000 77733 12270 6.3 

alpha-like 5 50 60 10,621x19,862 10133 1376 7.3 

alpha-like 5 30 5 10,621x19,862 15455 2653 5.9 

average 6.8 

The third pair is the chloroplast genome of tobacco and liverwort (called the tob

liv pair). Tobacco and liverwort are two plants which shared a common ancestor 500 

million years ago. The whole sequences of tobacco and liverwort are 155,844 and 121,024 

long respectively. As mentioned above, due to the memory limitation, we only extracted 
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a pair of segments, one from each sequence, as the test sequences. The lengths of these 

two segments are 54,000 and 38,400 respectively. During the test, sometimes the single 

node program run out of memory. Thus, we had to reduce the size of the input sequences 

to 45,540 and 24,000 respectively, in this case. 

We let the score function have 4 values. They are the match score, the mismatch 

score, the open-gap-penalty, and the extend-gap-penalty. Table 6.1 shows the comparison 

of the run time of parallel program using 8 nodes and the run time of the single node 

program. Table 6.2 shows the comparison of the run time of parallel program using 16 

nodes with the run time of the single node program. In the Table 6.1, 6.2 and 6.3, "og" 

stands for the open-gap-penalty and "eg" stands for the extend-gap-penalty. The match 

score is 10 and mismatch score is -10. 

Furthermore, to test the program performance on all kinds of sequences, we 

generated 4 pairs of sequences. Their similarity varies from the high level to the middle 

level. Here, the high level means that the length of the optimal alignment of the pair is 

longer than 10% of the average length of the sequences in the pair. If the length of the 

alignment is from 5% to 10% of the average length of the sequences, then the pair has 

a middle level similarity. To make these sequences have the features of real sequences, 

we simulated the genetic evolution process to produce these sequences. There are three 

generalized operations in genetic evolution process: 

Crossing-over: 	 To reproduce the next generation, parent's genes are 

crossed over to generate new genes. 
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Inversion: The order of the nucleotides is changed by inverting a 

segment of the sequence. 

Mutation: Several nucleotides in the sequence are changed to the other 

nucleotides. 

The implementation of the crossing-over is to cut a sequence into two segments and pick 

one position for each segment randomly. Then exchange the two subsegments that are 

between the chosen positions and the end of the segments. The implementation of the 

inversion is to randomly select two positions and reverse the segment between the two 

positions. The implementation of the mutation is to find several positions randomly and 

change the symbol to another symbol randomly too. 

Table 6.2 Test results for the 16-node configuration 

unit: second 

pair name k og eg mxn sequencial parallel 
speed

up 

tob-liv 5 50 60 38,400x54,000 81270 7796 10.4 

tob-liv 1 30 5 24,000x45 ,540 89686 6059 14.8 

beta-like 5 50 60 21,000x42,000 42596 2897 14.8 

beta-like 5 30 5 21,000x42,000 77733 6421 12.1 

alpha-like 5 50 60 10,621x19,862 10133 753 13.4 

alpha-like 5 30 5 10,621x19,862 15455 1698 9.1 

average 12.4 
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To generate a pair of sequences with high degree similarity, we use a sequence, 

generated by the random number generator, to form two sequences. One is the original 

sequence and the other is obtained by evolving the original sequence for several 

generations. Each generation is produced in three steps: crossing-over, inversion and 

mutation. The more generations the sequence evolves the less similarity the pair has. In 

our program, each generation consists of one crossing-over, one inversion, and 5% 

mutations. The symbols in the sequences are A, C, G and T. Table 6.3 shows the test 

results of finding 5 best non-intersecting local alignments on these pseudo sequences 

pairs. We selected 4 sets of the score functions as shown in the table. 

6.3 Discussions of the Results 

First of all, the alignments found by the parallel program are always the same as 

the alignments found by SIM. From the Table 6.1 and 6.2, we can see that the speed-up 

of the parallel program is from 5.9 to 7.6 for the 8-node configuration and 9.1 to 14.8 for 

the 16-node configuration. Table 6.3 shows the general performance of our program on 

pseudo-DNA sequences. The average speed-up is 6.5 for 8-node configuration and is 11 

for 16-node configuration. 

The results show that the size of the inputs and the score function affect the 

parallel program's speed-up. The larger the input sizes, the more speed up we get. The 

reason is that the dynamic programming section of our program takes a large portion of 

the total run time and thus, longer sequences lead to less proportion of setup and cleanup 

time. The score function can affect the lengths of the local alignments found. When the 
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local alignments are longer, the speed-up decreases due to the communication overhead 

and the unbalanced computation in some sections of the parallel program. 

Table 6.3 Test results of pseudo sequences on both configurations 

Unit: second 

sizes og eg sequential 8-nodes 16-nodes 
speed-up 

8 16 

30 5 7083.7 2000 1278.4 3.5 s.s 
10,457x12,031 50 60 6175.4 889 484.6 6.9 12.8 

30 10 6398 985.2 561.7 6.4 11.4 
50 5 6385.3 1017.2 579.5 6.3 11.0 
30 5 5317.8 868.7 507.9 6.1 10.5 

9,99lx9,991 50 60 4851.1 707.2 395.4 6.9 12.3 
30 10 5001.1 739.2 422.4 6.8 11.8 
50 5 4970.6 752.2 437.7 6.6 11.4 
30 5 3909 613.0 350.6 6.4 11.1 

8,453x9,200 
50 60 3728 536.2 310.3 7.0 12.0 
30 10 3825.2 567.5 358.3 6.7 10.7 
50 5 3801.4 566.1 336.0 6.7 11.3 

6,89Sx7,431 

30 
so 
30 
so 

5 
60 
10 
5 

2662.4 
2468.9 

2510 
2557 

448.2 
418.7 
447.4 
400.6 

253.8 
268.8 
305 
237.4 

S.9 10.5 
5.8 9.3 
5.6 8.4 
6.4 10.8 

Iaverage speed-up 6.3 10.7 

Comparing the run times of the parallel program on the 8-node and 16-node 

configurations, we can see that the speed-up does not increase as fast as the number of 

nodes. It shows that the communication overhead still affects the parallel program. 

Certainly, this is unavoidable and our interest is in to reduce this overhead to its 

minimum. 

The unbalanced computation sections can be found by analyzing Table 6.1 and 

6.2. Recall that the large open-gap-penalty and large expend-gap-penalty lead to short 
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alignments. When open-gap-penalty is 50 and the extend-gap-penalty is 60, the speed-up 

are larger than the other set of score functions. So, the shorter the alignment, the higher 

the speed-up is. The unbalanced section must be in the section for displaying the 

alignments and the section for finding the masked region. To further see this, we can look 

at the case when k=l in Table 6.1and 6.2. When k=l, our program does not go through 

sections for finding the masked region and recomputing the masked region. The speed-ups 

are the highest on both configurations in this case. 

The pseudo sequences are used to evaluate the average performance of our parallel 

program. There are totally 32 tests in this group. The average speed-up is in our 

expectation. Several exceptions exist since our program has some drawbacks and the 

exception cases just touch the drawbacks. 



CHAPTER 7 


CONCLUSION 


In this thesis, the sequence alignment problem and the related algorithms are 

studied. In particular, the design and implementation of the parallel transputer program 

for finding k best non-intersecting local alignments is presented. Since the basic problem

solving technique is the dynamic programming, the parallelization of the dynamic 

programming is discussed thoroughly, including the selection of the network topology and 

the selection of partition. 

Recall that the two aspects of our goal are to find a efficient implementation of 

the local sequence alignment problem and to show the parallel processing power of the 

transputer system. Based on the test results in Chapter 6, the first aspect of our goal is 

achieved. The parallel program's speed up is 6.8 on the average for the 8-node 

configuration and 11 on the average for the 16-node configuration. Our parallel sequence 

alignment program on transputer is a successful attempt and it shows that the transputer 

system can provide an acceptable speed-up in solving the dynamic programming based 

problems and the communication ability of the transputer system can meet the general 

requirement of the computation-intensive applications. 

The best feature of the transputer system is its flexible connection among nodes. 

It can be configured as many networks with different topology. This feature provides the 
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freedom of selecting the best topology suitable for the specific approach for solving a 

problem. 

Certainly, the DCSS transputer system has two drawbacks. They are the small 

memory space and the lack of customer supporting service. The main problem is the 

memory size which limits our study. We had to reduce the input size to meet the 

limitation. The maximum memory size of the MCIOOO transputer, TRANSTECH product, 

is 8 MByte/node at maximum. But the current DCSS system has two kinds of memory 

configurations: 4 MByte/node or 2 MByte/node. Problems occurred at the 2 MByte 

memory nodes. The service provided by TRANSTECH is not adequate. We had to solve 

the problems with the system on our own. 

Although the existence of these drawbacks, the transputer system is still a good 

candidate for the sequence alignment algorithm and the other dynamic programming type 

applications. 
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I* predefine.h file *I 

#include <Stdio.h> 

#include "net.h" 

#include <genesyslevents.h> 

#include <genesys/malloc.h> 

#include <genesyslt_types.h> 

#include <genesyslcastreq.h> 

#define LOADl 101 


#define FLAG1 MYHOLD 

#define FLAG DINTDATA 


#define FIRSTNODE 0 


#define LOAD 10 

#define LOADS 11 

#define STARTl 200 

#define START 100 

#define NOTE 99 

#define p_d 10001 

#define c_start 10002 

#define c_start1 910002 

#define PICK 102 

#define BC 9901 


#define whisper_msg 10003 


#define flag_msg 90211 

#define OPT 199 

#define PASS 31415926 


#define c_stt 841128 

#define COLLECT 20256 

#define AL 42956 

#define COST 1128 

#define ARRAY 2256 


#define rvcmd 950000 
#define rvdt 1000000 
#define chat_msg 310003 

*********************************************************** 

I* macro.h file *I 

char *AA, *BB; 

int nodeid, K, P, desti, Sl; 

static int (*v)[128]; I* substitution scores *I 

static int q, r; I* gap penalties *I 

static int qr; I* qr = q + r *I 

int *S; 

static int CV[128][128]; 


typedef struct ONE { 
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int ROW; 
struct ONE *NEXT ;} pair, *pairptr; 

pairptr *COl, z; I* tor saving used aligned pairs *I 
static short tt; 

typedef struct NODE 
{ int SCORE; 


int STAAl; 

int STARJ; 

int ENDI; 

int ENDJ; 


I* 	 int TOP; 
int LEFT; *I 
int BOT; 
int RIGHT;} vertex, *Vertexptr; 

vertexptr *LIST; I* an array for saving k best scores *I 
vertexptr low = 0; I* lowest score node in LIST *I 
vertexptr most = 0; I* latestly accessed node in LIST *I 
static int numnode; I* the number of nodes in LIST *I 

static int *CC, *DD; I* saving matrix scores *I 
static int *RR, *SS, *EE, *FF; I* saving start-points *I 
static int *HH, *WW; I* saving matrix scores *I 
static int *UU, *VV; 
static int *II, *JJ, *XX, *YY; I* saving start-points *I 
static int ml, mm, nl, nn; I* boundaries of recomputed area *I 
static int lb, tb; I* left and top boundaries *I 
static int min; I* minimum score in LIST *I 
static short flag; I* indicate if recomputation necessary*/ 

I* DIAG() assigns value to x if (ii,jj) is never used before *I 
#define DIAG(ii, jj, x, value) \ 
{ for ( tt = I, z =col[@]; z != 0; z = z->NEXT ) \ 

if ( Z->ROW = (ii) ) \ 

{ tt = 0; break; } \ 


if ( tt ) \ 

x = ( value ); \ 

} 

I* replace (ssl, xxl, yyl) by (ss2, xx2, yy2) if the latter is large *I 

#define ORDER(ssl, xxl, yyl, ss2, xx2, yy2) \ 

{ if ( ss I < ss2 ) \ 


{ ssl = ss2; xxl = xx2; yyl == yy2; } \ 

~~ \ 


if ( ssl = ss2 ) \ 

{ if ( xx1 < xx2 ) \ 


{ XXI == XX2; yy1 == yy2; } \ 

~~ \ 


if ( xx 1 = xx2 && yy 1 < yy2 ) 

yyl = yy2; \ 
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} 	 \ 
} 

I* The following definitions are for function diff() *I 

static int li, Jj; 
int diff(), display(); 
static int zero = 0; 

#define gap(k) ((k) <= 0 ? 0 : q+r*(k)) 

static int •sapp; 
static int last; 

static int I, J; 
static int no_mat; 
static int no_mis; 
static int al_len; 

#define DEL(k) 
{ 	I+= (k); 

al_len += (k); 
if (last< 0) 

last = sapp[-11 -= (k); 
else { 


last= •sapp++ = -(k); 

Sl++; } 


} 

#define INS(k) 
{ J += k; 

al_len += (k); 
Sl++; 
if (last < 0) { 

sapp[-11 = (k); •sapp++=last; 
} 

else 
last= *Sapp++ = (k); 

} 

#define REP 
{ last = •sapp++ = 0; 

Sl++; 
al_len += 1; 

} 

I* start points of I and J *I 

I* int type zero *I 

I* k-symbol indel score *I 

I* Current script append ptr *I 
I* Last script op appended *I 

I* current positions of A ,B *I 
I* number of matches *I 
I* number of mismatches *I 
I* length of alignment *I 

I* Append "Delete k" op *I 
\ 

\ 

\ 

\ 


\ 

\ 


\ 

\ 


I* Append "Insert k" op *I 
\ 
\ 
\ 


\ 

\ 


\ 
\ 

\ 


\ 


I* Append "Replace" op *I 
\ 

\ 


\ 
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I* ITB program ----· *I 
#include "predefine.h" 
#define SORT 555; 
#define SORTED 5555; 
#define S_type 777; 
#include "macroh" 

double tml, tm2, tm3; 
int mark=O, *pointer, *buffer, *indicator, mash=OxOOOOffff; 
int low_pos, most_pos, last_rt, found, wi, wcell, nn1, mml; 
struct nmsg mesg, cmdm; 
vertex MAX; 
l*int low2,1ow2_pos;*l 

I* Add a new node into list. *I 

#define addnode(cc, cci, ccj, i1, j1, K1, cost, bot, rig, mod) \ 
{ \ 

register int dd; \ 
found= 0; \ 
if (most!= 0 && most->STARI == cci && most->STARJ = ccj) \ 

found= 1; \ 
else \ 

for ( dd= 0; dd< numnode ; dd++ ) \ 
{ most= LIST[dd]; \ 

if ( most->STARI = cci && most->STARJ ==ccj) \ 
{found= 1; \ 

most_pos = dd; \ 
break; \ 

} \ 
} \ 

if (found) \ 
{ if ( most->SCORE < cc) \ 

{ \ 
indicator[most_pos] = 1; \ 
most->SCORE =CC; \ 

most->ENDI = (il); \ 
most->ENDJ = (jl); \ 

} \ 
if (mod=O) { \ 

if ( most->BOT < (il)) most->BOT = (il); \ 
if ( most->RIGHT < (jl)) most->RIGHT = (j1); \ 
} \ 

else { \ 
if ( most->BOT < bot ) most->BOT = (bot); \ 
if ( most->RIGHT < rig ) most->RIGHT = (rig); \ 
} \ 

} \ 
else \ 

{ if ( numnode < K1 ) I* list is not full *I \ 
{ \ 

most_pos = numnode; \ 
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most= LIST[numnode++]; \ 
indicator[most_pos] = 1; \ 

} \ 
else \ 

{ \ 
most = low; I* list is full *I \ 
indicator[low_pos] = I; \ 
most_pos = low_pos; \ 

} \ 
most->SCORE =cc; \ 
most->STARI =cci; \ 
most->STARJ =ecj; \ 
most->ENDI = (il); \ 
most->ENDJ = (jl); \ 
if (mod=O) { \ 

most->BOT = (ii); \ 
most->RIGHT = (ji); \ 
} \ 

else { \ 
most->BOT = bot; \ 
most->RIGHT = rig; \ 
} \ 

} \ 
if ( numnode = KI) \ 

{ if ( low = most II ! low ) \ 
{for ( low=LIST[O],Iow_pos=O,dd=I; dd<numnode ;dd++) \ 

if ( LIST[dd]->SCORE < low->SCORE ) \ 
{ low= LIST[dd]; \ 

low_pos = dd;} \ 
} \ 
cost= low->SCORE; \ 

} \ 
} 

main() 
{ 

inti, j, nseq, M_l, N_l, si, sj, k, list_length; 
int *fst(), *Snd(), findflag(); 
vertexptr MAXI, sort(); 
pairptr zptr; 
double sttm, commtm, runtm, ttime(), ptime; 

nodeid = getnodeid(); 
if (nodeid=3 11 nodeid=7 11 nodeid=II 11 nodeid=l5) desti = 3; 

else if (nodeid<3 ll(nodeid>7 && nodeid<ll)) desti = 2; 
else desti = I; 

I* receive command from HOST *I 
mesg.nh_event = NOTE; 
mesg.nh_type = LOAD; 
mesg.nh_flags =FLAG; 
nrecv(&mesg); 
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M_l = mesg.nh_data[O]; 

N_l = mesg.nh_data[l]; 

K = mesg.nh_data[2]; 

q = mesg.nh_data[4]; 

r = mesg.nh_data[5]; 

P = mesg.nh_data[6]; 

numnode = min = 0; 

qr = q + r; 


I* tprintf("M %d N %d q %d r %d in node %d\n", M_l, N_l, q,r, nodeid); 
create convert table *I 

for (i=O; k128; i++) 
for (j=O; j<I28; j++) 

if (i=j) CV[iJO] = 10; 
else CV[i](j] = mesg.nh_data[3]; 

AA =(char *)malloc(M_I+l); 
BB =(char *)malloc(N_I+l); 

I* receive sequence A *I 
mesg.nh_event =START; 
mesg.nh_type = LOAD; 
mesg.nh_length = M_l; 
mesg.nh_flags = O; 
mesg.nh_msg = &AA[l]; 
nrecv(&mesg); 

I* receive sequence B *I 
mesg.nh_event =NOTE; 
mesg.nh_type = LOADS; 
mesg.nh_length = N_l; 
mesg.nh_flags = 0; 
mesg.nh_msg = &BB[I]; 
nrecv( &mesg); 

I* allocate memory for working array *I 
col= (pairptr *) malloc((N_I+l)*sizeof(pair)); 

for (i=l; i<=N_I; i++) col[i] = 0; 

I* create LIST for K best alignments *I 

indicator= (int *)malloc(K * 4); 

LIST= (vertexptr *) malloc(K * sizeof(vertexptr)); 

for (i=O; i<K; i++) 


LIST[i] = (vertexptr) malloc(sizeof(vertex)); 

sttm = ttime(); 


commtm = ttime(); 
if(nodeid = 0) { 

cmdm.nh_event =START!; 

cmdm.nh_type = LOAD1; 

cmdm.nh_length = 0; 

cmdm.nh_flags = FLAG; 
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nrecv(&cmdm); 

M_l = cmdm.nh_data[l]; I* length of the array A *I 

N_l = cmdm.nh_data[3]; I* length of the local array B *I 

si = cmdm.nh_data[O]; I* starting position on A *I 


sj = cmdm.nh_data[2]; I* startomg position on B *I 
} 

ptime = ttime(); 

big__pass(AA, BB, M_l, N_l, si, sj, K, nseq); 

printf("run-time of BIG_PASS is %f in node %d\n",ttime()-ptime,nodeid); 

for (k=K-1; k>=O; k-) { 


list_length = k>numnode? k+l : numnode; 

MAXI = sort(list_length); 

MAX.SCORE = MAXl->SCORE; 

MAX.STARI = MAXl->STARI; 

MAX.STARJ = MAX1->STARJ; 

MAX.BOT = MAX1->BOT; 

MAX.RIGHT = MAX1->RIGHT; 

MAX.ENDI = MAX1->ENDI; 

MAX.ENDJ = MAX1->ENDJ; 


alignment(MAX.ST A AI+ 1 ,MAX.ST ARJ+ 1 ,MAX. EN DI,MAX.ENDJ,O, P-1,q,q); 

gather(); 

update(M_I, N_l); 

if (k = 0) break; 

mark++; 

flag= 0; 

mm = MAX.BOT; nn = MAX.RIGHT; 


ptime = ttime(); 

reverse(AA, BB, MAX.BOT, MAX.RIGHT, MAX.STARI, MAX.STARJ); 


printf("run-time of REVS is %f in node %d\n",ttime()-ptime,nodeid); 

if (findflag() > 0) 

{ 


ptime = ttime(); 
big__pass(AA, BB, MAX.BOT-m1+1, MAX.RIGHT-n1+1, m1, n1, list_length, nseq); 

I* printf("run-time of SMALL_PASS is %f in node %d\n",ttime()-ptime,nodeid); *I 
} 


} 

runtm = ttime(); 

if (nodeid = P-1) { 


printf("runtm %f \n", runtm - sttm); 

printf("commtm %f \n", commtm - sttm); 


} 

free(AA); 

free(BB); 

kexit(); 


} 

I* pack two integers into one integer number *I 
#define pack(num1, num2, num4) \ 
{ num4 = (num1 «16) & (-mash)lnum2 & mash; } 

http:alignment(MAX.ST
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I* unpack one integer number to two integers *I 
#define unpack(num3, derive) \ 
{ if ((num3&mash)»15 = 1) derive[l] = num3!(-mash); \ 

else derive[!]= num3 & mash; \ 
derive[O] = num3»16&mash; \ 

} 

I* function big_pass{A, 8, M_l, N_l, si, sj, K, nseq) computes the first 
round of dynamic programming task. A and 8 are two sequences, M_l, N_l are 
length of A and 8, si and sj are EXACTLY starting points of computing. *I 

big_pass(A, 8, M_l, N_l, si, sj, k, nseq) 
char A[], 8[]; 
int k, nseq, M_l, N_l, si, sj; 
{ 

register int j; I* row and column indices *I 
register int c; I* best score at current point *I 
register int f; I* best score ending with insertion *I 
register int d; I* best score ending with deletion *I 
register int p; I* best score at (i-1, j-1) *I 
register int ci, cj; I* end-point associated with c *I 
register int di, dj; I* end-point associated with d *I 
register int fi, fj; I* end-point associated with f *I 
register int pi, pj; I* end-point associated with p *I 
register int *Va; I* pointer to v(A[i], 8[j]) *I 
register int content1[2]; 
struct nmsg whisper; 
register int sti, stj, lenj; 
int temp, leni, 8_1en, infor[8]; 
register int i; 
double mtime, ttime(); 

I* Compute the matrix and save the top K best scores in LIST 
CC : the scores of the current row 
RR and EE : the starting point that leads to score CC 
DD : the scores of the current row, ending with deletion 
SS and FF : the starting point that leads to score DD *I 

#define PAss(package_i,package_o,iO,basej,sizej,kk) \ 
{ \ 

va = CV[AA[iO]]; \ 
unpack(package_i[6], content!) \ 
c = contentl[O]; \ 
f = content1[1]; \ 
p = package_i[O]; \ 
pi= package_i[l]; \ 
Pi= package_i[2]; \ 
ci= package_i[7]; \ 
cj= package_i[3]; \ 
fi= package_i[4]; \ 
fj= package_i[5]; \ 
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for (j = 0; j < sizej; j++) \ 
{ c = c- qr; \ 

f = f - r; \ 
ORDER{f, fi, fi, c, ci, cj) \ 
c = CC[j] - qr; \ 
ci = RR[j]; \ 
ci = EEUJ; \ 
d = DD[j] - r; \ 
di = SSUJ; \ 
~=ffUJ; \ 
ORDER{d, di, di, c, ci, cj) \ 
c = 0; \ 
DIAG(iO, j+basei, c, p + va[BB[i+basei]]) I* diagonal *I \ 
if ( c <= 0) \ 

{ c = 0; ci = i; ci = i+basei; \ 
} \ 

else \ 

{ ci =pi; ci =Pi; \ 


} \ 

ORDER{c, ci, ci, d, di, dj) \ 

ORDER(c, ci, ci, f, fi, fj) \ 

p = CC[j]; \ 

CC[j] = c; \ 

pi= RRUJ; \ 

Pi = EE[j]; \ 

RR[j] = ci; \ 

EEUJ = ci; \ 

DD[j] = d; \ 

ssm = di; ' 

FF[j] = di; \ 

if ( c > min ) I* add the score into list *I 


addnode{c, ci, cj, i, i+basei, kk, min,O,O,O) \ 
} \ 
package_o[O] = p; \ 
package_o[l] = pi; \ 
package_o[2] = pi; \ 
pack{c, f, package_o[6]) \ 
package_o[7] = ci; \ 
package_o[3] = ci; \ 
package_o[4] = fi; \ 
package_o[S] = fi; } 

I* Initialize the 0 th row *I 
I* mark++; *I 

temp = (N_IIP + 17); 
CC = (int *)malloc(temp*24); 
RR = CC + temp; 
SS = RR + temp; 
EE = SS + temp; 
DO = EE + temp; 
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FF = DD + temp; 
if (nodeid = 0) { 

whisper.nh_dl_event = dl_event(desti); 
whisper.nh_event = p_d; 
whisper.nh_type = c_start; I* whisper_msg;*l 
whisper.nh_data(l] = N_l; 
whisper.nh_data[2] = sti = si; I* start point of A *I 
whisper.nh_data[3] = M_l; I* length of A *I 
whisper.nh_data[5] = N_IIP; I* length of B *I 
lenj = N_l- (P-1)*whisper.nh_data[5]; 

whisper.nh_data[4] = sj+lenj; I* start point of B *I 
whisper.nh_length = 0; 
whisper.nh_flags = FLAG1; 
whisper.nh_node = nodeid + 1; 

if (P!=1) dsend(&whisper); 
for (j=O; j<lenj; j++) { 


CC(j] = 0; 

RR(j] = si-1; 

EE[j] = sj+j; 

DD[j] = -q; 

ssm = si-1; 

FF[j] = sj+j; 

} 


infor[O] = 0; I* p[i-1][j-1] *I 

infor[2] = sj-1; I* Pi *I 

infor[3] = sj-1; I* cj *I 

infor[5] = sj-1; I* fj *I 

pack(O, -q, infor[6]) 


I* c[i][j-1] and f[i][j-1] *I 
for (i=si; i<si + M_l;i++ ) 
{ 

infor[1] = i-1; I* pi *I 
infor[4] = i; I* fi *I 
infor(7] = i; I* ci *I 
whisper.nh_node = nodeid + 1; 

PAss(infor, whisper.nh_data, i, sj, lenj, k) 
dsend(&whisper); 
} 

} 
else { 

whisper.nh_event = p_d; 
whisper.nh_type = c_start; l*whisper_msg;*/ 
whisper.nh_length = 0; 
whisper.nh_flags = 0; 

drecv(&whisper); 

B_len = whisper.nh_data[1]; 

sti = whisper.nh_data[2]; 


stj = whisper.nh_data[4]; 

leni = whisper.nh_data[3]; 

lenj = whisper.nh_data[5]; 
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if (nodeid != P -1 ) { 
whisper.nh_flags = FLAG1; 
whisper.nh_data[4] = stj+lenj; I* start point *I 
whisper.nh_dl_event = dl_event(desti); 
whisper.nh_length = 0; 
whisper.nh_node = nodeid + 1; 
dsend(&whisper); 
} 

for (j=O; j<lenj; j++) { 

CC[j] = 0; 

R R[j] = SS[j] = sti-1; 

EEUJ = FF[j] = stj+j; 

DD[j] = -q; 

} 


for (i=sti; i< sti + leni; i++) 

{ 


drecv(&whisper); 


PAss(whisper.nh_data,whisper.nh_data, i, stj, lenj, k) 
whisper.nh_type = c_start; 
whisper.nh_node = nodeid + 1; 

if (nodeid != P-1) 

dsend(&whisper); 


} 

} 

free(CC); 
return(O); 

} 

I* copy_list() copys all new elements in the LIST to the buffer *I 
#define copy_list(l_size, locj) \ 

{ for (wi = 0, locj=O; wkl_size; wi++) \ 
if (indicator[wi]=l) { \ 

pointer[locj*7] = LIST[wi]->SCORE; \ 
pointer[locj*7+1] = LIST[wi]->STARI; \ 
pointer[locj*7+2] = LIST[wi]->ST ARJ; \ 
pointer[locj*7+3] = LIST[wi]->ENDI; \ 
pointer[loCj*7+4] = LIST[wi]->ENDJ; \ 
pointer[locj*7+5] = LIST[wi]->BOT; \ 
pointer[locj*7+6] = LIST[wi]->RIGHT; \ 
locj++; \ 

indicator[wi] = 0; \ 
} \ 


} 


I* sort() collects all elements in all nodes and sorts lists and send K 
larger elements to the node 0 *I 

vertexptr sort(num) 
int num; 
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{ 
int 10, j, i; 
register int d; 
struct nmsg sort1; 
vertex maxi; 
vertexptr max, findmax(); 
if (nodeid=OIInodeid=711nodeid=811nodeid=15) 

10=0; 
else if (nodeid=311nodeid 411nodeid=1111nodeid=12) 10 = 3; 

else 10 = 2; 

pointer= (int *)malloc(K*28); 

buffer= (int *)malloc(K*28); 

if (10 = 0 1110 = 3) { /* nodes 0,4,8,12,3,7,11 & 15 *I 


sortl.nh_dl_event = dl_event(IO? 1 : 2); 

sortt.nh_event = SORT; 

sortt.nh_type = S_type; 

sortl.nh_node = nodeid%4? nodeid-1 : nodeid+I; 

sortl.nh_flags = OINTOATA I OINTMSG; 

copy_list(nu mnode, sort l.nh _ data[OJ) 

sortt.nh_length = 28*sortl.nh_data[OJ; 

sortl.nh_msg =pointer; 

dsend(&sort1); 


} 
else { 


sortl.nh_event =SORT; 

sortl.nh_type = S_type; 

sortl.nh_flags = 0; 

sortl.nh_msg = buffer; 

sortl.nh_length = K*28; 

drecv(&sort1); 

for (wi=O; wksortt.nh_data[OJ; wi++) 


if (buffe~wceii=Wi*7]>min) 
addnode(buffer[wcell], buffer[wcell+ 1], buffer(wcell+2], buffer[wcell+3], 

buffer[wcell+4], num,min,buffe~wcell+5],buffer[wcell+6],1); 
if (nodeid = 211nodeid=1011nodeid=511nodeid=13) { 


sortl.nh_dl_event = dl_event(1); 

sortl.nh_node = nodeid%2? nodeid+l : nodeid-1; 

sortl.nh_flags = OINTOATA I OINTMSG; 

copy _list(nu mnode, sort I.nh_data(O]) 

sortl.nh_length = 28*SOrtl.nh_data(O]; 

sortl.nh_msg = pointer; 

dsend(&sort1); 


} 
else { 


sortl.nh_length = K*28; 

sortl.nh_msg = buffer; 

drecv(&sort1); 

for (wi=O; wksortl.nh_data[O]; wi++) 

if (buffer[wcell=wi*7]>min) 


addnode(buffer(wcell], buffer(wcell+ 1], buffer[wcell+2], buffer(wcell+3], 
buffer(wcell+4], num, min, buffe~wcell+5], buffer[wcell+6], 1); 
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if (nodeid=611nodeid=9) { 

sort1.nh_dl_event = dl_event(nodeid-6); 

sortl.nh_node = nodeid%2? nodeid+5 : nodeid-5; 

sortl.nh_flags = DINTDATA I DINTMSG; 

copy _list(numnode, sort l.nh_data[O]) 

sortl.nh_length = 28*SOrtl.nh_data[O]; 

sortl.nh_msg = pointer; 

dsend(&sort1); 


} 

else { 


sortl.nh_length = K*28; 

sortl.nh_msg = buffer; 


drecv(&sort1); 

for (wi=O; wksortl.nh_data[O]; wi++) 


if (buffer[wceii=Wi*7]>min) 
addnode(buffer[wcell], buffer[wcell+ 1], buffer[wcell+2], buffer[wcell+3], 

buffer(wcell+4], num, min, buffer[wcell+5], buffer[wcell+6], 1); 
if (P=16) { 

if (nodeid==14) { 
sortl.nh_dl_event = dl_event(3); 

sortl.nh_node = 1; 
sortl.nh_flags = DINTDATA I DINTMSG; 


copy _list(nu mnode, sort l.nh_data[O]) 

sortl.nh_length = 28*SOrtl.nh_data[O]; 


sortl.nh_msg =pointer; 
dsend(&sortl); 


} 

else { 


sortl.nh_event = SORT; 

sortl.nh_type = S_type; 

sortl.nh_flags = DINTDATA I DINTMSG; 

sortl.nh_length = K*28; 

sortl.nh_msg = buffer; 

drecv(&sortl); 


for (wi=O; wksortl.nh_data[O]; wi++) 

if (buffer[wceii=Wi*7]>min) 


addnode(buffer[wcell], buffer[wcell+ 1], buffer[wcell+2], 
buffer[wcell+3], buffer[wcell+4], num, min, buffer[wcell+5], 
butter[wcell+6], 1); 

} 

} 


if (nodeid=l) { 

sortl.nh_dl_event = dl_event(l); 

sortl.nh_event = SORTED; 

sortl.nh_node = 0; 

sortl.nh_flags = DINTDATA I DINTMSG; 

copy_list(numnode, sort l.nh_data[O]) 

sortl.nh_length = 28*SOrtl.nh_data[O]; 

sortl.nh_msg = pointer; 

dsend(&sortl);} 


} 
} 



84 

} 

if (nodeid = 0) { 

sortl.nh_event = SORTED; 

sortl.nh_type = S_type; 

sortl.nh_length = K*28; 

sortl.nh_msg = buffer; 

sortl.nh_flags = 0; 

drecv(&sortl); 

for (wi=O; wksortl.nh_data[O]; wi++) 


if (buffer(wceii=Wi*7]>min) 
addnode(buffer[wcell], buffer[wcell+ 1], buffer[wcell+2], buffer[wcell+3], 

buffer[wcell+4], num, min, buffer[wcell+5], buffer[wcell+6], I); 
free(pointer); 
free(buffer); 
max = findmax(); 
maxi.SCORE = sortl.nh_data[O] = max->SCORE; 
maxi.STARI = sortl.nh_data[IJ = max->STARI; 
maxi.STARJ = sortl.nh_data[2] = max->STARJ; 
maxi.ENDI = sortl.nh_data[3] = max->ENDI; 
maxi.ENDJ = sortl.nh_data[4] = max->ENDJ; 
maxi.BOT = sortl.nh_data[5] = max->BOT; 
maxi.RIGHT = sortl.nh_data[6] = max->RIGHT; 
sortl.nh_data[7] = min; 
sortl.nh_dl_event = dl_event(desti); 

sortl.nh_event = PICK; 
sortl.nh_type =LOAD!; 


sortl.nh_length = 0; 

sortl.nh_flags = FLAG; 

sortl.nh_node = nodeid + I; 

dsend(&sortl); /*send*/ 

} 


I* passing globle max and update the LIST *I 
else { 

free(pointer); 

free(buffer); 

sortl.nh_event = PICK; 

sortl.nh_type =LOAD!; 

sortl.nh_length = 0; 

sortl.nh_flags = FLAG; 

drecv(&sortl); 

maxi.SCORE = sortl.nh_data[OJ; 

maxi.STARI = sortl.nh_data[I]; 

maxi.STARJ = sortl.nh_data[2]; 

maxi.ENDI = sortl.nh_data[3]; 

maxi.ENDJ = sortl.nh_data[4]; 

maxi.BOT = sortl.nh_data[5]; 

maxi.RIGHT = sortl.nh_data[6]; 

min= sortl.nh_data[7]; 


sortl.nh_dl_event = dl_event(desti); 
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sortl.nh_event = PICK; 

sortl.nh_type = LOAD1; 

sortl.nh_length = O; 

sortl.nh_flags = FLAG; 

sortl.nh_node = nodeid + 1; 

if (nodeid != P-1) { 


dsend(&sort1); 

} 


for ( d = 0; d < numnode ; d++) 
{ 

max = LIST[d]; 

if ((maxi.STARI = max->STARI) && (maxi.STARJ = max->STARJ)) 

{ 

numnode-; 
if (d 	!= numnode) { 

LIST[d] =LIST[numnode];/* LIST[numnode-1]=LIST[numnode]; *I 
LIST[numnode] =max; 
if (low_pos==numnode) low_pos=d; 
} 

most= LIST[O]; 

if (low= max) { low= LIST[O]; low_pos = 0;} 

break; } 


} 
} 

return(&maxl); 
} 

vertexptr find max() 
{ 

register int i, j; 
vertexptr cur; 
for ( j = 0, i = 1; i < numnode ; i++ ) 

if ( LIST[i]->SCORE > LIST[j]->SCORE ) 
j =i; 

else if (LIST[i]->SCORE=LIST[j]->SCORE && LIST[i]->STARJ<LISTOJ->STARJ) 
i= i; 


cur= LIST[j]; 

if ( j != -numnode ) 


{ LIST[j] = LIST[numnode]; 

LIST[numnode] = cur; 


} 

most= LIST[O]; 

if ( low = cur ) { 


low = LIST[O]; 

low_pos =0; 


} 

return (cur); 


} 
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alignment(stti, sttj, endi, endj, headnd, endnd, tb, te) 
int stti, sttj, endi, endj, headnd, endnd, tb, te; 
{ 

int midnd, mid_i, midj,i,oldnd, temp; 
int *COnt. id, *fSt(), *Snd(), newmem; 

mid_i = stti + (endi - stti)l2; 
temp = 2*(endj-sttj)l(endnd-headnd+1)+16; 
newmem = temp*4; 
CC = (int *)malloc(newmem*6); 
RR = CC + temp; 
SS = RR + temp; 
EE = SS + temp; 
DD = EE + temp; 
FF = DD + temp; 
if (endnd!=headnd && nodeid <= (midnd = headnd+(endnd-headnd)l2)) 

{ 
oldnd=endnd; 
cont = fst(stti,mid_i,sttj,endj,oldnd,headnd,endnd=midnd, tb, te); 
} 

else 
{ 
oldnd=headnd; 
cont = snd(mid_i+ 1,endi,sttj,endj,oldnd,headnd=midnd+ 1,endnd,tb,te); 
} 

mid_j = cont[O]; 
id = cont[1]; 
free(CC); 

I* recursion on computing node *I 
if (headnd != endnd) 

if (id = 1) I* type 1 *I 
if (nodeid > midnd) { 

alignment(mid_i+1, midj+1, endi, endj, headnd, endnd, q, te);} 
else 

alignment(stti, sttj, mid_i, midj, headnd, endnd, tb, q); 
else { I* type 2 *I 

if (nodeid > midnd) 
alignment(mid_i+2, midj+l, endi, endj, headnd, endnd, 0, te); 

else { 
alignment(stti, sttj, mid_i-1, midj, headnd, endnd, tb, 0); 
if (nodeid == endnd) DEL(2); 

} 
} 

I* recursion on each computing node *I 
else 

{ 
al_len = last = Sl = 0; 
no_mis = no_mat = 0; 
I= J =0; 
if (id = 1) 

if (nodeid%2 = 0) { 
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temp == midj-sttj+1; 

newmem == temp *4 + 4; 

S == sapp == (int *)malloc(newmem); 

CC == (int *)malloc(newmem*6); 

RR == CC +temp +1; 

SS == RR + temp+1; 

EE == SS + temP+1; 

DO== EE + temP+1; 

FF ==DO+ temp+1; 


li == stti -1 ; J j == sttj -I ; 

recu_ai(&AA[Ii], &BB[Jj],mid_i-stti+ 1,temp, tb, q); 

} 

else { 
temp == endj-midj; 
newmem == temp *4 + 8; 
S == sapp == (int *)malloc(newmem); 
CC == (int *)malloc(newmem*6); 
RR == CC + temP+2; 
SS == RR + temp+2; 
EE == SS + temP+2; 
DO == EE + temp+2; 
FF == DO + temp+2; 

li ==mid_i; Jj == midj; 

recu_ai(&AA[Ii], &BB[Jj], endi-mid_i, temp, q, te); 

} 


else 
if (nodeid%2 = 0) { 

temp == midj-sttj+1; 
newmem ==temp *4 + 4; 
S == sapp == (int *)malloc(newmem); 
CC == (int *)malloc(newmem*6); 
RR == CC +temp+I; 
SS == RR +temP+I; 
EE == SS +temp+ I; 
DO== EE + temP+l; 
FF == DO+ temP+1; 

li == stti -1; Jj == sttj -1; 

recu_ai(&AA[Ii], &BB[Jj], mid_i-stti, temp, tb, 0); 

DEL(2); 


} 
else { 

temp == endj-midj; 
newmem ==temp *4 + 8; 
S == sapp == (int *)malloc(newmem); 
CC == (int *)malloc(newmem*6); 
RR == CC + temp+2; 
SS == RR + temP+2; 
EE == SS + temp+2; 
DO == EE + temP+2; 
FF == DO + temP+2; 

li ==mid_i+1; Jj = midj; 

recu_ai(&AA[Ii], &BB[Jj],endi-mid_i-l,temp,O,te); 
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} 
free(CC); 

} 
} 

I* recu_ai(A,B,M,N,tb,te) returns the score of an optimum conversion between 
A[l..M] and B[l..N] that begins(ends) with a delete if tb(te) is zero 
and appends such a conversion to the current script. *I 

recu_ai(A,B,M,N,tb,te) char *A, *B; int M, N; int tb, te; 

{ int midi, midj, type; I* Midpoint, type, and cost *I 
int midc; 

{ register int i, j; 
register int c, e, d, s; 

int t, *Va; 
pairptr z1; 

I* Boundary cases: M <= 1 or N = 0 *I 

if (N <= 0) 

{ if (M > 0) DEL(M) 


return - gap(M); 

} 


if (M <= 1) 

{if (M <= 0) 


{ INS(N); 

return - gap(N); 


} 

if (tb > te) tb = te; 

midc = - (tb + r + gap(N) ); 

midj = 0; 

va = CV[A[1]); 

for (j = 1; j <= N; j++) 


{ for ( tt = 1, z = coi(Jj+J+j]; z != 0; z = z->NEXT) 

if ( Z->ROW = li+l+ 1 ) 


{ tt = 0; break; } 

if ( tt ) 

{ c = va[B[j]]- ( gap(j-1) + gap(N-j) ); 


if (c > midc) 

{ midc = c; 


midj=j; 

} 
} 

} 

if (midj = 0) 


{ INS(N) DEL(l) } 

else 

{if (midj > 1) INS(midj-1) 


REP 
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if ( A[1] = B[midj] ) 

no_mat += 1; 


else 

no_mis += 1; 


I* mark (A[I],B[J]) as used: put J into list row[l] *I 

I++; J++; 


zl = ( pairptr ) malloc(sizeof(pair)); 

Z1->ROW = l+li; 

zl->NEXT = coi[Jj+J]; 


coi[Jj+J] = zl; 

if (midj < N) INS(N-midj) 


} 

return midc; 


} 

I* Divide: Find optimum midpoint (midi,midj) of cost midc *I 

midi= Ml2; I* Forward phase: *I 

CC[O] = 0; I* Compute C(M/2,k) & D(M/2,k) for all k *I 

t = -q; 

for (j = 1; j <= N; j++) 


{ CC[j] = t = t-r; 

DD[j] = t-q; 


} 
t = -tb; 

for (i = 1; i <=midi; i++) 


{ s = CC[O]; 

CC[O] = c = t = t-r; 

e = t-q; 

va = CV[A[i]]; 

for (j = 1; j <= N; j++) 


{ if ((c = c- qr) > (e = e - r)) e = c; 

if ((c = CCOJ - qr) > (d = DD(j] - r)) d = c; 


DIAG(i+l+li, j+J+Jj, c, s + va[B[j]]) 

if ( c < d) c = d; 

if (c < e) c = e; 

s = CC[j]; 

CC[j] = c; 

DD[j] = d; 


} 

} 


00[0] = CC[O]; 

RR[N] = 0; I* Reverse phase: *I 
t = -q; I* Compute R(MI2,k) & S(MI2,k) for all k *I 
for (j = N-1; j >= 0; j--) 

{ RR[j] = t = t-r; 

SS[j] =t-q; 


} 
t = -te; 

for (i = M-1; i >=midi; i-) 


{ s = RR[N]; 
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RR[N] = c = t = t-r; 

e = t-q; 

va = CV[A[i+1]]; 

for (j = N-1; j >= 0; j-) 


{ if ((c = c- qr) > (e = e - r)) e = c; 
if ((c = RR[j] - qr) > (d = SSUJ - r)) d = c; 

DIAG(i+1+1+1i, j+1+J+Jj, c, s+va[B[j+1]]) 
if ( c < d) c = d; 
if (c < e) c = e; 
s = RR[j]; 
RR[j] = c; 
SS[j] = d; 

} 

} 


SS[N] = RR[N]; 

midc = CC[O]+RR[O]; I* Find optimal midpoint *I 

midj =0; 

type= 1; 

for (j = 0; j <= N; j++) 


if ((c = CC[j] + RR[j]) >= midc) 

if (c > midc II CC[j] != DD[j] && RR[j] = SS[j]) 


{ midc = c; 

midj=j; 


} 

for (j = N; j >= 0; j--) 


if ((c = DD[j] + SS[j] + q) > midc) 

{ midc = c; 


midj=j; 

type= 2; 


} 
} 

I* Conquer: recursively around midpoint *I 

if (type= 1) 

{ recu_ai(A,B,midi,midj,tb,q); 


recu_ai(A+midi,B+midj,M-midi,N-midj,q,te); 

} 

else 
{ recu_ai(A,B,midi-1,midj,tb,zero); 

DEL(2); 
recu_ai(A+midi+ 1,B+midj,M-midi-1 ,N-midj,zero,te ); 

} 
return midc; 

} 

1**************************************1 
int *fst(sti, eni, stj, enj, odnd, head, end, tb, te) 

int sti, eni, stj, enj, odnd, head, end, tb, te; 

{ 


struct nmsg whisperl, score; 
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int in_a[6], j, i, *Va; 
int t, sj, leni, lenj, P _g, content[3]; 
register int e,s,c,d; I* e -- l[iJD-1] *I 

I* s C[i-1]0-1] *I 
I* c -  C[i][j-1] *I 

#define fst_pass(in, baj, bai, N, head, out) \ 
{ \ 

s = in[O]; \ 
c = in[l]; \ 
e = in[2]; \ 
va = CV[AA[bai]]; \ 
for (j=((nodeid=head)? 1:0); j < N; j++) \ 

{ if ((c = c  qr) > (e = e  r)) e = c; \ 
if ((c = CCUJ - qr) > (d = DD[j] - r)) d = c; \ 

DIAG(bai, j+baj, c, swa[BB[j+baj]]) 
if (C < d) C = d; 

if (c < e) c = 
s = CC[j]; 
CC[j] = c; 
DD[j] = d; 

} 
out[O] = s; 
out[l] = c; 
out[2] = e; 

} 

if (enj-stj<=O) { 

e; 

score.nh_data[O] = stj-1; 

score.nh_data[l] = 1; 

return(score.nh_data); 


} 
P _g = end-head+1; 
leni = eni-sti+1; 
if (nodeid = head) { 

lenj = (enj-stj+2)1P _g; 
if ((enj-stj+2)%P _g != 0) ++lenj; 

if (head!=end) { 
whisperl.nh_dl_event = dl_event(desti); 
whisperl.nh_event = c_stt+end; 
whisperl.nh_type = whisper_msg; 
whisperl.nh_data[4] = stj+lenj-1; 
whisperl.nh_data[5] = lenj; 
whisperl.nh_length = 0; 
whisper1.nh_flags = FLAG1; 
whisperl.nh_node = nodeid + 1; 

dsend(&whisperl); 
} 


t = -q; 

CC[O] = 0; 

for {j=l; j<=lenj; j++) { 


\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

I* length *I 

I* stt point *I 
I* length of j *I 
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CC[j] = t = t-r; 

DD[j] = t-q; 

} 


t = -tb; 

for (i=O; kleni; i++) { 


in_a[O] = CC[O]; I* s -- C[i-1][j-1] *I 
in_a[1] = CC[O] = t = t-r; I* c -- C[i][j-1] *I 
in_a[2] = t-q; I* e -- l[i][j-1] *I 
fst_pass(in_a, stj-1, sti+i, lenj, head, content) 
if (head!=end) { 

for (j=O; j<4; j++) whisperl.nh_data(j] = content(j]; 
whisperl.nh_node = nodeid + 1; 
dsend(&whisperl); 

} 
} 

DD[O] = CC[O]; 
} 
else { 

whisperl.nh_event = c_stt+end; 

whisperl.nh_type = whisper_msg; 

whisperl.nh_length = 0; 

whisperl.nh_flags = 0; 

drecv(&whisperl); 


t=-q-(whisperl.nh_data[4]-stj)*r; 

sj = whisperl.nh_data[4]; 

lenj = whisperl.nh_data[5]; 


if (nodeid != end) { 
whisperl.nh_dl_event = dl_event(desti); 
whisperl.nh_event = c_stt+end; 
whisperl.nh_type = whisper_msg; 
whisperl.nh_data[4] = sj+lenj; I* stt point *I 
whisperl.nh_data[5] = lenj; I* length *I 
whisperl.nh_length = 0; 
whisperl.nh_flags = FLAG1; 
whisperl.nh_node = nodeid + 1; 
dsend( &whi sperl); 
} 

else lenj = enj-sj+ 1; 
for (j=O; j<lenj; i++) { 


CC[j] = t = t-r; 

DD[j] = t-q; 

} 


for (i=O; kleni; i++) 
{ 

whisperl.nh_type = p_d; 
drecv( &whisperl); 
fst_pass(whisperl.nh_data, sj, sti+i, lenj, head, content) 

if (nodeid != end) { 
whisperl.nh_type = p_d; 
whisperl.nh_node = nodeid + 1; 
for (j=O; j<4; j++) whisperl.nh_data[j] = content[j]; 
dsend(&whisperl); 
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} 
} 


} 

I* Send CC and DD to the correspondent node *I 

score.nh_event =COST; 
score.nh_type =ARRAY; 
score.nh_length = lenj*4; 
score.nh_flags = DINTMSG; 
score.nh_msg = CC; 
score.nh_node = odnd-nodeid+head; 
nsend(&score); 
score.nh_event = COST+1; 
score.nh_msg = DD; 
nsend(&score); 

I* Receive the node on optimal path *I 

score.nh_event =ARRAY; 

score.nh_type =COST; 

score.nh_length = 0; 

score.nh_flags = DINTDATA; 

nrecv(&score); 


return(score.nh_data); 
} 

1**************************************1 
int *Snd(sti, eni, stj, enj, odnd, head, end, tb, te) 

int sti, eni, stj, enj, odnd, head, end, tb, te; 

{ 


struct nmsg whisperl, score1; 

int in_a[6], j, i, midj, midc, type, t,sj, *result, *find_mid(); 

int leni, lenj, P_g, temp_cost, *Va, sjj; 


I* 	snd_pass(in, baj, bai, N) compute the locall RR and SS. in ins a input 
array, baj (base of j) and bai (base of i) and N (range of j). *I 
register int e, I* l[i][j-1] *I 

S, I* C[i-IJ[j-1] *I 
C, I* C[i][j-1] *I 
d; 

#define snd_pass(in, baj, bai, N, head, out) \ 
{ 	 \ 

s = in[O]; \ 

c = in[1]; \ 

e = in[2]; \ 

va = CV[AA[bai]]; \ 

for (j = N-1; j >= 0; j-) \ 


{ if ((c = c- qr) > (e = e - r)) e = c; \ 

if ((c = RR[j] - qr) > (d = SS[j] - r)) d = c; \ 


DIAG(bai, j+baj, c, s+Va[BB[j+baj]]) \ 

if (C < d) C = d; \ 

if (c < e) c = e; \ 
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s =RR[j]; \ 

RR[j] = c; \ 

SS[j] = d; \ 


} \ 

out[O] = s; \ 

out[1] = c; \ 

out[2] = e; \ 


} 

if (enj-stj<=O) { 

scorei.nh_data[O] = stj-1; 

scorei.nh_data[1] = 1; 

return( score 1.nh_data); 


} 

P_g =end-head+1; 

leni = eni-sti+1; I* length *I 

if (nodeid = head) { 


whisperl.nh_data[5J=Ienj = (enj-stj+2)1P _g; 
if ((enj-stj+2)%P _g != 0) { 

whisperl.nh_data[5J = ++lenj; 
lenj = enj-stj+2-lenj*(P _g - 1); I* length of j *! 

} 
t = -q; 
for (j=lenj-2; j>=O; j--) { 


RR[j] = t = t-r; 

SSUJ = t-q; 

} 


if (head!=end) { 

whisperl.nh_dl_event = dl_event(desti); 

whisperl.nh_event = p_d+end; 

whisperl.nh_type = whisper_msg; 

whisperl.nh_data[4J = enj-lenj+ 1; I* end position *I 

whisperl.nh_data[3J = t; 

whisper! .nh_length = 0; 

whisperl.nh_flags = FLAG 1; 

whisperl.nh_node = nodeid + 1; 


dsend(&whisper1); 
} 

sj = enj - lenj+2; 

RR[Ienj-1] = 0; 

t = -te; 

for (i=leni-1; i>=O; i--) { 


in_a[O] = RR[Ienj-1]; I* s -- C[i-1J0-1] *I 
in_a[1J = RR[Ienj-1] = t = t-r; I* c- C[i][j-1] *I 
in_a[2J = t-q; I* e -- l[i][j-1] *I 
snd_pass(in_a, sj, sti+i, lenj-1, head, whisperl.nh_data) 
if (head!=end) { 
whisperl.nh_type = c_stt; 
whisperl.nh_node = nodeid + 1; 
dsend( &whi sperl); 
} 

} 
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SS[Ienj-1] = RR[Ienj-1]; 

} 


else { 

whisperl.nh_event = p_d+end; 

whisperl.nh_type = whisper_msg; 


whisperl.nh_flags = 0; 

whisperl.nh_length = 0; 

drecv( &whisper1 ); 


t = whisperl.nh_data[3]; 

enj = whisperl.nh_data[4]; 

lenj = whisperl.nh_data[5]; 

for (j=lenj-1; j>=O; j-) { 


RR[j] = t = t-r; 

ssm = t-q; 

} 


sj = enj- lenj+1; 
if (nodeid != end) { 

whisperl.nh_dl_event = dl_event(desti); 
whisperl.nh_event = p_d+end; 
whisperl.nh_type = whisper_msg; 
whisperl.nh_data[3] = t; 
whisperl.nh_data[4] = enj-lenj; I* stt point *I 
whisperl.nh_data[5] = lenj; I* length *I 
whisperl.nh_length = 0; 
whisperl.nh_flags = FLAG1; 
whisperl.nh_node = nodeid + 1; 
dsend(&whisper1); 
} 

for (i=leni-1; i>=O; i-) 
{ 

whisperl.nh_type = c_stt; 
drecv(&whisper1); 
snd_pass(whisper1.nh_data,sj,sti+i,lenj,head,wh isper1.nh_data) 

if (nodeid != end) { 
whisperl.nh_type = c_stt; 
whisperl.nh_node = nodeid + 1; 
dsend(&whisperl); 

} 
} 

} 

I* receive CC and DO from the correspondent node *I 
scorel.nh_event = COST; 
scorel.nh_type =ARRAY; 
scorel.nh_flags = DINTMSG; 
scorel.nh_length = lenj*4; 
score 1.nh_msg=CC; 
nrecv(&score1); 

scorel.nh_event = COST+1; 

score 1.nh_msg=DD; 

nrecv( &score 1); 
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I* 	 find the node on optimal path *I 

midc = CC[O]+RR[O]; I* Find optimal midpoint *I 

midj = sj-1; 

type= 1; 

for (j = 0; j < lenj; j++) 


if ((temp_cost = CC[j] + RROD >= midc) 
if (temp_cost > midc II CCOJ != DD[j] && RR[j] = SS[j]) 

{ midc = temp_cost; 
midj = j+sj-1; 

} 
for (j = lenj-1; j >= 0; j-) 


if ((temp_cost = DD[j] + SS[j] + q) > midc) 

{ midc = temp_cost; 


midj = j+sj-1; 

type= 2; 


} 

if (end-head>O) { 

result = find_mid(head, end, midc, midj, type); 

midc = result[O]; 

midj = result[l]; 

type = result[2]; 


} 
I* distribute the mid_i, midj. *I 

scorel.nh_event = ARRAY; 

scorel.nh_type =COST; 

scorel.nh_length = 0; 

score1.nh_flags = DINTDATA; 

scorel.nh_data[O] = midj; 

scorel.nh_data[l] =type; 

scorel.nh_node = end-nodeid+odnd; 

nsend( &score 1); 

return( score l.nh_data); 


} 

I* 	 findmid() return a pointer with point to an three element array 
which contains mid_cost, midj, type. *I 

int *find_mid(hdnd, tlnd, mid_c, mdj, type) 

int hdnd, tlnd, mid_c, mdj, type; 

{ 


struct nmsg max_element; 

inti, n, d; 


if (nodeid = hdnd) { I* headnode send its max *I 

max_element.nh_dl_event = dl_event(desti); 

max_element.nh_event =PASS; 

max_element.nh_type =OPT; 
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max_element.nh_length = 0; 

max_element.nh_flags = FLAG; 

max_element.nh_data[Ol = mid_c; I* max cost *I 

max_element.nh_data[l] = md_j; I* Undex of max cost *I 

max_element.nh_data[2] = type; I* type of connection *I 

max_element.nh_node = nodeid + 1; 

dsend(&max_element); 

} 


else 

{ I* the other nodes receive and compare, sent new max *I 

max_element.nh_event =PASS; 

max_element.nh_type = OPT; 

max_element.nh_length = 0; 

max_element.nh_flags = 0; 

drecv(&max_element); 

if (max_element.nh_data[Ol < mid_c) 


{ 

max_element.nh_data[O] = mid_c; 

max_element.nh_data[ll = md_j; 

max_element.nh_data[2] = type; 

} 


max_element.nh_dl_event = dl_event(desti); 

max_element.nh_length = 0; 

max_element.nh_flags = FLAG; 

max_element.nh_node = nodeid + 1; 

if (nodeid = tlnd) { 


max_element.nh_type = BC; 

max_element.nh_node = hdnd; 

nsend(&max_element);} 


else dsend(&max_element); 

} 


I* passing globle max and add node(i,j) in the memo structure *I 
max_element.nh_event = PASS; 
max_element.nh_type = BC; 
max_element.nh_length = 0; 
max_element.nh_flags = 0; 
nrecv(&max_element); 
max_element.nh_dl_event = dl_event(desti); 
max_element.nh_length = 0; 
max_element.nh_flags = FLAG; 
max_element.nh_node = nodeid + 1; 
max_element.nh_event =PASS; 
max_element.nh_type = BC; 
if (nodeid != tlnd) dsend(&max_element); 
return(max_element.nh_data); 

} 
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I* gather() send the conversion of the optimal alignment to the HOST *I 
gather() 
{ 

inti; 

struct nmsg updtl; 

updtl.nh_event = COLLECT +nodeid; 

updtl.nh_type = AL; 

updtl.nh_flags = DINTMSG!DINTDATA; 

updtl.nh_node = 100; 

updtl.nh_length = Sl*4; I* length of al. *I 

updtl.nh_msg = S; 


I* 	 if (nodeid=15) tprintf("S = %d\n",S); *I 
updtl.nh_data[O] = li; I* i of A *I 
updtl.nh_data[l] = Jj; I* j of B *I 
updtl.nh_data(3] = I; 
updtl.nh_data(4] = J; 
updtl.nh_data[5] = al_len; 
updtl.nh_data[2] = MAX.SCORE; 
updtl.nh_data[6] = no_mat; 
updtl.nh_data[7] = no_mis; 
nsend(&updtl); 

I* 	 if (nodeid=2) for (i=O; i<SI; i++) tprintf("S[%d]=%d\n",i,S[i]); 
tprintf("SI =%d results of node %d out\n", Sl, nodeid);*l 
free(S); 
return(O); 

} 

I* 	 update(Mn) updates the used _pair table in each node. It is done by 
passing a token in among nodes. The holder of the token send its 
used_pair table to the others which update their used_pair table 
based on the received message. *I 

update(Mn, Nn) 

int Mn, Nn; I* length of the message *I 


{ 
int *block; 

int i,j, h, index, t_flag; 

pairptr zz; 

struct nmsg updt; 


I* construct message block (j,i) (j,i) ... *I 

block= (int *)malloc(Nn*2); 

index= 0; 

for (j=Jj; i<=Jj+J+l; j++) 


if (col[j]!=NULL) { 
block[index++] = j; 
block[index++] = col[j]->ROW; 

} 
updt.nh_dl_event = dl_event(desti); 

updt.nh_event = AL; 

updt.nh_type = COLLECT; 

updt.nh_data(O] = index; 
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updt.nh_flags = DINTDATAIDINTMSG; 

updt.nh_msg = block; 

updt.nh_node = (nodeid + 1)%P; 

updt.nh_length = index * 4; 

nsend(&updt); 


for (i=O; i<P-1; i++) { 
I* receive block *I 

updt.nh_event = AL; 
updt.nh_type = COLLECT; 
updt.nh_flags = 0; 
updt.nh_length = Nn*2; 
updt.nh_msg = block; 
nrecv(&updt); 
index = updt.nh_data[O]; 

I* update the used__pair table *I 

for (h=O; h<updt.nh_data[O]; h++) { 
for (Z=COI[block[h]],t_flag=l; Z!=O; Z=Z->NEXT) 

if (z->ROW=block[h+1]) { 
t_flag=O; break; } 

if (t_flag=l) { 
zz = (pairptr) malloc(sizeof(pair)); 
zz->NEXT = col[block[h]]; 
col[block[h]]=zz; 
zz->ROW = block[h+l]; 
} 

h++; 
} 
updt.nh_dl_event = dl_event(desti); 
updt.nh_event = AL; 
updt.nh_type = COLLECT; 
updt.nh_msg = block; 
updt.nh_length = index*4; 
updt.nh_data[O] = index; 
updt.nh_node = (nodeid + 1)%P; 
updt.nh_flags = DINTDATAIDINTMSG; 
if (i!=P-2) nsend(&updt); 

} 

free(block); 
return(O); 

} 

I* function reverse(A, B, sri, srj, eri, erj) modifies the alignment LIST 
using reversed dynamic programming. A and Bare two sequences, sri and srj 
are EXACTLY starting points, and eri and erj are ending point of computing. 
Note: sri > eri and srj > erj *I 

static int tflag, lflag; I* top flag and left flag *I 
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reverse{A, B, sri, srj, eri, erj) 

char A[], B[]; 

int sri, srj, eri, erj; 

{ 

struct nmsg chat; 

int M_l, N_l, infor[8]; 

int stri, strj, leni, lenj, B_len; 

int temp, inc, enri, enrj; 

long i; 
int rl, cl; I* rl - row limit, cl  colume limit *I 

I* tb  top boundary, lb  left boundary *I 
register int j, jj1; I* row and column indices *I 
register int c; I* best score at current point *I 
register int f; I* best score ending with insertion *I 
register int d; I* best score ending with deletion *I 
register int p; I* best score at (i-1, j-1) *I 
register int ci, cj; I* end-point associated with c *I 
register int di, dj; I* end-point associated with d *I 
register int fi, fj; I* end-point associated with f *I 
register int pi, pj; I* end-point associated with p *I 
register int *Va; I* pointer to v(A[i], B[j]) *I 
int bj; I* function for inserting a node *I 
register int content 1 [21; 

I* Compute the matrix and save the top K best scores in LIST 
CC : the scores of the current row 
RR and EE : the starting point that leads to score CC 
DD : the scores of the current row, ending with deletion 
SS and FF: the starting point that leads to score DD *I 

#define rvpass{package_i, package_o, iO, basej, sizej) \ 
{ \ 

va = CV[AA[iO]]; \ 
p = package_i[O]; \ 
pi= package_i[l]; \ 
Pi= package_i[2]; \ 
unpack(package_i[6], content!) \ 
c = contentl[O]; \ 
f = content1[1]; \ 
ci= package_i[7]; \ 
cj= package_i[3]; \ 
fi= package_i[4]; \ 
fj= package_i[5]; \ 
tflag = 0; \ 
bj = basej - sizej+1; \ 
for ( j=jj1=(nodeid=P-1 ? basej: sizej-1); j >=jj1-sizej+1; j-) \ 

{ \ 

f = f - r; I* r, q, N_l and min are globles *I \ 

c = c- qr; \ 

ORDER(f, fi, fj, c, ci, cj) \ 

c = CC[j] - qr; \ 

ci = RR[j]; \ 

cj = EE[j]; \ 
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d = DDUJ- r; \ 

di = SSUJ; \ 

dj = FF[j]; \ 

ORDER(d, di, dj, c, ci, cj) \ 

c = 0; \ 
if (nodeid = P-1) DIAG(iO, j, c, p + va[BBU]]) I* diagonal *I\ 
else \ 

DIAG(iO, j+bj, c, p + va[BBU+bj]]) I* diagonal *I \ 
if(C<=O) \ 

{ c = 0; ci = iO; cj = (nodeid=P-1 ? j : j+bj); \ 
} \ 

else \ 
{ ci = pi; cj = pj; \ 

} \ 
ORDER(c, ci, cj, d, di, dj) \ 

ORDER(c, ci, cj, f, fi, fj) \ 

p = CC[j]; \ 

CC[j] = c; \ 

pi= RRUJ; \ 

pj = EE[j]; \ 

RR[j] = ci; \ 

EEUJ = cj; \ 

DD[j] = d; \ 

ssm = di; ' 
FF[j] = dj; \ 
if ( c > min ) I* add the score into list *I \ 

flag= 1; \ 
if (tflag=O&&(ci>tb && cj>lb 11 di>tb && dj>lb 11 fi>tb && fj>lb))\ 

{ tflag = 1; mm1=i0; } \ 
} I* K is globle too *I \ 
if (nodeid != P-1) { \ 

package_o[O] =p; \ 
package_o[l] = pi; \ 
package_o[2] = pj; \ 
pack(c, f, package_o[6]) \ 
package_o[7] = ci; \ 
package_o[3] = cj; \ 
package_o[4] = fi; \ 
package_o[5] = fj; \ 

} \ 
else { \ 

if (!lflag&&(ci>tb && cj>lb 11 di>tb && dj>lb 11 fi>tb && fj>lb))\ 
{ lflag = 1; nnl = j; } \ 

HH[iO] = p; \ 
ll[iO] = pi; \ 
JJ[iO] = pj; \ 
pack(c, f, UU[iO]) \ 
VV[iO] = ci; \ 
WW[iO] = cj; \ 
XX[iO] = fi; \ 
YY[iO] = fj; \ 

} \ 
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} 

M_l = sri - eri + 1; 

N_l = srj - erj + 1; 

temp= (srj- erj+1)1(P-1); 

enri = eri; enrj = erj; 

if (nodeid < P-1) { 


CC = (int *)malloc(temp*24); 

DD = CC + temp; 

RR = DD + temp; 

EE = RR + temp; 

FF = EE +temp; 

SS = FF + temp; 

} 

else { 
temp= 16+erj; 
CC = (int *)malloc(temp*24); 
DD = CC + temp; 
RR = DD + temp; 
EE = RR + temp; 
FF = EE +temp; 
SS = FF + temp; 

temp= sri; 

UU = (int *)malloc(temp*32); 

VV = UU + temp; 

HH = VV + temp; 

II = HH + temp; 

JJ = II + temp; 

WW = JJ + temp; 

XX = WW + temp; 

YY = XX + temp; 

} 


if (nodeid = 0) { 
chat.nh_dl_event = dl_event(desti); 
chat.nh_event = rvcmd; 
chat.nh_type = chat_msg; 
chat.nh_data[l] = N_l; 
chat.nh_data[2] = sri; 
chat.nh_data[3] = M_l; 
lenj = (N_I-1)1(P-1); 

chat.nh_data[4] = srj-lenj; 

chat.nh_data[5] = lenj; 

chat.nh_length = 0; 

chat.nh_flags = FLAG1; 

chat.nh_node = nodeid + 1; 


dsend(&chat); 
for (j=srj, jj1=1enj; j>srj-lenj; j-, jjl-) { 

CC[jjl] = 0; 

I* start point of A *I 
I* length of A *I 
I* length of B *I 
I* start point of B *I 
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RR[jjl] = sri+l; 

EE[jjl] = j; 

DD[jj1] = -q; 

SS[jjl] = sri+l; 

FF[jj1] = j; 


} 

infor[O] = 0; I* p[i-1][j-1] *I 

infor[2] = srj+l; I* Pi *I 

infor[3] = srj+l; I* cj *I 

infor[5] = srj+l; I* fj *I 

pack(O, -q, infor[6]) I* c[i][j-1] and f[i][j-1] *I 


for (i=sri; i>sri - M_l;i- ) 
{ 


infor[1] = i+1; I* pi *I 

infor[4] = i; I* fi *I 

infor[7] = i; I* ci *I 

chat.nh_event = rvdt + i; 

chat.nh_type = c_start; 

chat.nh_length = 0; 

chat.nh_node = nodeid + 1; 

rvpass(infor, chat.nh_data, i, srj, lenj) 

dsend(&chat); 

} 


} 
else { 

chat.nh_event = rvcmd; 
chat.nh_type = chat_msg; 
chat.nh_length = 0; 
chat.nh_flags = 0; 

drecv(&chat); 

B_len = chat.nh_data[l]; 

stri = chat.nh_data[2]; 

strj = chat.nh_data[4]; 

leni = chat.nh_data[3]; 

lenj = chat.nh_data[5]; 


if (nodeid != P -1 ) { 
chat.nh_dl_event = dl_event(desti); 
chat.nh_data[1] = B_len; I* start point *I 
chat.nh_data[2] = stri; I* start point *I 
chat.nh_data[3] = leni; I* length *I 
chat.nh_data[4] = strj-lenj; I* start point *I 
chat.nh_data[5] = lenj; I* length *I 
if (nodeid = P-2) { 

chat.nh_data[5] = B_len- (P-1)*1enj; 
} 
chat.nh_event = rvcmd; 

chat.nh_type = chat_msg; 

chat.nh_length = 0; 

chat.nh_flags = FLAGI; 

chat.nh_node = nodeid + 1; 

dsend(&chat); 
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} 
for (j=strj, jj1=nodeid=P-1 ? strj: lenj-1; j>strj-lenj; j-,jj1-) 
{ 

CC[jj1] = 0; 

RR(jj1] = stri + 1; 

FF[jj1] = EE[jj1] = j; 

DD(jj1] = -q; 

SS(jj1] = stri + 1; 

} 

for (i=stri; i>= enri; i-) 

{ 


chat.nh_event = rvdt+i; 

chat.nh_flags = FLAG1; 


chat.nh_type = c_start; 

chat.nh_length = 0; 

drecv(&chat); 


rvpass(chat.nh_data, chat.nh_data, i, strj, lenj) 
if (nodeid != P-1) { 

chat.nh_dl_event = dl_event(desti); 
chat.nh_flags = FLAG1; 
chat.nh_type = c_start; 

chat.nh_event = rvdt+i; 
chat.nh_length = 0; 
chat.nh_node = nodeid + 1; 
dsend(&chat); 

} 

} 


} 

if (nodeid = 0) { 

Iflag = tflag = 1; 

for (tb=rl=mm1=enri+1, lb=el=nn1=enrj+1; ;) 

{ 


if ( lb=1 && tb=1 11 ex_limit()) break; 

for(; (tflag && enri > 1) 11 (lflag && enrj > 1); ) 

{ 


if (tflag && enri > 1) 

rl = (rl- 512>0 ? rl -512 : 1); 


if (lflag && enrj > 1) 

cl = (cl- 512>0 ? cl- 512 : 1); 


chat.nh_dl_event = dl_event(desti); 

chat.nh_event = rvcmd; 

chat.nh_type = chat_msg; 

chat.nh_data(O] = 111; 

chat.nh_data(2] = rl; 

chat.nh_data(1] = cl; I* *I 

chat.nh_data(3] = tb; 

chat.nh_data(4] = lb; I* *I 

chat.nh_length = 0; 

chat.nh_flags = FLAG1; 
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chat.nh_node = nodeid + 1; 

dsend(&chat); 


lflag = 0; 

infor[O] = 0; I* p[i-1][j-1] *I 

infor[2] = srj+1; I* pj *I 

infor[3] = srj+1; I* cj *I 

infor[5] = srj+ 1; I* fj *I 

pack(O, - q, infor[6]) I* c[i][j-1] and f[iJU-1] *I 


for (i=enri-1; i>=rl;i-) 
{ 


infor[1] = i+ 1; I* pi *I 

infor[4] = i; I* fi *I 

infor[7] = i; I* ci *I 


chat.nh_event = rvdt; 
chat.nh_type = c_start1; 


chat.nh_length = 0; 

chat.nh_node = nodeid + 1; 

rvpass(infor, chat.nh_data, i, srj, lenj) 

dsend(&chat); 


} 
I* receive lflags and tflags *I 
for (i = 1; i<P; i++) { 

chat.nh_event = p_d; 
chat.nh_type = flag_msg; 
chat.nh_length = 0; 
chat.nh_flags = FLAG; 
nrecv(&chat); 
if (chat.nh_data[OJ=l) lflag = 1; 
if (chat.nh_data[1]=1) tflag = 1; 
if (chat.nh_data[2]<mm1) mm1 = chat.nh_data[2]; 
nn1 = chat.nh_data[3]; 

} 
tprintf("tflag %d lflag %d rl %d cl %d tb %d lb %d\n",tflag, lflag,rl,cl,tb,lb); 

enri = m1 = rl; enrj = n1 = cl; 

} 

tprintf("rl = %d cl = %d \n", ml, nl); 

} 


I* 	 send stop command *I 
chat.nh_dl_event = dl_event(desti); 
chat.nh_event = rvcmd; 
chat.nh_type = chat_msg; 
chat.nh_data[OJ = 0; 
chat.nh_data[l] = ml =mml; 
chat.nh_data[2] = nl =nnl; 
chat.nh_length = 0; 
chat.nh_node = 1; 

dsend(&chat); 

free(CC); 

return(l); 


} 
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else if (nodeid = P-1) 
{ 

while(1) { 
chat.nh_dl_event = dl_event(desti); 


chat.nh_event = rvcmd; 

chat.nh_type = chat_msg; 

chat.nh_length = 0; 

chat.nh_flags = FLAG1; 


drecv( &chat); 
if (chat.nh_data[O] = 0) { 


m1 = chat.nh_data[1]; 

n1 = chat.nh_data[2]; 

free(UU); 

free(CC); 

return(1); 


} 

cl = chat.nh_data[I]; 


rl = chat.nh_data[2]; 

tb = chat.nh_data[3]; 

lb = chat.nh_data[4]; 
for (j=enrj-1; j>=cl; j-) { I* j should not ended at 0 *I 

CC[j] = 0; 

RR[j] =sri+ 1; 

EEUJ =j; 

DD[j] = -q; 

ssm =sri+ 1; 

FF[j] = j; 

} 


inc = enrj-cl; 
lflag = O; 


for (i=sri; i>=enri && cl <= enrj; i-) 

{ 


chat.nh_data[O] = HH[i]; 

chat.nh_data[1] = ll[i]; 

chat.nh_data[2] = JJ[i]; 

chat.nh_data[6] = UU[i]; 

chat.nh_data[7] = VV[i]; 

chat.nh_data[3] = WW[i]; 

chat.nh_data[4] = XX[i]; 

chat.nh_data[5] = YY[i]; 

rvpass(chat.nh_data, chat.nh_data, i, enrj-1, inc) 

} 


for (i=enri-1; i>= rl; i-) 

{ 

chat.nh_event = rvdt; 

chat.nh_flags = FLAG1; 

chat.nh_type = c_start1; 

chat.nh_length = 0; 

drecv(&chat); 


rvpass(chat.nh_data, chat.nh_data, i, strj, lenj+inc) 
I* inc used *I 

} 
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chat.nh_event = p_d; 

chat.nh_type = flag_msg; 

chat.nh_length = 0; 

chat.nh_flags = FLAG; 

chat.nh_data[O] = lflag; 


chat.nh_data[l] = tflag; 
chat.nh_data[2] = mml; 
chat.nh_data[3] = nnl; 

chat.nh_node = 0; 

nsend(&chat); 

enri = rl; enrj = cl; lenj=lenj+inc; 

} 


} 

else I* nodes from 1 to P-2 *I 

{ 

while (1) { 


chat.nh_dl_event = dl_event(desti); 

chat.nh_event = rvcmd; 

chat.nh_type = chat_msg; 

chat.nh_length = 0; 

chat.nh_flags = FLAG1; 


drecv( &chat); 

cl = chat.nh_data[1]; 

rl = chat.nh_data[2]; 


tb = chat.nh_data[3]; 

lb = chat.nh_data[4]; 


chat.nh_dl_event = dl_event(desti); 
chat.nh_data[l] = cl; I* colume limit *I 
chat.nh_data[2] = rl; I* row limit *I 

chat.nh_data[3] = tb; 

chat.nh_data[4] = lb; 


chat.nh_length = 0; 

chat.nh_node = nodeid + 1; 

dsend(&chat); 


if (chat.nh_data[O] = 0) { 

ml = chat.nh_data[l]; 

nl = chat.nh_data[2]; 

free(CC); 

return( I); 


} 

for (i=enri-1; i>= rl; i-) 
{ 

chat.nh_event = rvdt; 

chat.nh_flags = FLAGl; 


chat.nh_type = c_startl; 

chat.nh_length = 0; 

drecv(&chat); 
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rvpass(chat.nh_data, chat.nh_data, i, strj, lenj) 
chat.nh_length = 0; 
chat.nh_node = nodeid + 1; 
dsend(&chat); 

} 

I* send flags to node 0 *I 
chat.nh_event = p_d; 
chat.nh_type = flag_msg; 
chat.nh_length = 0; 
chat.nh_flags = FLAG; 
chat.nh_data[O] = 0; 

chat.nh_data[1] = tflag; 
chat.nh_data[2] = mm1; 
chat.nh_data[3] = 0; 

chat.nh_node = 0; 
nsend(&chat); 
enri = rl; 
} 

} 

} 

ex_limit() 
{ 

vertexptr cur; 

register long i; 

for (i=O; knumnode; i++) { 


cur= LIST[i]; 
if (cur->STARI <= mm && cur->STARJ <= nn && cur->BOT >= mm1 

&& cur->RIGHT >= nn1 && (cur->STARktb 11 cur->STARJ<Ib)) 
{ 

if (cur->STARI < tb) {tb = cur->STARI; tflag = 1; } 
if (cur->STARJ < lb) {lb = cur->STARJ; lflag = 1;} 
flag= 1; 
break; 

} 

} 

if (i = numnode) return 1; 

else return 0; 


} 

findflag() 
{ 

struct nmsg flg_element; 

if (nodeid = 0) { I* node 0 send its fig *I 
flg_element.nh_dl_event = dl_event(desti); 
flg_element.nh_event = PICK; 
flg_element.nh_type = LOADl; 



109 

flg_element.nh_length = 0; 

flg_element.nh_flags = FLAG; 

flg_element.nh_data[O] = flag; 

flg_element.nh_node = nodeid + 1; 

dsend(&flg_element); 

} 

else 
{ /* the other nodes receive and compare, sent new fig *I 
flg_element.nh_event = PICK; 
flg_element.nh_type = LOAD1; 
flg_element.nh_length =0; 
flg_element.nh_flags = FLAG; 
drecv(&flg_element); 
flg_element.nh_data[O] = flg_element.nh_data[O] + flag; 

flg_element.nh_dl_event = dl_event(desti); 

flg_element.nh_length = 0; 

flg_element.nh_flags = FLAG; 

flg_element.nh_node = nodeid + 1; 

if (nodeid = P-1) flg_element.nh_node = 0; 

dsend(&flg_element); /*Send*/ 

} 


I* passing globle fig and update the LIST *I 

flg_element.nh_dl_event = dl_event(desti); 

flg_element.nh_event = PICK; 

flg_element.nh_type =LOAD I; 

flg_element.nh_length = 0; 

flg_element.nh_flags = FLAG; 

drecv(&flg_element); 

flag= flg_element.nh_data[O]; 

flg_element.nh_node = nodeid + 1; 

if (nodeid != P-1) dsend(&flg_element); 

return(flag); 


} 
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I* OTB Program------- *I 

#include "predefine.h" 


char *A, *B; 

struct nmsg mesg, cmdm; 

int set[16], rfun=l, M, N, P; 


main(argc,argv) 

int argc; 

char *argv[]; 


{ 
int i, j, n, go, gx, ms, K, iptr,cstid; 
char symb; 
double start_time, end_time, ttime(); 
FILE *Aseq, *COpen(); 
if (argc != 3 ) err_rept("lncorrect number of arguements", argv[O]); 
Aseq =copen(argv[l], "r"); 
for (M =0; (symb = getc(Aseq)) != EOF;) 

if (symb != '\n') ++M; 

fclose(Aseq); 

A= (char*) malloc((M+l) * sizeof(char)); 

Aseq = copen(argv[l], "r"); 

for (M =0; (symb = getc(Aseq)) != EOF;) 


if (symb != '\n') A[M++] = symb; 

fclose(Aseq); 


Aseq = copen(argv[2], "r"); 

for (N =0; (symb = getc(Aseq)) != EOF;) 


if (symb != '\n') ++N; 

fclose(Aseq); 

B =(char*) malloc((N+l) * sizeof(char)); 

Aseq = copen(argv[2], "r"); 

for (N =0; (symb = getc(Aseq)) != EOF;) 


if (symb != '\n') B[N++] = symb; 

fclose(Aseq); 


I* 	 read in number of alignments, mismatch penalty, 
gap-open penalty and gap-extend penalty *I 

printf("Number of Computing Nodes {positive integer):\n"); 

scanf("%d", &P); 

printf("Number of Alignments (positive integer):\n"); 

scanf("%d", &K); 

printf("Matching Score is 10. \n"); 

printf("Mismatching Penalty(negtive integer): \n"); 

scanf("%d", &ms); 

printf("Gap-open Penalty(positive integer): \n"); 

scanf("%d", &go); 

printf("Gap-expend Penalty{positive integer): \n"); 

scanf("%d", &gx); 
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printf("Match Mismatch Open-gap-penalty Extend-gap-penalty\n"); 
printf(" 10 %d %d %d \n\n", ms, go, gx); 
printf(" Upper Sequence : %s\n", argv[1]); 
printf(" length : %d\n", M); 
printf(" Lower Sequence : %s\n", argv[2]); 
printf(" length : %d\n", N); 

kinit(); 
I* 

cstid = 117; 
for (i=O; i<P; i++) set[i] = i; 
if (rcast(ORIGIN, cstid, rtun, set, P)!=O) 

err_rept("lncorrect cast call", argv[O]); 
*I 

mesg.nh_event = NOTE; 
mesg.nh_type = LOAD; 
mesg.nh_length = 0; 
mesg.nh_flags = DINTDATA; 
mesg.nh_data[O] = M; I* size of the A *I 
mesg.nh_data[1] = N; I* size of the B *I 
mesg.nh_data[2] = K; I* number of alignmant *I 
mesg.nh_data[3] = ms; I* mismatch penalty *I 
mesg.nh_data[4] = go; I* gap open penalty *I 
mesg.nh_data[5] = gx; I* gap extend penalty *I 
mesg.nh_data[6] = P; I* number of computing node *I 

for (i=O;i<P;i++) { 
mesg.nh_node = i; 
nsend(&mesg); 

} 

start_time = ttime(); 

I* broadcast the array A *I 
mesg.nh_event =START; 
mesg.nh_type = LOAD; 
mesg.nh_length = M; 
mesg.nh_flags = DRAWMSG; 
mesg.nh_msg = A; 
for (i=O; i<P; i++){ 

mesg.nh_node = i; 
nsend(&mesg); 
} 

I* broadcast the array B *I 
mesg.nh_event = NOTE; 
mesg.nh_type = LOADS; 
mesg.nh_length = N; 
mesg.nh_flags = DRAWMSG; 
mesg.nh_msg = B; 
for (i=O; i<P; i++) { 

mesg.nh_node = i; 
nsend(&mesg);} 
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I* issue a command to node 0 *I 
cmdm.nh_event =START!; 
cmdm.nh_type = LOAD1; 
cmdm.nh_length = 0; 
cmdm.nh_flags = DINTDATA; 
cmdm.nh_node = FIRSTNODE; 
cmdm.nh_data[OJ = 1; 
cmdm.nh_data[1J = M; 
cmdm.nh_data[2J = 1; 
cmdm.nh_data[3J = N; 
nsend(&cmdm); 

I* receive results 
for (i=O;kN;i++) printf("B[%d] = %c\n", i, B[i]); 
rmelt(ORIGIN,cstid); *I 

for (i=O; kK; i++) 

display(i); 


end_time = ttime(); 

printf("start_time is %f \n", start_time); 

printf("run time is %f \n", end_time - start_time); 

kexit(O); 

free( A); 

free(B); 


} 

err_rept(err_msg, val) 
char *err_msg, *Val; 
{ 

fprintf(stderr, err_msg, val); 

putc('\n', stderr); 

exit(1); 


} 

FILE *COpen(name, mode) 

char *name, *mode; 

{ 


FILE *fp; 
if ((fp = fopen(name, mode)) = NULL) 

err_rept("Can not open file %s \n",name); 
return(fp); 

} 

I* Alignment display routine *I 

static char ALINE[51], BLINE[51], CLINE[51]; 

I* long display(A1,B1,M,N,S,AP,BP) char A1[], Bl[]; long M, N; long S[], AP, BP; *I 
display(ctl) 
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int ctl; 
{ 

struct nmsg result; 
register char *a, *b, *C; 
register int i, j, op; 
int h, lines, ap, bp, *ZZ, M1, N1, data(16][6]; 
int *8[16], *S, no_mat, no_mis, al_len, score; 
char *AA1, *BB1; 

for (i=O; kP; i++) { 

S[i] = (int *)Calloc((M+ 1 +NIP)I2, sizeof(int)); 

result.nh_event = COLLECT +i; 

result.nh_type = AL; 

result.nh_flags = DINTDATA I DINTMSG; 

result.nh_length = (N + M)*4; 

result.nh_msg = (char *)S[i]; 

nrecv( &resu It); 


I* printf("ln the HOST program!\n"); *I 
data[i)[O]=i; I* nodeid *I 
data[i][1]=result.nh_data[O]; *I 
data[i] [2]=resu It.nh _data[ 1]; *I 
data[i)[3]=result.nh_data[3]; *I 
data[i)[4]=result.nh_data[4]; I* J *I 
al_len = al_len + result.nh_data[S]; I* al_len *I 
no_mat = no_mat + result.nh_data[6]; I* no. of match *I 
no_mis = no_mis + result.nh_data[7]; I* no. of mismatch *I 
if (i=O) score = result.nh_data[2]; 

} 

a= ALINE; 

b = BLINE; 

c =CLINE; 

lines= 0; 

op =0; 

ap = data[0)[1]+1; 

bp = data[0)[2]+1; 


for (h=O; h<P; h++) { 

i =i =0; 

s = S[h]; 

AA1 = &A[data[h][1]-1]; 

BB1 = &B[data[h][2]-1]; 

M1 = data[h)[3]; 

N1 = data[h][4]; 

while (i < Ml II j < N1) 


{ if (op = 0 && *S = 0) 
{ op = *S++; 


*a= AA1[++i]; 

*b = BB1[++j]; 


I* 	 printf("AA1[%d] =%C ", i-1, AAl[i-1]);*1 
*C++= (*a++= *b++)? 'I':''; 



115 

} 
else 

{if (op = 0) 


op = *S++; 

if (op > 0) 


{*a++=.'; 

*b++ = BBl[++j]; 

op-; 


} 

else 


{ 	*a++= AAl[++i]; 

*b++ =' '; 

op++; 


} 
*C++='-'; 

} 
if (a>= ALINE+50 II (h=P-1 && i >= M1 && j >= Nl)) 

{ *a = *b = *C = '\0'; 

printf("\n%5d ",SO*Iines++); 

for (b = ALINE+10; b <=a; b += 10) 

printf(" :"); 

if (b <= a+5) 


printf(" ."); 
printf("\n%5d %s\n %s\n%5d %s\n",ap,ALINE,CLINE,bp,BLINE); 

ap = data[h][l] + i + 1; 
bp = data[h][2] + j + 1; 

a= ALINE; 

b = BLINE; 

c =CLINE; 


} 

} 


I* printf("%s \n", ALINE); *I 
} 
for (i=O; i<P; i++) free(S[i]); 
return(O); 

} 
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