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Abstract 

This thesis presents a new approach to improve the efficiency of defect screening 

during manufacturing test of digital integrated circuits through the use of multiple 

observations during test generation. To address the limitations of test sets generated 

based on the single stuck-at fault model, vve combine the advantages of multiple­

detect and detection at all observable outputs in order to generate test sets that can 

improve surrogate detection. 

Imposing additional constraints, such as multiple observations, on the test gener­

ation process motivates the development of a new constrained automatic test pattern 

generation (ATPG) work flow that leverages the recent advancements in the Boolean 

satisfiability (SAT) problem. Building this ATPG work flow brings its own technical 

challenges and solutions described in detail in this thesis. To assess the effective­

ness of the test sets generated by the proposed ATPG work flow, we evaluate them 

using coverage metrics for fault models that are not targeted explicitly during test 

generation. 
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scan a design-for-test methodology to access internal states of sequential circuits 

sensitization the process to propagate fault effect to some outputs 

TARO Transition fault to All Reachable Outputs 

TEGUS TEst Generation Using Satisfiability 
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ULA Undetect Look-Ahead 
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M.A.Sc. - D.W.Y. Leung- I'vlcMaster 

Chapter 1 

Introduction 

Digital integrated circuits have been the enabling force to the recent advancements in 

many economic sectors, such as computer industry, consumer electronics and commu­

nication and information technologies, only to name a few. As the design complexity 

continues to grow and more transistors are integrated onto a single silicon die, the 

verification and test tasks are becoming increasingly difficult. Verification focuses on 

the comparison between the implemented design and its specification. Manufacturing 

test is concerned with screening out the defective chips after fabrication. Given the 

huge solution space of all the input patterns that can be applied to a circuit to screen 

out the fabrication defects, intelligent fault modeling and test generRtion Rre required 

to ensure that mmmfacturing test is done in a cost-effective manner. 

The aim of the work described iu this thesis is to give a new perspective on fault 

effect observation on the existing fault models. To better illustrate hmY the proposed 

method can be beneficial in the screening of fabricRted chips, it is essential to first 

understand the basics of manufacturing test and test generation. The conceptual 

flow for the design of very large scale integrated (VLSI) circuits will be summarized 

in Section 1.1 Rnd manufacturing test will be briefly introduced in Section 1.2. The 

concept of fault models and test generation will be discussed in Sections 1.3 and 

1.4. Test application is discussed in Section 1.5. Finally, the motivation and the 

organization of this thesis is provided in Section 1.6. 

1 
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CUSTOMER 

FABRI~AT/ON 


" GOOD CHIPS TO 

CUSTOMER 


Figure 1.1: VLSI Realization Process [1] 

1.1 VLSI Design 

The realization of a VLSI design starts with determining requirements and \\Titing 

specifications as shown in Figure 1.1. 

Requirements are the criteria defined by the users that need to be satisfied by 

the designers. They are often related to the specific application of what the target 

product. Specifications can be set up once the requirements are determined. Usually 

specifications include various characteristics of the product to be built, namely hmc­

tionaL operating, physicaL environmental and economical characteristics. The design 

process produces necessary information for fabrication, such as system-level structure 

of blocks and logic gates and physical layout. 

Fabrication process involves photolithography, etching, ion implantation. chemical 

treatments and then dicing and packaging. Manufacturing tests are applied to chips 

to find out which ones are defective. The purpose of testing is only to determine if 
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1.2. J\Ianufacturing Test 	 M.A.Sc. - D.W.Y. Leung- McMaster 

the circuit is faulty, when'as the purpose of diagnosis is to determine what is the root 

cause of failure. Therefore diagnosis tests can also be done subsequently in order to 

determine how the design/process can be fixed. 

The reader is to referred to [1, 19, 21] for a detailed introduction to the imple­

mentation cycle for digital integrated circuits. 

1.2 Manufacturing Test 

The fabrication process of semiconductor devices is prone to erroneous behavior due 

to anomalies in wafer processing, failure of manufacturing equipment, impurities in 

mclterials, or human errors. In order to detect and screen out the faulty circuits, 

manufacturing tests are employed. According to [1], manufacturing tests can be 

categorized as follows: 

• 	 Parametric Tests: DC parametric tests detect problems related to shorts and 

O]WllS, maximum current. leakage, output drive current. and threshold level. 

while AC parametric tests detect defects related to propagation delay, setup 

and hold time, functional speed. access time, refresh and pause time, and rise 

and fall time. These tests are usually technology-dependent so only the physical 

characteristics of the devices are required but not the functionality of the design. 

• 	 Functional Tests: Functional Tests exhaustively test all input combinations of 

a circuit. This is equivalent to applying 2n patterns to an n-input circuit. For 

a 64-bit ripple-carry adder, it will require 2129 patterns to test the circuit and 

it vvould take 2.158 x 1022 years for an automatic test equipment (ATE) that 

nms at 1GHz. Therefore a complete functional test is infeasible for a complex 

digital circuit clue to the exhaustive nature of the test and can only be used for 

testing certain critical components in a large design. 

• 	 Stmct'Ural Tests: On the contrary, structural tests verify a circuit according 

to its logical structure, or its netlist. Different fault models are introduced to 

model various types of possible logic and timing faulty behaviors caused by 

3 
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electrical defects. A widely used fault model is the single stuck-at fault model, 

which assumes a fix logic 0 (saO) or logic 1 (sal) on a particular line in a logic 

network. For the same 64-bit ripple-carry adder, there are only 1728 stuck-at 

faults in total so at most 1728 patterns are required to test the adder. It only 

takes 1.728ms to apply these patterns on the same lGHz ATE. 

1.3 Fault Models 

In this section we discuss three main fault models that are used to assess the effec­

tiveness of a test set. 

1.3.1 Stuck-at Fault Model 

As briefly introduced in the previous section, in the stuck-at fault model a fault is 

assumed to affect only an interconnection between logic gates in a circuit. Stuck-at 0 

(saO) is a fault that assumes a logic state 0 at a particular fault site, disregarding hmv 

the lirw is driven; whereas stuck-at 1 (sal) fault assume a logic state 1. Therefore, 

saU, sal and fault-free are the three possible states in the model. Any combinations 

of faulty and fault-free lines are regarded as faults so there are 3n - 1 possible line 

combinations for an n-line circuit. Obviously, modeling every combination even for a 

moderate n is impossible. If only the combinations of one stuck-at fault are considered, 

the single stuck-at fault model can have only 2n faults, \vhich makes it computationally 

feasible for VLSI circuits (where n lies in the tens to hundreds of thousands to even 

millions range). Furthermore. through fault equivalence [1], the number of faults can 

be further reduced. 

Tlw quality of a test set is often determined by fault coverage, which is the ratio 

of observable faults over the total number of faults. Therefore, most traditional 

stuck-at fault automatic test pattern generation (ATPG) algorithms (more details on 

ATPG are given in the next subsection) opt to achieve a high fault coverage of single 

stuck-at faults. This is despite the fact that there are physical defects that are not 

properly screened only through single stuck-at fault test sets. Therefore other fault 

4 
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models have been proposed to deal with this problem. However. when using other 

models, this also increases the ATPG complexity. In order to increase the screening 

effectiveness, multiple-detect, or n-detect. stuck-at ATPG has been introduced [14]. 

Instead of sensitizing all faults once, which is sufficient to yield high fault coverage. 

all faults are sensitized several times. It is expected that multiple sensitizations of 

a fault excite a fault through different paths, such that untargeted faults, may also 

be detected. Surrogates, which are defects not modeled explicitly by the model used, 

could have been detected [6]. For example, a bridging fault (discussed later in this 

section), which usually has two excitation points, may become a surrogate detection. 

Through single stuck-at fault modeL if one of the excitation points of the bridging 

fault is targeted, the other point could have been excited and sensitized. Multiple 

sensitizations increase the chance of having the other excitation point being sensitized. 

1.3.2 Delay Fault Model 

Another widely used fault model is the delny fault model. \Vhile the stuck-at fault 

model is suitable for timing-independent problems, the delay fault model is partic­

ularly useful for timing-dependent defects [31]. An illustration of timing-dependent 

def.ects is shown in Figure 1.2. When the inputs of a gate change, the outputs of 

the gate may change according to the logic function. The change is not instant, and 

would take certain amount of time to finish the transition of the logic state. A defect 

occurs vvhen a transition takes more time than expected to be carried out and erro­

neous data is latched into the receiving state elements. There are two types of delay 

fault models, namely transition fault model and path delay fault model. 

The transition fault model is also known as the gate delay fault model. In order to 

trigger a transition, a pair of patterns is required to sensitize a fault. The initialization 

pattern first initializes the fault site to a logic 0, whereas the capture pattern excites 

the fault site with logic 1 and sensitizes it to an observation output. The second step 

is very similar to stuck-at fault so a slow-to-rise (STR) fault behaves like a temporary 

saO fault. Likewise, a slow-to-fall (STF) fault is like a temporary sal fault [33]. 
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Figure 1.2: Illustration of Timing Failures 

Besides multiple detection, the concept of Transition Fault to all Reachable Out­

puts (TARO) was introduced in [31]. TARO detects each transition fault as many 

times as the fault is observed at all the observable outputs at least once. A fault 

can be detected by only one pattern, while another may require a few patterns to 

be observed at all reachable outputs. It was demonstrated through experiments that 

TARO is capable of screening chips which escaped tests of 100% single stuck-at and 

100% transition fault coverage. 

Unlike the transition fault model, the. path delay fault model considers the accumu­

lated delay across a series of gates. A path refers to a series of logic gates in a circuit 

that begins from an input and it ends at an output. A transition at the beginning 

of the path will also trigger transitions through the path until its endpoint. A path 

delay fault occurs when a transition at the beginning of a path cannot propagate 

to the end of the path in one clock period. Again a two patterns test is required. 

The initialization pattern provides all the required off-path inputs along the path 

while the capture pattern triggers the transition [28]. Enumerating all the paths in 

a moderate-sized circuit is intractable. Therefore, the path delay fault ATPG toob 

often generate tests for the most time-sensitive paths (or critical paths) in the cir­

cuit. Besides screening for timing-dependent defects, speed binning is another major 

application of path delay test. 
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Figure 1.3: Four Types of Low Resistive Bridging Faults 

1.3.3 Bridging Fault Model 

Under the low resistive bridging model, there are four types of bridging faults between 

wires w and k, as shown in Figure 1.3. If k is power or ground line, it dominates w 

where w = k, and it behnves like a stuck-at fault. The defect can also be in OR-type 

modeL where w = OR(w, k). If k is set to logic 1, the defect can be modeled as sal 

fault on wire w. The chance to detect an OR-type defect is (1 - (1- p) 11 
) where p 

is the probability of k = 1, which is assumed to be one half, and n is the number 

of times the corresponding stuck-at fault is detected. Similarly for AND-type model. 

where w = AND( w, k), it can be modeled as saO fault on wire w a.s k = 0. 

Bridging Coverage Estimate (BCE) [2] is a metric to estimate low resistive bridging 

defects coverage with single stuck-at fault test set, based on the probabilistic model 

discussed above. Provided a test set T and its target fault list F, BCE is defined as 

where fi is the number of stuck-at faults detected i times by T, IFI is the total 

number of stuck-at fault in F, and n is the maximum number of detections that a 

fault can be detected by T. In practice, n is usually limited to 10, which results in an 

upper bound of 99.9%. This is practically regarded as accurate enough to evaluate 

the quality of the test set. 

7 
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1.3.4 Gate Exhaustive Model 

In the gate exhaustive (GE) model [3], all reachable input combinations of all gates 

in the circuit are tested and the gate responses are observed. It can be modeled with 

the use of the single stuck-at fault [15]: sa1(sa0) can be used to represent aGE fault 

where a gate output is expected to be 0(1). Instead of assuming these faults on every 

single line of the circuit, only lines at gate outputs are considered. Though, all the 

combinations on the inputs of every single gate in the circuit are required to test the 

respcctin,: gate exhaustively. 

A metric to compute GE coverage for evaluating stuck-at fault tests \vas intro­

duced in [15]. It is defined as 

IFI CC(f)
GECoverage = "2:: t 

. i=l IFI 

where IFI is the total number of gate-output stuck-at faults; fi is the i-th fault 

m the circuit; and CC is the coverage credit, which is the ratio of the number of 

distinct gate input combinations that detect a fault to the maximum number of gate 

input combinations that can detect the same fault. It is important to note that unlike 

[15], [3] does not consider the nonobservable input combinations, which include the 

unreachable input combinations and input combinations that cannot be sensitized to 

any observation output. Such input combinations can only be identified during test 

generation, but not through fault simulation. It is obvious that the maximum number 

of gate input combinations used in coverage credit will be larger when nonobservable 

input combinations are included in the above formula. 

1.4 Test Pattern Generation 

Given a fault model to perform a structural test, a set of patterns (or test set) needs to 

be generated. A set of patterns consists of a set of input vectors and output responses. 

An input vector is the set of logic values which are applied to the inputs of the circuit 

to sensitize a targeted fault. An output response is the set of the corresponding 

fault-free output values at the outputs of the circuit when an input vector is applied. 
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a .c g 1 

b • d 
z 
(1/0] 

e 'sa1 
"1­ X 
h[0/1] 

Figure 1.4: Simple Circuit Example for Illustrating Test Generation 

• 	 Combinational ATPG: Test generation for combinational circuits is called com­

binational ATPG. It is proven to be an NP-complete problem [1]. It is com­

putationally intensive and involves a high volume of data for VLSI circuits. 

Heuristics are developed to make it practical in terms of runtime. For most of 

the heuristics. there are four major operations involving combinational ATPG, 

namely excitation. sensitization, justification and implication. These operations 

are better explained with a simple single stuck-at fault example as shown in Fig­

ure l.J. To excite the sal fault at .\'AI'."D gate's output h, the logic value of his 

set to 0. This means at h it has an expected value of 0 and a faulty value of 1. 

notated as [0/1]. In order to observe the difference, the fault effect is sensitized 

to the output z as the olJserving point. Also to justify the value 0 at h, inputs a 

and b are justified as 1 and this implies the values of g to be 1 and the response 

of z is [1/0]. After the four operations a pattern a=1,b=l;z=l is generated. By 

repeating these steps for all the faults in the circuit, a complete set of patterns 

can be generated. 

• 	 Sequential ATPG: Test generation for sequential circuits is called sequential 

ATPG. It is more complex than combinational ATPG for several reasons. The 

internal state elements are not being controlled directly so one or more input 

vectors are required to change them into certain states. Sensitization of a fault 

is also more difficult because it has to drive the circuit into a known state. 

which also requires multiple input vectors. \Vhen involving multiple patterns 

for a fault, the order of patterns becomes important too. Moreover, it could take 

multiple clock cycle for the fault effect to propagate to an observable output. 
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Furthermore, relations between multiple clock domains have to be accounted 

for [21]. 

• 	 Test Compaction: Test compaction is the process used to reduce the size of the 

test set. Don't Cares are the unspecified values that can be either logic 0 or 1 

during test. By filling the Don't Cares to make a pattern to detect more faults, 

fewer patterns are required to achieve the same coverage. There are two types 

of compaction, namely static and dynamic compaction. Static compaction is a 

post-processing step that finds the compatible patterns and combines them into 

a single pattern that detects multiple faults (more Don't Cares in the test mean 

high compatibility betvYeen patterns). On the other hand, dynamic compaction 

fills the Don't Cares of the partially specified patterns during test generation. 

Fa.alt simulation is also used by ATPG and compaction algorithms to reduce the 

number of faults that need to be targeted during test generation, which leads 

to both lower pattern count and mntime. In general, dynamic compaction 

outperforms static compaction, though it makes the ATPG process more time 

consuming [1]. 

1.5 Scan and Test Application 

Internal state signals are sequential elements which cannot be controlled by primary 

inputs directly. As discussed in the previous section, sequential ATPG is required 

to generate tests for sequential circuits. Scan is a widely used design-for-test (DFT) 

method employed to reduce ATPG for sequential circuits to combinational ATPG. 

Scan provides controllability and observability to design state elements. i.e., flip­

flops (FFs), by employing additional circuitry for the test mode. In the test mode all 

the FFs are configured into a shift register named scan chain. This scan chain will be 

accessed through the scan in (SI) and scan out (SO) ports. Desired values of the FFs 

can be shifted in through SI in the test mode. On the other hand, by shifting out the 

values from the scan chain through SO, states of FFs can be observed. Multiple scan 

chains can also be used to reduce the time of shifting, also called scan time. By the 

10 
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SE 

FD 

TD 

Figure 1.5: A Scan Flip-flop 

employment of scan, all the FFs in the circuit become controllable and observable 

and they can be modeled as pseudo-inputs and pseudo-outputs. The more tractable 

combinational ATPG can thus be applied to the scan sequential circuits. 

Scan-flip-flops (SFFs), or scan cells, are used to replace all the FFs in the circuit 

to construct the scan chain. A SFF, as shown in Figure 1.5. uses a 2-input multiplexer 

at the input of a FF to select between the data from the circuit in the functional mode 

and the data from the previous element in the scan chain in the test mode. l\iiode 

change is controlled by the scan enable (SE) signal, which is also used as the control 

signal for the multiplexer. An example of implementing a scan chain is illustrated 

in Figure 1.6. The logic cone has two input FFs and one output FF and they are 

replaced to SFFs to construct a scan chain. A common scan enable signal connects 

to the control ports of the multiplexers of the SFFs. A and B are the functional datn 

(FD) ports of FFl and FF2 respectively. The output of FFl and FF2 connects to 

the test data (TD) ports of FF2 and FF3 respectively, forming a scan chain with 

a sequence of FFl, FF2 and FF3. To complete the scan chain, TD port of FFl is 

connected to the scan in (SI) port and the output of FF3 connects to the scan out 

(SO) port. 

Single-pattern tests, as required by stuck-at faults, can be applied to a scan circuit 

in a straightforward manner. The input pattern is shifted (scanned) in for n clock 

cycles, where n is the number of flip-flops. Then the circuit is switched from the 

test mode to the functional mode for one clock cycle in order to capture the output 

response. Then the circuit is switched back to the test mode and the output response 

is shifted out concurrently with shifting in the input pattern for the following test. For 

tvvo-pattern tests, as required by delay faults, the use of scan poses test application 

11 
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Figure 1.6: Example of Scan Design 

problems. There are three strategies to apply tv.'o-pattern tests to a scan circuit. 

• 	 Enhanced-scan: Enhanced-scan uses two register scan cells for storing the pat­

tern pair. Both patterns are shifted in before the test starts so they can be 

applied in two consecutive cycles. Its main limitations are doubling the area of 

state elements and the volume of test data. 

• 	 Bmadside: 

Broadside uses the output response of the initialization pattern as stimuli for the 

excitation pattern. Figure 1. 7 is an example of Broadside' test application. A 

two-pattern test [X,Y] is the test to applied to the circuit under test (CUT) and 

a response Z is expected. The first pattern X is scanned in and applied to the 

CUT, and the response of X is loaded into the scan chain. The second pattern 

Y, which is the same as the response of X, is in place and can be reapplied to 

the CUT. Response Z is scanned out and observed. Y is restricted to be iu 

the solution space of all the possible responses of the CUT so not all the input 

combinations can be applied as the second pattern. 

12 
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scan in 1st 
pattern 

Circuit Circuit 
(1st clock cycle) (2nd clock cycle) 

2nd pattern is the scan out 
responses of 1st pattern responses 

Figure 1. 7: Broadside Test Application Strategy 

• 	 Skewed-load: With Skewed-load, the first pattern is applied and then one bit is 

shifted along the scan chain and the shifted pattern is used as the second pattern. 

Figure 1.8 illustrates an example of Skewed-load test application. Similar to 

the previous example, a two-pattern test [X,Y] is applied to the CUT and a 

re:,;ponse Z is expected. The first pattern X is scanned in and applied to the 

CUT. The first response R is discarded because the first pattern is only used 

for initialization. The first pattern X is still in the scan chain so by scanning in 

one extra bit. the values in the scan chain are shifted and become the second 

pattern Y consisting of Y1 = Sf and li = Xi-l· The second pattem Y is then 

applied to the CUT and response Z is obtained. Y faces a similar problem as 

in Broadside, that it is restricted to the shifted version of the first pattern X. 

As discussed above, enhanced scan has area overhead and test data volume limi­

tations. Broadside is used in practice despite the overhead in ATPG runtime (due to 

two time-frame ATPG). Skewed-load is widespread in practice despite the constraints 

on switching the scan enable at-speed (recent advancements in scan cell design and 

scan enable routing have been addressing this problem). Therefore for the remainder 

of this thesis we will focus on the Skewed-load test application strategy when dealing 

with two consecutive patterns applied through scan chains. 
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scan in 1st scan in first bit 
pattern of 2nd pattern 

Circuit Circuit 
(1st clock cycle) (2nd clock cycle) 

2nd pattern is the scan out 
shifted 1st pattern responses 

Figure 1.8: Skewed-load Test Application Strategy 

1.6 Thesis Organization 

This thesis presents a ne>v way to improve the efficiency of defect screening during 

manufacturing test through the use of multiple observations during test generation. 

The basic intuition of our approach lies into leveraging the advancements in the 

satisfiability (SAT) problem to do constrained ATPG. Iviore specifically, we combine 

the advantages of multiple-detect and detection at all observable outputs in order to 

generate stuck-at test patterns that can improve surrogate detection. The remainder 

of the thesis is organized as follows. 

Chapter 2 starts with an introduction of the SAT problem and some state-of­

the-art algorithms for solving it. Differences between the traditional and SAT-based 

ATPG techniques will be highlighted and the evolution of SAT-based ATPG will be 

presented. The motivation for our work will also be discussed. 

In Chapter 3, a new method is proposed to increase observations of fault effects 

during test generation. Detailed algorithms on how to construct the test generation 

satisfiability problem will be presented in this chapter. Test generation for both single 

stuck-at fault and transition fault models will be discussed. 

Experimental results will be presented in Chapter 4 to illustrate the effects on pat­

tern counts and some metrics on test evaluation. Finally, conclusions and suggestions 

for further development are provided in Chapter 5. 
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Chapter 2 

Satisfiability and ATPG 

Boolean Satisfiability Problem, also known as SAT, is a decision problem that deter­

mines if a solution exists for a Boolean function provided in the conjunctive norrnal 

form (CNF) such that the function evaluates to true. It is a well-known NP-cornplete 

problem [10] and it is widely used in VLSI computer-aided design (CAD), artificial in­

telligence and formal verification. The problem is satisfiable if a satisfying assignment 

can be found, otherwise it is said to be unsatisfiable. 

A propositiona.l formula is represented as conjunction of clauses, where each clause 

is a disjunction of literals. Literals ca.n be in positive or negative phase. denoted as .r 

and x respectively. Consider a propositional formula (x 1 +.T 2 )(x 1+x3 )( ..c2+x 3+:c 1)(:ri)· 

A satisfying assignment x: 1 = 1. x 2 = 1. :c3 = 0, x4 = 1 would satisfy all clauses and 

thus the function is evaluated to true. Since a satisfying assignment can be found, 

the problem is claimed to be satisfiable. 

In Section 2.1, the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for solv­

ing SAT problems will be introduced. Some milestones of SAT advancements over 

the last decade will also be outlined in this section. Section 2.2 is a summary of 

various ATPG algorithms, including traditional structural based algorithms, early 

SAT-based ATPG attempts and recent SAT-based ATPG implementations utilizing 

state-of-the-art SAT solvers. Finally, the motivation and objectives of this research 

will be discussed in Section 2.3. 
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2.1 SAT Solving 

There are two classes of SAT solvers. Probabilistic SAT solvers, based on stochastic 

local search algorithms, which perform well on random SAT instances. However, they 

are not suitable for structured instances such as formal verification and VLSI CAD 

problems, including ATPG [23]. Another class of solvers are based on DPLL algorithm 

[4. 5], which is a branching search algorithm with backtracking. This algorithm is 

explained next. 

Algorithm 1: DPLL Algorithm [20] 

if (!preprocessing()) then 
return(UNSAT); 

end 
while t'r'Ue do 

if ('decide()) then 
1 return(SAT); 

end 
while (!bcp()) do 

if (!resolveConflict()) then 
1 return(UNSAT); 

end 
end 

end 

At the beginning, there could be some preprocessing that discovers whether the 

instance is unsatisfiable. The main loop starts by the decide() operation. which 

chooses an unassigned variable, and assigns a value to it. If no unassigned variable 

is available, the instance is solved and it is thus satisfiable. If a variable is assigned. 

Boolean constraint propagation (BCP) is carried out in the bcp() operation. As a 

result of this assignment, all clauses with this variable will either be satisfied, or having 

one fewer unassigned literal. Some clauses will have only one unassigned literal left 

and thus become unit clauses. BCP identifies these unit clauses and implies values 

to those unassigned variables. The bcp() operation repeats itself when unassigned 

variables are implied within bcp(). However, if a variable is implied to be both 

0 and 1, a conflict is discovered and bcp() returns false to enter resolveConflict(). 
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resolveConflict() operation carries out backtrncking. which undoes some decision::> 

and the corresponding implications. If a.ll decisions are restored, the instance i:o 

un:oatisfiable as the entire solution space is searched. 

In the last decade, there have been a few milestones that improve the efficiency 

of SAT :oolvers. 

• 	 Conflict-driven Learning: First introduced in GRASP [18], instead of perform­

ing chronological backtracking as in the DPLL algorithm, conflict analysis is 

performed to find out the reasons for a conflict. Conflict-driven learning uses 

the results of conflict analysis and avoids the same conflict by adding conflict 

clauses to the formula. ·with new conflict clauses added into the problem be­

ing solved. restarting the search may lead to a very different search space and 

approach to a conclusion faster. The restart strategy is proved experimentally 

and adapted in some latest SAT solvers such as Chaff and Berkmin [12]. 

• 	 Two-litem! Watching: The SATO SAT solver [34] introduced head/tail literal 

scl1enw to improve the performance of BCP. Every clause has a list of literals. A 

head pointer points to the first unassigned literal while a tail pointer points to 

the last unassigned literal in the clause. A clause becomes unit clause when the 

head and tail pointers point to the same unassigned literal. These pointers are 

only updated when assignment and backtracking occur at the literals that the 

pointers are pointing to. Therefore, it saves some of the overheads of updating 

the clause status during bcp(). 

An alternative scheme is proposed in the Chafi SAT solver [20]. Instead of two 

pointers moving toward each other as in SATO, the two pointers Chaff uses 

can be any unassigned literals in the clause. A unit clause is detected when two 

pointers point to the same literal as SATO. Although this "lazy update" scheme 

has a higher overhead during bcp() while searching for another unassigned lit­

eral when updating a pointer, backtracking has virtually no overhead as no 

pointer update is required. Consequently, Chaff performs faster than SATO for 

a significant margin in most cases [20]. 
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• 	 Decis·ion Heur·lstic: For difficult problems, many conflicts occur during solving 

and thus generating huge amount of conflict clauses. Consequently these conflict 

clauses dominate the problem and satisfying these confiict clauses becomes more 

important [20]. Chaff uses Variable State Independent Decaying Sum (VSIDS) 

to prioritize literals such that literals appearing in the most recent confiict 

clauses are more likely to be chosen; so recent confiict clauses can be satisfied 

faster. I3erkmin modified the heuristic slightly by considering also the clauses 

involved in conflict analysis and their literals and thus getting a better estimate 

of the variable activities. Performance gain can be obtained through a., smarter'' 

choice of variables that ultimately reduces backtracking in the search. 

2.2 SAT-based ATPG 

Before discussing the SAT-based ATPG algorithms we first take a look at the tradi­

tional ATPG algorithms. 

2.2.1 Traditional ATPG Algorithn1s 

D-Algorithm (D-ALG) is the first complete test generation algorithm proposed by 

Roth in 1966 [24]. The algorithm can be summarized as follows: 

• 	 D and D: Besides logic value 0 and 1, two more symbols are introduced: D 

represents logic value 1 in the fault-free circuit and 0 in the faulty circuit (1/0) 

while D is the negation of D ( 0/1). 

• 	 Fault Excitation: 

When a fault is targeted, an appropriate D value is assigned to the fault site. 

If the fault is a saO, a faulty value 0 and an exciting value 1 is required so D is 

assigned. Otherwise, D is assigned for sal. 

• 	 Fault Propagation: Find a path from the fault site to the closest primary output. 

Assign appropriate D values along the path so that the fault effect is propagated 

to an observable output. The path is called a D-chain. 
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• 	 Line Justification: With all the D values along the D-elwin, backward justify all 

other lines and check for consistency. If there are inconsistencies. find the next 

shortest propagation path and justify the new D-elwin again. If no consistency 

can be found among all paths, the fault is untestable. 

D-ALG is the basis of most ATPG algorithms, including some milestones in ATPG 

such as PODEM (Path Oriented DEcision rvlaking) [11], FAN (Fan-out-oriented test 

generation algorithm) [9] and SOCRATES (Structure-Oriented Cost Reducing Auto­

matic TESt pattern generation system) [25]. 

• 	 PODEM: During line justification in D-ALG, branching can occur at any line 

that has multiple possible justifications, which makes it exponentially complex 

to the number of lines. PODEI\1 instead performs branching only at primary 

inputs. This reduces the worst-case complexity to only exponential to the num­

ber of primary inputs and hence it significantly improves ATPG runtime per­

fonnance. 

• 	 F.A.N: FAN introduced four major contributions over PODE?vi. Immediate im­

plications and unique sensitization result in signal assignments. The use of 

headlines pushes the branching points fonvard from primary inputs to the first 

level of fan-out lines. These three improvements reduce the depth of backtrac­

ing and avoid unnecessary searches. FAN also performs multiple backtrace in 

breadth-first fashion instead of inefficient depth-first single backtrace in PO­

DEM. 

• 	 SOCRATES: Beside using fast random pattern generation with parallel fault 

simulation, and also some improvements over the FAN algorithm, SOCRATES 

also introduced dynamic learning. It performs a learning process between de­

cision steps to find out more implications over multiple logic levels to further 

improve search speed. 
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Y = BUF(A) (Y + A)(Y +A) 
Y = NOT(A) (Y + A)(Y +A) 
Y = AND2(A,B) (Y + A)(Y + B)(Y +A+ B) 
Y = NAND2(A,B) (Y + A)(Y + B)(Y +A+ B) 
Y = OR2(A,B) (Y + A)(Y + B)(Y +A+ B) 
Y = NOR2(A,B) (Y + A)(Y + B)(Y +A+ B) 
Y = XOR(A,B) (Y +A+ B)(Y +A+ B)(Y +A+ B)(Y +A+ B) 
Y = XNOR(A,B) (Y +A+ B)(Y +A+ B)(Y +A+ B)(Y +A+ B) 

Table 2.1: The Formulae for the Basic Gates 

Fault-free Circuit 

A D 
B 

x: 
' ' ' 

c 
E 

! Boolean Difference 

'. y-------------------------------~ 
',-­

A D ' ' 
B 

D' 

c-
E 

Faulty Circuit 

Figure 2.1: Fault-free and Faulty Circuit with Boolean Difference [16] 

2.2.2 Early SAT-based ATPG 

In 1989, Larrabee presented an algorithm that uses the Boolean difference for test 

generation [16]. The algorithm first translates the test generation problem into a SAT 

problem. and then tries to solve the SAT problem in order to generate a pattern. 

To represent an AND gate in CNF, the translation starts with the Boolean function 

D =A· B where D is the output of the AND gate with inputs A and B. Due to the 

fact that the equality P = Q is equivalent to two implications ( P ___, Q) · ( Q ___, P), the 

Boolean function can be translated into ( D ___, (A · B)) · ((A · B) ___, D). Also, because 

of P ___, Q is identical toP+ Q, the formula becomes (D +A)· (D +B)· (A+ B +D). 

Similarly, the formulas for other basic gates can a.lso be determined as shown in Table 

2.1. 
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The test generation involves clauses generation for the fault-free circuit and the 

faulty circuit. as shown in Figure 2.1. The upper and lower part of the figure rep­

resents the fault-free and faulty circuit correspondingly, and the XOR at the end is 

the Boolean difference of the fault-free and faulty circuits. The Boolean difference 

mimics the D-value requirement at an observing output. The fault-free circuit can 

be represented in CNF by the conjunction of all formulae of individual gates in the 

circuit. As in the example, the formula for output X is 

(X+ D) ·(X+ E)· (X+ D +E) 

· (D +A)· (D +B)· (A+ B +D) 

· (C +E)· (C +E) 

On the other hand, the faulty circuit is a copy of the fault-free circuit, except that 

the lines affected by the fault are renamed. In the case of sal at line D, the lines D 

and X in the faulty circuit are renamed as D' and X'. Two single literal clauses (D) 

and (D') are added to assign the exciting and faulty values to line D. Therefore, the 

formula for output X' is 

(D') 

· (D +A)· (D +B)· (A+ B +D) 

· (C +E)· (C +E) 

· (X'+ D') ·(X'+ E)· (X'+ D' +E) 

(D) is implied because of the discontinuity at line D. By adding the formula for 

the final Boolean difference XOR gate 

(X+ X'+ Y) ·(X+ X'+ Y) ·(X+ X'+ Y) ·(X+ X'+ Y), 

the complete CNF representation for Figure 2.1 is 

(X+ D) ·(X+ E)· (X+ D +E) 

· (D +A)· (D +B)· (A+ B +D) 

· ( C + E) · (C + E) 

. (D') 

· (X'+ D') ·(X'+ E)· (X'+ D' +E) 

· (X+ X'+ Y) ·(X+ X'+ Y) ·(X+ X'+ Y) ·(X+ X'+ Y) 

The SAT problem is then solved with its own SAT solver which inherits some 

properties of FAN and SOCRATES that speed up the search for an assignment. 
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X Encoding Interpretation 
C:r c;: 

0 () 1 signal x is 0 
1 1 0 signal x is 1 
u 0 0 signal x is unknown 
? 1 1 conflict at signal x 

Table 2.2: 3-valued Encoding with Unknown [30] 

The TEGUS (TEst Generation Using Satisfiability) algorithm [29] proposed by 

Stephan et al. has a few improvements over [16]. As a preprocessing step, TEGUS 

first converts the circuit into a network of A:"JD gates with inverted inputs, as a 

unique gate function makes clause generation and fault simulation more efficient. 

Also. TEGUS uses a way similar to D-ALG to generate clauses, which yields fewer 

clauses and literals compared to [16]. This leads to a smaller SAT problem to be 

solved. \Vhile solving the SAT problem. a simple greedy variable selection strategy is 

used. A literal of the first found clause with more than two free literal is chosen for 

branching. ?\Ioreover, the clauses for the gates are added into the SAT problem in a 

depth-first fashion. starting from the primary inputs of the circuit. vVith the greedy 

variable selection, variables of input nodes are selected for branching, which mimics 

PODEI\I. Also clauses of nearby logics are grouped together, thus resulting in faster 

conflict detection. 

2.2.3 SAT-Based ATPG with DPLL-based SAT Solvers 

With the new generation of DPLL-based SAT solvers such as Chaff [20] and l\IiniSAT 

[7] which can be used as a function library, highly-efficient SAT solving functionalities 

can be easily integrated into any a.pplication. Since solving a SAT problem becomes 

a simple function call to the SAT solver library, subsequent SAT-based ATPG algo­

rithms focus more on constructing the SAT problem than on SAT solving. 

PASSAT (PAttern Search using SAT) [27] is the first algorithm which takes both 

unknown values and tri-states into consideration. Similar to the 3-valued encoding 

proposed by Tafertshofer et al. [30] for single stuck-at faults, as shown in Table 2.2, 

PASSAT uses two Boolean variables to represent its 4-valued encoding, as shown in 
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X Encoding Interpretation 
c,. c:. 

0 0 l signal x is 0 
1 1 0 signal xis 1 
u 1 l signal x is unknown 
z 0 0 signal x is nt high impedance 

Table 2.3: 4-valued Encoding Optimized for AND Network 

AND 0 1 z u 
0 
1 
z 
u 

0 
0 
0 
0 

0 
1 
u 
u 

0 
u 
u 
u 

0 
u 
u 
u 

Table 2.4: Truth Table of the 4-valued AND Gate [27] 

Table 2.3 [27]. The authors of PASSAT also demonstrated that the use of different 4­

valued encodings generates different number of clauses for various Boolean gates and 

bus components [8]. With different component composition in a design, a particular 

encoding can be selected to minimize the number of clauses that reduce the size of 

the SAT problem. The particula.r encoding in Table 2.3 is AND-uetwork optimized 

as it gives the fewest clauses for AND gates among all 24 possible encodings. The 

truth table and clauses for the 4-valued AND gate are shown in Table 2.4 and 2.5 

respectively. 

Besides the 4-valued encoding, PASSAT is also capable of using different variable 

selection strategies. Advanced SAT solvers allmv users to constrain which variables are 

branchable during decision-making [20]. Without any constraint, PASSAT uses Chafi 

directly with the VSIDS strategy [20] to allow branching on all variables. PASSAT 

is also able to constrain variable selection only at input variables or fanout nodes, 

which mimics PODE.tv1 and FAN. Experimental results show that combining input 

variable constraints with a second attempt to the abort faults without constraints is 

more efficient and robust than using only any single strategy. 

TARO was also implemented within a SAT framework, as presented in [32]. By 

constructing two sets of variables representing two clock cycles of the circuit, a two­

pattern test can be generated for transition faults. vVith different constraints con­

necting input and output variables of both time frames, this method can be applied 
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(ca + c~; + c,) · (c~ + ci, + c~) · (c, + c~) · (ca + c~ + c,)· 
( C& + c;; + cc) · (c~ + c~; + c~) · (ca + ci, + c~) · (c~ + ci, + c~) 

Table 2.5: Clauses for the 4-valued AND Gate 

to both broadside and skewed-load application strategies. Since a pattern can hardly 

observe a fault at all reachable outputs, [32] proposed two approaches to find out a 

subset of outputs that can observe a fault with a pattern. 

• 	 Conflicting Outvuts Removal Approach: UnSAT Core is a subset of clauses in 

the original SAT problem that cause the conflict during unsatisfiability. Using 

the information in the UnSAT Core. some output constraints can be removed 

so that these outputs are not required to observe the fault along the other:-; 

with the same pattern. Beginning with all the reachable outputs in the SAT 

problem, output constraints are removed as the SAT solver returns unsatisfiable 

and an UnSAT Core. This process iterates until a satisfiable result is returned 

and a pattern is generated with the fault observed at some outputs. 

• 	 Incremental Sa.tisfiability-based Approach: The exact opposite of conflicting out­

puts removal, output constraints are added incrementally to the SAT problem 

for solving. Beginning with only one output, if the problem is satisfiable, more 

outputs are added over iterations until it becomes unsatisfiable. All outputs 

except the one that triggers the conflict are the observation outputs of the tar­

geting fault for a pattern. Outputs more distant to the fault site in term of logic 

levels are added first so the pattern generated will sensitize the fault through 

longer paths. 
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c 

Single Detection Multiple Detection 

Multiple Detection at All Reachable 

Outputs 


c c 

Detect at All Reachable Outputs 

Figure 2.2: Observation Strategies 

2.3 Motivation And Objectives 

With reducing runtime as the mam objective, traditional ATPG algorithms only 

require fault effects to be propagated to the shortest reachable output and only one 

observation is required for each stuck-at fault. In this respect stuck-at test sets have 

been shown to be insufficient to achieve a low defects-per-million (DPM) level [17, 31]. 

Building ATPG tools based on more complex fault models, such as the bridging fault 

model, is infeasible due to the huge fault space. Consequently the question is how 

can the existing stuck-at and delay-fault ATPG tools be extended in such way that 

surrogate detection is improved. 

The importance of propagation diversity has not been considered until the intro­

duction of multiple detection and TARO. As shown in Figure 2.2. traditional ATPG 
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suffers from an unbalanced observation, where most of the observations occur at only 

a few outputs. This is because propagating the fault effects to these easily reached 

outputs reduces the ATPG runtime. Multiple detection first addressed the signifi­

cance of having a fault being sensitized along multiple paths. On top of multiple 

detection, TARO requires all faults to be observed at all reachable outputs to further 

increase the diversity of sensitization. In this thesis we want to take the benefits of 

multiple detection and TARO and combine them into multiple observations on all the 

reachable outputs of all faults. 

Imposing additional constraints on the ATPG search leads us to build our ATPG 

work fiow on a SAT-based approach. Building this ATPG work fiow brings its own 

tC:'chnical challenges and solutions described in Chapter 3. The contributions lie in 

putting this ATPG work fiow together and assessing the effectiveness of multiple 

observations on different coverage metrics for models that are not targeted explicitly 

by ATPG. Our results are presented in Chapter 4. 
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Chapter 3 

SAT-Based ATPG Based on 

Multiple Observations 

In this chapter the detailed formulation of multiple observations ATPG using SAT 

vYill be presented. An overview of tlw ATPG work flow will be outlined in Section 

3.1. A :3-value encoding system will be explained in Section :3.2. In Section 3.3. 

an in-depth illustration of the major steps in the ATPG work flow for generating 

single stuck-at fault tests ·will be presented. Since test generation is not a trivial 

decision problem. some modifications are made to a standard SAT solver to impose 

extra preferences during the search process. These modifications will be discussed 

in Section 3.4, followed by extending the SAT formulation fro111 single stuck-at fault 

ATPG to skewed-load transition fault ATPG in Section 3.5. Finally in Section :3.6, 

a pattern post-processing step which reduces the number of fault simulations will be 

described. 

3.1 Test Generation Work Flow 

Traditional ATPG has a general work flow as shown in Figure 3.1. It starts with 

reading the net list of the circuit under test (CUT). ·with the structural information 

obtained from the netlist, a fault list is generated corresponding to the fault model 

used for test generation. The objective of traditional ATPG is to detect all faults 
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Done 

Figure 3.1: Traditional ATPG Work Flow 

m the fault list with at least one pattern. Following the fault list generation, at 

the beginning of the main loop of ATPG, one fault is selected from the fault list at 

a time. During test generation, a pattern is generated to detect the targeted fault. 

Fault simulation is then carried out on the pattern for all other faults, to find out what 

other untargeted faults can be detected with this pattern. Finally, the targeted fault 

and untargeted faults found during fault simulation are dropped from the fault list. 

The main loop repeats itself with a smaller unta.rgeted fault list over every iteration. 

\Vhen all faults are detected by at least one pattern, the fault list becomes empty 

and the whole ATPG process is completed. All the patterns generated become the 

test set for testing the CUT. 

This approach is particularly efficient for single stuck-at fault model. where bit­

level parallelism can be utilized. Since one bit is used per signal, multiple patterns or 

multiple stuck-at faults can be applied to different bits in a machine word so pmallel 

fault simulation can be carried out at the same time [1]. However, because of the 

limitation of the representation of Boolean variables in SAT solvers and also due to 

the decision nature of SAT solving, bit-level parallelism can not be achieved in SAT 

solvers. Moreover, multiple fault simulations are separate decision problems in terms 

of SAT, so they cannot be formulated into a single SAT instance. As explained later 
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Done 

Figure 3.2: Proposed ATPG \Vork Flow 

in this chapter, we employ SAT for fault simulation in order to perform also dyna.rnic 

compaction capable of accounting for the multiple observations of each fault (which 

is unique to our \vork). 

Figure 3.2 illustrates the vmrk flow of the proposed ATPG system. The differ­

ences in the work flow reflect the adaptation of SAT-based ATPG, where both fault 

simulation and test generation are performed using SAT. Both single stuck-at fault 

~mel transition fault test generation follow the same work flow, a.lthough the ways to 

construct the SAT problems are slightly different for the two fault models. 

• 	 Fault List: 

Fault list for the transition fault model is identical to the stuck-at fault model. 

They both have a stuck-at. value at fault sites located at all the inputs and at all 

the outputs of all gates. The stuck-at fault list however can be collapsed more 

efficiently than the transition fault list because of the difference in equivalent 

faults; hence more faults are in the collapsed transition fault. list than in the 
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collapsed stuck-at fault list. The collapsed fault list is then sorted using SCOAP 

[13], a measure that estimates the controllabilities and observabilities of each 

logic element in the circuit. Faults at gates \Vith lowest observabilites will go 

through test generation first because they are expected to be more difficult to 

observe. Patterns targeting difficult-to-observe faults have a better chance to 

detect also faults at locations with better observabilities; the contrary does not 

hold. As a result of using the SCOAP measures. fewer patterns are processed 

and a smaller test can be generated. 

• 	 Target a Fa·ult: 

The outer loop iterates through all the faults in the sorted fault list. ·when a 

fault is targeted, the ATPG creates a foundation SAT problem that is specific 

to the targeted fault. This process is relatively long as it goes through all the 

structural information of the CUT. This foundation SAT problem is used in 

both fault simulation and test generation processes with additional constraints 

in the inner loops. It consists of characteristic equations, Boolean differences 

and fault excitation, and will be discussed in Section 3.3.1. 

• 	 Fault Simulation: 

A fault-output (f-o) pair is one reachable output of its corresponding fault [22]. 

Observation counts for all individual f-o pairs are needed to control the sensi­

tization to favor f-o pairs which have lower counts. A fault simulator in a tra­

ditional ATPG flow does not track observation counts for individual f-o pairs. 

Therefore. a novel fault simulation algorithm in SAT is proposed with the ca­

pability of maintaining all the observation counts and also achieving dynamic 

compaction. 

Fault simulation in SAT is different to traditional ATPG. While simulating a 

pattern once in traditional ATPG can find out all the faults it can detect, every 

SAT problem can only target a single fault. Since creating the SAT problem for 

a targeted fault is relatively slow, it is better to iterate through all the generated 

patterns in the inner loop instead of iterating through all the faults. 
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f::\lllt simulation starts vvith the foundation SAT problem constructed in the 

outer loop. To apply a pattern at the inputs, input assignments, discussed in 

Section 3.3.2 are provided to the SAT problem. Also at least one of the reach­

able outputs are constraints to observe the fault effect. The three constraints 

above are sufficient to perform basic fault simulation for a pattern for the tar­

geted fault. After solving, the SAT solver returns satisfiable if the pattern can 

detect the targeted fault at some reachable outputs. On the contrary, it returns 

unsatisfiable if the pattern cannot detect the targeted fault. 

In addition, output constraints and slightly modified input assignments, dis­

cussed also in Section 3.3.2 can be added to perform Don't Cares filling, which 

results in dynamic compaction. If the SAT problem is satisfiable, the values in 

the input variables of the SAT instance represent the pattern that detects the 

targeted fault. The returned pattern may be different from the applied pattern 

due to Don't Cares filling. which deals v;,·ith assigning unspecified bits. On the 

other hand. if the SAT problem is unsatisfiable, the applied pattern cannot 

detect the targeted fault. even with any combination of Don't Care filling. If 

all the reachable outputs of the fault meet the observation requirements, the 

targeted fault can be dropped from the fault list and the next fault in the fault 

list will be processed in the outer loop. If the observation requirements are not 

met after simulating all the generated patterns, the test generation process is 

in place to generate new patterns to satisfy the requirements. 

• Test Generat-ion: 

Test generation is in fact very similar to fault simulation, as it uses the same 

foundation SAT problem from the outer loop and also output constraints for 

directing propagation paths. Though, input constraints are different from the 

input assignments used in fault simulation. Input constraints, discussed in 

Section 3.3.2, restrict the input variables to be the same as the combination 

of previous patterns and avoid generating repeated patterns. Since observa­

tion counts at each f-o pair change, in each iteration a new SAT problem is 

constructed with different output constraints and a pattern is generated if the 

31 


http:tvl.A.Sc


3.2. Encoding and Clause Generation lVI.A.Sc. - D.W.Y. Leung- lVIcl\Iaster 

Fault Observation
Netlist Patterns

list Counts 

SAT 
3v 

Solving 

Figure 3.3: Inputs for SAT Formulation 

problem is satisfiable. The test generation inner loop iterates until all the reach­

able outputs meet the observation requirements. The inner loop also ends when 

an unsatisfiable problem is encountered, when no more patterns can be gener­

ated under the current output constraints. The targeted fault is then dropped 

and the algorithm moves to the next fault in the fault list. 

3.2 Encoding and Clause Generation 

There are three major components of formulating the ATPG SAT problem as illus­

tratt~d in Figure 3.3. Firstly, netlist provides the structural information of the CUT 

so that logic implications between elements cau be included in the problem. Boolean 

difierences and fault excitations are also included into the problem with the netlist. 

Secondly, input assignments and constraints are added to apply patterns at inputs 

during simulation and avoid duplicating patterns to be generated during test gen­

eration. Lastly, output constraints are added into the SAT problem to direct the 

SAT solver to search for solutions that observe the targeted fault at difierent outputs. 

Details of the SAT formulation will be discussed in Section 3.3. In this section, the 

3-valued (3v) encoding system used for the formulation will be presented. 
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A Encoding Interpretation 
C1j ao 

0 0 1 signal A is 0 
1 1 0 signal A is 1 
u 0 0 signal A is unknown 

1 1 conflict at signal A 

Table 3.1: 3-valued Encoding with Unknown (New Notation)[30] 

3.2.1 3v Encoding 

In order to support unspecified inputs and Don't Cares, a 3v encoding system is 

required for ATPG which is capable of representing logic 0, logic 1 and Unknown. 

Because the SAT problem can only be formulated in Boolean variables, two Boolean 

variables are needed to represent a 3v variable. Among all the possible 3v encoding 

schemes. the one proposed in [30] is used in this SAT formulation for two reasons. 

• 	 Lazy Assignments: 

For clarification purposes, Table 3.1 shows the same encoding table as in Table 

2.2 with some new notations. Signal X is replaced with A to avoid confusion 

with Don't Cares. while cJ. and c; are renamed to a 1 and a0 respectively because 

of the 3v value signal A represents when one of them is 1. To assign a logic 0 to 

a 3v variable A, only one Boolean assignment a0 = 1 is needed and a1 is implied 

to 0 because a0 = a 1 = 1 is constrained. The same goes to logic 1 assignment 

to A as only a 1 = 1 is required. 

• 	 Lazy Detection: 

Similarly, through the check of only Boolean variable a 1 , signal A can be de­

termined as logic 1 if a 1 = 1, otherwise it is either logic 0 or unknown. This is 

particularly useful for checking the Boolean difFerences for the observing out­

puts. 

Each type of standard cell has its own logic implications. In terms of SAT. logic 

implications can be formulated into characteristic equations, or group of clauses. U n­

der 3v, the implications of logic gates are different from 2v because unspecified inputs 
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AND 0 1 u 
0 0 0 0 
1 0 1 u 
u 0 u u 

Table 3.2: Truth Table of the 3v AND Gate 

a b y ao a1 bo bl Yo Yl 
0 
0 
0 
1 
1 
1 
u 
lJ 
u 

0 
1 
u 
0 
1 
u 
0 
1 
u 

0 
0 
0 
0 
1 
u 
0 
u 
u 

1 
1 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
1 
l 
0 
0 
0 

1 
0 
0 
l 
() 

0 
1 
0 
0 

0 
1 
0 
0 
1 
0 
0 
1 
0 

1 
1 
1 
1 
0 
0 
1 
() 

0 

0 
0 
0 
0 
1 
0 
0 
0 
0 

Table 3.3: Encoded Truth Table of the 3v AND Gate 

and outputs are also considered. For example, a 2-input AND gate has nine entries in 

the truth table as there are three values at both inputs, as shown in Table 3.2. Table 

3.3 shows the 3v-Boolean-encoded truth table and the corresponding characteristics 

equations are illustrated in Table 3.4. The three clauses (Yo+ y1) ( a0 + a 1) ( b0 +b1) are 

implicit because they are constraining the 3v variable not to be the unused value. 

Finding the characteristic equations for the 2-input AND gate in 3v is not as 

obvious as in 2v. It is even more difficult to find a set of optimized clauses for more 

complex standard cells. Inspired by PASSAT[27], logic minimizer espresso[26] is u:-:;ed 

to convert the truth table of any standard cell into characteristics equations. 

3.2.2 Clause Generation with espresso 

espresso is part of the UC Berkeley's sis suite developed primarily for logic synthesis 

[26]. Provided the rninterrns of a Boolean function, it can obtain a minimum represen­

tation of the function. In the case of clause generation, espTesso takes the rninterms 

from the truth table of a certain function and generates an optimized function in prod­

uct of sums (POS) form. For example, to generate the clauses for a two-input AND 

gate in 2v, a function f = (y = ab) is set up and its truth table is illustrated in Table 

3.5. The minterms are taken by espresso and the minimum representation generated 
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Charnct.erist.ics Equations 

Implicit Constraints 

Table 3.4: Characteristics Equations of the 3v AND Gate 

a b y f 
0 0 0 l 
0 0 l 0 
0 l 0 l 
0 1 1 0 
l 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Table 3.5: Truth Table off = (y = ab) 

is shown in Table 3.6. By interpreting 0 as the positive phase (y), 1 as the negative 

phase (Tj), and the d<~sh as not in the sum. it yields f = (o + TJ)(b + y)(a + b+ y). 

Similarly for 3v. a function f(a 0 , o 1 , b0 • b1 . y0 , yl) can be set up and the input to 

espresso is exactly the same as for the right hand side of Table 3.3 with f = 1 for all 

entries. All the other product terms with f = 0 are assumed by espr-esso if they are 

not specified. The interpreted results are shown in Table 3.4, except onl)' two of the 

three implicit constraints are actually needed for a minimum representation. Through 

this truth table to clauses conversion with espr-esso, characteristics equations of any 

standard cell can be generated prior to test generation. 

3.3 Test Generation SAT Formulation 

As discussed in Section 3.1, there are three major components for constructing the 

test generation SAT problem. These constraints can be divided into two categories 

depending on how they are applied to construct SAT problems. In each inner loop of 

either fault simulation or test generation, clauses that describe the logic gates in the 

circuit, Boolean differences and fault excitation do not change once a fault is targeted. 

They comprise the foundation SAT problem for a fault and are defined as static con­

straints. On the other hand, information about generated patterns and observation 

counts is updated after every iteration of either test generation or fault simulation. 
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a b y 

0 1 
0 1 

0 1 

Table 3.6: POS Generated by espresso 

Static Constraints 	 Dynamic Constraints 

/
Conjunction of Fault-free 

characteristic circuit 

equations of Faulty SAT Problem 
each gate circuit wBoolean Differences at 

l 

Input Constraints 
(Test Generation) 

Input Assignments 'c·- <-­
(Fault simulation) 

each output 
Reachable Outputs 

SAT Solver PreferencesFault Excitation r-­
Figure 3.4: Generalization of Clauses for Test Generation 

Clauses that are different in every iteration are defined as dynamic constraints. Fig­

ure 3.4 generalizes the two types of clauses that formulate the SAT problems. Details 

of the two types of clauses are explained for the single stuck-at fault test generation. 

3.3.1 Static Constraints 

• 	 Characteristic Equations: 

Conjunction of characteristic equations provides all implications between logic 

gates in the circuit. As described in Section 2.2.2, the foundation SAT problem 

can be constructed through the conjunction of characteristic equations of the 

output cone of the fault site in the faulty circuit, and the input cones of all 

the reachable outputs in the fault-free circuit, as illustrated in Figure 3.5. The 

absence of unrelated logics out of the involved cones reduces the number of 

clauses to put into the SAT problem and minimizes the size of the problem 

to be solved. 3v encoding is used so unspecified inputs can be represented in 
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the foundation SAT problem and Don't Care inputs can also be generated in a 

pattern. 

• 	 Boolean Differences: 

Boolean differences are the XORs between an reachable output of a fault in 

the faulty circuit and the fault-free circuit. Since the list of reachable outputs 

for a fault does not change, these XORs remain the same throughout the fault 

simulation and test generation processes of the targeted fault. 

Since 3v encoding is used, there are three possible situations that occur at the 

Boolean differences. Logic 1 at the Boolean difference represents fault effect can 

be observed at the output the Boolean difference located. while logic 0 implies it 

is uot the observable output. An unknown value at the Boolean difference means 

the observation status of the output cannot be determined due tu unspecified 

inputs. It is assumed that the fault effect cannot be observed at this output with 

the current inputs, though it may be observable if ::;orne of the value::> as::;iguecl 

to the inputs are changed. 

• 	 Fault Excitation: 

The faulty value, or the stuck-at value, at the fault site of a fault has to be 

specified in the faulty circuit in order to excite a fault. At the same time, the 

complement of the faulty value could also be specified at the same site in the 

fault-free circuit. Though it is implied because at least one of the Boolean 

difference has to be logic 1 and results in different values between the fault site 

in both circuits, it is always faster for the SAT solver to solve with more known 

assignments. 

3.3.2 Dynamic Constraints 

• 	 Input Assignments: 

Input assignments are used in the fault simulation process for applying patterns 

to input variables. SAT solver by nature is a propagation engine so it can be 
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Fault Site 

Output Cone 
of Fault Site 

Input Cones of 
Reachable Outputs 

Figure 3.5: Cones Involved in SAT Problem Construction 

used for fault simulation. To apply a pattern to the inputs of the circuit, single 

literal clauses can be used to assign values to the input variables. For example, 

to apply a pattern [l,O,X,X] for a logic segment with inputs A, B, C and Din 3v, 

two single literal clauses (AI) and (B0 ) can be added to SAT problem to assign 

A = 1 and B = 0 to the 3v variables for inputs A and B. For C and D, Don't 

Cares can be assigned as unknown values to 3v variables C and D so clauses 

(C0)(Cl)(D0 )(Dl) are added. In this case, a straightforward fault simulation 

is performed because the SAT solver cannot assign a logic value to C and D. 

Hmvever, if the Don't Cares are not assigned, these input variables are free and 

thus branchable and could be assigned b,v the SAT solver during solving. If the 

Care Bits of the inputs cannot detect the targeting fault, however by specifying 

some Don't Cnres the fault can be detected, the SAT solver would assign values 

to those free input variables. Dynamic compaction is thus achieved through the 

filling of these Don't Cares for detecting multiple faults. 

After applying a pattern to the SAT problem in an iteration of fault simulation, 

the added clauses have to be removed before applying another pattern. It 

involves a tedious clause removal process. An improvement had been made to 

the SAT solver to tackle this problem and will be described in Section 3 .4.1. 

• Input Constraints: 

In the test generation process, in order to avoid generating repeated patterns, 
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One observation per output A B c D E 
Star1 0 0 0 0 () 

1 (A + B + C + D + E) 
A and C are observing 1 0 1 0 0 

2 (B + D +E) 
D is ob::;erving 1 O* 1 1 () 

3 (E) 
E and A are observing 2 O* 1 1 1 

Observation requirements fulfilled 

Table 3.7: Example of Using Output Constraints 

input constraints constructed with existing patterns are added to the SAT prob­

lem. Different from the input assignments that designate certain values to input 

variables, input constraints prevent certain combinations of values to occur at 

input variables. For example, to constrain the SAT solver not to generate two 

<>xisting patterns [LO.X.X] and [O.X.l,l] for inputs A, B. C and D in 3v in the 

subsequent test generation iterations. two clauses (A1 + B0 )(A0 + C1 + D1 ) are 

added. (A 1 +Eo) disallows A= 1 and B = 0 at the same time (which dissatisfies 

the clause) and similarly (A 1 + B0 )(A0 + C1 + DI) disallows the input combi­

nation of the second pattern. \Vith these two clauses, the two patterns will not 

be generated again in the subsequent iterations of test generation. Also, as a 

nevv clause is added after each pattern is generated, no clause is removed in the 

test generation process. 

• 	 Output Constraints: 

Test generation of a fault is completed when observation requirements are met. 

The ATPG attempts to have all observation counts on all f-o pairs to reach 

as least a specified number of times, although there may be fewer possible 

distinctive ways for a fault to be observed at some outputs. Table 3.7 is an 

example of how output constraints are used to control sensitization of a targeted 

fault when the observation requirement is one per f-o pair. 

At the beginning of the test generation process, because of no observations at 

any output, there is no preference on which output to observe the fault effect. 

An output preference list (A,B,C,D,E) is added simply because of the sequence 
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of the outputs. In the first iteration, an output constraint (A+ B +C + D +E) 

is added to ensure at least one output would become observable output. If a 

pattern is generated and it observes the fault at outputs A and C, observation 

counts of A and C are incremented. Since A and C fulfilled the observation 

requirements, in the next iteration of test generation, they are dropped from 

the preference list and in the output constraint. 

In the second iteration, preference list is updated to (B,D,E) and a ne1v output 

constraint (B + D + E) is added. The effect of the previous constrctint (A + 
B + C + D + E) is dominated by the tighter new constraint so its removal 

is not required. A second pattern is generated and only output D is observing 

the fault; hence observation count of D is incremented. This also indicates 

that output B is not capable of observing the fault. A flag is set for output 

B to indicate it is unobservable output under current constraints so no further 

attempt will be made to sensitize the fault at output B. 

In the third iteration, B and D are dropped from the preference list and the 

output constraint. E becomes the only output in the preference list and in the 

output constraint. A third pattern is generated and it observes at both outputs 

E and A. The observation count of E is now one and A is updated to two. 

Since all observation counts are at least one or the unobservable flag is set, all 

the outputs fulfill observation requirements and test generation is completed for 

this fault. Preference list is not H standard SAT solver feature and Section 3.4.2 

describes the change required to make for the SAT solver to use the preference 

list. 

A relaxed output constraint is also used when there is a time constraint violation 

during SAT solving. \Vhen it takes too much time to attempt to sensitize the 

fault at all outputs specified in the preference list and the SAT solver returns a 

time out error, a reduced preference list which consists of only the first output 

on the list is reattempted. The pattern generated may only be sensitized at the 

only output on the list, but it avoids abortion of a fault at a early stage for 

generating patterns for a fault. 
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3.4 SAT Decision Customizations 

As described in the previous section, ne\v features are required for the SAT solver 

to solve the ATPG problem. Unbacktrackable decisions enhance the application of 

multiple patterns in the SAT problem for fault simulation and test compaction. On 

the other hand, prioritized decision-making variables enable to select the observation 

outputs in a flexible way. Both of them are essential to make the proposed SAT-based 

ATPG to work correctly and efficiently. 

3.4.1 U nbacktrackable Decisions 

Unbacktrackable decision is an alternative of assigning a value to a Boolean variable. 

beside using a single literal clause (SLC). vVhen a SLC is added, it creates new 

implications. These implications affect the confiict clauses generation during conflict 

analysis when solving. The conflict clauses arc thus dependent to the added clause 

\Vhen the added SLC is removed from the problem, the dependent confiict clauses 

have to be removed as well. Finding the dependent confiict clauses is time consuming. 

as all the confiict clauses are evaluated for each SLC removal. 

The fault simulation process described in the previous section involves frequent 

addition and removal of SLCs for input variables for applying patterns. When a 

pattern is applied, multiple S.LCs are added and thus results in conflict clauses to 

be generated during solving. After the pattern is evaluated, the SLCs are removed 

and the dependent conflict clauses are also removed, without being used even once. 

In addition to a very slow conflict clause removal process, conflict clauses specific to 

the current pattern are removed, thus the speedup gained through conflict analysis is 

diminished. 

To avoid conflict clauses removal, the use of unbacktrackable decisions is proposed. 

Before actual decisions are made during solving, unbacktrackable decisions are added 

into the decision stack of the solver to imply the assigned values, as shown in Fig­

ure 3.6. Since these decisions are supposed to be assignments. they should not he 

backtracked or the SAT problem is invalidated. vVhen no actual decision remains in 

the decision stack and a unbacktrackable decision is backtracked, the problem can be 
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Figure 3.6: Decision Stack with Unbacktrackable Decisions 

concluded as unsatisfiable. 

Since these unbacktrackable decisions are not clauses, no dependent confiict clause 

is generated. Also, removal of these assignments is simply resetting the SAT instance 

to restore all the decisions that were made. No tedious conflict clauses removal 

process is carried out. Conflict clauses generated for the other part of the problem 

are also intact, and hence this speeds up reruns with new assignments and additional 

constraints. 

3.4.2 Prioritized Decision-making Variables 

SAT is a decision problem so it is only supposed to tell if there is a solution (although 

it is proven through finding a solution). SAT allows adding constraints to a SAT 

problem but no preferences to favor certain sets of solutions. Problems could arise for 

multiple observations over multiple patterns if only constraints can be added. This 

problem can be illustrated with a circuit consisting of 2-input AND. OR <Hld XOR 

gates with the same inputs as shown in Figure 3. 7. 

For a sal fault at B, it requires both patterns [A,B] = [0,0] and [1,0] to detect 

the fault at all three outputs X, Y and Z at least once. Assuming that a fault is 

observed once at all outputs, and the first pattern [A,B] = [1,0] is generated, the 

fault is observed at X and Z as their Boolean differences are 1. Outputs X and Z 

fulfill the requirement so if BDx and BDz are constrained to 0 in the next pattern 

generation to avoid detecting again at those outputs, the pattern [A, B] = [0, OJ cannot 

be found because it detects the fault at outputs Y and Z. Output Z is constrained to 
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Figure 3.7: Example of 2-input A.\'D, OR and XOR Circuit 

0 so there would be a conflict to have BDz = 1 and the ATPG aborts observing at 

output Y because no pattern that uniquely observes the fault at Y can be found. [32] 

resolved the problem through removing Boolean differences of outputs which satisfied 

the observation requirements. However, as explained in the previous subsection, 

removing clauses diminishes the speedup brought by conflict clause analysis so it is 

not preferred. To avoid removing clauses, a list of variables are added to the SAT 

solver to be branched in order before using the default strategy in the SAT solver for 

choosing unassigned variables. In the above example, the list of prioritized variables 

are BDx, BDy and BDz as no observation is made at any outputs. To have BDx = 1 

as the first decision, A has to be 1 and then BDz = 1. After the first pattern [A,B] 

= [1 ,OJ is generated, the list is reduced to BDy only because outputs X and Z have 

fulfilled the observation requirements and removed from the list. This will allow [A,B] 

= [0,0] to be generated because BDy = 1 is the very first decision to be made in the 

SAT solver whereas BDz is not constrained to 0. 

Another purpose of using prioritized variables is to find out the unobservable 
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Figure 3.8: Cones Involved and One-bit Shifting in Skewed-load 

outputs in the list. If the BD variables at the beginning of the list are assigned 0 after 

being solved, they can be claimed to be unobservable over the current constraints. 

For example, if the list of variables is BDx, BDy and BDz and the solution has 

BDx = 0, BDy = BDz = 1, output X cannot observe the fault. It is because 

BDx is firstly branched to 1 but no solution is found so it has to be backtracked and 

reassigned to 0. 

3.5 Skewed-load Transition Fault ATPG 

In the previous sections SAT formulRtion for single stuck-at fault test generation was 

explained. Transition fault test generation, in terms of SAT, is an extension of single 

stuck-at fault test generation with an extra time frame for initialization. It relies 

on the same work flow described in Section 3.1, however it has a different way to 

construct the foundation SAT problem and the input and output constraints. Figure 

3.8 shmvs the cones involved for skewed-load transition fault test generation. 

In addition to the constraints for single stuck-at fault for the second pattern and 

output response generation, another set of variables of the fault-free circuit are created 

for the precedent clock cycle to generate the first pattern. The additional constraints 

are required for the input cone of the fault site and they can be constructed through 
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shift-out X n 

Figure 3.9: Constraints for Shifting 

the technique described in Section 3.3.1. The stuck-at value is also assigned to the 

fault site in the circuit in the first clock cycle to complete the fault excitdtion for a 

transition fault. To impose the shifting property between the first pattern [X1... X 11 ] 

and the second pattern [Y1... }~,]. the relationship X; = }~+l can be formulated as 

(Xi+ Y;+ 1)(Xi +}~+!),as shown in Figure 3.9. X 11 and Y1 are the shift-out and shift­

in values so they do not have any relationship with the other patterns. By obtaining 

the values of the input variables of both time frames, a two-pattern test is generated 

for the targeted transition fault, although only the first bit of the second pattern is 

not in the shifted first pattern as required in skewed-load test application. 

3.6 Undetect Look-ahead 

Uncletect Look-ahead (ULA) is a pattern post-processing step aimed at reducing the 

number of SAT problems to be solved. ULA takes place when a SAT problem is solved 

and a pattern is created during test generation, or updated during fault simulation 

\vith dynamic compaction. \\'hen a SAT problem is solved, the input pattern and 

the output response can be obtained from the solved SAT instance. Other specified 

values in the circuit are also available in the SAT instance. For example, wires along 

the sensitization paths must have specified values, though it is not limited to those 
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Figure 3.10: Example of Undetect Look-ahead 

paths. After a pattern is generated or updated, a simple comparison is performed to 

the Yalues in the SAT instance and all the subsequent faults. 

For each subsequent fault, the stuck-at value of the fault and the current value at 

the fault site in the SAT instance are compared. No information can be obtained if 

the value at the fault site is unspecified. If the value is different from the stuck-at 

value of the fault, it is possible that the fault may be detected by this pattern because 

of the correct excitation value. However, if the value at the fault site is the same as 

the stuck-at value. it cannot excite the fault and thus there is no chance the fault 

can be detected by this pattern. The pattern number is then stored with the fault so 

that when the fault is being targeted, the pattern will not be simulated because it IS 

known that the SAT problem will be unsatistiable. 

Figure 3.10 is an example of ULA. vVhen fault t is targeted during generation, d 

pattern [A,B,C] = [O.LO] is generated. Two other faults p and q are compared. Fault 

p has a sal value and the value at the fault site C is 0. The pattern provides the 

correct excitation value so this pattern will be simulated when fault q is processed. 

However, fault q has a sal value but the value at the fault site B is 1, which cannot 

excite the fault. The generated pattern cannot detect fault q so simulation on the 

pattern will be bypassed when fault q is processed. 
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Chapter 4 

Experimental Results 

The proposed SAT-based ATPG work flow is implemented in C/C++ with the inte­

gration of the Chaff [20] SAT solver. Single stuck-at fault and skewed-load transition 

fault test generation are performed on the three largest ISCAS89 benchmark circuits. 

First the experimental flow is elaborated. This is followed by the results on pattern 

count and coverage (all coverage re:sults are subjected to rounding error). It is ~worth 

mentioning that our ATPG work flow is not geared toward maximizing BCE or G E 

coverage results reported in this chapter. Due to the lack of experiments on field 

returns ( cRused by logistic and not technical reasons) that can empirically validate 

the test sets generated by our method, the BCE and GE coverage results are used 

only as a substitute to assess the quality in terms of surrogate detection. The chapter 

is concluded by discussing the runtime. 

4.1 Experimental Flow 

The experimental flow is illustrated in Figure 4.1. The three largest circuits in the 

ISCAS'89 benchmark set, namely s35932, s38417 and s38584, are used to generate the 

results presented in this chapter. The circuits are first modified to add a scan chain 

to join all the registers. Full scan makes all registers in the circuit to be accessible 

through an additional scan port and the test generation becomes a combinational 

one, which the proposed ATPG system is capable of. 
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Figure 4.1: Experimental Flow 

ATPG starts by reading the modified circuit in Verilog format. Structural in­

formation is gathered from the netlist of the circuit. Next, a fault list is generated 

according to the structural information and the fault model used. Equivalent faults 

are removed to reduce the size of the fault list. The fault list is then sorted bv SCOAP. 

\Vhere faults with lowest observability are processed first to yield better compaction. 

Once the sorted fault list is available, the actual ATPG process begins. 

Both fault simulation and test generation process involve solving SAT problems. 

zchaff. a C++ implementation of Chaff, is integrated into the ATPG system for the 

SAT solving capability with the modifications described in Section 3.4. By creating a 

SAT instance within the program, clauses can be added to construct the SAT problem. 

\Vhen all the clauses for the problem are added and all additional constraints are set, 

a solve function is invoked and zchaff solves the problem, returning either the problem 
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is satisfiable, unsatisfiable or a timeout error if a preset time constraint is violated. 

The time constraint for solving each SAT instance is set to 200ms. The values of all 

variables in the SAT instance can be accessed once zchaff concludes the problem is 

satisfiable. 

Each fault is targeted once, and goes through both the fault simulation and test 

generation process. Fault simulation finds out if the existing patterns can detect the 

targeting fault at any of its reachable output. It also has the capability of dynamic 

compaction, where Don't Cares filling occurs. A SAT problem is solved for each 

pattern simulating a fault. If the problem is satisfiable, the pattern can detect the 

fault at some outputs which do not yet satisfy the observation requirements. On 

the other hand, the pattern cannot detect the fault if the problem is unsatisfiable. 

\Vhen all reachable outputs fulfill observation requirements during fault simulation. 

test generation process for this fault is not required. Otherwise, nev.J patterns are 

needed to satisfy the requirements c1.t all reaeha ble outputs. 

Test generation process is similar to fault simulation, except all patterns are ap­

plied as constraints to one SAT instance. Instead of applying a pattern as input 

assignment, constraining the inputs not to lw any of the existing patterns to avoid re­

peated test generation. In each test generation iteration, one SAT instance is solved to 

generate one pattern. Because of the increments of observation counts at all reachable 

outputs. output constraints are different in every iteration, and thus distinguishing 

patterns which detect the fault at different outputs are generated. 

After all faults are processed, a complete test set is generated. The test is then 

evaluated in a post-processing step. Bridging Coverage Estimate (BCE) is calculated 

by simulating the test over the sorted fault list, whereas Gate Exhaustive ( GE) cov­

erage is obtained by simulating the test over a newly created fault list that stuck-at 

faults are only located at the outputs of logic gates. 

4.2 Pattern Count and Coverage Results 

Table 4.1 is a summary of the test sets generated for the three circuits for both models 

using the proposed method over different observation requirements. Column 1 shows 
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Circuit Type any 1 2 3 4 5 
s35932 
(ssa) 

#pat 
BCE(%) 
GE(%) 

23 
80.24 
85.00 

30 
87.62 
85.90 

56 
95.76 
86.58 

82 
97.30 
87.16 

107 
98.73 
87.61 

131 
99.32 
87.71 

s38417 #pat 199 582 971 1353 1748 2106 
(ssa) BCE(%) 89.47 94.86 97.94 99.04 99.50 99.71 

GE(%) 95.89 96.54 96.68 96.75 96.76 96.79 
s38584 #pat 248 797 1411 2046 2254 2497 
(ssa) BCE(%) 84.73 93.62 97.56 98.96 99.45 99.69 

GE(%) 93.7 94.36 94.58 94.75 94.82 94.87 
s35932 #pat 48 72 121 177 228 289 
(sltr) BCE(%) 91.18 95.12 98.73 99.5 99.7!J 99.83 

GE(%) 87.6 87.94 88.15 88.16 88.06 88.19 
s38417 #pat 339 988 1670 2378 3078 :3729 
(sltr) BCE(%) 94 47 97.07 98.91 99.48 99.71 99.81 

GE(%) 96.25 96.72 96.79 96.86 96.89 96.88 
s38584 #pat 309 1319 2121 3004 4004 4834 
(sltr) BCE(%) 90.31 96.24 98.78 99.48 99.73 99.82 

GE(%) 94.05 94.6·! 94.96 95.14 95.25 ()5.26 

Table 4.1: Evaluation Summary of the Six Tests 

the circuit name and the fault model used. ssa and sltr represent single stuck-at and 

skewed-load transition fault models respectively. Column 2 shows the type of results 

the row is presenting. Number of patterns, Bridging Cm'erage Estimate (BCE) and 

Gate Exhaustive (GE) coverage are recorded in each test. Column 3 provides result 

for observation requirement of at least one observation at any reachable outputs fm: all 

faults. This mimics the results of single observation as in traditional ATPG. although 

the proposed method attempts to propagate the fault effect to as many reachable 

outputs as possible for the only generated pattern targeting a fault. Columns 4 to 

8 provide results on the required minimum observations of one to five at all the 

reachable outputs for all faults. 

• 	 Pattern Count: 

Dynamic compaction plays an important role in keeping the pattern count lmv. 

The results for any-observation for the six tests are comparable to single obser­

vation test generated with state-of-the-art commercial products. According to 

the results, pattern count increase seems to be linear over the minimum num­

ber of observations. With one observation per fault-output pair as reference, 
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incree~se in pattern counts is about 0.6y to 0.9y times larger for y-observations 

in the six test sets. This is because some faults are detect more than y times 

at some fault-output pairs. No new pattern is required to ta.rget these "easy'· 

fault-output combinations when the required minimum observations increases. 

This results in less-than-y-time increase in pattern counts. 

• 	 Hridging Coverage Estimate: 

Since BCE is only for evaluating single pattern test, only the second patterns, 

which are the excitation patterns, of the two-pattern transition fault tests is 

applied for calculating BCE. For one- and two-observations, the improvement 

in BCE over any-observation is significant. Among the six tests, the improve­

ment is between 3.44% to 15.48%. All six cases have BCE of over 95% with 

tvvo-observat.ions, and most reach 99% with four-observations. However. im­

provement over three-observations is minimal and the effect of multiple obser­

vations seems to be saturated. The improvement is as little as 0.38% for the 

cast> of s38417(sltr) from two to five observations. It does not seems to be ben­

eficial to use over two-observations for marginal BCE improvement, at the cost 

of considerable increase in pattern count. 

• 	 Gate Exhaustive Coverage: 

Similar to BCE evaluation, only the second pattern is applied for the two pattern 

tests. Also a different fault list with only gate outputs with both stuck-at values 

is used for the evaluation. As shown in the results, improvement in G E coverage 

over multiple observations is not significant. Only up to 2. 71% of GE coverage 

is gained through at least five observations at all reachable outputs for all faults. 

The reason for the minor effect on GE coverage is that the objective of the use 

of multiple observations is to improve the diversification of fault excitations and 

fault effect propagations at the circuit level. How a fault is excited locally at 

gate level is not accounted for in our algorithm so it is not necessary to consider 

all input combinations of all gates during test generation. Al:so, nonobservable 

input combinations are not excluded in the calculation of the coverage credit, 
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Circuit Obs 0 1-11 15+ 
s35932 any 27697 70978 206 
(ssa) o1 21184 75752 1945 

o2 20164 67574 11143 
o3 19357 58093 21431 
o4 18470 42276 38135 
o5 16844 27938 54099 

s38417 any 78007 309436 77914 
(ssa) o1 10578 271607 183172 

o2 10148 221007 234202 
o:3 10029 183727 271601 
o4 9999 156845 298513 
00 9986 134453 320918 

s38584 any 68633 134757 23162 
(ssa) o1 43512 116812 66228 

o2 42487 90383 93682 
o3 42083 71290 113179 
o4 42578 60467 123507 
o5 42486 52401 131665 

Ta.ble 4.2: Number of f-o Pairs in Different Regions of Number of Observations 

as explained in Section 3.1. Therefore the G E coverage has an upper bound 

that depends on the number of nonobservable input combinations in the circuit, 

\Vhich can only be identified in test generation under the gate exhaustive model. 

• 	 Observability Distributions 

Table 4.2 shows the number of f-o pairs in different regions of number of obser­

vations and Figure 4.2 shows the distribution of number of f-o pairs over the 

number of observations per f-o pair up to 14 observations. For any-observation. 

the count is expected to be more than traditional single observation approach 

because the proposed approach attempts to find as many sensitization paths 

for a pattern as possible. There are significantly more f-o pairs which have no 

observation for any-observation than n-observations. There are also very few f-o 

pairs that have 15 or more observations for any-observation; the number of f-o 

pairs increases considerably when the minimum observations required increases. 

\Vithin the region of 1-14 observations per f-o pair, the number of f-o pairs 

which have fewer than the minimum observations required is very low. The 

number of f-o pairs surges at the minimum observations required per f-o pair 
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Figure 4.2: Observability Distribution for Stuck-at Fault Test Generation 
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Circuit #Faults Obs FO AO PO uo 
s:35932(ssa) 53888 o1 44G92 0 3164 6032 

o2 44692 0 316·1 6();32 
o3 44692 0 3164 6032 
o4 44G92 0 3164 6032 
o5 44692 0 3164 6032 

s38417(ssa) ·1851:3 ol 46415 0 1875 223 
o2 46415 0 1875 223 
o3 46415 0 1875 223 
o4 4G413 2 1875 223 
o5 46411 3 1876 223 

s38584(ssa) 55456 ol 49549 () 3183 2724 
o2 195:19 0 3217 2G90 
o3 19543 6 3227 2680 
o4 49547 2 3221 2686 
o5 49.549 0 3220 2687 

Table 4.3: Observablity m·er All Faults for Stuck-at Fault Test Generation 

and it gradually decreases with an increasing number of observations per f­

o pair. This shows the efforts of the proposed ATPG on keeping at least n 

observations for each f-o pair for n-observations. 

• 	 Obser-vabildy over- All Faults 

Table 4.3 shows the observability of all the faults of the three stuck-at fault test 

sets. Column 1-3 shows the circuit name, number of faults of the circuit, and the 

observation requirements respectively. Column 4 (FO) is the number of faults 

that all the reachable outputs of the faults observe the targeted fault more tlwn 

required. Column 5 (AO) is the number of faults that all the reachable outputs 

observe the faults at least once. excluding those reported in Column 4. Colunm 

6 (PO) is the number of faults that only some reachable outputs observe the 

faults. Column 7 (UO) is the number of unobservable faults. 

From the results from s38417, it is getting more difficult to fulfill full observation 

on all f-o pairs under the same time constraints. There are a few faults which 

can only be observed at all reachable outputs but not meeting the required 

observations. In s38584, the time constraint of 200ms per SAT instance seems 

to have more effect on the results. There are more time constraint violations for 

s38584 than for the other two circuits. These violations make the SAT solver 
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to abort some faults. The effect is significant for one-observation. where the 

abortions cause more faults not to be observed by any pattern. 

4.3 Runtime 

Runtime is determined by the complexity of the circuit, the fault model that is em­

ployed and also the number of observations required. The experiments are ca.rriecl 

on computing grid nodes which run at various speeds and resources, ancl under un­

predictable load at any instance. Hence the exact runtime of the experiments cannot 

be accurately determined. The rough range of runtime for s35932 test generation is 

from several hours to a few days, while s38417 and s38584 take days for test gener­

ation ,,·ith both stuck-at and transition faults models and over different observation 

requirements. 

The major reason for the long runtime is because SAT-based fault simulation 

(as required for dynamic compaction that accounts for multiple observations) cannot 

perform parallel fault simulation. Each SAT problem can only model one fault and 

a single pattern can be applied, so solving a SAT problem can only evRluate oue 

fault per pattern. This results in large amount of SAT instances to be solved for the 

completion of the entire ATPG process. 

Runtime profiling is performed on stuck-at fault test.generations as shown in Table 

4.4. Although the runtime cannot be meRsured precisely, a few findings need to be 

emphasized. About 87.6% of time is spent on average on the SAT_solve function, 

which is the total solving time zchaff spent on all the SAT problems. Another 10..5% 

of time was spent on the SAT_reset function, which resets all the assigned values 

and restores all the decisions made in the SAT solver. These two functions are scaled 

by the number of SAT instances required to solve in the entire ATPG process and 

thus dominate the total runtimt' of the program. Other parts of the program such 

as initializing a new SAT instance, setting up the basic SAT problE'm that can be 

shared between fault simulation and test generation, scale by the number of faults. 

Though significant, the number of faults is considerably lower than the number of 

SAT instances to be solved, thus resulting in a relatively smaller contribution to the 
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Circuit Obs SAT _reset SAT_solve Others 
s35932 any 9.43% 84.41% 6.16% 

(ssa) o1 9.61% 85.71% 4.69% 
wjo ULA o2 10.04% 87.40% 2.55% 

o3 11.14% 87.14% 1.73% 
o4 10.55% 88.04% 1.40% 
o5 10.43% 88.43% 1.14% 

s38417 any 10.01% 85 29% 4.70% 
(ssa) o1 10.86% 87.49% 1.65% 

w /o ULA o2 10.32% 88.73% 0.94% 
o3 10.92% 88.40% 0.69% 
o4 10.25% 89.20% 0.55% 
o5 11.02% 88.56% 0.42% 

s38584 any 10.44% 86.03% 3.53% 
(ssa) o1 10.94% 87.87% 1.19% 

w/o ULA o2 10.51% 88.81% 0.68% 
o3 10.88% 88.45% 0.67% 
o4 10.66% 88.92% 0.42% 
o5 11.19% 88.42% 0.39% 

Average 10.51% 87.63% 1.86% 

Table 4.4: Runtime Profile 1vithout ULA 

total runtime. Obviously, reducing the number of SAT instances to be solved is the 

most effective way to reduce the overall runtime. Therefore, ULA described in Section 

3.6 has been proposed to achieve reduction of SAT instances to be solved during fault 

simulation. 

Table 4.5 shows the number of SAT instances solved with and without the use of 

ULA. Due to the significance of SAT solving on the total runtime, as shmvn in Table 

4.4, the reduction in number of SAT instances solved reflects the amount of runtime 

saved in general. In fact, the runtime reduction is even better than the reduction in 

number of SAT instances solved according to the experimental results. A possible 

explanation is that it takes more time on average for the SAT solver to disprove an 

unsatisfiable problem than finding a solution for a satisfiable problem. While it may 

only take several decisions to obtain a solution for a satisfiable problem, disproving an 

unsatisfiable problem requires the SAT solvers to search all the solution space. Since 

ULA avoids a large amount of unsatisfiable problems to be solved, runtime reduction 

can be achieved. 

The number of SAT instances solved is also related to pattern counts. The increase 
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in number of instances solved over multiple observations has a similar trend as the 

increase in pattern counts. This is because there are more pattern-fault pairs to be 

simulated if more patterns are generated. Therefore, the increase in the number of 

SAT instances to be solved, which causes the increase in runtime, follows the increase 

in number of patterns generated. 

With ULA, the runtime profile is also changed as shown in Table 4.6. The changes 

in the proportions of the other parts, which include the extra computation of ULA, 

decrease over multiple observations. The reason is that ULA scales only by the 

number of patterns, so tests with more SAT instances are less affected because the 

number of patterns becomes relatively insignificant when compared to the number of 

SAT instances. 

The summary of results for tests generated with ULA is presented in Table 4. 7. 

BCE and GE coverage over all the tests me similar to those without ULA. The 

largest discrepancies of BCE and GE coverage are 1.54% and 0.22% correspondingly. 

However. the use of ULA seems to have a tendency of generating more patterns. The 

increase is not significant for s35932 and s38417. however for s38584 the pattern count 

increases from 5% to 35%. A possible explanation is that it takes longer time to solve 

tlw SAT problems when there are fewer conflict clauses learned due to the reduction 

of the SAT instances solved. \;v'hile there are more time constraint violations, relaxed 

output constraints discussed in Section 3.3 are used, and thus more patterns are 

required to detect the faults at all the reachable outputs. 
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Circuit Obs w/o ULA ULA Reduce% 
s35932( ssa) any 308175 17318:3 43.80% 

o1 512325 284121 44.54% 
o2 999538 537169 46.26% 
o3 1461896 773869 47.06% 
o4 1908917 970831 49.14% 
o5 2346244 1181273 49.65% 

s38417(ssa) any 918502 454843 50.48% 
o1 2834478 1589392 43.93% 
o2 5175699 2851115 44.91% 
o3 7529171 4105087 45.48% 
Ql{ 9895729 5348299 45.95% 
o5 12330191 6489566 47.37% 

s38584( ssa) any 1373982 875595 36.27% 
o1 4508660 3990726 11.49% 
o2 8700821 6615011 23.97% 
o3 12505344 868:3667 30.56% 
o4 1·1487575 10767015 25.68% 
o.S 16797986 12722458 24.26% 

s35932(sltr) any 688965 436819 36.60% 
o1 1225796 766003 37.51% 
o2 2330426 1422350 38.97% 
o3 3383506 2024793 4016% 

I 
o4 
o5 

4438859 
5536833 

2603545 
3299873 

4135% 
40.40/l 

s38417(sltr) any 2448023 1639444 33.03% 
ol 8533239 6071898 28.81% 
o2 153779:12 11011341 28.40% 
o3 22327939 15990939 28.38% 
o4 29619:372 20274186 31.55% 
o5 36023826 24717986 31.38% 

s38584(sltr) any 2356850 1720564 27.00% 
o1 8717596 7444701 14.60% 
o2 15368109 12530775 18.46% 
o3 22951452 17683184 22.95% 
o4 31267139 22728152 27.31% 
o5 37434169 26732028 28.59% 

Table 4.5: Number of SAT Instances Solved 
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Circuit Obs SAT_reset SAT _solve Others 
s35932 any 5.72% 71.80% 22.48% 
(ssa) o1 7.31% 77.55% 15.14% 
ULA o2 8.63% 82.50% 8.87% 

o3 9.20% 84.18% 6.62% 
o4 9.45% 85.11% 5.44% 
o5 9.71% 85.66% 4.64% 

s38417 any 7.32% 78.01% 14.67% 
(ssa) o1 8.97% 86.01% 5.03% 
ULA o2 9.17% 87.95% 2.87% 

o3 9.26% 88.65% 2.10% 
o4 10.00% 88.61% 1.39% 
o5 10.86% 88.19% 0.95% 

s38584 any 8.14% 82.68% 9.18% 
(ssa) o1 935% 88.27o/c 238% 
ULA o2 9.45% 89.02% 1.53% 

o3 9.·16o/c 89.30% 12:~% 

o4 11.07% 88.22'./c 0.71% 
o5 9.77){ 89.27% 0.96% 

Average 9.05% 85.05% 5 90% 

Table 4.6: Runtime Profile with ULA 

Circuit Type any 1 2 3 4 5 
s35932 #pat 23 30 55 80 101 132 
(ssa) BCE(%) 80.28 86.26 94.76 97.05 98.64 99.32 

GE(%) 85.02 85.94 86.33 86.82 87.49 87.72 
s38417 #pat 198 62.8 1020 1372 1758 2153 
(ssa) BCE(%) 89.94 96.4 97.9 99.05 99.5 99.72 

GE(%) 95.97 96.55 96.68 96.77 96.77 96.839 
s38584 #pat 238 1076 1699 2147 2676 3076 
(ssa) BCE(%) 85.52 92.88 97.45 98.87 99.45 99.7 

GE(%) 93.7 94.36 94.63 94.72 94.85 94.88 
s35932 #pat 47 69 124 182 225 291 
(sltr) BCE(%) 90.99 94.51 98.2 99.38 99.74 99.83 

GE(%) 87.48 88.07 87.93 88.31 88.07 88.17 
s38417 #pat 359 1018 1767 2456 3112 3794 
(sltr) BCE(%) 94.57 96.85 98.88 99.5 99.72 99.82 

GE(%) 96.3 96.71 96.82 96.87 96.9 96.9 
s38584 #pat 344 1703 2552 :~529 4454 5094 
( sltr) BCE(%) 90.29 95.94 98.63 99.49 99.74 99.83 

GE(%) 94.04 94.63 94.96 95.16 95.22 95.29 

Table 4.7: Evaluation Summary of the Six Tests with Undetect Look-ahead 
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Chapter 5 

Conclusion 

Following the improvement in effectiveness of defect screening achieved by n-detect 

and TARO. this thesis has investigated the effects of multiple observations at all the 

reachable outputs for all faults. By formulating the ATPG problem into SAT, test 

generation constraints can be incorporated into a SAT problem through the addition 

of clauses. without the difficulty of modifying the entire test generation algorithm as 

in the traditional ATPG approaches. 

To achieve multiple observations at all the fault-output pairs, multiple patterns 

are generated for each fault, \Vith different constraints that drive the sensitization to 

all the reachable outputs according to the observation statistics. A new customized 

decision-making strategy has been implemented to achieve sensitization diversifica­

tion. A special type of assignments is used in the SAT solver to reduce the inefficiency 

of frequently adding and removing the single literal clauses, as required during fault 

simulation. A pattern post-processing step is also implemented to avoid patterns not 

capable of detecting a particular fault to skip simulating the respective fault. 

In terms of screening effectiveness, the tests generated with the proposed ATPG 

are shovvn to improve bridging coverage estimate when increasing the number of 

observations to two. The benefits of three-observations (and over) are found to be 

minimal. The effect of multiple observations on gate exhaustive coverage is also 

insignificant. It was also observed that pattern counts and runtime spent on test 
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generation grow considerably for multiple observations. It can be concluded that two­

observations provide a good trade-off between coverage and pattern count increase. 

There are plenty of directions to improve this work. Runtime has to be improved 

to make the proposed method practical on larger circuits. The major problem is 

obviously the number of SAT instances to be solved during fault simulation. In 

the current implementation we are limited by simulating one pattern per fault per 

SAT instance. A multiple-pattern SAT-based fault simulator will be beneficial to 

the overall performance, as the number of SAT instances to be solved decreases by 

a factor of how many patterns can be incorporated in one SAT instance (despite the 

larger size of each SAT instance). Another alternative is to modify an existing fault 

simulcttor from the traditional ATPG flow, which can take advantage of bit-level 

parallelism and to adopt it to count the observations at all fault-output pairs. lu 

addition. output sorting during the construction of the preference list for observation 

output preference can be improved by also using the overall observation statistics for 

better observation balance. 

The above discussed extensions will likely facilitate the scaling of the proposed 

techniques to circuits of practical relevance, thus enabling their evaluation on defective 

chips which have escaped the screening process dependent on patterns generated using 

a standard ATPG flow. 

61 




l'vf.A.Sc. - D.W.Y. Leung- MclVIaster 

Bibliography 

[1] 	 l\1. L. Bushnell and V. D. Agrawal. Essentials of Electrom:c Testing for Digital, 

Memory and Mixed-Signal VLSI Cir·cuits. Kluwer Academic Publishers, Boston, 

2000. 

[2] 	 S. Chakravarty, A. Jain. N. Radhakrishman, E. W. Savage. and S. T. Zachariah. 

Experimental evaluation of scan tests for bridges. In Pmc. Intl. Test Conf., 2002. 

[3] 	 K. '{. Cho, S. I'viitra. and E. J. IvlcCluskey. Gate exhaustive testing. In Pmc. 

lntl. Test Conf.. 2005. 

HJ 	 :\1. Davis. G. Logemann, and D. Loveland. A machine program for theorem­

prm·ing. Communications of the ACM, 5(7):394-397. July 1962. 

[5] 	 Ivl. Davis and H. Putnam. A computing procedure for quantification theory. 

Journal of the ACM, 7(3):201-215, July 1960. 

[6] 	 J. Dworak, J. Wingfield, B. Cobb, S. Lee, L. Wang, ancl.l'vf. R lVIercer. Fortuitous 

detection and its impact on test set sizes using stuck-at and transition faults. 

In Proc. 17th IEEE Intl. Symposium on Defect and Fmdt Tolerance in VLSI 

Systems, 2002. 

[7] 	 N. Een and N. Sorensson. An extensible sat-solver. 

http:/ /www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/, 2003. 

[8] 	 G. Fey, J. Shi, and R Drechsler. Efficiency of multi-valued encoding in sat-based 

atpg. In Proc. Intl. Symposium on Multiple- Valued Logic, 2006. 

62 


www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
http:l'vf.A.Sc


BIBLIOGRAPHY 	 ?vl.A.Sc. - D.W.Y. Leung- McMaster 

[9] 	 H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms. 

IEEE Trans. Comput., C-32(12), December 1983. 

[10] 	 I\J. Garey and D. Johnson. Computers and Intractability: A Gnide to the Theory 

of NP-Cornpleteness. W. H. Freeman and Co., San Fransico, 1979. 

[11] 	 P. Goel. An implicit enumeration algorithm to generate tests for combinational 

logic circuits. IEEE Tran. Compu.t., C-30, March 1981. 

[12] 	 E. Goldberg and Y. Novikov. Berkmin: a fast and robust sat-solver. In Proc. 

Design Automation and Test in Europe. 2002. 

[13] 	 L. H. Goldstein. Controllability/observability analysis of digital circuits. IEEE 

Tmn. on Circuits and Systems. CAS-26(9). Sept 1979. 

[14] 	 ~I. R. Grimaila, S. Lee, J. Dvmrak, K. ~L Butler. B. Stewart. H. Balachandran. 

B. Houchins, V. Mathur, J. Park, L. Wang, and .tv!. R ivlercer. Redo- random 

excitation and deterministic observation - first commercial experiment. In Proc. 

17th VLSI Test Symposium, pages 268-274, 1999. 

[15] 	 R. Guo, S. 1v1itra, E. Amyeen, J. Lee, S. Sivaraj, and S. Venkatararnan. Evalua­

tion of test metrics: Stuck-at, bridge coverage estimate and gate exhaustive. In 

Proc. 24th IEEE VLSI Test Syrnposi·urn, 2006. 

[16] 	 T. Larrabee. Efficient generation of test patterns using boolean difference. In 

Proc. Int. Test. Conf, August 1989. 

[17] 	 S. C. Ma, P. France, and E. J. McCluskey. An experimental chip to evaluate test 

techniques: Experiment results. In Proc. Intl. Test Conf, 1995. 

[18] 	 J. P. Marques-Silva and K. A. Sakallah. Grasp: A search algorithm for proposi­

tional satisfiability. IEEE Transactions on Computers, 48(5):506-521, May 1999. 

[19] 	 G. D. Micheli. Synthesis and Optimization of Digital Circuits. l'vicGraw-Hill Inc., 

1994. 

63 




BIBLIOGRAPHY 	 M.A.Sc. - D.W.Y. Leung- l'vidvfaster 

[20] 	 !vi. H. Moskewicz, C. F. ?\Iadigan, Y. Zhao, L. Zhang, and S. :\Ialik. Chaff 

Engineering and efficient sat solver. In Proc. 38th Design Automation Conf., 

2001. 

[21] 	 S. Mourad and Y. Zorian. Principles of Testing Electronic Syste·rns. Wiley­

Interscience Publication, 2000. 

[22] 	 I. Park, A. Al-Yamani, and E. J ..McCluskey. Effective taro pattern generation. 

In Proc. 23th IEEE VLSI Test Symposium., 2005. 

[23] 	 M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in sat-based 

formal verification. Intl. Journal on Software Tools for Technology Transfer, 7(2), 

2005. 

[24] 	 J. P. Roth. Diagnosis of automata failures: A calculus and a method. IE!If J. 

Res. Develop., 10:278-291, July 1966. 

[25] 	 rvi. H. Schulz. E. Trischler, and T. I\1. Sarfert. Socrates: A highly efficient 

automatic test pattern generation system. IEEE Tmn. on CAD. 7(1 ), January 

1988. 

[26] 	 E. SentoYich. K. Singh, L. Lavagno, C. I\'loon, R. I\lurgai, A. Saldanha. H. Savoj. 

P. Stephan, R. Brayton, and A. SangioYanni-Vincent.elli. Sis: A svstem for 

sequential circuit synthesis. 1992. 

[27] 	 J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schlofrel. Passat: 

Efficient sat-based test pattern generation for industrial circuits. In Proc. IEEE 

Annual Symposium on VLSJ, 2005. 

[28] 	 G. L. Smith. Ivlodel for delay faults based upon paths. In Proc. Intl. Test Conf., 

1985. 

[29] 	 P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. Combinational test 

generation using satisfiability. IEEE Tmn. on CAD, 15, 1996. 

64 




BIBLIOGRAPHY 	 1v1.A.Sc. - D.\V.Y. Leung- IviclVIaster 

[30] 	 P. Tafertshofer, A. Ganz, and lvi. Henftling. A sat-based implication engine for 

efficient atpg, equivalence checking and optimization of netlists. In Intl Conf. on 

CAD, 1997. 

[31] 	 C. Tseng and E. J. McCluskey. Multiple-output propagation transition fault 

test. In PTOc. Intl. Test Conf., 2001. 

[32] 	 B. Vaidya and M. B. Tahoori. Delay test generation with all reachable output 

propagation and multiple excitations. In Proc. 20th IEEE Intl Symposium. on 

Defect and Fault Tolerance in VLSI Systems, 2005. 

[33] 	 J. A. Waicukauski, E. Lindbloom. B. K Rosen, and V. S. Iyengar. Transition 

fault simulation. IEEE Design and Test. pages 32-38. April 1987. 

[3c±] 	 H. Zhang. Sato: An efficient propositional prover. In Proc. Intl. Conf. on Auto­

mated Deduction, 1997. 

65 


http:1v1.A.Sc



