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ABSTRACT 


An unsteady Reynolds Averaged Navier-Stokes (URANS) based turbulence model, 

the Spalart-Allmaras (SA) model, was used to investigate the flow pulsation phe­

nomenon in compound rectangular channels for isothermal flows. The computational 

fluid dynamics (CFD) commercial package ANSYS CFX-11.0 was used for the simula­

tions. The studied geometry was composed of two rectangular subchannels connected 

by a gap, on which experiments were conducted by Meyer and Rehme [34] and were 

used for the validation of the numerical results. Two case studies were selected to 

study the effect of the advection scheme. The results using the first order upwind 

advection scheme had clear symmetry and periodicity. The frequency of the flow pul­

sations was underpredicted by almost a factor of two. Due to the inevitable numerical 

diffusion of the first order upwind scheme, it was more appropriate to use a second 

order accurate in space advection scheme for comparison with the experiments. The 

span-wise velocity contours and the velocity vector plots at planes parallel to the bulk 

flow, together with the time traces of the velocity components at selected monitor 

points showed the expected cross-flow mixing between the subchannels through the 

gap. Although the SA model does not solve directly for the turbulence kinetic energy, 

a kinetic energy associated with the unsteady solutions of the momentum equations 

was evaluated and qualitatively compared with the experimental turbulence kinetic 

energy. The calculated kinetic energy followed the trends of the experimental turbu­

lence kinetic energy at the gap area, predicting two peaks at the edges of the gap. The 
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dynamics of the gap pulsations were quantitatively described through temporal auto­

correlation and auto-power spectral density functions and the numerical predictions 

were in agreement with the experiments. Studies on the effect of the Reynolds num­

ber and the computational length of the domain were also carried out. The numerical 

results reproduced the relationship between the Reynolds number and the frequency 

of the auto-power spectral density functions. The impact of the channel length was 

tested by simulating a longer channel. It was found that the channel length did not 

significantly affect the predictions. Simulations were also performed using the k - c 

model. While flow pulsations were predicted with this model, the frequency of the 

pulsation was in poor agreement with the experimentally measured value. 
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Chapter 1 

Introduction 

1.1 Relevance of Research to Nuclear Industry Applications 

Fluid pulsations in subchannel geometries is of importance to the nuclear industry 

with implications to nuclear reactor safety analysis and design. In the reactor core, 

the heat generation within the fuel rods is removed by the coolant which flows axially 

past the rods. Under loss-of-coolant accident conditions, single-phase vapour or two­

phase conditions can occur depending on the magnitude of the break in the heat 

transport system. An understanding of the behaviour of the fluid flow under normal 

or abnormal conditions is very important, in order to accurately predict the fuel rod 

temperatures and ultimately improve the design of the reactor cores. 

CANDU reactor cores contain cylindrical rod bundle geometries, where coolant 

flows axially along the rods. A cross-section of a CANDU 37-element fuel rod bundle 

can be seen in figure 1.1. In this figure the bounding ring represents the inner pressure 
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tube in which the nuclear fuel is kept. The numbered circles represent the cylindrical 

fuel rods, while the remaining numbered geometric shapes are the cross-sections of 

the fluid flow regions, known as subchannels. These lines that frame the subchannels 

indicate the gap regions where the flow area is reduced. Specifically, the subchannels 

are defined as the small flow regions surrounded by rod surfaces and separated by 

imaginary lines connecting the centroids of the fuel rods. Subchannels are bounded by 

either the fuel rod wall, pressure tube walls, or the regions between the subchannels, 

referred to as gaps. The subchannels can be classified as walls, if they are next to 

walls (subchannels 50, 51, 60, etc, in figure 1.1), and as triangular (subchannels 1, 3, 

9, etc, in figure 1.1) or square subchannels (subchannels 12, 18, 30, etc, in figure 1.1), 

depending on their shape. The important parameters that are mainly used to describe 

the geometric characteristics in such flow configurations are the rod diameter, D, the 

centre-to-centre distance between the rods or the pitch, P, the wall distance, W, and 

the gap width, 5. Referring to figure 1.1, P is the distance between the centres of 

two neighbouring rods (such as rods 4 and 13 or rods 4 and 3), S is the minimum 

distance between the walls of two neighbouring rods and W is the distance from the 

centre of a rod next to a wall and the surface of that wall (such as rod 49 and the 

pressure tube wall). 

As the coolant fluid flows axially past the rods, mass, momentum and heat 

are exchanged due to interchange mixing through the gaps between the rods. The 

main interest of the current research is on the fluid cross-flow at the gap regions 
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Figure 1.1 : Cross-section of a CANDU 37-element fuel bundle. Adapted from Eiff 
and Lightstone [17] 

which connect adjacent subchannels. The flow across the gaps aids in fluid mixing 

and in homogenizing the fluid temperatures across the rod bundles, thus playing an 

important role in determining the heat transfer rates from the fuel rods. 

An understanding of the physics of this mixing process is necessary for devel­

opment of constitutive models for use in nuclear safety analysis codes. During the last 

forty years there has been an extensive experimental and numerical research, trying 

to understand the mechanism that causes these high mixing rates ([53], [55], [66], [43] 

[3], [58], [26], [49], [36], [30]). In the early 1970's, the main trend was to attribute 

this mixing process to secondary flows. Later on, experimental research has indicated 
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that large-scale flow pulsations are responsible for the majority of the mixing between 

subchannels [55], [35], [21], [22]. 

The main features discussed in the relevant investigations, that could repli­

cate the momentum and heat exchange process in rod bundle geometries, are the 

anisotropy of turbulence, the secondary flows and the large-scale flow pulsations. 

The periodic flow pulsations are observed at the gap regions. As the gap width, S, 

is reduced, the stream-wise and circumferential turbulence intensities are increased. 

The periodic flow pulsation phenomenon is the main contributor to the anisotropic 

turbulence structure in the flow field. The anisotropy of the turbulence can be ob­

served through the estimation of the eddy diffusivities. The eddy diffusivity parallel 

to the rod walls is much higher than the eddy diffusivity normal to the rod walls. 

This anisotropic turbulence structure, drives secondary flows, which are generated in 

these flows. 

1.2 Purpose of Research 

The goal of the current research is to determine if an unsteady Reynolds Averaged 

Navier Stokes (RANS) simulation is able to predict the flow pulsations that have 

been observed experimentally. If this numerical approach is able to capture the 

essential physics of the flow, then the longer term goal is to use this model as basis 

for development of a constitutive model which could be incorporated into broader 

safety analysis codes. The specific objectives of the thesis report are summarized in 
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the next section. 

In order to assess the safety of nuclear reactors and to mitigate potential 

consequences of accidents, numerical simulations of the large reactor systems are 

performed. These simulations are multi-disciplinary and often include simulation of 

both the primary and secondary side heat transport systems, reactor physics, fuel 

channels, moderator flows, containment, and atmospheric dispersion. Because of 

the large-scale of the analyses and the long transients that can occur, integrated 

models are used. For example, thermalhydraulics behaviour is modelled using one­

dimensional two-fluid codes which are able to predict the important phenomenon, 

but require accurate correlations and empirical models since the fine details of the 

flows (such as the details of the boundary layers and the turbulence) are not solved 

for directly. 

In the Canadian nuclear industry, the fuel temperatures at the reactor cores 

are obtained from computer codes such as FACTAR, CATHENA, TUF, ASSERT-PV 

among others. Rather than solving for the detailed description of the fluid flow and 

heat transfer in fuel rod bundles, these codes average over a larger region (the size 

of this region is dependent on the code used and the level of detail desired). Thus, 

constitutive relations that supply the information that was lost during the averaging 

or integrating process are required. This can include pressure-drop or friction fac­

tor correlations, k-factors due to obstructions such as bearing pads or spacers, heat 

transfer correlations, etc. Of the codes listed above, the most detailed information is 

5 




Master's Thesis - George Arvanitis McMaster - Mechanical Engineering 

obtained from ASSERT-PV which uses a grid based on the flow subchannels. 

In contrast to the above mentioned numerical approaches, CFD codes solve 

the conservation equations for mass, momentum and energy on fine grids. Previous 

attempts to model inter-subchannel thermal mixing using standard turbulence mod­

els have had mixed success [50]. Steady state predictions significantly underpredict 

the mixing since the flow pulsation phenomenon is not captured. While accurate 

modelling of the two-phase flow in the fuel channel is an important objective for nu­

clear safety analysis, the current research is focused on single-phase flows as a first 

step in attaining this goal. 

Recent studies using an unsteady Reynolds Averaged Navier-Stokes (RANS) 

model to simulate isothermal flows in a channel containing a single rod [10] and 

isothermal flows in a 37-rod bundle [11] have shown that the coherent structures in the 

regions between the rods and the rods and the walls can be predicted. Furthermore, 

RANS models are the least computationally intensive models for modelling turbulent 

flows, compared to the other two main categories of models, namely LES (Large 

Eddy Simulation) and DNS (Direct Numerical Solution). DNS models solve for all 

the scales of turbulence. RANS models, in contrast, model all the scales of turbulence. 

In between them lie the LES models, which solve for the large scales of turbulence 

and model the small scales. Considering the computational cost, it was decided for 

this research to apply an unsteady RANS approach for isothermal flows in selected 

geometries. The specific model that was used is the Spalart- Allmaras (SA) model. 
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This model was calibrated for predictions of aerodynamic flows where there is a 

formation of vortex structures. Since the large-scale pulsation phenomenon that we 

anticipated to capture had the characteristics of flows similar to the ones for which 

the SA model was calibrated, it was decided to use it in this numerical investigation. 

The idea of this numerical research was to start from simple isothermal tur­

bulent flow configurations and study step by step, in terms of complexity, the phe­

nomenon of cross-flow mixing through large-scale pulsations. Experimental [68], [34] 

and numerical research [21], [22] has shown that a quasi-periodic large scale turbulent 

structure exists in any longitudinal slot or groove in a wall or a connecting gap be­

tween two flow channels, provided that the gap's depth is more than approximately 

twice its width. More precisely, it has been proved that the same flow pulsation phe­

nomena that appear in flows in cylindrical geometries as the ones in fuel reactor cores, 

also occur in rectangular compound channels [34]. It was thus decided to validate 

the SA model for turbulent flows in compound rectangular geometries, using the flow 

configurations that were used by Meyer and Rehme in their experiments in 1994 [34]. 

The goal of this broader numerical research is to continue investigating the flow pul­

sation phenomenon problem by gradually adding to it more physical and geometrical 

parameters, approaching the ideal end, which is the successful numerical prediction 

of non-isothermal turbulent flows in subchannel geometries, in order to develop a 

simplified physical model of subchannel mixing for use in the broader safety analysis 

codes. The research results presented in this thesis represent the outcome of the first 
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step in the broader research program. 

1.3 Objectives of Thesis 

In the frame of the overall purpose of this research described in the above section, 

the objective of this thesis is to numerically explore the isothermal turbulent flow 

pulsation phenomenon in compound rectangular channel geometries, by applying an 

unsteady RANS approach. The specific objectives of the thesis are the following. 

1. 	 examine the turbulence structure of isothermal flows in the compound rectan­

gular configurations used by Meyer and Rehme [34] 

2. 	 select an appropriate unsteady RANS model and assess its applicability to the 

capture of the large-scale flow pulsation phenomenon, reported in the experi­

mental outcomes. 

3. 	 validate the results of the simulations by comparing them against the available 

experimental measurements. 

1.4 Structure of Thesis 

Following this introduction, the structure of the thesis report is divided in four chap­

ters. The second chapter deals with a literature survey on the characteristics of the 

fluid flow, heat transfer and turbulent mixing in heated rod bundle geometries. The 

gist of the experimental effort on the studied phenomena is revealed through the 

8 



Master's Thesis - George Arvanitis McMaster - Mechanical Engineering 

sections of chapter 2 on the formation of the mean axial velocity profiles, the sec­

ondary flows, the Reynolds stresses and the periodic flow pulsations and their effect 

in the resulting anisotropic turbulent field. This chapter ends with an overview on 

the relevant numerical investigations. 

In chapter 3 an overview of the Reynolds Averaged Navier-Stokes models, 

together with the main characteristics of the SA model are presented. 

Chapter 4 deals with the analysis of the results of this research. First, the 

choice of the experiments to validate the numerical results, together with the de­

scription of these experiments is provided. Following this, the simulation details are 

mentioned. After the report on the grid independence test, the main part of this 

chapter is a comparison of the numerical results with the experimental measurements 

and a discussion of these results. The last two subsections of chapter 4 refer to a 

study on the effect of the computationally implemented length of the channel and a 

comparison of the SA model results to those obtained using the commonly applied 

k - E turbulence model. 

Finally, the thesis ends with chapter 5, where the conclusions of this work are 

summarized and a potential future direction on the current research is given. 
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Chapter 2 

Literature Review 

2.1 Overview 

An understanding of the flow characteristics and the underlying physics that govern 

inter subchannel thermal mixing processes in closely spaced rod bundle geometries 

is important for nuclear safety analysis and design. Extensive experimental work 

has been performed for over a period of four decades in related geometries with the 

aim to understand the nature of the turbulent flow field structure in narrow gap 

regions. This chapter provides a review of experimental studies on the turbulent flow 

field structure in such geometries and it also serves as an introduction on the related 

numerical investigations. 
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2.2 Turbulent Flow in Rod Bundle Geometries 

2.2.1 Turbulent friction factor for fully developed flow 

From a pressure gradient and wall shear stress balance, a Fanning friction coefficient, 

f, is defined as [57]: 

f-- (dp) _!i_ (2.1)
- dx pUl 

where ~: is the axial pressure gradient. Since for a fully developed flow the pressure 

gradient in a duct is constant, the coefficient is indicative of the pressure drop in a 

duct. 

For circular pipes, Prandtl proposed a friction factor relationship based on 

Nikuradse's friction factor data [38]. This relationship is known as Prandtl's universal 

law of friction for smooth pipes: 

~ = 2.0 log ( Refil) - 0.80 (2.2) 

Due to geometrical differences, the expressions for the friction factors for flow 

through rod bundles differ from the ones in circular pipes. A number of experimental 

and numerical studies have been made in order to establish friction factor relation­

ships, applicable to flows in rod bundles. 
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Rehme [43] proposed a method called the G*-method for estimating the friction 

factor for turbulent flows in non circular channels. The relationship he developed is: 

(2.3) 


where A and G* are geometry factors. These factors are exported from diagrams 

which provide the two factors as a function of a geometric factor for laminar flow, K. 

The value of K is obtained by solving the Poisson equation. It is generally acceptable 

that the G*-method is accurate, but it is difficult to apply because of the complexity 

of the calculations. 

Cheng and Todreas [13] presented a simple friction factor relationship for lam­

inar and turbulent flows: 

(2.4) 


where A is the Darcy friction factor (A= 4f) and m is equal to 1.0 for laminar flows 

and 0.18 in the case of turbulent flows. From equation 2.4, it is obvious that in 

the case of flows in rod bundle geometries, similar to circular pipe flows, the friction 

factor decreases with increasing Reynolds number. In equation 2.4 the constant, Cf, 

p
is expressed as a function of the pitch-to-diameter ratio, D: 

(2.5) 
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Cheng and Todreas determined the coefficients a:, b1, b2 by comparing their method 

with the Rehme's G*-method. In this way, the friction factor relationship given in 

equation 2.4 can predict the friction factor as accurately as the Rehme's G*-method 

and has also the advantage of simplicity, which is important in applications. 

A plot of the friction factor versus the pitch-to-diameter ratio of rod bundles 

at a Reynolds number of 105 , using Cheng and Todreas' friction factor relationship 

(equation 2.4) is shown in figure 2.1. The different types of subchannels can be seen 

in figure 1.1 in section 1.1 of the Introduction chapter. 

-Cheng et al. (triangular sub.) 
0.0055 --Cheng et al. (wall sub.) 

- - - Prandtl (circular pipe) 
0.0050 

- 0.0045 

0.0040 

0.00301 
1.1 1.2 1.3 1.4 1.5 

P/D ratio 
p 

Figure 2.1: Friction factors at Re = 105 as a function of the D ratio. Based on Cheng 

and Todreas [13] 

Also, included in figure 2.1 is the friction factor plot in circular pipes predicted 

by Prandtl's universal law offriction for smooth pipes (equation 2.2). As the pitch-to­
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diameter ratio increases from around 1.0 to around 1.1, the friction factor, predicted 

by Cheng and Todreas, increases abruptly up to the friction factor for circular pipes 

p 
and then it continues to increase slowly for D values higher than around 1.1. This 

behaviour was also observed by Rehme [42]. With comparison to circular pipe cases, 

p
friction factors in rod bundle geometries are higher for D values higher than 1.1. The 

observed discontinuity in the plots of Cheng and Todreas' correlations is due to the 

p
different constants in the expression of C1 (equation 2.5) used for: 1.0 ::; D ::; 1.1 

p 
and for: 1.1 < D ::; 1.5. 

2.2.2 Mean axial velocity 

Rehme [43] used pitot tubes to measure the axial velocity distribution in a wall sub-

channel of a rod bundle geometry at a Reynolds number of 8.73 *104 
. The distribution 

of the positions at which measurements were taken, is shown in 

figure 2.2. In this figure, the horizontal (parallel to the channel walls) x-direction 

and the azimuthal or circumferential (parallel to the rod walls) ¢-direction, can also 

be seen. 

Figure 2.3 shows the contour plot of the measured axial velocity. At the 

bottom left corner of figure 2.3 there is also a scheme where the shaded area is the 

region for which the contour plots had been created. 

The mean velocity, U, is normalized by the velocity kept constant by a fixed 

Pitot tube, UREF = 27.74 m/s. In the experiment, velocity data were obtained by 
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Figure 2.2: Distribution of the measurement positions. Adapted from Rehme [43] 

using a cylindrical coordinate system for the part close to the cylinder wall and a 

cartesian coordinate system for the region close to the channel wall. In this way, two 

graphs were plotted separately and they are connected by the maximum velocity line. 

Because the contour plots at each region were drawn seperately from each other, an 

inconsistency of the contour lines at the maximum velocity line is observed. 

As shown in figure 2.3, the maximum velocity line is at the core region of 

the channeL The ratio of the maximum velocity (on the symmetry line) and the 

maximum velocity in the gap between the rod and the channel wall is 1.38. Rehme 

also calculated the axial velocity using the VELASCO code and he found the value 

of the above ratio to be 1.62. Based on his statement, the difference of the two 
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[43] 

ratios is likely due to the larger circumferential eddy diffusivity than the radial eddy 

diffusi vi ty. 

The law of the wall is expressed for a smooth pipe by [41]: 

1 
u+ = -lny+ + B (2 .6) 

K, 

where K, is the Von Karman constant and B is an empirical constant. For smooth 

pipes , Nikuradse [38] determined the constants by fitting equation 2.6 to his experi­
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mental data. Specifically, the values of the two constants are: 

K = 0.4,B = 5.5 (2.7) 

Rehme investigated the applicability of the law of the wall for a circular pipe to a rod 

bundle geometry. From his measurements, he found that the Von Karman constant 

in a rod bundle is the same as for the smooth pipe case and that B is equal to 5.0. 

So, for rod bundle flows, the law of the wall is modified to the following expression: 

u+ = 0.4lny+ + 5.0 (2.8) 

where: y+ = !.... , for the region near the rod wall, or: y+ = :!:. , for the region near the 
¢ y 

channel wall. Here, r and y are the distances from the rod wall and the channel wall, 

respectively. In figure 2.2, the ¢-angle, and the x-direction can be seen. 

2.2.3 Secondary flows 

Experimental data have shown that secondary flows exist in circular as well as in 

non-circular geometries such as square, rectangular and triangular ducts, which all 

have corners ([5], [1]). The generation of the secondary flows is due to gradients of 

the Reynolds stresses. This type of secondary flows are called secondary flows of 

Prandtl's second kind. 

Renksizbulut and Hadaller [49] provide a schematic of secondary flow patterns 
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in a rod bundle geometry. This schematic is shown in figure 2.4, where e is the 

azimuthal angle. In the top upper left corner of figure 2.4 there is a circulation 

region moving fluid elements from the core to the rod-to-wall gap and then along the 

channel wall toward the symmetry line (dashed line) which divides the regions of the 

two illustrated rods. On the right of this circulation region there is another one which 

moves fluid elements in a similar manner, but closer to the rod wall. On the right of 

the latter circulation, there is another circulation zone close to the rod-to-rod gap, 

which carries fluid elements down the center line and returns them to the core along 

the rod wall. 

Several investigators performed experiments to study the effect of secondary 

flows on the axial velocity and the turbulence distributions. Rehme [43] and 

Seale [58] measured axial velocity distributions in a wall subchannel, but did not 

clearly report 'bulging' in the axial velocity distributions. On the other hand, the 

bulging of the axial velocity contour plots was reported by other authors, such as 

Renksizbulut and Hadaller [49] and Meyer and Rehme [34]. The bulging of the mean 

axial velocity distribution due to the presence of secondary flows, can be observed by 

comparing figure 2.4 with figure 2.5, where u is the mean velocity field and uAvc is 

the measured test section average flow velocity. For example, the constant velocity 

lines at the top left corner in figure 2.5 are seen to be curved in a manner suggestive 

of the presence of the flow cells at the top left corner in figure 2.4. 

In addition, experimental results [55] reported bulging in the turbulence in­

18 




Master's Thesis - George Arvanitis McMaster - Mechanical Engineering 

Figure 2.4: Secondary flows. Adapted from Renksizbulut and Hadaller [49] 

tensity distribution which seems to be due to secondary flows. Rowe et al. [55] are 

likely the first to investigate bulging in the tudbulence intensity in a rod bundle ge­

ometry. They inferred the secondary flow behaviour in a rod bundle geometry, using 

the secondary flow behaviour in a square duct. It was stated that secondary flows 

move toward the gaps, thus cause the turbulence intensity lines to bulge toward the 

gaps. 

Secondary flows were also easily detected from the measurements of the wall 

shear stress distribution. Rehme [43], [44] found that the measured wall shear stresses 
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Figure 2.5: Normalized axial velocity ( ___!!____) contours. Adapted from Renksizbulut 
UAVG 

and Hadaller [49] 

are much more uniformily distributed than the respective calculated values. This was 

because his model did not include secondary flows. Seale [58] examined the same 

behaviour of the wall shear stress distribution and calculated the turbulent flow with 

and without secondary flow source terms. The case for which secondary flows were 

included provided the same shear stress distribution as the measured one. In his 

study, Seale [58], showed the effect of the secondary flows in the wall shear stress 

distribution, by comparing the predictions with isotropic effective diffusivities for 
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turbulent flow in rod bundles. Basically, secondary flows cause the displacement of 

the position of the maximum shear stress. 

Secondary flows in rod bundle geometries have proved to be very difficult to 

measure. Some of the earliest attempts to measure secondary flows, such as the ones 

by Trupp and Azad [66] and Carajilescov and Todreas [8] were not successful. This 

could be due to geometrical tolerances of the test sections, which caused cross-flow 

or due to experimental inaccuracy [55], [66], [67]. Seale [61] attempted to measure 

secondary flows in a rod bundle geometry with high geometric precision. In this 

experiment, the overall uncertainty of the secondary velocity parallel to the top wall 

was estimated to be about ±0.06ur. The maximum secondary velocity parallel to 

the top plate wall is about 1.5% of the bulk velocity and it occurs near the walls on 

the outward secondary flow from the corners of the duct. He also reported two large 

rotating cells between the fiat wall and the rod and one cell in the gap region between 

the rod and the vertical axis of the duct. 

Aly [1] measured the magnitude of secondary velocities in equilateral triangular 

duct at a Reynolds number range of 53,000 "' 107,000. The maximum secondary 

velocities were 1.5% of the bulk axial velocity. 

2.2.4 Reynolds stresses 

For small pitch-to-diameter and wall-to-diameter ratios, the turbulent flow structure 

through rod bundles differs significantly with comparison to simple channel flows like 
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circular tubes and parallel plates. Rehme [43] measured the turbulent intensities and 

the Reynolds shear stresses in a rod bundle geometry with a pitch-to-diameter ratio of 

1.07. As already mentioned, the distribution of the positions at which measurements 

were taken, is shown in figure 2.2 . 

.__, ___ _ 
• 0.140E 01 " O.IIIOE 01 :a 0.220E Ol 

• 0.150E 01 • 0.19()[ 01 y 0.230£ 01 

.a 0.160E 01 • o.200f 01 ·• o.240E 01 

+ 0.170E 01 • o.210E 01 

Figure 2.6: Axial turbulence intensity distribution normalized by the friction velocity, 

v:J2 
-*-. Adapted from Rehme [43] 
UREF 

Figure 2.6 shows the axial turbulence intensity distribution, normalized by 

the wall shear velocity on the rod at 5°(u:REF)· In the figure, the maximum axial 
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turbulence intensity is placed at about 55° from the rod-to-wall gap. At that point 

the axial turbulence intensity is about 2.4 times higer than the friction velocity. 

The minimum axial intensity is observed in the core of the subchannel. This axial 

turbulence intensity distiribution is also observed in the turbulent kinetic energy 

distribution. 

:.1 0 

a 

5 ~ 
.,; 

1 

= 

Figure 2.7: Azimuthal turbulence intensity distribution normalized by the average 

J=:Ji
friction velocity, --. Adapted from Krauss and Meyer [30] 

Ur,av 

Figure 2.7 provides the azimuthal (parallel to the rod walls) turbulence inten­

sity, V=:Ji, which is normalized by the friction velocity, Ur,av, measured by Krauss 

and Meyer [30]. On the interior of the rod wall, the measuring positions can be seen. 

Unlike the axial turbulence intensity, the maximum azimuthal turbulence intensity 
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is found in the rod-to-wall gap. The maximum value is about 1.7 times the friction 

velocity. The azimuthal turbulence intensities were roughly 30% lower than the axial 

turbulence intensities. 

Rehme [46] investigated the change of the maximum axial and circumferential 

turbulence intensity with pitch-to-diameter ratio (~) and wall-to-diameter ratio 

( ~) . He observed the following: 

p 
1. 	 The axial and azimuthal turbulence intensity increases with decreasing D ratio 

near the rod-to-rod gap. 

w
2. 	 The axial and circumferential turbulence intensity increases with decreasing D 

ratio near the rod-to-wall gap. 

The following correlations were drawn from the measurements: 

u' (w )-3
2 

Ur 	= 0.6 + 0.307 D - 1 (2.9) 

w' (w )-3
4 

Ur 	= 0.6 + 0.0425 D - 1 (2.10) 

Other investigators [55], [26], [69] found similar trends for the axial and cir­

cumferential turbulence intensity with the (~) or (~) ratio. The reason for this 

behaviour was explored by Hooper and Rehme [26]. They investigated the periodic 

behaviour of the auto and cross-correlations of the axial and circumferential turbu­
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lence intensities. They stated that this periodic behaviour results in high momentum 

exchange between subchannels. This is called the flow pulsation phenomenon, which 

is discussed in the following section. 

-~:-·- ~-~. ---. -. --. ---"' -~·. ·- ·- ~--. ­
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u'w'
Figure 2.8: Distribution of the normalized azimuthal Reynolds shear stress, ~ 

UREF 
Adapted from Rehme [43] 

The radial (normal to the rod wall) and circumferential (parallel to the rod 

wall) Reynolds shear stresses in rod bundles were measured by Rehme [43] and Krauss 

and Meyer [30]. The radial Reynolds shear stress, -pu'v', decreases with increasing 

distance from the wall. The azimuthal Reynolds shear stress is more important to 
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turbulent mixing between subchannels. Figure 2.8 shows the measured circumfer­

ential turbulence shear stress distribution. The value of the maximum shear stress 

is 2.2u*j:EF at the angle of 65° (measuring positions: see figure 2.2). At an angle of 

around 40° the Reynolds shear stress is zero. The important conclusion that has to be 

drawn from these measurements is that high shear stresses are found away from the 

gaps. This fact suggests the existence of large scale periodic flow pulsations, which is 

discussed in the following subsection. 

2.2.5 Periodic flow pulsations 

Experimental studies of turbulent inter-subchannel thermal mixing for single-phase 

flows using relatively simple subchannel geometries have indicated that complex tur­

bulent flows can arise. For example, Meyer [33] found that the azimuthal eddy­

viscosity is higher than the radial eddy-viscosity away from the rod, especially in the 

gap region, by a factor of between three and four. In a pipe, this ratio is at most two 

[59]. There is thus strong anisotropy in the eddy diffusivity. 

Rowe et al. [55] performed an experimental study to investigate the effect of 

the flow channel geometry on fully developed turbulent flow in channels with rod 

bundles. The experiments were performed with water and a Reynolds number of 

50, 000 "' 200,000. The pitch-to-diameter ratio was 1.125 "' 1.25. The autocorre­

lation function and the velocity and turbulence intensities were measured. It was 

pointed out that the periodic behaviour, observed in the autocorrelation functions 
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indicates a dominant frequency of turbulence. As the rod gap spacing is reduced, 

the dominant frequency of turbulence is increased. Furthermore, this frequency is 

insensitive to the Reynolds number. Limited data of the radial turbulence inten­

sity was also obtained. It was concluded that macroscopic flow processes exist near 

the rod-to-rod gap. This increased turbulence intensity indicates an enhancement of 

cross-flow mixing. 

Experiments of Hooper [25] and Hooper and Rehme [26] indicated that the 

axial and circumferential turbulent velocities have a clear periodic large-scale struc­

ture. More specifically, Hooper and Rehme [26] made more detailed measurements of 

the mean axial velocity, all the six Reynolds stresses and they came up with auto and 

cross-correlations of turbulence intensities. The measurements were made in a wall 

bounded rod array and a square pitch rod cluster. Spatial auto and cross-correlation 

functions were measured at four positions on the symmetry line between two rods, 

labeled as 1, 2, 3, 4 and corresponding toy-distances of 0, -10, 5 and 10 mm, respec­

tively. So, point 1 was exactly at the center of the rod-to-rod gap and the relative 

to point 1 positions of the other three points can be understood from their above 

distances. 

It was found that the axial and circumferential turbulent velocities clearly have 

a periodic behaviour and their peak values were about 25% of the mean axial velocity, 

while the radial turbulent velocities do not have a periodic character. In addition, the 

high magnitude of the circumferential Reynolds shear stress is also associated with 
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the large scale structure of the circumferential turbulent velocity. 

In order to resolve the large scale structure, the auto and cross-correlation 

functions were obtained. From the autocorrelation results, the axial turbulent veloc­

ities showed a periodic component with a peak frequency of 92 Hz for the locations 

2 and 4, while the periodic behaviour was not observed at location 1. This periodic 

character was also obtained in Rowe's experiment. Moreover, Hooper and Rehme 

found the same periodic behaviour in the circumferential turbulent velocity at all 

four locations with the same frequency as the frequency of the axial turbulent veloc­

ity. The spatial correlation showed that there is a phase shift of 180° in the axial 

turbulent velocities for the locations 2 and 4, while no phase shift was observed in 

the circumferential turbulent velocity. 

Therefore, the axial and circumferential turbulent velocity has a large scale 

structure with a phase shift. The long length scales of the axial and circumferential 

turbulent velocities, relative to the gap width, emphasize the anisotropy of the tur­

bulent transport processes at the rod gap. It is considered that this periodic large 

scale structure in the circumferential turbulent velocity causes periodic momentum 

exchange through the rod-to-rod gap. 

Moller [36] developed a phenomenological model to describe the formation of 

large eddies near the gaps by adopting the coherent structure concept [27] in the gap 

regions of rod bundles. In his study, similarly to Hooper and Rehme [26], Moller 

[36] found peaks at characteristic frequencies in the power spectra of the turbulent 
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velocity fluctuations in the axial direction and in the direction parallel to the walls. He 

established a relationship between the gap width and the non-dimensional frequency, 

the Strouhal number, which was defined with the characteristic frequency, f, the rod 

diameter, D, and the friction velocity, u_,.: 

Str = JD (2.11)
u_,. 

The large-scale eddies move almost periodically through the gaps of the rod bundles 

at the characteristic frequency. Similarly to Rowe et al. [55], he found that the 

characteristic frequency, as well as the maximum value of the power spectra increase 

with decreasing gap width. 

Guellouz and Tavoularis [21], [22] did a comprehensive study on the structure 

of turbulent flow in a rectangular channel containing a cylindrical rod, focusing on 

the gap between the rod and a plane wall. Reynolds averaged and phase averaged 

measurements were performed to characterize the features of the large-scale struc­

tures. The presence of large-scale, quasi-periodic structures in the vicinity of the 

gap for a range of gap widths was demonstrated through flow visualization, spec­

tral analysis and space-time correlation measurements. The measurements identified 

large-scale structures with a field of a street of three dimensional, counter rotating 

vortices, whose convection speed and stream-wise spacing were found to be functions 

of the gap width. Phase-averaged measurements identified the structures as coherent 

vortical structures with instantaneous phase-correlated vorticity. 
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A few suggestions have been made on the mechanism of developing periodic 

behaviour in the turbulence intensities. Hooper and Rehme [26] contended that the 

180° phase shift in the axial turbulence intensity between points 2 and 4 may be the 

cause of intersubchannel instability stemmed in the periodic behaviour. It is said 

that if the mass flow in one subchannel decreases, local axial pressure gradient also 

decreases, with the generation of a transverse pressure difference between the sub­

channels. The increasing magnitude of the pressure driven intersubchannel instability 

may lead to the selective amplification or excitation of the axial and circumferential 

components of the turbulence intensities. 

From the different turbulent structural investigations, a general consensus is 

derived. The large-scale coherent structures are found to exist in any longitudinal 

slot or groove in a wall or a connecting gap between two flow channels, provided 

that certain geometrical restrictions are satisfied. These structures are generated in 

both isothermal and non-isothermal flow conditions. The peaks in the power spectra 

are found to be highest for the fluctuating velocity components parallel to the walls 

directly in the gaps. With decreasing gap width, the peaks become narrower in the 

frequency range and they reach higher maximum values. This means that the average 

velocity through the gaps increase with decreasing gap width. For higher gap widths, 

the peaks broaden and the maximum values of the power spectras decrease. The 

large eddies move almost periodically through the gaps of rod bundle geometries at 

a characteristic frequency. 
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2.2.6 Turbulent eddy diffusivity and anisotropy 

The turbulent eddy diffusivity of momentum or heat is used to describe the anisotropic 

turbulent properties in a rod bundle geometry. 

The turbulent eddy diffusivity of momentum is defined as the ratio of the 

Reynolds stresses to the mean velocity gradients. In a circular pipe, the radial eddy 

diffusivity was obtained by Reichardt [48]. The eddy diffusivity increases from the 

wall and then reaches a constant value at the core of a circular pipe. For the rod 

bundle geometry, the eddy diffusivity distribution is different from that of a circular 

pipe. 

Rehme [45] defined the axial, radial and circumferential components of the 

turbulent eddy diffusivity of momentum as: 

-u'v'r (2.12)eM= 8Ur ' 

ar 

where Ui (i = x, r, ¢) is the time mean velocity and u', v' and w' are the velocity 

fluctuations in the axial, x, radial, r and azimuthal or circumferential, ¢ direction, 

respectively. 

The dimensionless eddy diffusivities were also defined as follows: 

x r <P 
x+ eM r+ eM </J+ eM (2.13)eM = -L , eM = -L , eM = -L

U7 U7 U7 
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where L is the normal distance from the walls to the maximum velocity line. The 

measurement of the eddy diffusivity was made in a rod bundle with the pitch-to­

diameter ratio of 1.07 and at a Reynolds number of 8.7 *104 
. From the measurements 

it was found that the maximum value of the dimensionless circumferential eddy diffu­

sivity, ctJ, equal to 20 or higher, was located near the gap regions. This value is 260 

times higher than the maximum value of the dimensionless radial eddy diffusivity in 

a circular pipe (c:J = 0.0075). The maximum value of the dimensionless radial eddy 

diffusivity in the rod bundle was about 0.18. Thus, the strong anisotropy in the eddy 

diffusivity was revealed with an anisotropy factor above 100. This anisotropy of the 

eddy diffusivity was also confirmed by Trupp and Azad [66]. 

Rehme [47] showed that the circumferential turbulent eddy diffusivity of rna­

mentum, which was measured near the gaps, strongly increases with decreasing pitch­

to-diameter ratio. He summarized his results in the following correlation: 

8 ) -242 

cti = 0.0177 D (2.14)( 

where S represents the gap spacing width. 

The radial eddy diffusivity of momentum does not depend on the angular 

position in a rod bundle geometry. It increases from the rod wall surface, similarly 

to the case of a circular pipe. Away from the rod wall the eddy diffusivity deviates 

from the circular pipe case, with a value of two times higher. 

Seale [59], [58] presented some anisotropic factors at the gap of a wall sub­
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channel. He asserted that the circumferential eddy diffusivities are much higher than 

the radial ones, as observed in Rehme's experiment. It was also mentioned that the 

anisotropy factor increases as the pitch-to-diameter ratio is reduced. The anisotropy 

factor ranged from 3 """ 30 with a pitch-to-diameter ratio of 1.1 """ 1.8 

The eddy diffusivities of heat are defined as the ratio of the turbulent heat 

flux to the temperature gradient: 

-u'T' -v'T' -w'T'ex cr crP _ (2.15)'-H=~, "'H=~, "'H--ar­

ox or r8¢ 

The dimensionless eddy diffusivities of heat were defined as: 

(2.16) 


Krauss and Meyer [30] provided eddy diffusivities of heat in a wall subchan­

nel of a heated 37-rod bundle ~ = 1.12, ~ = 1.06. The maximum value of the 

dimensionless circumferential eddy diffusivity of heat was found at 20 """ 30° from 

the rod-to-rod gap and it was about 20. The maximum value of the dimensionless 

radial eddy diffusivity of heat was located at the symmetry line and it was about 0.18. 

Thus, the same anisotropy factors are obtained for heat as well as for momentum. In 

addition, the radial turbulent Prandtl number, which is defined as the ratio of the 

eddy diffusivity of momentum and the eddy diffusivity of heat in the radial direction, 

was about 2 """ 2.5 near the heated wall and it decreases with increasing distance 
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from the heated wall, reaching unity at the symmetry line which is the same as for a 

circular pipe flow. 

2.3 Turbulent Interchange Mixing 

2.3.1 Subchannel models for turbulent interchange mixing 

Turbulent interchange mixing between subchannels is modelled using a subchannel 

approach. With this approach, the averaged enthalpy or temperature over a subchan­

nel is used to determine the mixing rate. Consider two subchannels, i and j, with 

bulk enthalpies of hi and hJ, respectively. Assume that turbulent mixing causes the 

flow across the gap between the two subchannels at a mass flow rate, w, and at a 

mass velocity, v. This mass flow rate or mass velocity is a fictitious property, equal to 

the real mass transfer which would be needed to carry the observed amount of heat 

from one subchannel to the other. 

The conservation of mass through the subchannels yields: 

w=pvS (2.17) 

where S is the gap spacing width. The transported heat between the subchannels per 

unit axial length is modelled as a diffusive process, using a turbulent eddy diffusivity, 
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c:{f as the diffusion constant [9]. 

q' = -pc:l!. ([)h) s (2.18)
~J oz .. 

tJ 

The gradient of enthalpy, h, in equation 2.18 is linearized as: 

([)h) h·- h· - ~ J t (2.19)oz ij ~Zij 

where ~Zij represents the 'mixing distance' between the subchannels and it is of­

ten set to the centroidal distance between the two sub channels, r5ij. Substitution of 

equation 2.19 into equation 2.18 provides: 

(2.20) 


As an alternative expression, the heat exchanged between the subchannels is given in 

the following equation, using the turbulent mixing flow rate, w [53]: 

(2.21) 


The turbulent mixing flow rate is obtained by equating equation 2.20 to equation 2.21 

and it is given by: 

(2.22) 
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Dimensionless mixing factors are often used to represent the degree of turbu­

lent mixing between subchannels. Ingesson and Hedberg [29] introduced a mixing 

factor in terms of the mixing velocity, v, the mixing distance, 6ij, and the reference 

eddy diffusivity, €, which is given by: 

(2.23) 


This factor can be considered as a multiplier which accounts for how much higher 

the eddy diffusivity in rod bundles is in comparison with a reference eddy diffusivity. 

Usually, the eddy diffusivity of a circular pipe is used as the reference mixing eddy 

diffusivity. Rehme [47] provided a reference eddy diffusivity using a friction coefficient, 

f: 

17- 1/ (2.24)c=20Rey8 

The second dimensionless mixing factor is a mass Stanton number used by 

several authors [53], [51]. The definition of the number is the ratio of the mixing flow 

rate to the axial mass flow rate, which is given by: 

(2.25) 


A third dimensionless mixing factor, the gap Stanton number is defined as the 
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ratio of the mixing velocity, v, to the axial bulk velocity, Ub, which is given by [12]: 

(2.26) 


Replacing the mixing velocity, using equation 2.17 and equation 2.22 gives the fol­

lowing expression for the gap Stanton number: 

(2.27) 


where the temperatures ~ and Ti correspond to the bulk temperatures of subchannels 

i and j, respectively. 

The fourth mixing factor is the mixing number, w / J.-t, which is defined as the 

mixing flow rate divided by the molecular viscosity [52]. The four mixing factors 

mentioned above are interchangeable. In order to compare the mixing factors used 

by different authors, all the mixing factors are converted into a gap Stanton number 

in the following: 

v w "E pv
St9 = U = U ~ Y = -Mii (2.28)

5 ­
b J.-t bOij JL 
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2.3.2 	 Contribution of flow pulsations and secondary flows to 

turbulent mixing 

In subsections 2.2.3 and 2.2.5 the contribution of the secondary flows and the large 

scale flow pulsations in axial turbulent flows through rod bundle geometries is being 

discussed. Due to its importance, this discussion is extended and summarized in this 

subsection. 

As it is already mentioned, it is generally accepted that turbulent cross-flow 

mixing, as well as the amount of heat transfer between the adjacent subchannels are 

dependent on gap spacing. As gap spacing is reduced, the heat flow from the rod 

to the gap may remain constant. This fact was confirmed by several experimental 

results [29], [54]. 

Rowe et al. [55] explained this behaviour of turbulent mixing flow rate by 

adopting the mass Stanton number in equation 2.25 based on D instead of S. Sub­

stitution of equation 2.22 into equation 2.25 yields the following equation: 

(2.29) 


From equation 2.29 it is seen that the mass Stanton number is linearly proportional 

to the eddy diffusivity and the gap spacing. As the gap spacing is reduced, the eddy 

diffusivity should be increased to satisfy the fact that the mass Stanton number is 

insensitive to the rod gap spacing. 
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Seale [59] observed that strong anisotropy in the eddy diffusivity was found 

through investigations of heat transfer across rod bundles. As mentioned in 

subsection 2.2.6, the azimuthal eddy diffusivity of heat in the gap region was much 

higher than the radial eddy diffusivity. The anisotropic diffusivities are thought to 

be the reason for high mixing in narrow gaps of rod bundles. 

The increase of the eddy diffusivity near the gaps is mainly associated with the 

flow pulsation phenomenon. According to Hooper and Rehme's experiment [26] high 

turbulence intensity near the gap influences high momentum exchange between sub­

channels. Moreover, the periodic behaviour of turbulence intensity provides evidence 

of the periodic flow pulsation occurring near the gaps. 

It is of interest to assess how much secondary flows contribute to mixing inter­

change compared with the contribution of the anisotropic eddy diffusivity. In order 

to explore the effect of secondary flows on mixing, several numerical investigations on 

this issue have been made. 

Seale [60] investigated the change of the gap Stanton number due to sec­

ondary flows. He calculated the gap Stanton number with and without secondary 

flows. He concluded that secondary flows increased the gap Stanton number by 10 

to 15%. Hence, experimental gap Stanton numbers were still under estimated by the 

turbulence models used by Seale, even if secondary flows were included. From this 

investigation it was concluded that contribution of secondary flows to mixing is not 

significant and it is much lower than the contribution of the anisotropic eddy diffu­
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sivity. By augmenting the circumferential eddy diffusivity using an anisotropy factor, 

determined from experimental data, the experimental gap Stanton number was able 

to be reproduced. 

Bartzis and Todreas [3] used a similar approach to Seale's in order to investi­

gate the contribution of secondary flows to mixing. Their results revealed that the use 

of an anisotropic eddy diffusivity reproduced the experimental axial velocity. With 

an isotropic eddy diffusivity, axial velocity was underpredicted, regardless of the in­

clusion of secondary flows. Therefore, it was concluded that the anisotropic eddy 

diffusivity has a greater impact on the axial velocity than the secondary flow. In ad­

dition, the temperature distribution was strongly dependent on the eddy diffusivity 

from their heat transfer calculation. 

Summarizing, the main conclusion of this review is that the contribution of 

the secondary flows to the anisotropy of the flow field is very small. What makes the 

flow highly anisotropic, with high axial and azimuthal turbulence intensities in the 

gap regions, and is responsible for the high mixing rates between the subchannels, is 

the existence of the periodic flow pulsations across the gaps in the rods. 

2.3.3 Overview of the relevant numerical investigations 

In this subsection an overview of the numerical investigations, relevant to this research 

work, is carried out. 

A number of attempts have been made to predict the turbulent flow and mixing 
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in rod bundles using computational fluid dynamics (CFD). Unlike the safety analysis 

codes described in the introduction, CFD codes solve the conservation equations for 

mass, momentum, and energy on sufficiently fine grids, so that constitutive relation­

ships for pressure drop or heat transfer coefficient are not required. If a Reynolds 

Averaged Navier-Stokes (RANS) solver is applied, then special models are required 

for the turbulence. 

Rock and Lightstone [50] assessed the applicability of the k - E model by 

applying the model to Seale's experiment [59] which considered turbulent air flow in 

a twin subchannel geometry. They found that the k-E model favourably predicted the 

radial component of the turbulent eddy viscosity, but underpredicted the azimuthal 

component. Thus, the k- E model failed to reproduce the experimental turbulent 

mixing. In addition, the k - E model was unable to predict secondary flows. This was 

expected since secondary flows arise from anisotropy in the turbulence and the k- E 

model is unable to predict that anisotropy. 

Higher-order turbulence models are thus necessary for prediction of secondary 

flow. Launder and Ying [31] proposed an algebraic stress model for normal and 

shear stresses which was derived by simplifying the corresponding transport equation 

proposed by Hanjalic and Launder [23]. The applied length scale was obtained from 

the geometrical formulation suggested by Buleev [6]. A number of authors have 

applied Launder and Ying's model to estimate secondary flows in a rod bundle [1], 

[58]. Gessner and Emery [19] pointed out that Launder and Ying's model predicted 
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secondary flow streamlines very well, but significantly underpredicted the turbulence 

kinetic energy. Demuren [15] suggested that the underprediction of Launder and 

Ying's model to a rod bundle is due to secondary velocity gradients neglected in the 

model. They applied Naot and Rodi's model [37] and Demuren and Rodi's model 

[16] which include secondary velocity gradients by eddy viscosity type relations. Both 

models were able to produce secondary velocities in square and rectangular ducts as 

well as in rod bundles. 

Chang and Tavoularis [10] used an unsteady RANS approach to simulate an 

isothermal flow in a channel containing a single rod. They used an RNG k- E model 

to predict the turbulence in conjunction with a timestep that was small relative to 

the timescales of the large scale structures. The goal of that exploratory work was to 

see if the flow pulsations (which appear as coherent structures) could be predicted by 

a RANS model. Interestingly, they found that such structures were predicted during 

the transient phase of the simulation. Eventually, the flow became steady and the 

structures washed out. For comparison, simulations were also performed using Large 

Eddy Simulation (LES) with a Smagorinsky subgrid model. The LES simulations 

also showed structures with a periodic oscillation across the gap between the base 

of the rod and the wall. Predictions were compared to experiments and it was seen 

that the k - E RANS results significantly overpredicted the flow oscillations timescale 

and the stream-wise spacing. The LES simulation underpredicted the timescale and 

overpredicted the spacing. On close examination of the LES results, however, it was 

42 




Master's Thesis - George Arvanitis McMaster - Mechanical Engineering 

seen that the grid used was too coarse. This means that much of the turbulent kinetic 

energy was not modelled directly as a result of the filtering process. 

Chang and Tavoularis [10] extended their project by modelling the problem 

using the Reynolds Stress Model. Again, by running an unsteady simulation with an 

appropriate timestep, they found that they were able to predict the presence of co­

herent structures. Biemiiller [4] performed LES simulations to predict the pulsations 

occurring in the gap connecting two rectangular channels. To reduce computational 

effort, their domain represented only a portion of the actual channels with periodic 

boundary conditions applied at the inlet and the outlet of the domain. They also used 

a coarse grid (8 *8) in the gap region and applied wall functions to treat the no-slip 

walls. Because of the inherent differences between the simulated geometry and the 

experimental geometry, quantitative agreement was not obtained. Nonetheless, the 

LES simulations are promising since they were able to capture the large-scale flow 

pulsation in the gap. 

Heavy liquid metals are used as coolant for an accelerator driven sub-critical 

system. Cheng and Tak [14] performed a CFD analysis on the thermal-hydraulic 

behaviour of heavy liquid metal flows like lead-bismuth eutectic in subchannels of 

both triangular and square lattices. The effects of parameters like turbulence models 

and the P/D ratio on the thermal-hydraulic behaviour were studied. It was found 

that only second order closure turbulence models could faithfully reproduce secondary 

flows. For the range of Reynolds number considered, the amplitude of secondary flows 
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was found to be less than 1% of the mean flow. It was found that turbulence had 

a strong anisotropic behaviour in the gap region. These findings were in accordance 

with previous CFD subchannel studies. The turbulence behaviour was found to be 

the same for both triangular and square lattices. From a heat transfer point of view 

it was observed that the heat transfer coefficient (Nusselt number) had a strong cir­

cumferential non-uniformity in tight rod bundles. This clearly suggests that the sub­

channel analysis codes used in nuclear industry which rely on an averaged approach 

cannot faithfully reproduce the exact flow and heat transfer field in rod bundles with 

small P/D ratio. The non-uniformity should be taken into consideration, due to the 

importance of local cladding temperature to the corrosion behaviour. 

T6th and Asz6di [65] carried out a CFD analysis on the fluid flow and heat 

transfer in a VVER-440 fuel assembly (Russian PWR). The BSL Reynolds Stress 

model was used in their investigation based on the fact that this model could repro­

duce the flow field in a triangular rod bundle more accurately as compared to other 

two equation or Reynolds stress models. Two different rod bundles were examined: 

one without spacer grid and one with spacer grid. Similar boundary conditions were 

used in both cases to investigate the mixing process. In the geometry without spacer 

grids it was found that the secondary flows are symmetric to the subchannel walls 

and they do not cause convective mixing between adjoining subchannels. For the 

rod bundle with spacer grids, it was found that the secondary flows are more intense 

and that they can cause convective mixing between the subchannels. CFD analysis 
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should take into account the effect of spacer grids. 

!keno and Kajishima [28] performed an LES study of turbulence in a rod 

bundle geometry without heat transfer. The computational domain comprised of 

four subchannels which were large enough to capture the large scale structures. The 

LES study was performed for three different values of PID ratio. The lateral flow 

was found to be not confined to a subchannel, and there was strong indication of 

a pulsating flow through the rod gaps between subchannels. The intensity of the 

gap flow increased as PID increased. The turbulence intensity profile in the rod gap 

suggested that the flow pulsation was caused by the turbulence energy transferred 

from the main flow to the wall-tangential direction. 
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Chapter 3 

Mathematical Modelling 

3.1 Overview: Brief History of Turbulence Modelling 

Reynolds developed the time averaged N avier-Stokes equations in the late nineteenth 

century from his research on turbulence. The earliest attempts in developing a math­

ematical description of the turbulent stresses, which is the core of the closure problem, 

were performed by Boussinesq with the introduction of the eddy viscosity concept. 

However, it was not until 1920, that the first successful calculation of the practical 

turbulent flow was achieved, based on the Reynolds averaged Navier-Stokes equations 

with an eddy viscosity model. 

Prandtl came up with his pioneering research in 1925 and proposed the concept 

of mixing length as a basis for the determination of the eddy viscosity model and thus 

the turbulent stresses could be modelled. This mixing length model led to closed 

form solutions for pipe and channel turbulent flows that were remarkably successful 
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in collapsing the existing experimental data [63]. This early development was the 

cornerstone for nearly all turbulence modelling for the next twenty years. The mixing 

length model is now known as the algebraic, or zero equation model. 

To develop a more realistic mathematical model of the turbulence stresses, 

Prandtl in 1945 proposed the one-equation model in which the eddy viscosity de­

pends on the turbulence kinetic energy, which was obtained from a separate modelled 

transport equation. This was a precursor to the one-equation models of turbulence or 

the so-called k -l models, wherein the turbulent length scale l is specified empirically 

and the turbulent kinetic energy k is obtained from a modelled transport equation. 

The first complete turbulence models were introduced through the first two­

equation model, known as the k- c model. Similarly to the one-equation models, the 

two-equation models solve for the turbulence kinetic energy, k, and in addition they 

solve another transport equation, which in the k - c model case is for the dissipation 

of the turbulence kinetic energy, c. The two-equation models also used the concept 

of the eddy viscosity to determine the Reynolds stress tensor. 

The next step in accuracy came with the modelling approach, known as second 

order or second moment closure approach. The primary conceptual advantage of a 

stress transport model is the natural manner in which nonlocal and history effects are 

incorporated. The complex nature of these models awaited the advent of adequate 

computer resources to be exploited fully. The four main categories of turbulence 

models were: 
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• Zero Equation Models 

• One Equation Models 

• Two Equation Models 

• Second Order closure Models 

Development of the afore-mentioned models gained importance with the increased 

computing capabilities. 

In the early 1980's researchers started focusing on more accurate simulation 

techniques, like Large Eddy Simulations (LES) and Direct Numerical Simulations 

(DNS), which can represent the physics of turbulence accurately, as these are not 

based on the basic modelling or approximating techniques as those that were used by 

previous models. DNS models solve for the actual turbulent flow field. 

As it is clear from the above 'glance' on the history of turbulence modelling, a 

number of models have been developed that can be used to approximate turbulence. 

Some have very specific applications, while others can be applied to a wider class of 

flows with a reasonable degree of confidence. In this chapter, the basic idea of the 

Reynolds Averaged Navier Stokes (RANS) models is introduced through the analysis 

of the conservation equations. The last section of this chapter is devoted to the main 

aspects together with a discussion on the RANS model used in this research work, 

known as the Spalart - Allmaras (SA) model. 
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3.2 Conservation Equations 

3.2.1 Instantaneous quantities and their decomposition 

An example of a plot of a turbulent instantaneous velocity field can be seen in 

figure 3.1. 

6 
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U1(t) 
(ms-1)4 

~~~~~~~~~~~~~~~~~~ 
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Figure 3.1: Time history of the axial velocity U1 (t) on the centerline of a turbulent 
jet. Adapted from Tong and Warhaft [64] 

This field may be generated by the readings of a probe put in a pipe, where 

the fluid flow is turbulent. The typical mathematical approach to study a turbulent 

instantaneous velocity field, ui, is to decompose it in a mean velocity field, ui, and a 

fluctuating velocity field, u~ , i.e.: 

(3.1) 
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The decomposition of any instantaneous quantity field is fundamental in turbulence 

modelling techniques. The simple reason behind this is that it is not affordable, even 

with current computational power, to fully solve a turbulent flow, except for some 

few simple cases. Instead of solving equations for instantaneous quantities, in most of 

the cases it is more affordable to solve the equations for the time averaged quantities, 

like Ui in equation 3.1. 

Similarly to the instantaneous velocity field, the instantaneous pressure and 

temperature field, respectively, can be decomposed as: 

p=p+p (3.2) 

(3.3) 

The time averaged (mean) quantities have the known linear properties: 

x+y=x+y 

(3.4)ax=ax 

x=x 

where a is a constant. 

50 




Master's Thesis - George Arvanitis McMaster - Mechanical Engineering 

3.2.2 Conservation of mass 

The continuity equation for incompressible flow, using the Einstein summation con­

vention, is the following: 

ap a - + -(pu·) = 0 (3.5)at axj J 

Decomposing the instantaneous velocity to its mean and fluctuating components and 

time averaging, equation 3.5 is written as: 

(3.6) 


Since the mean of a fluctuation equals zero, equation 3.6 is simplified to: 

ap a _ 
- +-(pu·) = 0 (3.7)at axj J 

Expanding its second term, equation 3.7 is written as: 

(3.8) 
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Since the flow is incompressible, the fluid density is constant and the final simplified 

form of the continuity equation is: 

(3.9) 


which is the time averaged continuity equation for incompressible flows. 

3.2.3 Conservation of momentum 

The momentum equations, also known as the N a vier Stokes equations, for in com­

pressible flows can be written as [24]: 

(3.10) 

Substituting the decomposed expression of the instantaneous velocity field from equa­

tion 3.1 into the N avier-Stokes equations and then applying a time average, the 

Reynolds Averaged Navier-Stokes (RANS) equations are obtained: 

(3.11) 
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Using the time averaging properties (equations 3.4), equation 3.11 is written: 

(3.12) 


Rearranging: 

(3.13) 

The above equations are known as the Reynolds Averaged N a vier Stokes equa­

tions for incompressible flow. By comparing the Navier-Stokes equations 3.10 and the 

Reynolds averaged Navier-Stokes (RANS) equations 3.13, it can be seen that the dif­

ference between them is the term: - p (u~uj). This term is called the Reynolds stresses 

tensor. At this point, the essence of the so-called closure problem is revealed and it is 

the determination of the Reynolds stresses. Because of the existence of the Reynolds 

stresses and the nonlinearity of the equations, RANS equations cannot be solved in 

an analytical way. In order to close the RANS equations the Reynolds stresses must 

be expressed in some way and here is the point where turbulence modelling comes 

into picture. The following section refers to the turbulence model used in the current 

simulations, which lies in the family of RANS models. 
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3.3 The Spalart- Allmaras Model 

The turbulence model used in the current simulations is the Spalart- Allmaras (SA) 

model [62]. It is a one-equation model, which solves for the turbulent eddy viscosity, 

Vt. The modelled eddy viscosity is introduced to the RANS equations 3.13 through 

the eddy viscosity approach of the Reynolds stresses: - pu~uj = 2vtSii, where Sii is 

the strain rate tensor. The transport equation for the eddy viscosity is: 

(3.14) 

The quantity i/ is defined so that it equals ""YUr all the way to the wall. In 

this way, i/ is equal to Vt except in the viscous wall region, for which: 

(3.15) 


The quantity v is the kinematic viscosity, 1-lt is the turbulent dynamic viscosity and 

fv 1 is a function, borrowed from Mellor and Herring [32]. Also, d is the distance from 

the wall, a is a turbulent Prandtl number and cbl, cb2 and cw1 are constants of the 

model (see table 3.1). The subscripts b and w stand for basic and wall respectively 

and fw is a non dimensional function (see table 3.1). In the R.H.S of equation 3.14 

the first term represents the production of the turbulent eddy viscosity. In this term 

Sis a modified velocity gradient norm (see table 3.1). The second term in the R.H.S 
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of equation 3.14 represents the destruction of the turbulent eddy viscosity and the 

third term represents the diffusion of it. 

The idea for the SA model was initiated from Baldwin-Barth's model [2]. The 

fundamental difference of the SA model compared to the Baldwin-Barth's model is 

based on the idea that generating a one-equation model as a simplified version of the 

k- E model is not optimal [62]. What Spalart and Allmaras did was to generate 

'from scratch' all the terms in the transport equation 3.14 for the turbulent eddy 

viscosity. So, what they basically did in their original paper was to present four 

nested versions of the model from the simplest, applicable to free shear flows to 

the most complete, applicable to viscous flows past solid bodies and with laminar 

regions. In this way, as each additional effect was considered, new terms were added 

and calibrated resulting in the final form of the transport equation 3.14. In this 

procedure, the various constants and functions of equation 3.14 were determined and 

they are summarized in table 3.1. 

The choice of i/ as the transported quantity is beneficial for numerical solutions. 

The reason for this is that i/ behaves linearly near the wall. In this way, the model does 

not require a finer grid than an algebraic model would. Early one-equation models 

use length scales related to the boundary layer thickness, which make them non-local, 

i.e. the equation at one point depends on the solution at other points. In contrast, 

the SA model is local, which makes it compatible with grids of any structure and 

Navier-Stokes solvers in two or three dimensions. The wall and freestream boundary 
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Table 3.1: SA constants and functions 

Symbol 

Cbl = 0.1355 

Cb2 = 0.622 

2 
IJ=­

3 

Cwl = 3.2391 

Cw2 = 0.3 

Cw3 = 2 

/'1, = 0.41 

Cvl = 7.1 

= [ 1 + c!3 ] ~ fw g g6+c6w3 

g = r + Cw2 (r6 
- r) 

X1fv2 = - 1 + Xfvl 

- i/
S = S + K,2d2 fv2 

s 

Explanation 

Production term constant 

Diffusion term constant 

Turbulent Prandtl number 

Destruction term constant 

Constant in g-function 

Constant in fw-function 

Von Karman constant 

Constant in fv 1-function 

Function in the destruction term 

Function in f w-function 

Function in g-function 

Function in S 

Modified velocity gradient norm 

Velocity gradient norm 
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conditions are trivial. This fact adds an advantage of the SA model compared to 

some two-equation models, which are highly sensitive to freestream values, such as 

the value of the time scale. 

Although the model has some limitations, such as the lack of accounting for 

the decay of the eddy viscosity in isotropic turbulence and the implication that in 

homogeneous turbulence the eddy viscosity is unaffected by irrotational mean strain­

ing [41], it was not meant to be a universal model. It was specifically calibrated and 

provided good results for aerodynamic flows [20]. It was used successfully in vortex 

shedding flows and in general in flows where there is formation of vortex structures, 

both for separated and unseparated boundary layer flows and with various degrees of 

complexity [40], [7]. 

A higher order of accuracy model would probably give more accurate results, 

but, as the intention of Spalart and Allmaras was, their model was developed on the 

basis of removing the incompleteness of algebraic and one-equation models (based 

on k) and on the other hand to acquire a computationally simpler model than the 

two-equation models. Although the SA model was calibrated for aerodynamic flows it 

was also used successfully for internal turbulent flows, such as channels with corners 

([18], [39], [56]). 

The above reasons provide justification for using this model in the present 

study, since it has been experimentally observed that a street of counter rotating 

pairs of vortices in an alternating pattern is formed at the edges of the gap region, 
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which conects two rectangular channels (figure 4.1). This is the geometry used in the 

present study, and is discussed in the following chapter. 
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Chapter 4 

Analysis of Results 

4.1 Overview 

This chapter presents the simulation results and analysis of the turbulent flow field 

structure in a compound rectangular channel geometry. The numerical results are 

compared with the experimental dataset of Meyer and Rehme [34]. The importance 

of grid resolution and the numerical advection scheme is studied. Axial and span-wise 

velocity distributions, instantaneous velocity plots, turbulence quantities, correlation 

and power spectral density functions were generated and compared with the exper­

imental data. The last two subsections of this chapter present the study on the 

effect of the channel's length and the comparison of the results obtained using the 

Spalart-Allmaras (SA) turbulence model and the k- c model. 
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4.2 Experimental Dataset 

4.2.1 Description of the experiments 

Figure 4.1 shows the cross-section, the coordinate system and the associated velocities 

for the twin rectangular subchannel geometry. 

g 

Y(v) 

Z(w) 

X(u) 

Figure 4.1: Cross-section of the flow channel [34] 

The bulk flow is in the x-direction (i.e. from the page to the reader in 

figure 4.1). The stream-wise (axial) direction is denoted by x, the wall normal di­
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rection is denoted by y and z is the span-wise direction. The dimensions of the 

cross-section (see figure 4.1) varied through the experiments, resulting in 18 different 

configurations. Nine of these configurations consisted of two almost identical rectan­

gular channels, connected by gaps of different sizes. Seven geometries consisted of one 

rectangular channel (same dimensions for all seven cases) with a gap at its one side. In 

these cases the gap is referred to as slot and again the dimensions of it change through 

the studied flow configurations. The length of the test section was L = 7, 000 mm. 

The dimensions of one of the experimental test cases for which numerical simulation 

results were generated are provided in table 4.1. This specific test case was selected 

to be studied because Meyer and Rehme provided detailed experimental results for 

this geometry in their paper. 

Table 4.1: Cross-section dimensions (in mm) of the selected geometry 

Dimension Value 

a 180.0 

bl 136.4 

b2 136.2 

d (gap depth) 76.96 

g (gap width) 10.0 

The working fluid was air at atmospheric pressure and room temperature. 

The Reynolds number for most of the cases was Re = 2.5 * 105 , based on the hy­

draulic diameter, Dh, and the bulk velocity of the flow, Ub. The hydraulic diameter 
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was defined for the channel neglecting the gap. To ensure fully developed flow con­

ditions, the length-to-hydraulic diameter ratio of the measuring plane was at least 

L 
Dh = 40. Meyer and Rehme [34] used Pitot tubes to measure the time mean values 

of the axial velocity and Preston tubes to measure the time mean values of the wall 

shear stresses. They also used hot wire anemometry to measure the turbulence shear 

stresses. FUrthermore, power spectral densities of the fluctuating velocities in the 

vicinity of the gap were obtained. At the same positions, autocorrelation functions 

for the velocity fluctuations in the stream-wise and span-wise directions were also 

measured. 

4.3 Simulation Details 

4.3.1 Solution domain and mesh generation 

The solution domain was based on case no.9 of the Meyer and Rehme experiments 

[34]. The dimensions of the cross-section of this geometry are given in table 4.1. A 

shorter length of L = 730 mm was used in the simulations with periodic boundary 

conditions. Periodic boundary conditions were used because the experimental length 

was too long to be numerically implemented with the available computational sources. 

The specific value of L was selected in order to capture approximately four vortex 

structures of alternate sequences in this length of the channel. This estimation was 

based on the wavelength of the structures reported by Meyer and Rehme [34]. 

The code uses finite volume discretization, with fully implicit time advance­
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ment scheme. For the present computations, in all ca.'les, the time discretization wa.'l 

carried out using the second-order backward Euler scheme. In four cases for all the 

equations (continuity, momentum and eddy viscosity), the advection scheme used by 

the code was the first order upwind scheme and in two cases, the advection scheme for 

the eddy viscosity was again the first order upwind, whereas for the continuity and 

momentum equations the advection scheme used was a second order accurate in space 

scheme. The details of the advection schemes used and in general the characteristics 

of all the cases are discussed in section 4.4. 

Figure 4.2: Reference mesh, M 1 

Based on the literature review on the Spalart - Allmaras (SA) model 

(section 3.3), the restriction on the dimensionless distance from the wall, y~, wa.'l: 

or (4.1) 
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An initial mesh (Mt) was generated, which had a total of 633,850 nodes. Uniform 

meshing law was applied in the respective directions. A cross-section of this mesh 

can be seen in figure 4.2. 

Figure 4.3: Mesh, M 5 

In the stream-wise direction (x-direction) the number of nodes is 50 (Xsub)· 

In the wall-normal direction (y-direction) there are 145 nodes (Ysub), whereas the 

number of nodes at the gap is 9 (Ygap)· In the span-wise direction (z-direction) the 

total number of nodes for both the subchannels is 109 (Ztot), whereas at the gap 

region there are 25 nodes (Z9ap)· The number of nodes for the reference mesh, M 1, 

and for the rest of the grid structures is provided in table 4.2. Grids M 2 , M 3 and 

M4 were generated from grid M 1 by doubling the number of nodes in the z-direction, 

x-direction and y-direction, respectively. For grid M 5 , shown in figure 4.3, the mesh 

is expanded in the z and y-directions, except for the gap, where the mesh is 1miform 
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Table 4.2: Number of nodes for the grid structures used 

Mesh 

Total 

X sub 


Ysub 


Zsub 


Ygap 


Zgap 


M1 M2 M3 M4 Ms 

633,850 


50 


145 


43 


9 


25 


1,268,600 


50 


145 


86 


9 


50 


1,267, 700 

100 

145 

43 

9 

25 

1,276,300 

50 

290 

43 

18 

25 

278,350 


50 


69 


40 


9 


25 


in both z and y-directions. For the x-direction, in all the cases, a uniform meshing 

law was applied. 

4.3.2 Fluid properties 

Table 4.3: Fluid properties 

Property Value Units 

Fluid Air 

Temperature 25 [OC] 

Density 1.185 [~] 
Dynamic viscosity 1.831 * 10-5 [Pa.s] 

In the experiments conducted by Meyer and Rehme [34], the fluid used was 

a1r. The thermal-physical properties of air used for the simulations are provided in 
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table 4.3. 

4.3.3 Boundary conditions and initial conditions 

In the stream-wise direction, periodic boundary conditions were applied. For all 

other surfaces of the channel, no slip wall boundary conditions were applied. The 

mass flow rate, m, was provided to drive the flow through the domain. This mass 

flow rate corresponds to a Reynolds number of 2.15 *105 
, based on the bulk velocity, 

Ub, and the hydraulic diameter, Dh, of the channel. 

An initial profile for the axial velocity was required to start the simulation. 

This profile was obtained from an SST run. The time step is set to 10-4 sec. 

The selected time step was based on the frequency of 68 Hz of the flow pulsa­

tions observed in the experiments [34]. This ensured that the timestep was suffi­

ciently small to capture the transient nature of the pulsations. As an implicit code, 

ANSYS CFX-11.0 does not require the Courant number to be small for stability. The 

statistics were started after 5,000 simulation time steps and then accumulated over 

another 5,000 time steps. The total time for the simulation was one second. 
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4.4 Results and Discussion 

4.4.1 Summary of cases 

In table 4.4 the cases presented in this report are summarized. In addition to these 

cases, two more simulations were carried out, and are discussed only in the last two 

subsections of this chapter. The computions were conducted in a two Quad core 

2.4 GHz processor and 2x4 GB of RAM memory. The simulation time varied from 

eight days to approximately a month, depending on the case study. 

Table 4.4: Summary of cases 

Case Used mesh Advection scheme 

c1 M1 

c2 M2 

c3 M3 

c4 M4 

Cs M1 

c6 Ms 

pt (o) Upwind 

pt (o) Upwind 

pt (o) Upwind 

1st (o) Upwind 

2nd (o) Accurate 

2nd (o) Accurate 

As it can be clearly observed in the above summary of the cases, the main 

parameters that change among them is the mesh used and the advection scheme. 

The advection scheme refers to the numerical treatment of the advection term in the 

transport equations which solve for the main variables of the flow, namely, the eddy 

viscosity and the three velocity components. For example, the advection terms in 
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equations 3.13 and 3.14 are the second terms on the LHS of the equations, which are: 

{) {) 
~ (pThuj) and !1 (puJ/), respectively. 
UXj UXi 

Advection is a phenomenon created by the fluid flow and represents the trans­

port of a quantity by the fluid motion. For example, in the momentum equation, the 

{)
advection term is~ (pu/ilj) and the transported quantity is the velocity ui, whereas 

UXj 

in the case of the term: !:1{) (puiv), the transported quantity is the eddy viscosity: i/. 
UXi 

In the discretization process of a fluid flow problem, the idea of the first order 

upwind scheme can be described by considering the simplest possible case, which 

is a one-dimensional fluid flow. A typical grid-point cluster for a one-dimensional 

problem can be seen in figure 4.4. In figure 4.4, the control volume's vertical edges 

W w P e E 

Figure 4.4: Grid-point cluster for one-dimensional problem 

define the two integration points, symbolized with w, for west and e, for east. The 

control volume node is point P. At its west and east sides lie point W and point E, 

respectively. Let ¢ be the transported quantity. What the first order upwind scheme 

assumes is that the value of ¢ in the advection term at an integration point is the 

value of¢ at the upwind node. For example, if the flow in figure 4.4 is from the left 

to the right, the value of ¢e will be the value of¢ at node w, ¢w· 

Although for high velocity flows parallel to the grid, the first order upwind 
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assumption is reasonable, in most turbulent fluid flows or very low-velocity flows, 

schemes of higher accuracy are necessary. In the case of the second order accurate in 

space scheme, ¢e is calculated by the following formula: 

(4.2) 


In equation 4.2, (3 is called the blending factor and in this case its value is unity. The 

spatial gradient ~~ is calculated at the adjacent nodes of the nodal point e and .6.x 

is the distance between nodes w and e. 

4.4.2 Mesh sensitivity 

To assess grid independence for the first order upwind runs, grids M 1 , M 2 , M 3 and 

M 4 had been used. In the case of the runs for which the second order accurate scheme 

was used the tested grids were M 1 and M 5 • 

In figures 4.5, 4.6 there is a comparison of the mean axial velocity profiles 

at the symmetric horizontal line in the cross-section of the tested geometry (see 

figure 4.1). Figure 4.5 refers to the set of the first order upwind runs and figure 4.6 

refers to the set of the second order accurate runs. As it can be seen in these two 

figures, the differences between the compared velocity profiles for the grids used are 

negligible. Specifically, the maximum difference between the plots for both figures 4.5 

and 4.6 was not more than 0.9%. 

Note that comparison of figure 4.5 to figure 4.6 shows that the second order 
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Figure 4.5: Mean axial velocity profiles for the first order upwind cases 
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Figure 4.6: Mean axial velocity profiles for the second order accurate in space cases 
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accurate scheme predicts higher gap velocities than the first order upwind scheme. 

Differences resulting from a change in the advection schemes are presented in the 

following subsections. The following results are presented and discussed for case C1 

with first order upwind accuracy and case C5 for second order accuracy in space. 

4.4.3 Axial velocity distribution 

Figure 4. 7: Contours of the normalized axial velocity U/Ub. Adapted from Meyer 
and Rehme [34] 

The normalized time averaged axial velocity contour from the experiments [34] 

is shown in figure 4.7. In this figure only the right channel together with the half gap 

are illustrated. The contour plots from the numerical simulations for cases C1 and 

C5 are shown in figures 4.8 and 4.9, respectively. 

In these figures, both the two channels together with the gap are illustrated. 
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Figure 4.8: Normalized axial velocity contour plot for case C1 

The bulk velocity, Ub = 21.5 m/s, was used for the normalization of the axial veloc­

ity. In both cases C1 and C5 , similar to the experiments, there was a clear symmetry 

with respect to the axis of symmetry through the gap. The normalized axial velocity 

at the cores of the two subchannels matched exactly its experimental value. The 

trend of the values at the contour lines from the centres to the corners of the sub-

channels for both cases, C1 and C5, matches the respective experimental trend. The 

contour plots show the typical bulging at the corners of the two connected channels, 

which is attributed to the formation of secondary flows. llight at the gap corners 

there was a bulging of the contour from the gap edges towards the two subchan­

nels. This phenomenon must be attributed to the cross-flow at the gap. In case C5 

(figure 4.9), the bulging at the corners of the gap is more pronounced compared to 
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Figure 4.9: Normalized axial velocity contour plot for case C5 

case C1 (figure 4.8). This pronounced bulging of the contour lines is closer to what 

the experiments showed, as depicted in figure 4.7. 

In summary, the same qualitative observations for the mean axial velocity were 

made as reported in the experiments [34). Furthermore, the velocity magnitudes are 

also very close to the experimental normalized velocity values. 

4.4.4 Instantaneous span-wise velocity distribution 

The in..'>tantaneous span-wise velocity contours at the (x, z) symmetry plane throi1gh 

the gap (i.e. at: y = ~' see figure 4.1) for case cl and c5 are shown in figures 4.11 

and 4.12, respectively. 

Figure 4.10 shows the plane at which the contour plots in figures 4.11 and 
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Figure 4.10: Symmetry plane at half of the height of the channel 

4.12 have been generated. Figures 4.11 and 4.12 show a snapshot of the span-wise 

velocities at an in..'>tant in time. The gap region is demarcated from the subchannels 

by two thick black lines. 

In case cl, figure 4.11 clearly shows an alternate pattern of large-scale flow 

structures. The range of the predicted values of the span-wise velocity is symmetric. 

The instantaneous span-wise velocity plots, obtained from the experimental measure­

ments, have also shown a similar symmetry in the range of the values. In addition, the 

magnitude of these velocity values is very close to the reported experimental values. 

In contrast, the predictions for case C5 (seen in figure 4.12) are not as struc­

tured. These contour plots reveal the fundamental difference between the two ad­

vection schemes used. The clear organized pattern of the contour plot in case C1 is 

basically the result of numerical diffusion. Wherever the solver sees a steep spatial 
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Figure 4.11: Instantaneous span-wise velocity contour for case C1 

gradient of a transported quantity,¢ (in the case discussed: ¢ = w), it tends to smear 

out this steep gradient. In this process, some information of the field simulated was 

missed. In contrast, in case C5 (figure 4.12) because of the higher accuracy in space of 

the advection scheme used, the steep spatial gradients did not smear out with space, 

resulting in a more realistic picture of the field simulated. 

In figures 4.13 and 4.14, the instantaneous velocity vector plots for both ca..<>es 
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Figure 4.12: Instantaneous span-wise velocity contour for case C5 

C1 and C5 at the symmetry plane through the gap (figure 4.10) are shown. Based 

on the contour plots in figures 4.11 and 4.12, this wiggly pattern of the velocities in 

figures 4.13 and 4.14 was expected. 

Figures 4.11, 4.12, 4.13 and 4.14 show that the fluid is being pushed in the 

span-wise direction in an alternate sequence through the gap. The high velocity 

gradients at the edges of the gap, where two shear layers meet, are responsible for 
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Figure 4.13: Velocity vector plot for Ca.'le cl 

the formation of the flow pulsations. As mentioned in subsection 2.3.3 the results 

of Chang and Tavoularis [10] using the RNG k- c model in a rectangular channel 

containing a single rod, predicted flow pulsations at the region between the rod and 

the bottom surface of the channel, which washed out with time. In contrast, figures 

4.11, 4.12 show that the flow pulsations do not wash out with time. 
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Figure 4.14: Velocity vector plot for C&'le c5 

4.4.5 Velocity time traces 

In the following figures the time variation of the span-wise velocity at the gap centre 

and at the gap edge and the axial velocity at the gap edge are presented. The symbols 

used (see figure 4.1) are w 1 and w3 for the span-wise velocities at the gap centre and 

at the gap edge, respectively and u3 for the axial velocity at the gap edge. 

Experimental measurements of the instantaneous velocities are shown in 
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Figure 4.15: Time traces of the axial ( u) and the span-wise ( w) velocity. Adapted 
from Meyer and Rehme [34] 

figure 4.15. It is clear that the instantaneous span-wise velocity time traces show 

a large scale quasi-periodic structure. The time trace of velocity w1 (gap centre) 

shows a symmetric pattern, while the time trace of velocity w3 (gap edge) has a 

strong negative skewness. In the plots for w3 and u3 there is an indication for the 

second peak to appear at the main frequency. Frequency analysis is discussed in 

subsections 4.4. 7 and 4.4.8. 

For case C1 (figure 4.16), clear symmetry and periodicity can be observed in the 

results. The magnitudes of the velocities in all cases are similar to the experimental 

velocities. The main difference of the first order upwind cases, represented by case 

C1 , compared to the experiments is that the measurements showed a quasi-periodicity 

(figure 4.15). Also, the period of the velocity time traces for case C1 is higher than 
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Figure 4.16: Time traces of the axial (u) 
and the span-wise ( w) velocity for case C1 
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the period of the respective experimental instantaneous velocity plots. The second 

order accurate cases, represented by C5 (figure 4.17), showed a significantly different 

behaviour in the instantaneous span-wise and stream-wise velocity plots, compared to 

the first order upwind cases. As shown in figures 4.16 and 4.17, the calculated velocity 

time traces in case C5 do not have the symmetry and periodicity that was observed 

in case C1 . There are not clear periodic peaks in the plots and the magnitudes of 

velocity are higher compared to case C1 . 

However, the plot of velocity w1 (gap centre) in figure 4.17 for case C5 shows 

a symmetric behaviour, as it was also observed in the respective experimental mea­

surements (figure 4.15). Moreover, the clear negative skewness in the instantaneous 

span-wise velocity time trace at the gap edge (w3 ) that was reported in the experi­

mental measurements, was also observed in the results of the second order accurate 

runs, as can be seen in the velocity w3 plot for case C5 in figure 4.17. Comparing 

figures 4.15 and 4.17, it can be observed that the variation of the instantaneous ve­

locity fields at the gap centre and at the gap edge in case C5 resemble the respective 

experimental velocity fields. This can be considered as an indication that case C5 

roughly captures the frequencies of the actual velocity field. As already mentioned, 

power spectral densities are discussed in section 4.4.8. 

The effect of numerical diffusion can also be observed between the time traces 

for cases C1 (figure 4.16) and C5 (figure 4.17), in analogy with the span-wise velocity 

contours for these two cases (figures 4.11 and 4.12). More precisely, the clear sym­
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metric and periodic pattern of the velocity time traces in case C1 is a result of the 

smearing of the steep spatial gradients of the velocities. Since this smearing does not 

happen when using the second order accurate advection scheme, like in case C5 , the 

steep spatial gradients of the velocity fields affect the resulting instantaneous velocity 

plots. 

4.4.6 Turbulence quantities 

In this subsection a discussion on the measured and the computed turbulence quan­

tities is carried out. Since the results of the simulations give only the modelled parts 

of these quantities the discussion is limited to qualitative comparison between the 

experimental measurements and the numerical predictions. 

Meyer and Rehme [34] provided contour plots at (x, y) planes, normal to the 

stream-wise direction (see figure 4.1), of the normalized axial (u'), transverse (v') and 

span-wise ( w') intensities (r.m.s velocities) for the case studied. These contours can 

be seen in figures 4.18, 4.19 and 4.20. 

The intensities are normalized by the average friction velocity, U 7 = 0.924 m/s, 

obtained from the experiments. In the subchannels (away from the gap region), the 

contours were similar to what would be seen for a simple channel flow. Specifically, 

the contours show a fairly good symmetry with respect to the span-wise symmetry 

line through the gap and the contour lines bulge toward the corners due to secondary 

flows. However, close to the gap, the behaviour of the turbulence intensities was 
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u' 
Figure 4.18: Contours of the normalized axial intensity, Adapted from Meyer 

and Rehme [34] 

v'
Figure 4.19: Contours of the normalized transverse intensity, Adapted from 

UT 

Meyer and Rehme [34] 
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I 

Figure 4.20: Contours of the normalized span-wise intensity,~- Adapted from Meyer 
Ur 

and Rehme [34] 

completely different from the case of simple rectangular channels. The contours of 

the axial, u', and transverse, v', intensities show two peaks at each side of the gap. 

In the case of the span-wise intensity, w', only one peak was observed at each side of 

the gap. Furthermore, this intensity was very high along the whole depth of the gap. 

The combination of these characteristics, as expected, was displayed in the 

turbulence kinetic energy, k, contours, where: 

1(---)
k = 2* u'2 + v'2 + w'2 (4.3) 

In figure 4.21, the normalized turbulence kinetic energy contours as reported in the 

experiments can be observed. The turbulence kinetic energy, k, was normalized by 
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the square of the average friction velocity, Ur. As already implied, the symmetry 

of the contours with respect to the symmetry line through the gap was good since 

the symmetry of the three intensities was good. The contour lines bulge towards the 

corners of the channel, which means relatively low energy in the corners. The peak 

value of k at the corners of the gap was as high as 9.2. This value of k is more than 

twice the highest values at the other walls without the gap. 

k
Figure 4.21: Contours of the normalized turbulence kinetic energy, 2 . Adapted from 

UT 

Meyer and Rehme [34] 

As already discussed (section 3.3), the SA model is a RANS based model that 

calculates the turbulent viscosity from a one-equation transport model for Vt. As 

such, the turbulence kinetic energy is not solved for directly. Since the momentum 

equations are solved to obtain unsteady solutions, the variance of the calculated 
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velocity fluctuations can be calculated from the transient solution. 

For example, let: u (x*, y*, z*, t) be the predicted u velocity at location (x*, y*, z*). 

This velocity is known at N discrete times contained in the time interval: 

t 0 < t ::::;; t0 + N !:1t. The number of samples, N, must be large enough to ensure 

statistical significance and the simulations must be statistically stationary. The mean 

value, u, and the variance, fi2 
, are then calculated as: 

- ( * * * t) 1 ""N ( * * * t )u X ' y ' z ' = N L.....i=l u X ' y ' z ' i 

(4.4) 

where: ti = t 0 + i!:1t. The 'tilde' symbol indicates that the variance calculated is 

based on the resolved flow and does not include the turbulence kinetic energy which 

is implied in the turbulent viscosity. Similarly, velocity variances in the y and z 

directions can also be calculated. A kinetic energy associated with these fluctuations 

can be calculated as: 

(4.5) 

Figures 4.22 and 4.24 show the calculated kinetic energy, k, at a cross-section 

for cases C5 and C1, respectively. The instantaneous turbulent viscosity is shown 

in figure 4.23 for case C5 and in figure 4.25 for case C1. The average friction ve­

locity from the numerical results was underpredicted compared to the experiments. 
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Figure 4.22: Contours of 2 for case C5 
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Figure 4.23: Normalized instantaneous eddy viscosity for case C5 
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In order to isolate the contribution of k in its normalized expression, k , and qual­
uT2 

itatively compare it with the turbulence kinetic energy, k, from the experiments 

(equation 4.3), the experimental average friction velocity, U 7 = 0.924 mjs, was used 

for the normalization of k. FUrthermore, in figures 4.25 and 4.23, the turbulence eddy 

viscosity is normalized by the dynamic viscosity of air (table 4.3). 

As it can be observed in figures 4.22 and 4.24, k is zero at the regions away 

from the gap. Based on the discussion on equation 4.5, the fact that k is zero in these 

regions, implies that the flow was predicted to be steady in the areas away from the 

gap. In contrast, the eddy viscosity had its highest values at the cores of the two 

subchannels, as seen in figures 4.23 and 4.25 for cases C5 and C1 , respectively. This 

discussion suggests that an indication of the turbulence kinetic energy level should 

be considered from the combination of k for the areas in the vicinity of the gap and 

of the eddy viscosity for the areas away from the gap. 

As it is seen in figures 4.24 and 4.22, both the first order upwind and the 

second order accurate cases capture two peaks of k at the corners of the gap, as it 

was reported for the turbulence kinetic energy, k, in the experiments (figure 4.21). 

k
For case C1 the peak value of 	- was 4.6, whereas for case C5 it was 7.9 and in 

UT 

the experiments the peak value of the normalized turbulence kinetic energy was 9.2 

(figure 4.21). Comparing figure 4.24 to figure 4.22 it is seen that at the vicinity of 

the gap, case C5 predicts higher values of k in all three directions. 

Figures 4.23 and 4.25, show that the instantaneous eddy viscosity at the walls 

88 




Master's Thesis- George Arvanitis McMaster - Mechanical Engineering 

4.6 
4.4 
4. 2 

3. 9 

3 . 7 
3 .4 

3.1 
2 . 9 
2 . 7 
2 . 4 
2 .2 
2 . 0 
1. 7 

1. 5 

1. 2 

1 . 0 
0.7 
0 . 5 
0.2 
0.0 

Figure 4.24: Contours of 2 
k 

for ca..se C1 
UT 

42 1 

399 

3 6 

354 

3 2 

310 

288 

266 

244 

22 

199 

177 

155 

1 3 

11 1 

89 

66 

44 

22 

0 


Figure 4.25: Normalized instantaneous eddy viscosity for case C1 
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Figure 4.26: Normalized in.c;tantaneous eddy viscosity for case C5 at timet 

Figure 4.27: Normalized instantaneous eddy viscosity for case C5 at timet+ flt 
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0 

Figure 4.28: Normalized instantaneous eddy viscosity for ca..c;e C5 at timet+ 2 * 13.t 

Figure 4.29: Normalized instantaneous eddy viscosity for case C5 at timet+ 3 * 13.t 
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is zero and it increases with increasing distance from the walls, reaching its highest 

values at the regions near the centres of the two subchannels. 

It is interesting to see snapshots of the instantaneous eddy viscosity at a cross­

section. Figures 4.26, 4.27, 4.28 and 4.29 are contour plots of the predicted instan­

taneous eddy viscosity at different times for case C5. The time lag between these 

snapshots is tlt = 0.003 sec. It is obvious that the core of the highest values of the 

eddy viscosity is gradually transferred from the left to the right channel with time. 

4.4.7 Correlations 

A way to identify the presence and determine the characteristics of the large scale 

structures present at the gap region is by generating the temporal autocorrelation 

functions. An autocorrelation function of a velocity component is basically a measure 

of how well a velocity value matches a time shifted value of itself as a function of time. 

In other words, if a value of a velocity component at a specific monitor point is close 

to its value after a time interval tlt, then the temporal autocorrelation function will 

have a value close to unity. In the opposite case, the value of the correlation function 

will be close to zero. So, in this way we can identify a repetitive or periodic pattern 

in the evolution of a variable field, such as velocities. 

In figure 4.30, the autocorrelation functions of the span-wise, Rww, and the 

axial, Ruu, velocity components from the experimental measurements [34] are pre­

sented. In the Rww plot, the half cross-section of the gap together with the monitor 
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Figure 4.30: Autocorrelation functions measured at four positions on the symmetry 
line through the gap [34] 

points (see also figure 4.1) can also be seen. 

The same plots were created for cases C1 and C5 and they are presented in 

figures 4.31 and 4.32, respectively. First, for both the numerical and experimental 

results an oscillating pattern of the plots is observed. This clearly shows that the flow 

is not purely turbulent, but is superimposed by quasi-periodic oscillations. Second, 

as Meyer and Rehme [34] report, the autocorrelation function of u and w clearly 

show the dominant frequency of 68 Hz, taking the inverse of the time at which the 

correlation functions have their second maximum. The dominant frequencies in the 

0.024 0.032 


93 




Master's Thesis - George Arvanitis McMaster - Mechanical Engineering 

0.5 

-0.5 -0.5 

-1~~--~--~~L-~--~--~--J 

0 0.008 0.016 0.024 0.032 -a 0.008 0.016 0.024 0.032 
t (s) t (s) 

0.5 D2 
3 
4 

D2 
30.5 
4 

::J 
::J 00::: 

-0.5 	 ........ ___ .... 


-1 
0.008 	 0.016 0.024 0.032 0 0.008 0.016 0.024 0.032 

t (s) t (s) 
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case cl case c5 

numerical results are somewhat different from the experiments and are discussed 

further in subsection 4.4.8. 

The simulations show similar trends as observed in the experiments. In the 

case of the first order upwind results (case C1) the period of the autocorrelation 

functions is more than two times higher than the respective experimental functions. 

The second order accurate results (case C5) capture the experimental observations 
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better. For example, the autocorrelation functions for case C5 and for the experiments 

damp out with time. However, this does not happen in case CI> for which figure 4.31 

shows that the plots seem to preserve their periods and peak values with time. 

4.4.8 Power spectral density functions 

As it was introduced in the previous subsection, the autocorrelation functions showed 

a periodic behaviour, which is an indication of the existence of large-scale periodic 

structures in the flow. The main frequencies of the flow structures can be identi­

fied by extracting the auto-power spectral density functions from the autocorrelation 

functions. The resulting auto-power spectral functions of the span-wise velocity com­

ponent, w, for the four monitor points (see figure 4.1) for cases C1 and C5 can be 

seen in figures 4.33 and 4.34, respectively. 

In figure 4.34 for case C5 , there is one clear peak frequency for all the four 

monitor points at a value of 58.6 Hz. As already mentioned, the respective peak 

frequency, reported by Meyer and Rehme [34], was at the value of 68 Hz. The 

code predicted the experimental peak frequency fairly well with an error of about 

14%. Other than the main peak frequency in figure 4.34, there are some more local 

maximums in the power-spectral plots. 

If the auto-power spectral density functions had only one clear peak frequency, 

figure 4.32 would be periodic. Although, this is not the case for the second order 

accurate cases, represented by case C5 , the first order upwind runs, represented by 
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Figure 4.33: Span-wise auto-power spectral density functions at the four monitor 
points- Case C1 

case C1. showed this clearly periodic pattern. This is also verified by the auto-power 

spectral density functions for case C1. plotted in figure 4.33, where only one peak 

frequency is predicted at the value of 29.3 Hz. Of course, this value is less than half 

the experimental peak frequency. 

In both cases, C1 and C5 , the value of the power spectral density function at 

the main peak frequency is highest at the gap centre (point 1) and it decreases toward 
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Figure 4.34: Span-wise auto-power spectral density functions at the four monitor 
points - Case C5 

the edge of the gap (point 3). This behaviour was also observed in the experiments. 

4.4.9 Reynolds number dependence 

Meyer and Rehme [34] also did experiments with different Reynolds numbers for some 

of the compound channel geometries used. The results of this study are summarized 

in figure 4.35. In figure 4.35 the vertical axis is the frequency at which a peak in the 
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Figure 4.35: Frequency of the large-scale oscillations for different gap geometries 
versus the bulk Reynolds number. Adapted from Meyer and Rehme [34] 

spectra was clearly detectable [34]. The horizontal axis is the bulk Reynolds number, 

based on the bulk average axial velocity, Ub, and the hydraulic diameter, Dh, of the 

channel neglecting the gap. As it can be seen from the figure's legend there are 

specifically seven geometries for which the results are provided. For all these seven 

geometries as the Reynolds number increases, the peak frequencies increase. 

A simulation using the second order accurate in space scheme was carried out 

for a selected lower Reynolds number. Specifically, from figure 4.35 for case No.9, the 
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Reynolds number of 1.62* 105 was selected. From the results of this simulation, figures 

similar to figure 4.34 were created. From these plots, the resulting peak frequency at 

which peaks in the spectras were observed, was 39.1 Hz. The respective experimental 

frequency from figure 4.35 for case no.9 was 45.8 Hz. Again, the numerical peak 

frequency was close to its experimental value and the error on the prediction was 

exactly the same with the error in the case ofthe higher Reynolds number (case C5 ). 

This is clearly shown in figure 4.35 where the resulting numerical points are added 

using the cross symbol and they are connected with a line. It can be observed that 

the lower Reynolds number numerical point is very near the horizontal axis, which 

corresponds to a frequency of 40 Hz. Moreover, the trend of the peak frequency versus 

Reynolds number variation was reproduced by the simulations. 

4.4.10 Sensitivity to the length of the channel 

In this subsection a study on the sensitivity to the length of the channel is carried out 

through the comparison of case C5 in which the channel's length was 

L = 730 mm with the results of case C7 in which a longer channel was used. Specifi­

cally, the simulation setup of case C7 was the same as in case C5 , except for the length 

of the channel which was L = 992.8 mm and the mesh used. The mesh structure 

used in case C7 was based on mesh M 5 (see table 4.2), resulting in a total number of 

nodes of 378,556. The comparison of cases C5 and C7 follows the flow of analysis in 

the previous subsections, which refer to the comparison of cases C1 and C5 with the 
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experimental mea...;;urements. 
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Figure 4.36: Normalized axial velocity contour plot for ca...;;e C7 

The specific choice of the new length was based on two factors. First, the length
' 

of the channel could not be too high, since its numerical implementation would not 

be computationally affordable. Second, based on the wavelength of the structures 

reported by Meyer and Rehme [34], the new channel's length was decided to have 

this value in order to capture approximately five structures of one sequence and six 

structures of the other sequence in contrast to the initial length, which wa...;; chosen 

in order to capture four structures of alternate sequence. In addition, care had been 

taken in order that the length of the longer channel not to be an integral multiple of 

the lenth of the shorter channel. 

In figure 4.36 the contour plot of the normalized axial velocity for ca...;;e C7 can 
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be observed. It is reminded that for the normalization of the axial velocity, the bulk 

velocity of the flow, Ub = 21.5 m/s, was used. Also, figures 4.37 and 4.38 show the 

contour plot of the instantaneous span-wise velocity and the instantaneous velocity 

vector plot, respectively, at the (x, z) symmetry plane through the gap (figure 4.10). 
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Figure 4.37: Instantaneous span-wise velocity contour plot for case C7 

Compared to figure 4.9 it can be seen that the axial velocity distribution in 
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both cases was similar. Moreover, comparing figures 4.37 and 4.12, it is observed that 

the distance between repeating values of the span-wise velocity in the axial direction 

is roughly close. The repeating patterns of the span-wise velocity values with time 

are discussed below through the calculated temporal autocorrelation ftmctions and 

the respective auto-power spectral density f1mctions. 
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Figure 4.38: Instantaneous velocity vector plot for case C7 
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Figure 4.39 shows the instantaneous span-wise velocity time traces at the 

gap centre (w1) and at the gap edge (w3 ), together with the instantaneous axial 

velocity time trace at the gap edge (u3) for case C7 . In this figure the characteristics 

of the two components of the instantaneous velocity at the gap centre and at the 

gap edge were similar to the respective charecteristics as discussed for case C5 in 

subsection 4.4.5 (figure 4.17). 
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Figure 4.40: Contours of 2 for case C7 
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Figure 4.41: Normalized instantaneou.'l eddy viscosity for case C7 
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For the sake of completeness, the contour plots of the normalized kinetic energy 

k (equation 4.5) and the normalized instantaneous eddy viscosity for case C7 are given 

in figures 4.40 and 4.41. Comparing these two figures to figures 4.22 and 4.23 the 

k 
same trends for - and the normalized eddy viscosity can be observed. Figure 4.40 

UT ­

k 
shows that at the gap edges the predicted values of - were slightly higher than in 

UT 

case C5 (figure 4.22) and that the higher values of the normalized k cover more space 

in the vicinity of the gap edges. It is interesting to notice that the highest values of 

the eddy viscosity, as seen in figure 4.41, were at the right channel compared to case 

C5 for which at a different time step the region with the highest values of the eddy 

viscosity was at the left channel (figure 4.23). 

In figures 4.42 and 4.43 the span-wise and axial temporal autocorrelation func­

tions and the span-wise auto-power spectral density functions at the four monitored 

points are given, similarly to figures 4.32 and 4.34. It is reminded that the four mon­

itor points can be seen in figure 4.30. The temporal autocorrelation functions have 

an oscillating pattern, as expected, based on the analysis in subsection 4.4. 7. The 

main difference with figure 4.32 is that the span-wise autocorrelations for case C7 

were closer to the respective experimental correlation functions (figure 4.30). Specif­

ically, as shown in figure 4.42, the span-wise autocorrelation functions at all four 

monitor points have roughly the same period similarly to the respective span-wise 

autocorrelation functions from the experiments. 

This is also justified from the span-wise auto-power spectral density functions, 
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Figure 4.42: Span-wise, Rww and stream-wise, Ruu, autocorrelation functions for case 
c1 

shown in figure 4.43. The clear oscillating pattern of approximately the same period 

at all four monitor points of the span-wise autocorrelation functions for case C7 can 

be explained by their underlying peak frequencies at the four monitor points. As it is 

seen from figure 4.43, at each monitor point the main peak frequency was at the value 

of 58.6 Hz, as it was also observed for case C5 (figure 4.34). The main difference of 

case C7 compared to case C5 is that in the neighbourhood of the main peak frequency 

there were not as many other peak frequencies as it was observed in case C5 . 
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Figure 4.43: Span-wise auto-power spectral density functions at the four monitor 
points - Case 0 7 

Summarizing, it was observed that the increase of the channel's length did 

not significantly affect the predicted characteristics and dynamics of the flow by the 

SA model. In both cases 0 5 and 0 7 the predicted main peak frequency of the auto-

power spectral density functions was 58.6 Hz, which was about 10 Hz lower than the 

respective experimental frequency. 
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4.4.11 Comparison with the results of k- c model 

In this subsection the main results obtained using the k- c model (case C8 ) are 

presented and discussed together with a comparison with the results using the SA 

model. The analysis of the results follows the same flow as in subsection 4.4.10. 

The mesh used with the k- c model was the reference mesh, M 1 (see table 4.2). 

Essentially, the simulation setup in case C8 was the same with case C5, except for the 

turbulence model used. Because of this, the results of case C8 were compared with 

the results of the already discussed ca.."e C5 (see table 4.4). 
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Figure 4.44: Normalized axial velocity contour plot for case C8 

Figure 4.44 shows the normalized axial velocity contour plot for case C8. Com­

paring figure 4.44 to figure 4.9, it is observed that there are no significant differences 
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between them. 
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Figure 4.45: Instantaneous span-wise velocity contour plot for case C8 

Figures 4.45 and 4.46 present the instantaneous span-wise velocity contours 

and the instantaneous velocity vectors, respectively, at the (x, z) symmetry plane 

through the gap (figure 4.10) for case C8 . In these figures it is observed that the 

k - c model was able to predict flow structures and the corresponding wiggly pattern 

of the velocity field at the gap region. Comparing the velocity snapshots in figures 
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Figure 4.46: Instantaneous velocity vector plot for case C8 

4.45 and 4.46 with the respective velocity snapshots for case C5 in figures 4.12 and 

4.14 it is observed that they look similar. A more detailed analysis and comparison 

of the dynamics of the flow pulsations for cases C5 and C8 is carried out in the 

following discussion through the comparison of the temporal autocorrelation and the 

auto-power spectral density f1mctions. 

Similarly to figure 4.17, figure 4.47 shows the time traces of the span-wise 
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Figure 4.47: Time traces of the axial (u) and the span-wise (w) velocity for case C8 

velocity component at the gap centre, w1, and the gap edge, w3 , and the stream-wise 

velocity component, u3 , at the gap edge for case C8 . Although the frequencies of the 

velocity time traces in case C8 (figure 4.47) seem to be different from the respective 

time traces in case C5 (figure 4.17), the ranges of magnitude of the velocity values 

were the same for both cases. Furthemore, similarly to case C5 , in case C8 the strong 

negative skewness of the span-wise velocity at the gap edge was observed. 
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Figure 4.48: Contours of 2 for case C8 

u.,. 

In figure 4.48 there is a contour plot of the normalized kinetic energy k, as it 

was calculated using equation 4.5. This contour plot roughly resembles the respective 

contours of the normalized k for case C5 as seen in figure 4.22. The range of the 

values was the same and both turbulence models predict two peaks of the same value 

at the corners of the gap. Similarly to figure 4.22, figure 4.48 shows that the value of 

kat the bulk flow regions of the two channels was close to zero. 

Since the k - c model solves a transport equation for the turbulence kinetic 

energy, it is of interest to create contours of the normalized instantaneous turbulence 

kinetic energy at a cross-section plane. As in figure 4.48, the instantaneous turbulence 

kinetic energy in figure 4.49 was normalized by the square of the average friction 
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Figure 4.49: Contours of the instantaneous normalized turbulence kinetic energy for 
case C8 

velocity, Ur = 0.924 mjs. The fact that the kinetic energy k should not be confused 

with the modelled turbulence kinetic energy is justified by the comparison of figures 

4.48 and 4.49. As it was expected, figure 4.49 shows that turbulence kinetic energy 

is produced and reaches its local maximum values at the near wall region...;; (green 

regions near the walls). This was not observed in the respective contour plots of k 

neither for case C8 (figure 4.48) or for case C5 (figure 4.22) in which k was zero at 

the mean flow of the two channels and at the near wall regions. 

The span-wise and stream-wise autocorrelation functions at the four monitor 

points as they were obtained from the results of the k - E model are presented in 

figure 4.50. Although the autocorrelation functions for case C8 have in general the 
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expected oscillating pattern, their period was different than in case 0 5 , as shown in 

figure 4.32. This difference was clearly revealed from the comparison of the span-wise 

auto-power spectral density functions at the four monitor points for cases C5 and 0 8 . 
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Figure 4.50: Span-wise, Rww and stream-wise, Ruu, autocorrelation functions for case 
Cs 

The span-wise auto-power spectral density functions at the four monitor points 

for case C8 are presented in figure 4.51. First, in this figure it can be observed that 

the main peak frequency was not the same at all four monitor points. In contrast, 

the main peak frequency in case C5 (figure 4.34), similarly to the experiment, was 
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Figure 4.51: Span-wise auto-power spectral density functions at the four monitor 
points - Case C8 

the same at all four monitor points. Second, there was not any monitor point at 

which the main peak frequency had the value of 58.6 Hz, as it was observed at all 

four monitor points in case C5 (figure 4.34). Specifically, the main peak frequency 

at monitor points 1 (gap centre) and 2 was 29.3 Hz, while at point 3 (gap edge) was 

48.8 Hz and at point 4 was 78.1 Hz. This is an important advantage of the predictions 

of the SA model, compared to the predictions of the k - c model, because in contrast 
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to the k - c model, the SA model predicts one consistent main peak frequency at all 

four monitor points which is very close to its experimental value of 68 Hz. 

Since the primary purpose of this research was to choose a RANS model that 

would capture and predict as faithfully as possible the dynamics of the flow pulsations 

at the gap region, the SA model seems to be a better choice than the k - c model. In 

order for a solid conclusion to be drawn from the comparison between these turbulence 

models for the studied case, a thorough study has to be done for the k- c model, 

similarly to the study that has been done for the SA model. 
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Chapter 5 

Closure 

5.1 Summary and Conclusions 

Numerical studies of the flow pulsation phenomenon in a subchannel geometry was 

carried out, using the SA based turbulence model. The numerical results were val­

idated against the experimental data of Meyer and Rehme [34]. Following are the 

findings of the SA model. 

1. 	 The axial velocity distributions, predicted by all the cases were in agreement 

with the experimental measurements. 

2. 	 The time traces of the span-wise velocity showed the expected behaviour at the 

gap, which connects the two rectangular subchannels. The model was successful 

in capturing large-scale flow oscillations at the gap region. 

3. 	 The instantaneous velocity components at the monitor points were within the 
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experimental range. 

4. 	 The turbulence characteristics of the flow field were estimated through the com­

bination of the kinetic energy k (equation 4.5) and the modelled eddy viscosity. 

The kinetic energy k at the gap region followed the trend of the turbulence 

kinetic energy as reported in the experiments. 

5. 	 The frequency analysis, through the correlation functions and the power spec­

tras showed the expected periodic nature of the fluid flow, justifying the argu­

ment that the most important contribution to the cross-flow mixing process is 

the presence of large-scale oscillations in the gap region. The computed peak 

frequency in the case of the second order accurate in space results was very 

close to its experimental value. 

6. 	 The study of the dependence of the frequency spectra to the Reynolds number 

was initiated and the initial results proved to follow the experimental trend. 

Specifically, the peak frequency of the power spectras increase with increasing 

Reynolds number. 

7. 	 A case study on the effect of the length of the channel had been carried out. 

This case study showed that the higher length of the channel didn't significantly 

affect the characteristics and the dynamics of the flow field as predicted from 

the SA model. 

8. 	 The commonly used k- c turbulence model was also used to predict the flow 
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in the twin rectangular subchannel. From an initial comparison, it seems that 

the SA model does better on predicting the dynamics of the flow structures at 

the gap region. 

The two advection schemes used were the first order upwind and the second 

order accurate in space scheme. Referring to table 4.4, the two cases used in the 

study of the effect of the advection scheme were case 0 1 , for the former scheme and 

case 0 5 for the latter. This study led to the following conclusions. 

1. 	 The axial velocity distributions in both cases were very well predicted, resulting 

in minor differences between the results. 

2. 	 The time traces of the span-wise velocity in the first order upwind cases had a 

distinctive periodic and symmetric pattern. This was not observed in the second 

order accurate cases. However, a less organized pattern was also observed. 

3. 	 The instantaneous velocity components at the monitor points in case C1 had 

a symmetric and periodic pattern, while in case 0 5 this behaviour was not 

observed. In case 0 5 , the instantaneous velocity plots resemble more the exper­

imental plots. Nonetheless, in both cases the experimental velocity ranges were 

roughly captured, with case 0 5 predicting slightly higher velocity values than 

case cl. 

4. 	 The predictions of the turbulence quantities in the two cases have qualitatively 

the same behaviour, with the results in case 0 5 being quantitavely closer to the 
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experimental data. 

5. 	 The correlation functions and the power spectral density functions explained the 

main differences between the two cases, such as the oscillating characteristics 

of the instantaneous velocity time traces. The second order accurate cases do 

much better in predicting the experimental peak frequencies, while the first 

order upwind cases underpredict the peak frequencies by roughly a factor of 

two. 

5.2 Recommendations for Future Work 

1. 	 The effect of the Reynolds number on the frequency spectras can be further 

explored by running cases with different Reynolds numbers and validating the 

results with the experimental data. 

2. 	 Following the validation of the effect of the Reynolds number, a study on the 

threshold Reynolds number, below which the periodic flow pulsations do not 

exist can be carried out. In addition, simulations with higher Reynolds numbers 

beyond the maximum value used by Meyer and Rehme [34] can be performed. 

3. 	 The SA model can be directly used for simulations of turbulent flows in rod 

bundle geometriess. 
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Appendix A 

Evaluation of the Auto-power 

Spectral Density Functions 

Below is the script which was used in Matlab to evaluate the Fourier transform of 

the temporal autocorrelation functions, resulting to the auto-power spectral density 

function plots. In the third line of the script, w1 is the matrix, which refers to the 

span-wise velocity fluctuations at the gap centre (monitor point 1). It is calculated 

as: w1 = W1- W1, where W1 is the predicted span-wise velocity at each time step 

at monitor point 1 and W1 is the time mean span-wise velocity at monitor point 1. 

Similarly, the same script was used for all the four monitor points. 
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clc; 


clear all; 


w1=[...] 


N=length(wl); 


for j=0:1023 


i=1; 


sum=O; 


while ((i+j) ~ N) 


sum=sum+(w1(i)*w1(i+j)); 

i=i+1; 


end 


R(j+1)=sum/(i-1); 


end 


M=length(R); 


R' 


X=fft(R); 


Y =sqrt(X. *conj (X))/ (M); 


fs=10000; 


k=-M/2:M/2-1; 


plot(k*fs/M,fftshift(Y)); 
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