
SEQUENCE ALIGNMENTS

ON A MULTI-TRANSPUTER SYSTEM

SEQUENCE ALIGNMENTS

ON A MULTI-TRANSPUTER SYSTEM

By

ZHIGUANG QIAN

B.ENG., M.SCI

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

(c) Copyright by Zhiguang Qian, September 1992

MASTER OF ENGINEERING (1992) McMASTER UNIVERSITY
(Computer Engineering) Hamilton, Ontario

TITLE: Sequence Alignments on a Multi-Transputer System

AUTHOR: Zhiguang Qian,
B.Eng. (D.S.T.U., China)
M.Sc. (The 2nd Institute of A.S.I.M., China)

SUPERVISOR: Dr. Tao Jiang

NUMBER OF PAGES: viii, 115

11

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Dr. Tao Jiang, my

supervisor, for his guidance throughout my research. His encouragement and

support has been invaluable to me in order to fulfil this thesis.

I would like to thank Dr. Sanzheng Qiao and Mr. Dan Trottier for their help

on some technical matters related to transputer. Thanks are also given to Dr. Qiao

and Dr. Dan McCrackin for agreeing to read this thesis.

Finally, I would like to thank my wife and son for their love, support and

understanding.

111

ABSTRACT

This thesis is concentrated on parallelizing a sequential algorithm for finding

k best non-intersecting local sequence alignments.

In this thesis, the DNA local sequence alignment and the related problems

are formally defined and efficient algorithms for solving these problems are

presented. The problem have important applications in molecular biology. Based

on the analysis of the characteristics of the local sequence alignment problem and

a multi-transputer system, the problem was partitioned into subproblems and nicely

mapped onto the transputer nodes. Then, an efficient parallel program is designed

and implemented.

By comparing the outputs of the sequential program and the parallel

program, the performance of the parallel program is estimated. An average speed

up of 6.3 is achieved on a 8-node configuration and an average speed-up of 11 is

achieved on a 16-node configuration.

lV

TABLE OF CONTENTS

page

CHAP'TER 1 Introduction 1

CHAP'TER 2 The Sequence Alignment Problem and Literature Survey 4

2.1 String Edit ... 5

2.2 Local Sequence Alignment 6

2.3 Previous Works ... 9

2.4 A Summary of Our Results 11

CHAP'TER 3 The Multi-transputer System .. 13

3.1 The Transputer Architecture ... 14

3.2 Why Do We Choose Transputer as the Platform 16

3.1.1 Flexible Connection .. 16

3.1.2 Message Passing on Transputer System .. 17

3.3 The DCSS Transputer System ... 18

CHAP'TER 4 The Sequence Alignment Algorithms .. 21

4.1 String Edit ... 21

4.2 Local Sequence Alignment Algorithms 23

4.2.1 Smith-Waterman's Algorithm .. 24

4.2.2 	 The Linear Space K Best Non-intersecting

Local Alignments Algorithm 29

CHAP'TER 5 Programming on the Multi-transputer System 38

5.1 The Transputer Sequence Alignment Program ... 38

5.2 Selection of the Topology ... 41

5.3 Parallelization ... 42

5.3.1 Task and Data Allocation .. 42

5.3.2 Load Balancing ... 47

5.3.3 Reduction of the Communication Overhead 48

v

TABLE OF CONTENTS (continued) 	 page

5.4 	 Recursion on a Multiprocessor .. 51

5.5 	 Deadlock ... 52

5.6.1 Deadlock Caused by Communication ... 52

5.5.2 Virtual Circuit ... 54

5.7 Debug Tools on GENESYS ... 52

Chapter 6 Empirical Results and Discussions .. 56

6.1 	 Some Considerations in the Design of the Tests 56

6.2 	 Testing the k Best Non-intersecting

Local Sequence Alignments Program ... 57

6.3 Discussions on the Results ... 61

Chapter 7 Conclusion 64

REFERENCES .. 66

APPENDIX I Headfile Listing ... 69

APPENDIX II ITB Program Listing .. 85

APPENDIX III OTB Program Listing ... 110

Vl

Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

LIST OF ILLUSTRATIONS
page

Examples of sequence alignment 8

Transputer architecture 13

The transputer network .. 15

DCSS transputer system... 19

Dependency in matrix CC ... 23

The string edit algorithm 24

Graphical explanation of relations among C, I and D 27

The Smith-Waterman local alignment algorithm 28

Splitting a problem into subproblems 32

Outline of Huang's linear space alignment algorithm 34

The masked region and the masked alignments 35

A graphical explanation of finding the masked region 37

Outline of the transputer program 39

DCSS transputer system under my configuration 41

Different partitioning strategies for the problem 43

Example of task allocation for a 4-processor system 44

Interpretation of run time estimation ... 47

Vll

LIST OF TABLES
page

Table 6.1 Test results for the 8-node configuration .. 58

Table 6.2 Test results for the 16-node configuration .. 60

Table 6.3 Test results of pseudo sequences on both configurations 62

viii

CHAPTER 1

INTRODUCTION

The central dogma of modem biology is that DeoxyriboNucleic Acid (DNA) is the

primary genetic material. It encodes the information necessary to understand life. From

a biologist's point of view, DNA is a molecule composed of four nucleotides: adenine,

cytosine, guanine, and thymine, which, conceptually, are linked linearly to form long

chains called polynucleotides. Often these chains are called DNA sequences (or

sequences, for simplicity).

The coming of new DNA sequencing technologies has led to an explosive growth

in the quantity of biological sequence information available to researchers, a trend that

is likely to accelerate in the near future [1, 20]. The benefits of this sequence information

have already been clearly established, with gains in knowledge of the biological structure

and function of many genes and the proteins they encode, resulting in important insights

into human biochemistry, physiology, and disease processes.

The biologists' ultimate goal is to discover the semantics of DNA sequences, i.e.,

the meaning of the DNA. To understand the semantics, one needs to know the

relationship between DNA and proteins. Proteins are sequences made from 20 animo

acids. A piece of DNA can encode a protein. This means that each triple of nucleotides

corresponds to an amino acid. Each of these triples is called a codon. The code (mapping)

1

2

from the 64 possible triples to the amino acids is redundant. That is, some amino acids

correspond to more than one triple. Since proteins are responsible for important

biochemical functions within a living cell, it is important to know which parts of the

DNA encode proteins as well as what the proteins do.

When two or more sequence are displayed with one sequence written over another,

the resulting configuration is known as an alignment of the sequences[27]. These displays

are very common in molecular biology as they communicate information about proposed

common evolution or function of the nucleotide positions found in any given column of

an alignment.

The topic of sequence alignments has received much attention as the advent of

molecular biology. One application of sequence alignment is the study of evolutionary

relationship, where we need to assess the degree of similarity between sections of DNA

often belonging to different species or genes. Now there are many biological sequence

database systems to store genetic information, e.g., Genbank and EMBL, and they are

expanding very fast. The Genbank and EMBL contain 186x106 nucleotide organized in

143x103 entries. The average length of the sequence is about 1,000 and the longest one

is 172,282 [4]. The study of these biological sequences using sequence alignment has

provided insights into topics such as disease and heredity. An example is the discovery

of similarities between human growth factors and cancer-causing genes that may show

how the genes cause uncontrolled cell growth [19].

The multiple sequence alignment is usually based on alignments of pairs of

sequences. In this thesis, we are only interested in alignments of a pair of sequences. The

3

basic algorithms for this problem all use the dynamic programming technique. Thus, an

alignment of two (long) DNA sequences may require extensive computation since the

time complexity of these algorithms is E>(m•n), where m and n denote the lengths of two

input sequences, respectively. For example, we have to spend 17 hours to find 20 local

alignments between a 73,360-nucleotide sequence, containing human beta-like globin

cluster, and a 44,594-nucleotide sequence, containing rabbit beta-like globin cluster, on

a SUN-4/280 computer. To achieve a better running time, one may look for new

algorithms, or use more powerful computers. Our study is to investigate the efficiency of

the transputer system in solving the sequence alignment problem.

A multi-transputer system (or transputer system, for simplicity) is a popular

coarse-grain MIMD multiprocessor system. Its building block, transputer, has build-in

communication links and large memory. The goal of our study has two folds. One is to

attempt to solve the sequence alignment problem in shorter time; The other is to study

the transputer system architecture to see if it is suitable for implementing dynamic

programming kind of algorithms.

There are seven chapters in this thesis. In the second chapter we formally define

the sequence alignment problem and give a literature survey in this area. A summary of

our results is also given. Chapter 3 introduces the platform of our study. Chapter 4

introduces the local sequence alignment algorithm used in our study. Chapter 5 gives an

efficient implementation of the algorithm on the transputer system. Chapter 6 provides

some empirical results and discussion on them. Chapter 7 is the conclusion of this thesis.

CHAPTER 2

THE SEQUENCE ALIGNMENT PROBLEM

AND LITERATURE SURVEY

In this chapter, we formally define the sequence alignment problem and survey the

previous works on efficient algorithms for the problem. From now on, let L be a fixed

alphabet. (For DNA sequences, L = {A(adenine), C(cytosine), G(guanine), T(thymine)

}.) By a sequence or string, we mean a sequence of characters from I.

We first give an overall idea of sequence alignments. An alignment between two

sequences (or strings), as illustrated in figure 2.1(a), consists of a matrix of two rows. The

upper row consists of the source sequence X, possibly interspersed with null symbol,

which is represented by a blank. The lower row consists of the target sequence Y,

possibly interspersed with null symbol too. The column [b] is a deletion and the column

[a] is insertion. The column [b] is the match, if a =b, or mismatch, if a ::;: b. The

column [] is not permitted.

Actually, two versions of the sequence alignment problem are of importance: the

global sequence alignment problem, aiming at finding an alignment between two full

input sequences, and the local sequence alignment problem, aiming at find segments (i.e.,

subsequences) of the two input sequences that can be well aligned. The global sequence

4

5

alignment problem is of interest when protein evolution is being studied. Since the

genome is a mosaic of variously sized blocks of DNA, to detect evolutionary relationships

and important homologies, it is essential to search for well-matched the segments in the

given sequences, i.e., to find a best local alignment. The global sequence alignment

problem is actually well-known in computer science, but under a different name - string

edit. In the following, we define the string edit problem and local sequence alignment

problem separately.

2.1 String Edit

Assume all symbols in the strings are from the fixed alphabet :L. Given two strings

X, of length m, and Y, of length n, and edit operations

a) insert symbol a into the string X with cost I8 ,

b) delete symbol a from the string X with cost D8 ,

c) replace symbol a of the string X by symbol b in Y with cost ~.b,

we want to transform string X into string Y in minimum editing cost. For example, let

strings X= abaa andY= abba, and operations Ia = 2, Ib = 3, D8 = 1, Db= 1, Ra,b = 2 and

Rb,a = 1. We can transform X into Y in two ways:

1: : : :l
(1) (2)

6

The first transformation cost is Ra,b = 1 and the second transformation cost is Ib+ Da = 4.

The first transformation is better.

The string edit problem has applications to file comparisons and revisions

maintenance. For example, there may be several versions of a same computer program,

and, if the versions are similar and all of them need be stored, it is more efficient to store

only the differences than to store all versions. In this case, we need find differences

between the versions first. This is essentially a string edit problem with uniform edit

costs.

2.2 Local Sequence Alignment

A local sequence alignment of two biological sequences is an alignment found in

some conserved regions of sequences. That is, a local sequence alignment is an alignment

between two subsequences, one from each given sequence. In the local alignment

problem, the subsequences are selected to maximize the similarity score, which is a kind

of measure of the quality of the alignment. The alignments in figure 2.1 (c) are two

typical local sequence alignments. The numbers outside the matrices indicate the starting

position of each subsequence in its parent sequence. For convenience, we first give some

necessary terminology here. Then we define the local sequence alignment problem.

Formally, let nil be a unique symbol for null sequence, i.e., the sequence with zero

character. Denote an aligned pair as <a,b>, where a and b can be any character from the

alphabet 1: or nil. An alignment is a finite sequence of aligned pairs. In each aligned pair,

the first symbol is from the first sequence and the second symbol is from the second

7

sequence. So

<a, a> <nil, c> <b, b> <g, nil>

denotes an alignment of sequence abg and sequence acb. An aligned pair with nil as

its first element is called an insertion pair and an aligned pair with nil as its second

element is called a deletion pair. A consecutive sequence of insertion pairs is called an

insertion gap and a consecutive sequence of deletion pairs is called a deletion gap.

Since deleting character a from sequence X can be considered as inserting

character a into sequence Y, we treat an insertion and a deletion as an indel, or an

extend-gap. So, the score for an indel is called an extend-gap-penalty. Another meaningful

penalty is the open-gap-penalty. The open-gap means that, in the alignment, a non

deletion pair is followed by a deletion pair, or a non-insertion pair is followed by an

insertion pair. The former is called an open-deletion-gap and the later is called an open

insertion-gap. The open-gap-penalty may be assessed as a barrier to allowing the gap.

That is no gap would be allowed in the local alignment unless the benefit of allowing that

gap would exceed the barrier. Figure 2.1 (b) and (c) are two examples of local alignments

of sequences SEQ3 = aaagctaacgtac and SEQ4 = aagtacg using different scores. The

open-gap-penalty in (c) is smaller than that in (b). In fact, the benefit gained by allowing

that gap exceeds the open-gap-penalty in (c). So the best local sequence alignment in (c)

is longer than the local sequence alignment in (b).

A score is assigned to an alignment based on a user-specified scoring function

WEIGHT(a, b) and the open-gap-penalty. The range of WEIGHT is divided in to 3

8

classes of values:

match-values a=b & a,b e L;

WEIGHT(a,b) = mismatch-values a:t:b & a,b e L;
{

extend-gap-penalties a=nil & b:t:nil or
b=nil & a:t:nil

In the WEIGHT function, match-value is greater than zero and the others are less or equal

to zero. An insertion gap or deletion gap with length of k is scored as the sum of one

open-gap-penalty and k extend-gap-penalties.

alignments

an~ lignedpa rts SEQl J a

aaa,gctaacgte~,c ···· sEQ2[an

aagtacg

The. best
ib:cal ·· ·
al;Lgrtment

SEQ3

SEQ4

SEQ3

SEQ4 :I: a · c

a

g

9: t

similarity-score = 40

·< ~h~ ~e¢9tg . s~oJ
best local
ai4§iirrierit ·. 9EQ4

similarity-score = 30

match ~ 1 0
mismatch = -10
ope n-·gap - penalty = -15 .
e xtend- gap-penalty = - 5

Figure 2.1 Examples of sequence alignment
(a) is a global sequence alignment; (b) is an example of 2 best non
intersecting local sequence alignments. (c) is another 2 best non
intersecting local sequence alignments. Note open-gap-penalty are
different in (b) and (c).

9

Formally, we can state the local sequence alignment problem as: given two

sequences X andY, the operation score function WEIGHT(a,b) and the open-gap-penalty,

find a local sequence alignment with the highest similarity score.

A natural extension of this problem is the k best non-intersecting local alignment

problem. Here, non-intersecting means that if an aligned pair appears in an alignment it

will not appears in other alignments. After finding the best local alignment, people often

also want the next largest scoring local alignment that does not intersect with the best

one. Since intersecting alignments are too many and are very similar to each other, they

tell us nothing new. So, people are interested in best non-intersecting alignments [14].

Two examples of the second best non-intersecting alignment are given in Figure 2.1 (b)

and (c). The k best non-intersecting local alignment problem is defined here:

Given two sequences X andY, the score function WEIGHT(a,b), and the open

gap-penalty, find k local alignments which have the k highest similarity scores and do not

share a same aligned pair.

2.3 Previous Works

For the string edit problem, Wagner and Fischer obtained an O(m•n) time and

space sequential dynamic programming algorithm[25], where m and n are the lengths of

the two input strings respectively. Edinston and Wagner proposed an O(m) processor

pipeline architecture for string edit which takes O(n+m) time. Ranka and Sahni found an

algorithm on SIMD hypercube machine, which has O(((n•logn)/P)0
·
5+log2n) time

complexity when n2•P processors are available, and O((nt.5/P)•(logn)0
'
5

) time when P2

10

processors available[23]. Ibarra, Jiang and Wang showed if edit cost are discrete the string

edit problem can be solved in O(m+n) time on a one-way linear iterative array using

m+n nodes. In a more practical setting, Lipton and Lopresti proposed an algorithm

solving the string edit problem on a (2•P-1)-node systolic array in O(m•n/P) time[18].

In the area of sequence alignments, Needleman and Wunsch applied the dynamic

programming method to the sequence comparison problem in 1970 [22]. Their algorithm

takes O(m•n) time to find an optimal global alignment using O(m•n) space. Later, Smith

and Waterman gave an O(m•n) time algorithm for finding a pair of segments from two

sequences with largest similarity score[24]. This is the first local alignment algorithm.

Gotoh[lO] introduced multiple-sized gaps into Smith & Waterman's algorithm. Huang and

Miller proposed an O(m+n+K) space and O(m•n + :E L2
) time algorithm[8] for finding

k

k best non-intersecting local alignments, where K is the total length of the k local

alignments. This algorithm still takes a lot of time to run when k is large (e.g., 50).

Edmiston, Core, Saltz and Smith[4] studied two algorithms, Needleman &

Wunsch's and Smith & Waterman's, and implemented the algorithms on two

multiprocessor systems, Intel's iPSC/1 Hypercube and Thinking Machine's Connection

Machine (CM-1). The algorithm for Hypercube needs O(m•n/P) space, which may cause

problems when very long sequences are used. The algorithm for the Connection Machine

needs O(max(m,n)) space and O(m+n) time. But a problem occurs when min(m, n) is

larger than the number of processor in the Connection Machine.

Lander and Mesirov[16] implemented a dynamic programming sequence alignment

algorithm on Connection Machine CM-11 for exhaustively comparing one protein with all

11

proteins in a database. The algorithm allocates one sequence to each processor and then

broadcasts a selected sequence, Each processor compares its sequence with the

broadcasted sequence. So, the space requirement is O(m), where m is the length of the

resident sequence at each node. The problem of this algorithm is the loss of efficiency

since the lengths of sequences are very different.

Arendt[2] studied a concurrent file system for parallel genome sequence

comparison. He used the dynamic programming method and the k-tuple heuristic, which

is developed by Wilbur and Lipman[28], to implement a sequence comparison program

on iPSC/2. Intel CFS (concurrent file system) was used in his study as sequences

input/output device. The program execution time on a 16-node iPSC/2 is sometimes faster

than on a Cary X-MP in scalar mode.

The most recent work was done by Huang[6]. He introduced a parallel algorithm

to find an optimal alignment. He put much effort on task partition among processors to

balance the computation load and reduce space requirement. The algorithm takes

O((M+Nf/P) time and O((M+N)/P) space when P s; max(M, N). Another paper of Huang,

Miller, and Hardison presents an algorithm for finding k best non-intersecting local

alignment algorithm on Intel's hypercube[9]. They used linear array topology to

implement the algorithm and got an average speed-up around 10.

2.4 A Summary of Our Results

We have implemented the algorithm for finding k best non-intersecting local

sequence alignments on a 16-node transputer system. To get the speed-up, also we moves

12

Huang's sequential program for the same problem to the single node of the transputer

system. We have performed tests on 3 real DNA sequence pairs and 4 random sequence

pairs using 8-node and 16-node configuration. Totally, 44 tests were done and the

sequences' length range from 4•103 to 45•103
• The results are compared with the results

of Huang's sequential algorithm running on a single-node transputer system. The

comparison shows that the average speed-up is around 11 on the 16-node transputer

system and around 6.3 on the 8-node transputer system. The memory requirement is

O(m+n) on each node.

Our parallel sequence alignment program greatly reduces the time for finding k

best non-:intersecting local sequence alignments. For instance, it takes 11 hours (CPU

time) to find 5 optimal local sequence alignments for rabbit and human beta-like globin

clusters on a SUN4/280, while our parallel program can solve this problem in less than

two hours. According to our experiences, we believe that the transputer system is a good

candidate for the sequence alignment problems using dynamic programming method. It

provides a smoothly scalable performance by allowing for easy addition or deletion of

nodes.

CHAPTER 3

THE MULTI-TRANSPUTER SYSTEM

Transputer is a microprocessor chip product of !NMOS. The first 32-bit transputer

was introduced in September 1985. Since the goal of the transputer design is to support

the concurrent processing, it has got much attention and there are many systems using

transputer as its processor. More often, many transputers are connected to form a

multiprocessor system.

Relet

Anal}'liia

Error

Bootfrom ROM

Oocldn

Vee

Gnd

Floating point
Unit

System

Services Processor

Link
Interface

On-Chip

RAM

Link

Interface

Application Specific Interface

Unkln

Unkout

Unkln

Unkout

Figure 3.1 Transputer architecture.

13

14

3.1 The Transputer Architecture

Transputer is a microprocessor with links for connecting one transputer to another

transputer and has a 4kB on-chip memory. Figure 3.1 is the transputer architecture [13].

Except the block of application specific interface, the other blocks in Figure 3.1 are on

the same VLSI chip.

The CPU of a transputer is a 32-bit stack oriented processor. It has only three

registers as the top three positions of the stack. The transputer instruction set supports

high level programming languages such as OCCAM, C and Fortran. The latest transputer

has an embedded the floating-point coprocessor on the chip, which improves the floating

point processing performance in graphic applications.

The on-chip memory is a special feature of the transputer. Since communication

within device is much faster than between devices and memory is the most frequently

accessed device, putting processor and memory on one chip improves the system

performance. Transputer T800 has a 4 Kbyte on-chip RAM and its off-chip memory

addressing space is 232
- 1.

The communication links on the transputer are another important feature. To

provide maximum speed with minimal wiring, the transputer uses point-to-point serial

communication links for direct connection to other transputers. Each transputer link has

two lines, one for input and one for output. A transputer has four links to connect with

others. So, one transputer can directly connect to four transputers at most. It is very easily

to organize transputers into two dimensional network, as shown in Figure 3.2. So, in this

thesis, the transputer system denotes the multi-transputer system.

15

Figure 3.2 The Transputer Network

The ideal language for transputer system is OCCAM, a concurrent language based

on the Communicating Sequential Processes. In OCCAM the assignment is indicated by

II := 11
• The example

v := e

sets the value of variable v to value of expression e. The input is indicated by symbol 11?11
•

The example

c?x

inputs a value from the channel c, assigns it to the variable x. The output is indicated by

II! II. The example

c!e

16

outputs the value of the expression e to the channel c. If we use the terminology of

communication, symbol "?" is to receive and symbol "!" is to send. OCCAM allows an

application to be described as a collection of processes operating concurrently and

communicating through channels which are implemented as links on the transputer.

People can construct different systems depending on the processes of an application. For

example, if the application is control system that has processes of input, output and

computation, we can assign one process to a transputer. Then we use three transputers in

this system. The input transputer receives input and sends data to the computation

transputer through transputer link. The computation transputer sends the output data to the

output transputer. The communications among processes are the communications among

transputers.

3.2 Why Do We Choose Transputer System as the Platform

Transputer based multiprocessor system is a coarse-grain MIMD system. That is,

each node of this system has a powerful processor and a large local memory. Several

programs may run on the system at the same time.

According to the product Databook, T800 transputer can run at 30 MHz and

provide 30 MIPS (peak) and 3.3 Mflops (peak) processing power. Its floating point unit

is 64 bit wide, which can support graphics applications.

3.2.1 Flexible Connection

Transputer's hardware supported links offer flexible connection ability. Usually,

the transputer system can be configured when booting the system. The configuration can

17

be defined by user or by system program. After booting, in the application program, user

can define virtual circuits or data links to connect nodes according to special topology.

In a medium or large application, the algorithm may consist of many parts and each part

may need a special optimal topological network. For this kind of application, the

transputer system is a good choice.

The sequence alignment algorithm that we are interested in is actually composed

of several algorithms. Some of them behave well in the linear structure and some require

the mesh structure. So, we prefer a transputer system because it can satisfy all these

algorithms well. What we did is that we configured the transputer network to a mesh

structure with special naming of nodes. Then to form a linear array, we used data link

layer communication.

3.2.2 Message Passing on Transputer System

Message passing is one of the synchronization mechanisms on the concurrent

process management. The basic idea of message passing is that when two processes need

exchange information in the middle of the processing, the message passing commands are

inserted where the exchange is planned to happen. At that point one process sends data

and the other receives data. So, if one of the processes arrives at the point first, it must

wait until the other process reaches the point. Then message passing occurs.

In a uni-processor computer the message passing is among the processes, while

in the transputer system, the message passing may occur between processes on the same

transputer or between processes on different transputers. The message passing technique

is a well-understood mechanism and is widely used in multiprocessor systems, such as

18

Intel iPSC Hypercube and Thinking Machine CM/2.

The transputer system uses the message passing since its hardware is designed for

message passing directly. The OCCAM language, designed for transputer, uses message

passing as its basic synchronization mechanism.

Many languages exist on the commercial transputer system and the concept of the

message passing mechanism is very intuitive. So it is not too hard to do programming on

a transputer system. Since the communication network protocols have embedded in the

languages on the transputer system, programmers can call these communication related

functions to do message passing. The system will take care of message packaging, routing

and buffering. There are many utilities on a transputer system, such as the utility for

configuring topological layout and the debugger.

Most previous works on parallel sequence alignment were done on message

passing system, e.g., CM/1 and iPSC hypercube. This means message passing is a reliable

synchronization method.

As far as we know, there is no previous work related to sequence alignment on

a transputer system. So, we choose transputer as the platform to investigate the efficiency

of the transputer system in solving the sequence alignment problem.

3.3 The DCSS Transputer System

In Department of Computer Science and Systems, McMaster University, there is

a 16-node transputer system running GENESYS on MACCS (SUN-4/280). The DCSS

transputer system, outlined in Figure 3.3, is the product of TransTech Parallel Systems

19

Ltd., named as MCPlOOO. It is composed of four self-contained blocks which are called

sites physically and NAS logically. Each site houses four T8 transputers, two of them are

boundary nodes with 4 MByte memory and the other two are internal nodes with 2 Mbyte

memory. Users can set the software controlled switches, implemented in 32x32 crossbar,

on the MCPlOOO board to construct the specific network topology required by their

applications. Since each site is self-contained, it can be assigned to a user. Thus four users

can work on the MCPlOOO simultaneously.

NASO

N'

~

i
NASI VMS BUS

SUN-4

i NAS2"'

1
NAS3

site3 :

Figure 3.3 DCSS Transputer System

20

The supporting software for transputer system is GENESYS which is a concurrent

operating system. It runs on the host and the transputer. Programming languages on

transputer are Transputer C (tee) and Transputer Fortran (tfl7). Along with these

languages, there are some procedure libraries providing transputer-oriented functions, e.g.,

communication related functions.

CHAPTER 4

THE ALGORITHMS FOR SEQUENCE ALIGNMENTS

In this chapter, we present the algorithms for solving the problems of string edit,

finding the best local sequence alignment and finding k best non-intersecting local

sequence alignments.

4.1 String Edit

The string edit problem has been defined before. Now let us consider how to solve

this problem. Recall that the three allowed edit operations are:

(1) insert -- insert symbol a into the X with cost Ia;

(2) delete -- delete symbol a from the X with cost Da;

(3) replace -- replace symbol a of the X by symbol b of the Y with cost Ra,b·

There are usually many ways to edit a string into another. For example, to change string

abbe into the string babb, we can delete the first a, forming the string bbe, then insert an

a between the two b' s yielding babe, and then replace the last e with a b for a total cost

of Da+Ia+Rc,b· However, we can also insert a new bat the beginning forming babbe, and

then delete the last e, for a total cost of Ib+De. Our goal is to find a transformation from

X to Y with the minimum cost. The basic technique to solve this problem is dynamic

programming. Dynamic programming procedure builds on previous trial solutions to

21

22

generate a solution that satisfy the specified conditions.

We denote the string X as a one-dimensional array X = ~ •••• ~ and string Y a1

as a one-dimensional array Y = b1 b2 ••••• b
0

The matrix CC is a cost matrix and CC[i,j] •

denote the minimum cost of changing a1 a2 •••• a; to b1 b2 •••• bi . Let us consider how

to compute CC[i,j]. At point [i,j], the last operation which leads to the minimum cost can

be delete, insert, replace or no operation (i.e., match).

delete: if delete a; is the best change, then the minimum-cost transformation from

a1 ~ ••• ai to b1 b2 ••• bi is the minimum-cost transformation from a1 ~ ••• a;_1 to

b1 b2 ••• bi plus one more deletion. In other words, CC[i,j] = CC[i-1,j] + Dai·

insert: if insert bi is the best change, then the minimum-cost transformation from

a1 a2 ••• ai to b1 b2 ••• bi is the minimum-cost transformation from a1 ~ ••• ai to

b1 b2 ••• bi-l plus one more insertion. In other words, CC[i,j] = CC[i,j-1] + Ibj·

replace: if replace ai with bi is the best change, then the minimum-cost

transformation from a1 ~ ••• ai to b1 b2 ••• bi is the minimum-cost transformation

from a1 a2 ••• ai-l to b1 b2 ••• bi_1 and a replace. In other words, CC[i,j] =CC[i-1,j

1] + ~i.bj'

match: if a; matches bi, CC[i,j] = CC[i-1,j-l] since the cost of a match is zero.

Based on the above analysis, we have the formula:

CC[i-l,j] + Dai

CC[i,j-1] + Ibi
CC[i,j] = min (4.1)

CC[i-1j-1] + Rai,bi

CC[i-l,j-1] if a;= bi

23

Figure 4.1 shows the dependency of CC[i,j].

Insertion

Match or Replacement

CC[i-lj]CC[i-lJ-1]

Deletion

CC[ij·l]

Figure 4.1 Dependency in matrix CC.

The algorithm for string edit is given in Figure 4.2. In the algorithm, we have to

remember the best transformation from a1 ••• ~ to b1 ••• bi for every i,j. M is a record

matrix. M[i,j] stores the last transformation step which leads to position [i,j] with cost

CC[i,j]. The complexity of this algorithm is O(m•n) in terms of space and time.

4.2 Local Sequence Alignment Algorithms

Now we consider the local sequence alignment problem, i.e., the problem of

finding the best alignments between a segment of one sequence and a segment of another

sequence. We will discuss two algorithms. They are Smith-Waterman's algorithm for

24

finding the best local sequence alignment and an algorithm for finding k best non-

intersecting local sequence alignments.

Algorithm Optimal_Edit (X, m, Y, n);

Input : X (a string of size m) andY (a string of size n);

Output: CC (the cost matrix) and M (the record matrix);

Begin

for i:=O to m do CC[i,O] :=i;

for j:=1 to n do CC[O,j] :=j;

for i:=1 tom do

for j:=l to n do

x:=CC[i-1 ,j] + Dai;

y:=CC[i,j-1] + lbj;

if~= bj then z:=CC[i-l,j-1]

else z:=CC[i-1,j-l] + Rai,bj;

CC[i,j] = min (x, y, z);

if CC[i,j] = x then M[i,j] = -1;

if CC[i,j] = y then M[i,j] = 1;

if CC[i,j] = z then M[i,j] = 0;

Print out transform using M;

end.

Figure 4.2 The String Edit Algorithm.

4.2.1 Smith-Waterman's Algorithm

Recall the definition of the local sequence alignment problem, the WEIGHT

function, and the open-gap-penalty. The goal is to find a local alignment with the

25

maximum similarity score.

Smith-Waterman's algorithm also uses the dynamic programming technique to find

the best local sequence alignment. A difficulty arised here since we have the open-gap

penalty, which is added to the score only at the opening of a (deletion or insertion) gap.

To solve this problem, we need the history information of each move to determine if we

should apply open-gap-penalty to the score at position [i,j]. So, several matrices are

needed.

In Smith-Waterman's approach, three matrices are used. Assume again that the

two input sequences have lengths m and n. Then the size of each matrix is (m+ 1)•(n+ 1).

Matrix C is the alignment score matrix as before; Matrix D is a score matrix keeping

track of the best alignments which end with a deletion pair, and matrix I is a score matrix

keeping track of the best alignments which end with an insertion pair.

Let us see how to compute matrices C, I and D. C[i,j] is the maximum score of

an alignment ending at point [i,j]. It may equal the value of I[i,j], if an alignment ending

with a insertion pair has the maximum score, or D[i,j], if the alignment ended with a

deletion pair has the largest score, or C[i-1,j-1] + WEIGHT(~,bj), if a mismatch or a

match leads to the largest score. Thus we have the formula:

C[i,j] =max { I[i,j], D[i,j], C[i-1,j-1] + WEIGHT(ai,bj) } (4.2)

Again, here, I[i,j] is the maximum score of an alignment ending with an insertion pair at

position [i,j] and D[i,j] is the maximum score of an alignment ending with a deletion pair

26

at position [i,j].

At the position [i,j], I[i,j] may equal the value of I[i,j-1] plus an extend-gap

penalty (i.e., WEIGHT(nil,bj)), if the next-to-last aligned pair is an insertion pair, or C[i,j

1] plus the sum of an open-gap-penalty and an extend-gap-penalty (i.e., WEIGHT(nil,bj)),

if the next-to-last aligned pair is a match, mismatch, or deletion pair. So, we have the

formula:

I[i,j] =max { I[i,j-1], C[i,j-1]+open-gap-penalty } + WEIGHT(nil,bj) (4.3)

Similiarly, D[i,j] may equal the value ofD[i-1,j] plus an extend-gap-penalty (i.e.,

WEIGHT(ai,nil)), if the next-to-last aligned pair is a deletion pair, or C[i-1,j] plus the sum

of an open-gap-penalty and an extend-gap-penalty (i.e., WEIGHT(~,ni1)), if the next-to

last aligned pair is a match, mismatch, or insertion pair. So, we have the formula:

D[i,j] =max { D[i-1,j], C[i-1,j]+open-gap-penalty } + WEIGHT(~,ni1) (4.4)

The relationship or dependency among C, I and D can be described by an

alignment graph. Figure 4.3 shows the graphical explanation of the relationship among

matrices C, I and D, when the input sequences are X = ab and Y = ab.

In Figure 4.3, the alignment graph has 3•(m+ 1)•(n+ 1) vertices denoted C[i,j],

D[i,j] and I[i,j], where Oim, Ojn. The edges represent the dependencies between

vertices. The edges are divided into 7 classes:

27

1) delete edge D[i-1,j] ~D[i,j], labelled <~,nil>, where 1~~m, O~j~n.

2) open delete edge C[i-l,j] ~D[i,j], labelled<ai,nil>, where l~~m, O~j~n.

3) insert edge I[i,j-1] ~I[i,j], labelled <nil,bj>, where O~i~, 1~j~.

4) open insert edge C[i,j-1] ~l[i,j], labelled <nil,bj>, where 0~~. 1~j~.

5) replace edge C[i-1,j-1] ~C[i,j], labelled <~,bj>, where 1~~. 1~j~.

6) null edge D[i,j] ~C[i,j], where O~i~m, O~j~.

7) null edge I[i,j] ~C[i,j], where O~i~m, O~j~n.

Figure 4.3 Graphical explanation of relations among C,

I and Don sequences ab and ab.

28

Algorithm Local_Alignment(X, m, Y, n)

Output: score_max, i_best, j_best and the best local aligmment;

Begin

D[O,O] = 1[0,0] = -oo

C[O,O] = 0;

score_max = i_best = j_best = 0;

for j:=1 to n do

D[O,j] := -oo;

I[O,j] := WEIGHT(nil,bj) - g; !* g is the open-gap-penalty */

C[O,j] := 0;

for i:=1 to m do

l[i,O] := -oo;

D[i,O] := WEIGHT(ai,nil) - g;

C[i,O] := 0;

for j:=1 ton do

D[i,j] :=max {D[i-1,j],C[i-1,j]- g} + WEIGHT(ai,ni1); set MD[ij];

I[i,j] := max { I[i,j-1] ,C[i,j-1] - g} + WEIGHT(nil,bj); set MI[ij];

C[i,j] :=max {O,D[i,j],l[i,j],C[i-1,j-1]+WEIGHT(ai,bj); set MC[ij];

if C[i,j] > score_max then

i_best := i;

j_best := j;

score_max := C[i,j];

write "A best local alignment with score" score_max "ends at"

(i_best,j_best);

trace MI, MD and MC to display the best local alignment;

end.

Figure 4.4 The Smith-Waterman Local Alignment Algorithm.

29

To summarize the above discussion, the recurrence formulas for computing C, I,

Dare

C[i,j] =max { I[i,j], D[i,j], C[i-l,j-1] + WEIGHT(ai,bj) }

I[ij] =max { I[i,j-1], C[i,j-1]+open-gap-penalty } + WEIGHT(nil,bj)
{

D[i,j] = max { D[i-1,j], C[i-l,j]+open-gap-penalty } + WEIGHT(~,nil)

Figure 4.4 is the Smith-Waterman's local alignment algorithm. In the algorithm, matrices

MC, MD, and MI are used to remember the path. The best local sequence alignment is

displayed by tracing these three matrices backward. The space and time complexities of

Smith-Waterman's algorithm are O(m•n).

4.2.2 The Linear Space K Best Non-intersecting Local Alignments Algorithm

The biggest drawback of Smith-Waterman's algorithm is the space complexity.

When a program running on a computer, the running time is limited by the electronic

components life time which can be very long, but the space of computer is limited by the

memory size. Certainly, the virtual memory system can provide large memory space, but

it involves mechanical operation which not only takes at least 10 times the memory

access time but also increases the possibility of system errors.

A linear space algorithm for finding k best non-intersecting local alignments is

given by Huang[8]. Let us see how to find just one best local alignment using linear

space. Huang's approach is based on Smith-Waterman's algorithm and Myers-Miller's

algorithm [21]. Since in the dynamic programming approach, the element C[i,j] of the

matrix depends only on C[i-1,j-1], C[i-l,j] and C[i,j-1] and the computation is done row

30

by row, Huang uses three one dimension arrays C, I and D to save the row scores. In this

way, the space requirement is reduced from 3•(m+l)•(n+l)+S to 3•(n+l)+S, where S

is the extra space to store sequences and parameters.

Since this algorithm uses only linear space, it can not remember the actual best

alignment when doing dynamic programming. Huang defined the starting point arrays E,

F, V and W to remember the starting points of the best local alignments. The best local

alignment at position [i,j] starts at [E[j], F[j]] and the best local alignment ending with

a deletion at position [i,j] starts at [V[j], W[j]]. To remember the starting point of the best

local alignment ending with an insertion, instead of arrays, a pair of varaibles are used

because the computation order is row by row. By keeping trace of the position yielding

the max score and starting point of the corresponding alignment, this algorithm can find

the best local alignment's starting and ending points at the end of the dynamic

programming. To display the result, Huang uses Myers-Miller's algorithm on the two

subsequences to find an optimal global alignment in linear space. So, the space

requirement for finding the best local alignment algorithm is O(m+n).

The algorithm of Myers and Miller for actually finding an optimal (global)

alignment in linear space is a recursive algorithm using divide-and-conquer. Suppose that

the input sequences are X = a1 ••• ~ and Y = b1 ••• b0 , C, I and D will be the cost arrays

as before for the upper-half matrix, and C', I' and D' are the corresponding cost arrays

for the lower-half matrix.

This algorithm begins with picking a mid-point of sequence X (midi). The arrays

C, I and D are then computed in the area [l,midi]x[l,n] and the arrays C', I' and D' are

31

computed in the area [midi+l,m]x[l,n] reversely, i.e., starting from position [m,n] to the

position [midi+l,l]. Here, it uses Smith-Waterman's algorithm to find the maximum

alignment scores in the two areas. (Because the algorithm aims at finding the position that

the alignment pass, only cost arrays are needed.) At the boundary of two regions, the

adjacent elements of D and D' are added, and the adjacent elements of C and C' are

added, since only deletion, match and mismatch can cross the boundary of upper and

lower regions. The mid-point of the sequence Y (midj) is where C + C' or D + D' - oper

gap-penalty is the largest. Thus, [midi, midj] is the point where the best alignment passes.

At this point, the problem is split into two subproblems. One is finding the best global

sequence alignment of the subsequences a1 ••• !l,nidi and b1 ••• bmidj· The other is finding the

best global sequence alignment of the subsequences !l,nidi+l ... !l,n and bmidj+l ... bn. Then,

the algorithm recursively finds middle point and splits the subproblem, until an input

sequences of the subproblem has just one symbol. Figure 4.5 shows the splitting of a

problem into subproblems.

To find the k best non-intersecting local sequence alignment, a list, denoted LIST,

is used to save the k best alignments. Each element of LIST is a tuple defined as

AL_tuple = <SCORE, START[i,j], i, j, T, B, L, R>, where

SCORE -- the score of the alignment;

START[i,j]- the start point of the alignment ending at [i,j];

[i, j] the end point of the alignment;

[T,B]x[L,R] - a region covering the alignments with the same starting point and

scores greater than the minimum score in the current LIST, i.e., the

region that is affected by the alignment starting from START[i,j].

32

Optimal
Midpoint

,::~·
,-;,

J~;:'

midJ

Figure 4.5 Splitting the problem into subproblems.

midi

So, an element of LIST defines an alignment with its specific starting point and ending

point, as well as a region which contains all alignments sharing the same starting point

and having score greater than the smallest score in LIST.

LIST is maitained by the function adnd(score, st_pt, i, j, list_size) that creates an

AL_tuple with score, start point, end point, and the boundary values ofT, B, L, R, in case

the score of the alignment is greater than the minimum score in the current LIST. If the

alignment at current position has score greater than the minimum score in LIST and the

entry with same starting point exists in LIST, function adnd modify the all data in the

AL_tuple except starting point. So, each entry of LIST has a different starting point. In

the meantime, the function adnd() keeps track of the minimum score in LIST.

33

In Huang's algorithm, the AL_tuples are filled with alignments found using Smith

Waterman's algorithm and the function adnd(). When finishing the last row of C matrix,

k promising alignments are saved in LIST. These alignments must be non-intersecting

because each entry of LIST has a unique starting point. If two alignments intersect at

position [i,j], at most one of them can survive and enter LIST, due to the definition of

adnd(). After finding k promising local alignments, the alignment with maximum score

is the best local alignment. Then the Myers-Miller's recursive divide-and-conquer

algorithm is called to find the aligned pairs in the best local alignment.

The rest k-1 alignments in LIST may not include the second best alignment since

the best alignment may mask the second best. We can recompute the C matrix. However,

it may cost too much because only a small region is really needed to recompute. Huang's

algorithm has a function to find this region, which is called the masked region.

The condition of non-intersecting is secured by a linked list of used aligned pairs

that remembers those already output. This list is expended when the aligned pairs are

displayed.

Huang's linear space local alignment algorithm is outlined in Figure 4.6. (Note

that the real implementation is different than the outline; it uses arrays instead of

matrices.) The algorithm has four parts. First, using dynamic programming technique, find

the k promising alignments; Second, display the best alignment and fill the used aligned

pairs list; Third, find the masked region that needs recomputed; Fourth, if there is any

promising alignment in this region, recompute this region.

34

Function Fisrt(i,j) can find the starting point of the alignment ending at position

[i,j]. As we mentioned the above, this funtion is implemented by using several arrays.

Function maxtuple() finds the AL_tuple with largest similarity score in LIST.

Algorithm k_best_alignment (X, m, Y, n, k)

Output: k best non-intersecting alignments

Begin

min_score := 0;

for i:=O to m do

for j:=O to n do

compute C[i,j] and First(i,j);

if C[i,j] > min_score then

min_score := adnd(C[i,j], First(i,j),i,j,k);

for r:=l to k do

S := maxtuple();

display _alignment(S);

if r != k then /* T' -- Top, B -- Bottom, L' --Left, R - Right. *I

Determine the affected region [T', B] x [L', R] in which there

are alignments with score greater than min_score;

for i:= T' to B do

for j:= L' toR do

Compute C[i,j] and First(i,j);

if C[i,j] > min_score then

min_score = adnd(C[i,j],First(i,j),i,j,k-r);

end.

Figure 4.6 Outline of Huang's Linear Space Alignment Algorithm.

35

As we mentioned above, the best local alignment may mask some other

alignments. Let us see how it could happen. For some i,j, the alignment found at [i,j]

(with score C[i,j]) may intersect the the best local alignment. Thus, other alignments (with

scores less than or equal to C[i,j]) are not recorded in LIST. These other alignments are

masked by the best local alignment. Recall the meaning of the [T,B]x[L,R] region. We

can say that the region [T,B]x[L,R] covers the masked alignments or part of the masked

alignments. There are four cases of the coverage (refer to the Figure 4.7).

Case 1: The masked alignment is totally covered.

Case 2: The part of the masked alignment, from the middle to the end, is covered.

Case 3: The part of the masked alignment, from the start to the middle, is covered.

Case 4: The middle part of the masked alignment is covered.

Case4

I
Cast 1

Case 3

Figure 4.7 The masked region and the masked alignments

36

Actually, case 3 and 4 will not happen. In case 3, if the alignment could extend longer,

those part would be included in [T,B]x[L,R] region, since the similarity score may

increase and be greater than the minimum score of the LIST. For the same reason, the

case 4 can not happen. Now, we know that the lower and the right boundaries of the

masked region are B and R. The only task left is to find the upper and left boundaries of

the masked region. To find the upper and left boundaries of the masked region, Huang

uses Smith-Waterman's algorithm in the region [T,B]x[L,R] reversely, and extends the

T and L boundaries, until there is no alignment starting outside the current region

[T,B]x[L,R] and ending inside the region.

Figure 4.8 is a graphical explanation of finding the masked region. The dark

shaded area in the Figure is the original [T,B]x[L,R] region. When the above process

reaches the upper-left corner of [T,B]x[L,R], the alignment S' is still extending. So, the

T and L are decreased, until the score of S' is less than the minimun score of the current

LIST at position [T',L']. Now, the masked region is [T',B]x[L',R]. Note that, the

alignment S" starts and ends outside the region [T',B]x[L',R]. Thus it does not affect the

reverse computation.

Up to now, we know how to find the k best non-intersecting local sequence

alignments in linear space. We will discuss the implementation of this algorithm on a

multi-transputer system in the next chapter.

37

i

jI

L lv I AL_tuple.L I AL_tuple.R

I
 I I

I
 I I

I
 I I

I
 I
T II

/
S"

T

AL_tupe.T

AL_tuple.B

Figure 4.8 A graphical explanation of finding the masked region

CHAPTER 5

PROGRAMMING ON THE MULTI-TRANSPUTER SYSTEM

In this chapter we present our main considerations in mapping Huang's sequential

algorithm for finding k best local alignments to a parallel system. We mainly concentrate

on the parallelization of the algorithm to create an efficient implementation.

5.1 The Transputer Sequence Alignment Program

A transputer program usually has two subprograms OTB and ITB. OTB (Outside

The Box) is a host program running on the host computer and ITB (In The Box) is a real

transputer program running on the computing nodes.

OTB is a user interface of the transputer program. It accesses file system for input,

supports user interface, and prints out alignments. ITB is the main part of the program.

It has six sections. Please refer to Figure 5.1 which outlines our program structure. We

use node_O as the leader of all computing nodes. The head file list is in Appendix I, the

ITB transputer program list is in Appendix II, and the OTB program is in Appendix I.

The first section uses the dynamic programming approach to find k promising

alignments. All computing nodes are involved in this process and each node uses

neighbourhood communication only, i.e., each node receives data from one neighbour and

sends its result to another neighbour after computing.

38

39

OTB Program

begin

input parameters;

input two sequences;

prepare messages;

send messages to all nodes in transputer network;

for i=l to k do

receive alignment and display it on screen

end;

ITB Program

begin

receive messages from host;

receive two sequences from host;

compute k best promising alignments and save them in LIST;

for i=l to k do

construct a global LIST in node_O and find max alignment with max score;

recursively find optimal alignment;

send alignment to host;

mark all used aligned pairs and inform the other nodes;

find masked region;

if there is promising alignment then

compute k-i best promising alignments in the region of [T',B]x[L',R]

and modify LIST;

end;

Figure 5.1 Outline of transputer program

40

The second section merges the local LIST to the global LIST in node_O, finds the

maximum score and maintains the LIST of k promising alignments. On the first sight this

section is sequential, but we use two-way merge to boost the concurrency.

The third section finds the aligned pairs using Myers and Miller's algorithm. This

divide-and-conquer algorithm is implemented in a recursive fashion, which allows the

system to run at its top speed and all node work in parallel in the ideal case. At the

meantime, the aligned pairs are marked using a linked list.

The fourth section does book-keeping works. In each computing node, there is a

used-aligned pair list. When an aligned pair is sent to OTB, it is added to the used

aligned pair list. In this section, nodes exchange information about the used-aligned pair

list for the later reference.

The fifth section finds the masked region of previous output alignment. It involves

dynamic programming too and this part is somewhat similar to section one. The different

point is that after finishing the rectangle, several rows or several columns are added.

Those operations are sequential. Please refer to Figure 4.8.

The sixth section recomputes the masked region. In this section, the first division

of program applies to a small region.

Data structures used in the parallel program are several arrays to save scores and

starting points, a list to save k promising local alignments and a list to save aligned pairs.

The list for saving k promising local alignments and arrays were defined in the previous

chapter. The aligned pair list is actually a set of lists. It is implemented as a pointer array.

Each element corresponds to a position in input sequence X. When an aligned pair is

41

outputted, an list element, that contains a position in input sequence Y and a pointer, is

attached to a list according to the first element of the aligned pair.

5.2 Selection of the Network Topology

The computer network topology affects the efficiency of the system solving a

specific problem. For example, image processing is better on mesh connected system

rather than on a ring system.

H

0

s

T

Figure 5.2 DCSS transputer system under my configuration.

42

Basically, there are four main topological choices: mesh, ring, linear array and

star. Our DCSS transputer system can be configured in any one of the four structures due

to the connection flexibility of the transputer. Which one is good for the sequence

alignment problem?

Ring, linear array and star are simple networks and require a small number of

links, which may lead to a efficient communication since the reduction of routing and

buffering, while mesh connection offers a powerful and flexible system. In the sequence

alignment problem, linear connection seems to work better when doing dynamic

programming, and mesh connection is better for doing sorting and recursion. So, we select

mesh connection and use data link layer commands to form linear connection when doing

dynamic programming.

5.3 Parallelization

So the topology we have chosen is mesh. Figure 5.2 shows the interconnection

between nodes and the host under my configuration. We number the node differently from

the default since we plan to use linear structure to do dynamic programming. In Figure

5.2, the dark lines connect the 16 nodes as a linear array. Below, we discuss all the

problems related to boosting concurrency.

5.3.1 Task and Data Allocation

The task and data allocation is a key issue when programming parallel computer

systems. The basic rule suggests partitioning along data dependencies without cutting

dependencies, which in turn reduces the amount of communication between partitions[29].

43

The objective of task allocation is to reduce communication overhead and the idle time

for each node.

The main part of the k best non-intersecting local alignment algorithm is a

dynamic programming program which uses a matrix as its platform. We can cut the

matrix into squares or slices and assign squares or slices to each transputer. If we cut the

matrix into squares, we can implement the parallel algorithm in two ways. Suppose that

we have 4 processors TO, Tl, T2 and T3 (refer to Figure 5.3).

TO Tl
-I

I'-.. I
t ['.. t
-I

T2 T3

time TO Tl T2 T3

D D ~----1 ------ 8
D
(a)

-- r -r-

TO Tl T2 T3

time TO Tl T2 T3

Doo 0
Arrow denotes dependency (b)

Figure 5.3 Different partitioning strategies for the problem

The first approach is to follow the row-by-row order, i.e., TO processes its square

row by row, and at the end of each row, TO sends data to Tl. Then Tl can start to work.

When TO works on the last row, T2 can start. After T2 finishes one row and Tl works

on its last row, T3 can start. Let us estimate the wait time of T3. Suppose that the matrix

44

is m•m and each element needs one step to process. T3 has to wait m•n/4 steps. So, if

we do not consider the impact of communication, the run time is m•n/4 + m•n/4 steps.

Figure 5.3 (a) shows the parallelism by rectangles in solid line.

The second approach is to follow the diagonal order, i.e., TO processes its matrix

one row and then one column alternatively. In this order, T3 will start working after Tl

and T2 reach the last row and last column. The wait time for T3 is m•n/4 steps since TO

has to finish the last element of its sub-matrix before Tl and T2 can start their last row

and last column. So the run time of this approach is also m•n/4 + m•n/4 steps. Figure

5.3 (a) shows parallelism by rectangles in dot line.

5=3

m PO Pl P2 P3 PO Pl P2 P3 PO Pl P2 P3

11-
(n/s/p)

Figure 5.4 Example of task allocation for a 4-processor system.

Another possibility is that we cut the matrix into slices, as shown in Figure 5.3

(b). After TO finishes a quarter of the first row, Tl starts working. T3 starts working after

three quarters of the first row are finished. Then the wait time for T3 is 3•m/4 steps. So,

45

the run time is 3•m/4 + m•n/4 steps, which is better than cutting the matrix into squares.

Thus we choose to cut the matrix into slices.

Now an issue is how many slices we should have. Suppose we have p transputers,

we can cut matrix to p or s•p slices, where s is an integer that represents the number of

sections. Each section contains p slices. It seems that the more the sections the partition

has, the less the setup time is involved in the computation. Assume that

Tc - the computation time for one step;

Tcom - the communication time for sending one message;

n, m - lengths of the two sequences;

s number of sections that the score matrix is divided into;

p number of transputer nodes in the system.

We cut this matrix into s sections, i.e., totally s•p slices, and assign a slice to a node in

a round-ribbon fashion, as shown in Figure 5.4. In the Figure, again we assume that there

are 4 processors.

According to this job partition among the transputer nodes, the system has a set-up

stage, i.e., the period between the time when the first node starts working to the time

when the last node starts working, and a clean-up stage, i.e., the period from the

termination of the first node to the termination of the last node (refer to Figure 5.5). The

total program run time, including communication and computation, is

(n/s) n
-- • (p-1) • Tc + - • m • Tc + s • m • Tcom + (p-1) • Tcom

p p

46

The first two terms are computation related and the other two are communication related.

The first term is the computation set-up time; The second term is the parallel computation

time; The third term is the communication time in parallel computation; The last term is

the communication time in the computation set-up stages. Figure 5.5 is the interpretation

of the run time estimation.

We want to find how many sections, s, the matrix should be divided into to keep

the program run time the smallest. Clearly, 1 $ s $ n/p. There are two terms involving

s. When s=l, i.e., each node has one slice, the third term becomes the smallest and first

term goes to its maximum. When s = n/p, i.e., each node has s slices and each slice has

only one column, the third term reaches to its largest value and the first term goes to its

minimum. By looking at the sequential program and the transputer Databook, we can

estimate Tc and Tcom· In the sequential program, there are about 350 machine instructions.

We assume that the average instruction time is 2.25 machine cycles. So

Tc ,., 800 machine cycles.

The preparation of data for sending a message needs about 40 instructions (i.e., 90

machine cycles) and the transputer instructions IN and OUT need 50 machine cycles each.

So

Tcom ,., 200 machine cycles.

So, Tc = 4•Tcom· We pick out the two terms involving s below.

47

p. s
+ s • m • Tcom

n
,_, (4. + m • s) • Tcom

s

To keep formula (5.2) the smallest, we should set s to (4•n/m)0
·
5

• Since m and n usually

have the same magnitude, for simplicity, we will choose s to be 1.

w===================================~=======----SPACE

Processor
0 Processor

Processor

2

TIME

Processor

3 Processor

4

Set-L time

Para lel
run time

Figure 5.5 Interpretation of run time estimation.

5.3.2 Load Balancing

The second part of the program solves a merge problem on a multi-processor. That

is, we want to merge p local k promising alignments LISTs to construct the global k

promising-alignments LIST in node_O. The intuitive way is to insert each tuple of one

48

local LIST to another local LIST, until there is one LIST left. This final LIST is the

global LIST. For example, suppose that we have three transputers NO, N1 and N2. N2

sends its list to Nl. N1 inserts the received elements into its own list, then sends resulting

list to NO. After inserting the list from N1, NO holds the global k promising alignment

list. This method is simple, but is sequential in nature. When one node is working, the

others have to wait. Another approach is the reverse-binary-tree-merge, i.e., we suppose

that the local LISTs are the leaves of a tree. The merge starts by merging each pair of

leaves and then the resulting lists, until the root is reached. Using this method, it takes

only logz(p) steps, while the sequential method takes p steps. In our system there are 16

transputers, i.e., p = 16. The parallel merge takes 4 steps and keeps most nodes working

at most of the time. In general, keeping load as even as possible is one important aspect

in the design of parallel programs.

5.3.3 Reduction of the Communication Overhead

As we choose the partition with more dependencies and more parallelism, we also

need to reduce the communication overhead. Although a transputer has the

communication hardware embedded on the chip, the communication impact can not be

ignored. The communication instructions OUT and IN take 19 + 2•W machine cycles to

execute, where W is the number of the words in the message. This does not include the

sending time. Since transputer links are serial ports, sending a message needs machine

cycles equal to the number of bit in the message. Certainly, the sending of a message may

be overlapped with other instructions. Also, here we do not take into account of the three

communication protocol layers: logical, data link and network, which route and buffer

49

messages. Sometimes, the data type conversion may be involved in the network layer.

Generally speaking, there are two factors that have direct effect on communication

time. One is the size of the message. The other is the number of the messages (due to

protocol overhead), i.e., how many times an application program calls the communication

function which may in turn call routing and buffering. In our program we try to reduce

the effect of these two factors. To reduce the first factor, we decided that the messages

passing through the computing nodes will have a message header only. The method to

reduce the effect of the second factor will be discussed later.

In transputer C, the facility for communication is data structure of a message and

functions Send and Receive. The message data structure is a structure in C language. It

has the form shown below.

struct nmsg {

int nh_dl_event, I* datalink event *I
nh_node, I* destination node *I
nh_event, I* message event *I
nh_type, I* message type *I
nh_length, I* length of message *I
nh_flags, I* option flags *I
nh_data[8]; I* data pouch *I

char *nh_msg; I* pointer to message buffer *I
}

Here, nh_event and nh_type form the identification of a message; nh_dl_event is used to

specify the port (link) for an outgoing message when data-link communication is used;

50

nh_flag specifies the data types of the message and data pouch; nh_msg is a pointer to

the buffer where the message is stored. A message consists of two parts, the header,

which is the structure described above, and the message buffer. The header is the essential

part of the message. The message buffer contains the actual message known as the body

of the message. To send a message, a node has to fill in the above header and the

message buffer first, then call function Send using this header as the parameter.

In our program, we try to use message header only. However, eight integers are

not enough to pass the information required by computation. To solve this problem we

compressed the required data to eight integers before it is sent and uncompress them after

receiving them. Since the operations compression and uncompression are bit-oriented

operations, they take less time than using the message body instead.

The second factor on communication time is fixed after the partition of the

problem. However, we can use broadcast to reduce the number of messages needed. In

the broadcast mode, a message is propagated to all nodes in the system. On the other

hand, if broadcasting is not used, some nodes may have to pass the same message many

times! For example, suppose that we have a linear array of p nodes, and we want to send

a message to all nodes. In the broadcast mode, the message passes through the nodes like

a wave front. The total number of messages involved is the number of the nodes, p. If

p
broadcast is not used, L i messages are required to achieve the same goal.

1

Another approach is using data link communication protocol instead of using

network communication protocol to reduce the communication overhead. In the network

51

layer, there are routing and data type conversion functions. Routing function is called very

often. If the network has many connections, the route table will be big. Looking up a path

in a large table needs time. Using data link communication reduces the overhead of

communication.

5.4 Recursion on a Multiprocessor

Recursion is a widely used technique in computer science. How to write a

recursive function on a multiprocessor system is a question we meet when writing the

sequence alignment program.

Generally speaking, we can use two kinds of recursion when solving a problem

using divide-and-conquer approach, the space recursion and the time recursion. On a uni

processor computer, only time recursion is possible. In other words, the processor solves

each smallest sub-problem in one time slice. On a multiprocessor computer, the recursion

can be the time or the space recursion. The space recursion means allocating each

smallest sub-problem to a processor to achieve parallelism. This is feasible only when the

system has a large number of processors, which is hard to achieve in practice. Maybe we

can do it on the next generation of Connection Machine. The time recursion on a multi

processor system is similar to that on a single processor computer. However, it lacks

parallelism. Thus, the best strategy is to combine the two kinds of recursion in to the so

called space-time recursion.

How does the space-time recursion work? The key point here is to allocate a part

of the problem to a processor and then let each processor solve its sub-problem by the

52

time recursion. So, there are two phases in the space-time recursion, the recursion on

processors phase and the recursion within a processor phase.

In our sequence alignment program we use the space-time recursion to implement

Myers-Miller's algorithm for finding an optimal alignment in two phases. The first phase

begins with 16 nodes working in one group. The 16 nodes divide the problem into two

subproblems and reorganize themselves into two 8-node groups, with each group holding

one subproblem. Then each 8-node group divide its subproblem into two sub-subproblems

and split themselves into two 4-node groups, with each group holding one sub

subproblem. This process keep going, until each group contains one node. In the second

phase, each node does the time recursion till the solution of the its assigned problem is

found.

5.5 Deadlock

Deadlock is not a new issue in the computer operating system design. We have

met this problem when we worked with GENESYS, the transputer system control kernel.

The phenomena are that the nodes wait for messages from each other and thus block each

other, or the node GENESYS process blocks itself. It seems that GENESYS has bugs.

5.6.1 Deadlock Caused by Communication

Most deadlocks on GENESYS are caused by communication. Our experience tells

us that the problem is in the communication protocol implementation or the buffer

management procedure. In GENESYS, the buffer management procedure has several

workers (processes) that handle messages. Once a node receives a message which is

53

stored in the buffer, the buffer management procedure calls a worker to receive it. The

worker then tries to pass the message to the application program. If the program does not

need this message at this moment, the worker is occupied by the message. The occupied

worker enters the wait state and remains in the wait state until the program wants to

receive this message. The trouble occurs when all workers are in the wait state and a new

message is coming and this message is expected by the program. In this situation,

although the message can enter the buffer, it can not reach the program. The result is that

many messages are blocked in buffer and that node enters a deadlock.

After many tries and errors we know that deadlock in our initial program was

also caused by using different level communication protocols alternatively. For example,

we used a lot of data link communications and some network communications. The

network communication is slower than data link communication because network

communication calls the routing function. An explicit example is the conflict between the

1/0 statements and data link communications. 1/0 statements are implemented by sending

the data to the GENESYS on the host using network layer communication. Our program

uses only data link layer communication to do computation. Since the 1/0 statements are

inserted in the program to do debugging, the deadlock occurs and the nodes are blocked

by the messages which are sent right after 1/0 statements. The explanation is that a

network layer operations may delay the data link layer operation right after it. So, if a

node send three messages ml, m2 and m3 to the same destination, and ml is sent via

network layer and m2 and m3 are sent via data link layer. m2 may arrive after m3

because of ml, although m2 is sent before m3.

54

In our final program, we scheduled sending and receiving of messages carefully

so deadlocks would not happen.

5.6.2 Virtual Circuit

Two processes can establish a virtual circuit that will remain in effect for the

transmission of several messages. The processes can be on the same node or on different

nodes. Virtual circuit sounds good because when it is established it transmits the message

with specific event I.D.. However, it may cause deadlocks when used for network

message passing if you do not implement the program properly.

When the virtual circuit is established it blocks all message except those with

specific event I.D .. Even the system messages cannot pass through. Our experience is that

do not use virtual circuit in a long period of time. Usually, set virtual circuit and send

several messages then clean virtual circuit. If virtual circuit lasts too long it may conflict

with GENESYS system control messages.

5.6 Debug Tools on GENESYS

The debugging tools on GENESYS is the symbolic debugger tdb. The tdb is not

a good debugger compared with dbx on Unix.

One main problem with tdb is that it cannot debug parallel programs. You can use

it to debug a program running on one node. If the program involves 8 nodes, it can do

nothing. Although, it provides ability to run several debugger simultaneously on several

terminals, the cooperation among these debuggers does not work properly. A debugger

may become dead somewhere in the program without any error report.

55

Because of the problem with debugger, we had many troubles in debugging the

program. Every time, before running the program, we had to make sure it works well,

otherwise the transputer system may die. So often we had to do what people did many

years ago when there is no debugger: insert many printing statements in the program and

check the printed message. Then we had the problem of deadlock, since printing message

requires communication. This is why we spent several months to complete our transputer

sequence alignment program.

CHAPTER 6

EMPIRICAL RESULTS AND DISCUSSIONS

In this chapter, we present the results of our experiment on the transputer system.

We have implemented two programs for finding k best non-intersecting local sequence

alignments. One is the sequential program using single node and the other is the parallel

program using either 8-node or 16-node on the DCSS transputer system. The single node

program is based on Huang's program, SIM, for finding k best non-intersecting local

sequence alignments. We have run these two programs on several sets of real DNA

sequences and artificial sequences, and compared their performance and time efficiency.

6.1 Some Considerations in the Design of the Tests

The tests are designed to achieve the goals. Our first goal is to verify the

correctness of the parallel program. The second goal is to determine the real efficiency

of the parallel program. As we have the sequential program, SIM, from Huang, we can

compare the outputs of SIM with the outputs of our parallel program to show the

correctness. To show the efficiency of our parallel program, we try to determine the

speed-up of the parallel program over the best sequential program. This is done by

comparing the single transputer node program run time with the parallel program run

time.

56

57

GENESYS provides a function for reading the current value of the system timer

in a portable fashion. This function can be called from the OTB and ITB programs when

GENESYS is running. To find the run time, we record the program's starting time and

ending time. Note that the transputer system is a multi-user system. Recall that our

transputer system has four NASs, each has 4 nodes. Thus GENESYS allow four users to

use the computing nodes simultaneously. However, users occupy an NAS exclusively, i.e.,

if we occupy an NAS, say NASO, the other users can not use NASO until we release it.

So, we can find the actual run time of our program by simply subtracting the starting time

from the ending time. Recall that OTB is the user interface and it starts ITB by sending

a message to ITB. We insert the time reading functions in the OTB right after the input

is read and before the end of the program. In this way, we can measure the run time of

our two programs.

6.2 Testing the k Non-intersecting Local Sequence Alignments Program

To test our parallel transputer program, we selected 3 pairs of real DNA sequences

and 4 pairs of pseudo-DNA sequences. Following Huang's papers, we obtained the real

DNA sequences from Genbank. The lengths of the real sequences range from lOk to 50k.

The first pair is the beta-like globin cluster of Human and rabbit. (For simplicity

we call them the beta-like pair.) This pair of sequences are reported of having high degree

of similarity and Huang already has done some test using these sequences. The lengths

of the human and rabbit sequences are 73,360 and 44,594, respectively. Since in the

DCSS transputer system, nodes do not have sufficiently large memory, we only used a

58

segment from each beta-like globin cluster. The lengths of the two segments are 21,000

and 42,000, respectively.

The second pair is the alpha globin cluster of Human and rabbit. (Again, we

simply call them the alpha-like pair.) This pair are also reported of having high degree

of similarity. The lengths of human and rabbit sequences are 19,862 and 10,621

respectively.

Table 6.1 Test results for the 8-node configuration

unit: second

pair name k og eg mxn sequencial parallel
speed

up

tob-liv 5 50 60 38,400x54,000 81270 11463 7.1

tob-liv 1 30 5 24,000x45,540 96684 14370 6.7

beta-like 5 50 60 21,000x42,000 42596 5613 7.6

beta-like 5 30 5 21,000x42,000 77733 12270 6.3

alpha-like 5 50 60 10,621x19,862 10133 1376 7.3

alpha-like 5 30 5 10,621x19,862 15455 2653 5.9

average 6.8

The third pair is the chloroplast genome of tobacco and liverwort (called the tob

liv pair). Tobacco and liverwort are two plants which shared a common ancestor 500

million years ago. The whole sequences of tobacco and liverwort are 155,844 and 121,024

long respectively. As mentioned above, due to the memory limitation, we only extracted

59

a pair of segments, one from each sequence, as the test sequences. The lengths of these

two segments are 54,000 and 38,400 respectively. During the test, sometimes the single

node program run out of memory. Thus, we had to reduce the size of the input sequences

to 45,540 and 24,000 respectively, in this case.

We let the score function have 4 values. They are the match score, the mismatch

score, the open-gap-penalty, and the extend-gap-penalty. Table 6.1 shows the comparison

of the run time of parallel program using 8 nodes and the run time of the single node

program. Table 6.2 shows the comparison of the run time of parallel program using 16

nodes with the run time of the single node program. In the Table 6.1, 6.2 and 6.3, "og"

stands for the open-gap-penalty and "eg" stands for the extend-gap-penalty. The match

score is 10 and mismatch score is -10.

Furthermore, to test the program performance on all kinds of sequences, we

generated 4 pairs of sequences. Their similarity varies from the high level to the middle

level. Here, the high level means that the length of the optimal alignment of the pair is

longer than 10% of the average length of the sequences in the pair. If the length of the

alignment is from 5% to 10% of the average length of the sequences, then the pair has

a middle level similarity. To make these sequences have the features of real sequences,

we simulated the genetic evolution process to produce these sequences. There are three

generalized operations in genetic evolution process:

Crossing-over: 	 To reproduce the next generation, parent's genes are

crossed over to generate new genes.

60

Inversion: The order of the nucleotides is changed by inverting a

segment of the sequence.

Mutation: Several nucleotides in the sequence are changed to the other

nucleotides.

The implementation of the crossing-over is to cut a sequence into two segments and pick

one position for each segment randomly. Then exchange the two subsegments that are

between the chosen positions and the end of the segments. The implementation of the

inversion is to randomly select two positions and reverse the segment between the two

positions. The implementation of the mutation is to find several positions randomly and

change the symbol to another symbol randomly too.

Table 6.2 Test results for the 16-node configuration

unit: second

pair name k og eg mxn sequencial parallel
speed

up

tob-liv 5 50 60 38,400x54,000 81270 7796 10.4

tob-liv 1 30 5 24,000x45 ,540 89686 6059 14.8

beta-like 5 50 60 21,000x42,000 42596 2897 14.8

beta-like 5 30 5 21,000x42,000 77733 6421 12.1

alpha-like 5 50 60 10,621x19,862 10133 753 13.4

alpha-like 5 30 5 10,621x19,862 15455 1698 9.1

average 12.4

61

To generate a pair of sequences with high degree similarity, we use a sequence,

generated by the random number generator, to form two sequences. One is the original

sequence and the other is obtained by evolving the original sequence for several

generations. Each generation is produced in three steps: crossing-over, inversion and

mutation. The more generations the sequence evolves the less similarity the pair has. In

our program, each generation consists of one crossing-over, one inversion, and 5%

mutations. The symbols in the sequences are A, C, G and T. Table 6.3 shows the test

results of finding 5 best non-intersecting local alignments on these pseudo sequences

pairs. We selected 4 sets of the score functions as shown in the table.

6.3 Discussions of the Results

First of all, the alignments found by the parallel program are always the same as

the alignments found by SIM. From the Table 6.1 and 6.2, we can see that the speed-up

of the parallel program is from 5.9 to 7.6 for the 8-node configuration and 9.1 to 14.8 for

the 16-node configuration. Table 6.3 shows the general performance of our program on

pseudo-DNA sequences. The average speed-up is 6.5 for 8-node configuration and is 11

for 16-node configuration.

The results show that the size of the inputs and the score function affect the

parallel program's speed-up. The larger the input sizes, the more speed up we get. The

reason is that the dynamic programming section of our program takes a large portion of

the total run time and thus, longer sequences lead to less proportion of setup and cleanup

time. The score function can affect the lengths of the local alignments found. When the

62

local alignments are longer, the speed-up decreases due to the communication overhead

and the unbalanced computation in some sections of the parallel program.

Table 6.3 Test results of pseudo sequences on both configurations

Unit: second

sizes og eg sequential 8-nodes 16-nodes
speed-up

8 16

30 5 7083.7 2000 1278.4 3.5 s.s
10,457x12,031 50 60 6175.4 889 484.6 6.9 12.8

30 10 6398 985.2 561.7 6.4 11.4
50 5 6385.3 1017.2 579.5 6.3 11.0
30 5 5317.8 868.7 507.9 6.1 10.5

9,99lx9,991 50 60 4851.1 707.2 395.4 6.9 12.3
30 10 5001.1 739.2 422.4 6.8 11.8
50 5 4970.6 752.2 437.7 6.6 11.4
30 5 3909 613.0 350.6 6.4 11.1

8,453x9,200
50 60 3728 536.2 310.3 7.0 12.0
30 10 3825.2 567.5 358.3 6.7 10.7
50 5 3801.4 566.1 336.0 6.7 11.3

6,89Sx7,431

30
so
30
so

5
60
10
5

2662.4
2468.9

2510
2557

448.2
418.7
447.4
400.6

253.8
268.8
305
237.4

S.9 10.5
5.8 9.3
5.6 8.4
6.4 10.8

Iaverage speed-up 6.3 10.7

Comparing the run times of the parallel program on the 8-node and 16-node

configurations, we can see that the speed-up does not increase as fast as the number of

nodes. It shows that the communication overhead still affects the parallel program.

Certainly, this is unavoidable and our interest is in to reduce this overhead to its

minimum.

The unbalanced computation sections can be found by analyzing Table 6.1 and

6.2. Recall that the large open-gap-penalty and large expend-gap-penalty lead to short

63

alignments. When open-gap-penalty is 50 and the extend-gap-penalty is 60, the speed-up

are larger than the other set of score functions. So, the shorter the alignment, the higher

the speed-up is. The unbalanced section must be in the section for displaying the

alignments and the section for finding the masked region. To further see this, we can look

at the case when k=l in Table 6.1and 6.2. When k=l, our program does not go through

sections for finding the masked region and recomputing the masked region. The speed-ups

are the highest on both configurations in this case.

The pseudo sequences are used to evaluate the average performance of our parallel

program. There are totally 32 tests in this group. The average speed-up is in our

expectation. Several exceptions exist since our program has some drawbacks and the

exception cases just touch the drawbacks.

CHAPTER 7

CONCLUSION

In this thesis, the sequence alignment problem and the related algorithms are

studied. In particular, the design and implementation of the parallel transputer program

for finding k best non-intersecting local alignments is presented. Since the basic problem

solving technique is the dynamic programming, the parallelization of the dynamic

programming is discussed thoroughly, including the selection of the network topology and

the selection of partition.

Recall that the two aspects of our goal are to find a efficient implementation of

the local sequence alignment problem and to show the parallel processing power of the

transputer system. Based on the test results in Chapter 6, the first aspect of our goal is

achieved. The parallel program's speed up is 6.8 on the average for the 8-node

configuration and 11 on the average for the 16-node configuration. Our parallel sequence

alignment program on transputer is a successful attempt and it shows that the transputer

system can provide an acceptable speed-up in solving the dynamic programming based

problems and the communication ability of the transputer system can meet the general

requirement of the computation-intensive applications.

The best feature of the transputer system is its flexible connection among nodes.

It can be configured as many networks with different topology. This feature provides the

64

65

freedom of selecting the best topology suitable for the specific approach for solving a

problem.

Certainly, the DCSS transputer system has two drawbacks. They are the small

memory space and the lack of customer supporting service. The main problem is the

memory size which limits our study. We had to reduce the input size to meet the

limitation. The maximum memory size of the MCIOOO transputer, TRANSTECH product,

is 8 MByte/node at maximum. But the current DCSS system has two kinds of memory

configurations: 4 MByte/node or 2 MByte/node. Problems occurred at the 2 MByte

memory nodes. The service provided by TRANSTECH is not adequate. We had to solve

the problems with the system on our own.

Although the existence of these drawbacks, the transputer system is still a good

candidate for the sequence alignment algorithm and the other dynamic programming type

applications.

REFERENCES

1. 	 Academy Backs Genome Project, Science, 239: 725-726.

2. 	 J. W. Arendt, Parallel Genome Sequence Comparison Using a Concurrent File

System, Dept. of Computer Science, University of Illinois at Urbana-Champaign,

Report No. UIUCDCS-R-91-1674 (1991).

3. 	 J. F. Collins and A. F. W. Coulson, Significance ofProtein Sequence Similarities,

Methods in Enzymology, Vol.183, pp.474-487 (1990).

4. 	 E. W. Edmiston, N. G. Core, J. H. Saltz, and R. M. Smith, Parallel Processing

of Biological Sequence Comparison Algorithms, International Journal of Parallel

Programming, Vol. 17, No. 3 (1988).

5. 	 D. S Hischberg, Recent Results on the Complexity of Common-subsequence

Problems, in Time Wraps, String Edits, and Macromolecules: The Theory and

Practice of Sequence Comparison, D. Sankoff and J. B. Kruskal (eds),

Addison-Wesley, Reading, MA (1983).

6. 	 X. Huang, A Space-Efficient Parallel Sequence Comparison Algorithm for a

Message-Passing Multiprocessor, International Journal of Parallel Computing,

Vol.18, No.3 (1989).

7. 	 X. Huang, R. C. Hardison and W. Miller, A Space-Efficient Algorithm for Local

Similarities, CABIOS, Vol.6 No.4, pp. 373-381 (1990).

8. 	 X. Huang and W. Miller, A Time-Efficient, Linear-Space Local Similarity

Algorithm, Advances in Applied Mathematics, Vol.12, No.3 (1991).

9. 	 X. Huang, W. Miller, and R. C. Hardison, Parallelization of a Local Similarity

Algorithm, Private paper, 1990.

10. 	 0. Gotoh, An Improved Algorithm for Matching Biological Sequences, Journal of

Molecular Biology 162: 705-708(1982).

66

67

11. 	 0. H. Ibarra, T. Jiang and H. Wang, String Editing on a One-Way Linear Array

of Finite-State Machines, IEEE Transaction on Computer, Vol.41, No. 1 (1992).

12. 	 0. H. Ibarra, T. Pong, and S. M. Sohn, String Processing on Hypercube, IEEE

Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 1 (1990).

13. 	 INMOS Limited, The Transputer Databook, Consolidated Printers, Berkeley,

CA.(1989).

14. 	 J. B. Kruskal and D. Sankoff, An Anthology of Algorithms and Concepts for

Sequence Comparison, in Time Warps, String Edits, and Macromolecules: the

Theory and Practice of Sequence Comparison, D. Sankoff and J. B.

Kruskal(eds), Addison-Wesley, Reading, MA(1983).

15. 	 G. M. Landau, U. Vishkin, and R. Nussinov, Fast Alignment ofDNA and Protein

Sequences, Methods in Enzymology, Vol. 183, pp 487-502 (1990).

16. 	 E. Lander and J. P. Mesirov, Protein Sequence Comparison on a Data Parallel

Computer, Proceedings of the 1988 ICPP, pp 3:257-263.

17. 	 A.M. Lesk (eds), Computational Molecular Biology·· Sources and Methods

for Sequence Analysis, Oxford University Press(1988).

18. 	 R. Lipton and D. Lopresti, Comparing Long Strings on a Short Systolic Array, in

Systolic Arrays, W. Moore, A. McCabe, and R. Urquhart(eds), pp.181-190, Adam

Hilger (July 1986).

19. 	 R. J. Lipton, T. G. Marr, and J. D. Welsh, Computational Approaches to

Discovering Semantics in Molecular Biology, Proceedings of The IEEE, Vol.77,

No.7 (1989).

20. 	 J. V. Maize!, Supercomputing in Molecular biology: Applications to Sequence

Analysis, IEEE Engineering in Medicine and Biology, pp. 27-30 (1988).

21. 	 E. W. Myers and W. Miller, Optimal Alignments in Linear Space, CABIOS,

Vol.4, No.1 pp 11-17 (1988).

22. 	 S. B. Needleman and C. D. Wunsch, A General Method Applicable to the Search

for Similarities in the Amino Acid Sequence ofTwo Proteins, Journal of Molecular

Biology 48:443-453 (1970).

68

23. 	 S. Ranka and S. Sahni, String Editing on an SIMD Hypercube Multicomputer,

Journal of Parallel and Distributed Computing, Vol. 9, pp 411-418 (1990).

24. 	 T. F. Smith and M. S. Waterman, Identification of Common Molecular

Subsequences, Journal of Molecular biology 147: 195-196 (1981).

25. 	 R. A. Wagner and M. J. Fischer, The String-to-String Correction Problem, Journal

of the ACM 21(1): 168-173(1974).

26. 	 M. S. Waterman and M. Eggert, A New Algorithm for Best Subsequence

Alignments with Application to tRNA-rRNA Comparisons, Journal of Molecular

biology, 197: 723-728 (1987).

27. 	 M.S. Waterman, Mathematical Methods for DNA sequences, CRC Press(1989).

28. 	 W. J. Wilbur and D. J. Lipman, Rapid Similarity Searches of Nucleic Acid and

Protein Data Banks, in Proceedings of the National Academy of Sciences, Vo1.80,

pp 726-730 (1983).

29. 	 M. Wu and D. D. Gajski, Computer-Aided Programming for Message-Passing

Systems: Problems and a Solution, Proceedings of the IEEE, Vol.77, No.12

(1989), pp. 1983-1991.

APPENDEX 1: Headfile Listing

69

70

I* predefine.h file *I

#include <Stdio.h>

#include "net.h"

#include <genesyslevents.h>

#include <genesys/malloc.h>

#include <genesyslt_types.h>

#include <genesyslcastreq.h>

#define LOADl 101

#define FLAG1 MYHOLD

#define FLAG DINTDATA

#define FIRSTNODE 0

#define LOAD 10

#define LOADS 11

#define STARTl 200

#define START 100

#define NOTE 99

#define p_d 10001

#define c_start 10002

#define c_start1 910002

#define PICK 102

#define BC 9901

#define whisper_msg 10003

#define flag_msg 90211

#define OPT 199

#define PASS 31415926

#define c_stt 841128

#define COLLECT 20256

#define AL 42956

#define COST 1128

#define ARRAY 2256

#define rvcmd 950000
#define rvdt 1000000
#define chat_msg 310003

I* macro.h file *I

char *AA, *BB;

int nodeid, K, P, desti, Sl;

static int (*v)[128]; I* substitution scores *I

static int q, r; I* gap penalties *I

static int qr; I* qr = q + r *I

int *S;

static int CV[128][128];

typedef struct ONE {

71

int ROW;
struct ONE *NEXT ;} pair, *pairptr;

pairptr *COl, z; I* tor saving used aligned pairs *I
static short tt;

typedef struct NODE
{ int SCORE;

int STAAl;

int STARJ;

int ENDI;

int ENDJ;

I* 	 int TOP;
int LEFT; *I
int BOT;
int RIGHT;} vertex, *Vertexptr;

vertexptr *LIST; I* an array for saving k best scores *I
vertexptr low = 0; I* lowest score node in LIST *I
vertexptr most = 0; I* latestly accessed node in LIST *I
static int numnode; I* the number of nodes in LIST *I

static int *CC, *DD; I* saving matrix scores *I
static int *RR, *SS, *EE, *FF; I* saving start-points *I
static int *HH, *WW; I* saving matrix scores *I
static int *UU, *VV;
static int *II, *JJ, *XX, *YY; I* saving start-points *I
static int ml, mm, nl, nn; I* boundaries of recomputed area *I
static int lb, tb; I* left and top boundaries *I
static int min; I* minimum score in LIST *I
static short flag; I* indicate if recomputation necessary*/

I* DIAG() assigns value to x if (ii,jj) is never used before *I
#define DIAG(ii, jj, x, value) \
{ for (tt = I, z =col[@]; z != 0; z = z->NEXT) \

if (Z->ROW = (ii)) \

{ tt = 0; break; } \

if (tt) \

x = (value); \

}

I* replace (ssl, xxl, yyl) by (ss2, xx2, yy2) if the latter is large *I

#define ORDER(ssl, xxl, yyl, ss2, xx2, yy2) \

{ if (ss I < ss2) \

{ ssl = ss2; xxl = xx2; yyl == yy2; } \

~~ \

if (ssl = ss2) \

{ if (xx1 < xx2) \

{ XXI == XX2; yy1 == yy2; } \

~~ \

if (xx 1 = xx2 && yy 1 < yy2)

yyl = yy2; \

72

} 	 \
}

I* The following definitions are for function diff() *I

static int li, Jj;
int diff(), display();
static int zero = 0;

#define gap(k) ((k) <= 0 ? 0 : q+r*(k))

static int •sapp;
static int last;

static int I, J;
static int no_mat;
static int no_mis;
static int al_len;

#define DEL(k)
{ 	I+= (k);

al_len += (k);
if (last< 0)

last = sapp[-11 -= (k);
else {

last= •sapp++ = -(k);

Sl++; }

}

#define INS(k)
{ J += k;

al_len += (k);
Sl++;
if (last < 0) {

sapp[-11 = (k); •sapp++=last;
}

else
last= *Sapp++ = (k);

}

#define REP
{ last = •sapp++ = 0;

Sl++;
al_len += 1;

}

I* start points of I and J *I

I* int type zero *I

I* k-symbol indel score *I

I* Current script append ptr *I
I* Last script op appended *I

I* current positions of A ,B *I
I* number of matches *I
I* number of mismatches *I
I* length of alignment *I

I* Append "Delete k" op *I
\

\

\

\

\

\

\

\

I* Append "Insert k" op *I
\
\
\

\

\

\
\

\

\

I* Append "Replace" op *I
\

\

\

APPENDIX II: ITB Program Listing

73

74

I* ITB program ----· *I
#include "predefine.h"
#define SORT 555;
#define SORTED 5555;
#define S_type 777;
#include "macroh"

double tml, tm2, tm3;
int mark=O, *pointer, *buffer, *indicator, mash=OxOOOOffff;
int low_pos, most_pos, last_rt, found, wi, wcell, nn1, mml;
struct nmsg mesg, cmdm;
vertex MAX;
l*int low2,1ow2_pos;*l

I* Add a new node into list. *I

#define addnode(cc, cci, ccj, i1, j1, K1, cost, bot, rig, mod) \
{ \

register int dd; \
found= 0; \
if (most!= 0 && most->STARI == cci && most->STARJ = ccj) \

found= 1; \
else \

for (dd= 0; dd< numnode ; dd++) \
{ most= LIST[dd]; \

if (most->STARI = cci && most->STARJ ==ccj) \
{found= 1; \

most_pos = dd; \
break; \

} \
} \

if (found) \
{ if (most->SCORE < cc) \

{ \
indicator[most_pos] = 1; \
most->SCORE =CC; \

most->ENDI = (il); \
most->ENDJ = (jl); \

} \
if (mod=O) { \

if (most->BOT < (il)) most->BOT = (il); \
if (most->RIGHT < (jl)) most->RIGHT = (j1); \
} \

else { \
if (most->BOT < bot) most->BOT = (bot); \
if (most->RIGHT < rig) most->RIGHT = (rig); \
} \

} \
else \

{ if (numnode < K1) I* list is not full *I \
{ \

most_pos = numnode; \

75

most= LIST[numnode++]; \
indicator[most_pos] = 1; \

} \
else \

{ \
most = low; I* list is full *I \
indicator[low_pos] = I; \
most_pos = low_pos; \

} \
most->SCORE =cc; \
most->STARI =cci; \
most->STARJ =ecj; \
most->ENDI = (il); \
most->ENDJ = (jl); \
if (mod=O) { \

most->BOT = (ii); \
most->RIGHT = (ji); \
} \

else { \
most->BOT = bot; \
most->RIGHT = rig; \
} \

} \
if (numnode = KI) \

{ if (low = most II ! low) \
{for (low=LIST[O],Iow_pos=O,dd=I; dd<numnode ;dd++) \

if (LIST[dd]->SCORE < low->SCORE) \
{ low= LIST[dd]; \

low_pos = dd;} \
} \
cost= low->SCORE; \

} \
}

main()
{

inti, j, nseq, M_l, N_l, si, sj, k, list_length;
int *fst(), *Snd(), findflag();
vertexptr MAXI, sort();
pairptr zptr;
double sttm, commtm, runtm, ttime(), ptime;

nodeid = getnodeid();
if (nodeid=3 11 nodeid=7 11 nodeid=II 11 nodeid=l5) desti = 3;

else if (nodeid<3 ll(nodeid>7 && nodeid<ll)) desti = 2;
else desti = I;

I* receive command from HOST *I
mesg.nh_event = NOTE;
mesg.nh_type = LOAD;
mesg.nh_flags =FLAG;
nrecv(&mesg);

76

M_l = mesg.nh_data[O];

N_l = mesg.nh_data[l];

K = mesg.nh_data[2];

q = mesg.nh_data[4];

r = mesg.nh_data[5];

P = mesg.nh_data[6];

numnode = min = 0;

qr = q + r;

I* tprintf("M %d N %d q %d r %d in node %d\n", M_l, N_l, q,r, nodeid);
create convert table *I

for (i=O; k128; i++)
for (j=O; j<I28; j++)

if (i=j) CV[iJO] = 10;
else CV[i](j] = mesg.nh_data[3];

AA =(char *)malloc(M_I+l);
BB =(char *)malloc(N_I+l);

I* receive sequence A *I
mesg.nh_event =START;
mesg.nh_type = LOAD;
mesg.nh_length = M_l;
mesg.nh_flags = O;
mesg.nh_msg = &AA[l];
nrecv(&mesg);

I* receive sequence B *I
mesg.nh_event =NOTE;
mesg.nh_type = LOADS;
mesg.nh_length = N_l;
mesg.nh_flags = 0;
mesg.nh_msg = &BB[I];
nrecv(&mesg);

I* allocate memory for working array *I
col= (pairptr *) malloc((N_I+l)*sizeof(pair));

for (i=l; i<=N_I; i++) col[i] = 0;

I* create LIST for K best alignments *I

indicator= (int *)malloc(K * 4);

LIST= (vertexptr *) malloc(K * sizeof(vertexptr));

for (i=O; i<K; i++)

LIST[i] = (vertexptr) malloc(sizeof(vertex));

sttm = ttime();

commtm = ttime();
if(nodeid = 0) {

cmdm.nh_event =START!;

cmdm.nh_type = LOAD1;

cmdm.nh_length = 0;

cmdm.nh_flags = FLAG;

77

nrecv(&cmdm);

M_l = cmdm.nh_data[l]; I* length of the array A *I

N_l = cmdm.nh_data[3]; I* length of the local array B *I

si = cmdm.nh_data[O]; I* starting position on A *I

sj = cmdm.nh_data[2]; I* startomg position on B *I
}

ptime = ttime();

big__pass(AA, BB, M_l, N_l, si, sj, K, nseq);

printf("run-time of BIG_PASS is %f in node %d\n",ttime()-ptime,nodeid);

for (k=K-1; k>=O; k-) {

list_length = k>numnode? k+l : numnode;

MAXI = sort(list_length);

MAX.SCORE = MAXl->SCORE;

MAX.STARI = MAXl->STARI;

MAX.STARJ = MAX1->STARJ;

MAX.BOT = MAX1->BOT;

MAX.RIGHT = MAX1->RIGHT;

MAX.ENDI = MAX1->ENDI;

MAX.ENDJ = MAX1->ENDJ;

alignment(MAX.ST A AI+ 1 ,MAX.ST ARJ+ 1 ,MAX. EN DI,MAX.ENDJ,O, P-1,q,q);

gather();

update(M_I, N_l);

if (k = 0) break;

mark++;

flag= 0;

mm = MAX.BOT; nn = MAX.RIGHT;

ptime = ttime();

reverse(AA, BB, MAX.BOT, MAX.RIGHT, MAX.STARI, MAX.STARJ);

printf("run-time of REVS is %f in node %d\n",ttime()-ptime,nodeid);

if (findflag() > 0)

{

ptime = ttime();
big__pass(AA, BB, MAX.BOT-m1+1, MAX.RIGHT-n1+1, m1, n1, list_length, nseq);

I* printf("run-time of SMALL_PASS is %f in node %d\n",ttime()-ptime,nodeid); *I
}

}

runtm = ttime();

if (nodeid = P-1) {

printf("runtm %f \n", runtm - sttm);

printf("commtm %f \n", commtm - sttm);

}

free(AA);

free(BB);

kexit();

}

I* pack two integers into one integer number *I
#define pack(num1, num2, num4) \
{ num4 = (num1 «16) & (-mash)lnum2 & mash; }

http:alignment(MAX.ST

78

I* unpack one integer number to two integers *I
#define unpack(num3, derive) \
{ if ((num3&mash)»15 = 1) derive[l] = num3!(-mash); \

else derive[!]= num3 & mash; \
derive[O] = num3»16&mash; \

}

I* function big_pass{A, 8, M_l, N_l, si, sj, K, nseq) computes the first
round of dynamic programming task. A and 8 are two sequences, M_l, N_l are
length of A and 8, si and sj are EXACTLY starting points of computing. *I

big_pass(A, 8, M_l, N_l, si, sj, k, nseq)
char A[], 8[];
int k, nseq, M_l, N_l, si, sj;
{

register int j; I* row and column indices *I
register int c; I* best score at current point *I
register int f; I* best score ending with insertion *I
register int d; I* best score ending with deletion *I
register int p; I* best score at (i-1, j-1) *I
register int ci, cj; I* end-point associated with c *I
register int di, dj; I* end-point associated with d *I
register int fi, fj; I* end-point associated with f *I
register int pi, pj; I* end-point associated with p *I
register int *Va; I* pointer to v(A[i], 8[j]) *I
register int content1[2];
struct nmsg whisper;
register int sti, stj, lenj;
int temp, leni, 8_1en, infor[8];
register int i;
double mtime, ttime();

I* Compute the matrix and save the top K best scores in LIST
CC : the scores of the current row
RR and EE : the starting point that leads to score CC
DD : the scores of the current row, ending with deletion
SS and FF : the starting point that leads to score DD *I

#define PAss(package_i,package_o,iO,basej,sizej,kk) \
{ \

va = CV[AA[iO]]; \
unpack(package_i[6], content!) \
c = contentl[O]; \
f = content1[1]; \
p = package_i[O]; \
pi= package_i[l]; \
Pi= package_i[2]; \
ci= package_i[7]; \
cj= package_i[3]; \
fi= package_i[4]; \
fj= package_i[5]; \

79

for (j = 0; j < sizej; j++) \
{ c = c- qr; \

f = f - r; \
ORDER{f, fi, fi, c, ci, cj) \
c = CC[j] - qr; \
ci = RR[j]; \
ci = EEUJ; \
d = DD[j] - r; \
di = SSUJ; \
~=ffUJ; \
ORDER{d, di, di, c, ci, cj) \
c = 0; \
DIAG(iO, j+basei, c, p + va[BB[i+basei]]) I* diagonal *I \
if (c <= 0) \

{ c = 0; ci = i; ci = i+basei; \
} \

else \

{ ci =pi; ci =Pi; \

} \

ORDER{c, ci, ci, d, di, dj) \

ORDER(c, ci, ci, f, fi, fj) \

p = CC[j]; \

CC[j] = c; \

pi= RRUJ; \

Pi = EE[j]; \

RR[j] = ci; \

EEUJ = ci; \

DD[j] = d; \

ssm = di; '

FF[j] = di; \

if (c > min) I* add the score into list *I

addnode{c, ci, cj, i, i+basei, kk, min,O,O,O) \
} \
package_o[O] = p; \
package_o[l] = pi; \
package_o[2] = pi; \
pack{c, f, package_o[6]) \
package_o[7] = ci; \
package_o[3] = ci; \
package_o[4] = fi; \
package_o[S] = fi; }

I* Initialize the 0 th row *I
I* mark++; *I

temp = (N_IIP + 17);
CC = (int *)malloc(temp*24);
RR = CC + temp;
SS = RR + temp;
EE = SS + temp;
DO = EE + temp;

80

FF = DD + temp;
if (nodeid = 0) {

whisper.nh_dl_event = dl_event(desti);
whisper.nh_event = p_d;
whisper.nh_type = c_start; I* whisper_msg;*l
whisper.nh_data(l] = N_l;
whisper.nh_data[2] = sti = si; I* start point of A *I
whisper.nh_data[3] = M_l; I* length of A *I
whisper.nh_data[5] = N_IIP; I* length of B *I
lenj = N_l- (P-1)*whisper.nh_data[5];

whisper.nh_data[4] = sj+lenj; I* start point of B *I
whisper.nh_length = 0;
whisper.nh_flags = FLAG1;
whisper.nh_node = nodeid + 1;

if (P!=1) dsend(&whisper);
for (j=O; j<lenj; j++) {

CC(j] = 0;

RR(j] = si-1;

EE[j] = sj+j;

DD[j] = -q;

ssm = si-1;

FF[j] = sj+j;

}

infor[O] = 0; I* p[i-1][j-1] *I

infor[2] = sj-1; I* Pi *I

infor[3] = sj-1; I* cj *I

infor[5] = sj-1; I* fj *I

pack(O, -q, infor[6])

I* c[i][j-1] and f[i][j-1] *I
for (i=si; i<si + M_l;i++)
{

infor[1] = i-1; I* pi *I
infor[4] = i; I* fi *I
infor(7] = i; I* ci *I
whisper.nh_node = nodeid + 1;

PAss(infor, whisper.nh_data, i, sj, lenj, k)
dsend(&whisper);
}

}
else {

whisper.nh_event = p_d;
whisper.nh_type = c_start; l*whisper_msg;*/
whisper.nh_length = 0;
whisper.nh_flags = 0;

drecv(&whisper);

B_len = whisper.nh_data[1];

sti = whisper.nh_data[2];

stj = whisper.nh_data[4];

leni = whisper.nh_data[3];

lenj = whisper.nh_data[5];

81

if (nodeid != P -1) {
whisper.nh_flags = FLAG1;
whisper.nh_data[4] = stj+lenj; I* start point *I
whisper.nh_dl_event = dl_event(desti);
whisper.nh_length = 0;
whisper.nh_node = nodeid + 1;
dsend(&whisper);
}

for (j=O; j<lenj; j++) {

CC[j] = 0;

R R[j] = SS[j] = sti-1;

EEUJ = FF[j] = stj+j;

DD[j] = -q;

}

for (i=sti; i< sti + leni; i++)

{

drecv(&whisper);

PAss(whisper.nh_data,whisper.nh_data, i, stj, lenj, k)
whisper.nh_type = c_start;
whisper.nh_node = nodeid + 1;

if (nodeid != P-1)

dsend(&whisper);

}

}

free(CC);
return(O);

}

I* copy_list() copys all new elements in the LIST to the buffer *I
#define copy_list(l_size, locj) \

{ for (wi = 0, locj=O; wkl_size; wi++) \
if (indicator[wi]=l) { \

pointer[locj*7] = LIST[wi]->SCORE; \
pointer[locj*7+1] = LIST[wi]->STARI; \
pointer[locj*7+2] = LIST[wi]->ST ARJ; \
pointer[locj*7+3] = LIST[wi]->ENDI; \
pointer[loCj*7+4] = LIST[wi]->ENDJ; \
pointer[locj*7+5] = LIST[wi]->BOT; \
pointer[locj*7+6] = LIST[wi]->RIGHT; \
locj++; \

indicator[wi] = 0; \
} \

}

I* sort() collects all elements in all nodes and sorts lists and send K
larger elements to the node 0 *I

vertexptr sort(num)
int num;

82

{
int 10, j, i;
register int d;
struct nmsg sort1;
vertex maxi;
vertexptr max, findmax();
if (nodeid=OIInodeid=711nodeid=811nodeid=15)

10=0;
else if (nodeid=311nodeid 411nodeid=1111nodeid=12) 10 = 3;

else 10 = 2;

pointer= (int *)malloc(K*28);

buffer= (int *)malloc(K*28);

if (10 = 0 1110 = 3) { /* nodes 0,4,8,12,3,7,11 & 15 *I

sortl.nh_dl_event = dl_event(IO? 1 : 2);

sortt.nh_event = SORT;

sortt.nh_type = S_type;

sortl.nh_node = nodeid%4? nodeid-1 : nodeid+I;

sortl.nh_flags = OINTOATA I OINTMSG;

copy_list(nu mnode, sort l.nh _ data[OJ)

sortt.nh_length = 28*sortl.nh_data[OJ;

sortl.nh_msg =pointer;

dsend(&sort1);

}
else {

sortl.nh_event =SORT;

sortl.nh_type = S_type;

sortl.nh_flags = 0;

sortl.nh_msg = buffer;

sortl.nh_length = K*28;

drecv(&sort1);

for (wi=O; wksortt.nh_data[OJ; wi++)

if (buffe~wceii=Wi*7]>min)
addnode(buffer[wcell], buffer[wcell+ 1], buffer(wcell+2], buffer[wcell+3],

buffer[wcell+4], num,min,buffe~wcell+5],buffer[wcell+6],1);
if (nodeid = 211nodeid=1011nodeid=511nodeid=13) {

sortl.nh_dl_event = dl_event(1);

sortl.nh_node = nodeid%2? nodeid+l : nodeid-1;

sortl.nh_flags = OINTOATA I OINTMSG;

copy _list(nu mnode, sort I.nh_data(O])

sortl.nh_length = 28*SOrtl.nh_data(O];

sortl.nh_msg = pointer;

dsend(&sort1);

}
else {

sortl.nh_length = K*28;

sortl.nh_msg = buffer;

drecv(&sort1);

for (wi=O; wksortl.nh_data[O]; wi++)

if (buffer[wcell=wi*7]>min)

addnode(buffer(wcell], buffer(wcell+ 1], buffer[wcell+2], buffer(wcell+3],
buffer(wcell+4], num, min, buffe~wcell+5], buffer[wcell+6], 1);

83

if (nodeid=611nodeid=9) {

sort1.nh_dl_event = dl_event(nodeid-6);

sortl.nh_node = nodeid%2? nodeid+5 : nodeid-5;

sortl.nh_flags = DINTDATA I DINTMSG;

copy _list(numnode, sort l.nh_data[O])

sortl.nh_length = 28*SOrtl.nh_data[O];

sortl.nh_msg = pointer;

dsend(&sort1);

}

else {

sortl.nh_length = K*28;

sortl.nh_msg = buffer;

drecv(&sort1);

for (wi=O; wksortl.nh_data[O]; wi++)

if (buffer[wceii=Wi*7]>min)
addnode(buffer[wcell], buffer[wcell+ 1], buffer[wcell+2], buffer[wcell+3],

buffer(wcell+4], num, min, buffer[wcell+5], buffer[wcell+6], 1);
if (P=16) {

if (nodeid==14) {
sortl.nh_dl_event = dl_event(3);

sortl.nh_node = 1;
sortl.nh_flags = DINTDATA I DINTMSG;

copy _list(nu mnode, sort l.nh_data[O])

sortl.nh_length = 28*SOrtl.nh_data[O];

sortl.nh_msg =pointer;
dsend(&sortl);

}

else {

sortl.nh_event = SORT;

sortl.nh_type = S_type;

sortl.nh_flags = DINTDATA I DINTMSG;

sortl.nh_length = K*28;

sortl.nh_msg = buffer;

drecv(&sortl);

for (wi=O; wksortl.nh_data[O]; wi++)

if (buffer[wceii=Wi*7]>min)

addnode(buffer[wcell], buffer[wcell+ 1], buffer[wcell+2],
buffer[wcell+3], buffer[wcell+4], num, min, buffer[wcell+5],
butter[wcell+6], 1);

}

}

if (nodeid=l) {

sortl.nh_dl_event = dl_event(l);

sortl.nh_event = SORTED;

sortl.nh_node = 0;

sortl.nh_flags = DINTDATA I DINTMSG;

copy_list(numnode, sort l.nh_data[O])

sortl.nh_length = 28*SOrtl.nh_data[O];

sortl.nh_msg = pointer;

dsend(&sortl);}

}
}

84

}

if (nodeid = 0) {

sortl.nh_event = SORTED;

sortl.nh_type = S_type;

sortl.nh_length = K*28;

sortl.nh_msg = buffer;

sortl.nh_flags = 0;

drecv(&sortl);

for (wi=O; wksortl.nh_data[O]; wi++)

if (buffer(wceii=Wi*7]>min)
addnode(buffer[wcell], buffer[wcell+ 1], buffer[wcell+2], buffer[wcell+3],

buffer[wcell+4], num, min, buffer[wcell+5], buffer[wcell+6], I);
free(pointer);
free(buffer);
max = findmax();
maxi.SCORE = sortl.nh_data[O] = max->SCORE;
maxi.STARI = sortl.nh_data[IJ = max->STARI;
maxi.STARJ = sortl.nh_data[2] = max->STARJ;
maxi.ENDI = sortl.nh_data[3] = max->ENDI;
maxi.ENDJ = sortl.nh_data[4] = max->ENDJ;
maxi.BOT = sortl.nh_data[5] = max->BOT;
maxi.RIGHT = sortl.nh_data[6] = max->RIGHT;
sortl.nh_data[7] = min;
sortl.nh_dl_event = dl_event(desti);

sortl.nh_event = PICK;
sortl.nh_type =LOAD!;

sortl.nh_length = 0;

sortl.nh_flags = FLAG;

sortl.nh_node = nodeid + I;

dsend(&sortl); /*send*/

}

I* passing globle max and update the LIST *I
else {

free(pointer);

free(buffer);

sortl.nh_event = PICK;

sortl.nh_type =LOAD!;

sortl.nh_length = 0;

sortl.nh_flags = FLAG;

drecv(&sortl);

maxi.SCORE = sortl.nh_data[OJ;

maxi.STARI = sortl.nh_data[I];

maxi.STARJ = sortl.nh_data[2];

maxi.ENDI = sortl.nh_data[3];

maxi.ENDJ = sortl.nh_data[4];

maxi.BOT = sortl.nh_data[5];

maxi.RIGHT = sortl.nh_data[6];

min= sortl.nh_data[7];

sortl.nh_dl_event = dl_event(desti);

85

sortl.nh_event = PICK;

sortl.nh_type = LOAD1;

sortl.nh_length = O;

sortl.nh_flags = FLAG;

sortl.nh_node = nodeid + 1;

if (nodeid != P-1) {

dsend(&sort1);

}

for (d = 0; d < numnode ; d++)
{

max = LIST[d];

if ((maxi.STARI = max->STARI) && (maxi.STARJ = max->STARJ))

{

numnode-;
if (d 	!= numnode) {

LIST[d] =LIST[numnode];/* LIST[numnode-1]=LIST[numnode]; *I
LIST[numnode] =max;
if (low_pos==numnode) low_pos=d;
}

most= LIST[O];

if (low= max) { low= LIST[O]; low_pos = 0;}

break; }

}
}

return(&maxl);
}

vertexptr find max()
{

register int i, j;
vertexptr cur;
for (j = 0, i = 1; i < numnode ; i++)

if (LIST[i]->SCORE > LIST[j]->SCORE)
j =i;

else if (LIST[i]->SCORE=LIST[j]->SCORE && LIST[i]->STARJ<LISTOJ->STARJ)
i= i;

cur= LIST[j];

if (j != -numnode)

{ LIST[j] = LIST[numnode];

LIST[numnode] = cur;

}

most= LIST[O];

if (low = cur) {

low = LIST[O];

low_pos =0;

}

return (cur);

}

86

alignment(stti, sttj, endi, endj, headnd, endnd, tb, te)
int stti, sttj, endi, endj, headnd, endnd, tb, te;
{

int midnd, mid_i, midj,i,oldnd, temp;
int *COnt. id, *fSt(), *Snd(), newmem;

mid_i = stti + (endi - stti)l2;
temp = 2*(endj-sttj)l(endnd-headnd+1)+16;
newmem = temp*4;
CC = (int *)malloc(newmem*6);
RR = CC + temp;
SS = RR + temp;
EE = SS + temp;
DD = EE + temp;
FF = DD + temp;
if (endnd!=headnd && nodeid <= (midnd = headnd+(endnd-headnd)l2))

{
oldnd=endnd;
cont = fst(stti,mid_i,sttj,endj,oldnd,headnd,endnd=midnd, tb, te);
}

else
{
oldnd=headnd;
cont = snd(mid_i+ 1,endi,sttj,endj,oldnd,headnd=midnd+ 1,endnd,tb,te);
}

mid_j = cont[O];
id = cont[1];
free(CC);

I* recursion on computing node *I
if (headnd != endnd)

if (id = 1) I* type 1 *I
if (nodeid > midnd) {

alignment(mid_i+1, midj+1, endi, endj, headnd, endnd, q, te);}
else

alignment(stti, sttj, mid_i, midj, headnd, endnd, tb, q);
else { I* type 2 *I

if (nodeid > midnd)
alignment(mid_i+2, midj+l, endi, endj, headnd, endnd, 0, te);

else {
alignment(stti, sttj, mid_i-1, midj, headnd, endnd, tb, 0);
if (nodeid == endnd) DEL(2);

}
}

I* recursion on each computing node *I
else

{
al_len = last = Sl = 0;
no_mis = no_mat = 0;
I= J =0;
if (id = 1)

if (nodeid%2 = 0) {

87

temp == midj-sttj+1;

newmem == temp *4 + 4;

S == sapp == (int *)malloc(newmem);

CC == (int *)malloc(newmem*6);

RR == CC +temp +1;

SS == RR + temp+1;

EE == SS + temP+1;

DO== EE + temP+1;

FF ==DO+ temp+1;

li == stti -1 ; J j == sttj -I ;

recu_ai(&AA[Ii], &BB[Jj],mid_i-stti+ 1,temp, tb, q);

}

else {
temp == endj-midj;
newmem == temp *4 + 8;
S == sapp == (int *)malloc(newmem);
CC == (int *)malloc(newmem*6);
RR == CC + temP+2;
SS == RR + temp+2;
EE == SS + temP+2;
DO == EE + temp+2;
FF == DO + temp+2;

li ==mid_i; Jj == midj;

recu_ai(&AA[Ii], &BB[Jj], endi-mid_i, temp, q, te);

}

else
if (nodeid%2 = 0) {

temp == midj-sttj+1;
newmem ==temp *4 + 4;
S == sapp == (int *)malloc(newmem);
CC == (int *)malloc(newmem*6);
RR == CC +temp+I;
SS == RR +temP+I;
EE == SS +temp+ I;
DO== EE + temP+l;
FF == DO+ temP+1;

li == stti -1; Jj == sttj -1;

recu_ai(&AA[Ii], &BB[Jj], mid_i-stti, temp, tb, 0);

DEL(2);

}
else {

temp == endj-midj;
newmem ==temp *4 + 8;
S == sapp == (int *)malloc(newmem);
CC == (int *)malloc(newmem*6);
RR == CC + temp+2;
SS == RR + temP+2;
EE == SS + temp+2;
DO == EE + temP+2;
FF == DO + temP+2;

li ==mid_i+1; Jj = midj;

recu_ai(&AA[Ii], &BB[Jj],endi-mid_i-l,temp,O,te);

88

}
free(CC);

}
}

I* recu_ai(A,B,M,N,tb,te) returns the score of an optimum conversion between
A[l..M] and B[l..N] that begins(ends) with a delete if tb(te) is zero
and appends such a conversion to the current script. *I

recu_ai(A,B,M,N,tb,te) char *A, *B; int M, N; int tb, te;

{ int midi, midj, type; I* Midpoint, type, and cost *I
int midc;

{ register int i, j;
register int c, e, d, s;

int t, *Va;
pairptr z1;

I* Boundary cases: M <= 1 or N = 0 *I

if (N <= 0)

{ if (M > 0) DEL(M)

return - gap(M);

}

if (M <= 1)

{if (M <= 0)

{ INS(N);

return - gap(N);

}

if (tb > te) tb = te;

midc = - (tb + r + gap(N));

midj = 0;

va = CV[A[1]);

for (j = 1; j <= N; j++)

{ for (tt = 1, z = coi(Jj+J+j]; z != 0; z = z->NEXT)

if (Z->ROW = li+l+ 1)

{ tt = 0; break; }

if (tt)

{ c = va[B[j]]- (gap(j-1) + gap(N-j));

if (c > midc)

{ midc = c;

midj=j;

}
}

}

if (midj = 0)

{ INS(N) DEL(l) }

else

{if (midj > 1) INS(midj-1)

REP

89

if (A[1] = B[midj])

no_mat += 1;

else

no_mis += 1;

I* mark (A[I],B[J]) as used: put J into list row[l] *I

I++; J++;

zl = (pairptr) malloc(sizeof(pair));

Z1->ROW = l+li;

zl->NEXT = coi[Jj+J];

coi[Jj+J] = zl;

if (midj < N) INS(N-midj)

}

return midc;

}

I* Divide: Find optimum midpoint (midi,midj) of cost midc *I

midi= Ml2; I* Forward phase: *I

CC[O] = 0; I* Compute C(M/2,k) & D(M/2,k) for all k *I

t = -q;

for (j = 1; j <= N; j++)

{ CC[j] = t = t-r;

DD[j] = t-q;

}
t = -tb;

for (i = 1; i <=midi; i++)

{ s = CC[O];

CC[O] = c = t = t-r;

e = t-q;

va = CV[A[i]];

for (j = 1; j <= N; j++)

{ if ((c = c- qr) > (e = e - r)) e = c;

if ((c = CCOJ - qr) > (d = DD(j] - r)) d = c;

DIAG(i+l+li, j+J+Jj, c, s + va[B[j]])

if (c < d) c = d;

if (c < e) c = e;

s = CC[j];

CC[j] = c;

DD[j] = d;

}

}

00[0] = CC[O];

RR[N] = 0; I* Reverse phase: *I
t = -q; I* Compute R(MI2,k) & S(MI2,k) for all k *I
for (j = N-1; j >= 0; j--)

{ RR[j] = t = t-r;

SS[j] =t-q;

}
t = -te;

for (i = M-1; i >=midi; i-)

{ s = RR[N];

90

RR[N] = c = t = t-r;

e = t-q;

va = CV[A[i+1]];

for (j = N-1; j >= 0; j-)

{ if ((c = c- qr) > (e = e - r)) e = c;
if ((c = RR[j] - qr) > (d = SSUJ - r)) d = c;

DIAG(i+1+1+1i, j+1+J+Jj, c, s+va[B[j+1]])
if (c < d) c = d;
if (c < e) c = e;
s = RR[j];
RR[j] = c;
SS[j] = d;

}

}

SS[N] = RR[N];

midc = CC[O]+RR[O]; I* Find optimal midpoint *I

midj =0;

type= 1;

for (j = 0; j <= N; j++)

if ((c = CC[j] + RR[j]) >= midc)

if (c > midc II CC[j] != DD[j] && RR[j] = SS[j])

{ midc = c;

midj=j;

}

for (j = N; j >= 0; j--)

if ((c = DD[j] + SS[j] + q) > midc)

{ midc = c;

midj=j;

type= 2;

}
}

I* Conquer: recursively around midpoint *I

if (type= 1)

{ recu_ai(A,B,midi,midj,tb,q);

recu_ai(A+midi,B+midj,M-midi,N-midj,q,te);

}

else
{ recu_ai(A,B,midi-1,midj,tb,zero);

DEL(2);
recu_ai(A+midi+ 1,B+midj,M-midi-1 ,N-midj,zero,te);

}
return midc;

}

1**************************************1
int *fst(sti, eni, stj, enj, odnd, head, end, tb, te)

int sti, eni, stj, enj, odnd, head, end, tb, te;

{

struct nmsg whisperl, score;

91

int in_a[6], j, i, *Va;
int t, sj, leni, lenj, P _g, content[3];
register int e,s,c,d; I* e -- l[iJD-1] *I

I* s C[i-1]0-1] *I
I* c - C[i][j-1] *I

#define fst_pass(in, baj, bai, N, head, out) \
{ \

s = in[O]; \
c = in[l]; \
e = in[2]; \
va = CV[AA[bai]]; \
for (j=((nodeid=head)? 1:0); j < N; j++) \

{ if ((c = c qr) > (e = e r)) e = c; \
if ((c = CCUJ - qr) > (d = DD[j] - r)) d = c; \

DIAG(bai, j+baj, c, swa[BB[j+baj]])
if (C < d) C = d;

if (c < e) c =
s = CC[j];
CC[j] = c;
DD[j] = d;

}
out[O] = s;
out[l] = c;
out[2] = e;

}

if (enj-stj<=O) {

e;

score.nh_data[O] = stj-1;

score.nh_data[l] = 1;

return(score.nh_data);

}
P _g = end-head+1;
leni = eni-sti+1;
if (nodeid = head) {

lenj = (enj-stj+2)1P _g;
if ((enj-stj+2)%P _g != 0) ++lenj;

if (head!=end) {
whisperl.nh_dl_event = dl_event(desti);
whisperl.nh_event = c_stt+end;
whisperl.nh_type = whisper_msg;
whisperl.nh_data[4] = stj+lenj-1;
whisperl.nh_data[5] = lenj;
whisperl.nh_length = 0;
whisper1.nh_flags = FLAG1;
whisperl.nh_node = nodeid + 1;

dsend(&whisperl);
}

t = -q;

CC[O] = 0;

for {j=l; j<=lenj; j++) {

\
\
\
\
\
\
\
\
\
\

I* length *I

I* stt point *I
I* length of j *I

92

CC[j] = t = t-r;

DD[j] = t-q;

}

t = -tb;

for (i=O; kleni; i++) {

in_a[O] = CC[O]; I* s -- C[i-1][j-1] *I
in_a[1] = CC[O] = t = t-r; I* c -- C[i][j-1] *I
in_a[2] = t-q; I* e -- l[i][j-1] *I
fst_pass(in_a, stj-1, sti+i, lenj, head, content)
if (head!=end) {

for (j=O; j<4; j++) whisperl.nh_data(j] = content(j];
whisperl.nh_node = nodeid + 1;
dsend(&whisperl);

}
}

DD[O] = CC[O];
}
else {

whisperl.nh_event = c_stt+end;

whisperl.nh_type = whisper_msg;

whisperl.nh_length = 0;

whisperl.nh_flags = 0;

drecv(&whisperl);

t=-q-(whisperl.nh_data[4]-stj)*r;

sj = whisperl.nh_data[4];

lenj = whisperl.nh_data[5];

if (nodeid != end) {
whisperl.nh_dl_event = dl_event(desti);
whisperl.nh_event = c_stt+end;
whisperl.nh_type = whisper_msg;
whisperl.nh_data[4] = sj+lenj; I* stt point *I
whisperl.nh_data[5] = lenj; I* length *I
whisperl.nh_length = 0;
whisperl.nh_flags = FLAG1;
whisperl.nh_node = nodeid + 1;
dsend(&whi sperl);
}

else lenj = enj-sj+ 1;
for (j=O; j<lenj; i++) {

CC[j] = t = t-r;

DD[j] = t-q;

}

for (i=O; kleni; i++)
{

whisperl.nh_type = p_d;
drecv(&whisperl);
fst_pass(whisperl.nh_data, sj, sti+i, lenj, head, content)

if (nodeid != end) {
whisperl.nh_type = p_d;
whisperl.nh_node = nodeid + 1;
for (j=O; j<4; j++) whisperl.nh_data[j] = content[j];
dsend(&whisperl);

93

}
}

}

I* Send CC and DD to the correspondent node *I

score.nh_event =COST;
score.nh_type =ARRAY;
score.nh_length = lenj*4;
score.nh_flags = DINTMSG;
score.nh_msg = CC;
score.nh_node = odnd-nodeid+head;
nsend(&score);
score.nh_event = COST+1;
score.nh_msg = DD;
nsend(&score);

I* Receive the node on optimal path *I

score.nh_event =ARRAY;

score.nh_type =COST;

score.nh_length = 0;

score.nh_flags = DINTDATA;

nrecv(&score);

return(score.nh_data);
}

1**************************************1
int *Snd(sti, eni, stj, enj, odnd, head, end, tb, te)

int sti, eni, stj, enj, odnd, head, end, tb, te;

{

struct nmsg whisperl, score1;

int in_a[6], j, i, midj, midc, type, t,sj, *result, *find_mid();

int leni, lenj, P_g, temp_cost, *Va, sjj;

I* 	snd_pass(in, baj, bai, N) compute the locall RR and SS. in ins a input
array, baj (base of j) and bai (base of i) and N (range of j). *I
register int e, I* l[i][j-1] *I

S, I* C[i-IJ[j-1] *I
C, I* C[i][j-1] *I
d;

#define snd_pass(in, baj, bai, N, head, out) \
{ 	 \

s = in[O]; \

c = in[1]; \

e = in[2]; \

va = CV[AA[bai]]; \

for (j = N-1; j >= 0; j-) \

{ if ((c = c- qr) > (e = e - r)) e = c; \

if ((c = RR[j] - qr) > (d = SS[j] - r)) d = c; \

DIAG(bai, j+baj, c, s+Va[BB[j+baj]]) \

if (C < d) C = d; \

if (c < e) c = e; \

94

s =RR[j]; \

RR[j] = c; \

SS[j] = d; \

} \

out[O] = s; \

out[1] = c; \

out[2] = e; \

}

if (enj-stj<=O) {

scorei.nh_data[O] = stj-1;

scorei.nh_data[1] = 1;

return(score 1.nh_data);

}

P_g =end-head+1;

leni = eni-sti+1; I* length *I

if (nodeid = head) {

whisperl.nh_data[5J=Ienj = (enj-stj+2)1P _g;
if ((enj-stj+2)%P _g != 0) {

whisperl.nh_data[5J = ++lenj;
lenj = enj-stj+2-lenj*(P _g - 1); I* length of j *!

}
t = -q;
for (j=lenj-2; j>=O; j--) {

RR[j] = t = t-r;

SSUJ = t-q;

}

if (head!=end) {

whisperl.nh_dl_event = dl_event(desti);

whisperl.nh_event = p_d+end;

whisperl.nh_type = whisper_msg;

whisperl.nh_data[4J = enj-lenj+ 1; I* end position *I

whisperl.nh_data[3J = t;

whisper! .nh_length = 0;

whisperl.nh_flags = FLAG 1;

whisperl.nh_node = nodeid + 1;

dsend(&whisper1);
}

sj = enj - lenj+2;

RR[Ienj-1] = 0;

t = -te;

for (i=leni-1; i>=O; i--) {

in_a[O] = RR[Ienj-1]; I* s -- C[i-1J0-1] *I
in_a[1J = RR[Ienj-1] = t = t-r; I* c- C[i][j-1] *I
in_a[2J = t-q; I* e -- l[i][j-1] *I
snd_pass(in_a, sj, sti+i, lenj-1, head, whisperl.nh_data)
if (head!=end) {
whisperl.nh_type = c_stt;
whisperl.nh_node = nodeid + 1;
dsend(&whi sperl);
}

}

95

SS[Ienj-1] = RR[Ienj-1];

}

else {

whisperl.nh_event = p_d+end;

whisperl.nh_type = whisper_msg;

whisperl.nh_flags = 0;

whisperl.nh_length = 0;

drecv(&whisper1);

t = whisperl.nh_data[3];

enj = whisperl.nh_data[4];

lenj = whisperl.nh_data[5];

for (j=lenj-1; j>=O; j-) {

RR[j] = t = t-r;

ssm = t-q;

}

sj = enj- lenj+1;
if (nodeid != end) {

whisperl.nh_dl_event = dl_event(desti);
whisperl.nh_event = p_d+end;
whisperl.nh_type = whisper_msg;
whisperl.nh_data[3] = t;
whisperl.nh_data[4] = enj-lenj; I* stt point *I
whisperl.nh_data[5] = lenj; I* length *I
whisperl.nh_length = 0;
whisperl.nh_flags = FLAG1;
whisperl.nh_node = nodeid + 1;
dsend(&whisper1);
}

for (i=leni-1; i>=O; i-)
{

whisperl.nh_type = c_stt;
drecv(&whisper1);
snd_pass(whisper1.nh_data,sj,sti+i,lenj,head,wh isper1.nh_data)

if (nodeid != end) {
whisperl.nh_type = c_stt;
whisperl.nh_node = nodeid + 1;
dsend(&whisperl);

}
}

}

I* receive CC and DO from the correspondent node *I
scorel.nh_event = COST;
scorel.nh_type =ARRAY;
scorel.nh_flags = DINTMSG;
scorel.nh_length = lenj*4;
score 1.nh_msg=CC;
nrecv(&score1);

scorel.nh_event = COST+1;

score 1.nh_msg=DD;

nrecv(&score 1);

96

I* 	 find the node on optimal path *I

midc = CC[O]+RR[O]; I* Find optimal midpoint *I

midj = sj-1;

type= 1;

for (j = 0; j < lenj; j++)

if ((temp_cost = CC[j] + RROD >= midc)
if (temp_cost > midc II CCOJ != DD[j] && RR[j] = SS[j])

{ midc = temp_cost;
midj = j+sj-1;

}
for (j = lenj-1; j >= 0; j-)

if ((temp_cost = DD[j] + SS[j] + q) > midc)

{ midc = temp_cost;

midj = j+sj-1;

type= 2;

}

if (end-head>O) {

result = find_mid(head, end, midc, midj, type);

midc = result[O];

midj = result[l];

type = result[2];

}
I* distribute the mid_i, midj. *I

scorel.nh_event = ARRAY;

scorel.nh_type =COST;

scorel.nh_length = 0;

score1.nh_flags = DINTDATA;

scorel.nh_data[O] = midj;

scorel.nh_data[l] =type;

scorel.nh_node = end-nodeid+odnd;

nsend(&score 1);

return(score l.nh_data);

}

I* 	 findmid() return a pointer with point to an three element array
which contains mid_cost, midj, type. *I

int *find_mid(hdnd, tlnd, mid_c, mdj, type)

int hdnd, tlnd, mid_c, mdj, type;

{

struct nmsg max_element;

inti, n, d;

if (nodeid = hdnd) { I* headnode send its max *I

max_element.nh_dl_event = dl_event(desti);

max_element.nh_event =PASS;

max_element.nh_type =OPT;

97

max_element.nh_length = 0;

max_element.nh_flags = FLAG;

max_element.nh_data[Ol = mid_c; I* max cost *I

max_element.nh_data[l] = md_j; I* Undex of max cost *I

max_element.nh_data[2] = type; I* type of connection *I

max_element.nh_node = nodeid + 1;

dsend(&max_element);

}

else

{ I* the other nodes receive and compare, sent new max *I

max_element.nh_event =PASS;

max_element.nh_type = OPT;

max_element.nh_length = 0;

max_element.nh_flags = 0;

drecv(&max_element);

if (max_element.nh_data[Ol < mid_c)

{

max_element.nh_data[O] = mid_c;

max_element.nh_data[ll = md_j;

max_element.nh_data[2] = type;

}

max_element.nh_dl_event = dl_event(desti);

max_element.nh_length = 0;

max_element.nh_flags = FLAG;

max_element.nh_node = nodeid + 1;

if (nodeid = tlnd) {

max_element.nh_type = BC;

max_element.nh_node = hdnd;

nsend(&max_element);}

else dsend(&max_element);

}

I* passing globle max and add node(i,j) in the memo structure *I
max_element.nh_event = PASS;
max_element.nh_type = BC;
max_element.nh_length = 0;
max_element.nh_flags = 0;
nrecv(&max_element);
max_element.nh_dl_event = dl_event(desti);
max_element.nh_length = 0;
max_element.nh_flags = FLAG;
max_element.nh_node = nodeid + 1;
max_element.nh_event =PASS;
max_element.nh_type = BC;
if (nodeid != tlnd) dsend(&max_element);
return(max_element.nh_data);

}

98

I* gather() send the conversion of the optimal alignment to the HOST *I
gather()
{

inti;

struct nmsg updtl;

updtl.nh_event = COLLECT +nodeid;

updtl.nh_type = AL;

updtl.nh_flags = DINTMSG!DINTDATA;

updtl.nh_node = 100;

updtl.nh_length = Sl*4; I* length of al. *I

updtl.nh_msg = S;

I* 	 if (nodeid=15) tprintf("S = %d\n",S); *I
updtl.nh_data[O] = li; I* i of A *I
updtl.nh_data[l] = Jj; I* j of B *I
updtl.nh_data(3] = I;
updtl.nh_data(4] = J;
updtl.nh_data[5] = al_len;
updtl.nh_data[2] = MAX.SCORE;
updtl.nh_data[6] = no_mat;
updtl.nh_data[7] = no_mis;
nsend(&updtl);

I* 	 if (nodeid=2) for (i=O; i<SI; i++) tprintf("S[%d]=%d\n",i,S[i]);
tprintf("SI =%d results of node %d out\n", Sl, nodeid);*l
free(S);
return(O);

}

I* 	 update(Mn) updates the used _pair table in each node. It is done by
passing a token in among nodes. The holder of the token send its
used_pair table to the others which update their used_pair table
based on the received message. *I

update(Mn, Nn)

int Mn, Nn; I* length of the message *I

{
int *block;

int i,j, h, index, t_flag;

pairptr zz;

struct nmsg updt;

I* construct message block (j,i) (j,i) ... *I

block= (int *)malloc(Nn*2);

index= 0;

for (j=Jj; i<=Jj+J+l; j++)

if (col[j]!=NULL) {
block[index++] = j;
block[index++] = col[j]->ROW;

}
updt.nh_dl_event = dl_event(desti);

updt.nh_event = AL;

updt.nh_type = COLLECT;

updt.nh_data(O] = index;

99

updt.nh_flags = DINTDATAIDINTMSG;

updt.nh_msg = block;

updt.nh_node = (nodeid + 1)%P;

updt.nh_length = index * 4;

nsend(&updt);

for (i=O; i<P-1; i++) {
I* receive block *I

updt.nh_event = AL;
updt.nh_type = COLLECT;
updt.nh_flags = 0;
updt.nh_length = Nn*2;
updt.nh_msg = block;
nrecv(&updt);
index = updt.nh_data[O];

I* update the used__pair table *I

for (h=O; h<updt.nh_data[O]; h++) {
for (Z=COI[block[h]],t_flag=l; Z!=O; Z=Z->NEXT)

if (z->ROW=block[h+1]) {
t_flag=O; break; }

if (t_flag=l) {
zz = (pairptr) malloc(sizeof(pair));
zz->NEXT = col[block[h]];
col[block[h]]=zz;
zz->ROW = block[h+l];
}

h++;
}
updt.nh_dl_event = dl_event(desti);
updt.nh_event = AL;
updt.nh_type = COLLECT;
updt.nh_msg = block;
updt.nh_length = index*4;
updt.nh_data[O] = index;
updt.nh_node = (nodeid + 1)%P;
updt.nh_flags = DINTDATAIDINTMSG;
if (i!=P-2) nsend(&updt);

}

free(block);
return(O);

}

I* function reverse(A, B, sri, srj, eri, erj) modifies the alignment LIST
using reversed dynamic programming. A and Bare two sequences, sri and srj
are EXACTLY starting points, and eri and erj are ending point of computing.
Note: sri > eri and srj > erj *I

static int tflag, lflag; I* top flag and left flag *I

100

reverse{A, B, sri, srj, eri, erj)

char A[], B[];

int sri, srj, eri, erj;

{

struct nmsg chat;

int M_l, N_l, infor[8];

int stri, strj, leni, lenj, B_len;

int temp, inc, enri, enrj;

long i;
int rl, cl; I* rl - row limit, cl colume limit *I

I* tb top boundary, lb left boundary *I
register int j, jj1; I* row and column indices *I
register int c; I* best score at current point *I
register int f; I* best score ending with insertion *I
register int d; I* best score ending with deletion *I
register int p; I* best score at (i-1, j-1) *I
register int ci, cj; I* end-point associated with c *I
register int di, dj; I* end-point associated with d *I
register int fi, fj; I* end-point associated with f *I
register int pi, pj; I* end-point associated with p *I
register int *Va; I* pointer to v(A[i], B[j]) *I
int bj; I* function for inserting a node *I
register int content 1 [21;

I* Compute the matrix and save the top K best scores in LIST
CC : the scores of the current row
RR and EE : the starting point that leads to score CC
DD : the scores of the current row, ending with deletion
SS and FF: the starting point that leads to score DD *I

#define rvpass{package_i, package_o, iO, basej, sizej) \
{ \

va = CV[AA[iO]]; \
p = package_i[O]; \
pi= package_i[l]; \
Pi= package_i[2]; \
unpack(package_i[6], content!) \
c = contentl[O]; \
f = content1[1]; \
ci= package_i[7]; \
cj= package_i[3]; \
fi= package_i[4]; \
fj= package_i[5]; \
tflag = 0; \
bj = basej - sizej+1; \
for (j=jj1=(nodeid=P-1 ? basej: sizej-1); j >=jj1-sizej+1; j-) \

{ \

f = f - r; I* r, q, N_l and min are globles *I \

c = c- qr; \

ORDER(f, fi, fj, c, ci, cj) \

c = CC[j] - qr; \

ci = RR[j]; \

cj = EE[j]; \

101

d = DDUJ- r; \

di = SSUJ; \

dj = FF[j]; \

ORDER(d, di, dj, c, ci, cj) \

c = 0; \
if (nodeid = P-1) DIAG(iO, j, c, p + va[BBU]]) I* diagonal *I\
else \

DIAG(iO, j+bj, c, p + va[BBU+bj]]) I* diagonal *I \
if(C<=O) \

{ c = 0; ci = iO; cj = (nodeid=P-1 ? j : j+bj); \
} \

else \
{ ci = pi; cj = pj; \

} \
ORDER(c, ci, cj, d, di, dj) \

ORDER(c, ci, cj, f, fi, fj) \

p = CC[j]; \

CC[j] = c; \

pi= RRUJ; \

pj = EE[j]; \

RR[j] = ci; \

EEUJ = cj; \

DD[j] = d; \

ssm = di; '
FF[j] = dj; \
if (c > min) I* add the score into list *I \

flag= 1; \
if (tflag=O&&(ci>tb && cj>lb 11 di>tb && dj>lb 11 fi>tb && fj>lb))\

{ tflag = 1; mm1=i0; } \
} I* K is globle too *I \
if (nodeid != P-1) { \

package_o[O] =p; \
package_o[l] = pi; \
package_o[2] = pj; \
pack(c, f, package_o[6]) \
package_o[7] = ci; \
package_o[3] = cj; \
package_o[4] = fi; \
package_o[5] = fj; \

} \
else { \

if (!lflag&&(ci>tb && cj>lb 11 di>tb && dj>lb 11 fi>tb && fj>lb))\
{ lflag = 1; nnl = j; } \

HH[iO] = p; \
ll[iO] = pi; \
JJ[iO] = pj; \
pack(c, f, UU[iO]) \
VV[iO] = ci; \
WW[iO] = cj; \
XX[iO] = fi; \
YY[iO] = fj; \

} \

102

}

M_l = sri - eri + 1;

N_l = srj - erj + 1;

temp= (srj- erj+1)1(P-1);

enri = eri; enrj = erj;

if (nodeid < P-1) {

CC = (int *)malloc(temp*24);

DD = CC + temp;

RR = DD + temp;

EE = RR + temp;

FF = EE +temp;

SS = FF + temp;

}

else {
temp= 16+erj;
CC = (int *)malloc(temp*24);
DD = CC + temp;
RR = DD + temp;
EE = RR + temp;
FF = EE +temp;
SS = FF + temp;

temp= sri;

UU = (int *)malloc(temp*32);

VV = UU + temp;

HH = VV + temp;

II = HH + temp;

JJ = II + temp;

WW = JJ + temp;

XX = WW + temp;

YY = XX + temp;

}

if (nodeid = 0) {
chat.nh_dl_event = dl_event(desti);
chat.nh_event = rvcmd;
chat.nh_type = chat_msg;
chat.nh_data[l] = N_l;
chat.nh_data[2] = sri;
chat.nh_data[3] = M_l;
lenj = (N_I-1)1(P-1);

chat.nh_data[4] = srj-lenj;

chat.nh_data[5] = lenj;

chat.nh_length = 0;

chat.nh_flags = FLAG1;

chat.nh_node = nodeid + 1;

dsend(&chat);
for (j=srj, jj1=1enj; j>srj-lenj; j-, jjl-) {

CC[jjl] = 0;

I* start point of A *I
I* length of A *I
I* length of B *I
I* start point of B *I

103

RR[jjl] = sri+l;

EE[jjl] = j;

DD[jj1] = -q;

SS[jjl] = sri+l;

FF[jj1] = j;

}

infor[O] = 0; I* p[i-1][j-1] *I

infor[2] = srj+l; I* Pi *I

infor[3] = srj+l; I* cj *I

infor[5] = srj+l; I* fj *I

pack(O, -q, infor[6]) I* c[i][j-1] and f[i][j-1] *I

for (i=sri; i>sri - M_l;i-)
{

infor[1] = i+1; I* pi *I

infor[4] = i; I* fi *I

infor[7] = i; I* ci *I

chat.nh_event = rvdt + i;

chat.nh_type = c_start;

chat.nh_length = 0;

chat.nh_node = nodeid + 1;

rvpass(infor, chat.nh_data, i, srj, lenj)

dsend(&chat);

}

}
else {

chat.nh_event = rvcmd;
chat.nh_type = chat_msg;
chat.nh_length = 0;
chat.nh_flags = 0;

drecv(&chat);

B_len = chat.nh_data[l];

stri = chat.nh_data[2];

strj = chat.nh_data[4];

leni = chat.nh_data[3];

lenj = chat.nh_data[5];

if (nodeid != P -1) {
chat.nh_dl_event = dl_event(desti);
chat.nh_data[1] = B_len; I* start point *I
chat.nh_data[2] = stri; I* start point *I
chat.nh_data[3] = leni; I* length *I
chat.nh_data[4] = strj-lenj; I* start point *I
chat.nh_data[5] = lenj; I* length *I
if (nodeid = P-2) {

chat.nh_data[5] = B_len- (P-1)*1enj;
}
chat.nh_event = rvcmd;

chat.nh_type = chat_msg;

chat.nh_length = 0;

chat.nh_flags = FLAGI;

chat.nh_node = nodeid + 1;

dsend(&chat);

104

}
for (j=strj, jj1=nodeid=P-1 ? strj: lenj-1; j>strj-lenj; j-,jj1-)
{

CC[jj1] = 0;

RR(jj1] = stri + 1;

FF[jj1] = EE[jj1] = j;

DD(jj1] = -q;

SS(jj1] = stri + 1;

}

for (i=stri; i>= enri; i-)

{

chat.nh_event = rvdt+i;

chat.nh_flags = FLAG1;

chat.nh_type = c_start;

chat.nh_length = 0;

drecv(&chat);

rvpass(chat.nh_data, chat.nh_data, i, strj, lenj)
if (nodeid != P-1) {

chat.nh_dl_event = dl_event(desti);
chat.nh_flags = FLAG1;
chat.nh_type = c_start;

chat.nh_event = rvdt+i;
chat.nh_length = 0;
chat.nh_node = nodeid + 1;
dsend(&chat);

}

}

}

if (nodeid = 0) {

Iflag = tflag = 1;

for (tb=rl=mm1=enri+1, lb=el=nn1=enrj+1; ;)

{

if (lb=1 && tb=1 11 ex_limit()) break;

for(; (tflag && enri > 1) 11 (lflag && enrj > 1);)

{

if (tflag && enri > 1)

rl = (rl- 512>0 ? rl -512 : 1);

if (lflag && enrj > 1)

cl = (cl- 512>0 ? cl- 512 : 1);

chat.nh_dl_event = dl_event(desti);

chat.nh_event = rvcmd;

chat.nh_type = chat_msg;

chat.nh_data(O] = 111;

chat.nh_data(2] = rl;

chat.nh_data(1] = cl; I* *I

chat.nh_data(3] = tb;

chat.nh_data(4] = lb; I* *I

chat.nh_length = 0;

chat.nh_flags = FLAG1;

105

chat.nh_node = nodeid + 1;

dsend(&chat);

lflag = 0;

infor[O] = 0; I* p[i-1][j-1] *I

infor[2] = srj+1; I* pj *I

infor[3] = srj+1; I* cj *I

infor[5] = srj+ 1; I* fj *I

pack(O, - q, infor[6]) I* c[i][j-1] and f[iJU-1] *I

for (i=enri-1; i>=rl;i-)
{

infor[1] = i+ 1; I* pi *I

infor[4] = i; I* fi *I

infor[7] = i; I* ci *I

chat.nh_event = rvdt;
chat.nh_type = c_start1;

chat.nh_length = 0;

chat.nh_node = nodeid + 1;

rvpass(infor, chat.nh_data, i, srj, lenj)

dsend(&chat);

}
I* receive lflags and tflags *I
for (i = 1; i<P; i++) {

chat.nh_event = p_d;
chat.nh_type = flag_msg;
chat.nh_length = 0;
chat.nh_flags = FLAG;
nrecv(&chat);
if (chat.nh_data[OJ=l) lflag = 1;
if (chat.nh_data[1]=1) tflag = 1;
if (chat.nh_data[2]<mm1) mm1 = chat.nh_data[2];
nn1 = chat.nh_data[3];

}
tprintf("tflag %d lflag %d rl %d cl %d tb %d lb %d\n",tflag, lflag,rl,cl,tb,lb);

enri = m1 = rl; enrj = n1 = cl;

}

tprintf("rl = %d cl = %d \n", ml, nl);

}

I* 	 send stop command *I
chat.nh_dl_event = dl_event(desti);
chat.nh_event = rvcmd;
chat.nh_type = chat_msg;
chat.nh_data[OJ = 0;
chat.nh_data[l] = ml =mml;
chat.nh_data[2] = nl =nnl;
chat.nh_length = 0;
chat.nh_node = 1;

dsend(&chat);

free(CC);

return(l);

}

106

else if (nodeid = P-1)
{

while(1) {
chat.nh_dl_event = dl_event(desti);

chat.nh_event = rvcmd;

chat.nh_type = chat_msg;

chat.nh_length = 0;

chat.nh_flags = FLAG1;

drecv(&chat);
if (chat.nh_data[O] = 0) {

m1 = chat.nh_data[1];

n1 = chat.nh_data[2];

free(UU);

free(CC);

return(1);

}

cl = chat.nh_data[I];

rl = chat.nh_data[2];

tb = chat.nh_data[3];

lb = chat.nh_data[4];
for (j=enrj-1; j>=cl; j-) { I* j should not ended at 0 *I

CC[j] = 0;

RR[j] =sri+ 1;

EEUJ =j;

DD[j] = -q;

ssm =sri+ 1;

FF[j] = j;

}

inc = enrj-cl;
lflag = O;

for (i=sri; i>=enri && cl <= enrj; i-)

{

chat.nh_data[O] = HH[i];

chat.nh_data[1] = ll[i];

chat.nh_data[2] = JJ[i];

chat.nh_data[6] = UU[i];

chat.nh_data[7] = VV[i];

chat.nh_data[3] = WW[i];

chat.nh_data[4] = XX[i];

chat.nh_data[5] = YY[i];

rvpass(chat.nh_data, chat.nh_data, i, enrj-1, inc)

}

for (i=enri-1; i>= rl; i-)

{

chat.nh_event = rvdt;

chat.nh_flags = FLAG1;

chat.nh_type = c_start1;

chat.nh_length = 0;

drecv(&chat);

rvpass(chat.nh_data, chat.nh_data, i, strj, lenj+inc)
I* inc used *I

}

107

chat.nh_event = p_d;

chat.nh_type = flag_msg;

chat.nh_length = 0;

chat.nh_flags = FLAG;

chat.nh_data[O] = lflag;

chat.nh_data[l] = tflag;
chat.nh_data[2] = mml;
chat.nh_data[3] = nnl;

chat.nh_node = 0;

nsend(&chat);

enri = rl; enrj = cl; lenj=lenj+inc;

}

}

else I* nodes from 1 to P-2 *I

{

while (1) {

chat.nh_dl_event = dl_event(desti);

chat.nh_event = rvcmd;

chat.nh_type = chat_msg;

chat.nh_length = 0;

chat.nh_flags = FLAG1;

drecv(&chat);

cl = chat.nh_data[1];

rl = chat.nh_data[2];

tb = chat.nh_data[3];

lb = chat.nh_data[4];

chat.nh_dl_event = dl_event(desti);
chat.nh_data[l] = cl; I* colume limit *I
chat.nh_data[2] = rl; I* row limit *I

chat.nh_data[3] = tb;

chat.nh_data[4] = lb;

chat.nh_length = 0;

chat.nh_node = nodeid + 1;

dsend(&chat);

if (chat.nh_data[O] = 0) {

ml = chat.nh_data[l];

nl = chat.nh_data[2];

free(CC);

return(I);

}

for (i=enri-1; i>= rl; i-)
{

chat.nh_event = rvdt;

chat.nh_flags = FLAGl;

chat.nh_type = c_startl;

chat.nh_length = 0;

drecv(&chat);

108

rvpass(chat.nh_data, chat.nh_data, i, strj, lenj)
chat.nh_length = 0;
chat.nh_node = nodeid + 1;
dsend(&chat);

}

I* send flags to node 0 *I
chat.nh_event = p_d;
chat.nh_type = flag_msg;
chat.nh_length = 0;
chat.nh_flags = FLAG;
chat.nh_data[O] = 0;

chat.nh_data[1] = tflag;
chat.nh_data[2] = mm1;
chat.nh_data[3] = 0;

chat.nh_node = 0;
nsend(&chat);
enri = rl;
}

}

}

ex_limit()
{

vertexptr cur;

register long i;

for (i=O; knumnode; i++) {

cur= LIST[i];
if (cur->STARI <= mm && cur->STARJ <= nn && cur->BOT >= mm1

&& cur->RIGHT >= nn1 && (cur->STARktb 11 cur->STARJ<Ib))
{

if (cur->STARI < tb) {tb = cur->STARI; tflag = 1; }
if (cur->STARJ < lb) {lb = cur->STARJ; lflag = 1;}
flag= 1;
break;

}

}

if (i = numnode) return 1;

else return 0;

}

findflag()
{

struct nmsg flg_element;

if (nodeid = 0) { I* node 0 send its fig *I
flg_element.nh_dl_event = dl_event(desti);
flg_element.nh_event = PICK;
flg_element.nh_type = LOADl;

109

flg_element.nh_length = 0;

flg_element.nh_flags = FLAG;

flg_element.nh_data[O] = flag;

flg_element.nh_node = nodeid + 1;

dsend(&flg_element);

}

else
{ /* the other nodes receive and compare, sent new fig *I
flg_element.nh_event = PICK;
flg_element.nh_type = LOAD1;
flg_element.nh_length =0;
flg_element.nh_flags = FLAG;
drecv(&flg_element);
flg_element.nh_data[O] = flg_element.nh_data[O] + flag;

flg_element.nh_dl_event = dl_event(desti);

flg_element.nh_length = 0;

flg_element.nh_flags = FLAG;

flg_element.nh_node = nodeid + 1;

if (nodeid = P-1) flg_element.nh_node = 0;

dsend(&flg_element); /*Send*/

}

I* passing globle fig and update the LIST *I

flg_element.nh_dl_event = dl_event(desti);

flg_element.nh_event = PICK;

flg_element.nh_type =LOAD I;

flg_element.nh_length = 0;

flg_element.nh_flags = FLAG;

drecv(&flg_element);

flag= flg_element.nh_data[O];

flg_element.nh_node = nodeid + 1;

if (nodeid != P-1) dsend(&flg_element);

return(flag);

}

APPENDEX III OTB Program Listing

110

111

I* OTB Program------- *I

#include "predefine.h"

char *A, *B;

struct nmsg mesg, cmdm;

int set[16], rfun=l, M, N, P;

main(argc,argv)

int argc;

char *argv[];

{
int i, j, n, go, gx, ms, K, iptr,cstid;
char symb;
double start_time, end_time, ttime();
FILE *Aseq, *COpen();
if (argc != 3) err_rept("lncorrect number of arguements", argv[O]);
Aseq =copen(argv[l], "r");
for (M =0; (symb = getc(Aseq)) != EOF;)

if (symb != '\n') ++M;

fclose(Aseq);

A= (char*) malloc((M+l) * sizeof(char));

Aseq = copen(argv[l], "r");

for (M =0; (symb = getc(Aseq)) != EOF;)

if (symb != '\n') A[M++] = symb;

fclose(Aseq);

Aseq = copen(argv[2], "r");

for (N =0; (symb = getc(Aseq)) != EOF;)

if (symb != '\n') ++N;

fclose(Aseq);

B =(char*) malloc((N+l) * sizeof(char));

Aseq = copen(argv[2], "r");

for (N =0; (symb = getc(Aseq)) != EOF;)

if (symb != '\n') B[N++] = symb;

fclose(Aseq);

I* 	 read in number of alignments, mismatch penalty,
gap-open penalty and gap-extend penalty *I

printf("Number of Computing Nodes {positive integer):\n");

scanf("%d", &P);

printf("Number of Alignments (positive integer):\n");

scanf("%d", &K);

printf("Matching Score is 10. \n");

printf("Mismatching Penalty(negtive integer): \n");

scanf("%d", &ms);

printf("Gap-open Penalty(positive integer): \n");

scanf("%d", &go);

printf("Gap-expend Penalty{positive integer): \n");

scanf("%d", &gx);

112

printf("Match Mismatch Open-gap-penalty Extend-gap-penalty\n");
printf(" 10 %d %d %d \n\n", ms, go, gx);
printf(" Upper Sequence : %s\n", argv[1]);
printf(" length : %d\n", M);
printf(" Lower Sequence : %s\n", argv[2]);
printf(" length : %d\n", N);

kinit();
I*

cstid = 117;
for (i=O; i<P; i++) set[i] = i;
if (rcast(ORIGIN, cstid, rtun, set, P)!=O)

err_rept("lncorrect cast call", argv[O]);
*I

mesg.nh_event = NOTE;
mesg.nh_type = LOAD;
mesg.nh_length = 0;
mesg.nh_flags = DINTDATA;
mesg.nh_data[O] = M; I* size of the A *I
mesg.nh_data[1] = N; I* size of the B *I
mesg.nh_data[2] = K; I* number of alignmant *I
mesg.nh_data[3] = ms; I* mismatch penalty *I
mesg.nh_data[4] = go; I* gap open penalty *I
mesg.nh_data[5] = gx; I* gap extend penalty *I
mesg.nh_data[6] = P; I* number of computing node *I

for (i=O;i<P;i++) {
mesg.nh_node = i;
nsend(&mesg);

}

start_time = ttime();

I* broadcast the array A *I
mesg.nh_event =START;
mesg.nh_type = LOAD;
mesg.nh_length = M;
mesg.nh_flags = DRAWMSG;
mesg.nh_msg = A;
for (i=O; i<P; i++){

mesg.nh_node = i;
nsend(&mesg);
}

I* broadcast the array B *I
mesg.nh_event = NOTE;
mesg.nh_type = LOADS;
mesg.nh_length = N;
mesg.nh_flags = DRAWMSG;
mesg.nh_msg = B;
for (i=O; i<P; i++) {

mesg.nh_node = i;
nsend(&mesg);}

113

I* issue a command to node 0 *I
cmdm.nh_event =START!;
cmdm.nh_type = LOAD1;
cmdm.nh_length = 0;
cmdm.nh_flags = DINTDATA;
cmdm.nh_node = FIRSTNODE;
cmdm.nh_data[OJ = 1;
cmdm.nh_data[1J = M;
cmdm.nh_data[2J = 1;
cmdm.nh_data[3J = N;
nsend(&cmdm);

I* receive results
for (i=O;kN;i++) printf("B[%d] = %c\n", i, B[i]);
rmelt(ORIGIN,cstid); *I

for (i=O; kK; i++)

display(i);

end_time = ttime();

printf("start_time is %f \n", start_time);

printf("run time is %f \n", end_time - start_time);

kexit(O);

free(A);

free(B);

}

err_rept(err_msg, val)
char *err_msg, *Val;
{

fprintf(stderr, err_msg, val);

putc('\n', stderr);

exit(1);

}

FILE *COpen(name, mode)

char *name, *mode;

{

FILE *fp;
if ((fp = fopen(name, mode)) = NULL)

err_rept("Can not open file %s \n",name);
return(fp);

}

I* Alignment display routine *I

static char ALINE[51], BLINE[51], CLINE[51];

I* long display(A1,B1,M,N,S,AP,BP) char A1[], Bl[]; long M, N; long S[], AP, BP; *I
display(ctl)

114

int ctl;
{

struct nmsg result;
register char *a, *b, *C;
register int i, j, op;
int h, lines, ap, bp, *ZZ, M1, N1, data(16][6];
int *8[16], *S, no_mat, no_mis, al_len, score;
char *AA1, *BB1;

for (i=O; kP; i++) {

S[i] = (int *)Calloc((M+ 1 +NIP)I2, sizeof(int));

result.nh_event = COLLECT +i;

result.nh_type = AL;

result.nh_flags = DINTDATA I DINTMSG;

result.nh_length = (N + M)*4;

result.nh_msg = (char *)S[i];

nrecv(&resu It);

I* printf("ln the HOST program!\n"); *I
data[i)[O]=i; I* nodeid *I
data[i][1]=result.nh_data[O]; *I
data[i] [2]=resu It.nh _data[1]; *I
data[i)[3]=result.nh_data[3]; *I
data[i)[4]=result.nh_data[4]; I* J *I
al_len = al_len + result.nh_data[S]; I* al_len *I
no_mat = no_mat + result.nh_data[6]; I* no. of match *I
no_mis = no_mis + result.nh_data[7]; I* no. of mismatch *I
if (i=O) score = result.nh_data[2];

}

a= ALINE;

b = BLINE;

c =CLINE;

lines= 0;

op =0;

ap = data[0)[1]+1;

bp = data[0)[2]+1;

for (h=O; h<P; h++) {

i =i =0;

s = S[h];

AA1 = &A[data[h][1]-1];

BB1 = &B[data[h][2]-1];

M1 = data[h)[3];

N1 = data[h][4];

while (i < Ml II j < N1)

{ if (op = 0 && *S = 0)
{ op = *S++;

*a= AA1[++i];

*b = BB1[++j];

I* 	 printf("AA1[%d] =%C ", i-1, AAl[i-1]);*1
*C++= (*a++= *b++)? 'I':'';

115

}
else

{if (op = 0)

op = *S++;

if (op > 0)

{*a++=.';

*b++ = BBl[++j];

op-;

}

else

{ 	*a++= AAl[++i];

*b++ =' ';

op++;

}
*C++='-';

}
if (a>= ALINE+50 II (h=P-1 && i >= M1 && j >= Nl))

{ *a = *b = *C = '\0';

printf("\n%5d ",SO*Iines++);

for (b = ALINE+10; b <=a; b += 10)

printf(" :");

if (b <= a+5)

printf(" .");
printf("\n%5d %s\n %s\n%5d %s\n",ap,ALINE,CLINE,bp,BLINE);

ap = data[h][l] + i + 1;
bp = data[h][2] + j + 1;

a= ALINE;

b = BLINE;

c =CLINE;

}

}

I* printf("%s \n", ALINE); *I
}
for (i=O; i<P; i++) free(S[i]);
return(O);

}

	Structure Bookmarks
	midJ

