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Abstract 

In this report we explore how to find the locus-locus interaction using microarray data. 

Our analysis makes use of a dataset from an experiment with Affymetrix GeneChip 

MGU74Av2 for mice. In Chapter 1 we give the genetics background, an introduction 

to microarray methodology and the preprocessing of microarray data, and a review of 

SAM (Significance Analysis of Microarrays) method for finding differentially expressed 

genes in microarray data. In Chapter 2 we describe our dataset and our objective of 

finding the genes with locus-locus interaction but with no main effect. We also show 

how to find the interaction in this chapter. In Chapter 3 we show the simulation study 

of detecting the locus-locus interaction without main effects and propose a two-stage 

method of doing that. In Chapter 4 we apply the two-stage method to the microarray 

data and focus on the second stage analysis. In Chapter 5 we examine an alternative 

method using bootstrap resampling in place of permutations. Chapter 6 contains our 

conclusion and some suggestions for future research. 
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Chapter 1 

Background 

1.1 Genetics Background 

A cell is the minimal unit of life. The life process involves a wide array of molecules 

ranging from water to small organic compounds, and macromolecules (DNA, proteins, 

and polysaccharide) that define the structure of the cells. Macromolecules control 

and govern most of the activities of life. Deoxyribonucleic acid (DNA) molecules store 

information about the structure of macromolecules, allowing them to be made precisely 

according to cells' specification and needs (Lee, 2004). 

The chemical components of the deoxyribonucleic acid (DNA) molecule dictate the 

inherent properties of a species. A DNA is a double-stranded helix of nucleotides which 

carries the genetic information of a cell. It encodes the information for the proteins 

and is able to self-replicate. A nucleotide consists of three components: a five-carbon 

sugar called deoxyribose, one or more phosphate group(s), and one of four nitrogen 

bases. The four nitrogen bases include purines consisting of adenine (A) and guanine 
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(G), and pyrimidines consisting of cytosine (C) and thymine (T). Those two strands 

constructing a DNA are joined together by binding of the complementary bases, and 

can be separated by heating. The process of hybridization is the fundamental basis 

of DNA microarrays. Two DNA strands hybridize if they are complementary to each 

other. Complementarity follows the Watson-Crick rule that adenine (A) binds to 

thymine (T) and cytosine (C) binds to guanine (G). When the DNA is copied by the 

processes of replication and transcription, the double helical structure of the DNA is 

opened up and a copy is made on the specificity of the base pairing. 

Genes are the units of the DNA sequence that control the identifiable hereditary 

traits of an organism. A gene can be defined as a segment of DNA that specifies a 

functional RNA. The total set of genes carried by an individual or a cell is called 

its genome. The genome defines the genetic construction of an organism or cell, or 

the genotype. The phenotype, on the other hand, is the total set of characteristics 

displayed by an organism under a particular set of environmental factors. The outward 

appearance of anorganism (phenotype) may or may not directly reflect the genes that 

are present (genotype). With microarray technology we can study the expression of 

all the genes in an organism simultaneously (Lee, 2004). 

The core biochemical flow of genetic information can be summarized as the process 

of RNA synthesis (transcription) and the process of protein synthesis (translation). 

One or both strands of the DNA hybrid can be replaced by RNA and hybridization 

will still occur as long as there is complementarity (Knudsen, 2004). The first step 

in making a protein is to copy, or transcribe, the information encoded in the DNA of 

the genes into a single-stranded molecule called ribonucleic acid (RNA). The process 

is similar to the process of copying written words, the synthesis of RNA from DNA 
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is called transcription. The DNA is said to be transcribed into RNA, and the RNA 

is called a transcript. There are two general classes of RNAs. Those that take a 

part in the process of decoding genes into proteins are referred to as informational 

RNAs called messenger RNA (mRNA). In the other class, the RNA itself is the final 

functional product. These RNAs are referred to as functional RNAs. Functional RNAs 

are the transfer RNAs (tRNA) and the ribosomal RNA (rRNA), which are both parts 

of the intricate protein synthesis machinery that translates the informational mRN A 

into protein (Lee, 2004). 

The primary structure of a protein is a linear chain of building blocks called amino 

acids. There are 20 amino acids that commonly occur in proteins. Because the process 

of reading the mRNA sequence and converting it into an amino acid sequence is like 

converting one language into another, the process of protein synthesis is called trans­

lation (Lee, 2004). 

Gene expression is the amount of mRNA that is produced for a gene in the process, 

by which mRNA (and eventually protein) is synthesized from the DNA template of 

each gene. The first stage of this process is transcription, when an RNA copy of one 

strand of the DNA is produced. And the next stage of the process is the translation 

of the mRNA into protein. 

1.2 Microarray Methodology 

Microarray technology allows measurement of the levels of thousands of different RNA 

molecules at a given point in the life of an organism, tissue, or cell. Comparisons of 

the levels of RNA molecules can be used to decipher the thousands of processes going 
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on simultaneously in living organisms. Also, comparing healthy and diseased cells can 

yield vital information on the causes of diseases. Microarrays have been successfully 

applied to several biological problems and, as arrays become more easily available to 

researchers, the popularity of these kinds of experiments will increase (Lee, 2004). 

Although all of the cells in the human body contain identical genetic material, 

the same genes are not active in every cell. Studying which genes are active and 

which are inactive in different cell types helps scientists to understand both how these 

cells function normally and how they are affected when various genes do not perform 

properly. In the past, scientists have only been able to conduct these genetic analyses 

on a few genes at once. With the development of DNA microarray technology, however, 

scientists can now examine how active thousands of genes are at any given time. 

DNA microarrays are created by robotic machines that arrange minuscule amounts 

of hundreds or thousands of gene sequences on a single microscope slide. Researchers 

have a database of over 40,000 gene sequences that they can use for this purpose. When 

a gene is activated, cellular machinery begins to copy certain segments of that gene. 

The resulting product is known as messenger RNA (mRNA). The mRNA produced by 

the cell is complementary, and therefore will bind to the original portion of the DNA 

strand from which it was copied. 

To determine which genes are turned on and which are turned off in a given cell, 

a researcher must first collect the messenger RNA molecules present in that cell. The 

researcher then labels each mRNA molecule by attaching a fluorescent dye. Next, the 

researcher places the labeled mRNA onto a DNA microarray slide. The messenger 

RNA that was present in the cell will then hybridize- or bind- to its complementary 

DNA on the microarray, leaving its fluorescent tag. A researcher must then use a 
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special scanner to measure the fluorescent areas on the microarray. 

If a particular gene is very active, it produces many molecules of messenger RNA, 

which hybridize to the DNA on the microarray and generate a very bright fluorescent 

area. Genes that are somewhat active produce fewer mRNAs, which results in dimmer 

fluorescent spots. If there is no fluorescence, none of the messenger molecules have 

hybridized to the DNA, indicating that the gene is inactive. Researchers frequently 

use this technique to examine the activity of various genes at different times. 

For the gene expression analysis the field has been dominated by two major tech­

nologies. The one we used is the Affymetrix, Inc. GeneChip system prefabricated 

oligonucleotide chips. Affymetrix uses equipment similar to that which is used for 

making silicon chips for computers, and thus allows mass production of very large 

chips at reasonable cost. While computer chips are made by creating masks that con­

trol a photolithographic process for removal or deposition of silicon material on the 

chip surface, Affymetrix uses masks to control synthesis of oligonucleotide on the sur­

face of a chip. The masks control the synthesis of several hundred thousand squares, 

each containing many copies of an oligonucleotide. For expression analysis, up to 40 

oligonucleotides are used for the detection of each gene. Affymetrix has chosen a re­

gion of each gene that (presumably) has the least similarity to other genes. These 

oligonucleotides are referred to as probes. From this region 11 to 20 probes are chosen 

as perfect matches (PM) (i.e., perfectly complementary to the mRNA of that gene). 

In addition, they have generated 11 to 20 mismatch probes (MM), which are identical 

to the PM probes except for the central position 13, where one nucleotide has been 

changed to its complementary nucleotide. Affymetrix claims that the MM probes will 

be able to detect nonspecific and background hybridization, which is important for 
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quantifying weekly expressed mRNAs. The hybridization of each probes to its target 

depends on its sequence. All 11 to 20 PM probes for each gene have a different se­

quence, so the hybridization will not be uniform. That is of limited consequences as 

long as we wish to detect only changes in mRNA concentration between experiments 

(Knudsen, 2004). 

The RNA samples are prepared, labeled, and gybridized with arrays. Arrays are 

scanned and images are produced and analyzed to obtain an intensity value for each 

probe. These intensities represent how much hybridization occurred for each oligonu­

cleotide. The probe set intensities, called probe-level data, should be summarized to 

form one expression measure for each gene. 

1.3 RMA Normalization of Microarray Data 

In many of the applications of high-density oligonucleotide arrays, the goal is to learn 

how RNA population differs in expression in response to genetic and environmental 

differences (Irizarry et al., 2003b). Observed expression levels also include variation 

introduced during the sample preparation, during manufacture of the arrays, and dur­

ing the processing of the arrays (labeling, hybridization, and scanning) (Irizarry et al., 

2003b). Therefore, normalization at the probe-level is necessary. 

Usually, statisticians prefer to take a look at the raw data of microarray data, 

because they want to understand the processing of the raw data and how it might 

influence the result of future analysis based on the raw data. The raw data from 

an Affymetrix microarray chips, called Affy chips, is in a .CEL file, and the useful 

information about the layout of the Affy chips is stored in a .CDF file. One approach 
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of normalization of Affy chips is called Robust Multi-array Average (RMA). 

The RMA method for computing an expression measure is firstly to compute 

background-corrected perfect match intensities for each perfect match cell on every 

GeneChip. There is a description in Irizarry et al. (2003a). After background cor­

rection, the base-2 logarithm of each background-corrected perfect match intensity is 

obtained. These background-corrected and log-transformed perfect match intensities 

are normalized using the quantile normalization method developed by Bolstad et al. 

(2003). In the quantile normalization method, the highest background-corrected and 

log-transformed perfect-match intensity on each GeneChip is determined. These val­

ues are averaged, and the individual values are replaced by the average. This process 

is repeated with what were originally the second highest background-corrected and 

log-transformed perfect-match intensities on each GeneChip, the third highest, etc. 

Following quantile normalization, an additive linear model is fit to the normalized 

data to obtain an expression measure for each probe on each GeneChip. The linear 

model for a particular probe set can be written as 

(1.1) 

where lij denotes the normalized probe value corresponding to the ith GeneChip and 

the jth probe within the probe set, mi denotes the log-scale expression for the probe set 

in the sample hybridized to the ith GeneChip, aj denotes the probe affinity effect for 

the jth probe within the probe set, and eij denotes a random error term. The estimated 

GeneChip-specific log-scale expression values would be reported as the RMA measures 

of expression for dataset. 
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1.4 Significance Analysis of Microarrays 

Significance Analysis of Microarrays (SAM) methodology references in the context of a 

general approach to detecting differential gene expression in DNA microarrays. Some 

recently developed methodology for estimating false discovery rates and q-values has 

been included in the SAM. 

SAM aims to identify differentially expressed genes from a set of microarray ex­

periments, which falls under the heading of multiple hypothesis testing statistically. 

In other words, we must perform hypothesis tests on all genes simultaneously to de­

termine whether each one is differentially expressed or not. In statistical hypothesis 

testing, we test a null hypothesis versus an alternative hypothesis. The null hypothesis 

is that there is no change in expression level between experimental conditions. The 

alternative hypothesis is that there is some change. We reject the null hypothesis if 

there is enough evidence in favor of the alternative. This amounts to rejecting the 

null hypothesis if its corresponding statistic falls into some predetermined rejection re­

gion. Hypothesis testing is also concerned with measuring the probability of rejecting 

the null hypothesis when it is really true (called a false positive) and the probability 

of rejecting the null hypothesis when the alternative hypothesis is really true (called 

power). 

There are four important steps one must take in testing for differential gene ex­

pression, which are given in Irizarry et al. (2003b). 

1. 	 A statistic must be formed for each gene. The choice of this statistic is important 

in that one wants to make sure that no relevant information is lost with respect 

to the test of interest, yet all measurements on the gene are condensed into one 
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number. 

2. Calculate the null distributions for the statistics. 

3. 	 Choose the rejection regions. One can take a priori symmetric or one-sided 

rejection regions, or one can choose them adaptively. This involves comparing the 

original statistics to null versions of the statistics. Asymmetric rejection regions 

are most appropriate because we do not know beforehand what proportion of 

differentially expressed genes are in the positive or negative direction. 

4. 	 Assess or control the number of false positives at the traditional 5% level, then 

the false positives would be large under null hypothesis if we were testing large 

number of genes. This is not acceptable, so some procedure must be performed 

to control the false positive rate in a reasonable manner. 

1.5 Forming Test Statistics and Determining s0 

A reasonable test statistic for assessing differential gene expression is the standard 

(unpaired) t-statistic: 

(1.2) 

where xj1 and Xjz is the average gene expression for gene j under conditions 1 and 2, 

and s1 is the pooled standard error for gene j defined as 

2 	 2(~ + ~) 2:: (xji - xj1) + 2:: (xji - Xjz) (1.3)
n1 nz n1 + nz - 2 

Here, nk is the number of arrays in condition k, and each summation is taken over its 

respective group (Storey and Tibshirani, 2003). 
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Each of these statistics is formed using only information from the gene itself. It is 

possible to model the data in such a way that one can borrow strength across genes. 

For example, if we view the Sj as coming from some overall random process, then they 

can be jointly modeled. This can lead to reduce the overall variance of the Sj, give the 

tests more power on average. Tusher et al. (2001) take a nonparametric approach to 

this and shrink the Sj toward an adaptively chosen s0 . The modified t-statistic is then 

d._ Xj2- Xjl 
J­	(1.4) 

Sj +So 

Specifically, s 0 is chosen as the percentile of the Sj values that makes the coefficient of 

variation of dj approximately constant as a function of Sj· This has the added effect 

of dampening large values of dj that arise from genes whose expression variability is 

near zero. 

The procedure for computing s0 is given in Chu et al. (2005) on page 20: 

1. 	 Let sa be the a percentile of the si values. Let 

d?' = Xj2 - Xjl (1.5) 
t Sj +sa 

2. 	 Compute the 100 quantiles of the si values, denoted by q1 < q2 ... < qw0 . 

3. 	 For a E (0, .05, .10 ... 1.0) 

a. 	 Compute Vj = mad(djlsi E [qj, qJ+l)), j = 1, 2, ...n, where mad is the 

median absolute deviation from the median, divided by .64. 

b. 	 Compute cv(a) =coefficient of variation of the Vj values. 

4. 	 Choose & = argmin[cv(a)]. Finally, compute s0 = s&. s0 is henceforth fixed at 

the value s0 . 
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1.6 Permutations 

To estimate the p-value for a test of significance, estimate the sampling distribution 

of the test statistic when the null hypothesis is true by resampling in a manner that 

is consistent with the null hypothesis. Actually we just have one real sample, then we 

resample it R times without replacement. It is called permutation resampling. 

For our microarray data, permutations can make no assumption about the distri­

bution of the statistics. To calculate the d statistics dJ for each gene, j = 1, ... , G, the 

estimates and the standard errors of the estimates of factor j3 are needed. Therefore, 

we just need to permute the vector of factor labels when applying the usual ANOVA 

and then recalculate the statistics for new labeling. By SAM method, the plot of 

the average order statistics from the permutations (d(l), ... , d(a)) against the observed 

(d(1), ... , d(a)) is important to find differentially expressed genes. 

1.7 False Discovery Rate (FDR) and q-values 

When multiple hypotheses are being tested simultaneously, we need to consider some 

suitable measures of the error. The focus will be on the rate of false positives with 

respect to the number of rejected hypotheses Nr· 

Accepted Null Rejected Null Total 

Null True Noo Nm No 

Non-True Nw Nn N1 

Total N-Nr Nr N 

Table 1.1: The table for defining FDR 
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Table 1.1 (McLachlan et al., 2004 on page 140) describes the various outcomes 

when applying some significance test to perform N hypothesis tests. The specific 

N hypotheses are assumed to be known in advance, but the number N0 and N1 of 

true and false null hypotheses are unknown parameters. The number of rejected null 

hypotheses Nr is observable, while the number of false positives N01 , the number of 

false negative N 10 , the number of true negatives N00 , and the number of true positives 

N 11 are unobservable random variables (McLachlan et al., 2004 on page 141). 

The false discovery rate (FDR) was introduced by Benjamini and Hochberg (1995) 

as a new multiple hypothesis testing error measure, which is defined as 

N01FDR=E( ) (1.6)
Nr V 1 

where Nr V 1 = max(Nn 1) (McLachlan et al., 2004 on page 141). 

For our microarray dataset, the plot of the average order statistics from the per­

mutations (d(l), ... ,d(a)) against the observed (d(1), ... , d(a)) is shown in Figure 1.1. 

Here we select a value of ,6., and draw two lines with slope 1 and intercepts -,6. 

and ,6.. Then we can find the points h ( ,6.) and t 2 ( ,6.) where the plot first crosses these 

lines. The observations further from the center than these are declared significant. By 

the values of t1 (,6.) and t 2 ( ,6.), we can find the numbers of so-called significant genes in 

each permutation, and the average of these numbers is the average number of falsely 

detected differences for the give value of ,6.. Then the False Discovery Rate F DR( ,6.) 

for the given value of ,6. is 

FDR(,6.) =the average number of falsely detected differences (1. ) 
number detected in the original sample 

Usually the FDR is multiplied by 11-0 , an estimate of the proportion 1r0 . 7ro is the pro­

portion of true null (unaffected) genes in the dataset, and the algorithm for calculating 
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Delta= 0.6 

N 

0 

l' 
'I' ....._o_o...------,---.--;----.--.----.-----' 

-3 -2 -1 0 2 3 

Expected d statistics 

Figure 1.1: The plot of the expected d statistics against the observed d statistics: given 

~ = 0.6 

?To, given in Storey and Tibshirani (2003)., is described in Section 1.7. 

The SAM gives an algorithm to find FDR: 

1. 	 Plot the average order d statistics from the permutations (called expected d sta­

tistics) against the observed d statistics. Format the pair data (d(1), d(1)), ... , (d(G), d(G)) 

and divide this dataset into two parts from the median of the expected d statis­

tic, called M. The part of (d(i)> d(i)) with J(i) 2:: Miscalled the upper part, while 

the other part is called lower part. 

2. 	 For a fixed threshold ~, starting at the dividing point, and moving up the right 

find the first i = i 1 such that d(i) -d(i) > ~- All genes past i 1 are called significant 

positive. Similarly, start at dividing point, move down to the left and find the first 

i = iz such that J(i) - d(i) > ~- All genes past i 2 are called significant negative. 
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For each ~ define the upper cut-point cutup(~) as the smallest di among the 

significant positive genes, and similarly define the lower cut-point cutzow (~). 

3. 	 For a grid of~ compute the total number of significant genes (from the previous 

step), and the mean of falsely called genes, by computing the mean of values 

among each of the B sets of d(~, i = 1, 2, ... , G, that fall above cutup(~) or below 

cutzow(~). 

4. 	 Estimate 1r0 , the proportion of true null (unaffected) genes in the dataset, as 

follows: 

(a) Compute q25, q75 	= 25% and 75% points of the permuted d values (if G 

= #genes, B = #permutations, there are GB such d values). 

(b) 	Compute ?T-0 =#{diE (q25, q75)}/(.5p) (the di are the values for the origi­

nal dataset: there are p such values.) 

5. 	 The False Discovery Rate (FDR) is computed as the mean of the number of 

genes detected to be significant from permutation divided by the number of 

genes detected to be significant from observation. 

The so-called q-value is the FDR analogue of the p-value (Storey, 2003). It gives 

the scientist a hypothesis testing error measure for each observed statistic with respect 

to the pFDR (Storey, 2003). For each gene g we can find the largest value of~' called 

~9 , for which that gene is significant. The q-value is then defined to be the 

q-value(g) = min F DR(~) 	 (1.8)
A::0:Ag 
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An empirical Bayes interpretation of the q-value is the probability that the gene is 

actually significant given that it is called significant. 
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Chapter 2 

Detecting Locus-Locus Interaction 

using Microarray Data 

2.1 Objective 

Microarray experiments are carried out to compare the relative abundance of specific 

RNA species in two or more biological samples. There may be many samples involved 

in an experiment, and they may have been derived from sources with their own exper­

imental design structure (Wu et at., 2003). Our experiment aims to do the research 

for Type 1 Diabetes, which is usually diagnosed in children and young adults, and was 

previously known as juvenile diabetes. To identify disease mechanisms and etiology, 

their genetic dissection may be assisted by evaluation of linkage in mouse models of 

human disease (Cordell et al., 2001). 

There are a number of genetic regions which are believed to play a part in Type 1 
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Diabetes susceptibility in mice. Two of these are called Idd5 and Idd13. Here we have 

two parental strains of mice Non-Obese Resistant (NOR) and Non-Obese Diabetic 

(NOD). These are identical by descent in 88% of the genome but NOD mice get Type 

1 Diabetes at much higher rates than NOR mice (82-85% compared to 3-5% by age 

6 months). We can construct Congenic Strains by sel-ective multi-generational in­

breeding of these mice. The NOR.NOD-Idd5 strain is identical to the parental NOR 

except in region Idd5 which it inherits from the NOD mice. Similarly, the NOR.NOD­

Idd13 strain is identical to the parental NOR except in region Idd13 which it inherits 

from the NOD mice. The Double Congenic NOR.NOD-Idd5/13 strain is identical to 

the parental NOR except in regions Idd5 and Idd13 which it inherits from the NOD 

mice. 

Our objective is to detect the locus-locus interaction using microarray dataset, and 

then to detect the genes not effected by Idd5 or Idd13 alone from the genes with 

interaction of two loci. In other words, our objective is to detect a special type of 

locus-locus interaction. We will describe that statistically in later sections. 

2.2 Description of Dataset 

In order to develop a new methodology to detecting the special case of locus-locus inter­

action, we start with a real dataset coming from an experiment where 4 strains of mice 

are used. Two of genetic regions suspected to play a part in susceptibility are Idd5 and 

Idd13. Then the 4 strains consist of the NOR, Single Congenic NOR-NOD.Idd5, Single 

Congenic NOR-NOD.Idd13, and Double Congenic NOR-NOD.Idd5/13. The day that 

an experiment is completed introduces non-biological variation into the process, called 
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Day (Blocking) Effect. There are 3 replicates for each strain on day 1 and 2 replicates 

for each strain on day 2 . The Affymetrix GeneChip MGU74Av2 arrays with 12,488 

probe sets are used. 

Our dataset are given in 20 CEL file and 1 CDF file. The .CEL file includes the 

mean and standard deviation (SD) stored in two matrices. The x,y entry in these 

matrices contains the probe intensity and SD in position x,y on the array (Irizarry, et 

al., 2003b). The information relating genes and probe numbers to location on the chip 

are stored in a file with extension CDF. This implies that a CDF file is necessary to 

decode each CEL file (Irizarry, et al., 2003b). Each chip type has a unique CDF file, 

while each hybridization has its unique CEL file. 

2.3 	 Initial Analysis: Detecting Locus-Locus Inter­

action 

The first consideration is to detect the locus-locus interaction. To look for interactions 

between these two loci, we use two-way ANOVA model 

Yg,i = J-lg + a 9Di + f31,9Idd5i + f32,9Idd13i + /33,9Idd5i x Idd13i + Eg,i (2.1) 

where Di is the day indicator, Idd5i = 1 whenever locus Idd5 is NOD derived and 

0 otherwise. Similarly, I dd13i = 1 whenever Idd13 is NOD derived and 0 otherwise. 

And Eg,i is a random error term. 

When the ANOVA model is fitted to data, we obtain estimates for each of the 

individual terms. Our interest is looking for interactions between that two loci. We 

can use the modified Wald Statistic, simply called d statistics in the report, for the 
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interaction term 

dg = A~3'9 (2.2) 
se(f33,9) +so 

where ~3 ,9 is the estimate of {33, se(~3 ,9 ) is the standard error of {33 and s0 is the 

fudge factor we described in Chapter 1. Then we compute the ordered statistics 

d(l) ::; d(2) ... ::; d(a). We permute the 4 strain labels within days to recalculate the d 

statistics. There are almost 1 billion possible permutation and we take 500 at random. 

From the set of B = 500 permutations, estimate the expected order statistics by 

d(i) = (1/B) L:f d(f) for i = 1, 2, ... , G and B = 500, which is the mean of the order 

statistics from the permutations. 

We plot the average of order d statistics from permutations against the observed 

order d statistic using our microarray data, which is the similar plot to Figure 1.1. It 

gives us some visual impression that how many genes can be selected as significant 

genes. Then we calculate the FDR and q-values for each gene using the method 

introduced in Chapter 1. 

We can use SAM method to calculate FDR and then calculate the q-value of the 

genes. The formula of calculating FDR and q-value are both introduced in Chapter 

1. If we state that, the gene shows evidence of an interaction if the q-value is smaller 

than 0.05. Then there are 14 genes that detected to have significant interaction terms. 

The information of 14 genes with interaction is given by ascending order of q-value 

and descending order of d statistics in Table 2.1. 

Figure 2.1 shows the interaction plot of the gene with the smallest q-value. Al­

though we have 14 genes detected to have significant interaction between two loci, 

we just illustrate the one with smallest q-value. Because the smaller q-value shows 
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Figure 2.1: The interaction plot of gene 93595_at 

stronger evidence that the gene has interaction. In Figure 2.2, the character 0 and 1 

on the x-axis represent the locus Idd5 is NOR derived and NOD derived, respectively. 

The point and solid lines represent the locus Idd13 is NOR derived and NOD derived, 

respectively. We can observe that, the mean log-expressions of strains NORsingle 

Congenic NOR.NOD-Idd5, single Congenic NOR.NOD-Idd13 and double Congenic 

NOR.NOD-Idd5/13 are about 10.5, 11, 11, and 10.2, respectively. That indicates 

that when locus Idd5 is NOD derived only, compared with the mean log-expression 

of NOR, the mean log-expression of NOR.NOD-Idd5 increases. Similarly, when locus 

Idd13 is NOD derived only, compared with the mean log-expression of NOR, the mean 

log-expression of NOR.NOD-Idd13 also increases. However, when both of the loci 
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Idd5 and Idd13 are NOD derived, compared with the mean log-expression of NOR, 

the mean log-expression of NOR.NOD-Idd5/13 decreases. That means the interac­

tion effect between two loci occurs. The X shape of the plot indicates the locus-locus 

interaction. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Index Gene 

ID 

NOR 

mean 

Idd5 

mean 

Idd13 

mean 

Idd5/13 

mean 

q-value absolute 

d stat 

93595_at 10.529 10.993 11.0555 10.295 0.002 5.706 

92942_at 8.212 8.332 8.363 8.0158 0.002 5.625 

160118_at 11.0812 11.483 11.452 11.229 0.01 4.793 

9388LLat 5.738 6.0468 6.0507 5.917 0.0177 4.557 

93097_at 12.362 12.608 12.528 11.860 0.0177 4.379 

160714_at 7.375 7.823 7.846 7.714 0.0177 4.347 

93498_JLat 9.069 9.529 9.512 9.229 0.0453 3.970 

102983_at 7.244 7.547 7.566 7.466 0.045 3.943 

16081Lat 7.704 8.0384 8.025 7.719 0.048 3.878 

97497_at 10.170 10.420 10.418 10.275 0.0479 3.776 

100320_at 5.575 5.945 5.825 5.632 0.0479 3.773 

99338_at 7.107 7.328 7.321 7.224 0.048 3.768 

160617_at 9.027 9.288 9.292 9.175 0.048 3.755 

96680_at 6.353 6.867 6.877 6.501 0.048 3.750 

Table 2.1: The 14 genes with significant interaction terms 
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Chapter 3 

Simulation 

Our goal is to find the genes with interaction of Idd5 and Idd13 but not affected 

by Idd5 or Idd13 alone. In other words, we look for when the Double Congenic 

NOR.NOD-Idd5/13 is different from the other three including NOR, NOR.NOD-Idd5 

and NOR.NOD-Idd13. We need to find a statistic which works well in usual ANOVA 

case of finding the different Double Congenic NOR.NOD-IddS/13. Before applying the 

statistics to the microarray data, we try some simulated data first. 

We divided our purpose into two steps: the first step is to find the interaction as 

described in Chapter 2 and the second step is to identify the genes not effected by 

Idd5 or Idd13 alone. We look for a statistic which detects the interaction of loci, and 

a statistic that detects when there is no main effect from either of the loci. In other 

words, we are interested in when Double Congenic NOR.NOD-Idd5/13 is different 

from the other three including NOR, NOR.NOD-Idd5 and NOR.NOD-Idd13. That 

means the main effects for each locus are zero but the interaction effect is non-zero. 

Therefore, we divided this detection into two stages. The first stage is to detect the 
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simulated data with non-zero interaction from all the simulated data, called stage 1. 

If a data is detected to have significant interaction term at a specific significance level, 

then we declare that it passes the first stage. Then the second stage is to detect the 

data with zero main effect from the data which passed stage 1, called stage 2. If a 

data is detected not to have any main effect at a specific significance level, then we 

declare that it passes the second stage. 

There are 6 groups of simulation data with different values of (31 , /32 and /33 of 

model 

(3.1) 

where GiJ is the simulated data of ith strain and jth replicate, ci is normally distributed 

2with mean 0 and variance IJ . And J.l and ~J2 should be properly determined. 

We set up 6 groups of simulated data with different values of /31 , /32 and /33 , and 

generate the 6 groups of data from normal distribution. 

Group Values of Model for simulation 

!31 !32 /33 

1 :f=O :f=O :f=O Gij = J.l + f31I dd5i + f32I dd13i + f33I dd5i X I dd13i + Cij 

2 =0 =0 =0 Gij = J.l + Cij 

3 :f=O =0 :f=O Gij = J.l + f31I dd5i + f33I dd5i X I dd13i + Cij 

4 :f=O =0 =0 Gij = J.l + f31I dd5i + Cij 

5 :f=O :f=O =0 Gij = J.l + f31I dd5i + f32I dd13i + Cij 

6 =0 =0 :f=O Gij = J.l + f33I dd5i X I dd13i + Cij 

Table 3.1: 6 groups of simulated data with different values of parameters 
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We generate 500 simulated datasets of each group then there are 3000 simulated 

datasets in total. Each dataset from each group contains 12 data point with 3 data 

points for each strain. The day effect is not considered in our simulation study. Our 

goal is to detect all the 500 datasets in group 6 generated by model Gii = J.L +(331dd5i * 
I dd13i +Eij. For our two-stage method, we expect that all the data in groups 1, 3, and 

6 will pass the first stage since they have interaction effect ((33 =f. 0). However only the 

data in group 6 will pass the second stage since they do not have main effects ((31 = 0 

and (32 = 0). 

For the first stage, we set the test hypothesis to be 

Ho : (33 = 0 VS. Ha : (33 =f. 0 

We use F statistics and p-values to identify the non-zero interactions. For different 

values of /31, fJ2 and (33 , we set significance level to be 0.05. That means if p-value is 

smaller than 0.05, then we declare the data passes the first stage. Table 3.2 shows the 

power probabilities of that the data in group 1, 3 and 6 pass the first stage. Table 

3.3 shows the size probabilities of that the data in group 2, 4, and 5 pass the first 

stage. We simply set the values of (31 , (32 and (33 are equal. From previous discussion 

Group 
 Non-Zero Values of /31 , (32 and/33 


0.5 0.2 

1 

0.7 0.35 

14% 

3 

94% 74% 52% 

18%93% 74% 55% 

12%93% 71% 52%6 

Table 3.2: The power probability of simulated data that passed the first stage 
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Group Non-Zero Values of (31 and (32 

0.7 0.5 0.35 0.2 

2 3.8% 5.2% 5.2% 4.8% 

4 5.6% 4.6% 5.6% 6% 

5 4.6% 5% 4.8% 6.4% 

Table 3.3: The size probability of simulated data that passed the first stage 

of identifying data with interaction, we declared that most of such data would be 

detected if the value of (33 is greater than 0.75. Then we explore more about the cases 

with small value of (33. We can observe from Table 3.2 that, when the value of (33 is 

0.7, there are 94%, 93%, and 93% of data in group 1, 3, and 6 passed the first stage, 

respectively. The result is very close to our expectation, so it is good. Compared with 

the result when value of (33 = 0.7, the result when value of (33 = 0.5 is worse but still 

acceptable. When the value of (33 is no less then 0.35, the result is still acceptable. 

Most data from group 1, 3, and 6 passed stage 1, while only 4 to 5 percent of data 

from each of group 2, 4 and 5 passed the first stage. It is an acceptable result, so we 

move forward to the stage 2. 

For stage 2, we set the test hypothesis to be 

Ho : fJ1 = f3z = 0 vs. Ha : fJ1 =/= 0 or f3z =/= 0 

For the null hypothesis, the model is 

Yi,g = /.Lg + (33Idd5i X I dd13i + Ci (3.2) 

and for the alternative hypothesis, the model is 

Yi,9 = /.Lg + (31Idd5i + f3zi dd13i + (33Idd5i x I dd13i + Ei (3.3) 
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We tried to use test statistics F for this hypothesis testing. It is based on the 

gene-specific residual sums of squares, denoted by RSS9 , and the residual degrees of 

freedom, denoted by df. Hypothesis testing involves the comparison of two models, 

and test statistics are computed on a gene-by-gene basis. Thus, we can suppress the 

subscript g and use the notation RSS0 , df0 for the null model and RSS1 , dft for the 

alternative model residual sums of squares and degrees of freedom, respectively (Wu 

et al., 2003). The statistic F is the usual F statistic that one would compute if data 

were available for only a single gene, 

p = (RSSo- RSSt)j(df0 - df1 ) 
1 RSStfdft 

It generalizes the t-test approach that is widely used in microarray analysis (Dudoit 

et al., 2002). Significance levels can be established by reference to the standard F 

distribution or by permutation analysis. This test does not require the assumption of 

common error variance. However, it has low power in typical microarray experiments 

because of small sample sizes and it can be sensitive to variations in the estimates of 

residual variance, RSS1 (Wu et al., 2003). 

For the simulation data which passed stage 1, we use F statistics to detect the data 

with /31 = /32 = 0. We only illustrate the result of the data with /33 = 0.7. We set 

the significance level to be 0.05, then calculate the p-values for each data passed the 

first stage. For any data with p-value smaller than 0.05, we declare that it passes the 

second stage. The result is that, 92% of data from group 6, 2.4% of data from group 2 

passed stage 2, and no data from other group passed stage 2. From the Figure 3.1, we 

can observe that it is the case of interaction we look for. The data is with locus-locus 

interaction and the main effect of each locus is almost 0. Due to this acceptable result 
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then we apply this method to the microarray data. 
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Figure 3.1: The simulated data with special case of interaction that passed the second 

stage 
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Chapter 4 

Application of the Two-stage 

Method 

In Chapter 2 we gave the initial analysis to detect interaction using SAM method, 

then we start with the stage 2 analysis in Chapter 4. There are 14 genes detected with 

significant interaction in Chapter 2 if we set the significance level to be 0.05. However, 

for better detection that determine which genes can pass the second stage we need to 

allow more genes to pass the first stage. Then we set a more liberal significance level 

of 0.2 to let more genes be detected. For our real microarray data, we have 1921 genes 

passed the first stage if the significance level is set to be 0.2. Next we look for the 

genes not affected by Idd5 or Idd13, say /31= /32= 0. We set the test hypothesis to be 

Ho : !31 = !32 = 0 vs. Ha : !31 =/= 0 or /32 =/= 0 

The null model and the alternative model are similar to the models (3.4) and (3.5) in 

Chapter 3. The difference is that, we add the Day Effect into the models as a factor 

because the day an experiment completed introduces non-biological variation. For the 
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null hypothesis, the model is 

(4.1) 

and for the alternative hypothesis, the model is 

where Di is the day indicator, I dd5i = 1 whenever locus Idd5 is NOD derived and 0 

otherwise. Similarly, I dd13i = 1 whenever Idd13 is NOD derived and 0 otherwise. cg,i 

is the random error term. 

Hypothesis testing involves the comparison of two models, thus, we can use the 

notation RSS0 , df0 for the null model and RSS1, dfl for the alternative model residual 

sums of squares and degrees of freedom, respectively. We used F statistics to detected 

the genes 

F = (RSSo- RSS1)j(dfo- dfl) 
(4.3)

RSSl/dfl 

We calculated the F statistic for each gene that passed the first stage, and the infor­

mation of the top genes with smallest F statistic are shown in Table 4.1. From Table 

4.1, we obtain two genes with very small F statistics. The genes with small F statistics 

might has no main effect by locus Idd5 or Idd13; however, we cannot determine which 

genes pass the second stage based on the F statistic only. We need to have those genes 

with q-values smaller than the significance level. Because the small q-values suggest 

that the null hypothesis is unlikely to be true. The smaller it is, the more convincing 

is the rejection of the null hypothesis. It indicates the strength of evidence for say, 

rejecting the null hypothesis H0 . 

Figure 4.1 shows the interaction plot of gene with the smallest second stage F 

statistic. We observe that it is like the special case of interaction we look for. The log­
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Index Gene ID NOR mean Idd5 mean Idd13 mean Idd5/13 mean F stat 

1 9241Lat 9.867 9.864 9.867 10.0592 0.00150 

2 160096_at 8.955 8.969 8.958 8.823 0.0608 

3 161410_r_at 3.873 3.919 3.849 3.557 0.206 

4 94865_at 6.604 6.640 6.631 6.507 0.294 

5 160925_at 8.374 8.419 8.438 8.216 0.363 

6 97896_r_at 5.334 5.383 5.408 5.192 0.365 

7 160328_at 8.327 8.304 8.285 8.446 0.392 

8 160930_at 7.272 7.302 7.383 7.055 0.405 

Table 4.1: The information of genes in stage 2 analysis. 

expression stays almost the same when neither or one of Idd5 and Idd13 is from NOD 

mice, but it increases when both of Idd5 and Idd13 are from NOD mice. In other 

words, the Double Congenic NOR-NOD.Idd5/13 is different from the three others 

NOR, NOR-NOD.Idd5 and NOR-NOD.Idd13. Figure 4.1 shows some evidence that 

gene 9241Lat has the type of interaction we look for, but we cannot declare that it 

passes the second stage because it may look like one straight line in a large scale plot. 

The q-values for the genes passed the first stage can be interpreted as the probability 

that the main effect is present if we declare that it is present given the interaction 

effect is present. There is no such small q-value to give us confidence to declare that 

gene 9241Lat can pass the second stage. 

Similarly to the first stage analysis, we permute the labels B (B = 500) times. 

Different from that, we permute the only 2 strain labels within days to recalculate F 

statistic 500 times. Our goal is to detect the genes without main effect; in other words, 
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Figure 4.1: The interaction plot of gene with smallest F statistics in stage 2 analysis 

our goal is to detect the genes which have the interaction effect by Double Congenic 

NOR.NOD-Idd5/13 different from the effects of other three strains. Therefore, we con­

sider the three strain labels for NOR, single congenic NOR.NOD-Idd5 and NOR.NOD­

Idd13 to be one group, and the strain labels for double congenic NOR.NOR-Idd5/13 

to be another group. Then we permute the strain labels within each group and each 

day. Estimate the expected order statistics by F(i) = (1/B) I:f F(:~ for i = 1, 2, ... , G, 

which is the mean of the order statistic from the permutations. Then we plot the 

average order statistic (exptected F statistic) from the permutations (F(1), ... , F(c)) 

against the observed (F(1), ... , F(c))· We found that the expected F statistic is much 

smaller than the observed F statistic for each gene. By this observation we realized 
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that the q-values must be very large for almost all of the genes. 

We are not confident to declare that any gene pass the second stage, even though 

the interaction plot visually shows some evidence that the interaction is of the type for 

which we are looking. It might be because the permutations are not simulated from the 

correct null distribution. The null hypothesis we wish to test is H0 : /31 =J 0 or /32 =J 0, 

but not H 0 : /31 = {32 = 0. However, this kind of test of hypothesis is hard to realize, 

then we compromise to test the null hypothesis H0 : /31 = /32 = 0. The incorrect null 

hypothesis may have led to the wrong permutation therefore, we cannot calculate the 

relevant q-values. To avoid the situation, we switch to bootstrap method. 
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Chapter 5 

Bootstrap Approach 

The motivation for using bootstrap instead of permutation is that we do not have the 

permutations from correct null distribution, then we cannot get confidence to declare 

any gene passed the second stage. To avoid that, we propose to use bootstrap method 

instead of permutations to resample the real 12488 gene expression data, called Yg. 

For stage 1, we need to test hypothesis 

Ho : (33 = 0 vs. Ha : (33 =/= 0 

therefore the null model is 

. Then the estimated model is 

where i = 1, 2, ... , 20. 
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Let ri = Yi- }i, i = 1, ... , n, then resample (r1 , r2 , ... , rn) with replacement R times, 

say (r1, r2 , ... , rn)--+ (ri, r~, ... , r~). Yi* is the resampled data generated from bootstrap. 

Let Yi* = "fi + ri, and fit the R corresponding models 

(5.1) 

For each model, we calculate the d statistic 

(5.2) 

We ranked each set of d* by ascending order as (di, ... , d(;) ,then we calculate the 

expected d statistic from bootstrap method by d = (1/R) L:f d*, and plot the expected 

d statistics against observed d statistics as with permutation method. The calculation 

of FDR and q-values are the same to the permutation method. The bootstrap approach 

analysis of stage 1 obtain the similar result as permutation approach. We declare that, 

all the genes with q-values smaller than 0.2 pass the first stage. Then there are 1250 

genes that passed the first stage by bootstrap approach. The genes passed the first 

stage are almost the same as those listed in Table 2.1 especially the top genes. The 

top 10 genes passed the first stage is shown in Table 5.1. 

For the second stage, we have the null model is 

, and the alternative model is 

The estimated model is 
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Index Gene 

ID 

NOR 

mean 

Idd5 

mean 

Idd13 

mean 

Idd5/13 

mean 

q-value absolute 

d stat 

1 93595_at 10.529 10.993 11.0555 10.295 0.002 5.706 

2 92942_at 8.212 8.332 8.363 8.0158 0.002 5.625 

3 160118_at 11.0812 11.483 11.452 11.229 0.01 4.793 

4 93881_Lat 5.738 6.0468 6.0507 5.917 0.0177 4.557 

5 93097_at 12.362 12.608 12.528 11.860 0.0177 4.379 

6 160714_at 7.375 7.823 7.846 7.714 0.0177 4.347 

7 93498_s_at 9.069 9.529 9.512 9.229 0.0453 3.970 

8 102983_at 7.244 7.547 7.566 7.466 0.045 3.943 

9 16081Lat 7.704 8.0384 8.025 7.719 0.048 3.878 

Table 5.1: The top genes passed the first stage (Bootstrap approach). 

, where i = 1, 2, ... , n. 

Let ri = Yi - fi, then resample (r1 , r2, ... , rn) with replacement R times, say 

(r1,r2, ... ,rn) (rr,rz, ... ,r~). ~*is the resampled data generated from bootstrap, ---t 

and let ~* = fi + r;, then fit M 0 to ~*. Calculate the F statistic 

F.*= (RSSo,i- RSSl,i)/(dfo- djl) 
(5.3) 

t RSS1,ddf1 

where RSS0 and RSS1is the sum square of residual of the null model and alternative 

model, respectively. The df0 and dfl are the degree of freedom null model and alterna­

tive model, respectively. Then we calculate a set of Ft, i = 1, ... , N in each bootstrap, 

so there are R x N values ofF*. We calculate the bootstrap based p-values for each 
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gene passed the first stage by formula 

Pi= #(F* <= Fi)/RG (5.4) 

where R is the number of bootstraps and N is the number of genes passed the first 

stage. Sort the bootstrap based p-values to obtain the order p-values such as p(1) ~ 

p(2) ~ ... ~ p(N). Storey and Tibshirani (2003) gives a method to convert such 

p-values to q-values by following formulas: 

(5.5) 

A( ) . (iroNP(9 ) A( ))q P(i) = mm . , q P(i+l) (5.6) 
~ 

where i = N- 1, ... , 1. They also give a method to estimate 7ro but the method we 

introduced in Chapter 1 is fine. The q-values calculated are the second stage q-values. 

let q1 be the vector of the first stage q-values for those genes selected to go forward 

to the second stage and q2 is the vector of the second stage q-values for those genes 

with small F statistic, we then we can calculate an overall q-value by 

(5.7) 


where i = 1, ... , N. Therefore, the overall q-value must be higher than each of q1 

and q2 . The first stage q-value q1 can be interpreted as the probability of that the 

interaction is present if we declare that it is present; and the second stage q-value q2 

can be interpreted as the probability of that the main effect is present if we deClare 

that it is present given that interaction effect is present. q2 represents a conditional 

probability given that the interaction effect is present. Then the formula can give a 

set of overall q-values. The overall q-values can be interpreted as the probability that 
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the effect of interest is truly present if we declare that it is present for this gene, then 

the inference is based on the overall q-values. 

The top genes with small F* statistics and q-values are shown in Table 5.2. From 

this table, we can observe that even though the genes have small F statistics; however, 

both of the second stage q-values and the overall q-values are large. Figure 5.1 shows 

that the mean log-expressions of strain NOR, NOR.NOD-Idd5 and NOR.NOD-Idd13 

are about the same values; while the mean log-expression of strain NOR.NOD-Idd5/13 

is quite smaller than any one of those three strains. That indicates that the interaction 

effect between to loci are quite greater than the main effects by either locus alone. 

However, we can not declare that the genes can pass the second stage at a reasonable 

significance level due to the large q-values even though Figure 5.1 visually shows some 

evidence that there is the interaction we look for. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Index Gene 

ID 

NOR 

mean 

Idd5 

mean 

Idd13 

mean 

Idd5/13 

mean 

F 

stat 

First stage 

q-value 

overall 

q-value 

160096_at 8.955 8.969 8.958 8.823 0.0608 0.531 0.619 

161410_r_at 3.873 3.919 3.849 3.557 0.206 0.531 0.608 

94865_at 6.604 6.640 6.631 6.507 0.294 0.531 0.624 

160925_at 8.374 8.419 8.438 8.216 0.363 0.531 0.595 

97896_r_at 5.334 5.383 5.408 5.192 0.365 0.531 0.618 

160930_at 7.272 7.302 7.383 7.055 0.405 0.531 0.623 

94893_at 7.080 7.106 7.087 6.978 0.421 0.531 0.590 

160114_at 10.707 10.851 10.820 10.497 0.441 0.531 0.612 

104056_at 7.994 8.118 8.160 7.697 b 0.449 0.531 0.591 

104572_at 8.540 8.588 8.579 8.438 0.456 0.531 0.605 

Table 5.2: The top genes in the second stage analysis. 
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Figure 5.1: The interaction plot of gene with smallest F statistics in the second stage 

analysis (Bootstrap approach}. 
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Chapter 6 

Discussion and Future Work 

In this project, we have researched to develop a methodology for detecting the special 

case of locus-locus interaction using microarray data. We have detected the interaction 

using our dataset and then selected genes to go forward to the second stage. The 

interaction plot of gene with smallest F-statistics visually showed some evidence that 

the interaction of interest is detected; however, they have very high q-values in the 

second stage analysis. We calculate the overall q-values for the genes, but they are 

even greater than the second stage q-values. Because overall q-value is calculated by 

q = 1- (1- q1 ) *(1- q2 ), it must be greater than either of q1 and q2 . Due to the high 

overall q-values we are not confident to declare any gene passed the second stage. 

A further question we may ask is how to calculate reasonable q-values. In our 

analysis, the difficulty of detecting genes that passed the second stage is that genes 

have high q-values. Even for those gene with small F statistic they still have large 

q-values. Due to this we cannot get enough statistical evidence to determine which 

genes can pass the second stage. In future work, the method of calculating q-values 
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could be of concern. 

In future work it is necessary to consider some other test statistics. It might be 

helpful to have a simulation study and try to find an appropriate test statistic. We 

used modified Wald t-statistics (we call d statistics) and F statistic in our analysis. 

The result of detecting locus-locus interaction in stage 1 analysis is reasonable but 

the result of the second stage analysis does not meet our expectation. Someone may 

concern more about the test statistics in the second stage analysis and seek a better 

statistic. 

We also suggest someone think about the null distribution we used to produce 

permutation. The null hypothesis the permutations coming from in the second stage 

is not correct so that we may be not confident to declare genes passed the second stage 

even though we can have reasonably smaller q-values. 

42 




Appendix A 

Partial R Codes for Simulation 

# The function generate is the to generate the random data using 


#model. 


#The parameter n is the number of simulated genes. 


#The parameter replicate is the number of replicates of the same experiments. 


#The function gnt is to generate the random data of model using 


#model Y_ij = mu + beta_1 *Idd5_ +beta_2*Idd13_i + 


#beta_3*Idd5_i*Idd13_i + e_ij 


gnt<-function(n,mu,sigma,replicate,beta1,beta2,beta3) { 

group1=rnorm(n*replicate,mu,sigma) 

group2=rnorm(n*replicate,mu,sigma)+beta1 
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group3=rnorm(n*replicate,mu,sigma)+beta2 

group4=rnorm(n*replicate,mu,sigma)+beta1+beta2+beta3 


matrix(c(group1,group2,group3,group4),ncol=4*replicate) 


} 

#group1 is the generated data with Idd5=0 and Idd13=0 

#group2 is the generated data with Idd5 is not equal to 0 but Idd13=0 

#group1 is the generated data with Idd13 is not equal to 0 but Idd5=0 

#group1 is the generated data with neither Idd5 nor Idd13 equal to 0 

#Then combined these 4 groups into one matrix 

#The matrix is a n* (4*replicate) matrix 
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Appendix B 

Partial R codes for calculating so 

#The function Cal.S_O is used to calculate s_O 

Cal.S_O<-function(s,no.gene) { 

#Sort the r_i and s_i by ascending order of r_i 

#The s_i is sorted with the corresponding r_i 

o<-order(s[,2]) 

s.order<-s[o,] 

r.rk<-s.order[,1] 

s.rk<-s.order[,2] 

#Let s.alpha to be the 0 to 20 quantile of s i. 


s.alpha<-quantile(s.rk,(0:20)/20) 


#q is the 100 quantiles of s i values 
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q<-quantile(s[,2],probs=seq(1:100)/100) 

index=ceiling(no.gene*(seq(0,100)/100)) 


alpha=seq(0,1,by=0.05) 


v.i<-rep(NA,100) cv.alpha=rep(NA,21) 


for (j in 1:21) { 


for (i in 1:100) { 

d.alpha=r.rk[(index[i]+1):index[i+1]]/(s.rk[(index[i]+1):index[i+1]] 

+s.alpha[j]) 

#Function mad calculate the median absolute deviation 

#from the median, divided by .64 

v.i[i]=mad(d.alpha) 

} 

#cv.alpha is the coefficient of variation of the v_j values 


cv.alpha[j]=sd(v.i,na.rm=TRUE)/mean(v.i,na.rm=TRUE) 


} 


#min.position is the position of the smallest element in vector cv.alpha 


min.position<-which.min(cv.alpha) 


s.alpha[min.position] 


} 
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Appendix C 

R Codes for Calculating d Statistics 

#Load affy library into R 


library(affy) 


#Read in the raw data of microarray data 


exp1.data<-ReadAffy(widget=TRUE) 


#rma() normalize the raw data and then y1 is the gene expression 


#The columns of y1 represent the cases and the rows represent the gene 


exp1.rma<-rma(exp1.data) 


y1<-exprs(exp1.rma) 


#Get the number of genes and the number of groups 
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no.gene<-nrow(y1) 


no.group<-ncol(y1) 


#Day is the label of day factor 


Day<-factor(rep(c(0,1),c(12,8))) 


#I5 and I13 is the labels of Idd5 and Idd13 factors, respectively. 


I5<-c(rep(0,3),rep(1,3),rep(0,3),rep(1,3),rep(0,2),rep(1,2),rep(0,2),rep(1,2)) 


I13<-c(rep(0,6),rep(1,6),rep(0,4),rep(1,4)) 


#Get the estimate of beta3 and the standard error· of estimate of beta3 


est.beta3<-array(O,c(no.gene,2)) 


for (i in 1:no.gene) { 


est.beta3[i,]<-summary(lm(y1[i,]-Day+I5*I13))$coefficients[5,1:2] 

} 

#Calculate the d statistics of the origial data 


r.i=est.beta3[,1];s.i=est.beta3[,2] 


s_O<-Cal.S_O(est.beta3,no.gene) 


d.i<-r.i/(s.i+s_O) 


#ordered.d.i is the observed d statistics for each gene 


ordered.d.i=sort(d.i) 


48 




Appendix D 

R Codes for Calculating d 

Statistics from Permutation 

#4 groups and 5 replicates for each 

group<-c(rep(1:4,5)) 

#Number of permutations is 500 

no.pmt<-500 

#Estimates and standard deviations of beta3 for permutations 

est.beta3.pmt<-array(O,c(no.gene,no.pmt,2)) 

for (i in 1:no.pmt) { 

#Permute the labels of the group 

pmt.group<-c(sample(group[1:12]),sample(group[13:20])) 

49 




I5.pmt<-1*(pmt.group==21pmt.group==4) 


I13.pmt<-1*(pmt.group>=3) 


for (j in 1:no.gene) { 


#Calcuate the estimate of beta3 and standard error of estimate of beta3 

est.beta3.pmt[j,i,]<-summary(lm(y1[j,]-Day+I5.pmt*I13.pmt))$coefficients[5,1 

} 

} 

#d.g.pmt is the ranked d statistics from each permutation 

d.g.pmt<-array(NA,c(no.gene,no.pmt)) for (i in 1:no.pmt) { 

d.g.pmt[,i]<-sort(est.beta3.pmt[,i,1]/(est.beta3.pmt[,i,2]+s_O)) 

} 

#Find the mean of the rows, which is the expected d statistics 

mean.d.g<-rowMeans(d.g.pmt) 
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Appendix E 

Partial R Codes for FDR and 

q-value for Stage 1 

#Exp is the expected d statistics 

#Obs is the observed d statistics 

#M is the median of the expected d statistics 

Exp<-mean.d.g;Obs<-ordered.d.i 

M<-median(Exp) 

#Divide the Obs and Exp into two parts: upper part and lower part 

Dbs.u<-Obs[which(Exp>=M)];Exp.u<-Exp[which(Exp>=M)] 

Dbs.l<-Obs[which(Exp<M)];Exp.l<-Exp[which(Exp<M)] 

perms=d.g.pmt 
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#Set the cut-off points 

cuts=quantile(perms,c(0.25,0.75)) 

pi.O=min(1,sum(Obs>=cuts[2] IDbs<=cuts[1])/(0.5*no.gene)) 

#The function to calculate FDR 

findFDR<-function(delta,Obs,Exp,perms) { 

diffs=sort(Obs)-Exp 

upper=min(Obs[Obs>=median(Obs) &diffs>=delta]) 

lower=max(Obs[Obs<=median(Obs) &diffs<=-delta]) 

no.detect.o=sum(Obs>=upperiObs<=lower) 

no.detect.p=colSums(perms>=upperlperms<=lower) 

mean(no.detect.p)/no.detect.o*pi.O 

} 

ind.u<-which(Obs>=median(Obs)) 

delta.u<-rep(NA,length(ind.u)) 

FDR.u<-rep(NA,length(ind.u)) 

qvalue.u<-rep(NA,length(ind.u)) 

#First value of the FDR and q-value 

delta.u[1]<-max(O,Obs[ind.u[1]]-Exp[ind.u[1]]) 

FDR.u[1]<-findFDR(delta.u[1],0bs,Exp,perms) 

qvalue.u[1]<-FDR.u[1] 
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for (i in 2:length(ind.u)) { 

delta.u[i]<-max(delta.u[i:(i-1)] ,Obs[ind.u[i]]-Exp[ind.u[i]]) 

FDR.u[i]<-findFDR(delta.u[i],Obs,Exp,perms) 

qvalue.u[i]<-min(FDR.u[1:i]) 

} 
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Appendix F 

Partial R Codes for Calculating d 

Statistics from Bootstrap 

residual=y_hat=matrix(NA,ncol=no.group,nrow=no.gene) 

for (i in 1:no.gene) { 

#mod is the linear model 

#y-hat is fit to the model and residual 

#contains the residuals of the meodel 

mod<-lm(y1[i,]-Day+I5+113) 

y_hat[i,]<-fitted(mod) 

residual[i,]<-residuals(mod) 

} 

#Resample residual R times 

54 




R<-500 

d_star<-matrix(NA,ncol=R,nrow=no.gene) 

for (i in 1:R) { 

#Resample residual and then fit the corresponding model 

i1<-sample(1:20,replace=T) 

r_star<-residual[,i1] 

y_star<-y_hat+r_star 

beta_star<-matrix(NA,ncol=2,nrow=no.gene) 

for (j in 1:12488) { 

beta_star[j,]<-summary(lm(y_star[j,]-Day+I5*I13))$coefficients[5,1:2] 

} 

#d_star is the d statistiscs from each bootstrap 

d_star[,i]<-sort(beta_star[,1]/beta_star[,2]) 

} 

#Find the mean of the rows, which is the expected d statistics 

mean.d.star<-rowMeans(d_star) 
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Appendix G 

Partial R Codes for Calculating 

q-values (Bootstrap Approach) 

#Exp2 and Obs2 are the expected F statistics and observed F 


#statistcs, respectively. 


Exp2<-f.star.exp;Obs2<-f.obs 


boots=f.star.sort 


#cuts2 is the cut-off point 


cuts2<-quantile(boots,0.75) 


pi.0.2<-min(1,sum(Obs>=cuts2)/(0.5*no.gene)) 


#findFDR is the function to calculate false discovery rate 


findFDR<-function(delta2,0bs2,Exp2,boots) { 
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diffs2<-0bs2-Exp2 


upper2<-min(Obs2[diffs2>=delta2]) 


#Detecting significant genes for calculating FDR 


no.detect.o2<-sum(Obs2<=upper2) 


no.detect.p2<-colSums(boots<=upper2) 


mean(no.detect.p2)/no.detect.o2*pi.0.2 


} 

delta.u2<-rep(NA,length(Obs2)) 

FDR.u2<-rep(NA,length(Obs2)) 

qvalue.u2<-rep(NA,length(Obs2)) 

#Calculating q-values 

delta.u2[1]<-max(O,Obs2[1]-Exp2[1]) 

FDR.u2[1]<-findFDR(delta.u2[1],0bs2,Exp2,boots) 

qvalue.u2[1]<-FDR.u2[1] 

for (i in 2:length(Obs2)) { 

delta.u2[i]<-max(delta.u2[1:(i-1)],0bs2[i]-Exp2[i]) 

FDR.u2[i]<-findFDR(delta.u2[i],Obs2,Exp2,boots) 

qvalue.u2[i]<-min(FDR.u2[1:i]) 

} 
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