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ABSTRACT 


The concept of the Forming Limit Diagram (FLD) has proved to be useful for representing 

conditions for the onset of sheet necking, and is now a standard tool for characterizing materials 

in terms of their overall forming behavior. In this study, the M-K approach, in conjunction with 

Gurson model, is used to calculate FLDs. The influences of mechanical properties, including 

strain hardening, strain rate sensitivity, as well as the void nucleation, growth and coalescence, 

on the FLDs are examined. 

Most sheet metals undergo multiple deformation modes (strain paths) when being formed 

into complex manufacturing parts. When the strain path is changed in the deformation processing 

of metal, it's work-hardening and flow strength differs from the monotonic deformation 

characteristics. As a consequence, sheet metal formability is very sensitive to strain path 

changes. In this study, the hardening behavior and damage evolution under non-proportional 

loading paths are investigated. The effect of strain path change on FLDs is studied in detail. 

FLDs are conventionally constructed in strain space and are very sensitive to strain path 

changes. Alternatively, many researchers represented formability based on the state of stress 

rather than the state of strain. They constructed a Forming Limit Stress Diagram (FLSD) by 

plotting the calculated principal stresses at necking. It was concluded that FLSDs were almost 

path-independent. In this work, the FLSD has been constructed under non-proportional loading 

conditions to assess its path dependency when damage effect is included. 
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CHAPTER! 


INTRODUCTION 

Ductile materials typically attain large plastic deformations during industrial forming operations. 

Often engineering materials contain second phase particles or inclusions which may debond from 

the surrounding material matrix due to the influence of plastic deformations. As a result, voids 

and micro-cracks are initiated. When further straining is applied, growth and coalescence of the 

voids occurs. This may lead to considerable degradation of the overall material strength, and thus 

the micro-structural damage evolution and its influence on the material behavior are very 

important in predicting material formability and the causes of failures in production. 

Over the years fracture of ductile materials has been the subject of much research. 

Several damage models have been developed to describe damage evolution and fracture. Among 

these, the Gurson model (1977) has been the most popular one because of its simplicity and 

reasonable agreement with experimental results. Gurson studied ductile porous materials 

(aggregate of voids and ductile matrix) and assumed matrix material as rigid-plastic. The original 

Gurson model considered only the growth of pre-existed voids. Significant improvements on 

Gurson model have been made. Among them, a void nucleation model was developed by Chu 

and Needleman (1980), and void coalescence was described by Tvergaard (1982). Most of these 

works were reviewed by Tvergaard (1990). 

In sheet metal forming operations the failure mode usually involves formation of 

localized necking [Keeler, 1965; Goodwin, 1968; Azrin and Backofen, 1970]. Localized necking 

can be described as a locally thinned region within which strain is concentrated. The maximum 

strains which can be attained in sheet materials prior to the onset of localized necking are 



generally referred to as forming limit strains. A plot of major and minor limit strains, denoted by 

c-:1 and c-;2 in the principal strain space of a two dimensional Cartesian coordinate system, 

constitutes a Forming Limit Diagram (FLD) which was first developed by Keeler and Backofen 

(1964). They used a sheet metal etched with circles and then deformed it until failure. After 

deformation the circles became ellipses and by measuring the major and minor diameters, the 

limit strains in the principal directions were determined. The FLD is now a standard tool for 

characterizing materials in terms of their formability. 

Experimental determination of FLDs following the methods proposed by Nakazima et al 

(1968) and Marciniak (1967) are frequently used [see e.g. Janssens et.al, 2001] and are briefly 

described in chapter 2. To diagnose the cause of material failure, surface strain and geometry 

analysis is necessary. For the measurement of strain, circular grid analysis (CGA), and square 

grid analysis are widely used. CGA is the most common method where a circular grid pattern is 

electrochemically etched onto the blank sheet. The deformed grid is compared to the original 

grid to determine the strains. Earlier the measurement of deformed grid patterns was done by 

using conventional Mylar tape. Recently, optical tensor and image processing technologies are 

used to obtain this data (Chan et.al, 2007). 

Conventionally, FLD are constructed based on the assumption of a linear deformation 

path. However, Most sheet metals undergo multiple deformation modes (strain paths) when 

being formed into complex manufacturing parts. Many researchers [see e.g. Wagoner and 

Laukonis, 1983; Zandrahimi et al., 1989; Graf and Hosford, 1993] have found that FLDs are 

very sensitive to strain path changes. Therefore, a linear strain path can no longer be assumed in 

any theoretical model [Barata Da Rocha et al, 1984]. Tracking the multiple modes of 

deformation can only be done with a detailed knowledge of the deformation history and analysis 
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of each case. This makes the experimental method expensive and necessitates the development 

of analytical models which can predict formability efficiently and cheaply. 

Most theoretical and numerical investigations of FLDs are based on the M-K approach 

developed by Marciniak and Kuczynski (1967). In the M-K approach a thickness variation in the 

form of a groove is introduced as a pre-existing defect in the sheet material. They showed that 

this slight intrinsic inhomogeneity in load bearing capacity throughout a deforming sheet can 

lead to unstable growth of strain in the region of the imperfection, and subsequently cause 

localized necking and failure. In this study, numerical simulations of FLDs are performed based 

on Gurson model together with the M-K approach. The Gurson damage model accounts for the 

void growth, nucleation, and coalescence, while the M-K approach will predict the onset of 

necking. As stated earlier, necking will be initiated from a narrow band and deformation will be 

homogenous inside and outside the band. Due to non-proportional loading, the flow strength and 

hardening behavior, as well as the limit strain of the material, differs from the monotonic loading 

condition. The transient changes of strain path can alter the initial flow stress and hardening rate. 

Thus, the main objective of this work is to predict more accurately the forming limits under 

nonlinear strain paths by incorporating the Gurson model, and to show the evolution of damage 

for each case of path change. Also, the effect of material properties is investigated in order to 

determine their influence on the formability of the material. 

As mentioned previously, FLDs are very sensitive to the strain path change. Therefore, 

there is no single curve in strain space that represents the forming limit, and this limits the use of 

conventional FLDs for assessing forming severity because the straining path of material elements 

in a real sheet metal forming process is usually not known with any certainty. Therefore, finding 

a single path-independent curve to characterize forming limits is of considerable practical 
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interest. Knowing the drawback of conventional FLDs, many researchers have represented 

formability based on the state of stress rather than the state of strain. They constructed a Forming 

Limit Stress Diagram (FLSD) by plotting the calculated principal stresses at necking. It was 

concluded that FLSDs were less path dependence than a strain based FLD [Arrieux R., 1995; 

Zhao et.al, 1996; Stoughton, 2000; Wu et.al, 2005]. 

In Chapter 2 a brief description of metal formability is given and the concept of the FLD 

is introduced. Various experimental and analytical methods for constructing FLDs are reviewed. 

Furthermore, the importance of strain path change in forming operations is discussed. The 

Forming Limit Stress Diagram is also described. 

In Chapter 3, Gurson constitutive model is formulated and the M-K approach is 

described. A detailed description of the development of a numerical code for predicting FLDs, 

based on the M-K approach and Gurson damage model, is also given in this chapter. 

Sheet metal forming processes are a combination of different forming modes which have 

different strain paths. When the strain path is changed, the work-hardening and flow strength 

differ from the monotonic deformation characteristics. Chapter 4 studies plastic behavior of 

material under these non-proportional loading conditions. 

Chapter 5 starts with examining the effects of material properties and initial 

imperfections on FLDs. The effect of strain path changes is then assessed. In this study, the non­

proportional loading histories are developed using combinations of two linear strain paths. The 

first strain path, the pre-strain operation, is common to all loading histories. Subsequent linear 

deformation paths are imposed by varying the strain-rate ratio for the development of an FLD 

applicable to that given pre-strain path and amount. Finally, Chapter 5 gives a brief account of 

the Forming Limit Stress Diagram (FLSD) and its path dependency. 

4 




Chapter 6 lists the conclusions of the current research and discusses future work 

directions for the improvement and development of analytical models for assessing sheet metal 

formability. 
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CHAPTER2 


LITERATURE REVIEW 


2.1 Introduction 

The studies conducted on the analysis of sheet metal formability are too broad to be reviewed in 

its entirety, so the main objective is to cover the analysis from the perspective of damage 

evolution using Gurson model. For ease of understanding the scope of this work, a literature 

review has been conducted on the following sections: general formability and damage evolution, 

and the perception, experimental determination, theoretical modeling and application of FLDs. 

For theoretically determining limit strains, this review limits to those based on the M-K 

approach. Also included is a discussion of the effect of changing the strain path on the FLD. 

Furthermore, the determination of forming limits in stress space is briefly described. 

2.2 Formability of metal 

By definition, forming is the shaping of metals in the solid state and the degree to which a 

material can be formed depends largely on its inherent ductility or its ability to plasticity deform. 

Metal forming is divided into two primary commercial fields: processing, and fabricating. In the 

first case simple products such as plates and sheets are made from bulk materials. In the second 

type more complicated shapes are developed which may start to resemble parts of products 

[Sachs, G., 1954]. 

For a successful procedure the flow stress, or resistance to deformation, of the material 

plays a vital role and the equipment and tools used for producing parts need to be strong but it is 

still not fully understood by researchers which material properties will determine the limit of 
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forming. The common properties defining a material such as its yield strength, hardness, 

modulus of elasticity etc. are not sufficient to predict the performance of a material behavior 

under different forming processes [ Avitzur, 1980]. 

From years of extensive experimental research it has been concluded that material failure 

during forming operations can occur due to a variety of reasons including: fracture, 

buckling/wrinkling, and flow instability/necking [Marciniak et a!., 1992]. Failure by fracture 

occurs mainly as a result of extensive tensile stress. When stress is applied to increase the length 

of a metal fiber beyond its limit, the metal fibers will completely separate resulting in cracking. 

Buckling tends to occur in slender objects under compression and can occur when making heads 

of bolts and rivets. Between necking or flow instability the first one is diffuse necking and it is 

named so because its extent is much greater than the sample thickness. Diffuse necking starts 

when the tensile load reaches its maximum. It may terminate in fracture but is often followed by 

a second instability process called localized necking of material. Once localized necking started 

the width of the sample contracts little, but the thickness along the necking band shrinks rapidly. 

Fracture occurs soon after .Localized necking occurs in sheet metal forming operations such as 

stretch drawing, hydro-forming, bulging, tube-bulging etc. [Marciniak, 197 4]. This phenomenon 

of necking determines the limit of forming for different types of metal. In the next section the 

concept of damage is introduced followed by different damage models. 

2.3 Damage Evolution on Formability 

A variety of micro-structural changes are developed during deformation processes which 

eventually cause degradation in material properties, known as material damage. Damage is 

defined as micro-void formation and growth [Coffin and Rogers, 1967]. Voids can nucleate at a 
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comparatively small strain but eventually grow due to ductile deformation processes. Void 

coalescence also occurs which elongates the amount of void formation. This whole process is 

called ductile damage and because of its significant effect on the behavior of the material, it is 

important to introduce it into any model of a sheet metal forming process. 

Experimental studies have shown that micro-voids play a vital role in the ductile fracture 

of materials [Puttick, 1960]. Goods and Brown (1979) reported that the central role played by 

inclusion cracking or/and deboning in void nucleating in structural metals which then grow by 

plastic deformation of the surrounding matrix material. The weakening of material due to the 

formation of void growth and nucleation causes the localization of necking which eventually 

leads to ductile failure. The most widely known damage model is that developed by Gurson 

( 1977) based on averaging techniques. The characteristic volume element considered by Gurson 

is an aggregate of voids and rigid plastic matrix material, and approximate upper-bound solutions 

on the micro-level have been used to derive a macroscopic yield condition for the material. The 

yield criterion of Gurson depends not only on the effective stress, ae (as in classical plasticity), 

but also the hydrostatic stress, crH, and void volume fraction, f Based on Gurson model, 

Needleman and Triandafyllidis (1978) investigated localized necking for biaxially stretched 

sheet. They found that this model predicted material forming limits qualitatively agreed with 

experimental results. 

The original Gurson model considered only the growth of pre-existed voids. Significant 

improvements on Gurson model have been made. Among them, a void nucleation model was 

developed by Chu and Needleman (1980), and the effect of void coalescence was incorporated 

into the Gurson model by Tvergaard (1982). Most of these progresses were reviewed by 

Tvergaard (1990). In the present study, the modified Gurson model called Gurson-Tvergaard­
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Needleman (GTN) model, is used to determine sheet metal failure. The parameters involved in 

the GTN model are usually determined by empirical methods [see e.g. Brocks and Bemaur, 

1995]. Recently, Springmann and Kuna [2005] identified the parameters by a non-linear 

optimization method using finite element analysis. They concluded that the quantity of 

information from a force-displacement curve is relatively small contrary to the number of 

unknown material parameters of the GTN model. In another recent study [Benseddiq and Imad, 

2008], the GTN model was used to investigate ductile tearing to assess the sensitivity of the 

model parameters. 

In application of the GTN model to predict sheet metal formability, localized necking 

process is accelerated by the void growth, nucleation, and coalescence. In some cases, a sheet 

metal is fractured due to damage before localized necking occurs [see e.g. Needleman and 

Triandafyllidis, 1978]. In the next section the concept of a Forming Limit Diagram and how to 

use it assess sheet metal formability will be discussed. 

2.4 Perception of Forming Limit Diagram 

The forming limit diagram (FLD) is a very useful tool for characterizing the formability of sheet 

metal. The FLD was first introduced by Keeler and Beckhofen (1964), and later Goodwin (1968) 

developed an empirical relation on the rudimentary FLD. The main purpose of FLD is to 

distinguish the safe regions for material processing by defining the regions where failure occurs. 

In Figure 2.1 a typical forming limit diagram is shown. From the figure it can be observed that an 

FLD of a sheet material is developed by plotting the major strain the minor strain in a 2D strain 

space. The safe region for material forming is below the FLD curve, above it, the material tends 

to lose its strength and fail. A series of linear straining paths are proposed ranging from uniaxial 
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compression to equibiaxtal stretchmg as depleted in Figure 2.1 [Marciniak et a!., 1992]. These 

linear stram paths are described by the ratio of minor strain to major stram. 

(2 .1) 


where £ 1 and £ 2 are the major and minor strain, respectively The possible strain paths in sheet 

forming operations lie in the range- 2:::; p :::; 1 When p= I the deformation mode achieved is 

equibiaxial stretching as when a sheet is stretched over a hemispherical punch. In this condition 

the circular gnd expands as a circle because strains are equal in all dtrectwns. In the in-plane 

Uniaxi<~} 
compresswn 

Eqnibwx:t<~l 
Stretclw1g 

:Minor Strain, ;:; 2 

Figure 2.1 A typical FLD showing various linear strain paths from umaxial compressiOn to equi­
biaxial tension [Marciniak et al., 1992] 

strain condition, the strain ratio is equal to zero (p = O) and the sheet as well as the grid circle 

extends 111 one direction while the other dtrection IS unchanged. As a result the grid circle 
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becomes an ellipse. When the minor stress in a sheet is zero and it stretches only in one direction 

while other direction contracts, the condition attained is called uniaxial stretching where p=-0.5. 

A strain ratio less than -1 does not reduce the sheet thickness so beyond this point the 

sheet metal is assumed to be thickened. When p=-1, a drawing or pure shear condition is 

observed. Here, stresses and strains are equal and opposite and the sheet deforms without 

changing its shape. Finally, at the extreme end of Figure 2.1 when p=-2 the minor stress is in 

opposite direction and the sheet thickens as well as often wrinkling occurs. Thus an FLD curve 

can efficiently describe sheet forming processes and can also indicate the safe region for forming 

operations which subsequently reduces the chance of failure. In the current study strain ratios 

from uniaxial stretching to equi-biaxial stretching, where thinning of sheet metal occurs, have 

been considered. 

2.5 Experimental Determination of a Forming Limit Diagram 

A forming limit diagram for various forming operations and materials can be obtained either 

experimentally or numerically. A brief description of the experimental determination of an FLD 

is necessary to understand the process. The first step towards obtaining experimental data for an 

FLD is done by electrochemically etching or photographically printing a grid pattern on the 

undeformed sheet metal [Keeler, 1969; Schedin and Melander, 1986; Lee et al., 1994; Lee, 1996; 

Wang et a!., 2000]. After deformation the deformed grids are measured and compared to the 

original grid pattern to determine the principal strain levels. The most established experimental 

methods used for determining FLDs are the Nakazima test [Nakazima et al., 1968] and 

Marciniak's cup test [Marciniak and Kuczynski, 1967]. 
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For Nakazm1a's method [Nakazima et a!., 1968] a hemispherical punch and a special 

lubrication system were developed. In th1s test, which is also known as an out-of-plane forming 

test, a 4-inch diameter hemispherical punch is used to form a dome in metal sheets which are 

fixed around their circumference as shown in Figure 2.2. In Figure 2.3 samples are produced for 

strain ratios ranging from uniaxial tension to equibiaxial tension. The sample having smallest 

wtdth is the uniaxial tension specimen and the thickest one is the equi-biaxtal tension specimen. 

Between these two conditions all other strain paths are observed. 

Figure 2.2. Schematic set-up ofNakazima test method [GOM, 2001] 

In the Marciniak's test [Marciniak and Kuczynski, 1967], the sheet metal is deforme~ in 

tts plane. A drawing die, blank holder, and flat punch are needed. During the forming process, 

the flat and even forehead of the punch causes an in-plane deformation condition in the sheet 

metal specimen area. Figure 2.4 shows the in-plane test setup used by Marciniak and Kuczynski 
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[1967] Lewison and Lee [1999] have done similar in-plane test (See Figure 2.5) and compared 

to out-of plane test. 

For constructing the Formmg Limit Dmgram, the circular grid system has been widely 

used [Keeler, 1969; Lee eta!. , 1994, Lee, 1996; Wang et al., 2000] It can measure directly the 

principal strams at any location in the sheet. Conventionally, the grids 111 the deformed sheet 

metal were measured with the help of transparent (Mylar) tape and a magnifier However, this 

process IS very time consuming and inaccurate. Wick et a!. [1984] and Harvey [ 1984] developed 

Figure 2.3 Sample geometries from a Nakazima or out-of-plane forming test. Strain paths are 
described from uniaxial tension (top left) to equibiaxial tension (bottom right) [Lewison and Lee; 
1999] 

an optical strain measurement system to acqmre the principal strains of deformed gnds 

automattcally with an image processing technology Some other researchers [see e.g. Lee and 

Hsu, 1994; Wang et al. 1997, Hsu, 2002] have also used optical image processing systems for 

analysis of deformed circular grids (CGA) in their studies. The measuring of grids m Nazakima 
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test may become 

Figure 2.4. Schematic of Marciniak's Cup test. Specimen after an increment of deformation is 
shown as dotted line [website: www.a-sp.org/database/viewsec.asp?sec=246] 

Figure 2.5: Sample geometries from Marciniak's in-plane forming test. Strain paths are 
described from uniaxial tension (top left) to equib1axial tension (bottom right). [Lewison and 
Lee, 1999] 
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difficult due to interpreting the deformed curved surface because of the strain gradient present in 

the specimen. Marciniak's test avoids this difficulty [Marciniak and Kuczynski, 1967]. The CGA 

technique cannot be used for non-proportional deformation due to its non-unique character of the 

ellipse to ellipse transformation [Sklad, 2004]. Sklad [2004] also concluded that for measurement 

of non-proportional deformation a grid that consists of at least three non-collinear points or 

polygon vertices, triangle, quadrilaterals etc. are required. Schedin and Melander [1986] used a 

square grid for the analysis of principal strains from a deformed industrial sheet metal stamping 

process. Recently, Chan et a! [2007] used a high accuracy co-ordinate measuring machine 

mounted to a laser digitizer for the sheet metal strain and surface analysis. First, the flat sheet 

metal blank is electrochemically etched with a hollow centre circular grid pattern. As the blank is 

pressed into the desired shape, the resulting strain deforms the circles into approximately 

elliptical shapes. The sheet metal is then laser digitized every O.lmm and the surface coordinates 

plus reflected light intensity is simultaneously recorded. Parallel computer-based image 

processing separates the darker ellipse grid points from the lighter background, and orthogonal 

least-squares data fitting estimates the major and minor surfaces strains. They have concluded 

that this method has a much lower percentage of uncertainty compared to other existing methods 

for strain measurement. 

Jansseens et al [200 1] applied a statistical method to evaluate the intrinsic precision of 

the experimental procedures of Marciniak and Nakazima. They concluded that uncertainty of 

forming limit in sheet metal is not due to the experimental procedure. 
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2.6 Theoretical Models for Determining a Forming Limit Diagram 

Since the concept of FLD was invented by Keeler and Beckofen [ 1964] and then Goodwin 

[ 1968) it has been a very important tool for determining the safe deformation zone for materials 

subjected to different forming operations. Although the concept of the FLD is simple, the 

experimental implementation is not. For this reason many researchers have developed simple 

analytical and numerical models to predict FLDs. There are two main analytical/numerical 

approaches in constructing FLDs: the Hill's bifurcation analysis, and the M-K approach. 

Hill [1952] was the first researcher who proposed a bifurcation criterion for localized 

necking in thin sheets. His analysis predicts that localized necking occurs in the direction of zero 

extension on the surface of the sheet. This implies that one of the principal strains must be 

negative. Therefore, Hill's method can only predict the left hand side of an FLD. After the 

bifurcation analysis of Hill, Storen and Rice [1975] proposed that localized necking originates 

from the vertex developed on the subsequent yield surface. They combined the bifurcation and J 2 

flow theory for different proportional loading conditions. Later other researchers like Hill and 

Hutchinson [1975], and Hutchinson and Neale [1978] also worked on this method. 

Most theoretical and numerical FLD analyses have been based on the so-called M-K 

approach, developed by Marciniak and Kuczynski (1967). The basic assumption of this approach 

is the existence of a material imperfection, in the form of a groove on the surface of the sheet. 

They showed that a slight intrinsic inhomogeneity in load bearing capacity throughout a 

deforming sheet can lead to unstable growth of strain in the region of the imperfection, and 

subsequently cause localized necking and failure. Within the M-K framework, the influence of 

various constitutive features on FLDs has been explored using phenomenological plasticity 

models (see e.g. Neale and Chater 1980). Especially, the effect of material anisotropy on FLDs 
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has been extensively studied using various analytical anisotropic functions [see e.g. Kuroda and 

Tvergaard, 2000; Wu et al., 2003] and crystal plasticity (see e.g. Zhou and Neale, 1995; Wu et 

al., 1997). 

Effects of damage evolution have also been incorporated into the M-K approach to 

calculate FLDs. Based on various damage models, Yamamoto [ 1978], Needleman and 

Triantafyllidis [1978], Jalinier [1983], Saje et al. [1982], Tvergaard [1982], Kim and Kim 

[1983], Rao and Chaturvedi [1986], Huang et al. [2000] and Brunet and Morestin [2001] studied 

the role of void initiation, growth and coalescence on localized necking in sheet metals. Varma et 

al. [2006] studied localized necking in aluminum alloy tubes subjected to hydro-forming by a 

combination ofthe M-K approach and an anisotropic version of the Gurson model. 

2.7 Effect of Strain Path Change on the Forming Limit Diagram 

The limiting strains reported in FLDs were initially based on the assumption of a proportional 

strain path (monotonic loading) prior to the occurrence of plastic flow localization. However, a 

number of investigations [see e.g. Gronostajski, 1984] showed that more complex deformations 

were governed by multiple types of straining. During an actual forming operation, a material 

element may undergo considerably large changes in strain path, and these changes may 

significantly alter the forming limits [Laukonis and Ghosh, 1978; Graf and Hosford, 1993, 

1994]. For example, the stamping of sheet metal components often involves multiple operations. 

During stamping of sheet metal, certain material locations in a part may experience a change 

from one type of deformation to another. Such strain path changes may be gradual, as in a single 

operation, or abrupt, as in multiple operations. Stamping engineers have noted that occasionally 

some parts will have regions strained well above the accepted strain limits without evidence of 
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localized necking, or that necking failures sometimes occur in regions where the strains are well 

below the FLD. 

It has been generally accepted that for non-proportional loading conditions, if the pre­

strain ratio is less than the final strain ratio, then the forming limit is increased. Alternatively, for 

a higher pre-strain ratio, the forming limit curve decreases [Lee and Kobayashi, 1975; Laukonis 

and Ghosh, 1978]. Laukonis and Ghosh [1978] studied the effects of a change in strain path on 

the deformation characteristics of aluminum killed steel and 2036-T4 aluminum sheets. The 

sheets were prestrained various amounts in balanced biaxial tension and the resulting uniaxial 

properties and forming limits for other loading paths were determined. The forming limit 

diagram of steel was found to decrease with prestrain at a much faster rate than that of 

aluminum. Laukonis and Ghosh [1978] explained such effects in terms of the transition flow 

behavior of the metals occurring upon the path change. More specifically, the path change 

produced strain softening and premature failure in steel, while causing additional strain 

hardening and consequent flow stabilization in aluminum. Graf and Hosford [1993] showed that 

varying the strain path for Al 2008-T 4 can have tremendous effects on the FLD which is 

depicted in Figure 2.6. They applied various levels ofuniaxial, in-plane plane strain, and biaxial 

pre-strains parallel and perpendicular to the rolling direction. They concluded that uniaxial pre­

strain increases the left side of the FLD without causing much effect on right side where biaxial 

pre-stain lowers the entire FLD. For the in-plane plane strain pre-strain condition, the FLD 

increased slightly on both sides. Similar observations were made by Graf and Hosford [ 1994] for 

AA6111-T4. 

The ability to include path changes in FLD calculations is important as number of 

potentially significant changes is too great to be thoroughly covered by experiments, and because 
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0.10 

calculations allow general trends to be explored over a large range of variables. Within the M-K 

framework, the influence of strain path change has been intensively investigated [see e.g. Graf 

and Hosford, 1994; Wu et al., 1998; Hiwatashi et al., 1998; Kuroda and Tvergaard, 1999]. In 

these studies, non-proportional loading histories were developed using combinations of two 

linear strain paths. The first strain path, the pre-strain operation, was common to all loading 
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Figure 2.6: FLDs normal to RD (rolling direction) after pre-straining in (a) uniaxial tension, (b) 
in-plane plane strain tension and (c) equibiaxial tension of material AI 2008-T4 [Graf and 
Hosford, 1993]. 
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histories. Subsequent linear deformation paths were imposed by varying the strain-rate ratio for 

the development of an FLD applicable to that given prestrain path and amount. They found that 

the predicted general trends of effects of strain path changes on forming limits are quite similar 

to those experimentally observed in steel and aluminum sheets [Laukonis and Ghosh, 1978; Graf 

and Hosford, 1994]. Recently, Tarigopula et al [2008] studied the elastic-plastic behavior of dual 

phase steel under non-proportionalloading conditions by using a constitutive model of combined 

isotropic-kinematic hardening. They found the effect of strain path change quite reasonable with 

experimental evidence but failed to describe the transient deformation induced anisotropy in the 

plastic flow. 

In this study the effect of changing strain path on damage evolution and formability is 

numerically studied using the Gurson model. To the best of knowledge, this is the first attempt to 

study the strain path change effect based on the Gurson type damage model. 

2.8 Concept of Forming Limit Stress Diagram (FLSD) 

From the experimental results of Graf and Hosford [ 1993 and 1994 ], it has been observed that a 

non-proportional loading history lowers/raises the forming limit curve from that observed under 

a monotonic loading path. There is no single curve in strain space that represents the forming 

limit, and this limits the use of conventional FLDs for assessing forming severity because the 

straining path of material elements in a real sheet metal forming process is usually not known 

with any certainty. Therefore, finding a single path-independent curve to characterize forming 

limits is of considerable practical interest. Knowing the drawback of conventional FLDs, Arrieux 

et al. (1982), among others, represented formability based on the state of stress rather than the 

state of strain. They constructed a Forming Limit Stress Diagram (FLSD) by plotting the 
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calculated principal stresses at necking. It was concluded that all FLSDs, based on 

phenomenological plasticity models such as Hill (1948) and Hosford (1979), were almost path­

independent (Arrieux, 1995, Zhao eta!., 1996; Haddad eta! , 2000; Stoughton, 2000; Zimmak, 

2000, Stoughton and Zhu, 2004) . Wu et a!. [2005] carried out a detailed study to examme the 

path-dependency of FLSDs based on different non-proportional loadmg histories, which were 

combinations of two linear strain paths . All simulations were based on crystal plasticity theory in 

conjunctiOn with the M-K approach. It was confirmed that the Formmg Limit Diagram (FLD) 

and the FLSD are two mathematically equivalent representations of forming limits in strain­

space and stress-space, respectively While the FLD was very sensitive to strain path changes, 

the FLSD was much less path-dependent. It was suggested by Wu et a!. [2005] that the FLSD is 

much more favorable than the FLD m representing forming limits in the numerical simulation of 

sheet metal forming processes 

However, there are two major drawbacks of an FLSD· obtaining experimental data for 

stress space compared to strain space is difficult, and a stress based cnterion has poorer 

reso lutiOns compared to a strain based criterion [Bai and Wierzbicki, 2008] 

This study re-examines the path-dependency of the forming limit stress diagram based on 

the Gurson damage model, in conjunction with the M-K approach. The nature of the effect of a 

strain path change on forming limits is investigated in terms of the influence of pre-straining on 

the stress-strain curves for subsequent strain paths and the concept of the FLSD. 

2.9 Application of FLD 

The industrial applications of the sheet metal forming simulations have greatly impacted the 

automotive industry in many areas. product design, die developments, die construction, and 
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tryout and production stamping. The forming lim1t dwgram has various ranges of use in the press 

shop: for failure analyses, material and process selection, die development and production 

control [Zhao, 1993] 

2.9.1 Safety Judgment of Processes 

With the help of an appropriate FLD, the safety region for certain processes can be determined. 

Figure 2.7 shows an experimentally determined FLD to make the assessment of how much the 

material can be formed before failure. Three regions of forming have been highlighted. the safety 

zone, marginal zone, and failure zone. Above, and near to the marginal region, matenal is 

anticipated to fail if changes in the process variables occur When the material's FLD remains 

below the safety region it can be assumed that more formability of material can possibly be 

attained. 

2.9.2 Selection of Appropriate Material 

The abihty of materials to accomplish complex forming operatiOns is a crucial matter for many 

industrial technologies. Formability of a material depends on material characteristics and the 

process variables of the forming operation. As a result, different materials have different 

formability curves, or FLDs, for different processes. For these reasons much analytical and 

experimental work has been done to pred1ct many formability curves and a comparison was 

made so that appropriate materials would be selected for processes to which they were well 

suited. 
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Figure 2.7: A typical forming limit diagram showing three important regions [Goodwin, 1968] 

2.9.3 Design and Tryout of Dies 

The simulation for die developments before production trials is a crucial design aspect from a 

business perspective which seeks to reduce lead-time, costs, and improve quality [Wang, 1999]. 

As a result, new challenges for forming (stamping) simulation and to production applications are 

developing rapidly. Thus, the demand for efficiency improvements in the automotive industry, 

both in process planning, and in die design, has driven the development and implementation of 

efficient simulation techniques from the initial stage of product development. Simulation based 

systems optimize the process by giving feedback to the following steps by making necessary 

corrections and improvements at minimum cost. This principle is illustrated in the schematic 

flow chart of simulation based process planning and die design shown in Fig. 2.8 [Tisza et al., 
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2008]. Accurate dies reduce costs associated with processing because having an improper die can 

cause tearing and wrinkling in the sheet metal. 

OneStep 
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& Tool 

Figure 2.8: Workflow in simulation based process planning and die design [Tisza et al., 2008]. 

2.9.4 Quality Control, Optimization, and Problem Solving in the Manufacturing Process 

An FLD can be used for process quality control purposes, and for the forming of complex 

products. In different forming processes the final part which has to be acquired is defined by 

dimensional tolerances and mechanical properties of the material. Lowering manufacturing costs 

while still maintaining an acceptable accuracy is a trade-off commonly encountered in 

technological industries. In order to make the cost low, a detailed control of production systems 

is required [Gantar and Kuzman, 2002]. Elaborate knowledge of the parameters that affect the 

production process and the final product is needed. Because it is an involved undertaking to find 

all the parameters that might have an impact on the production process, the FLD obtained for a 

particular material can be very helpful for fail-safe analysis. 

In real production systems the operating parameters and variables can be changed over a 

period of time. Some changes that may occur include: the location of the blank, wearing of dies, 

and the quality of stock and gauge material can degrade. Moreover, use of limit analysis on 

different processes can be used to determine the adjustments required for proper output. 
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CHAPTER3 


GURSON CONSTITUTIVE MODEL AND M-K ANALYSIS 


3.1 Introduction 

While the Gurson model has been the most widely known damage model for describing damage 

and fracture for ductile metals, most theoretical FLD analyses have been based on the M-K 

approach. This chapter gives a detailed formulation of the Gurson model and M-K approach. 

3.2 Formulation of the Gurson Constitutive Model 

Gurson (1977) developed his damage model based on averaging techniques. The characteristic 

volume element considered by Gurson is an aggregate of voids and rigid plastic matrix material. 

Approximate upper-bound solutions on the micro-level were used to derive a macroscopic yield 

condition for the material, which is given by 

(3.1) 

Here, O"e is effective stress, and O"H is the mean stress which can be defined in terms of the 

macroscopic Cauchy stress, O" , and deviatoric Cauchy stress, 0" 
1 

• 

3 I I 
O" =-a·a (3.2) 

e 2 . ' 

1 
()"H =f:-0", (3.3) 

3 

(3.4) 

I= Vvoid (3.5)
v 
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Here, I= second order identity tensor,(:) denotes dyadic product,jis the void volume fraction, 

Vvoid and V are the volume of the void and the total volume, respectively . 

. Later, Tvergaard [1982] introduced additional constants q 1 , q2 and q3 to bring 

predictions of the Gurson constitutive relation into closer agreement with corresponding results 

of full numerical analyses for a periodic array of voids. His modified yield function is 

(3.6) 

The description of Gurson constitutive model is completed by the description of visco-plastic 

strain rate and hardening law of solid: 

(3.7) 

(3.8) 

Here g(&) describes the hardening law, and t is the visco-plastic strain rate which depends on 

the accumulated plastic strain, &", and equivalent stress, Cf. N and m are the strain hardening, 

and strain rate hardening exponents, respectively. E0 and i:0 are respectively the reference strain 

and strain rate, and a-0 =E * E 0 where E refers to Young's modulus. 

In the material, total rate of deformation, D, is the sum of elastic and plastic parts 

(3.9) 

The elastic deformation part is 

(3.10) 

\7 

Here, a- is Jaumann derivative of Cauchy stress described as 

(3.11) 
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Where, W is the spin tensor. Lis the elastic compliance (tensor of elastic modulus). 

where, vis Poisson's ratio. 

Then the plastic deformation part is 

(3.12) 

(3 .13) 

Here, i is proportionality factor and a¢ =p is visco-plastic strain rate direction. Substituting 
aa- ­

equation (3.10) and (3.13) into (3.9), we have 

L-1 " • a¢D = :a-+x­
aa­

;=L :(D-DP)=L :D- jP (3.14) 

8¢
Here, P=L:p=L:­

- aa-

In the isotropic Gurson model the macroscopic strain increment and effective plastic strain 

increment are assumed to be related by the equivalent plastic work expression as 

(3 .15) 

This is an exact relationship for f =0 and a reasonable assumption for the porous solid. From 

equation (3 .13) and (3 .15) the proportionality factor is found as 

. (1-J)aix= (3.16) 
o-:p 

The consistency condition gives 
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(3.17) 

In this above condition j is the increase of void volume fraction, (i rate of change of matrix 

equivalent stress. Ci can be determined from equation (3.16) such that 

(p:&+~i) 
(3.18)

a¢ 
azy 

The increase of void volume fraction (i) results from the nucleation of new voids as well as the 

growth of existing voids, thus 


j = (i)growth + (i tucleation (3.19) 


The growth of existing voids is based on the approach of plastic incompressibility which means 


deformation takes place without volume change. 


(i )growth =(1- J)J: DP (3.20) 


The nucleation of micro-voids occurs from the normal distribution model of Chu and Needleman 


[1980]as 

. . . 1 v 
(f)= a&+ ACY +-BI: <r (3.21 ) 

3 

For plastic strain controlled nucleation 

(3.22) 

Here, for an assumed normal distribution, snis the standard deviation, fn is the volume fraction 

of voids which will nucleate if deformation continues indefinitely and high strain values are 
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reached, and finally En is the strain at which void nucleation reaches its maximum value. EP is 

effective plastic strain which nucleates between two normal distribution model values 

respectively En + S n and En - S n. 

For stress controlled nucleation 

2 

./, 1 Cf+-CJH -(Jn 

A=B= n exp -- -~31___ J (3.23) 
sn,/2; 2 sn 

Again, for a normal distribution, snis the standard deviation, fn is the volume fraction of voids 

which will nucleate if deformation continues indefinitely, and CJn is the stress at which void 

nucleation reaches its maximum value. The nucleation criterion that is based on the maximum 

stress transmitted through the particle-matrix interface was suggested by Argon, et al. [1975] and 

an approximate measure of this maximum stress is considered to be Cf +I. CJH . 
3 

Substituting equation (3 .19), and (3 .20) into (3 .21 ), one obtains 

. ( ) . . 1 '1f= 1-f l:DP +al:+ACi+-Bl:rJ (3.24)
3 

The effect of void coalescence and material failure can be expressed with the help of void 


volume fraction j* (f) [Needleman and Tvergaard; 1984] 


If f < fc then f * = f (3.25) 


(3.26)If f ~ J; then /* = fc + j~ =~ (J- J;.) 

Here, fc is the critical value of void volume fraction at which void coalescence occurs and stress 

carrying capacity of material sharply drops. fu* is the ultimate value of void volume fraction at 
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1
which ductile rapture occurs and the value is equal to - . is the value of the void volume j 1

ql 

fraction at which final fracture occurs where the stress carrying capacity of material totally 

diminishes. If q3 = (q I ) 2 the ultimate void volume fraction J;,* equals to (llq I). 

One step time integration method widely known as tangent modulus method for 

analyzing solids characterized by elastic-plastic constitutive relations has been incorporated in 

this study. The development of rate dependent tangent modulus method for Gurson constitutive 

relation (3 .14) has the expression as (See Appendix A for details) 

V' • 
rr=L:D-0', (3.27) 

Where 

L =L"-_5__l PQ 
l+q H 

and 

3.3 M-K analysis 

The basic assumption of the M-K approach is the existence of initial material or geometric 

imperfections in the form of a groove or band as shown in Figure 3 .1. Here, a region A which is 

homogenous (where proportional straining is maintained), and a region B (narrow band) which is 

inhomogeneous have been defined. The narrow band or groove is assumed to be at an angle \jf to 
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the x2 direction as shown in figure 3 .I. If \jf0 is the initial orientation, then after deformation, the 

current groove orientation \jf is given by 

(3.28) 


Here, c11 and c22 are principal logarithmic (true) strains in x 1 and x 2 direction. 

Homogtnt>ous 
Rtgion 

A 

II 

-===>OJ 
Rolling 

Dinction (x1) 

Figure 3.1: Geometry and convention used in M-K analysis 

All the quantities inside the band are denoted by ( ) 8 
. The thicknesses of the groove and the 

parent sheet are h8 and h respectively. So the initial imperfection or non-uniformity of the sheet is 

defined by 

(3.29) 


In the region A (outside the band) the deformation can be controlled by either the strain or stress. 

If it is strain controlled, the loading can be described by the strain ratio p: 

(3.30) 


Likewise, if the imposed deformation is stress controlled, 
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(3.31) 


Where, a is constant. 

It is further assumed, in both cases, that D13=D23=W13 =W23=0, while D33 is specified by the 

condition D-33 =0. For the isotropic materials considered here, these boundary conditions imply 

that the stress components o-13 =o-23 =0. In equation (3.29) it is assumed that the principal 

logarithmic strain rates are equal to the deformation such that£22 = and i-11 =D 11 . Some ofD 22 

the important strain paths are defined as follows in terms of strain-rate and stress-rate ratios. 

• Uniaxial tension: a. = 0 

• Equibiaxial tension: a. = 1 

• Uniaxial stretching: p =- 0.5 

• In-plane plane strain tension: p = 0 

• Equi-biaxial stretching: p = 1 

It is noted that for isotropic materials, the equibiaxial tension (a. = 1) and equi-biaxial stretching 

(p = 1) are identical. 

Apart from the necessary conditions at the band interface, equilibrium and compatibility 

inside and outside the band are automatically satisfied because uniform deformations are 

assumed both inside and outside the band. Following Hutchinson and Neale [1978], the 

compatibility condition at the band interface is given in terms of the differences in the velocity 

gradients inside and outside the band: 

(3.32) 

or 
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(3.33) 

(3.34) 

Here, the a and p subscripts range from 1 to 2, and g a is the parameter to be determined. Nf3 are 

the current unit normals to the band which is given by N 1 =cos If/ and N 2 =sin If/ . 

The equilibrium condition at the band interface for the current configuration is given at 

timet by 

(3.35) 

A set of incremental equations for g a is now obtained by substituting the incremental 

constitutive equations (3.27) into the incremental form of (3.35), using (3.33) to eliminate the 

strain increments D;/3. Together with the condition a-:3 = 0, this furnishes three algebraic 

equations for solving g 1 , g 2 and the unknown D;3 [See appendix B for details]: 

(3.36) 

The sheet thickness outside the band h and inside the band hb are updated based on the 

relations 

(3.37) 

When the principal strain rates inside the band become much higher than that outside the 

band it is assumed that the onset of localization has occurred. This condition is described below 

(3.38) 
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Here, /; 8 is the maximum strain rate inside the band. When this condition is reached, the 

corresponding principal logarithmic strains c-:1 and c-;2 , and principal stresses 0":1 and O"; 2 

outside the band are the limit strains and limit stresses respectively. For a real sheet, numerous 

initial imperfections can exist with different orientations. A conservative estimate of the forming 

limit strain is that obtained from limit strain values for various values of the initial groove 

orientation \j/o, and then selecting the minimum value as the actual forming limit strain. The 

entire FLD of a sheet is determined by repeating the procedure for different strain paths outside 

the band as prescribed by the strain-rate ratio p or stress-rate ratio a. 

The non-proportional loading histories are developed using combinations of two linear 

strain paths. The first strain path, the pre-strain operation, is common to all loading histories. 

Subsequent linear deformation paths are imposed by varying the strain-rate ratio for the 

development of an FLD applicable to that given pre-strain path and amount. 
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CHAPTER4 


EFFECTS OF STRAIN PATH CHANGE ON HARDENING AND DAMAGE 

EVOLUTION USING THE GURSON MODEL 

4.1 Introduction 

Sheet metal forming processes are a combination of different forming modes. Different modes of 

forming give rise to various strain path changes. When the strain path is changed in a 

deformation process the work-hardening and the flow strength differ from the monotonic 

deformation characteristics [Hutchinson et al, 1976; Zandrahimi et al, 1989]. Therefore, it is 

important to understand the material plastic behavior under non-proportional loading conditions. 

In this chapter the Gurson constitutive model (formulated in Chapter 3) is used to study the work 

hardening behavior and damage evolution under strain path changes. 

4.2 Mechanical Properties of Material 

The material to be analyzed has an initial void volume fraction,fa = 0.01, and a volume fraction 

of void nucleating particles fn = 0.05 which nucleates at a plastic strain of £ n = 0.3 with a 

standard deviation of Sn = 0.1. The nucleation is considered to be plastic strain controlled. The 

Gurson model parameters (Equation 3.6) are considered to be q 1=1.5, q2 =l as suggested by 

Tvergaard [1982]. Material failure parameters i.e. void volume fraction of coalescence, and 

fracture are fc= 0.2 and ft = 0.25, respectively. Values of the other parameters ar0'0 = 1, 

0 = -
0' 

= 0.02, v = 0.3, n= 0.2 and m= 0.01.£ 0 
E 
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4.3 Effect of Strain Path Changes 

4.3.1 Monotonic Loading 

The stress-strain responses of the material subjected to three different proportional loading (no 

strain path change) conditions: uniaxial stretching(p =-0.5), in-plane plane strain 

tension (p =0 ), and equi-biaxial stretching (p =1) are shown in Figure 4.1. For the in-plane 

plane strain condition, the flow stress, CJ II, reaches the highest value compared to the other two 

conditions. For uniaxial stretching the material fails at a higher strain, E: u, compared to the other 

two monotonic loading conditions. 

3.0 -- Uniaxial Stretching 
--------- In-plane plane strain tension 

------­ Equi-biaxial stretching ·:o...----­

2.5 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 4.1 a: Calculated CJ II vs. E: u curves for various proportional loading conditions. 
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Usually, a true stress-strain curve for a material increases continuously up to fracture, but in this 

model after reaching the maximum value, the stress carrying capacity of the material starts to 

diminish because the void volume fraction increases, see Figure 4.1 b. 

0.25 

0.20 

0.15 

-

0.10 

-Uniaxial stretching 
------- In-plane plane strain tension 
------ Equi-biaxial stretching 

0.05 

0.00 -t--r-r---->--r---.--,-_,.-,-..--,,-.----,-.--,--,--,-..---,-~-, 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 4.1b: Calculatedfvs. en curves for various proportional loading conditions. 

Figure 4.1 b shows the evolution of void volume fraction,!, with the imposed deformation. When 

/reaches a value equal to 95% of the final void volume fraction, the calculation is stopped. If the 

cutoff was not implemented the calculations would become unstable. For uniaxial stretching the 

failure occurs at a higher strain, 10 n, than the other two loading conditions. For the in-plane plane 

strain condition,/reaches its failure point at a higher strain than when the material is subjected to 

an equi-biaxial stretch. 
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------------
--Uniaxial Stretching 

3.0 ------- in-plane plane strain tension 
------ Equi-biaxial Stretching 

2.5 
.... _ ····... 

''···--.,_ ··... 


b'" 
 ...\\\ 
i 
i2.0 
: 
\ 

:
! 

: 
i 

j 
: 

1 . 5 -t'--.-,--.--,--,--,---r--r-'.--r-.--.-..--,--..--,--..--;-'--.--, 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 4.1c: Calculated ae vs. C:e curves for various proportional loading conditions. 

The data in Figures 4.la and b can be expressed in terms of effective stress a-e and effective 

strainc:e. In Figure 4.1c the effective stress ae reaches a maximum point then decreases due to 

the increase of the void volume fraction f The maximum values of ae and c:e are attained in the 

uniaxial stretching condition compared to the other two monotonic loading conditions. This 

observation becomes clear in figure 4.1 d which shows that the void growth is much slower in 

uniaxial stretching than in the other two deformation processes. In the following sections the 

material is first pre-strained in one deformation mode and then reloaded in another deformation 

mode [see Table 4.1]. 
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0.25 

0.20 

0.15 

0.10 

-- Uniaxial Stretching 
0.05 ------- In-plane plane strain tension 

------ Equibiaxial Stretching 

0.00 +-....--.,..-....--.,..--.--.--.,--,-~,.--.--.--.---,.---,--,---.--,--.--, 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

E 
e 

Figure 4.1 d: Calculatedf vs. E:e curves for various proportional loading conditions. 

Table 4.1: Combinations of non-proportional loadings. 

Case Pre-straining Re-loading 

1 Equi-biaxial stretching (p =1) Uniaxial stretching(p=-0.5) 

2 Uniaxial stretching(p=-0.5) Equi-biaxial stretching (p=1) 

3 In-plane plane strain tension (p = 0) Uniaxial stretching(p=-0.5) 

4 Uniaxial stretching(p=-0.5) In-plane plane strain tension (p = 0) 

5 In-plane plane strain tension (p = 0) Equi-biaxial stretching (p= 1) 

6 Equi-biaxial stretching (p= 1) In-plane plane strain tension (p = 0) 
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4.3.2 Effect ofEqui-biaxial Pre-straining on Uniaxial Stretching 

Figure 4.2 shows the curves obtained under uniaxial stretching (p=-0.5) after being pre-strained 

in equi-biaxial stretching to different levels (cp=0.05, 0.1). The curves are compared to the 

monotonic uniaxial stretching curve (denoted: as received). Figure 4.2 (a) shows the stress-strain 

- response of the imposed deformation. The effect of equi-biaxial pre-straining on(o-11 E11 ) 

subsequent uniaxial stretching is a very quick falling behavior in the stress-strain curve. This 

behaviour can be explained from Figure 4.1a which shows that equi-biaxial stretching has a 

much higher hardening rate than uniaxial stretching when E 11 is relatively small (c11 < 0.12). At 

larger strains {c11 > 0.6) the pre-straining effect results in a lower flow stress when subjected to 

subsequent uniaxial stretching (Figure 4.2 (a)). This trend is observed by Kuroda and Tvergaard 

[2000] using Hill's anisotropic model [1990] and applying abrupt strain path changes from equi­

biaxial stretching to uniaxial tension. 

Figure 4.2a shows that the material fails at an earlier strain, , when pre-strained equi­E11 

biaxially than when subjected to a monotonic uniaxial loading condition. This phenomenon can 

be described with Figure 4.2b which shows the evolution of void volume fraction, f with 

imposed deformation. In Figure 4.2b the evolution offdue to an equi-biaxial pre-strain followed 

by a re-loading uniaxially (CASE #1) is compared with a monotonic uniaxial stretch. Due to pre­

straining the fracture point is reached at a smaller strain than that in the monotonic uniaxial 

loading condition. 
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2.5 

2.0 

3.0 

--As received 
------­ E =0.05 

p 

-----­ E =0.1 
p 

1.2 1.4 1.6 

------------­ ---------------------------------------------------------1 

--As received 
------­ E =0.05 

p 

----------- E =0.1 
p 

1.5 -fl-~-\r---.--,---..----.----,~r-..--...---.--.---.-----r---.---.---."'--r---.,.__, 
0.0 	 1.8 2.0 

3.0 

2.5 

2.0 

0.0 	 0.1 0.2 0.3 : 
E ' 

----------------------------------D------------------------------------~ 

Figure 4.2a: Calculated CJ 11 vs. r.; 11 curves for uniaxial stretching after the sheet has been pre­
strained to different levels of equi-biaxial stretching (p= 1). 

These results clearly indicate that if a sheet material is pre-strained equi-biaxially and 

then loaded uniaxially (CASE #1), the material suffers more damage and is weakened to a 
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greater extent than when subjected to a single uniaxial stretch. This IS supported by the 

experiments carried out by Laukonis and Ghosh [1978] on AA 2036-T4. 

0.25 

0.20 

0.15 

0.10 

--As received 
-------· E = 0.05 

p0.05 
---·---· E = 0.1 

p 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 4.2b: Calculated f vs. c 11 curves for uniaxial stretching after the sheet has been pre­
strained to different levels of equi-biaxial stretching (p=1). 

4.3.3 Effect ofUniaxial Pre-strain on Equi-biaxial Stretching 

The effect of uniaxial pre-straining (p=-0.5) to different levels (cp=0.05, 0.1) on equi-biaxial 

stretching is shown in Figure 4.3. The curves are compared with the monotonic equi-biaxial 

stretching curve (as received). In Figure 4.3a shows the stress-strain (o-11 - & 1J response of the 

imposed deformation. From this figure it can be observed that at larger strains {c11 > 0.2) the 

pre-straining increases the flow stress in subsequent equi-biaxial stretching. However, when & 11 
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is relatively small (&11 < 0.15), uniaxial stretching lowers the flow stress in subsequent equi­

biaxial stretching. These observations are very similar to those reported by Kuroda and 

Tvergaard [2000]. 

The material fails at a higher strain & 11 when pre-strained uniaxially than when under a 

monotonic equi-biaxial stretching deformation. Figure 4.3b shows the evolution of void volume 

fraction,f, with the imposed deformation. It can be observed that an equi-biaxial stretch with a 

uniaxial pre-strain causes the material to fail at a greater strain than without the pre-strain. Thus, 

if a sheet material is pre-strained in uniaxially then reloaded equi-biaxially (Case#2) its strength 

increases due to the delay of damage (void volume fraction) compared to a monotonic equi­

biaxial stretching. 

This response can be expressed in terms of effective stresses and strains (O'e -c-J In 

Figure 4.3c the effective stress O'e, reaches a maximum point then decreases due to the increase 

off Under a uniaxial pre-strain, O'e attains a higher value and fails at a slightly lower value of 

effective strain &e, compared to the monotonic equi-biaxial stretching condition. This observation 

becomes clear in Figure 4.3d which shows that the void growth is slightly higher when pre­

straining is applied than with just a monotonic deformation process. 

The evolution of effective stress and strain (Figure 4.3c) and void volume fraction 

(Figure 4.3d) for the above mentioned condition (CASE #2) shows a weakening of sheet material 

and it fails earlier compared to the monotonic equi-biaxial loading response. This is due to the 

monotonic effective uniaxial stretching curve having a higher hardening rate and voids growth 

than the equi-biaxial stretching response, see Figures 4.1 c and d. 
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Figure 4.3a: Calculated a11 vs. c: 11 curves for equi-biaxial stretching after the sheet has been pre­
strained to different levels of uniaxial stretching (p=-0.5). 
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4.3.4 Effect ofan In-plane Plane Strain Pre-strain on Uniaxial Stretching 

Figure 4.4 shows the curves obtained under an in-plane plane strain pre-strain (p =0) to 

different levels (cp=0.05, 0.1), followed by uniaxial stretching(p = -0.5). Figure 4.4a shows the 

stress-strain ((}11 - & 11 ) response of the imposed deformation. As shown in figure 4.1a, the 

hardening rate in in-plane plane strain tension is much higher than that in uniaxial stretching. 

When the strain path is changed from uniaxial tension to in-plane plane strain tension, an abrupt 

drop in hardening rate is observed. At large strains(c-11 > 0.2), the pre-strain results in a decrease 

of the flow stress. Figure 4.4b shows the evolution ofthe void volume fraction with deformation. 

Due to the in-plane plane strain pre-straining, f reaches its fracture limit at an earlier strain & 11 • 

All the figures show that in-plane plane strain pre-straining (CASE#3) weakens the material 

slightly due to an increase of the void volume fraction and fails earlier than the monotonic 

uniaxial stretching deformation. A similar observation can be found in [Ghosh and Backofen, 

1972]. 

0.25 

0.20 

0.15 

0.10 

-As received 
········e =0.050.05 p 

············ E = 0.1 
p 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

811 

Figure 4.3b : Calculatedfvs. r; 11 curves for equi-biaxial stretching after the sheet has been pre­
strained to different levels of uniaxial stretching (p=-0.5). 
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Figure 4.3c: Calculated effective stress vs. effective strain curves for equi-biaxial stretching after 
the sheet has been pre-strained to different levels ofuniaxial stretching (p=-0.5). 
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Figure 4.3d : Calculated f vs. C:e curves for equi-biaxial stretching after the sheet has been pre­
strained to different levels of uniaxial stretching (p=-0.5). 

4.3.5 Effect of Uniaxial Pre-strain on In-plane Plane Strain Tension 

The effect ofuniaxial pre-straining (p=-0.5) at different levels (c:p=0.05, 0.1) on in-plane plane 

strain tension is observed in Figure 4.5. The curves are compared with the monotonic in-plane 

plane strain tension curve (as received). Figure 4.5a shows the stress-strain (a-11 - & 11 ) response 

of the imposed deformation. From this figure it can be explained that uniaxial stretching has a 

much lower hardening rate than in-plane plane strain tension. At larger strains (&11 > 0.4) an 

increase in flow stress due to the pre-strain is observed. Figure 4.5b shows the evolution of void 

volume fraction/, with the imposed deformation. It is observed that due to a uniaxial pre-strain 

(CASE #4),f 
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Figure 4.4a: Calculated a11 vs. c u curves for uniaxial stretching after the sheet has been pre­
strained to different levels of in-plane plane strain tension (p=O). 

reaches the fracture point at a slightly higher strain than the monotonic equi-biaxialloading. This 

implies that if a sheet material is pre-strained uniaxially (CASE#4) it increases the strength of the 

material due to the delay of damage than when compared to a single monotonic in-plane plane 

strain tension loading. 
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F1gure 4.4b Calculated f vs. E: 11 curves for uniaxial stretchmg after the sheet bas been pre­
strained to different levels of in-plane plane strain tension (p =O) 

4.3.6 Effect ofan In-plane Plane Strain Pre-strain on Equi-biaxial Stretching 

Figure 4.6 shows the curves obtained under eqm-biaxial stretchmg (p =1) after pre-stramed 

under in-plane plane strain tension (p =0) to different lev~ls {E:p=0.05 0.1). The curves are 

compared to the monotonic equi-biaxial stretching curve (as received). Figure 4.6a shows the 

stress-stram (cr11 - &11 ) response of the Imposed deformatiOn. As shown in figure 4.la, the 

hardenmg rate m in-plane plane stram tension is much higher than that 111 equi-biaxial stretching. 

When the strain path is changed from in-plane plane strain tension to equi-biaxial tenswn, an 

abrupt drop in hardening rate is observed. With further deformation (&11 > 0.2) , the pre-strain 

results in an mcrease of the flow stress . 
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Figure 4.5a : Calculated CJ 11 vs. c: 11 curves for in-plane plane strain tension after the sheet has 
been pre-strained to different levels of uniaxial stretching (p=-0.5). 
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Figure 4. 5b : Calculated f vs. £ 11 curves for in-plane plane strain tension after the sheet has been 
pre-strained to different levels of uniaxial stretching (p=-0.5). 

Figure 4.6a shows that the material fails at a slightly higher strain &11 , when pre-strained 

under in-plane plane strain tension when subjected solely to a monotonic equi-biaxial stretch. 

This phenomenon can be described with Figure 4.6b which shows the evolution of void volume 

fraction f, when the material is subjected to CASE #5. The curves are compared with the 

monotonic equi-biaxial stretching curve. Due to pre-straining, f reaches the fracture point at a 

slightly higher strain than that reported from the monotonic equi-biaxial stretching curve. These 

results indicate that if a sheet material is pre-strained under in-plane plane strain tension and then 

loaded in equi-biaxial stretching (CASE #5), the material is strengthened due to the slow rate of 

damage formation (void volume fraction) when compared to a monotonic equi-biaxial stretch. 
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Figure 4.6a: Calculated a 11 vs. c: II curves for equi-biaxial stretching after the sheet has been pre­
strained to different levels of in-plane plane strain tension (p=O). 
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Figure 4.6b : Calculatedfvs. r 11 curves for equi-biaxial stretching after the sheet has been pre­
strained to different levels of in-plane plane strain tension (p=O). 

4.3. 7 Effect ofEqui-biaxial Pre-Strain on In-Plane Plane Strain Tension 

Figure 4. 7 shows the curves obtained under in-plane plane strain tension (p =0) after pre-

straining equi-biaxially (CASE #6) (p =1) to different levels (rp=0.05, 0.1). The curves are 

compared to the monotonic in-plane plane strain tension curve (as received). Under monotonic 

loadings, work-hardening rate under equi-biaxial stretching is lower than that under in-plane 

plane strain tension (see Figure 4.la). When the strain path is changed from equi-biaxial tension 

to in-plane plane strain tension to equi-biaxial tension, an abrupt increase in hardening rate is 

observed. With further deformation {c11 > 0.3), the pre-strain results in a decrease of the flow 

stress (Figure 4.7a). 
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Figure 4. 7a: Calculated CJ 11 vs. c11 curves for in-plane plane strain tension after the sheet has 
been pre-strained to different levels of equi -biaxial stretching (p = 1). 
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Figure 4.7b: Calculatedfvs. E:u curves for in-plane plane strain tension after the sheet has been 
pre-strained to different levels of equi-biaxial stretching (p= 1). 

Figure 4. 7a also shows that the material fails at an earlier strain , when pre-strained & 11 

equi-biaxially than when solely subjected to a monotonic in-plane plane strain tension load. This 

phenomenon can be explained using Figure 4.7b which shows the evolution of void volume 

fraction! with the imposed deformation. In this figure the evolution of/subjected to a CASE #6 

loading is compared with a monotonic in-plane plane strain tension load. Due to the pre-

straining, f reaches the fracture point at a smaller strain than that observed in the monotonic in-

plane plane strain tension condition. 

These results imply that if a sheet material is pre-strained equi-biaxially and then loaded 

under in-plane plane strain tension (CASE #6), it is weakened when compared to in-plane plane 

strain tension. This weakening is attributed to the increase of damage formation (void volume 

fraction). 
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CHAPTERS 


EFFECTS OF MATERIAL PROPERTIES AND STRAIN PATH CHANGE 

ON FORMING LIMIT DIAGRAMS 

5.1 Introduction 

The purpose of a forming limit diagram (FLD) is to define a safe forming region such that when 

operating in this region, small changes in material and forming process conditions will not cause 

failure. The main objective of processing sheet metal is to ensure that the strain does not reach 

the limits of the safe forming region. Therefore, it is important to develop a numerical tool that 

can accurately predict the changes in a forming limit curve in response to the changes in material 

and process properties. 

In this Chapter, the dependence of mechanical properties and strain path change on sheet 

metal formability is investigated. All the simulations are based on the Gurson damage model 

and the M-K approach described in Chapter 3. 

5.2 Typical Material 


The present simulations were carried out for a typical material matrix specified by: Hb!Ha=l.O, 


q 1=1.5, q2 =1.0, rr0 =1, c: 0 = a0/E= 0.002, v = 0.3,/0 = 0.01, n= 0.2 and m= 0.01. Void nucleation 

is assumed to be strain controlled withfn = 0.04, nucleating around a plastic strain of C:n = 0.3 

with a standard deviation of Sn = 0.1 at outside the band (homogeneous material). For inside the 

band (inside the groove),fn = 0.05 thus, iJfn = 0.01, and all other parameters are the same as in 

the material outside the band. The void coalescence effect is included usingfc= 0.2 andft = 0.25. 

Unless otherwise mentioned, these values of the geometrical and mechanical parameters will be 
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used in all the simulations in Chapter 5. It should be also noted that in the simulations we have 

scanned every 5 degrees of a range of l.fl and then determined the critical groove angle that gives 

the minimum localization strain, i.e. the limit strain. 

5.3 Effect of Geometric Imperfection (Ht/Ha} 

The geometric imperfection has been expressed in terms of a reduction in thickness, but there are 

other imperfections possible such as inclusions, texture variations, and surface roughness 

[Needleman and Trintafyllidis, 1978]. Figure 5.l(a) shows the effects of initial imperfection on 

the predicted FLDs for the material described in Section 5.2. As expected, the smaller the initial 

imperfection (1-Hb!Ha), the larger the critical strain for sheet necking. The effect of the initial 

geometric imperfection on the void volume fraction is shown in Figure 5.l(b). Here, only equi­

biaxial tension (p= 1.0) is considered since the highest imperfection sensitivity is observed under 

this strain path [Needleman and Tvergaard; 1984]. It is found that the void volume fraction 

increases more rapidly in cases with larger imperfections. 

5.4 Effect of Material Properties 

5.4.1 Effect of Strain Rate Sensitivity (m) 

The effect of the strain rate sensitivity on localized necking has been studied by vanous 

researchers [Hutchinson and Neale, 1978; Needleman and Tvergaard, 1984; Wu et al., 1997]. It 

has been generally accepted that Strain rate sensitivity has a significant effect on localized 

necking. Figure 5.2 shows the change in the predicted FLD when the value of the material rate 

sensitivity m is increased by a factor 10 tom= 0.01 and by a factor 20 to m=0.02. Increasing the 

rate sensitivity in (3. 7) tends to enhance the hardening at large strains. Consistent with this, we 
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see from figure 5.2 that necking retardation is observed for the whole range of p as the rate 

sensitivity m is increased. 
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Figure 5.1: Effect of initial geometric imperfection on (a) the predicted FLDs, and (b) void 
volume fraction inside the band (/) at p=1. 
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Figure 5.2: Effect of strain rate sensitivity on the predicted FLDs. 

5.4.2 Effect of Strain Hardening Exponent (n) 


The effect of the strain hardening exponent on the FLD has been studied extensively [see e.g. 


Hutchinson and Neale, 1978; Needleman and Triantafyllidis, 1978; Wu et a!., 1997]. The 


parameters n govern the strain hardening through the power-law expressiOn 


g(&) = 0"0 (Yeo + 1Jn (3.8). Figure 5.3(a) shows the predicted FLDs for various hardening values 

n=0.2, 0.3, and 0.4. It is clearly seen that a larger value of n increases the limit strain, which can 

be attributed simply to the fact that hardening increases with increasing n. The effect of 

hardening on the void volume fraction inside the band for equi-biaxial tension (p= 1) is observed 

in Figure 5.3(b). For the material with the highest hardening material (n=0.4), the void volume 

fraction reaches f> before localized necking occurs. 
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Figure 5.3: Effect of hardening on (a) the predicted FLDs, and (b) void volume fraction inside 
the band (/) at p=1. 
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5.4.3 Effect of Groove Angle (If/) 

As mentioned previously, in the simulations we have scanned every 5 of a range of 1f1 and then 

determined the critical groove angle that gives the minimum localization strain, i.e. the limit 

strain. For the materials considered in this study, It is found that a groove oriented at If/= 0 is 

favorable for necking when 0 s; p s; 1 , while the critical groove orientation increases from 0 at 

p =0 to 25° at uniaxial tension ( p =-0.5 ). This effect of groove orientation can be also 

observed in Figure 5.4, where cases with groove orientations restricted to 1f1 =0 are also 

included. It is noted that the effect of groove orientation on FLDs was carried out in Figure 5.4 

for materials with different strain rate sensitivities (m=0.001, 0.01 and 0.02). 

5.4.4 Effect of Elastic Modulus (E) 

The effect of the modulus of elasticity has been considered in the crystal plasticity based FLD 

analysis carried out by Wu et a!., [ 1997]. They found that elasticity has a significant effect on the 

limit strains near the in-plane plane strains condition (p ~ 0). In the present study, however, there 

was no significant effect of the modulus of elasticity on the prediction of the forming limit 

diagram. 

5.5 Effect of Initial Void Volume Fraction 

Initial void volume fraction has a significant effect on formability for the strain paths near equi­

biaxial tension (p ~ 1). This effect is shown in figure 5.5(a) where the initial void volume 

fraction is varied as 0.01, 0.03, and 0.05. Limit strain is highest near the equi-biaxial tension 

condition for lower void volume fractions (/0 =0.01) and decreased as the void volume fraction 
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increased. In Figure 5.5(b) the effect of initial void volume fractions (j0) on the development of 

the void volume fraction for the equi-biaxial tension condition (p= 1) is observed. When a high 

initial void volume fraction is considered the FLD attains the maximum void volume fraction at 

a lower strain (c: u= 0.25) compared to the other two conditions. Because the initial void volume 

fraction is higher it reaches void coalescence ifc=O .15) earlier than the other two conditions. As a 

result, necking occurs at an earlier stage than other two conditions for a strain ratio near unity. 

5.6 Effect of Void Nucleation 

To study the effect of void nucleation the material imperfection is selected as a thickness 

imperfection such that Hb/Ha=0.99, rather than the difference in void nucleation as described in 

Section 5.2. This is to avoid the scenario of not being able to reach necking for the no nucleation 

condition. In Figure 5.6(a) the effect of void nucleation on the forming limit curve is observed. 

Obviously, for strain controlled void nucleation necking occurs earlier in the case with void 

nucleation than in the case of without void nucleation. In the no nucleation condition, the void 

volume fraction is increased solely by void growth, whereas for strain controlled nucleation, both 

nucleation and void growth contribute to increase of the void volume faction. The void volume 

fraction reaches its maximum for strain controlled nucleation at a much early strain. This 

acceleration of void growth is observed in Figure 5 .6(b ), where the effect of void nucleation on 

the void volume fraction inside the band for p=l is shown. With a void nucleation, the void 

volume fraction reaches its maximum at a lower strain value (c:u= 0.32) compared to the no 

nucleation condition (c:u= 0.55). 
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Figure 5.4: Effect of initial groove angle ('I') on the predicted FLDs. 
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Figure 5.5: Effect of initial void volume fraction on (a) the predicted FLDs, and (b) void volume 
fraction inside the band (/) at p=1. 
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Figure 5.6: Effect of void nucleation on (a) the predicted FLDs, and (b) void volume fraction 
inside the band(/ ) atp=1, with an initial geometric in-homogeneity, H &IHa=0.99 

5.6.1 Effect of Void Volume Fraction of Nucleating Particles ([,,) 

Figure 5 7(a) displays the effect of additional volume fraction of void nucleating particles inside 

the band (~JJ on the fonmng limit diagram. This effect has been studied previously 111 the 

literature [Needleman and Tvergaard, 1984] Here, the material is the same material described in 

Section 5.2, and t1fn takes on various values: 0.0001 , 0.001, 0.01, and 0.05 In all cases the void 

coalescence effect 1s included. It is observed that the shape of the FLD IS sensitive to !1f,, As 

expected, the smaller the !1j,1 , the larger the cntical strain for sheet neckmg. It ts important to 

note that in the cases with ~j;1=0.001 and 0.0001, ductile fracture occurs before localized necking 

is detected for the stram paths near the equi-biaxial tension ( p ~ 1). 

·--­ ---· No nucleation 

0.3 0.4 0.5 0.6 
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5.6.2 Effect of Void Nucleation Strain (en) 

In the typical material (Section 5.2) void nucleation is controlled by strain. Nucleation strain En is 

defined as the strain at which void nucleation starts to occur. In Figure 5.8 (a) the effect of the 

nucleation strain on the forming limit diagram is displayed. 
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Figure 5.7: Effect ofvoid volume fraction of nucleating particles (ilfn) on the predicted FLDs. 

It is found that the predicted forming limit curve moves upward with increasing the 

nucleation strain. When the nucleation strain is lower (cn=O.l) void nucleation starts at an earlier 

stage compared to the other two nucleation strain values. As void nucleation quickens it causes 

the necking to occur earlier. Similar observations were made by Chu and Needleman [ 1979] and 

Saje eta!. [1980]. In Figure 5.8 (b) the effect of the void nucleation strain on the void volume 

fraction inside the band for p= I is observed. As expected, the void volume fraction increases 

much faster in a material with a lower nucleation strain than in a material with a higher 

nucleation strain. 
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Figure 5.8: Effect of void nucleation strain on (a) the predicted forming limit, and (b) void 
volume fraction inside the band (/) at p= 1. 
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5.6.3 Effect of Standard Deviation (Sn) 

In this study nucleation is assumed to be strain controlled, and Sn is the standard deviation of the 

normal distribution curve of void nucleation. In figure 5.9 the effect of standard deviation on the 

forming limit curve is displayed. All the other material properties are same as in Section 5.2, and 

values assumed for the standard deviation are: 0.09, 0.1, and 0.2. From Figure 5.9 it can be 

observed that the standard deviation has an insignificant effect on the limit strains except for the 

strain paths near the equi-biaxial stretching ( p ~ 1 ), where the predicted limit strain is found to 

be very sensitive to mechanical properties of the material. 

5.7 Effect of Void Coalescence ifc) 

The void coalescence, proposed by Tvergaard [1982], is described in (3.25) and (3.26). The 

effect of void coalescence on FLDs is studied in Figure 5.10(a), where different coalescence 

strains fc =0.1, 0.15 and 0.2 are considered. It is observed that the smaller the void coalescence 

strainfc, the smaller the critical strain for sheet necking. It is also found that the effect of 

coalescence is most effective nearp ~ 1. In Figure 5.10(b) the effect of void coalescence on the 

void volume fraction inside the band for p= I is observed. For a higher void coalescence strain, 

the void volume fraction reaches its maximum at a higher strain. This phenomenon was also 

observed by other researchers [see e.g. Needleman and Tvergaard, 1984]. 
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Figure 5.9: Effect of standard deviation (Sn) on the predicted FLDs. 
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Figure 5.10: Effect of void coalescence on (a) the predicted FLDs, and (b) void volume fraction 
inside the band (f) at p=1. 

5.8 Effect of Strain Path Changes On Forming limit Diagram 

From literatures, changes in deformation modes have been observed in parts of a material 

undergoing a forming operation [see e.g. Graf and Hosford, 1993; Brunet and Morestin, 1998]. 

In a single process such changes may be gradual but for multiple processes abrupt changes are 

often expected. It has been observed from various studies that changing the strain path can 

increase or decrease the limit strain [see e.g. Nakazima eta!., 1968; Laukonis and Ghosh, 1978; 

Needleman and Tvergaard, 1984; Grafand Hosford, 1993]. 

In this chapter, the effect of strain path change on FLDs is numerically studied, based on 

different non-proportional loading histories, which are combinations of two linear strain paths. 

The first strain path, the pre-strain operation, is common to all loading histories. Subsequent 
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linear deformation paths are imposed by varying the strain-rate ratio for the development of an 

FLD applicable to that given pre-strain path and amount. In the present study we consider three 

pre-strain conditions, namely uniaxial tension (p=-0.5), in-plane plane strain tension (p=O), and 

equi-biaxial tension (p=l.O). 

5.8.1 Predicted Forming Limit Diagram Pre-strained with Uniaxial Stretching (p= -0.5) 

For studying the effect of uniaxial tension on the limit strain, the material is first strained to a 

level of c;P and then another linear strain path is applied (p=constant) until the necking criterion is 

reached. In this way the whole FLD is determined by taking all the limit strain points for all 

strain ratios ( -0.5 2: p ::::;1 ). 

Figure 5.11 describes the predicted FLDs when the sheet is pre-strained to different levels 

(c;p =0.05 and 0.01) in uniaxial stretching. From the figure it is observed that the forming limit 

diagram is moved left and upward compared to the as received sheet. More specifically, pre­

straining slightly increases the major limit strain for in-plane plane strain tension, but & 11 

significantly enhances the limit strain & 11 for equi-biaxial stretching. This observation is in good 

agreement with other researchers [Graf and Hosford, 1993; Wu et al., 1998]. 

5.8.2 Predicted Forming Limit Diagram After an In-plane Plane Strain Tensile Pre-strain 

(p= 0) 

The effect in-plane plane strain tension (p=O) on the predicted limit strains of sheet metal 

is studied by first pre-strain to different levels (c;p=0.05 and 0.1) in in-plane plane strain tension 

and then apply another linear strain path (p=constant) until the necking criterion is reached. In 

this way the whole FLD is determined by taking all the limit strain points for all strain ratios (­
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0.5 2: p :::;1). Figure 5.12 describes the predicted forming limit diagram when the sheet is pre-

strained to different levels (c:p =0.05 and 0.01) in in-plane plane strain tension. As expected, the 

limit strain for in-plane plane strain tension is not affected by the pre-straining. The FLD shape 

changes from U towards V due to the pre-straining. For uniaxial stretching, it is found that the 

pre-straining has almost no effect on the limit strain E11 , but it dramatically decreases the limit 
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Figure 5.11: Predicted FLDs when the sheet is pre-strained to different levels (c:p =0.05 and 0.01) 
in uniaxial stretching (p=-0.5). 

strainE22 • For equi-biaxial tension, the pre-straining significantly increases the limit strain E11 

but decreases the limit strain E 22 • This observation is also m a good agreement with other 

researchers [Graf and Hosford, 1993; Wu et al., 1998]. 
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Figure 5.12: Predicted FLDs when the sheet is pre-strained to different levels (cp =0.05 and 0.01) 
along the in-plane plane strain tension (p=O). 
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Figure 5.13: Predicted FLDs when the sheet is pre-strained to different levels (c:p =0.05 and 0.01) 
in equi-biaxial stretching (p =I). 
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5.8.3 Predicted Forming Limit Diagram After an Equi-biaxial Tensile Pre-strain(p= 1) 

For studying the effect of equi-biaxial stretching on the limit strains, the sheet is first strained to 

c:p=0.05 and 0.1, respectively, and then another linear strain path is applied (p=constant) and 

taken up to the necking criterion. In this way, the whole FLD is determined by taking all the limit 

strain points for all strain ratios (-0.5 ?_p 9). 

Figure 5.13 gives the predicted FLDs when the sheet is pre-strained to different levels (c:p 

=0.05 and 0.01) in equi-biaxial stretching. It is clearly observed that the forming limit diagram 

shifts right and downward in relation to the as received sheet. The limit strain is reduced for both 

the in-plane plane strain and equi-biaxial strain conditions. It can be said that equi-biaxial pre­

straining decreases the formability of sheet metal with respect to subsequent proportional loading 

conditions. Similar conclusions have been made by Graf and Hosford [1993], Wu et al. [1998] 

and Alsos et al. [2008]. 

5.9 Effect of Strain Path Change on the Forming Limit Stress Diagram (FLSD) 

As demonstrated previously, FLDs are very sensitive to strain path changes. There is no single 

curve in strain space that represents the forming limit, and this limits the use of conventional 

FLDs for assessing forming severity because the straining path of material elements in a real 

sheet metal forming process is usually not known with any certainty. Therefore, finding a single 

path-independent curve to characterize forming limits is of considerable practical interest. It has 

been confirmed that the Forming Limit Stress Diagram (FLSD), developed by Arrieux et al. 

[ 1982] and others, is almost independent of strain path. Its utility has been promoted as the 

solution to the analysis of multi-stage forming processes. 
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In this section, the stress-based forming limit diagram under linear and complex strain 

paths is constructed. The simulations are carried out based on the M-K and Gurson model. A 

comparison between the concept of strain-based forming limits and stress-based forming limits is 

* * 
presented. Up to this point, all the FLDs were constructed in strain space with £II and £22 

representing the major and minor limit principal strains, respectively. In using FLSDs, the major 

* * 
and minor principal stresses O"II and 0"22 outside the band at necking are used to represent the 

forming limits. 

Similar to the analysis of FLDs earlier, a two stage strain path is used to construct 

FLSDs. The first stage is the pre-strain, followed by the second stage, a reloading in another 

strain path. This is done for all the strain ratios from -0.5 to 1 (i.e. from uniaxial tension through 

in-plane plane strain tension to equi-biaxial stretching). 
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Figure 5.14: Predicted FLSDs when the sheet is pre-strained to different levels (cp =0.05 and 
0.01) in uniaxial stretching (p=-0.5). 
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The effect of uniaxial stretching on the FLSD is studied in Figure 5.14 which corresponds 

to the strain based FLD in Figure 5.11. In both figures, the as received material properties and 

the necking condition are the same. It can be seen that pre-straining in uniaxial stretching 

(c:p=0.05, 1.0) does not affect the FLSD diagram much. 

The effect of in-plane plane strain tension on the FLSD is shown in Figure 5.15 which 

corresponds to the strain based FLD in Figure 5.12. Again, it is observed that the in-plane plane 

strain tension pre-straining has no significant effect on FLSDs. 
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Figure 5.15: Predicted forming limit stress diagram when the sheet is pre-strained to different 
levels (c:p =0.05 and 0.01) of in-plane plane strain tension (p=O). 

Finally, the effect of equi-biaxial stretching pre-strain on FLSDs is shown in Figure 5 .16, which 

corresponds to Figure 4.13 if results are presented in the strain space. Similar to the previous two 

pre-straining conditions, equi-biaxial pre-straining does not affect the FLSD. It can be concluded 

numerically that, at least in comparison to the FLD, the FLSD is not sensitive to strain path 

changes. 
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Figure 5.16: Predicted FLSDs when the sheet is pre-strained to different levels (cp =0. 05 and 
0. 0 I) in equi -biaxial stretching (p =I). 

Therefore, the calculated limit stresses under proportional loading paths could be used as 

the Forming Limit Stress curve (FLSc or simply FLSD) for the sheet. Our numerical results also 

suggest that the FLSD is much more favourable than the FLD in representing forming limits in 

the numerical simulation of sheet metal forming processes. 
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CHAPTER6 


CONCLUSIONS AND FUTURE WORK 


6.1 Conclusions 

In the present study, the Gurson damage model has been first applied to investigate the effect of 

strain path change on damage evolution and work hardening of sheet metals. The Gurson model, 

in conjunction with the M-K approach, has been also used to predict the Forming Limit Diagram 

(FLD) for sheet metals. The effects of geometrical and mechanical properties of the sheet metal, 

as well as the strain path change on the predicted FLDs have been assessed in detail. 

Furthermore, the strain path dependency of the Forming Limit Stress Diagram (FLSD) has been 

investigated. In light of the study the following conclusions can be drawn: 

1. 	 The geometrical imperfection, H&IHa, has a significant influence on the FLD. The 

smaller the initial imperfection (1- H&!Ha), the larger the limit strain for sheet necking. 

2. 	 A groove oriented at If/= 0 is favorable for necking when 0.::; p.::; 1, while the critical 

groove orientation increases from 0 at p =0 to 25° at uniaxial tension ( p =-0.5 ). 

3. 	 Strain rate sensitivity, m, has a significant effect on the development of forming limit 

diagrams. Necking retardation is observed for whole range of strain ratios as the rate 

sensitivity is increased. 

4. 	 A larger value of n increases the limit strain, which can be attributed simply to the fact 

that hardening increases with increasing n. 

5. 	 The modulus of elasticity, £, has no noticeable influence on the limit strain. This 

contradicts previously reported results in the literature [Wu et al., 1997]. 
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6. 	 Initial void volume fraction, f 0 , has a significant effect on the forming limit curve for 

strain ratios near unity, p ~ 1. Limit strain is found highest near the equi-biaxial tension 

condition and varies inversely with the amount of initial damage, as expected. 

7. 	 Void nucleation factors have a significant effect on forming limit diagrams. For strain 

controlled nucleation, necking occurs earlier than when the nucleation condition is not 

included. Also, the forming limit curve changes its shape for smaller difference in void 

volume fraction of nucleating particles, fJ.j,,, and the limit strain attains a higher value for 

all strain ratios [when it is smaller]. When nucleation strain, En, is increased, the FLD 

moves upward. The standard deviation has an insignificant effect on the limit strains 

except for the strain paths near the equi-biaxia1 stretching ( p ~ 1), where the predicted 

limit strain is found to be very sensitive to mechanical properties of the material. 

8. 	 The smaller the void coalescence strainfc, the smaller the critical strain for sheet 

necking. The effect of/c is most effective near the equi-biaxial stretching. 

9. 	 Changing the strain path can increase or decrease the limit strain. The predicted effects 

of the strain path changes on the calculated FLDs are found to be similar to the 

experimental observations. 

10. 	 Under the uniaxial tension pre-straining, the forming limit diagram is moved left and 

upward compared to the as received sheet. More specifically, pre-straining slightly 

increases the major limit strain for in-plane plane strain tension, but significantly e11 

enhances the limit strain e 11 for equi-biaxial stretching. 

11. The FLD shape changes from U towards V due to the in-plane plane strain tension pre­

straining. For uniaxial stretching, the pre-straining has almost no effect on the limit 
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& , but it dramatically decreases the limit strain &22 . For equi-biaxial tension, the 

pre-straining significantly increases the limit strain & 11 but decreases the limit strain & 22 • 

12. Under the equi-biaxial tension pre-straining, the forming limit diagram shifts right and 

downward in relation to the as received sheet. The limit strain is reduced for both the in­

plane plane strain and equi-biaxial strain conditions. 

13. 	While FLDs are very sensitive to strain path changes, the FLSD is not sensitive to strain 

path changes. Therefore, the calculated limit stresses under proportional loading paths 

could be used as the Forming Limit Stress curve (FLSc or simply FLSD) for the sheet. 

Our numerical results also suggest that the FLSD is much more favourable than the FLD 

in representing forming limits in the numerical simulation of sheet metal forming 

processes. 

6.2 Future Work 


The work can be extended by studying the following: 


• 	 Effect of anisotropy on strain path deformation 

• 	 Effect of superimposed hydrostatic pressure on the developed model incorporating 

Gurson's damage criterion. 
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APPENDIX A 


In order to increase the time step size, we use the tangent modulus method for a rate-sensitive 

elastic-plastic constitutive model developed by Peirce et al. [ 1984]. We define the increment of 

effective viscoplastic strain by 

(A-1) 


with 

(A-2) 


Differentiating equation (3.6) we get 

a¢= p = 3a' + fq1q2 sinh(q20'm )1 (A-3a) 
aa (5 2 (Y 2(5 ' 

(A-3b) 

a¢= 2q cosh(q20'm)- 2q f
af I 2C5 3 

From the consistency condition (3.17) and (3.24) we have 

_:_ 

(p :~+ ~j j) 
0'= = a¢ 


aC5 


(A-3c) 

a¢ a¢)-'- .v ( )a¢. p a¢_,_ 1 a¢ .v::::>-+A- 0'=-p.a- 1-/ -I.D -a-&--B-I.a (A-4)( aC5 af af af 3 af 
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" ( )ad. ad. -'- 1 ad. " p:a+ 1- f -'~'I:DP +a-'~' &+-B-'~'I:a 

...:.. af af 3 af 


~ (} =- a¢ a¢ 
-+A­
aCf af 

Now from equation (A-3) and (A-4) all the variables are determined separately such that 

(A-5a) 

(A-5c) 

In equation (A-5c) q is determined as 

1 a¢
q=p+-B-1 

3 af 

Substituting equation (A-2) into equation (3.16) it can be found that 
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. (1- J)cn~ (1- J)O" _,_ (1- J)O" /)A at _,_ (1- J)O" /)A at_,_
X= = + aut-O'+ aut-£ 

a : p a : p 
£ 1 a : p aCf a : p a& 


. . (1- J)Ci /)A at _,_ (1- J)Ci /)A at_,_

=>X= X1 + au!-=0' + aut-=£ 

a : P a(j' a : p ac: 

_,_ ( )- _,_(q:L:(D-iP)+(1-J)~¢i(I:P)+a~¢t)
=> . = . + ac .()~t - 1- f (j' ()~t ac if if 

X Xt a& X a: p aO" (a¢ a¢)-+A­
aCf ar 

. _ . .e~ (1- J)Ci at 1 
=> x- x~ + x t . a- ar~. ar~. 

a .p (j' _'I' +A-'~' 

aO" aj 

. L . _ 1_ a¢ I . p _ aa¢ a : p + a : p a&. ( a&.)-1 (a¢ + Aa¢ )} (A-6){q · · P ( f) af ( · ) af (1- J)Ci (1- J)Ci a& aCf aCf af 

_(1-j)O" B~tat (q:L:D) 
(j: p aCf (a¢ a¢)-+A­

aCf af 

Let, 

~ =-B~t (1- J)Ci at 1 . 
a : p aCf a¢ + Aa¢ ' 


aCf af 


H=[ :L: -(1-f)a¢(1:P)-aa¢ a:p + a:p at(at)-~(~+Aa¢)J 
q P af af (1- J)Ci (1- J)Ci a& aCf aCf af 

1 1
So, Finally i = - -%

1 
+-~--Q: D (A-7) 

1+~ 1+~ H 
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Here, here Q =q : L 

Putting the value of i into equation (3 .14) 

~ = L : (D - D P ) = L : D - iP 
1 1 

=L: D-(--%1 +-~--Q: D)P (A-8) 
1+~ 1+~ H 


1
=(L--~--PQ):D-_!_%1 
1+~ H 1+~ 
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APPENDIXB 

From equations (3.27), (3.33) and (3.34), for the material inside the band: 

While for the material outside the band: 

(B-2) 

Note the range of Greek tensor indices a, fJ =1,2 , while italic indices run from 1 to 3. 

The equilibrium condition at the band interface for the current configuration is given at 

timet by 

(B-3) 

At time (t+dt) we have 

Dividing equation (B-3) by h8 dt and let .; =	.!:._ we find 
h8 

N . 8 - ~N . N (.; - 8 ) 	 -+ N J 8 +.;(N h N (J+- - (N h8 
(J -+ J 

a a af3 - a a af3 dt a af3 a af3 a h8 a af3 a h a af3 

. . 

Let !!_ =D 33 , ~ =D~ and apply (B-1) and (B-2), the above equation becomes 
h h8 

(B-4) 
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Where 

And 

R{JK =N a L ~{JKy N r 

From the plane stress condition outside the band ( 6-33 =0) 

We have 

D33 = a=-33 +[(1+ p)91(-(L3311 +pL3322))DII 

L3333 -% 

From the plane stress condition inside the band ( a-:3 =0 ): 

We get 

Finally, equations (B-4) and (B-5) can be written in the matrix form: 

with 

And 

(B-5) 

(3.36) 
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More specifically, 

2 8 8 8 Nz 8
=N1 L1212+NIN2Lizzz+NIN2Lzz12+ 2Lm2 

2 8 2 8 2 8=Nl L\212+ NIN2L\222+N2L2222 

B B 

(L B 8)N2 (2L )N (L8 Q"ll-o-22)N2= 1111-o-\\ I + 1112 \N2 + 1212- 2 2 
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2 

8 8 
= R - 8 - N N ()II+ () 22 

12 ()12 I 2 
2 

8 8 
- (L 8 8)N2 [L 8 L 8 ()II+0"22 ]NN (L 8 8 )N2 
- 1112 -()12 I + 1122 + 1212 - I 2 + 1222 -()12

2 

8 8 

=R - N 2 8 N 2 () II - () 22 


22 ? ()?? + I- -- 2 

8 8 

8 ()II -()22 )N2 (2L )NN (L 8 8 )N2 
=(L I212 I + 2212 1 2 + 2222 -0"22 2

2 

- 8 8 8 
Rl3 = N a L a i33 = NI LII 33 +N2LI 233 

- 8 8 8 
R 23 = N a L a233 = Nl L 1233 +N2 L 2233 

- 8 
R 33 =L 3333 

The nght hand side of (3.36) is 

-'-8 8 8
f 3 =0"33 -(L 3311 +pL 3322 )DII 

with 
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APPENDIX C 


Flow Chart for Calculating One Point (Strain or Stress Ratio) in 


Forming Limit Diagram (FLD) 
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