AIR POLLUTION MODELLING AND FORECASTING USING
DATA-DRIVEN METHODS



AIR POLLUTION MODELLING AND FORECASTING IN
HAMILTON USING DATA-DRIVEN METHODS

By
TARANA A. SOLAIMAN
Bachelor of Science in Civil Engineering (Bangladesh Univ. of Engg. & Tech.)

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Master of Applied Science

McMaster University
Department of Civil Engineering

© Copyright by Tarana A. Solaiman, June 2007



MASTER OF APPLIED SCIENCE (2007) McMaster University

(Civil Engineering)

TITLE:

AUTHOR:

SUPERVISORS:

NUMBER OF PAGES:

Hamilton, Ontario

Air Pollution Modelling and Forecasting in Hamilton Using

Data-Driven Methods

Tarana A. Solaiman

B.Sc. Engg. (Civil), (Bangladesh Univ. of Engg & Tech.)

Dr. Paulin Coulibaly, Dr. Pavlos Kanaroglou

xv, 162

i



Abstract

The purpose of this research is to provide an extensive evaluation of neural network
models for the prediction and the simulation of some key air pollutants in Hamilton,
Ontario, Canada. Hamilton experiences one of Canada’s highest air pollution exposures
because of the dual problem associated with continuing industrial emission and gradual
increase of traffic related emissions along with the transboundary air pollutions from
heavily industrialized neighboring north-eastern and mid-western US cities. These factors
combined with meteorology, cause large degradation of Hamilton’s air quality. Hence an
appropriate and robust method is of most importance in order to get an early notification
of the future air quality situation. Data driven methods such as neural networks (NNs) are
becoming very popular due to their inherent capability to capture the complex non-linear
relationships between pollutants, climatic and other non-climatic variables such as traffic
variables, emission factors, etc. This study investigates dynamic neural networks, namely
time lagged feed-forward neural network (TLFN), Bayesian neural network (BNN) and
recurrent neural network (RNN) for short term forecasting. The results are being
compared with the benchmark static multilayer perceptron (MLP) models. The analysis
shows that TLFN model with its time delay memory and RNN with its adaptive memory
has outperformed the static MLP models in ground level ozone (Os3) forecasting for up to
12 hours ahead. Furthermore the model developed using the annual database is able to
map the variations in the seasonal concentrations. On the other hand, MLP model was
quite competitive for nitrogen dioxide (NO;) prediction when compared to the dynamic
NN based models.

The study further assesses the ability of the neural network models to generate pollutant
concentrations at sites where sampling has not been done. Using these neural network
models, data values were generated for total suspended particulate (TSP) and inhalable
particulates (PMyo) concentrations. The obtained results show promising potential.
Although there were under-predictions and over-predictions on some occasions, the
neural network models, in general were able to generate the missing information and to

obtain air quality situation in the study area.
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Chapter 1

Introduction

1.1 Statement of the problem

Atmospheric pollution has been a concern of the past and present societies. The gradual
increase of industrialization and urbanization has a significant impact on present
environment (Kuylenstierna et al, 2002). During 1980s air quality problems became more
prevalent due to increase of motor vehicle emissions. In recent times, vehicular and
industrial emissions have been recognized as two major sources of urban air pollution.
Despite various regulations and acts for controlling industrial emissions, number of
vehicles on roads continue to increase, thus traffic related emission has become the most
significant source of present day urban air pollution (Blair, 2006). According to World
Health Organization (WHO), vehicular and industrial emissions cause death of 3 million
people world wide each year. Increase in green house gas emissions and temperature
(climate warming) would further degrade global air quality and global warming as

predicted by the IPCC fourth assessment report (IPCC, 2007).

1.2 Background

Human activities have always introduced many types of contaminants into the
environment. Pollutants emitted from industry and power plants, exhaust emissions from
transportation vehicles, radio nuclides from nuclear weapon tests and uranium mill
tailings and pesticides, emitted into the atmosphere have been affecting the quality of air

and has serious consequences for human health. Furthermore, the increasing demand of
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energy and increase in world’s population has driven the pollution level upward. The
short and long-term effects of air pollution are varied and profound. In recent years the
world has experienced acid rain, smog and depletion of the ozone layer as an outcome of
air pollutants. A significant human health risk, causing serious respiratory and other
illnesses is very common in areas with ‘poor’ air quality. Air pollution is thus,

considered as a major concern and requires urgent attention.

The complexity of the nonlinear nature of pollutant formation is aggravated by the wide
range of temporal and spatial variations of the meteorology and the chemical processes
involved. Faster chemical reactions directly affect the local air quality which strongly
depends on the local atmospheric conditions. Slower reactions on the other hand, have a
large impact over wider regional or global spatial scale (Abdul-Wahab et al., 2005). The
latter is particularly common in the province of Ontario, especially in southern Ontario
because of the major emission contribution from neighboring U.S. states. The elevated
level of ground level ozone and particulate matters are associated with distinct weather
patterns which affect air quality in the lower Great Lakes Region. These weather
conditions are strongly linked with slow-moving high pressure systems at south to the
lower Great Lakes resulting in long-range transport of the smog pollutants from
neighboring industrial and highly urbanized cities of the Mid-Western US and Ohio
Valley during warm south to south-westerly wind flows. However, the adverse affects of
this transboundary air pollution is more prevalent in western Ontario whereas the
pollutants originating within Ontario have high impact in south central Ontario i.e.
Greater Toronto Area (GTA) and other major population centers of Golden Horseshoe
which accounts to the 61% of the total damages within the region. According to 2003
demographic statistics, Ontario, the largest province of Canada is burdened with almost
$9.6 billion in health and environmental damages each year because of smog pollution of
which health damages comprises approximately 70% of the total economic damages
costing around $6.6 billion per year (Yap et al., 2005). A detailed list of the sources and

impacts of some major air pollutants are shown in Table A.1 (Appendix).
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As the sources and processes of environmental pollution are often originated from same
source, a proper action can produce multiple improvements, also known as ‘co-benefits’
to the quality of air. For example, controlling nitrogen oxides emission alone can reduce
smog, acid rain and green house gas warming. Therefore, an accurate modern and reliable
air pollution forecast can play a significant role in managing the air quality system in a
region. The complex relationship between meteorology and pollutant formation has been
well documented by many authors (Derwent et al., 1998; O’Hare and Wilby, 1995;
Abdul-Wahab et al., 2005) and attempts to develop satisfactory forecasting models have
been numerous. But model selection has always been problematic because of the

complex nonlinear relationship between the pollutant and the meteorological variables.

Neural networks are data-driven methods particularly suitable for the modeling of
complex nonlinear functions. Because of its ability to forecast based on training from a
wide range of historical databases, neural network based models have been shown to be
powerful techniques for modeling air quality. Therefore, in addition to numerical
methods available for air pollution modeling, simple-easy to use tools such as neural
networks are may be used where human and financial resources are not available to allow
complex numerical modeling. The proposed research aims to provide a comprehensive
investigation of the potential of emergent neural network models to provide a robust air

quality forecasting tool.

1.3 Research objectives

Although many researchers have undertaken several studies to model the air pollution
problem in Hamilton, there is no well established nonlinear data-driven tool which can
establish a good linkage between the historical and future pollutant situation based on
meteorological information. The ultimate objective of this research is to explore the

capability of the neural network models to capture this complex nonlinear meteorology-
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pollutant relationship in Hamilton census metropolitan area and to develop a good
forecasting tool for ground level ozone and nitrogen dioxide which are considered as two
major problems in this region. The specific objectives of this study can be summarized as

follows:

1. To investigate and characterize the complex nonlinear temporal and spatial variability
of key air pollutants and their dependence on the meteorology in Hamilton region;

2. To assess the applicability of emergent neural network architecture, namely time
lagged feedforward neural networks (TLFN), recurrent neural networks (RNN) and
Bayesian neural networks for air quality modeling;

3. To develop an air quality forecasting tool based on the most robust neural network
architecture;

4. To compare the optimal structures of these neural network architectures and
configurations with the benchmark conventional multilayer perceptron (MLP) in order to
determine the best possible predictions of ozone (O3;) and nitrogen dioxide (NO,)
concentrations in Hamilton;

5. To investigate the capability of the neural network model to simulate total suspended
particulates (TSP) and inhalable particulate matter (PM;o) concentrations and to explore
the methodologies for their improvements by introducing land use variables;

6. To explore the capability of the neural network models to simulate missing pollutant
values at sampled sites based on nearby stations;

7. Predict pollutant concentrations at locations where sampling has not been done.

1.4 Structure of the thesis

This thesis is composed of 8 chapters, including an introduction in chapter 1. Chapter 2
presents the geographical characteristics, meteorology and the air quality situation of the

study area of Hamilton. A brief description of the key air pollutants, meteorological and
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land use database used in the study has also been presented. Finally, the data filling

techniques applied to fill the missing gaps are described.

Chapter 3 covers literature reviewed for the purpose of this research. A comparison of
deterministic and statistical models has been presented. A brief review of the neural
network methodology, its architecture and configurations, advantages and limitations and

application in air quality modeling has also been presented.

Chapter 4 explains various neural network methodologies along with a presentation of
different model parameters and their significance in modeling. Finally a brief explanation

of the spatial interpolation techniques has been described.

Chapter 5 emphasizes aspects of network design. Input variables selection criteria and
the building of different neural network models have been presented. Lastly, a review of
the statistics used during the evaluation of different model performances has been

presented.

Chapter 6 and 7 summarizes the results obtained from the analysis for ground level
ozone (0Oj3), nitrogen dioxide (NO;), total suspended particulates (TSP) and inhalable
particulate (PMj¢) concentrations, respectively. A comparison of the forecasting
performances of four neural network models specifically time lagged feed-forward neural
network (TLFN), Bayesian neural network (BNN), recurrent neural network (RNN) and
multilayer perceptron (MLP) models are presented for O; and NO; concentrations. In
chapter 7 different cases of input variables are being tested using meteorological and land
use variables in order to get best cases for each station. The simulated concentrations
achieved with the best model structures are then interpolated spatially in order to obtain

the concentrations at unsampled sites.
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Finally concluding remarks and recommendations for future works have been

presented in chapter 8.
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Chapter 2

Study Area and Database

2.1 Study area: Hamilton census metropolitan area

2.1.1 Description of the study area

The area of the study (Fig. 2.1) is situated in the south-central Ontario which includes
the city of Hamilton (43°15° N, 79°51° W) and some part of the city of Burlington
(43°19° N, 79°48" W) located on the west shore of Lake Ontario approximately 100 km

southwest from the city of Toronto.
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Fig. 2.1: Location of study area in Ontario
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The area comprises of complex temporal and spatial climatic control because of its
geographic location, topographic variations, urban morphology and land-water contrasts
(Pouliou, 2005). It is located on the western end of the Niagara Peninsula and extended
around the westernmost part of Lake Ontario. The two major physical features of the city
are Hamilton harbor which marks the northern limit of the city and an approximately 100
m high Niagara escarpment which runs through the middle of the city thereby bisecting

it into ‘upper’ and ‘lower’ levels.

In fact, the geography of Hamilton has played a key role in its development. During the
18™ century Hamilton continued to boom below the mountain and started to expand
towards the escarpment as we reached closer to 19™ century. The outcome was the
formation of a special urban form with distinct spatial patterns of socio-economic status
within the city, with people of higher socio-economic status living in the south-west end
and those with lower status tending to settle along the harbor and industrial areas in the
north and northeast part of the city (Pouliou, 2005). The city is similar to many US cities
in the Northeast, Midwest and Appalachia regions in terms of its high population density
and decreasing heavy industry (Buzzelli & Jerrett, 2004). At present, Hamilton CMA is
Canada’s 9" largest metropolitan area. It is considered to be one of the fastest growing
metropolitan areas with 7% increase of population between 2001 and 2004 reaching from

0.49 million in 2001 to 0.71 million in 2004 (Statistics Canada, 2005).

Fig. 2.2 presents the highways and industrial areas around Hamilton region. A 200 km
shoreline from Oshawa in north and extending up to Stoney Creek, at the east of
Hamilton is continuously urbanized (Blair, 2006). Toronto-Hamilton region covering
from Oshawa around the west end of lake Ontario to Niagara falls, also known as the
‘Golden Horseshoe’ is known as the most highly industrialized section of the country
and Hamilton is the centre of it. Much of the development is occurring in the suburban
areas at the south and south western part of the city which also aid in the increase of the

traffic related emissions.
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Two heavily used major highways Queen Elizabeth Way (QEW) and Chedoke
Expressway (Highway 403) pass through the north-west and eastern part of the city. The
QEW is one of the North America’s oldest long-distance superhighways with over
200,000 average trips per day runs along the lakeshore from Toronto to the city of
Buffalo, New York, USA. Highway 403 forms a loop from Highway 401 in Woodstock,
passes through Hamilton and Burlington before terminating to the junction of Highway

401 and highway 410 in Mississauga.

Satellite

2087 Q»gmisbbe Tatraﬂatrscs Map dah Jr 0 'ngo';"zggns otise

Fig. 2.2: Highways and industrial area around Hamilton (Source: Google map, 2007 /
Imaginary Digital Globe, Earth Sat)
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2.1.2 Meteorology of the study area

The climate of Hamilton according to the Koppen Climate Classification is Dfa type:
humid continental, which means humid with severe winter and hot summer (KCCC,
2007). Lake Ontario, on the other hand tends to moderate the climate with cool summers

and warmer winters (Blair, 2006).

The average temperature during January is -6.0°C which may fall to -28°C during
extreme weather conditions. In July average temperature remains around 22.5°C which
may rise up to 38°C during extreme conditions. Humidity remains higher during summer
months; daytime highs in around 30°C with humidex values over 40°C during May
through early October days. Heavy rainfall can occur during some summer days but
weather rarely becomes extreme. Average annual precipitation recorded at Hamilton
Airport is 899 mm. The average January snowfall is 113 cm which varied greatly from
year to year. The escarpment has great effect on the climate in Hamilton; the weather of
the lower part of the city is milder than on the Mountain which during winter is more
prone to the lake effect snow carried by the wind. Again during summer temperature

inversion occurs making the downtown warmer than the Mountain especially at night.

2.1.3 Air quality in Hamilton

Hamilton experiences one of Canada’s highest air pollution exposures. For many
years the dual problem associated from continuing industrial emissions and gradual
increase of traffic emissions has been the main challenge to fight with. Like other cities in
Southern Ontario, Hamilton’s air is mainly affected by automobile, particularly truck
traffic emission in and around the city, residential fuel use and local point source
emissions from heavy duty industries within the city. The major industrial core situated in
the northeast end comprises of one of the North America’s largest steel making
complexes producing spatially concentrated emissions in the northeast end of the city.
For decades industrial emission was the major source of pollution in the region especially

for TSP. The major expressways also run along the same section of the city and the
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mobile sources are also contributing to the degrading air quality. The transportation
sector is a leading sector of nitrogen oxides emission. Commuters and heavy transport
trucks, in and around the city contribute much to the degrading quality of air.
Transboundary pollutions from neighboring US states-Ohio, Illinois and Michigan are
also key contributors of elevated ozone and particulate matters during summer season.
Especially the pollutants emitted from the coal fired generating stations in the heavily
industrialized Ohio River Valley, 1300 km southwest, travel hundreds of kilometers and
pollutes Hamilton’s air (Sahsuvaroglu and Jerrett, 2003). The Nanticoke coal-fired
generating station located on the northern shore of Lake Erie and 53 km south of the
Hamilton city, also contributes to the local air pollution when wind blows from south.
Moreover, the escarpment has a great effect on Hamilton’s air, especially during summer.
The north east lake breeze originated from Lake Ontario and the 100-120 m high
escarpment above Lake Ontario, located 3 to 4 km from its shore combines together to
produce advective temperature inversions. These inversions disperse pollutants from the
steel core area along the lakeshore towards large and densely populated parts of the city.
As a result, gradients of pollutants are created which run from the higher north east part

of the city to the lower south, west and east end of the city (Buzzelli & Jerrett, 2004).

Recent air quality trend suggests that there have been significant reductions of benzene,
benzopyrene, total reduced sulphur and sulphur dioxide (SO2) concentrations from
Hamilton’s air due to actions taken to reduce emissions from industrial sectors and to
smaller extent, the transportation sector. But less progress has been achieved in case of
the criteria pollutants; levels of PM;y and NO, remained unchanged and O;
concentrations increased over the last decade. Fig. 2.3 (a) and (b) shows a comparative
study of 10 year trends of O3 and NO, concentrations at some highly polluted sites within
Ontario. Ozone concentrations in Hamilton have increased compared to other Ontario
sites with highest (20%) increase in Hamilton Mountain. Although NO, concentrations
have decreased in 10 years, the rate of decrease in Hamilton is slower than other southern

Ontario cities.

11
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Between 2000 and 2004, 35 smog advisories were issued by Environment Canada for
95 days over Ontario (OME, 2004). In 2004, of eight total smog advisories released
covering 20 days, seven were issued due to elevated ozone levels. The remaining one was
issued due to higher levels of fine particulate matter with Air Quality Index (AQI)
reading 103 and particularly confined to the Hamilton area for two days, resulting from
the combination of local emissions and meteorological factors conducive to the build up
of pollutants which included a frontal inversion created by a cold front across the city
(OME, 2004). This clearly suggests that local impacts also contribute to the poor air
quality in the city.

2.2 Database

2.2.1 Air pollution database

For this research, a pollutant database was obtained from the Ontario Ministry of
Environment (MOE) s’ Air Quality Information System (AQUIS) database. The ambient
air quality néwork consists of 143 continuous monitoring instruments at 44 sites
operated by the MOE’s Environmental Monitoring and Reporting Branch (EMRB). In
this study three O; and two NO,, five TSP and three PM;y monitoring sites within
Hamilton CMA have been considered during 1994-2004 (Fig. 2.4). These sites are
located in various parts of the city. The Hamilton Downtown site (29000 for O3, NO,,
TSP; 300 for PM,g) collects O3, NO,, PM,¢, TSP, CO; and is located in the Beasley Park
which is a densely populated area close to Wilson Avenue, a heavily traveled one way
street. The Wilson Avenue is believed to have direct influence, especially on Os. There
are no major industries near the site; the heavy industry is located approximately 2.5 km
north-east of the site. Commercial district is located within 100 meters on the major

arterial King and Cannon streets.

12
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Fig. 2.3 (a): 10 year trend of ozone at some selected Ontario sites (Data source, OME, 2004)
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Fig. 2.3 (b): 10 year trend of NO; at some selected Ontario sites (Data source:OME, 2004)
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Fig. 2.4: Ontario MOE pollutant monitoring stations in Hamilton

The second site, on the mountain (291 14) mainly collects O3 and TSP and is situated on
grounds of Linden Park School, at Vickers Avenue at East 18™ Street. It is mainly
residential except the school. There are no major arteries within 2 to 3 blocks; the nearest
heavy industry is located at 5 km to the northeast below the escarpment. The third station
‘Hamilton West’ (29118) is established on grounds of hydro transformer Station on Main
Street West, adjacent to the off-ramp from Highway 403. The area is generally residential
but heavily traveled roadways dominate the immediate vicinity (i.e. HWY 403 and main
street west). Heavy industries are situated 5 to 6 kilometers northeast. It collects Oz and

NO;.
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O3 and NO; measurements are being made using UV Photometry TE49C and
Chemiluminescence TE42C analyzers developed by the Thermo Environmental
Instruments Inc., MA, USA (OME, 2005). O3 and NO, have been collected at hourly
intervals which for this analysis were further reduced to bi-hour intervals in order to

reduce the computational time.

TSP and PM;( has been collected from five sites during the study period. Instruments
were set up in Downtown, Mountain, Barton-Sanford, Gertude / Depew and Beach
Boulevard sites. The Barton-Sanford and Gertrude / Depew sites are located in the
industrialized zone of the city whereas Beach Boulevard site is situated on the north-west
part near the lake Ontario. MOE collects particulate matter data on a six-day North
American Synoptic Cycle (Jerrett et al., 2001); hence, both TSP and PM;, observations
are available in 6 day intervals for the study period of 1995-2004. Table 2.1 and 2.2
represents a comprehensive description of the study sites and the database considered in

this research.

Table 2.1: Air pollutant stations in Hamilton

' Coordinate
Station name Station ID Pollutant

type Latitude Longitude Period Frequency
N) w
0O; 2hr
Hamilton Downtown NO, 2hr
. 29000 43.26 -79.86

(Elgin/Kelly) TSP 6 day
PM]O 6 day
Hamilton Mountain O3 2hr
(Vickers/East 18th) W4 2 4323 1936 6 doy
Hamilton West 03 1994 -2004 2 hr
(Main W./ Highway 403) 2118 yo, P26 799 2 hr
Barton / Sanford 29025 TSP 43.26 -79.84 6 day
Gertrude / Depew 29113 TSP 4306 02 6 day
PM10 6 day
Beach Blvd. 29102 TSP 4328 7986 6 day
PM]O 6 day
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Meteorological information was collected from the Ontario Climate Centre of

Environment Canada. Three weather stations, located near the monitoring sites were
considered initially. The stations are: Hamilton Airport (43°10°N, 79°55°W), Burlington
Piers (43°18’N, 79°48°W) and Royal Botanical Garden (RBG) (43°17°N, 79°54°W). The

data for the Hamilton Airport was available from 1990 and is still under full operation.

The second station in Burlington had data available from 1994; however, the RBG site

started operating on 2000 and its inclusion in the modeling did not significantly improve

the result. Therefore the RBG station has been excluded from this analysis.

Table 2.2: Pollutant statistics (1994-2004)

Station  Station Pollutant Missing Mean Std. Max Percentile
ID name values dev. 50 75 95

) O; 565 (0.15%) 18.93 15.71 114.50 16.00 27.00 49.50
29000 D}f:&nnltl(t;:’ln NO, 452 (1.2%) 21.33 11.01 100.00 20.00 28.00 41.50
TSP 41 (6.96%) 61.36 31.70 204.00 53.00 77.00 125.60
PMy, 46 (1.714%)  25.00 14.00 91.00 22.00 31.00 52.00
29114 ﬁiﬂlg)iﬁ 0O; 1054 (2.49%) 23.97 16.93  120.50 22.00 33.00 56.00
TSP 91 (15.45%) 48.65 2394 168.00 44.00 63.00 93.00
29118 Hagvnégt"“ 0, 573(1.36%) 19.12 1572  107.00 17.00 28.00 49.00
NO, 831 (2.28%) 20.22 12.00 142,50 18.00 27.50 42.50

Barton/

29025

Sanford TSP 34(5.77%) 7224 3345 22400 67.00 88.00 137.00

Beach
29102 Boulevard TSP 51(8.66%) 78.81 4244  309.00 74.00 100.00 159.00
PM;e 47 (7191%) 28.00 18.00 142.00 25.00 36.00 60.00
29113 Ggg:gf/ TSP 61(10.36%) 89.93 50.66 348.00 77.00 111.00 187.00
PM;o 75 (12.63%) 36.00 20.00  121.00 30.00 46.00 79.00
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Solar radiation, maximum temperature, wind speed, wind direction, relative humidity,
dry bulb temperature, vapor pressure, etc. are the most important meteorological
variables for O3 and NO, (Gardner and Dorling, 2000; Agirre-Basurko et al., 2006;
Schlink et al., 2006). However, successful use of these variables in air pollution modeling
strongly depends on the availability of good quality data. For this specific work, it would
have been ideal to include maximum temperature and solar radiation as input because
they are very good indicators of the smog formation (Gardner and Dorling, 2000).
Unfortunately these data were not available in any of the weather stations located near the
three selected air quality monitoring network stations. The vapor pressure variable also
could not be used because of low quality data with high number of missing values. An
alternative way could be deriving the vapor pressure values from the relative humidity
measurements using a known empirical formula. However, this approach was not
considered as only the directly available database has been used for this study. Therefore,
finally only four variables: wind speed (km/hr), wind direction (10s of degrees), dry bulb
temperature (0.1°C) and relative humidity (%) data were used as input variables with the
assumption that they might be able to capture the real chemistry of O; and NO,
dispersion. Like Os, the meteorological variables were also collected on an hourly basis

during 1994-2004 which for this work was converted to bi-hourly values.

For the modeling of particulate matters more meteorological variables were used than
03 and NO; model because of availability of daily values. Here total 10 meteorological
variables namely wind speed, wind direction, relative humidity, maximum temperature,
minimum temperature, mean temperature, precipitation, visibility and barometric
pressure were considered and they were downloaded from the Environment Canada

website,
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Table 2.3: Meteorological variables used

Pollutant type Me:,:z;'::)(;ég;cal Notation Unit
0O; and NO, Wind Speed WS km/hr
Wind Direction WD 10s of degrees
Relative Humidity RH %
Dry Bulb Temperature Temp 0.1°C
TSP and PM,, Wind Speed WS km/hr
Wind Direction WD 10s of degrees
Relative Humidity RH %
Maximum temperature Tmax °c
Minimum temperature Tmin °c
Mean Temperature Tmean °C
Precipitation Prec. mm
Barometric Pressure BP KPa
Visibility Vis. Km

Measurements for the weather variables have been taken from 10 meter above the
ground using standard measurement procedures. The temperature and relative humidity
are measured with an MSC “dewcell” (Type E) thermometer which consists of a
fiberglass sleeve saturated with a lithium chloride solution. The dewcell, accurate to
0.6°C above and 1.2°C below freezing is calibrated weekly using a mercury thermometer.
The wind speed and wind direction measurements are taken using U2A anemometer.
Average wind speed values are being measured at two minute period. The direction of
wind is determined the by wind blowing with respect to the true or geographic north (360
degrees on the compass) and is expressed to the nearest 10 degrees. Daily barometric
pressure and daily precipitation measurements were available only for Hamilton Airport

site. Table 2.3 presents the meteorological variables used in the study.
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2.2.3 Land use database

The land use database has been acquired from Desktop Mapping Technology Inc.
(DMTI Spatial Inc.) through McMaster University Library. The DMTI classifies the

entire urban area in Ontario into seven distinct types which include:

(1) Commercial

(2) Governmental and institutional
(3) Open Area

(4) Parks and recreational

(5) Residential

(6) Resource and industrial and

(7) Water body

The land types within Hamilton were derived using spatial overlays of buffers with
various radii around the monitoring sites. Percentage area of land use (in hectares) within
buffers around the monitors with radii of 50, 100 and 200 m were tested and a 200m
buffer appeared to provide better results. Table 2.4 presents the total percentages of
various land uses within 200 m buffer area of all monitoring stations. The table shows
that the Downtown station at Elgin/Kelly has mostly residential land (41.63%) followed
by 25.95% resource and industrial area. The area near Barton/Sanford station serves
multiple purposes with 32.75% residential land, 20.35% parks and recreational land,
18.06% governmental and institutional and 21.53% resource and industrial land area. The
Beach Boulevard station is mainly residential with 84.98% residential development
around it while the site located at Gertrude/Depew is entirely within industrial land area.
The land area near the last station located on Mountain (Vickers/East 18™) also is
multipurpose with 38.57% residential, 28.86% parks and recreational and 32.57%

government and institutional area.
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Table 2.4: Land use within 200 m buffer of all stations

Station name Station ID Land use type Proportion of area (%)
Resource and industrial 2595
" Resigetil ' oo @ 0 Ake
Elgin/ Kelly 29000 Parks and recreational 8.45
Government and institutional 21.27
Commercial 2.67
Commercial 7.30
Government and institutional 18.06
Barton/Sanford 29025 Parks and recreational 20.35
 Residential 4 i . ”:32.?5' -
Resource and industrial 21.53
Water body 4.06
Beach Blvd 29102 Rgsource fmd industrial 3.75’: ‘
- Residential ' ' 84.98
Parks and recreational 7.21
Gertrude/ Depew 29113 Resourééfahci‘iﬁdush'iél - 100.00
Residential 38.57
Vickers/East 18th 29114 Parks and recreational 28.86
Government and institutional 32.57

2.2.4 Data filling technique
Instrument malfunctioning and maintenance cause some missing values both in the
pollutant and the meteorological database; mostly up to four or five hours in a row. The

following methods were applied for filling these gaps:

(1) For any specific time period, the missing values were filled using multivariate
regression method (partial least square approach) based on nearest station values. The
partial least square method is a generalized principal component analysis where a
projected model is developed by predicting the Y values using the values of X. It can also
be seen as a multiple regression method which has the ability to deal with multiple

collinear X and Y variables. The model is expressed as:
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Y=f(X)+E 2.1)

7 a polynomial and X refers to the predictor variables. The
sorresponds to a fitted line, plane or hyper plane where both
as points in a multidimensional space in order to best
es of X and Y and to maximize the correlation between X
2l can be further expressed as:
=1*X +TP'+E
=1*Y+UC'+F
=T+H

2.2)

cores which summarize the X and Y variables respectively,
h define the correlation between Y and T (X) and E, F and
onal loadings W, expressed as weights are also present in

1e correlation between U and X and are used to calculate

s for a specific time period, the temporal nearest neighbor

wow merpolation) approach was considered to fill short gaps (up to 4 hours).

(3) For medium and larger gaps (4-8 hours), missing data were filled using the average of

the previous year’s value for that specific time period.

(4) For missing values of more than 10 days, that specific month was simply removed

from the database. For both O3 and NO,, records are missing from Mid April 1997 to
December 1997 and Mid March 2002 to Mid May 2002. So the values for 1997 and

months March to May of 2002 have not been considered in this study.

(5) The missing values in wind direction data were filled by 1% order autoregressive or

Markov model, denoted by AR (1). It can be expressed as:

Xt =

by Py (D (Xt -1y )+ (2.3)
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Where, px(1) is the first order serial correlation, p, is mean value, X;_;is one day lagged

observation and ¢&; is the error.
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Chapter 3

Review of Literature

3.1 Basic air quality modeling approaches

Studying the literature for all pollutants, a general point arises: no model can be
regarded as universal; several classes of models are developed to solve particular
pollution problems. Generally, air pollution modeling is carried out based on their
features with respect to stationary or non stationary source conditions, meteorological
conditions (stability, presence of thermal inversion, etc), type of emission sources
(industrial, vehicular, continuous, etc), type of terrain (flat, mountainous or complex, etc),
type of pollutant (inert or reactive) and time horizon of the simulation (Schlink, 2001).
However, mathematical methods are widely used in air pollution modeling because of
their higher capability to evaluate varying scenarios of different pollutants under different
atmospheric conditions. Air pollution modeling is carried out mainly by two

mathematical methods: deterministic methods and statistical methods.

3.1.1 Deterministic methods vs. Statistical methods

Deterministic models follow fundamental mathematical descriptions of atmospheric
processes based on known scientific laws or relationships in which the output is
represented by the air pollution concentration field and the inputs by emissions (Pagina,
2005). However, different strategies are followed in using these models. The Clean Air
Act Amendments (CAAA), established by the Clean Air Act, USA established emissions
reduction network to reduce risk to public health and to protect sensitive ecosystems.
According to CAAA, “if a state is found with substantial violation of some of air
pollution standard in the Clean Air Act, to bring it back with in the standard by proving

the effectiveness of the plan, a comprehensive deterministic air pollution model
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describing emissions, air transport, chemical transformation, and deposition of the
pollutant and its precursors should be built. These models must be compared to the
observed data to describe the situation well and to see how well the proposed controls are
working”. And here lies the major draw back of the deterministic models. The act further
extends “the deterministic models produce predictions for grid square over some
temporal window. The data are obtained at individual points and often have a different
temporal resolution from the model output. Consequently, it is not possible to compare
the data to the model output directly. Hence, some manipulation of the data or the model
output is recommended for comparability. But since the model output is already over the
grid square, it seems inappropriate to smooth it further spatially in order to compare to
non-smooth point measurements. Rather, we would be inclined to use the data to predict
the model output, i.e. to predict the grid average values. However, this requires a rather
data-rich situation, in which the prediction can be made with adequate precision”. Further
more, deterministic assessments using deterministic models are considered subjective and
limiting in their scope and do not objectively consider the possibility of deviation from
the fixed values. Deterministic models, also known as cause/effect models are more
suitable over spatially extensive areas like whole regions or large cities. They can be very
important tool for practical applications since, if properly calibrated and used, they have
the ability to provide unambiguous, deterministic source-recepter relationships. However,
they require a large amount of data (e.g. emissions, gas temperature, wind data, air
temperature, topography of the study area, etc). Hence in many occasions unavailability

of sufficient data is one of the major causes of the uncertainty of deterministic models.

Statistical models, on the other hand, are based upon semi-empirical relationships
between known past air pollutant concentrations and specific meteorology. Mathematical
formulae are utilized to evaluate the influence of different meteorological conditions on
contaminant concentrations which have already been dispersed into the atmosphere or
will be formed photochemically. They are frequently used in air pollution studies

especially for short term forecasting applied to the real time control of emissions or to air
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quality assessment. Statistical methods, unlike deterministic models instead of describing
the air pollution problem as a cause-effect problem, use air quality measurements to infer

semi-empirical relationships.

Statistical Models can either be used as a ‘black box mode’ where the time series of
pollutant concentration are explained without any information in order to evaluate their
intrinsic variations and without attempting any physical explanation, or they can be used
as a ‘grey box mode’ where within a statistical framework, deterministic relations are
integrated using other conditions like meteorological phenomena (commonly available
from air quality and meteorological monitoring networks) and emission patterns
(comparatively less available, especially in real-time). These models are preferred for
relevant measured concentration trends information rather than those obtained from
deterministic analyses (Schlink, 2001). Moreover, the structures of statistical models are
often simpler than the deterministic models and they can more easily be implemented and

even can be used by non-experts.

Statistical models, also known as data-driven models, can be used effectively for short-
term forecasting where it is assumed that there is statistical regularity in the data which
can be captured by means of a mathematical function approximation technique. The
captured regularity is then used to forecast pollution levels at a future point in time. This
method is extremely powerful in designing an early warning system (Niranjan et al.,

2001).

The complex relationship between the meteorology and pollutant concentrations has
been well documented by many authors and attempts to develop a satisfactory statistical
air quality forecasting model have been numerous (Derwent et al., 1998; O’Hare and
Wilby, 1995; Abdul-Wahab et al., 2005). But model selection has always been
problematic because of the need of a suitable model which can satisfactorily map the

complex nonlinear relationship between the pollutant and the predictor meteorological
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variables. Nowadays it is well recognized that non-linear models have higher capability
to capture the composite relations related to pollutant formation. Table 3.1 presents a

brief summary of some statistical models used in air pollution modeling.

Table 3.1: Summary of statistical methods used in air pollution modeling
(Schlink et al., 2001)

Model Type Limitations/ Advantages
Time consuming: low
Amount of data needed: low

Classical Time Linear Model readable: high
Series, Box- Stationary Sensitivity to missing/noisy data:
Jenkins Parametric medium/medium

General Fitting capabilities: medium
Forecast capability exceedence: low
Time consuming: medium
Amount of data needed: medium

Component Li_near 1\-/[.0(?61 reada}blf:: med_ium
Models Statlonary Sensitivity to n.nssmg/nmsy data:
Parametric medium/low
General Fitting capabilities: medium
Forecast capability exceedence: medium
Time consuming: low
Amount of data needed: low
Cyclostationary Line?r . M.Odel rea_da!)le: high
Models Non stationary Sensitivity to missing/noisy data:
Parametric low/medium

General Fitting capabilities: medium
Forecast capability exceedence: low
Time consuming: Medium

Lo Linear Model readable: high
Dynamic Linear . e . 1
Regression Statlonar_y Sensitivity to missing 'data. ow
Parametric General Fitting capabilities: medium

Forecast capability exceedence: medium
Linear Model readable: high
Multivariate Sensitivity to missing data: low

Regression Statlonary General Fitting capabilities: high
Parametric i .
Forecast capability exceedence: medium
Time consuming: high
Amount of data needed: high

Non linear Model readable: high

Fuzzy Models Stationary Sensitivity to missing/noisy data:

Parametric low/medium

General Fitting capabilities: medium
Forecast capability exceedence: medium
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Time consuming: medium
Amount of data needed: medium

Generalized NI(\)I}())I; t]z:tli[;ie: Model readable: high
Additive Ty Sensitivity to missing/noisy data:
Non A
Models . low/medium
parametric General Fitting capabilities: high
Forecast capability exceedence: medium
Time consuming: medium
Amount of data needed: medium
Non Linear Model readable: medium
Hybrid Models Stationary Sensitivity to missing/noisy data:
Parametric low/medium
General Fitting capabilities: medium
Forecast capability exceedence: medium
Time consuming: high
Non linear Amount of data needed: medium
Neural Network Stationa Model readable: low
Models y Sensitivity to missing/noisy data: low/low
Parametric . eyese .
General Fitting capabilities: medium
Forecast capability exceedence: high
Time consuming: medium
Non linear Amount of data needed: medium
Phase Space Stationary Model readable: low
Embedding Sensitivity to missing/noisy data:
Non . .
Models arametric high/medium
P General Fitting capabilities: high
Forecast capability exceedence: low
Time consuming: high
Non linear Amount of data needed: medium
Wavelet Stationary Model readable: low
Models : Sensitivity to missing/noisy data: low/low
Parametric

General Fitting capabilities: medium
Forecast capability exceedence: high
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3.2 Neural network model

Artificial neural network model, commonly known as neural network (NN) model can
be defined as a massively parallel-distributed information processing system. This has
certain performance characteristics that resemble to the biological neural networks of the
human brain (Haykin, 1999; Rao, 2000a). It acquires knowledge through a learning
process which involves finding an optimal set of weights for the connections and
threshold values for the nodes (Rao, 2000b). Fig. 3.1 shows a conceptual representation
of two biological neurons that inspired development of the model. Artificial neurons
receive input from sensors or other artificial neurons, do calculations and pass outputs to
other neurons. The key issue here is that information is processed by numerous neurons
both parallel (by neurons belonging to the same layer) and linear (from neurons of one
layer to another) (Bodri, 2000; Daliakopolous, 2004).

Fig. 3.1: Schematic diagram of biological neuron (Hagan et al, 1996)
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3.2.1 Mathematical aspects

A schematic diagram of a neural network node has been presented in Fig. 3.2.
Depending on the location of the node, the input variable may come from the system
casual variables or the outputs of other nodes. The inputs form an input vector X=(x,, x>,
.., Xn). Weights leading to the nodes form a weight vector W ; = (wis, Wiz, ..., Wim),
where wy,, denotes the connection weight from the k™ node in the preceding layer to this
node (Rao, 2000a). The summing junction adds this weighted signals, hereby works as a
linear combiner (Haykin, 1999). The output of the node £, y;, can be computed from the
function () with respect to the inner product of vector x and wy-b;, where by is the
threshold value, known as bias, associated with this node. The bias increases or decreases
the net output of the activation function depending on whether it is positive or negative,
respectively.
Mathematically, a neuron can be described by the following terms (Haykin, 1999, Rao,
2000a):

y;=9(XW;-b)) 3.1)

The function ¢ is called activation function and determines the response of a node to the

total received input signal.

3.2.2 Important aspects of NN modeling

The development of a NN does not follow any specific rule and depends on previous
successful applications in each field. Typically their development follows some general
rules (Rao, 2000a):

- Information processing takes place at single elements called nodes or neurons;

- Signals are passed to adjacent nodes through the connection links;

- Each of these connection links has their own weights representing connection

weight;
- Each node applies a nonlinear transformation called an activation function to its

net output in order to determine the output signal.
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Fig. 3.2: Schematic diagram of a node (Haykin, 1999)

However there are certain issues that may become vital while developing the model.

This section presents such issues that are of concern.

3.2.2.1 Selection of input and output variables
The major aim of an NN model is to generalize a relationship of the form (Rao,
2000a):

Y"=f(x") (32)
where X" is an n-dimensional input vector constituted of variables x;, x;, ...,x; ... ... X, and
Y" is a m-dimensional output vector consisting of resulting variables y;, y,, .......... s Vm-

The term generalized implies that the functional form f'(.) will not be revealed explicitly
but rather be represented by the network parameter. In air pollution modeling variables x;
can be meteorological variables such as wind speed, wind direction, temperature, rainfall,
relative humidity, solar radiation, cloud cover height; traffic variables such as traffic

volumes, occupation percentage, velocity, etc; and emission sources such as
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anthropogenic (combustion from coal fire plants, burned particles, traffic related
emissions, waster deposition in landfills, oil refining, power plant operation and industrial
activities, toxic gases, etc) and natural (dust, pollutants emitted from digestion of animals,
smoke, volcanic eruptions) sources that are used to compute the values of y; which

normally are pollutant variables of interest (e.g. NO,).

In NN based modeling, the selection of input variables is important to map successfully
the undergoing process of pollutant formation as the influential variables are not always
previously known. Hence a firm understanding of the pollutant forming system is an
important prerequisite to apply NN successfully. For example, physical insight into the
studied problems can lead to a better selection of the input variables. In this way loss of
important variables can be prevented and also irrelevant variables, confusing the process
can be removed. When a sufficient database is available, a sensitivity analysis can be
used to measure the relevancy of the input variables with the output. Hence a more
condensed or parsimonious network can be achieved by using only variables which have

high sensitivity with the process.

3.2.2.2 Neural network architecture

A neural network can be characterized by its architecture, presented by the network
topology and pattern of connections between nodes, its method of determining the
connection weights and the activation functions that it employs. A typical neural network
is composed of a series of nodes organized in parallel. They can either be classified
according to the number of layers (e.g. single layer, bilayer or multilayer) or by the
direction of information flow and processing within the network. A network consists of
a hierarchy of processing units organized in a series of two or more mutually exclusive
sets of neurons or layers. The information flow in the network is restricted to a flow,
layer by layer, from the input to the output, hence also called feedforward network (Fig.
3.3). Thus the output of a node in each layer depends only on the inputs it receives from

previous layers and the corresponding weights (Rao, 2000a).
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Fig. 3.3: Configuration of a typical feedforward neural network

On the other hand, in the recurrent network there is at least a feedback loop.
Information flows through nodes in both directions- from input to outputs and vice versa.
The presence of feedback loops has a profound impact on the learning capability of the
network and on its performance. It involves the use of particular structures like unit-
delay elements (or tap delay) which result in a non-linear dynamical behavior, assuming
that the neural network contains nonlinear characteristics (e.g. nonlinear activation

functions).

3.2.2.3 Network training, cross-validation and model testing

Generally the available database is divided into three parts: training or calibration,
cross-validation and testing or validation. The major objective of training is to minimize
the error function by searching for a set of connection weights and threshold values that
allow the NN to produce outputs equal or close to the targets (Rao, 2000a). It can be of
two types: supervised and unsupervised. A supervised training needs an external force to
guide through the training process hence indicating that a sufficiently large number of
inputs and outputs are required to map the underlying relationship between the input and

output variables. It involves the iterative adjustments and optimization of connection

32



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

weights. The weights and threshold values are assigned randomly and are adjusted during
training based on the difference between the model outputs and the target values. The
process continues until a weight space resulting in lowest possible error is found. Hence
overfitting or overtraining may take place resulting in a network depending more on the
individual values rather than the overall trends in the dataset. This results in a very good

training but with inferior prediction values.

To prevent such problems, cross- validation is recommended. The idea here is to stop
training when the error starts to rise. Initially the error for both training and cross-
validation goes down but after the optimal value is reached the errors in the training set
continues to decrease while those in the cross- validation set starts to rise. It indicates that
further training may overtrain the model. So training is stopped at this point assuming the
current sets of weights and thresholds are optimal values. In the case of a small dataset,
the easiest way to stop overfitting is to stop training when mean square error decreases
significantly. The performance of a model output can be evaluated by subjecting it to a
new pattern not seen during training. The performance of the model can be determined by
computing the prediction error between the predicted and the desired values, plotting
model output versus observed values and so on. It is also necessary to repeat the training

and cross-validation to ensure satisfactory result (Rao, 2000a).

3.2.2.4 Advantages and limitations

There are various aspects which make neural network models an attractive tool.
Firstly they are capable of recognizing the relationship between the input and output
variables without explicit physical information. Hence there is no necessity to assume an
underlying data distribution which is usually adopted by other statistical modeling
techniques. NN models have the ability to model the nonlinearity of the underlying
process without solving the complex differential equations. Moreover, they don’t need
any prior assumptions about the mathematical relations between the input and target

variables unlike regression based models. They are less sensitive to error term
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assumptions and can tolerate noise, chaotic components and heavy tails better than most
of other methods (Slini et al., 2006). The distributed processing pattern of the network
prevents large loss of information that can occur because of the noisy values in the input
and output. Other advantages include greater fault tolerance, robustness and adaptability
especially compared to expert systems, because of the large number of interconnected
processing elements that can be trained to learn new patterns (Slini et al., 2006). To
compensate the changing circumstances, they are capable to adopt new solutions over
time. They possess other inherent information-processing characteristics. These
characteristics, along with the non-linear nature of the activation function increase
generalization capability of NN and make them desirable for larger classes of problems

(Rao, 2000a).

However, NN models have their own limitations too. Like other data-driven models,
success of a NN application depends largely on the quality and quantity of the database
being considered. This most often makes the whole process complex and prevents its
successful use. Even in a situation where a historical database is available, there is no
certainty that the condition would be consistent over time. Hence a more stable and
homogeneous database is desirable. The temporal variations can also be computed by
considering past information of input/output variables. However, there is no clear
indication on how far back should be considered which makes the whole process
complicated. Another major limitation of any neural network model is they cannot be
interpreted easily although several sensitivity tests and comparison of model
performances may provide insight into the model. However, in argument it can be said
that a good ‘black box’ model with good prediction accuracy is better than a poorly
performed yet well understood physically based model. Another advantage of using NN
models is there is no standard way of adopting a specific network for a given problem.
The choice of the network architecture and learning algorithm has to be determined from
the users’ past experience and preferences rather than the physical aspects of the problem

(Rao, 2000a). It has been unable to reveal the cause-effect interactions of the phenomena
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which, as suggested by Kolehmanien et al. (2003), is possible to overcome by introducing
different types of neural networks together and by analyzing the characteristic behavior

of the data prior to forecasting (Schlink et al., 2003).

3.3 Application of NN in air quality modeling

For the purpose of the thesis a large number of scientific papers were reviewed. They
were mainly related to environmental modeling, especially air quality with an emphasis
on neural networks. Priority was given to the papers that compared neural network model
with other statistical models in terms of their performance. This section provides a brief

review of some selected recent papers where NN has been successfully applied.

An elaborate literature review of different deterministic and statistical models used in
modeling air quality have been presented in the project report funded by the European
Community under the ‘Information Society Technology’ program (Schlink et al, 2001;
Nunnari, 2001). In spite of its drawbacks of interpretation, a neural network model was
included as one of the main tasks in that project because of its flexibility and capacity to

mode] the non-linear behavior of complex atmospheric phenomena.

Benvenuto and Martini (2000) applied neural networks model for data quality control
of environmental time series and reconstructing missing data. Their results confirmed NN
to be an improved tool relative to classical models and depicted its utility in restoring
time series methods. Several authors and researchers have compared neural network
models with linear regression models (Yi and Prybutok, 1996; Comrie, 1997). Yi and
Prybutok (1996) used nine input variables: the morning ozone concentration, the
maximum daily temperature, levels of CO,, NO, NO, and NOy and wind speed and
direction to predict the maximum daily surface ozone concentration in an industrial area

and found the MLP model to be superior than the regression models. Similar results were
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also obtained in the prediction of summer time daily maximum hourly ozone

concentration in various urban areas by Comrie (1997).

Gardner and Dorling (2000) compared a regression-tree model with linear regression
and MLP model to quantify the nonlinearity and interactions between predictor variables
while modeling the hourly surface ozone concentrations. Their result clearly
demonstrated the accuracy of MLP model and regression-tree model in capturing the
underlying relationship between meteorological and temporal predictor variables and

hourly ozone concentrations.

Bordignon et al. (2002) developed non-linear non-parametric models for short term
forecasting of future maximum 1 hour and maximum 8 hour ground level ozone
concentrations in Padova district in Northern Italy and later compared the results with
additive model, regression tree models and MLP models to improve the developed model
performance. Their result proved that the combination of boosting procedures (Freund
and Schapire, 1997) and artificial neural networks has the capability to provide an

improved short term forecast of ozone concentrations.

Zickus et al. (2002) compared four machine learning methods of different complexity:
logistic regression, decision tree, multivariate adaptive regression splines and neural
networks models in order to compare the variable selection and prediction performances
of PM;4 concentrations in Helsinki, Finland and found superior forecasting performances

of neural network and multivariate adaptive regression splines techniques.

Kukkonen et al. (2003) made an extensive evaluation of the neural network models to
predict NO;, and PM;( concentrations and later compared it with the deterministic model
for Helsinki area. Five neural network models, a linear statistical model and a

deterministic model were compared and concluded that NN models can be useful and
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fairly accurate tools of assessment in predicting NO, and PM;¢ concentrations in urban

arcas.

Chaloulakou et al. (2003) made a comparative assessment of neural networks and
regression models for forecasting summertime ozone in the Athens basin at four
representative stations showing different behavior. The performances indicated that the
NN provide better estimates of ozone concentrations at the monitoring sites while the
more often used linear models were less efficient at accurately forecasting high ozone

concentrations.

Chelani (2005) tested the concepts of chaotic systems theory to build feed-forward
neural network model for predicting chaotic time series of inhalable particulate matter
(PM;p) concentration in Delhi, India and found that neural networks model is capable of
modeling the chaotic time series data. Chelani et al (2002) in their previous works
compared a three layer neural network model with a hidden recurrent layer with the
multivariate regression model to predict sulphur dioxide concentration at three sites in
Delhi. Their results demonstrated that a neural network can be a better alternative to the

multivariate regression model.

Hooyberghs et al. (2005) examined the feasibility of a statistical short-term forecasting
tool for ambient PM;, concentrations in Belgium by developing a neural network model
and found that day-to-day fluctuation of the PM;( concentration in Belgium is largely
driven by meteorological conditions and to a lesser extent by changes in anthropogenic

sources.

Ordiers et al. (2005) analyzed and bench marked a neural network model for short term
PM,; 5 predictions in the central-south border region of the U.S. particularly in the area of
El Paso, Texas and Ciudad Juarez in Chihuahua. They developed three different

topologies of neural network: multilayer perceptron (MLP), radial basis function (RBF),
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and square multilayer perceptron (SMLP) and compared the results with a persistence
model and a linear regression model. Their analysis clearly demonstrated that the neural
network approach not only outperformed the classical models but also showed fairly
similar values among similar topologies. The results also reflected a more stable behavior

than the so called classical models.

Recently Agirre-Basurko et al. (2006) presented a comparison between two MLP based
models and one multiple linear regression model to forecast hourly ozone and nitrogen
oxide level in Bilbao (Spain) using traffic variables, meteorological variables and ozone
and NO, data as input variables. The performances of the model results were compared
with persistence of levels and the observed values. The performance of MLP models, as

expected, is found better than the multiple linear regression models.

Schlink et al. (2006) attempted to link two key aspects of ground level ozone problem:
assessment of health effects and forecasting using 15 different statistical models in an
inter-comparison study in 10 European regions. Their study (Schlink et al, 2006; Schlink
et al, 2003) recommended that in operational air pollution forecasting, neural networks
and generalized additive models have the capacity to handle the strong nonlinear

associations between the atmospheric variables.

Athanasiadis et al. (2006) performed a comparative study of ozone forecasting for the
Greater Athens Area (GAA) using conventional statistical methods (Linear regression,
ARIMA and Principal component analysis) and data-driven classification algorithms
such as NN, decision trees, conjunctive rules, support vector machines, decision tables
and fuzzy lattice rules. Their study clearly showed that the performances of classification
methods are far better than the so called conventional methods in terms of model

performance and operational potential.
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A neural network developed by Dutot et al. (2006) combined to form a neural classifier
to forecast hourly maximum concentration of ozone in the central area of France has also

shown great potential.

Elminir and Abdel-Galil (2006) applied NN trained with a back-propagation algorithm
to predict daily PM;9, CO,, and NO, concentrations at 14 sites in Cairo, Egypt. Their
results also showed that the NN with a single layer based on the standard BPT algorithm
resulted in a very efficient model to forecast long term air pollutant concentrations in the

study area with 96% prediction accuracy for PM,.

Perez and Reyes (2006) developed an integrated NN model and later compared it to a
linear and a persistent model to forecast the maxima of 24 hour average of PMj,
concentrations 1 day in advance at 5 monitoring sites in Santiago, Chile. Their result

proved the neural model to be more accurate than the linear models.

Slini et al. (2006) compared multilayer perceptron (MLP) model with classification
and regression tree (CART), linear regression and principal component analysis to
forecast daily PM;, concentration at Thessaloniki, Greece during 1994-2000. The results
clearly indicated superior performances of CART and MLP model compared to the
conventional models. The study further emphasized the importance of adequate and

appropriate climatic data for accurate meteorology based forecasting.

Sousa et al. (2007) developed multiple linear regression and artificial neural network
models based on principal components to predict ozone concentrations in Oporto,
Portugal and later compared their performance with multiple linear regression and feed-
forward neural networks based on the original data and also with principal component
regression. Their result showed that the use of principal components as inputs improved

both models prediction by reducing their complexity and eliminating data collinearity.
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Hence it is well established that NN models, especially the static multilayer perceptron
(MLP) model, are more capable of capturing the complex nonlinearity of the weather-
pollutant relationships compared to other statistical models. However, in temporal
problems, measurements from physical systems are no longer an independent set of input
samples, but functions of time. To exploit the time series structure in the inputs, the
neural network must have access to this time dimension. While the MLP models (also
known as feed-forward neural networks) are popular in many application areas, they are
not well suited for temporal sequence processing due to the lack of time delay and/or
feedback connections necessary to provide a dynamic model. They can be used as
pseudo-dynamic models only by using successively lagging multiple inputs based on
correlation and mutual information analysis of the input data. There are however various
types of neural networks that have internal memory structures which can store the past
values of input variables through time and there are different ways of introducing
‘memory’ in a neural network in order to develop a temporal neural network. Time
lagged feed-forward (TLFN) and recurrent networks (RNN) are two major groups of
dynamic neural networks mostly used in time series forecasting (Coulibaly et al., 2001 a,
b; Dibike and Coulibaly, 2006). In this study, three emergent dynamic neural network
models are developed and their performances have been compared with widely used

MLP model.
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Chapter 4

Methodology

4.1 Temporal analysis of air quality

Artificial neural network models have proven to be very powerful and efficient
methods for dealing with complex problems of associations, classification and prediction.
This chapter deals with the methodologies of neural network architectures and

interpolation techniques applied in the research.

4.1.1 Multilayer perceptron

Multilayer perceptrons (MLPs) constitute probably the most widely used network
architecture and has been widely applied in atmospheric science (Gardner and Dorling,
1998; 1999; 2000; Ordieres et al., 2005). They are composed of a hierarchy of processing
units organized in a series of two or more mutually exclusive sets of neurons or layers, as
illustrated in Fig. 4.1, which is a model representing a nonlinear mapping between an
input vector and an output vector. The nodes are connected by weights and output signals
which are a function of the sum of the inputs to the node modified by a nonlinear transfer
or activation function. The information flow in the network is restricted to a flow, layer
by layer, from the input to the output, hence also called feed-forward network (Coulibaly
et al, 2001b). The architecture of a multilayer perceptron although varies, but generally
consists of several layers of neurons. The input layer only serves to pass the input to the
network rather than performing any computation. The inputs and outputs of the
multilayer perceptrons can be represented as single vectors. Such a network may have
one or more hidden layers and finally an output layer. By selecting a suitable set of

connection weights and transfer functions it has been shown that a multilayer perceptron
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can approximate any smooth, measurable function between the input and output vectors
(Gardner and Dorling, 1998).
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Fig.4.1: Multilayer perceptron neural network architecture

4.1.2 Time lagged feed-forward network

A time lagged feed-forward neural network (TLFN) is an extension of the standard
MLP models which can be formulated by replacing the neurons in the input layer of an
MLP with a memory structure, known as a tap delay line or a time delay line. The size of
the memory structure (tap delay line) depends on the number of past samples that are
needed to describe the input characteristics in time and it has to be determined on a case-
by-case basis. TLFN uses delay-line processing elements, which implement memory by

simply holding past samples of the input signal shown in Fig. 4.2.
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Fig. 4.2: Time lagged feed-forward neural network with tap delay memory structure

(Coulibaly et al., 2001b)

The output of such a network with one hidden layer is given by (Dibike & Coulibaly,
2006):

y(n)=| 2w;y;(n)+b, 4.1)
j=1

m k
=, ij¢2[2wj,x(n—l)+bj:]+b0 (4.2)
j=1 1=0

where m is the size of the hidden layer, # is the time step, w; is the weight vector for the

connection between the hidden and output layers, Wy is the weight matrix for the
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connection between the input and hidden layers and ¢, and ¢, are transfer functions at
the output and hidden layers, respectively, and b; and b, are additional network
parameters (biases) to be determined during training of the networks with observed
input/output data sets. For the case of multiple inputs (of size p), the tap delay line with

memory depth & can be represented by:
X(n)=|x(n)x(n=1),....x(n—k+1)] 4.3)
X(n)=(x1(n),x2(n), ........ ,xp(n)), (4.4)

where x(n) represents the input pattern at time step 7, X;(71) is an individual input at the
n™ time step and X{(7) is the combined input to the processing elements at time step 71.

Such a delay line only ‘remembers’ k samples in the past. An interesting attribute of the
TLFN is that the tap delay line at the input does not have any free parameters; therefore,
the network can still be trainéd with the classical back propagation algorithm. The TLFN
topology has been used effectively in nonlinear system identification and time series
prediction (Coulibaly et al., 2001b).

4.1.3 Recurrent neural network

Depending on the architecture of feedback connections, the recurrent neural networks
(RNN) can be of three types: the Jordan RNN (Jordan 1986) that has a feedback or
recurrent connection from the output layer to its inputs; the locally RNN (Frasconi et al.,
1992) which uses only local feedback, and the globally RNN (Elman, 1990) which has
feedback connection from its hidden layer neurons back to the inputs. Regardless of the
types, the important feature of RNN is that the feedback connections are applied through
a context unit which consists of delay units. The RNN model used in this work is the
basic Elman type RNN (Elman, 1990). Fig. 4.3 presents a typical diagram of the fully

recurrent network. The network consists of four layers: the input layer, the hidden layer,
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the context unit, each with » number of nodes and the output layer with one node. A
common trial and error method is used to select the number of nodes because of the
problem dependency of the network geometry. Each input unit is connected with every
hidden unit, as is each context unit. Conversely, there are one-by-one downward
connections between the hidden nodes and the context units leading to an equal number
of hidden and context units. In fact, the downward connections allow the context units to
store the outputs of the hidden nodes (i.e. internal states) at each time step; then the fully
distributed upward links feed them back as additional inputs.

X1

Context Recusrent
; o i Connections
Unit
¥

' Non linear
. _hidden 1
layer O * ¥ (1)

A —

Output layer

Input layer

Fig.4.3: Fully recurrent neural network with feedback connection

Therefore the recurrent connections allow the hidden units to recycle the information
over multiple time steps and thereby to discover temporal information contained in the
sequential input and relevant to the target function (Coulibaly et al., 2001b). Thus the
RNN has an inherent dynamic (or adaptive) memory provided by the context units in its
recurrent connections. The output of the network depends not only on the connection
weights and the current input signal but also on the previous states of the network, which

can be shown by the following equations (Coulibaly et al., 2001b):
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y; =A4x'(t) (4.5)
X'(t)=GWx'(t=1)+ W, x(t-1)] (4.6)

Where x” (2) is the output of the hidden layer at time ¢ given an input vector x (¢}, G ()
denotes a logistic function characterizing the hidden nodes, the matrix W), represents the

weights of the h hidden nodes that are connected to the context units, /¥, is the weight

matrix of the hidden units connected to the input nodes, y; is the output of the RNN

assuming a linear output node j, and 4 represents the weight matrix of the output layer
neurons connected to the hidden neurons. The Elman-style RNN is a state-space model
since (4.6) performs the static estimation and (4.5) performs the evaluation. The major
characteristics of the model are the interactions between the context units and the hidden
nodes; One by one downward connection between the hidden nodes and the context units
ultimately leads to an equal number of hidden and context units. Moreover, the upward
connections between the context units and hidden nodes are distributed fully in a manner
that each context unit stimulates all the hidden nodes (Coulibaly et al., 2001b). The
context units receive the outputs of the hidden nodes through the downward connections
and store them and the upward link feed them back again as additional input. In this way
the information is recycled over multiple time steps and relevant information related to
the predicted output are revealed. Hence the final output of the network depends both on
the combination weights, current input signals and previous states of the network.
Therefore a fully RNN can be suitable to the air pollution modeling where past

information can also be vital as well as the current state.

According to Coulibaly et al. 2001b, a major difficulty, however, with RNN is the

training complexity because the computation of VE(w ), the gradient of the error £ with

respect to the weights, is not trivial since the error is not defined at a fixed point but

rather is a function of the network temporal behavior.
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4.1.4 Bayesian neural network

The Bayesian neural network model used in this work is developed by Khan and
Coulibaly (2006). A Bayesian approach implements the conventional or standard learning
process; but instead of a single set of weights it considers a probability distribution of

weights. According to Khan and Coulibaly (2006), the process starts with a suitable prior

distribution, p (W), for the network parameters (weight and biases). Once the data D is

observed, Bayes’ theorem is used for deriving an expression of the posterior probability

distribution for the weights, p (w |D), as follows:

D) PO plw)
pD)

where, p(D|w) is the dataset likelihood function and the denominator, p(D) is a

p(w| (4.7)

normalizing factor, which can be obtained by integrating over the weight space as

follows:
p(D) = [p(D|w) p(w) dw (4.8)

The left-hand side of (4.7) gives unity when integrated over all weight space. Once the
posterior has been calculated, every type of inference is made by integrating over that

distribution. Therefore, in implementing the Bayesian method, expressions for the
posterior distribution, p(w) and the likelihood function, p(D|w) are needed. The prior

distribution, p(w), which is not related with data, can be expressed in terms of weight-

1 w
decay regularizer, Ew = ——Z wi’ , where, W is the total number of weights and
i=1

biases in the network. A Gaussian prior is considered because it simplifies the total

process.

Similarly, the likelihood function in Bayes’ theorem (1), which depends on data, can be

1 X :
expressed in terms of an error function, ED = 5 Z % (x” Jw )— "}, where, x is
n=1
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the input vector, 7 is the target value and y(Xx,; w) is the network output. Upon deriving

the expressions for the prior and likelihood functions and using those expressions in (7),
the posterior distribution of weights can be obtained. The posterior distribution over
network weights provides a distribution about the outputs of the network. If a single-
valued prediction is needed, the mean of the distribution is used and while the uncertainty
about the prediction is needed the full predictive distribution is used to present the range
of uncertainty about the prediction. The objective function in the Bayesian method
corresponds to the inference of the posterior distribution of the network parameters. After
defining the posterior distribution (objective function), the network is trained with a
suitable optimization algorithm to maximize the posterior distribution p(w|D). Thus the
most probable value for the weight vector wyp corresponds to the maximum of the
posterior probability. Using the rules of conditional probability, the distribution of

outputs, for a given input vector, X can be written in the form,

p(t|x,D)= [p(t|xw) p(w|D)dw 4.9)

where p(t| x, w) is simply the model for the distribution of noise on the target data for a

fixed value of the weight vector wyp , and p(w|D) is the posterior distribution of
weights. To make the integration analytically traceable in case of large datasets the
posterior distribution p(w|D) may be approximated to a Gaussian distribution (Walker,
1969; Khan and Coulibaly, 2006). So, equation 4.9 can be written as the following
simplified form (Bishop 1995; Khan and Coulibaly, 2006):

(t-y(x;Wyp ) J

(4.10)
2(5,2

1
p(tlx,D) =Wexp(
t

The mean of this distribution can be given by y(x;W;,p ) and the variance can be

written as:

]
ol=—+g"4'g @.11)

p
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Here P is a hyperparameter which is none other than the inverse variance of the noise

model; g is the gradient of y(x,w) with respect to the weights w evaluated at w)p ; 4, is

the Hessian matrix of the regularized error function. The standard deviation &, of the
predictive distribution for the target t can be interpreted as an error bar on the mean
value y(x; Wyp ). This error bar represents the contributions from two sources, one is

from the intrinsic noise on the target data represented by the first term of eqn. 4.11 and
other one is from the width of the posterior distribution of the network weights that
corresponds to the second term of eqn. 4.11. This can also be seen through Fig. 4.4. In

Fig. 4.4 (a), the distribution of the network outputs in the Bayesian formalism is

determined by the posterior distribution of the network weights p(w|D) and the variance

B_l due to the intrinsic noise in the data. When the posterior distribution of the weights is
very narrow in relation to the noise variance, the width of the distribution of network
outputs is determined primarily by the noise. On the other hand if the posterior
distribution of the network weight is broad comparing to the intrinsic noise in the data,
the width of the network outputs is dominated by the distribution of network weights
which is presented in Fig. 4.4 (b). In this way the Bayesian formalism allow to calculate

the error bars. A more detailed description of BNN approach can be found in Khan and
Coulibaly (2006).
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Fig. 4.4: Distribution of network outputs with error bars (Bishop, 1995): (a) width of
the network outputs dominated by the noise of the data and (b) width of the network

outputs dominated by the distribution of network weights
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4.2 Spatial interpolation by kriging

Kriging is a class of statistical techniques for optimal spatial predictions based on
statistical techniques such as autocorrelation, i.e. the statistical relationships among the
measured points. It is called optimal because it is statistically unbiased i.e. on average the
predicted and the observed value coincide and they minimize predicted mean-square
error which is a measure of uncertainty or variability in the predicted values. So, these
techniques not only have the capability of producing a prediction surface, but they can
also provide some measure of the certainty or accuracy of the predictions. The basic
objective of a kriging interpolation technique is to predict or interpolate the attribute
values at points where sampling has not been done. The main statistical assumption of
kriging is stationarity which means that statistical properties (means and variance) do not
depend on the exact spatial locations, so the mean and variance of a variable at one
location is equal to the mean and variance at another location. The correlation between
any two locations depends only on the vector that separates them, not on their exact
locations. Kriging assumes that the distance or direction between sample points reflects a
spatial correlation that can be used to explain variation in the surface. It fits a
mathematical function to a certain number of points or all points within a specified

radius, to determine the output value for each location.

Kriging weights the surrounding measured values to obtain predictions at unsampled
locations. The general formula of kriging can be obtained from the weighted sum of the

data:
n N
2(s,)= Y M Z(s;) (4.12)
i=1
where Z(s;)is the measured value a the i location, A;is an unknown weight for the

measured value at the i location, s, is the prediction location and N is the number of

the measured values. The basic difference between kriging and the inverse distance
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weighted (IDW) technique is in IDW, the weight /1,- depends only on the distance to the

prediction location while in kriging, the weights are based not only on the distance
between the measured points and the predicted location but also on the overall spatial

arrangement (such as, auto correlation) of the measured points.

Kriging is a multi step process which includes exploratory statistical analysis of the
data, variogram modeling, creating the surface and exploring a variance surface. The
basic idea here is the weights created by the variograms, minimize the variance in the

estimated values. Kriging uses the following steps to create a prediction surface:

1. It creates a variogram and covariate functions to estimate the statistical dependence
(i.e. spatial autocorrelation) values that depend on the model of autocorrelation. This is
also known as ‘model fitting’.

2. It predicts the unknown values i.e. prediction.

There are several kinds of kriging technique: universal kriging, ordinary kriging, co-
kriging, indicator kriging, etc. The choice of a kriging interpolation technique depends on
the characteristics of the data and the type of spatial model desired (Lefohn et al., 2006).

Ordinary kriging is the most widely used kriging model which assumes that the
constant mean is unknown. On the other hand, universal kriging assumes that there is an
overriding trend in the data which can be modeled by a deterministic function i.e. a
polynomial. Universal kriging should be used only when there is a clear trend in data and
a scientific reason is present to explain the reason of de-trending. However, the main
issue related to ordinary kriging is whether the assumption of a constant mean is justified.

It is a simple prediction model and has a good flexibility.
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Chapter 5

Network Design

The neural network models used in the study were developed using the
NeuroSolutions v4 (NeuroDimension Inc., Gainesville, Florida). In this particular work,
ground level ozone (O3), nitrogen dioxide (NO,), total suspended particulates (TSP) and
respirable particulates (PM o) concentrations collected from 1994 to 2004 have been used
to compare the performance of neural network models. Because of over 6 months of
missing values, the year 1997 has not been included. From the 10 years of observed data
from 1994 to 2004, the first five years (1994-1996, 1998-1999) are considered for
constructing the models, one year data (2000) for cross-validation and the remaining four

years (2001-2004) of dataset were used for testing the models.
5.1 Selection of best predictors

In case of both the neural network models and the Bayesian neural network model,
selection of most important and relevant predictors is the most vital task in the modeling
process. For this work the predictors were selected based on linear autocorrelation and

\L
partial autocorrelation analysis and nonlinear sensitivity analysis.

5.1.1 Correlation Analysis

A correlation plot can be defined as a graphical data analysis in order to determine the
correlation between the lags for a single time series (autocorrelation) or lags for a single
time series after removing the linear dependency of the intermediate lags (partial
autocorrelation) or lags of two time series (cross correlation). The autocorrelation plots
are a commonly used tool for checking the randomness in the dataset which can be

determined by computing autocorrelations of the data value at varying time lags. In the
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case of a random dataset the autocorrelation value would be zero for any or all previous
time steps, while there should be significant non-zero autocorrelations for the non-

random dataset (NIST/SEMATECH, 2006).

Autocorrelation in fact, is the correlation of a dataset with itself which is offset by n-

values. In mathematical form it can be expressed as:

| N-(k+1) B
- Z(yt _yXJ’Hk “.V)
5 = 1=k 5.1
Pk | NoI . (6.1
- Z ()’t —f)
M =0

where N is the number of observations, ), is observation at any time # and ) is the mean

observation.

Partial autocorrelation plots, on the other hand, determine the correlation without any
dependency on previous lags. It is useful to identify the order of a model. If the sample
autocorrelation plot indicates that there is good correlation between the past and present

values of a variable then a partial autocorrelation plot is examined to help identify the

order of fairly correlated time points. If ¢ i (k)is the j* autoregressive coefficient in an

autoregressive model so that ¢ (k) is the last coefficient, the partial autocorrelation

equation, given by Yule-Walker can be expressed as:
(5.2)

where @ (k) is the partial autocorrelation function.
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For this study, at first, correlation between the historical values of each predictor and
predictand pollutants was examined to get an initial idea about the important lags. Then
the partial autocorrelation (PACF) analysis was performed for each of the input and
output variables to identify range of significant lags. From the analysis it was found that
while considering bi-hourly values, lags up to 14 were approximately important for input
meteorological variables and pollutants such as O3 and NO,. However, in case of 6 day
pollutant values, lags up to 8 steps were significant. So these corresponding lags were
selected for sensitivity analysis using a TLFN model to finally identify the most

significant input variables.

5.1.2 Sensitivity analysis

The sensitivity analysis is a measure of the relative importance among the
predictors (inputs of the neural network) which calculates the variation of the output
variables with the variation of inputs. The basic idea is, the changes in the outputs even
with a slight change in input variables are calculated. Each input is varied +n times its
standard deviation while keeping others fixed about their mean and the network output is
calculated for a specific number of steps above and below the mean. The neural network
measures the relative sensitivity, which is the ratio between the standard deviation of the
output and the standard deviation of the input, which as a result, gives the relative
importance of each input. In this study, initially sensitivity analysis was performed using
TLFN and RNN models. The results however, showed similar sensitivity results. Hence

finally only TLFN model was considered for further analysis.

The important lags selected by sensitivity analysis for the pollutant monitoring stations
are shown in Table 5.1 through 5.4. The Tables present the most relevant identified
variables for each station. Table 5.1 gives the details of selected input variables for ozone
in three ozone monitoring sites. A sensitivity value of 0.6 has been set as the lower limit
to consider the predictors to be ‘significant’. Only predictors equal to or greater than

sensitivity value of 0.6 were considered for O3 and NO,. From Table 5.1 it is clear that
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variable ‘wind direction’ along with ‘wind speed’ at both Hamilton Airport and
Burlington Piers sites have proven to be the two most dominant factors for pollutant
dispersion. They show significant influence up to lag 14 for wind direction and lag 10 for
wind speed which means wind speed and wind direction influence the pollutant
dispersion up to 28 hours. Relative humidity, although not as significant as wind speed
and direction, has some influence on the ozone. Average dry bulb temperature however,
has not shown a higher sensitivity here. This was expected to some extent given that
ground level ozone is typically more dependent on maximum temperature rather than the
average temperature. The historical values of ozone itself shows high sensitivity up to lag

4. Similar results are shown for NO, (Table 5.2).

Table 5.1: Selected input variables for O3 based on sensitivity analysis

Selected lags for ground level O;

Variables
Hamilton Downtown Hamilton Mountain Hamilton West
HA WS 10 0,1 6
HA WD 234611 12 13 1.4 7, lil, 12,13, 14 0,2,4,5,6,9,12, 13, 14
HA RH ‘ - ‘
HA Temp - - -
BP WS 0,3,4,6,7,8, 11 1.2.35.7.9 10 12 6, 12

BEWD 1,23458911121314 25619101114 012345891213
BP RH 6,8 . A

BP Temp - - -
O; 1 1 1,4
Legend: HA: Hamilton Airport BP: Burlington Piers
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Table 5.2: Selected input variables for NO, based on sensitivity analysis

4 Selected lags for NO,
Variables
Hamilton Downtown Hamilton West

HA WS 8, 10 1

HA WD 2,3,4,9,10,11,12, 13 1,23 78 12

HA_RH = .
HA Temp - -

BP WS 0,1,6,8 10,11, 12, 14 9,11

BP WD 1,6,11,13 1,7,10

BP RH 11 -
BP_Temp - -

NO, 1 1
Legend: HA: Hamilton Airport BP: Burlington Piers

In order to get the best possible input variables for total suspended particulates (TSP)
and PMy pollutants, a different approach was followed. The selection of the screened
variables were performed based on three cases: case 1 deals with the meteorological
variables only as input, case 2 includes the nearby stations’ pollutant values as predictors
and finally case 3 comprises of a combination of meteorology and nearby station
pollutant values as input for the target station. For TSP, initially sensitivity analysis on
three stations: 29000, 29025 and 29102 was performed using TLFN model and it was
found that except station 29102, case 2 provided better results for the remaining two
stations. The reason behind the different result among the stations may be because of the
larger distance of 29102 than the other 4 stations, so when considering nearby stations as
input, it did not give a good result. Due to the locations of remaining 4 stations, located
within shorter distances between themselves, it is expected that their response to the
meteorology and to themselves would be same. Hence the final screening was performed
for 29113 and 29114 based on the results of 29000 and 29025. Table 5.3 represents the
screened variables selected from sensitivity analysis for TSP. From the table it is seen
that lagged concentrations from station 29114 were the most dominant variables for site
29000 and 29025. On the other hand, lags from all sites contributed for the pollutant
observation at 29114. Where in case of site 29102, meteorological variables

predominated; wind speed from Hamilton Airport, wind directions and mean temperature
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from both Hamilton Airport and Burlington Piers were more relevant. Relative humidity
and maximum temperature of these two stations are also found to influence the TSP
levels at this station. The results for PM,,, presented in Table 5.4 were similar as TSP
except for site 29102 where combined effect of meteorology and nearby sites (wind
speed and direction from Hamilton Airport and Burlington Piers and maximum
temperature of Hamilton Airport along with pollutant values of site 300) has been

noticed.
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Table 5.3: Selected input variables for TSP based on sensitivity analysis

Variables

Selected lags for TSP

29000

29025

29102

29113 29114

Case-1: Meteorological variables

HA WS
HA WD
HA RH
HA Tmax
HA_ Tmin
HA Tmean
HA Prec
BP WS
BP WD
BP RH
BP_ Tmax
BP_Tmin
BP_Tmean

3
0,3

~

AN W

0,4,6

3,6

2,6
0,4,6

2,3

0,1,2,5,6
0,2
0

025

Case-2: Other stations

29000
29025
29102
29113
29114

0,7
0,7
0
0,5,6,8

0,2

0,3,4

1,5

0,1,6

0,7 0,7,8
0,6,8

W = O O
1

3,8

Case-3: Meteorological variables and stations

HA WS
HA_WD

HA Tmax
HA_ Tmin
HA_ Tmean
BP WS
BP WD
BP_Tmax
BP Tmin
BP Tmean
29000

29102
29113

29114

2,8
1,4,5

0

1,4

4,7

— e OO = 0

Legend:

HA: Hamilton Airport

BP: Burlington Piers
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Variables

Selected lags for PM;,

300

302

313

Case-1: Meteorological variables

HA WS
HA WD
HA RH
HA Tmax
HA Tmin
HA Tmean
HA Prec
BP WS
BP WD
BP RH
BP_ Tmax
BP_Tmin
BP_Tmean

1,2
2,4

0,2,4,6

Case-2: Other stations

300
302
313

2,4,5,6,8

0
0,2

0,3,4,5

0,5,6,7

0,2,6,8
1,6,7
1,6

Case-3: Meteorological variables and stations
0,1,2,6

HA WS
HA_ WD
HA RH

HA Tmax
HA Tmin
HA_Tmean
HA Prec
BP WS
BP WD
BP RH
BP_Tmax
BP_Tmin
BP Tmean
300
302
313

0,5

5,6

0

Legend: HA: Hamilton Airport

BP: Burlington Piers
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5.2 Model setup

Selection of an appropriate architecture of any neural network model is a prerequisite
behind its successful use since the structure directly influences the computational
complexity and generalization capability of a model. A more complex than necessary
model can over-train the model while a too-simple model with fewer numbers of nodes
than needed may not be able to learn from the data successfully. Because of the absence
of a standard methodology of selecting an appropriate network, a trial-and-error

procedure has been applied to get the optimal model parameters.

For each station, same input variables identified from sensitivity analysis were used for
all four models in order to compare model performance. The performances of the models
were assessed based on the model performance statistics (root mean square error (RMSE)
and correlation coefficient (r), etc.) generated directly by the model. A detailed
description of the model performance statistics have been given in the following section.
Except BNN, the comparison of MLP, TLFN and RNN model parameters gave similar
results. In this study, trial-and-error approach was carried out with the screened variables
by varying model parameters and the best ones were selected by comparing model
performance until the optimum network was achieved. Table 5.5 through 5.8 presents a
comparative result of the model parameters. Out of the 9 parameters tested in the NN
models, processing element (PEs) or number of nodes in each layer is the most important
one as the number of PEs directly affects the overall computing power of the network;
hence, it should be chosen based on the complexity of the input-output data. It is
important to choose a minimum number of processing elements for the dataset which will
give the least possible error with least computing time and model complexity. Moreover,
a good generalization capability of the NN model depends on choosing the appropriate
minimum number of processing elements needed for the dataset. The second important
parameter is epoch or number of iterations of the model. The ‘depth in sample’ parameter

represents the number of taps or delays within the memory structure of the network. A
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minimum number of epochs and depths are necessary to get optimum results while higher
than necessary can increase the computational time particularly in case of large dataset.
The learning rule, also known as gradient search is a term by which the correction term is
specified. It is used to calculate weight updates. Once a learning rule is set, the rate at
which the learning should be performed also has to be specified. An inadequate learning
rate increases computational time while a higher rate makes weights unstable. Delta bar
delta algorithm is an improved version of the back-propagation network. Unlike back
propagation, delta bar delta algorithm uses a learning method where each weight has its
own self-adapting coefficient. It does not use the momentum factor of the BP algorithm.
The essence of the rule is to use past calculated error values for each weight to infer
future calculated error values, hence by knowing the probable errors, the system takes
intelligent steps in adjusting the weights. Furthermore, each connection weight has its
individual learning rate which vary over time based on the current error information
found with standard back-propagation; hence more degree of freedom is achieved which
reduced the convergence time. Activation functions also referred to as transfer function
describes the non-linearity of the hidden layers that give the neural network model an
ability to learn difficult problem. A brief description of the activation functions is
presented in Table A.2 (Appendix). In order to obtain predictions less sensitive to the
initial conditions, 10 distinct runs are performed using the optimal parameters and the

results from the best run achieved are taken as final result.

In BNN model, a 2 layer MLP network is used with the same set of input variables used
in other NN models. The BNN network consists of one hidden layer, with tangent
hyperbolic activation function and one output layer with linear processing unit (Khan and
Coulibaly, 2006). The parameters of the BNN model, which runs in the MatLab
environment, are quite different. Unlike other NN models, the initialization of parameters
in BNN is performed using a distribution of parameters. The initial values of weights and
biases can be achieved from a Gaussian prior distribution of zero mean and inverse

variance a, also known as regularization coefficient or prior hyperparameter. Gaussian
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prior has been selected in order to favor small values for the network weights because a
network with large weights will usually give rise to a mapping with large curvature
(Nabney, 2004; Khan and Coulibaly, 2006). Moreover, it is less complex in terms of
computational simplicity. A single initial value has been chosen for both hidden and
output layer weights for prior hyperparameter a. An error model for the data likelihood
function is needed to define the objective function. So it is approximated that the target
data is generated from a smooth function with additive zero-mean Gaussian noise. Like a,
a single initial value for both hidden and output layer weights are also chosen for
hyperparamater . Once the prior and likelithood functions are defined, the objective
function is set as posterior distribution of weights. Next the network training is performed
by trial and error and the network weights are being optimized using scaled conjugate
gradient optimization technique to get the most probable weights by maximizing the
posterior distribution of weights p (W|D). After the network has been trained, the
predictions are performed using eqn. 4.10 where the posterior distribution is assumed
Gaussian. Error bars are calculated using eqn. 4.11. The 95% confidence interval of the
mean output y(x,wyp) have been estimated by adding and subtracting 20 from y(x, wasp)
(Khan and Coulibaly, 2006).

Both for O3 and NO,, out of 11 years bi-hourly dataset, 6 years (1994-1999) data were
used for model calibration and one year (2000) data was used for cross-validation. The
remaining 4 years data (2001-2005) was used for testing. On the other hand, for TSP and
PM ¢, the length of dataset is quite small because the pollutant values are measured once
a week at an interval of 6 days. In this case, 8 years (1994-2001) data were used for
calibrating the model and one year data (2002) for cross-validation. The remaining 2 year
(2003-2004) dataset were used for testing the model. The reason behind using cross-
validation dataset is to prevent overtraining when the cross-validation error starts rising.
In this way the best weights of the network are saved automatically at the point when the
cross-validation error goes to the lowest point. The architectural description of the

models selected for the O3 and NO, monitoring stations are presented in Tables 5.5 and
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5.6. From the Table 5.5 it can be seen that for BNN and RNN the 8 and 10 hidden nodes
(PEs) are most appropriate, while for TLFN and MLP, optimum number of nodes are 14
and 17 respectively for site 29000. Similar results have been achieved for sites 29114 and
29118. It is seen that overall MLP requires higher number of nodes in its hidden layer
than remaining three models. These optimum nodes are achieved by setting different PEs
ranging from 2 to 40 keeping other parameters the same. This is one of the distinct and
important differences between the models. Higher number of processing elements clearly
indicates that the computational cost of BNN, TLFN and RNN model is higher than the
MLP model. For the TLFN and RNN models, different lengths of input delays varying
from 1 to 10 have been tested with the optimum number of nodes and it is found that in
most cases an input delay of 4 was appropriate. Even though it is seen that the number of
hidden nodes and input delays in RNN are slightly lower than the TLFN model, still it
needs higher computing time than TLFN because of the recurrent connections. Number
of iterations or epochs that has been tested includes 1000, 2000 and 3000 separately and
it is seen that MLP models need less number of epoch to generate optimum result than
other 3 models where in all cases, 2000 epoch was most appropriate. In all cases delta bar
delta algorithm proved most appropriate. The NO, model performance results have been
presented in Table 5.6. It has been found that with slightly higher number of hidden
nodes than RNN and MLP, TLFN needs less number of iterations and input delays to
produce its optimum results. The number of nodes required is higher in BNN than other
three models. In case of TSP and PM;, results, the number of hidden nodes in RNN is
generally higher than other models; number of iterations is almost same in all models
except for site 29025 where TLFN needed 3000 iterations to produce best results. Similar
to Os results, PMg results presented in Table 5.8 show that MLP needed more hidden

nodes than other models except for site 302 where RNN came up to be more complex.
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Table 5.5: Best model structure for O

Stations Model parameters NN modehs
TLFN RNN MLP
29000 Processing element 14 10 17
Epochs 2000 2000 1000
Learning rule Delta bar delta Delta bar delta Delta bar delta
Input transfer function TDNN Gamma -
Depth in samples 4 4 -
HL transfer function Sigmoid Sigmoid Tan hyperbolic
OL transfer function Linear Axon Bias
Stopping criteria Cross validation Cross validation  Cross validation
29114 Processing element 7 8 12
Epochs 2000 2000 1000
Learning rule Delta bar delta Delta bar delta Delta bar delta
Input transfer function TDNN Gamma -
Depth in samples 10 4 -
HL transfer function Sigmoid Sigmoid Tan hyperbolic
OL transfer function Axon Axon Bias
Stopping criteria Cross validation Cross validation  Cross validation
29118 Processing element 13 13 17
Epochs 2500 2000 1000
Learning rule Delta bar delta Delta bar delta Delta bar delta
Input transfer function TDNN Gamma -
Depth in samples 10 4 -
HL transfer function Sigmoid Sigmoid Tan hyperbolic
OL transfer function Linear Axon Axon
Stopping criteria Cross validation Cross validation  Cross validation

Legends: TLFN: Time lagged feed-forward network
MLP: Multilayer perceptron

RNN: Recurrent neural network
TDNN: Time delay neural network

s BNN model parameters
Station
Nhidden Option 14 Nouter Alpha Beta
29000 8 2000 15 0.01 50
29114 14 2000 15 0.01 40
29118 2 1000 10 0.015 50

Legends: Nhidden: No. of processing units
Option 14: No. of iteration in each loop
Beta: Initial noise parameter

Nouter: No. of loops
Alpha: Initial prior hyperparameter
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Table 5.6: Best model structure for NO,
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Stations Model Parameters NN Mostals
TLFN RNN MLP
29000 Processing element 11 1 5
Epochs 1000 1000 1000
Learning rule Delta bar delta Delta bar delta Delta bar delta
Input transfer function TDNN Gamma -
Depth in samples 2 4 -
HL transfer function Sigmoid Sigmoid Sigmoid
OL transfer function Bias Axon Linear
Stopping criteria Cross validation Cross validation Cross validation
29118 PE 5 5 5
Epochs 1000 2000 2000
Learning Rule Delta bar delta Delta bar delta Delta bar delta
Input Transfer Function TDNN Gamma -
Depth in Samples 4 4 -
HL Transfer Function Sigmoid Sigmoid Sigmoid
OL Transfer Function Linear Axon Linear

Stopping Criteria Cross validation

Cross validation

Cross validation

Legends: TLFN: Time lagged feed-forward network
MLP: Multilayer Perceptron

RNN: Recurrent neural network
TDNN: Time delay neural network

BNN model parameters

Station

Nhidden Option 14 Nouter  Alpha Beta
29000 16 2000 15 0.01
29118 16 1000 15 0.01

Legend: Nhidden: No. of processing units
Option 14: No. of iteration in each loop
Beta: Initial noise parameter

Nouter: No. of loops
Alpha: Initial prior hyperparameter
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Table 5.7: Best model structure for TSP
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Stations Model parameters NN medels
TLFN RNN MLP
29000 Processing elements 5 20 5
Epochs 2000 2000 2000
Learning rule Delta bar delta Delta bar delta Conjugate gradient
Input transfer function TDNN TDNN -
Depth in samples 4 10 -
HL transfer function Tan hyperbolic Sigmoid Tan hyperbolic
OL transfer function Linear Linear Linear
29025 Processing elements 15 8 17
Epochs 3000 2000 2000
Learning rule Delta bar delta Delta bar delta Delta bar delta
Input transfer function Gamma TDNN -
Depth in samples 2 4 -
HL transfer function Tan hyperbolic Sigmoid Tan hyperbolic
OL transfer function Axon Axon Bias
29113 Processing elements 34 15 8
Epochs 1000 1000 1000
Learning rule Conjugate gradient Conjugate gradient Momentum
Input transfer function TDNN TDNN -
Depth in samples 10 4 -
HL transfer function Sigmoid Sigmoid Tan hyperbolic
OL transfer function Linear Linear Linear
29114 Processing elements 10 18 6
Epochs 2000 2000 1000
Learning rule Momentum Delta bar delta Delta bar delta
Input transfer function TDNN TDNN -
Depth in samples 4 10 -
HL transfer function Sigmoid Sigmoid Sigmoid
OL transfer function Bias Linear Linear
29102 Processing elements 8 28 6
Epochs 1000 1000 2000
Learning rule Delta bar delta Conjugate gradient Conjugate gradient
Input transfer function TDNN Gamma
Depth in samples 4 2
HL transfer function Sigmoid Sigmoid Sigmoid
OL transfer function Bias Linear Axon

Legends: TLFN: Time lagged feed-forward network
MLP: Multilayer perceptron

RNN: Recurrent neural network
TDNN: Time delay neural network
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BNN model parameters

Station

Nhidden Option 14 Nouter  Alpha Beta

29000 1 2000 15 0.01 50

29025 10 2000 15 0.01 50

29113 10 2000 15 0.01 50

29114 15 1000 15 0.01 50

29102 20 2000 15 0.01 50
Legend: Nhidden: No. of processing units Nouter: No. of loops

Option14:No.ofiterationineach loop Beta: Initial noise parameter

Alpha: Initial prior hyperparameter
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Table 5.8: Best model structure for PM;q

McMaster University — Civil Engineering

Stations Model parameters NN models
TLFN RNN MLP
300 Processing elements 10 8 30
Epochs 1000 1000 1000
Learning rule Delta bar delta Delta bar delta Momentum
Input transfer function TDNN Gamma -
Depth in samples 10 4 -
HL transfer function Tan hyperbolic Tan hyperbolic Sigmoid
OL transfer function Linear Linear Linear
313 Processing elements 6 10 18
Epochs 1000 2000 1000
Learning rule Delta bar delta Delta bar delta  Delta bar delta
Input transfer function TDNN TDNN -
Depth in samples 4 4 -
HL transfer function Tan hyperbolic Sigmoid Sigmoid
OL transfer function Linear Linear Linear
302 Processing elements 8 26 4
Epochs 2000 2000 1000
Learning rule Delta bar delta Delta bar delta  Delta bar delta
Input transfer function TDNN TDNN -
Depth in samples 4 4 -
HL transfer function Sigmoid Sigmoid Sigmoid
OL transfer function Linear Linear Linear
RNN: Recurrent neural network

Legends: TLFN: Time lagged feed-forward network
MLP: Multilayer Perceptron

TDNN: Time delay neural network

BNN model parameters

Station
Nhidden Option 14  Nouter Alpha Beta
300 7 1000 15 0.005 50
313 8 2000 15 0.01 50
302 8 2000 15 0.005 50

Legend: Nhidden: No. of processing units
Option14:No.ofiterationineach loop

Alpha: Initial prior hyperparameter

Nouter: No. of loops
Beta: Initial noise parameter
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5.3 Model performance evaluation

Many model performance statistics are available in order to assess the accuracy of the
estimates. For this particular work, the model performance and forecasting results were

compared by a set of five statistics. A brief description of these statistics is given below:

The Root mean square error (RMSE) which is the square root of the differences

between the observations Co and predicted values Cp:

1 N ) yZ
RMSE:(NZ(CE -Co) J

i=l

where N is the number of observations, C, and Cp are observed and predicted values

respectively. The mean square errors provide a general illustration of the relevancy of the
simulated values by giving a global goodness to fit by including errors and biases in the
calculation. The lower the RMSE value, the better the model.

RMSE, however, doesn't necessarily reflect whether the two sets of data move in the
same direction. For instance, by simply scaling the network output, we can change the
MSE without changing the directionality of the data. This limitation can be overcome by

introducing a second index, correlation coefficient, r.

The correlation coefficient (r) between an observed value C o) and a desired model

output C p is defined by:
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Where N is the number of observations and (—?01. and C p,are the mean observed and

predicted values respectively. This statistic provides a measure of the prediction ability of
a model and it is an important tool for comparing two models as it is independent of the
scale of data. The r value can range from -1 (perfect negative correlation) to 1 (perfect
positive correlation) through 0 where 0 means no correlation. An r value of 0.9 and above
is very satisfactory, 0.8 to 0.9 presents a fairly good model but below 0.7 is considered

unsatisfactory.

The coefficient of determination (R’) which is simply the square of the coefficient of
correlation, assesses the strength of an association between two variables. It is also a
measure of the ability of a model to predict the concentrations, which are different from
mean. Moreover, it provides a useful comparison between the models since it is
independent of the scale of data. It lies between zero and unity; the closer to unity, the

greater the explanatory power.

The normalized mean squared error (NMSE) is another version of the mean square
error which is normalized with the object of establishing comparisons among different

models (Agirre-Basurko et al, 2006).

g = O
Var(Co)

L S (€, -C)

_Nz=1

IN

— > \C,

y2(Co-Caf

The mean absolute error (MAE) is a linear score which means that all the individual

differences are weighted equally in the average. In short, it measures the average

71



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

magnitude of the errors in predicted dataset without considering their direction. It can be

expressed as:
1 &
M4E=N21 Co, —Cp |
i=1

For a perfect fit, C 0, = C p, and hence MAE becomes zero. So the MAE ranges from

0 to infinity where 0 corresponds to the ideal condition which in particular permits to

compare the appropriateness of using the models.

The relative bias (RB) provides a measure of the magnitude of bias between the

observed and target data. It can be expressed as:
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Chapter 6

Ozone and Nitrogen Dioxide Forecasting Results

As described in chapter 5, first 6 years (1994-1999) of the observed meteorological data
(as predictors) and the historical O3 and NO, data (as predictand) has been used for
model calibration at each monitoring stations. In order to prevent overtraining of the
models, 1 year (2000) data has been selected for cross-validation. The remaining 4 years
(2001-2004) of data are being used to test the model. After good statistical agreement
between the observed and simulated values has been achieved with the training data, the
models are then used to perform 12 steps i.e. 24 hour ahead forecasting of O3 and NO,

level at the monitoring stations.

Firstly, the performances of the ozone models are compared using standard statistical
model performance measures. Scatter plots are then drawn in order to assess the
relationship or association between the observed and predicted concentrations. A
comparison of the seasonal performances is investigated and further analysis is done
using seasonal model to improve their performance. Further analysis has been performed
by including land use type around the stations as logical inputs to improve model results.
The analysis of the NO, models also follow the same steps but using only the best
procedure. The discussion emphasized the testing results only as they provide real
evaluation information about model performance owing to the use of independent

datasets from calibration.

6.1 Ozone forecasting results

6.1.1 Model forecasting performances

After modeling has been done for the three ozone monitoring stations in Hamilton,

the performances of each model were compared. Table 6.1 presents the overall
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performances of the models to forecast ozone at three ozone monitoring stations during
testing period. A detailed description of the forecasting performances of the models is
provided in Table A.3 (Appendix) for a comparative assessment of the models. The most
efficient model should have least root mean square error (RMSE), mean absolute error
(MAE), normalized mean square error (NMSE) and highest correlation coefficient (r) and
coefficient of determination (R?). It has been seen that the performances of all the models
deteriorated with time as expected. Overall performances indicate that all four models
performed satisfactorily up to 6 steps (12 hour) ahead with generally slight variations in
between themselves. It appeared that TLFN model outperformed other 3 models in terms
of its RMSE and r values up to 4 hour ahead followed by RNN model. RNN model then
degraded at a slower rate than the TLFN and finally has shown better results than TLFN

from 6 to 12 hour ahead forecasts.

Firstly, the results of 2 hour and 4 hour ahead forecasting show similar forecasting skill
for all three stations. The TLFN model resulted in a lower RMSE, r, R’ and MAE values
than the rest three models. The performance of RNN, BNN and MLP model is quite
similar in terms of  and R’ values while the RMSE and MAE results showed that RNN is
slightly superior to the static MLP model. The NMSE values obtained shows a bit
different results with lowest NMSE value for BNN model. Overall, all models have
showed similar performances; TLFN and RNN had coefficient of correlation r (0.91-
0.93) values slightly higher than 0.90 compared to BNN and MLP (0.89-0.92) models for
one step ahead forecasting and R” values higher than 0.80 which clearly demonstrates the
efficiency of the models for that forecasting period. The r value for the forecasting period
t+2 is also satisfactory. Further analysis has been done to investigate the percent of
improvement of the models in terms of RMSE values which has been presented in Table
6.1. When moving from 2 hour to 4 hour ahead forecasting, large (around 50%) drops in
model performance has been observed in terms of RMSE values except RNN model

performance at site 29118 where the RMSE value increased only 2%. This means for 2
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step (4 hour) ahead forecasting at site 29118, RNN has higher performance than

remaining three models.

Unlike the forecasting results of first two periods, the 3 to 6 step ahead forecasting
results demonstrate slightly better performances of RNN model over TLFN and other
models. The lowest RMSE, NMSE and MAE values were obtained by the RNN model
for downtown station and mountain station. In case of Hamilton Mountain, TLFN
experienced lower errors than other three models. The greatest values of coefficient of
correlation r were also obtained for RNN model which clearly shows that RNN model
worked better than other models during this time frame. Similar to two other stations, all
models showed variation in their performances up to 6 step (12 hour) ahead forecasting;
the values beyond this point, however remained same. The lower change (below 10%) in
the RMSE values while moving from 4 (8 hour) to 6 (12 hour) step which also supports
this explanation. The graphs in Fig. 6.1 clearly indicate that the peak performances of
these four models can be obtained up to 6 steps ahead i.e. 12 hours. The graphs also
reveal the better performances of TLFN and RNN models over static MLP and BNN
models. These results further suggest that the inclusion of time delay and/or adaptive
memory (context unit) in MLP have the capacity to improve the results obtained from
conventional static neural network (MLP in this case). These performances, however
indicate that RNN model has the best generalization performance and suggest that the
relationship between ozone and the meteorology can better be represented using these
predictor variables still with room for improvement at three ozone monitoring sites in

Hamilton.
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Table 6.1: Comparison of model performance at station 29000, 29114 and 29118

Model Forecasting 2900(1/ g 291 lt/ - 291 18o
period,2hrs RMSE . °° RMSE . 7° RMSE . 2Of
improvement improvement improvement
1 6.28 6.13 6.22
TLEN 2 9.46 -50.64 9.73 -58.73 9.21 -48.07
4 12.05 -27.38 12.52 -28.67 1143 -24.10
6 12.62 -4.73 13.39 -6.95 12.39 -8.40
1 6.68 6.57 6.89
BNN 2 10.01 -49.85 10.24 -55.86 10.55 -53.12
4 12.94 -29.27 13.46 -31.45 13.76 -30.43
6 13.32 -2.94 14.52 -7.88 14.17 -2.98
1 6.48 6.36 6.51
RNN 2 9.87 -52.31 10.12 -59.12 6.64 -2.00
4 11.53 -16.82 12.58 -24.31 11.51 -73.34
6 12.42 -1.72 13.06 -3.82 12.07 -4.86
1 6.68 6.62 6.83
MLP 2 9.89 -48.05 10.17 -53.63 10.40 -52.27
4 12.28 -26.49 13.35 -31.27 13.44 -29.18
6 12.51 -1.84 14.24 -6.67 13.57 -1.00
Legends: TLFN: Time lagged feed-forward network RNN: Recurrent neural network
MLP: Multilayer perceptron TDNN: Time delay neural network

To further assess the model performance in general, scatter plots between the observed
and the predicted concentrations were plotted. The best fit line through the observed and
predicted concentrations provides another approximation to test the model performance
(Gardner and Dorling, 2000). The idea here is: most accurate results will have intercept
tending to 0 and gradients tending to 1. Fig. 6.2 (a), (b) and (c) show the scatter plots of
t+1, t+4 and t+6 forecasting period in Hamilton Downtown area. In case of 1 step ahead
forecasting, the MLP and BNN model diverge significantly from the 45° line and tended
to shift towards right. TLFN and RNN models during this time period also shifted but
still remain closer to the ideal line. These patterns clearly indicate that both RNN and
TLFN model performed more accurately than conventional MLP model. Thus adding an
input delay memory or a context unit to the static MLP can be a good alternative to

improve the forecasting accuracy. The forecasting results of t+4 (8 hour ahead) and t+6
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Fig. 6.2 (a): Scatter plots at 1 step (2 hour) ahead: Hamilton Downtown (29000)

In case of low concentrations, predicted values by RNN are relatively better with MLP

performing inferior to other two models. Even though the extremely higher and lower

values are due to extreme conditions, RNN appears to be more capable of capturing those

underlying extreme phenomena. The temporal representation capability of global RNN

model is better than the static MLP model and slightly better than the TLFN model. Thus,

adding an input delay or an adaptive memory to the conventional MLP can be a good

alternative for improving forecasting efficiency.

79




M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Scatter PIOt_tM_ILFN Scaiter Plot t+4 RN
. 11F¥Q—Lmar{0bs=ked}—i.‘mearmmﬂ

120 | . HN—Lhear{G:s:Pfed}-—Lhem{Ml
110 4 120,

100 '!?9]

90 100

80 gg'
R 3 7&1
8 . i

od 260
Bsodg s Ta

40 s . Y

10 30

20 2

10 10

0 L ow W r —_— * r r - . r r ' 1 - TNy ¥ '

0 10 20 30 40 50 60 70 80 S0 100 110 12 D 1 20 % 40 0 80 70 80 90 400 110 1
Observed Observed
Scatter Plot_t+4 BN Scatter Plot_t+4 MLP
[+ BN ——Liear (0os = Pred) — Lnear (BNV)| [ @ MP ammeLiear {Obs =Pred) — Linear {M.P)|

1201

10

100 1
'g 9
z o) 3
g 704 §69

&0 &5

50 1

40 Y

w s

2

10 ‘ . :

BRI 0 0 20313 0 % 0 éeﬁbaéaiia?zo

0 10 2 N 40 50 70 8 0 100 102 Cbsrvod

Fig. 6.2 (b): Scatter plots at 4 step (8 hour) ahead: Hamilton Downtown (29000)
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Fig. 6.2 (c): Scatter plots at 6 step ahead: Hamilton Downtown (29000)

6.1.2 Confidence interval with BNN

The performance of the BNN model, although not superior to other neural network

model, indicates that they can be a good alternative for short term forecasting (up to 4

hour). Moreover, the BNN model is simpler than the other NN models in terms of the

number of neurons. The reason behind this simple-yet-better performance of BNN model

may be due to the consideration of parameter uncertainty in the form of probability

distributions of weights and biases, and finding the outputs of the networks by integrating

over the weight space of posterior probability distribution instead of using single ‘best
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set’ of weights as in the case of conventional MLP model. This parameter uncertainty
consideration and the high computational capability of the nonlinear processing unit
increase the capacity of BNN model to outperform the widely used MLP model. The
BNN model reproduced concentrations well along with high and low values.
Summertime values of the ozone concentrations produced by the models are calculated
further with 95% confidence interval using the BNN model for 2 and 4 hour ahead
forecasting period. Representation of the confidence intervals about mean estimates is the
additional advantage of BNN model which the conventional neural network models
cannot provide (Khan and Coulibaly, 2006). Fig. 6.3 (a) and (b) and 6.4 present the
confidence interval plots for 2 hour (1 step) and 4 hour (2 step) hour ahead forecasts for
mid July-mid Aug, 2004 at sites 29000 and 29114. The uncertainty bands created by the
2 hour ahead BNN model hold both the observed and other modeled values quite well.
Hence the performances of BNN and other NN based models are quite competitive; both
models performed well in predicting concentrations including high and low

concentrations.
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Fig. 6.3 (a): Comparative results of 2 hour ahead ozone forecasting with 95% confidence
interval: Hamilton Downtown (29000)
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Fig. 6.3 (b): Comparative results of 4 hour ahead ozone forecasting with 95% confidence
interval: Hamilton Downtown (29000)
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Fig. 6.4: Comparative results of 2 (left) and 4 (right) hour ahead ozone forecasting with
95% confidence interval: Hamilton Mountain (291 14)
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Except a few deviations, the BNN model band for 4 hour ahead forecasting has also
been able to hold both the observed and predicted values. But the gradually increasing
uncertainty band indicates the degradation of model performance compared to the
previous time step. TLFN, RNN and MLP modeled values fall within the prediction band
of BNN, indicating that it can be a reliable tool where uncertainty estimate is of particular
concern. These deviated modeled values from the observed concentration are not the
limitation of BNN but rather the problem associated with the limitations of the models

themselves.

6.1.3 Seasonal variation

It is noteworthy that the ground level ozone concentrations remain higher during May
to September because of the photochemical reactions with Isoprene emission which is the
principal hydrocarbon precursor of ozone over Southern Ontario and North-eastern
United States during summer (McKean et al., 1991). Especially summer season observes
frequent ozone episodes during June-August. High temperature and solar radiations act as
elevating factor behind its formation. The higher concentrations are also associated with
surface winds from south-west indicating the advection of regional pollution from
heavily industrialized cities situated in north-eastern United States (Detroit, Chicago,
Indianapolis, etc.) with varying additions of urban plumes from New York City and
Connecticut. Additional factor like hydroxi-radical (HOy) providing ozone formation has
significant influence on the seasonal variation. Jacob et al. (1995) found evidence for a
seasonal transition from NOx — to hydrocarbon limited O; production over southern
Ontario and eastern US cities in September, reflecting a decline of the HOy supply down
to levels that can be titrated by NOx emission. This transition in the photochemical
regime results in a large drop of the ozone production efficiency (Hirsch et al., 1996).
Hence, the performances of each model have been further analyzed by season. Therefore

observed and forecasted data were segregated in the following seasons:
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Winter: December, January, February
Spring: March, April, May
Summer: June, July, August

Autumn: September, October, November

The performance of each model was then calculated separately and an inter-comparison
of the model performances was performed for each season. Table 6.2 summarizes the
forecasting statistics for 1, 2, 4 and 6 step ahead time for site 29000. The ozone trend in
each season has been clearly noticed in the model performance; higher errors found
during summer times followed by slightly better during spring. Winter has been the
clearest season. A new statistical (i. e. seasonal) bias has been introduced to estimate the
% of under-prediction or over-prediction per season. Interestingly, both spring and
summer values are being under-predicted by the models and over prediction have
occurred for winter and fall. This visualization again reveals the model’s limitation to
predict higher concentration episodes. A general observation is that overall whatever the
forecast step, the MLP model has produced a higher bias as compared to TLFN and RNN

models.

Table 6.2: Seasonal variation of model performance for O3: Hamilton Downtown (29000)

Forecasting Model performance statistics
: Season  Model 5
period RMSE r R NMSE MAE SB
t+1 TLFN 5.42 092 0.85 0.15 3.95 0.019
ot BNN 6.03 090 0.81 0.19 439 - 0.015
a

RNN 5.69 0.91 0.83 0.17 4.17 0.029
MLP 5.88 0.91 0.82 0.18 4.29 0.011
TLFN 7.86 091 0.84 0.17 5 -0.030
BNN 8.63 090 0.81 0.20 6.33 -0.047

Summer
RNN 8.06 0.91 0.83 0.17 5.91 -0.037
MLP 8.40 090 0.82 0.19 6.21 -0.040
TLFN 7.00 0.87 0.76 0.25 5.07 -0.034
. BNN 7.44 0.85 0.72 0.28 5.46 -0.036
Spring ‘
RNN 71.15 0.86 0.74 0.26 522 -0.026
MLP 7.31 0.86 0.74 0.27 5.35 -0.037
Winter TLFN 4.44 0.87 0.76 0.24 3.33 0.017
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BNN 4.68 086 0.74 0.27 3.58 0.038
RNN 4.60 0.86 0.75 0.26 3.50 0.043
MLP 4.66 0.86 0.74 0.26 3.52 0.007
TLFN 8.36 0.80 0.65 0.36 6.33 0.05
s BNN 8.87 0.77  0.60 0.40 6.68 0.02
f RNN 890 077 060 041 6.74 0.06
MLP 8.80 0.78  0.60 0.40 6.59 0.02
TIEN 119 079 062 0.38 9.12 -0.06
BNN 12771 076 058 0.44 9.60 -0.08
Summer
RNN 1249 07! 059 o4 9.40 -0.07
- MIP 1251 077 059 042 9.36 -0.09
TIEN 1019 070 049 0.53 7.74 -0.05
. BNN 10.74  0.67 045 0.59 8.16 -0.08
Spring
RNN 1041 0.68 0.6 0.55 7.99 -0.04
MLP 1063 068 0.46 0.57 8.13 -0.08
TLFN 6.60 0.69 048 0.53 5.13 0.04
, BNN 6.80 0.67 0.44 0.56 5.41 0.04
Winter
RNN 6.90 0.66 0.44 0.58 5.48 0.08
MLP 6.87 0.66  0.44 0.57 5.40 0.03
TLEN 1131 659 035 0.66 8.94 0.05
o BNN 11.86 053  0.29 0.72 9.43 0.08
RNN 1092 063 039 0.61 8.65 0.06
MLP 11.88  0.53 028 0.72 9.40 0.07
TIFN 1625 051 032 0.71 12.61 -0.10
BNN 1733 050 025 0.80 13.45 -0.15
Summer
RNN 1614 05 031 0.70 12.78 -0.05
MLP 1723 051 026 079 13.37 -0.14
t+6 TEN 1275 o047 02 0.82 10.23 -0.08
, BNN 1340 040 0.16 0.91 10.78 -0.12
Spring
RNN 1274 045 0721 0.82 10.25 -0.07
MLP 1340 042 0.17 0.91 10.84 -0.12
TLFN 9.02 032 0.10 0.99 7.21 0.00
; BNN 9.36 022 0.05 1.06 7.70 0.09
Winter
RNN 8.65 036 0.13 0.91 7.01 -0.03
MLP 9.32 026 007 1.05 7.54 0.07

Considering 1 step ahead forecasting of summer season, the bias generated by all

models are relatively low. It ranged from 0.03% to 0.04% with highest from MLP. For 4
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step ahead forecasting, summer season bias remained in the range of 0.1% to 0.15%
again with higher bias generated by MLP. For 6 step ahead, the BNN model performance
started degrading with slightly higher bias (0.15%) along with the MLP model (0.14%).
During spring, the bias values are even higher in some cases; MLP again has produced
highest bias. So overall, TLFN and RNN models have shown better performances for
predicting seasonal values during summer and spring. During fall and winter, a different
scenario has been captured. Here RNN has performed worse than other 3 models in terms
of bias. Again BNN performance degraded later rapidly which indicated BNN may not be
a good alternative for the further forecasting time after 4 step. During these seasons,
TLFN has shown superior performances. Hence it can be said that considering all seasons
TLFN has performed quite well comparing to its contemporary models. Similarly for Site
29114 and 29118, summer and spring was worse in terms of forecasting performances

which has been shown in Table A. 4 (a) and (b) respectively (See Appendix).

6.1.4 Annual vs. summer model

It is now well established that summertime ground level ozone has been a serious
problem for several decades in many metropolitan areas of the world. Therefore
developing, maintaining and improving the ozone forecasting model is an important task
for the environmental and health authorities (Chaloulakou, et al., 2003). In this study an
attempt has been taken to develop a model especially for summer and hence is named as
‘summer model’. The ‘annual model’ performance is then compared with the summer
models. Table 6.3 and Table A. 5 (Appendix) presents a comparison of the forecasting
statistics of annual and summer models. From the Table 6.3 it is seen that in terms of
RMSE, the percentage of improvement is very less; in most cases summer models have
performed slightly worse than the annual model. Only BNN model at 1 step ahead
forecasting and RNN at 3 and 4 step ahead have shown some improvement. In most cases
the summer model has shown an inferior performance which is most visible in case of

TLFN and MLP models where it had more than 6% root mean square error than the
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annual model. This scenario clearly demonstrates that the annual model is entirely

capable of capturing the complex non-linear relationships of ozone formation regardless

of the season in this case.

Table 6.3: Annual model vs. summer model: Hamilton Downtown (29000)

Forecasting RMSE from RMSE from %
period bade annual model  summer model improvement
t+1 TLFN 7.86 7.88 -0.25
BNN 8.63 8.43 2.30
RNN 8.06 8.08 -0.29
MLP 8.40 8.37 0.34
t+2 TLFN 11.96 12.38 -3.51
BNN 12.77 13.09 -2.51
RNN 12.49 12.73 -1.92
MLP 12.51 12.72 -1.68
t+3 TLFN 14.24 15.11 -6.11
BNN 15.40 15.74 -2.21
RNN 13.99 13.72 1.93
MLP 14.78 15.49 -4.83
t+4 TLFN 15.55 16.07 -3.34
BNN 16.86 17.20 -2.02
RNN 14.92 14.71 1.38
MLP 16.04 16.69 -4.05
[5iz>) TLFN 15.95 16.80 -5.33
BNN 16.98 18.05 -6.30
RNN 15.04 15.28 -1.60
MLP 16.65 17.32 -4.02
t+6 TLFN 16.25 17.02 -4.77
BNN 17.33 18.33 -5.77
RNN 16.14 15.80 211
MLP 17.23 17.66 -2.50
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6.2 Ozone forecasting with land use variables

Because ozone concentration depends on the location and the type of the area which
highly depends on the geography, traffic and population surrounding that location,
therefore the annual model is further modified using the land use types around 200 m
buffer of the pollutant monitoring sites. These variables consists of several land uses such
as residential, commercial, institutional types described in section 2.2.3. Table 6.4 and

Table A. 6 presents a comparative assessment of the model forecasting statistics with and

Table 6.4: Comparison of model performance using land use variables: Hamilton

Downtown (29000)
Forecasting Model RMSE
period Without land use With land use % reduction in RMSE
t+1 TLFN 6.28 7.89 -25.62
BNN 6.68 8.36 -25.10
RNN 6.48 8.61 -32.89
MLP 6.68 8.41 -25.85
t+2 TLFN 9.46 12.34 -30.40
BNN 10.01 13.28 -32.64
RNN 9.87 12.94 -31.10
MLP 9.89 12.76 -29.02
t+3 TLFN 11.16 14.36 -28.68
BNN 11.96 15.02 -25.59
RNN 10.90 15.35 -40.87
MLP 11.58 15.08 -30.20
t+4 TLFN 12.05 15.20 -26.13
BNN 12.94 : 16.43 -26.95
RNN 11.53 1591 -37.95
MLP 12.51 15.96 -27.55
t+5 TLFN 12.42 15.71 -26.49
BNN 13.03 17.12 -31.41
RNN 11.78 16.46 -39.73
MLP 12.97 16.81 -29.60
t+6 TLFN 12.62 15.91 -26.08
BNN 13.32 17.97 -34.93
RNN 12.42 16.38 -31.89
MLP 12.28 17.10 -39.29
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without considering land use types. It appears that the performance of the basic annual
model without considering land use types performed better than the later one. The
performance of RNN was even worse; in most cases the inferiority of RMSE value
exceeded 35% than the basic annual model. This type of results indicate that in temporal
problems, the inclusion of land use types in a form of logical input may not be the right
form to capture the impacts of different land use types rather using emission factors from
different sources may be a good alternative to count the influences of different sources of

the pollutants.

6.3 Nitrogen Dioxide Forecasting Results

This section describes the performances of NO, forecasting models at two NO,

monitoring stations in Hamilton.

6.3.1 Model forecasting performances

The performances of the forecasting models have been compared in Table 6.5 and
Table A. 7 (a) and (b) and Fig. 6.5. Similar to ozone model results, the performances of
all models for NO, forecasting are very close. One important observation here is
compared to TLFN, BNN and RNN models, the performances of MLP model are also
competitive. All the models deteriorated with time up to 7 step ahead. The performances
of the models can be further analyzed based on their RMSE values as presented in Table
6.5. It is seen that for 2 step ahead the RMSE value dropped largely (around 40% of the
previous step) with RNN model as highest as 42.46% for site 29000 and 41.17% for site
29118. Here MLP performed slightly well with a drop of around 38% for both sites.
MLP performed better up to 3 step ahead which got worse later compared to other three
models (Table A. 7 in Appendix). TLFN, although was slightly inferior to the rest three
models, started acting well from 4 step ahead. So overall performances of the models
indicate that each of them has performed quite competitively and can be applied up to 6

step ahead where the r value remains equal to or greater than 0.40.
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The performances of the forecasted models were further analyzed by plotting scatter
plots for Hamilton downtown site. Fig. 6.6 (a) and (b) show the scatter plots of 2 and 6
hour ahead forecasting period in Hamilton Downtown area. In case of 2 hour ahead
forecasting, all 4 models performed well, shifted slightly from the 45° line and having
coefficient of determination value more than 0.70. While for 6 hour, a large degradation
appears, with concentrations shifting widely from the 45° line. Like ozone models, the 4
hour ahead scatter plots also indicate that these models have limitation in capturing
higher and lower concentrations. The performance of BNN, in particular is worse than

rest three models in this case.

Table 6.5: Comparison of model performance of NO, at station 29000 and 29118

29000
Model Forecasting period, 2 hrs 9.0 29_118
RMSE % improvement RMSE % improvement

1 5.76 5.77

TLFN 2 8.07 -40.10 8.04 -39.34
4 9.27 -14.87 9.83 -22.26
7 10.00 -7.87 10.74 -9.26
1 5.79 5.99

BNN 2 8.02 -38.51 8.39 -40.07
4 9.41 -17.33 10.15 -20.98
7 9.98 -6.06 10.89 -7.29
1 5.77 5.83

RNN 2 8.22 -42.46 8.23 -41.17
4 9.30 -13.14 9.86 -19.81
7 9.87 -6.13 10.60 -7.51
1 5.85 6.04
J 8.09 -38.29 8.39 -38.91

o 4 9.35 1557 10.00 -19.19
7 9.96 -6.52 10.93 -9.30

6.3.2 Seasonal variation
Similar to the ozone forecasting models, the performances of the NO, models were
analyzed based on their seasonal performances. Table A. 8 represents a comparative

study of the TLFN, BNN, RNN and MLP models at 1, 2 and 6 step ahead of time at site
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29000. The results of three forecasting periods show similar trend; higher errors during
spring and summer and comparatively low error during winter and fall. Particularly
during 1 step ahead forecasting during spring, all models had root mean square error
ranging from 7.15 ppb to 7.25 ppb which is nearly 30% higher than the RMSE values
during winter. But in case of similarly for the 2 ands 6 step ahead forecasting the RMSE
values during spring were approximately 20% -25% higher than the winter. The r values
were also similar. There were slight under-predictions (0.02-0.10%) during spring and
winter seasons, which is due to these model’s limitations to underestimate the higher and
lower concentrations. The performances of these models, however, are very close to each

other and hence have not been analyzed separately.
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Fig. 6.6 (a): Scatter Plots of 2 hour ahead forecasting: NO, at site 29000
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Fig. 6.6 (b): Scatter Plots of 6 hour ahead forecasting: NO, at site 29000
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6.4 Summary of O; and NO, forecasting results

Through the analysis of the O3 and NO, forecasting results for the monitoring sites
within Hamilton using TLFN, BNN, RNN and MLP models, several conclusions can be

drawn.

Considering the overall performances of O3 forecasting models, the performances of
the 4 neural network models are similar. All the models have shown variation up to 6
steps ahead with degrading with time. TLFN outperformed other models in first two steps
followed closely by the RNN model. RNN slightly outperformed TLFN during 3 to 6
step ahead which clearly shows both of these models’ superiority over BNN and static
MLP models. When compared by season, the summer was the worst season with low
performances. It has also been seen that the annual model is enough to capture the
nonlinear relationships of the meteorology and pollutants in this case. However, the
reason behind similar performances of annual and summer model may be due to the
absence of more appropriate variables such as solar radiation and maximum temperature
which are believed to be the two most influential parameters behind the high Os
concentrations during summer period. The inclusion of land use variables with
meteorology has not been able to improve the model performances rather it increases the
computational time and cost. Hence the meteorology itself is able to forecast with
significant efficiency in this study. This demonstrates that in temporal problems, the
inclusion of land use types in a form of logical input may not be the right form to capture
the impacts of different land use types rather using emission factors from different
sources may be a good alternative to count the influences of different sources of the
pollutants. The results also revealed superior performances of TLFN and RNN models
over static MLP and BNN models. These results further suggest that the inclusion of
time delay and/or adaptive memory (context unit) in MLP have the capacity to improve
the results obtained from conventional static neural network (MLP in this case). These

performances, however indicate that RNN model has the best generalization performance
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and suggest that the relationship between ozone and the meteorology can better be
represented using these predictor variables still with room of improvement at three ozone

monitoring sites in Hamilton.

Model forecasting results for NO, show very close performances. In this case, the
models showed varying performances up to 7 step (14 hour) ahead. While performing by
season, spring was the worst with highest errors and winter came to be the best season
with least errors. One interesting observation here is that the static multilayer perceptron
model has competed quite well with the dynamic NN models. Hence applying MLP with

relevant variables can be enough to get better forecasting result for NO,.

99



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Chapter 7

Simulation Results for Total Suspended Particulates and PM;,
Pollutants

This chapter deals with the TSP and PM; simulation results obtained from time lagged
feed-forward neural network (TLFN), Bayesian neural network (BNN), recurrent neural
network (RNN) and multilayer perceptron (MLP) models and interpolates the results
obtained from five TSP monitoring sites in Hamilton region. Due to unavailability of a
suitable dataset, forecasting could not be performed. Rather this chapter deals with
“simulation experiments” where the best combinations of the input variables were
identified by comparing different combinations of the input variables by trial-and error
approach and then by identifying the optimal model performances in simulating TSP and
PM, values at the monitoring locations. As described in chapter 2, a total of 10 years of
database (1995-2004) has been considered. First 7 years (1995-2001) of the observed
meteorological data (as predictors) and the historical TSP and PM,, data (as predictand)
has been used for model calibration at each monitoring stations. In order to prevent
overtraining of the models 1 year (2002) data has been selected for cross- validation. The
remaining 2 years (2003-2004) of data are being used to test the models. After good
statistical agreement between the observed and simulated values has been achieved, the
simulated model results were then interpolated spatially over the region to investigate

their capability to generate values at unsampled sites.

Like the previous chapter, the analysis and discussion emphasize the test results only as
they provide real evaluation information about model performance owing to the use of

independent datasets from calibration.
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7.1 Simulation of TSP

7.1.1 Comparison of different input variables

In order to get optimum results, here a different approach than the one used in O3 and
NO, pollutants forecasting is considered. This section discusses a comparative
performance of the combinations of the input variables considered for simulating TSP.
With a view to reduce computational time and complexity only two stations were tested
with all four models. The comparative results of the performances of the models while
considering different combinations have been summarized in Table 7.1. Here four
combinations were considered: case 1 deals with considering only nearby sampled sites
to simulate target station’s concentrations while in case 2 meteorological variables from
Hamilton Airport and Burlington Piers stations were used as predictors to model
predictand stations. Case 3 includes percentages of different land use types within 200 m
buffer of the predictor and predictand stations and finally case 4 uses meteorological
variables form the two meteorological stations, historical TSP concentrations from
nearby sampled sites and the percentage of land use types around the stations together. In
case of site 29000, case 1 generates better results. Including land use with the nearby sites
(i.e. case 3) has improved the results only at a small extent but it is rather complex and
costly in terms of time. That’s why case 1 was considered for further analysis. On the
other hand, in site 29102, the best performance was achieved when the meteorological
variables were used as predictor variables (Case 2). During the analysis, it is assumed that
because remaining 3 stations (sites 29025, 29113 and 29114) are located near to site
29000, the best combinations would be same as site 29000. Hence they were analyzed

using case 1.

7.1.2 Model performance statistics
The comparative analysis of neural network models has provided very interesting
results. The performances of the model simulation results for five monitoring stations in

Hamilton have been compared in Table 7.2. The performances of the models have been
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assessed using RMSE, r, R%, NMSE and MAE. The results obtained from sites 29000
(Hamilton Downtown) and 29025 (Barton/Sanford) which are mostly residential areas,
showed greater response to the MLP model at site 29000 with an RMSE value of 14.68
pgm/m’ and R? value 0.76. RNN model performed second best with slightly higher RMSE
value than the MLP model. Other statistics were also very competitive. The third station
at Gertrude/Depew is situated totally in an industrial area. TLFN, RNN and MLP models
performed better than BNN model. BNN was the inferior model here with an RMSE 17%
less than the RNN model. The r value was also less than 0.75 with greater than 0.75 for
other three models. In case of a multi-purpose area like site 29114, TLFN model
performed better than rest three models with an RMSE value of 13.6 ppb and r value
0.83; the performances of MLP and RNN models were also competitive with RMSE of
13.91 ppb and 13.75 ppb and r value of 0.83 and 0.8 respectively. Finally none of the
models worked well for site 29102. The reason behind this inferior performance can be
the absence of nearby sampling sites and lack of weather data around the station as the
dispersion TSP is more driven by the meteorological variables such as wind direction and
wind speed which carries the pollutants from nearby highly polluted sites. In addition due
to it’s location near Lake Ontario, the pollutant formation is most probably more
dependent on the lake breeze effects, cloud cover height, etc. which has not been

considered here.

The performances of each model have been compared by visual assessment of the
observed and predicted concentrations. The observed versus simulated values for the test
period i.e. 2003-2004 are plotted in Fig. 7.1 and Fig. A. 1 (a), (b) and (c). In case of site
29000 and 29025, it appears that the MLP model provided the most accurate predictions
of the TSP concentration levels as the observed and simulated values tend to be in greater
accordance compared to other three models. On the other hand, although TLFN and
BNN models showed greater agreement between observed and simulated values, their
performances are not satisfactory in simulating extreme values. The results generated for

sites 29113, 29114 and 29102 are also similar. Interestingly, the inclusion of input delays
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in the MLP network (i.e. TLFN) and RNN model with an adaptive memory requires 10%

and 25% additional time than the static model without much improvement.

103



M.A.Sc. Thesis - Tarana A. Solaiman

McMaster University — Civil Engineering

Table 7.1: Combination of input variables for TSP

(a) TLFN, MLP, RNN models

Target _ TLFN RNN MLP
. Input Variables 2 2 2
station RMSE r R’ MAE NMSE ([RMSE r R’ MAE NMSE |RMSE r R’ MAE NMSE
Case 1: Stations together | 1532 085 072 10.02 028 | 1468 087 076 1035 026 | 15 086 074 1019 027
Case 2: Met. Variables 2679 044 019 2222 083 | 2642 044 019 2098 081 | 266 044 019 215 077
29000 | Case 3: Land use +stations | 15 0.87 0.76 1023 027 | 1431 087 076 9.86 024 | 1498 085 072 998  0.29
Case 4: Met variables + 2459 055 030 1957 072 | 2321 06 036 1904 064 | 24 056 031 19.65  0.85
land use + stations
Case 1: Stations together | 44.93  0.53 028 3418 076 | 45.12 052 027 3429 077 | 448 051 026 3404 076
Case 2:Met. Variables 39.09 055 030 3022 07 | 3917 054 029 2943 0.7 | 3915 053 035 296 072
29102 | Case 3: Land use +stations | 447  0.56 031 339 075 | 461 052 027 343 08 | 453 051 026 33 0.77
Case d: Metvariables + | 4449 051 026 315 075 | 43.02 055 028 302 071 | 44 052 027 305 076

land use + stations

Legends: TLFN: Time lagged feed-forward network
MLP: Multilayer Perceptron

(b) BNN model performance

RNN: Recurrent neural network
TDNN: Time delay neural network

Target

Model evaluation parameters

station Input variables RMSE _r R MAE NMSE
Stations together 15.01 085 072 10.38 0.29
Met. variables 27.02 041 0.17 21.06 0.89
29000 Case 3: Land use +stations 14.89 0.86 0.79 10 0.27
Met variable + land use + stations 23.59 0.56 031 19.65 0.85
Stations together 44.78 052 027 341 0.77
29102 Met. variable 39.09 0.54 029 29.6 0.72
Land use + stations 453 0.51 026 33.14 0.79
Met. Variable + land use + stations 44.06 0.53 028 3061 0.78

Legend: Nhidden: No. of processing units Nouter: No. of loops Alpha: Initial prior hyperparameter

Option 14: No. of iteration in each loop

Beta: Initial noise parameter
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Table 7.2: Model performance statistics for TSP

Station Models Model performance statistics
RMSE R R’ MAE NMSE
TLFN 15.32 0.85 0.72 10.02 0.28
29000 BNN 15.05 0.86 0.73 9:53 0.27

RNN 14.68 0.87 0.76 10.35 0.26

TLFN 18.6 0.85 0.72 12.22 0.3

29025 BNN 19.68 0.83 0.68 13.1 0.34
RNN 20.17 0.82 0.67 14.57 0.36
TLFN 2851 0.81 0.66 21.49 0.64
29113 BNN 34.3 0.72 0.52 25.48 0.92
RNN 283 0.75 0.56 21.51 0.63
MLP 28.91 0.77 0.59 20.85 0.66
TLFN 13.6 0.83 0.69 10.29 0.37
29114 BNN 15.38 0.8 0.64 11.41 0.47
RNN 13.75 0.81 0.66 9.84 0.38
MLP 13.91 0.83 0.69 10.19 0.39
TLFN  39.09 0.55 0.3 30.22 0.7
29102 BNN 40.73 0.54 0.29 29.6 0.72
RNN 39.17 0.54 0.29 29.43 0.7
MLP 39.97 0.53 0.35 29.6 0.72

7.1.3 Seasonal variation

Owing to the variation of TSP concentrations in particular seasons, the performances
of the models were also compared with their seasonal bias (%). Table 7.3 and Fig. A. 3
(Appendix) show a comparative assessment of the seasonal biases for TLFN, BNN, RNN
and MLP models. For site 29000, the seasonal bias of winter TSP levels generated by the
models range from an under-prediction of -7.69 % to an over-prediction of 3.2%. During
spring when TSP concentration remains high in air, all the models tend to under-predict.
BNN outperformed other three models during spring and summer with underestimation

of -2.04% and overestimation of 0.18% respectively. Important observation here is except
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MLP model, all models tend to over-predict during summer. On the other hand, autumn
was the worst season compared to other seasons where over-prediction was 5%.

In case of site 20025, BNN performed well during winter and RNN performed well
during spring and autumn. Important to note here that the performance of RNN model
during autumn was more than 5% better compared to other models. Its performance
during spring is also better than the rest three models (under-prediction of 3.31%). The
bias generated by all the models during winter is pretty higher at site 29102.

All models largely under-predicted which ranges from 15 to 30%. Summer is the only
season where the model performances are superior to the other seasons with
underestimation of less than 5% by each model. Unlike the above mentioned sites, the
biases generated at 29113 showed larger variations; BNN was the only model to produce
less than 15% of over-prediction. MLP performed well during spring and autumn with
RNN during summer. Interestingly, all models at site 29114 over-predicted in all seasons
and the comparison showed that RNN largely outperformed other three models in each

sc€ason.
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Fig. 7.1: Scatter plots of observed vs. simulated values of TSP concentration at station
29000 (left) and 29025 (right)
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Table 7.3: Comparison of seasonal bias at station 29000, 29025, 29102, 29113 and 29114

Seasonal bias (%)

Winter Spring Summer Autumn

Station  Model

TLFN -3.87 -3.72 1.2 6.5
29000 BNN 4.98 -2.04 0.18 10.51
RNN -7.69 -3.55 2.78 14.29
MLP 3.2 -7.39 -4.58 7.85
TLFN -11.63 -5.87 0.54 -1.17
29025 BNN -9.83 -5.19 3.83 -7.42
RNN -12.97 -3.31 7.31 -1.47
MLP -10.2 -4.13 3.05 -6.61
TLFN -18.73 26 -2.78 3.98
BNN -27.64 16.12 -5.66 3.86
29102
RNN -20.09 29.72 -1.89 4.61
MLP -17.88 30.43 -1.27 6.11
TLFN 48.43 323 45.28 31.56
29113 BNN 14.67 33.74 22.04 18.27
RNN 31.32 22.96 15.03 13.82
MLP 32.72 22.72 2235 12.53
TLEN 4.79 19.3 13.05 9.61
BNN 6.88 28.31 17.06 11.31
i RNN 0.44 18.15 4.62 4.65
MLP 3.23 24.64 13.27 9.72

7.1.4 Confidence interval with BNN

A comparison of the simulated concentrations during 2004 with the 95% confidence
level of BNN models has been presented in Fig. 7.4 and Fig. A. 2 (a) through (c). Fig. 7.4
and appendix A. 2 (a) compare TLFN, RNN and MLP models with the BNN model at
sites 29000 and 29025. The uncertainty bands created by the BNN models have been able
to capture the observed and simulated values created by the other NN models.
Representation of the confidence intervals about mean estimates is the additional
advantage of BNN model which the conventional neural network models cannot provide
(Khan and Coulibaly, 2006). On the other hand, at site 29113, TLFN model went outside
the upper band and had suffered severe over-prediction bias. At site 29114, the observed
and predicted values are within the band in 98% cases. But the wider uncertainty band

indicates the degradation of the BNN model performance as well.
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Fig. 7.2: Simulation result of TSP at station 29025 with 95% confidence interval
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7.1.5 Spatial interpolation

In this study ordinary kriging has been applied because it is the most widely used
kriging technique. Universal kriging is not appropriate in this case because no trend in
data has been found. The reason of not using indicator kriging is that indicator kriging
gives an estimation of a distribution of values within an area rather than the mean value
of the area. A comparison of the krigged surface generated by the observed and
simulated models ‘has been presented in Fig. 7.5 and Fig. A. 3 (Appendix). Fig. 7.5
presents a comparison of the observed and simulated concentrations over space during
spring 2003. The spatial distribution of the 5 sampled location indicates that the locations
near site 29025 had higher concentrations of TSP ranging from 90-100 p gm/ m® while
the surfaces created by TLFN, BNN, RNN and MLP models has shifted the high
concentration zone towards right around site 29113. The reason behind this shifting is
that each model produced higher positive bias while simulating spring values; this over-
prediction however has been largely reflected in the spatially interpolated area. On the
other hand, the surface created around site 29114 shows relatively low concentration area
and has been properly mapped using TLFN and MLP generated values. In case of fall
2003 (Fig. A 3 (a) and (b)), the performance of TLFN model is quite poor compare to
other models, MLP model in this case performed better than other three models. Recall
that no forecasting, rather a simulation has been done and a better performance has been

achieved using MLP in this case.
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Fig. 7.3 (a): Comparison of observed and simulated TSP values over space during spring
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7.2 Simulation of PM;,

7.2.1 Combination of input variables

Similar to TSP, the different combinations of input variables have been tested to get
optimal input variables. But in this case two stations have been tested with TLFN model
only. A comparison of these model performances has been presented in Table 7.4. Like
TSP, the model simulating statistics for site 300 shows that Case 1, (i.e. using nearby
sample sites as input variables) gave best performance. Interestingly for site 302, a
combination of meteorological variables, nearby site’s PM;4 concentrations together with
land use variables have been able to largely improve the models than other combinations.
The r values increased almost 50% compared to other combinations, and the RMSE value

improved by 25% compared to other cases.

Table 7.4: Combination of input variables for PM;o: TLFN model performance

Target Model performance statistics

R Input variables 3

stations RMSE r R MAE NMSE

300 Case 1: Stations together 9.00 0.72 052 6.78 0.50

Case 2: Met variables 12.17 036 0.13 9.96 0.91

Case 3: Land use + stations 9.00 0.71 0.5 5.95 0.5

Case 4: Met variables + land use + stations 10.00 063 04 6.45 0.62

302 Case 1: Stations together 20.63 0.4 0.16 13.96 0.91

Case 2: Met variables 20.76 029 0.08 13.85 0.92

Case 3: Land use + stations 20.81 036 0.13 15.3 0.93

Case 4: Met variables +land use + stations 16.18 0.71 0.5 12.13 0.56

7.2.2 .Model performance statistics

The performances of TLFN, BNN, RNN and MLP models have been compared at sites
300, 302 and 313. The PM;, monitoring sites used in this study are identical to the 3 sites
collecting TSP concentrations: site 300 corresponds to the Hamilton Downtown site (ID
29000 in case of O3, NO; and TSP), 302 stands for Beach Boulevard (29102 for TSP) and
313 stands for Gertrude/Depew (29313) station. Table 7.4 represents a comparative
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assessment of the performances of the 4 models tested. At site 300, the performances of
all the models are quite competitive; overall RNN models appeared better than other 3
models in simulating the PM;, values at this site. At site 302, TLFN model outperformed
BNN, RNN and MLP models, the performances show that only TLFN model has been
able to produce an r value greater than 0.70, the RMSE and NMSE values were also quite
less (RMSE: 16.18 p gm/ m® and NMSE: 0.45). Finally site 313 also generated similar
types of results as site 302; a comparison of model statistics shows that TLFN model

performed slightly better than rest 3 models.

Table 7.5: Comparison of model performance for PM;o

Target station  Model Model performance statistics
RMSE r R MAE NMSE RB
TLFN 9.00 0.72 0.52 6.78 0.50 0.057
300 BNN 9.34 0.68 0.46 6.37 0.53 -0.010
RNN 8.57 0.74 0.55 6.35 0.45 0.027
MLP 8.89 0.72 0.52 5.63 0.49 -0.037
TLFN 16.18 0.71 0.50 12.13 0.56 -0.144
302 BNN 17.42 0.62 0.38 11.92 0.64 -0.115
RNN 17.51 0.66 0.43 12.15 0.66 -0.149
MLP 16.73 0.68 0.46 10.98 0.59 -0.141
TLFN 12.19 0.66 0.44 9.02 0.58 0.056
313 BNN 12.99 0.64 0.41 9.16 0.64 0.080
RNN 13.09 0.59 0.35 9.96 0.66 0.032
MLP 12.99 0.63 0.40 9.99 0.65 0.107

The visual assessment of the performances of each model is then performed using
scatter plots. The observed versus simulated values for the test period 1.e. 2003-2004 are
plotted in Fig. 7.6 and Fig. A. 4. It is seen that all the models had suffered some under-
prediction or over-prediction in predicting higher and lower concentrations. The under-
prediction is predominant at site 300 and 302. On the other hand in case of site 313, some
over-prediction is caused by TLFN and BNN models especially for simulating the low

concentrations.
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7.2.3 Seasonal variation

The performances of the models are further compared in Table 7.6 and Fig. A. 7
(Appendix) based on their performance by season. A comparative assessment of the
seasonal bias generated by each models have been presented. The maximum acceptable
bias within 15% is specified by the author in this study. At site 300 it is seen that during
spring, the performances of the models are inferior compared to other seasons. All
models generated lower simulated values than the observed ones. Especially the
performances of MLP and BNN were poor causing more than 15% bias in this season.
During summer, the MLP, RNN and BNN models performed quite well, producing less
than 7% of biases. Only TLFN model generated comparatively higher bias (13.56%).
Again during fall, the bias level was high; only MLP has been able to generate a bias less
than 10%. Finally during winter, MLP again outperformed other three models with
almost 50% less biases than those models. So finally, MLP model performed better
during summer, fall and winter while RNN showed good performances during spring and

summer.

At site 302 which is a residential area, RNN outperformed other three models during
spring, summer and fall while TLFN model showed better performance during winter
with only 6.57% bias. Finally at the industrial site 313, the bias generated by the models
are quite high compared to two other sites especially during summer and fall with under-
predictions ranging between 15-26% during summer and 17%-26% during fall. Spring is
the only season where the models performed well with only RNN model exceeding more

than 10% biases.
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Table 7.6: Comparison of seasonal bias at station 300, 302 and 313

Station  Model Seasonal bias (%)
Spring  Summer Fall Winter

TLFN -9.43 13.56 20.42 13.12

300 BNN -16.24 6.63 13.79 13.47
RNN -8.29 5.87 13.87 12.63
MLP -15.55 3.86 8.29 6.75
TLFN 7.86 0.83 10.59 6.57

302 BNN 12.2 2.46 941 13.84
RNN 4.39 0.43 391 13.58
MLP 10.88 6.37 15.03 20.55
TLFN 0.36 -19.74 -20.38 -9.28

313 BNN 4.13 -15.04 -17.07 -13.46
RNN 14.42 -25.22 -25.08 -10.65
MLP 1.81 -20.77 -18.97 -11.7

7.2.4 Confidence interval with BNN

The performances of the simulated concentrations during 2004 have been compared
with the 95% confidence interval of the BNN models in Fig. 7.7 and Fig. A. 5. From the
figures it is seen that in case of site 300, the simulated values of TLFN, RNN and MLP
models are within the upper and lower limits of BNN models. At site 302, none of the
models have been able to capture the higher concentrations, even the upper confidence
values predicted by BNN model are well below the observed peak concentrations. Finally
at site 313, the observed peak concentrations are slightly above the upper limit, but not
severe as site 302. Importantly, the relatively wider bands generated by the BNN model
at sites 302 and 313 indicates higher uncertainty. This may be due to the fewer numbgr of

extreme values in the training sample.
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7.3 Summary of TSP and PM; results

Overall performances of the four neural network models applied in simulating total
suspended particulates and PM;y concentrations at some selected sites in Hamilton are
very competitive. Firstly TSP concentrations at 5 monitoring locations located in
different land use type areas have been analyzed. In order to get best possible outputs, the
input variables are carefully chosen by taking several combinations of input variables. It
is seen that except site 29102, the remaining four stations located nearer to each other
behaved in a similar manner indicating that the TSP concentrations fluctuate rapidly and
are greatly influenced by the sites around which are to a large extent driven by the
meteorology. The performances for each season at the stations are different: TLFN model
performed well at site 29000; RNN model was good during spring and autumn at site
29025 and RNN model again outperformed all other models in all seasons at site 29114.
Inversely, all the models provided higher biased results at site 29113 where the seasonal
bias exceeded 15%. The overall performances of the sites further indicate that the
performances of all the models are pretty close to each other. MLP model performed very
well, even in some cases it outperformed TLFN and RNN models. So it can be said that

this model should be able to simulate acceptable concentrations at those sites.

In simulating PM;( concentrations at 3 monitoring sites, RNN and MLP worked well at
site 300 while RNN again produced less bias at site 302. Similarly at site 313, higher
biases are generated indicating that none of these models have been able to simulate the
concentrations well. Similar to TSP, it also appears that it is possible to achieve
competitive simulation results using MLP model; hence there may not be any need of
applying more complex neural network models in the cases where performances of MLP

is similar to the other three models.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This research provides the most extensive evaluation of neural network models
currently available for the prediction and simulation of some major air pollutants such as
ground level ozone (O;3), nitrogen dioxide (NO,), total suspended particulates (TSP) and
inhalable particulate matters (PM,o) concentrations. The study is unique because of the
variety of neural network models evaluated and the amount of the input combinations
used. In the past, several studies have compared linear statistical methods with widely
used static multilayer perceptron models to predict or simulate pollutant concentrations
and have concluded that the MLP model has the ability to capture the complex non-linear
relationships of the pollutants and meteorological variables which most linear models

cannot do.

This study provides a more comprehensive comparison of NN based models. The
widely used MLP model has been set as a bench-mark and three emergent neural network
models such as time lagged feed-forward neural network (TLFN), Bayesian neural
networks (BNN) and recurrent neural network (RNN) models have been tested for short
term ground level O; and NO, forecasting and for simulating TSP and PMj
concentrations. The major aim of the study was to investigate and characterize the
complex nonlinear temporal and spatial variability of the pollutants and their
dependencies on the surrounding meteorology, and develop an air quality forecasting tool
based on most appropriate neural networks. Due to data constraint, only O3 and NO;
forecasting tools have been developed. The newly developed models were then used to
forecast up to 24 hour ahead. To achieve this goal, the TLFN, BNN, RNN and MLP

network architectures and different input combinations were compared in order to
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identify the optimal model structure. The optimal models identified are then used to
forecast or to simulate values for each monitoring stations which are then interpolated
spatially to explore their capability to simulate pollutant values at stations where

sampling has not been done.

Firstly, the forecasting models have been run for three ozone monitoring sites
(Hamilton Downtown (29000), Hamilton Mountain (29114) and Hamilton West (29118))
and at two nitrogen dioxide monitoring sites (Hamilton Downtown (29000) and Hamilton
West (29118) within Hamilton census metropolitan area. In this case because of limited
number of stations, spatial interpolation could not be done. Overall performances of the
Os forecasting models show that all 4 models gave competitive results up to 6 steps i.e.
12 hour ahead. Overall TLFN and RNN model performed better than BNN and static
MLP model. Seasonal comparison of model forecasting performances showed that none
of the models perform very well in the summer season. So in order to improve summer
time forecasting, it was separately modeled and the results obtained from this summer
model were then compared with the annual model performances. The results indicated
slight improvement, hence it can be concluded that the annual model itself has the ability
to project the underlying seasonal fluctuations in concentrations. However, the reason
behind similar performances of annual and summer model may be due to the absence of
more appropriate variables such as solar radiation and maximum temperature which are
believed to be the two most influential parameters behind the high O3 concentrations
during summer period. Furthermore, land use types around the monitoring sites may also
affect pollutant concentrations. Hence in addition to the meteorological variables, the
land use variables were added to improve the model forecasting performance.
Surprisingly the inclusion of land use variables with meteorology could not to improve
the model performances rather it increased the computational time and cost. This
demonstrates that in temporal problems, the inclusion of land use types in a form of
logical input may not be the right form to capture the impacts of different land use types

rather using emission factors from different sources may be a good alternative to count
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the influences of different sources of the pollutants. and finally it is established that the
basic model using appropriate meteorological variables are appropriate for short term
forecasting. These results further suggest that the inclusion of time delay in and/or
adaptive memory (context unit) in MLP have the capacity to improve the results obtained
from conventional static neural network (MLP in this case). These performances,
however indicate that RNN model has the best generalization performance and suggest
that the relationship between ozone and the meteorology can better be represented using
these selected predictor variables and a dynamically driven neural network (RNN).
Forecasting results for NO, shows very similar performances. Interestingly static
multilayer perceptron model has performed quite competitively with the advanced TLFN
and RNN models. Hence applying MLP with relevant variables would be enough to

achieve good forecasting results with much simplicity and less computational cost.

Finally TSP concentrations from five monitoring sites at Hamilton Downtown (29000),
Hamilton Mountain (29114), Barton/Sanford (29025), Beach Boulevard (29102) and
Gertrude/Depew (29113) were modeled. The model identification process followed is
similar to the one used for O; and NO, models. After optimal models have been
identified and calibrated, the simulated values achieved from TLFN, BNN, RNN and
MLP models were then interpolated over space to obtain concentrations at unsampled
sites and to compare their performances. In case of inhalable particulate matters (PM,),
data from three stations such as Hamilton Downtown (29000), Beach Boulevard (29102)
and Gertrude/Depew (29113) were considered, and model performances were compared
to obtain the optimal model results. Overall performances shown by the four models for
both pollutants are pretty close. It has been noticed that the particulate concentrations are
largely dependent on the surrounding pollutant concentrations which are triggered up due
to meteorological conditions. Like NO, models, MLP also performed competitively with
other NN models, even in some cases it outperformed TLFN and RNN models. So it can
be said that this model should be able to simulate acceptable concentrations at the

selected sites in Hamilton. Seasonal analysis revealed that spring has been the most
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challenging season for simulating concentrations. Overall it appears that the weather
based particulate simulation is promising, which highly depends on data availability. The
results obtained also indicate that the day-to-day fluctuations of the particulates
concentrations caused by several factors in the Hamilton CMA are to a large extent

driven by meteorological factors and their sources.

The interpolated TSP surfaces indicate that when enough spatial data is available, the
neural network models, even a simple MLP can be a good tool to generate concentrations

at unsampled sites.

In conclusion, the neural network models used in this study have performed well since
they are unconstrained and allowed arbitrary interactions and nonlinear relationships
between predictor variables. To be more precise, time lagged feed-forward network
(TLFN) and recurrent neural network (RNN) model has shown better performance in
case of ground level ozone forecasting at three ozone monitoring sites in Hamilton which
further suggests that the inclusion of time delay and/or adaptive memory (context unit) in
MLP have the capacity to improve the results obtained from conventional static neural
network. Interestingly the multilayer perceptron (MLP) model competed well with the
rest three dynamic neural network models for nitrogen dioxide forecasting; hence it
appears that applying MLP with most relevant variables can be enough to get better NO,
forecasting result. Similar to the NO, forecasting results, the TSP and PM;y model
simulation results revealed that MLP model performed competitively and even in some
cases it outperformed TLFN and RNN models. So it can be concluded that this model
should be able to simulate acceptable TSP and PMy concentrations at the study sites in

Hamilton metropolitan area.
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8.2 Recommendations for future work

This thesis has concentrated on neural network architectures and configurations since
no other work with similar objectives has been conducted for the study area. However,
this has been a preliminary assessment process in order to develop a robust and
appropriate neural network model for air quality modeling. Due to time constraints all
kinds of neural network models could not be tested. It would be ideal if an uncertainty
analysis could have been conducted to further assess model results accuracy. This kind of
test could be useful in air quality modeling where uncertainty can be of significant
concern.

Secondly, the present research concentrated only on NN models; comparing the
present results with other statistical models would make the present results more
complete. Further investigation could also be aimed towards employing other neural

network types with different settings and options like self organizing maps.

Apart from these, there are several issues that can be tested further:

1. Try to improve ozone forecasting performance using more appropriate weather
variables such as max temp, min temp and solar radiation and emission factors.

2. In case of TSP and PM;y, it is very important that a large database be available in
order to capture the random variation of weather-pollutant relationships.

3. In order to improve the forecasting ability of the pollutants, it is necessary to
incorporate additional climatic information, such as weather classification indicators,
cloud cover height, boundary layer information, wind profile, opacity, discomfort
index, and non-climatic factors such as traffic levels and indices of heavy and low

traffic conditions.

125



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

References

Abdul-Wahab, S. A., Bakheit, C.S., and Al-Alawi, S. M., (2005), Principal component
and multiple regression analysis in modeling of ground level ozone and factors
affecting its concentration, Environmental Modeling and Software, Vol. 20, pp.1263-
1271.

Agirre-Basurko, E., Ibarra-Berastegi, and G., Madariaga, 1., (2006), Regression and
multilayer perceptron-based models to forecast hourly O3 and NO, levels in the Bilbao

area, Environmental Modelling and Sofiware, Vol. 21, pp. 430-446.

Athanasiadis, LN., Karatzas, K., and Mitkas, P., (2005), Contemporary air quality
methods: A comparative analysis between classification algorithms and statistical
methods, Proceedings of 5™ Intl conference on Urban Air Quality Measurement,

Modeling and Management, Valencia, Spain, March 2005.

Benvenuto, F., and Martini, A., (2000), Neural networks for environmental problems:
data quality control and air pollution nowcasting, Global nest: the intl J., Vol. 2 (3), pp.
281-292.

Bishop, C. M., (1995), Neural Networks for Pattern Recognitions, Clarendon, Oxford,
UK.

Blair, R., (2006), Meteorological variations and their impact on NO, concentrations in the
Toronto-Hamilton urban air-shed, Canada, M.Sc. Thesis, School of Geography and

Earth Sciences, McMaster University, Hamilton, Canada.

126



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Bodri, L., and Cermak, V., (2000), Prediction of extreme precipitation using a neural
network: application to summer flood occurrence in Moravia, Advances in Engineering

Software, Vol. 31, pp. 311-321.

Bordignon, S., Gaetan, C., and Lisi, F., (2002), Nonlinear models for ground level ozone

forecasting, Statistical Methods & Applications, Vol. 11, pp. 227-245.

Buzzelli, M., and Jerrett, M., (2004), Racial gradients of ambient air pollution exposure

in Hamilton, Canada, Environment and Planning A, Vol. 36, pp. 1855-1876.

Chaloulakou, A., Saisana, M., and Spyrellis, N., (2003), Comparative assessment of
neural networks and regression models for forecasting summertime ozone in Athens,

The science of the Total Environment, Vol. 313, pp. 1-13.

Chelani, A.B., (2005), Predicting chaotic time series of PM;jy concentration using
artificial neural network, International Journal of Environmental Studies, Vol. 62 (2),

pp. 181-191.
Chelani, A.B., Rao, C.V.C., Phadke, and K.M., Hasan, M. Z., (2002), Prediction of

sulphur dioxide concentration using artificial neural networks, Environmental

Modelling and Software, Vol. 17 (2), pp. 161-168.

Comrie, A. C., (1997), Comparing neural networks and regression models for ozone

forecasting, Air and Waste Management Association, Vol. 47, pp. 653 — 663.

Coulibaly, P., Abctil, F., and Bobée, B., (2001) a, ANN modeling of water table depth
fluctuations, Water Resources Research, Vol. 37 (4), pp. 885-869.

127



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Coulibaly, P., Anctil, F., and Bobee, B., (2001) b, Multivariate reservoir inflow

forecasting using temporal neural networks, Journal of Hydrologic Engineering, Vol. 6
(5), pp. 367-376.

Daliakopolous, J., (2004), Groundwater level forecasting using artificial neural networks,

M.A.Sc. thesis, McMaster University, Hamilton, Ontario, Canada.

Derwent, R.G., Simmonds, P. G., Seuring, S., and Dimmer, C., (1998), Observation and
interpretation of the seasonal cycles in the surface concentrations of ozone and carbon
monoxide at Mace Head, Ireland from 1990 to 1994. Atmospheric Environment, Vol.
31 (13), pp. 145-157.

Dutot, A.L., Rynliewicz, J., Steiner, F.E., and Rude, J., (2006), A 24-h forecast of ozone

peaks and exceedance levels using neural classifiers and weather predictions,

Environmental Modelling and Software (2006), Doi: 10.1016/j.envsoft.2006.08.002.

Dibike, Y. B. and Coulibaly, P., (2006), Temporal neural networks for downscaling
climate variability and extremes, Neural Networks, Vol. 19, pp.135-144.

Elman, J. L., (1990), Finding structure in time, Cognitive Science, Vol. 14, pp. 179-211.
Elminir, H. K. and Abdel-Galil, (2006), Estimation of air pollutant concentrations from
meteorological parameters using artificial neural network, Journal of Electrical

Engineering, Vol. 57 (2), pp. 105-110.

Fausett, L. (1994), Fundamentals of Neural Networks, Prentice Hall, Englewood Cliffs,
NIJ.

128



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Frasconi, P., Gori, M., and Soda, G., (1992), Local feedback multilayered networks,
Neural Computation, Vol. 4, pp. 120-130.

Freund, Y., and Schapire, R.E., (1997), A decision- theoretic generalization of on-line
learning and an application to boosting, Journal of Computer and System Sciences, Vol.

55, pp- 119-139.

Gardner, M. W., and Dorling, S. R., (1998), Artificial neural networks (the multilayer
perceptron)--a review of applications in the atmospheric sciences, Atmospheric

Environment, Vol. 32 (14-15), pp. 2627-2636.

Gardner, M. W., and Dorling, S. R., (1999), Neural network modelling and prediction of

hourly NO, and NO;, concentrations in urban air in London, Atmospheric Environment,

Vol. 33 (5), pp. 709-719.

Gardner, M. W., and Dorling, S. R., (2000), Statistical surface ozone models: an

improved methodology to account for non-linear behavior, Atmospheric Environment,

Vol. 34, pp. 21-34.

Hagan, M., Demuth, H., and Beale, M., (1995), Neural Network Design, PWS Publishing

Company, Boston.

Haykin, S., (1999), Neural Networks: A Comprehensive Foundation, Upper Saddle River,
NJ: Prentice-Hall.

Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., and Brasseur, O., (2005), A neural

network forecast for daily average PM), concentrations in Belgium, Atmospheric

Environment, Vol. 39, pp. 3279-3289.

129



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Intergovernmental Panel on Climate Change (2007), Climate change 2007: The physical
science basis, Contribution of working group I to the fourth assessment report of the
Intergovernmental Panel on Climate Change, World Meteorological Organization,

Geneva, Switzerland.

Jacob, D. J., Horowitz, L. W., Munger, J. W., Heikes, B. G., Dicherson, R. R., Artz, R.
S., and Keene, W. C., (1995), Seasonal transition from NOy — to hydrocarbon-limited
ozone production over the eastern United States in September, J. Geophys. Res., Vol.
100, pp. 9315-9324.

Hirsch, A. 1., Munger, J. W., Jacob, D. J., Horowitz, L. W., and Goldstein, A. H., (1996),
Seasonal variation of the ozone production efficiency per unit NOx at Harvard forest,

Massachusetts, J. Geophys. Res., Vol. 101 (7), pp. 12659-12666.

JANN (Java Artificial Neural Network): A neural tool for air pollution modeling”
developed at the University of Catania in the framework of the APPETISE
project.,retrieved on 05/04/2007 from

http://www.dees.unict.it/users/gnunnari/appetise/jann/index.html.

Jerrett, M., Burnett, R., Kanaroglou, P., Eyles, J., Finkelstein, N., Giovis, C., and Brook,
1., (2001), A GIS-environmental Justice Analysis of particulate Air Pollution in
Hamilton, Canada, Environment and Planning A, Vol. 33, pp. 955-973.

Jordan, M. 1., (1986). Attractor dynamics and parallelism in a connectionist sequencial
machine. 8” Annual Conff., Congnitive Sci. Soc., MIT Press, Amherst, Mass., pp. 531-

546.

Khan, S. M. and Coulibaly, P., (2006), Bayesian neural network for rainfall-runoff
modeling, Water Resources Research, Vol. 42, pp. 1-18.

130


http://www.dees.unict.itlusers/gnunnari/appetise/jann/index.html

M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Kolehmainen, M., and Doyle, M., (2003), A rigorous inter-comparison of ground-level
ozone predictions, Atmospheric Environment, Vol. 37, pp. 3237-3253.

Koppen Climate Classification Chart, (2007), Retrieved on 06/02/2007 from
http://geography.about.com/library/weekly/aa011700b.htm

Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen,
M., Niska, H., Dorling, Chatterton, T., Foxall, R., and Cawley, G., (2003), Extensive
evaluation of neural network models for the prediction of NO, and PMjy
concentrations, compared with a deterministic modelling system and measurements in

central Helsinki, Atmospheric Environment, Vol. 37 (32), pp. 4539 - 4550.

Kuylenstierna, J., Hicks, W. K., and Chadwick, M.J., (2002), A perspective on global air
pollution problems. Issues in environmental science and technology, No. 17, Global

Environmental Change, The Royal Society of Chemistry, 2002.

Lefohn, A.S., Knudsen, H. P., and Shadwick, D. S., (2006), Using ordinary kriging to
estimate the seasonal W126 and N100 24-h concentrations for the years 2004 and 2005,
Retrieved on 06/03/2007 from

http://199.128.173.141/0zone/spatial/2004/contractor 2004 _2005.pdf

McKean, S. A., Hsie, E.-Y., and Liu, S. C., (1991), A regional model study of the ozone
budget in the eastern United States, J. Geophys. Res., Vol. 96, pp. 10809-10845.

Nabney, 1. T., (2004), Netlab Algorithms for Pattern Recognition, Springer, New York.

NeuroSolutions, (2004), Neurosolutions: The Neural Network Simulation Environment.

NeuroSolutions getting started manual version 4, Gainesville, FL.

131


http://199.128.173.141/ozone/spatial/2004/contractor_2004

M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Niranjan, M., Lopes, S., Kukkonen, J., Karppinen, A., Greig, A., Zickus, M., Pelilan, E.
and Eben, K., (2001), Exploratory studies on spatial-temporal modeling report on
exploratory studies on algorithms, Air Pollution Episodes: Modelling Tools for
Improved Smog Management, A project funded by the European Community under the
“Information Society Technology” program (1998 - 2002).

NIST/SEMATECH, (2006), E-handbook of Statistical Methods, retrieved on 10/04/2007
from http://www.itl.nist.gov/div898/handbook/

Nunnari, G., Bertucco, L., Dorling, S., Schlink, U. and Ruuskanen, J., (2001), Literature
review sulphur dioxide modeling at a point, Air Pollution Episodes: Modelling Tools
for Improved Smog Management, A project funded by the European Community under
the “Information Society Technology” program (1998 - 2002).

O’Hare, G. P., and Wilby, R., (1995), A review of ozone pollution in the United
Kingdom and Ireland with an analysis using lamb weather types, The geographical

Journal, Vol. 161 (1), pp. 1-20.

Ontario Ministry of Environment, (2004), Air quality in Ontario 2004 report, Retrieved
on 07/-2/2007 from http://www.ene.gov.on.ca/envision/techdocs/5383e.pdf

Ontario Ministry of Environment, (2005), Air quality in Ontario 2005 report, Retrieved
on 09/02/2007 from http://www.ene.gov.on.ca/envision/techdocs/6041e.pdf

Ordieres, J. B., Vergara, E. P., Capuz, R. S., and Salazar, R. E., (2005), Neural network
prediction model for fine particulate matter (PM;s) on the US-Mexico border in El
Paso (Texas) and Ciudad Juaréz (Chihuahua), Environmental Modeling and Software,
Vol. 20, pp. 547-559.

132


http:www.ene.gov
http://www.ene.gov.on.ca/envision/techdocs/5383e.pdf
http://www.itl.nist.gov/div898/handbook

M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Pagina, T., (2005), “JANN (Java Artificial Neural Network): A Neural Tool for Air
Pollution Modeling”, http://www.dees.unict.it/users/gnunnari/appetise/jann/index.html

Developed at the University of Catania in the framework of the APPETISE project.

Perez, P. and Reyes, J., (2006), An integrated neural network model for PM,, forecasting,
Atmospheric Environment, Vol. 40, pp. 2845-2851.

Pouliou, T. (2005), Air pollution and respiratory health: re-Analysis of Hamilton
children’s cohort study, M.Sc. thesis, School of Geography and Earth Sciences,

McMaster University, Hamilton, Canada.

Principe, J. C., Euliano, N. R., and Lefebvre, W. C., (2000), Neural Network and
Adaptive Systems, John Wiley & sons, Inc., USA.

Rao, S. G., (2000) a, Artificial neural networks in hydrology I: preliminary concepts,
Journal of Hydrologic Engineering, Vol. 5 (2), pp. 115-123.

Rao, S. G., (2000) b, Artificial neural networks in hydrology II: hydrologic applications,
Journal of Hydrologic Engineering, Vol. 5 (2), pp. 124-136.

Sahsuvaroglu, T. and Jerrett, M., (2003), A public health assessment of mortality and
hospital admissions attributable to air pollution in Hamilton, City if Hamilton: Hamilton
Air Quality Initiative. Retrieved on 06/02/2007 from
http://www.cleanair.hamilton.ca/downloads/Health-Study-(Full-Report).pdf

Schlink, U., Chatterton, T., Costa, A., Dorling, S., Eben, K., Faila, J., Haase, P., Keder,
J., Kolehmainen, M., Mandic, D., Nunnari, G., Nucifora, G., Pelikan, E., and Palus, M.,
(2001), Literature review of statistical approaches to modelling ground level ozone at a

point, Air Pollution Episodes: Modelling Tools for Improved Smog Management, A

133


http://www.cleanair.hamilton.ca/downloads/Health-Study-(Full-Report).pdf
http://www.dees.unict.it/users/gnunnari/appetise/jann/index.html

M.A Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

project funded by the European Community under the “Information Society
Technology” program (1998 - 2002).

Schlink, U., Dorling, S., Pelikan, E., Nunnari, G., Cawley, G., Junninen, H., Greig, M.,
Foxall, R., Eben, K., Chatterton, T., Vondracek, J., Richter, M., Dostal, M., Bertucco,
L., Kolehmainen, M., and Doyle, M., (2003), A rigorous inter-comparison of ground-
level ozone predictions, Atmospheric Environment, Vol. 37, pp. 3237-3253.

Schlink, U., Herbarth, O., Richter, M., Dorling, S. Nunnari, G., Cawley, G., and Pelikan,
E., (2006), Statistical models to assess the health effects and to forecast ground-level
ozone, Environmental Modelling & Software, Vol. 21, pp. 547-558.

Slini, T., Kaprara, A., Karatzas, K., and Moussiopoulos, N., (2006), PM,, forecasting for
Thessaloniki, Greece, Environmental Modelling and Software, Vol. 21 (4), pp. 559-
565.

Source: Google map, 2007 / Imaginary Digital Globe, Earth Sat. Retrieved on 02/05/2007
from http://maps.google.ca/?hl=en

Sousa, S. I.V., Martins, F. G., Alvim-Ferraz, M.C.M., and Pereira, M.C., (2007), Multiple
linear regression and artificial neural networks based on principal components to
predict ozone concentrations, Environmental Modelling and Software, Vol. 22 (1), pp.
97-103.

Statistics Canada, (2005), Canada’s national statistical agency, Retrieved on
05/02/2007 from http://www40.statcan.ca/l01/cst01/demo05a.htm

US-EPA, The Clean Air Act Amendments of 1990, Retrieved on 05/02/2007 from

http://www.epa.gov/air/caa/overview.txt

134


http://www.epa.gov/air/caa/overview.txt
http://www40.statcan.ca/l01/cst01/demo05a.htm

M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Walker, AM., (1969), On the asymptotic behavior of posterior distributions, J R. Stat.
Soc., Vol. 31, pp. 80-88.

Yap, D, Reid, N., Brou, G.D., and Bloxam, R., (2005), Transboundary air pollution in
Ontario, Report published by Ontario Ministry of Environment.

Yi, J., and Prybutok, R., (1996), A neural network model forecasting for prediction of
daily maximum ozone concentration in an industrialized urban area, Environmental

Pollution, Vol. 92 (3), pp. 349-357.

Zickus, M., Greig, A. J., and Niranjan, M., (2002), Comparison of four machine learning
methods for predicting PM;( concentrations in Helsinki, Finland, Water, Air, & Soil
Pollution: Focus, Vol. 2 (5-6), pp. 717-729.

135



M.A.Sc. Thesis - Tarana A. Solaiman

APPENDIX

McMaster University — Civil Engineering

Table A.1: Sources and impact of air pollutants

Pollutant Type Major sources Impact
Total Suspended Erli}cl;'zl(l) rlllfrelllzh :;10;10::
Particulates (TSP): yes,

Particles larger
than 10 micrometer

Use of fossil fuel: coal, oil, peat,
biomass;

and throat;
Nuisance dust;

. 1 Construction process; Soiling;
in diameter that are .. .
. Dust emissions. Ecosystem degradation;
suspended in the .
air Reduced crop quality and
yield.
PM;: Particulate
matter with less Diesel vehicles;
than 10 Aerosols;
micrometers in Industry and land use activity; Health effects;
diameter which Predominantly aerosols of sulfate, Reduced visibility.
include both fine nitrate and ammonium.
and coarse dust
particles

Ground level
ozone (O3)

Photochemical reaction between
NOx and VOCs in the presence of
sunlight.

Impact of human health;
Impact on crop yield, tree
vitality and natural
vegetation;

Corrosion.

NOx

Energy use;

Any fuel, particularly from transport.

Health effects.
Ecosystem acidification
and eutrophication.
Precursor of
photochemical oxidants

(03).

Source: (Kuylenstierna et al, 2002)
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Table A.2: Transfer functions in neural network model

Function Definition Range Shape
. 1 /‘
Logistic =) 0, +1) J
1—¢ ]
X - -% "
HypeI‘bOliC ex ¢ —x ("1 Py +1) 1.8 -5 -8 ER I A X
¢ +e
Pl . fwmw»m
o | 1 /
Sigmoid P(t) = = 0, 1)
T DR,
80
60
Exponential g " (0, + inf) K
20
2 ¥ inpit it &
SOftmaX Zex' (0’ +1) BE] . [ f;:z-lguw"‘rl‘m
‘ 3 &= sofinaxn)

Other Activation Functions:
Linear Tangent hyperbolic Axon: ranges from -1 to 1; It is piecewise linear

approximation to Tangent hyperbolic Axon.

Linear Sigmoid Axon: ranges from 0 to 1; It is piecewise linear approximation to

Sigmoid Axon.

Bias Axon: It is an infinite linear axon with adjustable slope and adaptable bias.

Linear Axon: It is an infinite linear axon with adaptable bias.

Axon: It is an infinite simplest axon; identity transfer function.
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Table A.3: Ground level ozone forecasting statistics: Hamilton Downtown (29000),
Hamilton Mountain (29114) and Hamilton west (29118)

Predictand station

Forecasting Model

Model performance statistics

horizon RMSE R’ r NMSE MAE
Hamilton Downtown TLFN 6.28 0.85 0.92 0.15 4.50
t+1 BNN 668 083 091 0.12 4.92
RNN 648 08 09 0.16 4.67

MLP 668 083 091 0.17 4.82

TLFN 946 066 081  0.35 7.05

+2 BNN 1001 061 078 026 7.43
RNN 987 862 o079 0 137

MLP 989 bl o 68 7.33

TIFN 1116 B 01 949 8.43

“+3 BNN 1196 044 067 048 9.09
RNN 1090 053 073  0.46 8.27

MLP 1158 0848 069 0% 8.75

TLFN 1205 044 066 057 9.21

t+4 BNN 1208 035 0359 059 9.95
RNN 1153 048 069  0.52 8.85

MLP 1278 040 b6y DE] 9.54

TLFN 12.42 0.40 0.63 0.60 9.54

t+5 BNN 1303 034 0338 0.62 10.01
RNN 1178 046 068  0.54 9.11

MLP 1207 035 059 066 9.96

TLPN. 1262 038 062 062 9.73

o BNN 1330 631 D056 aps 10.33
RNN 1242 040 063  0.60 9.65

MLP 1251 8131 056  o0ps 10.27

TLFN 1261 038 062 062 9.78

+7 BNN 1384 026 051 0.69 9.78
RNN 1268 637 061 0.63 9.91

MLP 1250 030 055 0.71 10.45

TLFN 12.55 0.38 0.62 0.62 9.73

A BNN 1375 03T 052 069 10.69
RNN 1248 040  0.63 0.61 9.73

MLP 12.44 0.30 0.55 0.71 10.37

t+9 TLFN 1263 038 062 062 9.82
BNN 1374 027 6352 D66 10.68

RNN 1280 036 060  0.64 9.99
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MLP 1362 029 054  0.73 10.51

TLFN 1266 037 061  0.63 9.85
+10 BNN 1342 030 055  0.67 10.49
RNN 1282 036 060 064 9.97
MLP 1350 030 055  0.71 10.48

TLFN 1278 036 060  0.64 9.96

t+11 BNN  13.15 033 057 066 10.22
RNN 1289 035 059  0.65 10.01

MLP 1320 032 057  0.68 10.24

TLFN 1283 036 060  0.64 9.94

+12 BNN 13.06 033 058  0.67 10.11
RNN 1278 036 060  0.64 9.96

MLP 1304 034 058 067 10.10

Hamilton Mountain TLFN 613 086 093  0.13 4.44
o BNN 65! 085 092 014 4.73
RNN 636 0% 093 oM 4.60

MLP 662 035 092  pi5 4.81

TIEN 973 067 082 033 7.28

o BNN 1024 o064 030 037 7.61
RNN. 1012 064 080 036 7.63

MIP 1007 065 a8n 036 7.60

TLFN 11700 052 072 048 8.90

- BNN 1232 048 069 049 9.36
RNN 1169 052 072 048 8.96

MLE 1217 6848 070 052 9.25

TLFN 1252 044 0.66 057 9.76

o BNN 1346 037 061 0% 10.26
RNN 1258 045 0.67  0.56 9.72

MIP 1335 43 082 063 10.22
TLEN 1328 038 062 062 10.24

. BENN B39 015 oy 065 1074
RNN 1316 040 0.63  0.61 10.27

MiP 1398 4632 057 069 10.77

TLPFN 1339 037 061 06 10.40

- BNN M52 001 05 . 069 1131
RNN 1306 040 0.63  0.60 10.20

MIP 1424 0430 055 07 11.06

t+7 TLFN 1331 038 062  0.63 10.39
BNN 1430 029 054  0.68 11.08

RNN 1322 038 0.2 10.33

0.62
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MLP 1425 030 0355 0.72 11.06
TLFN 13.14 040  0.63 0.61 10.27

o BNN 1462 026 0.51 0.68 11.31
RNN 1320 038 0.62 0.61 10.29

MLP 1430 029 0.54 0.72 11.15
TLFN 13.10 040  0.63 0.60 10.20
L BNN 1430 029 0.54 0.67 11.16
RNN 1331 038 o6& 0.63 10.36

MLP 1420 030  0.55 0.71 11.11
TLFN 13.18 040  0.63 0.61 10.27

it BNN 1430 030  0.55 0.67 6.78
RNN 1329 038  0.62 0.62 10.37

MLP 1398 032 0357 0.69 10.91

TLFN 1326 038  0.62 0.62 10.33

e BNN 1371 035 059 0.67 6.61
RNN 1341 037 061 0.63 10.42

MLP 13.59 034  0.60 0.65 10.61

TLEN 1342 037 0.6l 0.64 10.44

BNN 13.71 0.59  0.35 0.65 6.58

i RNN 13.54 036  0.60 0.65 10.53
MLP 1358 036 050 0.65 10.56

Hamilton West TLFN 6.22 0.83 0.91 0.17 4.47
1 BNN 6.89 0.80 0.89 0.17 4.96
RNN 6.51 08 091 0.18 4.67

MLP 6.83 0.80 0.89 0.20 4.92

TLFN 9.21 0.64 0.80 0.36 6.92

. BNN 1055 033 0D 0.40 7.87
RNN 6.64 061 0.78 0.39 7.30

MLP 1640 034 014 0.46 182

TLFN 1079 050 0.71 0.49 8.28

3 BNN 12711 061 0% 0.52 9:70
RNN 10.79 051  0.71 0.49 8.32

MLP 1238 036 060 0.64 9.41

TLFN 1143 045 0.67 0.55 8.87

. BNN 1376 020 046 0.62 10.55
RNN 11.51 044  0.66 0.56 8.95

MLP 1344 024 049 0.76 10.42

t+5 TLFN 1219 037 0.61 0.63 9.51
BNN 14.11 0.16 0.40 0.67 10.98

RNN 1202 039  0.63 9.38

0.61
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MLP 13.96 0.19 0.43 0.83 10.83

TLEN 12.39 0.35 0.59 0.65 9.71

e BNN 14.17 0.16 0.40 0.69 10.99
RNN 12.07 0.38 0.62 0.62 9.47

MLP 13.57 0.23 0.48 0.78 10.54

TLFN 12.57 0.33 0.57 0.67 9.90

7 BNN 13.59 0.22 0.47 0.71 10.58
RNN 12.70 0.31 0.56 0.68 9.97

MLP 13.21 0.27 0.52 0.74 10.26

TLFN 12.63 0.32 0.57 0.68 9.98

o BNN 13.26 0.26 0.51 0.68 10.36
RNN 12.73 0.31 0.56 0.69 10.02

MLP 12.94 0.29 0.54 0.71 10.11

TLFN 12.76 0.31 0.56 0.69 10.07

9 BNN 13.01 0.28 0.53 0.69 10.22
RNN 12.81 0.30 0.55 0.70 10.11

MLP 12.92 0.29 0.54 0.71 10.14

TLFN 12.72 0.31 0.56 0.69 10.06

510 BNN 13.13 0.27 0.52 0.68 10.35
RNN 12.89 0.30 0.55 0.70 10.20

MLP 13.20 0.27 0.52 0.74 10.42

TLFN 12.74 0.31 0.56 0.69 10.08

otk BNN 13.06 0.28 0.53 0.71 8.72
RNN 12.89 0.30 0.55 0.70 10.18

MLP 13.11 0.27 0.52 0.73 10.36

TLFN 12.76 0.31 0.56 0.69 10.11

BNN 13.00 0.29 0.53 0.70 10.24

s RNN 12.96 0.29 0.54 0.71 10.26
MLP 13.01 0.28 0.53 0.72 10.25

Legends: TLFN: Time lagged feedforward network

MLP: Multi-layer Perceptron

RNN: Recurrent neural network
TDNN: Time delay neural network
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Table A. 4 (a): Seasonal variation of model performance of O3: Hamilton Mountain
(29114)

Model performance statistics

Forecasting period  Season  Model RMSE r R> NMSE MAE SB

t+1 Fall TLEFN 448 090 0.81 0.20 335 -0.01
BNN 467 089 079 021 3.44 0.00

RNN 470 089 079 022 451 0.01

MLP 478 088 078 022 355 -0.02

Summer  TLFN 71 09% 0% 014 560 003

BNN 8.21 092 0.84 0.16 6.12 -0.05
RNN 775 093 0.86 0.15 5.76 -0.04
MLP 8.15 092 0.84 0.16 6.09 -0.04
Spring TLFN 6.75 089 0.79 0.21 4.95 -0.02
BNN 7.03 0.88 0.77 0.23 5.20 -0.03
RNN 6.91 088 0.78 0.22 5.07 -0.03

MLP 7.14 088 0.77 0.24 532 -0.04

Winter TLFN 4.48 090 0.81 0.20 3.35 -0.01

BNN 4.67 0.89 0.79 0.21 3.44 0.00

RNN 4.70 0.89 0.79 0.22 3.51 0.01

MLP 4.78 0.88 0.78 0.22 3.55 -0.02

t+2 Fall TLFN 8.74 0.81 0.66 0.34 6.55 0.00
BNN 9.18 0.79 0.62 0.38 6.86 -0.01

RNN 9.13 079 0.63 0.37 6.89 -0.01

MLP 9.27 0.79 0.62 0.38 6.93 -0.01

Summer TLFN 12.08 0.81 0.65 0.36 9.26 -0.06
BNN 13.04 0.78 0.6l 0.42 9.89 -0.09

RNN 12.63 079 0.63 0.39 9.69 -0.07

MLP 12.74 079 0.62 0.40 9.73 -0.07

Spring TLFN 1041 072 052 051 8.03 -0.07
BNN 10.66 0.70 0.50 0.53 8.23 -0.06

RNN 10.70 0.71 0.50 0.54 8.36 -0.09

MLP 10.74 070 0.49 0.54 8.34 -0.07

Winter TLFN 7.10 0.72 0.52 0.49 5.42 0.00
BNN 7.24 0.71  0.50 0.51 .57 0.01
RNN 7.36 0.69 0.48 0.53 5.71 0.00
MLP 722 0.71  0.51 0.51 5.55 0.00
t+6 Fall TLFN 11.88 0.61 0.37 0.63 9.35 0.023
BNN 12.73 053 0.28 0.72 10.05 0.022
RNN 11.65 0.63 0.40 0.60 9.25 0.031
MLP 12.64 0.54 0.29 0.71 9.89 0.003
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Summer TLFN 17.05 057 032 0.71 1343  -0.099
BNN 18.71 047 022 0.86 1458 -0.157

RNN 16.68 058 033 0.68 13.18 -0.062

MLP 18.12 050 025 0.80 1430 -0.126

Spring TLEN 1370 043 019 0.88 11.08 -0.096
BNN 14.82 g3 01 1.03 12.18 -0.138

RNN 1335 043 0.19 0.84 10.79  -0.059

MLP 14.78 036 0.13 1.03 1198 -0.144

Winter TLFN 9.88 035 0.12 0.95 7.86 -0.008
BNN 10.55 0.19 0.04 1.08 8.59 0.013
RNN 9.48 0.39 0.16 0.88 7.65 -0.009
MLP 10.33 029  0.09 1.04 8.23 -0.038
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Table A. 4 (b): Seasonal variation of model performance of O3: Hamilton West

(29118)
Forecasting Model performance statistics
: Season  Model 2

period RMSE r R NMSE MAE SB
t+1 TLFN 5.47 0.92 0.84 0.16 3.93 0.014
BNN 6.09 0.90 0.81 0.19 4.36 0.018
e RNN 583 091 08 018 419 0017
MLP 6.12 0.90 0.80 0.20 4.41 0.019
TLEN 7.59 0.92 0.84 0.16 5.58 -0.010
BNN 8.56 0.90 0.80 0.20 6.28 -0.040

Summer
RNN 7.93 0.91 0.83 0.17 5.82 -0.027
MLP 8.38 0.90 0.81 0.19 6.15 -0.022
TLEN 7.08 0.86 0.74 0.26 5.13 -0.011
, BNN 1.57 0.84 0.71 0.30 5.60 -0.040

Spring
RNN 122 0.86 0.73 0.27 5.23 -0.030
MLP 1.55 0.84 0.71 0.30 532 -0.031
TLFN 4.59 0.89 0.79 0.21 3.44 -0.005
Winter BNN 491 0.87 0.76 0.24 372 0.012
RNN 4.76 0.88 0.78 0.22 3.57 0.008
MLP 493 0.87 0.76 0.24 3.74 0.006
t+2 TLFN 8.05 0.81 0.66 0.33 6.07 0.033
Fall BNN 9.44 0.73 0.54 0.46 7.05 0.039
RNN 8.73 0.78 0.60 0.39 6.58 0.013
MLP 9.32 0.74 0.55 0.45 6.99 0.050
TLEN 11.45 0.80 0.65 0.35 8.71 -0.018
BNN 13.45 0.72 0.52 0.49 10.15 -0.069
T Ny 1180 079 06 038 914 0024
MLP 13.01 0.74 0.55 0.45 9.92 -0.054
TLEN 9.92 0.70 0.49 0.51 7.68 -0.027
, BNN 10.99 0.63 0.39 0.63 8.56 -0.067

Spring
RNN 10.22 0.68 0.46 0.54 7.93 -0.040
MLP 11.03 0.63 0.40 0.63 8.63 -0.075
TLFN 6.85 0.74 0.54 0.46 5.37 -0.005
; BNN 7.40 0.68 0.47 0.53 5.87 0.0241

Winter
RNN 7.15 0.71 0.50 0.50 5.65 -0.024
MLP 7.54 0.67 0.45 0.55 5.90 0.017
t+6 Fall TLFN 10.86 0.62 0.39 0.62 8.60 0.055
BNN 12.62 0.42 0.18 0.83 10.00 0.089
RNN 10.81 0.63 0.40 0.61 8.59 0.066
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Summer

Spring

Winter

MLP
TLEN
BNN

MLP
TLFN
BNN

MLP
TLFN

BNN

MLP

12.25
15.73
18.65
15.05
17.29
12.67
13.82
1231
13.51
9.39

10.01
9.38
10.14

0.48
0.58
0.35
0.63
0.48
0.43
0.28
0.49
0.35
0.41

0.25
0.43
0.29

McMaster University — Civil Engineering

0.24
0.34
0.12
0.39
02
0.19
0.08
0.24
0.12
0.17

0.06
0.19
0.08

0.78
0.67
0.94
0.61
0.81
0.84
1.00
0.79
0.95
0.86

0.98
0.86
1.01

9.67
12.34
14.33
11.74
13.29
10.34
11.30
9.90
10.88
7.67
8.35
7.74

8.37

0.091
-0.056
-0.185
-0.052
-0.144
-0.059
-0.133
-0.050
-0.111
-0.015

0.081
-0.054
0.064
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Table A. 5: Comparison of annual and summer models for O;: Hamilton Downtown

(29000)
. Model performance statistics
Forecs.astmg Model Annual model Summer model
period

RMSE r R NMSE MAE |RMSE r R} NMSE MAE

TLFN 7.86 091 084 0.17 5.77 7.88 091 0.83 0.17 5.89
t+1 BNN 8.63 090 081 020 6.33 8.43 090 0.81 0.19 6.31
RNN 8.06 091 083 0.17 591 8.08 091 0.83 0.17 6.10
MLP 8.40 090 082 019 6.21 8.37 090 0.81 0.19 6.30

TLFN 11.96 079 062 038 9.12 1238  0.77 059 0.41 9.52
BNN 12.77 076 058 044 9.60 13.09 074 0.54 0.46 10.09
RNN 12.49 077 059 042 9.40 1273 0.75 0.56 0.43 9.86
MLP 12.51 077 059 042 9.36 1272 075  0.56 0.43 9.75

t+2

TLFN 14.24 069 047 054 1094 | 1511 062 038 0.61 11.82
t+3 BNN 15.40 063 040 0.63 11.73 1574 0.58 0.34 0.66 12.25
RNN 13.99 069 048 052 10.82 1372 071 0.50 0.50 10.57
MLP 14.78 066 044 058 1129 1549 0.60 0.36 0.64 12.01

TLFN 15.55 061 037 0.65 12.07 | 16.07 0.56 0.31 0.69 12.60
BNN 16.86 054 030 076 1292 | 1720 047 022 0.79 13.34
RNN 14.92 065 042 059 11.61 1471 0.65 042 0.58 11.57
MLP 16.04 059 035 0.69 12.31 16.69 051 0.26 0.75 12.99

t+4

TLFN 15.95 058 034 0.68 12.37 16.80  0.50 0.25 0.76 13.23
t+5 BNN 16.98 052 027 077 13.15 1805 038 0.14 0.87 14.29
RNN 15.04 064 041 0.60 11.72 | 1528 0.61 0.37 0.62 11.97
MLP 16.65 055 030 074 12.85 1732 046 0.21 0.80 13.57

TLFN 16.25 057 032 071 12.61 17.02 048 023 0.78 13.42
t+6 BNN 17.33 050 025 0.80 13.45 1833 035 0.12 0.90 14.30
RNN 16.14 0.56 031 0.70 12.78 | 1580 058 034 0.67 12.36
MLP 17.23 051 026 0.79 1337 | 1766 042 0.18 0.83 13.93
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Table A. 6: Model forecasting performance with land use variable for O3;: Hamilton
Downtown (29000)

Forecasting period  Model

Model performance statistics

RMSE r R’ NMSE MAE RB
t+1 TLFN 6.34 0.92 0.85 0.16 4.55 -0.011
BNN 6.65 0.91 0.83 0.17 4.77 -0.011
RNN 6.89 0.9 0.81 0.19 5.06 -0.011
MLP 6.69 0.91 0.83 0.18 4.8 -0.011
t+2 TLFN 9.62 0.80 0.64 0.36 7.15 -0.029
BNN 10.32 0.76 0.58 0.42 7.65 -0.036
RNN 10.20 0.77 0.59 041 7.64 -0.023
MLP 10.00 0.78 0.61 0.39 743 -0.038
t+3 TLFN 11.09 0.72 0.52 0.48 8.41 -0.022
BNN 11.68 0.69 0.47 0.53 8.82 -0.053
RNN 11.84 0.67 0.45 0.55 9.05 -0.044
MLP 11.66 0.69 0.48 0.53 8.76 -0.053
t+4 TLFN 11.75 0.68 0.46 0.54 9.03 -0.006
BNN 12.65 0.62 0.38 0.63 9.60 -0.059
RNN 12.37 0.63 0.40 0.60 9.66 -0.021
MLP 12.44 0.63 0.40 0.61 9.47 -0.040
t+5 TLFN 12.10 0.65 042 0.57 9.36 -0.010
BNN 13.12 0.58 0.33 0.67 10.05 -0.061
RNN 12.72 0.61 0.37 0.63 9.91 -0.021
MLP 12.98 0.59 0.35 0.66 9.99 -0.054
t+6 TLFN 12.26 0.64 041 0.59 9.51 -0.012
BNN 13.69 0.52 0.27 0.73 10.52 -0.067
RNN 12.65 0.61 0.37 0.63 9.88 -0.018
MLP 13.25 0.56 0.31 0.69 10.22 -0.050
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Table A. 7 (a): Model forecasting performance of NO,: Hamilton Downtown (29000)

Forecasting horizon Model forecasting statistics
Model

RMSE r R’ NMSE MAE

t+1 TLEN 5.76 0.84 0.71 0.29 4.16
BNN 5.79 0.84 0.70 0.29 4.22

RNN 5.77 0.84 0.71 0.29 4.19

MLP 5.85 0.84 0.71 0.30 4.25

t+2 TLEN 8.07 0.65 0.42 0.57 6.12
BNN 8.02 0.66 0.43 0.57 6.07

RNN 8.22 0.64 0.41 0.59 6.29

MLP 8.09 0.65 0.42 0.58 6.12

t+3 TLFN 9.07 0.53 0.28 0.72 6.98
BNN 8.91 0.55 0.30 0.70 6.87

RNN 8.95 0.54 0.29 0.70 6.89

MLP 9.00 0.54 0.29 0.71 6.93

t+4 TLEN 9.27 0.50 0.25 0.75 7.18
BNN 941 0.47 0.22 0.78 127

RNN 9.30 0.49 0.24 0.76 7.25

MLP 9.35 0.48 0.23 0.77 127

t+5 TLEN 9.49 0.45 0.20 0.79 7.43
BNN 9.48 0.46 0.21 0.79 7.39

RNN 9.48 0.46 0.21 0.79 7.40

MLP 9.56 0.44 0.19 0.80 7.45

t+6 TLEN 9.78 0.40 0.16 0.84 7.65
BNN 9.72 041 0.17 0.83 7.62

RNN 9.82 0.40 0.16 0.84 7.65

MLP 9.74 0.41 0.17 0.83 7.61

t+7 TLEN 10.00 0.35 0.12 0.87 7.86
BNN 9.98 0.35 0.12 0.88 7.83

RNN 9.87 0.38 0.14 0.86 7.74

MLP 9.96 0.36 0.13 0.87 7.81

t+8 TLFN 10.12 0.32 0.10 0.90 7.96
BNN 10.18 0.30 0.09 0.91 8.00

RNN 9.92 0.37 0.14 0.86 7.79

MLP 10.18 0.31 0.10 0.91 7.98

t+9 TLFN 10.17 0.30 0.09 091 8.03
BNN 10.22 0.29 0.08 0.92 8.07

RNN 10.00 0.35 0.12 0.88 7.89
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MLP 10.23 0.29 0.08 0.92 8.06
t+10 TLFN 10.08 0.33 0.11 0.89 7.93
BNN 10.26 0.28 0.08 0.90 8.09
RNN 9.97 0.35 0.12 0.87 7.86
MLP 10.24 0.28 0.08 0.92 8.06
t+11 TLFN 9.97 0.35 0.12 0.87 7.82
BNN 10.06 0.33 0.11 0.89 7.90
RNN 9.95 0.36 0.13 0.87 7.84
MLP 10.07 0.33 0.11 0.89 7.92
t+12 TLFN 9.97 0.35 0.12 0.87 7.84
BNN 10.07 0.33 0.11 0.87 7.90
RNN 10.00 0.34 0.12 0.88 7.83
MLP 10.00 0.35 0.12 0.88 7.82

Table A. 7 (b): Model forecasting performance for NO,: Hamilton West (29118)

Forecasting period

Model forecasting statistics

Model RMSE r R? NMSE MAE
t+1 TLFN 5.77 0.87 0.77 0.24 4.22
BNN 5.99 0.86 0.75 0.25 4.38
RNN 5.83 0.87 0.76 024 426
MLP 6.04 0.86 0.74 0.26 4.45
t+2 TLFN  8.04 0.74  0.55 0.47 6.16
BNN 8.39 0.71 0.50 0.51 6.44
RNN 8.23 0.72 0.52 6.44 6.33
MLP 8.39 0.71 0.50 0.51 6.45
t+3 TLFN 9.23 0.63 0.40 0.61 7.20
BNN 9.51 0.60 0.36 0.65 7.39
RNN 9.28 0.63 0.40 0.62 7.26
MLP 9.47 0.61 0.37 0.65 7.38
t+4 TLFN 9.83 0.56 0.31 0.70 7.75
BNN 10.15 0.52 0.27 0.72 7.86
RNN 9.86 0.56 0.31 0.70 7.81
MLP 10.00 0.54 0.29 0.73 7.91
t+5 TLFN 1020 052 027 0.75 8.11
BNN 10.34 0.49 0.24 0.77 8.18
RNN 10.18 0.52 0.27 0.75 8.15
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MLP 10.37 0.49 0.24 0.77 8.24
t+6 TLFN 10.45 0.48 0.23 0.79 8.32
BNN 10.63 045 0.20 0.81 8.47
RNN 10.54 0.47 0.22 0.80 8.48
MLP 10.65 0.45 0.20 0.82 8.51
t+7 TLFN 10.74 0.44 0.19 0.83 8.63
BNN 10.89 0.40 0.16 0.85 8.70
RNN 10.60 0.45 0.20 0.81 8.52
MLP 10.93 0.40 0.16 0.86 8.76
t+8 TLFN 10.73 0.44 0.19 0.83 8.64
BNN 11.16 0.36 0.13 0.90 9.00
RNN 10.69 0.44 0.19 0.82 8.62
MLP 11.12 0.36 0.13 0.89 8.95
t+9 TLFN 10.73 0.44 0.19 0.83 8.64
BNN 11.26 0.33 0.11 091 9.10
RNN 10.90 0.41 0.17 0.85 8.83
MLP 11.25 0.33 0.11 0.91 9.09
t+10 TLFN 10.81 0.42 0.18 0.84 8.73
BNN 11.19 0.35 0.12 0.90 9.06
RNN 10.82 0.42 0.18 0.84 8.72
MLP 11.22 0.34 0.12 0.90 9.06
t+11 TLFN 10.84 0.41 0.17 0.84 8.73
BNN 11.00 0.38 0.14 0.87 8.89
RNN 10.87 0.40 0.16 0.85 8.77
MLP 11.03 0.38 0.14 0.88 8.92
t+12 TLFN 10.96 0.39 0.15 0.86 8.83
BNN 10.99 0.39 0.15 0.87 8.87
RNN 10.07 0.37 0.14 0.88 8.94
MLP 10.99 0.39 0.15 0.87 8.87
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Table A. 8: Seasonal variation of model performance: Hamilton Downtown (29000)

Forecasting period Season  Model Model performance Statistics

RMSE r R} NMSE MAE SB

t+1 Fall TLFN 5.14 0.84 0.71 0.29 3.71 0.009
BNN 5.18 0.84 0.70 0.30 3.77 0.009

RNN 5.14 0.84 0.71 0.29 3.74 0.008

MLP 5.24 0.83 0.70 0.30 3.81 0.009

Summer TLFN 6.10 0.82 0.67 0.34 4.44 0.034
BNN 6.18 0.81 0.66 0.35 4.53 0.035

RNN 6.13 0.81 0.66 0.34 4.51 0.030

MLP 6.15 0.81 0.66 0.34 4.51 0.033

Spring TLFN 115 081 0.66 0.34 521 -0.029
BNN 7.16 0.81 0.66 0.34 522 -0.027

RNN 1.17 0.81 0.66 0.34 5.24 -0.025

MLP 723 0.81 0.66 0.35 229 -0.025

Winter TLFN 4.90 0.87 0.75 0.26 3.63 -0.028
BNN 4.93 0.86 0.75 0.26 3.67 -0.025

RNN 4.85 0.87 0.75 0.25 3.61 -0.022

MLP 4.98 0.86 0.74 0.26 3.71 -0.023

t+2 Fall TLFN 7.15 0.65 043 0.58 5.45 0.026
BNN 7.10 0.66 043 0.57 541 0.029

RNN 7.36 0.63  0.39 0.61 5.62 0.027

MLP 7.16 0.65 042 0.58 5.44 0.016

Summer TLFN 8.26 0.63 040 0.62 6.39 0.065
BNN 8.24 0.63 0.40 0.62 6.33 0.058

RNN 8.37 0.61 037 0.64 6.50 0.041

MLP 8.28 0.62 0.39 0.62 6.40 0.059

Spring TLFN 8.74 0.63 040 0.60 6.55 -0.016
BNN 8.68 064 041 0.59 6.50 -0.021

RNN 8.90 0.62 0.38 0.62 6.76 -0.023

MLP 8.77 0.63 040 0.61 6.55 -0.025

Winter TLFN 7.17 0.68  0.46 0.55 5.51 -0.043
BNN 7.10 0.69 0.48 0.54 5.46 -0.047

RNN 7:35 0.66 043 0.58 5.67 -0.033

MLP 7.16 069 047 0.55 5.49 -0.055

t+6 Fall TLFN 8.90 036 0.13 0.88 7.06 0.032
BNN 8.81 038 0.15 0.86 7.02 0.036

RNN 8.80 0.38 0.15 0.86 7.02 0.023

MLP 8.88 037 . 0.14 0.87 7.02 0.025
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Summer  TLFN 998 035 612 091 809  0.075
BNN 984 037 014 088 798 0067
RNN 98 D03 013 0§89 305 0071
MLP 991 037 014 089 BO: 0084
Spring  TLFN 1178 634 012 002  a0F 008
BNN 1179 035 012 09 905 009
RNN 1182 035 012 093 903 0106
MLP 1167 036 013 09 89 0088
Winter ~ TLFN §86 043 @618 034 6%% 0055
BNN §85 043 0UB 084 68T 05T
RNN $99 041 017 088 694 0071
MLP 892 042 018 085 690  -0.067
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Fig. A. 1 (a): Scatter plots of observed vs. simulated values of TSP values at station 29113 (left) and 29114 (right)
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Fig. A. 1 (b): Scatter plots of observed vs. simulated values of TSP values at station 29113 (left) and 29114 (right)
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Fig. A. 1 (c): Scatter plots of observed vs. simulated values of TSP concentration at station 29102
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Fig A. 2 (a): Simulation result of TSP at station 29000 with 95% confidence interval
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Fig. A. 2 (b): Simulation result of TSP at station 29113 with 95% confidence interval

Confidence interval, Site-29113 (TLFN vs. BNN)

—— Observed - - - - TLFN BNN UcCL LCL
240
g 220
I3 200
o
é 180
3 160
5 140
'E 120
100
§ 80
I
8 60
o 40
fﬂ 20
0
D‘ > > > > > > 00”‘ &> Cpb‘ e @b‘ > & &
R S R o R S G S S e S
{gu\ KRN o 2 Kl v}{i\ & Gq/bk P ,\\qg) & &0 o q\.\é o \0\,@ \0@%
Date (2004), 6 day
Confidence interval, Site-29113 (RNN vs. BNN)
—— Observed - - - :RNN BNN ucL LCL
5B
£
o
K]
E
=
2
g
=
g
8
&
-
e > &> s Na > s > [x Na p W >
b{?/d) ,3;19 ,\\@@ \6"& (ﬁ\’bo \(9‘7/0 q,/\\q/o \0\"2«0 (be’bo @'L@ ijl«o (0\‘259 ,\Q,\(& \{7)& \6\‘7«0 %6‘79 \b(\‘lzoob‘ (LQ’{?/OQD'
i S ST e S R R S e et
Date (2004), 6 day
Confidence interval, Site-29113 (MLP vs. BNN)
—— Observed - - - - MLP BNN ucL LCL
240
"’E 220
E 200
0 180
E 160
5 140
2 120
E 100
8 80
5 60
2]
o 40
(4 20
O 1
)
R
3 4

Date (2004), 6 day

157



M.A.Sc. Thesis - Tarana A. Solaiman McMaster University — Civil Engineering

Fig. A. 2 (c): Simulation result of TSP at station 29114 with 95% confidence interval
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Fig. A. 3 (a): Comparison of observed and simulated values over space during fall
2003
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Fig. A. 3 (b): Comparison of observed and simulated values over space during fall
2003
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Fig. A. 4: Scatter plots for PM;y concentration at station 302
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Fig. A. 5: Simulation result of PM at station 302 with 95% confidence interval
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