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Abstract 

In recent years, the sequential Monte Carlo method, also referred to as the particle 

filter has emerged as a powerful methodology for solving the generally difficult nonlin

ear, non-Gaussian optimal filtering problem. The underlying idea is to use a randomly 

weighted set of samples to recursively build in time, a point-mass approximation of 

the true posterior PDF. With this approximation, one can recursively estimate typi

cally intractable posterior expectations of interest. Indeed, the PF can be applied to a 

very large class of models. Within the last few years, the aforementioned advantages 

have propelled research on particle filtering and its applications. The subject of this 

thesis is to the extend the theories and applications of the particle filter. The main 

contributions of this thesis are described as follows: 

1. 	 We consider the optimal filtering problem for a class of partially observed non

Gaussian dynamic state space models. In this class, the process equation con

sists of a combination of linear and nonlinear states, and the process noise for 

the nonlinear state update is a mixture of Gaussians. In order to solve this 

problem, we propose a novel method based on an efficient combination of the 

approximate conditional mean filter and the sequential importance sampling 

particle filter. 

2. 	 We address the problem of channel equalization and phase noise suppression 

in orthogonal frequency division multiplexing (OFDM) systems. For OFDM 
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systems, random phase noise introduced by the local oscillator causes two ef

fects: the common phase error (CPE), and the intercarrier interference (ICI). 

The performance of coherent OFDM systems greatly depends on the ability to 

accurately estimate the effective dynamic channel i.e., the combined effect of 

the CPE and the time-varying frequency selective channel. With this in mind, 

we propose an algorithm that equalizes in the frequency domain, and uses a 

pilot tone aided particle filter to track/estimate the effective dynamic channel 

in the time domain. To increase efficiency, we implement the particle filter via 

a combination of sequential importance sampling, Rao-Blackwellization, and 

strategies stemming from the auxiliary particle filter. 
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Notation and Acronyms 


Symbol and Definition 

X Scalar 

X Vector 

X Matrix 

xr Matrix transpose 

XH Hermitian transpose 

lXI Determinant of X 

diag(x) Diagonal matrix formed from vector x 

lE[·] Expectation Operator 

8( 0 
) Dirac-delta function 

n x n identity matrix 

n x m matrix of zeroes 

N(x; J.L, 'E) Normal distribution in x with mean J.L, covariance 'E 

Nc(x; J.L, 'E) Complex Normal distribution in x with mean J.L, covariance 'E 

Bayesian Filtering 

NP number of particles 

Neff effective sample size 

Other Symbols 

n Set of pilot tone locations 

vii 



s Spacing between each pilot tone 

N Number of orthogonal subcarriers 

Ncv Number of samples in cyclic prefix 

p Number of pilot tones 

Channel delay spread 

Duration of the useful portion of each OFDM symbol 

Sample interval or duration of high rate data stream 

Duration of one OFDM symbol 

Acronyms 

ACF Autocorrelation function 

ACM Approximate conditional mean 

ACMPF Approximate conditional mean particle filter 

APF Auxiliary particle filter 

AR Autoregressive 

ARMA Autoregressive moving-average 

Aux-MKF Auxiliary Mixture Kalman filter 

CP Cyclic prefix 

CPE Common phase error 

DSSM Dynamic state space model 

EKF Extended Kalman filter 

EMKF Extended mixture Kalman filter 

ICI Intercarrier interference 

i.i.d Independent and identically distributed 

IS Importance sampling 

lSI Intersymbol interference 

KF Kalman filter 
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LG 

GMM 

MAP 

MKF 

MMSE 

MSE 

MC 

OFDM 

OlD 

PCRLB 

PDF 

PF 

PN 

RBPF 

RMSE 

S/P 

SIS 

SMC 

TVAR 

UVGM 

Linear Gaussian 

Gaussian mixture model 

Maximum a posteriori 

Mixture Kalman filter 

Minimum mean square error 

Mean square error 

Monte Carlo 

Orthogonal frequency division multiplexing 

Optimal importance distribution 

Posterior Cramer-Rao lower bound 

Probability density function 

Particle filter 

Phase noise 

Rao-Blackwellized particle filter 

Root mean square error 

Serial to parallel 

Sequential importance sampling 

Sequential Monte Carlo 

Time-varying autoregressive 

Univariate nonstationary growth model 
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Chapter 1 

Introduction 

1.1 Background 

In many real-world applications, one requires that unknown quantities be estimated, 

given a set of noisy observations. Common examples include target tracking [7, 17, 21, 

48], channel tracking in wireless communications [30, 36, 23, 8], and the extraction 

of speech signals from audio environments with contaminating noise disturbances 

[18, 59, 10]. Frequently, the unknowns can be characterized by a process equation and 

the observations by a measurement equation, which together allow the formulation 

of a so-called dynamic state space model (DSSM). As such, we can adopt a Bayesian 

filtering approach and convert the problem to one of tracking a hidden process from 

a set of noisy observations. 

Often, observations arrive sequentially in time. Therefore, it is more appropriate 

to consider filters that recursively estimate the unknowns of interest. Ultimately, we 

aim to recursively compute the exact posterior probability density function (PDF) 

of interest. Indeed, within the Bayesian framework, the posterior PDF captures all 

the information about the unknowns. Thus, if an algorithm can recursively deduce 

the exact posterior PDF, we refer to it as the optimal solution of the aforementioned 

1 




2 D. Yee M.A.Sc thesis - Electrical & Computer Engineering, McMaster 

Bayesian filtering problem. 

For a Linear Gaussian DSSM, the celebrated Kalman filter (KF) provides the 

optimal solution [26]. Indeed, the KF computes the sufficient statistics at each iter

ation, which in turn, determines the posterior PDF for each time step k. In general, 

however, the optimal filter is analytically intractable for the unyielding nonlinear, 

non-Gaussian DSSM. Thus, a great number of researchers have introduced ingenious 

approximations that have resulted in mathematically tractable suboptimal filters. 

Historically, the Extended Kalman filter (EKF) is the first of such filters [3]. The 

main idea is to invoke linearization and thereby form an approximation of the original 

nonlinear model that is amenable to an application of the KF. The resulting recursive 

formulas constitute the EKF. In a number of applications, the EKF has performed 

adequately. However, there also exist many scenarios in which the EKF has performed 

poorly, in particular for non-Gaussian distributed noise disturbances. Thus, it was 

suggested to consider filters that involve a collection of EKF's. 

These filters are known as Gaussian Sum filters [3, 2], and the underlying assump

tion is to approximate the true posterior PDF by a Gaussian mixture approximation. 

Each component in the Gaussian mixture approximation, also called a mixand, is 

computed by a EKF or a KF. Thus, depending on the nature of the non-Gaussianity, 

these filters utilize a bank of EKF's or KF's to construct an approximation of the 

true posterior PDF. As such, these methods are more powerful, and more complex 

to implement. Indeed, if we do not introduce any alleviating procedure, the number 

of mixands exponentially increases over time. Moreover, the GSF may use a bank of 

EKF's and thus will still suffer from its inaccuracies. Therefore, it is of interest to 

consider alternative methods. 

One such method is known as the approximate conditional mean (ACM) filter 

[37, 62]. As shown in [37], for a linear DSSM with non-Gaussian observation noise 

distributed in accordance to a Gaussian mixture distribution, the ACM filter yields 
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near optimal performance. Thus, for this scenario, the ACM filter provides an efficient 

alternative over the computationally expensive Gaussian sum filter. 

Up to this point, it is apparent that we are without a universally effective approach 

for online signal processing of difficult nonlinear non-Gaussian DSSM's. Therefore, it 

is necessary to consider alternative solutions. Recently, particle filtering has emerged 

as a promising solution to the general nonlinear non-Gaussian filtering problem [12]. 

The underlying idea is to use a randomly weighted set of samples or particles to 

recursively build in time, a point-mass approximation of the true posterior PDF. 

Unlike traditional methods described earlier, particle filters do not make any type 

of approximating assumptions; rather, they build an approximation of the entire 

posterior PDF itself. In fact, particle filters are applicable to almost any system 

where signal variations are present. This is even true for nonlinear dynamics and 

noise distributed according to non-Gaussian distributions. Consequently, particle 

filters are expected to outperform popular, traditional EKF type algorithms. Indeed, 

in the last few years, there have been an abundant number of papers on particle 

filtering and their applications. 

The subject of this thesis is to extend the theories and applications of the PF. In 

particular, we introduce a novel particle filter (PF) for an important class of DSSM's, 

and also apply the PF to difficult problems in wireless communications and nonlinear 

filtering. The remainder of this thesis is organized as follows. 

Chapter 2 reviews various filters proposed in the literature. In particular, we in

troduce the theory of particle filtering and conclude this chapter with an introduction 

of the Posterior Cramer-Rao Lower Bound. 

Chapter 3 introduces various strategies for improving the efficiency of the basic 

PF. 

Chapter 4 introduces a novel PF for a class of partially observed non-Gaussian 

DSSM's. 
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Chapter 5 applies the PF to a problem arising in wireless communications. In par

ticular, we propose a particle filtering solution for the problem of channel equalization 

and phase noise suppression in orthogonal frequency division multiplexing (OFDM) 

systems. 

Chapter 6 concludes this thesis, and provides some suggestions for future research. 



Chapter 2 

Bayesian Filtering 

In this chapter we introduce the problem of sequential Bayesian state estimation. 

Then, we move on to a brief review of the Kalman filter (KF), approximate conditional 

mean (ACM) filter, extended Kalman filter (EKF), and a introduction to the particle 

filter (PF). Finally, we conclude this chapter with an introduction of the Posterior 

Cramer-Rao Lower Bound (PCRLB) which determines a lower bound on the mean 

square error (MSE) of the optimal algorithm. 

2.1 Sequential Bayesian State Estimation 

In this thesis, we consider the problem of using a sequence of noisy observations Yl:k = 

{y1, ... , Yk} to estimate a state of a system Xk that changes over time. Generally, 

we will assume that xk changes in accordance to a process equation: 

(2.1) 

where n E N, the notation (-)1,m, indicates all the elements from time l to time m, 

Fk(·, ·)is a possibly nonlinear function that may vary in time, and Wk is the possibly 

non-Gaussian process noise. It is a well known fact that dynamic state estimation 
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also requires a measurement equation. That is, we aim to estimate xk from some 

noisy observation y k: 

(2.2) 

where H k ( ·, ·) is a possibly nonlinear measurement function that may vary in time, 

and ek is the possibly non-Gaussian observation noise. In this work, the noise sources 

are assumed to be independent and identically distributed ( i. i. d) random variables. 

Equation (2.1) together with (2.2) form the so-called dynamic state space model 

(DSSM). Finally, we point out that (2.1) is an n-th order Markov process, and that 

for n = 1, (2.1) reduces to a first order Markov process [3]. 

2. 2 Bayesian Filtering 

In this work, we adopt a Bayesian approach to dynamic state estimation, and our 

general objective is to recursively build in time the posterior PDF p(xkiYl:k) from 

p(xk_1lyl:k_1). Mathematically, this procedure can be described in two stages. In 

the first stage, called the prediction stage, we use the Chapman-Kolmogorov equation 

[40] to obtain the predicted posterior PDF p(xkiY1,k_1): 

p(xkiY1:k-1) = j p(xklxk-1)p(xk-11Y1:k-1)dxk-1 (2.3) 

where p(xklxk-1) is the transition prior density that can be determined from (2.1). In 

the following stage, known as the update stage, we obtain p(xkly1,k) by using Bayes' 

rule [40]. That is, we update p(xkiY1,k_1) via 

P(Ykixk)p(xkiY1:k-1)
P(Xk IYa ) = (2.4) 

. P(YkiY1:k-1) 

where the likelihood p(yklxk) can be determined from (2.2), and the normalization 

density p(ykiY1,k_1) from 

(2.5) 



7 D. Yee M.A.Sc thesis - Electrical & Computer Engineering, McMaster 

In principle, we can use the posterior PDF p(xkiYl:k) to obtain the minimum mean 

square error (MMSE) estimate 

Xklk = Ep(xklYl:k)[xk] = JXkp(xkiYl:k)dxk, (2.6) 

the maximum a posteriori (MAP) estimate 

x~/P = arg max [p(xkiY 1:k)], (2.7) 
Xk 

and any other estimate of interest (i.e. covariance). Thus, we refer to the exact re

cursive solution of (2.3)-(2.5) as the optimal solution for Bayesian filtering. However, 

the computation of (2.3)-(2.6) generally requires the ability to evaluate complex in

tractable multidimensional integrals. Except for a few special cases, we must make 

approximations that yield practical suboptimal algorithms. In the following, we re

view the optimal KF and a selection of these suboptimal algorithms. 

2.2.1 The Kalman Filter 

When the DSSM satisfies the linear Gaussian (LG) assumption [7], (2.1)-(2.2) can be 

written as 

(2.8) 

(2.9) 

where F k and H k are known matrices, uk is a known input vector, w k '"'"' N (w k; 0, Qk), 

ek '"'"'N( ek; 0, Rk) and p(xoiYo) = N(xo; x 0 , Po). As usual, the notation N(·; JL, :E) 

denotes the Gaussian distribution with mean JL and covariance :E. 

For this model, the analytical solutions to (2.3)-(2.5) take the form of a Gaussian 

distribution. Therefore, if we set x 0 1o = xo, and P 010 =Po, it can be shown that for 

k = 1, ... , n the posterior PDF p(xkiYl:k), the predicted posterior PDF p(xkiYl:k-1), 
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and the normalization density p(ykiYl:k-l) satisfy (see [26, 7] or Appendix A): 

p(xkiYl:k) 

P(YkiYl:k-1) 

p(xkiYl:k-1) 

N(xk; xklk> Pklk) 

N(yk; Yklk-1, Sklk-d 

N(xk; xklk-1, Pklk-1) 

(2.10) 

(2.11) 

(2.12) 

where 

Xklk 

pklk 

Yklk-1 

sklk-1 

Xklk-1 

pklk-1 

xklk-1 + Pklk-lHkSkjLl (yk- Yklk-1) 

pklk-1- pklk-lHISkjLlHkPklk-1 

Hkxklk-1 

HkPklk-lHk + Rk 

Fkxk-llk-1 + uk 

FkPk-llk-lFk + Qk. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Notice that (2.13)-(2.18) which represents one iteration of the Kalman filter (KF) 

completely characterizes (2.10)-(2.12), the exact analytical solution to (2.3)-(2.5). 

Therefore, we arrive at the well known fact that the KF is the optimal filter for the 

highly restrictive LG DSSM. In the following sections, we consider several suboptimal 

filters for various nonlinear, possibly non-Gaussian DSSM's. 

2.2.2 The Approximate Conditional Mean filter 

Here, we make the assumption that (2.1)-(2.2) can be written as 

(2.19) 

(2.20) 

where Fk and Hk are known matrices, uk is a known input vector, wk "'N(wk; 0, Qk) 

and p(xoiYo) = N(x 0 ; x0 , Po). However, unlike the LG assumption made in the 

http:2.10)-(2.12
http:2.13)-(2.18
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previous section, we assume that p( ek) instead satisfies a Gaussian Mixture Model 

(GMM): 

N 

ek ""'LPiN( ek; J-L{, R{). (2.21) 
i=1 

where L-f=1 Pi = 1. Under this assumption, the KF loses its optimality, and may 

even significantly degrade in performance. In [2], the optimal filter is derived, and it 

is shown that p(xkiYl:k) is given by a GMM with an exponentially increasing number 

of mixands1. In practice, the increasing number of mixands results in a prohibitively 

expensive filter. Evidently, the optimal filter is infeasible for real time applications. 

Thus, with the aim of designing a computationally attractive algorithm, [37] suggested 

the surprisingly effective assumption that for all time instances k, p(xkiY1,k_1) can 

be well approximated by a single Gaussian distribution N(xk; xklk-1, Pklk-1), that is 

(2.22) 


Under this assumption, which is known as the Masreliez approximation [62], the 

derived suboptimal filter results in the so-called ACM filter [62, 45] and the estimate 

of the true posterior mean Xklk, and covariance Pklk satisfies (see Appendix B for a 

detailed proof, or [37] for an outline of the derivation) 

~ T 
xklk-1 + Pklk-1Hk 9k(Yk) (2.23) 
~ ~ T ~ 

Pklk-1- Pklk-1HkGk(Yk)HkPklk-1 (2.24) 

where 

Fkxk-1lk-1 + uk (2.25) 

~ T 
FkPk-1lk-1Fk + Qk-1 (2.26) 

1A mixand is a individual component/term of a Gaussian mixture distribution. For instance, if 
we have a two term GMM, we have two mixands. 
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and 

(2.27) 

(2.28) 

A comparison between (2.17)-(2.18) and (2.25)-(2.26) reveals that both filters have 

identical time update formulas. For the measurement update formulas, it can be 

seen from (2.23) and (2.24) that the ACM filter differs from the KF by gk(Yk) and 

Gk(Yk), respectively. In general, 9k(Yk) and Gk(Yk) in (2.23) and (2.24), respectively, 

are determined by the characteristics of ek. However, for the special case where ek is 

Gaussian distributed, it can be shown that gk(Yk) and Gk(Yk) reduce to s;L1(Yk
1 

Yktk- 1) and s; in (2.13) and (2.14), respectively. Thus, the ACM filter reduces to 
1 
L1 

the KF when ek is Gaussian distributed. Therefore, the ACM filter may be interpreted 

as a KF that is tailored to the scenario where ek follows a non-Gaussian distribution. 

2.2.3 The Extended Kalman filter 

In this section, we consider the case where (2.1 )-(2.2) can be written as 

Fk(xk-l) + wk (2.29) 

H k(xk) + ek (2.30) 

where Fk(·) is a nonlinear function, H k(·) is a nonlinear measurement function, wk"' 

N(wk; 0, Qk), ek "'N(ek; O,Rk), and p(xoiYo) = N(xo;xo,Po). As mentioned 

before, the optimal solution for (2.29)-(2.30) is generally analytically intractable, and 

approximations must be made. A sensible approach would be to locally approximate 

the considered DSSM with a LG DSSM, so that we may apply the standard KF. 

Therefore, we consider the linearization of Fk(xk-l) and Hk(xk) via a Taylor series 

http:2.29)-(2.30
http:2.25)-(2.26
http:2.17)-(2.18
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expansion about Xk-1lk- 1 and xklk-1, respectively2
: 

pk 

~ Hk(xklk-1) + Y'xkHk(xk)lx (xk- Xklk-1)· (2.32)
klk-1 

Thus, if we substitute (2.31) and (2.32) into (2.29) and (2.30), respectively, we have 

Fkxk-1 + Fk(Xk-1lk-1)- Fkxk-1lk-1 + wk (2.33) 

hkxk + Hk(xklk-1)- hkxklk-1 + ek. (2.34) 

The application of the KF leads to a suboptimal filter for the original nonlinear DSSM. 

Evidently, the application of the KF also implies that p(xkiY1,k), and p(xkiY 1,k_1) 

are each individually approximated by a Gaussian distribution. Therefore, it follows 

that we can write the Extended Kalman Filter (EKF) as [7] 

p(xkiYl:k) ~ N(xk; xklk, pklk) (2.35) 

p(xkiY1:k-1) ~ N(xk; xklk-1, pklk-1) (2.36) 

where 

xklk-1 + W k(Yk- H k(xklk-1)) (2.37) 
A A A AT T 

Pklk-1- W k(hkPklk-1hk + Rk) W k (2.38) 

Fk(xk-1lk-d (2.39) 
A A AT 

FkPk-1ik-1Fk + Qk (2.40) 

and the Kalman gain W k is given by 

(2.41) 

2Higher order terms have been neglected. 
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For a weakly nonlinear system, the EKF provides an acceptable level of performance 

[7]. For a highly nonlinear system, a Gaussian distribution poorly approximates the 

posterior density p(xkiY1,k), and the inherent linearizations of Fk(xk_!), and Hk(xk) 

often lead to filter divergence. Therefore, alternative solutions must be considered, 

and for this purpose, we consider the particle filter (PF) which has recently emerged 

as a powerful alternative to the EKF [14]. 

2.2.4 The Particle Filter 

The PF is applicable to a DSSM of the form3 

Fk(xk-n:k-d + Wk (2.42) 

Hk(xk) + ek (2.43) 

where n E N, Fk(-) is a possibly nonlinear process function, Hk(·) is a possibly 

nonlinear measurement function, wk is a possibly non-Gaussian process noise, and 

ek is a possibly non-Gaussian observation noise. The underlying idea of the PF 

is to use a randomly weighted set of samples or particles to recursively build in 

time a point-mass approximation of the true posterior PDF p(xl:kiYl:k). Note that 

these methods do not make any Gaussianity assumption; rather, they construct an 

approximation of the entire posterior PDF p(xl:kiYl:k) itself. Consequently, they are 

generally expected to outperform popular, traditional EKF type algorithms. 

Unlike previous sections, we consider the more general objective of computing 

expectations of the form 

(2.44) 

where J(·) is an arbitrary function of xl:k. 

3 Actually the PF is also applicable to a DSSM with multiplicative noise disturbances. However, 
in this work we will only consider DSSM's of the form (2.42) and (2.43). 
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The Sequential Importance Sampling (SIS) approach forms the basis for most 

particle filters [14]. Therefore, in the following, we review perfect Monte Carlo (MC) 

sampling and Bayesian Importance Sampling before we move onto a detailed deriva

tion of the SIS particle filter. 

2.2.4.1 Perfect Monte Carlo Sampling 

Perfect MC sampling [49] supposes that we are able to draw NP i.i.d samples {x~~i}~1 
from the true posterior PDF p(xl:kiYl:k). Together, these samples form a point-mass 

approximation of p(xi:kiY1,k): 

(2.45) 

where 8( ·) is the Dirac-delta function. More importantly, by substituting (2.45) in 

(2.44), we can estimate (2.44) according to 

(2.46) 

In [12], it is shown that for NP ---t oo, (2.46) converges to the true posterior expecta

tion (2.44) in the sense of almost sure convergence, i.e., 

(2.47) 

where ~ denotes almost sure convergence. Thus, perfect MC sampling offers signif

icant advantages. Unfortunately, the posterior PDF p(xl:k!Yl:k), being multivariate, 

and non-Gaussian is usually impossible to efficiently sample from. Consequently, 

alternate approaches must be considered. 
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2.2.4.2 Bayesian Importance Sampling 

Bayesian Importance Sampling (IS) [49] is based on the following idea. If we cannot 

efficiently sample from the posterior PDF p(xl:kiYl:k), then a reasonable solution is 

to introduce a so-called importance function q(xl:kiYl:k), that is easy to sample from. 

That is, suppose that we are able to draw NP samples { xi~~}~1 from q(xl:kiYl:k), 

whose support also includes that of p(xl:kiYl:k)· In particular, if xi~~ rv q(xl:kiYl:k) 

for i = 1, ... , Nv, and we write (2.44) as 

(2.48) 

we can substitute 

Nv 

q(xl:kiYl:k) = ~ L 8(xl:k- xi~~) (2.49) 
p i=l 

into (2.48), and obtain for an estimate of lEv(:z:lkiYlk)[f(xl:k)]: 

(2.50) 

where the so-called importance weights w(xl:k) are equal to 

(i) 

W( ,..(i)) = p( xl:k IYl:k) (2.51)""l:k (i) . 
q(xl:kiYl:k) 

However, the estimate given by (2.50) is impractical, because the computation of the 

importance weight 

(2.52) 


actually requires the ability to evaluate the typically intractable normalizing density 

p(yl:k). 
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Therefore, we proceed to write (2.44) as 

lEp(xl:kiYl:kl[f(xi:k)] = j f(xi:k)p(xl:kiYl:k)dxl:k 

Jf(xl:k)p(xl:kiYl:k)dxl:k 

Jp(xl:kiYI:k)dxl:k 

)p(xl:kiYa) ( I )dJf (X1:k ( I . ) q Xl:k Yl:k Xl:k
q Xl:k Yl:k 

make use of (2.51) 

J f(xl:k)w(xl:k)q(xl:kiYl:k)dxl:k 
(2.54)Jw(xl:k)q(xl:kiYl:k)dxl:k 

and substitute (2.49) into (2.54) to arrive at a estimate of lEp(:r:l:kiYl:k)[f(xl:k)] that is 

independent of p(yl:k): 

"\'NP ( (i) )!( (i))
L....i=l W X l:k X l:k (2.55)

"\'NP ( (j))
L....j=l w xl:k 

Indeed, the normalization process eliminates the necessity of knowing p(y1,k). There

fore, if we introduce the so-called normalized importance weights 

(i) 
_( (i)) w(xl:k) (2.56)

W Xl:k = 	"\'NP ( (j))' 
L....j=l w xl:k 

Ep(x1:kiY1:k)[f(x1:k)] can be estimated by 

Np 

(2.53) 

"""' - ( (i) )!( (i) ) 
~ w xl:k xl:k · (2.57) 
i=l 

Although (2.57) is a biased estimate, it is shown in [12], that for NP ---+ +oo, 

the estimate in (2.57) almost surely converges to the true posterior expectation 

lEp(x1:kiY1:k) [f( XI:k) ]. The important implication is that we can interpret the Bayesian 

IS as a simulation method to sample from the true posterior PDF p(xl:kiYI:k). Indeed, 
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if we recall (2.44) and rewrite (2.57) as 

Nv 

Ep(xl:kiYl:k)[f(xl:k)] = Jf(xl:k) L w(xi~~)8(xl:k- xi~~) dxl:k (2.58) 
i=l 

iJ(xuiYu) 

it is clear that a point-mass estimate of p(xt:kiYt:k) is given by 

p(xl:kiYl:k) = L
Nv 

w(xi~~)8(xl:k- xi~~). (2.59) 
i=l 

The advantages of this approach are clear. Consider the scenario where we are inter

ested in p(xkiYl:k) and expectations of the form 

Ep(xkiYl:k)[g(xk)IYl:k] = Jg(xk)p(xkiYl:k)dxk. (2.60) 

By simply marginalizing (2.59), we obtain for an estimate of p(xkiYl:k) 

p(xkiYl:k) = L
Nv 

w(xi~~)8(xk- Xki)) (2.61) 
i=l 

and thus, an estimate of lEp(xkiYl:k)[g(xk)] 

Ep(xkiYu)[g(xk)] = Jg(xk)p(xkiYt:k)dxk 

Nv 

2:::: w(xi~~)g(xki)). (2.62) 
i=l 

In particular, if g(xk) = xk, we have for an approximate MMSE estimate of xk 

(2.63) 

and if g(xk) = (xk- Ep(xkiYu)[xk])(xk- Ep(xkiYl:k)[xk])T, we obtain for an estimate 

of the conditional covariance of Xk 

(2.64) 
i=l 
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However, a limitation exists, that is, Bayesian IS in this present form is a "batch" 

estimator. Indeed, to sequentially in time estimate p(xl:kiYl:k), we must draw NP 

samples of x 1,k, and compute the associated normalized weights {w(xi~~)}~1 for ev

ery newly available observation Yk· Clearly, the computational complexity increases 

over time, and that Bayesian IS in this conventional form is inadequate for prob

lems that receive observations Yk in a sequential manner. Thus, it is evident that 

we should obtain a recursive method for estimating p(xl:kiYl:k)· That is, for every 

newly available observation Yk, we wish to recursively obtain from {w(xi~L )}~1 1 
and {xi~L 1 }~u a new set of weights {w(xi~~)}~1 and particles {xi~~}~1 , respec

tively, which together form an estimate of p(xl:kiYl:k)· Therefore, in the following, 

we develop the aforementioned ideas, and present a Bayesian sequential importance 

sampling (SIS) procedure. 

2.2.4.3 Bayesian Sequential Importance Sampling 

We begin by using Bayes rule to write the importance function q(x 1,kiY1:k) as 

(2.65) 

Notice that, if we adopted (2.65) as our importance function, the evaluation of (2.57) 

would require NP samples of xl:k, for every newly available observation Yk· In other 

words, to draw the i-th sample of xl:k given a new observation Yk, we would 

(i) (i) (i)
3. Set x 1,k = { xl:k-1> xk } 

Clearly, as k increases, the resulting computational burden renders (2.65) infeasible 

for real time applications. Thus, we restrict our importance function to be of the 
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form 

(2.66) 

For this importance function, one can draw NP samples of x 1:k, by simply drawing NP 

samples of xk, i.e., Xki) "'q(xklxi~L , y 1:k) fori= 1, ... , NP, and appending there1 
sulting set of realizations { Xki)};:1 to {xi~L };: for every newly available observation 1 1 
Yk· Under this restricted form of the importance function, it can be seen that there

sulting computational complexity does not increase over time. What remains is to de

. . f l f ( (i)) dth f -(i)( (i)) ['\'NP ( (j))]-1 ( (i))nve a recurs1ve ormu a or w x 1:k , an us, o wk x 1:k = uj=1w x 1:k w x 1:k . 

For convenience, we reproduce (2.51) 

P(xl:k IY1:k)
w(xl:k) (2.67) 

q(xl:kiY1:k) 

and write p(xl:kiY1:k) as 

_ P(Yklxl:k, Y1:k-1)p(xklxl:k-1, Y1:k-1)p(xl:k-11Y1:k-1) (
p (X1:k IY1:k ) - ( I ) . 2.68) 

P Yk Y1:k-1 

By substituting (2.68) and (2.66) in (2.67), we can write w(xl:k) as 

w(x :k) = P(Yklx1:k, Y1:k-1)p(xklxl:k-1, Y1:k-1) X p(xl:k-1IY1:k-1)
1

P(YkiY1:k-1)q(xklx1:k-1, Yl:k) q(xl:k-1IY1:k-1) 

w(xl:k-d 

P(Yklx1:k, Y1:k-1)p(xklx1:k-1, Y1:k-1) ( )
::.....:..cc..:.:..:.,.-.,-.c-=-=.:......,.=.:....::--~...:..._---..::.;.:.:........:'-'-w x 1·k-1 . (2.69) 

P(YkiY1:k-1)q(xklx1:k-b Yl:k) . 

Although the preceding relationship gives a recursive formula for w(x 1:k), a few sim

plifications are in order. 

Firstly, the normalization of the importance weights (see (2.56)) means that we 

can drop p(ykiY1:k-1) and all other irrelevant constants from (2.69), that is4 

P(Yklx1:k, Y1:k-1)p(xklx1:k-1, Y1:k-1) 
Wk ex: ( I ) Wk-1· (2.70) 

q Xk X1:k-1, Y1:k 


4 In (2.70) and in the sequel, we write w(xl:k) as wk. 
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Secondly, we recognize that (2.42) is a n-th order Markov process, and that, Yk 

is conditionally independent of Yl:k- 1 given xk. After appropriate modifications, we 

obtain the desired weight recursion for wk, that is 

P(Yk !xk)P( Xk !xk-n:k-1)
wk ex I wk-1· 	 (2.71)

q(xk xl:k-1, Y1:k) 

The SIS procedure is summarized as follows: 

Sequential 	importance sampling 

1. 	 Initialization: Fori = 1, ... , NP, initialize the particles, xb'! ......., p(x0), and set 


(i) -1W0 - . 

(i) 	 (i)2. 	 New particles: For i 1, ... , NP, draw xk ......., q(xk!xl:k-1, Yl:k), and set 

(i) 	 ~ ( (i) (i))

x1:k- x1:k-1' xk · 

3. 	 Calculate importance weights: Fori= 1, ... , NP, evaluate the importance 

weights up to a normalizing constant 
(') (') (") 

(i) P(Yk!xk' )p(xk' !xLn:k-1) (i) 
wk 	 ex (i) (i) wk-1 

q(xk lx1:k-1' Yl:k) 
and normalize importance weights. 

4. 	 Estimates: Use (2.57) for any estimates of interest. 

5. 	 Reiterate: Set k = k+l, and go back to step 2. 

As shown above, it is necessary to store all NP simulated trajectories of xk (i.e. 

{xi~~}~1 ). Thus for increasing k, the memory requirements of SIS increases over 

time. However, if we are only interested in the filtering posterior PDF p(x k Iy l:k), 

or its associated features, then, with the condition that the chosen importance func

tion is of the form q(xk!Xk-n:k-1, Yk), it is only necessary that we store Xk-n+1:k· 

Typical estimates of interest including IEp(:z:kiYlkl[xk] and covp(xkiYlk)[xk] are given by 

(2.63) and (2.64) respectively. Thus, in this case, it can be seen that the memory 

requirement of SIS does not increase over time. 
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2.2.4.4 The Degeneracy Problem 

In [12], it was shown that the variance of the importance weights (wk = p(xl:kiYu) 

jq(xl:kiYl:k)) increases over time. Although it is non intuitive, this phenomenon is 

actually detrimental to the performance of the SIS algorithm. 

To gain intuition, let us consider the ideal scenario where we are actually able to 

sample from the true posterior PDF p(xl:kiYl:k)· That is q(xl:kiYl:k) = p(xl:kiYl:k)· 

For this case, it can be shown that the mean and the variance of importance weights 

wk satisfy 

(2.72) 

and 
p(xl:kiYl:k)]

varq(xl:kiYl:k) [wk] = varq(xl:kiYl:k) [ ( I ) = 0 (2.73)
q Xl:k Yl:k 

respectively. Clearly, we want to be as close to this case as possible. Thus, it fol

lows that the inevitable increase in variance of the importance weights wk leads to 

a reduction in the accuracy of the SIS algorithm. In practice, what one observes is 

that after a few iterations, all but one particle will have negligible normalized im

portance weight. Clearly, this phenomenon is undesirable, and unavoidable. From a 

computational standpoint, it is inefficient to devote such a large amount of effort to 

update particles whose contribution to the estimate of p(xl:kiYl:k) is almost zero. In 

the literature, this phenomenon is known as the degeneracy problem [6]. In practice, 

it is useful to monitor the degeneracy of the SIS algorithm, and [31] showed that a 

suitable measure of degeneracy is given by the effective sample size Neff: 

(2.74) 

The conditional variance of the importance weights is non-negative, and therefore, 

Neff ~ NP. Intuitively, we can think of the Neff as the number of i. i. d particles 

drawn from the true posterior PDF, that would be necessary to obtain estimates with 
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the same quality as those given by the weighted particles [38]. In reality, we can only 

compute an estimate of Neff: 

A 1 
(2.75)Neff = 	 -""--:N-;-p-(-,_(:-::-i)-)

2 
L...i=l wk 

where Wki) is the i-th normalized importance weight5 given by (2.56). However, despite 

its simplicity (2.75) appeals to intuition. For example, consider the scenario where we 

have a highly degenerate realization of the SIS algorithm. For this case, as mentioned 

before, almost all but one particle will have negligible normalized importance weight 

wk. Thus, it can be argued that Neff ~ 1. Therefore, it follows that Neff can provide 

a reasonable measure of degeneracy, and that it is always beneficial to maximize Neff· 

In the following, we present two strategies that tend to maximize Neff· The first 

strategy is the resampling of particles, and the second strategy is the selection of a 

good importance function q(xl:kiYl:k). 

2.2.4.5 Resampling 

Typically, the prescribed solution for reducing degeneracy is to resample the particles. 

There are numerous schemes, and some of the more popular choices are the residual 

resampling [34], systematic resampling [29], and the multinomial resampling scheme 

[20]. 

The basic idea is to discard particles with weak importance weights and to multiply 

ones with significant importance weights. Formally, resampling can be described in 

two steps. First, we draw with replacement NP i. i. d particles Xki~n+l:k from [6] 

Nv 

P(Xk-n+l:kiYl:k) = L Wki)o(xk-n+l:k- x~i~n+l:k) (2.76) 
i=l 

such that P(xki~n+l:k = x~~n+l:k) = Wkj). Secondly, we set the importance weights 

tow~)= 1/NP for j = 1, ... , NP, respectively. 

5 Notice that we have written w(xi·~~) as wii)_ 
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In [33, 34], it has been argued that when the normalized importance weights are 

nearly equal, introducing resampling only leads to extra variations. Consequently, we 

will only introduce resampling when Neff is below a fixed heuristic threshold NTh· 

In this work, we choose the residual resampling scheme, and set Nrh = ~. 

2.2.4.6 Selection of Importance Function 

The importance function can be chosen from a number of choices. However, a sensi

ble approach is to select an importance function that minimizes the variance of the 

importance weights varq(xl:kiY1,k) [wk]· This can be readily justified from (2.74). How

ever, in a recursive scheme, at time k-1 the importance weights are fixed. Therefore, 

instead of minimizing varq(xl:kiYl:k) [wk], we minimize the variance of the importance 

weights conditional upon the past simulated state x~i~n:k-ll and the observations Yk· 

It is shown in [12], that the resulting optimal importance distribution (OlD) in the 

sense that it minimizes var ( (il ) [wklx~i~n:k-l' Yk] is 
q Xk 1xk-n:k-l>Yk 

(2.77) 

For this importance function, we use (2.71) to obtain the following expression for the 

importance weight: 

(2.78) 

where 

(2.79) 

Unfortunately, the OlD suffers from two drawbacks. Firstly, it requires the ability 

to sample from (2. 77), and secondly, it requires the ability to solve the generally 

intractable integral (2. 79). The aforementioned drawbacks have propelled researchers 



23 D. Yee M.A.Sc thesis - Electrical & Computer Engineering, McMaster 

to develop close, "easy to sample from" approximations of the OlD. In [12], the 

authors propose a Gaussian approximation of the OlD, whereas in [58], it is suggested 

that one approximate the OlD via the application of the Unscented Transform. 

Alternatively, we may choose the transition prior as the importance function: 

(2.80) 


For this importance function, the importance weights take the form of 

w(i) ex p(y lx(i))w(i) 	 (2.81)k k k k-1" 

Unlike the OlD, the prior p(xklxii2n:k-1) has the advantage of being relatively simple 

to implement; indeed, it can be readily obtained from (2.42) and the statistics of wk. 

However, the prior is inefficient, because it proposes samples without knowledge of 

the current observation Yk· In certain scenarios, the proposed particles may actually 

reside in "wrong" regions of the state space. Generally, this may result in an inefficient 

PF which requires more particles to achieve a certain level of performance. 

2.2.4. 7 Sequential Importance Sampling Particle filter 

The SIS particles filter is summarized as follows: 

Sequential Importance Sampling Particle filter 

1. 	 Initialization: Fori = 1, ... , Nv, initialize the particles, x~i) ,....., p(x0 ), and set 

(i) -1W 0 - . 

t . 	1 · "' . 1 N t -(i) (i) d d -(i)2. 	N ew par 1c es. ror ~ = , ... , p, se xk-n:k-1 = xk-n:k-1 an raw xk 

q(xklxii2n:k-1' Yk). 

3. 	 Calculate importance weights: For i 1, ... , NP, compute importance 

weights up to a normalizing constant 

-(i)) ( -(i)l-(i) )(w(i) ex P Yk 1xk P xk xk-n:k-1 (i) 
k (-(i)l-(i) ) wk-1 

q xk Xk-n:k-1' Yk 
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and normalize the importance weights. 

4. 	 Dynamic Resampling: 

If Neff <NTh, 

{ -(i) }Nv t . . h t bt . { (i) }Nv• 	 Resamp e l xk-n+l:k i=l w.r. Importance we1g ts o o am xk-n+I:k i=l, 

(i) - 1 f . - 1 Nand set wk - N or z- , ... , p· 
p 

otherwise 


- (i) - (i) f . - 1 N
• 	 Set xk-n+l:k- xk-n+l:k or z- ' ... ' p· 

5. 	 Estimates: Compute Ep(xkiY
1 
,k) [xk] and CoVp(xkiYH)[xk] using (2.63), and (2.64), 

respectively. 

6. 	 Reiterate: Set k = k+1, and go back to step 2. 

Remark 1. The "tilde" indicates particles before resampling. 

Remark 2. We can readily derive the Bootstrap filter {20] from the SIS particle filter. 

The appropriate modifications are: (i) choose the transition prior p(xk\Xk-n:k-1) as 

the importance function q(xk\Xk-n:k-l,Yk), and (ii) introduce the resampling step at 

every time index k. 
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N =14p 

Time k-1 

0 0 0 

Resampling 

New 
particles 

Timek 

Compute 
weights 

Resampling 

Figure 2.1: Pictorial description of the Bootstrap PF 

In Fig. 2.1, we present a pictorial description of the Bootstrap PF. The solid curves 

represent the true posterior PDF of interest. Observe that each circle represents one 

particle, and that the diameter of the circle represents the weight that is assigned 

to that particular particle. Finally, note that, at each stage of the algorithm, the 

number of particles NP remain the same. 
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2.3 Posterior Cramer-Rao Lower Bound 

Thus far, we have seen that suboptimal filters rely on approximations. In the EKF, 

we approximate (linearize) the DSSM via a Taylor's series expansion. In the ACM 

filter, we approximate the predicted posterior PDF as a Gaussian distribution, and for 

the PF, we approximate the posterior PDF via a set of randomly weighted samples. 

Naturally, when compared to the performance of the optimal filter, these approxima

tions degrade performance. In practice, we would like to measure this performance 

degradation, but more importantly, ascertain the effects of the introduced approx

imation. For the recursive estimation of random parameters, a natural strategy is 

to adopt a performance criterion (i.e. MSE), and compare the performances of the 

optimal filter, and the considered suboptimal filter. However, as mentioned before, 

the optimal filter is generally intractable and impossible to run. Therefore, we con

sider an alternate approach, and to this end, we introduce the Posterior Cramer-Rao 

Lower Bound (PCRLB). 

The PCRLB as discussed in [55, 60], provides a lower bound on the MSE of 

the theoretical optimal algorithm, but more importantly, it provides a theoretical 

benchmark for any other practical suboptimal algorithm6 
. Thus, if we define the 

MSE matrix Mk as 

(2.82) 

where xk(Yl:k) need not be an unbiased state estimator [60], and use the notation 

b.;~:: = \7 Xl:k v;l k where \7xu = [ 8~1 ... ' a~k] T to define the Fisher information 

6 For the estimation of nonrandom parameters, it is appropriate to consider the Cramer-Rao 
Lower Bound (CRLB) not the PCRLB [7]. 
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matrix J 1:k, i.e., 

J1:k = -JE [~~~:: lnp(x1:k, Yl:k)] (2.83) 

-JE [~~~:::::~ lnp(x1:k, Yl:k)] -JE [~~~,k-llnp(xl:k, Y1:k)]l 
(2.84)

[ -JE [ ~~~,k-1 lnp(xl:k, Y1:k)J -JE [~~~ lnp(xl:k, Y1:k)] 

Ak Bkl (2.85)
[Bk Ck 

where p(x 1:k, Yl:k) denotes the joint posterior PDF of xl:k, and y 1:k· It follows by 
1

virtue of the PCRLB, that the right-lower block of Jl,k, given by J-,;1 = [Ck- BkA-,;1Bk] 

lower bounds the MSE matrix M k in the sense that 

(2.86) 

where M k- J-,;1 is a positive semi-definite matrix. It can be shown that J k satisfies 

the recursion [55, 60]: 

D 22 D21 (J Dn )-1 D12J k = k-1 - k-1 k-1 + k-1 k-1 (2.87) 

where 

-JE [~~~ lnp(xk\Xk-1)] (2.88) 

-JE [~~z_ 1 lnp(xk\xk-1)] (2.89) 

-lE [~~z-llnp(xk\xk-1)] = [Dl~1f (2.90) 

-JE [~~~ lnp(xk\Xk-1)] -JE [~~~ lnp(yk\xk)] (2.91) 

and 

Jo = lE [~~~ -lnp(xo)]. (2.92) 

We remark that (2.87) assumes that p(xk\xk-d and p(yk\xk) are known, and that 

they are twice differentiable with respect to its arguments xk and xk-l· In some 
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scenarios, this assumption is not satisfied. For example, in the case of p(xkJxk-d = 

8(xk- xk_ 1) where 8(·) is a Dirac delta function, the prior cannot be differentiated. 

Thus, if we do not introduce appropriate strategies, it is not possible to derive a 

PCRLB. As a consequence, [55] suggests that we regularize the system by replac

ing the Dirac delta function with a differentiable Gaussian distribution N(xk; 0, E) 

where 0 < E «< 1. In this work we adopt this idea, and if necessary, approximate 

the Dirac delta function by a narrow Gaussian distribution N(xk; 0, E). Under this 

representation, we can use (2.87) to obtain a PCRLB for the regularized system, but 

more importantly, for E --+ 0, the PCRLB of the regularized system converges to the 

PCRLB of the original system. 

In light of (2.86), we also point out that 

(2.93) 

and that 

[Mk](i,i) = [IE [(xk- xk(Yl:k))(xk- xk(Yl:k)f]J(i,i) ~ [Jk1
] (i,i), i = 1, ... ,n 

(2.94) 

where n denotes the dimension of xk. Equation (2.93) states that the MSE associated 

with xk(Yl:k) is lower bounded by the trace of Jk 1 where Jk is given by (2.87). 

Thus far, we have the option of choosing from three bounds that are inspired by 

the PCRLB. These are in the form of (2.86), (2.93) and (2.94). For the ensuing experi

ments, it is convenient to adopt a scalar bound. Therefore, unless specified otherwise, 

we will adopt the lower bound given by (2.93). Finally, the expectations involved in 

(2.93), do not in general admit any closed form analytical expression. Therefore, 

when necessary, we proceed as in [17] and approximate the desired expectation with 

its appropriate Monte Carlo estimate. 



Chapter 3 

Efficient Particle filters 

In this chapter, we introduce various strategies to improve the basic SIS particle 

filter. The resulting filters are known as the Auxiliary particle filter (APF), the 

Mixture Kalman filter (MKF), and the Extended Mixture Kalman filter (EMKF). To 

conclude this chapter, we conduct a series of experiments and compare a selection of 

the considered algorithms. 

3.1 The Auxiliary Particle filter 

For convenience we reproduce the considered dynamic state space model (DSSM): 

Fk(Xk-n:k-1) + Wk (3.1) 

Hk(xk) + ek (3.2) 

where n E N, Fk(·) is a possibly nonlinear function, Hk(·) is a possibly nonlinear 

measurement function, wk is the possibly non-Gaussian process noise, and ek is the 

possibly non-Gaussian observation noise. The underlying idea of the APF [4, 43] is 

to attempt to improve the quality of particles at time k, by preselecting (resampling) 

the particles at time k-1 with probability close to p( x k-1!y 1:k). That is, we aim to 

29 
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use all the information up to time k to improve the swarm of particles at time k

1. Therefore, in the following, we endeavor to obtain a close approximation of the 

generally intractable p(xk-1IY 1,k). To begin, we expand p(xk-1IY 1,k) as follows: 

J J p(xk-n:kiY1:k)dxk-n:k-2dxk 

1 JJ[P(YkiY1:k-1)] - P(Yklxk-n:k, Y1:k-1) 

X p(xk lxk-n:k-1, Y1:k-1)P( Xk-n:k-11Y1:k-1)dxk-n:k-2dxk(3.3) 

Note that at time k, (3.1) and (3.2) only depend on xk-n:k-1 and xk, respectively. 

Therefore, after subsequent dropping of the normalization density p(ykiY1,k_1), (3.3) 

simplifies to 

p(xk-1IY1:k) ex JJ P(Yklxk)p(xklxk-n:k-1)P(Xk-n:k-11Y1:k-1)dxk-n:k-2dxk (3.4) 

At time k-1, a particle filter estimate of p(xk-n:k-1IY1:k-1) is given by 

Np 

~( I ) _ '"""' _(i) '( (i) ) (3.5)p xk-n:k-1 Yl:k-1 - ~ wk-1u Xk-n:k-1- xk-n:k-1 . 
i=1 

Hence, it follows after substituting (3.5) into (3.4) that 

p(xk-11Y1:k) ex JJP(Yklxk)p(xklxk-n:k-1) 

Np 

XL Wk~1 8(xk-n:k-1- X~i~n:k- 1 )dxk-n:k-2dxk 
i=1 

Np

'"""' ( I (i) ) -(i) '( (i) ) (3.6)~P Yk Xk-n:k-1 wk-1u Xk-1- xk-1 · 
i=1 

(3.7) 
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since (3.7) in general requires complex multidimensional integrations. However, in 

[43], it is suggested that p(xklx~i~n:k- 1 ) may be adequately characterized by a point 

estimate J.Lki), where J.Lki) is either the mean or a sample of p( xk Ixii~n:k- 1 ). Hence if we 

assume that p(xklx~i~n:k- ) ;::::;J 8(xk- J-l~i)), and substitute into (3.7), it follows that1 
~( I ( i) ) ( I (i))P Yk Xk-n:k-1 = P Yk Xk = J-lk · (3.8) 

Therefore, if we adopt the approximation given by (3.8), and substitute into (3.6), 

we obtain a proportionality for an approximation of p( x k-11y 1:k) that is in the form 

of 

(3.9) 
i=1 

where A~i) = P(Yklx~i~n:k- 1 )wki~ 1 . Finally, by noting that Jp(xk-1IY 1:k)dxk-1 = 1, 

we have 

(3.10) 
i=1 

where ,\~i) = [l::f~ .A~)]- 1 .A~i).1 
Equation (3.10) forms the basis of the APF. It implies that the most promising 

particles at time k-1, will have the largest associated predictive likelihoods Ak 

P(Yklxk-n:k-1)wk-1· Moreover, if we rewrite (2.71) as 

P(Yk IXk)P( Xk IXk-n:k-1) 

wk ex ( I ) wk-1 
q Xk X1:k-1, Yk 

;:;r I ) P(Yklxk)p(xklxk-n:k-1)
P\Yk Xk-n:k-1 Wk-1 ~( I ) ( I ) (3.11)
----....-----"P Yk Xk-n:k-1 q Xk Xk-n:k-1, Yk 

>.k 

then (3.10) and (3.11) suggest that we should preselect (resample) the particles 

{x ~i~1 } :;1 according to the so-called first stage importance weights 

, (i) (i) ~( I (i) )
"k ex wk-1P Yk xk-n:k-1 (3.12) 
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and that after preselecting, set the weights to the so-called second stage importance 

weights 
() (") (") 

(i) P(Yk\xk' )p(xk' \xLn:k-1) 
(3.13)wk ex ~ (i) (i) (i) · 

P(Yk\xk-n:k-1)q(xk \xk-n:k-1, Yk) 

As mentioned before, this procedure is advantageous because it uses information Yk 

at time k to select the most promising particles at time k- 1. The APF is summarized 

as follows: 

Auxiliary Particle filter 

1. 	 Initialization: Fori= 1, ... , Np, we initialize the particles, x6i) ,...., p(x0), and 

set wai) = 1. 

2. 	 Calculate first stage weights: Fori = 1, ... , Np, set x~i~n:k- = x~i~n:k-1 1 

(b) Compute importance weights up to a normalizing constant 

\ (i) (i) ~( 1-(i) )
Ilk 	 ex wk-1P Yk xk-n:k-1 

and normalize importance weights. 

3. Resampling: Resample {x~i~n:k- }~ w.r.t the first stage importance weights1 1 
\ (i) 	t bt . { (i) }NpIlk 0 0 aill xk-n:k-1 i=1" 

5. Calculate second stage weights: For i = 1, ... , N, compute importance 

weights up to a normalizing constant 

and normalize importance weights. 
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6. 	 Estimates: Compute Ep(xkiYl:k)[xk] and CoVp(xkiYl:k)[xk] using (2.63) and (2.64), 

respectively. 

7. 	 Reiterate: Set k = k+l, and go back to step 2. 

3.2 The Mixture Kalman Filter 

Let us suppose that xk = [xf, xFJT satisfies the following partially observed Gaus

sian DSSM [5]: 

1 1F (xLn:k-1) +A (xLn:k-1)xL1 + wk (3.14) 

F 
2(xLn:k-1) + A 2 (xLn:k-1)xk + W~ (3.15) 

H(x~) + ek (3.16) 

where x~ E lRn1 , x~ E lRn2 are the unobserved processes and y k E JR.ny is the 

associated noisy observation. The quantities F 1(-), A 1
(·), F 2

(·), and A2 
(·) are 

known possibly nonlinear functions with proper dimensions. The process noises 

wl, w~ and measurement noise ek are assumed to be mutually independent zero

mean Gaussian white noise sequences, i.e., wk,....., N(w~; 0, Qi), w~,....., N(wk; 0, Q~) 

and ek ,....., N( ek; 0, Rk). The initial states x6 and x6 are distributed according to 

p(x6) = N(x6; x5, P~) and p(x5) = N(x5; x~, P~), respectively. 

The considered DSSM is a special case of (2.42)-(2.43). Thus, a "standard" PF 

such as an SIS particle filter uses an importance function of the form q( xl, x~ JxLn:k-1, 

xLn:k-1, Yk) to obtain an estimate of p(xl, x~Jyl:k), and other expectations of in

terest lEp(xk,x~iYl:k)[f(xl, xDJ. However, for this particular DSSM, it is possible to 

design a better algorithm that yields estimates with lower variances. The main idea 

is to exploit the linear sub-structure of our given DSSM via a Kalman filter (KF). To 

http:2.42)-(2.43
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elaborate, let us write the joint posterior PDF p(xt, xi,kiY1,k) as 

(3.17) 

Clearly, conditional on xi,k, the matrices F 1(xLn:k-1), A1(xLn:k-1), F 2 (xLn:k-1), 

A 2(xLn:k-1) become known, and (3.14)-(3.15) form a linear Gaussian (LG) system 

in x k, for which the KF is the optimal estimator. Thus, it is apparent that we 

can use the optimal KF to obtain the Gaussian PDF p(xllxi,k), and that we can 

approximate the marginal posterior PDF p(xi,kiYl:k) via a PF. In the literature, this 

hybrid approach is known as the MKF [35] or as described in [12, 15, 50, 10], the 

Rao-Blackwellized particle filter (RBPF). Intuitively, we may consider the MKF as 

a algorithm that uses particle filtering for the truly nonlinear state x~, and optimal 

Kalman filtering for the conditionally linear state xl. Note that the task of using a 

PF to sample from p(xLk, xi,kiY1,k), has been reduced to one of sampling from the 

lower dimensional PDF p(xi,kly1,k). Thus, it follows from intuition, that for a given 

number of particles the MKF will provide better results then a standard PF. This 

intuition has been formally proved in [15]. 

Now, we will proceed with a formal derivation of the MKF. We begin with the 

derivation of p(xllxi,k). As mentioned before, conditional on xi,k, (3.14) and (3.15) 

forms a LG system in xl for which the KF is the optimal estimator. Thus, it follows 

from the discussion in Section 2.2.1 on Kalman filtering that p(xllxi,k), p(x~lxi:k- 1 ), 

and p(xllxi:k-1) are all Gaussian distributions that satisfy 

p(xllxi,k) N(xk; Xk[k' Pk[k) (3.18) 

p(x~lxi,k-1) N(x~; x~lk-1, Sklk-1) (3.19) 

p(xllxi:k-1) N(xk; Xklk-1, Pllk-1) (3.20) 

http:3.14)-(3.15
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where 

1 p1 A2( 2 )rs-1 ( 2 2 ) (3.21)xkJk-1 + kJk-1 xk-n:k-1 kJk-1 xk- xklk-1 

Pllk-1- PkJk-1A
2
(:z:Ln:k-1fSk[L1A

2
(:z:Ln:k-1)PkJk-1 (3.22) 

F 
2

(:z:Ln:k-1) + A 
2

(:z:Ln:k-1)XkJk-1 (3.23) 

A 
2

(:z:Ln:k-1)PkJk-1A
2
(:z:Ln:k-1f + Q~ (3.24) 

F 
1

(:z:Ln:k-1) + A 
1

(:z:Ln:k-1):z:L1Jk-1 (3.25) 

A 
1
(:z:Ln:k-1)PL1Jk-1A

1
(:z:Ln:k-1f + Ql. (3.26) 

Recall that Q! and Q~ correspond to the covariances of w~ and w~, respectively. 

Now we consider the marginal posterior PDF p(xi,kiYl:k)· As mentioned before this 

density will be approximated by the PF, in which case, p(xi,kiYl:k) can be written as 

Np 

p(xi,kiY1:k) = L Wki)8(xi,k- xi;!)) (3.27) 
i=1 

where Wki) = [2::~~ w~)]- 1 wki) is the i-th normalized weight, and wii) satisfies the1 
general weight recursion given by (2.70): 

I 2,(i) ) ( 2,(i) I 2,(i) )
(i) P(Yk x1:k , Y1:k-1 P xk xl:k-1' Y1:k-1 (i) (3.28)wk ex: 2,(i) 2,(i) wk-1· 

q(xk lxl:k-1' Yk) 

Notice from (3.16), that if xi,k is known, we can write P(Yklxi,k, y 1,k_ 1) as p(yklxD 

and drop y 1,k_1 from p(x~lxi:k- 1 , y 1,k_1). Thus, (3.28) simplifies to 

I 2,(i)) ( 2,(i)l 2,(i) )
(i) P(Yk xk P xk xl:k-1 (i) 

(3.29)wk ex: 2,(i) 2,(i) wk-1 
q(xk lx1:k-1' Yk) 

where the likelihood p(YklxD can be determined from (3.16), and p(x~lxi,k_ 1 ) from 

(3.19). As usual, we can choose the prior distribution as the importance function, 

. ( 21 2,(i) ) ( 21 2,(i) )tha t IS q xk x1:k-1' Yk = P xk x1:k-1 · 
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What remains is to develop expressions for the estimates of interest. We begin by 

obtaining an estimate for IEp(x~IYu)lxn Clearly, this is given by 

Ep(x%1Y1:k)[x~] = Jx~p(x~IYl:k)dxk (3.30) 

(3.31) 
i=l 

Similarly, an estimate of the conditional covariance covp(x%IYl:k) [x~] = IEp(x% IYl:k) [x~x~T] 

- 2 2 IE [ 2] · · bwhere xk = xk- p(x%IY1:k) xk 1s gtven y 

(3.32) 

Finally by noting that IEp(xliYlk) [xlJ is given by 

IEp(xliYl:k)[xlJ = JXkp(xkiYl:k)dxl (3.33) 

J J xlp(xk, xi,kiYt:k)dxldxi,k (3.34) 

j (xk)(xk)Tp(xkiYt:k)dxk (3.35) 

j j (xk)(xlfp(xk, xi,kiYl:k)dxldxi,k (3.36) 

where xl = xl-IEp(xl!Yl:k)[xlJ, the substitution of (3.17) and (3.27) into (3.34) and 

(3.36), respectively gives 

Np 

Ep(xliYl:k)[xlJ = L Wki)x!i~i) (3.37) 
i=l 

and 

CoVp(xliYl:k)[xlJ = 
Np 

"" -(i) (Pt,(i) ( t,(i) IE~ [ 1])( t,(i) IE~ [ t])T) ( )L...t wk klk + xklk - p(xliYl:k) xk xklk - p(xliYl:k) Xk · 3.38 
i=l 
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In (3.37) and (3.38), we can use a KF that is conditioned on xit) to compute 

1,(i) lE [ 1] d p1,(i) - [ 1] t. 1 Th ~' KFxklk = ( 11 2,(i)) xk an klk - cov ( 11 2,(i)) xk, respec 1ve y. ere1ore, a 
p "'k "'1:k 	 p "'k "'1:k 

must be associated with each particle x~,(i), and as the name suggests, the MKF 

uses a mixture of KF's to estimate lEp(xliYl:k)[xlJ, and covp(xliYl:k)[xlJ. The MKF is 

summarized as follows: 

Mixture Kalman filter 

"t" l" t" F . 1 N . 't' l' 1(i) A1 pl,(i) P.A 1 2,(i)1. Ini Ia IZa Ion: or z = , ... , P' we 1n1 1a 1ze x = x 0 , = 0 , ,......,010 010 x 0 

p(x6), and set w~i) = 1. 


. l F 1 N - 2,(i) 2,(i) xl,(i)
2. N ew 	partie es: or i = , ... , P' set xk-n:k-1 xk-n:k-1' k-1lk-1 
1,(i) - 1,(i) - l,(i) 


xk-llk-1' and Pk-1lk-1- pk-1lk-l' 


-2,(i) ( 21-2,(i) )( ) P 1 D raw xk q .a roposa: ,......, xk x 1:k-1, Yk 

(b) KF Prediction: Compute x~jki~ , and P~jki~ using (3.25) and (3.26), re1 1 
spectively. 

-1,(i) d p-l,(i) ( 2 ) d ( )(c) KF Update: Comput e xklk , an klk using 3. 1 an 3.22 , respec

tively. 

3. Calculate importance weights: For i 1, ... , NP, compute importance 

weights up to a normalizing constant 


-2,(i)) (-2,(i)l-2,(i) ) 

(i) P(Yk lxk P xk xl:k-1 (i) 

wk ex: (-2,(i)l-2,(i) ) wk-1 
q xk x1:k-1' Yk 

and normalize importance weights. 

4. Dynamic Resampling: 

If Neff < NTh, 

{ -2,(i) 	 }Np { -1,(i)}NP {P-1,(i)}Np t · t · ht• 	 Resamp1e xk-n+l:k i=1, xklk i=1, klk i=1 w.r. 1mpor ance we1g s 
. { 2,(i) }Np { 1,(i)}NP {P1,(i)}Np d t (i) _ 1 ~' · _ t bto o am x k-n+1:k i=l' x klk i=1' klk i=1 an se wk - Np !Or z 

1, ... ,NP. 
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otherwise 

-2,(i) _ 2,(i) -l,(i) _ l,(i) d p-l,(i) _ pl,(i) f . _ N• 	 Set X 1k-n+l:k - xk-n+l:k' xklk - xklk 'an klk - klk or 2 - '· · ·' p· 

5. 	 Estimates: Compute Ep(xliYH) [x~], covp(xiiYH) [x~], Ep(x%1Y1:k) [x%], and covp(x%1Yl:k) [x%] 

using (3.37), (3.38), (3.31), and (3.32), respectively. 

6. 	 Reiterate: Set k = k+1, and go back to step 2. 

3.3 The Extended Mixture Kalman filter 

In this section, we consider a class of partially observed non-Gaussian DSSM. Such 

models are useful e.g., in time-varying autoregressive models and other applications 

as discussed for instance in [5] and [52]. Formally, the considered DSSM is described 

by 

xlk 
1 1F (xLn:k-1) + A (xLn:k-l)xL1 + W~ (3.39) 

X~ F 
2(xLn:k-1) + A2(xLn:k-l)x~ + W~ (3.40) 

Yk = H(xD + ek (3.41) 

where x~ E lRn1 , x~ E lRn2 are the unobserved processes and Yk E JR.ny is the 

noisy observation. As before, F\), A 1(-), F 2
(-), and A 2 

(-) are known functions 

with proper dimensions. The process noise wL and measurement noise ek are as

sumed to be mutually independent zero-mean Gaussian white noise sequences, i.e., 

w~,..., N(w~; 0, Q~) and ek,..., N(ek; 0, Rk). The initial states are assumed to be 

mutually independent zero-mean Gaussian random variables, x6 ,..., N(x6; x6, P~) and 
Ax6,..., N(x6; x0 

2 
, P 

2 

0 ). However, unlike Section 3.2, the process noise driving (3.40) is 

assumed to be a white noise sequence that is distributed according to aN component 
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Gaussian Mixture Model (GMM): 

N 

p(w~) = LPiN(w~;wk2,(j),Q~,(j)) (3.42) 
j==1 

where l::f=1 Pi = 1. Thus, in light of (3.42), it is clear that the considered DSSM is a 

partially observed non-Gaussian system. Notice that, the MKF is still applicable to 

the considered DSSM [35]. At first sight, this seems implausible, since (3.39)-(3.40) 

conditional on xi:k is no longer LG in xl. However, if we introduce an indicator 

random variable h E TN = { nln = 1, ... , N} that satisfies 

.f 2 N( 2.- 2,(1) Q2,(1l)
1 wk I"V wk, wk ' k 

'f 2 N( 2.-2,(N) Q2,(N))
I wk I"V wk, wk ' k 

where p(h = 1) = p1, ... , p(h = N) = PN, we can note that (3.39)-(3.40) conditional 

on xi,k and hk reduces to a LG system for which the KF is the optimal estimator. 

Intuitively, the random variable h indicates the effective distribution of w~ at time 

index k. Thus, as before, we can use the optimal KF to obtain the Gaussian PDF 

p(xllxi,k, Il:k), and use the PF to approximate p(xi,k, hkiYl:k): 

(3.43) 

Kalman filter Particle filter 

We proceed as Section 3.2, and begin with the derivation of p(xllxi,k, hk)· As 

mentioned before, conditional on xi,k, fl:k_ 1, and h = n, (3.39)-(3.40) form a LG 

system in xl for which the KF is the optimal estimator. Note that, n is the specific re

alization of hat time index k. Thus, as discussed in Section 2.2.1 on Kalman filtering, 

p(xllxi,k, Il:k), p(x~lxi:k- 1 , Il:k), and p(xllxi:k-1 , Il:k) are all Gaussian distributions 

http:3.39)-(3.40
http:3.39)-(3.40
http:3.39)-(3.40
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that satisfy 

p(x~lxi:k> Il:k-1, h = n) N(xk; x~ k, P~ k) (3.44)1 1 
p(x%1xi:k-1> Il:k-1, h = n) N(x%; x% 

1 
k-1' Sklk-d (3.45) 

p(x~lxi:k- 1 , fl:k_ 1, Ik = n) N(xk; x~lk-1, P~lk-1) (3.46) 

where 

1 1 p1 A2( 2 )rs-1 ( 2 2 )xklk xklk-1 + klk-1 xk-n:k-1 kik-1 xk- xklk-1 (3.47) 

p~lk P~lk-1- P~lk-1A2 (xLn:k-1fs~L1A2 (xLn:k-1)P~Ik-1 (3.48) 

2 F 2( 2 )+A2( 2 ) 1 +-2,(h=n)xklk-1 Xk-n:k-1 xk-n:k-1 xklk-1 Wk (3.49) 

A 2( 2 )P1 A2( 2 )T Q2,(h=n)xk-n:k-1 klk-1 xk-n:k-1 + k (3.50) 

F 
1
(xLn:k-1) + A 

1
(xLn:k-1)xL1Ik-1 (3.51) 

A 
1
(xLn:k-1)PL1Ik-1A

1
(xLn:k-1)T + Q~. (3.52) 

We emphasize that (3.47)-(3.52) are all dependent on fl:k_ 1, and h = n. Indeed, the 

entire past is summarized by the sufficient statistic x~lk' and its associated covariance 

p~lk· 

Now let us consider the marginal posterior PDF p(xi:k' Il:kiYl:k)· As mentioned 

before we use the PF to approximate this density, therefore we can write 

Np 

p(xi:kl Il:kiY1:k) = L wii)c5((xi:k> I1:k)- (xi:k> Il:k)(i)) (3.53) 
i=1 

where dil = [""'I:"'Nv w(j)]-1w(i) is the i-th normalized weight and w(i) satisfiesk UJ=1 k k ' k 

I 2,(i)) ( 2,(i) I(i)l 2,(i) I(i) )((i) P Yk xk P xk ' k xl:k-1' 1:k-1 (i) (3.54)wk ex 2,(i) (i) 2,(i) (i) wk-1· 
q(xk , Ik lx1:k-u I1:k-1' Yk) 

In (3.54), the likelihood P(Yklx~,(i)) can be determined from (3.41) and the statistics 

of ek, i.e., 

I 2,(i)) N( H( 2,(i)) R )P(Yk xk = Yk; xk , k · (3.55) 

http:3.47)-(3.52
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The prior p(x~, hlxi;~i~ , Ii~L ) for each element of IN= {nln = 1, ... , N} is given 1 1 
by 

2 I I 2,(i) I(i) ) ( 21 2,(i) I(i) I ) (I )
P( xk, k = n x1:k-1' 1:k-1 = P xk x1:k-1' 1:k-1> k = n P k = n (3.56) 

where p(x~lxi;~i~ 1 ,Ii~L 1 ,h = n) is given by (3.45), and p(h = n) from the apriori 

probabilities of h, i.e., p(h = n) = Pn· 

There are numerous choices for the importance function q(x~, hlx~;ki~ , Ii~L , Y1:k).1 1 
As usual, we may either select the prior (3.56): 

2 I I 2,(i) I(i) ) ( 2 I I 2,(i) I(i) )q( xk, k x1:k-1' 1:k-1' Y1:k = P xk, k = n x1:k-1' 1:k-1 , (3.57) 

the OlD, or a approximation of the OlD for the importance function. Indeed, for 

the considered DSSM, the OlD p(x~, hlx~;~i~ 1 Ji~L 1 , Yk) is generally analytically 

intractable. However, if H(x~) is a linear function of x~, i.e., 

(3.58) 

in (3.41), it can be shown that the OlD p(x~, h = nlxi:~i~ 1 , Ii~L 1 , Yk) for x~ and 

each element in IN = { nln = 1, ... , N} satisfies 

( 2 I I 2,(i) I(i) )
qopt xk, k x1:k-1' 1:k-1' Y1:k ( 2 I

P xk, k = 
I 2,(i) I(i) ) 

n x1:k-11 1:k-1' Yk (3.59) 

( 2l 2,(i) I( i) I )
P xk xl:k-1' l:k-1, k = n, Yk 

(Ixp k = I 2,(i) I(i) )
n x1:k-1' 1:k-1' Yk (3.60) 

where 

21 2,(i) I(i) I ) N( 2 A2,(i) PA2,(i))
P( xk xl:k-1' 1:k-1' k = n, Yk = xk; xk , k (3.61) 

with 

(3.62) 

(3.63) 
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and 

I 2,(i) I(i) ) ( I 2,(i) I(i) I ) (I )
P(Ik=nx1:k-1' 1:k-1,Yk ocpykx1:k-1' 1:k-1' k=np k=n (3.64) 

I 2,(i) I(i) I ) N( H 2,(i) HS(i) HT R )
where P(Yk x1:k-1' 1:k-1' k = n = Yk; xklk-1' klk-1 + k · 

Thus in drawing { x~(i) ,I~i)} from (3.60), we first sample I~i) with probability 

commensurate with (3.64), and then sample x~,(i) in accordance with (3.61), x~,(i) rv 

N(x~; x~,(i), P!'(i)). Finally, if we proceed as in Section 3.2, it can be shown that 

(3.65) 

1,(i) E [ 1])T)
X (Xklk - p(xkiYu) Xk (3.66) 

Np 
""' - (i) 2,(i)
~wk xk (3.67) 
i=1 

Np 

--- [ 2] ""' -(i)( 2,(i) JE~ [ 2])( 2,(i) JE~ [ 2j)T(3 68) 
covp(x~IYu) Xk = ~ wk xk - p(x~IYu) xk Xk - p(x~IYu) Xk · 

i=1 

where x~·1 ~l = lE ( 11 2,(i) r<il)[x~] and P~·~~) = cov ( 11 2,(i) r<il)[x~]. Recall that x~·1 ~l p "'k "'1:k , 1:k p "'k "'1:k , 1:k 

and P~~~) and are computed by (3.47) and (3.48), respectively. Thus, as before, a KF 

is associated with each particle (x~,(i), I~i)). The algorithm for the EMKF is summa

rized below: 

Extended Mixture Kalman filter 

·t· l" t• F . 1 N . 't' l' 1(i) '1 p1,(i) P., 1 2,(i)1. In1 1a 1za 1on: or I = , ... , p, we m1 1a 1ze x = x0 , = x 0010 010 0 , ,...., 

p(x6), and set wbi) = 1. 

2. New t . lpar lC es: For · I = 1 N, ... , p, set ,;;2,(i)"'k-n:k-1 
2,(i) 

Xk-n:k-1' 
-1,(i) 
xk-1lk-1 

1,(i) - 1,(i) - 1,(i) 
xk-1lk-1' and Pk-1lk-1- pk-1lk-1' 

( -2,(i) I-(i)) ( 2 I ~-2,(i) I-(i) )• Proposa:l Draw xk , k ""q xk, k x 1:k-1, 1:k-1, Yk . 
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0- 1,(i} 	 d P-1
,(i} (3 51) d (3 52)• KF Prediction: Compute xklk- 1 , an klk- 1 usmg . an . , re

spectively. 

- 1,(i} d P-1
,(i} (3 4 ) d (3 48)KF U d ate: Compute xklk , an klk usmg . 7 an . , respec• p 	

0 

tively. 

3. 	 Calculate importance weights: For i 1, ... , Np, compute importance 

weights up to a normalizing constant 

I 2,(i}) ( 2,(i} I(i) I 2,(i} I(i} )
(i) P(Yk xk P xk ' k xl:k-1' 1:k-1 (i} (3.69)

wk ex ( 2,(i) I(i}l 2,(i) I(i) ) wk-1 
q xk ' k x1:k-1' 1:k-1' Yk 

and normalize importance weights. 

4. 	 Dynamic Resampling: 

If Neff < NTh, 


1 { -2,(i} }Nv {-1,(i)}Nv {P-1,(i)}Nv t. t . ht
• 	 Resamp e xk-n+1:k i= 1, xklk i= 1, klk i= 1 w.r. 1mpor ance we1g s 
. { 2,(i} }Nv { 1,(i)}Nv {P1,(i}}Nv d t (i) _ 1 f . _ t bto o am xk-n+l:k i=l' xklk i=1' klk i=l an se wk - Nv or 2 

l, ... ,NP. 

otherwise 


-2,(i) _ 2,(i} -1,(i) _ 1,(i} d p-1,(i) _ p1,(i) f . _ N 

• Set xk-n+l:k - xk-n+1:k' xklk - xklk 'an klk - klk or 2- 1' ... ' p· 

5. 	 Estimates: Compute Ep(x~ly 1 ,k) [x~], Co:vp(x~IYu) [x~], Ep(x%1Y 1,k) [x~], and covp(x~ly 1 k) [ x~] 
using (3.65), (3.66), (3.67), and (3.68), respectively. 

6. 	 Reiterate: Set k = k+1, and go back to step 2. 

3.4 Experiments 

The considered algorithms are applied to two nonlinear models. The first is the 

highly nonlinear Univariate Nonstationary Growth model (UVGM) [32, 28, 20, 12], 
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and the second is the well documented time-varying auto-regressive (TVAR) model. 

The TVAR model has been investigated by many researchers, and some examples 

include [18, 22] in which the TVAR model is used for speech processing, and in [16] 

where the TVAR model is used for modelling of high resolution high range resolution 

radar signatures. 

3.4.1 Univariate Nonstationary Growth Model 

The highly nonlinear UVGM is given by 

0.5xk-1 + 25 Xk-~ + 8cos(1.2(k- 1)) + wk (3.70)
1 + xk-1 

(3. 71) 

where wk rv N(wk; 0, Qk), ek rv N(ek; 0, Rk) and p(xo) = N(x0 ; xo, F0 ). Here, we 

choose Qk = 1, Rk = 1, x0 = 0, Po= 1, and N = 70. The considered algorithms are 

the EKF, Bootstrap PF, and the APF as described in Section 2.2.3, 2.2.4.7, and 3.1, 

respectively. Each PF uses NP = 50 particles and employs the prior distribution 

p(xklxk-1) = N(xk; 0.5xk-1 + 25 xk-~ + 8 cos(1.2(k- 1)), Qk) (3.72)
1 + xk-1 

for the importance function. Figures 3.1, 3.2, and 3.3 show a typical trajectory of 

Xk, the corresponding estimated trajectory of lEp(xkiYlk) [xk], and an estimate of the 2a 

confidence intervals (CI) for the EKF, Bootstrap PF, and APF, respectively. 

30 


20 


10 


-10 


-20 


-30 


-4o~--~1~0----~2=o----~3=o------4=o----~s=o------e~o----~7~o 
k 

Figure 3.1: True and Estimated state of EKF 
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Figure 3.2: True and Estimated state of Bootstrap PF 
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k 

Figure 3.3: True and Estimated state of APF 

All the considered PF's outperform the EKF. Evidently, for this highly nonlin

ear model, the inherent linearizations of the EKF tend to lead to filter divergence. 

Moreover, the EKF is based upon the assumption that the posterior distribution can 

be adequately approximated by a Gaussian distribution. In this example and many 

other scenarios, this is often untrue, and p(xkiYl:k) can actually be multi-modal, or 

Figure 3.4: APF estimate of p(xkiYl:k) 
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Figure 3.5: Root Mean Square Error curves for UVGM 

very skewed. As seen from Figure 3.4, the posterior distribution is actually bimodal 

for k = 30. Unlike the EKF, PF's neither employ a linearization of the DSSM nor a 

Gaussianity assumption of p(xkiYl:k)· Indeed, as illustrated in Figures 3.2, and 3.3, 

these methods are well suited for state estimation of highly nonlinear, non-Gaussian 

dynamical systems. 

Finally, to compare the error performances of each algorithm, we computed RMSE 

(square root of MSE) curves for each filter by running all the considered algorithms 

on the same realizations of data for M = 200 experiments. Figure 3.5 illustrates the 

resulting RMSE curves. For this example, the APF outperforms all the considered 

algorithms. 

3.4.2 Time-Varying Autoregressive Model 

The P-th order TVAR model can be written as [18] 

Fak-1 + Wk (3.73) 

Gk(zk-P:k-l)ak + w~ (3.74) 

(3. 75) 
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where F = f31PxP, ak = [ak, ... , af]T are the AR coefficients, zk is the AR process, 

Gk(zk-P:k-1) = [zk-1 ... Zk-P], wl "" N(wl; 0, Q!) is the process noise, and ek "" 

N(ek; 0, Rk) is the measurement noise. The driving noise w~ for the TVAR model is 

distributed according to 

(3.76) 

Here, we choose Ql = (0.01)2I PxP, Qk = 0.5, and Rk = 0.05. The elements of ao and 

zo:P- 1 are each distributed in accordance to a Gaussian distribution with mean 0, and 

variance 0.25. In this experiment, we consider a fourth order TVAR model (P = 4) 

with known coefficient j3 = 0.995. The considered algorithms are the Bootstrap 

PF and the MKF as described in Sections 2.2.4. 7 and 3.2, respectively. For the 

Bootstrap PF, we consider two different implementations. The first design uses the 

prior p(zk, akizk-P:k-1, ak-1) as the importance function q(zk, akizk-P:k-1, ak-1, Yk), 

that is 

(3.77) 

The other uses the OlD p(zk, akizk-P:k-1, ak_1,Yk) for its importance function (See 

Appendix C for details): 

In (3.79) 

(3.80) 

where 

(3.81) 
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Figure 3.6: True and Estimated ak using MKF 

and 

(3.82) 


where 

1 T
Fak-1 + QkGk(zk-P:k-1) 

~ 1
[~kr (Yk- Gk(zk-P:k-1)Fak-d (3.83) 

Ql- QlGk(zk-P:k-1f[~kt 1 Gk(zk-P:k-d Ql (3.84) 

and ~k = Gk(zk-P:k-1) Q1Gk(zk-P:k-1f + Q~ + Rk. The OlD exploits the current 

measurement Yk in the proposal of new particles (zk, ak)- Thus, it is expected to 

boost the efficiency of the Bootstrap PF. 

For the case of the MKF, ak plays the role of x l, and zk the role of x ~ as described 

in Section 3.2. In fact, conditional on z1:k, (3.73) and (3.74) form a LG system in 
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Figure 3.7: True and Estimated zk using MKF 

ak, for which the KF is the optimal estimator. Thus, as discussed in Section 3.2, 

we estimate ak via the KF, and track zk with the PF. For the PF, we choose the 

marginalized prior p(zkizk-d as the importance function. 

In this experiment, each PF is implemented with NP = 50 particles. Figures 3.6 

and 3.7 show results that are typical of the MKF. The MKF provides good perfor

mance. Although there is a fair amount of uncertainty (large CI) about the precise 

value of ak, it can be seen that the MKF tracks ak reasonably well. Similarly, for the 

AR process zk. 

For the MSE calculations, we ran each filter on the same realizations of data, 

and repeated the experiment M = 200 times1 . Notice that we have also computed 

the PCRLB (see Appendix D). As shown in Figure 3.8, the MKF outperforms all 

the considered algorithms. With the exception of the Bootstrap PF using the OlD 

p(zk, akizk-P:k-1, ak-1, Yk) for its importance function, no other filter offers compara

ble performance. Indeed, for the chosen number of particles, the "basic" Bootstrap 

filter performs poorly. Although it is possible improve performance by increasing the 

number of particles Np, the cost of increased computational complexity may result in 

1The MSE calculations are based only on stable realizations of the TVAR model. 
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Figure 3.8: Mean Square Error curves for TVAR model 

a prohibitively expensive filter. 

Thus, in designing a efficient PF, it would seem crit ical to exploit t he most recent 

measurement Yk , or if possible , exploit the linear sub-structure of the given DSSM. 

Arguably, in most scenario 's, the computational cost of using the OlD or the MKF 

will be more then offset by the reduction in the number of particles required to achieve 

a certain level of performance [ 6]. 



Chapter 4 

The Approximate Conditional 

Mean Particle filter 

In this chapter, we introduce a novel particle filter known as the approximate condi

tional mean particle filter (ACM-PF). As the name suggests, the ACM-PF is a merger 

between the ACM filter and the PF. To begin, we motivate the proposed algorithm. 

Subsequently, we provide a derivation of the proposed algorithm. Finally, to validate 

the algorithm, we apply the ACM-PF to a time-varying autoregressive (TVAR) model 

that is driven by impulsive noise, and mixture Gaussian noise. 

4.1 ACM-PF 

The considered DSSM is identical to that which was considered in Section 3.3. For 

convenience, we reproduce the considered dynamic state space model (DSSM). That 

is, let Xk = [x~T, xFJT, and assume that (2.42)-(2.43) may be written in the form of 

51 
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a partially observed non-Gaussian system: 

F 1(xLn:k-1) + A1(xLn:k-1)xL1 + Wk (4.1) 

F 2 (xLn:k-1) + A 2(xLn:k-1)Xk + w% (4.2) 

H(x%) + ek (4.3) 

where xl E 1Rn1 , x~ E 1Rn2 are the unobserved processes and Yk E ]Rny is the 

noisy observation. Again, F\), A\), F 2 (·), A2
(·), and H(·) are known func

tions with proper dimensions. The process noise wl, and measurement noise ek 

are assumed to be mutually independent zero-mean Gaussian white noise sequences, 

1wl "'N(wl; 0, Qk) and ek "'N(ek; O,Rk) . The process noise driving (4.2) is 

assumed to be a white noise sequence that is distributed according to aN component 

Gaussian Mixture Model (GMM): 

N 

p(w%) = LP)N(w%;wk2,(j),Q~,(j)) (4.4) 
j=1 

where '2:.~ pj = 1. As before, the initial states are assumed to be mutually in1 
dependent zero-mean Gaussian random variables, x6 "' N(x6; x6, P~) and x6 "' 

N(x6; x~, P~). The considered DSSM (4.1)-(4.3) is a special case of (2.42)-(2.43). 

Thus, it is amenable to an application of a "standard" PF such as the Bootstrap PF. 

Typically, to maintain a certain level of performance, it is necessary to increase the 

number of particles NP as the dimensionality of the state vector increases. Thus, for 

complex problems with a large number of state components (i.e. large dimension), it 

is necessary to boost the efficiency of the standard PF to achieve an acceptable level 

of performance. Indeed, as shown in Section 3.4.2, it is beneficial to exploit the ob

servation (i.e. OlD), the structure of the DSSM (i.e. EMKF), or both to improve the 

1Actually, the measurement noise ek can be arbitrarily distributed so long as the pdf of ek is 
known. However, for clarity of presentation, we restrict our analysis to the aforementioned Gaussian 
distributed measurement noise. 

http:2.42)-(2.43
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efficiency of the PF. For this particular DSSM, it is very difficult to derive the exact 

OlD, if not impossible. Recall, to exploit the structure of the DSSM (i.e EMKF), we 

introduce a indicator random variable h E IN = { n In = 1, ... ,N} that satisfies 

.f 2 N( 2.- 2,(1) Q2,(1l)
1 wk rv wk, wk ' k 

"f 2 N( 2.- 2,(N) Q2,(N))
1 wk rv wk, wk ' k 

where p(h = 1) = Pl, ... , p(h = N) = PN· Indeed, we can note that (4.1)-(4.2) 

conditional on xi:k and I 1:k form a LG system in x~ for which the Kalman filter (KF) 

is the optimal estimator. As such, we can use the optimal KF to obtain the Gaussian 

PDF p(x~lxi:k, Il:k), and apply the PF to approximate p(xi:k' Il:kl Yl:k), i.e., 

(4.5) 

Kalman filter Particle filter 

Note that we are applying the optimal KF to the conditionally linear states xk, and 

using the PF for the truly nonlinear states {xi:k, Il:k}· Thus, we require a reduced 

number of particles to achieve a certain level of performance. Yet, it may be possible 

to further increase efficiency. Indeed, for particle filtering, it is advantageous to 

reduce the dimensionality of the space in which we draw samples from. Thus, for 

the considered DSSM, we endeavor to design a novel PF that exploits the structure 

of the considered DSSM while dispensing with the need to introduce an Indicator 

random variable Ik. The advantages are clear. By eliminating the need to introduce 

the Indicator random variable, the task of using a PF to approximate p(xi:k, Il:kiYl:k) 

is reduced to one of approximating a lower dimensional PDF p(xi:kiYl:k). Intuitively, 

we require a reduced number of particles to achieve a certain level of performance. 

Therefore, it is of interest to develop these aforementioned ideas, and in the sequel 

we proceed with the derivation of the ACM-PF. 
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To begin, we write p(xi,k, x~IY 1 :k) as 

p(xllxi:k' Y1:k)p(xi,kiY1:k) (4.6) 

p(xllxi:k)p(xi:kl Yl:k) · (4.7) 

As mentioned before, we aim to exploit the linear substructure of the considered 

DSSM. Thus, we only use the PF to approximate p(xi,kiYl:k)· Hence, if we draw NP 

samples of x% from q(x%1xi:k-1, Yk), that is x~,(i) ,....., q(x%1xit~ , Yk) fori= 1, ... , NP1 
and update the importance weights Wki) as 

I 2,(i)) ( 2,(i) I 2,(i) )
(i) P(Yk xk P xk xl:k-1 (i) (4.8)wk ex 2,(i) 2,(i) wk-1• 

q(xk lx1:k-1• Yk) 

we obtain for a PF approximation of p(xi:kiYl:k): 

Nv 

p(xi:kiYl:k) = 	 L Wki)c5(xi:k- xi;~i)) (4.9) 
i=1 

where Wki) = [L::f~ w~l]- 1 wki). Moreover, if we proceed as in Section 3.2, it follows1 
that the estimates of interest satisfy 

(4.10) 
i=1 

- [ 1] _ 	~ -(i) (p1,(i) ( 1,(i) iE [ 1])( 1,(i) iE [ 1])r)
covp(xiiYl:k) xk - {;;:_ wk klk + xklk - p(x~IYl:k) xk xklk - p(x~IYl:k) xk 

(4.11) 

(4.12) 
i=1 

(4.13) 

1,(i) - lE 	 [ 1] d p1,(i) - [ 1] . th d .where xklk -	 ( 11 2,(i)) xk an klk - cov ( 11 2,(i)) xk 1s e mean an covan-
P "'k "'1:k 	 P "'k "'1:k 

ance of x~ conditioned on xi;kil, respectively. As in the case of the EMKF, we aim 
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to compute x~~~) and P~~~) analytically. Recall for the EMKF, the former are com

puted via the KF. However, in [53] it is shown that p(x~lxi;~i)) is a GMM such that 

the number of mixands increases exponentially with k. Hence, x~~~i) and P~~~) are 

obtained through a growing symphony of KF's, each corresponding to one mixand of 

p(x~lxi;~i)). For practical applications, it is infeasible to sequentially in time compute 

x~~~) and P~~~) for all time indexes k. Thus, with the aim of designing a computa

tionally attractive algorithm, we follow [37] and adopt the M asreliez approximation 

as discussed in Section 2.2.2, i.e., 

(4.14) 

Under this assumption, we can derive an ACM filter [62, 45] for x~. In [37], it is shown 

that for a linear DSSM with non-Gaussian observation noise distributed in accordance 

to a GMM, the ACM filter yields near optimal performance. In particular, conditional 

on xi,k, (4.1 )-( 4.2) forms such a model, that is, a linear substructure with non

Gaussian observation noise distributed in accordance to a GMM. Thus, we propose to 

merge the ACM filter, and the standard PF into a hybrid algorithm called the ACM

PF. Notice, for the conditionally linear substructure given by (4.1)-(4.2), x~ plays 

the role of the observation. Therefore, as discussed in Section 2.2.2 on ACM filtering, 

t . t f 1,(i) lE [ 1] d p1,(i) [ 1]t xklk = ( 1 2,(i)) xk an klk = cov ( 1 2,(i)) xkwe can compu e an es 1ma eo 
p "'k 1"'1,k p "'k 1"'1,k 

according to 

where 

~ 1,(i) F1( 2,(i) )+A1( 2,(i) )~1,(i) (4.17)xklk-1 Xk-n:k-1 xk-n:k-1 xk-1lk-1 

p1,(i) 1( 2,(i) )P~1,(i) A1( 2,(i) )T Q1A (4.18)klk-1 xk-n:k-1 k-1lk-1 xk-n:k-1 + k-1 
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and 

2,(i))
9k ( xk (4.19) 

(4.20) 

. t 't h ld b d t d th t ~ l,(i) p~ l,(i) 1 l,(i) pl,(i) . (4 10)At thIS
. pom , 1 s ou e un ers oo a xklk , klk rep aces xklk , klk m . , 

( 4.11), respectively. Moreover, although 

~ l,(i) l,(i) lE [ 1]
xklk ~ xklk = ( 11 2,(i)) xk ( 4.21) 

P xk x1:k 

pl,(i) pl,(i) [ 1]
klk ~ klk = cov ( 11 2,(i)) xk (4.22)

P xk x1:k 

~ l,(i) l,(i) -JE [ 1]
xklk-I ~ xklk-I - ( 11 2,(i) l xk ( 4.23) 

P xk x1:k-1 

pl,(i) pl,(i) - [ 1]
klk-1 ~ klk-I - cov ( 11 2,(i) ) xk , (4.24)

P xk x1:k-1 

1 (i) ~ l,(i) ~ l,(i) ~ l,(i) l,(i)
in the sequel, we will abuse notation and write xkik , Pklk , xklk-l' Pklk-I as xklk , 

P l,(i) l,(i) pl,(i) t' 1 
klk , xklk-1' klk-1' respec lve y. 

Now, to complete the derivation of the ACM-PF, we will obtain each of the com

ponent PDF's found in the weight recursion given by ( 4.8). Clearly, by virtue of ( 4.3) 

and the statistics of ek, the likelihood p(yklx~'(i)) is given by 

(4.25) 

However, unlike the likelihood p(yklx~'(i)), the marginalized prior p(x~lxi,k_ ) is a 1 
GMM such that the number ofmixands increases exponentially with k [53]. Therefore, 

to limit computational complexity, we again make use of the Masreliez approxima

tion, and thus, derive a finite dimensional approximation of p(x~lxi,k_ 1 ), that is (see 

Appendix E for derivation) 

N 
""' N( 2. 2,(jJ 8 2,(j) ) (4.26)~Pj xk, xklk-1' klk-I 
j=l 
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where 

x2,(j) - 2,(j) p2 ( 2 ) A2 ( 2 ) 1 
klk-1 wk + xk-n:k-1 + xk-n:k-1 xklk-1 ( 4.27) 

s2,(j) A 2( 2 )P1 A2( 2 )T Q2,(j) 
klk-1 xk-n:k-1 klk-1 xk-n:k-1 + k . (4.28) 

For the importance function q(xklxi:k-1, Yk), we have numerous candidates, but usual 

choices are to either select the marginalized prior density p(xklxi:k-1), or the OlD 

p(xklxi:k-1 , Yk)· The marginalized prior density is readily given by (4.26), and the 

OlD for (4.1)-(4.3) in its most general form is analytically intractable. However, if 

H k ( xk) is a linear function of Xk, that is 

(4.29) 


it is possible to derive a finite dimensional approximation of the OlD p(xklxi:k-1 , Yk). 

In particular, again making use of the M asreliez approximation, it can be shown that 

(see Appendix F for derivation) 

N 
"'- N( 2. A2,(j) PA2,(j))
~PJ xk,xk , k ( 4.30) 
j=1 

where 

N( · H 2,(J) HS2'U) HT R )
PJ Yk, xklk-1' klk-1 + k 

(4.31)""N N( H 2,(n) HS2,(n) HT R )
wn=1 Pn Yk; xklk-1' klk-1 + k 

x 2'(Jl + W(J) (y - H x2'Ul ) (4.32)klk-1 k k klk-1 

S 2'(j) - w(j) H S 2 '(j) (4.33)klk-1 k klk-1 

and w(j) = S 2'(j) HT(H S 2'(j) HT + R )-1 Recall that x 2'(j) S 2'(j) are com
k klk-1 klk-1 k . klk-1' klk-1 

puted by (4.27), (4.28), respectively. The suboptimal importance function (4.30) 

exploits the information in the most recent observation Yk· Thus it incorporates ad

ditional information into the proposal of new particles x~,(i), and thereby, improves 

the efficiency of the ACM-PF. The algorithm for the ACM-PF is summarized as 

follows: 
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ACM-PF 


1. 	 Initialization: For i = 1, ... , NP, we initialize the particles, x~,(i) '"" p(x6), 
A1,(i) 1 	 p1,(i) PA1 d (i) 1 

xOIO = Xo, OIO = o an set Wo = Np. 

2,(i) x1,(i)N 	 t' l F . 1 N set - 2,(i)2. 	 ew par lC es: or z = , ... , P> xk-n:k- 1 xk-n:k-1> k-llk-1 

1,(i) - 1,(i) - 1,(i) 
xk-1lk-l' Pk-1lk-1 - P k-llk-1' 

-2,(i) ( 21-2,(i) )(a) P roposals: Draw xk '"" q xk xl:k-1, Y 1:k . 


-1,(i) -1,(i) . ( ) ( )

()b 	 ACM prediction: Compute xklk- 1 , Pklk-1 usmg 4.17, and 4.18, respec

tively. 

(c) ACM update: Compute x~~~l, P~iki) using (4.15), and (4.16), respectively. 

3. Calculate Importance Weights: For i = 1, ... , NP, evaluate the importance 

weights up to a normalizing constant 

-2,(i)) A( -2,(i) ~-2,(i) ) 
(i) (i) P( Yk lxk P xk xl:k-1 w ex 	 w 
k k-1 (-2,(i)l-2,(i) ) 

q xk x1:k-1> Y1:k 

and normalize importance weights. 

4. 	 Dynamic Resampling: 

If Neff < Nrh, 

1 	 { -2,(i) }Np {-1,(i)}Nv {P-1,(i)}Np t · t · ht• 	 Resamp e xk-n+l:k i=1, xklk i=1, klk i=l w.r. 1mpor ance we1g s 
. { 2,(i) }Np { l,(i)}NP {Pl,(i)}Np d t (i) _ 1 f · _ t 	 bto o am x k-n+l:k i=1' x klk i=1' klk i=1 an se wk - Np or z 

1, ... ,Np. 

otherwise 

-2,(i) 2,(i) -1,(i) 1,(i) d p-1,(i) p1,(i) l' . NS 	 1• 	 et xk-n+1:k = Xk-n+1:k> xklk = xklk 'an klk = klk 10r z = '· · ·' p· 



D. Yee M.A.Sc thesis - Electrical & Computer Engineering, McMaster 59 

5. 	 Estimates: Compute Ep(xliYl:kl[xlJ, covp(xliYu)[xlJ, Ep(x~IYu)[x%], and covp(x~IY!:kl[x%] 
using (4.10), (4.11), (4.12), and (4.13), respectively. 

6. 	 Reiterate: Set k = k+1, and go back to step 2. 

Remark 3. Recall that the ACM filter (i.e. (4.15) to (4.18)) reduces to the KF when 

w% is Gaussian distributed. Hence, it can be seen that the ACM-PF is equivalent 

to the EMKF if w% "' N(w%; f..L, ~) where f..L and ~ are the mean and covariance, 

respectively. 

4.2 Simulations: Non-Gaussian TVAR model 

It is a well known fact that many random processes of interest can be successfully 

modelled by AR models that are driven by Gaussian distributed noise (see [27] for 

a detailed treatment). Unfortunately, for some phenomena, this approach may not 

be entirely appropriate. For instance, in seismology and underwater acoustics, we 

often find large impulses/spikes in the observed signal (see [51] and the references 

within). In such scenarios, a Gaussian PDF with its sharp roll off cannot adequately 

model these impulses. Therefore, it is of interest to consider driving noises that 

are distributed according to non-Gaussian distributions. Moreover, we may aim to 

model non-stationarities. Therefore, we consider a TVAR model that is driven by 

non-Gaussian noise [11], in particular, driving noise that is distributed according to 

aGMM. 

Now, we present the considered DSSM. In fact, the following DSSM is almost 

identical to that which was considered in Section 3.4.2. That is, 

ak Fak-1 + wl 	 ( 4.34) 

Zk Gk(zk-P:k-dak + w~ 	 ( 4.35) 

Yk Zk + ek, k = 1, .. . , n 	 ( 4.36) 
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where F = f31PxP, ak = [a,L ... , afjT are the AR coefficients, Zk is the AR process, 

Gk(Zk-P:k-1) = [zk-1 ... Zk-P], wl ,....., N( wk; 0, Qk) is the process noise, and ek ,....., 

N(ek; 0, Rk) is the measurement noise. However, unlike the TVAR model that was 

considered in Section 3.4.2, we consider driving noise w~ that is distributed according 

to 

N 

p(wD "P N(w2• Tif,U) Q2'Ul) ( 4.37) ~ J kl k ' k 
j=1 

where L.f=1 p1 = 1. Here, we choose Qk = (0.01)2/pxp, and Rk = 1. The elements 

of a 0 and z0,p_1 are each distributed in accordance to a Gaussian distribution with 

mean 0, and variance 0.5. As before, we consider a fourth order TVAR model (P = 4) 

with known coefficient f3 = 0.995. It should be noted that the considered DSSM is a 

special case of ( 4.1 )-( 4.3). That is, ak plays the role of x,L and Zk the role of x~ in 

(4.1)-(4.3). 

The implemented algorithms are the EMKF, the ACM-PF, the Bootstrap PF as 

described in Sections 3.3, 4.1, and 2.2.4.7, respectively. For the Bootstrap PF, we 

implemented two schemes that are discussed as follows. The first scheme employs the 

prior importance function p(zk, aklzk-P:k-1, ak_1), and the second scheme uses the 

OlD for its importance function (derivation is similar to that which was presented in 

Appendix C): 

In the above 

N 

p(zklzk-P:k-1, ak, Yk) ex: LPJN(yk; e~)' Q~,(j) + Rk)N(zk; Zkj)' p~j)) (4.39) 
j=1 
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where 
Q2,(j) 

(}(j) + k (y - (}(j)) ( 4.40) 
k (Q~,(J) + Rk) k k 

jh) __!_ + _1)-1
k ( 4.41) ( Rk Q~,(J) 

(}(j) -2,(j)G ( ) ( 4.42) k k Zk-P:k-1 ak + wk 

and 
N 

p(aklak-1, Yk) ex LPJN(yk; ¢~)) fj~))N(ak; a~'),~~)) (4.43) 
j=1 

where 

-2,(j)¢~) G ( )F (4.44)k Zk-P:k-1 ak-1 + wk 

f_(j) 
k Gk(zk-P:k-1)Q~Gk(zk-P:k-1f + Q~,(j) + Rk ( 4.45) 

A 

ak
(j) Fak-1 + wUl(yk- ¢~)) (4.46) 

~(j) 1 ( ') 1 
k Qk- w J Gk(Zk-P:k-1) Qk ( 4.47) 

and w(j) = Q~Gk(Zk-P:k-1)T[f:~)]- 1 . The importance function in (4.38) exploits 

the current measurement y k in the proposal of new particles. Thus, it increases the 

efficiency of the Bootstrap PF. 

Both the EMKF and the ACM-PF used the prior distribution for the importance 

function. However, in designing an efficient PF, it may be prudent to exploit both 

the observation Yk and the structure of the DSSM; therefore, we also implemented 

a ACM-PF and an EMKF that uses ( 4.30) and the OlD (3.60) for the importance 

function, respectively. 

We conducted two experiments, each with n = 250 observations. As usual, we 

adopt the MSE criterion to gauge the performance of each algorithm. In particular, 

we consider two such metrics. The first is the MSE at the k-th time step defined as 
M 

MSEk = ~ ~ (11a~- a~ 1 kll~ +liz~- z~ 1kll~) (4.48) 
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where II · 11 2 is the Euclidean norm, a~lk and z1 k is an estimate of ai and z1 for the 
1 

i-th Monte Carlo simulation. The second is the average MSE that is computed by 

(4.49) 

Note, in calculating ( 4.48) and hence ( 4.49), we ran each filter on the same realizations 

of data and repeated the experiment M = 200 times. 

4.2.1 TVAR model driven by GMM nmse 

For the first experiment, the driving noise w~ is distributed according to 

where E = 0.8. Figure 4.1 shows the average MSE for NP = 10, 50,100 and 200 

particles. 

Bootstrap PF 

For Np = 10, the Bootstrap PF performs poorly. As expected, we improve perfor

mance as we increase the number of particles NP. Alternatively, we may increase 

the efficiency of the Bootstrap PF via the OlD given by (4.38). As shown in Figure 

4.1(b), the Bootstrap filter using the OlD, yields much improved performance over 

the Bootstrap filter using the prior as the importance function. Indeed, by virtue of a 

more sophisticated importance function, we take advantage of the recent observation, 

and hence improve the efficiency of the Bootstrap PF. 

EMKF 

The EMKF yields much improved performance over the Bootstrap PF. As expected, 

the use of the OlD (3.60) also improves performance. 
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Figure 4.1: Average MSE curves 

ACM-PF 

The ACM-PF performs better than the EMKF. As compared to the Bootstrap PF, 

the ACM-PF yields much improved performance. For example, as shown in Figure 

4.1(b), the ACM-PF merely uses 10 particles to attain a MSE of 0.7, while in the 

case of the Bootstrap PF, we require 200 particle to achieve a comparable level of 

performance, a twenty-fold increase in NP . Furthermore, notice that for NP ~ 50, 

a more sophisticated importance function ( 4.30) does not significantly improve the 
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Figure 4.2: True and estimated trajectory of ak via ACM-PF with NP = 50 particles 
and the prior for the importance function. 

performance of the ACM-PF. We observe similar trends for the case of the EMKF. 

Thus, it seems sufficient to simply choose the computationally attractive prior 

(4.26) for the importance distribution. Indeed, the computational requirements for 

a more sophisticated importance function ( 4.30) are considerable , so any subsequent 

improvement should be significant enough to justify its use. For this particular DSSM, 

it would seem unnecessary to exploit both the observation , and the structure of the 

DSSM . Of course, the appropriate decision will depend on the desired tradeoff between 
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Figure 4.3: True and estimated trajectory of zk via ACM-PF with NP =50 particles 
and the prior for the importance function. 

performance and complexity. 

However, there are scenarios where it is necessary to jointly exploit both the 

observation, and the structure of the DSSM. This is the case for a highly nonlinear 

non-Gaussian dynamical system. In Section 4.2.2, we consider such a scenario. Now, 

consider Figure 4.2 which shows a true and estimated trajectory of ak. Notice that 

after 50 observations, the time variations of ak are closely tracked over time. In fact, 

the ACM-PF is fairly accurate about the precise value of ak (i.e. small confidence 

interval). As shown in Figure 4.3, the AR process Zk is also accurately tracked. 

In general, the ACM-PF (using the prior importance function) demonstrates good 

performance. For the case of the ACM-PF using ( 4.30) for the importance function, 

we observed a modest improvement in performance. As such, we omit these results. 

Now, we investigate the acquisition time for each filter. To this end, we use 

(4.48) to compute the MSE at each time step. Note, as shown in Figure 4.4, the 

resulting MSE curves are a function of time. Of the considered algorithms, the ACM

PF yielded the shortest acquisition time, and the smallest steady state MSE. Thus, 

for this experiment, the ACM-PF offers the best performance. However, one must be 

careful in making any general conclusions. Indeed, for the majority of the simulations, 
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Figure 4.4: MSE curves 

the EMKF and the ACM-PF yield comparable steady state MSE, as shown in Figure 

4.4. Thus, the performance differences between the ACM-PF and the EMKF can be 

largely attributed to t he apparently large acquisition t ime of the EMKF. 
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4.2.2 TVAR model driven by impulsive noise 

For the second experiment, the TVAR model is driven by impulsive noise. To model 

impulsive noise, we follow [1, 61, 66], and assume that w~ has a two-term GMM 

distribution that is in the form of 

(4.50) 

where 0 ::; t: < 1 and a§ » ai. In the preceding equation, we choose t: = 0.1, 

ai = 1, and a§= 100. Note that N(w~; 0, ai) corresponds to the PDF of the nominal 

background noise and that N(wz; 0, a§) corresponds to the PDF of the impulsive noise 

component with t: representing the probability that an impulse will occur. Again, 

we compute the average MSE for the considered experiment. Figure 4.5 shows the 

average MSE for NP = 10, 50, 100 and 200 particles. 

Bootstrap PF 

Like the previous experiment, for a small number of particles, the Bootstrap PF 

performs poorly. As expected, the performance of the filter increases as the number 

of particles NP increases. However, if we are to increase the efficiency of the Bootstrap 

PF, it is clear that we should use the OlD (4.38) for the importance function. 

EMKF 

As shown in Figure 4.5(a), the EMKF significantly outperforms the Bootstrap PF. 

Of particular interest, is that the use of the OlD (3.60) drastically improves the 

performance of the EMKF. 
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Figure 4.5: Average MSE curves 

ACM-PF 

In Figure 4.5(b) , t he ACM-PF merely uses 10 particles to yield a MSE of 0.8, while 

in the case of t he Bootstrap PF, we use at least 100 particles to achieve a similar 

level of performance, a ten-fold increase in NP. As compared to the EMKF, the 

ACM-PF shows marginally improved performance. Of particular interest , is that the 
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Figure 4.6: True and estimated trajectory of xk via ACM-PF with NP =50 particles 
and the prior for the importance function. 

use of a more sophisticated importance function ( 4.30) also drastically improves the 

performance of the ACM-PF. 

Now, we present some simulations that are typical of the ACM-PF. As shown 

in Figure 4.6, the ACM-PF (using the prior importance function) tracks ak reason

ably well. Unfortunately, the same cannot be said for the estimated trajectory of 

zk· Indeed, on more than one occasion the ACM-PF actually loses track of zk . For 
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Figure 4.7: True and estimated trajectory of xk via ACM-PF using NP =50 particles 
and a more sophisticated importance function. 

instance, around k = 60 and k = 70, the estimated impulse does not even remotely 

coincide with the true impulse. Evidently, for this particular DSSM, there is consid

erable motivation to employ a more sophisticated importance function. Indeed, as 

shown in Figure 4.7, if the ACM-PF uses (4.30) as its importance function, we obtain 

much improved performance. In fact, for this choice of the importance function, the 

ACM-PF accurately tracks both the AR coefficients ak and the AR process zk. Of 
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Figure 4.8: MSE curves 

particular significance is that the estimated trajectory of zk closely matches the true 

trajectory of zk. Indeed, a more sophisticated importance function (4.30) uses the 

most recent observation to propose new particles. Thus, it improves the efficiency of 

the ACM-PF. For the EMKF, we observed similar trends in performance. 

Now, we investigate the acquisition time of each filter. As before, we use ( 4.48) 

to compute the MSE at each time step. The results are shown in Figure 4.8 . As 
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shown in Figure 4.8(a), the obtained performance is rather poor if each filter uses the 

simple prior distribution for its importance function. However, if each filter uses a 

more sophisticated importance function, it can be seen that each filter shows much 

improved performance. The latter is shown in Figure 4.8(b). Notice that, the ACM

PF performs the best amongst the considered algorithms. Thus, by incorporating the 

measurement Yk, or in the other words, the observation of an impulse into the proposal 

of new particles, the PF generates particles in the space of the true zk, and thereby 

improves performance. Apparently, for the considered TVAR model, it is necessary 

to exploit both the measurement and the structure of DSSM in the designing of an 

efficient PF. This is contrary to the previous experiment in which we only needed to 

exploit one of the aforementioned techniques. 

4.3 Conclusion 

In this chapter, we have proposed a novel filter for a class of partially observed non

Gaussian DSSM's. The proposed method is a efficient combination of the ACM filter 

and the particle filter. The considered DSSM consists of a combination of linear and 

nonlinear states, and a non-Gaussian state evolution noise. Results show that the 

ACM-PF outperforms the Bootstrap PF, and the EMKF. 



Chapter 5 

Channel Equalization and Phase 

Noise Suppression in OFDM 

Systems Using Particle Filtering 

In this chapter, we apply the PF to the problem of channel equalization and phase 

noise suppression in orthogonal frequency division multiplexing (OFDM) systems. 

First, we review OFDM, and introduce the problem of channel equalization and phase 

noise suppression for OFDM systems. Then, we introduce the baseband OFDM 

system, and develop the required dynamic state space model (DSSM). Subsequently, 

we present a derivation of the proposed particle filtering algorithm. Finally, we present 

some simulation results that illustrates the effectiveness of the proposed algorithm. 

73 
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5.1 Introduction 

A frequency-selective channel introduces intersymbol interference (lSI). That is, a 

symbol experiences interference from other symbols that have been delayed by mul

tipath. Generally, there is severe lSI if the channel delay spread1 Tm is greater than 

the symbol time Ts, i.e. Tm > T 8 • Conversely, when Tm « Ts there is insignifi

cant lSI. Note that in most wideband applications, the latter condition cannot be 

satisfied, that is, there is severe lSI. Thus, it is of interest to eliminate or minimize 

lSI. Traditionally, complex time domain equalization has been used to counteract 

lSI. Alternatively, we may consider multicarrier modulation as a effective means for 

dealing with lSI [46]. Indeed, in the last few years, there has been increasing interest 

in multicarrier modulation schemes that are robust to lSI; in particular, OFDM. 

The basic idea of OFDM is to divide the high rate data stream into N parallel 

lower rate substreams, each modulating a orthogonal subcarrier that is transmitted 

in parallel to maintain the total desired data rate. In particular, to minimize lSI, 

we must ensure that the symbol time of each lower rate substream T is much larger 

than the delay spread of the channel Tm (i.e. T » Tm)· For OFDM, T = NT8 

where Ts is the symbol time of the high rate data stream. Therefore, in practise, 

we set N » 1 so that T » Tm· Consequently, each lower rate substream will not 

experience significant lSI, or in other words, each lower rate substream undergoes fiat 

fading which in practice is relatively simple to equalize. In fact, if we introduce a 

cyclic prefix (CP) with proper duration, ISI can be completely removed. In practice, 

we use efficient FFT/IFFT hardware to implement OFDM. Thus, it can be seen 

that OFDM offers considerable robustness against multipath fading, and is low in 

complexity. Indeed, many applications have adopted OFDM, and some include the 

digital audio broadcasting (DAB), digital video broadcasting (DVB) standards, the 

1The channel delay spread is the time difference between the first and last component of the 
impulse response of the channel. 
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wireless LAN standards, such as IEEE 802.11a, and HiperLAN2. 

However, OFDM systems suffer from some drawbacks as well, and one is the 

increased sensitivity to random phase noise (PN) that is introduced by the local 

oscillator [44]. PN in OFDM systems causes two effects. The first is a random phase 

rotation that is common to all subcarriers, that is appropriately referred to as the 

common phase error (CPE). The second is the introduction of intercarrier interference 

(ICI), resulting from the loss of orthogonality between each subcarrier. Indeed, many 

researchers [9, 44, 42, 56] have studied the effects of PN in OFDM systems. 

Moreover, schemes for PN compensation in OFDM systems, have been proposed 

by several authors. In [41, 64], the chosen approach was to counter rotate the received 

signal constellation, via an estimate of the CPE term. In this chapter, we present a 

pilot tone aided algorithm that jointly equalizes the channel and compensates for the 

CPE in a time-varying frequency selective channel. The algorithm is based on the 

time domain tracking/estimation of the effective dynamic channel, i.e., the combined 

effect of the CPE, and the time-varying frequency selective channel. However, for our 

estimates of interest, the optimal Bayesian estimators (i.e. MMSE, MAP estimates) 

are analytically intractable. Hence, for online estimation of the effective dynamic 

channel, we resort to particle filtering. With the aim of designing an efficient PF, 

we introduce the Auxiliary Mixture Kalman filter (Aux-MKF), and as the name 

suggests, it is a merger between the MKF, and strategies stemming from the APF. A 

derivation of the Aux-MKF is presented in Section 5.4. For now, we will begin with 

a brief review of the baseband OFDM system. 

5.2 OFDM System Model 

In practice, an OFDM system is implemented as shown in Figure 5.1. At the front end 

of the transmitter, an information source sends a stream of high rate serial M-QAM 
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Figure 5.1: Baseband OFDM System 

symbols, each of sample period T8 , to the serial/parallel (S/P) converter. Then, a 

block of N M-QAM symbols is converted to a block of N parallel M-QAM symbols 

where am(i) denotes the M-QAM symbol at the i-th subcarrier of the m-th OFDM 

symbol. We assume that the power of am(i) has been normalized to unity, that is 

After S /P conversion, P pilot tones are inserted into am (i) such that 

i En') { Cpilot ( i)
am ( z = 

information data 

where 0 denotes the set of pilot tone locations. In particular, we choose 0 to satisfy 

[39] 

0 ={iii= kS, with k = 0, ... , P- 1} 

i 17FDM symbol 

7 :b :o 0 0 0 0 0 0 --- e PilotTones
sio!ooooooo--- 0 Data 

""-~ 5 i o io o o o o o o ---4:.:••••••• --13 iolo o o o o o o --
<15 2 i 0 :o 0 0 0 0 0 0 --

1 ioio o o o o o o--
o 1_~1· •••••• --

1 2 3 4 5 6 7 6 

OFDM symbol index 

Figure 5.2: Example Pilot Tone Scheme where S = 4, P = 2 and N = 8. 
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where S = !j is the spacing between each pilot tone. Now, {am (i)} {:(/ are sent to 

the IDFT to produce 
N-1 

sm(k) = ~ L am(i)ei2~ik, k = 0, ... , N- 1 (5.1) 
vN i=O 

Subsequently, a CP of length Ncp is introduced to remove inter-symbol interference 

(lSI). That is we precede {sm(k)}f,:01 by {sm(k)}k"2-Ncp where 

sm( -k) = sm(N- k), k = 1, ... , Ncp 	 (5.2) 

Cyclic Prefix 	 Data 

Figure 5.3: Introduction of Cyclic Prefix to enable removal of lSI 

Then, {sm(k)}f=-!Ncp is sent into the D/A converter at a sample rate of 1/Ts. The 

result is the m-th transmitted OFDM symbol sm(t) which can be written as 

N-1 

Sm(t) = L Sm(k)g(t- kTs) (5.3) 
k=-Ncp 

where g(t) is the impulse response of the transmitter D/A converter. We remark that 

the resulting symbol time of each OFDM symbol is Tt = Tcp +T where Tcp = NcpTs 

and T = NTs is the duration of the CP and the useful (i.e. data) portion of each 

OFDM symbol, respectively. Note, as mentioned before T » Tm. 

In this work, the time varying frequency selective channel is assumed to be quasi

static during one OFDM symbol Tt. Thus, if we use hm(T) to denote the channel for 

the m-th OFDM symbol, and assume that hm(T) is represented by a tapped delay 

model of length L [46], it follows that 

L-1 

hm(T) = 	L hm,l8(T -lTs) (5.4) 
l=O 
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where c5(·) denotes the Dirac delta function, and hm,l denotes the l-th channel tap for 

the m-th OFDM symbol. The additive white noise is denoted as n(t). 

At the receiver, the free-running local oscillator introduces phase noise ¢m(t). 

Therefore, at the output of the A/D converter, the received m-th OFDM symbol 

r m ( t) is described by 

L-1 N-1 

rm(t) = ej<p,.(t) L hm,l L sm(k)p(t -lT8 - kTs) + n(t) (5.5) 
l=O k=-Ncp 

where p( t) = g(t) * f (t) and f (t) is the impulse response of the receiver A/D converter. 

We assume perfect frequency and timing synchronization and that p(t) satisfies the 

Nyquist criterion [46]. Therefore, we can write the i-th received sample of the m-th 

OFDM symbol as 

L-1 

rm(i) = L hm,lsm(i -l)ej</>,.(i) + nm(i), i = - Ncp, ... , N - 1 (5.6) 
l=O 

where ¢m(i) is the i-th sample of the phase noise for the m-th OFDM symbol and 

nm(i) is a zero mean complex Gaussian random variable with variance a;. We make 

the assumption that the entire channel impulse response lies within the CP, i.e., 

Ncp 2: L - 1, then discarding of the CP followed by the DFT of { r m ( i)}~01 yields 

N-1 

+ L am(n)Hm(n)Im(i- n) +Wm(i), i=O, ... ,N-1 (5.7) 
n=O 

noli 


ICI 

where 
L-1 
'""' h _j 2-rrnlL.....t m,le N (5.8) 
l=O 

N-1 

~ L e1<1>m(k)e-12";k (5.9) 
k=O 
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and Wm(i) = DFT{nm(i)}. The multiplicative distortion Im(O) is given by 

N-1 

Im(O) = ~ L eJ<Pm(n). (5.10) 
i=O 

As shown in Section 5.3, it is convenient to approximate Im(O) with [41] 

(5.11) 

where 
N-1

1 
()m = N L ¢m(n). (5.12) 

i=O 

Compared to the scenario of an ideal local oscillator (i.e. no PN) where the 

subcarriers retain their orthogonality, and hence am (i) undergoes fiat fading, i.e., 

i = 0, ... ,N -1 (5.13) 

it can be seen from (5.7) that PN introduces two problems. The first problem is the 

additional phase variation of the desired sample am(i)Hm(i) by the CPE arg {Im(O)}, 

and the second is the ICI, which results from the loss of orthogonality between each 

sub-carrier. Moreover, if we define H:,{f(i) = Hm(i)Im(O) as the effective channel 

response, then it is clear that we must obtain accurate estimates of H:,[f (i) so that 

we may reliably recover am(i). Zero-forcing (ZF) equalization follows after channel 

estimation, and the transmitted symbol am(i) can be estimated by 

A(.) Ym(i)a ~ - i = 0, ... ,N -1 (5.14) 
m  ii:,{f (i)' 

where ii:,{f (i) is the estimate of the effective channel response, H:f f (i). Finally, in 

this work, we make no attempt in correcting for ICI. 

5.3 State Space Model 

Particle filters require a process equation and a observation equation. The aim of 

this section is to develop the required DSSM by exploiting the known statistics of the 
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channel and PN. 

5.3.1 Channel Model 

As mentioned before, the frequency selective Rayleigh fading channel is characterized 

by a tapped-delay model of length L independent taps. However, to fully characterize 

the channel, we need to introduce an appropriate statistical model for each tap. To 

this end, we assume that the channel taps {hm,l }f_:;} are mutually uncorrelated, zero 

mean complex Gaussian random variables. Furthermore, as shown in Figure 5.4, we 

consider the scenario where the transmitter is fixed, the mobile receiver is moving at 

a velocity v, and the transmitted signal is scattered by stationary objects surrounding 

the mobile. 

Figure 5.4: Uniform Scattering Environment 

With these assumptions, the autocorrelation function (ACF) of the l-th channel tap 

r 1(k) satisfies Jakes ACF [24]. That is 

l = 0, ... , L- 1 (5.15) 

where rz(O) denotes the power of the l-th channel tap, 10 (-) is the zeroth-order Bessel 

function of the first kind, Tt as mentioned before is the total OFDM symbol time, 

and fd denotes the maximum Doppler frequency that is related to the mobile velocity 

v by 

(5.16) 
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where fc and c denote the carrier frequency and speed of light, respectively. In 

addition, all L taps of the channel have been normalized such that 
L-1

LIE [lhm,t\2
] = 1. (5.17) 

However, because the ACF is nonrational, the exact modelling of (5.15) via an 

autoregressive moving-average (ARMA) model is impossible. Thus, to obtain a useful 

DSSM, we proceed as in [19] and use a autoregressive (AR) model to approximately 

capture (5.15). To this end, we adopt an AR(2) model that is given by 

l = 0, ... , L-1 (5.18) 

where Vm,l denotes a zero mean complex Gaussian random variable with variance a[. 

To complete the model, we choose coefficients 'Yl and 12 such that the ACF of (5.18) 

closely matches Jakes ACF (5.15). In [63], it is motivated that 

11 -2rcos(27rfdTt/h) 

where r E [0.9, 0.999] is the pole radius of the AR(2) model. Finally, if we appeal to 

the Yule-Walker equations [40] for (5.18), it can be shown that the variance of Vm,l 

satisfies 

l = 0, ... , L-1. 

On the following page, we show a plot of (5.15), and the empirical ACF of (5.18) 

for 50 lags, r = 0.965 and fdTt = 0.035. The latter ACF has been generated with 

20000 samples of the AR(2) model. As shown in Figure 5.5, both ACF's have been 

normalized to one, and that for high lags (i.e. k > 15), the empirical ACF of the 

AR(2) model does not match the Jakes ACF. However, for effective tracking, it is 

usually sufficient to match the ACF's at lower lags [30]. Indeed, the considered AR(2) 

model closely matches Jakes model at lower lags. Therefore, we adopt this model, 

and thus, proceed to design a filter that will successfully track the target. 
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ACF (normalized to one) 

1~----~------~--~====~~~======~

I  AR(2) model 
_ --- Jakes model 

0.5 

0 

Figure 5.5: ACF of Jakes Model and AR(2) model 

5.3.2 Phase Noise Model 

The power spectrum of the noisy carrier c(t) = eJcl>m(t) in (5.5) is shown to be Lorenzian 

[44, 57, 9]: 

s (!)- 2._ 1 
c  1TB [1 + (-¥)2J 

where B denotes the two-sided 3 dB bandwidth of Sc(f). 

As discussed in Section 5.2, the discrete time Wiener PN ¢m(n) denotes the n-th 

sample of the PN for the m-th OFDM symbol. In particular, it can be shown that 

[65] 

n 

¢m(n) = ¢m-l(N- 1) + L u[m(N + Ncp) + i] (5.19) 
i=-Ncp 

where the u(i)'s denote mutually independent zero mean Gaussian random variables 

with variance a! = 21rBT. = 21rBTjN. We remark that for a fixed T, system 

performance decreases as BT increases. 

Equation (5.12) together with (5.19) result in the desired CPE process equation, 

that is [41] 

(5.20) 

where Wn is a zero mean Gaussian random variable with variance a~pe = ( 2~~+l + Ncp) a!. 
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5.3.3 Observation Model 

Our starting point is (5.7). At known pilot tone locations, the least squares (LS) 

estimate of the effective channel response H:,{ f (n) is 

if:f! (n) = Ym(n) , n E S1 (5.21) 
Cpilot(n) 

Stacking {H:,{f(n)}nEn into a P x 1 vector HiJ results in 

(5.22) 


where hm = [hm,o, ... , hm,L-1]T is a vector of channel taps, I m is a vector of ICI 

quantities, Zm is an AWGN vector, and V is the following Vandermonde DFT Ma

trix: 

1 1 1 1 

v 1 wsN 
WS(L-1)

N 

1 w(P-1)s
N 

W(P-1)8(£-1)
N 

where WN = e-j
21r/N. Assuming P = L, the Vandermonde matrix is non-singular 

and is hence invertible. Therefore, a noisy estimate of Im(O)hm is given by 

(5.23) 


Equation (5.23) provides a coarse estimate of Im(O)hm, and thus, can be seen as an 

observation equation in our DSSM. 

5.3.4 Dynamic State Space Model 

Use of (5.18), (5.20), and (5.23), leads to the considered DSSM: 

(5.24) 

(5.25) 

(5.26)Ym 
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where Xm = [h~ h~_ 1f E C2Lxl. The matrices F E JR2Lx 2L, c E JR2Lxl, and 

G(Om) E cLx 2L have the form of 

c = [lLxl] ' 
OLxl 

where I LxL and 0LxL denote the L x L identity and the L x L zero matrix respectively. 

We remark that in place of Im(O), we have substituted the convenient approximation 

Im(O) ~ lm(O) = ei0
m. In addition, Vm denotes a L x 1 vector of white zero mean 

Gaussian noise with covariance matrix Qm = E[vmv~]=diag(a5, ... ,aL1), whereas 

im and Zm denote vectors of transformed rcr and noise components respectively. We 

make the assumptions in [64], so that for N ~ 1 the elements of i m approximately 

follow a zero mean complex Gaussian distribution with variance a] = 211" BTj3P. 

Furthermore, it can be shown that the elements of Zm follow a zero mean complex 

Gaussian distribution with variance a~ = a';.jP. Thus, if we conveniently denote the 

combined effect of i m, and Zm by em, that is em = i m + Zm· The PDF of the 

effective measurement noise em is given by 

(5.27) . 

where Rm =(a]+ a~)lpxp· 

Our main objective is to obtain an approximate minimum mean square error 

(MMSE) estimate of {Im(O)hm,t}f~1 , that is 

Ep(Om,hmiYl:m)[Jm(O)hm] = J J Jm(O)hmp(Om, hml Y l:m)d()mdhm (5.28) 

Unfortunately, the posterior PDF p(Om, hml Y l:m) is analytically intractable. Thus, 

we propose to numerically approximate p(Om, hml Y l:m) via particle filtering, so that 

we may ultimately compute Ep(Om,hmiYl:m)[lm(O)hmJ, and thus the effective chan~el 

response 

(5.29) 
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in (5.14). 

Finally, we point out that the observation Y m is linear in Xm, whereas G (Om) is 

nonlinear in Om by virtue of lm(O). This form motivates the development of a MKF 

type PF which is further discussed below. 

5.4 Auxiliary Mixture Kalman Filter 

For this particular DSSM, it is possible to design a MKF that yields estimates with 

lower variances. The idea as described in Section 3.2 is to exploit the inherent linear 

sub-structure of our given DSSM. Indeed, if we write the joint posterior distribution 

p(xm, Ol:ml y l:m) as 

(5.30) 

it is clear that we can obtain the Gaussian PDF p(xmiOt:m, Y l:m), via a Kalman filter 

(KF), and that we can approximate the marginal posterior distribution p(Ot:ml Y l:m) 

with a PF. Now, at time m, assume for an estimate of p(Ot:ml Y l:m) we have 

p(Ol:ml y l:m) = L
Np 

w~8(01:m- of~~). (5.31) 
i=l 

By substituting (5.31) into (5.30), we obtain 

Np 

p(xm, Ol:ml y l:m) = L w~p(xmiOf~~. y l:m)&(Ol:m- of~~). (5.32) 
i=l 

Therefore, after marginalizing out 01:m-t, we obtain for an estimate of p(xm, Om IY l:m): 

p(xm, Om Iy l:m) = L
Np 

w~p(xmiOf~~. y l:m)&(Om- Of:/) (5.33) 
i=l 

where the i-th importance weight w~ satisfies 

(i) (i) (i)
(i) (i) P( Y miOl:m• Y l:m-l)p(Om IOm-1) 

wm ex wm-1 (') (') (5.34) 
q(O~ IOl~m-1• Y l:m) 
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Now, we will evaluate p(xmiOi~~' Y 1:m) and p( Y miOi~~' Y 1:m-1) in (5.33) and (5.34), 

respectively. The PDF 

(5.35) 

in (5.33) is a complex Gaussian PDF with mean x~lm = E[xmiOi~~, Y 1:mJ, and 

covariance P~m = cov[xmiOi~~, Y1:m]· Similarly, the PDF 

(i) (i) (i)
P( Y ml01:m, Y 1:m-d = N'c( Y m; Y mlm-1' Sm) (5.36) 

in (5.34) is a complex Gaussian PDF with mean Y~m-1 = E[YmiOi~~' Y 1:m-1J, 

and covariance S~ = cov[YmiOi~~~ Y 1:m-1]. In fact, the KF efficiently computes the 

PDF's p(xmiO[~~' Y 1:m), and p( Y miOi~~' Y 1:m-1) in (5.33) and (5.34) respectively. 

Thus, for each sample 0~ we compute (5.35) and (5.36) via a KF: 

(i) x(i) + w<i)( y - y(i) ) (5.37)xmlm = mlm-1 m m mlm-1 

p(i) p<i) - w(il s<i) w(i) H 
mlm = mlm-1 m m m (5.38) 

y(i) = G(O(i) Jx(i) (5.39)mlm-1 m mlm-1 

s<il G(O(i) )P(i) G(O(i) )H + R (5.40)m = m mlm-1 m m 

w<i> = p(i) G(e<i)) ( s<i)) -1 (5.41)m mlm-1 m m 

where 

(i) Fx(i)= (5.42)xmlm-1 m-1lm-1 

p(i) pp(i) pH Q T (5.43)mlm-1 m-llm-1 + c me . 

Therefore, it is apparent that a KF is associated with each particle 0~, and that the 

MKF utilizes a bank of KFs to approximate the true joint posterior distribution (see 

(5.33)). 

Moreover, in order to minimize computational complexity, we choose the prior 

p(OmiOm-d as the importance function, that is q((}miOl:m-1, Y l:m) = p((}ml(}m_I). In 
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this case, the importance weights given by (5.34) simplify to 

(i) (i) ( y IO(i) y )wm ex wm-1P m 1:m• 1:m-1 (5.44) 

where p( Y miBi~~' Y 1:m-d is given by (5.36). 

We observe, however, that the prior p(OmiOm-1) is inefficient; it proposes samples 

{0~)}~ without any knowledge of the current observation Y m· Thus, with the aim of 1 
minimizing computational complexity and to incorporate the recent observation into 

the proposal of new particles, we follow a strategy that is inspired by the APF [13]. 

As discussed in Section 3.1, the APF attempts to improve the quality of particles at 

time m, by preselecting (resampling) the particles at time m-1 with probability close 

to p(Om-11Y 1:m)· Thus, we proceed to derive a close approximation of the generally 

intractable p(Om-11Y 1:m)· The following derivation is conceptually similar to that 

which was presented in Section 3.1. Therefore, we only provide a brief derivation of 

p(Om-11 Y1:m)· To begin, we expand p(01:m-1l Y1:m) as 

p(01:m-1l Y 1:m) = Jp(fh:ml Y 1:m)d0m 

ex JP( Y ml01:m, Y 1:m-1)p(Oml0m-1)p(01:m-d Y 1:m-1)d0m (5.45) 

At time m-1, a PF estimate of p(01:m-1lY 1:m-1) is given by 

Np 

P(lh:m-11 Y 1:m-1) =I:: w!r?_18(01:m-1- 0~~~- 1 ). (5.46) 
i=1 

Hence, by substituting (5.46) into (5.45) it follows that 

ex tt~(/ 0 )P(01:m-d Y 1:m) 0p( Y miBm, 01~m-1• Y 1:m-1)p(Bml0n:_1)d0m 

x w!r?_18(01:m-1- ei~~-1) 
Np 

- I::P( Y mi0~~~-1, Y 1:m-1)w!r?_18(01:m-1- 0~~~-1) (5.47) 
i=1 
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The evaluation of 

(5.48) 

in (5.47) is difficult, since p( Y miB1:m, Y 1:m-1) as given by (5.36) depends on Bm via 

a nonlinear measurement function G(Bm)· 

To circumvent this difficulty, we again follow the lead of [43], which under the 

assumption that a~ « 1, suggested that p(BmiBm-1) may be adequately char

acterized by J.Lm, where J.Lm is either a sample or mode of p(BmiBm-d· For PN, 

a~ « 1, i.e., the variance of PN is much less than one [64]. Thus, by assuming 

that p(BmiBm-1) ~&(Om- J.Lm), the predictive likelihood can be approximated by 

P( Y miB~~~- 1 , Y 1:m-d = Jp( Y miBm, B~~~- 1 , Y 1:m-1)8(Bm- J.L~)dBm 
p(YmiBm = J.L~,B~~~- 1 , Y1:m-1)· (5.49) 

If we adopt the approximation given by (5.49), and substitute into (5.47), we 

obtain a proportionality for an approximation of p(B1:m-1l Y 1:m): 

Np 

P(B1:m-d Y1:m) ex: LP(YmiBi~~-1, Y1:m-1)w;:.>_18(B1:m-1- ei~~-1) 
i=1 

Np 

= L ,\~8(B1:m-1 - ei~~-1) (5.50) 
i=1 

where ,\~ = P( Y miBi~~-l, Y l:m-1)w;:.>_1. We note that JP(B1:m-1l Y l:m)dB1:m-1 = 1, 

and therefore 
Np 

P(B1:m-11 y 1:m) = L 5.~8{B1:m-1- ei~~-1) (5.51) 
i=1 

\(i) ['"'Np ,u>J-1,(i) p· a11 b · li · t e bt · where "'m = L..Ji=1 "'m "'m. m y y margma zmg ou 1:m-2, we o am an 

approximation of p(Bm-11 Y 1:m) which is in the form of 

Np 

p(Bm-11 Yl:m) = L >.~&(Bm-l- e;:,>_l). (5.52) 
i=1 
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Equation (5.52) forms the basis of the Aux-MKF, and it implies that the most 

promising particles at time m-1, will have the largest associated predictive likelihoods 

>.!:{ =p(YmiB~~~- 1 , Y1:m-1)w~_1 . Moreover, ifwe rewrite (5.44) as 

(i) 
(i) (i) ;;:;r y IB(i) y ) P( Y ml01:m• Y 1:m-d (5.53)wm ex: Wm-1P\ m 1:m-1l 1:m-1 ;;:;( y IB(i) y ) 

),.~ P\ m 1:m-1' 1:m-1 

then (5.52) and (5.53) suggest that we should preselect (resample) the particles 

{0~_ }~ according to the so-called first stage importance weights, i.e., 1 1 

, (i) - (i) ~( y ln(i) y )
1\m CX: Wm-1P m 0 1:m-1• 1:m-1 (5.54) 

and that after preselecting, set the weights to the so-called second stage importance 

weights: 
(") 

(i) P( Y ml01~m' Y 1:m-1) 
wm ex: (") (5.55) 

.P{ Y ml01~m-1• Y 1:m-d 

What remains is to derive an expression for an estimate of effective dynamic chan

nel Ep(Bm,hmiYt:m)[Jm(O)hm]· Recall that Xm = [h;:h;:,_1jT; thus, after marginalizing 

out hm-1 from (5.33), we obtain for an estimate of p(Bm, hml Y 1:m): 

Np 

p(Bm, hmi y 1:m) = L w}:/p(hmiBt~, y 1:m)6(Bm- Of:/). (5.56) 
i=1 

If we substitute (5.56) into (5.28), we have 

Np 

= ~ j ei8mw(i) h (i) 6(0 - O(i))dO (5.57)~ m mlm m m m 
i=1 

where 

(5.58) 
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We recognize that the KF efficiently evaluates (5.58). That is 

(5.59) 

where x~m is given by (5.37). Therefore, by substituting (5.59) into (5.57), we obtain 

for an estimate of the effective dynamic channel: 

Np 

Ep(Om,hmiYl:m)[Im(O)hm] = L Jd8mw;:(h~mc5(0m- ef:!)dOm 
i=1 
Np 

'"' -(i)eio~> h(i) (5.60)L.....J Wm mlm" 
i=1 

The substitution of (5.60) into (5.29) provides the desired estimate of the effective 

channel response H:,{f(i). The Aux-MKF is summarized as follows: 

Auxiliary Mixture Kalman filter 

·t· 1· t· D · 1 N · ·t· 1· th t· 1 e<i) (e ) - (i)1. In1 1a 1za Ion: ror z = , ... , P' we m1 1a 1ze e par 1c es, 0 ,....., p o , x 010 = 
- (i) (i)

=Po and set w0 = 1.0, P 010 


. ht . D . - 1 N -(i) - (i)
2. Calcula t e first stage we1g s. ror z- , ... , p, set xm_11m_1 - xm-11m_:1, 

p(i) - p(i) and ()(i) - e(i)
m-1lm-1 - m-1lm-1 7 m-1 - m-1 

(a) Draw~"' p(Oml0~_ 1 ). 

d. d - (i) d d" ed . p-(i) .(b) Compute pre 1cte state xmlm-1 an pre 1ct covariance mlm-1 usmg 

(5.42) and (5.43)7respectively. 

(c) Use (5.49) to compute importance weights up to a normalizing constant 

, (i) (i) A( y -(i) y )
"'m <X Wm-1P m 101:m-17 1:m-1 


and normalize importance weights. 


l. R 1 {- (i) p-(i) (}-(i) }Np t . t . h3. Resamp Ing: esamp e xmlm-17 mlm-17 m-1 i=1 w.r. 1mpor ance Weig ts 
\(i) b . { (i) p(i) (}(i) }Np 
Am to 0 tam Xmlm-17 mlm-17 m-1 i=1· 
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4. 	 New particles: Fori= 1, ... , NP 

(a) Draw{)~ rv p(BmiB~-1). 


{b) Compute x~m' and P~m using {5.37) and {5.38), respectively. 


5. 	 Calculate second stage importance weights: Fori = 1, ... , NP, compute 

importance weights up to a normalizing constant 

and normalize importance weights. 

6. 	 Estimate: Use {5.60) to compute an estimate oflEp(Bm,hmiYt:m)[Im(O)hml Y l:m]· 

Substitute the former into (5.29) and thus obtain an estimate of the effective 

channel response H;Jf(i). 

7. 	 Reiterate: Set m--+ m + 1, and go back to step 2. 

5.5 Simulations 

We considered a 16-QAM OFDM system with system parameters N = 128, P = 4, 

Ncp = 8 and total channel bandwidth Bw =1MHz. A four path i.e., L = 4 frequency 

selective channel was generated from Jakes fading model with power delay profile 

(5.61) 

where c = 3. This corresponds to 10 log10 (1E [lhm,ol2] IE [lhm,ol2]) = 0, 10 log10 (1E [lhm,ll2] I 
lE [lhm,ol2]) = -13.3, 10 logw(lE [lhm,212] IE [lhm,ol2]) = -22.1, and 10 log10 (1E [lhm,al2] I 
lE [lhm,ol2]) = -28.6. 

The adopted delay profile was chosen to be [0, 1, 2, 3] /-LS and the phase noise 

rate BT was set to 0.01, which corresponds to conditions of severe phase noise. We 
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Figure 5.6: True and Tracked Trajectory of Im(O)hm,2 
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Figure 5.7: True and Tracked Trajectory of Im(O)hm,3 

considered a fast fading scenario for which the time-Doppler fading rate /dTt was set 

to 0.04. The proposed algorithm was implemented with NP =50 particles. Figures 

5.6 and 5.7 show typical true and tracked trajectories of Im(O)hm,2 and Im(O)hm,3 , 
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Figure 5.8: BER for 16-QAM 

respectively, at a SNR of 10 dB. Evidently, the observed effective channel is very noisy, 

and that the Aux-MKF tracks the true trajectories reasonably well. We observed 

similar results for the remaining effective channel taps Im(O)hm,l and Im(O)hm,4 • As 

such, we do not show these results. The bit error rate (BER) was evaluated at each 

SNR for 8000 OFDM symbols, and the resulting BER curves are shown in Figure 5.8. 

It is clear that we must obtain accurate estimates of the effective channel response 

H:,{f (i). With "no correction" , we simply cannot recover any useful information. The 

considered "pilot" tone scheme, that is, we use Y m in (5.23) for equalization offers 

intermediate performance. Clearly, the Aux-MKF improves performance, albeit, at a 
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higher computational complexity. For example, at a SNR of 12 dB, the Aux-MKF is 

approximately 2 dB away from the ideal curve, while the considered pilot tone scheme 

is almost 4 dB away. Finally, for the considered application, an increased number of 

particles Np, did not result in any noticeable gain in performance. 

5.6 Conclusion 

In conclusion, we have proposed a new Mixture Kalman filter and Auxiliary particle 

filtering technique for channel equalization and phase noise suppression in OFDM 

systems. Results show about 2 - 3 dB improvement over a naive scheme based solely 

on an LS estimate of the effective dynamic channel using the available pilot tones. 



Chapter 6 

Conclusions 

6.1 Conclusion 

The aim of this thesis is to motivate the use of particle filtering, and to extend their 

applications to various problems in wireless communications, and general nonlinear 

optimal filtering. To this end, we reviewed the general theory of particle filtering, 

and showed how these methods can be applied to the problem of channel equalization 

and phase noise suppression in orthogonal frequency division multiplexing (OFDM) 

systems. 

We also addressed the optimal filtering problem for a general class of partially 

observed non-Gaussian dynamic state space models. By doing so, we introduced a 

novel particle filter, called the approximate conditional mean particle filter, which 

as the simulations results show, outperform other state-of-the-art particle filtering 

algorithms. 

Traditionally, the EKF and its variants, have been the prescribed solution for 

nonlinear sequential signal processing. As shown in this thesis, the PF not only 

improves performance in these applications, but also allows to deal with a larger class 

of complex nonlinear, non-Gaussian systems that were in most cases out of reach a 

95 
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few years earlier. 

6.2 Contributions to the Scientific Literature 

The contributions of this thesis have been published in various conferences. Paper 3 

details research not included in this thesis. 

1. 	D. Yee, J.P. Reilly, T. Kirubarajan, "Approximate conditional mean particle 

filter", to appear in Proc. IEEE Workshop on Statistical Signal Processing, 

SSP-2005, Bordeaux, France, July 17-20, 2005 

2. 	 D. Yee, J.P. Reilly, T. Kirubarajan, "Channel equalization and phase noise sup

pression for OFDM Systems in a time-varying frequency selective channel using 

particle filtering", Proc. IEEE Int. Conf Acoust., Speech, Signal Process., val. 

3, 2005, pp. 777-780 

3. 	 D. Yee, J.P. Reilly, T. Kirubarajan, "Blind particle filtering for detection in a 

time-varying frequency selective channel with non-Gaussian noise", to appear 

in Proc. IEEE Workshop on Signal Processing Advances in Wireless Commu

nications, SPAWC-2005, New York, July 5-8, 2005. Invited paper. 

6.3 Future Research 

In this thesis, we applied particle filtering to solve various problems in nonlinear 

optimal filtering, and to solve the problem of channel equalization and phase noise 

suppression in OFDM systems. Now, we discuss a few suggestions for future research: 

• 	 Channel equalization and phase noise suppression for OFDM Systems via fully 

blind particle filtering. 

• Verification of the algorithms with real-life data 
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6.3.1 Channel equalization and phase nmse suppression for 

OFDM Systems via fully blind particle filtering 

The proposed solution equalizes in the frequency domain, and uses a pilot tone aided 

particle filter to track/estimate the effective dynamic channel in the time domain. 

To increase efficiency, we should consider a blind implementation of the proposed 

algorithm, that is, an algorithm that does not rely on the presence of pilot tones. 

6.3.2 Verification of the algorithms with real-life data 

Throughout this research, we only used simulated data for the presented experi

ments. However, real-life data should be collected and used to verify the practical 

performances of these algorithms. 



Appendix A 

Derivation of the Kalman filter 

Before we begin the derivation of the Kalman filter, we will prove the following iden

tity. 

N(x; 1-£, :Exx)N(y; Hx, :Eyy) = N(x; 1-'xiY' :Exly)N(y; 1-'y, :Ey) (A. I) 

where 

1-'xly = 1-' + :ExxHT(H:ExxHT + :Eyy)-1(y- Hp.) 

:Exjy = :Exx- :ExxHT(H:ExxHT + :Eyyt1H:Exx 

J.Ly Hp. 

:Ey = H:ExxHT + :Eyy 

Proof. The following is based on the derivation given in (54]. To begin, we expand 

the left hand side of (A.l) as follows: 

N(x; p., :Exx)N(y; H X, :Eyy) 


= (27r)-n"'/2 I:Exxl-l/2 exp ( -~(x- p.?:E;;(x- p.)) 


x (27r)-nll/2 j:Eyyj-112 exp ( -~(y- Hx)T:E;;(y- Hx)) .(A.2) 

98 
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If we define the following change of variables: 

X = X-1-£ (A.3) 

(A.4) 

and substitute (A.3)-(A.4) into (A.2), we have 

However, note that 

l kxk 0 l= [hxk 0 l-1 

' (A.6)
[-H l 9 x9 H l 9 x9 

therefore (A.5) can be written as 

N(x; 1-£, 'Exx)N(y; H X, 'Eyy) 

- (27r)(-nv-n.,)/21'Exx ~-1/21'Ewl-1/2 

Xexp (-~ [~]T( [lkxk 

y H 
0 ] ['Exx 

l 9 x 9 0 
0 ] [lkxk 

'Ew H 
0]T) -l~l)

l 9 x 9 y 

(27r)(-n11 -n.,)/21'Exx ~-1/21'Eyy ~-1/2 

( 
1 [x]T[ 'Exx 'ExxHT l-1[x]) 

X exp -2 ii H'Exx H'ExxHT + 'Eyy ii . 
(A.7) 
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It can be shown that 

(A.8) 


Therefore, by substituting (A.3) and (A.4) into (A.7), the joint distribution of x and 

y can be written as 

(A.9) 

Finally, by using the standard theory of joint and conditional Gaussian random vari

abies, the desired identity (A.l) follows. 

Now, we will proceed with the derivation of the KF. For convenience, we reproduce 

(2.8)-(2.9): 

(A.lO) 

(A.ll) 

where F k and H k are known matrices, 'Uk is a known input vector, wk "' N (wk; 0, Qk), 

ek "'N(ek;O,Rk) and p(xo!Yo) = N(xo;xo,Po). To begin, we suppose that 

p(xk-1IY1:k-1) is given by N(xk-1; Xk-1ik-b Pk-1ik-1)· However, from (A.lO), the 

prior is given by 

(A.12) 

Therefore, we obtain using (2.3) 

p(xk!Y1:k-1) = Jp(xk!xk-1)p(xk-dY1:k-1)dxk-1 (A.l3) 

= j N(xk; Fkxk-1 + uk, Qk)N(xk-1; Xk-1ik-1, Pk-1lk-1)dxk-1GA.l4) 

0 

http:Pk-1lk-1)dxk-1GA.l4
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If we use (A.1) with appropriate integrations, it follows that p(xkiY1,k_1) satisfies 

(A.15) 

where 

Fkxk-1ik-1 + Uk (A.16) 

FkPk-1lk-1Fr + Qk. (A.17) 

Now, we will derive the normalization constant p(ykiY1,k_1). At time k, P(YkiYl:k-1) 

is given by (2.5). Thus, if we use (A.ll) to determine P(Ykixk), i.e., 

(A.18) 

and substitute p(xkiYl:k-1) given by (A.15) into (2.5), we obtain 

P(YkiYl:k-1) = JP(Ykixk)p(xkiY1:k-1)dxk (A.19) 

j N(yk; H kXk, Rk)N(xk, Xkik-1, Pklk-l)dxk. (A.20) 

Again, we make use of (A.1). Therefore, it follows after appropriate integrations that 

(A.21) 

where 

Ykik-1 = HkXklk-1 (A.22) 

Sklk-1 = HkPklk-1Hr + Rk· (A.23) 

What remains is to derive an expression for the posterior PDF at time k. This is 

given by (2.4), which is recognized as Bayes rule: 

(A.24) 
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We have determined all the constituent PDF's found in (A.24). Therefore, if we 

substitute (A.l8), (A.l5), (A.21) into (A.24) we obtain 

(A.25) 

where 

Xklk = Xklk-1 + pklk-1HfSkjL1 (Yk - Yklk-1) (A.26) 

Pklk = Pklk-1- Pklk-1HfSkjL1HkPklk-1· (A.27) 

This completes the derivation of the KF. 



Appendix B 

Derivation of ACM filter 

For convenience, we reproduce the considered DSSM. From (2.19) and (2.20) we have 

(B.1) 

(B.2) 

where Fk and Hk are known matrices, uk is a known input vector, wk "'N(wk; 0, Qk), 

ek "' L
N 

PiN(ek; J.L{, R{) (B.3) 
j=1 

and p(xoiYo) = N(xo; xo, Po). 

B.l Derivation of (2.23) 

J 

By definition, Xkik is given by 

Xkik = JXkp(xkiY1:k)dxk 

P(Yklxk)p(xkiY1:k-1) d 
= Xk Xk 

P(YkiY1:k-1) 


= Xkik-1 + [P(YkiY1:k-1)] -
1 

pklk-1 


1
x j P(Yklxk)[Pklk-1t (xk- Xklk-1)p(xkiY1:k-1)dxk. (B.4) 
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Thus, by adopting the Masreliez approximation, i.e., p(xkiY1:k-1) ~ N(xk; xklk-1, Pklk-1), 

we can note that 

and that (B.4) may be approximated by 

For reasons shown below, it is necessary to apply integration by parts. By doing so, 

we can write Jp(ykixk)'V .,kp(xkiY1:k-1)dxk as 

JP(Ykixk)'V .,kp(xkiY1:k-1)dxk = - Jp(xkiY1:k-1)'V .,kp(ykixk)dxk. (B.7) 

Use of (B. 7) into (B.6) results in 

1 
Xkik = xklk-1 + [P(YkiY1:k-1)] - pklk-1 Jp(xkiYl:k-1)\7 "'kP(Ykixk)dxk. (B.8) 

Finally, by noting that 'V.,kp(ykixk) = -Hf'VtlkP(Ykixk), we can rewrite (B.8) as 

1 
Xkik = Xkik-1- [P(YkiY1:k-1)) - pklk-1 J Hf'V 11kP(Ykixk)p(xkiY1:k-1)dxk 

= xklk-1- pklk-1Hf [P(YkiY1:k-1)r
1J'V11kP(Ykixk)p(xkiY1:k-1)dxk 

~ ~ T 
=xklk-1 + Pklk-1Hk9k(Yk) (B.9) 

1
where 9k(Yk) = - [P(YkiY1:k-1)] - 'V 11kP(YkiY1:k-1). This completes the derivation of 

(2.23). 
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B.2 Derivation of (2.24) 

In the following, we denote :l:klk-1 = Xk- Xklk-1· By definition, JE[:l:klk-1:l:~k- 1 IY 1 :kl 
is given by 

lE[:Z:klk-1:l:~k-11Yl:k]

=I xklk-1xi1k-1p(xkiY1:k)dxk 

=I Pklk-1[Pklk-d- 1 xklk-1x~k-dPklk-1r1 
Pklk-1P(xkiY1:k)dxk 

- Pklk-dPklk-d-
1 (I p(xkiY1:k)dxk) Pklk-1 + Pklk-1 

= Pklk-1 (I[Pklk-d- 1 xklk-1x~k-dPklk-d-1p(xkiY1:k)dxk 

- [Pklk-d-
1I p(xkiY1:k)dxk) Pklk-1 + Pklk-1 

= Pklk-1 [I ([Pklk-1t 1 xklk-1x~k-dPklk-1r1 

- [Pklk-d-1)p(xkiYl:k)dxk] Pklk-1 + Pklk-1 

- Pklk-1 [P(YkiY1:k-1)r
1 [I ([Pklk-1t 1 :Z:klk-1:l:~k-1[Pklk-1t1 

- [Pklk-d-1
)p(xkiYt:k-1)P(Ykixk)dxk] P~lk-1 + P~lk-1· (B.lO) 

By adopting the Masreliez approximation, i.e., p(xkiYl:k-1) ~ N(xk; Xklk-1, Pklk-1), 

we can note that 

1v"'k v;kp(xkiY1:k-1) ~ (rPklk-1t 1 a:klk-1a:~k-dPklk-1r1 - [Pklk-1r ) p(xkiY1:k-1) 

and that (B.lO) may be approximated by 

1 
lE[xklk-1xf1k-1iY1:kJ = pklk-1 + pklk-1 [P(YkiY1:k-1)] 

xVv•tv;,P("'•IY~,_,Jp(y,l:r:•Jd:r:,JP.1k-l· (B.n l 
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As shown above, we denote the integral by J. Consequently, we can write the (i,j) th 

element of J as 

(B.12) 

where the notations dx~>, and dxk implies integration over the i-th element, and all 

other remaining components of Xk, respectively. 

For convenience, we write equation (B.12) in an alternate form. To this end, we 

obtain after an application of integration by parts 

.. = J[_J8p(xk!Y1:k-1) 8p(ykjxk)d (i)] d[JJ (t,;) (j) (i) xk Xk. (B.13) 
8xk 8xk 

Now, suppose that Hk E ]Rnyxn,. in (B.2) satisfies 

where H"'/: E lRn11 x1 form= 1, ... , nx· However, recall that 

(B.14) 

Thus, it can be seen that ap(Yt<~)k) = -[H~]TV 11kP(Yklxk), and that (B.13) may be 
8xk 

rewritten as 

[J](iJ) = j [j ap(x;~~):k- 1)[H~fV11kP(Yklxk)dx~>]dxk 

= [H~fV Ilk J[Jap(x;~~~:k- 1 ) P(Yklxk)dx~>] dxk. (B.15) 

For reasons shown below, we apply integration by parts a second time. In doing so, 

{B.15) becomes 

[J]{i,i) = [H~fV Ilk j [- j p(xkiY1:k-1) ap~:k~~k) dx~>] dxk. {B.16) 
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If we recall (B.14), it can be seen that ap(y11~k) =-'V~ p(ykJxk)H{, and that (B.l6)
8xk k 

may be written as 

[J](i,j) [H~f'VYk j [j p(xkiY1:k-1)'V~kP(Yklxk)H{dx?)] dxk 

= [H~f'VYk 'V~k [ Jp(xk1Yl:k-1)P(Yklxk)dxk] H{ 
. T T . 

[Hi.] 'VYk 'VYkP(YkiY1:k-1)Ht. (B.l7) 

By inspecting (B.17), it is clear that J can be written as 

(B.18) 

However, if we let 

1
where 9k(Yk) =- [P(YkiY 1:k-1)] - 'VYkP(YkiYl:k-1) as defined in the previous section. 

It can be shown that 

Gk(Yk) = [P(YkiYl:k-1)] -
2 

'VYkP(YkiY1:k-1)'V~kP(YkiY1:k-1) 

- [P(YkiY1:k-1)] -
1 

'VYk 'V~kP(YkiY1:k-1) 

- 9k(Yk)gf(yk) - [P(YkiY1:k-1)r
1 

v Yk v~kP(YkiY1:k-1). (B.l9) 

Hence, if we substitute (B.l9), and (B.18) into (B.ll), we have 

E[xklk-1x~k-1IY1:d = Pkik-1Hk~k(Yk)gf(yk)- Gk(Yk)) HkPkik-1 +Pkik_(tB.20) 

Observe that, equation (B.9) results in 

Therefore, by substituting (B.21) into (B.20), we obtain 

This completes the derivation of (2.24). 

http:Pkik_(tB.20
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B.3 Derivation of (2.25) 

By definition, Xklk- 1 is given by 

Xklk-1 JXkp(xkiY1:k-1)dxk 

= JXk (! p(xkjXk_i)p(xk-1iY1:k-1)dxk-1) dxk 

= J(! Xkp(xkixk_t)dxk) p(xk-11Y1:k-1)dxk-1· (B.22) 

From (B.l), we have p(xkixk_1) = N(xk; Fkxk-1+ uk, Qk)· Upon substitution into 

(B.22), we arrive at the desired result, that is 

B.4 	 Derivation of (2.26) 

By definition Pklk-1 is given by 

Pklk-1 	 - j (xk- Xklk-l)(xk- Xklk-l)Tp(xkiY1:k-l)dxk 

- J(xk- Xklk-i)(xk- Xklk-1? (! p(xkjXk-l)P(Xk-liY1:k-l)dxk-1) dxk 

= J(! (xk- Xklk-d(xk- Xklk-1?p(xkixk-1)dxk) p(xk-1iY1:k-1)dxk-1· 

From (B.l), it can be readily seen that p(xkixk-1) = N(xk; FkXk-1 +uk, Qk)· Upon 

substitution, and noting that Pk-1lk-1 = lE[(xk-1-Xk-1lk-d(xk-1-Xk-1lk-1)TIY1:k-1], 

we arrive at the desired result, that is 



Appendix C 

Derivation of OlD 

For convenience, we reproduce the considered DSSM: 

ak = Fak-1 + wl (C.l) 

Zk Gk(Zk-P:k-1)ak + w~ (C.2) 

(C.3) 

where F = f31PxP, ak = [al, ... , afjT, Gk(Zk-P:k-d = [zk-b ... , Zk-P], wl "' 
N(wl; 0, Ql), w~ -N(w~;o,Qn, and ek -N(ek;O,Rk)· The OlD satisfies 

In the following, we will derive analytical expressions for each of the constituent PDF's 

found in (C.4). The first density p(zkizk-P:k-1, Yk) on the right hand side (RHS) of 

(C.4) satisfies 

(C.5) 

where 

(C.6) 
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Evidently, it is necessary to evaluate p(ykizk)p(zklzk-P:k-1, ak)· From (C.2) and (C.3) 

we have 

However, by using (A.l), we can rewrite (C.7) as 

where 

Yk = Gk(zk-P:k-dak (C.9) 

sk = Q~ + Rk (C.lO) 

Q~
zk - Gk(zk-P:k-1)ak + Rk + Q~ (Yk - Gk(zk-P:k-1)ak) (C.ll) 

A - (~k + ~~) -1 (C.l2) 

If we substitute into (C.6), it follows that 

(C.l3) 

Therefore, we obtain after substituting (C.l3) and (C.8) into (C.5) 

p(zklzk-P:k-1, ak, Yk) = N(zk; zk, A) (C.l4) 

where 

Qi
Zk - Gk(Zk-P:k-dak + Rk + Q~ (Yk - Gk(Zk-P:k-1)ak) 

A - ( ~k + ~~) -1 (C.l5) 

This completes the derivation of p(zklZk-P:k-1, ak, Yk)· 

What remains is to derive an expression for p(aklak_1,yk)· By virtue of Bayes' 

rule, this PDF is given by 

P(Yklzk-P:k-11 ak)p(aklak-1)( I ) (C.l6)P ak ak-1, Yk = 
P(Yk izk-P:k-1, ak-1) 
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where 

P(YkiZk-P:k-1, ak-1) = JP(Ykizk-P:k-1, ak)p(akiak-1)dak. (C.17) 

In (C.l6), the prior p(aklak_1) satisfies 

(C.l8) 

whereas p(ykizk-P:k-1, ak) is in the form of (C.l3). Therefore, we obtain after using 

(A.l) 

(C.l9) 

where 

<Pk = Gk(zk-P:k-I)Fak-1 (C.20) 

~k = Gk(Zk-P:k-1) QlGk(Zk-P:k-1? + Q% + Rk (C.21) 

ak = Fak-1 + W(yk - </Jk) (C.22) 

:Ek = Ql- WGk(zk-P:k-1)Ql (C.23) 

(j) 1 T ~(j)
and W = QkGk(Zk-P:k-d [:Ek t 1. Finally, we obtain after substituting (C.l9) 

into (C.16) 

(C.24) 

This completes the derivation of the OlD. 



Appendix D 

Derivation of PCRLB 

For convenience, we reproduce the considered DSSM: 

Fak-1 + wl (D.l) 

Gk(Zk-P:k-dak + w~ (D.2) 

(D.3) 

where F = f31PxP, ak = [al, ... ,afjT, Gk(Zk-P:k-1) = [zk-t. ... , Zk-P], wl "' 
N(wl; 0, Ql), w~ "'N(w~;o,Qn, and ek "'N(ek;O,Rk)· As shown below, it is 

convenient to reformulate the considered TVAR model (D.l)-(D.3). To this end, we 

define xl_1 = ak-1, xL1 = [zk-t. ... , Zk-P]T, and Xk-1 = [:z:l~ 1 , :z:~~ 1]T so that 

(D.l)-(D.3) may be equivalently written as: 

:z:1 = (D.4)k 

:z:2
k - F~(:z:l):z:L1 + w~ (D.5) 

Yk = Hk:z:~ + ek (D.6) 

where 

-2W k- w~ ] (D.7)
[ OP-1x1 ' 
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and 

(D.8) 


Recall in section 2.3 that the computation of the PCRLB requires the evaluation of 

Dl~1 , Dl~ 1 , D~~ 1 , and D~~1 . Clearly, as seen from (2.88), (2.89), (2.90) and (2.91), 

the prior density p(xkixk_1) is assumed to be known, and twice differentiable with 

respect to its arguments xk, and Xk_ 1. For the considered DSSM this is a generous 

assumption. Indeed, the prior p(xkixk-1) given by1 

(D.9) 


(D.10) 


where 

P-1 

p(x~iak, xL1) = N(zk; aixL 1, Q~) IJ 8 (zk-i- zk-i) (D.ll) 
i=1 

(D.12) 


does not satisfy this assumption. Thus, to obtain the PCRLB we "regularize" (D.5) 

[55], and as mentioned before, the basic idea is to replace the non-differentiable Dirac 

delta function with a differentiable narrow Gaussian distribution. Therefore, we define 

x~ = [zk, ... ,zf]T, vl "'N(vl; 0,€) fori= 1, ... , P -1, and approximate (D.5) with 

(D.13) 


where 

(D.14) 


and i'J! = lE [wA:w1,T]. Notice for € = 0 the "regularized" process equation (D.13) 

reduces to the original process equation (D.5). Therefore, by choosing f. arbitrarily 
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close to zero (0 < E «< 1), we can see that (D.13) provides an arbitrarily close 

approximation of (D.5). Now, let us proceed with the derivation of a PCRLB which 

for E -t 0 converges to the PCRLB of the original TVAR model. For convenience, we 

present the prior p(xl, x%1xL1, xLl) 'and the likelihood P(Yklx%) for the regularized 

TVAR model2 : 

p(xl, x%1xL1, xL1) =N(x%; F%(ak)xL1, Q~)N(ak; Fak-1, Ql) (D.l5) 

P(Ykix%) =N(yk; H kx%, Rk) (D.l6) 

In the following, we present the derivations of Dl:1, Dl:_1, D%:1, D%'-:_1, and Jo. 


Derivation of Dl:1: 


From (2.88), we have 


(D.17) 


where xk = [xF, x%TJT. We obtain using (D.l5) 

Dl:1 = E [ -~~~ lnp(ak, x~lak-1, xL1)] (D.l8) 

= E [~:~~ (ak- Fak-1l (Qlt1 (ak- Fak-1)] 

+E [ ~:~~ (x%- F%(ak)xL1)T [Q~t1 (x%- F%(ak)xL1)](D.19) 

__ [FT[ Ql]-
1
F 0PxP l (D.20) 

OPxP E [[F%(ak)]T[Q!J-1F%(ak)] . 

Derivation of Dl:.1: 

From (2.89), we have 

(D.21) 

2H th t" . 1 d - 2 ( 1 PjTere, e nota Ion IS xk = ak, an xk = zk, ... , zk . 
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We obtain using (D.15) 

nr:-1 	 E [ -~:~-1 lnp(ak, xzlak-1, xL1)] (D.22) 

E [ ~!~_ 1 ~ (ak- Fak-1l [Qkt1 (ak- Fak-1)] 

+ m: [~::_1 ~ (xz- Fz(ak)xL1)T [Q~t1 (x%- Fz(ak)xL1) ]<D.23) 

1 
= [-FT[Qkt Opxp] 


OpxP Opxp 


+ E [ ~:~_1 ~ (x%- Fz(ak)xL1)T [Q~t1 (x%- Fz(ak)xL1)}n.24) 

Now, let us simplify the second term of (D.24) 

lU'[AZk 1(-2 F2( )-2 )T[Q-2]-1(-2 F2( )-2 )]~c. u:ek-1 2 	xk - k ak xk-1 k xk - k ak xk-1 

E [v '\IT 1 ([Q2]-1 ( 1 1T -2 )2 -1 ~ ( m m-1)2)]= zk-1 :e" 2 k zk - ak xk-1 + E ~ zk - zk-1 

~ IE [ V .,_, [v~. v~H (IQit' (z/- a/Tx;_,)' + ,-• ,t, (z;:' - z;':t')2
)] 

= E (v:e"-1 (-[Qz]-1(z~- alTxL1) xz::1 (xz- Fz(ak)xL1)T[Q~t1]) 

- IE [ [ ~::J [-IQ1J-• (z/ - aFx;_,) X;", (Xi- Fi(«•)Xi-,)T[Q:J-1]] 

__ [ 	 Opxp Opxp l (D.25) 
m: [akxz::1[Qzl-1] m: [-lFz(ak)JT[Q~t1] · 

We obtain upon substitution of (D.25) into (D.24) 

(D.26) 
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Derivation of D%~ 1 : 

From (2.90), we have 

D 21 
k-1 = (D.27) 

(D.28) 

Derivation of D~~1 : 

From (2.91), we have 

We obtain using (D.l5), and (D.16) 

= E [ 6.:~ -lnp(ak, x%1ak-b xL1)] + E [6.:~ -lnp(yklx%)] (D.30) 

= E [6.:~~ (ak- Fak-1)T [Qlt1 
(ak- Fak-1)] 

E[6_a:kl(-2 p2( )-2 )T[Q-2]-1(-2 p2( )-2 )]+ a:k 2 xk - k ak xk-1 k xk - k ak xk-1 

+E [6.::~ (Yk- Hkx%)T [Rkt1 (Yk- Hkxn] (D.31) 
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Now, we will simplify the second term of (D.32) 

lG'[AZkl(-2 F2( )-2 )T[Q-2]-1(-2 F2( )-2 )]
JCJ uzk2 xk- k ak xk-1 k xk- k ak xk-1 

= E [v- \!'!' ~ ([Q2]-1 (z1 _ a1rx2 )2 + c1 ~ (zm _ zm-1)2)]
"'k "'k 2 k k k k-1 L.J k k-1 

m=2 

2~ IE [v•• [v~. vrlH (IQ1t' (zl- a[TzL,)' + c' ,t, (zk- z/:.11 
) ) l 


= E [vzk [-lQ~J- 1 (z~- afxL1) x~~1 (x~- F~(ak)xL1 )r[Q~J- 1 ]] 


= JB: [['Vall [ [Q2]-1 ( 1 1T-2 ) -2T (-2 F2( )-2 )T[Q-2J-1J]
\lz~ - k zk - ak xk-1 xk-1 xk - k ak xk-1 k 

E[xL1x~~1[Q~J- 1] [E [-[Q~]- 1xL1] OPxP-1]1 
= [E(-[Q~j-1x~~1]] [Q~J- 1 . (D.33)[ OP-1xP 

The substitution of (D.33) into (D.32) results in 

(D.34) 

Derivation of J o: 

From (2.92), we have 

(D.35) 

The initial state is assumed to follow 

(D.36) 

http:zk-z/:.11
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This results in 

Jo = 	 E [~:~ -lnp(xo)] (D.37) 

E [ ~:~~ (xol Q~1 
(xo)] (D.38) 

~ -1 
Qo. 	 (D.39) 



Appendix E 

Derivation of (4.26) 

For convenience, we present some PDF's that are applicable to the following deriva

tion. The first density is based on the Masreliez approximation, that is, we approxi

mate p(xllx~:k- 1 ) with a single Gaussian distribution: 

(E.l) 

The second applicable density is p(x~lx~:k- 1 , xi), and this can be readily obtained 

from (4.2): 

N 

2l 2 1) ""' N( 2,-2,(i) p2( 2 ) A2( 2 ) 1 q2,(i)) (E 2)P( Xk x1:k-1' xk =L...,;Pi xk, Wk + xk-n:k-1 + xk-n:k-1 xk, k · · 
j=1 

To begin our derivation, we write p(x%1x~:k- 1 ) as 

p(x~jx~:k- 1 ) = Jp(x~, xllx~:k- 1 )dxl 
= j p(x~lx~:k- 1 , xi)p(xilx~:k- 1)dxi. (E.3) 
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Thus, by substituting (E.1), and (E.2) into (E.3), we obtain an approximation of 

p(x~lxtk_1 ) that is in the form of 

2p(a:~la:i:k-1) = 	 tPi j (N(x~; Wk ,(j) + F 
2
(a:Ln:k-1) + A 

2
(a:Ln:k-1)a:l, Q~'(j)) 

]=1 

x N(xl; xkik-11, Pllk-1)) dxl. 	 (E.4) 

Then, by using (A.1), we can write (E.4) as 

N 
~( 2l 2 ) 	 ""'"' JN( 1. 1,(j) p1,(j})N( 2. 2,(j} 8 2,(j) )d 1 (E.S)P xk x1:k-1 = 	 L....,;Pi xk, xkik ' kik xk, xkik-1• klk-1 xk 

j=1 

where 

a:1,(j) 1 wU) ( 2 - 2,(j} F2 ( 2 ) A2 ( 2 ) 1 ) 
kik = Xkik-1 + k Xk - Wk - Xk-n:k-1 - xk-n:k-1 Xkik-1 

p1,(j} = P 1 w<i)A2( 2 )PI
klk-1 - k xk-n:k-1 kik-1kik 

a:2,(j} -2,(j) F2( 2 ) A2( 2 ) 1 
kik-1 = Wk + Xk-n:k-1 + Xk-n:k-1 Xkik-1 

s2,(j} A 2( 2 )P1 A2( 2 )T Q2,(j}
klk-1 xk-n:k-1 kik-1 xk-n:k-1 + k 

and W~) = Pl k_1A2 (a:Ln:k- 1 )r(S~j~21 )- 1 . Performing the integration in (E.5) 1 
produces 

N 
;;:;( 2 2 ) 	 ""'"' N( 2. 2,(j} 8 2,(j) )
P\Xk 1a:l:k-1 = 	 L._,;Pi xk, xklk-1' kik-1 · 

j=1 

This completes our derivation of (4.26). 



Appendix F 

Derivation of (4.30) 

For convenience, we reproduce some PDF's that are applicable to the following deriva

tion. The first density is the likelihood p(:z:l1:4k_1) which under the assumption of 

h(x~) = H x~ satisfies 

(F.l) 

The second density is the finite dimensional approximation of the prior distribution 

p(:z:~l:z:~:k- 1 ). This is in the form of (4.26): 

N 
~ 2 

1 
2 )

P\Xk :z:1:k-1 = "' N( 2. 2,U> 8 2,(j) )L..JPi xk, xkik-1' klk-1 (F.2) 
j=1 

where 

2,(j) - 2,0) p2( 2 ) A2( 2 ) 1
:z:klk-1 wk + :z:k-n:k-1 + :z:k-n:k-1 xkik-1 (F.3) 

s2,(j) 
A 2( 2 )P1 A2( 2 )T Q2,(j)

klk-1 = :z:k-n:k-1 kik-1 xk-n:k-1 + k . (F.4) 

To begin, we use Bayes rule to write p(:z:~l:z:~:k-ll Yk) as 

(F.5) 
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Then, by using (F.l) and (F.2), we can approximate p(ykix~)p(x~lxi:k- 1 ) by 

N 

( I 2) ( 21 2 ) ,..... N( ·H 2 R )"' N( 2. 2,(jJ 82,(1)) (F6)P Yk xk P xk x1:k-1 "' Yk, xk, k L...JPi xk, xkik-1' klk-1 · · 
j=1 

Next, we apply (A.l) so that (F.6) can be written as 

P(Ykix~)p(x~lx~:k-1) ~ 
N 

"' N( n. ~ 2,{il P~2.Ul)N( · H 2'Ul HS2'Ul HT R ) (F.7)L...JPi xk, xk ' k Yk, xklk-1' klk-1 + k 
j=1 

where 

x 2·<il + wUl(y - H x 2'Ul )kik-1 k k kik-1 

S2'ul - wuJ H S2·uJ
kik-1 k kik-1 

and w(j) = S 2
'(j) HT(H S 2

'(j) HT + Rk)-1 Finally by substituting (F 7) intok kik-1 kik-1 . ' . 

(F.5) we obtain 

N 
~ 2! 2 ) "'- N( 2. ~2,(jJ P~2,(jJ)
p,xk x1:k-1' Yk = L...JPi xk, xk , k (F.8) 

j=1 

where 

N( · H 2.uJ H s2·uJ HT R )Pi Yk, xklk-1' kik-1 + k 
"N A(( H 2,(n) HS2,(n) HT R ) · 
wn=1PnJV Yk; xkik-1' klk-1 + k 

This completes the derivation of (4.30). 
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