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Abstract 


An investigation of the dynamic lift on the central tube in square tube arrays is 

conducted. Three array spacing ratios with P/ D = 3.37, 2.18 and 1.58, corresponding 

to large, intermediate and small spacing ratios are investigated. These three classes 

exhibit specific flow characteristics and distinct behavior during acoustic resonance. 

The aim of the present investigation is to determine the effect of the acoustic pressure 

field and its contribution to dynamic lift during acoustic resonance. 

During acoustic resonance there are two sources of dynamic lift. One source is 

provided by the sound field. The standing wave excited during resonance causes 

dynamic lift from the acoustic pressure distribution on the surface of the cylinder. In 

the absence of flow, loud speakers are used to excite the first transverse acoustic mode 

over a range of sound pressure levels, effectively determining the relationship between 

the resultant dynamic lift and sound pressure level of the acoustic standing wave. 

The dynamic lift due to the sound field is well predicted by numerical simulation of 

the acoustic pressure distribution in the tube array. Using the validated numerical 

simulation it is possible to extend the results to a large range of cylinder diameter 

to wavelength ratios. The other source of dynamic lift is provided by the periodic 

flow though the tube array, known as vortex shedding, which is enhanced during 

resonance. 

The total dynamic lift is dependant on the phase shift between the sound field 

and aerodynamic lift components. For small and intermediate tube arrays, acoustic 

resonance occurs before coincidence of the natural vortex shedding frequency and the 

acoustic mode. For the large tube array, frequency coincidence occurs within the 

resonance range. The phase shift between the dynamic lift due to sound and that 

due to the aerodynamic lift is small for the pre-coincidence resonance range observed 
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for small and intermediate tube arrays and therefore the total dynamic lift is well 

predicted by the sum of the magnitudes of the dynamic lift due to the sound field 

and aerodynamic lift components caused by vortex shedding. Past the frequency of 

coincidence, a phase jump occurs in the aerodynamic lift causing a large phase shift 

between the sound field and aerodynamic lift components in the large spacing ratio 

array. The summation of the aerodynamic lift and the lift due to the sound field over 

predicts the total dynamic lift measured during acoustic resonance in this case. The 

present results are used to develop a conservative guideline for estimating the total 

dynamic lift during acoustic resonance. 
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Chapter 1 

Introduction 

Unsteady periodic flow is generated in the wake of bluff bodies such as a circular 

cylinder. These periodic flows cause dynamic pressure loading on the surface of 

the cylinder resulting in periodic lift forces in the direction normal to the flow and 

cylinder axis. The dynamic lift force is generally an order of magnitude larger than 

that in the direction parallel to the flow. In tube arrays, typical to those in heat 

exchangers and boilers, the dynamic lift forces are also dominant. Similar to dynamic 

loading, sound is generated proportional to the dynamic lift and drag as a dipole like 

source (Phillips, 1956). The sound generated by periodic vortex shedding enhances 

the acoustic mode as it nears the acoustic mode frequency. The sound field of the 

acoustic mode enhances the process of vortex shedding leading to a feedback cycle 

which causes synchronization of the acoustic mode and the vortex shedding frequency 

at the frequency of the acoustic mode. The dominant sound source from vortex 

shedding is in the lift direction and therefore the most susceptible natural acoustic 

modes are transverse modes of the duct housing the bluff body. This excitation 

mechanism and subsequent acoustic resonance is well understood for such cases as 

the single cylinder, see for example Blevins and Bressler (1993) or Mohany and Ziada 

(2005), and has also been investigated and characterized in tube arrays (Oengoren 

and Ziada 1 992b). 

Of particular interest are the consequences of acoustic resonance on the dynamic 

lift in tube arrays. Before the onset of acoustic resonance in tube arrays, the lift coef­
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ficients have been determined, see for example Chen and Jendrzejczyk (1987), Axisa 

et al. (1988), Oengoren and Ziada (1992) and Inada et al. (2007). During acoustic 

resonance, measurements of the dynamic lift are yet to be determined, and are the 

focus of the present investigation. Mohany and Ziada (2006) recently measured the 

dynamic lift coefficients for a single cylinder in non-resonance conditions and during 

flow-excited acoustic resonance. The results show that the dynamic lift coefficient 

can increase by a factor of four during flow-excited acoustic resonance in some of the 

cases. For tandem cylinders, studied by Mohany and Ziada (2006), similar increases 

in the lift coefficients were observed. These results indicate the necessity of determin­

ing the dynamic lift in tube arrays during acoustic resonance. For single and tandem 

cylinders, the lift coefficients are large compared to those in arrays of cylinders. In 

these examples, the aerodynamic lift generated by the flow is very large compared to 

the effects of sound. It is expected that the pressure field of the acoustic mode will 

have a more dominate role in the dynamic lift on the cylinders in tube arrays. 

Design of heat exchangers and boilers requires a good working knowledge of the 

forces acting on the tubes for estimating the service life. Fatigue limits and estimates 

of the service life are highly based on knowing these dynamic loads. Furthermore, 

underestimation of the dynamic loading can be hazardous and may lead to premature 

or catastrophic failures. Investigation of the affects of sound due to flow-excited 

acoustic resonance on the dynamic lift of tubes in an array is therefore of a significant 

importance. 

Dynamic lift on the center tube in a square array for three different pitch ratios, 

P/D = 3.37, 2.18 and 1.58, is investigated. The dynamic lift force is measured before 

the onset of acoustic resonance and during flow-excited acoustic resonance. Before 

the onset of acoustic resonance the dynamic lift on the tubes in an array is due to the 

periodic flow exerting pressure forces on the tubes in the array. During resonance, the 
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dynamic lift is composed of an aerodynamic lift component, generated by the periodic 

flow though the tube array which is enhanced by the acoustic resonance and another 

component due to the acoustic pressure field generated by the acoustic standing wave. 

Chapter 2 is an overview of the literature pertaining to the flow though tube 

arrays. This chapter also includes more fundamental survey of the flow over an iso­

lated cylinder and extends to the more complex flow though tube arrays including 

the external effects on the interstitial flow though ducts containing both isolated and 

arrays of cylinders. Chapter 3 is a summary of the experimental setup used in the 

present study including the instrumentation used to measure aeroacoustic response 

and dynamic lift forces. The dynamic lift forces due to the acoustic mode and in the 

absence of flow are investigated in chapter 4 using both numerical and experimental 

methods. Chapter 5 introduces the aeroacoustic response of the three tube arrays. 

The mechanism of flow-excited acoustic resonance for the three spacing ratios and 

also the composition and magnitude of the dynamic lift during acoustic resonance is 

examined. Application of the present experimental results to industrial design appli­

cations is presented at the end of chapter 5. Conclusions are presented in chapter 6 

summarizing the main findings of the present investigation. 
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Chapter 2 

Literature Review 

The following comprehensive review of the literature pertains to aspects of the 

current state of the knowledge of the topic. This review spans from fundamental 

studies of flow over an isolated cylinder to more complex cases of flow over tube 

arrays and influences on the flows such as flow-excited acoustic resonance. 

2.1 Flow over a single cylinder 

Flow over a single isolated cylinder is studied for both fundamental reasons and 

for contribution to practical applications. Practical applications motivating these 

studies include underwater tow lines used for sonar equipment, supports for offshore 

structures or risers and high tension electrical lines, all are sensitive to flow-induced 

excitation. The flow through heat exchanger tubes arrays and boilers is also sensitive 

to flow-induced vibration. The shells of heat exchangers and boilers contain natural 

acoustic modes, and are therefore sensitive also to flow-excited acoustic resonances. 

Systems such as these, and turbo machinery containing cascades of blades are com­

plex. The complexity of the flow through these systems, and their susceptibility to 

acoustic resonances requires in depth understanding of the mechanism causing acous­

tic resonance. The flow over a single isolated cylinder is a "simplified" case used often 

to investigate the mechanism of flow-excited acoustic resonances, and therefore is of 

a fundamental interest in aeroacoustics research. 

4 
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2.1.1 Strouhal number for a single cylinder 

In 1878, Strouhal found the Aeolian tones generated by a wire in the wind to be 

proportional to the wind speed divided by the wire thickness. Strouhal developed a 

non-dimensional equation relating the flow velocity to the vortex shedding frequency 

which produces these tones. The Strouhal number (St), is defined as the vortex 

shedding frequency (fv), multiplied by the cylinder diameter (D) and divided by flow 

velocity ( U), shown in equation 2.1. 

Stn = fvD (2.1)u 

The inverse of the Strouhal number is referred to as the reduced flow velocity, 

shown in equation 2.2. The variables of equation 2.2 are defined the same as those 

of equation 2.1 except for the frequency. The frequency, fa, is the acoustic mode or 

natural vibration frequency. 

(2.2) 

The Reynolds number is a dimensionless group relating the viscous and inertial 

effects. Notably, Lienhard (1966) and Marris (1964) compiled a complete descrip­

tion of the flow regimes exhibited by a single cylinder in cross-flow for a complete 

range of Reynolds numbers. Their findings are summarized as follows, and shown 

schematically in figure 2.1. 

1. 	 For Ren < 5, the flow is laminar and unseparated. This symmetric flow is 

referred to as creeping flow. 

2. 	 For 5 to 15 < Ren < 40 two symmetric rotational zones form downstream of 

the cylinder, referred to as Foppl vortices. 

5 
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3. 	 For 40 < Rev < 150, the vortices become unstable and the first laminar periodic 

vortex shedding is observed which produces periodic forces on the cylinder. 

For Reynolds numbers greater than 90, the periodicity is governed by vortex 

shedding. 

4. 	 For 150 < Rev < 300, laminar vortex shedding develops into fully turbulent 

vortex shedding. Both the free shear layer and the vortices become turbulent. 

At Rev = 300, the flow periodicity is mostly dissipated at 48 diameters down­

stream. The wake is fully turbulent above Rev = 300. 

5. 	 At around Rev = 3 x 105 , the laminar boundary layer on the cylinder surface has 

undergone transition to turbulent and a narrower wake is formed but without 

organized vortex structures. 

6. 	 At Rev = 3.5 x 106 the wake shows a turbulent vortex street again. The wake 

is thinner and the boundary layer is turbulent. 

It is evident there will be variation in Strouhal number with the Reynolds number 

from the previous discussion. Lienhard (1966) effectively maps this relationship with 

compiled data, available in the literature at that time. In the sub-critical flow regime, 

the Strouhal number is approximately 0.2 as shown in figure 2.2. 

2.1.2 Mean forces on a cylinder in cross-flow 

Mean, non-zero drag force, for a single cylinder, occurs parallel to the flow direc­

tion. The mean drag force is composed of both frictional and pressure forces. For 

low Reynolds numbers, the frictional or viscous forces are dominant. At increased 

Reynolds numbers, the pressure drag is dominant due to induced negative pressure in 

the wake region on the downstream side of the cylinder, and high stagnation pressure 

6 
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Re < 5 REGIME OF UNSEPARATED FLOW 

5 TO 15 ..;;; Re < 40 A FIXED PAIR OF FOPPL 
VORTICES IN WAKE 

40 ..;; Re < 90 AND 98 ..;; Re < 150 
TWO REGIMES IN WHICH VORTEX 
STREET IS LAMINAR 

150 .;;; Re < 300 	 TRANSITION RANGE TO TURBU­
LENCE IN VORTEX 

300 ..;;; Re <: 3 X 105 	 VORTEX STREET IS FULLY 
TURBULENT 

3 X 105 Z Re < 3.5 X 106 

LAMINAR BOUNDARY LAVER HAS UNDERGONE 
TURBULENT TRANSITION AND WAKE IS 
NARROWER AND DISORGANIZED 

3.5 X 106 .;;; Re 
RE-ESTABLISHMENT OF TURBU­
LENT VORTEX STREET 

Figure 2.1: Flow regimes of a circular cylinder in cross-flow, Lienhard (1966). Digi­
tized from Blevins (1990). 

on the front surface caused by the deceleration of the inertial flow. The mean drag 

coefficient is defined in dimensionless form by equation 2.3: 

FD 
(2.3)CD= 1/2pDU2 

Where: 

FD is the mean drag force 

p is the density of the fluid 

7 
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REYNOLDS NUMBER (UD/v) 

Figure 2.2: Strouhal number dependence on Reynolds number for a single cylinder in 
cross-flow, Lienhard (1966). Digitized from Blevins (1990). 

D is the cylinder diameter 

U is the mean stream flow velocity 

In the lift direction, the mean force is zero. The time averaged flow is symmetric 

about the axis parallel to the mean flow direction, which causes a zero net transverse 

component. 

2.1.3 Fluctuating lift forces exerted on the cylinder 

At Reynolds numbers greater than 40, periodic vortex shedding occurs. This 

causes periodic forces on the cylinder. In the stream-wise direction, the drag force is 

composed of mean and fluctuating components In the cross-stream direction, normal 

to the cylinder axis and flow direction, only a periodic force component is observed. 

The frequency of the periodic forces corresponds with the vortex shedding frequency 

in the lift direction, and twice this value for the periodic forces in the stream-wise 

direction due to vortices shed alternately from either side of the cylinder. 

8 
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Periodic lift forces are the dominant quantity of the dynamic forces for a single 

cylinder. For this reason, they are a major topic in the literature. Gerrard (1961) 

shows that in the sub-critical flow regime, the fluctuating lift coefficients are typically 

an order of magnitude larger than fluctuating drag coefficients. Etkin et al. (1957) 

shows that aerodynamic sound radiated by a single cylinder is a dominant sound 

source at the fundamental frequency of vortex shedding and is in a direction perpen­

dicular to the mean flow field (in the lift direction). A second frequency twice that of 

the vortex shedding frequency is dominant in the direction parallel to the mean flow 

direction and associated with the dynamic drag but has a lesser magnitude than that 

in the lift direction. Dynamic lift forces motivate much of the previous literature, to 

determine the magnitude of the forces for prevention of damage due to fatigue fail­

ures, and also to explore novel ways to reduce these forces by disrupting the organized 

vortex shedding. Figure 2.3 shows the local pressure coefficients plotted along the 

surface of the cylinder over a cycle of vortex shedding. 

Dynamic lift forces are expressed in terms of root-mean-squared or maximum 

amplitude. Similar to the equation for mean drag, an equation for the dynamic lift 

force is given by Bishop (1964) as: 

C FLrms (2.4)
Lrms = ~pDfU2 

Where: 

FLrms is the root mean square ( rms) amplitude of force 

p is the fluid density 

D is the cylinder diameter 

U is the mean stream flow velocity 

l is the cylinder length 

9 
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(a) t = 0.903 sec (c) t =0.968 sec 

P- Poo ­
'hpU2 

(b) t = 0.935 sec (d) t = 1.000 sec 

Figure 2.3: Local pressure coefficient distribution for a cycle of vortex shedding, 
Bishop (1964). Digitized from Blevins (1990). 

There are several methods discussed in the literature for determining fluctuating 

lift forces. These methods are classified as either direct or indirect. Norberg (2003) 

reviews the available measurement techniques. Direct methods use a force sensing 

element such as a piezoelectric load cell or strain gauge arrangement attached to a 

cantilever beam or a simply supported beam which behaves as an active measurement 

element on the cylinder span. In some cases, the entire span of the cylinder is used 

as the active region. Indirect measurements differ, they typically invoke the use of 

single pressure taps, or rings of pressure taps. The lift coefficients are determined 

from integration of the point measurements around the circumference of the cylin­

der. In some cases a dummy cylinder is manufactured with an active measurement 

region. The active length (lc) is used instead of the total cylinder span l in equa­

tion 2.4. Figure 2.4 is a compilation of lift coefficient data by Norberg (2003). There 

is much scatter in the data, primarily due to three-dimensionality of the flow. This 
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demonstrates the importance of considering both the measurement technique, and 

three-dimensionality of the flow, when comparing with sectional measurements. 
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Figure 2.4: CL' for Reynolds numbers between 30 and 1x106 , Norberg (2003). 

2.2 Flow over pairs of cylinders 

A natural extension to the study of the flow over a single cylinder is to the flow 

over pairs of equal diameter cylinders. Three main configurations are of interest, 

namely, tandem, side-by-side and staggered arrangements classified in the review by 

Zdravkovich (1977). The spacing ratio* for two cylinders is typically defined by the 

center to center distance divided by the cylinder diameter. This ratio is used for 

the defining of the proximity regions where the shear layers of either cylinder are 

known to interfere with each other. Data compiled by Zdravkovich (1985) maps the 

interaction regions shown in figure 2.5. 

*Spacing ratios for tandem cylinders are defined using the longitudinal distance L divided by the 

cylinder diameter. Spacing ratios for side-by-side cylinders are defined using the transverse distance 

T divided by the cylinder diameter. 
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Figure 2.5: Proximity regions and corresponding flow regimes for the flow over tandem 
and side-by-side cylinders, (Zdravkovich 1985). 

For tandem cylinders, the Reynolds number affects the position of the exact tran­

sition point between the defined regions. Zdravkovich (1985) classified the flow over 

tandem cylinders in terms of the spacing ratio (LID), noting the dependence on 

Reynolds number. Spacing ratios in the range 1 < LID < 1 .2 to 1 .8, show wake be­

havior similar to a single slender bluff body. For 1.2 to 1.8 < LlD < 3.4 to 3.8, the 

shear-layers detach from the upstream cylinder and reattach to the upstream surface 

of the downstream cylinder. A vortex street forms in the wake of the downstream 

cylinder. For LlD > 3.4 to 3.8, vortex shedding occurs in the gap formed between 

the two cylinders and behind the downstream cylinder. 

The Strouhal number for tandem cylinders varies with both spacing ratio and 

the Reynolds number. Igarashi (1981) mapped the Strouhal numbers of tandem 

cylinders for two different Reynolds numbers. Small spacing ratios, with LID near 

1, are known to behave as a single body and exhibit a single Strouhal number near 

0.27. As the spacing ratio increases, a strong dependence on Reynolds number is 
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observed for spacing ratios up to 2. Further increases in the spacing ratios diminishes 

the Reynolds number dependence. 

The flow over side-by-side cylinders is discussed by Zdravkovich (1985) and Zdravkovich 

(1977). The observed flow regimes are classified. Three dominant flow regimes with 

distinctly different behavior exist. For the close spacing regime, where 1 < TID < 

1 .1 to 1 .2, a single vortex street is formed. For the intermediate regime where 

1.2 < TID < 2 to 2.2 one cylinder exhibits a narrow closed wake and the other a 

wide open wake. Between the two wakes, a jet, termed bistable (Kim and Durbin 

1988) is directed toward the narrow wake, causing the wide open wake of the other 

cylinder. This jet can exist biased toward either the two cylinders for a few seconds, 

or in the order of minutes. The transition of the jet toward the other cylinder appears 

random, (Bearman and Wadcock 1973 and Kim and Durbin 1988). Kim and Durbin 

(1988) termed the close and intermediate proximity region as the flip flop region to 

describe the observed random movement of the biased jet toward either of the two 

cylinders. For large spacing ratios, each cylinder wake appears similar, however, they 

exist either in-phase or out of phase with each other (Williamson 1985). 

Strouhal numbers vary with the spacing ratio for side-by-side cylinders due to 

the various flow regimes observed in the cylinder wakes. The results are summarized 

schematically in figure 2.6. This figure represents an average trend drawn from the 

available data, notably those compiled by Sumner et al. (1999). For small spacing 

ratios, only one Strouhal number, nearly half the value of a single isolated cylinder 

is present. In the intermediate range, the narrow wake produces a higher Strouhal 

number than the wide open wake, and at nearly twice the value. Further increases to 

the spacing ratio causes both Strouhal numbers to approach that of a single isolated 

circular cylinder, where the Strouhal number is approximately 0.2. 
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Figure 2.6: Strouhal number versus spacing ratio for side-by-side cylinders showing 
the approximate trend of the data, and scatter, Hanson et al. (2006). 

2.3 Flow-excited acoustic resonance 

Flow over a single cylinder produces a dipole like sound source (Curle 1955). The 

sound field is dominant in the direction transverse to the mean flow direction and 

cylinder axis (Etkin et al. 1957). Classical, Strouhal-excited acoustic resonances 

occur when the natural vortex frequency approaches the frequency of a transverse 

mode of the duct. Figure 2. 7 shows this process schematically. The duct drawn in 

figure 2. 7 is designed such that the natural frequency of vortex shedding coincides 

with the transverse acoustic mode of the duct as shown in figure 2.7(a) and (b). 

Figure 2.7(c) shows a typical frequency response during the locked-in resonance con­

ditions. The natural frequency of vortex shedding is shifted up to the natural acoustic 

mode frequency. Further increases in the velocity causes the synchronization between 

the acoustic mode and vortex shedding frequency to weaken and deteriorate. After 

this, vortex shedding continues to occur at the natural Strouhal number. The acoustic 
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pressure, shown in figure 2.7(d), exhibits a large increase in pressure associated with 

the acoustic resonance phenomena. Parker and Stoneman (1989) and Welsh et al. 

(1990) have published excellent reviews on this topic. 
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Figure 2.7: Schematic of the lock-in phenomena showing the typical aeroacoustic 
response during flow-excited acoustic resonance for a single isolated cylinder. 

Blevins and Bressler (1993) investigated the flow-excited acoustic resonance of a 

single cylinder and plotted the frequency and acoustic sound pressure levels against 

the reduced velocity. This shows,in figure 2.8, digitized from Blevins and Bressler 

(1993), the lock-in phenomena and associated increase of the sound pressure level 

at the frequency of the acoustic mode. Mohany and Ziada (2005) explains, from the 

theory of aerodynamic sound of Light hill ( 1952), that the sound generated by a vortex 

is proportional to the length scale of the vortex, the dynamic head and Mach number. 

The theoretical analysis by Blake (1986) shows that the acoustic sound pressure can 

be normalized by the dynamic head multiplied by the Mach number, pU3 /c. This is 

found to greatly collapse the acoustic sound pressure level data for single cylinders 
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in flow-excited acoustic resonance with different tube diameters, (Mohany and Ziada 

2005). 
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Figure 2.8: Aeroacoustic response of a single tube in cross-flow. Figure (a) is the fre­
quency of vortex shedding versus reduced velocity. Figure (b) is the acoustic pressure 
level at the frequency of vortex shedding versus the reduced velocity, (Blevins and 
Bressler 1993). 

Acoustic resonance effects on characteristics of the flow over tandem cylinders is 

well understood from recent investigations. In their study of the effects of applied 

sound on vortex shedding of tandem cylinders, Hallet al. (2003) note that the lock­

in region is much broader than of the single cylinder. Mohany and Ziada (2005) 

focuses on flow-excited acoustic resonance of tandem and single cylinders. For the 

flow-excited acoustic resonance of tandem cylinders, at the same acoustic mode, their 

results shows that acoustic resonance occurs over two different velocity ranges. Co­
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incidence resonance, or classical Strouhal excited resonance, is excited by a natural 

vortex shedding, present in the off resonance conditions. Before the onset of classi­

cal resonance, a pre-coincidence range exists for the intermediate and small spacing 

ratios. In this range, the reduced velocity at resonance is lower than that for the 

classical coincidence type resonance. The excitation source is attributed to the shear 

layers in the gap between the cylinders. These shear layers detach from the upstream 

cylinder and reattach to the downstream cylinder, behaving much like the flow over 

cavity, which is also known to be sensitive to flow-excited acoustic resonance. An in­

teresting finding of Mahany and Ziada (2005) is that for similar longitudinal spacing 

between tandem cylinders and inline tube arrays, the excitation of acoustic resonance 

occurs over a similar range of reduced velocities. This confirms that the excitation 

mechanism is indeed similar in these cases. The tandem cylinder results are overlaid 

with the resonance results for an inline tube array of Ziada and Oengoren (1990) in 

figure 2.9, digitized from Mahany and Ziada (2007). The results shows the similar 

trends of the pre-coincidence resonance range and corresponding sound pressure levels 

of similar magnitude and behavior. 

The aeroacoustic response of side-by-side cylinders is recently investigated by Han­

son et al. (2006). The non-resonance Strouhal numbers are well defined in the liter­

ature, however, in the intermediate spacing ratios, acoustic resonance is not excited 

by the natural Strouhal numbers, but at an intermediate Strouhal number. For small 

and intermediate spacing ratios, the lock-in region is significantly broader than that 

of the single isolated cylinder. It occurs at a similar Strouhal number of the single 

cylinder, approximately 0.2. For the larger spacing ratios, acoustic resonance is ex­

cited over a narrower lock-in range than that for the intermediate spacing ratios, and 

the resonance is excited by the natural Strouhal number observed in the off resonance 

conditions. 
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Figure 2.9: Comparison between the acoustic response of two tandem cylinders and 
that of the in-line tube array. o, tandem cylinders with L/D = 2.5, (Mahany and 
Ziada 2005); •, inline bundle with XL/Xr = 2.6/3.0, (Ziada and Oengoren 1990). 
Digitized from Mohany and Ziada (2007). 

2.3.1 Effect of excitation on vortex shedding 

Blevins (1985) excited, with loud speakers, the first transverse acoustic mode of 

the test section. Excellent agreement between the acoustic pressure along the test 

section height, and that calculated from theory is observed. Due to this agreement, 

it is expected the acoustic particle velocity prediction from theory is also valid. The 

calculated acoustic particle velocity is shown to be only a few percent of the mean 

velocity of the tests, but is comparable with the rmst turbulence characteristics of the 

t rms is a shortform for the root mean squre or standard deviation of values from the mean. 
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vortices. Blevins (1985) shows that natural vortex shedding generated from the flow 

over a cylinder does not occur at discrete frequency, it can vary such that fv = f 0 ±2%. 

Blevins (1985) varies the position of the cylinder from the center of the test section 

towards the test section upper wall. Entrainment of the vortex shedding frequency to 

the excitation at the frequency of the first transverse acoustic mode of the test section 

is observed. The level of entrainment tends to increase as the cylinder is moved 

towards the test section center. When a cylinder is oscillated transversely to the 

flow field at a frequency close to the vortex shedding frequency, increased correlation 

and increased vortex strength occurs. The associated dynamic forces also increase; 

see for example Koopmann (1967) and Bishop (1964). This effect is similar to the 

effect of acoustic resonance, where the fluid is essentially oscillated over the cylinder. 

Carberry et al. (2001) investigate the dynamic lift forces for oscillating cylinders with 

Reynolds number of 2.3 x 103 , and discussed the behavior of the lift forces and cylinder 

oscillations with the phase measurements between these quantities. As the excitation 

frequency Ue) nears the natural vortex shedding frequency (!0 ), large increases of 

the lift forces occur, associated with a phase shift reduction between the cylinder 

oscillation and dynamic lift forces at fe/ fa = 0.81. Carberry et al. (2001) attribute 

the abrupt changes in lift coefficients with mode changes observed in the near wake 

structures and phase shift. 

2.3.2 The effect of acoustic resonance on the dynamic lift force 

The dipole sound source caused by vortex shedding can be expressed in terms of 

dynamic lift and drag coefficients on the cylinder (Phillips 1956). This aeroacous­

tic source excites acoustic resonance, wherein, as shown previously in figure 2.8, the 

acoustic pressure is amplified and dominant in the lift direction, due to the shape 
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Figure 2.10: Lift coefficient, •, and phase, D, plotted against the ratio ofthe excitation 
frequency of the cylinder oscillations over the natural frequency of vortex shedding, 
fe/ fa, Carberry et al. (2001). 

of the transverse acoustic mode excited. The dynamic lift force is expected to in­

crease with the sound pressure level during acoustic resonance, from the relationships 

determined by Phillips (1956). Direct measurements of the dynamic lift forces dur­

ing flow-excited acoustic resonance of a single cylinder are investigated by Mahany 

and Ziada (2006). For a cylinder with a diameter of 15.8 mm, the lift coefficient 

varies between 0.24 and 0.28 during off-resonance conditions for a range of Reynolds 

numbers between 6 x 104 and 105 . During acoustic resonance, the lift coefficient in­

creases to 0.89, around four times higher than that measured during the off resonance 

conditions, as shown in figure 2.11. 

The dynamic lift forces are decomposed into in-phase and out-of-phase campo­

nents with respect to the acoustic pressure field measured at the top of the test 

section by Mahany and Ziada (2006). The out-of-phase component becomes negative 

during acoustic resonance and this component is therefore considered to be negative 

acoustic damping. Vortex shedding, in this case, behaves as an acoustic source, en­
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Figure 2.11: Frequency of vortex shedding (left) and the lift coefficient (right) as a 
function of reduced velocity for a single cylinder, (Mohany and Ziada 2006). 

hancing the acoustic resonance, the opposite of typical (positive) damping effects. 

At off-resonance conditions the natural vortex shedding behaves as positive acoustic 

damping which acts to suppress the acoustic resonance. 

In addition to single cylinders, the dynamic lift forces of tandem cylinders dur­

ing the presence and absence of resonance are well understood (Mohany and Ziada 

2006). These results, however, are much more complicated for tandem cylinders as 

there exists a pre-coincidence range of acoustic resonance as described in §2.3. For 

L/D = 1.75, the aeroacoustic response is plotted in figure 2.12(a) and (b). The 

corresponding dynamic lift force is plotted in figure 2.12(c). The dynamic lift forces 

on the downstream cylinder are much higher than those on the upstream cylinder. 

Furthermore, the dynamic lift is less in the pre-coincidence range than in the coin­

cidence range. In the pre-coincidence range, the lift forces are out of phase for each 

cylinder. During classical type Strouhal excited acoustic resonance both cylinders 

show dynamic lift forces with a zero phase shift. This confirms that pre-coincidence 

and post coincidence resonance occurs due to different mechanisms. 

21 




M.A.Sc. Thesis -- Ronald E. Hanson -- McMaster University - Mechanical Engineering -- 2007 

a) 800 
N' 
~ 600 
>. 
0 
c: 
~ 400 
o-
Q).... 

LL 200 

0 

. .~/ 

/ 

5 •c) 
4 •••. 

• 
. 

• 
3 •_J 

() 

2 \
• 

.: D. 

~· ~\••._,. ft 
........."""' f&"' 


0 
0 2 4 6 8 10 0 2 4 6 8 10 

6b) 

~ 
4 0 

Q 

0 0a.• 

OD~2 
B 

0 

0 

d) t 
0) 
Q) 50 ~ ~ -~ 

:c 
.::= 

0 J.~d>"'~·
Cl) 

Q) ' . .. 
Cl) 
<1l 

.s::::. 
a. -50 ·~..•/ 


0 2 4 6 8 10 0 2 4 6 8 10 
Reduced velocity Reduced velocity 

Figure 2.12: Aeroacoustic and dynamic lift response of tandem cylinder with L/D = 
1.75. Figure (a) is the vortex shedding frequency as a function of the reduced velocity 
(UR)· Figure (b) shows the non-dimensional pressure at the frequency of vortex 
shedding. Figure (c) is the lift coefficient as a function of UR. Figure (d) shows 
the phase shift between the microphone and dynamic lift. 6, upstream cylinder; t, 
downstream cylinder. Digitized from Mohany and Ziada (2006). 

2.4 Flow through tube arrays 

The flow though tube bundles motivates the present investigation. Previous re­

search develops a firm knowledge basis of the flow through more simplified and fun­

damental geometrical configurations. Applying the concepts and insights gained on 

unsteady flow phenomena from the previous research lays ground work for in-depth 

study into the behavior of the flow in tube bundles. 

The excitation mechanisms for flow-induced vibration in tube arrays are: turbu­

lent buffeting, vortex shedding, acoustic resonance and fluid elastic instability. Re­

22 




M.A.Sc. Thesis -- Ronald E. Hanson -- McMaster University - Mechanical Engineering -- 2007 

views of these are summarized well by Weaver (1993), Weaver and FitzPatrick (1988) 

and Paidoussis (1983). The idealized response of a cylinder in a tube array subjected 

to a cross-flow is shown in figure 2.13. This demonstrates the effects and consequences 

of these excitation mechanisms on the vibration amplitude of a tube in an array. 

u 

Figure 2.13: Idealized response of a cylinder in an array subject to cross-flow, Paidous­
sis (2006). 

Several typical tube bundle arrangements are classified in a review by Weaver 

(1993), and shown schematically in figure 2.14. The past few decades have led way 

to significant contributions to the global understanding of the flow through tube 

bundles, and to the excitation mechanisms that leads to destructive damage of the 

tubes and/or shells of heat exchangers and boilers. The excitation sources in tube 

arrays has had some debate in the literature. Weaver (1993) presents an excellent 

review covering the debate of vortex shedding as an excitation source, and the previous 

beliefs. Much of this debate is focused at a common goal; determining a reliable way to 
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predict when problematic situations such as flow-excited resonances, both structural 

and acoustic in nature, can occur. Understanding the sources of excitation, such 

as periodic structures in the flow, and predicting when the excitation frequency will 

near a mechanical or acoustic natural frequency of the systems is highly important 

to design. 

(a) Normal square (90 deg) (b) Parallel Triangle (60 deg) (e) General In-line 

... 
Flow 

(c) Rotated square (45 deg) (d) Normal Triangle (30 deg) (f) General Staggered 

Figure 2.14: Array geometry definitions of standard array patterns, Weaver (1993). 

Owen (1965) argues that vortex shedding cannot occur deep inside a tube bank as 

the flow would develop into a nearly homogenous turbulence: Since then, however, a 

number of papers have supported the idea of vortex shedding as the dominant source 

of periodic excitation. Fitzpatrick (1985) concludes that vortex shedding, turbulent 

buffeting and broadband turbulence contribute to sustaining and exciting resonance. 

Attempts to clarify some of the arguments addressed in the current literature are 

made for example by Weaver and FitzPatrick (1988). It is explained that broadband 

turbulence is always present in tube bundles. The tubes will indeed respond to this 

as demonstrated in figure 2.13. Broadband turbulence, however, is only likely to 
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contribute to fretting wear of tube supports, and this would take many years for 

considerable damage to accumulate. The broadband turbulence response should be 

considered in such applications as nuclear steam generators, designed for thirty plus 

years of service. 

Strouhal periodicity or vortex shedding is distinctly different from turbulent buf­

feting in that it exist as a narrow band peak in the turbulence spectrum. Buffeting 

response is typically broadband (Weaver and Yeung 1984). Strouhal periodicity with 

frequencies in the vicinity of natural acoustic modes, or structural natural vibration 

frequencies can lead to flow-excited resonances. A foreknowledge of the associated 

Strouhal numbers in heat exchangers and boilers is necessary to avoid resonance con­

ditions. Thus, much research has been directed in determining these quantities. The 

flow patterns in tube arrays have shown some major differences with varied spacings 

and geometries. One such reason that can be identified, described by Ziada (2006), is 

the existence of free flow lanes in the inline tube arrays compared to staggered arrays, 

shown in figure 2.15. Normal square arrays have open flow lanes, whereas the normal 

triangular and rotated square arrays, belonging to the staggered array category, have 

tubes that obstruct the flow lanes. The parallel triangular array, although belong­

ing to the staggered array category, has open flow lanes, and exhibits some features 

similar to that of the square inline geometries as discussed by Ziada and Oengoren 

(2000). 

2.4.1 Flow periodicity through inline and square tube arrays 

The characteristics of the flow through inline and square tube arrays are distinct 

from other tube arrays. They contain unobstructed flow lanes which allow the fluid to 

proceed, unobstructed. The open flow lanes allow the formation of a jet like structure. 
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Figure 2.15: Standard layout patterns for tube bundles and corresponding flow lanes 
for P/ D = 1.4, Ziada and Oengi::iren (2000). 

The complex flow through these flow lanes leads to vortex shedding Strouhal numbers 

which are different from those of staggered arrays. 

It is of interest to discuss first the various structures, and flow patterns, present 

in the inline or square bundles. Small , intermediate and large spacing ratios exhibit 

different vortex shedding behavior , and flow characteristics in the interior of each 

bundle. Intermediate and large spacing tube arrays typically show a single Strouhal 

number, with a higher harmonic present in the air tests . For small inline bundles, 

when XL and Xr are less than 1.5, vortex shedding occurs only in the upstream rows, 

the flow further downstream becomes fully turbulent . Oengi::iren and Ziada (1992a) 

found three dominant Strouhal numbers for the small pitch ratio with XL / Xr = 
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1.5/1.4. The Strouhal numbers identified are 0.92, 0.65 and 0.46, based on the gap 

flow velocity. The largest Strouhal number, 0.92, is associated with the symmetric 

jet instability, and the Strouhal number of 0.46 is suspected to be its sub harmonic. 

Flow visualizations by Ziada et al. (1989) shows that even small spacing ratio inline 

bundles exhibit vortex shedding at the interior tubes, although with little associated 

strength due to the close packing of the array and the development of highly turbulent 

flow. The flow structure through the bundle is dominated by a symmetric jet mode 

which suppresses an anti-symmetric mode. This produces symmetric vortices on both 

sides of the jet at non-resonant conditions. It is explained that the presence of the 

tubes, with the jet passing though the flow lanes is analogous to the jet-slot system 

shown to enhance a symmetric mode of vortex shedding (Rockwell 1983). 

Intermediate spacing ratios show distinct differences from small spacing ratios. 

Oengoren and Ziada (1992b) show that vortex shedding occurs over the entire depth 

of an intermediate inline tube array with XL/Xr = 1.75/2.25. In the flow lanes, a 

symmetric mode of an unstable jet occurs with anti-symmetric vortex shedding in the 

wakes of tubes. This jet instability is the source of vortex shedding excitation. The 

intermediate range for inline tube bundles exists from around 1.75 to 2. 7 (Ziada and 

Oengoren 1993). Jet instability dominates the vortex shedding mode and exists up to 

longitudinal spacing ratios near 2.7. This mode also dominates the vortex shedding 

excitation in small spacing arrays studied by Ziada et al. (1989) for an array geometry 

with XL/Xr = 1.4/1.5. 

For the large spacing ratio inline arrays, investigated by Ziada and Oengoren 

( 1993), the flow structure is summarized as follows. Two distinct modes are present; 

a global jet mode and a local wake mode which appear to not occur simultaneously. 

The global jet mode occurs when the upstream turbulence is low, and is the same 

mode as in inline arrays with intermediate tube spacings. The local wake mode 
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caused by vortex shedding occurs in the front rows when exposed to highly turbulent 

upstream flow. Increasing the turbulence intensity trips the global jet mode, leading 

to a local wake mode. This change in mode is associated with a shift in the Strouhal 

number from 0.14 to 0.16. Vortex shedding at each tube is found to be independent 

of the adjacent tubes, and existed to a depth of approximately 5 tube rows. The 

wake instability mode is expected to be dominant, in practical applications, since the 

upstream turbulence intensity is typically high. 

Charts of Strouhal numbers for square and inline tube arrays are available in the 

literature, two are shown in figure 2.16 by Weaver and Yeung (1984) and Ziada (2006). 

The Strouhal number plots developed by Weaver and Yeung (1984), contain both 

experimental data from various investigations, wherein references can be found from 

Weaver and Yeung (1984), along with empirical relationships developed by Zukauskas 

and Katinas (1980), given by equation 2.5, and by Owen (1965), given by equation 2.6. 

The Strouhal number is typically based on either the gap velocity (Vg) or the upstream 

velocity approaching the tubes (Vu)· It is possible to convert between these values 

using equation 2. 7. Xp is the spacing ratio of the tubes, Su is the Strouhal number 

based on the upstream velocity, S9 is the Strouhal number based on the gap velocity, 

p is the distance between the center points of adjacent transverse tubes, and D is 

the cylinder diameter. One of the major drawbacks of the empirical relationships 

developed is that they fail to account for multiple Strouhal numbers observed in the 

flow through small spacing ratio square and inline arrays. 

x1.s3] 
= 0.2 + exp [- ~ (2.5)S9 0 88 

1
Su = -----,-- (2.6)

2(Xp- 1) 

V = Vu (2.7) 
g (p- D)jp 
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From the Strouhal number maps given in figure 2.16(a), the amount of scatter, 

and apparent disagreement is evident in the literature. For large spacings, good 

agreement is shown in all the results since only one Strouhal number exists. The 

maps by Murray et al. (1983), Fitz-Hugh (1973) and Weaver et al. (1987) show 

data collected by the authors, and data they also drew from the literature. Weaver 

et al. (1987) note that much effort has been taken to produce maps without resonance 

data included. However, the removal of the resonance data has not eliminated this 

confusion as found by Murray et al. (1983). The scatter can be attributed to other 

factors as well, including the Reynolds number, measurement location and the number 

of tube rows for example. For square arrays with small spacing ratios, the Strouhal 

numbers are inconsistent throughout the literature. Grotz and Arnold (1956) give 

Su = 1.02, whereas Weaver et al. (1987) give the lowest Strouhal number as 1.44. 

In fact, Weaver et al. (1987) give three Strouhal numbers for the small spacing ratio 

array, namely 1.44, 1.72 and 2.04. The intermediate value of 1.72 observed by Weaver 

et al. (1987) only exists over a small range of Reynolds numbers between 420 and 

590, based on the upstream flow velocity. The other two values were found to exist 

in their study for a range of Reynolds numbers between 760 and 1130. The Strouhal 

number observed by Grotz and Arnold (1956) is exactly half of the highest result 

determined by Weaver et al. (1987), indicating that it may indeed be a subharmonic. 

Chen (1968) gives Su = 0.87 in his map for the same spacing ratios of Weaver et al. 

(1987), but drew his values from higher Reynolds numbers in the range of 0.5 to 

2 x 104 
. The maps by Fitz-Hugh (1973) predicts Su = 0.93 where Zukauskas and 

Katinas (1980) predicts Su = 0.88. It is clear that Strouhal numbers for inline and 

square tube arrays are highly dependant on the testing conditions. 

29 




M.A.Sc. Thesis -- Ronald E. Hanson -- McMaster University - Mechanical Engineering -- 2007 

a) 

Ci5 

1.5 2 3 

P/D 

b) 

4 

~ 3 

2 

42 

3•0 

"Cl) 
'­
(]) 
.n 2·0 
E 
:J 
t: 

(ij 
.c 
:J 

2 1·0 

0 

(a) 

I 
-s. · 2tXp-tl 
--- Zukauskas and Katinas [34] 

2.5 

0.15 

\ 
\ 
\ 0.2 

\ . 
0.17 " . "....... -...... 

• • 0.18 

0.125

• 

0.13 

--­

3 

Figure 2.16: Strouhal number charts for square and inline tube arrays. (a) Compila­
tion by Weaver et al. (1987), (Stu)· (b) From Ziada (2006), (St9 ). 
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2.4.2 Flow-excited acoustic resonance of tube bundles 

Of particular interest to the present work is the research of Ziada et al. (1989), 

Oengoren and Ziada (1992b), Ziada and Oengoren (1993) and Oengoren and Ziada 

(1998). A major finding in these works is the fundamental differences in the mecha­

nisms of acoustic resonance between inline and staggered tube arrays. Furthermore, 

the various spacing ratios of the inline arrays, small, intermediate and large, shows 

distinct characteristics during acoustic resonance. In the infancy of research on the 

acoustic resonance in tube bundle arrays, it was believed that vortex shedding is the 

primary source of excitation. See for example the works of Grotz and Arnold (1956) 

and Chen (1968). Later it was disputed, based on observed acoustic resonances not 

necessarily occurring at flow velocities predicted by Strouhal excitation, that the for­

mer belief is not necessarily valid. These arguments can be identified in the literature 

by Baylac et al. (1973), Fitzpatrick and Donaldson (1977), Rae and Murray (1987), 

Ziada et al. (1989) and Oengoren and Ziada (1992b). 

Oengoren and Ziada (1992b) investigated the aeroacoustic response of an inter­

mediate inline and staggered tube arrays. Figure 2.17 is a plot of the response 

of a staggered array with XL/Xr = 2.7 /1.6, along with two inline bundles with 

XL/Xr = 2.6/3 and XL/Xr = 2.1/2.5. For the two intermediate inline tube arrays, 

a common characteristic of the aeroacoustic response is the pre-coincidence resonance. 

The pre-coincidence resonance is an acoustic resonance that occurs before coincidence 

of the natural Strouhal number an acoustic mode of the test section. Acoustic reso­

nance, in these arrays, occurs only before coincidence with the first transverse acoustic 

mode. Although another resonance range is shown, it is not related to the first mode 

acoustic resonance, and is at a higher mode frequency. This response is inherently 

different from the response observed for a single isolated cylinder indicating that 

the excitation mechanism is essentially different than flow-excited acoustic resonance 
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Figure 2.17: Frequency of vortex shedding, and sound pressure level at resonance 
frequencies, as functions of the gap flow velocity. (a) Staggered array (Ziada et al. 
1989); (b) and (c) in-line array (Ziada and Oengoren 1990). Source, Oengoren and 
Ziada (1992b ). 

excited by vortex shedding indigenous to the unexcited flow. Oengoren and Ziada 

(1992b) show detailed flow visualizations that expose changes in the flow patterns 

when acoustic resonance occurs. Before acoustic resonance, a symmetric jet instabil­

ity mode is observed in the flow lanes as shown in figure 2.18. Along the tube rows, 

the cylinders shed vortices out of phase. Symmetry occurs along the centerline of the 

flow lanes as the tubes on either side of the jet exhibit out of phase vortex shedding. 

During resonance, the symmetric jet mode is suppressed, and an anti-symmetric shear 

layer mode becomes dominant. This is associated with in-phase vortex shedding along 

both the columns and the rows of tubes. Figure 2.18 shows this change in mode and 

is accompanied by a sketch to clarify the structures observed. It is suggested that 

acoustic resonance in the intermediate spacing tube bundles is excited by unstable 

shear layers formed in the gap between tubes in one column. 
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Figure 2.18: Flow visualization, shown in figure ,(a), of the flow structure during 
acoustic resonance. Figure (b) shows a schematic of flow structure during resonance 
(left) and before the onset of acoustic resonance (right) ( Oengoren and Ziada 1992b). 

Large spacing inline tube arrays exhibit a classical Strouhal excited acoustic reso­

nance. This response, shown in figure 2.19, is clearly different from that of the inline 

arrays shown in figure 2.17. Only the post-coincidence resonance range is excited 

for large spacing ratios, defining the major difference between this array and the 

intermediate tube arrays. Thus the mechanism of acoustic resonance is essentially 

different in the large spacing arrays, compared to intermediate and small spacing 

arrays. Contrary to these results, Ziada and Oengoren (1993) found some similarity 

to intermediate spacing ratios when using a water tunnel. With low turbulence, two 

modes exist, the global jet mode and local wake mode, as discussed in §2.4. 1. Pre-

coincidence resonance can be excited with surface waves in the water tunnel if the 
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global wake mode persists. It is believed that this occurs due to switching between 

the jet and wake modes. The water tunnel tests, which excites free surface waves are 

believed to be distinct from the test done in air, and unlikely to occur in air since the 

jet mode occurs only in extremely low upstream turbulent conditions. 
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Figure 2.19: Aeroacoustic response of a large spacing inline array with XL/Xr 
3.23/3.75. Digitized from Ziada and Oengoren (1993). 

Much of the past research is directed towards understanding and characterizing 

acoustic resonances in order to avoid destructive problems in the design phase. In 

some cases, acoustic resonance can occur due to changes in operating conditions, or 

from build up on the tube surfaces, not considered in the original design, requiring 

methods to disrupt the resonance. Blevins and Bressler (1987) discusses four methods 

to suppress acoustic resonance: 

1. Installation of baffle plates to alter standing wave frequencies ( D /h) 

2. Selective tube removal 

3. Addition of tuned Helmholtz resonators 
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4. Alteration of tube surfaces to suppress organized vortex shedding 

Thbe removal is considered an impractical solution. To appreciably reduce the 

sound pressure level of a noisy array, the removal of nearly sixteen percent of the 

tubes is required for tube arrays studied by Blevins and Bressler (1987). A Helmholtz 

resonator can suppress resonance; however, Blevins and Bressler (1987) note that the 

resonator would have to be of comparable size to the shell of the heat exchanger, also 

an impractical solution. Chen (1968) suggest acoustic baffles as the most practical and 

likely solution to acoustic resonance problems. It is generally accepted that acoustic 

baffles are the overall best way to suppress resonance, since they are typically effective 

if done properly and are the simplest way to retrofit a noisy heat exchanger. Baffle 

plates, however, can reduce the service life of a heat exchanger, due to increased 

fretting wear, when baffles are parallel to the tubes. Eisinger (1980) discusses the 

effects of solid baffle plates, but generally accepts that porous plates will reduce 

the negative effects of thermal distributions and baffle vibrations. It is clear that 

troubleshooting a noisy heat exchanger maybe difficult, or has negative impacts. 

Thus prediction and avoidance of acoustic resonances remains a primary goal. 

2.4.3 Dynamic lift in tube arrays 

Unsteady forces generated by the flow over the tubes in tube arrays is an excitation 

source that can lead to damage, noise and vibration (Paidoussis 1980). Several sources 

of excitation lead to increased amplitude in tube vibrations, identified in figure 2.13. 

Determining the strength of these unsteady fluid forces is important to the design 

and service life calculations of heat exchangers and boilers. Unsteady fluid forces 

on a tube in a square array with P/ D = 1.95 are directly measured by Oengoren 

and Ziada ( 1992). The dynamic lift and drag coefficients from this investigation are 
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plotted in figure 2.20. The Reynolds number causes considerable variation in the lift 

coefficients for the square array; it can either increase or decrease the lift coefficients, 

as evident in figure 2.20. Periodic lift forces are dominant over broadband turbulence 

in this array, typically at two to three times higher in magnitude. Furthermore it is 

shown that the dynamic lift tends to increase from the first row though the array. 

At sufficiently high Reynolds numbers the maximum dynamic lift is achieved at the 

fourth tube in the array presented. Several other studies exists in the literature, 

such as those by Chen and Jendrzejczyk (1987) and Axisa et al. (1988), however, 

the latter is directed at single row studies, and the former is in highly turbulent 

conditions. Recently, Inada et al. (2007) studied the fluid excitation forces acting on 

a rotated square tube with P/ D = 3.1. The excitation forces are found to be three 

to ten times higher on the interior tubes than leading tubes. 

The fluctuating lift and drag coefficients plotted in figure 2.20 are determined 

by integrating the normalized power spectral density. Previous literature on the 

dynamic lift response aimed to determine upper bounds of the NPSD+, and at creating 

empirical relationships for these bounds to be used for design purpose. Oengoren and 

Ziada (1992) note that there exists a discrepancy in the literature due to how the data 

is determined and analyzed. Using models of the NSPD bounds may not accurately 

model the magnitude of the spectral peaks. 

2.4.4 Speed of sound in a tube array 

The presence of the tubes in the duct reduces the speed of sound in the duct. The 

amount of reduction is dependant on the fraction of the total volume occupied by 

the tubes. Determining the speed of sound in a tube bundle is necessary to properly 

*normalized power spectral density, ¢ = [F(V9 /d)/[(l/2)pV
9
2 Ldj2] 
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Figure 2.20: Fluctuating lift and drag coefficients as a function of row depth; •, 
Re = 13, 330; D, Re = 33, 300; A, Re =53, 300; (Oengoren and Ziada 1992). 

predict the frequency of acoustic modes. Equation 2.8 is used to determine the 

effective speed of sound in a heat exchanger by considering the effects of the solidity 

ratio, or volume fraction occupied by the tubes (Parker 1978). 

c 1 
1 (2.8)

(1+a)2 

Where: 

c is the speed of sound propagation perpendicular to the tube axis 

C0 is the speed of sound without tubes present 

a is the solidity coefficient which is dependant on the array geometry 

For the normal triangular and square arrays, a is given as: 

2 

a= 0.7853 (~) _,for square arrays (2.9) 

2 

a = 0.9069 ( ~) _, for triangular arrays (2.10) 
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Another factor shown to cause variability in the effective speed of sound is the 

ratio between the depth and height of a test section. Ziada et al. (1989) found that 

this factor must be considered for depth to height ratios less than 2.5. 

2.5 Discussion 

The literature presented spans a wide range from basic fundamental investigations 

of the flow over an isolated cylinder to the more complex flow though tube arrays. 

Much of the current literature is directed toward the interstitial flow in tubes arrays 

for the purposes of predicting dynamic loading on the tubes and identifying sources 

of periodicity which can lead to flow-excited acoustic and structural resonance. For 

isolated and tandem cylinders, the dynamic lift increases abruptly during acoustic 

resonance. These results lead way to the question of how dynamic lift forces will 

respond to acoustic resonance in arrays of cylinders. 

The square array is of interest since the mechanism leading to acoustic resonance is 

similar to the tandem cylinders investigated by Mahany and Ziada (2007), wherein a 

pre-coincidence and coincidence resonance range is observed. Similar to the tandem 

cylinders, large spacing ratio square arrays exhibit a coincidence resonance range, 

but the small and intermediate spacing ratios exhibit pre-coincidence resonance. For 

the square tube arrays, the dynamic lift forces in the absence of acoustic resonance 

have been determined, however, during acoustic resonance the dynamic lift forces are 

yet to be investigated. Increase in the total dynamic lift forces during acoustic reso­

nance shown by Mahany and Ziada (2006) for tandem and single cylinders, underlines 

the necessity for this investigation, thus the purpose of the present investigation is 

to determine the behavior and characteristics of the dynamic lift response during 

acoustic resonance. The dynamic lift response in the pre-coincidence and coincidence 
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resonance ranges reported by Mahany and Ziada (2006), exhibits major differences 

for tandem cylinders and therefore it is expected that the dynamic lift response in 

square arrays may behave very differently for different spacing ratios. Both dynamic 

lift forces and aeroacoustic responses have been investigated over a large range of 

spacing ratios for the tandem cylinders creating a excellent database for comparison 

and extension to square arrays. Furthermore, the phase response between the sound 

field and the dynamic lift forces for tandem cylinders indicates that the dynamic 

lift in tube arrays may exhibit also a different phase shift response during the two 

resonance ranges. 

The effect of the acoustic pressure field on the dynamic lift force during flow­

excited acoustic resonance in square tube arrays is investigated in this study. It is 

shown that the lift coefficients on single and tandem cylinders is large compared with 

square arrays. For tandem cylinders, the lift coefficient on the downstream cylinder 

can be an order of magnitude higher than those in square tube arrays. For the single 

and tandem cylinders, the dynamic lift due to sound is negligible since the lift forces 

generated by the periodic flow are dominant during acoustic resonance. However, 

in square arrays this may not be true. The lift coefficients are lower due to the 

confinement of the tube wakes. It is therefore necessary to investigate the dynamic 

lift in the presence of the acoustic pressure distribution imposed on the surface of the 

cylinders during acoustic resonance. 
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Chapter 3 

Experimental Setup 

The following chapter describes in detail the experimental facilities and instru­

mentation used in the present investigation. 

3.1 The Wind Tunnel 

The wind tunnel is an open loop configuration, consisting of a 50 HP AC induction 

motor powering a centrifugal type blower. This setup draws air in though the test 

section inlet and exhausts into the main section of the tunnel. The motor is controlled 

by a Toshiba TOSVERT 3-phase industrial, variable frequency inverter, allowing fine 

increment adjustment of flow velocity and repeatability of a selected velocity. A 

schematic of the configuration is shown in figure 3.1. The main components identified 

are the parabolic inlet, test section, diffuser, flexible connections, centrifugal blower, 

50 HP Motor and controller and the outlet side of the main tunnel. 

3.2 The Main Test Section 

The test section is a rectangular duct 810 mm in length by 254 mm in height 

and 76.2 mm in width. The tube bundle spacings and tube diameters are varied to 

achieve the desired spacing ratios. Birch plywood, 19 mm thick, is used to construct 

the top, bottom and sidewalls of the test section. The inlet of the test section is 

fitted with a smooth parabolic contraction to reduce pressure drop, prevent flow 
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Figure 3.1: A schematic of the general layout of the wind tunnel. 
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separation and create an approximately uniform upstream flow field. The parabolic 

contraction was designed by Macleod (1995), wherein further properties and velocity 

profile information can be found. At the exit of the test section a diffuser recovers 

the pressure losses that would be lost to a smaller exiting section and is also used for 

attachment to the blower inlet, designed by She (2000). 

Mahany and Ziada (2006) designed the initial test section which was later modified 

for the purposes of the present research. The dimensions are chosen in such a way to 

ensure coincidence between the natural Strouhal periodicity and the first transverse 

acoustic mode for a variety of cylinder diameters between 9 and 26 mm. Although 

coincidence with a transverse acoustic mode is necessary, it is not necessarily sufficient 

to ensure flow-excited acoustic resonance. Other considerations, such as the Mach 

number, Reynolds number as well as the dynamic head are taken into account in the 

initial design. The test section design also accounts for blockage ratios, typically less 

than ten percent with aspect ratios approximately six for a single isolated cylinder. 

A schematic of the parabolic inlet, test section and diffuser is shown in figure 3.2. 

3.3 The tube bundles 

Only square tube arrays are investigated. Each of the three arrays fell into a 

different category of spacings, namely the small, intermediate and large spacings. A 

summary of the tube arrays, including the spacing, and tube diameter is given in 

table 3.1. The flow velocity in the test section, based on the gap velocity typically 

ranged from 10 mjs to 80 m/s in the large spacing array, and a maximum velocity 

of up to 65 mjs in the smaller spacing arrays, due to a higher pressure drop imposed 

by the smaller flow lanes of these smaller arrays. The Reynolds number is defined in 

equation 3.1, where Vg is the gap velocity, D is the cylinder diameter and v is the 
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Figure 3.2: The test section showing the parabolic inlet and diffuser. 


kinematic fluid viscosity. In the present experiments, the Reynolds number typically 


varied from 1 x 103 to 8 x 104 . 


Table 3.1: Summary of the three tube arrays investigated 


Array Class Diameter Spacing #Rows #Columns 
P/ D = 3.37 large 15.08 mm 50.8 mm 7 7 

P/D=2.18 intermediate 16.67 mm 36.34 mm 7 9 

P/ D = 1.58 small 15.08 mm 23.83 mm 7 11 


R e = VgD (3.1)
v 


A schematic of a tube array is shown in figure 3.3. Half tubes are not used along 

the wall, however , the top and bottom walls were positioned at the centerline of the 

flow lanes. The speakers are inlaid into the top and bottom wall and covered with 

perforated plates, as shown in figure 3.3, to maintain the test section inner dimensions 
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while allowing the speakers to excite the transverse acoustic mode. Eight Misco* 8 

Watt speakers (DC3WP, 3" diameter cone) are used to excite the acoustic mode, 

four on the top, and four on the bottom as shown in figure 3.3 for the imposed 

sound testing. During the aeroacoustic test with flow, the top and bottom sections 

are replaced with solid section without holes for the speakers. For the instrumented 

cylinder, measuring the dynamic lift, an insert is used on the test section side walls 

to eliminate possible dynamic pressure effects in the area the tube passes though in 

the wall as shown in figure 3.4. The wall thickness of the insert is 1.6 mm, limiting 

the uncertainty in the cylinder effective length to 4%. The hole through which the 

cylinder passes through the insert is slightly oversized of the cylinder, creating a gap 

of 0.4 mm. The oversized hole is necessary to ensure the cylinder does not contact 

the walls of the test section, leading to transmission vibration from the test section 

to the load measurement rig. Seals cut from latex are used to prevent flow though 

the gap, shown in figure 3.4. The measurement rig is mounted to a heavy steel frame, 

isolated from the ground with vibration pads. 

The speakers are wired in a parallel/ series circuit wherein the top and bottom 

rows of speakers are connected in parallel, and the two parallel setups are wired in 

series, but with the polarity of the two sets of speakers reversed. This circuit design 

increases the effective resistance of the circuit over other schemes, therefore drawing 

less current to achieve the same total power output. Essentially, this circuit, given 

an input sinusoidal wave form, will output a sine wave to the top and bottom rows 

of speakers. The top and bottom speakers will produce acoustic waves with a phase 

shift of 180 degrees. Since the goal is to impose a sound field at the first transverse 

acoustic mode frequency, this is a necessary condition (see figure 3.6 for diagrams of 

the acoustic mode shapes). 

*Misco is a registered trademark of the Misco Speaker Company 
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Figure 3.3: The general tube bundle layout showing the inlaid speakers, (PjD 
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Figure 3.4: Schematic of the insert inlaid in the side wall, (P/D = 3.37). 
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3.3.1 Acoustic modes of the test section 

The wave equation (equation 3.2), or as commonly referred to in the literature 

as the linear, lossless wave equation (Kinsler et al. 2000), is solved for the harmonic 

solution using assumed boundary conditions. For the transverse acoustic mode of 

a rectangular duct open at opposite ends, with the coordinate system defined in 

figure 3.5, the corresponding boundary conditions at the top and bottom walls are a 

zero particle velocity, or zero pressure gradient, given in equation 3.3. The boundary 

conditions at the open outlet and inlet, with zero pressure, are given in equation 3.4. 

Figure 3.5: The open cavity. 

(3.2) 

(op) - o (3.3)
oy y=h 

p(x = 0) = p(x = L) = 0 (3.4) 

The boundary conditions defined in equation 3.3 and 3.4 shows that sine and cosines 

are appropriate forms for the solution to equation 3.2. Using this assumption and 
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application of the given boundary conditions, the pressure in a two dimensional duct 

can be expressed as: 

. (lJrx) (m1ry)p(x, y, t) = Psm L cos -h- coswt (3.5) 

Kinsler et al. (2000) shows that the angular frequencies can be solved from the sine 

and cosine terms as (where l and m are integers): 

(3.6) 

Along the middle of the test section, for x = L/2, the acoustic pressure will exhibit a 

maximum fluctuating amplitude, since the first sine term goes to unity at this point. 

For the test section, similar to that used by Mahany and Ziada (2005), Hanson et al. 

(2006) and Blevins (1985), the opposite ends in the stream wise direction are open, 

however, for simplicity, the first flow-excited resonance mode corresponds to l = 0 

and m = 1, neglecting loses in the stream wise direction, which yields equation 3.7. 

This assumption is valid away from the open ends, where end effects are small. 

(m7ry)p(y, t) = P cos -h- coswt (3.7) 

Thus, the frequency of the first mode acoustic resonance is given as: 

c 
(3.8)fa= 2h 

For a speed of sound, c = 344 m/s, and a test section height of 254 mm, the frequency 

of the first mode is approximately 677 Hz. 

The Euler equation, equation 3.9, is used to determine the acoustic particle velocity. 

(3.9) 
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Solving for v, the acoustic particle velocity, assuming the (0, 1) mode, we arrive at: 

Yrr (1ry)
v = pwL sin L coswt 	 (3.10) 

Plots of the normalized acoustic pressure, from equation 3.7, and acoustic velocity 

from equation 3.10, are given in figure 3.6 for the two extreme cosine terms (±1). As 

shown, the acoustic particle velocity lags the acoustic pressure by 7f/2. 
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Figure 3.6: Acoustic pressure (left, top and bottom) and corresponding particle ve­
locity, (right of each acoustic pressure schematic), in the test section, where arrows 
indicate the relative magnitude and direction described by the waveform. 
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3.4 Instrumentation 

The following section is a summary of the instrumentation used in the experi­

mental program, specifically that used for the dynamic lift measurements, and sound 

pressure level measurements. 

3.4.1 Flow velocity 

The flow velocity upstream of the tube bundle is measured using a pitot-static 

tube. The pitot-static tube is located 152 mm from the end of the parabolic contrac­

tion of the test section, shown in figure 3.3. This is used to measure the difference 

between the stagnation and static pressure allowing the calculation of the flow veloc­

ity using Bernoulli's equation. Solved for velocity, this is given by equation 3.11. Vu 

is the upstream flow velocity, p is the density of the air and Pt - Ps is the difference 

in the stagnation and static pressure. The pitot-static tube is used only during cal­

ibration of the flow velocity for each tube array tested, and is then removed before 

aeroacoustic testing is conduced. 

(3.11) 

3.4.2 Microphones 

G.R.A.S. 1/4" condenser microphones are used to measure the fluctuating sound 

pressure at the top wall (directly above the instrumented cylinder) of the test section. 

The microphones have a flat response over a wide frequency range (10-25kHz) within 

ldB. The microphone is mounted flush against the top plate of the test section. 

Microphones are calibrated using a G.R.A.St Sound calibrator, Type 42AB, which 

tc.R.A.S is a registered trademark of G.R.A.S. Sound and Vibration 
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delivers a sinusoidal wave of 114 dB at 1 kHz. The calibration of the microphone was 

done according the following steps: 

• 	 Determine the output voltage of the microphone corresponding to 114 dB gen­

erated by the pistophone, at 1000 Hz, by applying equation 3.12 where Pref is 

the threshold of human hearing, (20p Parms)· 

114dB = 20 log( Prms ) (3.12)
Pre/ 

• 	 Find the relationship between the signal from the microphone (Vrms) and the 

acoustic pressure ( Prms). The graph in figure 3.7 is a typical amplitude spectrum 

for the applied signal from the pistophone. 

1.5.-------~-----~------~-----, 

(/) 
~ 
a: 

> 
0.5 

o~---~---~~----~---~ 
0 500 1000 1500 2000 

frequency (Hz) 

Figure 3.7: Typical amplitude spectra from the microphone during calibration. 

3.4.3 Load cells and the dynamic lift 

To measure the fluctuating lift forces, a rig similar to that constructed by Mohany 

and Ziada (2006) is used. A primary component in the rig constructed by Mohany 

and Ziada (2006), is the beam spring. This is designed to be extremely stiff parallel 
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to the flow direction, but less stiff in the lift direction, where it must be sensitive 

enough to measure the dynamic lift. The reason for this design criteria stems from 

the requirement to measure the lift forces only, which are investigated in the present 

study. For the beamspringjcylinder combination of Mohany and Ziada (2006) , the 

natural frequency of the translational mode is near 1300 Hz. 

A characteristic of the flow through a tube bundle is the strong broadband tur­

bulence response, compared to measurements of single and tandem cylinders. The 

beam spring/load cell system is reconstructed to be stiffer in all directions, to reduce 

the effects of broadband turbulent buffeting occurring in tube bundles, (Paidoussis 

51983). The natural frequency, Wn = (k/m) 0· , will increase with an increased stiffness. 

An isometric view of the dynamic lift measurement rig, is shown in figure 3.8 and 

mounted on the test section in figure 3.4. 

(a) & (b) Aluminum rig 

(c) Cylinder 

(d) Mounting hole 

(e) Set bolt 

(f) Load cell 

(g) Spacer 

(h) Preload screw 

(i) Cylinder bolt 

(j) Beam spring 

Figure 3.8: Dynamic force measurement rig shown with labeled components. 
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The beamspring/cylinder system is essentially a two degree of freedom system; 

there is one mass (the cylinder) and two springs (beam springs) at either end of 

the cylinder as shown in figure 3.8. For a system with one mass, its position and 

orientation is determined by knowing the rotational angle, and center of mass location. 

Two modes of vibration can occur. Typically, the translational mode (shown in 

figure 3.9) will be at a lower frequency than the rotational mode (shown in figure 3.9), 

but depends on the moment of inertia, mass of the cylinder and spring stiffness. 

For the translational and rotational mode, shown in figure 3.9, the equations 

of motion, assuming an undamped system, are given by equation 3.13 and 3.14, 

respectively. The length of the cylinder is L, and the springs are assumed to have a 

stiffness of k/2. The moment of inertia about the center of mass is assumed to be 

(1/12)mL2 
. A reference point is set at the center of mass, where the angle is measured 

from the cylinder axis. It is clear from these equations that the natural frequency of 

the rotational mode will be a factor of ( 6/L )0·5 higher than the translational mode. 

For a cylinder length of 0.152 m, this corresponds to a factor of 6.3. 

mx + kx = 0 (3.13) 

(3.14) 

No attempts were made to analytically determine the values of the natural fre­

quencies, this is done using experimental methods such as the pluck test. Results of 

the pluck test are shown in figure 3.10. It is clear that only one dominant frequency 

component is visible, near 1800 Hz. This is typical for pluck tests done at the center 

of the cylinder span. Test are also conduced off center in an attempt to determine 

the rotational mode frequency, however they were unsuccessful in identifying a higher 

mode frequency. As shown previously this frequency would be much higher, and 

therefore far removed from the frequency range of interest in this study. 
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Translation 
Mode 

Figure 3.9: Two vibration modes possible for the two degree of freedom system. 

3.4.4 Phase lag and magnification 

Consider a single degree of freedom system, a simplification of the beamspring/cylinder, 

assuming the second mode effects are negligible, the ordinary differential equation 

governing the damped harmonic oscillator is given by equation 3.15. The damping 

ratio for a damped harmonic oscillator with mass m , damping coefficient c, and spring 

constant k, is given by equation 3.16. The natural frequency of a simple harmonic 

oscillator is given by equation 3.17, 

(3.15) 

(= c (3.16)
2~ 

(3.17) 

Using the natural frequency of the simple harmonic oscillator, given in equation 3.17, 

and the damping ratio from equation 3.16, equation 3.15 can be written in the form 

given by equation 3.18. 

(3.18) 
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Figure 3.10: Frequency response of the dynamic load measurement rig during a pluck 
test (top). Time trace of the decaying amplitude after the pluck test showing the 
exponential fit of the data (bottom). 

Assuming that the system is a damped harmonic oscillator, equation 3.19 will be a 

solution to the linear homogenous equation 3.18 . 

x(t) = cest (3.19) 

For the beam spring, the damping will be small. There will be two solutions to 

equation 3.15 of the form given by equation 3.20 & 3.21 . 

(3.20) 


(3.21) 
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Equation 3.20 and 3.21 are used to determine the general solution. The solution form 

will contain the exponential decay term: 

(3.22) 

The motion of a damped oscillator will have an angular frequency given by equa­

tion 3.23, and the amplitude of vibration will decay with time, as given by equa­

tion 3.22. 

(3.23) 

From the exponential fit determined from figure 3.10, the following result is obtained: 

(wn = 14.48 

For a natural frequency of 1780 Hz from figure 3.10, the damping ratio is calcu­

lated to be: ( = 0.0013. 

The phase lag for a single degree of freedom system, can be expressed in terms of the 

frequency (natural and driving) and the damping ratio, of which all are known. The 

phase lag is defined by equation 3.24, where ( is the damping ration, 0 and w are 

the driving and natural system frequency respectively. The phase response is plotted 

in figure 3.11 and shows that for frequencies less than the natural dynamic system 

frequency, the phase shift is essentially zero. For this reason, no corrections are made 

to the phase shift between the microphone and the dynamic lift measurements. 

(3.24) 
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For the single degree of freedom system, the load cells will measure a force am­

plified by the natural response of the system. The theory on force amplification can 

be found in Rao (2004), or in Oengoren and Ziada (1992). The ratio of the force 

measured to the real force can be evaluated using equation 3.25, in which r is the 

frequency ratio, 0/w. The magnification of the force measured is shown in figure 3.11. 

At the frequency of interest, 680 Hz, the correction factor is approximately 1.17. 

FMEAS 1 + (2(r) 2 

(3.25) 
FREAL (1- r 2 )

2 + (2(r) 2 

. 103 

150 
Ci) 

c 102 

(]) 
(]) 0,_ +::: 
g> 100 ct! 

(,) 

101
"0 !E: 
---­ c 
(]) 0> 
C/) ct!ct! ~..c::: 50 10°a. 

• 10-10 
0 1000 2000 3000 0 0.5 1.5 2 
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Figure 3.11: Phase shift between the excitation source the dynamic response (left). 
The dashed line is shown at the first transverse acoustic mode frequency of the test 
section. Magnification factor of the force response as a function of the driving fre­
quency (right). 

Plots of the force magnification and phase shift are dependant on the value of the 

damping ratio. It is interesting to note the effect of a small damping ratio on these 

plots. Neglecting the damping term, equation 3.25 reduces to equation 3.26. Since 

the damping measured is small, the reduced equation gives a magnification factor 

within 0.1%. 

1 
(3.26)

r 21 ­
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Chapter 4 

Dynamic Lift Due To Sound 

Standing acoustic waves produce time dependant pressure gradients in the test 

section. The result of this pressure gradient is an induced pressure on the surface of the 

cylinders in the tube array causing a net periodic lift force. This section investigates 

the pressure gradients on the cylinder surfaces, its origins and the magnitude of the 

induced lift forces. 

4.1 Dynamic lift amplitude in an acoustic standing 

wave - analytical 

The shape of the first transverse acoustic mode in the test section, without tubes, 

with the dimensions used in these experiments and with an open inlet and exit is 

shown in figure 4.1. 

0.5 

0 

-0.5 

Figure 4.1: Normalized mode shape of the first transverse acoustic mode solved in 
ANSYS. The colorbar is a linear scale showing the pressure distribution. 
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At the center of the test section, the vertical pressure distribution of the first 

transverse acoustic mode yields a sinusoidal pressure distribution with a pressure node 

in the middle. Assuming this is valid with tubes present, it is possible to calculate the 

amplitude of the dynamic load that would be applied at the tube surface due to an 

imposed sinusoidal pressure distribution. Feenstra et al. (2005) did precisely this and 

explain the method and mathematical derivation. For a cylinder at the test section 

center, or pressure node location, the centerline of the cylinder would essentially 

see zero pressure, however the top and bottom halves of the cylinder surface would 

see positive and negative pressures respectively at an instant in time. The standing 

wave will, in one instant, produce positive pressure along the top of the cylinder, and 

negative pressure along the bottom surface. At another instance in time, the pressure 

loading will be reversed, thus over time, the loading of the cylinder will be periodic at 

the frequency of the standing wave. Feenstra et al. (2005) derived the equation for the 

lift amplitude generated for a cylinder in a standing wave. The spatial distribution 

of the acoustic pressure would be given by equation 4.1. 

P(x) = sin (n:) (4.1)P0 

Where: h is the test section height, Po is the peak acoustic pressure and n is the 

mode number. For a cylinder located at the center of the test section, the dynamic 

lift, per unit length, can be expressed as a function of P0 , the cylinder diameter D, 

and the test section height h. Feenstra et al. (2005) also added a component due to 

the drag forces expected from the acoustic particle velocity as shown in equation 4.2. 

The value Upeak is determined from equation 3.9. 

Pressure Contribution (4.2)
D 2+ 2pCDUpeak 
'-v-"" 

Particle Velocity Contribution 
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Using the method of Feenstra et al. (2005), the dynamic lift amplitude as a 

function of the maximum acoustic pressure at the top center of the test section is 

determined as shown in figure 4.2. The two cylinder diameters used in the present 

study are shown for a test section height of 254 mm. 
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Figure 4.2: Dynamic lift amplitude as a function of the acoustic pressure using the 
equation developed by Feenstra et al. (2005). solid line, D = 16.67 mm; dashed line, 
D = 15.08 mm. 

An important finding for the present geometry is that the particle velocity con­

tribution can be neglected. The response shown in figure 4.2 is linear with a slope of 

0.0022(Pa) for the smaller cylinder with D = 15.08 mm, and a slope of 0.00275(Pa) 

for the larger cylinder with D = 16.67 mm. Since the plot is linear, it is evident that 

the contribution due to the acoustic particle velocity is small, and can be neglected 

in these cases. The results determined from the method of Feenstra et al. (2005) are 

referred to hereafter as the sine wave distribution results. 
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4.2 Numerical simulation of the acoustic mode 

4.2.1 Background and theory 

The finite element program, ANSYS*, is used to solve the acoustic mode shape 

and the acoustic pressure distribution in the modeled test section. Discretization of 

the wave equation (3.2), from §3.3.1, is used to determine the equation of motion 

for acoustic nodal pressures, in matrix form, by equation 4.3, assuming the system is 

undamped. 

Mp(t) + Kp(t) = 0 (4.3) 

Where M is the mass matrix and K is the stiffness matrix. 

For a linear system, the vibration will be harmonic and of the form: 

(4.4) 

Where rpi is the eigenvector associated with the ith natural frequency, wi is the ith 

natural angular frequency and t is the time. Substituting 4.4 into 4.3 yields: 

(K- wlM)rpi = 0 ( 4.5) 

For a non-trivial solution this corresponds to the following equation: 

K -wt 
2M= 0 ( 4.6) 

This equation represents an eigenvalue problem, for which the determinant can be 

solved for n values of w eigenvalues, and n eigenvectors, where n is the number of all 

the degrees of freedom. 

*ANSYS is a registered trademark of ANSYS, Inc. 
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4.2.2 Numerical results 

For each of the three tube arrays, the first transverse acoustic mode is simulated 

numerically. The domain is two dimensional, wherein the dimensions correspond to 

those of the actual test section. The domain is meshed with 2D acoustic elements. 

This resulted in a minimum of 30000 nodes for the three cases studied. The surface 

of the cylinders typically contains a minimum of 100 equally spaced nodes. 

To determine the force amplitude of the imposed pressure field, the pressure field 

is integrated around the cylinder surface. For the three tube arrays, the pressure 

field around the cylinder surface is plotted in figure 4.3 along with the sine wave 

distribution for both cylinder diameters. Note that for the smaller cylinder diameter, 

the sine wave distribution follows the same curve as the larger diameter but ends 

at the y-coordinate of the numerical results corresponding to the same diameter. 

Integration of the pressure distribution around the surface of the centrally located 

cylinder for the small, intermediate and large spacing ratio square tube arrays yields 

a maximum lift amplitude of 0.0033, 0.0046 and 0.0041 N/m, respectively, for the 

normalized pressure distributions. In order to compare the results for the different 

tube arrays, the acoustic pressure on the test section wall is normalized to 1 Pa. 

An important finding from the present results is the disagreement between the 

sine wave distribution and that of the numerical results. Figure 4.3 shows that the 

sine wave distribution underestimates the pressure distribution determined by the 

numerical simulation. Mohany and Ziada (2006) observed in the simulation of the 

acoustic modes that the particle velocity distribution was distorted in the region near 

the cylinders, as the acoustic streamlines had to go around the cylinder. Since the 

instrumented cylinder is located at a pressure node in the test section, it experiences 

the greatest pressure derivative and the highest particle velocity. At the walls of the 

cylinder, the normal particle velocity is zero, meaning that normal to the cylinder 
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Figure 4.3: Surface pressure contours determined by numerical simulation for the 
tube arrays. • , small array, D = 15.08 mm; o, medium array, D = 16.76 mm; _. , 
large array, D = 15.08 mm; solid line, sine wave distribution. 

walls , the pressure derivative is also zero. This distortion is believed to cause the 

changes in the observed lift force amplitude when comparing the sine wave analytical 

method with the numerical method. 

It is shown in §4. 1 by figure 4. 1 that the acoustic pressure is a maximum along 

the center of the top of the test section for the first transverse acoustic mode. Below 

this point , at the center of the test section, the derivative of the acoustic pressure is a 

maximum at this pressure node, as can be justified from a sinusoidal pressure distri­

bution. It is therefore expected that the cylinder located at this pressure node should 

experience the maximum lift amplitude due to the acoustic pressure loading on the 

cylinder surface. To investigate the changes in acoustic lift amplitudes for the other 

tubes in the large spacing array, the acoustic pressure loading around the cylinders 
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Figure 4.4: Maximum lift amplitude of tubes in an inline array with PI D = 3. 37, 
subj ect to the first transverse acoustic mode for one quadrant. The numbers given in 
this figure are lift values in N Im and are referenced to a normalized acoustic pressure 
of 1 Pa at the top of the array ' 

located in one quadrant of the test section is determined numerically. The results 

are displayed in figure 4.4. Clearly, the maximum lift amplitude due to the acoustic 

loading occurs at the center tube, and decreases away from the center location. 
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4.3 Dynamic lift of a central tube in an acoustic 

standing wave - experimental 

The experimental results of the amplitude of the lift on the central tube are per­

formed using the tube arrays in the presence of an acoustic standing wave, excited by 

the loud speakers, as described in the previous chapter. Corrections of the magnifica­

tion factor are made, as well to the effective length of the cylinder. It is found that for 

the three different test sections, the cylinder length exposed to the standing wave was 

increased by as much as +3% due to bowing of the test section walls which occurred 

during assembly. The arrays were excited at their resonance frequency of the first 

transverse acoustic mode, which varied slightly from one array to another because of 

the difference in the number of tubes which are known to affect the speed of sound in 

the array as discussed in §2.4.4. White noise is used first to determine the appropriate 

resonance frequency from the fast fourier transform (fft) of the microphone response. 

The array was then excited at this frequency. Typical responses of the load cells and 

microphone are shown in figure 4.5 with excitation provided by the loudspeakers. 

4.3.1 Protected cylinder tests 

Using the load cell rig, described in section 3.4, an initial test, similar to that of 

Oengoren and Ziada (1992), was performed to confirm that the vibration transmission 

to the measurement apparatus from the test section is indeed small. The cylinder 

was enclosed in larger diameter hollowed aluminum cylinder, shown in figure 4.6, to 

shield it from the periodic acoustic pressure. 

A standing wave was applied both with and without the cylindrical shield. This 

was done over several levels of excitation, and it is found that the vibration trans­

mission accounts for only 2% to 3% of the measured lift force without the shield. 
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Figure 4.5: Typical time signal from the load cell (a), microphone, (b), and the 
corresponding amplitude spectra, (c) and (d). 

Figure 4.7 shows the results for one level of excitation, illustrating amplitude spectra 

of the load cell signal with and without the shield. 

4.3.2 Experimentalresults 

All the three inline tube arrays are tested in the presence of an acoustic standing 

wave over various excitation levels ranging in amplitude from 50 to 1500 Pa. The 

results are shown in figure 4.8. Both the experimental (data markers), as well as the 

numerical solutions (dashed lines) are shown. In all the cases, it is found that the 

measured dynamic lift amplitudes are slightly lower than the numerical solution, in 

the range of 5%. It should be noted that the numerical solution is two dimensional, 

but in the experiments there will be some distortions of the acoustic mode at the 
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cylinder shield 

cylinder 

cylinder 

side wall 

Figure 4.6: Schematic of the large spacing inline array with the hollowed aluminum 
cylinder shielding the central tube. 

ends of the cylinders. The dynamic lift is found to increase linearly with the acoustic 

pressure, as expected from the numerical simulations. The figure also shows the 

prediction of the sine wave distribution which underestimates the measured dynamic 

lift forces by up to 70%. A summary of the experimental and numerical results are 

listed in table 4.1. 

Table 4.1: Results of the dynamic lift in N/m referenced to a normalized acoustic 
pressure of 1 Pa at the top wall of the test section. 

Array Diameter Experimental Numerical Sine wave distribution 

P/ D = 3.37 15.08 mm 0.0038 0.0041 0.0022 

P/ D = 2.18 16.67 mm 0.0043 0.0046 0.00275 

P/ D=1.58 15.08 mm 0.0031 0.0033 0.0022 
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Figure 4. 7: Dynamic lift measurement with and without the hollowed aluminum 
cylinder shielding the central tube. 
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Figure 4.8: Acoustic lift force on the central cylinder in the square tube array ob­
tained experimentally (using acoustic excitation only) and by means of the numerical 
solutions. (a), large spacing; (b), intermediate spacing; (c), small spacing ratio. Data 
markers show the experimental points, the dashed lines show the solution determined 
by the numerical simulation. The solid lines show the prediction of the sine wave 
distribution. 
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4.4 Effect of the tube diameter to wavelength ratio 

From section 4.3.2, it is found that the direct dynamic lift measurements, con­

ducted using loudspeakers, agree well with the numerical simulation. The present 

results are therefore extended to a large range of shell and tube geometries by deter­

mining the effect of the ratio between the tube diameter and the acoustic wavelength 

(Dllambda1; 2 ) on the dynamic lift using the numerical simulation. For the first trans­

verse acoustic mode, the acoustic mode length scale is referred to lambda1; 2 , since this 

mode consists of a half wavelength, with a pressure node located at the test section 

center, as shown in figure 4.1. A summary of the effect of D llambda1; 2 is shown in 

figure 4.9. 

The diameter of the cylinders is kept the same as those used in the previous 

geometries, however the test section height is increased by the factors of 2, 4, 6 and 

8 to produce the ratios of Dllambda1; 2 which are plotted on the x-axis in the range 

of 0.0074 to 0.06 for the small and large arrays, and in the range of 0.0082 to 0.065 

for the intermediate array. The larger values from the pairs of numbers represent 

the ratio of D llambda1; 2 used in the current experimental investigation. Additional 

tubes are added to fill in the area spanning from the top to bottom wall of the test 

section. 

A linear behavior between the ratio of DI lambda1; 2 and the predicted dynamic 

lift amplitude is shown in figure 4.9. The effect of increasing the test section height 

is to decrease the ratio of Dllambda1; 2 . It is shown by figure 4.10(a) that the ratio 

of the numerical simulation results, or actual dynamic lift due to sound, denoted by 

LAcr, to those of the sine wave distribution, LswD, remain constant over the range 

of diameter to wavelength ratios tested. For the three arrays with PID = 3.37, 

PID = 2.18 and PID = 1.58 this ratio is 1.86, 1.71 and 1.52, respectively. For the 
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Figure 4.9: Effect of D jlambda1; 2 on the dynamic lift amplitude for, (a), P/D = 3.37; 
(b) P/D = 2.18; (c), P/D = 1.58. •, Numerical results; •, Prediction using the sine 
wave distribution. 

three arrays, the variation in the ratio is found to be less than two percent and may 

be attributed to numerical error associated with the integration of the points around 

the cylinder surface. 

Figure 4.10(b) shows the variation in LAcr/Lswv with the spacing ratio of the 

arrays. For the large and small array, with the same tube diameters and wavelength, 

the sine wave distribution model gives the same value for the dynamic lift amplitude 

in each of these two arrays as shown in table 4.1. It is shown by figure 4.10(b) that the 
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dependance of the dynamic lift force on the spacing ratio is non-linear. The spacing 

ratio effect on the dynamic lift becomes stronger as the spacing ratio is reduced. 

Increasing the spacing ratio will decrease this observed effect, and although only 

three points are plotted, further increases in the spacing ratio are likely to exhibit 

little change in the ratio between LAcr/LswD· 
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Figure 4.10: Ratio of the actual dynamic lift amplitude to that determined from the 
sine wave pressure distribution method, LAcT/LswD, with respect to the diameter 
to wavelength ratio, D / lambda112 , in figure (a), and with respect to the spacing ratio 
in figure (b). 

4.5 Discussion 

The current chapter investigated the dynamic lift amplitude due to a first mode 

transverse acoustic standing wave on the center cylinder in an array and thereby 

located at the pressure node. First, using a simple approach, the dynamic lift ampli­
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tude is determined by the sine wave distribution. The sine wave distribution method 

underestimates the dynamic lift amplitude determined by the two dimensional numer­

ical simulations of the acoustic pressure mode shapes. Experimental results validated 

the numerical simulation, and showed linear increase in the dynamic lift amplitude 

with the acoustic pressure level. It is observed that the acoustic pressure distribution 

is distorted around the surface of the cylinder. The distortion of the acoustic pres­

sure distribution, in the region of the cylinders, caused the underestimation of the 

numerical and experimental results by the sine wave distribution method. 

The investigation is extended to a larger operating range of tube diameter to 

wavelength ratios after it was shown that the numerical simulations agreed well with 

the experimental results. The numerical simulations show a linear behavior between 

the dynamic lift and D /lambda112 , with a constant ratio between these results and 

those of the sine wave distribution. This ratio can be used to determine the actual 

lift amplitude by multiplying the ratio by the result of the sine wave distribution. 

A non-linear behavior between LAcr/Lswv and the spacing ratio is observed. This 

ratio is found to increase with the spacing ratio. 

The results from this chapter extend the experimentally determined results to a 

much more complete range of spacing ratios and diameter to wavelength ratios using 

the validated numerical simulation. Boilers and heat exchangers found in industry 

may have shell diameters as large as several meters, and tube diameters as small 

as several centimeters, encompassing a large range of D jlambda1; 2 ratios. In some 

experiments, such as those of Oengoren and Ziada (1992b) and Ziada and Oengoren 

(1993), for example, higher order acoustic modes are excited. The present investi­

gation did not consider these higher modes, however it is believed that the present 

results are applicable to the higher order modes as long as the ratio, D / lambda1; 2 , is 

considered. 
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Chapter 5 

Experimental Results 

This chapter presents the experimental results of the effects of flow-excited acous­

tic resonance on the dynamic lift of square tube arrays. Three spacing ratios are inves­

tigated, large, intermediate and small spacing arrays corresponding to P/D = 3.37, 

P/ D = 2.18 and P/ D = 1.58, respectively. Both the aeroacoustic response and the 

dynamic lift of a central tube in the tube bundles is presented. Phase measurements 

compliment measurements of sound pressure level and dynamic lifts. From these 

phase measurements, it is possible to decompose the total dynamic lift forces mea­

sured on the central tube into two components. One caused by the acoustic standing 

wave excited in the test section, and the other caused by the aerodynamic forces. The 

total dynamic lift force measured is due to the combined effects of both the acoustic 

pressure field and aerodynamic forces. 

5.1 Large spacing square array results 

5.1.1 Aeroacoustic response 

Large spacing square tube arrays exhibit a single Strouhal number which is rela­

tively constant over a large range of Reynolds numbers. The gap velocity is varied 

between approximately 10 and 80 mjs, corresponding to a range of Reynolds numbers 

between 1 x 103 to 8 x 104 . Increasing the flow velocity leads to proportional increases 
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in the flow periodicity identified in these arrays. As the flow velocity is increased, the 

frequency of vortex shedding approaches that of the first transverse acoustic mode of 

the test section defined in §3.3.1. The aeroacoustic response of the large spacing ratio 

square tube array is shown in figure 5.1. This response is presented as a waterfall 

plot, where the x-axis defines the frequency of the amplitude spectra (Hz), the y-axis 

defines the flow velocity in terms of gap velocity (m/s), and the z-axis is the acoustic 

pressure level (P3.rms)· 

The response shown by figure 5.1 reveals a familiar response identified as classical 

Strouhal excited acoustic resonance. Similarity between this response, and that of 

a single cylinder is evident, see for example Mahany and Ziada (2005). The lock-in 

region is readily identified in the waterfall plot. During lock-in, between 60 and 80 

mjs, there is a large increase in sound pressure level to nearly 3500 P3.rms' which 

corresponds to 165 dB. 

For each of the spectra presented in figure 5.1, the frequency of vortex shedding, 

as well as the corresponding sound pressure level at that frequency is determined. 

The frequency of vortex shedding and the corresponding sound pressure levels are 

presented in figure 5.2. The points plotted show the frequency response as a function 

of the gap velocity and the corresponding acoustic pressures. 

Increase in the vortex shedding frequency With gap velocity leads to a Strouhal 

number, based on the gap velocity, of St9 = 0.16. This result is typical of square 

arrays with a similar spacing ratio. Ziada (2006) reports a Strouhal number of 0.17 

(shown in figure 2.16(a)), Weaver et al. (1987) report values between 0.15 and 0.21 

obtained from empirical relationships developed by Zukauskas and Katinas (1980) 

and Owen (1965), which agree well with experimental data for large spacings. Lock­

in occurs at the frequency of the first transverse mode excited in the test section. 

The lock-in region is identified in figure 5.2 as the series of points over a range of 
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Figure 5.1: Waterfall plot of the aeroacoustic response of the square array with P / D = 
3.37. 

flow velocities remaining at a frequency of approximately 680 Hz. During lock-in, 

the acoustic sound pressure level increases to nearly 3500 P8.rms. Maximum sound 

pressure level occurs at a gap velocity greater than where coincidence of the acoustic 

mode and the natural vortex shedding frequency occurs. 

The present results shown by figure 5.2 compare well with the results of Ziada 

and Oengoren (1993) shown in figure 2.19 in §2.4.2 for an inline array with XL/Xr = 

3.23/3. 75. Large inline and square arrays exhibit classical Strouhal excited resonance, 

wherein acoustic resonance is excited by the vortex shedding periodicity present in 

the unexcited flow before coincidence. The coincidence acoustic resonance shown by 

figure 2.19 is similar to the square tube array results shown by figure 5.2. Thus, the 
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Figure 5.2: Aeroacoustic response for a square tube array with P/ D = 3.37. Figure 
(a) shows the frequency response, •; figure (b) shows the acoustic pressure, •, at the 
frequency of vortex shedding and with respect to the gap velocity. 

excitation mechanism is expected to be the same for the present case and that of 

Ziada and Oengoren ( 1993). 

5.1.2 Dynamic lift response 

Dynamic lift measurements of the central cylinder in the array are conduced over 

the entire range of gap velocities, in both non-resonant and acoustic resonance con­

ditions. The lift amplitude per unit length of the cylinder is calculated by summing 

the measured lift amplitude by each of the two load cells, and dividing by length of 

the cylinder exposed to the flow field. 

The waterfall plot given by figure 5.3 shows the lift amplitude spectra for one 

of the load cells. The x-axis defines the frequency of the amplitude spectra (Hz), 

the y-axis defines the flow velocity in terms of gap velocity (m/s), and the z-axis is 
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the amplitude of the lift force (N). Before the onset of acoustic resonance, a linear 

increase in the dynamic lift frequency is visible which corresponds to the Strouhal 

number of 0.16 identified in §5.1.1. During the peak acoustic resonance pressures, 

additional peaks in the spectra appear and are attributed to higher harmonics. The 

second peak is at a frequency of 2fa, where fa is the frequency of the first transverse 

acoustic mode, approximately 680 Hz. 
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~ 0.2 

1600 
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Figure 5.3: Dynamic lift amplitude spectra from one load cell for the square tube 
array with P/D = 3.37. 

Figure 5.4 shows sets of spectra wherein each set is composed of the acoustic 

pressure amplitude spectrum and corresponding dynamic lift amplitude spectrum. 

The dominant contribution to the dynamic lift occurs at the same frequency as the 

flow periodicity observed in the acoustic response at the vortex shedding frequency. 

The microphone signals show spectral peaks at approximately 680 Hz corresponding 
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to the first transverse acoustic mode in each set of spectra of figure 5.4. Peaks in the 

acoustic pressure spectra are shown also at the vortex shedding frequency Uv) and at 

the higher harmonic (2fv)· The corresponding lift amplitude spectra in figures (a) and 

(b) show only the vortex shedding component. At the onset of acoustic resonance, 

the acoustic pressure maximum peak is at the resonance frequency and the dominant 

dynamic lift on the cylinder is at a slightly lower frequency at the natural frequency 

of vortex shedding, shown by figure 5.4(c). Further increases in the velocity leads to 

lock-in as shown in figure 5.4(d). Both signals from the load cells and microphone 

coincide with the same dominate frequency peak at the resonate mode frequency and 

its higher harmonic. The acoustic pressures at the resonant mode in figure 5.4(a) and 

(b) are small. The relationships for the lift amplitude due to sound alone predicts lift 

forces below the broadband response in the corresponding lift amplitude spectra. 

Preceding and during acoustic resonance, the dynamic lift amplitude of the center 

cylinder exhibits major changes. The occurrence of resonance at the first transverse 

acoustic mode of the duct can be clearly seen in the spectra of both figure 5.1 and 

figure 5.3 between 60 and 80 mjs. Similar to the acoustic response, the dynamic 

lift shows a lock-in region where the dynamic lift response is locked-into the acous­

tic resonant frequency. Vortex shedding becomes highly correlated at the resonant 

frequency, as is similar with the acoustic response, and is manifested by a decrease 

in the width of the spectral peaks. This is a typical effect of lock-in as discussed in 

§2.3.1 by Blevins (1985). The vortex shedding response and lock-in with the resonant 

frequency, combined with the total dynamic lift forces and those due to the sound 

field alone are shown by figure 5.5. 

The dynamic (acoustic) lift due to an imposed sound field, in the absence of flow, 

is modeled numerically and validated experimentally using loud speakers to excite 

a standing acoustic wave in the absence of flow. For the large square tube array, 
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Figure 5.4: Acoustic pressure amplitude spectra, dashed lines, and dynamic lift am­
plitude spectra, solid lines, for the square array with P/ D = 3.37, at four gap flow 
velocities; (a), 39 m/s; (b), 47 m/s; (c), 58 m/s; (d), 69 m/s. 

the dynamic lift amplitude per unit length (N fm) is equal to 0.0041 multiplied by 

the acoustic pressure level in pascals. Both the experimental and numerical results 

are already discussed in chapter 4. This allows the dynamic (acoustic) lift due to 

the sound field to be calculated at the acoustic pressures determined during flow-

excited acoustic resonance. Thus, for a given sound pressure, such as those shown in 

figure 5.2, the magnitude of the loading due to sound alone can be determined. 

The experimental results of the dynamic lift in the absence of flow are plotted 

with the total dynamic lift during flow-excited acoustic resonance in figure 5.5(b). 

It is clear, from figure 5.5(b), that the total dynamic lift amplitude is greater than 

the predicted lift due to sound alone at the onset of acoustic resonance. However, 

the total dynamic lift becomes less than the dynamic lift due to sound alone at the 
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Figure 5.5: Dynamic lift response for a square tube array with P / D = 3.37. The 
frequency response is shown in figure (a). The corresponding total dynamic lift am­
plitude, •, and lift due to the sound field at resonance, D, at the frequency of vortex 
shedding is shown in figure (b). The total dynamic lift coefficient, CLr, is shown 
in figure (c). The phase shift, r/Jr, between the sound field and total dynamic lift is 
shown in figure (d). 
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maximum measured acoustic pressure. The reason for this can be determined from 

the measured phase shift, ¢r, between the sound pressure on the top wall of the test 

section and the total dynamic lift as explained in the next section. 

5.1.2.1 Phase measurements and force decomposition 

The phase measurements in figure 5.5( d) are between the sound field, measured 

at the top of the test section and the dynamic lift measured by the load cells. In the 

absence of flow, the phase difference between the dynamic lift and sound field is zero. 

A negative signal from the microphone corresponds with a positive acoustic pressure, 

and a negative signal from the load cells corresponds with a downward force. A vector 

diagram describing the dynamic lift amplitudes with the relative phases is shown in 

figure 5.6, for two measurements corresponding to gap velocities of 66 and 76 mjs. 

Note that the scale of the first diagram is at thirty percent of the second for clarity. 

These diagrams define the phase shift, ¢r, between the total lift vector, Lr, and the 

sound field dynamic lift vector, L8. The phase shift, ¢A, is between the aerodynamic 

lift vector, LA, and the sound field dynamic lift vector, L8 . 

By decomposing the total lift into two components, namely the sound compo­

nent, Ls, and aerodynamic component, LA, it is possible to show where the domi­

nant sources of lift originate from. Figure 5.7 is a plot of the three lift components 

determined during acoustic resonance. Only the lift forces during acoustic resonance 

are decomposed, since the lift force due to sound is very small outside the lock-in 

range. At the onset of acoustic resonance, the total lift amplitude, Lr, is greater 

than either of the aerodynamic or sound components. At the beginning of the lock-in 

range, although there is a phase shift, the lift force induced by the sound field does 

not oppose the aerodynamic lift force, see figure 5.6(a). The phase shift between the 
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Figure 5.6: Vector representation of the dynamic lift forces during acoustic resonance 
for the square tube array with P/D = 3.37 at Vg = 66 mjs, figure (a), Vg = 76 m/s, 
figure (b). 

sound and aerodynamic components ranges from 30 to 100 degrees over the lock-in 

range up to 74 mjs. As the acoustic pressure reaches a maximum value, shown in 

figure 5.2 at nearly 76 m/s (Vg), the total dynamic lift force becomes smaller than 

the dynamic lift force predicted from the sound field alone. The phase between the 

sound field and aerodynamic lift increases to 135 degrees in this case. As shown in 

figure 5.6(b), the aerodynamic lift opposes the lift induced by the sound field and 

therefore the total lift force becomes smaller than that predicted by the sound wave. 
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From figure 5.7(c) an important conclusion which is used for design guidelines 

discussed at the end of this chapter is that the aerodynamic lift coefficient, CLA, in­

creased by a maximum factor of 3. This factor is calculated, from figure 5.7(c), as the 

ratio between the maximum aerodynamic lift coefficient during acoustic resonance 

and the lift coefficient estimated at the same velocity in the absence of acoustic reso­

nance. The lift coefficient before the onset of acoustic resonance is extrapolated to the 

velocity where the maximum aerodynamic lift coefficient during acoustic resonance 

occurred, at approximately 72 m/s. Before the onset of acoustic resonance the total 

dynamic lift coefficient, for Reynolds numbers between 5 x 103 and 6 x 104, varied 

between 0.13 and 0.08, respectively, which agrees well with the lift coefficients re­

ported by Oengoren and Ziada (1992) with similar Reynolds numbers and row depth 

locations. 

5.1.2.2 Phase comparison with the literature 

A similar investigation by Mahany and Ziada (2006) on tandem and single cylin­

ders is available for comparison. The test section used in that investigation has the 

same dimensions. In this case, the lift due to the sound field is found to be very small, 

on the order of a few percent of the total dynamic lift measured. Therefore, the phase 

measured between the microphone at the top wall and the dynamic lift on the cylin­

der is essentially the phase shift between the sound field and the aerodynamic lift on 

the cylinder. The phase shift, ¢A, in the present investigation is obtained from the 

vector diagrams as illustrated in figure 5.6 and is plotted against the gap velocity in 

figure 5. 7( d). The present phase results, for the large array, are compared with those 

of Mahany and Ziada (2006) in figure 5.8. The abscissa in this figure is the ratio of 

the acoustic resonance frequency to the natural excitation frequency, fa/ fv, which 

is based on the natural Strouhal number during acoustic resonance, which is deter­
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Figure 5.7: Dynamic lift response during acoustic resonance for the large spacing array 
with P/D = 3.37. The frequency response is shown in figure (a). The corresponding 
total dynamic lift amplitude, •, dynamic lift due to the sound field, D, and the 
aerodynamic lift, 6, is shown in figure (b). The aerodynamic lift coefficient, CLA, is 
shown in figure (c) using the dynamic lift forces and nomenclature from figure (b). 
The phase, 4>A, between the sound and aerodynamic lift components is shown in figure 
(d). 
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mined from figure 5.2(b) to be 0.16. Agreement in the phase shift trend between the 

present results and those of Mohany and Ziada (2006), shown in figure 5.8, suggests 

that the flow-acoustic coupling mechanism in widely spaced square arrays is similar 

to that reported by Mohany and Ziada (2006) for single isolated cylinders. Mohany 

and Ziada (2006) note that the results obtained for the case of flow-excited acoustic 

resonance of the single cylinder are similar to the results obtained by Carberry et al. 

(2001), shown in 2.10 from § 2.3.1. 
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Figure 5.8: Phase shift, ¢A, between the aerodynamic lift force and the acoustic 
pressure field for the present tube array with P/D = 3.37, •, and those of Mohany 
and Ziada ( 2006), o. 
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5.2 Intermediate spacing square array results 

5.2.1 Aeroacoustic response 

The aeroacoustic response of the tube array with a spacing ratio of PID = 2.18 

is best introduced using a waterfall plot as done previously. In figure 5.9, the x­

axis defines the frequency of the amplitude spectra (Hz), the y-axis defines the flow 

velocity in terms of gap velocity (mls), and the z-axis is the acoustic pressure level 

(Parms)· 
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Figure 5.9: Waterfall plot of the aeroacoustic response of the square array with PID = 

2.18. 

In this experiment, it is evident that the maximum acoustic pressure amplitude is 

very high, up to nearly 8000 Parms, corresponding to 172 dB. Another characteristic 
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of this array is the modulation in the maximum acoustic pressure amplitude with 

the flow velocity. It is shown by figure 5.9 that as the velocity is increased, after the 

onset of acoustic resonance, the general trend is an increase in the acoustic pressures, 

however, in some cases, the pressure drops. It is not clear what causes the modulation 

in the pressure response leading to the choppy behavior in the maximum amplitudes. 

It is conceded that the sound pressures reached are nearly double those of the previous 

array, and since the amplitudes are highly dependant on the acoustic damping, any 

disturbances in the flow may effect these measurements. It is also evident from the 

waterfall plot in figure 5.9 that the lock-in region is very large compared to that 

shown for the large square array in figure 5.1. It should be noted that the diameter 

of the tubes for the intermediate array are somewhat larger, with a diameter of 16.67 

mm, over the pervious experiments which had a cylinder diameter of 15.08 mm. The 

effect of a larger tube diameter is discussed by Mohany and Ziada (2005). For tandem 

cylinders, which exhibit a similar excitation mechanism to that of the intermediate 

square tube arrays, the cylinder diameter can increase the reattachment length of the 

shear layer between the cylinders, as well as increase the dynamic head at resonance 

conditions. For a single cylinder, it is found that during resonance, the associated 

maximum acoustic pressure increases with the cylinder diameter. 

The aeroacoustic response for the square tube array with PI D = 2.18 is shown 

by figure 5.10. A single Strouhal number of 0.164 is identified before the onset of 

acoustic resonance. This is consistent with the literature available on the topic, such 

as the results of Ziada (2006) shown by figure 2.16 in §2.4.1. As the frequency of 

the flow periodicity increases with the flow velocity, acoustic resonance occurs before 

coincidence of the natural Strouhal number with the acoustic mode frequency. In the 

case of the large square array, with PI D = 3.37, the resonance range seemed to be 

excited by the natural Strouhal number. Figure 5.2(a) shows that as the frequency 
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increases, it reaches the acoustic mode frequency, and then locks into this frequency 

for further flow velocity increases. This is essentially different than the behavior shown 

in figure 5.10(b) for the intermediate square tube array. This response is, however, 

observed in the literature, such as in the results of Ziada and Oengoren (1990) and 

Oengoren and Ziada (1992b). Oengoren and Ziada (1992b) demonstrate that the flow 

instability causing acoustic resonances is basically different from the symmetrical jet 

instability that causes constant Strouhal number vorticity shedding in the absence of 

acoustic resonance. Acoustic resonance occurs due to coupling between the resonant 

mode and the unstable shear layers formed between the tubes. The shear-layer mode, 

however, is suppressed at off-resonance conditions. 

5.2.2 Aeroacoustic response, comparison with the literature 

The experimental results of Ziada and Oengoren (1990) are used by Mahany (2006) 

to explain the dual resonance phenomena observed in the intermediate spaced tandem 

cylinders. Tandem cylinders can produce similar acoustic resonance characteristics as 

observed in the inline and square tube arrays, for similar longitudinal spacing. The 

results of Mohany (2006) for tandem cylinders with L/D = 2 and those of Ziada and 

Oengoren (1990) with XL/ Xr = 2.1/2.5, are overlaid with the present results with 

P/D = 2.18 in figure 5.11. In order to compare the results with different acoustic 

mode frequencies, the frequencies are normalized by the acoustic mode frequency 

in each of the experiments, denoted by fa· Also, to properly overlay the results, 

the velocity is presented in terms of the reduced velocity, discussed in some detail 

in §2.1.1. Essentially, the reduced velocity scales the gap velocity by the acoustic 

resonance frequency and corresponding cylinder diameter. 
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Figure 5.10: Aeroacoustic response for a square tube array with P/D = 2.18. Figure 
(a) shows the frequency response, •; figure (b) shows the acoustic pressure, •, at the 
frequency of vortex shedding and with respect to the gap velocity. The solid line in 
figure (b) shows the general trend in the data. 

Figure 5.11 shows that the results of Ziada and Oengoren (1990) and Mahany and 

Ziada (2007) compare well with the present results. The Strouhal number is 0.164 

for the present array with P/ D = 2.18, whereas it is slightly lower at approximately 

0.15 for the inline and tandem cylinders. It should be noted that, in these cases, the 

cylinder diameters, Reynolds numbers, and dynamic heads are different, however the 

pre-coincidence acoustic resonance is observed in all the three cases. Additionally, 

the aeroacoustic response depicted in figure 5.11 shows that the sound pressure level 

during resonance is comparable between the tube arrays. For the tandem cylinders, 

• • • 
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Figure 5.11: Comparison of the frequency response, figure (a), and the acoustic pres­
sure response, figure (b) between the present results and those from the literature. 
The two figures show the results of a square tube array with P / D = 2.18, •, with 
tandem cylinders with L/D = 2, 6., (Mahany and Ziada 2007), and an inline tube 
array with XL/ Xr = 2.1/2.5, D, (Ziada and Oengoren 1990). 

the spacing ratio is slightly smaller than that of the square array, and therefore the 

results do not align as well. 

5.2.3 Dynamic lift response 

The dynamic lift on the 	central cylinder for the intermediate array is measured 

over the total range of gap velocities that could be achieved with the experimental 

setup, at both non-resonance and resonance conditions. The waterfall plot shown by 
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figure 5.12 shows spectra from one of the load cells. The x-axis defines the frequency 

of the amplitude spectra (Hz), the y-axis defines the flow velocity in terms of gap 

velocity (m/s), and the z-axis is the amplitude of the dynamic lift (N). Before the 

onset of acoustic resonance, a linear increase of the Strouhal periodicity is visible, 

corresponding to that observed in the aeroacoustic response of figure 5.10. 
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Figure 5.12: Waterfall plot of the dynamic lift amplitude spectra from one load cell 
in a square tube array with P/ D = 2.18. 

Figure 5.13 shows four amplitude spectra from a single load cell overlaid with the 

acoustic response measured by the microphone. In figure 5.13(a), at a gap velocity 

of 21.7 m/s, the vortex shedding frequency is observed in both corresponding spec­

tra. The microphone signal exhibits both the vortex shedding frequency and a higher 

harmonic of that frequency. This is typical of aeroacoustics testing done in air. The 

third spectral peak visible in this spectrum is the natural acoustic mode response 
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of the duct, excited by broadband turbulence of the interstitial flow, at around 672 

Hz. As the gap velocity is increases, to 33.4 m/s, shown in figure 5.13(b), the am­

plitude at the first transverse acoustic mode frequency increases in magnitude. It is, 

however, not visible in the load measurements. Similar to the large spacing array, 

the associated sound pressure level at the acoustic mode frequency is low, and there­

fore the dynamic lift response is very weak, and is not visible in the lift amplitude 

spectra. At a frequency of approximately 1300 Hz, the second transverse acoustic 

mode is visible. The mode shape is shown in figure 5.14(c) from the numerical sim­

ulation. The frequency prediction by the numerical simulation is in good agreement 

with that observed in the spectrum from figure 5.13(c). At 45.2 m/s, shown by fig­

ure 5.13(c), at the onset of acoustic resonance, both the microphone and dynamic lift 

measurements show spectral peaks at the natural vortex shedding, and at the first 

and second transverse acoustic mode frequencies. There is also an additional peak in 

both the lift amplitude spectrum and the acoustic pressure spectrum just below 400 

Hz. Using the numerical simulation, a longitudinal mode at 390Hz is present which 

may be the source of this spectral peak, shown in figure 5.14(c). At 54.1 m/s, shown 

by figure 5.13(d), lock-in is established and both signals exhibit a narrow band peak 

at the acoustic mode frequency of approximately 672 Hz. For the acoustic pressure 

response, a higher harmonic of the first mode frequency is observed at 2fa, where fa 

is the frequency of the first transverse acoustic mode. 

The dynamic lift, in terms of peak amplitudes extracted from the amplitude spec­

tra of the load cells, is used to produce the lift amplitude response shown in figure 5.15. 

The frequency response from figure 5.10 is re-plotted in figure 5.15(a) to compare the 

dynamic lift response with the frequency response. The frequency of the amplitude 

peaks corresponds to the frequency value given in figure 5.15(a). A similar choppy 

behavior is observed in the dynamic lift plotted figure 5.15(b), to that observed in the 
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Figure 5.13: Acoustic pressure amplitude spectra, solid lines, and dynamic lift ampli­
tude spectra, dashed lines, at four gap velocities for the square array with P/ D = 2 .18; 
(a), 21.7 m/s; (b), 33.4 m/s; (c), 45.2 m/s; (d), 54.1 mjs. 

acoustic pressures shown in figure 5.10. The acoustic pressures in the lock-in region 

from figure 5.10(b) are used with the experimental results from chapter 4 to deter­

minethe dynamic lift amplitude due to sound alone and are plotted with the total 

dynamic lift in figure 5.15(b). In this case, the total measured dynamic lift on the 

cylinder is always greater than that induced by the sound pressure field alone. The 

total lift force is presented as a dynamic lift coefficient in figure 5.15(c). Oengoren and 

Ziada (1992) report lift coefficients of approximately 0.1 for the intermediate square 

array with P/ D = 1.95, which agree well with the present results before the onset of 

acoustic resonance. During acoustic resonance, the lift coefficient, CLr, increases by 

an order of magnitude. 
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a) 674Hz 

Figure 5. 14: Acoustic mode shape of the first transverse mode, figure (a) at 674 Hz, 
a longitudinal mode, figure (b) at 390 Hz, and the second transverse acoustic mode, 
figure (c) at 1292 Hz. 

5. 2. 3.1 Phase measurements 

Measurements of the phase shown in figure 5.15 (d) confirms that the phase dif­

ference between the sound field and the total lift force is small, it ranges between only 

±5 degrees. This indicates that the dynamic sound and aerodynamic lift forces are 

acting nearly in-phase to generate the total dynamic lift measured. For this reason, 

the total dynamic lift is nearly the sum of the aerodynamic lift and the dynamic lift 

forces generated due to the sound field. 

Measurement of the phase between the sound field and the total dynamic lift force 

make it possible to determine the phase between the aerodynamic and sound field 
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Figure 5.15: Dynamic lift response for a square tube array with P/D = 2.18. The 
frequency response is shown in figure (a). The corresponding total dynamic lift am­
plitude, •, and lift due to the sound field at resonance, D, at the frequency of vortex 
shedding is shown in figure (b), with solid lines representing the general trend in the 
data. The total dynamic lift coefficient, CLr, is shown in figure (c). The phase shift, 
c/Jr, between the sound field and total dynamic lift is shown in figure (d). 
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induced lift, and also makes it possible to calculate the magnitude of the aerodynamic 

lift. A vector plot of the calculated aerodynamic lift and phase is shown in figure 5.16. 

This is a typical result, showing the effect of a small phase angle. The main char­

acteristic emphasized is the small phase angle between the sound field dynamic lift 

and the aerodynamic lift, which leads the total lift measured directly by the load 

cells to be greater in magnitude than either of the other two components. With such 

a small phase angle, when the magnitudes of the vectors are directly summed, the 

resultant exhibits little difference, less than a few percent, from that calculated from 

the vectors. 

phase difference between total dynamic lift amplitude, Lr. 
the sound field and total lift 

"' aero ynam1c 1--=====~fo~rc~e;,~<j>~T~.======~=====~d · l"ft) • ____ )_a~plitude, LA. 

calculated lift amplitude due to phase shift between the 
sound, Ls. sound field and aerodynamic 

lift force, <j>A. 

Figure 5.16: Vector representation of the dynamic lift during acoustic resonance for 
a typical result from the square array with P / D = 2.18. 

The total dynamic lift force is decomposed into aerodynamic and sound induced 

lift components, together with the phase shift, cPA, as shown by figure 5.17. This 

emphasizes the point made previously of the nearly additive quality of the magni­

tudes of the components with small phase differences. The lift coefficient, CLA, in 

figure 5.17( c), is determined from the total dynamic lift before the onset of acoustic 

resonance. During acoustic resonance, the lift coefficient is determined from the aero­

dynamic lift, LA. Figure 5.17( c) is used to determined the ratio of enhancement of 

the aerodynamic lift coefficient during acoustic resonance. The ratio between the en­
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Figure 5.17: Dynamic lift response during acoustic resonance for the intermediate 
spacing array with P/D = 2.18. The frequency response is shown in figure (a). The 
corresponding total dynamic lift amplitude, •, dynamic lift due to the sound field, 0, 
and the aerodynamic lift, L,., is shown in figure (b). The aerodynamic lift coefficient, 
CLA, is shown in figure (c) using the dynamic lift forces and nomenclature from figure 
(b). The phase shift, ¢A, between the sound and aerodynamic lift component is shown 
in figure (d). 
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hanced aerodynamic lift coefficient, and the un-enhanced aerodynamic lift coefficient 

at the same corresponding velocity (which is extrapolated from the lift coefficients 

measured before the onset of acoustic resonance), is a factor of 6. 

It is of interest to review again the plot of the phase difference with respect to 

the frequency ratio, fa/ fv· For the present case, this is shown along with the single 

cylinder results of Mohany and Ziada (2006) in figure 5.18. The results for the present 

intermediate spacing ratio are distinctly different from those of the large spacing ratio, 

plotted with the single cylinder results of Mohany and Ziada (2006) in figure 5.8. For 

the large tube array, resonance is excited by classical Strouhal periodicity. Similar to 

the results of Carberry et al. (2001), it is found that when the driving frequency and 

the natural frequency are near, the phase between the dynamic lift forces becomes 

large. In the present case, the observed acoustic resonance occurs at a frequency 

much higher than the vortex shedding frequency, referred to as the pre-coincidence 

resonance range. Thus the value of fa/ fv is always greater than 1, and predicts a small 

phase difference. The present phase results agree well with the results of Mohany and 

Ziada (2006) in figure 5.18. 
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Figure 5.18: Phase shift, ¢>A, between the aerodynamic lift force and the acoustic 
pressure field for the square tube array with P / D = 2.18, •, and those of Mohany 
and Ziada (2006), o. 
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5.3 Small spacing array results 

5.3.1 Aeroacoustic response 

The aeroacoustic response of the small spacing tube array with a spacing ratio of 

P/D = 1.58 is shown in the waterfall plot of figure 5.19. The coordinate system is 

defined similarly to the large and intermediate spacing ratios. For the small spacing 

array, the lock-in region occurs at the higher range of the flow velocities possible 

with this array. It is not possible to investigate further into the lock-in region for 

this particular array due to limits in the achievable flow velocity. Figure 5.19 clearly 

shows a linear increase of the vortex shedding component for gap velocities below 40 

m/s between 600 and 1200 Hz in the spectra. During the acoustic resonance range 

observed in the present experiment, the maximum acoustic sound pressure reached 

just over 1200 Parms· In the range of 1300Hz, two frequency peaks are visible. One 

is a higher harmonic of the first mode, and the other is the second transverse mode. 

This is discussed in further detail in §5.3.3. 

The frequency and acoustic pressure response is found by examining the spectra 

presented in figure 5.19; extracting the vortex shedding frequencies and corresponding 

acoustic pressures. All the spectra that are plotted in figure 5.19 exhibit a strong 

broadband turbulence, characteristic of a small spacing tube array. Thus, it is difficult 

to extract both the vortex shedding frequencies and the corresponding pressures. 

For this reason, only the acoustic pressure associated with the first mode resonance 

frequency is presented in the system response plot. As shown in figure 5.20, vortex 

shedding is observed only at high frequencies. The Strouhal number for the linear 

region is approximately 0.40. This value is within the range presented in the literature. 

The empirical relationships by Zukauskas and Katinas (1980) predicts St9 = 0.29, and 
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Figure 5.19: Waterfall plot of the aeroacoustic response for the small spacing square 
array with P/ D = 1.58. 

that of Owen (1965) predicts St9 = 0.31. In addition, the data compiled by Weaver 

and Yeung (1984) in figure 2.16(a) show that a Strouhal number of 0.40 is well within 

the data compiled from various authors. 

For small tube arrays, as discussed in much of the literature, there is an effect of 

the row depth. Ziada et al. (1989) concludes that in small arrays, at non-resonance 

flow conditions, vortex shedding is observed primarily in the first tube rows, and is 

disrupted downstream as the flow becomes highly turbulent. Thus, at lower Reynolds 

numbers, the observed vortex shedding frequency is often different than that observed 

at higher Reynolds numbers. From the flow visualizations, it is shown that indeed 

the vortices are present, but of little energy. Since the measurements of the vortex 
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shedding frequency in the present experiment were only indirectly determined from 

the microphone, or from direct measurements on the centrally located tube, it is 

difficult to discern the vortex shedding frequencies. Another important conclusion 

from Ziada et al. (1989) is that the flow periodicity causing acoustic resonance is 

typically not observed at off resonance conditions. The response in figure 5.20(a) 

shows the absence of a lower frequency component of vortex shedding before the 

onset of acoustic resonance. When coincidence occurred between the vortex shedding 

frequency component, corresponding with St9 = 0.40, and the acoustic resonance 

frequency, it locked into the resonance frequency over a small range of flow velocities, 

however only weakly excited the resonance mode. The acoustic pressure achieved 

during this coincidence, shown in figure 5.20(b) at 20 m/s, is very small. 

Increasing the flow velocity led to a range of Strouhal numbers during lock-in 

between 0.2 and 0.15 at the maximum velocity achieved by the wind tunnel. Although 

much of the literature shows dominant Strouhal numbers in the range of 0.3 and above, 

some authors have identified lower Strouhal numbers, see for example the Strouhal 

number data by Baylac et al. (1973) which includes Strouhal numbers in the range 

of 0.11 for small spacing ratios. Ziada (2006) observed similar Strouhal numbers in 

this range as shown in figure 2.16 from §2.4.1. Weaver et al. (1987) observed in their 

experiments that the Strouhal numbers identified were not present at all Reynolds 

numbers, and at lower Reynolds numbers, only an intermediate Strouhal number was 

identified. Oengoren and Ziada (1992b) identify a Strouhal number of 0.15 for the 

line array with XL/Xr = 1.75/2.25. In the latter case, the Reynolds number is much 

lower than in the present investigation. In the present study, however, the aim to 

investigate the dynamic lift and the effects of sound. 
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Figure 5.20: Aeroacoustic response for a square tube array with PID = 1.58. Figure 
(a) shows the frequency response due to a lower Strouhal number, •, and a higher 
Strouhal number, •· Figure (b) shows the acoustic pressure response at the frequency 
of the first acoustic mode. The dashed line in figure (a) shows the frequency trend for 
an assumed Strouhal number of 0.15 from the results of an inline array of Oengoren 
and Ziada (1992b) for XLIXr = 1.7512.25. 

5.3.2 Aeroacoustic response, comparison with the literature 

The current aeroacoustic response is compared with observations available in the 

literature with similar geometry. Directly relevant to the present results are those 

of Mahany and Ziada (2005) and those of Oengoren and Ziada (1992b). The results 

of Mahany and Ziada (2005) for tandem cylinders with LlD = 1.5 are considered, 

since this geometry is close to the present square array geometry with PID = 1.58. 

Also, the tandem cylinders showed good agreement with the intermediate spacing 
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square array. Oengoren and Ziada (1992b) present results for an inline tube array 

with spacing ratios of XL/ XT = 1.75/2.25, which has a reasonably close stream-wise 

spacing to the present square array with P / D = 1.58. To accomplish this comparison, 

it is necessary to present the results in dimensionless form. Thus, the frequencies 

are normalized by the excited acoustic mode frequency, fa, and the velocities are 

presented in terms of the reduced velocities as defined in §2.1.1. 
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Figure 5.21: Frequency response for a square tube array with P/D = 1.58 in compar­
ison with results from the literature. Figure (a) shows the results for a square array 
with P/D = 1.58, •, •, as defined in figure 5.20; two tandem cylinders, L/D = 1.5, 
V, Mohany and Ziada (2005). Figure (b) shows the results of the square array with 
PjD = 1.58, as defined in figure (a) with inline array, 0, by Oengoren and Ziada 
(1992b) for XL/XT = 1.75/2.25. 

The tandem cylinder results exhibit a pre-coincidence resonance range, as shown 

in figure 5.21(a), much earlier than that for the present results of the small spacing 

array. The coincidence resonance range occurs at a higher reduced velocity than the 
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resonance observed in the present results. For this reason it is suspected that the 

Strouhal numbers of the small spacing tandem cylinders are removed from those of 

the small spacing square tube array. The inline array, with XL/Xr = 1.75/2.25, 

exhibited a Strouhal number of 0.15, slightly higher than that observed by Baylac 

et al. (1973). It should be noted that this is for a larger spacing than for the small 

spacing array studied in this section, however, the longitudinal spacing is only on 

the order of 10% larger. Comparison of the present results with those of Oengoren 

and Ziada (1992b) shows good agreement in the general trend in the data wherein 

acoustic resonance is excited before coincidence between the natural Strouhal number 

and the acoustic mode frequency. This indicates that the mechanism of the acoustic 

resonance is the same as that of the inline array by Oengoren and Ziada ( 1992b). It 

is concluded that this is indeed a pre-coincidence acoustic resonance, similar to the 

intermediate case. This conclusion is further validated by the fiat phase shift behavior 

shown later in figure 5.26, typical of pre-coincidence resonance characteristics. 

5.3.3 Dynamic lift response 

A waterfall plot of the amplitude spectra of the dynamic lift for the total range 

of flow velocities studied is presented in figure 5.22. 

From this figure, it is clearly shown that the dynamic lift of the instrumented cen­

tral cylinder becomes very large at the onset of acoustic resonance. With small tube 

spacing ratios, the energy of the vortices shed is expected to be very low, especially 

for the interior tubes (Ziada et al. 1989). The closely packed tubes produce a highly 

turbulent flow causing a broadband turbulent response reflected in the turbulence 

intensity of the interstitial flow. The broadband turbulent response is evident in the 

spectra presented in figure 5.23. Four pairs of spectra are shown, displaying the acous­
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Figure 5.22: Waterfall plot of the dynamic load amplitude spectra from one load cell 
for a square tube array with P / D = 1.58. 

tic pressure and dynamic lift amplitude spectra for a single load cell. At lower flow 

velocities, during off resonance conditions, the response is indeed broadband. As the 

velocity is increased, there is a weak excitation of the first transverse acoustic mode, 

around 670 Hz, also a small peak corresponding to the second transverse acoustic 

mode can be identified at 1280Hz from figure 5.23(b). The first transverse acoustic 

mode shape is shown in figure 5.24(b), the second transverse acoustic mode shape is 

shown in figure 5.24(c). At higher flow velocities, vortex shedding can be identified in 

both the dynamic lift amplitude spectra and acoustic response shown in figure 5.23( c) 

at approximately 1150 Hz. In these spectra, a low frequency component slightly less 

than 200 Hz is observed. This is likely due to a low frequency longitudinal mode. 

One such mode is identified in figure 5.24(a). Since the simulated domain does not 

account for the parabolic contraction and the diffuser at the exit, this mode could 
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exist at a lower frequency than calculated for the current geometry. A peak in the 

spectra of figure 5.23( c) at 1280 Hz also exists, which appears to originate from the 

second transverse acoustic mode. When acoustic resonance occurs, there is a narrow 

band peak with a high amplitude for both spectra in figure 5.23( d) and also a peak 

at 2fa, a higher harmonic. Consistent with these results are the findings of Ziada 

et al. (1989), who reported that during resonance, the structure of the flow changes, 

and using flow visualization, strong vortex shedding is observed throughout the tube 

array, unlike the off resonance case. One last frequency component is observed near 

1550 Hz at a gap velocity of approximately 50 mjs in figures 5.19 and 5.22. The 

numerical simulation predicts an acoustic mode at 1534Hz, that may be responsible 

for this spectral peak. This acoustic mode is shown in figure 5.24(d). 

5.3.3.1 Dynamic lift force decomposition 

The total dynamic lift force measured by the load cells is decomposed into the 

aerodynamic lift force and the lift force induced by the acoustic standing wave. The 

latter is determined from the acoustic sound pressure levels shown in figure 5.20. 

By means of the phase measurements between the acoustic pressure field and the 

total dynamic lift, it is possible to extract the aerodynamic lift as well as the phase 

between the aerodynamic lift and the sound field as explained previously in §5.1.2.1 

and §5.2.3.1. 

Figure 5.25 shows the final results for the small square tube array. The frequency 

response in figure 5.25(a) is the same as that presented in figure 5.20, and is re-plotted 

to define the frequency at which the points in parts (b), (c) and (d) are measured. 

Figure 5.25(b) shows that the total dynamic lift force is greater than either the lift 

force induced by the sound field, and that of the aerodynamic lift component. The 
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Figure 5.23: Acoustic pressure amplitude spectra, solid lines, and dynamic lift ampli­
tude spectra, dashed lines, at four gap velocities for the square array with P/ D = 1.58; 
(a), 13.1 m/s; (b), 21.6 m/s; (c), 36.2 m/s; (d), 60.6 m/s; based on the gap velocity. 

total dynamic lift force, similar to the intermediate spacing ratio, can be computed 

by summing the force vectors induced by the sound field and the aerodynamic lift 

force. The phase between the total dynamic lift force and sound field, ¢r, is used to 

compute the phase difference between the aerodynamic lift and the sound field, ¢A· 

The calculated phase, ¢A, is shown by figure 5.25(d). Comparison of the phase with 

the results of Mohany and Ziada (2006) are given in figure 5.26. The lift coefficient 

based on the aerodynamic component is given in figure 5.25(c). It is observed to 

increase by a factor of 12 as the resonance progresses into the lock-in region. The 

lift coefficient at the onset of resonance is small. Oengoren and Ziada (1998) report 

similar values ranging from 0.025 to 0.06 in a parallel triangular array with a spacing 
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a) 223Hz 

b) 670Hz 

c) 1280Hz 

Figure 5.24: Acoustic mode shape of a longitudinal mode at 223 Hz (a) , the first 
transverse acoustic mode at 670 Hz (b) and the second transverse acoustic mode at 
1280Hz (c) for the array with P /D = 1.58. A high frequency mode is shown in figure 
(d) at 1534 Hz. Note that the color bar in figure (a) is between 1 and 0, and between 
-1 and 1 in figure (b), (c) and (d). 
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Figure 5.25: Dynamic lift response during acoustic resonance for the small spacing 
array with P/D = 1.58. The frequency response is shown in figure (a). The cor­
responding total dynamic lift amplitude, •, dynamic lift due to the sound field, D, 
and the aerodynamic lift, 6., is shown in figure (b). The aerodynamic lift coefficient, 
CLA, is shown in figure (c) using the dynamic lift forces and nomenclature from figure 
(b). The phase shift, rPA, between the sound field and aerodynamic lift component is 
shown in figure (d). 
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ratio of 1.61. In small inline arrays, vortex shedding has been observed in the absence 

of acoustic resonance, however, due to the tight packing of the tubes, the highly 

turbulent flow exhibits vortices with very little strength as discussed in §2.4.1. 

In the small tube array, only a higher flow periodicity is identified in the fre­

quency response. Figure 5.20 shows a dashed line with a Strouhal number of 0.15 

from Oengoren and Ziada (1992b), and shows good agreement with the assumed 

pre-coincidence resonance. The results of Oengoren and Ziada (1992b) for the inline 

tube array with a spacing ratio of XL/Xr = 1.75/2.25 overlays well with the present 

frequency response as demonstrated in figure 5.21. Since this Strouhal number of 

0.15 seems to be a reasonable assumption for the unidentified lower Strouhal number, 

this Strouhal number is used in the comparison of the phase shift with the frequency 

ratio, fa/ fv, shown in figure 5.26 along with the results of Mohany and Ziada (2006). 

The present phase results, using a Strouhal number of 0.15 reported by Oengoren and 

Ziada (1992b), show the flat phase response reported by Mohany and Ziada (2006). 
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Figure 5.26: Phase shift, ¢A, between the aerodynamic lift force and the acoustic 
pressure field, for the present tube array with P / D = 1.58, •, using St9 = 0.15. 
Results of Mohany and Ziada (2006) are identified by, o. 
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5.4 Discussion 

Acoustic resonance can cause abrupt increase in the total dynamic lift force on a 

tube in an array. This chapter investigated the effect of acoustic resonance on the 

total dynamic lift. It is shown that the total dynamic lift during flow-excited acoustic 

resonance is composed of an aerodynamic lift component generated by unsteady peri­

odic flow over the cylinders and a component due to the acoustic sound field induced 

during resonance. The results from chapter 4 show the origin and amplitude of dy­

namic lift due to an acoustic pressure field. The results of chapter 4 are extended to a 

larger range of diameter to wavelength ratios and for several spacing ratios by means 

of experimentally validated numerical simulation. To increase the applicability of the 

present investigation, it is useful to discuss in further detail the results of chapter 4 

and chapter 5. 

Small and intermediate inline arrays are unique from the large spacing square 

array in that they typically exhibit a pre-coincidence acoustic resonance. This type 

of resonance, explained in §2.4.2, is characterized by an acoustic resonance occurring 

at flow velocities much less than that where coincidence of the natural vortex shedding 

frequency with the acoustic mode of the test section occurs. A key feature discovered 

for small and intermediate tube arrays is a small phase shift between the acoustic 

field and the aerodynamic lift, shown in §5.2.3.1 and §5.3.3 for the intermediate 

and small tube spacing arrays respectively. The small phase difference allows simple 

amplitude summation of the acoustic lift and aerodynamic lift to approximate the 

total dynamic lift during acoustic resonance with only small over-estimation of the 

actual total dynamic lift. As discussed earlier, from figure 5.17 and 5.25, any small 

phase difference will only reduce the actual total dynamic lift, thus, simple summation 

of amplitude will be conservative. 
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To determine the total dynamic lift, two things must be determined when extend­

ing the present results to other diameter ratios, or tube spacings. The first is the 

aerodynamic lift coefficient at velocities corresponding to the point where maximum 

acoustic resonance is expected. These lift coefficients are available in the present 

results, as well as in the literature. Weaver (1993) presents an excellent review of the 

literature pertaining to the topic. Once a lift coefficient is selected in the absence 

of acoustic resonance, an enhancement factor must be selected. A summary of the 

enhancement factors are given by table 5.1. During acoustic resonance the lift coef­

ficient due to the aerodynamic lift, caused by the flow over the cylinder, increased 

by a factor of 12 in the small spacing array, and by a factor of 6 in the intermediate 

spacing array. Therefore, increasing the natural lift coefficient by a suitable factor 

can estimate the aerodynamic lift component during acoustic resonance. 

Table 5.1: Summary of the enhancement factors of CLA 

Array Class Enhancement factor 
P/D = 3.37 large 3 
P/D=2.18 intermediate 6 
P/D = 1.58 small 12 

The dynamic lift force due to the acoustic pressure field can be calculated from 

the results presented in chapter 4. As shown in figure 4.9, a constant ratio exists 

between the lift due to the acoustic pressure field calculated by the validated numerical 

simulation and that obtained by the sine wave distribution method. The results shown 

in figure 4. 9 indicate that the ratio between the predictions of the two methods is 

constant over a wide range of D jlambda1; 2 for a given tube spacing ratio. Three 

tube spacing ratios were tested, P/D = 3.37, 2.18 and 1.58. Figure 4.10 demonstrates 

that the lift ratio is dependant on the spacing between the tubes. It is found that 

decreasing the tube spacing caused a decrease in the ratio between the lift forces 
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calculated from the numerical simulation and from the sine wave distribution. To 

estimate the lift force due to sound for a given D / lambda1; 2 and spacing ratio, a 

linear interpolation between the array spacings would give a good approximation of 

the lift due to sound. This ratio multiplied by the lift due to sine wave distribution 

for the array of interest would give the amplitude of the dynamic lift force per unit 

length for the normalized first transverse acoustic mode. Thus, the force per unit 

length due to the sound field on the tube is realized by multiplying this new factor 

by the maximum sound pressure amplitude in Pascals. 

To determine the dynamic lift force due to sound, the maximum sound pressure 

level is required. Blevins and Bressler (1993) presents estimates of the maximum 

sound pressure level shown in equation 5.1, where Vg is the gap velocity, Cis the speed 

of sound in the array and !::.p is the pressure drop across the tube array. Also, Blevins 

and Bressler (1993) show maps of the maximum sound pressure levels predicted for 

various tube arrays. This equation, and the sound pressure level maps only estimate 

the maximum sound pressure level and therefore a factor of safety is required to ensure 

conservative design. The maximum sound pressure level achieved during acoustic 

resonance is dependant on the level of acoustic damping in the system and can vary 

between different boilers and heat exchangers. Therefore, the lift due to the sound 

field should be chosen conservatively. 

(5.1) 

To summarize, the total dynamic lift amplitude can be calculated by summing 

the aerodynamic lift and the acoustic dynamic lift. For the large spacing inline 

array, these values cannot be added directly due to the phase relationship shown 

by figure 5.7. Acoustic resonance occurs due to excitation of the acoustic mode by 

observed Strouhal numbers in the flow. The mechanism is essentially different from 
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that of the small and intermediate spacing arrays. For the large spacing array, the 

phase difference between the aerodynamic lift and the sound field is non-zero, and 

varies with flow velocity. Thus, a different approach is needed to the estimate of the 

total dynamic lift. 

For the large array, the aerodynamic lift force per unit length, due to the flow 

over the tubes, can be calculated similarly as discussed for the small and intermediate 

spacing ratios. The ratio between the lift coefficient during acoustic resonance and 

in the absence of resonance is approximately 3, as show in figure 5.7(d). The lift due 

to the acoustic pressure field can be calculated using the method discussed for the 

small and intermediate spacing arrays. Predicting the sum of these two components 

requires more consideration. 

During acoustic resonance, using the ratio of the calculated aerodynamic lift and 

the lift due to the acoustic pressure field can aid in choosing a method to combine 

the results. If a large factor exists between the amplitude of the two results, direct 

addition will predict the total dynamic lift rather well with some conservatism. If 

the results are with comparable magnitude, it would be necessary to know the phase 

shift, as shown in figure 5.8, to determine a good approximation of maximum total 

dynamic lift amplitude. Experimental results for a wide range of heat exchangers 

and boilers are limited, therefore detailed measurements of the phase relationships 

are also limited. A foreknowledge of the natural Strouhal number and acoustic mode 

frequency can allow comparison with figure 5.8 to determined the approximate phase 

shift necessary to complete the vector addition of the results. Simple amplitude 

summation of the aerodynamic lift and the acoustic lift forces will give a conservative 

total dynamic lift estimate during acoustic resonance. 
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Chapter 6 

Conclusions 

Dynamic lift on a central tube in a square tube array with three different pitch ra­

tios, P/D = 3.37, 2.18 and 1.58 is investigated during flow-excited acoustic resonance. 

The dynamic lift is found to consist of two components. The first is an aerodynamic 

lift component, generated by the unsteady periodic flow though the tube array. This 

component exists before the onset of resonance, but is enhanced by the sound field 

when acoustic resonance is initiated. The second component of the total dynamic 

lift during flow-excited acoustic resonance is due to the acoustic pressure field that 

occurs during resonance. 

Numerical simulations of the acoustic pressure distributions, in the absence of 

flow, show that the ratio of the dynamic lift amplitude produces a constant ratio when 

compared with the sine wave distribution for a given tube array. The significance of 

this result is that since this ratio is now known for the square tube arrays, a simple 

calculation of the lift amplitude can be determined from the sine wave distribution 

and multiplied by the ratio to yield the actual dynamic lift due to the acoustic pressure 

field at a given level. 

For the large square array, a classical Strouhal excited acoustic resonance is ob­

served, wherein resonance occurs at coincidence of the vortex shedding frequency and 

the acoustic mode. In this case the phase shift between the aerodynamic lift and the 

sound field can increase up to 130 degrees. For the small and intermediate spacing 

square arrays, the mechanism of acoustic resonance is inherently different from that 
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observed for the large spacing array. For the small and intermediate spacing arrays, 

pre-coincidence acoustic resonance is observed. During pre-coincidence resonance, 

the phase shift between the aerodynamic lift and the sound field is small. These two 

mechanisms of acoustic resonance, coincidence and pre-coincidence, require specific 

considerations for determining the total dynamic lift. 

A method to obtain conservative estimates of the total dynamic lift during acous­

tic resonance is presented at the end of chapter 5. For the small and intermediate 

spacing arrays, the direct summation of the calculated magnitudes of the enhanced 

aerodynamic and sound dynamic lift components yields a slightly conservative esti­

mate of the total dynamic lift during resonance. For the large spacing array, direct 

summation of the magnitudes of these components may yield a result that is overly 

conservative due to the large phase shift. The degree of conservatism is dependant on 

the ratio of magnitudes of two dynamic lift components. With a foreknowledge of the 

Strouhal number and acoustic mode frequency, it is possible to estimate the phase 

shift thereby determine more accurate estimates. It should be noted that a factor of 

safely should be chosen to cover the uncertainty in the sound pressure levels and the 

ratio of aerodynamic lift enhancement during acoustic resonance. 
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