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Abstract

Capillary electrophoresis mass spectrometry (CE-MS) is a versatile instrumental

method for metabolomics, which allows for comprehensive metabolite profiling of

volume-limited biological specimens in order to better understand the molecular

mechanisms associated with chronic diseases, including an alarming epidemic of

obesity worldwide. Multiplexed CE separations enable high-throughput metabolite

screening with quality assurance to prevent false discoveries when combined with

rigorous method validation, robust experimental designs, complementary statistical

methods, and high-resolution tandem mass spectrometry (MS/MS) for unknown

metabolite identification. In this thesis, multiplexed CE-MS technology is applied for

both targeted and untargeted metabolite profiling of various biological fluids, including

covalently bound thiol-protein conjugates, as well as free circulating metabolites in

serum and plasma, and excreted/bio-transformed compounds in urine due to complex

host-gut microflora co-metabolism. This work was applied to characterize aberrant

metabolic responses of obese subjects in response to dietary challenges, and measure

the benefits of dietary interventions that reduce adiposity without deleterious muscle

loss. Chapter 2 presents, a simple, sensitive yet robust analytical protocol to expand

metabolome coverage in CE-MS for the discovery of labile protein thiols in human

plasma using a rapid chemical derivatization method based on N-tert-butylmaleimide

(NTBM). Chapter 3 describes targeted metabolite profiling of serum and plasma

to investigate the differential metabolic responses between healthy and unhealthy

obese individuals before and after consumption of a standardized high-caloric meal,

respectively. Chapter 4 of this thesis describes an untargeted metabolite profiling

strategy for urine using multisegment-injection (MSI)-CE-MS for elucidating the effects
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of protein supplementation following a short-term dietary weight-loss intervention

study. This work revealed six urinary metabolites that were classified as top-ranking

treatment response biomarkers useful for discriminating between subjects consuming

carbohydrate (control), soy, and whey supplemented diets. In summary, this thesis

demonstrated the successful implementation of multiplexed CE-MS technology for

biomarker discovery in nutritional-based metabolomic studies as required for more

effective treatment and prevention of obesity for innovations in public health.

iv



Acknowledgements

This thesis would not have been possible without the collective contributions of the

many people whom I have encountered throughout the course of my graduate research.

First, I would like to sincerely thank my supervisor, Prof. Philip Britz-McKibbin, who

welcomed me into his research group and introduced me to the wonderful world of CE.

He has provided me with many opportunities throughout my graduate studies, in which

I have gained a lot of invaluable hands-on training and experience. He has guided my

research journey with unparalleled optimism and an unforgettable adventure-seeking

spirit, in the same way that he has guided me and fellow group members through rugged

treks to find zen (aka, “the waterfall”) during our memorable annual Britz-group lab

hikes. I would also like to express my appreciation to supervisory committee members,

Prof. Murray Potter, Prof. Jose Moran-Mirabal and the late Prof. Brian McCarry, as

well as Kirk Green from the McMaster Regional Centre for Mass Spectroscopy, for

their insightful questions, advice, support, encouragement, and technical assistance

over the years. Additionally, I would like to thank my collaborators, Prof. David

Mutch (University of Guelph) and Prof. Stuart Phillips (Department of Kinesiology),

for their contributions and involvement in the various studies described in this thesis,

aside from the stimulating discussions during our project-update meetings.

The cordial lab atmosphere, collaborative group dynamics, and sense of camaraderie

amongst the Britz group members have played an important role in enhancing my

v



graduate student experience and cannot be overstated. I would like to thank past

and present lab members in the Britz group for, not only sharing their advice, ideas

and providing assistance when needed, but also, for their individual contributions to

creating a warm, supportive, and friendly working atmosphere: Lisa D’Agostino, Naomi

Kuehnbaum, Meera Shanmuganathan, Alicia DiBattista, Nadine Wellington, Adriana

Macedo, Michelle Saoi, Mai Yamamoto, Jennifer Wild, Stellena Mathiaparanam,

Ritchie Ly, Sandi Azab, and Biban Gill. Outside of the lab environment, I am very

grateful for all the friends that I have made at McMaster, in addition to my long-time

friends from Toronto, as well as those living out-of-province. Thank you for all the

fun times we had together, whether it be going for a stroll or a bike ride; enjoying a

movie, bowling or board game night; going out for a nice dinner or being invited for

potluck or a delicious home-cooked meal; indulging in desserts; or even, as simple as a

telephone call or text message. And of course, thank you for always rooting for me.

All these gestures mean so much to me and I am very blessed to have your friendship.

Special thanks go to my friend, Fan Fei, for her kind support and graciously offering

her time and expertise to help me with particular revisions of this thesis.

My parents, Connie and Joseph, my brother, Eugene, and all other family members

have played a significant role in my life and I would not be here without them. I thank

them all for their unconditional love, sacrifices, patience, and continuous support

throughout this journey. In addition, I thank my Mom for giving me the gift of music,

along with its natural healing powers; I thank my Dad for teaching me patience,

forgiveness, and the art of prayer; and I thank my brother for making me feel valued

and important in this world as an older sister. As well, I also thank Patrick Wilson

and his parents, Anna and Robert, for their care, kindness, love, guidance, and

encouragement. In particular, I express my deepest heartfelt gratitude to Patrick,

who has been by my side for most of this adventure and especially, at the most

vi



difficult times. He has guided and supported me tremendously in the completion of

this journey in more ways than words can ever describe. He has selflessly devoted

countless hours, days, weeks, and months of his personal time and energy to my cause,

including assisting with multivariate data analysis and completing multiple rounds of

meticulous typesetting, formatting, and editing of this entire thesis. Most importantly,

he has encouraged and emboldened me to reach the finish line of this pursuit with

his abundant love and immense support – and by firmly believing in me, much more

than I believe in myself. Finally, I thank God for giving me endurance and personal

strength, and for everyone in my life that has helped me to be where I am today.

vii



This thesis is dedicated to three very special people in my life:

My 90-year-old energetic grandmother, Chiu Lai Har, a recent breast cancer survivor

whose love, support, courage, and fearless determination have inspired me to complete

this work;

My long-time mentor and friend of 20 years, Toronto-based pianist and performer

Peter Longworth, whom I will always remember as being a major influence in my

life and on my music as a pianist, up until his sudden passing at an early age due to

kidney cancer on June 26, 2018; and

My late Godfather, Vincent Lam, who passed away on February 1, 2018 after a

heroic, yet painful, battle with lymphoma. He celebrated life up until his last day and

was the one to witness my first steps as a toddler and would later inspire me to pursue

and develop a passion for the sciences.

viii



Table of Contents

Front Matter i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Acronyms & Abbreviations . . . . . . . . . . . . . . . . . . . . . . xxi

1 Defining Metabolomics and its Role in Health and Nutrition 1

1.1 Overview of Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Instrumental Methods in Metabolomics . . . . . . . . . . . . . . . . . 5

1.3 Principles of CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Interfacing CE to MS . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Metabolomics in Nutrition and Dietary Intervention Studies . . . . . 16

1.6 Functional and Compositional Differences Between Biofluids . . . . . 19

1.7 Pre-Analytical Challenges in the Collection, Handling, and Storage of

Biofluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7.1 Sample Collection and Handling . . . . . . . . . . . . . . . . . 21

1.7.2 Sample Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.3 Sample Pretreatment . . . . . . . . . . . . . . . . . . . . . . . 25

ix



1.8 Pretreatment of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8.1 Data Normalization, Batch Correction, and Quality Controls . 26

1.8.2 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.3 Data Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.9 Dealing with Massive Data Using Multivariate Statistical Techniques 31

1.9.1 Statistical Data Mining . . . . . . . . . . . . . . . . . . . . . . 31

1.9.2 Variable Selection and Filtering . . . . . . . . . . . . . . . . . 34

1.9.3 Comparison Between Multiple Groups . . . . . . . . . . . . . 39

1.10 Thesis Motivation, Objectives, and Contributions . . . . . . . . . . . 43

2 Development of a Novel CE-MSMethod for the Discovery of Protein-

Bound Thiols 47

2.1 Thiol Detection Enhancement by Chemical Derivatization with Malei-

mide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . 52

2.1.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . 55

2.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2 Characterization of Protein-Bound Thiols in Plasma . . . . . . . . . . 66

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 68

2.2.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . 71

2.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3 A Novel Approach for the Discovery of Unknown Protein-Bound Thiols

in Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

x



2.3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 87

2.3.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . 90

2.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Differential Metabolomics of Obesity and its Subtypes 106

3.1 Serum and Adipose Tissue Amino Acid Homeostasis in the Metabolically

Healthy Obese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.1.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 111

3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.2 Metabolomics Reveals Metabolically Healthy and Unhealthy Obese

Individuals Differ in their Response to a Caloric Challenge . . . . . . 139

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 143

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.2.6 Supporting Information . . . . . . . . . . . . . . . . . . . . . 160

3.2.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 161

4 Metabolomic Assessment of Treatment Responses to Protein Sup-

plementation during Caloric Restriction 168

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.2.1 Subject Cohort . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xi



4.2.2 Dietary Intervention and Study Design . . . . . . . . . . . . . 172

4.2.3 Urine Collection and Sample Preparation . . . . . . . . . . . . 173

4.2.4 Chemicals and Reagents . . . . . . . . . . . . . . . . . . . . . 173

4.2.5 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . 174

4.2.6 Capillary Electrophoresis Mass Spectrometry (CE-MS) . . . . 174

4.2.7 Method Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.2.8 Untargeted Feature Extraction . . . . . . . . . . . . . . . . . 178

4.2.9 Urine Sample Normalization & Correction of System Drift . . 179

4.2.10 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . . . 180

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.3.1 Evaluation of Extracted Features & Establishing Technical Pre-

cision Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.3.2 Assessment of Subgroup Comparison Run . . . . . . . . . . . 185

4.3.3 Individual Sample Analysis & Establishing Between-Run QC

Cut-Offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.3.4 Characterization of Urinary Metabolites . . . . . . . . . . . . 188

4.3.5 Comparison of Urine Normalization by Creatinine, Osmolality,

& PQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.3.6 Preliminary Data Exploration . . . . . . . . . . . . . . . . . . 195

4.3.7 Feature Selection by McCabe Analysis for One-Way MANOVA 198

4.3.8 Discriminant Function Analysis (DFA) . . . . . . . . . . . . . 201

4.3.9 Correlation Studies . . . . . . . . . . . . . . . . . . . . . . . . 204

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.4.1 Significance of Discriminatory Metabolites . . . . . . . . . . . 205

4.4.2 Interpretation of Correlations . . . . . . . . . . . . . . . . . . 217

4.4.3 Sporadic Features and Exogenous Dietary Non-Nutrients . . . 220

xii



4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

4.6 Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5 Research Contributions and Perspectives 244

6 Future Directions 250

6.1 Structural Elucidation of Unknown Protein-Bound Thiols by MS/MS

Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.2 Further Evaluation of Postprandial Effects in DRA . . . . . . . . . . 252

6.3 Long-Term Assessment of Soy or Whey Supplementation During Caloric

Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

References 256

xiii



List of Figures

1.1 An overview of the four major “omics” fields . . . . . . . . . . . . . . 2

1.2 Representation of the number of published metabolomics journal articles

and comparison of the number of MS- and NMR-based metabolomics

publications from 2000 to 2017 . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Formation of electroosmotic flow, and effect of pH on electroosmotic

flow and silanol group ionization, in CE . . . . . . . . . . . . . . . . . 10

1.4 Illustration of the role of metabolomics in nutritional and dietary

intervention studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Overview of the pre-analytical workflow in metabolomic studies from

sample collection to sample analysis . . . . . . . . . . . . . . . . . . . 22

1.6 Example of an OPLS-DA loadings S-plot . . . . . . . . . . . . . . . . 37

2.1 Structures of reduced Cys, Hcy, CysGly, g-GluCys, and GSH . . . . . 49

2.2 Chemical derivatization of free reduced thiols with N -substituted ma-

leimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Structures of N -[2-(trimethylammonium)-ethyl]maleimide and N-tert-

butylmaleimide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiv



2.4 An EIE acquired with IT-MS of equimolar thiol-maleimide thioether

adducts reveals greater ionization efficiency with derivatization by

NTBM relative to NTAM . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 EIE comparison of equimolar unlabeled free reduced thiols and NTBM-

labeled thiols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Correlation plots between the ion response enhancement and fold-change

in MV or pKa of sulfhydryl moiety, following maleimide derivatization

for five biological thiols with NTBM . . . . . . . . . . . . . . . . . . . 61

2.7 Normalized responses of thiol-NTBM products over time from the

reaction between reduced thiols and 100-fold excess of NTBM at 4 ◦C

in pH 5 buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8 Overlay of UV-VIS spectra collected for NTBM reagent in ACN to

assess short-term stability within a 36-day period . . . . . . . . . . . 65

2.9 EIE overlay of the large interfering background peak from cationic

fast-migrating TCEP-NTBM adduct masking low-abundance signals of

thiol-NTBM adducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.10 EIE overlay of low-abundance thiol-NTBM adducts and TIC showing

neutral DTT-NTBM migrating late as an EOF marker . . . . . . . . 75

2.11 Illustration of the protocol for plasma and protein preparation . . . . 77

2.12 Box-and-whisker plots of the distribution of average relative quantifica-

tions of protein-bound thiols as determined by 6 methods . . . . . . . 83

2.13 Depiction of sample configuration used in the current study for signal

pattern recognition by MSI-CE-MS . . . . . . . . . . . . . . . . . . . 91

2.14 EIE overlay of four of the detected protein-bound thiols derivatized

with NTBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xv



2.15 EIE overlay of detected underivatized thiols deconjugated from plasma

protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.16 Proposed candidate structure, g-glutamyl-S-(3-oxocyclohexyl)cysteinyl-

glycine, by MSC based on MS/MS data of g-GluCys-NTBM adduct . 97

2.17 Structures of Cys, Hcy, CysGly, g-GluCys, and GSH derivatized by

NTBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.18 Interpretation of MS/MS spectra for CysGly-NTBM adduct . . . . . 101

2.19 Proposed mechanism for the in-source elimination of C4H9 from NTBM

adduct as C4H8 in order to rationalize the neutral loss of 56.062 Da . 102

3.1 Workflow for untargeted and targeted metabolite profiling . . . . . . 109

3.2 Multivariate analyses of metabolite data from GC-MS . . . . . . . . . 115

3.3 Relationship between specific amino acids and HOMA-IR . . . . . . . 124

3.4 Relationship between specific amino acids and HbA1c . . . . . . . . . 125

3.5 ROC curves for the significant metabolites measured by CE-MS . . . 126

3.6 Schematic representation of tricarboxylic acid (TCA) cycle in subcuta-

neous adipose tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.7 Postprandial serum glucose and insulin responses following consumption

of the standardized meal in LH, MHO, and MUO individuals . . . . . 148

3.8 Amino acid and fatty acid composition of the standardized meal and

%PP for LH, MHO, and MUO . . . . . . . . . . . . . . . . . . . . . . 149

3.9 Mean %PP of plasma amino acid and derivatives for LH, MHO, and

MUO exhibiting significant differences between LH, MHO, and MUO 151

3.10 Mean %PP of serum fatty acids exhibiting significant differences between

LH, MHO, and MUO . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.1 Various MSI configurations used in the analytical workflow . . . . . . 177

xvi



4.2 Illustration of data workflow . . . . . . . . . . . . . . . . . . . . . . . 183

4.3 Examples of trends observed in subgroup comparison runs . . . . . . 186

4.4 Frequency histogram of the dilution quotients for a urine sample analy-

zed in both positive- and negative-ion modes . . . . . . . . . . . . . . 194

4.5 PCA 2D scores plot and 2D heat map of PQ normalized urine metabolite

data Pre- and Post-intervention . . . . . . . . . . . . . . . . . . . . . 195

4.6 Multi-level PLS-DA 2D scores plot and VIP ranking of postprandial

fold-change urinary metabolite responses . . . . . . . . . . . . . . . . 196

4.7 Box and whiskers plots for the top 6 metabolites (unknown BGS, iso-C4,

GSA, MLCD, Hci, and 3-MeHis) in discriminating between SOY, WHY,

and CHO treatment groups . . . . . . . . . . . . . . . . . . . . . . . 199

4.8 Scatter plot from DFA illustrating the discrimination of the three

treatment group centroids by DFs 1 and 2 . . . . . . . . . . . . . . . 203

4.9 Box and whiskers plots for the Pre- and Post- urinary levels of 3-MeHis

for CHO, SOY, and WHY treatment groups . . . . . . . . . . . . . . 209

4.10 MS/MS spectrum of an unknown doubly-charged anionic compound,

m/z 263.629 : 0.963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.11 MS/MS spectrum of GSA, m/z 176.067 : 0.878 . . . . . . . . . . . . . 214

4.12 Chemical structures of daidzein metabolites . . . . . . . . . . . . . . 223

4.13 Intestinal sulfation of a bacterial metabolite, 4-EP, to 4-EPS . . . . . 223

4.14 MS/MS spectrum of 4-EPS, m/z 201.023 : 1.008 . . . . . . . . . . . . 226

4.15 Correlation plots of average PQ vs. osmolality and average creatinine

response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

4.16 Correlation plot of PQ measured in negative-ion mode vs. PQ measured

in positive-ion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4.17 Plot of lowest Wilks’ L vs. subset size . . . . . . . . . . . . . . . . . . 241

xvii



List of Tables

1.1 Comparison of major analytical strategies used in metabolomics . . . 6

1.2 Summary of various operating modes in CE . . . . . . . . . . . . . . 8

1.3 Ionization techniques for interfacing CE to MS for analysis of LMW

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Types of ESI interfaces developed for interfacing CE to MS . . . . . . 15

1.5 Summary of non-parametric and parametric tests . . . . . . . . . . . 39

1.6 Comparison of non-parametric and parametric tests . . . . . . . . . . 40

2.1 Enhancement in relative ion response (normalized to internal standard)

and intensity of NTBM-adducts relative to NTAM-adducts . . . . . . 59

2.2 Summary of relative ion response and MV of free reduced thiols and

thiol-NTBM adducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Summary of pKa, m/z , and RMT of free reduced thiols and thiol-NTBM

adducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Relative ion responses of five thiol-NTBM adducts measured within a

week to assess short-term stability in a mixture stored at 4 ◦C . . . . 63

xviii



2.5 Comparison of ion responses of thiol-NTBM adducts prepared when

using a 9-month-old stock of NTBM in MeOH and a fresh stock of

NTBM in ACN, respectively, to assess the long-term stability of NTBM

reagent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Average relative peak areas (RPAs), relative peak heights (RPHs), and

fold-change in response (MeOH vs. ACN) of 35 plasma metabolite

features measured from 3 replicates of MeOH and ACN extractions . 72

2.7 Validation criteria for the analysis of NTBM-derivatized thiols . . . . 76

2.8 Average concentrations of protein-bound thiols in human plasma . . . 78

2.9 Comparison of mass LOD between various assays for LMW thiols . . 78

2.10 Comparison of mean concentrations of protein-bound thiols between

different methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.11 Comparison of percent protein-bound thiol composition between diffe-

rent methods, excluding g-GluCys . . . . . . . . . . . . . . . . . . . . 81

2.12 Summary of detected derivatized protein-bound thiols . . . . . . . . . 93

2.13 Summary of underivatized native protein-bound thiols . . . . . . . . . 93

2.14 Summary of relative ion abundances (%) in tandem mass spectra of

five thiol-NTBM standards at CID = 20 and 40 V . . . . . . . . . . . 99

3.1 Mean circulating serum metabolite concentrations . . . . . . . . . . . 118

3.2 Associations of select metabolites with adiposity and insulin sensitivity

traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.3 Subcutaneous adipose tissue gene expression related to the TCA cycle

pathway in MHO and MUO individuals . . . . . . . . . . . . . . . . . 129

3.4 Subcutaneous adipose tissue gene expression related to the BCAA

degradation pathway in MHO and MUO individuals . . . . . . . . . . 130

xix



3.5 Associations between amino acids and derivatives, and fatty acids, with

fasting and postprandial indices of insulin sensitivity . . . . . . . . . 154

3.6 Study population characteristics . . . . . . . . . . . . . . . . . . . . . 162

3.7 Mean circulating concentrations of amino acid and derivatives at fasting

and T120 min time points . . . . . . . . . . . . . . . . . . . . . . . . 163

3.8 Mean circulating concentrations of amino acid and derivatives at fasting

and T120 min time points (continued) . . . . . . . . . . . . . . . . . 164

3.9 Mean circulating concentrations of fatty acids at fasting and T120 min

time points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.10 Mean circulating concentrations of fatty acids at fasting and T120 min

time points (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.1 Top 20 metabolites based on non-parametric Kruskal-Wallis testing . 197

4.2 Top-ranking urinary metabolites with differential excretion between

SOY, WHY, and CHO groups after dietary intervention . . . . . . . . 200

4.3 Fold-change means, standard deviations, and structure matrix correla-

tion coefficients for top-ranking urinary metabolites . . . . . . . . . . 202

4.4 Significant metabolite correlations associated with top-ranked urinary

markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.5 Summary of soy-specific markers . . . . . . . . . . . . . . . . . . . . . 222

4.6 Baseline participant characteristics of WHY, SOY, and CHO groups . 234

4.7 Summary of 167 metabolites detected in urine . . . . . . . . . . . . . 235

4.8 Classification results from DFA based on fold-change levels of 6 top-

ranked urinary metabolites . . . . . . . . . . . . . . . . . . . . . . . . 242

4.9 Amino acid composition of whey and soy protein isolates . . . . . . . 243

xx



List of Acronyms & Abbreviations

–SH sulfhydryl . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

–SiOH silanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2D two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . 195

3-Cl-Tyr 3-chlorotyrosine . . . . . . . . . . . . . . . . . . . . . . . . 52

3-MeHis 3-methylhistidine . . . . . . . . . . . . . . . . . . . . . . . 45

3D three-dimensional . . . . . . . . . . . . . . . . . . . . . . . 54

4-EP 4-ethylphenol . . . . . . . . . . . . . . . . . . . . . . . . . 225

4-EPS 4-ethylphenyl sulfate . . . . . . . . . . . . . . . . . . . . . 45

4-MPS p-cresol sulfate (4-methylphenyl sulfate) . . . . . . . . . . . 224

AA amino acid . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Ace-K acesulfame potassium . . . . . . . . . . . . . . . . . . . . . 45

ACN acetonitrile, CH3CN . . . . . . . . . . . . . . . . . . . . . . 53

ADMA asymmetric dimethylarginine . . . . . . . . . . . . . . . . . 219

AGAT arginine:glycine amidinotransferase . . . . . . . . . . . . . . 213

a probability rate of a false positive or type I error . . . . . . 39

AM1 Austin Model 1 . . . . . . . . . . . . . . . . . . . . . . . . 59

ANOVA analysis of variance . . . . . . . . . . . . . . . . . . . . . . 29

APCI atmospheric pressure chemical ionization . . . . . . . . . . 13

APPI atmospheric pressure photoionization . . . . . . . . . . . . 13

xxi



ASA argininosuccinic acid . . . . . . . . . . . . . . . . . . . . . 212

Asp-His aspartyl-histidine . . . . . . . . . . . . . . . . . . . . . . . 204

AUC area under the curve . . . . . . . . . . . . . . . . . . . . . 126

BCAA branched-chain amino acid . . . . . . . . . . . . . . . . . . 121

BGE background electrolyte . . . . . . . . . . . . . . . . . . . . 9

BGS bile acid-glycine-sulphate conjugate . . . . . . . . . . . . . 196

BMI body mass index . . . . . . . . . . . . . . . . . . . . . . . . 22

BP blood pressure . . . . . . . . . . . . . . . . . . . . . . . . . 160

BQB w-bromoacetonylquinolinium bromide . . . . . . . . . . . . 51

C0 free carnitine . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C4H8 2-methylpropene . . . . . . . . . . . . . . . . . . . . . . . . 103

C4H9 tertiary butyl moiety . . . . . . . . . . . . . . . . . . . . . 103

CAT cysteine aminotransferase . . . . . . . . . . . . . . . . . . . 216

CE capillary electrophoresis . . . . . . . . . . . . . . . . . . . . 7

CEC capillary electrochromatography . . . . . . . . . . . . . . . 8

CEM chain ejection model . . . . . . . . . . . . . . . . . . . . . . 14

CGE capillary gel electrophoresis . . . . . . . . . . . . . . . . . . 8

CHO carbohydrate . . . . . . . . . . . . . . . . . . . . . . . . . . 172

CID collision-induced dissociation . . . . . . . . . . . . . . . . . 100

CIEF capillary isoelectric focusing . . . . . . . . . . . . . . . . . 8

CITP capillary isotachophoresis . . . . . . . . . . . . . . . . . . . 8

CKD chronic kidney disease . . . . . . . . . . . . . . . . . . . . . 231

CO carbon monoxide . . . . . . . . . . . . . . . . . . . . . . . 100

CoA coenzyme A . . . . . . . . . . . . . . . . . . . . . . . . . . 136

CPT1 carnitine palmitoyltransferase I (carnitine acyltransferase I) 207

CRF chronic renal failure . . . . . . . . . . . . . . . . . . . . . . 225

xxii



CRM charge residue model . . . . . . . . . . . . . . . . . . . . . 14

Crn creatinine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CV coefficient of variation . . . . . . . . . . . . . . . . . . . . . 178

CV-ANOVA cross-validated residuals analysis of variance . . . . . . . . 120

CVD cardiovascular disease . . . . . . . . . . . . . . . . . . . . . 141

Cys cysteine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Cys34 the free cysteine residue of human serum albumin . . . . . 67

CysGly cysteinylglycine . . . . . . . . . . . . . . . . . . . . . . . . 48

CZE capillary zone electrophoresis . . . . . . . . . . . . . . . . . 8

DA discriminant analysis . . . . . . . . . . . . . . . . . . . . . 33

DF discriminant function . . . . . . . . . . . . . . . . . . . . . 201

DFA discriminant function analysis . . . . . . . . . . . . . . . . 201

DHD dihydrodaidzein . . . . . . . . . . . . . . . . . . . . . . . . 222

DI deionized . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

DNA deoxyribonucleic acid . . . . . . . . . . . . . . . . . . . . . 49

DRA Diabetes Risk Assessment . . . . . . . . . . . . . . . . . . . 111

DTNB 5,5-dithio-bis2-nitrobenzoic acid, also known as Ellman’s

reagent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

DTT dithiothreitol . . . . . . . . . . . . . . . . . . . . . . . . . . 68

E electric field applied . . . . . . . . . . . . . . . . . . . . . . 11

EDTA ethylenediaminetetraacetic acid . . . . . . . . . . . . . . . 23

EE+ even-electron . . . . . . . . . . . . . . . . . . . . . . . . . . 102

EI electron impact . . . . . . . . . . . . . . . . . . . . . . . . 6

EIE extracted ion electropherogram . . . . . . . . . . . . . . . . 57

EOF electroosmotic flow . . . . . . . . . . . . . . . . . . . . . . 9

ε0 permittivity of vacuum . . . . . . . . . . . . . . . . . . . . 11

xxiii



εr dielectric constant . . . . . . . . . . . . . . . . . . . . . . . 11

ESI electrospray ionization . . . . . . . . . . . . . . . . . . . . 13

η viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

FA fatty acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

FDA Food and Drug Administration . . . . . . . . . . . . . . . . 229

FDR false discovery rate . . . . . . . . . . . . . . . . . . . . . . 41

FEM N -(2-ferrocene-ethyl)maleimide . . . . . . . . . . . . . . . . 51

FL fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . 50

FT-ICR Fourier-transform inductively coupled resonance . . . . . . 7

FWER family-wise error rate . . . . . . . . . . . . . . . . . . . . . 41

g-GluCys g-glutamyl-cysteine . . . . . . . . . . . . . . . . . . . . . . 48

GC gas chromatography . . . . . . . . . . . . . . . . . . . . . . 3

GFR glomerular filtration rate . . . . . . . . . . . . . . . . . . . 46

glog generalized logarithm . . . . . . . . . . . . . . . . . . . . . 29

Glu glutamic acid . . . . . . . . . . . . . . . . . . . . . . . . . 49

Gly glycine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

GSA guanidinosuccinic acid . . . . . . . . . . . . . . . . . . . . . 198

GSH glutathione . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

H2O water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

HbA1c glycated hemoglobin . . . . . . . . . . . . . . . . . . . . . . 108

HCA hierarchical cluster analysis . . . . . . . . . . . . . . . . . . 32

Hci homocitrulline . . . . . . . . . . . . . . . . . . . . . . . . . 174

HCl hydrochloric acid . . . . . . . . . . . . . . . . . . . . . . . 145

Hcy homocysteine . . . . . . . . . . . . . . . . . . . . . . . . . 48

HDL-c high-density lipoprotein cholesterol . . . . . . . . . . . . . . 112

HMDB Human Metabolome Database . . . . . . . . . . . . . . . . 95

xxiv



HOMA-IR homeostatic model assessment of insulin resistance . . . . . 108

HOMA%B homeostatic model assessment for b-cell function . . . . . . 160

HP-0321 hexamethoxyphosphazine . . . . . . . . . . . . . . . . . . . 175

HP-0921 hexakis(2,2,3,3-tetrafluoro-propoxy)phosphazine . . . . . . 175

HPC hydroxypropyl cellulose . . . . . . . . . . . . . . . . . . . . 8

HPLC high-performance liquid chromatography . . . . . . . . . . 11

HSA human serum albumin . . . . . . . . . . . . . . . . . . . . . 67

ID identification . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IDC identification confidence . . . . . . . . . . . . . . . . . . . . 239

IEM ion evaporation model . . . . . . . . . . . . . . . . . . . . . 14

IS internal standard . . . . . . . . . . . . . . . . . . . . . . . 52

iso-C4 isobutyrylcarnitine . . . . . . . . . . . . . . . . . . . . . . . 196

IT ion-trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

KCl potassium chloride . . . . . . . . . . . . . . . . . . . . . . . 146

KEGG Kyoto Encyclopedia of Genes and Genomes . . . . . . . . . 119

KM K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

LC liquid chromatography . . . . . . . . . . . . . . . . . . . . 7

LDL-c low-density lipoprotein cholesterol . . . . . . . . . . . . . . 112

LH lean healthy . . . . . . . . . . . . . . . . . . . . . . . . . . 108

LIF laser-induced fluorescence . . . . . . . . . . . . . . . . . . . 12

LMW low-molecular-weight . . . . . . . . . . . . . . . . . . . . . 13

LOD limit of detection . . . . . . . . . . . . . . . . . . . . . . . 78

LOESS locally weighted smoothed scatterplot . . . . . . . . . . . . 180

LV1 first latent variable, predictive component . . . . . . . . . . 114

LV2 second latent variable, orthogonal component . . . . . . . . 114

m/z mass-to-charge ratio . . . . . . . . . . . . . . . . . . . . . . 7

xxv



MANOVA multivariate analysis of variance . . . . . . . . . . . . . . . 41

MEKC micellar electrokinetic chromatography . . . . . . . . . . . 8

MeOH methanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

MESNA 2-mercaptoethane-sulfonate . . . . . . . . . . . . . . . . . . 52

Met methionine . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

MFE Molecular Feature Extractor . . . . . . . . . . . . . . . . . 88

MFG Molecular Formula Generation . . . . . . . . . . . . . . . . 89

MHO metabolically healthy obese . . . . . . . . . . . . . . . . . . 108

MLCD 3-mercaptolactate-cysteine-disulfide . . . . . . . . . . . . . 198

MPS myofibrillar protein synthesis . . . . . . . . . . . . . . . . . 170

MS mass spectrometry . . . . . . . . . . . . . . . . . . . . . . . 5

MS/MS tandem mass spectrometry . . . . . . . . . . . . . . . . . . 45

MSC Molecular Structure Correlator . . . . . . . . . . . . . . . . 89

MSI multisegment-injection . . . . . . . . . . . . . . . . . . . . 16

MST 3-mercaptopyruvate sulfurtransferase . . . . . . . . . . . . 216

MSTFA N -methyl-trimethylsilyl-trifluoroacetamide . . . . . . . . . 112

MTBE methyl-tert butyl ether . . . . . . . . . . . . . . . . . . . . 26

µep electrophoretic mobility . . . . . . . . . . . . . . . . . . . . 9

MUFA monounsaturated fatty acid . . . . . . . . . . . . . . . . . . 150

MUO metabolically unhealthy obese . . . . . . . . . . . . . . . . 108

MV molecular volume . . . . . . . . . . . . . . . . . . . . . . . 9

MW molecular weight . . . . . . . . . . . . . . . . . . . . . . . . 1

MWCNT multi-walled carbon nanotube . . . . . . . . . . . . . . . . 50

N2 nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

NaOH sodium hydroxide . . . . . . . . . . . . . . . . . . . . . . . 52

NH3 ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xxvi



NH4Ac ammonium acetate . . . . . . . . . . . . . . . . . . . . . . 52

NH4OH ammonium hydroxide . . . . . . . . . . . . . . . . . . . . . 145

NMR nuclear magnetic resonance spectroscopy . . . . . . . . . . 5

NMS 2-naphthalene(mono)sulfonate . . . . . . . . . . . . . . . . 174

NOS nitric oxide synthases . . . . . . . . . . . . . . . . . . . . . 213

NS nonsignificant . . . . . . . . . . . . . . . . . . . . . . . . . 123

NTAM N -[2-(trimethylammonium)-ethyl]maleimide . . . . . . . . . 48

NTBM N-tert-butylmaleimide . . . . . . . . . . . . . . . . . . . . . 44

O-DMA O-desmethylangolensin . . . . . . . . . . . . . . . . . . . . 222

OGTT oral glucose tolerance test . . . . . . . . . . . . . . . . . . . 142

OPLS orthogonal projection to latent structures . . . . . . . . . . 33

OSC orthogonal signal correction . . . . . . . . . . . . . . . . . . 33

OTC ornithine transcarbamylase . . . . . . . . . . . . . . . . . . 213

PAA polyacrylamide gel . . . . . . . . . . . . . . . . . . . . . . . 8

PC principal component . . . . . . . . . . . . . . . . . . . . . . 31

PCA principle component analysis . . . . . . . . . . . . . . . . . 31

PEG polyethylene glycol . . . . . . . . . . . . . . . . . . . . . . 8

%CV percent coefficient of variation . . . . . . . . . . . . . . . . 62

%PP percent postprandial change . . . . . . . . . . . . . . . . . 145

%RSD percent relative standard deviation . . . . . . . . . . . . . . 71

pH potential of hydrogen . . . . . . . . . . . . . . . . . . . . . 9

pKa logarithmic acid dissociation constant . . . . . . . . . . . . 9

PLS partial least squares . . . . . . . . . . . . . . . . . . . . . . 33

Post the morning following the intervention period . . . . . . . . 173

PQ probabilistic quotient . . . . . . . . . . . . . . . . . . . . . 179

PQN probabilistic quotient normalization . . . . . . . . . . . . . 27

xxvii



Pre the morning prior to start of intervention . . . . . . . . . . 173

PRMT protein-arginine methyltransferase . . . . . . . . . . . . . . 219

PUFA polyunsaturated fatty acid . . . . . . . . . . . . . . . . . . 150

PVA polyvinyl alchohol . . . . . . . . . . . . . . . . . . . . . . . 8

Q charge state . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Q-Q quantile-quantile . . . . . . . . . . . . . . . . . . . . . . . . 40

Q-TOF quadrupole-time-of-flight . . . . . . . . . . . . . . . . . . . 88

QC quality control . . . . . . . . . . . . . . . . . . . . . . . . . 27

RF random forest . . . . . . . . . . . . . . . . . . . . . . . . . 37

RMT relative migration time . . . . . . . . . . . . . . . . . . . . 92

RNA ribonucleic acid . . . . . . . . . . . . . . . . . . . . . . . . 3

RNS reactive nitrogen species . . . . . . . . . . . . . . . . . . . 67

ROC receiver operating characteristic . . . . . . . . . . . . . . . 117

ROS reactive oxygen species . . . . . . . . . . . . . . . . . . . . 67

RPA relative peak area . . . . . . . . . . . . . . . . . . . . . . . 57

RPH relative peak height . . . . . . . . . . . . . . . . . . . . . . 71

SAA sulfur amino acid . . . . . . . . . . . . . . . . . . . . . . . 217

SAT subcutaneous adipose tissue . . . . . . . . . . . . . . . . . 108

SDMA symmetric dimethylarginine . . . . . . . . . . . . . . . . . 204

SEM standard error of the mean . . . . . . . . . . . . . . . . . . 160

SFA saturated fatty acid . . . . . . . . . . . . . . . . . . . . . . 150

SNR signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . 88

SOP standard operating procedure . . . . . . . . . . . . . . . . . 23

SOY soy protein . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

SPE solid-phase extraction . . . . . . . . . . . . . . . . . . . . . 26

SSI sonic spray ionization . . . . . . . . . . . . . . . . . . . . . 13

xxviii



SUS shared and unique structures . . . . . . . . . . . . . . . . . 114

T120 postprandial time point, corresponding to 120 min following

dietary intervention . . . . . . . . . . . . . . . . . . . . . . 144

T2D type 2 diabetes . . . . . . . . . . . . . . . . . . . . . . . . . 109

TCA tricarboxylic acid . . . . . . . . . . . . . . . . . . . . . . . 45

TCEP tris(2-carboxyethyl)phosphine hydrochloride . . . . . . . . 68

TG triglycerides . . . . . . . . . . . . . . . . . . . . . . . . . . 112

TIC total ion chromatogram . . . . . . . . . . . . . . . . . . . . 114

TMCS trimethylsilyl chloride . . . . . . . . . . . . . . . . . . . . . 112

TML trimethyllysine . . . . . . . . . . . . . . . . . . . . . . . . . 204

TOF time-of-flight . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Total-c total cholesterol . . . . . . . . . . . . . . . . . . . . . . . . 112

UMDB Urine Metabolome Database . . . . . . . . . . . . . . . . . 206

UPLC ultra-performance liquid chromatography . . . . . . . . . . 86

UV ultraviolet . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vEOF velocity of the electroosmotic flow . . . . . . . . . . . . . . 11

Vcap capillary voltage . . . . . . . . . . . . . . . . . . . . . . . . 88

VIP variable importance to the projection . . . . . . . . . . . . 35

VIS visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

WHY whey protein . . . . . . . . . . . . . . . . . . . . . . . . . . 172

ζ zeta potential . . . . . . . . . . . . . . . . . . . . . . . . . 11

xxix



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

Chapter 1

Defining Metabolomics and its

Role in Health and Nutrition

1.1 Overview of Metabolomics

In simplest terms, metabolomics may be defined as the comprehensive assessment of

endogenous or exogenous metabolic products (‘metabolites’) with molecular weight

(MW) of up to 1.5 kDa in a biological system, including a single cell, tissue extract,

biofluid, or fecal matter (Matysik et al., 2016; Tebani et al., 2016; Wishart, 2005).

Metabolites represent the downstream end-products of a complex array of metabolic

processes that are closely associated with phenotype. Additionally, metabolites

are tightly regulated by proteins, encoded by the genome, that are susceptible to

modifications by the presence of pathophysiological conditions, as well as from the

exposure to various external stressors (e.g., environment, drug, and diet) (Deidda

et al., 2015; Sébédio and Brennan, 2014; Spratlin et al., 2009; Wishart, 2016). As a

result, metabolomics provides a snapshot in time of the current physiological state of

an organism (Hoerr and Vogel, 2013; Peng et al., 2015). When combining metabolite
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Figure 1.1: An overview of the four major “omics” fields, indicating the flow of biological information
from genomics to metabolomics via biochemical signaling. Each “omics” level of systems biology is
influenced by lifestyle and environmental factors, leading to downstream products (i.e., metabolites)
of cellular regulatory processes. Metabolites can in turn, modulate the activity of proteins and
regulate gene expression upstream in a feedback loop through protein modification. Metabolomics,
being the final step in the omics cascade, is most closely related to the biological phenotype.

profiling with multivariate statistical methods and robust experimental designs, deeper

insight into a biological system’s underlying health status and condition can be

obtained, and the discovery of novel predictive, prognostic, or diagnostic markers of

disease may be revealed. As a result, metabolomics has become an invaluable tool

in clinical medicine for the early screening and detection of a wide range of human

disorders, including monitoring of treatment responses to therapeutic interventions

and understanding of the mechanisms of disease pathogenesis (Gowda et al., 2008).

The latter are examples of metabonomics, a subfield of metabolomics that is concerned

with the multiparametric quantitative modeling of biological responses to genetic

manipulation or biological stimuli, such as diet, drugs, disease, or environmental

stressors (Nicholson and Lindon, 2008; Ramsden, 2009).
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The concept of metabolomics was first introduced in the work by Pauling et al. in

1971, in which over 500 organic compounds in human breath and urine vapour were

quantified by gas chromatography (GC). However, the term ‘metabolome’ was first

coined in 1998 by Oliver et al., and was used to refer to the set of metabolites produced

by an organism mainly as a way to elucidate the function of unknown genes in support

of expanding genomic sequencing projects. Shortly afterwards, ‘metabolomics’ rapidly

established itself to be an important functional genomics tool and the newest member of

the family of holistic “-omics” technologies in systems biology, which include genomics

(analysis of genes), transcriptomics (analysis of transcripts: messenger and functional

ribonucleic acids (RNAs), and proteomics (analysis of proteins) (Demetrowitsch and

Schwarz, 2014) (Figure 1.1). Even after its debut 20 years ago, metabolomics is

still quickly evolving in terms of technological development for biological/biomedical

applications and continues to be regarded as a rapidly emerging field while addressing

major technical hurdles, including unknown metabolite identification (Clish, 2015;

Wishart, 2016). Ever since its introduction to the scientific community in 1998,

the field of metabolomics has generated nothing short of an astonishing upsurge in

publications, which has only been growing at an exponential rate, year after year

(Figure 1.2). Metabolomics is increasingly used in diverse applications of translational

research, including the monitoring of organ transplants (Wishart, 2005), development

of drugs (Wishart, 2016); understanding metabolism of drugs and xenobiotics (Das

et al., 2016), outcome prediction of drug interventions (‘pharmacometabolomics’)

(Burt and Nandal, 2016), assessment of exposure to the environment, toxins, and

contaminants (‘exposomics’) (Johnson et al., 2017; Lankadurai et al., 2013; Wagner

et al., 2017), and monitoring of exercise interventions (Bally et al., 2017; Duft et al.,

2017; Kuehnbaum et al., 2015; Muhsen Ali et al., 2016), as well as dietary interventions

(Badoud et al., 2015a; Brennan, 2013; Gibbons and Brennan, 2017; Hanhineva, 2015;
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Figure 1.2: Representation of the number of published metabolomics journal articles and comparison of
the number of MS- and NMR-based metabolomics publications from 2000 to 2017 when using keywords
“metabolomics,” “mass spectrometry metabolomics,” and “NMR metabolomics,” respectively, in Web
of Science search.

Hector et al., 2015; Vázquez-Fresno et al., 2015).

Metabolomics studies may be conducted in a targeted or untargeted manner (Begou

et al., 2017; Wang et al., 2010). Targeted approaches are hypothesis-driven, meaning

that they aim to address particular biological questions or validate critical pathways

by selectively quantifying a specific set of known and well-annotated compounds

related to the biochemical pathway(s) in question (Dudley et al., 2010; Roberts et al.,

2012; Vinaixa et al., 2012; Wang et al., 2010). In contrast, untargeted methods are

hypothesis-free and aim to generate new hypothesis by providing a more universal

and global characterization of a large number of known and unknown metabolites

in an unbiased manner (Alonso et al., 2015; Begou et al., 2017; Horgan and Kenny,

2011; Schrimpe-Rutledge et al., 2016). Due to the lack of pre-specified hypothesis,

untargeted approaches are often referred to as ‘top-down’ methods (Alonso et al.,
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2015), in which the analyst aims to maximize the number of detected metabolites

for revealing new insights into biological mechanisms (Patti et al., 2012) and for

discovering unexpected metabolite changes in terms of relative concentrations, in

response to the manipulation of a biological system’s condition (Newgard, 2017).

However, recently, metabolomics studies are also beginning to explore the merging of

targeted (hypothesis-testing) and untargeted (hypothesis-generating) approaches in

order to independently validate known metabolites or pathways while also revealing

unknown and poorly understood processes associated with complex human disorders

(Cajka and Fiehn, 2016).

1.2 Instrumental Methods in Metabolomics

Technological advancements in instrument sensitivity, selectivity, and throughput

have resulted in the resolution and efficient detection of hundreds, or thousands, of

metabolites simultaneously – which is still only a small fraction of the approximately

114 000 detectable metabolites that the human body is believed to contain (Wishart

et al., 2018). Owing to the wide ranges of chemical complexity and metabolite

concentrations, there is no single analytical platform that can characterize the human

metabolome in its entirety (Zhang et al., 2012a). Currently, mass spectrometry (MS)

and nuclear magnetic resonance spectroscopy (NMR) are the leading technologies in

metabolomics research (Markley et al., 2017). Complementary to each other, each

technology has its own strengths and weaknesses, and may be optimally selected based

on the goal of the study and the chemical composition of the metabolites of interest

(Patti, 2011). Of course, using a combination of platforms enables greater coverage of

various metabolite classes and sample types (Bouatra et al., 2013; Psychogios et al.,

2011). Although NMR is recognized as the gold standard in metabolite structural
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Table 1.1: Comparison of major analytical strategies used in metabolomics.

NMR GC-MS LC-MS CE-MS

Applicability:
Metabolite
Class &
Sample Type

• Non-polar and
polar metabolites

• Ideal for biofluids,
but also suitable
for tissue/cell
extracts and
tissue samples

• Non-polar and
thermally stable
metabolites

• Ideal for volatile
organics/head-
space
analysis

• Non-polar and
polar metabolites

• Ideal for biofluids
and tissue/cell
extracts

• Polar and ionic
metabolites

• Ideal for biofluids
and tissue/cell
extracts

Strengths • High sample
throughput

• Minimal sample
preparation

• Very robust

• Non-destructive

• Excellent
reproducibility

• Qualitative
identification

• Absolute
quantification

• High separation
efficiency/peak
capacity by
GC×GC

• Excellent
reproducibility

• Moderate sample
volumes: <0.2 mL

• Good sensitivity

• Extensive electron
impact (EI)-MS
library for
identification

• High separation
efficiency with
new column
technology

• Complementary
separation
mechanisms

• Low sample
volumes:
10–100 µL

• Excellent
sensitivity

• Flexibility in
sample
throughput
(low/high) as
needed

• Minimal sample
preparation

• High separation
efficiency

• Very low sample
injection volumes:
1–20 nL∗

• Nearly
non-destructive

• Minimal solvent
consumption/low
operating costs

• Signal pattern
recognition with
quality assurance†

Weaknesses • Large sample
volumes: <0.5 mL

• low sensitivity
(LOD = 1 µm)

• Expensive
infrastructure &
operation

• Low sample
throughput due to
long total analysis
times with
temperature
programs

• Complicated
sample workup
and chemical
derivatization for
polar metabolites

• Low sample
throughput due to
long total analysis
times with
gradient elution

• Heavy
consumption of
solvents

• Long-term system
drift and column
batch variability

• Poor robustness
with few
long-term
validation studies

• Poor
migration-time
precision

• Poor
concentration
sensitivity

∗ Current instrumentation technology requires 20 µL of sample for nL sample withdrawal for analysis.
† Method developed by DiBattista et al. (2017).
References: Boizard et al. (2016); Demetrowitsch and Schwarz (2014); Emwas (2015); Gomez-Casati et al. (2013);
Gowda and Djukovic (2014); Kuehnbaum et al. (2013); Scalbert et al. (2009); Wishart (2016); Zhang et al.
(2012a).
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elucidation (Lei et al., 2011), it continues to have lower sensitivity when compared

to modern MS, despite significant and continued improvements in the sensitivity of

NMR based on higher magnetic field strengths and cyroprobes for noise reduction

(Emwas, 2015). On the other hand, MS is known for its superior sensitivity and

high mass accuracy when using modern time-of-flight (TOF), Fourier-transform

inductively coupled resonance (FT-ICR), or Orbitrap mass analyzers, the latter of

which was recently shown to achieve sub-ppm detection (Weidt et al., 2016). When

comparing the prevalence of MS and NMR in the metabolomics literature, it is evident

that MS progressively dominates the field of metabolomics (Figure 1.2). To reduce

interferences and enhance selectivity, MS is often coupled to various high efficiency

separation techniques, including GC, liquid chromatography (LC), and capillary

electrophoresis (CE). Furthermore, the use of separation methods provides additional

information on elution/migration time aside from accurate mass (i.e., mass-to-charge

ratio (m/z)), which is beneficial to metabolite identification, as recommended by the

Metabolomics Standards Initiative (Dunn et al., 2013). The major advantages and

disadvantages of the main instrumental platforms in metabolomics are summarized

in Table 1.1. While GC and LC are the most widely used separation technologies in

metabolomics (Wishart, 2016), recent advances in CE technology development are

becoming increasingly recognized as important tools in metabolomic analysis (Begou

et al., 2017; Kuehnbaum et al., 2013; Ramautar et al., 2013).

1.3 Principles of CE

First introduced in 1981 by Jorgenson and Lukacs, CE is a high efficiency microscale

separation technique based on the differential electrophoretic mobilities of ionic solutes

within a narrow (10–100 µm internal diameter; 375 µm outer diameter; 10–100 cm
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Table 1.2: Summary of various operating modes in CE.

CE Operating Modes Analysis Separation media Reference

Capillary Zone
Electrophoresis (CZE)

Ionic and charged
compounds; most
commonly used

Background electrolyte:

• formate, acetate, ammonium
ions (MS detection);

• phosphate or borate buffers
(UV detection)

García et al. (2017);
Bonvin et al. (2012)

Micellar Electrokinetic
Chomratography
(MEKC)

Ionic and neutral
analytes

Electrolyte solution containing
surfactant (sodium dodecyl
sulfate) above critical micellar
concentration

Hancu et al. (2013)

Capillary Gel
Electrophoresis (CGE)

Proteins and nucleic
acids

Sieving/coating matrix:

• polyacrylamide gel (PAA);

• polyethylene glycol (PEG);

• hydroxypropyl cellulose
(HPC);

• polyvinyl alchohol (PVA)

Zhu et al. (2012);
Nakazumi and Hara
(2017)

Capillary Isoelectric
Focusing (CIEF)

Protein/peptide
separation based on
isoelectric point

Immobilized pH gradient gel
(PAA, PVA, cellulose derivative
gel) with ampholyte solution

Silvertand et al.
(2008)

Capillary Electrochro-
matography
(CEC)

Ionic and neutral
analytes

Immobilized stationary phase
and background electrolyte
solution

Dittmann and
Rozing (1998)

Capillary
Isotachophoresis
(CITP)

Analysis of cations or
anions separately

Heterogenous buffer system:
leading and terminating
electrolytes

Udseth et al. (1989)
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length) buffer-filled fused silica capillary in the presence of a constant electric field

(Vaidyanathan et al., 2005). While several separation modes of CE exist (Table 1.2),

for a wide range of solutes (e.g., metals, metabolites, nucleic acids, proteins, intact cells,

etc.) including CGE, MEKC, CIEF, and CITP, CZE is one of the most commonly

used modes for small molecule analysis in metabolomic studies. There are two distinct

electrokinetic processes that occur during CE separations, namely the electrophoretic

mobility (µep) of discrete solute ions and the electroosmotic flow (EOF) of the bulk

solution. Each species possesses a characteristic µep, or migration velocity proportional

to the electric field, for a given buffer solution and temperature. The mobility of

each species is determined by dielectric and hydrodynamic frictional forces, which

are dependent on the effective charge and hydrodynamic radius of the species, as

described by the Hubbard-Onsager model (Hubbard and Onsager, 1977). As a result,

the µep of an ion represents a characteristic physicochemical property of an ion that

may be predicted for defined experimental conditions based on the ion’s valence charge

(as determined by its logarithmic acid dissociation constant (pKa) and given buffer

potential of hydrogen (pH)), and molecular volume (MV) (Lee et al., 2007).

Most CE applications use an uncoated/bare fused silica capillary, in which acidic

silanol (–SiOH) groups are exposed along the capillary wall and readily dissociate

and ionize upon contact with an aqueous background electrolyte (BGE) (Kok, 2000).

Depending on the purity of the silica material and heterogeneity of the silica surface,

the pKa of the –SiOH groups have been reported in the literature to vary between 5.3

and 6.3 (Cazes, 2001; Landers, 1997). Thus, for buffer solutions of pH < 3, the –SiOH

groups will be only partially dissociated, while at pH > 7, the capillary wall will be

completely ionized and negatively charged (Cazes, 2001). The presence of ionized

–SiO– along the inner wall forms an electrostatic layer of positive counter-ions from the

solution, thereby, generating an electric double layer and a potential difference (known
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Figure 1.3: (Left) Deprotonated silanol groups along the capillary wall lead to the formation of an
electric double layer and a zeta potential, which creates electroosmotic flow of the bulk solution
towards the cathode upon application of an electric field. The blue line indicates the decrease in the
zeta potential as distance from the capillary wall is increased (Dziubakiewicz and Buszewski, 2013).
(Right) Effect of pH on EOF and percent ionization of silanol groups along capillary wall (adapted
from Whatley (2001)).

10



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

as zeta potential) close to the capillary inner wall (Frazier et al., 2000). According

to Stern’s model (Stern, 1924), the double layer is comprised of a rigid, compact

layer and a diffuse layer, which, upon application of voltage, creates the bulk flow, or

EOF, of the electrolyte buffer towards the cathode by movement of the cations from

the diffuse layer carrying water molecules (Landers, 1997). Therefore, as buffer pH

increases, the ionization along the capillary walls increases, which leads to a greater

zeta potential, thereby, enhancing the magnitude of the EOF (Figure 1.3). On the

contrary, when buffer solutions of high ionic strength are used, the thickness of the

double layer becomes decreased, thereby decreasing the zeta potential and in turn,

suppressing the EOF (Dziubakiewicz and Buszewski, 2013). Based on Smoluchowski’s

equation (Smoluchowski, 1905), the velocity of the electroosmotic flow (vEOF ) depends

on the µep and the electric field applied (E) and is expressed in Equation (1.1) below:

vEOF = µepE = −
(
ε0εrζ

η

)
E (1.1)

where ε0 is the permittivity of vacuum, εr is the dielectric constant of the solution, ζ

is the zeta potential, and η is the viscosity of the solution. From Equation (1.1), it

can be seen that the EOF is also dependent on the viscosity of the buffer solution,

which is temperature-dependent, such that faster EOFs are favoured with solutions

of lower viscosity (at elevated temperatures), lower ionic strength, and higher pH –

which all lead to higher zeta potential. As a result, the EOF is highly dependent on

both surface properties of the capillary and buffer properties of the solution, which

can contribute large variations in apparent migration times in CE.

Since EOF is charge-driven, the EOF flow across a narrow capillary is uniform,

thereby, resulting in a flat flow profile in CE. This is in contrast to the parabolic laminar

flow seen in high-performance liquid chromatography (HPLC), which is driven by an
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applied pressure from an external pump. The key advantage of the flat flow profile

is the reduction of band broadening, which allows for greater separation efficiencies

to be possible in CE (Frazier et al., 2000). Under most operating conditions when

the flow of the EOF is greater than that of the individual ions originating from the

sample injected into the buffer, all species (cations, neutrals, and anions) migrate

towards the cathode, with differences in their electrophoretic mobilities allowing for

their separation through time (Vaidyanathan et al., 2005).

1.4 Interfacing CE to MS

While CE was initially considered an alternative to gel electrophoresis or LC in the

early 80s, it has become an increasingly used microseparation technique over time

in forensic, environmental, and bioanalytical applications due to its high separation

efficiency, tuneable selectivity and low operation costs for analysis of clinically relevant

biomolecules, including chiral drugs, metals, metabolites, protein, and nucleic acids

(García et al., 2017; Ramos-Payán et al., 2018). The major evolutionary turning

point of CE was its successful coupling to MS-based detection methods in the late

1980s to early 1990s which was complementary to traditional optical detectors based

on ultraviolet (UV) absorbance and laser-induced fluorescence (LIF) detection, as

it offered greater selectivity for resolution and identification of analytes in complex

biological samples for the first time (Johansson et al., 1991; Mück and Henion, 1989;

Smith et al., 1989; Thibault et al., 1991). The coupling of CE to MS allowed for

analytes within solution to first be separated in time based on their effective charge-to-

size ratio in CE prior to orthogonal separation in the gas-phase based on their m/z by

MS. Because CE-MS is particularly adapted for the analysis of hydrophilic/charged

compounds in aqueous buffer solutions (although non-polar and neutral organic
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Table 1.3: Ionization techniques for interfacing CE to MS for analysis of LMW species.

CE-MS Ionization Mechanism Comments ReferenceTechniques

Electrospray ioni-
zation (ESI)

High voltage, corona discharge,
heated nitrogen

Most commonly used; available
in sheathless, sheath-liquid and
liquid-junction interfaces

Hommerson
et al. (2011)

Sonic spray ioniza-
tion (SSI)

Nebulizer nitrogen gas flow close
to sonic speed

Band-broadening and loss of re-
solution due to siphoning effect
at capillary outlet

Hirabayashi
et al. (1994)

Atmospheric pres-
sure chemical ioni-
zation (APCI)

Gas-phase ion-molecule reacti-
ons with reagent ions (formed
by collision of corona-discharged
N+•

2 and N+•
4 with vapour mole-

cules, ammonia and methanol)

Better compatibility with non-
volatile background electrolytes
than spray techniques

Takada et al.
(1995a);
Takada et al.
(1995b)

Atmospheric pres-
sure photoioniza-
tion (APPI)

Photoionization by vacuum UV
photons (10.0–10.6 eV), emitted
by gas-discharge lamp

Analyte signal intensities may
be enhanced with addition of a
dopant (e.g., acetone, toluene)
to the sheath liquid

Nilsson et al.
(2003)

compounds can also be analyzed by CE-MS in certain aqueous/non-aqueous buffer

systems (de Oliveira et al., 2014; Ding and Fritz, 1998; Vaher et al., 2001)), it provides

complementary selectivity to reversed-phase LC-MS (Ramautar et al., 2013). As

electrospray ionization (ESI) led to the first successful coupling of CE to MS (Olivares

et al., 1987), it has since seen significant progress in interface design, sensitivity,

robustness, and user-friendliness. Despite ESI continuing to be the most widely used

ion source, other ionization techniques have also been developed over the years for

the analysis of low-molecular-weight (LMW) species by CE-MS, which are briefly

summarized in Table 1.3.

ESI is a soft ionization technique, developed by Yamashita and Fenn (1984), in

which a fine aerosol of charged liquid droplets is generated from the needle tip, with

the assistance of coaxial nebulizer gas flow, in the presence of a strong electrical

potential of several kV, as a result of electrostatic repulsion (Konermann et al., 2013).

As droplets become smaller with solvent evaporation, the charge density in the droplet

13



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

increases until electrostatic repulsion forces overcome the liquid surface tension. This

results in a Coulombic burst or explosion of the droplet, in which smaller charged

droplets are formed. The subsequent formation of gas-phase ions may be explained

by three different mechanisms, depending on the analyte type. According to the

ion evaporation model (IEM) (Iribarne and Thomson, 1976), the ejection of LMW

ions (i.e., metabolites) from the droplet surface into the gas phase occurs as a result

of strong Coulombic repulsions when the droplet radius becomes sufficiently small.

Alternatively, the charge residue model (CRM) (Dole et al., 1968) explains that gaseous

ions are formed through repeated Coulombic explosions, until a droplet contains only

a single molecule of charged analyte. Large globular proteins are thought to be

released into the gas phase via this route (Iavarone and Williams, 2003; Kebarle and

Verkerk, 2009). Lastly, the chain ejection model (CEM) has recently been proposed

by Konermann et al. (2013) to be a viable mechanism for the ejection of unfolded

proteins or disordered polymers following molecular dynamics simulations.

Due to the low flow rates (nL/min) required by CE, many commercial ESI sources

developed for LC systems, which have flow rates of several µL/min, were initially

incompatible for coupling CE to MS (Bonvin et al., 2012). Today, ESI sources compa-

tible with CE are available, either via modifications of existing sources or through

the fabrication of new CE-dedicated sources, which permit the stable formation of

droplet ions in the nL/min range using either coaxial sheath-liquid or sheathless

interfaces (García et al., 2017) (Table 1.4). Although coaxial sheath-liquid interfaces

generally result in loss of sensitivity when compared to sheathless interfaces due to

post-capillary dilution effects by the sheath liquid, the coaxial sheath-liquid interface

continues to be the most popular CE-MS interface due to its versatility and high

robustness. ESI-CE-MS has also seen recent progress in miniaturization (e.g., microf-

luidic CE), on-line microextraction techniques, various capillary coatings for different
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Table 1.4: Types of ESI interfaces developed for interfacing CE to MS.

ESI interfaces Configuration Reference

Coaxial
sheath-flow
interface

Nebulizing gas and sheath liquid (1–10 µL/min)
delivered in concentric tubes orthogonal to MS
inlet; most common interface
Advantages: Robust and high spray-stability
Disadvantages: Sheath liquid dilutes CE effluent
and lowers sensitivity

Bonvin et al. (2012);
Smith et al. (1988a);
Smith et al. (1988b);

Liquid-junction
interface

Make-up liquid present at T-junction of separation
capillary and metal transfer capillary
Advantages: No dilution effect by sheath liquid
Disadvantages: Difficult to align CE capillary and
spray tip; Improper adjustment of make-up liquid
flow rate may can result in dead volume effects at
junction

Cai and Henion (1995);
Pleasance et al. (1992);
Lee et al. (1988);
Lee et al. (1989)

Sheathless
interface

(a) Conductive material deposited at tapered tip
of separation capillary or use of junction with con-
ductive tip to achieve electrical contact; (b) elec-
trode wire inserted into CE capillary outlet or
through a drilled hole; (c) split flow of CE efflu-
ent through drilled hole or ion diffusion through
a porous, etched capillary wall, into coaxial metal
sleeve; (d) direct contact between CE effluent and
metal sleeve via junction
Advantages: No dilution or dead volume effects
enhances sensitivity; maintains electrophoretic flow
rate of few nL/min
Disadvantages: Time-consuming, complex fabrica-
tion of delicate junction and miniaturized parts can
be hard to reproduce; difficulty maintaining stable
spray with low flow rates

Bonvin et al. (2012);
Maxwell and Chen (2008)

Low sheath-flow
(low-dilution)
interface

(a) Separation capillary and make-up liquid capil-
lary inserted into tapered emitter tip allowing for
mixing of effluents at needle tip micro-vial region;
(b) Separation capillary inserted into beveled stain-
less steel needle with T-union allowing for delivery
of a spray-stabilizing modifier liquid
Advantages: Low flow rate (<1 µL/min); dilution
effects minimized; stable spray achieved with be-
veled tip; chemical modifier may also be added to
stabilize flow
Disadvantages: Requires careful optimization of
composition and flow rate of chemical modifier; la-
minar flow occurs in micro-vial region between end
of capillary and inner wall of beveled tip

Liu et al. (2005);
Maxwell et al. (2010);
Zhong et al. (2011)
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classes of analytes, single-cell metabolomic studies, sample throughput enhancement

with multisegment-injection (MSI), as well as, implementation in two-dimensional

separation techniques with high peak capacity (Bonvin et al., 2012; Kohl et al., 2015;

Kuehnbaum et al., 2013; Onjiko et al., 2017; Ramos-Payán et al., 2018). Recently,

Soga et al. (2009) revealed significant sensitivity improvement of up to 63-fold in the

analysis of anionic metabolites with the use of a platinum ESI spray needle over the

conventional stainless steel needle with improved long-term robustness. As a result of

these technological developments, CE-MS has been gaining recognition as a versatile

and robust separation tool in clinical metabolomic studies (Ramautar, 2016; Zhang

et al., 2017), as well as in food analysis and nutritional research (García et al., 2017;

Ramos-Payán et al., 2018). In fact, CE-MS was recently used for the first time in

a large-scale and long-term epidemiological metabolomics study, which involved the

analysis of more than 10 000 plasma samples by Harada et al. (2018).

1.5 Metabolomics in Nutrition and Dietary Inter-

vention Studies

In the past few decades, the composition of the modern diet has evolved to become

‘Westernized’, in which the consumption of red meat, high-fat foods, and processed

sugars has greatly increased (Oriach et al., 2016). Combining this diet with sedentary

lifestyles, obesity has become “the disease” or “the greatest epidemic of the 21st century”

(Pêgo-Fernandes et al., 2011; Rössner, 2002), in which there are currently greater than

2 billion adults and children worldwide who are overweight or obese (The GBD 2015

Obesity Collaborators, 2017). Because nutrition impacts metabolism, oxidation and

inflammation, which in turn, influence health or disease status, metabolomics has
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recently been found to be a powerful implement for:

1. the determination of the complex metabolic effects of dietary components,

nutrients, and foods in the human metabolome (Badimon et al., 2017; Khakimov

et al., 2016; Pellis et al., 2012; Ryan et al., 2013; Scalbert et al., 2009);

2. the profiling of the food metabolome (‘food-omics’) and biomarkers of dietary

exposure and consumption in both controlled feeding studies and large epide-

miological studies involving free-living populations (Astarita and Langridge,

2013; Bhupathiraju and Hu, 2017; Claus, 2014; Guertin et al., 2014; Hanhineva,

2015; Lloyd et al., 2013; O’Gorman and Brennan, 2017; O’Gorman et al., 2013;

O’Sullivan et al., 2011; Pallister et al., 2016; Ryan et al., 2013);

3. the characterization of health- and composition-altering chemical modifications

in food resulting from various methods of food processing and preparation

(Astarita and Langridge, 2013; Barnes et al., 2013; Beleggia et al., 2011; Dixon

et al., 2006; Heuberger et al., 2010);

4. the identification of unique metabolic profiles (‘metabotypes’) that result in

differential responses to dietary interventions (Brennan, 2017; de Roos and

Brennan, 2017; Riedl et al., 2017);

5. the monitoring of treatment and metabolic outcomes with various dietary and

nutritional interventions (Astarita and Langridge, 2013; Badoud et al., 2015a;

Nicholson et al., 2012; Poesen et al., 2015; Vázquez-Fresno et al., 2015); and

6. the improved assessment of dietary patterns and subject compliance in nutritio-

nal interventions, as compared to self-reported food frequency questionnaires

(Andersen et al., 2014; Brennan, 2017; Guasch-Ferré et al., 2018).
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The application of metabolomics in nutrition research and dietary intervention studies

is illustrated in Figure 1.4 and allows for better understanding of the metabolic

mechanisms of diet and nutrients in health and disease (Astarita and Langridge, 2013;

Badimon et al., 2017; Scalbert et al., 2009). The nutritional effects of diet on health are

typically studied through observational (epidemiological) studies and interventional

studies (Sébédio and Brennan, 2014). While epidemiological studies generally involve

the cross-sectional study of a large population involving hundreds of individuals,

dietary intervention studies involve a smaller number of participants in a controlled

environment, in which food intake and nutrient content are controlled throughout

the study duration (Sébédio and Brennan, 2014). Due to the high operating costs,

dietary intervention studies are limited to a small number of participants, in which

the accuracy of results is dependent on the compliance of the free-living participants

(Sébédio and Brennan, 2014). Unlike drug intervention studies in toxicology and

pharmacology, in which obvious changes are induced in blood and urine metabolites

with drug administration (Pujos-Guillot et al., 2013), dietary intervention studies

usually produce subtle metabolic differences and small cumulative effects, which can

be difficult to measure and detect without adequate study power (Scalbert et al., 2009;

Solanky et al., 2003). For this reason, pre-analytical procedures for sample processing

need to be clearly defined since biological samples are unstable ex vivo, and can lead to

changes and artifacts in sample composition due to oxidation or degradation (Jobard

et al., 2016). Furthermore, stringent and careful data pre-processing methods are

necessary to maintain high standards of quality control and avoid data extraction and

integration errors, which can have substantial impact on study outcomes (Scalbert

et al., 2009). Last but not least, meticulous study design is essential to take into

account large inter-individual variation in metabolic profiles of biofluids that may be

dependent on various factors, including age, sex, genetics, body composition, lifestyle,

18



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

Endogenous  
metabolome 

Exogenous  
(food-derived)  
metabolome 

Diet Metabolome 

Metabolomics 

Identify dietary 
patterns and  

markers of dietary 
exposure 

MS 

 
GC, 

LC or 
CE 

 

Figure 1.4: Illustration of the role of metabolomics in nutritional and dietary intervention studies.
Adapted from O’Gorman and Brennan (2015).

and long-term environmental exposures (Johnson and Gonzalez, 2012). It is critical

that confounding variables be minimized as much as possible, in order to obtain valid

conclusions from the study that can be replicated independently among different

cohorts (Smilowitz et al., 2013).

1.6 Functional and Compositional Differences Be-

tween Biofluids

In metabolomics, urine and blood (plasma or serum) represent the most commonly used

biospecimens due to their collection being low-cost, relatively non-invasive, efficient,

and simple to perform (Holmes et al., 2008; Kosmides et al., 2013; Nicholson and

Lindon, 2008). These features are particularly advantageous for sample collection from
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critically ill patients, as well as for the measurement of temporal changes, especially

in time-series studies, when high-frequency sampling is needed (Kosmides et al.,

2013; Nicholson and Lindon, 2008). Capable of reflecting metabolic perturbations,

and physiological interactions between organs, urine and plasma exist in dynamic

equilibrium with the host (Nicholson et al., 1999), in which plasma provides an instant

‘snapshot’ of the host’s current state, while urine is a time-averaged representation

(Kosmides et al., 2013; Maher et al., 2007). In contrast to cells and tissues, with each

providing its own unique organ-specific metabolic fingerprint (Lin et al., 2007), blood

and urine may be thought of as ‘pools’ of organ-produced metabolites (Yin et al.,

2015), in which blood is a pool of homeostasis-regulated endogenous metabolites, while

urine is highly variable and consists of terminal metabolic waste products, derived

from excess or metabolized nutrients, exogenous compounds, drugs, and xenobiotics

(Bouatra et al., 2013; Gibney et al., 2005; Kaddurah-Daouk et al., 2008; Yin et al.,

2015). Given their distinct composition, urine is useful for reporting on exposures (such

as dietary interventions, consumption of xenobiotics, and environmental challenges)

and imbalances of biochemical pathways within the body (Khamis et al., 2017; Scalbert

et al., 2009), while blood plasma is reflective of endogenous processes related to energy

metabolism, inflammation and disease state in circulation (Scalbert et al., 2009).

Because of the complementary nature of their respective metabolites, blood, and urine

together could therefore reflect the state of a system as a whole at a given time point

(Yin et al., 2015). Less commonly used biofluids in metabolomic studies include saliva,

cerebrospinal fluid, sweat, fecal water, semen, breast milk, nipple aspirate, and tears

(Bieniek et al., 2016; Delgado-Povedano et al., 2018; Di Venere et al., 2018; Huynh

and Mohan, 2017; Mikkonen et al., 2016; Yen et al., 2018). In all cases, standard

operating protocols need to be used for sample collection, transportation, and storage

since they are critical elements to reduce biological variation and potential bias when
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performing discovery-based metabolomics research.

Urine is composed mostly of water (95%), and contains organic compounds,

electrolytes, metabolites, with little protein content relative to the blood-derived

serum and plasma samples (Khamis et al., 2017). Besides the matrix differences

between urine and blood, serum and plasma also exhibit differences from each other

in their composition and metabolite profiles. Serum is the liquid component in

whole blood following blood coagulation, and contains various metabolites, lipids, and

enzymes that are released by activated platelets and the metabolic activity of red and

white blood cells during coagulation (Yin et al., 2015). As a result, several studies

have generally found increased levels of peptides, proteins, lipids, and amino acids

in serum compared to plasma (Barri and Dragsted, 2013; Liu et al., 2010; Yu et al.,

2011). Another contributing factor for the compositional differences between serum

and plasma is the exposure of serum samples to ambient room temperatures, which is

needed for proper coagulation to occur (Wung and Howell, 1980).

1.7 Pre-Analytical Challenges in the Collection,

Handling, and Storage of Biofluids

1.7.1 Sample Collection and Handling

To ensure sample quality and integrity, various aspects need to be considered when

dealing with different types of biofluids, since specific challenges are often encountered

during the pre-analytical stages of sample collection, handling, storage, and processing

(Figure 1.5). For example, time of sampling is an important aspect to consider when

designing a metabolomic study since diurnal variation and circadian rhythm have been

shown to impact metabolite concentrations measured in both urine and blood from
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Figure 1.5: Overview of the pre-analytical workflow in metabolomic studies from sample collection
to sample analysis. Adapted from Yin et al. (2015).

human subjects (Ang et al., 2012; Dallmann et al., 2012; Maher et al., 2007; Walsh

et al., 2006). The work of Maher et al. (2007) reported changes between morning

fasting urine samples collected within a two-hour time window, which emphasizes

the importance of specifying clearly the collection time of urine samples whenever

possible, in order to minimize confounding variation. Meanwhile, the work of Ang

et al. (2012) revealed that 19% of the metabolites measured in blood samples exhibited

significant differences associated with time of day, including acylcarnitines, cortisol,

and amino acids, which cautions against the pooling together of samples collected at

different times of day. Lifestyle factors (e.g., physical exercise, stress, and smoking),

age, sex, and body mass index (BMI) are also known to influence absolute metabolite

concentrations in biofluids (Yin et al., 2015), therefore, study designs should optimally

control for such confounding variables by careful screening and matching of study

participants, ensuring subject compliance to detailed instructions specified by the

study, and collection of participant metadata to minimize false discoveries. Previous-

day consumption of food and drugs have been reported to influence next-day morning
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urinary profiles (Maher et al., 2007), therefore, diet intervention studies need to be

careful to restrict the intake of food, dietary supplements, multivitamins, and drugs

extrinsic to the study by the participants. Similarly, dynamic changes have been shown

to occur in the blood metabolite profile for several hours after meal consumption

(Brauer et al., 2011; Gillio-Meina et al., 2013). Thus, it is critical to establish the

time of postprandial blood collection in dietary intervention studies. The effect of

food intake may be normalized prior to sample collection by performing a one-day

wash-out period with dietary standardization using pre-packaged meals, as shown by

(Winnike et al., 2009).

In the case of blood collection, it is important that samples be collected by following

strict guidelines defined in a standard operating procedure (SOP), in order to achieve

consistent conditions between different collection sites when multiple institutions are

involved in a study (Yin et al., 2015). Generally, hemolysis should be avoided by

careful drawing and handling of whole blood, since hemolysis results in the release of

intracellular metabolites and enzymes, thereby, altering the sample’s metabolite profile

(Yin et al., 2015). Treatment procedures for blood vary depending on whether serum

or plasma is to be acquired. When obtaining serum, clotting time and temperature

need to be standardized and kept consistent for all samples, since both factors can

influence the metabolite profile (Teahan et al., 2006). Although clotting on ice has been

shown to reduce unwanted metabolite alterations (Teahan et al., 2006), serum usually

requires room temperatures to form clots within 30–60 min to avoid cell lyses (Timms

et al., 2007; Tuck et al., 2009; Yin et al., 2015). Meanwhile, the preparation of plasma

requires the collection of whole blood in tubes containing a specific anticoagulant

(i.e., ethylenediaminetetraacetic acid (EDTA), heparin, citrate, or fluoride) prior to

centrifugation. Since certain anticoagulants may introduce contaminant or interfering

peaks in mass spectrometry, it is highly recommended that various anticoagulant

23



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

tubes are pre-tested before deciding on the type of tube to be used consistently for

metabolomics studies (Yin et al., 2015). As well, since differences in manufacturer,

plastic, composition, and anticoagulant additive purity may produce varying degrees

of matrix effects and interferences, an adequate number of blood collection tubes

available to complete a metabolomics study should be ensured to minimize batch

differences across samples (Yin et al., 2015). Following anticoagulation, plasma

preparation requires that whole blood be immediately placed on ice or in ice-water,

until refrigerated centrifugation is performed to separate out the blood cells/platelets

from plasma, in order to minimize artifactual oxidation and metabolic activity of

blood cells and enzymes (Yin et al., 2015). Recent MS work by Yin et al. (2013) and

Kamlage et al. (2014) have shown that plasma only exhibited minor changes after

whole blood was stored for up to 4 h on ice and up to 6 h in ice water, respectively.

Once clotting or centrifugation of whole blood has been completed, aliquots of serum

or plasma should be stored in a timely manner since certain metabolites are unstable

at room temperature (Yang et al., 2013).

1.7.2 Sample Storage

Long-term storage of biofluids at −80 ◦C or lower is generally preferred (Vaught,

2006), since storage of serum and plasma at temperatures of −20 and −25 ◦C have

revealed significant changes in metabolites, including glucose, proline, methionine, and

B vitamins, after an extended period of time (Hustad et al., 2012; Pinto et al., 2014).

On the other hand, long-term stability of urine has been found to be maintained with

storage at −25 ◦C, with higher temperatures resulting in metabolic profile changes

caused by bacterial enzymatic activity (Maher et al., 2007). In cases where urine

is to be stored at room temperature for extended periods, various preservatives are
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available (such as boric acid, hydrochloric acid, and acetic acid). However, for analysis

by NMR, the addition of NaN3 has been recommended as a preservative over NaF

to slow down bacterial activity, due to less interference with NMR spectra (Saude

and Sykes, 2007). Therefore, attention to the temperature at collection, during

processing, and during long-term storage plays an important role in limiting unwanted

metabolic alterations and false discoveries in metabolomics by applying standard

operating protocols without delays to sample processing and storage. Since repeated

freezing and thawing of samples can contribute to undesirable changes in apparent

concentrations of labile metabolites prone to oxidation or hydrolysis, it should be

avoided by distributing biological samples into small aliquots prior to storage, which

are then ideally thawed slowly in ice water, as opposed to at ambient temperatures

(Yin et al., 2015).

1.7.3 Sample Pretreatment

Sample pretreatment is the final, yet most important step in the pre-analytical

process used in metabolomics. The quenching of bacterial and enzymatic reactions,

as well as non-biogenic oxidation reactions, in urine samples may be accomplished

by freezing samples immediately upon collection (Khamis et al., 2017). Processing

of thawed urine samples is then easily performed by centrifugation, filtering, and

in certain cases, desalting, enzyme deconjugation, and/or chemical derivatization

following liquid/solid-phase extraction. In the simplest case, urine may just be diluted

with the appropriate solvent with addition of internal/recovery standards prior to

analysis, which makes urine preparation one of the simplest procedures in the analysis

of biological matrices (Khamis et al., 2017). Improved preservation of the urinary

metabolic profile during storage has been shown with ultrafiltration, using MW cut-off
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filters of 3 kDa, as it assists in the removal of bacteria if chemical preservatives are

not used (Saude and Sykes, 2007). On the other hand, blood samples (i.e., serum,

plasma, or dried blood spots) require more extensive sample workup procedures,

including quenching, deproteinization, and metabolite extraction (Yin et al., 2015).

Deproteinization can be achieved with ultrafiltration, solid-phase extraction (SPE), or

addition of an organic solvent as chemical denaturant, such as acetonitrile, methanol,

chloroform, or methyl-tert butyl ether (MTBE), which also allows for the simultaneous

extraction of metabolites (Yin et al., 2015). Selection of the procedure or type of

organic solvent depends on how well the technique is able to extract the desired class

or polarity of metabolites to be analyzed. Chapter 2 will present and compare the

results of metabolite extraction from plasma samples using methanol and acetonitrile

as organic solvents for deproteinization followed by ultracentrifugation of extract prior

to metabolomic studies.

1.8 Pretreatment of Data

1.8.1 Data Normalization, Batch Correction, and Quality

Controls

Considering that human biofluids, such as urine, plasma, and serum, are complex

mixtures consisting of hundreds to thousands of endogenous and exogenous compounds

(Bouatra et al., 2013; Guo et al., 2015; Psychogios et al., 2011), the resulting datasets

generated by modern analytical technology in untargeted metabolomics studies can

be quite vast and overwhelming. The analysis of information-rich and complex

datasets is, therefore, known to be an exhaustive, time-consuming aspect and thus,

major bottleneck in biomarker discovery for metabolomics (Scalbert et al., 2009;
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Tugizimana et al., 2016). In order to separate biological variability from unwanted

chemical noise, which has important implications in pattern- and variance-based

multivariate classification techniques (Eriksson et al., 2001), data normalization is a

necessary step that is initially performed, prior to further processing of metabolomic

data, to eliminate and correct for technical variation in sample collection, sample

preparation, and analytical measurements that contribute to analytical bias and

inter-batch variability (Trezzi et al., 2017).

Monitoring and correcting for technical variation may be performed by the repeated

measurement of quality control (QC) samples at regular intervals within a data

workflow. QC samples are typically obtained by pooling all samples of a given study

together in equal amounts and are critical for assessing and evaluating the quality

of metabolomics data sets, in addition to serving as a reference sample for batch-

to-batch or sample-to-sample variations (Brunius et al., 2016). Batch correction

is generally required only when systematic differences between measurements from

different groups or batches of experiments are present (‘batch effects’), especially in

large-scale metabolomics data sets (Nygaard et al., 2016), and may be performed by

various algorithms based on single value decomposition (Alter et al., 2000), distance-

weighted discrimination (Benito et al., 2004), empirical Bayes method (Johnson et al.,

2007), mean-centering, standardization, and ratiometric approaches (Luo et al., 2010).

On the other hand, normalization is most often, if not always, required to correct for

undesired differences in samples between individuals, such as hydration status, urine

volume, and water content in fecal and tissue samples. For example, the analysis of

single-spot random urine specimens have conventionally required normalization to

urinary creatinine (Crn) levels and osmolality, however, recently, the probabilistic

quotient normalization (PQN) method that involves the use of QC samples has been

introduced by Dieterle et al. (2006). PQN was applied to the work presented in
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Chapter 4 and will be discussed in further detail therein, along with the limitations of

Crn and osmolality correction.

1.8.2 Data Transformation

Once metabolomic data has been appropriately normalized or batch-corrected as

needed, transformation of data, scaling, and centering may be performed in order to

reduce skewness and unequal variability (i.e., heteroscedasticity) in the data (Carmen

and Hardiman, 2006; Tugizimana et al., 2016), as well as have measurements put on a

comparable scale with equal importance due to the wide dynamic range of metabolite

responses in MS (van den Berg et al., 2006). Various transformation and data scaling

procedures are available, and, can greatly influence the resulting output of the data

analysis, depending on the chosen method (Tugizimana et al., 2016; van den Berg

et al., 2006). Thus, it is crucial to have a good understanding of the various data

processing and statistical methods, in order to fully exploit the value of metabolomic

data and achieve statistically sound and biologically relevant conclusions. Since the

choice of the data pretreatment method depends on several factors, including the data

set properties and the biological question to be answered (van den Berg et al., 2006),

and can affect subsequent options on data analysis strategies, it is also important to

acknowledge that there is no single route, or ‘one-size-fits-all formula,’ to follow for

the analysis of untargeted metabolomic data (Tugizimana et al., 2016).

Transformation procedures may be performed to prevent misleading outcomes as a

result of technical artifacts in high-throughput metabolomics data. Data transforma-

tion results in non-linear conversions, with the goal of correcting for heteroscedasticity,

in which larger signals commonly exhibit larger variations (Russell et al., 2008; van den

Berg et al., 2006). Through transformation, the data is made less skewed and more
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symmetrically distributed to conform to normality, in order to satisfy the criteria and

assumptions of many traditional parametric statistical procedures (including regression

and analysis of variance (ANOVA)), since violation of normality would otherwise

increase the probability of false positives or false negatives (Carmen and Hardiman,

2006). A popular method is the log transformation, in which the logarithm of each

measurement replaces the original value. The log transform is useful for reducing the

range of data spanning several orders of magnitude, and converts multiplicative (ratio)

noise to additive (difference) noise (Russell et al., 2008; Sussulini, 2017). While the log

transformation is ideal for eliminating heteroscedasticity when the standard deviation

is proportional to the mean of the signal (Kvalheim et al., 1994), unfortunately, most

data in reality do not follow this trend (van den Berg et al., 2006). Other limitations

of the log transform are that it is undefined for negative and zero values, and can

artificially increase the variance for near-background low-intensity signals (Russell

et al., 2008).

A transformation that can accept positive, negative and zero values, as well as

optimally stabilizing the variance for both low- and high-intensity signals is the

generalized logarithm (glog) transformation (Rocke and Durbin, 2003). Although the

glog transform was initially introduced for the analysis of gene-expression microarray

datasets (Durbin et al., 2002; Huber et al., 2002; Munson, 2001), glog transform

may also be applied to data acquired from other high-throughput methods, including

metabolomic data (Di Guida et al., 2016; Parsons et al., 2007; Purohit et al., 2004),

in which the dimension of the data greatly exceeds sample size. Parsons et al. (2007)

found that glog transformation was not only able to stabilize the technical variance in

metabolomic data, but also significantly improved between-group discrimination with

greater classification accuracy relative to unscaled, autoscaled, or Pareto-scaled data.

Additionally, the work of Di Guida et al. (2016) has shown that glog transformation
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on metabolomic data was optimal without scaling when searching for biologically

relevant metabolites independent of their measured abundance. The glog function

for a measurement, x, is defined in Equation (1.2) (Durbin et al., 2002; Huber et al.,

2002; Munson, 2001):

f (x) = ln
x+

√
x2 + a2

b2

 (1.2)

in which a is the standard deviation of untransformed data at low intensities and b

is the standard deviation of log-transformed data at high intensities. Alternatively,
a2

b2 = λ may be estimated directly as a transformation parameter from a series of

technical replicates, such that the remaining variation in the dataset is derived mainly

from biological sources (Parsons et al., 2007). For large values of x, the transformation

converges to ln x and is approximately linear at x = 0 (Durbin et al., 2002).

1.8.3 Data Scaling

Scaling may be performed following transformation, and autoscaling is one of the most

commonly used techniques in metabolomics, which is defined by Equation (1.3):

x̃ = x− x̄
s

(1.3)

in which, x̃, x, x̄, and s represent: the measurement of a metabolite following scaling;

the measurement of a single metabolite; the mean of measurements for a metabolite;

and the standard deviation of the measurements for a metabolite, respectively. With

autoscaling, all metabolites in a dataset become equally important, however, division

of the mean-centred value by the standard deviation of metabolite measurements,

makes autoscaling sensitive to large measurement errors (van den Berg et al., 2006),

especially if QC filters are not used to reject highly variable metabolites (RSD > 40%)
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from the original data set. To reduce error sensitivity, Pareto scaling may be used

alternatively, which replaces the denominator in the equation with the square root

of the standard deviation. As a result, original data structure is better conserved

with Pareto scaling (van den Berg et al., 2006). Although details on other scaling

techniques, including range scaling, vast scaling, and level scaling, may be found in

the work by van den Berg et al. (2006), autoscaling and Pareto scaling are amongst

the most often used scaling methods in metabolomics prior to multivariate statistical

analysis and feature selection/ranking (Parsons et al., 2007).

1.9 Dealing with Massive Data Using Multivariate

Statistical Techniques

1.9.1 Statistical Data Mining

The analysis and interpretation of large and complex metabolomic datasets is strongly

dependent on pattern recognition techniques, multivariate statistical methods, dis-

criminant analysis techniques, and robust computational techniques (Lindon and

Nicholson, 2008), which must be carefully applied to extract meaningful biological

interpretations from the data (Kosmides et al., 2013). The most common starting

point in metabolomics for exploratory data analysis and outlier detection is principle

component analysis (PCA), an unsupervised method in which there is no assumed

prior knowledge of group membership (Alonso et al., 2015; Gowda and Djukovic,

2014; Kosmides et al., 2013). In PCA, the dimensionality of the data is reduced

while still allowing for variation in the data to be explained, as much as possible,

along the projected axes of maximum variance (Kosmides et al., 2013; Parsons et al.,

2007). Briefly, principal components (PCs) are orthogonal, or uncorrelated vectors, in
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which the first few PCs explain the largest amount of data variation, with subsequent

components explaining decreasing amounts of variance (Alonso et al., 2015; Kosmides

et al., 2013). Each PC is represented by a linear combination of the variables, or

metabolites, in this case. Visually, a PCA map (i.e., scores plot) reveals the grouping

and clustering of samples based on similarities in their metabolite profiles, thus, also

enabling the identification of any outliers (Kosmides et al., 2013; Sébédio and Brennan,

2014). By using a loadings plot, in which the eigenvector component is plotted against

each metabolite variable, the metabolites that contribute the greatest to each PC

or differ the most between groups can be determined (Kosmides et al., 2013). PCA

is also useful for the visual inspection and graphical representation of the reprodu-

cibility of QC replicates, which ideally should show tight clustering with minimal

variance as compared to biological variance, since they are replicate measurements

performed on the same QC sample over time by the same instrumental platform.

Therefore, PCA may be used to assess data quality and technical variation (Alonso

et al., 2015), including rejection of samples prone to bias, as well as assessment of

batch correction algorithms needed to correct for long-term system drift in large-scale

MS-based metabolomic studies (Dudzik et al., 2018).

An alternative unsupervised technique to visualize the classification of samples

and metabolites is clustering, in which hierarchical cluster analysis (HCA) and K-

means (KM) clustering are two methods of cluster analysis that have been used in

metabolomics (Bartel et al., 2013). Briefly, clustering methods assemble or group

samples based on similarities in their metabolomic data, which may lead to data-

based sample reclassification, or confirmation of known groupings and associations

(Čuperlović-Culf, 2013). Recently, HCA was demonstrated to be a new tool for

assessing the effectiveness of data filtering prior to statistical analysis, which revealed

that technical replicates clustered in all data sets only after sufficient data filtering
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had been performed (Caesar et al., 2018). However, as cluster analysis is difficult to

interpret, in addition to having poor reproducibility due to its sensitivity to noise

and outliers, it is rarely used in the metabolomics literature when compared to its

prevalence in genomics and transcriptomics applications (Čuperlović-Culf, 2013). More

detail on clustering methods may be found in the review by Andreopoulos et al. (2009).

To further maximize separation between groups and reveal group-discriminating

metabolites, supervised multivariate statistical methods, such as partial least squa-

res discriminant analysis (PLS-DA) and orthogonal projection to latent structures

discriminant analysis (OPLS-DA), are frequently used in metabolomics. Supervised

statistical techniques allow for class membership to be predicted when a priori infor-

mation on sample classification is provided for the construction of predictive models

(Kosmides et al., 2013; Sébédio and Brennan, 2014). Model performance is then

validated and tested for robustness and predictive accuracy, which is quantified by

Q2, using such internal cross-validation procedures as leave-one-out, k-fold, or Monte

Carlo permutation tests, when an independent data set is unavailable for external

cross-validation (Girard, 1989; Heather et al., 2013). Since the presence of noise in

data sets can hamper the interpretation and accuracy of PLS-DA models, orthogonal

signal correction (OSC) may be used to improve model accuracy (Gavaghan et al.,

2002), by removal of the variation in the classification (descriptor) matrix that is

uncorrelated to the variation in the metabolite (results) matrix (Bylesjö et al., 2006;

Kosmides et al., 2013). The incorporation of OSC into PLS-DA results in OPLS-DA,

which allows for easier interpretation of multivariate statistical models.
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1.9.2 Variable Selection and Filtering

Using supervised multivariate statistical methods, metabolites that contribute strongly

to group separation/classification can then be determined through the ranking of

metabolites based on their measured responses, from which a subset of metabolites

may then be selected for development of a predictive model. Simplification of a model

to only a few variables is helpful to understanding and explaining the underlying

metabolic phenomena, by eliminating the majority of ‘noisy’ metabolites whose varia-

tion is not related to the response of interest, and which are, therefore, irrelevant to

the investigation (Farrés et al., 2015). This is especially advantageous in untargeted

metabolomic studies for biomarker discovery when the number of features is much

larger than the number of samples – such that only a small number of metabolites

are associated with the underlying pathophysiology of a disease or serve as treat-

ment markers of therapeutic interventions (Degenhardt et al., 2017). Generally, a

parsimonious model is preferred since model interpretation becomes substantially

easier with simplicity of description, while allowing for improved model performance

and predictive accuracy (Farrés et al., 2015; Huberty and Olejnik, 2006; Mehmood

et al., 2012). Even in cases when the performance of a model may be compromised

by its interpretability, ease of interpretation may still be favoured at the expense of

predictive accuracy of the model (Mehmood et al., 2011).

Variable Importance in Projection (VIP) in PLS Regression

Within the context of PLS regression, several types of methods are available for

variable ranking and selection, such as filter methods, wrapper methods, and embedded

methods, as described by Mehmood et al. (2012) and Andersen and Bro (2010). Filter

methods identify important variables (i.e., metabolites) using the output from the
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PLS regression algorithm from which variables are then selected depending on a

user-defined threshold level (Mehmood et al., 2012). On the other hand, wrapper and

embedded methods perform iterative procedures between model fitting and variable

selection, or select variables as part of an integrated process in the modified PLS

algorithm, respectively (Mehmood et al., 2012). Although filter methods do not

provide any measure or indication on the predictive abilities of the selected variables,

they are quick and computationally much more simple compared to the wrapper and

embedded methods (Mehmood et al., 2012). Currently, the most popular approach

is the variable importance to the projection (VIP) method (Farrés et al., 2015) – a

filter method that was introduced by Wold et al. (1993). In the VIP approach, the

importance of each metabolite (x variable) is measured with respect to its correlation

or ‘global contribution’ to the response (y variance) in a PLS model as the VIP score,

which is given by Equation (1.4):

VIPj =

√√√√∑F
f=1 w

2
j,f · SSYf · J

SSYtotal · F
(1.4)

where j is the variable being considered, F is the total number of extracted components,

wj,f is the weight value for the jth variable and f th component, SSYf is the sum of

squares of explained variance by the f th component, J is the total number of variables,

and SSYtotal is the total sum of squares of explained variance from all components

(Čuperlović-Culf, 2013; Farrés et al., 2015). A VIP score greater than one is generally

accepted as a threshold for significance (although not statistically justified) to indicate

importance of a feature to the model, and its candidacy in the variable selection

process (Chong and Jun, 2005; Farrés et al., 2015). However, previous studies has

shown that the VIP method can sometimes be inclusive of irrelevant variables and

lead to false positive candidates (Farrés et al., 2015; Tran et al., 2014). Another
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filter approach that is also commonly used for the ranking of variables is the use of

regression coefficients, which is the measured association between each variable and

the response (Mehmood et al., 2012). Variables possessing small absolute values of

regression coefficients may be removed (Frenich et al., 1995), while the selection of more

important variables may be assisted with the application of statistical re-sampling

procedures (i.e., bootstrapping or jackknifing) when considering the probabilistic

distribution of regression coefficients, at the expense of increased computational time

(Mehmood et al., 2012).

OPLS-DA Loadings Plot: S-plot

For mean-centred or pareto-scaled data, the S-plot, which is a loadings plot that

combines covariance and correlation vectors from OPLS-DA, has been shown to be a

useful tool for the extraction of potentially significant metabolites by Wiklund et al.

(2008), and has since been widely used due to its ease of interpretation and usage. The

S-plot is so-called due to its S-shaped scatter plot, which allows for visualization of

variable influence in a model, in which the x-axis visualizes the contribution (covariance)

of the metabolite to the OPLS-DA score vector, while the y-axis is dependent on the

variability of metabolite measurements, and is a reliability indicator of the correlation

between the metabolite and score vector. Metabolites with high covariance have high

influence on the model, while metabolites with high correlation have high reliability

due to lower risk of spurious correlation (Tugizimana et al., 2016). Since the selection

of metabolites based solely on either high covariance or high correlation indices will

result in the biased selection of metabolites with either high or low concentrations,

respectively, the selection of metabolites from the S-plot should ideally favour those

metabolites with both high covariance and correlation (i.e., located near the upper

right or lower left corners in the S-plot, as shown in Figure 1.6, which have been
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Figure 1.6: Example of an OPLS-DA loadings S-plot (reprinted from Sengupta et al. (2011); with
permission from https://creativecommons.org/licenses/by/2.0/legalcode), in which circled regions
indicate features selected for further analysis.

shown to be statistically significant as potential discriminatory features (Wiklund

et al., 2008).

Variable Importance Measures in Random Forest (RF) Analysis

Outside of (O)PLS regression, measures of variable importance for feature ranking

may also be obtained from random forest (RF) analysis, which is an alternative

supervised technique for generating classification models based on decision trees

(Breiman, 2001). In RF analysis, the variable importance indices allows identification of

important features based on their predictive ability in classification models (Degenhardt

et al., 2017), which provides a means to distinguish relevant from irrelevant variables

(Hapfelmeier and Ulm, 2013). As a classification method, RF analysis is highly

accurate and robust to over-fitting, since a set of variables (typically, the square root

of the total number of variables) is randomly selected at each node in a decision tree,
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in which a training set of data is split in a binary manner according to the small

subset of input variables, until sample groups are recognized (Breiman, 2001; Gromski

et al., 2015). This process is repeated with multiple training sets (one tree per training

set) that are generated from bootstrapping (i.e., re-sampling with replacement) on

two-thirds of the original data set, in which the number of trees is entirely up to the

user and can vary from as little as a single digit number of trees to several thousands

of trees (Zhang and Wang, 2009). While the current literature does not suggest an

optimal number of trees within an RF (i.e., the threshold beyond which an increased

number of trees does not significantly improve classification performance at the cost

of greater computational time), the work of Oshiro et al. (2012) suggested that a

range between 64 and 128 trees is sufficient for obtaining a good balance between

classification accuracy, processing time, and computer memory usage. However, given

the modern advances in processing power, algorithm optimization, and the availability

of large computing clusters, this range appears to be low by today’s standards and is

easily exceeded, as demonstrated by the thousands of trees generated within a few

seconds by the internet-based tool, MetaboAnalyst (Xia and Wishart, 2016).

Another advantage of RF analysis is that cross-validation is not needed on an

independent set of data, since the classification error of the test is internally estimated

in an unbiased fashion during the analysis on test sets of data that are generated by

bootstrapping on the remaining one-third (‘out-of-bag’ data) of the original dataset

that was not used to generate the initial training sets (Breiman, 2001). It is through

the out-of-bag data that variable importance is estimated by assessing the difference in

classification performance averaged over all trees following random permutations in the

values of one variable at a time (Degenhardt et al., 2017). Therefore, those variables

whose randomly permutated values result in the greatest number of misclassifications

are important for prediction and will have large variable importance measures. RF
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Table 1.5: Summary of non-parametric and parametric tests.

Number of Groups
to be Compared Experimental Design Non-Parametric Test Parametric Test

(Non-Normal Distribution) (Normal Distribution)

Two Unpaired groups Mann-Whitney U test Unpaired t-test
Paired groups Wilcoxon rank sum test Paired t-test

Greater than two Unmatched groups Kruskal-Wallis test One-way ANOVA
Matched groups Friedman’s test Repeated-measures ANOVA

analysis in variable selection has been shown to be successful (Fan et al., 2011;

Patterson et al., 2011) and outperform that by PLS-DA, while PLS-DA has been

shown to outperform RF analysis in terms of classification (Menze et al., 2009). As

a result, the usage and exploration of complementary methods for variable selection

and classification in metabolomic studies is recommended.

1.9.3 Comparison Between Multiple Groups

Following the simplification of a data set to a smaller number of important variables,

hypothesis testing is used to determine whether observed differences between means

of two or more groups are due to random chance or conditions imposed by the study.

Hypothesis testing is performed at a specified probability rate of a false positive or

type I error (a), typically set at 5%, to investigate two opposing hypotheses: the

null hypothesis (i.e., there is no difference between group means) and the alternative

hypothesis (i.e., there is a difference between group means) (Vinaixa et al., 2012).

Depending on the number of experimental groups and the experimental design, various

statistical tests for quantitative data are available (Table 1.5), however, selection of the

appropriate multivariate statistical technique also depends heavily on the underlying

distribution of the data, which will dictate use of an appropriate parametric or an

equivalent non-parametric statistical test.

Non-parametric tests do not rely on assumptions about the data distribution, while
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Table 1.6: Comparison of non-parametric and parametric tests.

Parameters Non-Parametric Test Parametric Test

Assumptions:
1) Data distribution Any Normal (Gaussian)
2) Variance Any Homogenous
3) Independence of observations Not required Required

Data type Ratio or interval Ordinal or nominal

Statistical comparator Median Mean

Correlation testing Spearman correlation Pearson correlation

Advantages Greater flexibility; Greater statistical power
easier to use; (i.e., reduces type II error)
less sensitive to outliers

parametric tests require at least three basic assumptions to be valid, namely that:

1) data is normally distributed; 2) data exhibit homogeneity of variances; and 3) ob-

servations are independent. Table 1.6 summarizes some of the key differences between

non-parametric and parametric tests. In addition to visual inspection of histograms,

normality may also be evaluated by probability plots, quantile-quantile (Q-Q) plots,

calculation of skewness and kurtosis, Shapiro-Wilk tests, or Kolmogorov-Smirnov tests

(Carmen and Hardiman, 2006; Vinaixa et al., 2012). It should be noted, however, that

for large metabolite datasets, visual inspection for each metabolite variable becomes

impractical. Similarly, the evaluation of homoscedasticity, or homogeneity of within-

group variances, by visual inspection of boxplots is not realistic for large metabolomics

datasets. Therefore, alternative statistical methods using Levene’s and Bartlett’s

tests are preferred, which test for group variances being equal as the null hypothesis

(Vinaixa et al., 2012). In metabolomic studies, the assumption that observations are

independent is fulfilled when the measurement of a sample is independent of, or not

influenced by, measurements from other samples.

Given that metabolomic datasets rarely satisfy the rigid assumptions of parametric

tests due to the large number of measured variables, and the much greater ease
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and flexibility with which “assumption-free” non-parametric tests may be applied

on both normally- and non-normally distributed data, non-parametric statistical

methods are widely used in metabolomics studies, as reflected by the weak presence

of parametric applications for multivariate analysis, such as multivariate analysis of

variance (MANOVA), in the metabolomics literature. It is possible that the time

required to carefully check assumptions may also serve as a deterrent to the usage

of parametric tests. Despite these challenges, parametric tests are more robust and

have greater statistical power over non-parametric methods, which provide a greater

chance of correctly detecting significant differences between groups that may otherwise

be missed by non-parametric tests and lead to a false negative result, or type II

error (Vinaixa et al., 2012). On the other hand, non-parametric tests have better

performance on non-normally distributed data with unequal variances (Vinaixa et al.,

2012).

In metabolomics, a large number of metabolites as variables in a statistical model

are often tested simultaneously for significance. As a result of multiple hypothesis

tests, inflation of type I error occurs, in which the probability of incorrectly rejecting

the null hypothesis and finding a false positive increases, due to random chance. The

probability of finding at least one false positive when testing all hypotheses is called

the family-wise error rate (FWER), which is given by Equation (1.5):

FWER = 1− (1− a)k (1.5)

in which a is the pre-specified level of significance for each test, and k is the total

number of tests performed (Eichstaedt et al., 2013). To correct for multiple hypothesis

testing in multivariate statistical models, the probability threshold for significance may

be re-calculated or adjusted using Bonferroni correction or false discovery rate (FDR)
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procedures. Bonferroni correction maintains the integrity of the FWER, and instead,

makes the a for each test more stringent by dividing the FWER by the number of tests

(Eichstaedt et al., 2013) as shown in Equation (1.6), where a metabolite is considered

significant when its p-value is ≤ a:

a = FWER

k
(1.6)

In contrast, the FDR method, also known as the Benjamini-Hochberg procedure,

recalculates the p-value of each metabolite to represent the probability of the metabolite

being a false positive in the event that the metabolite is deemed significant (Benjamini

and Hochberg, 1995). The corrected p-value (or q-value) takes into account the original

p-value and its ordered rank in the distribution of all p-values that are being considered.

For a FDR at 0.05, the q-value must be ≤ 0.05 for the metabolite to be significant. To

avoid confusion between the false positive rate and FDR, it is important to understand

that the false positive rate is the probability of significant features being found when

the null hypothesis is true, while the false discovery rate represents the proportion of

significant features being false positives (Storey and Tibshirani, 2003). While both

methods are often used in metabolomics, the selection of the method depends on the

implications of the study results. Bonferroni correction imposes more stringent control

over type I errors at the expense of inflating type II errors (Eichstaedt et al., 2013),

while the FDR procedure is less conservative, and provides increased power while still

controlling for false discoveries (Narum, 2006). Therefore, in certain clinical studies

where false positives are a concern and can potentially have costly implications, the

conservative Bonferroni correction would be a more suitable method towards these

applications. However, for exploratory studies in which further research is to be

conducted on potential findings of interest, the FDR approach is more appropriate
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since it reduces the chance of false negatives, and avoids interesting features from

being overlooked.

1.10 Thesis Motivation, Objectives, and Contribu-

tions

Metabolomics in dietary intervention studies plays a critical role in understanding the

metabolism and importance of various nutrient and dietary components, as well as in

the elucidation of differential metabolic responses that underlie different phenotypes

between individuals. Especially with the increasing global prevalence of obesity in the

21st century, which often leads to the progression of several physical, mental, and social

disorders (including type 2 diabetes, cardiovascular diseases, cancer, depression, and

social stigmatization), there is an urgent need to treat current widespread obesity, as

well as reduce the development of obesity and its risk in future populations. Regardless

of whether metabolomics is performed in a targeted or non-targeted manner, the

discovery of biologically significant metabolites and mechanisms relevant to the obese

condition can help expand our knowledge of the disease to guide and improve the

development of interventions for the treatment of obesity.

In this thesis, CE-MS is demonstrated to be a highly efficient analytical platform

suitable for the high-throughput metabolomic analysis of various complex biological

matrices, namely plasma, serum, protein, and urine, in the context of dietary inter-

vention studies involving obesity. The objectives of this thesis are to: a) develop

and validate a new CE-MS strategy for the quantification and discovery of novel

thiols in protein via derivatization by a maleimide (Chapter 2); b) perform targeted

metabolic profiling in serum and plasma to assess metabolic differences in individuals
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of different obese metabolic phenotypes following a high-caloric dietary challenge

(Chapter 3); and c) identify discriminating urinary metabolites to reveal differences

in energy metabolism attributed to different types of protein supplementation when

used in a weight-loss dietary intervention through untargeted metabolomic analysis

(Chapter 4).

The introductory chapter of this thesis has presented an overview of metabolomics

and its importance in health and nutrition. The main analytical platforms used in the

field of metabolomics were briefly discussed and compared, with an emphasis on the

advantages of and recent developments in CE-ESI-MS. Analytical challenges that are

typically encountered during the collection, analysis, and storage of different biofluid

types were highlighted. Finally, the various multivariate statistical methods available

to deal with the wealth of data generated by metabolomics were discussed.

The work described in Chapter 2 presents a novel thiol-labeling strategy for CE-

ESI-MS that was developed to overcome the analytical obstacles associated with

the quantification of labile thiols, which are generally low in abundance, exhibit

low signal responses, and are highly susceptible to oxidation artifacts ex vivo. The

analytical strategy involves chemical derivatization of thiols using a maleimide, N-

tert-butylmaleimide (NTBM), which yields 20-fold signal enhancement relative to

unlabeled reduced thiols. When applied to extracellular protein-bound thiols, the

CE-MS method was found to be comparable to previously established HPLC methods

in terms of accuracy, but clearly outperformed the other methods in terms of precision,

sensitivity, and simplicity of the method protocol. By implementing the MSI-CE-MS

strategy (Kuehnbaum and Britz-McKibbin, 2013) and an untargeted feature extraction

approach, 8 unknown novel thiol compounds were detected in human plasma protein,

which may be derived from diet or environmental exposures.

In Chapter 3, the targeted metabolomic analysis of serum and plasma from healthy
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lean and metabolically healthy and unhealthy obese subjects following consumption

of a high-fat and high-caloric meal is described for the evaluation of differences in

metabolism between different metabolic phenotypes, or metabotypes. Results showed

that amino acid levels were capable of discriminating between all three groups, such

that the metabolically healthy obese group exhibited an amino acid profile and

homeostasis that was intermediate between the healthy lean and unhealthy obese

subjects, which is believed to be a result of differences in the functionality of the

tricarboxylic acid (TCA) cycle.

Chapter 4 presents the untargeted analysis of urine samples from obese subjects

following a two-week hypocaloric weight-loss dietary intervention with supplemen-

tation by soy protein, whey protein or carbohydrate. The goal of this work was to

elucidate underlying differences in energy metabolism as a result of the supplemen-

tation component, since earlier work by Hector et al. (2015) had shown that whey

protein was more effective in conserving myofibrillar protein synthesis and attenuating

the unwanted loss of muscle mass. The untargeted metabolomic analysis resulted

in the detection of 167 unique features in both positive- and negative-ion mode MS,

including 4 metabolites which were found to be dietary markers specific to the soy

supplementation. Of the four soy-specific metabolites, 4-ethylphenyl sulfate (4-EPS)

has been tentatively identified for the first time in human urine after comparison of

tandem mass spectrometry (MS/MS) spectra to literature spectra acquired from rats

and an authentic standard. Following discriminant function analysis, six metabolites

were identified as the top markers in collectively discriminating between the three

supplementation groups, in which urinary 3-methylhistidine (3-MeHis) was a clear

indicator of increased muscle breakdown in the soy and carbohydrate groups relative

to the whey group. Serendipitously, this work has also revealed the potential of the

artificial sweetener, acesulfame potassium (Ace-K), to be a potential indicator of
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kidney function or glomerular filtration rate (GFR). Finally, the thesis concludes

with a discussion on the future outlook of the studies described herein, as well, as

recommendations for additional future studies and follow-up work.
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Chapter 2

Development of a Novel CE-MS

Method for the Discovery of

Protein-Bound Thiols

In this chapter, the development of a method for the discovery of novel thiols covalently

bound to plasma protein is described when using CE-MS. As the work was accomplished

in three stages, each stage of the study will be discussed separately in detail.

Section 2.1 introduces a simple, selective, and sensitive approach using chemical

derivatization by maleimide to enhance the detection of labile and weakly ionizable

thiols by CE-MS. Section 2.2 applies the novel thiol-labeling strategy towards the

analysis of protein-bound thiols in human plasma, following optimization of a protein

preparation protocol with thiol-selective reduction. Section 2.3 presents a data

workflow for high-throughput screening of protein-bound thiols using MSI-CE-MS

for the discovery of novel thiols bound to plasma protein, which may have utility as

circulatory biomarkers relevant to human health and disease risk assessment.
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2.1 Thiol Detection Enhancement by Chemical De-

rivatization with Maleimide

The work described in this section presents the application of N-tert-butylmaleimide

(NTBM) as an improved derivatization reagent for thiol analysis by CE-MS that overco-

mes several limitations imposed by the cationic maleimide, N -[2-(trimethylammonium)-

ethyl]maleimide (NTAM), which was previously explored by D’Agostino et al. (2011)

for determination of plasma thiol redox status.

2.1.1 Introduction

Biological thiols are an important class of low-molecular-weight (LMW) sulfur-

containing metabolites, such as cysteine (Cys), cysteinylglycine (CysGly), homo-

cysteine (Hcy), g-glutamyl-cysteine (g-GluCys), and glutathione (GSH), which have

essential roles in antioxidant defense and maintaining cellular homeostasis via redox

regulation of cellular responses and metabolic pathways in biological fluids and tissues

(Jones and Liang, 2009). Cys represents the most abundant extra-cellular thiol in

plasma with various roles associated with metabolism, detoxification, catalysis and

protein synthesis (Giles et al., 2003), whereas CysGly is the second most abundant

thiol in plasma, which is formed from the enzymatic breakdown of GSH (Bald et al.,

2004). Hcy is formed as an intermediate during the conversion of methionine (Met) to

Cys (Brosnan and Brosnan, 2006), where elevations in total plasma concentrations

represent a risk factor for stroke and cardiovascular disease (Hultdin et al., 2011;

Rueda-Clausen et al., 2012; Shi et al., 2015). g-GluCys is the biogenic precursor

to GSH, which was recently found in mitochondria to respond to oxidative stress

independently of intracellular GSH concentration by serving as an enzymatic co-factor
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Figure 2.1: Structures of reduced (a) cysteine (Cys), (b) homocysteine (Hcy), (c) cysteinylglycine
(CysGly), (d) g-glutamyl-cysteine (g-GluCys), and (e) glutathione (GSH).

for glutathione peroxidase-1 (Quintana-Cabrera et al., 2012). Finally, GSH, a tripep-

tide consisting of Cys, glutamic acid (Glu), and glycine (Gly), is the most abundant

intracellular thiol present at millimolar concentrations that serves as the primary

antioxidant and redox buffer to protect cells from oxidative injury (Carlucci and

Tabucchi, 2009). The structures of these five thiols are shown in Figure 2.1.

Perturbations in the ratio of reduced thiols to their corresponding oxidized disulfides

have long been associated with aging and disease development (Go and Jones, 2017)

as a result of changes induced on protein conformation, enzyme activity, and protein

interactions with deoxyribonucleic acid (DNA) (Isokawa et al., 2014). Due to their

biological significance, reliable methods for accurate measurement of thiol redox status

are critical to progress in health status and disease risk assessment (Toyo’oka, 2009).

However, as LMW reduced thiols altogether only constitute 12–20 µm in plasma

(Turell et al., 2013), and are chemically unstable due to their highly reactive sulfhydryl

(–SH) group, which is prone to artifactual oxidation and thiol-disulfide exchange
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reactions during sample preparation (Huang et al., 2011c), accurate determination

of plasma thiol redox status is challenging. To avoid oxidation artifacts, –SH groups

need to be stabilized rapidly, quantitatively, and irreversibly during early stages of

sample handling (Zhu et al., 2008). In this context, thiol-specific alkylating reagents

typically rely on nucleophilic substitution (e.g., monobromobimane, iodoacetamide,

and halogenobenzofurazans) (Winther and Thorpe, 2014), thiol-exchange reaction (e.g.,

5,5-dithio-bis2-nitrobenzoic acid (DTNB), also known as Ellman’s reagent) (Aitken

and Learmonth, 2009) or Michael-addition reaction via conjugation at C=C bonds (e.g.,

maleimide derivatives) (Higashi et al., 2003; Kand’ár et al., 2007). The development

of alkylating probes with fluorogenic moieties allows for fluorescence (FL) detection

by LC or CE, and is the most commonly used method of thiol analysis due to its high

sensitivity (Lačná et al., 2017). While thiol detection limits with LC-FL generally

range from 0.1–0.5 µm (Isokawa et al., 2014), recent LC methods have incorporated

the use of novel synthesized complex derivatization reagents (Guo et al., 2013), and

performed thiol-enrichment via SPE (Huang et al., 2011b) and SPE modified with

multi-walled carbon nanotubes (MWCNTs) (Huang et al., 2011a) to further enhance

the detection sensitivity for known thiols with low nanomolar detection limits, such

as free plasma Hcy. As well, nanomolar detection limits are typically achieved by

CE coupled with laser-induced fluorescence detection, while some cases have even

reported picomolar detection limits (Lačná et al., 2017).

With advances in MS providing greater chemical specificity and sensitivity, MS-

based methods with ESI have also become more attractive for the analysis of biological

thiols. In this case, detection sensitivity is further enhanced with the incorporation of

derivatization reagents that, not only stabilize the thiol, but also improves analyte

ionization and increases analyte molecular weight for improved detection outside

the low m/z region where matrix interferences are prevalent (Deng et al., 2012).
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Improved analyte ionization efficiency with derivatization has been achieved by the

introduction of a permanently charged/ionizable functional group and/or a moiety

with non-polar character, which enhances solute desorption efficiency during spray

formation (D’Agostino et al., 2011; Iwasaki et al., 2011; Xu et al., 2011). While MS

methods typically implement thiol derivatization using conventional and commercially

available reagents (Liem-Nguyen et al., 2015; Solecka et al., 2016; Sun et al., 2016),

a few studies have synthesized novel in-house reagents (Gori et al., 2014; Huang

et al., 2011c; Liu et al., 2014; Seiwert et al., 2008; Wagner et al., 2015), such as

N -(2-ferrocene-ethyl)maleimide (FEM), w-bromoacetonylquinolinium bromide (BQB),

and N-benzoyloxysuccinimide to obtain further improved thiol sensitivity. Recently,

BQB and N-benzoyloxysuccinimide reagents have also been used in stable isotope

labeling strategies for profiling of thiols in biological samples (Liu et al., 2016; Wagner

et al., 2015).

Despite the low nanomolar thiol detection limits that can be obtained with FL- or

MS-based methods, some disadvantages of these techniques include long derivatization

reaction times, or the use of complex derivatization reagents that are not commercially

available and therefore, must be synthesized in-house. In a recent study, the plasma

thiol redox status was determined using CE-MS with pre-column derivatization by

a readily available cationic maleimide, N -[2-(trimethylammonium)-ethyl]maleimide

(NTAM). Although the method achieved nanomolar detection limits when used in

conjunction with on-line sample preconcentration, it suffered from complicated sample

workup due to poor long-term reagent stability in aqueous solutions and an additional

quenching reaction step needed to eliminate background interference from excess

reagent (D’Agostino et al., 2011). In this work, an alternative maleimide for thiol

labeling was developed to address the major limitations imposed by NTAM. Using

N-tert-butylmaleimide (NTBM) as the alternative derivatization reagent, this section
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presents an improved method for the selective analysis of labile and low abundance

reduced thiols with lower detection limits, by using a simple, yet cost-effective labeling

approach with CE-MS.

2.1.2 Materials and Methods

Chemicals and Reagents

Deionized water (DI H2O) generated with a Thermo Scientific Barnstead™ EASY-

pure™ II LF ultrapure water system (Cole Parmer, Vernon Hills, IL, USA) and HPLC-

grade acetonitrile (Honeywell, Muskegon, MI, USA) were used in the preparation of

solutions and working mixtures. Ultra LC-MS-grade water and methanol (MeOH)

(Caledon, Georgetown, ON, Canada) were used in the preparation of background

electrolyte (BGE) and sheath liquid, respectively. L-cysteine (Cys), DL-homocysteine

(Hcy), reduced glutathione (GSH), cysteinylglycine (CysGly), g-L-glutamyl-L-cysteine

(g-GluCys), 2-mercaptoethane-sulfonate (MESNA), N-tert-butylmaleimide (NTBM),

3-chloro-L-tyrosine (3-Cl-Tyr), formic acid, ascorbic acid, ammonium acetate (NH4Ac),

sodium hydroxide (NaOH), and glacial acetic acid were obtained from Sigma-Aldrich

(St. Louis, MO, USA). N -[2-(trimethylammonium)-ethyl]maleimide chloride (NTAM)

was purchased from Toronto Research Chemicals Inc. (North York, ON, Canada).

Preparation of Standards and Stock Solutions

Stock solutions and buffers were degassed and stored at 4 ◦C. Stock solutions (10 mm)

of Cys, Hcy, GSH, CysGly, and g-GluCys were prepared in 0.05% formic acid with

1 mm ascorbic acid as 1 mL solutions; 1 mL each of 2 m acetic acid and 10 mm of

3-Cl-Tyr internal standard (IS) solutions, and 50 mL of 1 m NaOH solution, were

prepared in DI H2O. Formic acid solution (1 m, pH 1.8) was prepared with 15% v/v
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acetonitrile (ACN) in a 50 mL volume as BGE and 50 mL of 400 mm NH4Ac solution

was adjusted to pH 5 with 2 m acetic acid solution. NTBM (50 mm) was prepared

in ACN as a 1 mL solution. MESNA (50 mm) and NTAM (50 mm) were prepared as

1 mL solutions in 0.1% formic acid. NTAM and thiol stocks were used within a week.

MESNA was prepared fresh before each use.

Derivatization of Thiols Standards with Maleimide

Chemical derivatization of thiol standards was performed separately by the addition

of 200 µm Hcy, Cys, GSH, CysGly, or g-GluCys into 20 mm maleimide solution

(NTAM or NTBM) using freshly prepared standards stored at 4 ◦C in 200 mm NH4Ac,

pH 5. Derivatization with NTAM required an additional quenching step to eliminate

background interference from excess unreacted cationic maleimide by adding MESNA

as a strongly acidic thiol in at least a 1.25-fold excess over the NTAM concentration,

which forms a zwitterionic neutral adduct. NTBM derivatization did not require

quenching since the neutral maleimide co-migrated with the EOF by CE-MS. For

investigation of the kinetics between reduced thiols and NTBM, thiol-NTBM adducts

were analyzed by CE-MS approximately 2, 30, 60, 90, and 120 min following the

reaction and, in a separate stability study, NTBM adducts were measured 1 h, 24 h,

48 h, and 7 d following the reaction.

Calibration solutions for thiol-NTBM adducts were prepared in triplicate with

100-fold excess of NTBM at the following concentrations: 0.5, 1, 5, 10, 50, 100, and

200 µm for Cys and 0.1, 0.5, 1, 2, 5, 10, and 20 µm for Hcy, GSH, CysGly, and g-

GluCys. The integrated peak areas of NTBM-adducts were normalized to that of the

IS, 25 µm 3-Cl-Tyr, and were subsequently plotted against concentration, in which

the curves were fitted by least squares linear regression analysis.
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Capillary Electrophoresis Mass Spectrometry (CE-MS)

All CE separations were performed on an Agilent CE system equipped with an XCT

three-dimensional (3D) ion-trap (IT) mass spectrometer using an applied voltage of

30 kV at 25 ◦C, an Agilent 1100 series isocratic pump and a G16107 CE-MS sprayer

kit (Agilent Technologies Inc., Mississauga, ON, Canada). Uncoated 85 cm fused silica

capillaries (Polymicro Technologies, AZ, USA) with 50 µm internal diameter were

used. Capillaries were preconditioned by rinsing with MeOH, 1 m NaOH, and DI H2O

for 10 minutes each (∼5 capillary volumes), respectively, prior to rinsing with BGE

for 15 minutes (∼10 capillary volumes) at 950 mbar. Between runs, capillaries were

rinsed with BGE for 5 minutes (∼3 capillary volumes) at 950 mbar. Single sample

injections were performed by hydrodynamic injection of the sample for 5 s at 50 mbar,

followed by 60 s injection of BGE at 50 mbar. On the other hand, CE-MS with on-line

sample preconcentration via transient isotachophoresis was performed by injecting

the sample prepared in a matrix of 200 mm NH4Ac for 90–180 s at 50 mbar followed

by 60 s injection of BGE at 50 mbar as previously demonstrated by D’Agostino et al.

(2011). Sample run-time was set to 30 minutes.

The 3D-IT mass spectrometer was operated in positive-ion mode over a mass scan

range of 100–500 m/z with maximum acquisition time of 200 ms with 10 average scans

using a smart target of 250 000 ions. Nitrogen (N2) was used as the nebulizing gas

at 10 psi and drying gas at 4 L/min using a temperature of 300 ◦C in the ion source,

where the electrospray ionization cone voltage was 4 kV. The coaxial sheath liquid flow

rate was 10 µL/min, using 60% v/v MeOH with 0.1% formic acid via a 100:1 splitter.

To minimize trapping efficiency bias for ions with different m/z , the target mass was

adjusted to the average m/z of the thiol-maleimide adducts of interest in the sample.

This allowed for a direct comparison of the ionization efficiency between NTAM- and
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Figure 2.2: Chemical derivatization of free reduced thiols with N -substituted maleimides.

NTBM-labeled thiols. Target m/z values for NTAM and NTBM mixtures were set at

289 and 313, respectively.

2.1.3 Results & Discussion

Thiol Labeling by Maleimide and Signal Enhancement with NTBM

Maleimides react selectively towards sulfhydryls under weakly acidic pH conditions

based on the nucleophilic addition of the sulfhydryl moiety to form a stable thioether

adduct (Yin et al., 2009) (Figure 2.2). Weakly acidic conditions and low temperatures

are favoured for thiol derivatization since auto-oxidation of thiols occurs at room

temperature and may occur at pH values greater than 7.0 (Camera and Picardo, 2002;

Hansen and Winther, 2009), considering that thiol pKa values range from 8–10 (Tajc

et al., 2004). In addition to stabilizing reduced thiols, formation of the thioether adduct

allows for greater ionization efficiency and thus, an enhancement in the detection of

small and polar compounds, such as thiols, by ESI-MS.

Recently, a cationic maleimide, NTAM, was reported to be optimal for the nano-

molar analysis of thiols in plasma (D’Agostino et al., 2011) as it provided improved

resolution and an overall 15-fold enhancement in peak height relative to those of

the native reduced thiols (Cys, Hcy, CysGly, g-GluCys, and GSH). Possessing a

55



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

O

N

+
N

CH3

CH3

CH3

O

(a) NTAM

O

N

CH3

CH3

CH3

O

(b) NTBM

Figure 2.3: Structures of (a) N -[2-(trimethylammonium)-ethyl]maleimide and (b) N-tert-
butylmaleimide.

permanently charged quaternary ammonium moiety independent of the pH of the

CE background electrolyte (refer to Figure 2.3), NTAM conferred greater positive

electrophoretic mobility to its thiol adducts relative to the unlabeled thiols, thereby,

leading to shorter analysis times. On its own, NTAM, also migrated with a high

positive electrophoretic mobility in CE, such that when present in large excess, un-

quenched label is detected as an intense broad peak with a peak width of at least

0.6 min – a large time window in which signal suppression occurred for those analytes

migrating within the same time frame. To eliminate background interferences, a thiol

possessing a negatively-charged sulfonate group, MESNA, was added in slight excess

of the unreacted cationic NTAM in order to convert the NTAM to an electrically

neutral adduct. As a result, the neutral NTAM-MESNA adduct co-migrated with

the EOF, and away from the migration window of the positively-charged analytes.

When applied to plasma analysis, however, an additional final quenching step after

the addition of MESNA was required to prevent excess MESNA from cross-reacting

with endogenous oxidized disulfides in the sample. The quench was accomplished by

the addition of a neutral maleimide, N-methylmaleimide.

Given the complicated sample workup when using NTAM, NTBM was considered
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and investigated as an alternative to simplify the thiol-labeling procedure for several

reasons:

1. the lack of a positively charged moiety, eliminates the need for quenching, since

the neutral NTBM would co-migrate with the EOF;

2. NTBM possesses a bulky and hydrophobic tertiary butyl moiety (Figure 2.3),

which is expected to enhance ion surface activity, thus, improving ionization

efficiency in ESI;

3. NTBM is cost-effective;

4. NTBM is soluble in acetonitrile (ACN), which allows for the reagent solution to

remain stable over time and not be subject to hydrolysis.

Signal Enhancement with NTBM

Comparison of equimolar 10 µm NTAM- and NTBM-labeled adducts of Hcy, Cys, and

GSH, as shown in the extracted ion electropherogram (EIE) of Figure 2.4, reveal a

greater overall ion response (i.e., relative peak area (RPA)) in NTBM-adducts relative

to NTAM by an overall factor of 2.5, specifically, with a 3.2-fold enhancement in

Hcy, 2.8-fold enhancement in GSH, and a modest enhancement in Cys of 1.4-fold

(Table 2.1). As expected, thiol-NTBM adducts displayed longer migration times due to

the combination of a bulky/neutral moiety experiencing greater hydrodynamic friction

during electromigration in free solution by CE, and the lack of a permanent positive

charge, which significantly enhanced the electrophoretic mobility for thiol-NTAM

adducts as reflected by their shorter migration times.

When relative ion responses of the NTBM-adducts were compared to those of the

5 unlabeled free reduced thiols (Figure 2.5), an overall average 23-fold enhancement
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Table 2.1: Enhancement in relative ion response (normali-
zed to internal standard) and intensity of NTBM-adducts
relative to NTAM-adducts.

Thiol Relative Ion Response Relative Intensity

Hcy 3.2± 0.7 2.3± 0.7
Cys 1.4± 0.2 0.7± 0.2
GSH 2.8± 0.4 1.4± 0.3

Average 2.5 1.4

Table 2.2: Summary of relative ion response and MV of free reduced thiols and thiol-NTBM adducts.

Thiol
Relative Ion Response Molecular Volume (Å3)∗

Free thiol Thiol-NTBM Fold-change Free thiol Thiol-NTBM Fold-change

Cys 0.12± 0.02 3.3± 0.5 28 ± 6 102.22 242.41 2.37
Hcy 0.33± 0.06 9.2± 1.6 28 ± 7 119.02 259.21 2.18

CysGly 0.07± 0.01 3.4± 0.5 50 ± 10 150.40 290.60 1.93
g-GluCys 0.70± 0.08 2.7± 0.6 3.9± 1.0 211.03 351.23 1.66

GSH 1.1 ± 0.2 6.0± 1.4 5.5± 1.5 259.22 399.41 1.54
∗ Values for molecular volume were calculated in silico using Molinspiration (Jarrahpour et al., 2012,
www.molinspiration.com), which were obtained from fitting the sum of fragment contributions to “real” 3D
volume from a training set of 12 000 mostly drug-like molecules. Semi-empirical Austin Model 1 (AM1) method
was used for optimization of 3D molecular geometries.

in concentration sensitivity was achieved. Notably, CysGly exhibited the greatest

enhancement when derivatized with NTBM, showing approximately 50-fold enhan-

cement in the normalized ion response relative to its native thiol (Table 2.2). The

response enhancement in other thiols ranged from 4- to 28-fold with g-GluCys and

GSH exhibiting the lowest fold changes of 4 and 5.5, respectively.

The trend in ion response enhancement for the various adducts may be explained

by the respective pKa values of the –SH group in the free reduced thiols, since

their acidity determines the nucleophilicity of the thiolate anion to participate in

the Michael addition with the maleimide reagent at a given pH, according to the

Henderson-Hasselbalch equation, which may be rewritten as Equation (2.1) (Iciek

et al., 2004):
[RS]−

[RSH] = 10pH−pKa (2.1)
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Table 2.3: Summary of pKa, m/z, and RMT of free reduced thiols and thiol-NTBM
adducts.

Thiol pKa (–SH)∗
m/z RMT

Free thiol Thiol-NTBM Free thiol Thiol-NTBM

Cys 8.15 122.027 275.106 0.936± 0.005 1.121± 0.010
Hcy 8.87 136.043 289.122 0.870± 0.002 1.033± 0.002

CysGly 6.36 179.049 332.128 0.777± 0.005 0.933± 0.008
g-GluCys 9.70 251.070 404.149 1.080± 0.003 1.135± 0.006

GSH 9.20 308.091 461.170 1.131± 0.004 1.172± 0.007
∗ pKa values were obtained from Chu et al. (2017); Iciek et al. (2004); Stark et al. (1989).

In this case, when pre-column thiol derivatization conditions were performed with

NTBM at pH 5 (in order to stabilize free thiols thus preventing their oxidation),

a strong negative inverse correlation of −0.94 was observed (Figure 2.6b) when

correlating measured average ion response enhancement with pKa of the –SH group,

which are listed for the various thiols in Tables 2.2 and 2.3, respectively. The inverse

correlation is in agreement with the expectation that thiolate anions with higher

pKa values will have lower reactivity due to the thiol group being less likely to be

deprotonated and therefore, less readily available for reaction with maleimide. In

addition to the pKa, the ion response enhancement of the thiols was also found to be

dependent on the fold-change increase of the MV following derivatization, in which

a moderate positive correlation of 0.55 was observed (Figure 2.6a). The positive

correlation between MV fold-change and ion response enhancement is in agreement

with earlier work by D’Agostino et al. (2011) and is consistent with ESI-MS models

(Chalcraft et al., 2009; Oss et al., 2010), which rationalize that the increase in ion

response is a result of increased ionization efficiency owing to larger MV. By applying

multiple linear regression, the strength of the effects of pKa and MV fold-change on ion

response enhancement of the thiols were determined. A nearly significant two-factor

regression model was found (F (2, 2) = 14.965, p = 0.06) with an R2 of 0.937, in which

the ion response enhancement of thiols derivatized by NTBM could be predicted by
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Figure 2.6: Correlation plots between the ion response enhancement (blue – observed; red – predicted
from multiple linear regression modeling) and (a) fold-change in MV or (b) pKa of sulfhydryl
moiety, following maleimide derivatization for five biological thiols with NTBM. Pearson correlation
coefficients (r) and p-values are indicated with respect to the observed ion response enhancement.

Equation (2.2):

Ion response enhancement = 104.645+13.631 (MV fold-change)−12.762 (thiol pKa)

(2.2)

Thiol pKa was a significant predictor (p = 0.046) while MV fold-change was found

to be non-significant (p = 0.33) in the prediction of ion response enhancement. The

correlation plots between fold-change in MV, or pKa of the thiol moiety, on the

measured and predicted ion response enhancement are shown in Figure 2.6. Molecular

volume data for reduced thiols and the corresponding NTBM-adducts, are summarized

in Table 2.2, in which Cys-NTBM and Hcy-NTBM show the greatest increase fold-

change in MV relative to the reduced thiols.
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Reaction Time of NTBM

The reaction time of the derivatization reaction was investigated with NTBM being

present at a 100-fold excess relative to total concentration of reduced thiols. The

reaction was performed on ice (4 ◦C) to simulate conditions that would be required

for the derivatization of plasma samples in order to minimize auto-oxidation artifacts

during sample processing. Plots of concentration of Cys-, Hcy-, and GSH-NTBM

adducts versus time (t = 1–200 min) in Figure 2.7 indicate that derivatization with

100-fold excess of NTBM is complete for the 3 thiols after approximately 1 h on ice.

Given that the processing time for protein and plasma samples following derivatization

takes at least 1.5 h, it can be assumed that the labeling of protein-bound or plasma

thiols by NTBM will have reached completion by the time the sample is ready for

analysis.

Stability of NTBM Reagent and Thiol Adducts

The short-term stabilities of Cys-, CysGly-, g-GluCys-, Hcy-, and GSH-NTBM adducts

were monitored at 1 h, 24 h, 48 h, and 7 d following derivatization as a mixture. In

Table 2.4, the percent coefficient of variation (%CV) of the ion responses for the 5

thiol-NTBM adducts were all found to be within 5% when measured over a 1-week

period. The %CV is sufficiently low such that the values are within the normal

variation of instrumental performance. Thus, the results confirm that the thiol-NTBM

adducts are stable for at least one week following their formation when stored at 4 ◦C

and therefore, are expected to be stable for a much longer time period especially when

stored under conditions that are typical for biological samples (i.e., −80 ◦C).

Since the work of D’Agostino et al. (2011) had previously found that certain

maleimide reagents, such as NTAM, were susceptible to hydrolysis, thereby requiring
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Figure 2.7: Normalized responses of thiol-NTBM products over time from the reaction between
reduced thiols and 100-fold excess of NTBM at 4 ◦C in pH 5 buffer.

Table 2.4: Relative ion responses of five thiol-NTBM
adducts measured within a week to assess short-term
stability in a mixture stored at 4 ◦C.

Thiol-Adduct 1 h 24 h 48 h 7 d %CV

CysGly-NTBM 3.38 3.53 3.42 3.40 2.0
Hcy-NTBM 3.27 3.33 3.30 3.23 1.3
Cys-NTBM 3.14 3.33 3.35 3.12 3.7

g-GluCys-NTBM 2.65 2.77 2.76 2.67 2.2
GSH-NTBM 2.05 2.19 2.10 2.06 3.0
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stock solutions to be used within 24 h, the stability of NTBM reagent in ACN was

assessed – initially by UV-visible (VIS) absorption measurements made over 36 days.

Figure 2.8 shows an overlay of the UV-VIS spectra collected for NTBM reagent from

day 1 to day 36, which reveals that NTBM reagent is stable in ACN within this period.

In response to later work (discussed next in Section 2.2.3) that favoured the use of

methanol (MeOH) over ACN for the preparation of plasma samples, the preparation

of NTBM reagent in methanol was also considered as an alternative. Following a

9-month storage period of NTBM reagent in methanol at 4 ◦C, its performance on

derivatizing a thiol mixture was compared to that of a fresh stock of NTBM prepared

in ACN. Comparison of the relative ion responses for the five thiol-adducts prepared

from both NTBM stocks revealed an overall average %CV of 5.1, as shown in Table 2.5.

The results are indicative of the stability of NTBM in MeOH after a 9-month storage

period, since its thiol-labeling performance is comparable to that of NTBM freshly

prepared in ACN, with the observed variation in ion responses being well within the

largest variation typically exhibited with independent technical replicates, 24%. In

order to maintain the long-term stability of NTBM reagent, it was important to use

dry solvents for reagent preparation since water content in ACN and MeOH, which are

both hygroscopic, could compromise and lead to hydrolysis of the maleimide. Thus, in

addition to the formation of stable thiol adducts and its compatibility in both MeOH

and ACN solvents, NTBM has been found to be a much more stable and user-friendly

reagent than NTAM.

2.1.4 Conclusions

In summary, NTBM was shown to be an improved thiol-derivatization reagent, which

overcame obstacles encountered with the use of NTAM in CE-ESI-MS. Due to the lack
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Figure 2.8: Overlay of UV-VIS spectra collected for NTBM reagent in ACN to assess its short-term
stability within a 36-day period. For clarity, the spectra have been vertically offset in chronological
order as listed in the legend. No spectral changes are observed and are indicative of the stability of
NTBM within this short time period.

Table 2.5: Comparison of ion responses of thiol-NTBM adducts
prepared when using a 9-month-old stock of NTBM in MeOH and a
fresh stock of NTBM in ACN, respectively, to assess the long-term
stability of NTBM reagent.

Thiol-Adduct NTBM in MeOH
Stored for 9 months

Fresh NTBM
in ACN %CV

CysGly-NTBM 2.62 2.69 1.7
Hcy-NTBM 2.37 2.57 5.6
Cys-NTBM 2.52 2.39 3.9

g-GluCys-NTBM 1.67 1.97 11.6
GSH-NTBM 1.38 1.44 2.9

Average 5.1
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of a permanent positively charged moiety, NTBM eliminates the need for additional

quenching steps to remove background interference, which greatly simplifies the

derivatization procedure to a single step. NTBM shows greater enhancement in the

detection of thiols by 2.5-fold relative to NTAM, and 23-fold relative to unlabeled

reduced thiols. When derivatization with NTBM is carried out on ice, one hour is

needed for the reaction to reach completion, whereas recent novel labeling reagents

generally require one hour of reaction time at elevated temperatures. The thiol adducts

of NTBM were found to be stable within a week when stored at 4 ◦C and are expected

to be stable for longer time periods when stored at −80 ◦C. The stability of NTBM

adducts is advantageous as it allows for the reduced thiol fraction in samples to be

captured at the time of sample processing and analyzed at a later date for assessment of

redox status in samples when measured together with oxidized disulfides. Furthermore,

the stability of NTBM reagent itself is an added benefit since it can greatly reduce

the frequency of reagent preparation, as well as minimize costs associated with the

elimination of unused excess reagent, which can instead be saved for future use.

Overall, the simplified derivatization procedure, enhanced detection of thiols, low cost,

commercial availability, and stability of the derivatized thiol-adducts make NTBM a

practical and effective alternative to NTAM for thiol analysis by CE-ESI-MS.

2.2 Characterization of Protein-Bound Thiols in

Plasma

This section describes the development, optimization and method validation of a

protocol for the extraction and quantification of protein-bound thiols in human plasma

using NTBM as the thiol-derivatizing agent.
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2.2.1 Introduction

In plasma, human serum albumin (HSA) represents the most abundant protein,

comprising 50% of total plasma proteins (Borowczyk et al., 2015). Aside from important

physiological roles in buffering of plasma pH, regulating osmotic pressure, transporting

endogenous and exogenous ligands (including metals, fatty acids, cholesterol, and

hormones), HSA also functions as an extracellular antioxidant by scavenging reactive

oxygen species (ROS) or reactive nitrogen species (RNS) via oxidation of the only

free Cys residue (Cys34) (Ogasawara et al., 2007). Being the only thiol residue not

involved in intra-protein disulfide bonding and having a pKa of ∼5 (Borowczyk et al.,

2015), which is lower than most plasma thiols (pKa 8–9), Cys34 acts as a major

redox-reactive probe that is capable of undergoing various post-translational oxidative

modifications (Giles et al., 2003). Due to the naturally high abundance of HSA, Cys34

accounts for approximately 80% of the total redox-sensitive thiols in plasma with

the circulating concentrations ranging from 0.6 to 0.75 mm (Borowczyk et al., 2015;

Jovanović et al., 2013), in which 70–80% of total Cys34 exists in the free sulfhydryl

form in healthy adults (Oettl and Stauber, 2007).

Among the various reversible and irreversible oxidative Cys modifications that

can occur in HSA (as well as in other peptides and proteins), including inter-protein

disulfide bonding, sulfenation, sulfination, sulfonation, nitrosation, and sulfenamidation

(Rudyk and Eaton, 2014), reversible protein thiolation is the predominant form of

biological oxidation with minimal redox change (Di Simplicio et al., 2005). Protein

thiolation is the non-enzymatic formation of a disulfide between a protein and a

LMW thiol, such as Cys and GSH (Di Simplicio et al., 2005), to either modulate

protein function and/or protect protein structure by preventing irreversible oxidative

modifications (Dalle-Donne et al., 2007). In healthy human plasma, the ratio of
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protein-bound thiol to unbound free thiol can vary greatly between different thiols,

due to various complex interactions, as well as differences in binding characteristics

(Wiley et al., 1988), such that, for example, the ratio is 60:40 for Cys and 95:5 for

Hcy (Bald et al., 2004).

While many HPLC-UV and HPLC-FL methods have been developed for the

determination of protein-bound thiols in human plasma (Andersson et al., 1993;

Bald et al., 2004; Borowczyk et al., 2015; Giustarini et al., 2005; Mansoor et al.,

1992), there are often inconsistent quantitative results in reported protein-bound

thiol concentrations when comparing various methods. Furthermore, these methods

have generally been limited to the determination of Cys, Hcy, GSH, and CysGly,

and have not included g-GluCys (an important precursor to the synthesis of GSH).

The objective of the present study is to develop a sensitive and reliable method

that will allow for the measurement of low-abundance protein-bound thiols in human

plasma, which may later be applied towards the untargeted profiling of Cys34 disulfides

(Section 2.3), while attempting to address discrepancies in reported concentration

levels of protein-bound thiols between different methods. The method is based on the

derivatization of protein-bound thiols using NTBM, which first requires experimental

optimization of protein precipitation and extraction of plasma metabolites, prior to

analysis by CE-MS.

2.2.2 Materials and Methods

Chemicals and Reagents

In addition to the chemicals and preparation of standard solutions as described

previously in Section 2.1.2, human plasma samples were obtained from the work of

D’Agostino et al. (2011). As well, DL-dithiothreitol (DTT), tris(2-carboxyethyl)-

68



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

phosphine hydrochloride (TCEP), lyophilized (freeze-dried) pooled human plasma,

and metabolite reference standards were purchased Sigma-Aldrich (St. Louis, MO,

USA). Pooled human plasma was reconstituted to 1 mL in DI H2O and stored as

50 µL aliquots at −80 ◦C until sample processing. DTT and TCEP were prepared in

DI H2O as 5 mm solutions (1 mL each), and prepared fresh before each use.

Sample Workup of Human Plasma for Protein-Thiol Reduction and Che-

mical Derivatization

Two organic solvents, methanol and acetonitrile, were compared in their efficacy of

both protein precipitation and metabolite extraction in plasma. Four volumes (200 µL)

of ice-cold solvent were added to one volume of plasma (50 µL). Adapting a method

previously described for the preparation of serum (Want et al., 2006), plasma samples

were left to precipitate at −20 ◦C for one hour following brief vortexing. Samples were

subsequently centrifuged for 10 min at 13 000 g and the supernatants were transferred

to 3 kDa cut-off Nanosep centrifugal devices (Pall Life Sciences, Washington, NY,

USA), where they were ultra-filtered for 15 min at 13 000 g. Plasma filtrate (150 µL)

was transferred to a new vial to be evaporated to dryness under vacuum at room

temperature using a centrifugal evaporator (Eppendorf Vacufuge plus, AG22331,

Hamburg, Germany) for 30 min before being reconstituted to 30 µL in 200 mm NH4Ac

(pH 5) aqueous buffer solution containing the IS, 25 µm 3-Cl-Tyr. The sample was

stored at −80 ◦C until analysis. Solvent blanks for each extraction method were

prepared as controls to ensure that detected features in the plasma did not originate

from the extraction solvents or use of the centrifugal devices.

Upon the removal of plasma supernatant following protein precipitation, protein

pellets from both methanol and acetonitrile extractions were washed with 3 different

solutions (Ultra LC-MS-grade water, Ultra LC-MS-grade methanol, or 50:50 metha-
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nol:water solution) in order to determine the optimal solution that would minimize

the amount of residual plasma carryover, while minimizing the amount of protein

lost in the procedure as explained below. The protein-washing protocol involved the

addition of 500 µL of ice-cold wash solution to the pellet followed by brief vortexing,

centrifugation for 10 min at 13 000 g, then careful removal of the supernatant to mini-

mize removal of protein. The washing protocol was repeated three times to ensure

thorough removal of residual metabolites in plasma. Reductive cleavage of disulfide

bonds in the isolated protein pellet was performed by treatment with 100 µL of 5 mm

DTT or TCEP for 15 min with sonication. LMW thiols were subsequently derivatized

by the addition of 100 µL of 25 mm NTBM then ultra-filtered for 15 min at 13 000 g in

3 kDa cut-off Nanosep centrifugal devices. Filtrate (150 µL) was dried under vacuum

at room temperature for 1 h prior to being resuspended in 30 µL of 200 mm NH4Ac

(pH 5) aqueous buffer solution containing the IS, 25 µm 3-Cl-Tyr. The sample was

stored at −80 ◦C until analysis.

Capillary Electrophoresis Mass Spectrometry (CE-MS)

CE-MS separations were performed on an Agilent G7100A CE system interfaced with

an orthogonal Agilent coaxial sheath liquid Jet Stream ESI source to an Agilent 6230

TOF mass spectrometer, in which a voltage of 30 kV at 25 ◦C was applied to 110 cm

50 µm internal diameter uncoated fused silica capillaries (Polymicro Technologies,

AZ, USA), which were preconditioned similarly as described earlier in Section 2.1.2

with the exception of additional 5 min rinsing time to all capillary rinses, relative to

rinse times on an 85 cm capillary. For high-throughput profiling of protein-bound

thiols, MSI-CE-MS (Kuehnbaum et al., 2013) was used in this work, which enables

the simultaneous analysis of seven samples within a single run. Sample run-time

was set to 45 min. The TOF mass spectrometer was operated in positive-ion mode
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scanning m/z 50–1700 with an acquisition rate of 2 Hz and acquisition time of 500 ms.

The temperature of the nitrogen nebulizing gas was 300 ◦C at 10 psi with drying gas

at 8 L/min. Sheath gas was at 3.5 L/min at 195 ◦C. Both the nozzle and capillary

voltages (Vcap) were set at 2 kV, while the MS fragmentor, skimmer, and octopole

radio-frequency voltages were at 120, 65, and 750 V, respectively.

2.2.3 Results & Discussion

Comparison of Plasma Extraction and Protein Precipitation Efficacy by

Methanol and Acetonitrile

Efficient protein precipitation and plasma metabolite extraction were optimized in this

work by first comparing the performance of ACN and MeOH in protein denaturation,

in which the volume ratio of organic solvent to plasma was 4:1 (Nirungsan and

Thongnopnua, 2006; Pucci et al., 2003; Yang et al., 2013). Signal responses for 35

plasma metabolite features were obtained for 3 technical replicates and compared

between the 2 methods as shown in Table 2.6. Overall, it was found that MeOH

protein precipitation resulted in an average signal that was 3-fold greater in both

peak heights (RPH) and peak areas (RPA) relative to the metabolite responses from

precipitation with ACN. The average percent relative standard deviation (%RSD) in

ion response was found to be 7.7% and 15.0% for MeOH and ACN, respectively, in

which the %RSD values ranged from 1.5 to 26% for MeOH, and 5.4 to 29% for ACN.

The average signal responses of each metabolite measured from both methods, along

with the fold-change increase in signal with MeOH protein precipitation relative to

ACN, are tabulated in Table 2.6. The results reveal that greater sensitivity in signal

responses from plasma extracts are obtained with MeOH extraction. Importantly,

upon handling of protein pellets following removal of deproteinized plasma extracts,
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differences in the consistency of pellets were observed between the two organic solvent

extraction methods. Protein pellets from ACN extractions were soft and semi-solid,

which made it extremely difficult for pellets to be transferred quantitatively between

vials during washing. In contrast, pellets from MeOH extractions were firm and

intact, thereby, allowing for much greater ease and completeness of transfer between

vials, resulting in higher recoveries of the protein following washing. Based on the

superior performance of MeOH in terms of both hydrophilic metabolite signal response

from plasma and extraction recovery of protein, MeOH was selected as the preferred

extraction solvent to be used in subsequent protein-bound thiol analysis.

Eliminating Plasma Carryover in Protein Pellet

Prior to the analysis of protein fractions, it is important that the protein pellets are

sufficiently rinsed in order to minimize carry-over from residual plasma which may

contribute artifacts to the protein analysis. Early trials on the development of the

protein workup protocol found that residual plasma metabolites were appreciably

detected from the analysis of protein fractions that were only rinsed once with water.

In an attempt to improve the protocol for a more thorough rinse, rinsing of the

pellet with water had been repeated three times. However, it was found that the

intact protein pellet gradually disintegrated and became more solubilized with each

water rinse, leading to poor recoveries due to difficulty in quantitatively isolating

the softened pellet. To keep the pellet intact and prevent its solubilization during

washing, 100% MeOH was considered next as the rinsing solvent. Although the pellet

had remained firm and intact throughout the rinse, several plasma metabolites were

still considerably detected. Given the insolubility of plasma metabolites in MeOH, it

was not surprising to see that glutamine, one of the most abundant amino acids in

plasma, was substantially detected from the workup of the MeOH-rinsed protein pellet,

73



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

0.90 0.95 1.00 1.05 1.10 1.15
0.0

0.5

1.0

1.5

2.0
·107

Large signal
from excess

TCEP-NTBM

Relative Migration Time

Io
n
C
ou

nt

CysGly-NTBM
Hcy-NTBM
Cys-NTBM
GSH-NTBM

TIC

0.9 1.0 1.1
0

2

4
·108

TCEP-NTBM

RMT

Io
n
C
ou

nt

Figure 2.9: EIE overlay of the large interfering background peak from cationic fast-migrating TCEP-
NTBM adduct masking low-abundance signals of thiol-NTBM adducts. (Inset) Zoomed-out TIC to
show overall magnitude of ion count from TCEP-NTBM adduct.

such that its response was 50% of the measured signal from plasma. To compromise

between maintaining an intact protein pellet while allowing for sufficient solubility

of residual plasma metabolites in the rinse solution for their removal, 50% MeOH

solution in water was tested for its efficiency in the pellet-rinsing protocol, in which it

was confirmed that residual plasma carryover was best eliminated from the protein

pellet. From these results, 50% ice-cold MeOH in water was confirmed as the optimal

wash solution for the rinsing of protein pellets prior to their derivatization.

Reducing Protein Disulfide Bonds: DTT vs. TCEP

To quantify protein-bound thiols in plasma, reduction of protein thiols are typically

carried out using DTT or TCEP prior to labeling (Hermanson, 2013). Earlier work

performed on IT-MS for the analysis of NTBM-labeled protein-bound thiols reduced
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Figure 2.10: EIE overlay of low-abundance thiol-NTBM adducts (inset) and TIC showing neutral
DTT-NTBM migrating late as an EOF marker, which does not interfere with measurement of
thiol-NTBM adducts.

with TCEP have shown the presence of an early migrating massive background peak

(Figure 2.9), whose m/z value corresponds to a singly and positively-charged TCEP-

NTBM adduct (m/z 404.1). With a peak width spanning nearly a minute, the presence

of an enormous background peak with a high positive mobility is highly undesirable,

as it is likely to interfere and cause ion suppression to the analysis of thiol-NTBM

adducts or other analytes of interest that may be migrating within the large 1-minute

peak width window. As a result of the risk of possible interference, TCEP was not used

for the reduction of protein-bound thiols prior to maleimide derivatization, despite it

being known to be a stronger and faster reducing agent than DTT at pH < 8 (Han

and Han, 1994). For this reason, DTT was considered for the reductive cleavage of

protein-bound thiols. With DTT possessing two thiol groups that are reactive towards

the maleimide, the addition of NTBM was ensured to be present in at least a 2-fold
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Table 2.7: Validation criteria for the analysis of NTBM-derivatized thiols.

Thiol-NTBM
Adduct

m/z : RMT Linear Range Sensitivity Linearity LOD (SNR = 3)
(MH+) (µm) (µm−1) (R2) (µm)

Cys-NTBM 275.106 : 1.121 0.5–200 0.323± 0.007 0.9963 0.06
Hcy-NTBM 289.122 : 1.033 0.2–20 0.950± 0.057 0.9985 0.02

CysGly-NTBM 332.128 : 0.933 0.1–20 0.362± 0.028 0.9963 0.02
g-GluCys-NTBM 404.149 : 1.135 0.1–20 0.274± 0.002 0.9920 0.04

GSH-NTBM 461.170 : 1.172 0.1–20 0.615± 0.058 0.9881 0.03

molar excess of the amount of DTT added plus the expected amount of reduced thiols

combined. In this case, a 5-fold excess of NTBM relative to DTT was added to the

protein sample. The resulting EIE, as shown in Figure 2.10, reveals a large peak at

the EOF, which is believed to be the neutral DTT-NTBM adduct in excess. Therefore,

the results indicate that the use of DTT as a reducing agent does not pose any risk

of interference to the CE-MS analysis of protein-bound thiols as maleimide adducts.

Figure 2.11 illustrates the optimized protocol for preparation and derivatization of

the protein fraction.

Method Validation

External calibration curves measured in triplicate for the NTBM-derivatized thiols were

acquired over a concentration range that was selected based on previously reported

protein-bound thiol concentrations (Borowczyk et al., 2015). Linearity and sensitivity

of the method were assessed using six to seven calibration points and are summarized

in Table 2.7 along with the detection limits for each thiol. Instrument precision was

determined through replicate intra- and inter-day measurements (n = 3), in which

overall RSDs ranged from 0.9–10%.

To assess the method reproducibility of the protein-bound thiol assay, six replicate

preparations of protein samples from the same batch of plasma were performed and

analyzed. RSDs ranged from 6.5–28%, in which the quantification of protein-bound
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Figure 2.11: Illustration of the protocol for plasma and protein preparation.
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Table 2.8: Average concentrations of protein-bound thiols in pooled
human plasma.

Thiol-NTBM Adduct Concentration (µm)∗ Relative Abundance

Cys-NTBM 92 ± 6 1.000
Hcy-NTBM 0.95± 0.13 0.010

CysGly-NTBM 11 ± 1 0.120
g-GluCys-NTBM 0.46± 0.13 0.005

GSH-NTBM 0.36± 0.09 0.004
∗ Values are expressed as mean ± standard deviation.

Table 2.9: Comparison of mass LOD between various assays for LMW thiols.

Analytical
Platform

Volume∗ Cys Hcy CysGly g-GluCys GSH
(nL) (fmol) (fmol) (fmol) (fmol) (fmol)

NTBM derivatization CE-MS 3.5 0.21 0.07 0.07 0.14 0.11
D’Agostino et al. (2011) CE-MS 63 0.50 0.63 0.63 0.63 0.38
Borowczyk et al. (2015) HPLC-UV 2000 160 300 200 300
Isokawa et al. (2013) HPLC-FL 5000 7.5 4.0 1.5 17 4.0
Zhang et al. (2014) HPLC-UV 20 000 800 1600 1200 1200
∗ Sample injection volume.

g-GluCys and GSH exhibited the greatest variability with RSDs of 28% and 25%,

respectively. This is not unreasonable given the low concentrations of those thiols.

Average protein-bound thiol concentrations of the six replicates are shown in Table 2.8.

Comparison of the absolute mass limit of detection (LOD) to those of previous methods,

which were mainly based on HPLC with UV or FL detection, reveals enhancements in

thiol detection limits of up to four orders of magnitude when taking into account the

extremely low sample injection volume of CE-MS, in conjunction with derivatization by

NTBM, as seen in Table 2.9. While the HPLC methods compared have used injection

volumes of 2–20 µL, CE injects only 3.5 nL per sample, which offers the potential to

further lower detection limits upon application of online sample preconcentration, as

demonstrated previously in the work of D’Agostino et al. (2011).

78



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

Table 2.10: Comparison of mean concentrations of protein-bound thiols between different methods.

n
Mean ± Standard Deviation Concentration (µm)

Cys Hcy CysGly g-GluCys GSH

NTBM derivatization 6 92± 6 0.95± 0.13 11.4± 1.0 0.46± 0.13 0.36± 0.09
Borowczyk et al. (2015) 20 158± 26 3.4 ± 0.8 21.6± 4.6 2.8 ± 1.1
Giustarini et al. (2005) 15 147± 24 7.5 ± 2.8 11.3± 1.8 1.7 ± 0.7
Bald et al. (2004) 8 229± 96 8.7 ± 2.8 17.3± 6.6 6.7 ± 4.7
Andersson et al. (1993) 10 146± 29 7.3 ± 2.1 20 ± 11 1.2 ± 0.8 0.7 ± 3.0
Mansoor et al. (1992) 10 155± 18 9.8 ± 2.9 15.1± 3.2 1.3 ± 0.2

%CV 28 54 27 63 103

Pitfalls of Direct Protein-Bound Thiol Quantification

A challenge encountered with the derivatization of thiols in protein samples is the

inability to correct for the amount of protein that is physically lost to repeated rinsing

of the pellet and removal of the wash supernatant. Unless the combined thiol content

in plasma and protein, and the total thiol content contributed by the plasma alone,

are analyzed independently of the isolated protein fraction, the absolute recovery of

the protein isolation protocol cannot be directly quantified, which is believed to be

a reason leading to inconsistencies in reported values of absolute quantification of

protein-bound thiols. Although several recent reports have developed chromatographic

methods for the speciation analysis of protein-bound thiols in plasma (Bald et al.,

2004; Borowczyk et al., 2015; Giustarini et al., 2005), recovery and precision relating

specifically to the protein isolation procedure have not been addressed. Comparison of

the measured protein-bound thiols using derivatization by NTBM with other methods

reveals that concentrations in previous reports may be anywhere from being 1- to

18.5-fold greater in magnitude (Table 2.10). Though it appears at first glance that

measurements of protein-bound thiols from other methods are markedly greater, closer

examination of the protocols described reveals several deficiencies.

In the work of Borowczyk et al. (2015) based on HPLC with UV detection,
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which show 2- to 8-fold greater protein-bound thiol concentrations compared to the

current work, it is noticed that there is no mention of protein being washed prior

to derivatization with thiol-labeling reagent. Not only would the lack of washing

eliminate any losses of protein, but the protein-bound thiol measurements would be

likely to be artificially inflated due to contamination by plasma thiols. Furthermore,

no measurements of precision for the protein-bound thiol concentrations quantified in

20 different plasma samples were presented by the authors, indicating that method

reproducibility was not addressed in the study. Lastly, detailed discussion of the

method validation was presented solely for the determination of total thiols (Cys,

CysGly, Hcy, and GSH) present in plasma, and not for the determination of thiols

specifically bound to protein. As such, method reproducibility and recovery of protein-

bound thiol determination were not addressed and it is very likely that the thiol

measurements are overestimated. While the methods presented by Bald et al. (2004)

and Giustarini et al. (2005) both incorporate duplicate washing of the protein pellets,

either with 1.5% (w/v) trichloroacetic acid or water, respectively, recovery of thiols

from the protein preparation protocol is not addressed in either.

The work of Bald et al. (2004) reported results for total, reduced, total free and

protein-bound Cys, CysGly, Hcy, and GSH, in which subtraction of the measured

plasma-derived total free amount from the measured total thiol content in protein and

plasma theoretically yield the contribution of thiol from the protein fraction alone.

The theoretical value of protein-bound thiol could then, in turn, be used to calculate

recovery for the empirical determination of protein-bound thiols. However, in order for

the recovery calculation to be valid, the determination of protein-bound thiols must

be done independently of the analysis for total free thiols in plasma, especially since

the two values are mathematical complements of each other. Independent analyses

would prevent the technical error originating from the protocol for plasma free thiol
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Table 2.11: Comparison of percent protein-bound thiol composition between different
methods, excluding g-GluCys.

Analytical
Platform

Mean ± Standard Deviation Composition (%)

Cys Hcy CysGly GSH

NTBM derivatization CE-MS 88± 8 0.91± 0.13 10.5± 1.1 0.34± 0.09
Borowczyk et al. (2015) HPLC-UV 85± 3 1.8 ± 0.3 11.6± 2.9 1.5 ± 0.6
Giustarini et al. (2005) HPLC-FL 88± 19 4.5 ± 1.7 6.7± 1.1 1.0 ± 0.4
Bald et al. (2004) HPLC-UV 88± 4 3.3 ± 1.4 6.7± 1.7 2.5 ± 1.7
Andersson et al. (1993) HPLC-UV 84± 22 4.2 ± 1.7 11.5± 6.6 0.4 ± 2.0
Mansoor et al. (1992) HPLC-FL 86± 13 5.4 ± 1.7 8.3± 1.9 0.7 ± 0.1

determination from being carried forward and directly impacting the subsequent

determination of the thiols in the protein-bound fraction within the same trial. In the

case of the work by Bald et al. (2004), analysis of both the total plasma thiol content

and the total protein-bound thiols for each sample were conducted within the same

trial, which precludes the independence of the two measurements and thus, prevents a

proper assessment of the recovery of the protein-bound thiol determination protocol.

Besides the lack of inadequate method validation, and direct methods for comparing

absolute quantification of protein-bound thiols between methods, the absence of subject

cohort information in most method validation studies also further makes it difficult to

identify inter-method differences in measurements as arising from biological variation

due to differences in subject cohort characteristics, or originating from method bias. As

a result, large %CV values are observed, ranging from 27–103% between methods, as

shown in Table 2.10. Since the amount of protein lost cannot be accurately determined,

quantification of protein-bound thiol concentrations should be instead calculated

relative to the sum of measured protein-bound thiol concentrations, such that the

percent composition of protein-bound thiols is reported. Relative quantification would

not be affected by variations in the absolute amount of recovered protein, thereby,

making it a much more reliable and robust metric for the inter-method comparison

of protein-bound thiols. Table 2.11 summarizes the percent protein-bound thiol
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composition measured by different methods. Since g-GluCys was not detected by

all of the methods compared in Table 2.11, it was excluded from the calculation of

total protein-bound thiols. Compared to Table 2.10, there is improved agreement

between the methods, such that no outliers are identified in the box-and-whisker

plots (Figure 2.12) for the relative quantifications of protein-bound thiols determined

by six different methods. Based on the improved comparability between methods,

relative quantification with respect to the sum of measured protein thiols has been

shown to provide much greater robustness in its performance relative to absolute

quantification, and is therefore, strongly recommended for reporting purposes in future

studies involving the determination of protein-bound thiols.

2.2.4 Conclusions

A reliable CE-MS method for the determination of protein-bound thiols in plasma

using was developed using NTBM as the thiol-selective labeling reagent following DTT

reduction of washed plasma protein retentate. Due to the unexpected cross-reactivity

between TCEP and NTBM, DTT was the preferred reducing agent for the current

study due to its formation of a neutral adduct with NTBM. Overall, technical precision

in the preparation protocol for six replicates was found to be acceptable (RSD < 15%)

for the abundant protein-bound thiols, Cys, CysGly, and Hcy, as well as for the

low-abundance thiols, GSH, and g-GluCys (RSD < 30%).

Relative quantification of protein-bound thiols in human plasma allows for more

reliable reporting as it is not sensitive to variations in the sample preparation protocol

when comparing different methods and is therefore, more robust. Based on the

results from this work in which protein was extracted from pooled plasma, relative

quantification of protein-bound thiols in human plasma revealed that Cys (88%)
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Figure 2.12: Box-and-whisker plots of the distribution of average relative quantifications of protein-
bound thiols as determined by 6 methods. No outliers were detected.
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and CysGly (10.5%) were the most abundant thiols, followed by Hcy (0.9%), g-

GluCys (0.4%) and GSH (0.3%). While the current investigation was focused on the

optimization of protein sample preparation and analysis of protein-bound thiols by

derivatization with NTBM, future studies could consider the addition of NTBM in the

methanol solvent used for the initial deproteinization and extraction of metabolites

from plasma. This would easily allow for both plasma deproteinization and NTBM-

derivatization of free plasma thiols to occur simultaneously within a single step upon

the addition of NTBM solution. Overall, the high sensitivity and precision of the

method presented here makes it a promising tool for future metabolomic studies of

protein-bound thiols in plasma, not only for the improved assessment of redox status

that is relevant for assessment of physiological and pathological states, but also for the

discovery of potentially unknown thiols that may be derived from human exposures,

including diet and drug intake.

2.3 A Novel Approach for the Discovery of Un-

known Protein-Bound Thiols in Plasma

Using the NTBM thiol-labeling procedure on plasma protein developed in Section 2.2,

this section describes the application of a recently developed high-throughput MSI

technique for CE (Kuehnbaum et al., 2013) towards the potential discovery of novel

protein-bound thiols in plasma.

2.3.1 Introduction

Despite recent studies that have developed untargeted methods to analyze covalent

modifications to HSA-Cys34 arising from environmental exposures (i.e., ‘Cys34 ad-
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ductomics’) (Grigoryan et al., 2016; Rappaport et al., 2012), few studies to date have

considered performing untargeted characterization of protein-bound thiols, which so

far, are understood to be associated with alterations in serum redox state (Nagumo

et al., 2014; Oettl and Marsche, 2010). Unlike irreversible covalent Cys34 adducts

which comprise 4% of circulating HSA (Aldini et al., 2008) and require digestion

with trypsin for quantification, formation of reversible Cys34 disulfides represent

approximately 25–40% of HSA (Carballal et al., 2003; Lepedda et al., 2014; Ogasawara

et al., 2007), and are readily reduced with DTT.

Thus far, analysis of thiols in biological samples has mainly been performed in a

targeted manner for the determination of known endogenous thiols (e.g., Cys, Hcy,

and GSH), thiol drugs (e.g., Cysteamine, Captopril, Tiopronin, and Penicillamine)

and expected thiol-drug adducts (Albert et al., 2012; Isokawa et al., 2014; Kuśmierek

et al., 2009, 2011). This has allowed for speed and efficiency of quantitative analyses,

however, metabolite coverage is limited and as such, does not permit the discovery

of potentially novel metabolites or pathways that may be linked to environmental

exposures (including drugs and dietary intake), or associated with unique phenotypes,

which could be important to understanding the pathology of disease (Tautenhahn et al.,

2012; Vinayavekhin and Saghatelian, 2010). While many thiol screening assays have

been employed, these methods have generally been applied towards the compositional

analysis of petroleum distillates (Thomson et al., 1997), air samples (Bramanti et al.,

2006), and in foods and beverages for aroma and flavour enhancement, including meat,

cheese, wine, beer, coffee, tea, olive oil, and fruits (Gascó and Barrera, 1972; Sourabié

et al., 2008, 2011; Vermeulen et al., 2005). Due to the complexity of the matrix and/or

low concentration of thiols in these sample types, many of these methods have relied

on a combination of derivatization and extraction techniques to selectively concentrate

thiols prior to analysis. However, despite the variety of thiol screening assays reported,
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the actual screening of unknown thiols from chromatographic data acquired from

conventional analytical methods continues to be a major bottleneck in data processing.

Recently, a novel approach for thiol screening in wine based on differential analysis

was presented (Inoue et al., 2013). Developed using ultra-performance liquid chroma-

tography (UPLC) with FL and ESI-TOF mass spectrometric detections, the screening

assay consisted of monitoring (thiol) peaks from underivatized samples, which would

be decreased upon derivatization. New peaks which appeared in the analysis of

derivatized samples at a larger m/z , whose mass difference is equal to the mass of the

derivatization reagent, therefore, corresponded to derivatized thiols. Although this

method is promising and was able to detect the presence of glutathione in rice wine

for the first time, the method requires underivatized and derivatized preparations

of each sample to be run separately, which is low-throughput and time-consuming,

depending on the number of samples. Secondly, with this method, differential analysis

is only limited to those thiols that are detectable without derivatization, thereby,

excluding those low-abundance and/or low sensitivity thiols that require derivatization

in order to be detected. Since it is expected that undiscovered protein-bound thiols

in plasma are present at low levels, such that they are currently not amenable to

detection without prior derivatization, extraction or pre-concentration, the method of

differential analysis is not applicable to the screening of biological thiols.

By applying the method described in the previous section (2.2), which was shown

to allow for the characterization of both high- and low-abundance protein-bound thiols

in plasma, the screening of unknown and novel thiols may be achieved in a high-

throughput manner, with the incorporation of the MSI-CE-MS strategy (Kuehnbaum

et al., 2013). Possessing a half-life of three weeks (Andersen et al., 2014), HSA may

be thought of as a long-lived redox probe, whose reactive Cys34 residue is sensitive to

thiol-disulfide exchange interactions while circulating at high concentrations. Thus,
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effective enrichment of known and unknown thiols can be simply achieved by isolation

of plasma protein following which thiol-specific reduction, chemical derivatization by

maleimide, and MS/MS would allow for subsequent detection and characterization. In

this section, a novel strategy for the screening and discovery of unknown protein-bound

thiols in plasma by CE is presented using thiol-specific labeling by NTBM and by

adaptation of the MSI-CE-MS technique.

2.3.2 Materials and Methods

Chemicals and Reagents

Chemicals, reagents, and samples were obtained and prepared as described previously

in Section 2.2.2. Protein was precipitated, washed, reduced and derivatized as per

the protocol established in Section 2.2.2, in which methanol and 50% methanol were

selected as the preferred solvents for metabolite extraction from plasma and the

washing of protein pellets, respectively, based on the results shown in Section 2.2.3.

Reduction of disulfide bonds and thiol derivatization were performed using DTT

and NTBM, respectively, and the resulting protein solution was prepared for sample

analysis. Filtered matrix blank samples were prepared by combining all reagents,

excluding the protein sample, and filtering the solution through 3 kDa cut-off Nanosep

centrifugal devices to account for the presence of peaks that originate from the sample

matrix. Negative control samples were prepared by the addition of protein with only

DTT or NTBM reagent to identify peaks corresponding to free reduced thiols or

correct for reagent peaks.
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Capillary Electrophoresis Mass Spectrometry (CE-MS)

Optimized protein sample preparations were analyzed on an Agilent G7100 CE system

interfaced with an orthogonal Agilent coaxial sheath liquid Jet Stream ESI source

to an Agilent 6550 iFunnel quadrupole-time-of-flight (Q-TOF) mass spectrometer.

Uncoated 120 cm fused silica capillaries (50 µm internal diameter) were preconditioned

as described earlier (Section 2.2.2). Separations were performed at 30 kV and 25 ◦C

using the MSI-CE-MS strategy (Kuehnbaum et al., 2013), which allowed for high-

throughput screening of protein-bound thiols while temporally encoding mass spectral

information for signal pattern recognition via combinations of injection configurations

specified by the user. Acquisition was operated in positive-ion mode scanning m/z

50–1700 at a rate of 1 spectra/s. The temperature of the nitrogen nebulizing gas was

200 ◦C at 8 psi with drying gas at 16 L/min. Sheath gas was delivered at 3.5 L/min

at 199 ◦C. Both the nozzle and capillary voltages were set at 2 kV, while the MS

fragmentor, skimmer, and octopole radio-frequency voltages were at 380, 65, and

750 V, respectively. MS/MS experiments were performed at 3 collisional energies (10,

20, and 40 V) in a continuous alternating scan mode on known thiol-NTBM adducts.

Mass scan range was 20–500 m/z at a rate of 1 spectra/s with medium isolation width

of 4 m/z .

Untargeted Feature Extraction of Novel Protein-Bound Thiols

To aid in the novel discovery of protein-bound thiols by Q-TOF-MS, untargeted feature

selection was performed on NTBM-derivatized protein samples using the Molecular

Feature Extractor (MFE) (MassHunter Qualitative Analysis, Agilent Technologies

Inc.) algorithm, in which a feature was defined as having a peak height of at least

300 counts, a minimum signal-to-noise ratio (SNR) of 10 in the EIE, and a minimum
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overall peak quality score of 75, which is calculated based on the match of the measured

monoisotopic m/z compared to the predicted monoisotopic m/z of the most likely

molecular formula, and the match of the measured isotope abundance and isotope

spacing relative to the predicted isotopic distribution and spacing of the proposed

formula. Following the generation of the list of extracted features by MFE, the

Molecular Formula Generation (MFG) algorithm in the Agilent MassHunter software

was then used to generate molecular formulae from the exact mass of the monoisotopic

peak based on the measured isotope spacing and isotope abundances. The mass errors

and overall scores of the generated formulae are given in Table 2.12. Subsequently,

screening of thiol-NTBM adducts was performed manually to select only those features

which satisfied all of the following criteria: 1) Must be absent in the negative controls

and matrix blank samples; 2) Must contain at least one sulfur atom; 3) Must at least

be the mass of the NTBM adduct (i.e., mass = 153.079); and 4) Empirical formula

must at least contain the formula of the NTBM adduct (i.e., C8H11NO2).

Automated Assignment of MS/MS Spectra

Interpretation of MS/MS spectra on known thiol standards was performed using

the Agilent MassHunter Molecular Structure Correlator (MSC) software, in which

Molfiles of the known structures were inputted prior to running the program. MSC

operates based on correlating accurate mass MS/MS fragment ions with user-defined

or MSC-calculated probable molecular formulae and structures by implementation

of a systematic bond-breaking approach described by Hill and Mortishire-Smith

(2005). Proposed molecular formulae were then searched against structures from

the integrated ChemSpider (Pence and Williams, 2010, http://www.chemspider.com)

and PubChem (Kim et al., 2016, http://pubchem.ncbi.nlm.nih.gov) databases, which

were appropriate in this case since both databases contain synthetic, in addition to
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naturally occurring, compounds among which the novel thiol-NTBM adducts may be

found. Following the database search by MSC, proposed molecular structures were

assigned an overall correlation score to describe the degree of match with the MS/MS

spectrum. The overall correlation score consists of individual scores for each fragment

ion signal, which considers multiple substructures candidates that are each assigned a

“penalty” based on the number and type of bonds broken to generate the substructure.

Bonds that require more energy to break are more unlikely to occur and are, therefore,

assigned a higher penalty and a lower score.

2.3.3 Results & Discussion

Signal Pattern Recognition of Unknown Thiols by MSI-CE-MS

To increase sample throughput, MSI-CE-MS, a technique for the simultaneous analy-

sis of multiple samples previously demonstrated by Kuehnbaum et al. (2013), was

implemented for the screening of novel thiols. Capable of analyzing seven samples

simultaneously while maintaining sufficient peak resolution between injected samples

with high reproducibility, MSI-CE-MS is a much higher throughput approach than

conventional methods that analyze a single sample at a time. By implementing MSI-

CE-MS, analysis of derivatized protein samples along with negative control samples,

and a filtered matrix blank were acquired within a single run. Since derivatization of

protein-bound thiols requires the presence of both the reducing (DTT) and deriva-

tization (NTBM) agents, the negative control samples consisted of protein samples

with only either DTT or NTBM present, while the matrix blank consisted of all the

reagents, except for the protein. In order to distinguish between features or signals

originating from different sample types within the same run, a customized injection

and dilution sequence was applied such that each sample type would have a characte-
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Figure 2.13: Depiction of sample configuration used in the current study for signal pattern recognition
by MSI-CE-MS for the discrimination of signals originating from different samples.

ristic signal pattern. The success of this strategy has recently been demonstrated in

the work of DiBattista et al. (2017) and allows for greater visual clarity and ease of

identifying signals through the pattern-based encoding of signals. In this particular

case involving a matrix blank and three different samples, a signal dilution pattern of

1:2, 2:1, and 1:1 was implemented to encode for the protein+DTT, the protein+NTBM,

and the protein+DTT+NTBM samples, respectively. This was created using the

following 7-injection sequence (depicted in Figure 2.13): protein+DTT, protein+DTT

(2× dilution), protein+NTBM (2× dilution), protein+NTBM, filtered matrix blank,

protein+DTT+NTBM, and protein+DTT+NTBM (duplicate injection).

Detection of Novel Unknown Compounds and Screening of Candidate Mo-

lecular Formulae

Manual filtering of the MFE results for signals that exhibited only the 1:1 pattern,

which is assumed to correspond to derivatized protein-bound thiols, revealed 11

distinctive molecular features compiled from the analyses of pooled human plasma

and plasma from a healthy male volunteer, respectively. Prospective formulae or

candidate elemental compositions for each m/z was limited to a mass deviation of
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within 5 ppm of the measured accurate mass. The elemental compositions of both

the thiol-NTBM adducts and the corresponding native thiols (i.e., without NTBM

adduct) were evaluated for their plausibility based on a set of rules defined by Watson

(2013). In this case, rules that were applied to the current study include the following:

1. Formulae containing any number of carbon, hydrogen, sulphur, and oxygen

atoms cannot have an even protonated molecular weight;

2. Formulae with odd numbers of nitrogen have even protonated molecular weights

and vice versa;

3. Formulae with greater than seven nitrogen atoms are rare unless peptides are

being considered;

4. It is rare for the number of nitrogen atoms to exceed the number of carbons or

the number of oxygen atoms to be greater than the number of carbon atoms

plus one – thus, it is unlikely for the total of nitrogen and oxygen atoms to

exceed the number of carbon atoms;

5. It is unusual to find more than two sulphur atoms in a formula.

Following screening of the candidate elemental formulae, the elemental composition

corresponding to the NTBM adduct was subtracted from the candidate formula of

each unknown derivatized thiol-NTBM adduct in order to calculate the ‘expected’

chemical formula of the unknown native thiol. The resulting ‘expected’ formulae of

the unknown thiols were then screened and evaluated as per rules 3–5 stated above.

The list of the 11 molecular features postulated as putative thiol-NTBM adducts

based on the 1:1 signal patterning, as shown in Figure 2.14, are summarized in

Table 2.12 along with their respective m/z , relative migration time (RMT), SNR,
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Table 2.12: Summary of detected derivatized protein-bound thiols.

Derivatized Thiols Proposed Molecule Expected Native Thiol

m/z : RMT (Q)∗ SNR† Formulae Mass Error
(ppm)‡ Score§ Formulae] ID

275.106 : 1.177 (+) 900 C11H18N2O4S −0.52 98.58 C3H7NO2S Cys
289.122 : 1.045 (+) 55 C12H20N2O4S −0.36 99.30 C4H9NO2S Hcy
293.117 : 1.240 (+) 50 C11H20N2O5S −0.20 95.94 C3H9NO3S
307.132 : 1.200 (+) 25 C12H22N2O5S −0.01 97.21 C4H11NO3S
307.132 : 1.272 (+) 10 C12H22N2O5S −0.01 97.21 C4H11NO3S
332.128 : 0.928 (+) 145 C13H21N3O5S 0.37 99.30 C5H10NO3S CysGly
367.153 : 1.255 (+) 15 C14H26N2O7S 0.19 95.43 C6H15NO5S
367.153 : 1.329 (+) 10 C14H26N2O7S 0.19 95.43 C6H15NO5S
404.149 : 1.188 (+) 20 C16H25N3O7S 1.17 96.57 C8H14N2O5S g-GluCys
461.170 : 1.222 (+) 10 C18H28N4O8S −0.50 99.31 C10H17N3O6S GSH
573.357 : 0.895 (+) 15 C30H48N6O3S −0.48 96.15 C24H37N5OS
∗ Q = charge state. Here, the charge state ‘+’ represents [M + H]+.
† The SNR indicated is the higher of the values obtained from measurements on two sets of plasma samples
(pooled human plasma purchased from Sigma-Aldrich or plasma from a healthy male volunteer).
‡ Mass accuracy is calculated as ppm error where calculated m/z is subtracted from the experimental m/z,
divided by the experimental m/z, and multiplied by 106.
§ Score is calculated based on the degree of matching to the mass, isotope abundance, and isotope spacing of
the proposed formula after applying the corresponding weighting factors of 100, 60, and 50%, respectively.

] The expected native thiol formula is calculated by subtraction of NTBM adduct (i.e., C8H11NO2) from the
proposed formula.

Table 2.13: Summary of underivatized native protein-bound thiols.

Native Thiol Mass Error
(ppm)† Score‡

Proposed Thiol

m/z : RMT (Q)∗ SNR Formulae ID

122.027 : 0.944 (+) 15 −3.70 91.09 C3H7NO2S Cys
134.027 : 1.187 (+) 145 −1.08 82.20 C4H7NO2S
206.048 : 1.349 (+) 15 0.07 94.12 C7H11NO4S
∗ Q = charge state. Here, the charge state ‘+’ represents [M + H]+.
† Mass accuracy is calculated as ppm error where calculated m/z is subtracted from
the experimental m/z, divided by the experimental m/z, and multiplied by 106.
‡ Score is calculated based on the degree of matching to the mass, isotope abundance,
and isotope spacing of the proposed formula after applying the corresponding weig-
hting factors of 100, 60, and 50%, respectively.
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Figure 2.14: EIE overlay of four of the detected protein-bound thiols derivatized with NTBM, which
show the 1:1 signal patterning.
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Figure 2.15: EIE overlay of detected underivatized thiols deconjugated from plasma protein, which
exhibit the 2:1 dilution pattern.

94



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

mass error, formula score, and most likely molecular formulae proposed for both the

thiol-NTBM adduct and its corresponding native thiol. It is interesting to note that

isomers are possibly detected for unknown thiol-NTBM adducts, m/z 307.132 and

m/z 367.153, in which two sets of 1:1 peaks are observed in both EIEs (Figure 2.14).

Formulae for the thiol-NTBM adducts were only indicated in the table if the resulting

expected formula of the native thiol was found to be plausible. Included in the list of

features are the five known compounds corresponding to the NTBM adducts of Cys,

Hcy, GSH, CysGly, and g-GluCys, while the remaining six are believed to be NTBM

adducts of unknown protein-bound thiols. When filtering for peak signals exhibiting

only the 2:1 dilution pattern, which correspond to the sample containing underivatized

thiols cleaved from protein by reduction with DTT, 3 features were detected, in

which Cys (reduced) is the only known feature (Table 2.13 and Figure 2.15). In

an attempt to identify the derivatized form of the two unknown reduced thiols, the

mass of the NTBM adduct (C8H11NO2 = 153.079) plus the measured m/z of the

native thiol was extracted, however, NTBM adducts were not detected. Since the

two underivatized (free) unknown thiols were found to have later migration times

compared to reduced free Cys, it is possible that the 45 min CE runtime was not

sufficiently long enough to detect the migration of the corresponding thiol-NTBM

adducts for the unknown thiols given that Cys-NTBM already migrates at 22–27 min

under the operating conditions specified earlier in a 120 cm capillary. While the

search of unknown ‘expected’ native thiol molecular formulae in both metabolite and

synthetic compound databases, including Human Metabolome Database (HMDB)

(Wishart et al., 2018) and Metlin (Guijas et al., 2018), have largely resulted in either

no hits or unlikely structures containing alkyl sulfides, dialkyl disulfides, sulfonamides,

sulfones, sulfoxides, sulfur heterocycles, or sulfonic acid, the molecular formula of

m/z 206.048 has so far been found to correspond to a drug or synthetic compound
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2-(diacetylamino)-3-sulfanylpropanoic acid (or its stereoisomer, N,N-diacetylcysteine).

Although it is unlikely for this compound to be naturally found in the protein of

human plasma, the presence of a thiol product of drug metabolism cannot be ruled

out unless structural identification by MS/MS has been performed with comparison to

authentic standards. Due to insufficient information to prove or disprove the proposed

molecular formulae for this proof-of-concept study, the detected compounds in the

NTBM-derivatized protein sample currently remain unknown and warrants further

investigation. Nonetheless, the signal-encoding strategy employed in this study has

been demonstrated to be successful in the discovery of novel features by integrating

the analyses of negative controls and the method blank within the same run.

Investigating MS/MS Fragmentation Patterns of Known Thiol-NTBM Ad-

ducts

While this work presents a proof-of-concept high-throughput CE-Q-TOF-MS strategy

for the discovery of novel protein-bound thiols, future work on this study would

involve structural elucidation of the unknown compounds by MS/MS. As a first

step, the ability of the MSC software to properly identify fragments of thiols-NTBM

was validated through MS/MS experiments on only the five known thiol-NTBM

adducts. Although MSC was capable of generating the correct formulae for the various

thiol-NTBM adducts, it was not able to generate or produce the correct structures

based on the structures currently available in the PubChem (Kim et al., 2016) and

ChemSpider (Pence and Williams, 2010) databases. Besides, it is not expected

that such public databases would contain comprehensive listing of thiols that are

derivatized by synthetic compounds. For example, in the case of g-GluCys-NTBM, the

structure was proposed by MSC to be g-Glutamyl-S-(3-oxocyclohexyl)cysteinylglycine

(ChemSpider #23241467) (Figure 2.16) as it was top-ranked among the generated list
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(b) g-GluCys-NTBM adduct(a) g-Glutamyl-S-(3-oxocyclohexyl)cysteinyl-glycine

Figure 2.16: (a) Proposed candidate structure, g-glutamyl-S-(3-oxocyclohexyl)cysteinylglycine (Chem-
Spider #23241467), by MSC based on MS/MS data of (b) g-GluCys-NTBM adduct.

of 28 structural isomer candidates with a compatibility score of 79.89%. However,

when the known structure of the thiol-NTBM adduct was inputted in the software, the

compatibility score was calculated by MSC to be 91.23%. Therefore, when provided

with known structures, MSC was able to propose plausible fragment structures for

the majority of major ions observed in the MS/MS spectra with compatibility scores

greater than 90%, such that on average, 85% of the overall fragment ion intensity for

each spectra were plausibly explained.

Given the limitations of current software algorithms and databases to properly

identify unknown derivatized structures, it is important to establish or identify known

fragmentation patterns of five thiol-NTBM standards (Figure 2.17) that may aid

in future identification and structural elucidation of unknown compounds. Thus,

the 5 thiol-NTBM standards and their fragmentation patterns were investigated by
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Table 2.14: Summary of relative ion abundances (%) in tandem mass spectra of five thiol-NTBM
standards at CID = 20 and 40 V.

Fragment Ion m/z
Cys CysGly g-GluCys GSH Hcy

20 V 40 V 20 V 40 V 20 V 40 V 20 V 40 V 20 V 40 V

[C18H29N4O8S]+ 461.168 15∗
[C16H26N3O7S]+ 404.148 10∗
[C16H23N2O7S]+ 387.122 5
[C16H24N3O6S]+ 386.137 20
[C12H18N3O7S]+ 348.085 2
[C13H22N3O5S]+ 332.127 5∗ 100
[C12H15N2O7S]+ 331.060 2
[C12H16N3O6S]+ 330.075 15
[C12H21N2O4S]+ 289.121 5∗
[C11H13N2O5S]+ 285.054 5
[C11H14N3O4S]+ 284.070 10
[C9H14N3O5S]+ 276.065 40 60 2
[C11H19N2O4S]+ 275.106 5∗ 50
[C9H11N2O5S]+ 259.038 65 30 10
[C11H16NO4S]+ 258.080 3
[C10H11N2O3S]+ 239.050 15
[C8H13N2O4S]+ 233.059 20
[C10H17N2O2S]+ 229.100 5 30
[C7H11N2O4S]+ 219.044 50 100 20
[C7H8NO4S]+ 202.017 100 20 65
[C7H11N2O2S]+ 187.054 20
[C7H6NO3S]+ 184.007 30 2 25 15 2 50 35
[C6H8NO3S]+ 174.022 15
[C6H9N2O2S]+ 173.038 100 95 15 20 90 15 100
[C6H6NO2S]+ 156.012 30 25 5 15 40 10
[C6H8NOS]+ 142.033 5
[C4H8NO2S]+ 134.027 5
[C5H8NO3]+ 130.050 5 5 15 5 10
[C4H4NO2S]+ 129.996 30 70 50 40
[C4H4NOS]+ 114.001 5
[C5H5OS]+ 113.006 50 40 15 5
[C4H4NO2]+ 98.024 10 100 15 25 5 5
[C3H6NO2]+ 88.040 5
[C3H6NS]+ 88.022 5
[C3H3OS]+ 86.989 45
[C4H5S]+ 85.011 30 15 10
[C4H6NO]+ 84.044 5 100 5 25
[C4H2NO]+ 80.014 10
[C2H6NS]+ 76.022 15 15
[C2H4NS]+ 74.006 30
[C3H4NO]+ 70.029 15
[C2H3S]+ 58.995 15
[C4H9]+ = [t-butyl]+ 57.070 10 30 10 5
[C3H6N]+ 56.050 5 100 85
[C2H8N]+ 46.065 5 10
[C2H6N]+ 44.049 30 70 10 90 55 5 45
∗ Denotes molecular and precursor ion.
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acquiring their tandem mass spectra at 3 different energies (10, 20, and 40 V) for

collision-induced dissociation (CID). Since the fragments in the spectra acquired at

10 V were all present in the spectra of 20 V, but with lower intensity in 10 V, the

relative ion abundances in 10 V spectra have been omitted from Table 2.14, which

summarizes the fragment ions detected along with their relative abundances (%) in

the tandem mass spectra for the five thiol-NTBM standards at 20 and 40 V.

In Table 2.14, much overlap in the fragmentation of Cys, CysGly, g-GluCys, and

GSH thiol derivatives is observed. This is not surprising since the Cys residue is

present in all four thiols, the Gly peptide is present in CysGly and GSH, and the Glu

peptide is present in g-GluCys and GSH. Out of the 5 thiols studied, Hcy-NTBM has

the fewest fragments in both 20 V and 40 V spectra and is the only thiol adduct whose

product ions are nearly all unique. Based on the masses lost from the various precursor

molecular ions, [M + H]+, it is noted that fragmentation of the thiol-NTBM adducts

at low energy (20 V) frequently results in the loss of the tertiary butyl functional

group (–C(CH3)3); losses of small neutral molecules such as ammonia (NH3), carbon

monoxide (CO), and H2O from side chain or terminal –NH2 and –COOH groups; and

losses of individual intact amino acid residues due to fragmentation along the backbone

of amide bonds. These sites of fragmentation at low energy are commonly seen in

fragmentations of peptides (Paizs and Suhai, 2005) and are shown in Figure 2.18,

along with the corresponding tandem mass spectrum.

Loss and Rearrangement of Tertiary Butyl Moiety

In the 20 V fragmentation spectra of Cys-, CysGly-, and Hcy-NTBM, the largest

product ion is typically observed to be associated with the neutral loss of the tertiary

butyl group (56.062 Da). Previous studies have shown that fragmentation occurs

preferentially at branched carbon atoms because of the stability of the positively-
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Figure 2.18: Interpretation of MS/MS spectra for CysGly-NTBM adduct. (Top) Common low-
energy (20 V) MS/MS fragmentation sites of thiol-NTBM adducts, as indicated on the structure
of CysGly-NTBM, as an example. (Bottom) MS/MS spectrum of CysGly-NTBM at 20 V with
textboxes indicating functional groups lost from the precursor molecular ion.
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charged carbocation such that tertiary > secondary > primary (Sharma, 2002), which

results in a strong peak corresponding to the carbocation. However, in the case of

thiol-NTBM adducts, while fragmentation does occur at the tertiary carbon, the ion

abundance of the even-electron (EE+) carbocation peak at m/z 57.070 is at best only

20% of its complementary product ion, which is indicative of its lesser stability relative

to its counterpart produced in a competing pathway. Furthermore, it is unexpected

to see that the mass difference between the precursor and the largest product ion

is 56.062 Da, which corresponds to the neutral loss of C4H8, since there are two less

hydrogen atoms in the formula than the expected neutral loss of the tertiary butyl

group as C4H10 (HC(CH3)3). Because the 56.062 Da loss from the molecular ion,

[M + H]+, was found to be common to the 20 V fragmentation of Cys-, CysGly-,

and Hcy-NTBM, it is deduced that the C4H8 loss must originate from the loss of

the tertiary butyl moiety, such that m/z 275.106→219.044, m/z 332.127→276.065,

m/z 289.121→233.059 for Cys-, CysGly-, and Hcy-NTBM, respectively, since the loss

of C4H8 from other moieties would require unique substantial rearrangements from
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each thiol-NTBM adduct, which is highly unlikely. Elimination of the tertiary butyl

group as C4H8 may be explained by the occurrence of a hydrogen rearrangement,

whose initiation requires the formation of a radical (McLafferty and Turecek, 1993).

Although radical formation in ESI is rare and considered forbidden according to

the “even-electron rule”, which states that EE+ ions preferentially decompose to an

EE+ ion and neutral molecule (McLafferty and Turecek, 1993) due to separation

of an electron pair being energetically unfavourable, several recent reports have

demonstrated exceptions to this rule, in which odd-electron species were shown to

be formed from the fragmentation of EE+ ions produced in electrospray ionization,

chemical ionization, or electron ionization (Chen et al., 2008). While these studies

report the elimination of radical losses, it is proposed here, however, that radical

formation is transient and initiates a concerted H rearrangement, in which the net

outcome is H being transferred to a different atom, still resulting in the formation of

an EE+ ion and the elimination of a neutral compound. Specifically, the transient

radical formed at the tertiary butyl carbon from homolytic cleavage from nitrogen

forms a new bond with an adjacent carbon from a methyl group, which occurs with

the concomitant homolytic cleavage of a C–H bond from –CH3. As H becomes released

in the process, it forms a new bond with the radical nitrogen to form N–H, due to

proximity arising from steric factors. As a result, the tertiary butyl moiety (C4H9)

is converted to 2-methylpropene (C4H8), which is eliminated as a neutral compound.

The proposed mechanism of the elimination of tertiary butyl group as C4H8 is shown

in Figure 2.19. Since the tertiary butyl group was observed to be lost from all five

known thiol-NTBM adducts, a MS/MS strategy for confirming unknown thiols in

future work could involve performing a neutral loss scan for each unknown derivatized

thiol. By specifying the neutral loss to be 56.062 Da, only those compounds that

experience a fragment loss corresponding to 56.062 Da would be detected. Structural
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elucidation for identification of unknown thiols could then be subsequently performed

via MS/MS product ion scans.

2.3.4 Conclusions

For the first time, an original high-throughput and comprehensive CE-MS approach

for the screening and discovery of unknown biological thiols, specifically protein-bound

thiols in plasma, was presented. MSI-CE-MS in conjunction with temporal signal

pattern recognition allowed for the streamlined screening of thiols via the simultaneous

analysis of underivatized and NTBM-derivatized thiols along with negative controls

and a blank sample to ensure high data fidelity. Through this method, 11 thiols

were found, of which 6 are unknown. The robustness and ease of operation make the

method amenable and easily adaptable to other sample types for screening of thiols or

other compound classes.

Furthermore, MS/MS experiments on five known thiol-NTBM derivatives were

performed for the first time, in order to establish trends in fragmentation pathways

that may be helpful to the structural elucidation of unknowns in future studies.

From the MS/MS experiments, it was observed that low-energy CID at 20 V resulted

in charge-driven fragmentations dominated by large and intact peptide fragments

with the loss of side chains as neutral species, thereby providing sequence-related

information, while higher energy CID at 40 V led to more complex spectra owing

to multiple charge-remote cleavages within peptide moieties and the maleimide ring,

which provided additional information on the structural features within the intact

peptide fragments produced by low-energy CID.

Since this work has revealed the presence of two late-migrating unknown free

thiols following reduction by DTT, for which the migration of their corresponding
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thiol-NTBM adducts are believed to occur beyond the CE runtime used in the present

study, future studies may consider performing single injection CE runs for NTBM-

derivatized protein-bound thiols on shorter capillary lengths. This will allow for the

detection of slow-migrating unknown compounds, without having to further extend

the 45 min runtime that is currently applied for long capillaries. Additionally, as the

majority of novel thiol-NTBM adducts detected by MSI-CE-MS appear to be low in

abundance, on-line sample preconcentration studies by CE can be applied in future

work for the enhanced detection, MS/MS characterization, and confirmation of these

novel thiol compounds.

Although it was seen here that the combination of both low- and high-energy CID

mass spectra contain a wealth of structural information in the characterization of the

known thiols, in which identified fragmentation patterns may be applied towards the

structural elucidation of novel unknown thiols, it is important to acknowledge that

metabolite identification by MS is a significant analytical challenge. Even though

exact mass measurements are of great utility in the automated assignment of product

ion spectra, results of in silico structural identification should never be taken at face

value without careful consideration, since the number of possible structures for a given

formula could range from tens to hundreds, and the correlation scores of candidate

structures are not sufficiently discriminatory to provide an unambiguous identity

of a true unknown. Integrated analytical approaches, such as the combination of

MS with NMR, is a powerful strategy that could aid in the elucidation of specific

substructures of unknown thiols in the future. However, the excellent sensitivity

and selectivity offered by MS make MS/MS a powerful technique of first choice for

structure elucidation, especially in the discovery of novel metabolites and in drug

development.
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Chapter 3

Differential Metabolomics of

Obesity and its Subtypes

The work presented in this chapter is a two-part collaborative targeted metabolomic

investigation to understand metabolic differences between lean healthy, healthy obese,

and unhealthy obese subjects, which are responsible for differences in cardiometabolic

risk between individuals. Understanding these differences may lead to improved

strategies for the prevention and treatment of obesity-related diseases. Results of

targeted amino acid analysis by CE-MS on serum and plasma samples were an

important contribution in both studies described in this chapter which explored:

1) metabolic differences in amino acid homeostasis of serum and adipose tissue

between subject groups, and 2) differences in postprandial metabolism of plasma

amino and fatty acids between subject groups following consumption of a standardized

high-caloric meal, respectively. The findings from each section have been separately

published in two journal articles:
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Section 3.1: Badoud, F.a, Lam, K. P.b, DiBattista, A.b, Perreault, M.a, Zuly-

niak, M. A.a, Cattrysse, B.a, Stephenson, S.a, Britz-McKibbin, P.b,

and Mutch, D. M.a (2014). Serum and Adipose Tissue Amino Acid

Homeostasis in the Metabolically Healthy Obese. Journal of Prote-

ome Research, 13(7):3455–3466. Reprinted with permission: © 2014

American Chemical Society.

Section 3.2: Badoud, F.a,∗, Lam, K. P.b,∗, Perreault, M.a, Zulyniak, M. A.a, Britz-

McKibbin, P.b, and Mutch, D. M.a (2015a). Metabolomics Reveals

Metabolically Healthy and Unhealthy Obese Individuals Differ in their

Response to a Caloric Challenge. PLOS ONE, 10(8):e0134613. Re-

printed with permission under the Creative Commons Attribution (CC

BY) license (https://creativecommons.org/licenses/by/4.0/legalcode).

3.1 Serum and Adipose Tissue Amino Acid Homeo-

stasis in the Metabolically Healthy Obese

Author Contributions

FB, KPL, PBM, and DMM conceived and designed the study. Clinical trial, blood

collection, and classification of subjects based on BMI, fat mass %, and metabolic

status measurements were conducted by MP, MAZ, FB, and DMM. SS collected

adipose tissue biopsies. Experiments on serum samples were performed by FB (GC-

MS), KPL (CE-MS), and FB and BC (Microarray analysis). Calibration data was

generated by FB and KPL, with assistance from AD. Data analysis was performed
aDepartment of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
bDepartment of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
∗Equal contributing first author.

107

https://creativecommons.org/licenses/by/4.0/legalcode


PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

by FB and KPL. Data interpretation was performed by FB and KPL. Reagents and

materials were contributed by FB, KPL, PBM, and DMM. FB, KPL, and DMM

wrote the manuscript. FB, KPL, PBM, and DMM edited the manuscript. All authors

approved the final version of the manuscript.

Abstract

A subgroup of obese individuals, referred to as metabolically healthy obese (MHO),

have preserved insulin sensitivity and a normal lipid profile despite being obese.

The molecular basis for this improved cardiometabolic profile remains unclear. Our

objective was to integrate metabolite and gene expression profiling to elucidate the

molecular distinctions between MHO and metabolically unhealthy obese (MUO)

phenotypes. A subset of individuals were selected from the Diabetes Risk Assessment

study and classified into three groups using anthropometric and clinical measurements:

lean healthy (LH), MHO, and MUO. Serum metabolites were profiled using gas

chromatography coupled to mass spectrometry. Multivariate data analysis uncovered

metabolites that differed between groups, and these were subsequently validated by

capillary electrophoresis coupled to mass spectrometry. Subcutaneous adipose tissue

(SAT) gene expression profiling using microarrays was performed in parallel. Amino

acids were the most relevant class of metabolites distinguishing MHO from MUO

individuals. Serum levels of glutamic acid, valine, and isoleucine were positively

associated (i.e., LH < MHO < MUO) with homeostatic model assessment of insulin

resistance (HOMA-IR) and glycated hemoglobin (HbA1c) values, while leucine was

only correlated with HOMA-IR. The glutamine-to-glutamic acid ratio and glycine were

inversely correlated (i.e., LH > MHO > MUO) with HbA1c values. Concomitantly,

SAT gene expression profiling revealed that genes related to branched-chain amino
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Figure 3.1: Workflow for untargeted and targeted metabolite profiling.

acid catabolism and the tricarboxylic acid cycle were less down-regulated in MHO

individuals compared to MUO individuals. Together, this integrated analysis revealed

that MHO individuals have an intermediate amino acid homeostasis compared to LH

and MUO individuals.

3.1.1 Introduction

Obesity is widely recognized as a primary risk factor for the development of type 2

diabetes (T2D), hypertension, and cardiovascular disease (Haslam and James, 2005;

Pedersen, 2013). However, the recent finding that a subgroup of obese individuals,

referred to as MHO, may be protected from the downstream cardiometabolic com-

plications typically associated with a high BMI has generated considerable interest

(Primeau et al., 2011). MHO individuals are characterized by reduced cardiometabolic

risk, as reflected by preserved insulin sensitivity, a reduced inflammatory status, and
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a normal circulating lipid profile (Primeau et al., 2011). Importantly, recent studies

estimate that the prevalence of this phenotype may be as high as 30% of the obese

population (Pataky et al., 2010; Velho et al., 2010). Weight loss interventions are

promoted to reduce cardiometabolic risk; however, reports suggest MHO individuals

may respond to these interventions differently than their MUO counterparts (Karelis

et al., 2008; Shin et al., 2006). As such, it is crucial to elucidate the metabolic and

molecular basis underlying the MHO phenotype as this may lead to more tailored

health care strategies.

Much of our current knowledge regarding the MHO phenotype stems from re-

trospective analyses of large cohort studies. While these analyses have provided

substantial population-based evidence highlighting the existence and prevalence of

MHO (Roberson et al., 2014; Romero et al., 2012; van Vliet-Ostaptchouk et al., 2014),

the molecular and metabolic distinctions between MHO and MUO remain largely

unknown. Evidence demonstrates that metabolite profiling (i.e., metabolomics) is

particularly well suited to identify subtle differences in metabolism between distinct

groups of individuals (Zhang et al., 2013). To date, most metabolomic studies have

compared lean and obese individuals rather than distinct groups of obese individuals.

These past studies have revealed that amino acid metabolism is altered with obesity

and T2D (Adams, 2011; Kim et al., 2010; Morris et al., 2012; Newgard et al., 2009; Xie

et al., 2012). To our knowledge, only a single study has examined metabolite profiles

in obese individuals classified by cardiometabolic parameters (i.e., fasting glucose,

blood pressure, blood lipids, etc.) as either metabolically healthy or metabolically

unhealthy (Batch et al., 2013). The authors of this study reported that a cluster of

metabolites composed of amino acids and acylcarnitines reflected metabolic wellness

(Batch et al., 2013). Together, these studies suggest a potential relationship between

amino acid metabolism, obesity, and metabolic health.
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Although studying blood metabolites can uncover novel markers of potential clinical

relevance, it is difficult to determine the originating tissues underlying changes in

circulating metabolite concentrations. Little research has examined differences in

tissue function between MHO and MUO, but past work suggests that studying adipose

tissue will provide important insights to better understand the MHO phenotype

(Naukkarinen et al., 2014). Indeed, adipose tissue has been shown to play a central

role in amino acid metabolism (Lackey et al., 2013), and recent work reported that the

expression of genes related to amino acid metabolism is reduced with obesity (Lackey

et al., 2013; Pietiläinen et al., 2008). However, it is currently unknown if adipose

tissue gene expression differs between MHO and MUO individuals.

The goal of this work was to conduct an integrative analysis combining serum

metabolomics and SAT transcriptomics to elucidate the molecular basis for the

differences in metabolic profiles observed between MHO and MUO individuals. Serum

metabolites were initially profiled using an untargeted GC-MS approach. Metabolites

of interest were then validated using a quantitative method based on CE-MS and

subsequently integrated with SAT gene expression profiles. This integrative approach

highlighted the relevance of amino acid metabolism for cardiometabolic health and

has led to the identification of potential biomarkers of metabolic wellness.

3.1.2 Materials and Methods

Study Design

Serum and SAT samples were obtained from individuals participating in the Diabetes

Risk Assessment (DRA) study (Clinicaltrials.gov identification (ID) #NCT01884714)

(Perreault et al., 2014b). Persons were screened over the phone and excluded if they

met any one of the following criteria: (1) below 35 or above 70 years of age; (2)
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diagnosed with an acute or chronic autoimmune inflammatory disease, infectious

disease, viral infection, and/or cancer; or (3) regular alcohol consumption exceeding

2 drinks/d (1 drink = 10 g alcohol). All participants signed a consent form, and the

research protocol was approved by the University of Guelph Human Research Ethics

Board (REB#10AP033).

Subject Classification

Thirty participants were classified into three distinct groups: LH (n = 10), MHO

(n = 10), and MUO (n = 10) based on their adiposity (BMI, fat mass %) and metabolic

status (blood lipids, glucose, and insulin), as previously described (Perreault et al.,

2014b). Adiposity status was determined using the revised BMI cutoffs proposed by

Shah and Braverman (2012), where lean was considered <28 kg/m2 for males and

<24 kg/m2 for females, and obese was considered ≥28 kg/m2 for males and ≥24 kg/m2

for females. An individual was considered metabolically healthy if three or more of the

following criteria were met: high-density lipoprotein cholesterol (HDL-c) > 1.0 mmol/L

for males and >1.3 mmol/L for females; triglycerides (TG) < 1.7 mmol/L without

use of lipid-lowering drugs; total cholesterol (Total-c) < 5.2 mmol/L; low-density

lipoprotein cholesterol (LDL-c) < 2.6 mmol/L; and HOMA-IR < 1.95 without use of

antidiabetic drugs. Each group was composed of seven women and three men. LH,

MHO, and MUO groups were matched for age, while MHO and MUO groups were

also matched for BMI, waist-to-hip ratio, and body fat %. None of the participants

were taking antidiabetic medications.

Gas Chromatography Coupled to Mass Spectrometry (GC-MS) Analysis

Chemicals and Reagents. Heptadecanoic acid (≥98%), methoxyamine hydrochlo-

ride, pyridine, N -methyl-trimethylsilyl-trifluoroacetamide (MSTFA) with 1% trimet-
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hylsilyl chloride (TMCS), chloroform (≥99%), and methanol of analytical grade were

obtained from Sigma-Aldrich (St. Louis, MO).

GC-MS Procedure. Fasting serum samples were collected from all participants

following an overnight fast (∼12 h). Ten microliters of the internal standard heptade-

canoic acid at 1 mg/mL in methanol was added to a 100 µL serum aliquot, and then

mixed with 300 µL chloroform/methanol (1:3, v/v). The mixture was shaken at 60 rpm

for 10 min at room temperature and then placed at −20 ◦C for 10 min. Samples were

then centrifuged at 15 400 g for 10 min at 4 ◦C, and the supernatant was transferred

to a clean glass vial before being evaporated to dryness using a centrifugal evaporator

(Savant SpeedVac SVC 100H, Thermo Scientific, San Jose, CA). Oximation of the

analytes was performed by adding 80 µL of a 15 mg/mL methoxyamine solution in

pyridine. Samples were immediately sealed and shaken at 60 rpm for 90 min at 30 ◦C.

Next, 80 µL of MSTFA containing 1% TMCS was added for derivatization, and the

mixture was incubated at 70 ◦C for 60 min. Samples were then centrifuged at 15 400 g

for 10 min at 4 ◦C and the supernatant was injected in the GC-MS system after leaving

the samples 2 h at room temperature.

A Bruker Daltonics Scion TQ GC-MS/MS (Bruker Daltonics, Fremont, CA) system

with an Agilent column HP-1 100% dimethylpolysiloxane (30 m×0.2 mm I.D., 0.11 µm)

was used for untargeted metabolite profiling. Samples were injected using a 1:10 split

ratio, and the injector temperature was set at 280 ◦C. Helium flow was maintained

at 1 mL/min. Column temperature was first set at 80 ◦C for 2 min, then increased to

230 ◦C at 10 ◦C/min, then increased to 310 ◦C at 40 ◦C/min, and finally maintained

at 310 ◦C for 3 min. The transfer line was set at 280 ◦C, and the ionization source

at 230 ◦C. MS acquisition was set from 50 to 600 m/z in scan mode with a scan

time of 200 ms. GC-MS data was processed with MS Workstation 8 software (Bruker
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Daltonics).

GC-MS Data Processing. GC-MS total ion chromatogram (TIC) data was con-

verted into xml file format using mzXML conversion files (Bruker Daltonics), and subse-

quently processed with XCMS software (version 2.9.1 in R, http://www.r-project.org)

(Smith et al., 2006). A list of 608 variables (i.e., consisting of ion, retention time, and

an integrated area) was obtained, and data was normalized by dividing the integrated

peak areas to the sum of all of the peak areas from the TIC. Peak identification was

performed using NIST 08 mass spectral libraries (match factor > 60%, probability

score > 20%). PLS analysis was first performed using SIMCA (V13 Demo Umetrics,

Umeå, Sweden) to evaluate the intrinsic variation of the variables within the three

groups of individuals. The initial data set was subsequently filtered by selecting only

features with a VIP value greater than or equal to 1. After filtering, 211 variables

were investigated further. To increase the visualization and interpretation of the data

set, two independent OPLS-DA models were built in comparison to the common LH

group. This approach was deemed more appropriate than building a single model

on three classes that will create a reference point, to which all plots and graphs

would be anchored and thus reducing the interpretation of the model (Wiklund et al.,

2008). The data were pareto-scaled and mean centered, and the predictive ability of

the models was verified using leave-one-out cross-validation. Two OPLS-DA models

with two-components, one predictive (first latent variable; LV1) and one orthogonal

(orthogonal component; LV2), were obtained for the models LH versus MUO and

LH versus MHO (Figure 3.2A and B, respectively). Since both models used the LH

group as a reference, a shared and unique structures (SUS)-plot was built from the

correlation vector Corr(tp,X) from the predictive component (LV1) of each model

(Figure 3.2C), as described elsewhere (Boccard et al., 2011).
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Figure 3.2: Multivariate analyses of metabolite data from GC-MS. (A) OPLS-DA scatter plot for the
LH versus MUO phenotypes (R2X= 0.46, R2Y= 0.89, Q2cum= 0.67; CV-ANOVA p = 0.001). (B)
OPLS-DA scatter plot for the LH versus MHO phenotypes (R2X= 0.41, R2Y= 0.786, Q2cum= 0.47;
CV-ANOVA p = 0.038). LV1 and LV2, represent the predictive and orthogonal components,
respectively. (C) Shared and Unique Structure (SUS) plot representation combining the correlation
vector (Corr(tp,X)) from the predictive component (LV1) of both OPLS-DA scatter plots.
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Capillary Electrophoresis Coupled to Mass Spectrometry (CE-MS) Analy-

sis

Chemicals and Reagents. Ammonium acetate, acetic acid, formic acid, 3-chloro-

l-tyrosine, and other metabolite reference standards were obtained from Sigma-Aldrich

(St. Louis, MO). HPLC-grade acetonitrile and methanol were obtained from Honeywell

(Muskegon, MI) and Caledon (Georgetown, ON, Canada), respectively. Buffers and

stock solutions were prepared in deionized water from a Thermo Scientific Barnstead

EasyPure II LF ultrapure water system (Vernon Hills, IL). All metabolite stocks were

prepared in water and stored at 4 ◦C.

CE-MS Procedure. Serum (50 µL) was diluted 4-fold with pH 5.0 ammonium

acetate buffer to a final concentration of 200 mm ammonium acetate and 25 µm

of internal standard (IS), 3-chloro-L-tyrosine. Deproteinization was performed by

ultrafiltration using a 3 kDa MWCO Nanosep centrifugal device (Pall Life Sciences,

Washington, NY) at 13 000 g for 20 min. A QC sample was obtained by pooling 5 µL

of each of the 30 serum samples collected, which would contain all of the analytes to be

profiled. To monitor variation in the instrumental performance and assess instrumental

precision throughout the duration of the analysis, the reproducibility of the QC sample

was assessed by incorporating the QC sample as the seventh segment in the MSI-

CE-MS method in all of the sample runs, as previously described by Kuehnbaum

et al. (2013). Targeted metabolite analysis was performed using an Agilent G7100A

CE system (Agilent Technologies Inc., Mississauga, ON, Canada) interfaced with a

coaxial sheath liquid Jetstream electrospray ionization source with heated nitrogen

gas coupled to an Agilent 6230 TOF-MS, as detailed elsewhere (Kuehnbaum et al.,

2013). An external standard calibration with seven levels of concentration (200, 100,

50, 25, 5, 2, and 0.5 µm) containing the IS was obtained by serial dilution of reference
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standards in 200 mm ammonium acetate buffer at pH 5. The calibration curve was

performed in triplicate to quantify the targeted metabolites of interest. This method

allowed for quantitative measurement of the concentration of 26 amino acids and

derivatives (Table 3.1).

Statistical Analysis of Metabolite Data Sets

Statistical analyses were performed using GraphPad Prism 5 software (La Jolla, CA).

Nonparametric ANOVA Kruskal–Wallis tests were used to determine if the 26 amino

acids and derivatives were statistically different between the three groups (p < 0.05).

When significance was observed, a posthoc nonparametric Mann–Whitney test was

used for pairwise analyses (p < 0.05). Receiver operating characteristic (ROC) curves

were generated using GraphPad Prism 5 software and obtained by plotting the true

positive rate (sensitivity) and false positive rate (1−specificity) at different thresholds.

Separate regressions were fitted for each combination of trait (BMI, fat mass %, HbA1c

and HOMA-IR) and amino acids and derivatives using JMP Genomics v5.1 (SAS

Institute, Cary, NC).

Subcutaneous Adipose Tissue Gene Expression Analysis

RNA Extraction. Adipose tissue samples were obtained from the periumbilical

region under local anesthesia after an overnight fast (∼12 h). Samples (50–100 mg)

were homogenized in 1 mL of TRIzol reagent (Life Technologies, Carlsbad, CA) using

a tissue homogenizer. Following tissue lysis and addition of chloroform, samples were

centrifuged at 12 000 g for 15 min at 4 ◦C. The upper aqueous phase containing RNA

was purified using the Qiagen RNeasy Mini Kit (Qiagen, Mississauga, ON, Canada),

according to the manufacturer’s instructions. Extracted RNA was quantified with

a Nanodrop 8000 instrument (Thermo Scientific, Wilmington, DE, USA), and RNA
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quality was verified using the Agilent 2100 Bioanalyzer (Agilent Technologies Inc.,

Santa Clara, CA). Only samples having a RNA integrity number greater than 8 were

used for microarray analyses.

Microarray Analysis and Data Treatment. Total RNA (100 ng) was used to

synthesize cDNA and then cRNA, according to standard Affymetrix protocols. Second

cycle cDNA was synthesized, fragmented, biotin labeled, and hybridized to Affymetrix

Human Gene 2.1 ST array strips (Affymetrix Inc., Fremont, CA) according to the

manufacturer’s guidelines. Strips were washed, stained, and scanned on the GeneAtlas

platform. Global gene expression was performed on a subset of SAT samples from the

same individuals used for serum metabolomic analyses. Specifically, we analyzed SAT

from seven LH individuals, eight MHO individuals, and eight MUO individuals; with

each group having two men. Data analysis was performed using the Expression Console

and Transcriptome Analysis Console from Affymetrix (Affymetrix Inc., Fremont, CA).

The robust multiarray average method was used for normalization of the microarray

data. An ANOVA, which was adjusted for multiple testing using a false-discovery

rate, was performed to identify differentially expressed genes. The LH group was used

as the reference for pairwise comparisons between LH versus MHO and LH versus

MUO. After correction for multiple testing, 2940 and 1654 genes were significantly

and differentially expressed (p < 0.05) in the LH versus MUO and LH versus MHO

models, respectively. Biological pathway analysis was performed using FunNet software

(http://www.funnet.info) to identify pathways that were differentially regulated from

within the lists of differentially expressed genes. Kyoto Encyclopedia of Genes and

Genomes (KEGG) biological pathways that are over-represented in gene expression

data lists were identified by FunNet using Fisher’s exact test.
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3.1.3 Results

Untargeted Metabolite Profiling Reveals Amino Acids as Metabolites of

Interest

We first performed a comprehensive and untargeted metabolite analysis of serum

collected from LH, MHO, and MUO individuals using GC-MS. Multivariate data

analyses and discriminant modeling were then used to highlight the most pertinent

metabolites distinguishing the three groups of individuals. Using an OPLS-DA, we

obtained a good fit for the separation of LH versus MUO (R2X= 0.46, R2Y= 0.89,

Q2cum= 0.67, cross-validated residuals analysis of variance (CV-ANOVA) p = 0.001)

and LH versus MHO (R2X= 0.41, R2Y= 0.78, Q2cum= 0.47, CV-ANOVA p = 0.038)

(Figure 3.2A and B). Relevant metabolites distinguishing the three subject groups

were subsequently identified with a SUS-plot analysis (Figure 3.2C). This included

metabolites shared by both the MHO and MUO groups in comparison to the LH

group, that is, metabolites located near the diagonal (e.g., tyrosine, glutamic acid,

uric acid, glycine, aspartic acid, and proline), as well as metabolites unique to either

the MHO or MUO groups, that is, metabolites located away from the diagonal (e.g.,

glutamine, lysine, and ornithine). As the majority of the shared and unique metabolites

corresponded to amino acids and derivatives, we next performed a targeted analysis

to quantify these specific metabolites of interest.

Quantitative Analysis of Amino Acids and Derivatives

A quantitative and targeted approach using CE-MS was implemented in order to

confirm the metabolites of interest highlighted by the SUS-plot analysis (Figure 3.2C).

Importantly, the CE-MS platform generated reliable and useful data, as indicated by

an analytical variability of <12% in QC samples. Moreover, this targeted analysis
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also included other essential and nonessential amino acids, as well as carnitine and

acetylcarnitine (Table 3.1) in addition to the metabolites indicated in the SUS-plot

(Figure 3.2C).

Distinct serum amino acid profiles were detected in the three groups of subjects

(Table 3.1). MHO individuals had intermediate glycine levels that were not significantly

different compared to LH and MUO individuals, while glycine levels were significantly

reduced in MUO compared to LH individuals (−23.9%). MHO individuals had higher

levels of valine, isoleucine, and leucine compared to LH individuals, with increases

of 29.3%, 25.9%, and 25.4% observed for these three branched-chain amino acids

(BCAAs), respectively. Although not statistically different from BCAA levels in

MHO individuals, MUO individuals showed even higher levels of valine, isoleucine,

and leucine compared to LH individuals, with increases of 35.0%, 40.1%, and 29.1%

observed, respectively. The aromatic amino acids tyrosine and phenylalanine were also

significantly elevated in MHO and MUO individuals compared to the LH individuals.

Specifically, tyrosine and phenylalanine levels were increased by 31.0% and 34.3%

in MHO individuals, respectively, and by 26.4% and 33.7% in MUO individuals,

respectively, in comparison to LH individuals.

Serum glutamic acid levels showed an increasing trend, with LH individuals having

the lowest level and MUO individuals having the highest level. Specifically, MHO

and MUO individuals showed a 44.5% and 89.8% increase in glutamic acid levels

compared to LH individuals; however, the concentrations of glutamic acid did not

differ significantly between the two obese groups. Glutamine did not differ between

the three groups. Because glutamine is the precursor of glutamic acid, we also

calculated the glutamine-to-glutamic acid ratio for all individuals. LH individuals

had the highest glutamine-to-glutamic acid ratio, while MUO had the lowest ratio.

Interestingly, the glutamine-to-glutamic acid ratio was significantly decreased by 26.5%
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and 46.0% in MHO and MUO individuals compared to LH individuals, respectively.

Furthermore, a trend was observed for a lower ratio in MUO compared to MHO

individuals (p = 0.075).

Higher concentrations of sulfur-containing amino acids cystine and methionine were

found in MHO (39.4% and 19.2%, respectively) compared to LH individuals, while

MUO individuals also tended to have higher levels of cystine (19.3%) and methionine

(11.9%) compared to LH individuals. However, no significant difference was observed

between MHO and MUO individuals. Proline and carnitine showed a similar profile

to sulfur-containing amino acids, with significantly increased levels detected in MHO

individuals (28.1% and 64.2%, respectively) compared to LH individuals; however,

the increases seen in MUO individuals (28.6% and 33.3%, respectively) were not

statistically different from LH individuals. Lysine and hydroxyproline showed a

distinct profile, with significantly lower levels seen in LH (−29.5% and −19.6%,

respectively) and MUO individuals (−22.6% and −18.5%, respectively) compared to

MHO individuals. No differences were observed for lysine or hydroxyproline between

MUO and LH individuals.

Aspartic acid, asparagine, and the asparagine-to-aspartic acid ratio were not

significantly different among the three groups, nor were amino acids involved in

the urea cycle (e.g., arginine, citrulline, and ornithine). The initial untargeted GC-

MS analysis found that uric acid differed between the three groups; however, this

metabolite was not amenable to the CE-MS method, and hypoxanthine, which is

a biosynthetic precursor for uric acid, was examined instead. The trend seen for

uric acid with GC-MS (i.e., MUO > MHO > LH; data not shown) was not reflected

by hypoxanthine levels. Finally, the levels of alanine, histidine, tryptophan, serine,

threonine, and acetylcarnitine were not significantly different between the three groups.
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Table 3.2: Associations of select metabolites with adiposity and insulin sensitivity traits∗.

BMI Fat Mass % HOMA-IR HbA1c

r p-value r p-value r p-value r p-value

Glycine −0.3797 0.0207 NS NS NS NS −0.3378 0.0345
Valine 0.5945 0.0002 0.2638 0.0344 0.4094 0.0074 0.3022 0.0242
Isoleucine 0.6513 0.0002 0.3924 0.0404 0.6826 <0.0001 NS NS
Leucine 0.5941 0.0011 NS NS 0.5531 0.003 NS NS
Glutamic acid 0.4354 0.0086 NS NS 0.3194 0.0378 0.3240 0.0365
Glutamic acid-to-glutamine −0.4022 0.0097 NS NS NS NS −0.4148 0.0081
Phenylalanine 0.5986 0.0003 0.5213 0.0018 NS NS 0.4537 0.0061
Tyrosine 0.6705 0.0002 0.5706 0.0034 NS NS 0.4714 0.0265
Cystine NS NS 0.5690 0.0362 NS NS 0.5734 0.0324
Methionine 0.3625 0.0436 NS NS NS NS NS NS
Proline 0.5044 0.0018 NS NS 0.6589 <0.0001 NS NS
Hydroxyproline 0.4553 0.0066 0.4207 0.0112 NS NS NS NS
Carnitine 0.5282 0.0117 0.4718 0.0354 NS NS 0.5010 0.0204
∗ Separate regressions were fitted for each combination of trait (body mass index (BMI), fat mass %, and homeo-
static model assessment of insulin resistance (HOMA-IR) and glycated hemoglobin (HbA1c)) with amino acids
and derivatives, adjusted for age and sex. NS, nonsignificant.

Serum Amino Acids Associate with Adiposity and Insulin Sensitivity

We next examined whether the aforementioned amino acids were associated with

measures of adiposity (i.e., BMI and fat mass %) and estimates of insulin sensitivity

(i.e., HOMA-IR and HbA1c) in our cohort of individuals. A number of metabolites

were significantly associated with the aforementioned measures and are presented in

Table 3.2.

It is noteworthy that the positive correlations between BCAAs and glutamic acid

with HOMA-IR and HbA1c could be visually stratified according to the three groups

(LH < MHO < MUO). Specifically, increases in valine, leucine, isoleucine, and glutamic

acid concentrations were in parallel to increases in HOMA-IR values, while increases

in glutamic acid, valine, and isoleucine concentrations were in parallel to increases

in HbA1c values (Figures 3.3 and 3.4). In contrast, the relationship between glycine

and the glutamine-to-glutamic acid ratio with HbA1c values decreased from LH to

MHO to MUO individuals (Figure 3.4). Taken together, the associations between

amino acids (e.g., BCAAs, glutamic acid and the glutamine-to-glutamic acid ratio)

and markers of insulin sensitivity consistently demonstrated that MHO individuals
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Figure 3.3: Relationship between specific amino acids and HOMA-IR. Metabolite values correspon-
ded to quantitative data obtained by CE-MS analysis. (O) Lean healthy (LH) individuals, (u)
metabolically healthy obese (MHO) individuals, and (×) metabolically unhealthy obese (MUO)
individuals.

have an intermediate phenotype compared to LH and MUO individuals.

Amino Acids as Potential Biomarkers of the MHO Phenotype

When considered individually, many of the aforementioned amino acids were not

significantly different between MHO and MUO individuals; however, considering small

subsets of amino acids simultaneously showed their potential to serve as biomarkers

of the MHO phenotype. ROC curve analyses were used to evaluate if metabolites

and/or metabolite ratios could be used to distinguish MHO from MUO individuals

(Figure 3.5). Based on this analysis, we identified several potential biomarkers that
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Figure 3.4: Relationship between specific amino acids and HbA1c. Metabolite values corresponded to
quantitative data obtained by CE-MS analysis. (O) Lean healthy (LH) individuals, (u) metabolically
healthy obese (MHO) individuals, and (×) metabolically unhealthy obese (MUO) individuals.
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Figure 3.5: ROC curves for the significant metabolites measured by CE-MS. Metabolites and
metabolite ratios that best differentiate MHO from MUO. AUC = area under the curve. A p < 0.05
indicated statistical significance.

could be used to differentiate MHO and MUO individuals, including the glutamic

acid-to-lysine ratio (area under the curve (AUC) = 0.84; p = 0.010), the glutamic

acid-to-ornithine ratio (AUC = 0.83; p = 0.0125), the glutamic acid-to-carnitine ratio

(AUC = 0.83; p = 0.0125), the glutamic acid-to-hydroxyproline ratio (AUC = 0.82;

p = 0.0156), the tyrosine-to-hydroxyproline ratio (AUC = 0.81; p = 0.0192), the

glutamic acid-to-cystine ratio (AUC = 0.80; p = 0.0234), and the glutamic acid-to-

serine ratio (AUC = 0.79; p = 0.0284), as well as hydroxyproline alone (AUC = 0.84;

p = 0.0102).
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Branched-Chain Amino Acid Catabolism and Energy Metabolism in Subcu-

taneous Adipose Tissue

Global gene expression analysis of SAT revealed that branched-chain amino acid

(BCAA) degradation and tricarboxylic acid (TCA) cycle pathways were down-regulated

in MHO and MUO individuals compared to LH individuals. The following genes

from the TCA cycle pathway were decreased in both MHO and MUO individuals:

PCK1 and PCK2, which encode the cataplerotic enzymes that convert oxaloacetate

to phosphoenolpyruvate, as well as CS, DLD, DLST, FH, IDH3B, MDH2, PC, PDHB,

SUCLA2, and SUCLG2 (Figure 3.6, Table 3.3). In contrast, only MUO individuals

showed significant (p < 0.05) decreases in the expression of ACO1, ACO2, IDH2,

PDHA1, SDHB, SDHD, and SUCLG1 compared to LH individuals, suggesting that

these pathways are more strongly compromised in MUO individuals compared to MHO

individuals. Most of the genes in the BCAA degradation pathway were down-regulated

in both groups of obese individuals compared to LH individuals (Table 3.4). The

cytosolic transcript BCAT1 was up-regulated in both MHO and MUO groups compared

to the LH group. While BCKDHA was similarly decreased in both obese groups,

the absolute expression of mitochondrial genes involved in the two first reactions of

BCAA catabolism (i.e., BCAT2, BCKDHB, and DBT) were decreased significantly

in MUO compared to MHO individuals (Table 3.4). Together, this gene expression

profile suggests that MUO individuals may have a more significant impairment of SAT

energy metabolism compared to MHO individuals.

3.1.4 Discussion

Obesity is considered a major risk factor for the development of T2D and cardio-

vascular disease. Changes in lifestyle (e.g., dietary habits, physical activity) can
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Figure 3.6: Schematic representation of tricarboxylic acid (TCA) cycle in subcutaneous adipose tissue
(adapted from KEGG pathway). The superscript “A” indicates genes significantly down-regulated in
MUO compared to LH (p < 0.05). The superscript “B” indicates genes significantly down-regulated in
MHO compared to LH (p < 0.05). The superscript “C” indicates genes significantly down-regulated
in MUO compared to MHO (p < 0.05). For corresponding fold changes and gene names, see Table 3.3.
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help prevent the development of these obesity-related complications; however, it is

currently unknown if all obese individuals will respond similarly to a given lifestyle

intervention. The few studies that have examined the effects of lifestyle interventions

in MHO and MUO individuals report conflicting findings, where in some cases the

two groups responded similarly (Dalzill et al., 2014; Liu et al., 2013) and in other

cases the two groups responded differently (Karelis et al., 2008; Shin et al., 2006).

Given these conflicting findings, an improved understanding of the MHO phenotype is

necessary before considering therapeutic and lifestyle management strategies that are

personalized for distinct subgroups of obese individuals. The integrative metabolomic

and transcriptomics approach presented here aimed to improve our understanding of

the MHO phenotype in relation to the MUO phenotype. An untargeted metabolomic

approach combined with multivariate data analysis and discriminant modeling highlig-

hted the central role of amino acids in relation to obesity, and their association with

the MHO phenotype. A targeted CE-MS method was subsequently used to confirm

changes in amino acids and derivatives, thus reinforcing the strong association between

this subset of metabolites with obesity and cardiometabolic risk factors. Integrating

serum metabolite data with SAT gene expression suggested that energy and BCAA

metabolism were more highly compromised in MUO individuals compared to MHO

individuals.

In the present study, serum samples were obtained from well-characterized, age-

and sex-matched groups of LH, MHO, and MUO individuals, as previously described

(Perreault et al., 2014b). A comprehensive classification approach encompassing

both anthropometric and clinical measurements was previously used to classify our

study participants into these groups, and complemented by screening circulating

inflammatory markers and serum fatty acids, as described elsewhere (Perreault et al.,

2014b). Briefly, MHO individuals had a lipid profile similar to LH individuals, as
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well as having lower levels of circulating inflammatory markers and increased insulin

sensitivity compared to their MUO counterparts. Importantly, the differences between

MHO and MUO individuals used in the present study agree with previous independent

reports that MHO individuals are more insulin sensitive, have a more favorable lipid

profile, and have lower levels of circulating inflammatory markers (Karelis et al.,

2004b; Phillips and Perry, 2013). Metabolites are the end points of gene and protein

function, and thus provide important insights regarding metabolic flux through key

biological pathways (Ordovás Muñoz, 2013). Previous metabolomic studies have

revealed a central role of amino acid metabolism with obesity and T2D, where specific

amino acids are either increased or decreased with an unhealthy phenotype (Adams,

2011; Fiehn et al., 2010; Floegel et al., 2013; Newgard et al., 2009; Wang-Sattler

et al., 2012). Our results suggest that studying amino acid and related metabolites is

highly relevant to improve our understanding of the MHO phenotype. It is important

to stress that the results presented here reflect changes in amino acid metabolism

between the three groups rather than differences in dietary habits. This is supported

by two key pieces of information. First, all study participants were fasted overnight

(∼12 h) prior to blood collection, thereby removing the influence of acute dietary

influences. Second, a recent study by Phillips et al. (2013) found no evidence that

dietary macronutrient composition differed between MHO and MUO individuals,

suggesting that dietary habits do not explain differences between these two groups

of obese individuals. Therefore, the amino acid signature reported here provides

insight regarding differences in amino acid homeostasis between MHO and MUO

individuals (Adams, 2011). Our results revealed distinct patterns of amino acids

between LH, MHO, and MUO groups. Generally, most individual amino acids did not

differ significantly between MHO and MUO individuals, and the specific increases or

decreases in amino acid levels corroborated findings previously reported with obesity
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and T2D (Adams, 2011; Kim et al., 2010; Morris et al., 2012; Newgard et al., 2009; Xie

et al., 2012). However, we observed that several amino acids reflected the intermediate

cardiometabolic profile that seems to be characteristic of the MHO phenotype.

For example, we observed a significant reduction of glycine levels in the MUO

group that is consistent with previous reports (Fiehn et al., 2010; Floegel et al.,

2013; Newgard et al., 2009; Oberbach et al., 2011; Wang-Sattler et al., 2012). It

was hypothesized that decreases in glycine levels in obese individuals may reflect an

increased utilization of this amino acid in gluconeogenic pathways that are typically

up-regulated with insulin resistance (Floegel et al., 2013; Wang-Sattler et al., 2012).

It was interesting to see that the concentration of glycine was intermediate in MHO

individuals compared to LH and MUO individuals (i.e., LH > MHO > MUO),

suggesting the higher insulin sensitivity in MHO may stem from a lower utilization

of gluconeogenic pathways. The concentrations of glutamic acid were 44.5% and

89.8% higher in MHO and MUO individuals, respectively, compared to LH individuals,

while the concentration of glutamine was not different within the three groups. A

strength of our CE-MS methodology is that glutamine and glutamic acid were readily

distinguished (Kuehnbaum and Britz-McKibbin, 2013), allowing us to calculate the

glutamine-to-glutamic acid ratio. When considered simultaneously, this ratio was

significantly reduced in MHO (−26.5%) and MUO (−46.0%) individuals compared

to LH individuals. Further, the difference in the glutamine-to-glutamic acid ratio

observed between MHO and MUO individuals showed a trend to be lower in MUO

compared to MHO individuals (p = 0.075), suggesting that this ratio may serve as

an indicator for reduced metabolic wellness. Interestingly, our results additionally

show that glutamic acid was positively associated with BMI, HOMA-IR, and HbA1c

(Figures 3.3 and 3.4), whereas the glutamine-to-glutamic acid ratio was inversely

associated with HbA1c (Figure 3.4). It is noteworthy that the correlation between
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glutamic acid and HOMA-IR, as well as the correlation between the glutamine-to-

glutamic acid ratio and HbA1c, visually stratified the three phenotypes, with the MHO

group being intermediate to LH and MUO individuals. Cheng et al. (2012) previously

reported that a low glutamine-to-glutamic acid ratio was associated with higher risk

of T2D in patients with metabolic syndrome. In another study, it was hypothesized

that balanced levels of glutamine and glutamic acid could be important for glucose

homeostasis (Xu et al., 2013). Indeed, glutamine is thought to have a beneficial effect

on cardiometabolic risk via several potential mechanisms, such as increased secretion of

glucagon-like peptide 1, increased externalization of glucose transporter type 4, and/or

increased adipose tissue insulin sensitivity (Cheng et al., 2012). In contrast, increases

in glutamic acid levels may promote metabolic complications by stimulating glucagon

release from pancreatic α-cells (Cabrera et al., 2008) and increasing transamination

of pyruvate to alanine; which together favors an increase in gluconeogenesis (Cheng

et al., 2012). The higher absolute levels of serum glutamic acid and the decreased

glutamine-to-glutamic acid ratio in MUO and MHO compared to LH individuals

corroborates previous reports (Cheng et al., 2012; Newgard et al., 2009) and aligns

with the prior observation that MHO individuals have an improved glucose homeostasis

compared to MUO individuals.

Serum levels of the three BCAAs (i.e., valine, isoleucine, and leucine) were sig-

nificantly increased in both obese phenotypes compared to LH individuals, but did

not differ significantly between MHO and MUO groups. Interestingly, Batch et al.

(2013) identified BCAAs and related metabolites (which included aromatic amino

acids, methionine, alanine, and histidine) as being excellent biomarkers of metabolic

wellness, independent of BMI. Despite failing to detect a significant difference in

BCAA levels between MHO and MUO individuals, our results showed that the trend

for increased insulin sensitivity previously reported for these MHO individuals (i.e.,
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reduced fasting insulin and HOMA-IR values) aligns with their lower absolute concen-

trations of BCAAs compared to MUO individuals (Table 3.1) (Perreault et al., 2014b).

The relationship between BCAAs and insulin sensitivity was further supported by the

positive associations observed between the three individual BCAAs and HOMA-IR,

and to a lesser extent with HbA1c (Table 3.2). While these associations need to

be validated in a larger cohort, the trends observed corroborate previous research

(Newgard et al., 2009; Pietiläinen et al., 2008). It was also reported in other studies

that baseline plasma BCAAs associated with HOMA-IR values at a 6 year follow-up,

leading to the suggestion that these amino acids may serve as early indicators for the

development of insulin resistance (McCormack et al., 2013; Würtz et al., 2013). From

an analytical perspective, it is noteworthy that the CE-MS method provided excellent

resolution of serum amino acids, thus enabling the separation of leucine and isoleucine.

This is relevant given that the majority of previous studies have been unable to

distinguish these two amino acids (Batch et al., 2013; Mihalik et al., 2012; Newgard

et al., 2009). Of the three BCAA metabolites, isoleucine showed the most important

changes between the three groups compared to valine and leucine. In MUO individuals,

isoleucine levels were increased ∼40% compared to LH individuals, while the mean

isoleucine concentration in MHO individuals was increased ∼26%. The increase of

isoleucine levels coincided with reductions in markers of insulin sensitivity, as reflected

by the progressive association seen between the three groups with HOMA-IR and

HbA1c (Figures 3.3 and 3.4).

In concordance with changes in serum amino acid profiles, we also found a role

for SAT gene expression in BCAA catabolism. Transcriptomic profiling in adipose

tissue showed a reduced expression of numerous genes involved in BCAA catabolism

(ACAD8, ACADM, ACADS, ACADSB, ACAT1, ALDH6A1, AUH, BCAT2, BCKDHA,

BCKDHB, DBT, DLD, ECHS1, HIBADH, HMGCL, IVD, MCCC1, MCCC2, MCEE,
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MUT, OXCT1, and PCCA) in both MHO and MUO individuals (Figure 3.6 and

Table 3.3), while BCAT1 was up-regulated in both MHO and MUO individuals

compared to LH individuals. We hypothesize that the differential regulation between

BCAT1 and BCAT2 genes may reflect an attempt by SAT to compensate for the

lack of mitochondrial TCA cycle intermediates by increasing a key cytosolic gene

(i.e., BCAT1 ). Indeed, up-regulation of BCAT1 is consistent with recent findings and

previous reports highlighting an association with obesity and T2D (Chen et al., 2013;

Soronen et al., 2012). Obesity is linked to mitochondrial alterations and the reduced

expression of mitochondrial BCAA catabolic genes seen in our study aligns with

previous reports showing altered BCAA catabolism with obesity in two independent

populations (Lackey et al., 2013; Pietiläinen et al., 2008). However, we found that

more genes related to BCAA catabolism were significantly altered in SAT from

MUO individuals in comparison to MHO individuals. For example, BCAT2 gene

expression, which controls the first step in BCAA catabolism, was only reduced in

MUO individuals, while genes controlling the irreversible conversion of α-ketoacids

to acyl-coenzyme A (CoA) derivatives (e.g., BCKDHA, BCKDHB, and DBT ) were

more strongly reduced in MUO individuals compared to MHO individuals. Taken

together, SAT gene expression suggests an intermediate BCAA catabolism profile in

MHO individuals compared to LH and MUO individuals.

Interestingly, our findings suggest that MHO and MUO individuals may differ

with regard to anaplerosis, that is, the availability of metabolites that enter the TCA

cycle. Indeed, it was previously hypothesized that alterations in serum amino acid

levels may reflect an anaplerotic stress due to reduced TCA cycle capacity in adipose

tissue from obese and T2D individuals (Adams, 2011; Fiehn et al., 2010). Several

studies have previously reported reduced TCA cycle activity in muscle and adipose

tissue from insulin-resistant and T2D individuals (Qatanani et al., 2013; Ritov et al.,
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2010). The TCA cycle is central to energy metabolism in tissues and its homeostasis

reflects a balance between intermediates that leave the cycle to be converted into

glucose, fatty acids, and nonessential amino acids (cataplerosis) and replenishment

of these intermediates (anaplerosis) (Owen et al., 2002). Amino acid catabolism

plays a major role in the production of TCA cycle intermediates (Figure 3.6). For

example, glutamine is deaminated into glutamic acid, which can then be converted into

α-ketoglutarate; tyrosine and phenylalanine can be converted into fumarate; valine,

isoleucine, and methionine can be converted into succinyl-CoA; and asparagine can

be deaminated into aspartate, which can then be converted into oxaloacetate (Owen

et al., 2002). The higher serum levels of BCAAs, aromatic amino acids, glutamic

acid, and methionine in both obese groups compared to LH individuals may reflect

a reduced use of these metabolites for TCA cycle replenishment. This notion was

previously supported in mouse and human studies showing that obesity is associated

with a coordinated reduction in SAT energy metabolism that is reflected at the gene,

protein, and metabolite levels (Adams, 2011; Flachs et al., 2013; Lackey et al., 2013;

Naukkarinen et al., 2014). When considering BCAA and glutamic acid levels in MHO

and MUO individuals compared to LH individuals, it is tempting to speculate that

serum amino acid profiles may be indicative of reduced TCA cycle activity in SAT.

Further, our gene expression data suggests a stronger impairment in mitochondrial

TCA cycle activity in MUO compared to MHO individuals (Table 3.3 and Figure 3.6).

Indeed, the anaplerotic stress suggested by serum metabolite profiles was mirrored

by a decrease in the expression of numerous genes associated with the TCA cycle,

including ACO2, CS, DLD, DLST, FH, IDH2, IDH3B, MDH2, PC, PDHA1, PDHB,

SUCLA2, SDHB, SDHD, SUCLG1, and SUCLG2 (Figure 3.6). In particular, the

primary anaplerotic reaction driven by pyruvate carboxylase (PC ) was down-regulated

in both obese groups. This decrease suggests a reduced production of oxaloacetate
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from pyruvate which would ultimately compromise TCA cycle activity (Gaster et al.,

2012). Furthermore, genes involved in the regulation of several major steps in the

TCA cycle (i.e., ACO2, IDH2, SUCLG1, SDHB, and SDHD) (Figure 3.6) were only

down-regulated in MUO individuals compared to LH individuals, and not MHO

individuals. Altogether, our data supports an important role for SAT in whole-body

amino acid homeostasis; however, the cause of the transcriptional changes leading to

differences in SAT gene expression and insulin resistance between MHO and MUO

individuals remains to be elucidated.

Several limitations of the study should be addressed. First, we acknowledge that

statistical power would be increased with a larger sample size; however, the small

sample size in the present study is compensated by the extensive characterization

of our study participants, which included body composition analyses, blood clinical

measurements, inflammatory marker analyses, and serum fatty acid profiling. Ne-

vertheless, future studies using a larger sample size and longitudinal approaches are

a logical continuation to this line of investigation. Second, the use of two different

analytical platforms to study serum metabolites prevented us from quantifying all

amino acids derivatives. For example, it was not possible to quantify uric acid directly

by CE-MS; therefore, its precursor hypoxanthine was measured instead. However, the

high level of concordance between our GC-MS and CE-MS data sets adds considerable

strength to the study conclusions. Finally, ROC curve analyses identified several

amino acids that may have the potential to be used as a diagnostic tool to assess

metabolic wellness; however, the clinical relevance of these amino acid biomarkers

remains to be independently validated.
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3.1.5 Conclusions

In conclusion, metabolite profiling revealed subtle differences in amino acid homeostasis

between the two groups of obese individuals. Interestingly, the serum amino acid

profile in MHO individuals reflected their improved insulin sensitivity compared to

MUO individuals. Furthermore, the circulating amino acid profile in MHO individuals

aligned with gene expression profiles in SAT, which indicated that MHO individuals

had a smaller number of genes and/or smaller changes in the expression levels of genes

associated with mitochondrial BCAA catabolism and the TCA cycle in comparison

to MUO individuals, thus highlighting the contribution of adipose tissue in the

development of MHO and MUO phenotypes. Taken together, this study has shed

novel insight into the molecular and metabolic basis of the MHO phenotype and

highlights the important link between amino acid homeostasis and cardiometabolic

risk.

3.2 Metabolomics Reveals Metabolically Healthy

and Unhealthy Obese Individuals Differ in

their Response to a Caloric Challenge

Author Contributions
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by FB, KPL, PBM, and DMM. FB, KPL, and DMM wrote the manuscript. FB, KPL,
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Abstract

Objective

To determine if MHO individuals have a different metabolic response to a standardized

diet compared to LH and MUO individuals.

Methods

Thirty adults (35–70 yr) were classified as LH, MHO, and MUO according to anthropo-

metric and clinical measurements. Participants consumed a standardized high calorie

meal (∼1330 kcal). Blood glucose and insulin were measured at fasting, and 15, 30,

60, 90 and 120 min postprandially. Additional blood samples were collected for the

targeted analysis of amino acids (AAs) and derivatives, and fatty acids (FAs).

Results

The postprandial response (i.e., area under the curve, AUC) for serum glucose and

insulin were similar between MHO and LH individuals, and significantly lower than

MUO individuals (p < 0.05). Minor differences were found in postprandial responses

for AAs between MHO and MUO individuals, while three polyunsaturated FAs (linoleic

acid, g-linolenic acid, arachidonic acid) showed smaller changes in serum after the

meal in MHO individuals compared to MUO. Fasting levels for various AAs (notably
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BCAAs) and FAs (e.g., saturated myristic and palmitic acids) were found to correlate

with glucose and insulin AUC.

Conclusion

MHO individuals show preserved insulin sensitivity and a greater ability to adapt to

a caloric challenge compared to MUO individuals.

3.2.1 Introduction

The widespread availability of foods rich in refined carbohydrates and fats is a major

contributor to the obesity epidemic (Hruby and Hu, 2015). As most of an individual’s

day is spent in a postprandial state (van Dijk et al., 2009), studying a person’s response

to a diet provides valuable insight into metabolic function. Further, the dynamic

adaptation to a caloric challenge is highly informative. For example, postprandial

increases in TG are considered a risk factor for cardiovascular diseases (CVDs) (Alcala-

Diaz et al., 2014; Perez-Martinez et al., 2014), while high postprandial glucose and

insulin levels indicate a risk for T2D (Weyer et al., 1999). Therefore, evaluating

metabolic responses following a standardized meal challenge can provide a better

understanding of the link between foods and metabolism compared to fasted markers,

and has the potential to reveal differences in metabolic adaptability between individuals

(Moazzami et al., 2014).

Recently, a subgroup of obese individuals, commonly referred to as metabolically

healthy obese (MHO), was identified as being protected from the usual downstream

complications associated with obesity, such as T2D and CVD. Studying this particular

phenotype has revealed that MHO exhibit distinct molecular and metabolic charac-

teristics compared to metabolically unhealthy obese (MUO) individuals (Badoud
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et al., 2015b; Samocha-Bonet et al., 2014). Previous reports have shown that the

response to an oral glucose tolerance test (OGTT) (Kantartzis et al., 2011; Marini

et al., 2014; Naukkarinen et al., 2014; Succurro et al., 2008) or an oral fat load differs

between individuals varying in cardiometabolic risk (Perez-Martinez et al., 2014; van

Dijk et al., 2009). For example, a recent study reported that MHO co-twins had

lower AUCs for insulin and glucose following an OGTT compared to MUO co-twins

(Naukkarinen et al., 2014). Perez-Martinez et al. (2014) showed that after an oral fat

load, postprandial TG metabolism (i.e., the AUC for TG) and inflammatory status

were lower in MHO individuals compared to their MUO counterparts, thus showing

the greater ability of MHO to adapt to a caloric challenge. Therefore, underlying

differences in response to a dietary challenge is of high interest in order to better

understand mechanisms linked to cardiometabolic health.

This study is the first to examine the glycemic and insulinemic responses to a

standardized high-calorie meal in lean healthy (LH), MHO, and MUO individuals.

We previously reported that circulating AA and FA profiles differed between MHO

and MUO individuals in a fasted state (Badoud et al., 2014; Perreault et al., 2014b).

Therefore, the present study also used a targeted metabolomics approach to evaluate

if the metabolic adaptation to this challenge had a different effect on AA and FA

profiles in MHO and MUO individuals. Finally, we hypothesized that studying AAs

and FAs could lead to the discovery of metabolites that may potentially serve as

predictors for a person’s postprandial glucose and/or insulin response to a caloric

challenge. Together this report highlights the greater ability of MHO individuals to

adapt to a high calorie meal compared to their MUO counterparts as well as their

preserved insulin sensitivity.
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3.2.2 Materials and Methods

Subjects and Study Design

Serum and plasma samples were obtained from individuals participating in the Diabetes

Risk Assessment (DRA) study (Clinicaltrials.gov ID #NCT01884714). Persons were

screened over the phone and excluded if they met any one of the following criteria:

1) aged < 35 or > 70 years; 2) diagnosed with an acute or chronic autoimmune

inflammatory disease, infectious disease, viral infection, and/or cancer; or 3) regular

alcohol consumption exceeding 2 drinks/day (1 drink = 10 g alcohol). None of the

participants were taking antidiabetic medications. All participants signed a consent

form and the research protocol was approved by the University of Guelph Research

Ethics Board (REB#10AP033).

Subject Classification

Thirty participants were classified into 3 distinct groups: LH (n = 10), MHO (n = 10),

and MUO (n = 10) based on their adiposity and metabolic status, as previously

described (Perreault et al., 2014b). Briefly, adiposity status was determined using

the revised BMI cut-offs proposed by Shah and Braverman (2012), where lean was

considered <28 kg/m2 for males and <24 kg/m2 for females, and obese was considered

≥28 kg m−2 for males and ≥24 kg m−2 for females. Metabolic status was determined

using criteria adapted from that originally proposed by Karelis et al. (2004a) in

order to account for sex-specific differences and medication. An individual was

considered “metabolically healthy” if 3 or more of the following criteria were met:

HDL-c > 1.0 mmol/L for males and >1.3 mmol/L for females; TG < 1.7 mmol/L

without use of lipid-lowering drugs; Total-c < 5.2 mmol/L; LDL-c < 2.6 mmol/L; and

HOMA-IR < 1.95 without use of anti-diabetic drugs. Each group was comprised of 7
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women and 3 men. Complete details regarding the methodologies used to measure

biochemical parameters and percentage body fat can be found in (Perreault et al.,

2014b). LH, MHO, and MUO groups were matched for age, while the MHO and MUO

groups were matched for BMI and percentage body fat (Table 3.6).

Caloric Challenge

A high calorie meal (fast-food breakfast representative of the Western diet) was given

to each participant following a 12 h overnight fast. The meal consisted of 2 sausage

egg English muffins, 1 apple turnover, and ∼370 mL of concentrated orange juice, and

provided a total calorie intake of ∼1330 kcal (i.e., 66 g of fat, 141 g of carbohydrates,

5 g of fibre and 42 g of proteins). The standardized meal was eaten within 20 min.

Blood was collected for glucose and insulin measurements at fasting and postprandially

at 15, 30, 60, 90 and 120 min. Additional blood samples were collected at fasting

and at the 120 min postprandial time point (T120) for targeted analyses of AAs and

derivatives, as well as FAs.

To limit potential confounding lifestyle factors, participants were asked to avoid

rigorous exercise, over-the-counter medication, dietary supplements, vitamins, and

herbal supplements for 48 h prior to the study visit. Furthermore, participants fasted

for at least 12 h after consuming a standardized single-serving frozen dinner meal the

night preceding the study visit, and 1 dinner roll (whole wheat or white), 1 vegetable

side of their choice (corn, peas, broccoli, carrots, squash, zucchini, or green beans), 1

fruit (apple, orange, banana, peach, grapes, or melon), and 500 mL bottled water.

Blood Metabolite Profiling

Amino Acid Profiling. Plasma samples (50 µL) were analysed using CE-MS, as

previously described (Badoud et al., 2014). Peak areas and migration times were
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normalized relative to the IS, 3-chloro-L-tyrosine, and data were reported as absolute

level (µm) and percent postprandial change (%PP) following the standardized meal

intake, where %PP = ((PP value− fasting value)/fasting value)× 100.

Fatty Acid Profiling. FAs were profiled in serum samples using GC, as previously

described (Perreault et al., 2014b). Briefly, 10 µL of a 1 µg/µL C17:0 internal standard

was added to 100 µL of serum. FAs were extracted with chloroform:methanol (2:1, v/v)

and methylated at 100 ◦C for 1.5 h. All samples were analyzed on an Agilent DB-FFAP

column (15 m×0.1 mm internal diameter; 0.1 µm), using an Agilent Technologies 7890A

GC system (Agilent Technologies, Mississauga, ON, Canada) with flame ionization

detector. Peaks were identified by comparison to a panel of 49 FA methyl ester

standards suspended in hexane (ranging from C8:0 to C24:1n-9). Relative FA values

were calculated as a % of total peak area and data were reported as %PP (as described

above) using relative FA values.

Standardized Meal Composition Analysis

Protein Hydrolysis for Amino Acid Composition. Acid hydrolysis was per-

formed on the homogenized meal to determine the AA composition. Briefly, the meal

was homogenized in a standard blender and a 50 mg sample was placed in a glass

tube to which 350 µL of 6 m hydrochloric acid (HCl) was added (n = 3). Samples

were maintained at 100 ◦C for 24 h under nitrogen, prior to being cooled to room

temperature. The acid hydrolysate containing the meal sample was evaporated to

dryness, then neutralized and reconstituted in 2.1 mL of 1 m ammonium hydroxide

(NH4OH). Ultrafiltration was performed using 3 kDa MWCO NanoSep centrifugal

devices (Pall Life Sciences, Washington, NY, USA) at 13 000 g for 20 min. Prior to

CE-MS analysis, 15 µL of the filtered hydrolysate was diluted to 50 µL in NH4Ac buffer
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(pH of 5) with a final concentration of 200 mm NH4Ac containing 25 µm of IS. AAs

in the meal were expressed as relative abundances. Notably, during this procedure

certain acid-labile amino acids have poor recoveries after protein digestion, including

tryptophan and cysteine/cystine, while glutamine and asparagine are hydrolysed into

glutamic acid and aspartic acid, respectively.

Fatty Acid Composition. An aliquot of 10 mg of the homogenized meal was used

to determine FA composition by GC. 2.5 mL of 0.1 m potassium chloride (KCl) was

added to 10 mg of the homogenized meal. The homogenate was transferred into 10 mL

chloroform:methanol (2:1, v/v), and analyzed by GC using the same procedure as for

the serum FA analysis. FAs were expressed as relative abundances in the meal.

Statistical Analyses

Statistical analyses were performed using GraphPad Prism 6 software (La Jolla, CA,

USA). Non-parametric ANOVA Kruskal-Wallis tests were used to determine if the

metabolites were statistically different between the three groups (p < 0.05). When

significance was observed, a post-hoc non-parametric Mann-Whitney test was used for

pairwise analyses (p < 0.05). AUCtotal was calculated using the trapezoid rule, with a

baseline of 0 over the range of fasting to T120 post meal intake. Separate regressions

were fitted for all measured metabolites and insulin sensitivity indices using JMP 11

(SAS, Institute, Cary, NC), adjusted for sex, age and BMI. Significance was assessed

after Bonferroni correction for multiple testing (p ≤ 0.01).
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3.2.3 Results

Glycemic and Insulinemic Responses

Glucose and insulin AUCtotal differed significantly between the three groups (Figure 3.7a

and b). The AUCtotal for glucose and insulin (Figure 3.7c and d) were not different

between LH and MHO individuals (p = 0.40 and p = 0.31, respectively), but both

values were significantly higher in MUO individuals (p = 0.02 between LH and MUO

and p = 0.01 between MHO and MUO for glucose; and p < 0.01 between LH and

MUO and p = 0.01 between MHO and MUO for insulin).

Plasma Amino Acid and Derivatives Response

The levels of AAs and their derivatives were profiled in fasting and T120 plasma

samples in the three distinct groups. A dataset comprising individual levels and ratios

for the 39 AAs and their derivatives measured in each group are provided in Tables 3.7

and 3.8.

We first determined the relative abundance of the detected AAs in the meal, and

then overlaid this with the corresponding %PP change in plasma AAs for LH, MHO

and MUO groups (Figure 3.8a). Branched-chain AAs (BCAA: leucine, isoleucine,

and valine), glutamic acid + glutamine (i.e., glutamine is converted to glutamic acid

during the acid hydrolysis procedure), and proline were the most abundant AAs found

in the meal. Most of the AAs and derivatives were similarly increased within the

3 groups at T120 following the meal (e.g., alanine, proline), but several showed a

reduction (e.g., acetylcarnitine, citrulline) (Tables 3.7 and 3.8). When examining

the %PP change after the consumption of the standardized meal (Figure 3.8a and

Figure 3.9), four metabolites (i.e., asparagine, cystine, glutamine, and serine) and

the carnitine-to-acetylcarnitine ratio were significantly different between the 3 groups
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Figure 3.7: Postprandial serum glucose (a) and insulin (b) responses (mean ± SEM) following
consumption of the standardized meal in lean healthy (LH; circle, n = 10), metabolically healthy
obese (MHO; square, n = 10), and metabolically unhealthy obese (MUO; triangle, n = 10) individuals.
Glucose (c) and insulin (d) Area Under the Curve (AUCtotal), where white bars = LH; grey
bars = MHO; and black bars = MUO. A non-parametric ANOVA Kruskal-Wallis test followed by a
post-hoc Mann-Whitney test was used to determine differences between groups. Bars not sharing
the same letter are statistically different (p < 0.05).
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Figure 3.8: Amino acid (a) and fatty acid (b) composition of the standardized meal (grey bars, plotted
on right y-axis). The corresponding %PP is plotted on the left y-axis for lean healthy (LH; circle,
n = 10), metabolically healthy obese (MHO; square, n = 10) and metabolically unhealthy obese
(MUO; triangle, n = 10) in plasma samples. Significant %PP (indicated by *) between the three
groups were identified using a non-parametric ANOVA Kruskal-Wallis (p < 0.05) test followed by a
post-hoc Mann-Whitney test (p < 0.05). Gly = glycine, Ala = alanine, Ser = serine, Pro = proline,
Val = valine, Bet = betaine, Thr = threonine, Ile = isoleucine, Leu = leucine, Asp = aspartic acid,
Lys = lysine, Glu = glutamic acid, Met = methionine, His = histidine, Phe = phenylalanine, 3-
MeHis = 3-methylhistidine, Arg = arginine, Tyr = tyrosine, CySS = cystine, DMG = dimethylglycine,
Crt = creatine, Asn = asparagine.
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(ANOVA Kruskal-Wallis p < 0.05, Table 3.8). For asparagine and glutamine, the %PP

change between fasting and T120 was intermediate for MHO individuals compared

to MUO and LH, with levels in MUO being significantly lower compared to that of

LH individuals. Cystine and serine revealed a significantly higher %PP change in the

LH group relative to the obese groups, with no distinction between MHO and MUO.

Finally, the carnitine-to-acetylcarnitine ratio was significantly increased for each group,

where the %PP change was higher in LH compared to that of MHO individuals, while

being intermediate for MUO individuals.

Serum Fatty Acid Response

The standardized meal provided the most abundant dietary FAs, as expected (Fi-

gure 3.8b). Indeed, the meal contained ∼38% saturated fatty acid (SFA), of which

palmitic acid (16:0) and stearic acid (18:0) were the most abundant, ∼29% monounsa-

turated fatty acid (MUFA) of which oleic acid (18:1n-9) was the most abundant, and

∼17% polyunsaturated fatty acid (PUFA), which consisted predominantly of linoleic

acid (18:2n-6). In parallel, we profiled serum FAs in fasting and postprandial T120

plasma samples. Twenty-seven FAs were consistently detected in all samples and

either increased or decreased similarly following the caloric challenge in the LH, MHO,

and MUO groups (Tables 3.9 and 3.10). We also calculated the %PP change between

the two time points. As shown in Figure 3.8b, which illustrates the abundance of FAs

in the meal relative to the %PP between fasting and T120, four FAs (palmitoleic acid

(16:1n-7), 18:2n-6, g-linolenic acid (18:3n-6), and arachidonic acid (20:4n-6)) revealed

significantly distinct %PP changes (Figure 3.10) between the three groups (ANOVA

Kruskal-Wallis p < 0.05, see Table 3.10). The %PP for 16:1n-7 was significantly

lower in MHO and MUO compared to LH, while the %PP for 18:2n-6 and 20:4n-6

was significantly lower in MHO compared to MUO, but was intermediate for LH. In
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Figure 3.9: Mean %PP of plasma amino acid and derivatives measured by CE-MS for lean healthy
(LH, n = 10, white bars), metabolically healthy obese (MHO, n = 10, grey bars) and metabolically
unhealthy obese (MUO, n = 10, black bars). Significant %PP amino acids between the three groups
were identified using a non-parametric ANOVA Kruskal-Wallis (p < 0.05) test followed by a post-hoc
Mann-Whitney test (p < 0.05). Data is presented as mean %PP ± SEM.
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Figure 3.10: Mean %PP of serum fatty acids for lean healthy (LH, n = 10, white bars), metabolically
healthy obese (MHO, n = 10, grey bars) and metabolically unhealthy obese (MUO, n = 10, black
bars). Significant %PP between the three groups were identified using a non-parametric ANOVA
Kruskal-Wallis test (p < 0.05) followed by a post-hoc Mann-Whitney test (p < 0.05). Data is
presented as mean %PP ± SEM.

contrast, the %PP for 18:3n-6 was higher for LH and MHO in comparison with the

MUO group.

Baseline Metabolites Associate with Measures of Insulin Sensitivity

We next examined the associations between all measured metabolites with markers of

insulin sensitivity at both fasting (i.e., HOMA-IR, fasting glucose and insulin) and

postprandially (i.e., glucose and insulin AUCs) to evaluate if metabolites correlated
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with indices of insulin sensitivity and if they could be used to potentially predict glucose

and insulin responses (Table 3.5). None of the AAs that showed a significantly different

%PP change between the 3 groups correlated with markers of insulin sensitivity.

However, we observed positive associations between other AAs and their derivatives

with insulin sensitivity indices. Proline and leucine were positively associated with

HOMA-IR; creatine and proline with fasting glucose; and proline and leucine with

fasting insulin. Moreover, fasting isoleucine levels correlated positively with insulin

AUC.

18:2n-6 (whose %PP change differed significantly between the 3 groups) showed

a significant inverse relationship with fasting glucose. For the other measured FAs,

the associations between SFAs and markers of glucose homeostasis tended to separate

into two groups. On the one hand, 14 and 16-carbon SFAs (i.e., myristic acid (14:0)

and 16:0) were positively correlated with HOMA-IR, fasting insulin, and glucose AUC,

while 14:0 was also positively associated with fasting glucose and 16:0 with insulin

AUC. On the other hand, the longer chain SFA 18:0 was inversely associated with

fasting glucose. The MUFA myristoleic acid (14:1n-5) was positively correlated with

HOMA-IR, fasting glucose and glucose AUC; and 18:1n-9 was positively associated

with fasting glucose.

3.2.4 Discussion

General Summary

We have previously reported that during catabolic conditions (i.e., fasting), the MHO

group differed from LH and MUO individuals. Specifically, circulating AA, FA, and

inflammatory marker profiles in MHO individuals were intermediate to LH and MUO

individuals (Badoud et al., 2014; Shah and Braverman, 2012). Building on these
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previous observations, the present study investigated for the first time the response

to a high calorie Western meal within these distinct groups of individuals. This

is highly relevant as this corresponds to a real-world meal typical of the Western

diet, as opposed to clinical tolerance tests. Importantly, study participants received

standardized lifestyle advice 48 h prior to the caloric challenge in order to minimize

inter-individual lifestyle differences, which was previously shown to adequately nor-

malize the human metabolome to reduce variations between people (Winnike et al.,

2009). We acknowledge that the caloric challenge imposed with the fast-food meal

may be significantly greater for lean individuals compared to obese individuals when

considering their habitual dietary habits; however, imposing the same meal challenge

in all subjects was essential in order to emphasize the differences in the responses

between the MHO and MUO groups in comparison to LH individuals. Nevertheless,

future studies could account for habitual caloric intake and standardize the increase

in calories in accordance to each participant’s daily caloric intake. Our results showed

that the response to the high calorie meal differed between the three groups. We

found that MHO individuals, similar to LH individuals, had a preserved glycemic

and insulinemic postprandial response compared to their MUO counterparts despite

having the same BMI and body fat %. Moreover, we observed distinct AA and FA

profiles following the caloric challenge, and identified metabolites that significantly

correlated with an individual’s glycemic and insulinemic response.

Amino acids and their Derivatives

We examined AAs and AA-derivatives at fasting and postprandially to evaluate

the %PP change within LH, MHO, and MUO groups. Analyzing the high calorie

meal by CE-MS showed that it contained detectable levels for the majority of AAs.

Correspondingly, most of the metabolites experienced similar increases or decreases
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following the meal between the three groups (Tables 3.7 and 3.8). This aligns with

previous studies showing that AA homeostasis was perturbed in anabolic states (i.e.,

postprandially) following a caloric challenge (Bondia-Pons et al., 2014; Bos et al.,

2003; Krug et al., 2012; Moazzami et al., 2014; Pellis et al., 2012). For example,

concordant with our observations, BCAAs were increased following the ingestion

of different breads in healthy postmenopausal women (Moazzami et al., 2014), and

following a standardized high calorie Big Mac meal in discordant obese and lean twins

(Bondia-Pons et al., 2014). Here, our goal was to determine if postprandial alterations

in the AA profile differed between individuals varying in cardiometabolic risk.

When studying the %PP change, several AAs significantly differed between the 3

groups (Figure 3.9). This included serine and cystine, which showed a similar reduced

%PP change in MHO and MUO individuals compared to LH. This is interesting, as

total cyst(e)ine levels were shown to be a predictor of obesity and insulin resistance in

both children and adults (Elshorbagy et al., 2009, 2012). In contrast, asparagine and

glutamine levels had an intermediate %PP change in MHO relative to those of LH

and MUO individuals. Asparagine and glutamine are precursors to aspartic acid and

glutamic acid, respectively, via deamination, which are subsequently used to replenish

intermediates for the TCA cycle. This is notable as the TCA cycle was shown to reach

its optimal capacity early in the postprandial phase (Pellis et al., 2012); therefore, the

different groups of individuals may potentially differ with regards to metabolite flux

entering and/or leaving the TCA cycle. Interestingly, we previously showed that the

TCA cycle was impaired in subcutaneous adipose tissue from obese individuals, but

to a lesser extent in MHO relative to MUO individuals (Badoud et al., 2014). We and

others have also shown that the decreased expression of a number of genes associated

with the TCA cycle and BCAA catabolism in adipose tissue from obese individuals

was associated with higher serum BCAA levels and insulin resistance (Badoud et al.,
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2014; Lackey et al., 2013; Pietiläinen et al., 2008). As such, it is tempting to speculate

that the variable circulating levels of the aforementioned AAs, for which the %PP

change between the three groups followed the general pattern of LH > MHO > MUO

at T120, may stem from differences in TCA cycle functionality.

We also observed that the carnitine-to-acetylcarnitine ratio differed significantly

between LH and MHO individuals, while found at intermediate levels in MUO in-

dividuals. Interestingly, we observed a trend for a higher %PP change in this ratio

in LH individuals compared to the obese groups (absolute value, Figure 3.9 and

Table 3.8). This is intriguing given that carnitine and acylcarnitines, and their ratio,

were suggested to indicate a switch from a catabolic (i.e., fasting) state to an anabolic

state (i.e., postprandial) following a number of different caloric challenges (e.g., a

standard liquid diet, an OGTT, an oral lipid tolerance test (Krug et al., 2012)), and

also for predicting OGTT changes after high-intensity interval training (Kuehnbaum

et al., 2015). During fasting, reduced carnitine levels in blood indicate an increased

cellular uptake, while the release of acetyl- and acyl-CoA into blood due to increased

FA b-oxidation is buffered by increased acylcarnitines. Therefore, the catabolic state

is reflected by an increase in acylcarnitines and the anabolic status is reflected by a

decrease in acylcarnitines (Krug et al., 2012). Our results are consistent with this

phenomenon, and revealed the highest %PP change in the ratio for the LH group

(Figure 3.9), suggesting their heightened ability to metabolically respond to the caloric

challenge.

As it has been shown that AAs, and particularly the most potent insulinogenic

BCAAs (i.e., leucine and isoleucine), correlate with indices of insulin sensitivity and

could predict T2D (Moazzami et al., 2014; Nakamura et al., 2014; Palmer et al.,

2015), we evaluated associations between fasting AAs and parameters of insulin

sensitivity before and after the caloric challenge. Fasting levels for isoleucine correlated
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significantly with both fasting insulin levels and insulin AUC (Table 3.5); while leucine

associated with HOMA-IR and fasting insulin. These results are in agreement with

previous works suggesting that BCAAs could be used as predictors of insulin resistance

and as biomarkers of T2D development (McCormack et al., 2013; Wang et al., 2011;

Würtz et al., 2013).

Fatty Acids

In parallel to changes in AA homeostasis, we also observed modifications in the FA

profile after consumption of the standardized meal. Most of the FAs increased or

decreased in a similar way between fasting and T120 in the three groups of individuals

(Tables 3.9 and 3.10). However, we found that four FAs (16:1n-7, 18:2n-6, 18:3n-6, and

20:4n-6) had significantly different %PP changes (Figure 3.10). Interestingly, 16:1n-7

showed the same trend in MHO and MUO individuals in comparison to LH, while the

other FAs revealed %PP changes that were similar between LH and MHO groups.

Recent evidence has shown relationships between FAs, insulin sensitivity indices,

and T2D risk (Rhee et al., 2011); therefore, we evaluated if FAs were also associated

with parameters of insulin sensitivity in our study. Of the four FAs mentioned above,

we observed a positive correlation between fasting 16:1n-7 levels and glucose AUC,

and inverse correlations between 18:2n-6 and fasting glucose. We also extended our

association analyses to include all measured FAs. This allowed the link between the

profiled FAs and indices of insulin sensitivity at fasting, as well as their potential

association with glycemic and insulinemic postprandial responses, to be investigated.

We found that fasting levels of SFAs 14:0 and 16:0 correlated positively with all

parameters of fasting and postprandial insulin sensitivity, while longer-chain 18:0

was inversely correlated with fasting glucose. Moreover, we also observed a trend

for inverse associations between 18:0 (r = −0.492, p = 0.02) and 20:0 (r = −0.533,
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p = 0.03) with glucose AUC (data not shown). This is relevant given that, according

to our observations, shorter chain SFAs (14:0 and 16:0) were previously linked with an

unhealthy cardiometabolic profile, compared to longer chain SFAs (18:0, 22:0 and 24:0)

(Komatsu and Sharp, 1998; Perreault et al., 2014a; Ralston et al., 2013). This was

further reinforced by the fact that the shorter chain SFAs associated with HOMA-IR,

while 18:0 and 20:0 did not. Our results also revealed inverse correlations between

18:2n-6 PUFAs and fasting glucose that supports previous data indicating that this

n-6 PUFA is inversely associated with T2D risk (Hodge et al., 2007; Patel et al., 2010).

Study Limitations

The T120 time point is optimal for assessing glucose and insulin responses, and

although differences in TG and free FAs were reported by van Dijk et al. (2009) in the

2 h postprandial period, we acknowledge that longer follow-up times and additional

time points would generate further information regarding lipid responses following

the standardized meal. This will help provide insights into inter-individual variations

in nutrient absorption and gut microbial co-metabolism (Heymsfield and Pietrobelli,

2011), as well as the association between metabolites and overall cardiometabolic risk

(notably when expanding metabolomic coverage to include organic acids and lipids).

While our sample size may be construed as small, the robust clinical characterization

of our study participants, the use of a standardized caloric challenge, and the fact

that each individual serves as their own control ensures a high degree of confidence in

our results.
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3.2.5 Conclusions

In conclusion, the present study showed that the glycemic and insulinemic postprandial

responses were significantly different between individuals varying in cardiometabolic

risk. MHO had a greater ability to adapt to the caloric challenge compared to

their MUO counterparts, thereby highlighting their preserved insulin sensitivity. The

targeted metabolomic and FA profiling approaches revealed that several metabolites

differed significantly after the challenge. Additionally, we identified metabolites at

baseline that should be further studied for their potential to predict an individual’s

postprandial response and cardiometabolic risk, independent of BMI. Indeed, the

positive correlations seen between fasting levels of isoleucine and both fasting insulin

levels and insulin AUC, as well as the positive associations seen between leucine and

both HOMA-IR and fasting insulin, show the high potential of BCAA to identify “at

risk” obese individuals. Further, the fasting levels of 14:0, 16:0, and 18:0 show promise

as distinct markers of fasting and/or postprandial insulin sensitivity. This highlights

the added value of postprandial measurements and underscores the importance to

identify “at risk” obese individuals that could benefit from tailored diet interventions.

3.2.6 Supporting Information

Study Population Characteristics (Table 3.6)

Data represented as mean ± standard error of the mean (SEM). LH, lean healthy; MHO,

metabolically healthy obese; MUO, metabolically unhealthy obese; BMI, body mass

index; BP, blood pressure; Total-c, total cholesterol; LDL-c, low-density lipoprotein

cholesterol; HDL-c, high-density lipoprotein cholesterol; TG, triglycerides; HbA1c,

glycated hemoglobin; HOMA-IR, homeostatic model assessment of insulin resistance;

HOMA%B, homeostatic model assessment for b-cell function. A non-parametric
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ANOVA Kruskal-Wallis followed by a post-hoc Mann-Whitney test was used to

determine the significance between groups (p < 0.05). Adapted from Perreault et al.

(2014b).

Mean Circulating Concentrations of Amino Acid and Derivatives at Fas-

ting and T120 min Time Points (Tables 3.7 and 3.8)

Data represented as mean concentration ± SEM. LH, lean healthy; MHO, metabolically

healthy obese; MUO, metabolically unhealthy obese. A non-parametric ANOVA

Kruskal-Wallis followed by a post-hoc Mann-Whitney test was used to determine

significance (p < 0.05). Significant percent postprandial change (%PP) changes are

indicated in bold.

Mean Circulating Concentrations of Fatty Acids at Fasting and T120 min

Time Points (Tables 3.9 and 3.10)

Data presented as mean relative percentage ± SEM. LH, lean healthy; MHO, metaboli-

cally healthy obese; MUO, metabolically unhealthy obese. A non-parametric ANOVA

Kruskal-Wallis followed by a post-hoc Mann-Whitney test was used to determine

significance (p < 0.05). Significant percent postprandial change (%PP) changes are

indicated in bold.
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participants, as well as the phlebotomists in the Human Nutraceutical Research Unit

at the University of Guelph.
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Chapter 4

Metabolomic Assessment of

Treatment Responses to Protein

Supplementation during Caloric

Restriction

Protein supplementation has been shown in recent studies to attenuate the loss of

muscle mass during weight-loss interventions. In a study by Hector et al. (2015), it

has been shown that whey protein is more effective than soy in stimulating myofibril-

lar protein synthesis in a 14-day intervention with a controlled hypoenergetic diet.

Unexpectedly, however, no significant difference was found in loss of fat mass between

groups consuming carbohydrate, soy, and whey supplementation, respectively. Using

CE-MSI-Q-TOF-MS, the objective of the current study was to investigate differen-

ces in the impact of protein supplementation during short-term caloric restriction

by measuring changes in the urine metabolome involving a cohort of healthy yet

overweight/obese individuals following a 2-week intervention where participants were
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supplemented with whey or soy protein, or maltodextrin (carbohydrate control).

4.1 Introduction

Obesity is well-known to be a major risk factor for T2D, heart disease, and stroke

(Eckel et al., 2004). Due to its increasing prevalence worldwide and its burden on

economy and society, obesity is a global health concern which has made its treatment

and prevention the focus of many public health efforts around the world (Hu et al.,

2011; Institute of Medicine, 2012, 2014; Joint WHO/FAO Expert Consultation, 2003;

Moffat and Thrasher, 2016; Newman et al., 2016). Although various weight-loss

treatment options are available, including lifestyle changes, invasive bariatric surgery,

and usage of weight-loss drugs associated with severe side-effects, energy-restricted

dietary interventions are typically the first approach taken towards the treatment of

obesity by controlling energy intake (Langeveld and DeVries, 2015).

Many studies of various dietary interventions have been shown to aid in weight

loss while improving cardiometabolic risk factors (Atallah et al., 2014; Bazzano et al.,

2014; Gardner et al., 2016; Johnston et al., 2014; Sacks et al., 2009; Shai et al., 2008;

Tay et al., 2014). However, during diet-induced weight-loss periods, it is well known

that the reduction in body weight is accompanied by loss of strength and muscle

mass (Ballor et al., 1988). The loss of lean mass is undesirable, particularly in active

and in elderly individuals, since it may compromise the metabolic benefits gained

from the loss of excess body fat. Dietary protein intake has been shown to stimulate

muscle protein synthesis (Koopman et al., 2007; Moore et al., 2009; Paddon-Jones and

Rasmussen, 2009) and several studies have supported that the loss of muscle mass

can be mitigated by increased protein consumption during energy restriction (Leidy

et al., 2007; Pasiakos et al., 2013; Soenen et al., 2013). Furthermore, diets with higher
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protein content (> 20% energy intake) have resulted in greater weight loss (Clifton

et al., 2008; Due et al., 2004; Johnstone et al., 2008; Weigle et al., 2005), due to the

greater thermogenic effect of protein than fat and carbohydrate (Halton and Hu, 2004;

Matarese and Pories, 2014), and the longer duration of satiety, helping to suppress

appetite (Astrup, 2005; Johnstone et al., 2008; Liu et al., 2015; Weigle et al., 2005;

Westerterp-Plantenga et al., 2009). While some studies were unable to confirm the

contribution of increased protein intake to the preservation of lean body mass (Backx

et al., 2016; Mojtahedi et al., 2011; Parker et al., 2002), other studies have shown that

differential outcomes on body compositional changes, energy expenditure, or cellular

processes can result from differences in the source of protein ingested (Baer et al.,

2011; Belobrajdic et al., 2004; Hector et al., 2015; Mikkelsen et al., 2000), which may

be marine-, plant-, dairy-, or animal-based, suggesting that isoenergetic diets are not

necessarily isometabolic (Matarese and Pories, 2014).

Recently, the effects of soy and whey protein supplementations on changes in

body weight, composition, and rates of myofibrillar protein synthesis (MPS) have

been compared and investigated (Baer et al., 2011; Hector et al., 2015). In the study

of Baer et al., it was found that postprandial body weight and fat mass of healthy

free-living overweight and obese individuals consuming whey protein were significantly

lower when compared to the control group after 23 weeks of supplementation, while

no differences were observed between soy and control groups. Meanwhile, Hector et al.

concluded that the reduction in the postprandial rate of MPS was more attenuated

with whey supplementation, than with soy or the control groups, in overweight and

obese adults after a 14-day energy restriction, suggesting that whey confers greater

ability than soy towards the maintenance of muscle mass.

Despite both studies revealing whey supplementation yielding greater positive

outcomes associated with loss of fat mass and preservation of lean mass relative to soy,
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the metabolic processes responsible for the differential responses between the different

protein sources have not been reported and therefore, were investigated in the present

study. Metabolomic analysis of urine has proven to be a useful tool for the study

and understanding of diet-related influences (Hjerpsted et al., 2014; Ross et al., 2013;

Vázquez-Fresno et al., 2015), including the intake of high-protein diets in rats (Mu

et al., 2015) and in humans (Rasmussen et al., 2012), in which the latter two studies

assessed the metabolic effect of different levels of protein content (i.e., high vs. low),

but not between different protein sources. Through untargeted metabolomic analysis

of urine samples collected from the study of Hector et al. (2015), the current study

aims to gain insight into the underlying differences in metabolism between different

sources of protein, namely soy and whey supplementations, in order to understand

why whey protein might exhibit differences versus soy protein and control in weight

loss and conservation of MPS. The use of untargeted metabolomics allows for a more

comprehensive approach than targeted analysis such that both known and unknown

metabolites affected by the dietary intervention are measured to better distinguish

metabolic profiles between diet treatments.

4.2 Materials and Methods

4.2.1 Subject Cohort

A total of 50 participants were recruited through poster and newspaper advertisements

and were screened for meeting the following inclusion criteria as previously described

(Hector et al., 2015): 1) BMI of 28–50 kg/m2; 2) 35–65 years old; 3) non-smoker; 4) non-

diabetic; and 5) otherwise healthy based on responses to a standard medical screening

questionnaire. Nine subjects declined participation before the trial started and one
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subject dropped out during the trial for personal reasons. All participants signed a

consent form, which informed them of the purpose of the study, the experimental

procedures, and potential risks. The study was approved by the Hamilton Health

Sciences Research Ethics Board (now known as Hamilton Integrated Research Ethics

Board, HiREB) and research protocol was in accordance with standards set by the

Canadian Tri-Council Policy Statement (Canadian Institutes of Health Research

et al., 2010) on the use of human subjects in research. None of the participants were

enrolled in a weight-loss or exercise program at the time of recruitment. The basic

characteristics of the participants are outlined in Table 4.6 (Supporting Information).

To minimize the effect of confounding variables, participants were matched by age,

sex, and BMI in all groups.

4.2.2 Dietary Intervention and Study Design

As described in Hector et al. (2015), standardized pre-packaged hypoenergetic weight-

loss diets, with twice daily (mid-morning and mid-afternoon) supplementation of

whey protein (WHY, 27 g, IsoChill 8000), soy protein (SOY, 26 g, SoyPro950M), or an

isoenergetic amount of carbohydrate (CHO, 25 g, GlobePlus) in the form of flavoured

beverages (i.e., supplements mixed with equal amounts of acesulfame potassium to

enhance palatability, in addition to 15 g of Nesquik®) were randomly assigned to

participants in a double-blind procedure, to be consumed over a 14 day period. Based

on the estimated energy requirements of each participant, the meals and supplements

were designed to provide a caloric deficit of −750 kcal/day. Energy requirements were

estimated by a registered dietician from baseline height and body mass measurements

using the Mifflin-St. Jeor equation (Frankenfield et al., 2005), along with an appropriate

activity factor, calculated based on the participant’s activity log. Prior to the start of
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the study, participants completed a 3-day food journal (2 weekdays and 1 weekend

day) to provide an estimate of their regular dietary intake. Three days prior to the

study, participants consumed pre-packaged weight maintenance meals (Copper County

Foods) that supplied 100% of the estimated energy requirements, at a protein intake

rate of 1 g/kg/day. Participants underwent an overnight fast prior to consuming Day

1 of the standardized breakfast and were instructed not to consume any vitamin or

mineral supplements, nor alcohol, throughout the duration of the study. However,

participants were asked to maintain their physical activity level throughout the entire

study duration.

4.2.3 Urine Collection and Sample Preparation

Single-spot mid-stream urine samples from the subjects’ first urinary void of the

day were obtained from 40 participants (19 males, 21 females) at two time points:

1) the morning prior to consumption of the Day 1 standardized breakfast (Pre) and

2) the morning following the 14-day weight loss intervention period (Post). Urine

samples were collected in 3-litre sterile polypropylene urine collection containers (Fisher

Scientific) and participants were instructed to store the samples at 4 ◦C until the

samples could be transferred to a −80 ◦C freezer. The time between sample collection

and storage in a −80 ◦C freezer was typically within a 3-hour period. Frozen urine

samples were thawed at room temperature, aliquoted, then re-frozen at −80 ◦C until

analysis.

4.2.4 Chemicals and Reagents

Ultra LC-MS-grade water (H2O), acetonitrile (ACN), and methanol (MeOH) (Ca-

ledon, Georgetown, ON, Canada), and HPLC-grade ammonium hydroxide solution
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(Sigma-Aldrich, St. Louis, MO, USA) were used in the preparation of background

electrolyte (BGE) solutions and sheath liquid. 3-Chloro-L-tyrosine (3-Cl-Tyr), sodium-

2-naphthalene sulfonate (NMS), formic acid, ammonium acetate (NH4Ac), sodium

hydroxide (NaOH), and metabolite reference standards were purchased from Sigma-

Aldrich (St. Louis, MO, USA). L-homocitrulline (Hci) was purchased from Toronto

Research Chemicals Inc. (Toronto, ON, Canada). Ultra LC-MS-grade water was used

in the dilution of samples and preparation of standard stock solutions.

4.2.5 Sample Preparation

Prior to analysis by CE-MS, urine samples were thawed on ice and prepared as follows:

10 µL urine samples were diluted 100-fold in H2O with 10 µm 3-Cl-Tyr as internal

standard for positive-mode analysis, and diluted 10-fold in H2O with 10 µm NMS as

internal standard for negative-mode analysis. QC samples for assessing instrument

stability and analytical reproducibility were prepared by pooling equal aliquots of

all urine samples. Pooled subgroup samples for purposes of preliminary screening of

group-specific features were prepared by pooling together equal aliquots of samples

belonging to the same group based on the supplement type (WHY, SOY, or CHO) and

time point (Pre or Post). Altogether, six subgroup samples were prepared: Pre-WHY,

Pre-SOY, Pre-CHO, Post-WHY, Post-SOY, and Post-CHO.

4.2.6 Capillary Electrophoresis Mass Spectrometry (CE-MS)

Sample analyses were performed on an Agilent 7100 series CE system interfaced with

an orthogonal Agilent coaxial sheath liquid Jet Stream ESI source to an Agilent 6550

iFunnel Q-TOF mass spectrometer. Acquisition was operated in positive-ion and

negative-ion modes separately scanning m/z 50–1700 at a rate of 1 spectra/s. The
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temperature of the nitrogen nebulizing gas was 200 ◦C at 8 psi with drying gas at

16 L/min. Sheath gas was delivered at 3.5 L/min at 199 ◦C. Both the nozzle voltage

and the Vcap were set to 2 kV, while the MS fragmentor, skimmer, and octopole

radio-frequency voltages were set to 380 V, 65 V, and 750 V, respectively. MS/MS

experiments were performed at 3 collisional energies (10 V, 20 V, and 40 V) in a

continuous alternating scan mode. The mass scan range was 20–500m/z at a rate of

1 spectra/s with medium isolation width of 4m/z.

CE separations were performed on uncoated fused-silica capillaries (Polymicro

Technologies, AZ, USA) with 50 µm internal diameter at 30 kV and 21 ◦C. Capillary

lengths used were 110 cm and 135 cm for negative and positive mode analyses, re-

spectively. Capillaries were preconditioned by rinsing with 5 capillary volumes of

MeOH, 1 m NaOH, and H2O, respectively, prior to rinsing with 10 capillary volumes

of BGE at 950 mbar. The BGE consisted of 1 m formic acid, pH 1.8, in 15% v/v ACN

for positive-ion mode, and 30 mm NH4Ac, pH 10.0, for negative-ion mode. Sample

injections were performed using MSI-CE-MS developed by Kuehnbaum et al. (2013),

in which seven sample injections (50 mbar for 5 s) are separated by BGE spacer injecti-

ons (50 mbar for 40 s). Between sample runs, capillaries were rinsed with 3 capillary

volumes of BGE at 950 mbar. Sample run-time was set to 45 min.

Sheath liquid consisting of 60:40 MeOH:H2O containing 0.1% formic acid was

delivered at a flow rate of 10 µL/min via a 100:1 splitter. Three Agilent reference

mass standards (purine, hexamethoxyphosphazine (HP-0321), and hexakis(2,2,3,3-

tetrafluoro-propoxy)phosphazine (HP-0921)) with m/z of 121.050873, 322.048121, and

922.009798, respectively, were spiked at levels of 2 µL into 250 mL sheath liquid for

real-time internal mass calibration.
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4.2.7 Method Workflow

In order to ensure quality control throughout the duration of sample analyses, a

unique analytical workflow based on the MSI technique was designed to allow for

the assessment of instrument stability, correction of system drift, and elimination of

features exhibiting poor reproducibility. As shown in Figure 4.1, the method workflow

consisted of three different run types and configurations.

Subgroup Comparison Run

The first run in the method workflow consisted of the analysis of the six pooled

subgroup samples, along with the incorporation of a sample blank, in order to screen

for compounds exhibiting distinct differences between sample subgroup types as

potential markers of interest. This was performed in triplicate, in which Pre and

Post pooled samples of each subgroup sample type were analyzed in a paired fashion

(i.e., Pre-SOY, Post-SOY, Pre-CHO, Post-CHO, Pre-WHY, and Post-WHY), along

with an injection of a sample blank as a control, which consisted of water stored and

sampled from a sterile urine container identical to the ones used in the current study

for storage of urine samples. Any features that were found in the blank injection were

to be removed from the list of metabolite features to be analyzed. To eliminate the

possibility of unusual differences between signals being attributed to injection bias, a

subgroup run with the reversed sequence of injections was performed.

QC Run and Maintaining Quality Control

The second run in the workflow is a QC run, in which a fresh pooled QC sample is

injected seven times with BGE as a spacer segment between sample injections. This

run is repeated once for every 8 hours of acquisition using a fresh QC sample. The
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Figure 4.1: Examples of various MSI configurations used in the analytical workflow. (a) Subgroup Pre
(R) and Post (T) comparison run: Rapidly screen for features that are differentially expressed between
sample subgroups; (b) QC run: Correct for variations in injection volume and ionization processes;
and (c) Individual sample analysis: Analyze 6 samples simultaneously along with a randomized
injection of a QC sample, which corrects for instrument drift and allows for urine normalization.
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purpose of the QC run is to screen for those features whose seven injections vary within

acceptable technical precision limits (as determined by the overall average coefficient

of variation (CV) of all detected features), in order for significantly different signal

variations between samples to be confidently attributed to real biological variation,

and not to variations arising from instrumental drift or ionization suppression effects.

Sample Analysis Run

Individual samples (80 samples, derived from 40 participants × 2 time points) were

analyzed in randomized order using the typical 7-injection configuration of MSI-CE-

MS, in which 6 samples and a pooled QC sample were analyzed simultaneously per

sample run. In order to correct for system measurement bias that may exist for specific

injection positions, the QC sample position was randomized through positions 1 to 7

within each run and served a three-fold purpose allowing for 1) assessment of analytical

reproducibility; 2) correction of system drift; and 3) urine sample normalization.

4.2.8 Untargeted Feature Extraction

Untargeted feature extraction was performed on pooled subgroup samples acquired

in both positive and negative ion modes using the MFE algorithm in Mass Hunter

Qualitative Analysis (Agilent Technologies Inc.) to compile a list of analytes with

their corresponding m/z values to be assessed for reproducibility within the QC run,

and subsequently extracted in the analysis of the individual samples. In MFE, a

feature was defined as a mass spectral peak with a SNR of at least 10 and a peak

height of at least 100 counts.

Interpretation and assignment of MS/MS spectra were guided by MassHunter MSC

software (Agilent Technologies Inc.), in which accurate mass MS/MS fragment ions
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were correlated to probable molecular formulas and structures. Proposed molecular

formulas were searched against referenced online structures in PubChem (Kim et al.,

2016), which were assigned correlation scores to describe the degree of match with

the MS/MS spectrum. Identities of those candidate structures with high correlation

scores, for which standards were readily available, were confirmed by either spiking

samples with the authentic standards and/or comparison of the MS/MS spectra of

the sample to those of the reference.

4.2.9 Urine Sample Normalization & Correction of System

Drift

In order to correct for differences in urine concentration between samples that would

otherwise lead to unwanted sample-to-sample variation, urine samples were normalized

using three different methods, which were compared in this study. Urine metabolite

levels were normalized relative to measured creatinine levels and osmolality measure-

ments, in addition to normalization using the Probabilistic Quotient Normalization

(PQN) method (Dieterle et al., 2006). Osmolality measurements were made using The

Advanced Micro-Osmometer 3300 (Advanced Instruments Inc., MA, USA). For the

PQN method, a pooled QC urine sample, which was analyzed simultaneously with

six samples in each run using the MSI-CE-MS technique, was used as the reference

sample. PQN was performed by first dividing the signal of each metabolite in a sample

by the corresponding signal in the QC sample, which was analyzed in the same run as

the sample of interest. From the resulting distribution of quotients, the median value

of the distribution was taken as the correction factor, also known as the probabilistic

quotient (PQ). All of the metabolite signals in the sample were then normalized by

dividing the signals by the PQ. Since urine samples were analyzed in both positive
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and negative ion modes, the average values of creatinine and the PQ determined from

the two modes were used for normalization purposes.

In addition to the pooled QC sample allowing for assessment of system stability

and PQN of urine concentration over different sample runs, correction of system drift

was also achieved with the presence of the QC samples in each sample run. All of this

was accomplished in a single step with PQN. While the concept of normalization to a

reference or QC sample for correction of instrument drift has previously been shown

to be possible (van der Greef et al., 2007) by fitting a low-order nonlinear locally

weighted smoothed scatterplot (LOESS) to QC data in the order of their injection,

which is then subsequently used as a correction curve to which the total data set is

normalized, normalization to QC samples in this manner requires an additional step

prior to the normalization of urine concentration. With MSI, however, the within-run

QC sample served as a single reference sample, thereby, allowing for the simultaneous

normalization of urine concentration and correction of system drift to be combined in

one step.

4.2.10 Statistical Analyses

Initial Data Exploration

Following the elimination of irreproducible features and normalization by PQN, mul-

tivariate analysis by principle component analysis (PCA) and partial least squares

discriminant analysis (PLS-DA) were performed on auto-scaled data transformed by

the generalized logarithm (glog) using the web-based MetaboAnalyst 3.0 (Xia and

Wishart, 2016) for initial data exploration and identification of discriminatory urinary

metabolites associated with dietary intervention. PCA was used to examine the

clustering of the QC samples relative to the individual Pre and Post samples, in order
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to assess overall instrument stability and method robustness, while multi-level PLS-DA

using fold-change values (i.e., Post/Pre ratio) was used to investigate potential markers

discriminating between supplementation types. Variable importance to the projection

(VIP) and non-parametric Kruskal-Wallis tests were used preliminarily to highlight

any features that exhibited strong Post/Pre differences between supplementation

types, before checking whether the dataset satisfied the multiple assumptions that are

required in parametric statistical testing by one-way ANOVA.

Statistical Data Filtering and Analysis

In order to identify metabolites that were consistently ranked high, regardless of

transformation and scaling procedures, PLS-DA and random forest (RF) analysis

using MetaboAnalyst were conducted on Post/Pre ratios from various data sets

(with/without transformation by the glog function and with/without data scaling

(Pareto scaling)). Metabolites initially considered important possessed PLS-DA VIP

values greater than 1.0 in the first two components, and ranked within the top 5 with

respect to PLS-DA coefficient scores. For RF analysis, a combination of 7 predictors

in each node with 500 trees grown was selected, and the top 10 ranking metabolites,

based on their contributions to classification accuracy, were also considered important.

Features which satisfied the above criteria were tabulated to generate a pre-filtered list

of 67 metabolites. Since extreme skewness and kurtosis were observed in more than

70% of the metabolites in non-transformed data, it was, thus, deemed necessary that

glog transformation be performed, which, thereby, reduced the observed skewness to

only 20% of the metabolites. Following glog transformation, compounds that violated

assumptions of normality and/or multicollinearity, possessed VIP scores less than 1.5,

or were known to be exogenous dietary markers, were excluded from analysis, which

resulted in a refined list of 20 metabolites. The order of the various data filtering
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procedures leading up to statistical analysis is illustrated in Figure 4.2.

In order to reduce the number of remaining metabolites to a size smaller than

the number of subjects present in each treatment group, which is a requirement of

one-way multivariate analysis of variance (MANOVA), McCabe analysis (Huberty

and Olejnik, 2006; McCabe, 1975) was performed using an algorithm written in GNU

Octave. The McCabe algorithm computed Wilks’ L for all possible combinations

of the top 20 metabolites in subset sizes ranging from 1 to 11, in which the Wilks’

L statistic represents the proportion of unexplained variance. The algorithm only

outputted the top 10 best metabolite combinations exhibiting the lowest Wilks’ L

for each subset size. Since the majority of metabolites were unknown, the choice of

subset used in the one-way MANOVA was determined based on three criteria: 1) the

proportion of known or putatively identified metabolites present in the combination;

2) the a priori relevance of some known metabolites in the discrimination of the

groups; and 3) the optimal balance between a low Wilks’ L and the lowest number

of metabolite variables, which was determined from the plot of lowest Wilks’ L vs.

subset size (Figure 4.17, Supporting Information), in order to achieve parsimony, or

“simplicity of description” (Huberty and Olejnik, 2006). Prior to performing a one-way

MANOVA on the selected subset of metabolites, using SPSS Inc.’s Predictive Analytics

Software (PASW Statistics 18), assumptions of independence of observations, linearity,

multivariate outliers, and homogeneity of variance-covariance matrices, were checked.
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4.3 Results

4.3.1 Evaluation of Extracted Features & Establishing Tech-

nical Precision Limits

Upon untargeted feature extraction from the subgroup comparison, a combined list

of 328 cationic and anionic urinary features with unique m/z : RMT was compiled.

The list of 328 features was then extracted in the QC run, which consisted of 7

identical injections of a QC sample. Features that were redundant (i.e., peaks of

different m/z having identical RMT), due to the formation of salt adducts or mass

fragments, as well as those features that were found to exhibit poor reproducibility

and/or poor resolution, were eliminated. While variations in injection volume are

random and typically vary only within 10% within the same run, signal variations

due to differences in ionization processes, on the other hand, can be relatively large.

These differences arise due to competitive ionization and suppression effects in the

ion source, whose time of occurrence is dependent on the temporal migration of

the abundant ionization-suppressing species during the electrophoretic separation.

This can impose a systematic positional bias on signals such that certain injection

positions in a particular electrophoretic migration time window are more susceptible to

ionization suppression effects, thereby, leading to markedly decreased signal responses

in specific injection positions and resulting in an overall lack of signal uniformity

across seven injections of the same sample. In addition to ionization suppression

effects, co-migration of isobaric compounds is another contributing factor that can

negatively impact the reproducibility of peaks, resulting in unresolved peaks within

each of the seven sample injections. Therefore, although the QC run consists of seven

identical injections, the signals arising from each injection are subject to variations
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in injection volume and ionization processes, as well as co-migration effects. Since

the instrumental precision of identical injections in the absence of co-migration and

suppression effects was previously found to vary within 10%, a 2-fold greater threshold

tolerance of 20% was, thus, established to be the cut-off limit for the first-pass filtering

of reproducible features. The filtered features were found to exhibit an overall CV

of 8.1% within the single QC run. A total of 163 features from both positive- and

negative-ion modes was compiled following the initial QC screening procedure.

4.3.2 Assessment of Subgroup Comparison Run

Consisting of paired injections of the pooled Pre and Post samples for each of the three

subgroup types (CHO, SOY, WHY), along with the injection of a sample blank, the

subgroup comparison run served as a quick screen among the pre-screened metabolites

for interesting features exhibiting varied responses either between subgroup types

and/or between the Pre and Post states. Of the features extracted in the subgroup

and reversed subgroup runs, no single feature was found to exhibit three unique

trends for each of the CHO, SOY, and WHY subgroups within an electropherogram.

Usually, either all three dietary interventions exhibited a consistent Pre-to-Post trend

or two dietary groups exhibited a common trend with the third group exhibiting a

distinct trend (Figure 4.3a,b). Though the subgroup run was useful as a preliminary

screen for any potentially interesting features differing in their responses between the

three dietary groups, it was later found that many of the features that had displayed

different trends in the subgroup run were, in fact, not found to be statistically

significant following individual sample analysis. Conversely, features which were later

found to be significant in group discrimination did not necessarily reveal any evident

or obvious contrasts between groups in the initial subgroup run. For this reason, the
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Figure 4.3: Examples of trends observed in subgroup comparison runs: (a) All three groups exhibit a
common Pre (R)-to-Post (T) trend; (b) Only two of the three groups exhibit a common Pre-to-Post
trend; (c) Observation of a single peak (i.e., feature is exclusive to a single subgroup).
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analysis of the subgroup run was found to be misleading. Two reasons to explain

this discrepancy in results between the subgroup run and individual sample analysis

are: 1) the sensitivity of the pooled subgroup samples to outlier samples, which was

sufficient to skew the overall pooled response of the subgroup sample; and 2) the fact

that the pooled subgroup samples do not take into account the variations in dilution

and hydration status of the constituent individual samples. However, in the case of

four metabolite features, which were noted to have been eliminated due to low signal

or poor reproducibility in the QC run, yet exhibited a measurable signal in the initial

feature extraction step from the subgroup run, it was unexpectedly observed that

these four features had revealed only a single peak within the six-sample subgroup

comparison run (Figure 4.3c). Upon extraction in individual samples, it was found

that the four peaks were mainly found in Post-SOY individuals. As such, the four

unique features were labelled as metabolites specific to the SOY diet intervention, and

were investigated separately from the pre-screened list of 163 features, which will be

discussed in more detail in Section 4.4.3. Although the subgroup run had a tendency

to produce false leads, it was nevertheless found to be a useful tool in providing a

rapid overview of potential markers of interest to be further investigated, including

drawing attention to the presence of soy-specific metabolites, which otherwise may

have been overlooked in the analysis of individual samples.

4.3.3 Individual Sample Analysis & Establishing Between-

Run QC Cut-Offs

Analysis of the QC replicates between sample runs provided a measure of the analytical

reproducibility of the method. Since 14 sample runs were required to analyze 80

samples, therefore, a total of 14 QC measurements were acquired. Analysis of the
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pre-screened list of features (n = 163) on each of the 14 QC injections resulted in an

overall average CV of 13.6%. Therefore, an approximately 2-fold greater CV cut-off of

30% was set to be an acceptable threshold limit, beyond which metabolite signals in

the QC sample were considered to have poor reproducibility and were eliminated from

the list of features to be extracted on individual samples. This was done in order to

reduce the chance of false discovery and highlights the need for technical variation to

be lower than biological variation in order to increase the chances of true discovery

(Dunn et al., 2008). However, due to the rigorous first-pass filtering in the QC run, it

was found that no features had exceeded the 30% CV cut-off in this step. Therefore,

no additional features were removed from the list of pre-filtered 163 features.

4.3.4 Characterization of Urinary Metabolites

The list of carefully screened 163 metabolite features, along with the four sporadic

features that were found to be exclusive to the subjects consuming the SOY diet,

resulted in the detection of a total of 167 unique features (57 cations, 110 anions). These

metabolites are denoted by their characteristic m/z : RMT and are summarized in

Table 4.7 (Supporting Information). Based on the accurate mass, isotopic distribution,

and rules for filtering viable candidates of elemental composition (Watson, 2013),

the most probable chemical formula (within 3 ppm mass error), as calculated by the

Agilent MassHunter software, is indicated for each feature. Given the large number of

metabolites detected, it was not feasible to acquire the MS/MS spectra for each feature

for purposes of identification and comparison to known reference standards, especially

when only a small handful of features were expected to be relevant to the current

investigation. Therefore, only those features for which commercial standards had

previously been characterized in-house with known m/z : RMT, as well as a few of the
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features that were later found to be significant to the study, were conclusively identified.

Although the majority of the metabolites remain unidentified, these unknown features

were putatively annotated based on the availability of comprehensive public databases,

such as the HMDB (Wishart et al., 2018, http://www.hmdb.ca) and the METLIN

Metabolomics Database (Guijas et al., 2018, https://metlin.scripps.edu), which permit

screening of candidate molecular formulae for a given accurate mass and searching of

experimental or predicted fragmentation mass spectra.

In 2007, the Metabolomics Standards Initiative defined four levels of confidence

in metabolite identification, depending on the amount of known information on

the metabolite of interest and degree of matching to spectral and physicochemical

properties of a commercial standard (Sumner et al., 2007). According to this system

of classification, the matching of two or more orthogonal properties (such as m/z ,

RMT, and MS/MS spectra) to an authentic chemical standard, measured under

identical analytical conditions, results in a confident (level 1) identification. When

a chemical standard is not available, the matching of properties to data acquired

from different laboratories using different analytical platforms is considered to be a

putative (level 2) annotation. In cases where only in silico predicted MS/MS spectra

are available in public databases, any spectral similarity can only at best yield a

putative annotation regarding the chemical class of the compound (level 3). Finally,

for features that cannot be identified or classified due to lack of any experimental

or predicted spectral data, they are deemed unknown compounds (level 4). While

this classification system provides a clear definition of the various levels of metabolite

identification and is an appropriate starting point for most untargeted metabolomic

investigations, the criteria for putative annotations (levels 2 and 3) were found to

be unnecessarily stringent, due to its strong reliance on the acquisition of MS/MS

spectra (which is not realistic for the majority of features detected in untargeted
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metabolomic studies) and its failure to consider sources of information other than

physicochemical properties, which may be highly valuable and beneficial to inferring

a metabolite’s identity. As a result, faithfully following these rigid definitions for

putative annotations can greatly limit the number of unknown metabolites that can be

annotated by other means, thereby, preventing the use of many unknown compounds

as tentative markers to explain and understand fundamental metabolic processes.

Over time, newer classification criteria have evolved to refine the mechanism for

reporting confidence in metabolite identification, including a quantitative scoring

system (Sumner et al., 2014) and the addition of more classification levels (Schymanski

et al., 2014) to accommodate cases that fall “in between” levels established by the

Metabolomics Standards Initiative. Additionally, alternative approaches that rely on

other information besides direct comparison to reference mass spectra for inferring

metabolite identity have also been explored. For example, the work of Krumsiek et al.

(2012) combined the knowledge of metabolic networks and pathways, with the use

of statistical association analysis and Gaussian graphical modeling, based on partial

correlation coefficients, to successfully infer the biochemical identities of unknown

metabolites from high-throughput metabolomics data alone. Meanwhile, the work of

Zhou et al. (2013) explored a computational pipeline that incorporated biochemical

pathways to guide the metabolite identification process, which resulted in much more

relevant metabolite annotations compared to the conventional method of manually

verifying metabolite identities through comparison to multiple authentic compounds.

In a similar manner to the above methods, the current study incorporated the results

from correlation analysis and the knowledge of metabolic pathways in order to infer

the biochemical identity of many unknown metabolites with known accurate m/z . To

allow for more pertinent annotations of unknown compounds, which will not only

guide future experiments to verify their identities, but also facilitate the understanding
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of their biological roles and the metabolic processes involved, the classification system

of the Metabolomics Standards Initiative has been modified and tailored for the

characterization of the metabolites in the current investigation, as follows:

Level 1: Confirmed identity – based on comparison to two or more orthogonal

properties of authentic standards (e.g., m/z , RMT, MS/MS spectra)

Level 2: Putative identity – deduced from the low number (< 5) of probable

candidate molecules/structures based on the context of biological samples

being studied and relevance to expected metabolic pathway(s) under

investigation, along with one or both of the following additional crite-

ria: unambiguous matching of MS/MS spectra from literature/database;

significant statistical association with metabolite(s) of known biological

role to provide evidence for metabolic and biological context, thereby,

increasing confidence in annotation and characterization of metabolite

Level 3: Putatively annotated compound – deduced from the low number (< 5) of

probable candidate molecules/structures based on the context of biological

samples being studied and relevance to expected metabolic pathway(s)

under investigation

Level 4: Putatively annotated compound class – similarity to predicted in silico

spectra; spectral similarity to measured compounds of a class but unable to

distinguish between positional isomers; insufficient information is available

to confirm one exact structure

Level 5: Unknown compound – molecular formula with unknown structure due to:

a) no available candidate molecule/structure for the given accurate mass;
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or b) availability of tens to hundreds of candidate molecules for a single

accurate mass

4.3.5 Comparison of Urine Normalization by Creatinine, Os-

molality, & PQN

Prior to the multivariate statistical analysis of individual samples, normalization of

urine was required. Due to the high day-to-day variability in urine volume (600–

2500 mL/day) (Ryan et al., 2011) within the same individual and between individuals

as a result of differences in hydration status or other physiological factors, normalization

of urine is necessary to correct for variation in individual urine output and adjust

for urinary metabolite concentrations. Various post-sample normalization methods

exist thereby eliminating the need for measurement of the renal elimination rate or

the absolute urine volume (Warrack et al., 2009). Creatinine (Crn) and osmolality

measurements are most commonly used for urine normalization. Although it is

generally accepted that the excretion of endogenous urinary Crn is relatively constant

in the absence of kidney disease (Saude and Sykes, 2007), several studies have shown

that urine Crn levels in humans are susceptible to variations of as much as 4–5 fold

change over a 30-day period due to such factors as meat and creatine intake, sleep

deprivation, time of day, level of physical exercise, mental state and other metabolomic

responses (Gray et al., 1990; Miller et al., 2004; Shockcor and Holmes, 2002). In

a study of the effect of a high-protein diet on urinary metabolic profiles in human

adults, Rasmussen et al. (2012) found that urinary Crn levels increased while Reimer

et al. (2012) also reported that Crn levels change with dietary intervention. As such,

normalization to Crn cannot be assumed to be appropriate for normalization of all

metabolites. On the other hand, normalization by osmolality, which is based on the

192



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

premise that the concentration of solutes is representative of the total endogenous

metabolic output, has been reported to offer advantages over normalization by Crn.

For example, osmolality is not as easily influenced as Crn levels by such factors

as diurnal rhythms, diet, activity, stress, or health (Chadha et al., 2001). However,

osmolality measurements may not always be accessible, and in such cases, an alternative

normalization strategy is needed.

Recently, Dieterle et al. (2006) introduced a new statistical normalization method

in response to the technical challenges hampering the measurement of urinary Crn

by NMR. Referred to as probabilistic quotient normalization, or PQN, the approach

assumes that the intensity of the majority of signals or metabolites is a function of

dilution only. To use this approach, determination of the most probable ‘dilution’

quotient requires a reference sample to which all metabolites in the samples of

interest are compared. By dividing the signal of each metabolite in a sample by the

corresponding signal in the reference sample, a distribution of dilution quotients is

obtained. The most probabilistic quotient for the sample is then estimated to be

the median of this distribution, which then serves as the correction factor to which

all of the metabolites in the sample are normalized. To compare the effects of urine

normalization by PQN with those of Crn and osmolality in all 80 samples, correlation

plots were examined (Figure 4.15, Supporting Information). Both plots reveal a

strong and positive correlation between PQ and osmolality (r = 0.844, p < 0.05), and

between PQ and Crn (r = 0.934, p < 0.01) measurements. These observations indicate

that the PQN method is in good agreement with well-established conventional urine

normalization techniques, such as those involving Crn and osmolality.

The distribution of the dilution quotients for a sample analyzed in both positive and

negative ion modes may be assessed by constructing a frequency histogram. Figure 4.4

shows frequency histograms for each of the distributions of dilution quotients calculated
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Figure 4.4: Frequency histogram of the dilution quotients for a urine sample analyzed in (red) positive-
ion mode (n = 57 metabolites) and (blue) negative-ion mode (n = 106 metabolites). In this particular
case, the median of both distributions are approximately equal. The average probabilistic quotient
for the sample was determined to be 1.56 (overall interquartile range: 1.12–2.20).

for cationic and anionic metabolites in a particular sample, revealing in each case that

the most probable quotient coincides with the median of the distribution. The median

is a robust estimate of the PQN, which is not influenced by outliers, as supported by

Dieterle et al. (2006). Furthermore, by plotting the PQ values measured from positive-

and negative-ion modes against each other, as shown in Figure 4.16 (Supporting

Information), a strong positive correlation (r = 0.896, p < 0.05) is revealed. These

findings suggest that PQN is robust in its application, whose determination is fairly

reproducible. While normalization by Crn and osmolality measurements may often be

subject to technical challenges and/or metabolic perturbations, determination of the

PQ is facile and straightforward, regardless of the mode of analysis. For these reasons,

PQN was selected as the method of normalization prior to the statistical analyses of

urine samples in this study.
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Figure 4.5: (a) PCA 2D scores plot of PQ normalized urine metabolite data Pre- and Post-intervention
from 40 subjects highlighting tight clustering of 14 QC replicates (average CV = 13.6%) relative to the
large biological variability between subjects, demonstrating good system stability and reproducibility
of the MSI-CE-MS technique; (b) 2D heat map with HCA providing an overview of the urine
metabolite data set of 40 subjects classified based on pre- or post-intervention and supplementation
type.

4.3.6 Preliminary Data Exploration

Figure 4.5a shows a PCA two-dimensional (2D) scores plot, which highlights the

tight clustering of 14 QC replicates relative to the large biological variability in the

PQ-normalized urinary metabolites derived from the obese subjects before and after

the dietary intervention, demonstrating good system stability and reproducibility of

the MSI-CE-MS technique. Figure 4.5b is a 2D heat map summarizing the overall data

structure of 163 metabolites, measured before and after the dietary intervention, by

hierarchical cluster analysis (HCA). To investigate preliminary postprandial differences

between the three diets, multi-level PLS-DA was performed on metabolite fold-

change values in the postprandial state relative to the pre-intervention state. Despite

poor accuracy and robustness of the multi-level PLS-DA model (accuracy = 0.375;
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Figure 4.6: (a) Multi-level PLS-DA 2D scores plot and (b) VIP ranking of postprandial fold-change
urinary metabolite responses (n = 163) in 3 dietary interventions relative to the pre-intervention
state of 40 subjects.

Q2 = −0.167), the multi-level PLS-DA scores plot (Figure 4.6a), nonetheless, reveals

a directional trend among the 3 diets along the PC-1 axis such that the responses

from the SOY intervention are generally observed as an intermediate state between

the responses from the CHO and WHY diets. This directional trend was observed

in the top 8 metabolites of the VIP ranking plot (Figure 4.6b). Non-parametric

Kruskal-Wallis test was performed on all 163 metabolites, from which the top 20

metabolites based on univariate significance are shown in Table 4.1. Performing the

Benjamini-Hochberg Procedure on these top 20 metabolites revealed two significant

features, a bile acid-glycine-sulphate conjugate (BGS) and isobutyrylcarnitine (iso-C4).
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Table 4.1: Top 20 metabolites based on non-parametric Kruskal-Wallis testing.

m/z : RMT (Q) Compound Significance (p-value)

263.629 : 0.963 (−2) Bile acid glycine sulfate conjugate∗ 0.001
232.155 : 0.831 (+) Isobutyrylcarnitine∗† 0.004
176.067 : 0.878 (+) Guanidinosuccinic acid† 0.010
168.023 : 1.037 (−) Uric acid (isotope peak) 0.017
230.115 : 0.851 (−) Unknown 0.017
240.001 : 1.219 (−) 3-Mercaptolactate cysteine disulfide 0.033
190.119 : 0.955 (+) Homocitrulline† 0.037
162.113 : 0.761 (+) Free carnitine† 0.038
218.050 : 0.881 (−) Unknown 0.039
170.093 : 0.681 (+) 3-Methylhistidine† 0.046
156.077 : 0.667 (+) Histidine† 0.055
161.987 : 1.131 (−) Acesulfame† 0.063
201.052 : 1.184 (−) Unknown 0.073
110.071 : 0.667 (+) Unknown 0.079
147.113 : 0.629 (+) Lysine 0.081
286.202 : 0.889 (+) 2-Octenoylcarnitine 0.085
308.099 : 0.817 (−) N-Acetylneuraminic acid 0.104
218.104 : 0.857 (−) Pantothenic acid 0.111
141.066 : 0.737 (+) Unknown 0.111
138.055 : 0.906 (+) Unknown 0.131
∗ Compounds found to be significant after correction by Benjamini-Hochberg procedure (n = 20).
† Metabolites validated by reference standards or tandem mass spectra. Others were putatively
annotated.
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4.3.7 Feature Selection by McCabe Analysis for One-Way

MANOVA

The plot of lowest Wilks’ L vs. subset size (Figure 4.17, Supporting Information)

revealed that the optimal balance between a small number of metabolite variables

and high discriminatory ability was achieved with a subset size of 6 (Wilks’ L =

0.184; between-groups effect, p = 4.9 × 10−7). For this size, one combination of

metabolites was found to consist entirely of known (or putatively known) features:

BGS, guanidinosuccinic acid (GSA), 3-mercaptolactate-cysteine-disulfide (MLCD),

homocitrulline (Hci), iso-C4, and 3-methylhistidine (3-MeHis). In this case, it was

preferable to select the combination with as many known metabolites as possible, since

the inclusion of uncharacterized unknown compounds, or “dark matter” (da Silva et al.,

2015), could result in the potential loss of metabolic information (Dias et al., 2016).

As the dataset was found to satisfy the assumptions of the parametric statistical tests,

one-way MANOVA was subsequently performed.

Results of the one-way MANOVA revealed that there were statistically significant

mean fold-change differences between the 3 treatment groups with respect to the

combination of the 6 metabolites: F (12, 64) = 6.789, p = 1.05×10−7; Wilks’ L = 0.194.

The effect size based on Wilks’ L, 0.560, was indicative of a large difference between

the groups. Given the significance of the MANOVA, the univariate main effects were

assessed via a follow-up ANOVA. Since Levene’s test for homogeneity of variance

indicated that all metabolites, except for Hci, had the same variance between groups,

a more conservative critical level of 0.025 was set for determining the univariate

significance of Hci (Tabachnick and Fidell, 2007). Controlling for the FDR of 0.05

using the Benjamini-Hochberg procedure, all metabolites, except for Hci, yielded

significant univariate effects. The liberal Games-Howell post-hoc tests revealed several
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important differences between groups. The SOY group exhibited significantly greater

urinary fold-change levels in BGS than in both the CHO and WHY groups. Conversely,

the SOY group also exhibited the lowest fold-change of MLCD than in both the WHY

and CHO groups. Meanwhile, the WHY group exhibited significantly greater fold-

change in iso-C4 than that by the CHO group. Lastly, SOY and WHY groups both

had significantly greater excretion of GSA than in the CHO group. Figure 4.7 shows

the box and whiskers plots, which illustrate the differences between treatment groups,

for the six metabolites. Table 4.2 summarizes the between-subjects effects of the

six metabolites in MANOVA, including the effect size, univariate significance, FDR,

significant post-hoc test differences, and the technical reproducibility in QC samples.

4.3.8 Discriminant Function Analysis (DFA)

Although the MANOVA and post-hoc tests allowed us to identify metabolites for

which significant group differences existed, a discriminant function analysis (DFA)

was subsequently performed to fully explore and interpret the underlying multivariate

nature of the six metabolites that best separated the groups. Since the study involved

three treatment groups, two discriminant functions (DFs) were created. Both DFs were

found to be statistically significant in discriminating between the groups, χ2
1(12) =

56.655, p = 9.12 × 10−8 and χ2
2(5) = 20.191, p = 1.15 × 10−3, respectively. The

proportion of explained variance by DFs 1 and 2 were 70.2% and 29.8%, respectively,

and the canonical correlations (or effect sizes), were 0.808 and 0.666, respectively,

which are indicative of both discriminant functions being strongly associated to group

membership. Therefore, the DFA indicates that two underlying dimensions contribute

significantly to the group separation.

Table 4.3 summarizes the individual metabolite fold-change means and standard
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Table 4.3: Fold-change means, standard deviations, and structure matrix correlation
coefficients for top-ranking urinary metabolites.

m/z : RMT (Q) Group
Fold-change*

N
Structure Matrix

glog Linear Function 1 Function 2

CHO 0.88± 0.83 2.11± 1.07 12
170.093 : 0.681 (+) SOY 0.82± 0.93 2.09± 1.18 14 0.259† −0.255

WHY 0.09± 0.90 1.31± 0.99 14

CHO −0.04± 0.33 1.00± 0.23 12
176.067 : 0.878 (+) SOY 0.43± 0.45 1.41± 0.42 14 −0.071 0.634†

WHY 0.53± 0.50 1.54± 0.63 14

CHO −0.04± 0.81 1.11± 0.61 12
190.119 : 0.955 (+) SOY −0.32± 0.49 0.85± 0.31 14 −0.323† 0.020

WHY 0.27± 0.43 1.26± 0.36 14

CHO −0.24± 0.70 0.94± 0.46 12
232.155 : 0.831 (+) SOY 0.30± 0.40 1.28± 0.37 14 −0.182 0.651†

WHY 0.63± 0.60 1.68± 0.66 14

CHO −0.05± 0.39 1.00± 0.26 12
240.001 : 1.219 (−) SOY −0.47± 0.44 0.75± 0.25 14 −0.307† −0.290

WHY −0.08± 0.39 0.98± 0.24 14

CHO 0.23± 0.68 1.29± 0.55 12
263.629 : 0.963 (−) SOY 1.27± 0.86 2.87± 1.82 14 0.556† 0.164

WHY −0.28± 1.04 1.03± 0.71 14
∗ Values are expressed as mean ± standard deviation.
† Largest absolute correlation between variable and discriminant function.

deviations, as well as the structure matrix correlation coefficients between each

metabolite and the two multivariate DFs. The highest absolute value correlation

coefficient of each metabolite, marked by an asterisk (*), indicates the DF to which

the metabolite contributes the most to group separation. Results suggest that high

fold-change excretions of BGS and 3-MeHis, in combination with low fold-change

excretions of MLCD and Hci, lead to high scores on DF 1. In contrast, high scores on

DF 2 were associated with high fold-changes in iso-C4 and GSA.

From the DFA scatter plot (Figure 4.8), it is observed that DF 1 separates WHY

from the CHO and SOY groups, while DF 2 separates SOY and WHY groups from

CHO. Conceptually, DF 1 can, therefore, be viewed as the tendency towards exhibiting
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Function 1 
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MLCD 
Hci 

Fold-change 

WHY 

CHO 

SOY 
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GSA 

Function 2 

Canonical Discriminant Functions 

Figure 4.8: Scatter plot from DFA illustrating the discrimination of the three treatment group
centroids by DFs 1 and 2. DF 1 separates WHY from CHO and SOY, while DF 2 separates WHY
and SOY from CHO.

a urinary metabolic profile reflective of the SOY dietary intervention, while DF 2

corresponds to the tendency towards urinary metabolite profiles of subjects consuming

protein supplementation (SOY or WHY). Combining these interpretations, the DFA

reveals that the urinary profile from the SOY treatment corresponds to greater fold-

change excretion of BGS and 3-MeHis, and low fold-changes in MLCD and Hci, while

protein-supplemented urinary profiles are collectively discriminated from the control

group based on high fold-change excretions in iso-C4 and GSA.

Owing to the low Wilks’ L value, the prediction of group membership by the

derived functions was excellent, with 82.5% of the subjects correctly classified into

the 3 treatment groups by discriminant analysis (refer to Table 4.8, Supporting

Information). With the leave-one-out cross-validation procedure, 77.5% of the cross-
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validation classifications were correct. Since the likelihood of correct classification

by chance alone is 1 in 3 (i.e., 33.3%) in this case, the cross-validation classification

accuracy by DFA was found to be statistically significant at p < 0.05. Compared to

the univariate approach, which at best would provide an effect size of 0.376 just based

on BGS alone, which is statistically the most significant metabolite, DFA provided

maximal discrimination between the 3 groups based on multivariate linear combinations

of metabolites, producing an effect size of 0.652. Therefore, the multivariate effect is

greater than the strongest univariate effect by 27.6 percentage points in terms of the

variance explained by the group membership.

4.3.9 Correlation Studies

Correlation studies were performed between the 6 significant metabolites against a list

of 27 known or putatively identified compounds involved in AA metabolism, in order to

identify additional relevant biosynthetic and catabolic pathways in protein metabolism

that may have been strongly influenced by the dietary intervention. After controlling

for the FDR when data-mining for multiple correlations (n = 177), only 5 significant

correlations involving 3 of the top urinary markers (iso-C4, GSA, and 3-MeHis)

were found (Table 4.4). Additionally, 3-MeHis had the strongest correlations with 2

metabolites (aspartyl-histidine (Asp-His) and trimethyllysine (TML)), at r = 0.600

and r = 0.589, respectively, which were both found to be significant even with the

more stringent Bonferroni correction. GSA was significantly correlated with symmetric

dimethylarginine (SDMA) (r = 0.519), while iso-C4 was significantly correlated to

free carnitine (C0) (r = 0.498) and alanine (Ala) (r = 0.488). In all of the five cases,

the metabolites were positively correlated.
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Table 4.4: Significant metabolite correlations associated with top-ranked urinary markers.

Urinary marker Correlated metabolite Pearson
corr., r

Significance
(p-value)

FDR
(q-value)m/z : RMT (Q) ID∗ m/z : RMT (Q) ID∗

170.093 : 0.681 (+) 3-MeHis† 271.104 : 0.768 (+) Asp-His 0.600 4.34 × 10−5‡ 5.63 × 10−3§

189.160 : 0.649 (+) TML† 0.589 6.36 × 10−5‡ 5.63 × 10−3§

176.067 : 0.878 (+) GSA† 203.150 : 0.700 (+) SDMA† 0.519 6.01 × 10−4 3.54 × 10−2§

232.155 : 0.831 (+) iso-C4† 162.113 : 0.761 (+) C0† 0.498 1.00 × 10−3 3.54 × 10−2§

90.055 : 0.818 (+) Ala† 0.488 1.00 × 10−3 3.54 × 10−2§

∗ 3-MeHis = 3-methylhistidine; GSA = guanidinosuccinic acid; iso-C4 = isobutyrylcarnitine; Asp-His = aspartyl-
histidine; TML = trimethyllysine; SDMA = symmetric dimethylarginine; C0 = free carnitine; Ala = alanine.
† Metabolites validated by reference standards or tandem mass spectra. Others were putatively annotated.
‡ Significant correlations after Bonferroni correction, p < 2.82 × 10−4 (177 correlations at a = 0.05).
§ Significant correlations after Benjamini-Hochberg procedure to control for false discovery rate (q < 0.05) for
n = 177.

4.4 Discussion

4.4.1 Significance of Discriminatory Metabolites

Prior to performing the metabolomic analysis, it is important to acknowledge the

compositional differences between dietary soy and whey protein sources. Whey is a

liquid by-product of cheese manufacturing, which comprises 20% of the protein in cow’s

milk (Hoffman and Falvo, 2004), while soy protein is plant-based and typically contains

high levels of isoflavones and other biologically active phytochemicals. Although soy

and whey protein both contain a high concentration of all essential amino acids,

whey protein is a richer source of BCAA than soy (Morifuji et al., 2009), namely,

isoleucine, leucine, and valine (Table 4.9, Supporting Information), in which their

supplementation has been shown to promote growth of muscle tissue and reduce

muscle degradation (Maki et al., 2012; Monirujjaman and Ferdouse, 2014). During

periods of brief starvation, caloric restriction or exercise, catabolism of BCAA has

been shown to occur (Biolo et al., 2007; Shimomura et al., 2004; Vazquez et al., 1985) –

a process which is associated with both muscle proteolysis (Paul and Adibi, 1980) and

increased fatty acid oxidation (Kainulainen et al., 2013). Findings from Hector et al.
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(2015) had previously shown that, despite a lack of significant differences in body

composition changes following a 2-week hypoenergetic dietary intervention between

the CHO, SOY, and WHY groups, the WHY group was able to best maintain their

postprandial MPS rates relative to the pre-intervention state with a reduction of

only 9%, while the postprandial rates in the SOY and CHO groups decreased by

28% and 31%, respectively. Though the findings were consistent with higher levels of

leucine present in whey protein conferring a protective effect against muscle loss during

caloric restriction, it was unclear why the MPS rate reduction between soy and whey

groups were considerably different, by at least 3-fold, given that BCAA content is only

approximately 1.25-fold greater in whey than in soy. In order to better understand the

underlying metabolic differences contributing to this result, urinary metabolite profiles

were analyzed in the current study as a non-invasive alternative to blood samples.

Despite being a waste product, urine is often overlooked as a metabolite-rich biofluid

with diverse chemical complexity that includes breakdown products from a variety

of metabolic processes, ranging from endogenous processes, the consumption of food,

drink or drugs, exposure to environmental contaminants, to by-products generated by

intestinal bacteria (Bouatra et al., 2013). Currently, approximately 3100 metabolites

found in human urine are catalogued in the Urine Metabolome Database (UMDB)

(Bouatra et al., 2013, http://www.urinemetabolome.ca) covering such chemical classes

as amino acids, organic acids, carbohydrates, lipids, aromatic heterocyclic compounds,

aliphatic cyclic compounds, alkaloids, nucleosides and polyketides. Out of the 163

urinary features detected by the current study, 6 metabolites are highlighted here

as being able to collectively provide significant discrimination between the 3 dietary

treatment groups, which may offer some insight into the differences in energy and

muscle metabolism observed previously between the two protein supplementation

types (Hector et al., 2015).
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Isobutyrylcarnitine (iso-C4)

Among the list of significant metabolites, iso-C4, an acylcarnitine, was conclusively

identified as one of the top 2 ranked metabolites in this study, in which an increasing

trend in excretion was observed from SOY to WHY, while the CHO group did not show

any fold-change. Unlike most acylcarnitines that are derived from fatty acid oxidation,

iso-C4, in contrast, is generated from the catabolism of the branched-chain amino acid,

valine, via the intermediate isobutyryl-coenzyme A (isobutyryl-CoA) (Wanders et al.,

2012) and enzymatic action of mitochondrial carnitine palmitoyltransferase I (carnitine

acyltransferase I, CPT1), which exchanges the CoA moiety for L-carnitine (Schoone-

man et al., 2013). As an acylcarnitine, iso-C4 readily passes into the mitochondria to

be oxidized and used as an energy substrate. Depending on diet, fed/fasting status

and/or health status, the mitrochondrial efflux of acylcarnitines into the plasma can

be modulated, which in turn, would reflect either normal variations in the flux of the

fatty acid oxidation pathway or impaired metabolism (Costa et al., 1999; Huffman

et al., 2012; Schooneman et al., 2013). It is interesting to note that while Costa

et al. (1999) observed a general increase in plasma acylcarnitines associated with fatty

acid metabolism following a 20-hour fast in children, the short-chain acylcarnitines

derived from BCAA, including iso-C4, remained unchanged. This observation seems

to support that normal levels of iso-C4 are generally not modulated by shifts in fatty

acid oxidation that may occur as a result of fasting or fat loading, but instead are

influenced due to increased substrate availability for its formation. Although the role

of acylcarnitine efflux into plasma is not completely clear, it has been suggested that

CoA trapping is prevented to allow for equilibrium-dependent mitochondrial CoA

metabolic activities to remain unhindered (Schooneman et al., 2013), as well as to

maintain the acyl-CoA/free CoA ratio, which is regulated by L-carnitine (Möder et al.,
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2003). Following export to the plasma, acylcarnitines are then excreted in urine or bile

as a possible detoxification mechanism (Schooneman et al., 2013) and supports, once

again, the maintenance of homeostatic metabolite ratios, since the ratio of urinary

acylcarnitines/carnitine in healthy individuals is 2.0± 1.1 (Chalmers et al., 1984). In

humans, iso-C4 is the second most excreted short chain acylcarnitine (19.7%) after

acetylcarnitine (70.7%) (Schmidt-Sommerfeld et al., 1989) with normal urinary levels

of 7.1± 3.5 µmol/g Crn (Maeda et al., 2007). As with plasma levels, its excretion in

urine has also been shown to be influenced by age, health status, and diet (de Sousa

et al., 1990; Möder et al., 2003), such that the consumption of valine-rich foods has

been found to result in higher urinary levels of iso-C4 (Abe et al., 2017; Carroll et al.,

1981). Therefore, in this study, the greater urinary excretion of iso-C4 observed in

WHY subjects, as shown in Figure 4.7, appears to be consistent with the increased

availability of valine as a substrate in whey protein over soy (Table 4.9, Supporting

Information).

3-Methylhistidine (3-MeHis)

Despite the lack of statistically significant differences in the fold-change of 3-MeHis ex-

cretion between treatment groups, 3-MeHis was still identified as an important urinary

metabolite which contributed to group discrimination in DFA. Often suggested as an

index of rate of muscle myofibrillar protein catabolism (Chinkes, 2005; McKeran et al.,

1979; Plaizier et al., 2000), 3-MeHis results from the post-translational methylation

of certain histidine residues present in actin and myosin from all muscles and white

muscle fibres (McKeran et al., 1979), which constitutes over 90% of the protein-bound

3-MeHis, as demonstrated in rat skeletal muscle (Haverberg et al., 1975). Released

upon degradation of muscle protein, 3-MeHis is excreted unmetabolized in human

urine (Long et al., 1975). In support of the aforementioned protective effect conferred
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o 

A     B  A     B  

Figure 4.9: Box and whiskers plots for the Pre- and Post- urinary levels of 3-MeHis for CHO, SOY,
and WHY treatment groups. Box and whiskers not sharing the same letter are statistically different
(p < 0.05).

by BCAA against muscle damage and breakdown (Maki et al., 2012; Shimomura

et al., 2004) and consistent with the maintenance of postprandial MPS rates by whey

supplementation as reported by Hector et al. (2015), the WHY group had shown no

significant loss of 3-MeHis in urine, with an average fold-change of only 1.3 between

Pre- and Post-intervention, while in contrast, the CHO and SOY groups revealed sig-

nificantly increased elimination (p < 0.05) of 3-MeHis by 2-fold following intervention,

as shown in Figure 4.9. It is interesting to note that these results were also reflected in

the pooled subgroup analysis of 3-MeHis as seen in Figure 4.3b. These results imply

that muscle breakdown may have been elevated in CHO and SOY groups following

caloric restriction, while the absence of change in urinary levels of 3-MeHis in WHY

subjects indicated that muscle proteolysis was either unchanged or possibly reduced

over the weight-loss period. Therefore, the results show that whey supplementation

provides increased protection against the effects of muscle catabolism during caloric

restriction and weight loss.
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Unknown Bile Acid-Glycine-Sulphate Conjugate (BGS)

Ranked as the top discriminatory urinary metabolite in the current study, the

[M− 2H]2− unknown compound, with m/z 263.629 : 0.963, has only been associ-

ated with the metabolite class of BGS for which the identity of the bile acid may be

either chenodeoxycholic acid, deoxycholic acid or ursodeoxycholic acid. Tandem mass

spectra of this compound revealed characteristic peaks corresponding to the sulfate

moiety (m/z 97) and deprotonated glycine molecule (m/z 74) (Figure 4.10). Bile

acids play important roles in fat digestion, modulation of gut microbiota, and in the

homeostasis of glucose, lipid, and cholesterol through generation of bile flow, which

aids in the excretion of toxins and drugs, and re-absorption of vitamins and endogenous

compounds (Hylemon et al., 2009; Liao et al., 2016; Trauner et al., 2010). Following

the intervention, the SOY group showed the greatest urinary fold-change levels of

this compound, which led to significant differences when compared to both the CHO

and WHY groups. Literature has previously reported that increased bile excretion is

an indication of disruption in micelle formation, which lowers the solubilization and

absorption of cholesterol, thereby, leading to a cholesterol-lowering effect (Taylor, 2006;

Zhang et al., 2012b). In particular, the high surface activity of amphiphilic saponin

molecules and the presence of hydrophobic amino acids, composing the insoluble high

molecular-weight peptides fractions in soy protein, have been found to increase bile

excretion and thus, contribute to the hypocholesterolemic effects observed with dietary

soy protein in animal studies (Greaves et al., 2000; Nagaoka et al., 2010). Furthermore,

soy protein hydrolysate has been shown in vitro to decrease the micellar solubility

of cholesterol (Nagaoka et al., 1999). Due to formation of large mixed micelles of

bile acid and saponin molecules forming aggregates greater than 106 Da, the bile acid

is not available for absorption (Sidhu and Oakenfull, 1986). The suppression of the
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intestinal absorption of bile acid and cholesterol, thus, enhances their elimination

and excretion (Jahan-Mihan et al., 2011). Therefore, the findings of increased bile

excretion observed in the SOY subjects were consistent with previous reports of soy

protein possessing cholesterol-lowering properties.

Guanidinosuccinic Acid (GSA)

A normal component of urine, GSA was found to be a significant metabolite in the

current study. The fold-change excretion was found to be similar between SOY and

WHY groups, in which both groups showed significantly increased excretion from the

CHO group. GSA is an uremic toxin whose excretion occurs at a relatively constant

rate, with a mean daily output of 10 mg in healthy individuals, and is elevated with

increased protein intake (Cohen, 1970). GSA derives its guanidino group from arginine

through the urea cycle, as well as from the transamidination from arginine to aspartic

acid in the liver (Cohen, 1970; Perez et al., 1976). In another study, GSA has also

been proposed to be produced from the action of the hydroxyl radical on the arginine-

precursor, argininosuccinic acid (ASA) (Aoyagi et al., 2001). Owing to the precursory

role of arginine in the synthesis of GSA, it was initially unexpected to see that the

fold-change excretion of GSA were similar in both SOY and WHY groups, since

arginine content is about 3 times greater in soy protein than in whey. On the other

hand, the increased excretion of GSA in the SOY and WHY subjects was consistent

with the greater protein intake by those groups. Given that GSA is a derivative of

aspartic acid, and that aspartic acid is a precursor of arginine in the urea cycle, the

similarity in the pattern of GSA excretion in SOY and WHY subjects was in fact, in

agreement with the aspartic acid content being similar in both soy and whey protein

(Table 4.9, Supporting Information). This observation confirms earlier work by Cohen

(1970), which found that excess loading of arginine precursors increased GSA output.
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Comparison of the tandem mass spectra with reference spectra of GSA from HMDB

(Wishart et al., 2018) confirmed the identity of GSA (Figure 4.11).

Homocitrulline (Hci)

An analogue of citrulline, Hci is a normal metabolite of lysine, which is an essential

amino acid. It is formed from the reaction of nitric oxide synthases (NOS) on

homoarginine (Rodionov et al., 2016), which is synthesized from lysine via a three-

step process by urea cycle enzymes (Rodionov et al., 2016) or by arginine:glycine

amidinotransferase (AGAT) (Rodionov et al., 2016). The work of Paik et al. (1977) has

shown that the formation of Hci results from the action of ornithine transcarbamylase

(OTC) on lysine in the urea cycle. Under caloric restriction, mice have been found to

exhibit increased levels of mitochondrial deacetylase protein, Sirt3, which deacetylate

and stimulate OTC activity in the urea cycle (Hallows et al., 2011), and promotes

amino acid catabolism and beta-oxidation. Interestingly, Hci can also be derived

from the reaction between cyanate and lysine residues through the heating of milk

(Metwalli et al., 1998). Therefore, its prevalence in the urine of infants and children

has been attributed to milk consumption (Gerritsen et al., 1963). As well, its elevated

levels in urine have been reported with lysine loading in healthy individuals (Ryan and

Wells, 1964) and also with increased protein intake in patients with hyperornithinemia,

hyperammonemia, and homocitrullinuria (Fell et al., 1974; Gatfield et al., 1975). Fell

et al. found that supplementary ornithine or arginine was found to lower excretion of

Hci. Furthermore, with conditions of caloric or nitrogen deficiency generally resulting

in increased endogenous protein metabolism, Hci becomes released in the form of

e-amino-carbamoyl-lysine residues from the catabolism of proteins that have been

post-translationally modified non-enzymatically via irreversible carbamoylation of

lysine residues in proteins by urea-derived isocyanic acid, the active form of cyanate
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(Kraus and Kraus Jr., 2001).

In the current study, greater fold-change excretion of Hci was found with WHY

subjects relative to SOY, which is consistent with the presence of higher content of

lysine in whey protein than in soy. Following this trend, the wide range of Hci excretion

observed in CHO subjects was highly unusual since CHO supplement was expected to

contain no lysine content and yet, the range of excretion was seen to overlap the ranges

observed in both SOY and WHY. However, when considering the relative deficiency

of dietary lysine imposed on the CHO subjects compared to the SOY and WHY

groups, it may be speculated that the Hci excreted by the CHO group is primarily

the consequence of protein catabolism rather than the metabolism of dietary lysine,

such that the urinary Hci originates mainly from the breakdown of carbamoylated

proteins. Similar to 3-MeHis excretion being an indicator of muscle protein breakdown,

it therefore follows that Hci excretion by the CHO group, in particular, could serve as a

marker of general protein degradation since carbamoylation can occur on all free amino

groups in a multitude of peptides and proteins (Delanghe et al., 2017). A process

which occurs throughout the lifespan of the protein, carbamoylation is irreversible

and thus, results in an accumulation of protein-bound Hci, which can be linked with

age, health status, and various diseases and disorders, including renal failure, immune

system dysfunction, and atherosclerosis (Delanghe et al., 2017; Kraus and Kraus Jr.,

2001). Therefore, the large variation of Hci excretion observed, particularly in the

CHO group, may be explained by the highly variable nature of protein carbamoylation.

3-Mercaptolactate-Cysteine-Disulfide (MLCD)

First discovered in 1968 by Ubuka et al. in the urine from healthy individuals as

well as in a patient following ingestion of cysteine, MLCD was tentatively identified

as a significant urinary metabolite in the current study. Based on the findings
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by Yuasa et al. (1990), administration of either L-cysteine or L-cystine resulted in

increased excretion of MLCD, as well as that of taurine and free sulfate, which are

two major sulfur-containing metabolites. These findings were indicative of cysteine

metabolism through the transamination pathway (3-mercaptopyruvate pathway) and

the maintenance of sulfur equilibrium in humans. Interestingly, it was shown that

loading of the sulfur-containing amino acid, L-methionine, did not increase excretion of

MLCD, which suggested that methionine metabolism does not occur through cysteine

(Yuasa et al., 1990). Ubuka et al. (1992) found that MLCD formation is favoured under

conditions of low activity of 3-mercaptopyruvate sulfurtransferase (MST) activity and

high activity of lactate dehydrogenase, which generates 3-mercaptolactate from the

reduction of 3-mercaptopyruvate upon the reversible transamination of cysteine via

the catalytic activity of aspartate or cysteine aminotransferase (CAT) in the presence

of a-ketoglutarate. Mercaptopyruvate then reacts subsequently with cysteine to form

the mixed disulfide of mercaptolactate and cysteine (Nagahara and Sawada, 2006), also

known as MLCD, which is then excreted. In patients with mercaptolactate cysteine

disulfiduria, where MST activity is deficient, MLCD is excreted in excessive quantities

(Crawhall et al., 1968).

Consistent with the higher cysteine/cystine content in whey protein than in soy,

results from the current study have shown that WHY subjects excrete significantly

higher levels of MLCD compared to those of SOY subjects. However, unexpectedly,

the MLCD excretion by the CHO group was also found to be significantly higher

than that of the SOY group. This observation was unusual given that the controls

were on a maltodextrin supplement, which contains no cysteine/cystine content, and

was, therefore, expected to exhibit the lowest MLCD excretion levels. As well, it was

surprising to see that the MLCD excretion between the CHO and WHY subjects were

quite similar to each other. A possible mechanism for the increased excretion of MLCD
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by the CHO group may be explained in part by the findings of Mårtensson (1982),

who found that short-term fasting in healthy subjects resulted in increased excretion

of mercaptolactate, the precursor to MLCD. According to Mårtensson, this result

suggested that the metabolite was derived from endogenous sulfur amino acids (SAAs),

which are liberated during protein catabolism during fasting. Given this information,

it may be speculated that protein catabolism may have been triggered in the CHO

subjects as a result of insufficient SAA intake. With increased levels of endogenous

SAA arising from protein degradation, production of MLCD would be enhanced. An

alternative mechanism to support the increased excretion of MLCD by the CHO group

may be the decreased activity of the enzyme cysteine dioxygenase, which has been

reported in SAA-depleted rats (Mårtensson, 1982). Lowered activity of this enzyme

favours the transamination of cysteine and formation of MLCD, as opposed to the

oxidative pathway leading to the production of taurine and inorganic sulfate (Stipanuk

and Ueki, 2011). Akin to the findings observed with Hci excretion, the CHO group

exhibited the greatest range of variation in MLCD excretion compared to the SOY

and WHY groups. In contrast to the trends observed in the SOY and WHY groups,

where MLCD excretion is believed to be dependent on the intake of dietary SAA,

excretion levels in the CHO group may be explained by the inter-individual variations

in metabolic processes associated with protein catabolism and alternate enzymatic

pathways triggered by dietary SAA deficiency.

4.4.2 Interpretation of Correlations

Considering all the correlated metabolites together shown earlier in Table 4.4, it is

of interest to note that C0 and TML are involved in the lysine degradation pathway,

such that both are by-products of lysine metabolism, which ultimately leads to fatty
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acid catabolism. In the case of C0, which is a key component of skeletal muscle and

important in regulating energy metabolism, its strong positive correlation with the

increasing trend of iso-C4 excretion from CHO to SOY to WHY may be justified by the

fact that C0 can be synthesized from Lys and Met (Rebouche, 2004; Rebouche et al.,

1989), both of which are present in increasing amounts from CHO to SOY to WHY.

Thus, the excretion of C0 appears to be closely linked to the amount of the dietary

amino acid precursors in the different supplement types. TML is a derivative of lysine,

however, as it was found to be significantly correlated with 3-MeHis, its excretion by

the subjects in the current study is most likely the result of proteins containing TML

residues being catabolized due to insufficient dietary intake, which is the first step in

carnitine biosynthesis (Servillo et al., 2014). Tentatively identified Asp-His was also

found to be correlated strongly with 3-MeHis. However, as it has not yet been found

in humans according to the HMDB (Wishart et al., 2018), the tentative identity of

Asp-His in this study is so far only supported by its potential association with protein

degradation, which is described by HMDB to be “an incomplete breakdown of protein

digestion or protein catabolism.” Due to the currently limited information on this

metabolite, additional details on how the compound is linked to the study are unable

to be provided. Further work would be needed to confirm its identity.

Ala is a non-essential amino acid that was strongly correlated with iso-C4. It is a

major amino acid that originates from the breakdown of muscle and plays an important

role in the glucose-alanine cycle, in which amino acids are degraded by muscle protein

in order to allow for gluconeogenesis and muscle contraction (Felig, 1973; Felig et al.,

1970). During brief periods of fasting, it has been shown that the breakdown of skeletal

muscle is triggered to provide energy through the glucose-alanine cycle (Pozefsky et al.,

1976). In the process, Ala is predominantly formed and exported by muscle, serving

to shuttle pyruvate to the liver for glucose production (Pozefsky et al., 1976). While
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the excretion of Ala may arise from the breakdown of muscle protein, the correlation

of Ala excretion pattern with iso-C4, which is increased from CHO to SOY to WHY,

is likely the result of increased dietary content of Ala provided by the SOY and WHY

supplements, in which greater content of Ala was expected to be present in WHY

than in SOY (Table 4.9, Supporting Information). The dependence of the excretion

pattern of Ala on the amino acid composition of the dietary supplements is, thus,

similar to the manner in which excretion of iso-C4 is believed to be dependent on the

dietary content of its precursor, Val, in the protein supplements. Furthermore, this is

consistent with early reports, in which increased excretion of individual amino acids

has been found with increased protein intake (Eckhardt and Davidson, 1949). The

correlation between Ala and iso-C4 excretion is, therefore, explained by the similarity

in the relative ratios in which Ala and Val are expected to be found in CHO, SOY,

and WHY supplements, respectively.

Lastly, SDMA was found to be strongly correlated to GSA. SDMA and GSA are,

in fact, both well-known uremic toxins derived from urea, and therefore, contain the

strongly basic guanidine group, HNC(NH2)2 (Vanholder and De Smet, 1999). Produ-

ced during turnover of proteins containing arginine that have been post-translationally

methylated (Fickling et al., 1993) by the enzymatic action of type II protein-arginine

methyltransferases (PRMTs) (Bedford and Clarke, 2009), SDMA is released into

the cytoplasm before being excreted almost entirely (Franceschelli et al., 2013). Alt-

hough SDMA is the biologically inactive stereoisomer of asymmetric dimethylarginine

(ADMA), which is the endogenous inhibitor of NOS (Päivä et al., 2004), SDMA

has recently been found to be linked to kidney function and correlated closely with

glomerular filtration rate (GFR), since it is strictly eliminated via renal excretion

(Bode-Böger et al., 2006). Its strong correlation with GSA, and greater excretion by

participants consuming soy or whey protein, is consistent with the work of Juraschek

219



PhD Thesis – Karen P. Lam McMaster University – Chemistry & Chemical Biology

et al. (2013), which has shown that high-protein diets lead to increased estimated

GFR without being able to conclude on the long-term effects of high-protein diets on

kidney function. Thus, while GSA was aforementioned to be a direct dietary marker

of protein intake, it appears that SDMA may also indirectly reflect fluctuations in

protein intake in the current study owing to its strong dependence on the GFR, which

in this case, was primarily determined by levels of protein intake in participants which

were overweight to obese, but otherwise, healthy individuals.

4.4.3 Sporadic Features and Exogenous Dietary Non-Nutri-

ents

As the main goal of this study was to elucidate differences in energy metabolism and

muscle synthesis that were brought on by differences in dietary supplementation type

(namely carbohydrate, soy protein, or whey protein supplements) during a hypo-caloric

intervention period, the current investigation was limited to endogenous compounds

and imposed strict criteria throughout the data screening procedures in order to

generate robust discriminatory markers of high quality. In the process, compounds

which were known or tentatively identified to be exogenous in nature, including caffeine

metabolites and artificial sweeteners, were considered to be confounding variables and

therefore, excluded from the analyses. Furthermore, compounds which did not meet

the criterion of being present in at least 75% of the samples were also excluded, such

that only those features which were reliably detected would be retained. However, the

dangers of imposing these well-intentioned stringent limitations are that the presence

of any important effects or potential interactions between exogenous and endogenous

compounds will be overlooked. As well, the exclusion of low-frequency features, which

may include distinctive markers of some uncommon yet relevant characteristic(s)
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inherent to certain samples, may result in loss of valuable information to the study.

By failing to acknowledge these drawbacks resulting from the application of rigorous

data-screening measures, full understanding of the system under investigation may be

hindered, and possibly lead to flawed and incomplete explanations of the underlying

mechanisms at play. Therefore, in order to fully appreciate and recognize the potential

value of exogenous and/or sporadic features in the current study, these compounds

were investigated separately post-hoc and are briefly discussed below.

Sporadic Features: Soy-Specific Markers

In addition to the soy-specific marker shown earlier in Section 4.3.3, three additional

soy-specific features were extracted with the help of the MFE algorithm. Similar to

m/z 201.0228 : 1.008 (−), these three metabolites were only sporadically detected

in the sample runs, being mostly detected in the Post-SOY samples, and exhibited

low and irreproducible signals in the pooled QC sample. The large contrasts in SNR

between the pooled QC sample and the pooled Post-SOY sample for each of the four

metabolite measurements indicated that the metabolites were strongly specific to

the urine of the soy participants post-intervention (Table 4.5). However, it is also

notable that the soy-specific metabolites were not detected in all participants of the

SOY group following dietary intervention. In the case of m/z 417.1191 (−), the

frequency of detection was only 6 out of 14 (43%), while for m/z 201.0228 (−) and

m/z 431.0984 (−), detection rates in SOY subjects were 86% and 79%, respectively.

Meanwhile, m/z 353.0337 (−) was the only soy-specific marker whose detection rate

was 100%. Differences in the detection frequency of these features seemed to indicate

variations in the metabolic production of the compounds between individuals.

Aside from being rich in protein, vitamins, and minerals, soy-based foods provide

the richest sources of isoflavones in the human diet, which is a subclass of flavonoids,
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Table 4.5: Summary of soy-specific markers.

Soy-specific marker Average SNR Samples detected

m/z : RMT (Q) Putative ID Pooled QC (n = 14) SOY # out of 14 %

201.0228 : 1.008 (−) 4-EPS∗† 3.5 17.7 12 85.7
353.0337 : 1.208 (−) 6’-OH-O-DMA-sulfate‡ 8.9 40.8 14 100.0
417.1191 : 0.853 (−) equol 7-O-GLU§ 12.3 107.0 6 42.9
431.0984 : 0.872 (−) DHD-GLU] 4.1 22.4 11 78.6
∗ Metabolite validated by reference tandem mass spectra.
† 4-EPS = 4-ethylphenyl sulfate.
‡ 6’-OH-O-DMA-sulfate = 6’-Hydroxy-O-desmethylangolensin-sulfate.
§ equol 7-O-GLU = equol 7-O-glucuronide.
] DHD-GLU = dihydrodaidzein glucuronide.

a diverse group of naturally-occurring polyphenolic plant metabolites (Bhagwat et al.,

2008). Exhibiting estrogenic activity in mammals and conferring antioxidant and anti-

inflammatory properties (Yu et al., 2016), isoflavones are the most well-known class of

phytoestrogens that are present as glucosides (i.e., bound to a sugar molecule) in soy

(Day et al., 1998). Upon digestion and fermentation following ingestion, hydrolysis of

the isoflavone glucosides occurs by the action of intestinal b-glucosidases (Day et al.,

1998), thereby, releasing the sugar molecule, and resulting in isoflavone aglycones, for

which daidzein, genistein, and glycitein are the major species (Wang et al., 2013). From

this point, the absorption and metabolic biotransformative fates of the aglycones vary

with the isoflavone species present and depend on the colonic microflora composition

of the individual, such that in the absence of microflora, isoflavones are unabsorbed

(Chang and Choue, 2013). Once absorbed, isoflavones typically become conjugated

with glucuronic or sulfuric acid in the bowels or liver (Chang and Choue, 2013).

Based on the accurate mass of the unknown compounds, three of the compounds

have been putatively annotated as metabolites of daidzein. By the enzymatic action of

gut microbiota, daidzein may be transformed into different metabolites, such as dihyd-

rodaidzein (DHD), O-desmethylangolensin (O-DMA) and equol (7-hydroxyisoflavan)

(Chang and Choue, 2013; Minamida et al., 2006) (Figure 4.12). Due to differences in
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microbiota composition between individuals, it has been reported that 80–90% of the

adult population produce O-DMA, while only 25–30% of the Western population are

equol-producers (Atkinson et al., 2008; Setchell and Clerici, 2010). In the current study,

3 of the soy-specific metabolites were tentatively identified to be O-DMA, DHD, and

equol metabolites, based on their detection in 100%, 79%, and 43% of the participants,

respectively. Taking into account the accurate mass, it is most likely that the sulfated

form of O-DMA and the glucuronidated forms of equol and DHD were detected. Alt-

hough the values for O-DMA and equol both appear to be slightly elevated compared

to those previously reported in literature, this may be an overestimation due to the

small sample size of only 14 adults in the SOY treatment group, or alternatively, could

be the result of increased instrumental sensitivity inherent to the current method.

The divergence of DHD levels from O-DMA and equol levels in human urine (Setchell

and Clerici, 2010) has been suggested to be indicative of multiple bacteria being

responsible for producing equol, such that the list of colonic microflora involved in

the biotransformation of daidzein or its precursor glucoside, daidzin, is ever-growing

(Setchell and Clerici, 2010). Given this information, the variations in prevalence rate

for these urinary soy-specific metabolites would be in close agreement with those

reported in literature and support the compound identities as being intestinal bacterial

metabolic products of daidzein, for which colonic degradation and absorption rates for

different metabolite species have been shown to vary between individuals, depending

on the microbiota environment.

Lastly, examination of the MS/MS spectra of the fourth soy-specific marker,

m/z 201.0228 (−), and searching the literature have revealed the identity of the

compound to likely be 4-ethylphenyl sulfate (4-EPS), a metabolite of gut bacteria that

is structurally similar to the well-known toxin, p-cresol sulfate (4-methylphenyl sulfate,

4-MPS). 4-EPS has only recently been reported in human serum and blood, and was
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found to have an association with the consumption of tofu and soymilk (Guertin et al.,

2014; Pallister et al., 2016). Interestingly, high concentration of 4-EPS in the serum of

mice has been linked to autistic anxiety-like behaviour (Hsiao et al., 2013), in which

the precursor, 4-ethylphenol (4-EP), is believed to be produced by several species

of Clostridium bacteria (Nicholson et al., 2012). The conversion of 4-EP to 4-EPS

is expected to occur via the enzyme, sulfotransferase 1A3 (HMDB, Wishart et al.,

2018) (Figure 4.13). 4-EP has recently been quantified in human urine and blood by

GC-MS, following oral consumption of quercetin, which is a flavonoid component of

soy, in which significantly elevated levels of 4-EP were found in 83% of participants

(10 out of 12) (Loke et al., 2009). As well, 4-EP has been known to be a product

of the major degradation pathway of genistein, another major isoflavone species in

soy (Setchell and Clerici, 2010). Despite the precedence of urinary 4-EP, 4-EPS has

not yet been reported in human urine. However, it has been quantified in the urine

of rats with chronic renal failure (CRF) (Kikuchi et al., 2010). Comparison of the

Q-TOF-MS/MS spectra of the soy-specific compound from the current work with the

quadrupole IT-TOF MS/MS spectra of 4-EPS by Kikuchi et al. (2010) confirms the

identity of m/z 201.0228 (−) as 4-EPS, in which the presence of product ions at m/z

79.9574 and m/z 121.0660 are characteristic of the sulfate conjugate and correspond

to [SO3]− and [M− SO3]−, respectively (Figure 4.14). Additionally, the observed

prevalence rate of 86% for m/z 201.0228 (−) in the current work provides further

evidence to support the compound identity to be 4-EPS as it is consistent with the

rate of 83% previously reported for its precursor metabolite, 4-EP. Herein, this work

is the first evidence of 4-EPS in human urine.
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Exogenous Dietary Non-Nutrients

In order to avoid potential strong effects of exogenous dietary non-nutrients from con-

founding the desired analysis of the nutritional effects of important dietary precursors

and essential proteinogenic components on muscle synthesis and energy metabolism,

the current investigation was limited to endogenous metabolites whenever possible. A

considerable challenge of metabolomic analysis in nutritional research, as with the

current study, is that the measured effects of dietary nutrients must out-compete the

presence of possibly stronger and greater number of non-nutrient effects (Gibney et al.,

2005), in order to identify even the slightest variations in metabolism that are contri-

buted by nutrients alone. The reason for this is simply due to the existence of a much

higher abundance of plant-based and man-made non-nutrient molecules than there

are nutrients in the food supply – therefore, it is important that non-nutrient dietary

components are either controlled for, or taken into account before one compares the

effects of different diets (Gibney et al., 2005). Furthermore, it should be emphasized

that any significant effects of exogenous factors that may influence the metabolome

should be considered (Gibney et al., 2005).

For the current study, all subjects were provided with pre-packaged meals that

would result in a 750 kcal deficit, in addition to supplements (i.e., CHO, SOY, or

WHY), which were prepared in-house from commercially isolated powder as artificially-

sweetened cocoa beverages using Nesquik® Chocolate Powder (Nestlé, Vevey, Swit-

zerland) by Hector et al. (personal communication, September 4, 2015). The protein

beverages were prepared carefully and identically to control for any undesirable meta-

bolic effects that may arise due to the presence of non-nutrient flavouring agents, which

were intentionally added to enhance supplement palatability. However, throughout

the two-week duration of the study, participants were allowed to additionally consume
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fluids and beverages of their own choice, so long as they were free of alcohol, vitamin,

mineral, calories, and protein (Hector et al., 2015). Because of this, several known

and putatively identified common exogenous dietary non-nutrients were detected in

all participants, including artificial sweeteners (acesulfame potassium, saccharin),

caffeine metabolites (1-methyluric acid, 3-methyluric acid), a citrus juice metabolite

(proline-betaine), and a sulfated cocoa metabolite. Examination of the univariate

significance of these six dietary non-nutrients did not reveal any significant discrimi-

nating markers after controlling for the FDR, which was expected. However, when

correlations were explored between the dietary non-nutrients and the six endoge-

nous discriminatory markers, acesulfame potassium (Ace-K), which was confirmed

by MS/MS, was revealed to be so strongly correlated with GSA, such that it was

found to be significant, not only with the FDR method (q = 0.035), but also at the

more conservative Bonferroni-corrected level of p < 8× 10−3 (r = 0.504, unadjusted

p = 9.26× 10−4).

Ace-K was included as an additive in the preparation of carbohydrate or protein

supplement beverages. As it is widely used as a popular low-calorie non-nutritive

artificial sweetener in packaged food, candy and drinks, the possible consumption of

Ace-K by participants from other beverages or dietary sources, besides the provided

carbohydrate/protein supplement beverage from the intervention diet, was not known

and could not be monitored. However, since all participants were known to be

consuming supplement beverages twice daily, which is expected to possess doses of

Ace-K at 18–40 mg/serving (based on acesulfame levels present in diet sodas (Franz,

2010)) and thereby, resulting in the consumption of at least 36–80 mg/day of Ace-K

based on consumption of the supplement beverages alone, it may be assumed that the

bulk of dietary Ace-K in the participants originated primarily from the supplement

beverages themselves. Even if this assumption were to be false, any random variation
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or at worst, extreme differences, in Ace-K ingestion from external dietary sources

between subjects would unlikely be a factor in causing significant group differences, and

even more unlikely to lead to the observation of such a highly significant correlation

with GSA.

Approved to be safe for consumption by the United States Food and Drug Ad-

ministration (FDA) since 1988 (Food and Drug Administration, 1988) Ace-K has

increasingly been used in the modern diet as an alternative sweetener to restrict high

sugar consumption, which is known universally to promote health problems, such as

obesity and diabetes (Bray and Popkin, 2014). Recently, Ace-K has also received

health concerns regarding its unknown long-term effects and impact on metabolism,

in which studies have shown altered neurometabolic functions in mice with prolonged

exposure (Cong et al., 2013), as well as increased body weight and perturbations in gut

microbiota composition (Bian et al., 2017). Ace-K is not metabolized by the human

body, and is rapidly excreted in the urine unchanged (Wilson et al., 1999). In light of

this, the strong correlation between Ace-K and GSA, a marker of dietary protein intake,

was quite perplexing and seemingly paradoxical. It would be preposterous to reason

that the excretion of Ace-K and GSA were correlated on the same grounds given their

contradictory roles as non-metabolite and metabolite, respectively. Keeping in mind

that “correlation does not imply causation”, attention was diverted to understanding

the absorption and excretion kinetics of Ace-K, independently of GSA.

Studies have shown that Ace-K is rapidly absorbed into the blood, with maximum

peak levels (0.2–0.3 µg/mL) in humans occurring 1–1.5 h after oral consumption of

a single 30 mg dose, followed by clearance from the general circulation at a half-life

of 2.5 h. Within 24 h of the initial intake, almost all (98%) Ace-K is eliminated into

urine, in which greater than 99% and less than 1% is excreted in urine and feces,

respectively (Magnuson et al., 2016). Low levels of Ace-K have also recently been
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detected in human breast milk within 24 h of maternal consumption (Sylvetsky et al.,

2015). In the current study, no participants were reported to be lactating during the

dietary intervention period. Owing to the relatively rapid clearance of Ace-K from the

blood, which is immediately followed by elimination into urine, it then follows that

the urinary excretion of Ace-K may be dependent on the GFR, in a manner similar to

that observed for the excretion of SDMA, as mentioned earlier. For example, it has

been shown that children exhibit 2-fold greater plasma concentrations of an artificial

sweetener, sucralose, than in adults after consumption of a single 12 fl oz can of diet

soda (Sylvetsky et al., 2017). This observation was explained by the authors as being

due to the lower GFR in children compared to adults, resulting in a reduced rate of

excretion. By the same token, the authors speculated that artificial sweetener levels

would be even higher in infants up to 2 years of age, who are expected to have a

significantly lower GFR. In the absence of kidney failure and after controlling for age,

GFR in healthy individuals has been shown to increase with the consumption of coffee

(Herber-Gast et al., 2016; Nakajima et al., 2010) and protein (Brändle et al., 1996;

Lohsiriwat, 2013), as well as vary depending on the protein type (Jones et al., 1987;

Nakamura et al., 1993). Applying these observations to the current study involving

healthy obese/overweight participants, in which BMI status, gender, and age were

controlled for and balanced between the treatment groups, any group differences

in GFR would, therefore, be predominantly influenced by the amount of dietary

protein intake (0.7 g/(kg d) (CHO) vs. 1.3 g/(kg d) (SOY, WHY)) and/or protein

source (SOY vs. WHY), which would overshadow the smaller contributions to GFR

by inter-individual variations of unmonitored coffee consumption (whose metabolites

in this case did not reveal any significant group differences, which was favourable).

Based on the information above, we can, therefore, infer that GFR is expected

to be: 1) increased in the SOY and WHY groups relative to the CHO group; and 2)
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similar between the SOY and WHY groups, since SDMA (an endogenous marker of

estimated GFR and renal function) (Bode-Böger et al., 2006; Kielstein et al., 2006)

was strongly associated with GSA, whose excretion patterns were similar in both SOY

and WHY groups. Taking into account these considerations, the strong association of

Ace-K with GSA can finally be explained by the influence of protein quantity in the

SOY and WHY diets (as reflected by GSA excretion levels) on increasing GFR, which

in turn led to the apparent proportionally enhanced elimination of Ace-K, as well as

SDMA, since renal excretion is the primary route of clearance for both compounds

from the human body. In other words, the correlation of GSA with Ace-K and SDMA

in the current study revealed that the excretions of Ace-K and SDMA were both

dependent on and sensitive to changes in the GFR, which in this case was influenced

and enhanced with increased protein intake (for which GSA is a urinary marker) in

SOY and WHY groups.

While SDMA is recognized as an important endogenous biomarker of kidney

function in humans and also recently, in veterinary medicine for the detection and

staging of chronic kidney disease (CKD) in dogs and cats (Brown, 2015; Dahlem

et al., 2017; International Renal Interest Society, 2016), the study described here has

revealed the potential for Ace-K to be an exogenous marker of GFR. Although the

exact amounts of Ace-K ingested by the participants were not known nor controlled

for, it was largely assumed that the dietary Ace-K levels would be approximately

equivalent in all subjects independent of treatment groups given that the twice-daily

administration of the controlled supplement beverages contained equal amounts of

Ace-K across all treatment groups. Currently, there is no evidence or published reports

in the literature to demonstrate Ace-K as a potential marker of kidney function or

indicator of GFR. However, it appears that a pilot study at Oxford University (Oxford,

UK) was recently proposed to assess the use of “Acesulfame K as an Exogenous
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Marker of Glomerular Filtration Rate (GFR)” by O’Callaghan (2013). Regardless,

the work discussed here is the first to present preliminary evidence of the ability of

Ace-K excretion to reflect changes in GFR, which in this case, was believed to have

been modulated with protein intake based on findings from earlier studies. Although

GFR was never measured or assessed directly, changes in GFR were inferred based

on the highly significant correlation of SDMA (a marker of GFR) with GSA (a

marker of protein intake). From the inferred changes of GFR, the unexpected yet

highly significant correlation between Ace-K and GSA was reasonably justified. While

initially confounding and dismissed from the analysis due to its irrelevance to the

study as a non-nutrient, the unusual finding of Ace-K as having potential utility

as an exogenous indicator of GFR was rather accidental and serendipitous, thereby,

demonstrating the importance of unbiased and thorough analytical approaches in

making novel discoveries and possibly minimizing false negatives.

4.5 Conclusions

In conclusion, untargeted metabolomics in both positive- and negative-ion mode

Q-TOF-MS on urine samples from participants consuming soy, whey or carbohydrate

supplements during a 2-week dietary weight-loss intervention, resulted in the detection

of 167 unique metabolites, including 4 soy-specific metabolites, after rigorous filte-

ring. The application of strict filtering thresholds and parametric statistical analysis

eliminated spurious and highly variable measurements, and consequently, led to the

identification of several top robust and authentic discriminating metabolites, which

were found to be associated with the presence of diet-derived phytochemicals and

hydrophobic peptides in soy protein (i.e., BGS), as well as with altered protein cata-

bolism (i.e., Hci, 3-MeHis), and differences in the amino acid composition (i.e., iso-C4,
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MLCD, Hci) and total protein content (i.e., GSA) of the supplements. Investigation of

significant correlations between the discriminatory markers and metabolites involved

in protein metabolism revealed further downstream metabolic perturbations concer-

ning the glucose-alanine cycle, carnitine biosynthesis, and glomerular filtration rate.

Most importantly, the WHY group being observed to excrete the least 3-MeHis when

compared to the CHO and SOY groups confirmed the findings of Hector et al. (2015),

in which MPS following weight loss was found to be attenuated with whey protein

supplementation. Additionally, the examination of sporadic features derived from

soy and other exogenous dietary non-nutrients revealed, respectively, the first-time

detection of 4-EPS in human urine, and the novel finding of the artificial sweetener

food additive, Ace-K, as a potential exogenous marker of glomerular filtration rate.

Study limitations include the relatively small cohort size and the short duration of

the study. Further validation of the observations can be made on a larger number

of human participants in the future over a longer intervention time period. Also,

the collection of 24-hour urine samples, rather than single-spot, will allow for more

quantitative changes in total urinary metabolites excreted in a day between subjects

of different groups, as well as, minimize any confounding inter-individual differences in

excretion patterns (Van Bemmel et al., 1988) and diurnal rhythms that would be more

easily manifested in single-spot urine (Ji et al., 2012). Furthermore, hydrolysis of the

various supplements would be helpful in future studies to link measured amino acid

composition to the observed metabolic differences between treatment groups since

slight discrepancies exist in reported amino acid levels between different information

sources. Recommendations for future studies include limiting other dietary/beverage

intakes by participants during the intervention period so that external sources of

possibly confounding exogenous compounds may be minimized, in order to avoid

undesired effects of non-nutrients potentially masking contributions from the nutrients
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to the observed phenotype. Last, but not least, future work will be needed to confirm

the identity of Asp-His in urine, and the viability of Ace-K as a robust, convenient

and clinically reliable indicator of GFR. In summary, findings from this study have

demonstrated that urinary metabolite differences arising from dietary nutritional

intervention are dependent on the complex array of interactions between intestinal

microflora, endogenous metabolites, dietary nutrients, and exogenous non-nutrient

compounds. It is impossible, and erroneous, to ascribe the differences in the metabolite

phenotype to a single effect, whether it be differences in amino acid composition, soy-

or milk-derived peptides, or the presence of soy-specific phytochemicals. Nonetheless,

the results highlight the importance of protein quality in dietary and nutritional

interventions for effective loss of weight while minimizing the loss of lean muscle

mass. Finally, this study demonstrates the wealth of information derived from human

urine, which can be used to elucidate underlying mechanisms and reveal new insights

responsible for the observed changes in the metabolic condition.

4.6 Supporting Information

Table 4.6: Baseline participant characteristics of the WHY, SOY, and CHO groups∗.
Adapted from Hector et al. (2015).

Group Sex Age BMI Body fat Lean mass Trunk fat
(male/female) (yr) (kg/m2) (%) (kg) (kg)

WHY 7/7 52± 2 34.7± 1.1 36.0± 1.9 60.6± 3.3 8.9± 0.8
SOY 7/7 52± 2 34.8± 1.5 35.9± 1.7 61.6± 3.9 9.8± 1.3
CHO 5/7 48± 3 36.9± 1.2 37.9± 2.2 60.4± 4.0 9.5± 1.1

p-value 0.257 0.423 0.699 0.794 0.805
∗ Values are means ± SEMs unless otherwise indicated.
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Table 4.7: Summary of 167 metabolites detected in urine, including m/z, RMT, ionization mode,
molecular formula, compound ID (confirmed or putative), classification, and identification confidence.

m/z : RMT (Q) Formula∗ Compound ID† Classification IDC‡

76.039 : 0.744 (+) C2H5NO2 Glycine (Gly) Amino acid 1

104.071 : 0.706 (+) C4H9NO2
b-Aminoisobutyric acid

(BAIBA) Amino acid derivative 1

104.071 : 0.938 (+) C4H9NO2 Dimethylglycine (DMG) Amino acid derivative 1

104.107 : 0.623 (+) C4H9NO2
g-Aminobutyric acid

(GABA) Amino acid derivative 1

106.050 : 0.869 (+) C3H7NO3 Serine (Ser) Amino acid 1
110.071 : 0.667 (+) C5H7N3 Unknown Unknown 5
118.061 : 0.739 (+) C3H7N3O2 Guanidinoacetic acid (GAA) Amino acid derivative 1

118.086 : 0.962 (+) C5H11NO2 Betaine (Bet) Quaternary
ammonium salt 1

129.066 : 0.773 (+) C4H9NO3 Unknown Unknown 5
131.118 : 0.755 (+) C6H14N2O Unknown Unknown 5
132.077 : 0.782 (+) C4H9N3O2 Creatine (Crt) Amino acid derivative 1

137.071 : 0.667 (+) C7H8N2O N-Methylnicotinamide Pyridinecarboxylic
acid derivative 1

138.055 : 0.906 (+) C7H7NO2 Unknown Unknown 5
141.066 : 0.737 (+) C6H8N2O2 Unknown Unknown 5
143.118 : 0.697 (+) C7H14N2O Unknown Unknown 5

144.102 : 0.969 (+) C7H13NO2 Proline betaine (Pro-Bet) Amino acid derivative
(citrus dietary marker) 2

147.077 : 0.926 (+) C5H10N2O3 Glutamine (Gln) Amino acid 1
147.113 : 0.629 (+) C6H14N2O2 Lysine (Lys) Amino acid 1
156.077 : 0.667 (+) C6H9N3O2 Histidine (His) Amino acid 1
157.061 : 0.786 (+) C6H8N2O3 Unknown Unknown 5

160.097 : 1.069 (+) C7H13NO3 4-Hydroxystachydrine Amino acid derivative
(citrus dietary marker) 2

162.113 : 0.761 (+) C7H15NO3 Carnitine (C0) Quaternary
ammonium salt 1

164.074 : 0.773 (+) C6H13NO2S Unknown Unknown 5
166.073 : 0.750 (+) C6H7N5O Unknown Unknown 5
166.123 : 0.773 (+) C10H15NO Unknown Unknown 5
169.134 : 0.759 (+) C9H16N2O Unknown Unknown 5
170.093 : 0.681 (+) C7H11N3O2 3-Methylhistidine (3-MeHis) Amino acid derivative 1
175.119 : 0.648 (+) C6H14N4O2 Arginine (Arg) Amino acid 1

176.067 : 0.878 (+) C5H9N3O4
Guanidinosuccinic acid

(GSA) Amino acid derivative 2

182.081 : 0.965 (+) C9H11NO3 Tyrosine (Tyr) Amino acid 1
189.160 : 0.649 (+) C9H20N2O2 Trimethyllysine (TML) Amino acid derivative 1
190.119 : 0.955 (+) C7H15N3O3 Homocitrulline (Hci) Amino acid derivative 1
198.019 : 0.663 (+) C4H11N3S3 Unknown Unknown 5

203.150 : 0.689 (+) C8H18N4O2
Asymmetric dimethylarginine

(ADMA) Amino acid derivative 1

203.150 : 0.700 (+) C8H18N4O2
Symmetric dimethylarginine

(SDMA) Amino acid derivative 1

204.123 : 0.799 (+) C9H17NO4 Acetyl carnitine (C2) Fatty acid ester 1
205.097 : 0.938 (+) C11H12N2O2 Tryptophan (Trp) Amino acid 1
217.130 : 0.872 (+) C8H16N4O3 Unknown Unknown 5
227.125 : 0.663 (+) C8H14N6O2 Unknown Unknown 5

Continued on next page
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Summary of 167 metabolites detected in urine, including m/z, RMT, ionization mode, molecular
formula, compound ID (confirmed or putative), classification, and identification confidence.

m/z : RMT (Q) Formula∗ Compound ID† Classification IDC‡

229.119 : 0.861 (+) C11H12N6 Unknown Unknown 5
229.130 : 0.727 (+) C9H16N4O3 Unknown Unknown 5
232.155 : 0.831 (+) C11H21NO4 Isobutyryl carnitine (iso-C4) Fatty acid ester 1
241.031 : 0.944 (+) C6H12N2O4S2 Cystine (CySS) Cysteine conjugate 1
242.131 : 0.866 (+) C9H17N6S Unknown Unknown 5
249.107 : 0.663 (+) C7H14N5O5 Unknown Unknown 5
259.092 : 0.897 (+) C9H16N5S2 Unknown Unknown 5
264.196 : 0.897 (+) C16H25NO2 Unknown Unknown 5
266.006 : 0.663 (+) C18H3NS Unknown Unknown 5
269.125 : 0.929 (+) C11H16N4O4 Unknown Unknown 5

271.104 : 0.768 (+) C10H14N4O5

Aspartyl-Histidine (Asp-His)
or Histidnyl-Aspartate

(His-Asp)
Amino acid derivative 4

282.120 : 0.877 (+) C11H15N5O4 1-Methyladenosine (1-MAD) Purine nucleoside 1
286.202 : 0.889 (+) C15H27NO4 2-octenoylcarnitine Fatty acid ester 2
312.130 : 1.055 (+) C12H25NO4S2 Unknown Unknown 5
362.166 : 0.663 (+) C19H25N2O3S Unknown Unknown 5
367.149 : 1.069 (+) C16H32NS4 Unknown Unknown 5
432.047 : 1.044 (+) C14H9N9O6S Unknown Unknown 5
440.228 : 1.047 (+) C29H31N2S Unknown Unknown 5

76.076 : 0.600 (−) C3H9NO
Trimethylamine N-oxide

(TMAO) Aminoxide 1

94.030 : 1.111 (−) C5H5NO Unknown Unknown 5

103.040 : 1.047 (−) C4H8O3 Hydroxybutyric acid Hydroxy acid
derivative 4

107.050 : 1.051 (−) C7H8O Unknown Unknown 5
112.052 : 0.632 (−) C4H7N3O Creatinine (Crn) Amino acid derivative 1
119.036 : 1.015 (−) C4H8O4 Unknown Unknown 5
121.029 : 1.022 (−) C7H6O2 Unknown Benzoyl derivative 4
134.061 : 0.926 (−) C8H9NO Unknown Unknown 5
144.046 : 0.943 (−) C9H7NO Unknown Unknown 5
151.007 : 0.999 (−) C4H8O4S Unknown Unknown 5

153.019 : 1.137 (−) C7H6O4 Unknown Hydroxybenzoic acid
derivative 4

155.046 : 0.955 (−) C6H8N2O3 Unknown Unknown 5

157.051 : 1.397 (−) C7H10O4 Succinylacetone Medium-chain keto
acid derivative 3

161.987 : 1.131 (−) C4H5NO4S Acesulfame Exogenous 1
167.046 : 1.037 (−) C7H8N2O3 2,3-Diaminosalicylic acid Benzoic acid derivative 3
168.023 : 1.037 (−) C5H4N4O3 Uric acid (M + 1 peak) Purine derivative 3
171.006 : 1.260 (−) C6H8N2S2 Unknown Unknown 5
172.991 : 1.117 (−) C6H6O4S Phenylsulfate Arylsulfate 3
177.023 : 0.929 (−) C6H10O4S Unknown Unknown 5
181.037 : 0.979 (−) C6H6N4O3 1/3/7-methyluric acid Purine derivative 4
181.037 : 0.999 (−) C6H6N4O3 1/3/7-methyluric acid Purine derivative 4
181.991 : 1.075 (−) C7H5NO3S Saccharin Exogenous 3

182.046 : 1.025 (−) C8H9NO4 4-Pyridoxic acid Pyridinecarboxylic
acid derivative 3

182.082 : 0.900 (−) C9H13NO3 Unknown Unknown 5

Continued on next page
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Summary of 167 metabolites detected in urine, including m/z, RMT, ionization mode, molecular
formula, compound ID (confirmed or putative), classification, and identification confidence.

m/z : RMT (Q) Formula∗ Compound ID† Classification IDC‡

184.098 : 0.893 (−) C9H15NO3 Unknown Unknown 5
185.082 : 1.263 (−) C9H14O4 Unknown Unknown 5
188.011 : 1.052 (−) C7H8O4S p-Cresol sulfate (M + 1 peak) Arylsulfate 3
188.987 : 1.301 (−) C7H10S3 Unknown Unknown 5
189.003 : 1.051 (−) C4H4N3O6 Unknown Unknown 5
191.056 : 0.909 (−) C7H12O6 Quinic acid Cyclic polyol 3
191.108 : 1.159 (−) C12H16O2 Unknown Unknown 5
192.982 : 1.068 (−) C6H10OS3 Unknown Unknown 5

193.036 : 0.898 (−) C6H10O7 Unknown Glucuronic acid or
derivative 4

197.082 : 1.223 (−) C10H14O4 Unknown Medium-chain fatty
acid 4

198.113 : 0.875 (−) C10H17NO3 Unknown Unknown 5
201.023 : 1.008 (−) C8H10O4S 4-ethylphenyl sulfate§ Arylsulfate 2
201.052 : 1.184 (−) C7H10N2O5 Unknown Unknown 5

201.113 : 0.853 (−) C10H18O4 sebacic acid Medium-chain fatty
acid 3

204.067 : 0.890 (−) C11H11NO3 Indolelactic acid Indolyl carboxylic acid 1
211.062 : 0.976 (−) C10H12O5 Unknown Unknown 5
215.104 : 0.855 (−) C9H16N2O4 Unknown Unknown 5
218.050 : 0.881 (−) C9H9N5S Unknown Unknown 5
218.104 : 0.857 (−) C9H17NO5 Pantothenic acid Amino acid derivative 3
222.993 : 0.975 (−) C7H4N4O3S Unknown Unknown 5
224.057 : 1.161 (−) C11H15NS2 Unknown Unknown 5
227.998 : 0.981 (−) C9H11NS3 Unknown Unknown 5
229.055 : 0.932 (−) C11H10N4S Unknown Unknown 5
230.013 : 0.955 (−) C8H9NO5S Unknown Unknown 5
230.115 : 0.851 (−) C9H17N3O4 Unknown Unknown 5

240.001 : 1.219 (−) C6H11NO5S2
3-Mercaptolactate-cysteine

disulfide Cysteine conjugate 2

243.034 : 0.931 (−) C10H12O5S Unknown Unknown 5
243.135 : 0.841 (−) C11H20N2O4 Unknown Unknown 5
247.109 : 0.952 (−) C13H16N2O3 Unknown Unknown 5
253.084 : 0.859 (−) C12H18N2S2 Unknown Unknown 5
255.135 : 0.839 (−) C12H20N2O4 Unknown Unknown 5
259.014 : 0.886 (−) C7H16O4S3 Unknown Unknown 5
260.024 : 1.205 (−) C10H15NOS3 Unknown Unknown 5

263.629 : 0.963 (−) C26H43NO8S
Unknown bile acid

glycine-sulfate conjugate
[M − 2H]2−

Glycinated bile acid
derivative 4

264.088 : 1.154 (−) C13H15NO5 Unknown Unknown 5

264.107 : 0.848 (−) C13H16N2O4
Phenylacetylglutamine

(M + 1 peak) Amino acid derivative 3

267.110 : 0.838 (−) C11H16N4O4 Unknown Unknown 5
269.152 : 0.830 (−) C18H22O2 Unknown Unknown 5

273.008 : 1.326 (−) C10H10O7S Unknown Phenylsulfate
derivative 4

283.070 : 0.856 (−) C12H14NO7 Unknown Unknown 5
283.082 : 0.834 (−) C12H18N3OS2 Unknown Unknown 5

Continued on next page
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Summary of 167 metabolites detected in urine, including m/z, RMT, ionization mode, molecular
formula, compound ID (confirmed or putative), classification, and identification confidence.

m/z : RMT (Q) Formula∗ Compound ID† Classification IDC‡

285.061 : 0.907 (−) C11H16N3O2S2 Unknown Unknown 5

287.024 : 1.051 (−) C11H12O7S
5’-(3’,4’-Dihydroxyphenyl)-g-

valerolactone
sulfate

Phenylsulfate
derivative 3

288.122 : 1.055 (−) C6H21N6O5S Unknown Unknown 5
289.116 : 0.980 (−) C11H22N4OS2 Unknown Unknown 5
290.089 : 0.822 (−) C12H21NO3S2 Unknown Unknown 5
295.028 : 1.288 (−) C12H6N7OS Unknown Unknown 5
295.130 : 0.827 (−) C14H20N2O5 Unknown Unknown 5
302.115 : 0.835 (−) C15H17N3O4 Indoleacetyl glutamine Amino acid derivative 3
303.072 : 0.832 (−) C11H10N7O4 Unknown Unknown 5
308.078 : 0.831 (−) C7H15N7O5S Unknown Unknown 5

308.099 : 0.817 (−) C11H19NO9 N-Acetylneuraminic acid Carbohydrate
conjugate 3

315.108 : 0.813 (−) C13H22N3O2S2 Unknown Unknown 5
317.124 : 0.814 (−) C13H16N7O3 Unknown Unknown 5

319.140 : 0.812 (−) C14H24O8 Octanoylglucuronide Carbohydrate
conjugate 3

324.073 : 0.826 (−) C21H13N2S Unknown Unknown 5
331.176 : 0.806 (−) C15H22N7O2 Unknown Unknown 5
343.140 : 0.808 (−) C23H22NS Unknown Unknown 5
345.156 : 0.799 (−) C9H26N6O6S Unknown Unknown 5

346.056 : 0.827 (−) C10H14N5O7P Unknown Monosaccharide
phosphate 4

347.170 : 0.797 (−) C14H26N3O7 Unknown Unknown 5

350.088 : 0.816 (−) C16H17NO8
Indole-3-acetic-acid-O-

glucuronide
Carbohydrate
conjugate 3

351.058 : 1.059 (−) C13H20O7S2 Unknown Unknown 5

352.086 : 1.000 (−) C16H19NO6S
4-Hydroxybenzyl
isothiocyanate

4”-acetylrhamnoside

Carbohydrate
conjugate 3

353.034 : 1.208 (−) C15H14O8S
6’-hydroxy-O-

desmethylangolensin-sulfate§ Flavonoid 3

372.113 : 0.880 (−) C9H23N7O5S2 Unknown Unknown 5
381.155 : 0.793 (−) C18H28N3O2S2 Unknown Unknown 5
382.100 : 1.024 (−) C14H25NO7S2 Unknown Unknown 5
387.166 : 0.793 (−) C17H22N7O4 Unknown Unknown 5
396.114 : 0.794 (−) C12H27N7S4 Unknown Unknown 5
397.150 : 0.785 (−) C18H28N3O3S2 Unknown Unknown 5
399.166 : 0.788 (−) C18H22N7O4 Unknown Unknown 5
405.120 : 0.796 (−) C20H22O9 Unknown Phenolic glycoside 4

417.119 : 0.853 (−) C21H22O9 Equol 7-O-glucuronide§ Isoflavonoid
o-glycoside 3

431.098 : 0.872 (−) C21H20O10
Dihydrodaidzein
7-O-glucuronide§

Isoflavonoid
o-glycoside 3

443.157 : 0.968 (−) C20H18N11O2 Unknown Unknown 5
462.176 : 0.768 (−) C22H39O2S4 Unknown Unknown 5
467.092 : 1.180 (−) C15H24N4O9S2 Unknown Unknown 5
473.145 : 0.837 (−) C16H36N5OS5 Unknown Unknown 5
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Summary of 167 metabolites detected in urine, including m/z, RMT, ionization mode, molecular
formula, compound ID (confirmed or putative), classification, and identification confidence.

m/z : RMT (Q) Formula∗ Compound ID† Classification IDC‡

477.106 : 0.967 (−) C24H22N4O3S2 Unknown Unknown 5
479.229 : 0.778 (−) C17H38N9OS3 Unknown Unknown 5
511.292 : 0.763 (−) C20H44N6O7S Unknown Unknown 5
525.271 : 0.765 (−) C19H36N13O3S Unknown Unknown 5
539.251 : 0.764 (−) C27H30N11O2 Unknown Unknown 5
541.266 : 0.761 (−) C19H36N13O4S Unknown Unknown 5
544.283 : 0.759 (−) C33H35N7O Unknown Unknown 5
∗ The most probable formula is presented for tentatively identified compounds and unknowns.
† Stereochemistry (D/L) not confirmed; presumed to be the biologically active isomer (i.e., mainly L-amino acids
and D-sugars).
‡ Identification confidence (IDC), modified from the classification system proposed by the Metabolomics Standards
Initiative:

1. Confirmed identity: based on comparison to authentic standards.

2. Putative identity: supported by unambiguous matching to MS/MS spectra in literature/database; inferred
based on physicochemical properties, biological context and/or statistical associations.

3. Putatively annotated compound: deduced based on biological context of sample and relevance to expected
metabolic pathways.

4. Putatively annotated compound class: supported by similarity to predicted spectra; unable to confirm
exact positional isomer.

5. Unknown compound: candidate structure is not available or cannot be inferred.
§ Compound excluded from data matrix for not being detected in at least 75% of the samples.
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(a) Correlation plot of average PQ vs. osmolality.
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(b) Correlation plot of average PQ vs. average measured Crn response.

Figure 4.15: Correlation plots of: (a) average PQ vs. osmolality; and (b) average PQ vs. average
creatinine response.
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Figure 4.16: Correlation plot of PQ measured in negative-ion mode vs. PQ measured in positive-ion
mode shows a strong correlation between both modes of analysis, which is indicative of the robustness
of PQ determination.
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Figure 4.17: Plot of lowest Wilks’ L vs. subset size. The optimal balance of low Wilks’ L and low
subset size was determined to be achieved with n = 6 variables.
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Table 4.8: Classification results from DFA show that 82.5% of subjects are correctly
classified into the 3 treatment groups based on fold-change levels of 6 top-ranked
urinary metabolites. With leave-one-out-cross-validation procedure, 77.5% accuracy in
classification is achieved.

Grouping
Predicted Group Membership

Total
CHO SOY WHY

Original∗
Count

CHO 10 1 1 12
SOY 1 12 1 14
WHY 3 0 11 14

%
CHO 83.3 8.3 8.3 100.0
SOY 7.1 85.7 7.1 100.0
WHY 21.4 0.0 78.6 100.0

Cross-validated†‡
Count

CHO 9 2 1 12
SOY 1 12 1 14
WHY 3 1 10 14

%
CHO 75.0 16.7 8.3 100.0
SOY 7.1 85.7 7.1 100.0
WHY 21.4 7.1 71.4 100.0

∗ 82.5% of original grouped cases correctly classified.
† 77.5% of cross-validated grouped cases correctly classified.
‡ Cross validation is done only for those cases in the analysis. In cross validation, each case is
classified by the functions derived from all cases other than that case.
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Table 4.9: Amino acid composition of whey and soy protein
isolates (expressed per 100 g).

Amino Acid Soy protein isolate∗ Whey protein isolate†

Alanine 3.589 6.00
Arginine 6.670 2.65

Aspartic acid 10.203 9.00
Cystine 1.046 3.10

Glutamic acid 17.452 13.00
Glycine 3.603 2.35
Histidine‡ 2.303 1.35
Isoleucine‡§ 4.253 5.90
Leucine‡§ 6.783 13.00
Lysine‡ 5.327 9.15

Methionine‡ 1.130 2.05
Phenylalanine‡ 4.593 2.30

Proline 4.960 4.80
Serine 4.593 5.00

Threonine‡ 3.137 6.25
Tryptophan‡ 1.116 1.50
Tyrosine 3.222 3.15
Valine‡§ 4.098 5.35

∗ Reference: U.S. Department of Agriculture, Agricultural Research
Service, Nutrient Data Laboratory (2016).
† Reference: U.S. Dairy Export Council (2008).
‡ Essential amino acid.
§ Branched-chain amino acid (BCAA).
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Chapter 5

Research Contributions and

Perspectives

In summary, MSI-CE-MS offers a high-throughput analytical platform for biomarker

discovery in metabolomics, which has been demonstrated in this thesis through the

comprehensive targeted and untargeted analysis of biologically relevant metabolites

in various biological samples, including protein-bound oxidized disulfides and phy-

tochemicals reflecting habitual diet. Though regarded by many as still being in its

infancy when compared to more well-established instrumental platforms, such as NMR,

GC-MS, and LC-MS, CE-MS has steadily gained recognition in the past decade as a

promising tool in the field of metabolomics due to its ability to perform high-efficiency

separations of polar/ionic metabolites and their isomers in volume-limited biospeci-

mens with low operating costs and minimal organic solvent. Motivated by the critical

need to address health concerns as obesity becomes a growing epidemic worldwide,

the studies presented in this thesis aim to use metabolomics to better understand and

elucidate metabolic responses of obese subjects towards dietary interventions, including

caloric restriction strategies that are supplemented with protein. Additionally, this
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thesis was also focused on expanding metabolome coverage of labile reduced thiols

that are covalently bound to plasma protein (i.e., human serum albumin) when using

selective maleimide chemical derivatization in conjunction with MSI-CE-MS. Overall,

major technical challenges were encountered and successfully overcome in this thesis,

which contributed to the discovery of novel protein-bound thiols, as well as specific

biomarkers of dietary interventions in overweight/obese subjects when performing

metabolomic studies of urine and plasma.

The work in Chapter 2 presented a novel sensitive CE-MS method, which was

developed for the reliable determination of protein-bound thiols in plasma using

NTBM as a simple thiol-specific maleimide derivatization reagent due to its:

1. greater signal enhancement (of up to 50-fold) relative to underivatized free thiols;

2. improved simplicity in the derivatization procedure without the need for quen-

ching excess maleimide to eliminate background interferences;

3. faster reaction kinetics, which reduces processing time; and

4. much greater long-term chemical stability.

With this optimized pre-column derivatization method, the detection sensitivity of

Cys, Hcy, and GSH was 2-fold greater when derivatized by NTBM as compared

to previous maleimide analogs, with an average 20-fold greater ionization response

relative to native free thiols. Chemical derivatization by NTBM also allowed for the

determination of protein-bound g-GluCys, which is seldom reported in the literature

due to its inherent low abundance in biological samples and inability to be detected

by traditional LC with UV absorbance- or fluorescence detection. The developed

thiol derivatization protocol for plasma protein yielded acceptable technical precision,

such that the coefficient of variation was within 15% for abundant protein thiols (i.e.,
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Cys, CysGly, and Hcy) and 30% for low-abundance species (i.e., GSH and g-GluCys).

Since protein lost during sample processing cannot be determined or accounted for,

this has resulted in large discrepancies in reported absolute thiol measurements

between methods in several publications (Andersson et al., 1993; Bald et al., 2004;

Borowczyk et al., 2015; Giustarini et al., 2005; Mansoor et al., 1992). As a result, it is

recommended that relative quantification be used as the preferred reporting metric

for the determination of protein thiols. By combining multiplexed CE-MS technology

with the thiol-specific derivatization method, an innovative strategy developed for the

discovery of unknown thiols bound to plasma protein was also presented, in which 8

unknown thiol compounds were detected, such that 6 were detected as thiol-NTBM

adducts and 2 were detected as reduced free thiols. Due to the ease with which serial

sample injections in MSI-CE-MS can be designed based on the specific experimental

design (e.g., differential analysis and identification of labeled protein-bond thiols),

the presented multiplexed separation strategy may also be widely suitable for other

screening and discovery applications in MS-based metabolomic studies. Finally, high-

resolution MS/MS experiments on the five known thiol-NTBM derivatives revealed

trends in fragmentation pathways which will facilitate the structural elucidation of

unknown thiol-NTBM derivatives in future studies.

In Chapter 3, the differences in baseline serum and postprandial metabolic respon-

ses between individuals varying in cardiometabolic risk (i.e., LH, MHO, and MUO)

were evaluated before and after a standardized high-fat and high-caloric meal using

a targeted metabolomics approach. Generally, it was found that MHO individuals

possess a greater adaptive response to the dietary challenge relative to MUO, wherein

their postprandial alterations in amino acid profiles were intermediate to those of LH

and MUO. In particular, differential postprandial changes in asparagine and glutamine

between the groups, which are important precursors to TCA cycle intermediates, sug-
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gest that LH, MHO, and MUO may exhibit differences in the metabolite flux entering

or leaving the TCA cycle, which may have important downstream implications in the

efficiency of energy metabolism. Additionally, the plasma carnitine-to-acetylcarnitine

ratio, which is reflective of the current catabolic or anabolic state of an individual, was

interestingly found to have the highest postprandial change in the LH group compared

to both obese groups. These findings suggested that the metabolism of LH individuals

were most evidently switched to an anabolic state in response to the caloric challenge.

Furthermore, this study has shown correlations between fasting levels of BCAA and

indices of insulin sensitivity, which is in support of previous findings from literature

that indicate the potential of BCAA to be predictors of insulin resistance and develop-

ment of type 2 diabetes, independently of BMI (McCormack et al., 2013; Wang et al.,

2011; Würtz et al., 2013). Therefore, amino acid profiles may be useful in diabetes

risk assessment, which could be advantageous in identifying “at risk” individuals who

could benefit earlier from personalized treatments or interventions. Overall, the work

from Chapter 3 has highlighted the ability of postprandial measurements to reveal

subtle differences in metabolism that may be applied towards cardiometabolic risk

assessment among metabolically distinctive sub-groups of obese subjects.

Finally, Chapter 4 analyzed the effects of protein supplementation following a short-

term hypo-caloric dietary intervention, which were measured in paired urine samples

(i.e., baseline and post-treatment for each subject) using a comprehensive untargeted

metabolite profiling approach by MSI-CE-MS. Through this work, 167 unique urinary

cationic and anionic metabolites were consistently detected from a cohort of 40

overweight/obese participants with adequate technical precision (RSD < 30%) and

frequency (> 75% of all urine samples) after rigorous data filtering to reject spurious

signals and redundant ions (i.e., salt adducts, in-source fragments, isotopes, etc.). By

applying a robust feature selection strategy in conjunction with multivariate parametric
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statistical methods rarely implemented in conventional metabolomic studies, six urinary

metabolites were identified as top-ranked biomarkers for discriminating between

subjects consuming carbohydrate-, soy-, or whey-supplemented diets. In support

of earlier research which compared the effects of soy and whey supplementation on

myofibrillar protein synthesis (Baer et al., 2011; Hector et al., 2015), subjects consuming

the whey diet had the lowest urinary excretion of 3-methylhistidine, which indicated

that muscle loss was most attenuated with whey supplementation as compared to

soy or carbohydrate control. Through the process of maintaining quality assurance

and following strict criteria for rigorous metabolite screening, it was also determined

that four urinary metabolites were only occasionally detected among specific subset

of samples, which were later found to be dietary biomarkers specific to the soy diet.

While three of these sporadic urinary metabolites are believed to be bacterially-derived

metabolic products of the isoflavonoid phytoestrogen, daidzein, as supported by their

respective proportion of detection in the soy subjects, the other molecular feature has

tentatively been identified as 4-ethylphenyl sulfate through comparison to literature

MS/MS data, which is the sulfate conjugate of a bacterial metabolic product of

a different isoflavone species, genistein. Though its precursor, 4-ethylphenol, has

previously been quantified in human blood and urine, 4-ethylphenyl sulfate has so

far only been detected in mice, thereby, making its detection in this study the first

reported occurrence in human urine. Additionally, this chapter has also unexpectedly

revealed a strong correlation between the unmetabolized artificial sweetener, acesulfame

potassium, and the marker of dietary protein intake, guanidinosuccinic acid. Since

it is known that protein intake increases glomerular filtration rate, the correlation

of acesulfame potassium with guanidinosuccinic acid is believed to be explained by

its increased excretion due to increased glomerular filtration rate induced by protein

intake. As a result, these findings indicate that acesulfame potassium could potentially
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serve as an exogenous marker of renal function or glomerular filtration rate in humans,

which has not yet been reported in the literature.
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Chapter 6

Future Directions

6.1 Structural Elucidation of Unknown Protein-

Bound Thiols by MS/MS Studies

The novel detection of 8 unknown thiol compounds using the MSI-CE-MS method in the

work of Chapter 2 is intriguing and can potentially lead to further studies to investigate

their identity and origin. By performing neutral loss scan and MS/MS experiments,

comparison of the acquired spectra to MS/MS spectra of known thiol-NTBM adducts

with known MS fragmentation patterns will enable structural elucidation of unknown

thiol-NTBM adducts. Although recent literature in the area of thiol analysis have

been focused on:

1. the determination of thiol compounds arising from the metabolism of sulfur-

containing drugs, such as vicagrel, clopidogrel, tiopronin and penicillamine (Cao

et al., 2018; Kavitha et al., 2018; Liu et al., 2018),

2. the discovery of novel compounds produced through the conjugation of en-

dogenous thiols to exogenous or dietary metabolites (Nagakubo et al., 2018),
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and

3. the identification of microbial-derived volatile thiols contributing to fruit aromas

in the production of wine and beer (Inoue et al., 2013; Takoi et al., 2009),

no work has yet been done to investigate novel thiols bound to protein in plasma,

which may possibly arise from disulfide formation with exogenous thiol compounds

originating from drugs or dietary sources. Given that Nakashima et al. (2018) recently

discovered that protein-thiolation could occur at multiple cysteine residues in HSA

of hyperlipidemia patients in addition to the free cysteine residue at position 34

(Cys34) that is already known to be a target of oxidation, it is likely that multiple

sites for thiol-binding in HSA become available under certain circumstances to allow

for the additional binding of exogenous thiol compounds, which are expected to

be less abundant than cysteine in the extracellular matrix. Furthermore, since the

diverse multidomain structure of HSA allows for the binding and transport of various

endogenous and exogenous compounds (such as metals, vitamins, hormones, bilirubin,

fatty acids, amino acids, and drugs) (Turell et al., 2013), the processing and analysis

of HSA, therefore, also includes the analysis of its bound substrates, peptides and

proteins (i.e., “albuminome”) (Gundry et al., 2007). As HSA represents the most

abundant protein in plasma, the majority (70–90%) of protein-bound thiols and

substrates are, thus, linked to HSA as compared to globulins (Hortin et al., 2006).

With this information, the novel thiols detected in Chapter 2 are expected to be most

likely associated with HSA. Once the unknown thiols have been identified, it would

be of interest to compare the abundances and species of protein-bound thiols detected

in the plasma between healthy subjects and those at risk for metabolic syndrome,

which will provide new insights on the impact of potentially altered structure and

functionality of plasma proteins on the development of risk factors and disease.
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Additionally, it would be valuable to determine how the plasma thiol redox status

impacts both the magnitude and type of thiolation observed in the protein fraction.

To achieve this, the method developed in this thesis for the stabilization and enhanced

detection of thiols may be adapted in future studies for improved simultaneous

determination of free reduced thiols and oxidized disulfides for the measurement of thiol

redox status in plasma, which is implicated in the process of aging and development of

disease, including obesity. Currently, thiol redox status assessment in plasma remains

challenging due to its susceptibility to artifactual oxidation during sample collection

and processing. To minimize auto-oxidation during sample preparation, collection of

blood plasma into tubes containing maleimide reagent prior to sample storage should

be explored in future studies.

6.2 Further Evaluation of Postprandial Effects in

Diabetes Risk Assessment

Although the results presented in Chapter 3 have shown how postprandial changes

were able to differentiate between individuals of different metabolic phenotypes after

a two-hour period, future studies should consider additional sampling at longer time

points to measure time-based changes in the plasma amino acid profile, which may

vary between the subject groups. In addition to evaluating a larger sample size and

replication of the study among different cohorts for validation, follow-up studies could

also aim to include metabolically unhealthy lean individuals, who, despite having

normal weight and BMI, are at three-fold greater risk of cardiovascular diseases

compared to lean healthy individuals and represent roughly 20% of the lean adult

population (Stefan et al., 2017). Comparing their postprandial metabolism with those
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of lean healthy and obese subjects may offer new evidence for the understanding and

treatment of “at risk” metabolic phenotypes in general, regardless of the lean or obese

state, either through the discovery of novel mechanisms or the unexpected finding

of metabolic commonalities to those of unhealthy obese individuals. Furthermore,

since fasting levels of BCAA were shown in this work to have the potential to identify

“at risk” obese individuals through positive correlations with HOMA-IR and fasting

insulin levels, future studies should strive to confirm the findings with a larger subject

cohort for increased study power, along with the inclusion of unhealthy lean individuals

in order to assess the sensitivity of BCAA levels in the identification of metabolically

unhealthy individuals (lean or obese), independently of BMI. Findings from these

studies would be highly relevant to the understanding and treatment of metabolic and

cardiovascular diseases given that BCAAs have recently attracted much interest due

to their association with insulin resistance and emergence as potential biomarkers of

metabolic syndrome.

6.3 Long-Term Assessment of Soy or Whey Sup-

plementation During Caloric Restriction

The identification of six top-ranking urinary metabolites in Chapter 4, which col-

lectively discriminated between responses to soy or whey supplementation relative to

controls during a two-week weight loss intervention, has demonstrated that changes

resulting from nutritional interventions are complex, yet subtle – such that a single

metabolite alone is not sufficient to provide group discrimination and explain dif-

ferences in underlying biochemical mechanisms. In order to confirm the relevance

of these six biomarkers in response to the soy and whey supplementation, future
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studies should involve a longer-term dietary intervention period with a larger sam-

ple size for study replication. Due to urinary metabolite levels being susceptible to

variations in estimated GFR, which can vary with age, between individuals, as well

as be influenced by dietary protein intake, 24-hour urine samples should ideally be

collected in follow-up studies. While the collection of single-spot urine samples in

the current study allowed for easy sample handling and convenient sample collection,

24-hour urine samples will permit measurement of daily total excreted metabolite

levels without being influenced by temporal differences in the estimated GFR. If

necessary, correcting for variations in estimated GFR may be performed through the

measurement of creatinine clearance from the 24-hour urine samples. Alternatively,

if single-spot urine is still preferred for future studies, then GFR may be estimated

through measurement of blood creatinine level. Since the work had also revealed the

potential of Ace-K excretion to be linked to GFR or renal function, it would be of

interest to confirm this finding given that Ace-K is rapidly absorbed upon ingestion

and excreted unmetabolized by the kidney within 24 hours (Magnuson et al., 2016).

Aside from the collection of urine samples, which are known to be more sensitive to

changes in diet, lifestyle, and environmental factors, fasting blood samples could also

be collected to identify those changes relevant to energy metabolism that are allowed

to occur within the tightly regulated environment of homeostatic control. Finally,

as the work shown here has putatively identified the presence of 4-EPS in human

urine for the first time based on unambiguous matching between the experimental

tandem mass spectra with data found in the literature, further work is needed to

confirm the compound identity through MS/MS and migration time measurements of

an authentic standard. Currently, 4-EPS is recognized as an uremic toxin, in which

its detection in plasma is due its abnormal accumulation in patients with CKD or

renal failure (Tanaka et al., 2015). With evidence suggesting it to be derived from
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intestinal gut microbial metabolism (Kikuchi et al., 2010), 4-EPS is expected to be

eliminated by the kidneys and is, therefore, an expected metabolite of human urine.

However, perhaps, due to low concentrations, 4-EPS has not yet been detected in

human urine. The finding of 4-EPS in this thesis as a urinary metabolite specific to

the soy intervention is important to confirm because it supports previous work in

the literature, which linked the presence of 4-EPS in human serum and blood to the

consumption of tofu and soymilk (Guertin et al., 2014; Pallister et al., 2016), and

demonstrates how diet and microflora-derived metabolites can contribute to notable

differences between treatment groups in dietary intervention studies. Given the host-

microbiome relationship is involved in the co-metabolism of many dietary compounds,

integration of metabolomic studies with microbiome analysis should be considered in

future studies to better understand dynamic interactions between gut microflora, diet,

and host metabolism. Lastly, future MS/MS experiments on an unknown compound,

m/z : RMT 271.104 : 0.768 (+), which was found to be significantly correlated to

3-MeHis and is tentatively annotated to be a dipeptide formed from aspartic acid and

histidine, should be performed for structural identification in future studies, due to its

possible involvement in the process of protein catabolism and muscle protein turnover,

which may further our understanding of differences in energy metabolism arising from

different protein supplementations in weight-loss interventions.
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