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Abstract
This dissertation is concerned with analysis of spectral and orbital stability of solitary

wave solutions to discrete and continuous PT -symmetric nonlinear Schrödinger equa-

tions. The main tools of this analysis are inspired by Hamiltonian systems, where

conserved quantities can be used for proving orbital stability and Krein signature

can be computed for prediction of instabilities in the spectrum of linearization. The

main results are obtained for the chain of coupled pendula represented by a discrete

NLS model, and for the trapped atomic gas represented by a continuous NLS model.

Analytical results are illustrated with various numerical examples.
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Chapter 1

Introduction

This thesis focuses on studies of the stability of nonlinear waves in discrete and con-

tinuous models based on the nonlinear Schrödinger equation. The key feature of the

models is the presence of PT -symmetry which relaxes the condition of Hermiticity, yet

retains surprisingly many properties of Hamiltonian systems. On the other hand, the

interplay between nonlinearity, PT symmetry, and dispersion gives birth to numer-

ous new phenomena unseen in the realm of Hamiltonian systems. These phenomena

motivate the choice of the subject.

From nonlinear optics to condensed matter, the nonlinear Schrödinger equation

(NLS) enjoys many applications in physics. For example, it provides a canonical

description for the envelope dynamics of a quasi-monochromatic plane wave (the car-

rying wave) propagating in a weakly nonlinear dispersive medium when dissipative

processes are negligible. On short times and small propagation distances, the dynam-

ics are linear, but cumulative nonlinear interactions result in a significant modulation

of the wave amplitude on large spatial and temporal scales. In optics, NLS can also

be viewed as the extension of the paraxial approximation to nonlinear media. In

the context of quantum mechanics, a nonlinear potential arises in the ‘mean field’

description of interacting particles. In the wave context of electromagnetic theory,

the second-order linear operator describes the dispersion and diffraction of the wave-

packet, and the nonlinearity arises from the sensitivity of the refractive index to the

medium on the wave amplitude [134].

One of the first important questions related to the NLS is concerned with lin-

ear stability of a constant-wave solution that is uniform in space and oscillatory in

time. It corresponds to the effect of slow temporal modulation on a monochromatic

1
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wave whose frequency is slightly shifted by the nonlinearity. When the constant-wave

solution is modulationally unstable, the spatial modulation leads to the formation

of solitonic structures resulting from an exact balance between the dispersive and

nonlinear effects.

The discrete nonlinear Schrödinger equation (dNLS) is one of the most fundamen-

tal lattice models. On one hand, it is a prototypical discretization of the nonlinear

Schrödinger equation, on the other hand, it has many physical applications in its own

right. One of the relevant areas for dNLS is the field of optically induced lattices in

photorefractive media, where the dNLS model can yield accurate predictions about

existence and stability of nonlinear localized modes. Since the numerical prediction

in [48] and experimental realization in [55], there has been an tremendous number of

studies in the area of nonlinear waves and solitons in such structures. A number of

them has been predicted and experimentally demonstrated in lattices with induced

self-focusing nonlinearity: dipoles, quadrupoles, necklaces, etc. Such structures have

a potential to be used as carriers for data transmission in all-optical communication

schemes [72].

As we have seen, both continuous and discrete NLS models have a variety of

physical applications. The incorporation of PT symmetry into these models enriches

this variety and introduces fascinating phenomena: existence of continuous families

of nonlinear modes, PT symmetry breaking and stabilization above phase transition.

The study of these phenomena and prediction of instabilities is an important step

towards understanding intrinsic nonlinear processes. This thesis develops the tools

for such analysis and paves the way for the future work relevant to many branches of

modern physics.

This introduction is structured as follows. Section 1.1 gives a brief overview of

Hamiltonian systems and the stability problem. Section 1.2 introduces PT -symmetric

systems and their important features. In Section 1.3 we talk about stability analysis

in discrete systems, and introduce the model studied in Chapters 2 and 3. Section 1.4

gives the outline of stability analysis in continuous system, and presents the material

of Chapters 4 and 5. Section 1.5 introduces spaces and properties of operators that

will be used throughout the thesis.

2
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1.1 Hamiltonian Systems

Hamiltonian systems arise in applications where the damping can be neglected. Hamil-

tonian view of mechanics becomes important for approximate methods of perturbation

theory, e.g. celestial mechanics; for understanding the general character of motion in

complicated mechanical systems, e.g. ergodic theory, statistical mechanics; and in

connection with other areas of physics, e.g. optics, quantum mechanics, etc. [8]. The

rich structure of Hamiltonian systems stems from the conservation of the underlying

energy, the Hamiltonian, as well as other quantities such as mass and momentum.

Linear and nonlinear stability of wave solutions to Hamiltonian systems is an old

field. In 1872 Boussinesq [26], studying water waves, suggested that the constraint

due to symmetry could be used to understand the stability of the critical points

of the energy, represented by the Hamiltonian. General framework of this theory

was developed by Grillakis, Shatah, and Strauss [59, 60] in the infinite-dimensional

Hamiltonian systems in the presence of symmetries. Their approach characterizes the

critical points of systems with symmetry and conserved quantities via the analysis of

a constraint operator. We will review the finite-dimensional theory [69], and show

that minimizers of the Hamiltonian are nonlinearly stable [57, 94].

1.1.1 Finite-Dimensional Hamiltonian Systems

Consider a state vector ~u ∈ R2d for some dimension d ≥ 1, and a Hamiltonian

H : R2d 7→ R, which depends smoothly upon ~u and corresponds to the conserved

energy of the system. The Hamiltonian system describing time evolution of the state

vector ~u in time t takes the form

d~u

dt
= J∇uH(~u). (1.1)

Here J is a 2d × 2d nonsingular matrix skew-symmetric with respect to the usual

Euclidean inner product: JT = −J , where superscript T stands for matrix transpose.

Such matrices map a vector into its perpendicular subspace:

〈J~x, ~x〉 = 〈~x, JT~x〉 = −〈~x, J~x〉,

and thus 〈J~x, ~x〉 = 0. Using this property, we can prove the following:

3



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

Lemma 1. Let ~u be the solution of (1.1) with initial data ~u(0) = ~u0. Then H(~u(t)) =

H(~u0) for all nonzero t.

Proof. Let us take the time derivative of H(~u(t)):

dH(~u)

dt
= 〈∇uH(~u),

d~u

dt
〉 = 〈∇uH(~u), J∇uH(~u)〉 = 0.

Thus the functional H is constant.

The canonical Hamiltonian system is derived from the Newton’s second law. The

skew-symmetric matrix J then takes the form

J =

[
0d Id

−Id 0d

]
,

where Id ∈ Rd×d is the identity matrix, and 0d ∈ Rd×d is the zero matrix. The state

vector is written as ~u = [~p, ~q]T for ~p, ~q ∈ Rd, and the Hamiltonian system becomes

dpj
dt

=
∂H

∂qj
,

dqj
dt

= −∂H
∂pj

.

where j = 1, . . . , d. The vectors ~p = (p1, . . . , pd) and ~q = (q1, . . . , qd) are traditionally

called the momentum and position vectors, respectively. In the context of molecu-

lar physics, Hamiltonian describes the total energy as a combination of kinetic and

potential energy due to interactions between the molecules.

Consider a critical point ~φ of the Hamiltonian energy functional: ∇u(H(~φ)) = 0.

Obviously, ~φ is also an equilibrium of the Hamiltonian system (1.1). Our interest lies

in dynamics of solutions with initial data ~u0 that lies close to ~φ. Asymptotic stability is

generally ruled out in finite-dimensional Hamiltonian systems, since if H(~u0) 6= H(~φ),

then ~u(t) cannot converge to ~φ. If it did, we would have H(~u0) = H(~u(t)) → H(~φ)

as t→∞, which gives us a contradiction. So at most we can have ~u(t) staying close

to ~φ.

Let us study the structure of the Hamiltonian about ~φ. Taking ~v = ~u− ~φ to be a

perturbation of ~φ, a Taylor expansion about φ yields

H(~u) = H(~φ) + 〈∇uH(~φ), ~v〉+
1

2
〈~v, L~v〉+O(|~v|3), (1.2)

4
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where L ∈ R2d×2d is a Hessian matrix which has the following entries:

Lij =
∂H

∂ui∂uj
(~φ).

It is important to note that the Hessian operator is symmetric (or Hermitian). Since
~φ is a critical point of H, ∇uH(~φ) = 0, and Hamiltonian can be written as

H(~u)−H(~φ) =
1

2
〈~v, L~v〉+O(|~v|3). (1.3)

Taking ∇v of both sides, we can rewrite Hamiltonian system (1.1) as

d~v

dt
= JL~v +N(~v),

where N(~v) = O(|~v|2) denotes nonlinear terms in v, and JL denotes the linearization

about ~φ. Such linearizations typically have the structure outlined in the following

lemma.

Lemma 2. Let L ∈ M2d×2d be a linear symmetric operator: LT = L. The spectrum

σ(JL) is symmetric with respect to the real and imaginary axes of the complex plane,

so that the eigenvalues of JL come in quartets: {±λ,±λ̄}. In particular, either

σ(JL) ⊂ iR, or the critical point ~φ is linearly exponentially unstable.

Proof. Suppose that λ ∈ σ(JL) with the associated eigenvector ~w. Since JL has

real-valued entries,

JL~w = λ~w ⇔ JL~w = λ̄ ~w.

In other words, λ̄ also belongs to the spectrum of JL, with an eigenvector ~w. Moreover,

due to (JL)T = −LJ

JL~w = λ~w ⇔ −LJ(J−1 ~w) = (−λ)J−1 ~w ⇔ (JL)T (J−1 ~w) = −λ(J−1 ~w)

we can see that −λ ∈ σ((JL)T ) with the eigenvector J−1 ~w. On the other hand,

knowing σ(JL) = σ((JL)T ), we can deduce that −λ̄ ∈ σ(JL), as well. By taking

complex conjugation, we also have −λ ∈ σ(JL). The spectral stability statement

follows from the spectral symmetry, since the existence of an eigenvalue with negative

real part implies the existence of an eigenvalue with positive real part.

5
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If ~φ is a nondegenerate minima of H, then it is stable in finite-dimensional Hamil-

tonian systems as per the following lemma.

Lemma 3. Suppose that ~φ is a critical point for the Hamiltonian system (1.1). If
~φ is a strict local minimum, i.e. L is a positive-definite matrix, then ~φ is stable.

Specifically, there exist C, δ > 0 such that for |~u0 − ~φ| ≤ δ, the solution ~u of (1.1)

satisfies

|~u(t)− ~φ| ≤ C|~u0 − ~φ|, t ≥ 0.

Proof. Set ~v = ~u− ~φ, and recall the Taylor expansion of H about ~φ:

H(~u)−H(~φ) =
1

2
〈~v, L~v〉+O(|~v|3).

Since L is symmetric, all of its eigenvalues are real-valued: µj ∈ R, j = 1, 2, . . . , 2d.

Positive-definite property implies that all eigenvalues are positive: µ− := minj{µj}>0.

Moreover, µ+ := maxj{µj} ≥ µ−, and

µ−|~v|2 ≤ 〈~v, L~v〉 ≤ µ+|~v|2,

where the inequality is attained at corresponding eigenvectors. The Taylor expansion

implies that there exists a δ > 0 such that for every ~v ∈ R2d satisfying |~v| ≤ δ there

exist constants 0 < C− < C+ <∞ such that

C−|~v|2 ≤ H(~u)−H(~φ) ≤ C+|~v|2.

The lower bound implies that the initial data ~u0 controls the norm of the perturbation:

|~v(t)|2 ≤ 1

C−
(H(~u)−H(~φ)) =

1

C−
(H(~u0)−H(~φ)),

where we have used the conservation of Hamiltonian. The upper bound allows us to

rewrite the latter estimate as

|~u(t)− ~φ|2 ≤ C+

C−
|~u0 − ~φ|2,

where the conclusion of the lemma is achieved with C =
√
C+/C−.

6
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In practice, Hamiltonian systems often possess symmetries. In that case, the image

of the critical point under these symmetries will generate a manifold of critical points,

and the set of derivatives of this manifold with respect to parameter will lie in the

kernel of the linearization JL about ~φ. Thus L will have a null space and at best

can be semi-definite. This obstacle can be overcome through the notion of orbital

stability, see, e.g., Definition 10 in Chapter 2.

Each symmetry generates a conserved quantity due to Noether’s Theorem [97].

Even when L has eigenvalues of negative real part, the critical point may still be

stable: the conserved quantities can be used to perform a search for a constrained

minimizer. This is realized in the approach of Grillakis-Shatah-Strauss [59, 60], which

we do not review here.

1.1.2 Infinite-Dimensional Hamiltonian Systems

Let X be an infinite-dimensional Hilbert space X with inner product 〈·, ·〉X , ‖ · ‖ be

the induced norm, and X∗ be the dual of X with respect to the inner product in X.

A Hamiltonian on X is a nonlinear functional H : X 7→ R, which we assume to be C2

on all of X. The associated Hamiltonian system then takes the form

du

dt
= J δH

δu
(u), u : R→ X, (1.4)

where J : X∗ 7→ X is a linear closed operator with dense domain D(J) ⊂ X∗, and

skew-symmetric respect to 〈·, ·〉X :

〈J u, v〉X = −〈u,J v〉X

for all u, v ∈ D(J) ⊂ X∗. Moreover, we assume that J is one-to-one and onto. The

first variation with respect to the X-inner product, denoted δH/δu : X → X∗, is

defined as

lim
ε→0

H(u+ εv)−H(u)

ε
=

〈
δH
δu

(u), v

〉
X

for all u, v in X. Using the chain rule, we see that smooth solutions of (1.4) conserve

the Hamiltonian:

dH(u(t))

dt
=

〈
δH
δu

(u),
du

dt

〉
X

=

〈
δH
δu

(u),J δH
δu

(u)

〉
X

= 0.

7
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Let us generalize the finite-dimensional expansion (1.2). Fix φ ∈ X. For u = φ+Iv

with v ∈ X the Hamiltonian admits a formal Taylor expansion

H(u+ εv)−H(φ) =

〈
δH
δu

(φ), v

〉
X

+
1

2
〈Lv, v〉X +O(‖v‖3),

where the quadratic form 〈Lv, v〉X is called the second variation of H, and the self-

adjoint linear operator L is called the Hessian operator:

L :=
δ2H
δu2

(φ) : D(L) ⊂ X 7→ X∗.

If φ is a critical point of H, in other words

δH
δu

(φ) = 0,

then the Taylor expansion reduces to an infinite-dimensional version of (1.3):

H(u)−H(φ) =
1

2
〈Lv, v〉+O(‖v‖3).

Compared to the symmetric matrix L in (1.3), the self-adjoint operator L is generally

unbounded and has a nontrivial kernel.

The approach outlined previously for studying stability of wave solutions in finite-

dimensional systems can be readily extended to infinite-dimensional ones.

1.2 PT -Symmetric Systems

In classical quantum mechanics, one usually considers observables as Hermitian op-

erators in the Hilbert space L2. Bender and Boettcher [21] suggested that Hermitian

operators can be replaced by the so-called PT -symmetric operators for an alterna-

tive formulation of quantum mechanics. They have shown that a non-Hermitian

operator might still possess real spectrum if it is symmetric with respect to com-

bined parity P and time-reversal T symmetries. Their idea was later extended in

the works of Mostafazadeh [101, 102] who considered a more general class of pseudo-

Hermitian operators with purely real spectrum. A number of reviews emerged on the

topic [18, 84, 133].

8
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Starting in quantum mechanics, the concept of PT symmetry found applications

in many areas of physics [19, 123, 128]. In particular, there is a lot of interest in

optics due to experimental realizations of paraxial PT symmetric optics [93, 103].

Recent applications include single-mode PT lasers [52, 64] and unidirectional re-

flectionless PT -symmetric metamaterials at optical frequencies [53]. PT symmetric

systems demonstrate many nontrivial non-conservative wave interactions and phase

transitions, which can be employed for signal filtering and switching, opening new

prospects for active control of light [133].

Discovered by John Scott Russell in 1834, solitons have attracted a lot of attention

in many nonlinear physical systems, ranging from optics to BECs [54, 81]. Conserva-

tive solitons requiring balance of nonlinear response and medium dispersion usually

form families with different amplitudes. Nonlinear dissipative systems, however, re-

quire an additional balance between gain and loss to support soliton solutions [4, 122].

This requirement is usually satisfied only for selected soliton amplitudes and shapes,

and no continuous families can generally be found. On the other hand, PT -symmetric

systems, being a subclass of dissipative systems, can commonly support continuous

families of solitons due to symmetry property [141]. Thus PT -symmetric systems,

being dissipative systems, possess features of conservative ones [133].

Let us review the main concepts in the theory of PT -symmetric (or, more gener-

ally, non-Hermitian) linear systems.

1.2.1 PT -Symmetric Linear Operators

Let ψ(~x, t) be a complex valued wave function of a quantum particle, where ~x is a space

variable, and t represents time. Evolution of ψ(~x, t) is governed by the Schrödinger

equation

i
∂ψ

∂t
= Hψ(~x, t),

where the linear operator H acts in a Hilbert space L2(Rd) equipped with an inner

product

〈φ, ψ〉 =

∫
Rd
φ(~x, t)ψ(~x, t) ~dx,

d is the space dimension, and we consider units where ~ = m = 1 with m being the

mass of the particle.

9
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Recall that for Hermitian operator H∗ = H, and

〈Hφ,ψ〉 = 〈φ,Hψ〉,

for any φ, ψ ∈ D(H). The spectrum of any Hermitian operator is purely real, while

the opposite is not true: Hermiticity is a sufficient but not necessary condition for

reality of the spectrum.

The two fundamental discrete symmetries in physics [139] are given by the parity

operator P defined as Pψ(~x, t) = ψ(−~x, t), and by the time reversal operator T
defined as T ψ(~x, t) = ψ(~x,−t). The operator T is antilinear:

T (αφ) = αT φ, T (φ+ ψ) = T φ+ T ψ (1.5)

for any two vectors ψ, φ and a complex number α. Moreover,

P2 = T 2 = I, [P , T ] = 0, (1.6)

where I is the identity operator.

Definition 1 (PT -symmetric operator). An operator H is said to be PT -symmetric

if

[PT , H] = 0, (1.7)

or, using (1.6), H = PT HPT .

In the work of Bender and Boettcher [21], where a connection between PT sym-

metry and reality of the spectrum was pointed out, they also introduced the notion

of unbroken PT symmetry.

Definition 2 (Broken and unbroken PT symmetry). PT symmetry of a PT -symmetric

operator is said to be unbroken if any eigenfunction of H is at the same time an eigen-

function of the PT operator. If the unbroken PT symmetry does not hold, then the

PT symmetry is called broken.

The broken PT symmetry is typically associated with the presence of complex

eigenvalues in the spectrum of H. Since H and PT commute, Hψ = Eψ implies

the existence of λ such that PT ψ = λψ. From (1.5) and (1.6) it follows that there

10
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exists a real constant β such that λ = eiβ. In other words, any eigenvalue of the PT
operator is a pure phase [22].

Unlike Hermiticity, PT symmetry is not sufficient for the eigenvalues of H to be

purely real. It becomes sufficient when combined with the requirement for the PT
symmetry to be unbroken. Indeed, let E be an eigenvalue of H with the eigenfunction

ψ, Hψ = Eψ. Applying PT operator to both sides and using (1.6), we obtain

H(PT ψ) = Ē(PT ψ). Then, if the PT symmetry of H is unbroken, Hψ = Ēψ, and

hence the eigenvalue E is real. This procedure is applied to every eigenvalue of H,

therefore the eigenvalues of H are entirely real.

Interestingly, in the case of unbroken PT symmetry it is possible to construct

a similarity transformation that maps a non-Hermitian PT -symmetric Hamiltonian

to an equivalent Hermitian Hamiltonian. The equivalence is understood in the sense

that both Hamiltonians have the same eigenvalues [47, 140]. Unfortunately, in practice

this transformation is too complicated to be constructed except at the perturbative

level [18]. Another problem is that the transformation is a similarity but not a unitary

transformation. That is, orthogonal pairs of vectors are mapped into pairs of vectors

that are not orthogonal.

Let us give an example illustrating basic concepts outlined above.

1.2.2 Example

Consider a Hamiltonian defined by a 2 x 2 matrix [20]:

H =

[
iγ κ

κ −iγ

]
= kσ1 + iγσ3, (1.8)

where γ ≥ 0 and κ ≥ 0 are real parameters and we use the conventional notations for

Pauli matrices:

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
.

The Hamiltonian (1.8) acts in a Hilbert space of two-component column vectors

ψ = (ψ1, ψ2)T , with complex entries ψ1, ψ2, and the inner product is defined as

〈φ, ψ〉 = φ1ψ1 + φ2ψ2.

11
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The Hamiltonian (1.8) is PT symmetric with P = σ1 and T being complex conjuga-

tion. The eigenvalues and eigenvectors of H are given by

E1,2 = ±
√
κ2 − γ2, ψ(1,2) =

[
iγ/κ±

√
1− γ2/κ2

1

]
.

Thus PT symmetry is unbroken (all eigenvalues are real) if γ < κ and is broken (both

eigenvalues are imaginary) if γ > κ. At γ = κ, PT symmetry breaking occurs. At

this point, two eigenvalues collide, and eigenvectors become linearly dependent, thus

Hamiltonian has a nondiagonal Jordan block. Algebraic multiplicity of the eigenvalue

is two and is larger than its geometric multiplicity one. Such points in the parameter

space (γ, κ) are called exceptional points [71] or branch points [100].

1.2.3 Pseudo-Hermiticity

A necessary and sufficient condition for the spectrum of a non-Hermitian Hamiltonian

to be purely real can be formulated in terms of a more general property called pseudo-

Hermiticity [88, 101].

Definition 3 (Pseudo-Hermitian operator). A Hamiltonian H is said to be η-pseudo-

Hermitian if there exists a Hermitian invertible linear operator η such that

H∗ = ηHη−1.

Obviously, if η is the identity operator, this definition is equivalent to Hermiticity.

In many cases, pseudo-Hermiticity can be considered as a generalization of PT sym-

metry. For example, if H is a symmetric matrix Hamiltonian, then PT symmetry

implies HP − PH̄ = 0, and then H∗ = H̄ = PHP , i.e. a pseudo-Hermiticity of H.

The notion of pseudo-Hermiticity allows one to formulate necessary and sufficient

condition for a Hamiltonian to possess a purely real spectrum. Let us consider the case

of the discrete spectrum, and let a Hamiltonian have a complete set of biorthonormal

eigenvectors {(ψn, φn)} defined by

Hψn = Enψn, H∗φn = Ēnφn, 〈φn, ψn〉 = δn,m.

Then the following theorem holds.

12
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Theorem 1 (Mostafazadeh [102]). Let H be a Hamiltonian that acts in a Hilbert

space, has a discrete spectrum, and admits a complete set of biorthonormal eigenvec-

tors {(ψn, φn)}. Then the spectrum of H is real if and only if there is an invertible

linear operator O such that H is OO∗-pseudo-Hermitian: H = (OO∗)H∗(OO∗)−1.

As an example of application of Theorem 1, consider the PT -symmetric Hamilto-

nian (1.8). It possesses a complete set of biorthonormal eigenvectors unless ε = γ/κ =

1. Since the spectrum is real if ε ∈ (0, 1), Theorem 1 guarantees that for ε ∈ (0, 1)

there exists the operator O such that H is η-pseudo-Hermitian with η = OO∗. Al-

though H is also P -pseudo-Hermitian, this cannot be used in Theorem 1, since the

parity operator P = σ1 does not admit the representation P = OO∗. Therefore

there must exist another operator η 6= P such that η = OO∗. By straightforward

calculation one finds that

η =
1

ε2

[
1 iε

−iε 1

]
, O =

1

ε

[
0 i√

1− ε2 ε

]
, ε ∈ (0, 1).

Theorem 1 also indicates that no such operators exist in the broken PT symmetry

case ε > 1.

Although PT symmetry is not sufficient to guarantee the reality of the spectrum

of a Hamiltonian H, it ensures that complex eigenvalues (if any) always exist in

complex-conjugate pairs: if E is a complex eigenvalue with nonzero imaginary part

and ψ is corresponding eigenvector, then Ē is also an eigenvalue with eigenvector

PT ψ. Thus one can expect that if PT symmetry is unbroken and the real eigenvalues

are simple and isolated from each other, then the reality of the spectrum is “robust”

against relatively small perturbations. For example, it happens when perturbed PT -

symmetric operator is “close” to a self-adjoint operator with simple eigenvalues [30,

29]. Consider a Hermitian operator H0 perturbed as H(ε) = H0 + εH1, where ε is a

small parameter, and H0, H1 are PT -symmetric. Then the spectrum of H(ε) is real

provided ε is small enough. More precisely, the following theorem holds.

Theorem 2 (Caliceti, Graffi, and Sjöstandt [30]). Let H0 be a self-adjoint positive

operator in a Hilbert space. Let H0 have only discrete spectrum {0 ≤ λ0 < λ1 < . . . <

λn < . . .}, where each eigenvalue λj is simple, and δ = infj≥0{λj+1 − λj}/2 > 0.

Let also H0 and H1 be PT -symmetric in the sense of (1.7), and assume that H1 is

13
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relatively compact perturbation of H0. Then the spectrum of H(ε) is real if ε ∈ R and

|ε| < δ/‖H1‖.

Theorem 2 guarantees the existence of a large class of pseudo-Hermitian operators

with real spectra constructed as perturbations of a Hermitian operator, provided the

spectrum of the latter is bounded below and its eigenvalues are well separated. As

a simple example, we can consider a Schrödinger operator with a harmonic potential

H0 = −∂2
x + x2 and PT -symmetric perturbation H1 = iW (x) with W (x) = −W (−x)

and W (x) ∈ L∞(R). Then the spectrum of H0 can be given explicitly:

σ(H0) = {2n+ 1, where n = 0, 1, 2, . . .}.

From here we deduce that δ = 2, and the spectrum of H0 + εH1 is real at least for

|ε| < 1/‖W‖∞.

1.3 Stability in Discrete Systems

PT -symmetric multi-site systems (oligomers) have recently attracted a lot of atten-

tion, motivated by possibilities of their experimental realization [120, 125]. Many

studies address the question of existence and stability of nonlinear states in PT -

symmetric oligomers, which may drastically differ from the corresponding linear sys-

tems. The nonlinear effects in PT -symmetric systems can be utilized for an efficient

control of light including all-optical low-threshold switching and unidirectional invis-

ibility [86, 91, 120]. The possibility to build nonlinear PT -symmetric oligomers gave

an uprise to numerous studies of both few-site systems and PT -symmetric lattices.

The former ones include one-dimensional PT -symmetric dimer [6, 98], trimer [44, 89],

quadrimer [89, 144]; the latter ones include two-dimensional plaquettes [90, 144], fi-

nite and infinite chains [23, 96, 115, 146], necklaces [14], ladders [5] and multicore

fibers [95].

The most basic multi-site system having PT symmetry is a dimer, which repre-

sents a system of two coupled oscillators, one of which has losses due to damping

and the other one gains some energy from external sources. This configuration was

studied in numerous laboratory experiments involving electric circuits [127], super-

conductivity [123], optics [14, 125] and microwave cavities [24].
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On the analytical side, dimer equations were found to be completely integrable [13,

117]. Integrability of dimers is obtained by using Stokes variables and it is lost when

more coupled nonlinear oscillators are added into a PT -symmetric system. Never-

theless, it was understood recently [15, 16] that there is a remarkable class of PT -

symmetric dimers with cross-gradient Hamiltonian structure, where the real-valued

Hamiltonians exist both in finite and infinite chains of coupled nonlinear oscillators.

Analysis of synchronization in the infinite chains of coupled oscillators in such class of

models is a subject of Chapters 2 and 3. The results of this analysis were published

in papers [34, 36].

yn

xnxn−1 xn+1

yn+1yn−1 vn+1

un un+1

vn−1 vn

un−1

Figure 1.1: Left: A schematic picture for the chain of coupled pendula connected by
torsional springs, where each pair is hung on a common string. Right: The chain
of PT -symmetric dimers representing coupled pendula. Filled (empty) circles corre-
spond to sites with gain (loss).

In Chapter 2, we reduce Newton’s equation of motion for coupled pendula shown

on Figure 1.1 under a resonant periodic force to the following system of PT -symmetric

dNLS equations:{
2iu̇n = ε (vn+1 − 2vn + vn−1) + Ωvn + iγun + 2 [(2|un|2 + |vn|2) vn + u2

nv̄n] ,

2iv̇n = ε (un+1 − 2un + un−1) + Ωun − iγvn + 2 [(|un|2 + 2|vn|2)un + ūnv
2
n] ,

where Ω, γ, ε are real-valued parameters, n ∈ Z, and overdot denotes the derivative

in time t. We show that this system is Hamiltonian with conserved energy

Hu,v =
∑
n∈Z

(|un|2 + |vn|2)2 + (unv̄n + ūnvn)2 + Ω(|un|2 + |vn|2)

− ε|un+1 − un|2 − ε|vn+1 − vn|2 + iγ(unv̄n − ūnvn),

15



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

and an additional constant of motion

Qu,v =
∑
n∈Z

(unv̄n + ūnvn).

We study breather solutions of this model, which generalize symmetric synchronized

oscillations of coupled pendula. We show existence of three branches of breathers. We

also investigate their spectral stability analytically and numerically. For one of these

branches, we are also able to prove orbital stability and instability from the energy

method.

Chapter 3 is dedicated to the proof of nonlinear stability. It turns out that one of

the branches of breathers is an infinite-dimensional saddle point of the extended energy

functional, and the standard energy methods [69] cannot be applied to the proof of

nonlinear stability of this branch. However, by modifying the energy functional we

achieve long-time nonlinear stability of the breathers on a long but finite time interval.

Such long-time stability is usually referred to as metastability.

1.4 Stability in Continuous Systems

Consider the following nonlinear Schrödinger’s equation (NLSE) with a complex po-

tential U(x):

i∂tψ + ∂2
xψ − U(x)ψ + g|ψ|2ψ = 0, (1.9)

where U(x) = V (x) + iγW (x) with V (x) = V (−x) and W (x) = −W (−x), γ ∈ R is a

gain-loss parameter, g = +1 (g = −1) defines focusing (defocusing) nonlinearity, and

U(x) is PT -symmetric:

U(x) = PT U(x) = U(−x). (1.10)

We will focus on potentials that are either localized (U(x) → 0 as x → ±∞) or

unbounded (U(x) → ∞ as x → ±∞). Stationary nonlinear modes in (1.9) have the

form ψ(x, t) = Φ(x)e−iµt, where µ ∈ R is a real propagation parameter, and Φ(x)

solves

Φxx − U(x)Φ + g|Φ|2Φ = µΦ (1.11)

subject to the zero boundary condition: Φ(x)→ 0 as x±∞. Analysis of stability of

these nonlinear modes is the subject of Chapters 4 and 5. The results of this analysis

were published in [33, 35].
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The NLSE (1.9) with a PT -symmetric potential is used in the paraxial nonlinear

optics. In that context, time and space have a meaning of longitudinal and trans-

verse coordinates, and complex potential models the complex refractive index [124].

Another possible application of the NLSE (1.9) with complex potential V + iγW is

Bose-Einstein condensate, where it models the dynamics of the self-gravitating boson

gas trapped in a confining potential V . Intervals, where W is positive and negative,

allow one to compensate atom injection and particle leakage, correspondingly [32].

The NLSE (1.9) is PT -symmetric under the condition (1.10) in the sense that if

ψ(x, t) is a solution to (1.9), then

ψ̃(x, t) = PT ψ(x, t) = ψ(−x,−t)

is also a solution to (1.9).

In Hamiltonian systems, instabilities arising due to coalescence of purely imagi-

nary eigenvalues can be predicted by computing the Krein signature for each eigen-

value, which is defined as the sign of the quadratic part of Hamiltonian restricted

to the associated eigenspace of the linearized problem. When two purely imaginary

eigenvalues coalesce, they bifurcate off to the complex plane only if they have opposite

Krein signatures prior to collision [69]. The concept of Krein signature was introduced

by MacKay [92] in the case of finite-dimensional Hamiltonian systems, although the

idea dates back to the works of Weierstrass [138]. An overview of Krein signature in

Hamiltonian systems is given in Chapter 4.

There have been several attempts to extend the concept of Krein signature to the

non-Hamiltonian PT -symmetric systems. Nixon and Yang [105] considered the linear

Schrödinger equation with a complex-valued PT -symmetric potential and introduced

the indefinite PT -inner product with the induced PT -Krein signature, in the exact

correspondence with the Hamiltonian-Krein signature. In the recent works [5, 7, 131],

a coupled non-Hamiltonian PT -symmetric system was considered and the linearized

system was shown to be block-diagonalizable to the form where Krein signature of

eigenvalues can be introduced. All these cases were too special, the corresponding

Krein signatures cannot be extended to a general PT -symmetric system.

In Chapter 5 we deal with the stationary states in the PT -symmetric NLSE (1.9)

and introduce Krein signature of isolated eigenvalues in the spectrum of their lin-

earization. We prove that the necessary condition for the onset of instability of the
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stationary states from a defective eigenvalue of algebraic multiplicity two is the oppo-

site Krein signature of the two simple isolated eigenvalues prior to their coalescence.

Compared to the Hamiltonian systems, or the linear Schrödinger equation in [105],

the Krein signature of eigenvalues cannot be computed from the eigenvectors in the

linearized problem. This is also shown in Appendix A, where perturbation theory

failed to yield a simple relationship between eigenvectors and their adjoint counter-

parts. As a result, the adjoint eigenvectors need to be computed separately and the

sign of the adjoint eigenvector needs to be chosen by a continuity argument.

We show how to compute Krein signature numerically for several examples of

the PT -symmetric potentials. In the focusing case g = 1, we consider the Scarf II

potential studied in [3, 17, 75, 105] with

U(x) = −V0 sech2(x) + iV1 sech(x) tanh(x), (1.12)

where V0 > 0 is a parameter. This potential is a complexification of the real Scarf

potential [11], which bears the name from the pioneer work in [126]. The spectrum

of this potential was found analytically by Ahmed [3] through a transformation of

the corresponding linear Schrödinger equation to the Gauss hypergeometric equation,

and by Bagchi and Quesne [9, 10] via complex Lie algebras. In Appendix B, we

explain the former method and correct an error in [3], where the author omitted some

admissible eigenvalues. When |V1| < Vcr = −V0 + 1
4
, the discrete spectrum consists

of the sequence of real eigenvalues. At |V1| = Vcr, a pair of real eigenvalues coalesce,

and for |V1| > Vcr the double eigenvalue splits into the complex conjugate pairs in the

complex plane. In other words, PT symmetry becomes broken.

The nonlinear model (1.11) for the Scarf II potential has an exact particular solu-

tion [103, 129] for µ = 1:

Φ =

√
−V0 − (V1/3)2 − 2

g

exp(iV1/3) arctan(sinh(x))

cosh(x)
,

where V0, V1 and g are chosen so that the argument of the radical is positive. In

Appendix C, we derive another exact solution for the nonlinear model using the

method developed in [17].
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In the defocusing case g = −1, we consider the confining potential studied in [1]

with

U(x) = Ω2x2 + iγxe−
x2

2 , (1.13)

where Ω is a parameter. When γ = 0 and U(x) is real, the eigenvalues are given

by En = −(2n + 1), n = 0, 1, 2, . . . whereas the eigenfunctions can be expressed in

terms of Hermite polynomials. A numerical study of the linear spectrum for the PT -

symmetric Gaussian potential with Ω = 0 was performed by Ahmed [3], and nonlinear

modes were recently computed numerically [65, 67]. We will focus on the more general

case with Ω > 0.

In agreement with the theory, we show for both examples (1.12) and (1.13) that the

coalescence of two isolated imaginary eigenvalues in the linearized problem associated

with the stationary states in the NLSE (1.9) leads to instability only if the Krein

signatures of the two eigenvalues are opposite to each other.

1.5 Preliminaries

Before proceeding to technical details presented in the thesis, let us give a few basic

definitions. For further details see classical texts [2, 50, 61, 63, 68, 71, 87, 142].

1.5.1 Sobolev Spaces

Given a function u : R 7→ C, we define the Lp norm for any 1 ≤ p <∞ as

‖u‖p :=

(∫
R
|u(x)|pdx

)1/p

,

and the L∞ norm as

‖u‖∞ := sup
x∈R
|u(x)|.

For any p ≥ 1 the associated Lebesgue space Lp(R) is given by

Lp(R) := {u : ‖u‖p <∞},
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and it is known to be a complete metric space (called Banach space). For differentiable

functions we define the W k,p norm with 1 ≤ p <∞ and k ∈ N:

‖u‖Wk,p :=

(
k∑
i=0

∥∥∥∥∂iu∂xi
∥∥∥∥p
p

)1/p

,

and the associated Sobolev space

W k,p := {u : ‖u‖Wk,p <∞}.

The L2-based Sobolev spaces Hk := W k,2 is used frequently. Note that H0(R) =

L2(R).

Let us introduce the inner product

〈f, g〉 =

∫
R
f(x)g(x)dx,

with complex conjugation in the second component. The Sobolev spaces Hk(R) with

k ∈ N are Hilbert spaces, since their norm is induced by the inner product

‖u‖2
Hk =

k∑
i=0

〈
∂iu

∂xi
,
∂iu

∂xi

〉
.

Moreover, Hk(R) is a Banach algebra with respect to pointwise multiplication for any

k ≥ 1: there exists a constant C ≥ 1 such that for all u ∈ Hk(R)

‖um‖Hk ≤ C‖u‖mHk , m ∈ N.

This property makes the map u 7→ um continuous in the Hk(R) norm. The spaces

Hm(R) ⊂ Hk(R) are dense for m > k, i.e., for each u ∈ Hk(R) there is a sequence

{un}n∈N ⊂ Hm(R) such that ‖un − u‖Hk → 0 as n→∞.

1.5.2 Sequence Spaces

Consider a linear space of all bi-infinite sequences with complex-valued entries:

x = {xn}n∈Z, xn ∈ C ∀n ∈ Z.
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For an element of this space, we define lp(Z) norm for any 1 ≤ p <∞ as

‖x‖lp =

(∑
n∈Z

|xn|p
)1/p

.

The space lp(Z) equipped with this norm can be defined as

lp(Z) := {x : ‖x‖lp <∞}.

lp(Z) is a Banach space for any p ≥ 1. The space of all bounded bi-infinite sequences,

l∞(Z), is also a Banach space:

l∞(Z) := {x : ‖x‖l∞ <∞},

where the corresponding norm ‖ · ‖l∞ is given by

‖x‖l∞ = sup
n∈Z
|xn|.

We are going to use embedding of lp spaces: lp(Z) ⊂ lq(Z) with p < q, such that

‖x‖lq ≤ ‖x‖lp .

An element from the space lq(Z) can be approximated by a sequence of elements from

the space lp(Z). In other words, lp(Z) is dense in lq(Z) for p < q.

The sequence space l2(Z) is Hilbert space with the inner product:

〈x, y〉 =
∑
n∈Z

xnȳn,

where x = {xn}n∈Z and y = {yn}n∈Z.

The space lp(Z) is a Banach algebra with respect to multiplication:

‖w‖lp ≤ ‖x‖lp‖y‖lp ,

where x, y ∈ lp(Z), and w = {xnyn}n∈Z.
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1.5.3 Bounded and Closed Operators

Let X and Y be two Banach spaces, with norms ‖ · ‖X and ‖ · ‖Y , respectively.

Assume that Y ⊂ X is dense, for example X = L2(R) and Y = Hk(R) for any k ≥ 1.

Consider linear operator L : Y ⊂ X → X, where Y is the maximal domain of operator

L denoted by D(L). The kernel of L is given by

ker(L) := {u ∈ Y : Lu = 0},

and the range of L is

range(L) := {Lu ∈ X : u ∈ Y } ⊂ X.

A linear operator L is said to be closed if for any sequence {un} ⊂ Y with

lim
n→∞

‖un − u‖X = 0 and lim
n→∞

‖Lun − v‖X = 0,

we have u ∈ Y and Lu = v. The operator is bounded from Y to X if

sup{‖Lu‖X : u ∈ Y, ‖u‖Y = 1} <∞.

From here we can define a norm associated with the space of bounded linear operators

B(Y,X):

‖L‖B(Y,X) := sup
‖u‖Y =1

‖Lu‖X .

If X = Y , then the induced norm of L is denoted by ‖L‖. If L is a closed operator

with X = Y , then L is a bounded operator. If for each bounded sequence {un} ⊂ Y

the sequence {Lun} ⊂ X has a convergent subsequence, then the operator L is said

to be compact.

1.5.4 Resolvent and Spectrum

Definition 4 (Resolvent set). The resolvent set of L, ρ(L), is the set of complex

numbers λ ∈ C such that

• λI − L is invertible

• (λI − L)−1 is defined on a dense set

• (λI − L)−1 is a bounded linear operator.
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Here I : X 7→ X is the identity operator: Iu = u. For λ ∈ ρ(L) the operator

(λI − L)−1 is called the resolvent of L. The spectrum of L is the complement of the

resolvent set, i.e.

σ(L) = C\ρ(L).

A complex number λ ∈ σ(L) is called an eigenvalue if ker(λI −L) 6= {0}. The kernel

ker(λI−L) is called the eigenspace associated with the eigenvalue λ, and any element

u ∈ ker(λI −L)\{0} is called an eigenvector associated with the eigenvalue λ. If L is

a closed operator, then σ(L) is a closed set. If L is a bounded operator, then σ(L) is

a closed, bounded, and nonempty set.

Suppose that λ ∈ σ(L) is an eigenvalue. The dimension of ker(λI−L) is called the

geometric multiplicity of the eigenvalue. An eigenvalue with geometric multiplicity

one is called geometrically simple. If the eigenvalue is isolated, then the algebraic

multiplicity of the eigenvalue is the dimension of the largest subspace Yλ ⊂ Y , which

• is invariant under the action of L: if uλ ∈ Yλ, then Luλ ∈ Yλ,

• satisfies the property σ(L|Yλ) = {λ}.

Note that algebraic multiplicity is always greater or equal to geometric multiplicity.

An eigenvalue is called semi-simple if algebraic and geometric multiplicities coincide

and defective if algebraic multiplicity exceeds geometric multiplicity. An eigenvalue

is simple if it is algebraically (and geometrically) simple.

1.5.5 Adjoint and Fredholm Operators

Assume that X is a Hilbert space equipped with the inner product 〈·, ·〉X , and that L
is a closed operator with a dense domain D(L) ⊂ X. Let L∗ be the adjoint operator,

then its domain is the set of all v ∈ X for which the linear functional

u→ 〈Lu, v〉

is continuous in the Hilbert norm on X. From Riesz representation theorem we know

that there exists a unique w ∈ X for which

〈Lu, v〉 = 〈u,w〉.
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For such v ∈ D(L∗) the adjoint operator L∗ is uniquely defined by the map L∗v = w.

The adjoint operator is closed, and its domain is also dense in X. The spectrum of

an operator and its adjoint are related as

σ(L∗) = σ(L).

Definition 5 (Self-adjoint operator). A linear operator L : D(L) ⊂ X 7→ X in a

Hilbert space X, with dense domain D(L), is called self-adjoint if its adjoint

L∗ : D(L∗) ⊂ X 7→ X satisfies D(L) = D(L∗) and Lu = L∗u for all u ∈ D(L).

The spectrum of a self-adjoint operator is real. The algebraic and geometric mul-

tiplicities of an isolated eigenvalue λ ∈ σ(L) of a self-adjoint operator are the same,

i.e., every isolated eigenvalue is semi-simple.

Definition 6 (Positive operator). Let X be a Hilbert space. A linear operator

L : X → X is called positive if 〈Lu, u〉 ≥ 0 for all u ∈ X.

Definition 7 (Fredholm operator). The operator L is a Fredholm operator if

• ker(L) is finite-dimensional,

• range(L) is closed with finite codimension.

The integer

ind(L) = dim(ker(L))− codim(range(L)).

is called the Fredholm index.

The operator L is Fredholm if and only if L∗ is, and their indices are related as

ind(L) = − ind(L∗).

If λ ∈ σ(L) is an isolated eigenvalue with finite algebraic multiplicity, then λI −L is

a Fredholm operator with index zero. If Lu = f , then for every v ∈ ker(L∗)

〈f, v〉 = 〈Lu, v〉 = 〈u,L∗v〉 = 0.

In other words, the range of L is orthogonal to the kernel of L∗. It turns out that the

orthogonality 〈f, v〉 = 0 for every v ∈ ker(L∗) is a necessary condition for solvability
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of equation Lu = f . It becomes also a sufficient condition if L is a Fredholm operator.

More precisely, the following theorem holds.

Theorem 3 (Fredholm Alternative). Suppose that X is a Hilbert space with inner

product 〈·, ·〉X , and L : D(L) ⊂ X 7→ X is a closed Fredholm operator with dense

domain D(L) ⊂ X. For f ∈ X the nonhomogeneous problem Lu = f has a solution

u ∈ D(L) if and only if f ∈ ker(L∗)⊥:

range(L) = ker(L∗)⊥.

Moreover, the Fredholm index counts the dimensional mismatch between the kernels

of L and L∗:
dim(ker(L))− dim(ker(L∗)) = ind(L).

For any Fredholm operator the space X can be decomposed as

X = range(L)⊕ ker(L∗).

Definition 8. Let X be a Banach space and let L : D(L) ⊂ X → X be a closed linear

operator with dense domain D(L) in X. The spectrum of L is decomposed into the

following three sets:

• The point spectrum or discrete spectrum σp(L) is a set of λ ∈ σ(L) such that

the operator λI − L is not invertible.

• The residual spectrum σr(L) is a set of λ ∈ σ(L) such that operator (λI −L)−1

is not defined on a dense set.

• The continuous spectrum σc(L) is a set of λ ∈ σ(L) such that (λI − L)−1 is

defined on a dense set, but (λI − L)−1 is an unbounded operator.

The following spectral properties hold for self-adjoint operators:

Theorem 4. Let L be a self-adjoint operator on a Hilbert space X. Then

• L has no residual spectrum: σr(L) = ∅.

• The spectrum is real: σ(L) ⊂ R.

• Eigenvectors corresponding to distinct eigenvalues of σp(L) are orthogonal.
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To locate continuous spectrum, one needs to compute the Fredholm index of an

operator. One of the techniques is to perturb a Fredholm operator.

Definition 9. Let L0 be a closed operator with ρ(L0) 6= ∅. The operator L is called a

relatively compact perturbation of L0 (or relatively L0-compact) if

• D(L) ⊂ D(L − L0)

• (L0 − L)(λI − L0)−1 is compact for some (and hence, for all) λ ∈ ρ(L0).

A number of stability theorems for relatively compact perturbations of Fredholm

operators exist. They are usually referred to as the Weyl Spectrum Theorem:

Theorem 5 (Weyl Spectrum Theorem). Let L and L0 be closed linear operators on

a Hilbert space X. If L is a relatively compact perturbation of L0, then the following

properties hold:

• The operator λI − L is Fredholm if and only if λI − L0 is Fredholm.

• ind(λI − L) = ind(λI − L0).

• The operators L and L0 have the same continuous spectra: σc(L) = σc(L0).

1.5.6 Useful results

Here we list individual results which will be used in this thesis.

Implicit Function Theorem. (Theorem 4.E in [142]) Let X, Y and Z be

Banach spaces and let F (x, y) : X × Y → Z be a C1 map on an open neighborhood of

the point (x0, y0) ∈ X × Y . Assume that

F (x0, y0) = 0

and that

DxF (x0, y0) : X → Z is one-to-one and onto.

There are r > 0 and σ > 0 such that for each y with ‖y − y0‖Y ≤ σ there exists a

unique solution x ∈ X of the nonlinear equation F (x, y) = 0 with ‖x − x0‖X ≤ r.

Moreover, the map Y 3 y 7→ x(y) ∈ X is C1 near y = y0.
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Perturbation Theory for Linear Operators. (Theorem VII.1.7 in [71])

Let T (ε) be a family of operators from Banach space X to itself, which depends analyt-

ically on the small parameter ε. If the spectrum of T (0) is separated into two parts, the

subspaces of X corresponding to the separated parts also depend on ε analytically. In

particular, the spectrum of T (ε) is separated into two parts for any ε 6= 0 sufficiently

small.

Lyapunov’s Stability Theorem. [87] Consider the following evolution problem

on a Hilbert space X,
d~x

dt
= ~f(~x), ~x ∈ X, (1.14)

where ~f : X → X satisfies ~f(~0) = ~0. Let V : X → R satisfy the following properties:

1. V ∈ C2(X) with V (~0) = 0;

2. There exists C > 0 such that V (~x) ≥ C‖~x‖2
X for every ~x ∈ X;

3. d
dt
V (~x) ≤ 0 for every solution of (1.14).

Then the zero equilibrium of the evolution system (1.14) is nonlinearly stable in the

sense: for every ν > 0 there is δ > 0 such that if ~x0 ∈ X satisfies ‖~x0‖X ≤ δ, then

the unique solution ~x(t) of the evolution system (1.14) such that ~x(0) = ~x0 satisfies

‖~x(t)‖X ≤ ε for every t ∈ R+.

Hamilton–Krein Index Theorem (Theorem 3.3 in [68]). Let L be a self-adjoint

operator in a Hilbert space X with finitely many negative eigenvalues n(L), a simple

zero eigenvalue with eigenfunction v0, and the rest of its spectrum is bounded from

below by a positive number. Let J be a bounded invertible skew-symmetric operator in

X. Let kr be a number of positive real eigenvalues of JL, kc be a number of quadruplets

{±λ,±λ̄} that are neither in R nor in iR, and k−i be a number of purely imaginary

pairs of eigenvalues of JL whose invariant subspaces lie in the negative subspace of

L. Let D = 〈L−1J−1v0, J
−1v0〉X be finite and nonzero. Then,

KHAM = kr + 2kc + 2k−i =

{
n(L)− 1, D < 0,

n(L), D > 0.
(1.15)
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Chapter 2

Breathers in Discrete Systems

2.1 Model

A simple yet universal model widely used to study coupled nonlinear oscillators is the

Frenkel-Kontorova (FK) model [85]. It describes a chain of classical particles coupled

to their neighbors and subjected to a periodic on-site potential. In the continuum

approximation, the FK model reduces to the sine-Gordon equation, which is exactly

integrable. The FK model is known to describe a rich variety of important nonlinear

phenomena, which find applications in solid-state physics and nonlinear science [27].

We consider here a two-array system of coupled pendula, where each pendulum is

connected to the nearest neighbors by linear couplings. Figure 2.1 shows schematically

that each array of pendula is connected in the longitudinal direction by the torsional

springs, whereas each pair of pendula is connected in the transverse direction by a

common string. Newton’s equations of motion are given by{
ẍn + sin(xn) = C (xn+1 − 2xn + xn−1) +Dyn,

ÿn + sin(yn) = C (yn+1 − 2yn + yn−1) +Dxn,
n ∈ Z, t ∈ R, (2.1)

where (xn, yn) correspond to the angles of two arrays of pendula, dots denote deriva-

tives of angles with respect to time t, and the positive parameters C and D describe

couplings between the two arrays in the longitudinal and transverse directions, re-

spectively. The type of coupling between the two pendula with the angles xn and yn

is referred to as the direct coupling between nonlinear oscillators (see Section 8.2 in

[118]).
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We consider oscillatory dynamics of coupled pendula under the following assump-

tions.

(A1) The coupling parameters C and D are small. Therefore, we can introduce a

small parameter µ such that both C and D are proportional to µ2.

(A2) A resonant periodic force is applied to the common strings for each pair of

coupled pendula. Therefore, D is considered to be proportional to cos(2ωt),

where ω is selected near the unit frequency of linear pendula indicating the 1 : 2

parametric resonance between the force and the pendula.

yn

xnxn−1 xn+1

yn+1yn−1

Figure 2.1: A schematic picture for the chain of coupled pendula connected by tor-
sional springs, where each pair is hung on a common string.

Mathematically, we impose the following representation for parameters C and

D(t):

C = εµ2, D(t) = 2γµ2 cos(2ωt), ω2 = 1 + µ2Ω, (2.2)

where γ, ε,Ω are µ-independent parameters, whereas µ is the formal small parameter

to characterize the two assumptions (A1) and (A2).

In the formal limit µ→ 0, the pendula are uncoupled, and their small-amplitude

oscillations can be studied with the asymptotic multi-scale expansion{
xn(t) = µ

[
An(µ2t)eiωt + Ān(µ2t)e−iωt

]
+ µ3Xn(t;µ),

yn(t) = µ
[
Bn(µ2t)eiωt + B̄n(µ2t)e−iωt

]
+ µ3Yn(t;µ),

(2.3)

where (An, Bn) are amplitudes for nearly harmonic oscillations and (Xn, Yn) are re-

mainder terms. In a similar context of single-array coupled nonlinear oscillators, it is

shown in [110] how the asymptotic expansions like (2.3) can be justified. From the con-

ditions that the remainder terms (Xn, Yn) remain bounded as the system evolves, the

amplitudes (An, Bn) are shown to satisfy the discrete nonlinear Schrödinger (dNLS)
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equations, which bring together all the phenomena affecting the nearly harmonic

oscillations (such as cubic nonlinear terms, the detuning frequency, the coupling be-

tween the oscillators, and the amplitude of the parametric driving force). A similar

derivation for a single pair of coupled pendula is reported in [16].

Using the algorithm in [110] and restricting the scopes of this derivation to the

formal level, we write the truncated system of equations for the remainder terms:{
Ẍn +Xn = F

(1)
n eiωt + F

(1)
n e−iωt + F

(3)
n e3iωt + F

(3)
n e−3iωt,

Ÿn + Yn = G
(1)
n eiωt +G

(1)
n e−iωt +G

(3)
n e3iωt +G

(3)
n e−3iωt,

n ∈ Z, t ∈ R, (2.4)

where F
(1,3)
n and G

(1,3)
n are uniquely defined. Bounded solutions to the linear in-

homogeneous equations (2.4) exist if and only if F
(1)
n = G

(1)
n = 0 for every n ∈ Z.

Straightforward computations show that the conditions F
(1)
n = G

(1)
n = 0 are equivalent

to the following evolution equations for slowly varying amplitudes (An, Bn):{
2iȦn = ε (An+1 − 2An + An−1) + ΩAn + γB̄n + 1

2
|An|2An,

2iḂn = ε (Bn+1 − 2Bn +Bn−1) + ΩBn + γĀn + 1
2
|Bn|2Bn,

n ∈ Z, t ∈ R. (2.5)

The system (2.5) takes the form of coupled parametrically forced dNLS equations.

There exists an invariant reduction of system (2.5) given by

An = Bn, n ∈ Z (2.6)

to the scalar parametrically forced dNLS equation. Existence and stability of breathers

in such scalar dNLS equations was considered numerically by Susanto et al. in

[135, 136].

The reduction (2.6) corresponds to the symmetric synchronized oscillations of

coupled pendula of the model (2.1) with

xn = yn, n ∈ Z. (2.7)

In what follows, we consider a more general class of synchronized oscillations of cou-

pled pendula of the model (2.1). The solutions we consider also generalize the breather

solutions of the coupled parametrically forced dNLS equations (2.5).
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vn+1

un un+1

vn−1 vn

un−1

Figure 2.2: The chain of PT -symmetric dimers representing coupled pendula. Filled
(empty) circles correspond to sites with gain (loss).

It turns out that the model (2.5) can be cast to the form of the parity–time reversal

(PT ) dNLS equations [16]. Using the variables

un :=
1

4

(
An − iB̄n

)
, vn :=

1

4

(
An + iB̄n

)
, (2.8)

the system of coupled dNLS equations (2.5) is rewritten in the equivalent form{
2iu̇n = ε (vn+1 − 2vn + vn−1) + Ωvn + iγun + 2 [(2|un|2 + |vn|2) vn + u2

nv̄n] ,

2iv̇n = ε (un+1 − 2un + un−1) + Ωun − iγvn + 2 [(|un|2 + 2|vn|2)un + ūnv
2
n] ,

(2.9)

which is the starting point for our analytical and numerical work. Figure 2.2 de-

picts schematically the chain of coupled pendula represented by (2.9). The invariant

reduction (2.6) for system (2.5) becomes

Im(e
iπ
4 un) = 0, Im(e−

iπ
4 vn) = 0, n ∈ Z. (2.10)

In the context of hard nonlinear oscillators (e.g. in the framework of the φ4 theory),

the cubic nonlinearity may have the opposite sign compared to the one in the system

(2.9). However, given the applied context of the system of coupled pendula, we will

stick to the specific form (2.9) in further analysis.

2.2 Symmetries and conserved quantities

The system of coupled dNLS equations (2.9) is referred to as the PT -symmetric

dNLS equation because the solutions remain invariant with respect to the action of
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the parity P and time-reversal T operators given by

P
[
u

v

]
=

[
v

u

]
, T

[
u(t)

v(t)

]
=

[
ū(−t)
v̄(−t)

]
. (2.11)

The parameter γ introduces the gain–loss coefficient in each pair of coupled oscillators

due to the resonant periodic force. In the absence of all other effects, the γ-term of the

first equation of system (2.9) induces the exponential growth of amplitude un, whereas

the γ-term of the second equation induces the exponential decay of amplitude vn, if

γ > 0.

The system (2.9) truncated at a single site (say n = 0) is called the PT -symmetric

dimer. In the work of Barashenkov et al. [16], it was shown that all PT -symmetric

dimers with physically relevant cubic nonlinearities represent Hamiltonian systems

in appropriately introduced canonical variables. However, the PT -symmetric dNLS

equation on a lattice does not typically have a Hamiltonian form if γ 6= 0.

Nevertheless, the particular nonlinear functions arising in the system (2.9) corre-

spond to the PT -symmetric dimers with a cross–gradient Hamiltonian structure [16],

where variables (un, v̄n) are canonically conjugate. As a result, the system (2.9) on

the chain Z has additional conserved quantities. This fact looked like a mystery in

the recent works [15, 16].

Here we clarify the mystery in the context of the derivation of the PT -symmetric

dNLS equation (2.9) from the original system (2.1). Indeed, the system (2.1) of clas-

sical Newton particles has a standard Hamiltonian structure with the energy function

Hx,y(t) =
∑
n∈Z

1

2
(ẋ2

n + ẏ2
n) + 2− cos(xn)− cos(yn)

+
1

2
C(xn+1 − xn)2 +

1

2
C(yn+1 − yn)2 −D(t)xnyn. (2.12)

Since the periodic movement of common strings for each pair of pendula result in

the time-periodic coefficient D(t), the energy Hx,y(t) is a periodic function of time t.

In addition, no other conserved quantities such as momenta exist typically in lattice

differential systems such as the system (2.1) due to broken continuous translational

symmetry.
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After the system (2.1) is reduced to the coupled dNLS equations (2.5) with the

asymptotic expansion (2.3), we can write the evolution problem (2.5) in the Hamilto-

nian form with the standard straight-gradient symplectic structure

2i
dAn
dt

=
∂HA,B

∂Ān
, 2i

dBn

dt
=
∂HA,B

∂B̄n

, n ∈ Z, (2.13)

where the time variable t stands now for the slow time µ2t and the energy function is

HA,B =
∑
n∈Z

1

4
(|An|4 + |Bn|4) + Ω(|An|2 + |Bn|2) + γ(AnBn + ĀnB̄n)

−ε|An+1 − An|2 − ε|Bn+1 −Bn|2. (2.14)

The energy functionHA,B is conserved in the time evolution of the Hamiltonian system

(2.13). In addition, there exists another conserved quantity

QA,B =
∑
n∈Z

(|An|2 − |Bn|2), (2.15)

which is related to the gauge symmetry (A,B)→ (Aeiα, Beiα) with α ∈ R for solutions

to the system (2.5).

When the transformation of variables (2.8) is used, the PT -symmetric dNLS equa-

tion (2.9) is cast to the Hamiltonian form with the cross-gradient symplectic structure

2i
dun
dt

=
∂Hu,v

∂v̄n
, 2i

dvn
dt

=
∂Hu,v

∂ūn
, n ∈ Z, (2.16)

where the energy function is

Hu,v =
∑
n∈Z

(|un|2 + |vn|2)2 + (unv̄n + ūnvn)2 + Ω(|un|2 + |vn|2)

−ε|un+1 − un|2 − ε|vn+1 − vn|2 + iγ(unv̄n − ūnvn). (2.17)

The gauge-related function is written in the form

Qu,v =
∑
n∈Z

(unv̄n + ūnvn). (2.18)

The functions Hu,v and Qu,v are conserved in the time evolution of the system (2.9).
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These functions follow from (2.14) and (2.15) after the transformation (2.8) is used.

Thus, the cross-gradient Hamiltonian structure of the PT -symmetric dNLS equation

(2.9) is inherited from the Hamiltonian structure of the coupled oscillator model (2.1).

2.3 Breathers (time-periodic solutions)

We characterize the existence of breathers supported by the PT -symmetric dNLS

equation (2.9). In particular, breather solutions are continued for small values of

coupling constant ε from solutions of the dimer equation arising at a single site, say

the central site at n = 0. We shall work in a sequence space `2(Z) of square integrable

complex-valued sequences.

Time-periodic solutions to the PT -symmetric dNLS equation (2.9) are given in

the form [80, 115]:

u(t) = Ue−
1
2
iEt, v(t) = V e−

1
2
iEt, (2.19)

where the frequency parameter E is considered to be real, the factor 1/2 is introduced

for convenience, and the sequence (U, V ) is time-independent. The breather (2.19)

is a localized mode if (U, V ) ∈ `2(Z), which implies that |Un|, |Vn| → 0 as |n| → ∞.

The breather (2.19) is considered to be PT -symmetric with respect to the operators

in (2.11) if V = Ū .

The reduction (2.10) for symmetric synchronized oscillations is satisfied if

E = 0 : Im(e
iπ
4 Un) = 0, Im(e−

iπ
4 Vn) = 0, n ∈ Z. (2.20)

The time-periodic breathers (2.19) with E 6= 0 generalize the class of symmetric

synchronized oscillations (2.20).

The time-independent sequence (U, V ) ∈ `2(Z) can be found from the stationary

PT -symmetric dNLS equation: EUn = ε (Vn+1 − 2Vn + Vn−1) + ΩVn + iγUn + 2
[(

2|Un|2 + |Vn|2
)
Vn + U2

nV̄n
]
,

EVn = ε (Un+1 − 2Un + Un−1) + ΩUn − iγVn + 2
[(
|Un|2 + 2|Vn|2

)
Un + ŪnV

2
n

]
.

(2.21)

The PT -symmetric breathers with V = Ū satisfy the following scalar difference equa-

tion

EUn = ε
(
Ūn+1 − 2Ūn + Ūn−1

)
+ ΩŪn + iγUn + 6|Un|2Ūn + 2U3

n. (2.22)
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Figure 2.3: Solution branches for the dimer equation (2.23).

Note that the reduction (2.20) is compatible with equation (2.22) in the sense that if

E = 0 and Un = Rne
−iπ/4, then R satisfies a real-valued difference equation.

Let us set ε = 0 for now and consider solutions to the dimer equation at the central

site n = 0:

(E − iγ)U0 − ΩŪ0 = 6|U0|2Ū0 + 2U3
0 . (2.23)

The parameters γ and Ω are considered to be fixed, and the breather parameter E

is thought to parameterize continuous branches of solutions to the nonlinear alge-

braic equation (2.23). The solution branches depicted on Figure 2.3 are given in the

following lemma.

Lemma 4. Assume γ 6= 0. The algebraic equation (2.23) admits the following solu-

tions depending on γ and Ω:

(a) Ω > |γ| - two symmetric unbounded branches exist for ±E > E0,

(b) Ω < |γ| - an unbounded branch exists for every E ∈ R,

(c) Ω < −|γ| - a bounded branch exists for −E0 < E < E0,

where E0 :=
√

Ω2 − γ2.

Proof. Substituting the decomposition U0 = Aeiθ with A > 0 and θ ∈ [−π, π) into

the algebraic equation (2.23), we obtain

sin(2θ) =
γ

4A2 + Ω
, cos(2θ) =

E

8A2 + Ω
. (2.24)
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Excluding θ by using the fundamental trigonometric identity, we obtain the explicit

parametrization of the solutions to the algebraic equation (2.23) by the amplitude

parameter A:

E2 = (8A2 + Ω)2

[
1− γ2

(4A2 + Ω)2

]
. (2.25)

The zero-amplitude limit A = 0 is reached if |Ω| > |γ|, in which case E = ±E0, where

E0 :=
√

Ω2 − γ2. If |Ω| < |γ| , the solution branches (if they exist) are bounded away

from the zero solution.

Now we analyze the three cases of parameters γ and Ω formulated in the lemma.

(a) If Ω > |γ|, then the parametrization (2.25) yields a monotonically increasing

map R+ 3 A2 7→ E2 ∈ (E2
0 ,∞) because

dE2

dA2
=

8(8A2 + Ω)

(4A2 + Ω)3

[
2(4A2 + Ω)3 − γ2Ω

]
> 0. (2.26)

In the two asymptotic limits, we obtain from (2.25):

E2 = E2
0 +O(A2) as A→ 0 and E2 = 64A4 +O(A2) as A→∞.

See Figure 2.3(a).

(b) If Ω < |γ|, the parametrization (2.25) yields a monotonically increasing map

(A2
+,∞) 3 A2 7→ E2 ∈ R+, where

A2
+ :=

|γ| − Ω

4
. (2.27)

Indeed, we note that 4A2 + Ω ≥ 4A2
+ + Ω = |γ| > 0 and

2(4A2 + Ω)3 − γ2Ω ≥ γ2(2|γ| − Ω) > 0,

so that the derivative in (2.26) is positive for every A2 ≥ A2
+. We have

E2 → 0 as A2 → A2
+ and E2 = 64A4 +O(A2) as A→∞.

See Figure 2.3(b).
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(c) If Ω < −|γ|, then the parametrization (2.25) yields a monotonically decreasing

map (0, A2
−) 3 A2 7→ E2 ∈ (0, E2

0), where

A2
− := min

{ |Ω| − |γ|
4

,
|Ω|
8

}
. (2.28)

In (2.28), the first choice is made if |Ω| ∈ (|γ|, 2|γ|) and the second choice is

made if |Ω| ∈ (2|γ|,∞). Both choices are the same if |Ω| = 2|γ|. We note that

8A2 ≤ |Ω|, therefore, the derivative (2.26) needs to be rewritten in the form

dE2

dA2
= −8(|Ω| − 8A2)

(|Ω| − 4A2)3

[
2(|Ω| − 4A2)3 − γ2|Ω|

]
< 0, (2.29)

where 2(|Ω| − 4A2)3 − γ2|Ω| > 0 for both |Ω| ∈ (|γ|, 2|γ|) and |Ω| ∈ [2|γ|,∞).

In the two asymptotic limits, we obtain from (2.25):

E2 = E2
0 +O(A2) as A→ 0 and E2 → 0 as A2 → A2

−.

See Figure 2.3(c).

Note that branches (b) and (c) coexist for Ω < −|γ|.

Remark 1. The reduction (2.20) corresponds to the choice:

E = 0, θ = −π
4
, 4A2 + Ω + γ = 0.

If γ > 0, this choice corresponds to A = A− for Ω ∈ (−2|γ|,−|γ|), that is, the point

E = 0 on branch (c). If γ < 0, it corresponds to A = A+ for any Ω < |γ|, that is, the

point E = 0 on branch (b).

Every solution of Lemma 4 can be extended to a breather on the chain Z which

satisfies the spatial symmetry condition in addition to the PT symmetry:

U−n = Un = V̄n = V̄−n, n ∈ Z. (2.30)

With two applications of the implicit function theorem (see Section 1.5.6), we

prove the following main result of this section.
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Theorem 6. Fix γ 6= 0, Ω 6= −2|γ|, and E 6= ±E0, where E0 :=
√

Ω2 − γ2 > 0

if |Ω| > |γ|. There exists ε0 > 0 sufficiently small and C0 > 0 such that for every

ε ∈ (−ε0, ε0), there exists a unique solution U ∈ l2(Z) to the difference equation (2.22)

satisfying the symmetry (2.30) and the bound

∣∣U0 − Aeiθ
∣∣+ sup

n∈N
|Un| ≤ C0|ε|, (2.31)

where A and θ are defined in Lemma 4. Moreover, the solution U is smooth in ε.

Proof. In the first application of the implicit function theorem, we consider the fol-

lowing system of algebraic equations

EUn = ε
(
Ūn+1 − 2Ūn + Ūn−1

)
+ ΩŪn + iγUn + 6|Un|2Ūn + 2U3

n, n ∈ N, (2.32)

where U0 ∈ C is given, in addition to parameters γ, Ω, and E.

Let x = {Un}n∈N, X = `2(N), y = ε, Y = R, and Z = `2(N). Then, we have

F (0, 0) = 0 and the Jacobian operator DxF (0, 0) is given by identical copies of the

matrix [
E − iγ −Ω

−Ω E + iγ

]
,

with the eigenvalues λ± := E±
√

Ω2 − γ2. By the assumption of the lemma, λ± 6= 0,

so that the Jacobian operator DxF (0, 0) is one-to-one and onto. By the implicit

function theorem, for every U0 ∈ C and every ε 6= 0 sufficiently small, there exists a

unique small solution U ∈ `2(N) of the system (2.32) such that

‖U‖l2(N) ≤ C1|ε||U0|, (2.33)

where the positive constant C1 is independent from ε and U0.

Thanks to the symmetry of the difference equation (2.22), we find that U−n = Un,

n ∈ N satisfy the same system (2.32) with −n ∈ N, with the same unique solution.

In the second application of the implicit function theorem, we consider the follow-

ing algebraic equation

EU0 = 2ε
(
Ū1 − Ū0

)
+ ΩŪ0 + iγU0 + 6|U0|2Ū0 + 2U3

0 , (2.34)
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where U1 ∈ C depends on U0, γ, Ω, and E, satisfies the bound (2.33), and is uniquely

defined by the previous result.

Let x = U0, X = C, y = ε, Y = R, and Z = C. Then, we have F (Aeiθ, 0) = 0,

where A and θ are defined in Lemma 4. The Jacobian operator DxF (Aeiθ, 0) is given

by the matrix [
E − iγ − 6U2

0 − 6Ū2
0 −Ω− 12|U0|2

−Ω− 12|U0|2 E + iγ − 6U2
0 − 6Ū2

0

]∣∣∣∣
U0=Aeiθ

=

[
E − iγ − 12EA2

Ω+8A2 −Ω− 12A2

−Ω− 12A2 E + iγ − 12EA2

Ω+8A2

]
. (2.35)

We show in Lemma 5 below that the matrix given by (2.35) is invertible under the

conditions γ 6= 0 and Ω 6= −2|γ|. By the implicit function theorem, for every ε 6= 0

sufficiently small, there exists a unique solution U0 ∈ C to the algebraic equation

(2.34) near Aeiθ such that ∣∣U0 − Aeiθ
∣∣ ≤ C2|ε|, (2.36)

where the positive constant C2 is independent from ε. The bound (2.31) holds thanks

to the bounds (2.33) and (2.36). Since both equations (2.32) and (2.34) are smooth

in ε, the solution U is smooth in ε.

In the following result, we show that the matrix given by (2.35) is invertible for

every branch of Lemma 4 with an exception of a single point E = 0 on branch (c) for

Ω = −2|γ|.

Lemma 5. With the exception of the point E = 0 on branch (c) of Lemma 4 for

Ω = −2|γ|, the matrix given by (2.35) is invertible for every γ 6= 0.

Proof. The matrix given by (2.35) has zero eigenvalue if and only if its determinant

is zero, which happens at

E2(Ω− 4A2)2

(Ω + 8A2)2
+ γ2 − (Ω + 12A2)2 = 0.

Eliminating E2 by using parametrization (2.25) and simplifying the algebraic equation

for nonzero A2, we reduce it to the form

2(Ω + 4A2)3 = Ωγ2. (2.37)
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We now check if this constraint can be satisfied for the three branches of Lemma 4.

(a) If Ω > |γ|, the constraint (2.37) is not satisfied because the left-hand side

2(Ω + 4A2)3 ≥ 2Ω3 > 2Ωγ2

exceeds the right-hand side Ωγ2.

(b) If Ω < |γ| and A2 ≥ A2
+, where A2

+ is given by (2.27), the constraint (2.37) is

not satisfied because the left-hand side

2(Ω + 4A2)3 ≥ 2(Ω + 4A2
+)3 = 2|γ|3

exceeds the left-hand side Ωγ2 both for Ω ∈ [0, |γ|) and for Ω < 0.

(c) If Ω < −|γ| and A2 ≤ A2
−, where A2

− is given by (2.28), the constraint (2.37) is

not satisfied because the left-hand side is estimated by

2(4A2 + Ω)3 ≤ 2(4A2
− − |Ω|)3 = min{−2|γ|3,−|Ω|3/4}.

In the first case, we have |Ω| ∈ (|γ|, 2|γ|), so that the left-hand side is strictly

smaller than −|Ω|γ2. In the second case, we have |Ω| > 2|γ|, so that the left-

hand side is also strictly smaller than −|Ω|γ2. Only if |Ω| = 2|γ|, the constraint

(2.37) is satisfied at E = 0, when A2 = A2
− and

2(4A2 + Ω)3 = −2|γ|3 = −|Ω|γ2 = Ωγ2.

Hence, the matrix (2.35) is invertible for all parameter values with one exceptional

case.

Remark 2. In the asymptotic limit E2 = 64A4 + O(A2) as A → ∞, see Lemma 4,

the matrix (2.35) is expanded asymptotically as

−1

2

[
E 3|E|

3|E| E

]
+O(1) as |E| → ∞, (2.38)

with the two eigenvalues λ1 = E and λ2 = −2E. Thus, the matrix given by (2.38) is

invertible for every branch extending to sufficiently large values of E.
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2.4 Stability of zero equilibrium

Here we discuss the linear stability of the zero equilibrium in the PT -symmetric dNLS

equation (2.9). The following proposition yields a simple result.

Proposition 1. The zero equilibrium of the PT -symmetric dNLS equation (2.9) is

linearly stable if |γ| < γ0, where

γ0 :=

{
Ω− 4ε, Ω > 0,

|Ω|, Ω < 0.
(2.39)

The zero equilibrium is linearly unstable if |γ| > γ0.

Proof. Truncating the PT -symmetric dNLS equation (2.9) at the linear terms and

using the Fourier transform

un(t) =
1

2π

∫ π

−π
Û(k)eikn+iω(k)tdk, (2.40)

we obtain the linear homogeneous system

D̂(k)

[
Û(k)

V̂ (k)

]
=

[
0

0

]
, where D̂(k) :=

[
−2ω(k)− iγ −Ω + 4ε sin2(k/2)

−Ω + 4ε sin2(k/2) −2ω(k) + iγ

]
.

The determinant of D̂(k) is zero if and only if ω(k) is found from the quadratic

equation

4ω2(k) + γ2 −
(

Ω− 4ε sin2 k

2

)2

= 0. (2.41)

For any |γ| < γ0, where γ0 is given by (2.39), the two branches ±ω(k) found from the

quadratic equation (2.41) are real-valued and non-degenerate for every k ∈ [−π, π].

Therefore, the zero equilibrium is linearly stable.

On the other hand, for any |γ| > γ0, the values of ω(k) are purely imaginary either

near k = ±π if Ω > 0 or near k = 0 if Ω < 0. Therefore, the zero equilibrium is

linearly unstable.

Remark 3. The value γ0 given by (2.39) represents the phase transition threshold

and the PT -symmetric dNLS equation (2.9) has broken PT -symmetry for |γ| > γ0.

If ε = 0, the zero equilibrium is only linearly stable for |γ| < |Ω|. Since the

localized breathers cannot be stable when the zero background is unstable, we shall
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study stability of breathers only for the case when |γ| < |Ω|, that is, in the regime of

unbroken PT -symmetry.

2.5 Variational characterization of breathers

It follows from Theorem 6 that each interior point on the solution branches shown

on Figure 2.3 generates a fundamental breather of the PT -symmetric dNLS equation

(2.9). We shall now characterize these breathers as relative equilibria of the energy

function.

Thanks to the cross-gradient symplectic structure (2.16), the stationary PT -

symmetric dNLS equation (2.21) can be written in the gradient form

EUn =
∂Hu,v

∂V̄n
, EVn =

∂Hu,v

∂Ūn
, n ∈ Z. (2.42)

Keeping in mind the additional conserved quantity Qu,v given by (2.18), we conclude

that the stationary solution (U, V ) is a critical point of the combined energy function

given by

HE := Hu,v − EQu,v. (2.43)

If we want to apply the Lyapunov method in order to study nonlinear stability

of stationary solutions in Hamiltonian systems, we shall investigate convexity of the

second variation of the combined energy functional HE at (U, V ). Using the expansion

u = U + u, v = V + v and introducing extended variables Φ and φ with the blocks

Φn := (Un, Ūn, Vn, V̄n), φn := (un, ūn,vn, v̄n), (2.44)

we can expand the smooth function HE up to the quadratic terms in φ:

HE(Φ + φ) = HE(Φ) +
1

2
〈H′′Eφ, φ〉l2 +O(‖φ‖3

l2), (2.45)

whereH′′E is the self-adjoint (Hessian) operator defined on `2(Z) and the scalar product

was used in the following form:

〈x, y〉l2 =
∑
k∈Z

xkȳk.
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Using (2.17) and (2.18), the Hessian operator can be computed explicitly as follows

H′′E = L+ ε∆, (2.46)

where blocks of L at each lattice node n ∈ Z are given by

Ln =


Ω + 8|Un|2 2(U2

n + Ū2
n) −E − iγ + 4(U2

n + Ū2
n) 4|Un|2

2(U2
n + Ū2

n) Ω + 8|Un|2 4|Un|2 −E + iγ + 4(U2
n + Ū2

n)

−E + iγ + 4(U2
n + Ū2

n) 4|Un|2 Ω + 8|Un|2 2(U2
n + Ū2

n)

4|Un|2 −E − iγ + 4(U2
n + Ū2

n) 2(U2
n + Ū2

n) Ω + 8|Un|2


and ∆ is the discrete Laplacian operator applied to blocks of φ at each lattice node

n ∈ Z:

(∆φ)n = φn+1 − 2φn + φn−1.

In the expression for Ln, we have used the PT -symmetry condition V = Ū for the

given stationary solution (U, V ).

We study convexity of the combined energy functional HE at (U, V ). Since the

zero equilibrium is linearly stable only for |γ| < |Ω| (if ε = 0), we only consider

breathers of Theorem 6 for |γ| < |Ω|.
With an application of the perturbation theory for linear operators (see Sec-

tion 1.5.6), we prove the following main result of this section.

Theorem 7. Fix γ 6= 0, Ω, and E along branches of the PT -symmetric breathers

(U, V ) given by Theorem 6 such that |Ω|>|γ| and E 6= ±E0, where E0 :=
√

Ω2 − γ2> 0.

For every ε > 0 sufficiently small, the operator H′′E admits a one-dimensional kernel

in `2(Z) spanned by the eigenvector σΦ due to the gauge invariance, where the blocks

of the eigenvector are given by

(σΦ)n := (Un,−Ūn, Vn,−V̄n). (2.47)

In addition,

• If |E| > E0, the spectrum of H′′E in `2(Z) includes infinite-dimensional positive

and negative parts.

• If |E| < E0 and Ω < −|γ|, the spectrum of H′′E in `2(Z) includes an infinite-

dimensional negative part and either three or one simple positive eigenvalues for

branches (b) and (c) of Lemma 4 respectively.
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Proof. If ε = 0, the breather solution of Theorem 6 is given by Un = 0 for every

n 6= 0 and U0 = Aeiθ, where A and θ are defined by Lemma 4. In this case, the linear

operator H′′E = L decouples into 4-by-4 blocks for each lattice node n ∈ Z.
For n = 0, the 4-by-4 block of the linear operator L is given by

L0 =


Ω + 8A2 4A2 cos(2θ) −E − iγ + 8A2 cos(2θ) 4A2

4A2 cos(2θ) Ω + 8A2 4A2 −E + iγ + 8A2 cos(2θ)

−E + iγ + 8A2 cos(2θ) 4A2 Ω + 8A2 4A2 cos(2θ)

4A2 −E − iγ + 8A2 cos(2θ) 4A2 cos(2θ) Ω + 8A2

 .

Using relations (2.24) and (2.25), as well as symbolic computations with MAPLE,

we found that the 4-by-4 matrix block L0 admits a simple zero eigenvalue and three

nonzero eigenvalues µ1, µ2, and µ3 given by

µ1 = 2(4A2 + Ω), (2.48)

µ2,3 = 12A2 + Ω±
√

(4A2 − Ω)2 +
16ΩA2γ2

(4A2 + Ω)2
. (2.49)

For each branch of Lemma 4 with γ 6= 0 and E 6= ±E0, we have 4A2 + Ω 6= 0, so that

µ1 6= 0. Furthermore, either µ2 = 0 or µ3 = 0 if and only if

(12A2 + Ω)2(4A2 + Ω)2 = (16A4 − Ω2)2 + 16Ωγ2A2.

Expanding this equation for nonzero A yields constraint (2.37). With the exception

of a single point E = 0 at Ω = −2|γ|, we showed in Lemma 5 that the constraint

(2.37) does not hold for any of the branches of Lemma 4. Therefore, µ2 6= 0 and

µ3 6= 0 along each branch of Lemma 4 and the signs of µ1, µ2, and µ3 for each branch

of Lemma 4 can be obtained in the limit A→∞ for branches (a) and (b) or A→ 0

for branch (c). By means of these asymptotic computations as A→∞ or A→ 0, we

obtain the following results for the three branches shown on Figure 2.3:

(a) µ1, µ2, µ3 > 0.

(b) µ1, µ2, µ3 > 0.

(c) µ1 < 0, µ2 > 0, and µ3 < 0.
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For n ∈ Z\{0}, the 4-by-4 block of the linear operator L is given by

Ln =


Ω 0 −E − iγ 0

0 Ω 0 −E + iγ

−E + iγ 0 Ω 0

0 −E − iγ 0 Ω

 . (2.50)

Each block has two double eigenvalues µ+ and µ− given by

µ+ = Ω +
√
E2 + γ2, µ− = Ω−

√
E2 + γ2.

Since there are infinitely many nodes with n 6= 0, the points µ+ and µ− have infinite

multiplicity in the spectrum of the linear operator L. Furthermore, we can sort up

the signs of µ+ and µ− for each point on the three branches shown on Figure 2.3:

(1),(3) If |E| > E0 :=
√

Ω2 − γ2, then µ+ > 0 and µ− < 0.

(2),(4) If |E| < E0 and Ω < −|γ|, then µ+, µ− < 0.

By using the perturbation theory for linear operators, we argue as follows:

• Since H′′E is Hermitian on `2(Z), its spectrum is a subset of the real line for

every ε 6= 0.

• The zero eigenvalue persists with respect to ε 6= 0 at zero because the eigenvector

(2.47) belongs to the kernel of H′′E due to the gauge invariance for every ε 6= 0.

• The other eigenvalues of L are isolated away from zero. The spectrum of H′′E is

continuous with respect to ε and includes infinite-dimensional parts near points

µ+ and µ− for small ε > 0 (which may include continuous spectrum and isolated

eigenvalues) as well as simple eigenvalues near µ1,2,3 (if µ1,2,3 are different from

µ±).

The statement of the theorem follows from the perturbation theory and the count

of signs of µ1,2,3 and µ± above.
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Remark 4. In the asymptotic limit E2 = 64A4 +O(A2) as A→∞, we can sort out

eigenvalues of H′′E asymptotically as:

µ1 ≈ |E|, µ2 ≈ 2|E|, µ3 ≈ |E|, µ+ ≈ |E|, µ− ≈ −|E|, (2.51)

where the remainder terms are O(1) as |E| → ∞. The values µ1, µ3, and µ+ are

close to each other as |E| → ∞.

Remark 5. It follows from Theorem 7 that for |E| > E0, the breather (U, V ) is a

saddle point of the energy functional HE with infinite-dimensional positive and neg-

ative invariant subspaces of the Hessian operator H′′E. This is very similar to the

Hamiltonian systems of the Dirac type, where stationary states are located in the gap

between the positive and negative continuous spectrum. This property holds for points

1 and 3 on branches (a) and (b) shown on Figure 2.3.

Remark 6. No branches other than |E| > E0 exist for Ω > |γ|. On the other hand,

points 2 and 4 on branches (b) and (c) shown on Figure 2.3 satisfy |E| < E0 and

Ω < −|γ|. The breather (U, V ) is a saddle point of HE for these points and it only

has three (one) directions of positive energy in space `2(Z) for point 2 (point 4).

2.6 Spectral and orbital stability of breathers

Spectral stability of breathers can be studied for small values of coupling constant ε

by using the perturbation theory [115]. First, we linearize the PT -symmetric dNLS

equation (2.9) at the breather (2.19) by using the expansion

u(t) = e−
1
2
iEt [U + u(t)] , v(t) = e−

1
2
iEt [V + v(t)] ,

where (u,v) is a small perturbation satisfying the linearized equations

2iu̇n + Eun = ε (vn+1 − 2vn + vn−1) + Ωvn + iγun

+2 [2 (|Un|2 + |Vn|2) vn + (U2
n + V 2

n )v̄n

+ 2(ŪnVn + UnV̄n)un + 2UnVnūn
]
,

2iv̇n + Evn = ε (un+1 − 2un + un−1) + Ωun − iγvn

+2 [2 (|Un|2 + |Vn|2) un + (U2
n + V 2

n )ūn

+2 (ŪnVn + UnV̄n)vn + 2UnVnv̄n
]
.

(2.52)
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The spectral stability problem arises from the linearized equations (2.52) after the

separation of variables:

u(t) = ϕe
1
2
λt, ū(t) = ψe

1
2
λt, v(t) = χe

1
2
λt, v̄(t) = νe

1
2
λt,

where φ := (ϕ, ψ, χ, ν) is the eigenvector corresponding to the spectral parameter λ.

Note that (ϕ, ψ) and (χ, ν) are no longer complex conjugate to each other if λ has a

nonzero imaginary part. The spectral problem can be written in the explicit form

(E + iλ− iγ)ϕn − Ωχn = ε (χn+1 − 2χn + χn−1)

+ 2
[
2|Un|2(ψn + 2χn) + (U2

n + Ū2
n)(2ϕn + νn)

]
,

(E − iλ+ iγ)ψn − Ωνn = ε (νn+1 − 2νn + νn−1)

+ 2
[
2|Un|2(ϕn + 2νn) + (U2

n + Ū2
n)(2ψn + χn)

]
,

(E + iλ+ iγ)χn − Ωϕn = ε (ϕn+1 − 2ϕn + ϕn−1)

+ 2
[
2|Un|2(2ϕn + νn) + (U2

n + Ū2
n)(ψn + 2χn)

]
,

(E − iλ− iγ)νn − Ωψn = ε (ψn+1 − 2ψn + ψn−1)

+ 2
[
2|Un|2(2ψn + χn) + (U2

n + Ū2
n)(ϕn + 2νn)

]
,

(2.53)

where we have used the condition V = Ū for the PT -symmetric breathers. Recalling

definition of the Hessian operator H′′E in (2.46), we can rewrite the spectral problem

(2.53) in the Hamiltonian form:

SH′′Eφ = iλφ, (2.54)

where S is a symmetric matrix with the blocks at each lattice node n ∈ Z given by

S :=


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 . (2.55)

We note the Hamiltonian symmetry of the eigenvalues of the spectral problem (2.54).

Proposition 2. Eigenvalues of the spectral problem (2.54) occur either as real or

imaginary pairs or as quadruplets in the complex plane.
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Proof. Assume that λ ∈ C is an eigenvalue of the spectral problem (2.54) with

the eigenvector (ϕ, ψ, χ, ν). Then, λ̄ is an eigenvalue of the same problem with

the eigenvector (ψ̄, ϕ̄, ν̄, χ̄), whereas −λ is also an eigenvalue with the eigenvector

(ν, χ, ψ, ϕ).

If Ω < −|γ| and |E| < E0 :=
√

Ω2 − γ2 (points 2 and 4 shown on Figure 2.3),

Theorem 7 implies that the self-adjoint operator H′′E in `2(Z) is negative-definite with

the exception of either three (point 2) or one (point 4) simple positive eigenvalues. In

this case, we can apply Hamilton–Krein index theorem (see Section 1.5.6) in order to

characterize the spectrum of SH′′E.

Lemma 6. Fix γ 6= 0, Ω < −|γ|, and 0<|E|<E0, where E0 :=
√

Ω2 − γ2 > 0. For ev-

ery ε > 0 sufficiently small, KHAM = 2 for branch (b) of Lemma 4 and KHAM = 0 for

branch (c) of Lemma 4 with Ω < −2
√

2|γ|. For branch (c) with Ω ∈ (−2
√

2|γ|,−|γ|),

there exists a value Es ∈ (0, E0) such that KHAM = 1 for 0 < |E| < Es and KHAM = 0

for Es < |E| < E0.

Proof. If γ 6= 0, Ω < −|γ|, |E| < E0, and ε > 0 is sufficiently small, Theorem 7

implies that the spectrum of H′′E in `2(Z) has finitely many positive eigenvalues and

a simple zero eigenvalue with eigenvector σΦ. Therefore, the Hamilton–Krein index

theorem is applied in `2(Z) for L = −H′′E, J = iS, and v0 = σΦ. We shall verify that

H′′E(σΦ) = 0, SH′′E(∂EΦ) = σΦ, (2.56)

where σΦ is given by (2.47) and ∂EΦ denotes derivative of Φ with respect to parameter

E. The first equationH′′E(σΦ) = 0 follows by Theorem 7. By differentiating equations

(2.21) in E, we obtain H′′E(∂EΦ) = SσΦ for every E, for which the solution Φ is

differentiable in E. For ε = 0, the limiting solution of Lemma 4 is differentiable in

E for every E 6= 0 and E 6= ±E0. Due to smoothness of the continuation in ε by

Theorem 7, this property holds for every ε > 0 sufficiently small.

By using (2.56) with S−1 = S, we obtain

D = −〈(H′′E)−1SσΦ,SσΦ〉`2 = −〈∂EΦ,SσΦ〉`2

= −
∑
n∈Z

∂E
(
UnV̄n + ŪnVn

)
= −dQu,v

dE
, (2.57)
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where we have used the definition of Qu,v in (2.18). We compute the slope condition

at ε = 0:

dQu,v

dE

∣∣∣∣
ε=0

= 2
d

dE

A2E

8A2 + Ω
= 4(8A2 + Ω)

dA2

dE2

[
1− Ωγ2

(4A2 + Ω)3

]
, (2.58)

where relations (2.24) and (2.25) have been used.

For branch (b) of Lemma 4 with Ω < −|γ|, we have dA2/dE2 > 0 and |Ω| < 4A2,

so that dQu,v/dE > 0. By continuity, dQu,v/dE remains strictly positive for small

ε > 0. Thus, D < 0 and KHAM = 2 by the Hamilton–Krein index theorem.

For branch (c) of Lemma 4 with Ω < −|γ|, we have dA2/dE2 < 0 and |Ω| > 8A2.

Therefore, we only need to inspect the sign of the expression (4A2 + Ω)3 − Ωγ2. If

Ω < −2
√

2|γ|, then for every A2 ∈ (0, A2
−), we have

(4A2 + Ω)3 − Ωγ2 ≤ (4A2
− + Ω)3 − Ωγ2 =

1

8
Ω3 − Ωγ2 ≤ 1

8
Ω(Ω2 − 8γ2) < 0,

therefore, D < 0 and KHAM = 0 by the Hamilton–Krein index theorem.

On the other hand, if −2
√

2|γ| < Ω < −|γ|, we have (4A2 + Ω)3 − Ωγ2 < 0 at

A = 0 (E = E0) and (4A2 + Ω)3−Ωγ2 > 0 at A = A− (E = 0). Since the dependence

of A versus E is monotonic, there exists a value Es ∈ (0, E0) such that KHAM = 1 for

0 < |E| < Es and KHAM = 0 for Es < |E| < E0.

If KHAM = 0 and D 6= 0, orbital stability of a critical point of HE in space `2(Z)

can be proved from the Hamilton–Krein theorem (see [68] and references therein).

Orbital stability of breathers is understood in the following sense.

Definition 10. We say that the breather solution (2.19) is orbitally stable in `2(Z)

if for every ν > 0 sufficiently small, there exists δ > 0 such that if ψ(0) ∈ `2(Z)

satisfies ‖ψ(0)− Φ‖`2 ≤ δ, then the unique global solution ψ(t) ∈ `2(Z), t ∈ R to the

PT -symmetric dNLS equation (2.9) satisfies the bound

inf
α∈R
‖eiαψ(t)− Φ‖`2 ≤ ν, for every t ∈ R. (2.59)

The definition of instability of breathers is given by negating Definition 10. The

following result gives orbital stability or instability for branch (c) shown on Figure 2.3.
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Theorem 8. Fix γ 6= 0, Ω < −|γ|, and 0 < |E| < E0. For every ε > 0 sufficiently

small, the breather (U, V ) for branch (c) of Lemma 4 is orbitally stable in `2(Z) if

Ω < −2
√

2|γ|. For every Ω ∈ (−2
√

2|γ|,−|γ|), there exists a value Es ∈ (0, E0) such

that the breather (U, V ) is orbitally stable in `2(Z) if Es < |E| < E0 and unstable if

0 < |E| < Es.

Proof. The theorem is a corollary of Lemma 6 for branch (c) of Lemma 4 and the

orbital stability theory from [68].

Orbital stability of breathers for branches (a) and (b) of Lemma 4 does not follow

from the standard theory because KHAM = ∞ for |E| > E0 and KHAM = 2 > 0 for

branch (b) with |E| < E0. Nevertheless, by using smallness of parameter ε and the

construction of the breather (U, V ) in Theorem 6, spectral stability of breathers can

be considered directly. Spectral stability and instability of breathers is understood in

the following sense.

Definition 11. We say that the breather solution (2.19) is spectrally stable if λ ∈ iR
for every bounded solution of the spectral problem (2.54). On the other hand, if the

spectral problem (2.54) admits an eigenvalue λ /∈ iR with an eigenvector in `2(R), we

say that the breather solution (2.19) is spectrally unstable.

The following theorem gives spectral stability of breathers for branches (a) and

(b) shown on Figure 2.3.

Theorem 9. Fix γ 6= 0, |Ω| > |γ|, and E along branches (a) and (b) of Lemma 4

with E 6= 0 and E 6= ±E0. For every ε > 0 sufficiently small, the spectral problem

(2.54) admits a double zero eigenvalue with the generalized eigenvectors

H′′E(σΦ) = 0, SH′′E(∂EΦ) = σΦ, (2.60)

where the eigenvector σΦ is given by (2.47) and the generalized eigenvector ∂EΦ de-

notes derivative of Φ with respect to parameter E. For every E such that the following

non-degeneracy condition is satisfied,

2

√
(4A2 + Ω)2 − Ωγ2

4A2 + Ω
6= E ±

√
Ω2 − γ2, (2.61)

the breather (U, V ) is spectrally stable.
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Proof. If ε = 0, the breather solution of Theorem 6 is given by Un = 0 for every n 6= 0

and U0 = Aeiθ, where A and θ are defined by Lemma 4. In this case, the spectral

problem (2.53) decouples into 4-by-4 blocks for each lattice node n ∈ Z. Recall that

H′′E = L at ε = 0.

For n = 0, eigenvalues λ are determined by the 4-by-4 matrix block −iSL0. Using

relations (2.24) and (2.25), as well as symbolic computations with MAPLE, we found

that the 4-by-4 matrix block −iSL0 has a double zero eigenvalue and a pair of simple

eigenvalues at λ = ±λ0, where

λ0 = 2i

√
(4A2 + Ω)2 − Ωγ2

4A2 + Ω
. (2.62)

For n ∈ Z\{0}, eigenvalues λ are determined by the 4-by-4 matrix block −iSLn,

where Ln is given by (2.50). If |γ| < |Ω|, E 6= 0, and E 6= ±E0, where

E0 :=
√

Ω2 − γ2, each block has four simple eigenvalues ±λ+ and ±λ−, where

λ± := i(E ± E0), (2.63)

so that λ± ∈ iR. Since there are infinitely many nodes with n 6= 0, the four eigenvalues

are semi-simple and have infinite multiplicity.

If ε > 0 is sufficiently small, we use perturbation theory for linear operators from

Section 2.5.

• The double zero eigenvalue persists with respect to ε 6= 0 at zero because of

the gauge invariance of the breather (U, V ) (with respect to rotation of the

complex phase). Indeed, H′′E(σΦ) = 0 follows from the result of Theorem 7. The

generalized eigenvector is defined by equation SH′′EΨ = σΦ, which is equivalent

to equation H′′EΨ = (V, V̄ , U, Ū)T . Differentiating equations (2.21) in E, we

obtain Ψ = ∂EΦ. Since dim[Ker(H′′E)] = 1 and

〈σΦ,S∂EΦ〉`2 =
∑
n∈Z

∂E
(
UnV̄n + ŪnVn

)
=
dQu,v

dE
, (2.64)

the second generalized eigenvector Ψ̃ ∈ `2(Z) exists as a solution of equation

SH′′EΨ̃ = ∂EΦ if and only if dQu,v/dE = 0. It follows from the explicit compu-

tation (2.58) that if ε = 0, then dQu,v/dE 6= 0 for every E along branches (a)
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and (b) of Lemma 4. By continuity, dQu,v/dE 6= 0 for small ε > 0. Therefore,

the zero eigenvalue of the operator −iSH′′E is exactly double for small ε > 0.

• Using the same computation (2.58), it is clear that λ0 ∈ iR for every E along

branches (a) and (b) of Lemma 4. Assume that λ0 6= ±λ+ and λ0 6= ±λ−,

which is expressed by the non-degeneracy condition (2.61). Then, the pair ±λ0

is isolated from the rest of the spectrum of the operator −iSH′′E at ε = 0. Since

the eigenvalues λ = ±λ0 are simple and purely imaginary, they persist on the

imaginary axis for ε 6= 0 because they cannot leave the imaginary axis by the

Hamiltonian symmetry of Proposition 2.

• If |γ| < |Ω|, E 6= 0, and E 6= ±E0, the semi-simple eigenvalues ±λ+ and ±λ− of

infinite multiplicity are nonzero and located at the imaginary axis at different

points for ε = 0. They persist on the imaginary axis for ε 6= 0 according to the

following perturbation argument. First, for the central site n = 0, the spectral

problem (2.53) can be written in the following abstract form

(SL0(ε)− 2εS − iλI)φ0 = −εS(φ1 + φ−1),

where L0(ε) denotes a continuation of L0 in ε. Thanks to the non-degeneracy

condition (2.61) as well as the condition λ± 6= 0, the matrix SL0 − iλ±I is

invertible. By continuity, the matrix SL0(ε) − iλI is invertible for every ε and

λ near ε = 0 and λ = λ±. Therefore, there is a unique φ0 given by

φ0 = −ε (SL0(ε)− 2εS − iλI)−1 S(φ1 + φ−1),

which satisfies |φ0| ≤ Cε(|φ1| + |φ−1|) near ε = 0 and λ = λ±, where C is a

positive ε- and λ-independent constant. Next, for either n ∈ N or −n ∈ N, the

spectral problem (2.53) can be represented in the form

SLn(ε)φn + εS(∆φ)n − iλφn = −δn,±1εSφ0, ±n ∈ N,

where Ln(ε) denotes a continuation of Ln given by (2.50) in ε, whereas the

operator ∆ is applied with zero end-point condition at n = 0. We have Ln(ε) =

Ln +O(ε2) and εSφ0 = O(ε2) near ε = 0 and λ = λ±. Therefore, up to the first

order of the perturbation theory, the spectral parameter λ near λ± is defined
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from the truncated eigenvalue problem

SLnφn + εS(∆φ)n = iλφn, ±n ∈ N, (2.65)

which is solved with the discrete Fourier transform (2.40). In order to satisfy

the Dirichlet end-point condition at n = 0, the sine–Fourier transform must be

used, which does not affect the characteristic equation for the purely continuous

spectrum of the spectral problem (2.65). By means of routine computations, we

obtain the characteristic equation in the form, see also equation (2.41):

(E ± iλ)2 + γ2 −
(

Ω− 4ε sin2 k

2

)2

= 0, (2.66)

where k ∈ [−π, π] is the parameter of the discrete Fourier transform (2.40).

Solving the characteristic equation (2.66), we obtain four branches of the con-

tinuous spectrum

λ = ±i

E ±
√(

Ω− 4ε sin2 k

2

)2

− γ2

 , (2.67)

where the two sign choices are independent from each other. If |Ω| > |γ| is fixed

and ε > 0 is small, the four branches of the continuous spectrum are located on

the imaginary axis near the points ±λ+ and ±λ− given by (2.63).

In addition to the continuous spectrum given by (2.66), there may exist isolated

eigenvalues near ±λ+ and ±λ−, which are found from the second-order pertur-

bation theory [111]. Under the condition E 6= 0 and E 6= ±E0, these eigenvalues

are purely imaginary. Therefore, the infinite-dimensional part of the spectrum

of the operator −iSH′′E persists on the imaginary axis for ε 6= 0 near the points

±λ+ and ±λ− of infinite algebraic multiplicity.

The statement of the lemma follows from the perturbation theory and the fact that

all isolated eigenvalues and the continuous spectrum of −iSH′′E are purely imaginary.
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Remark 7. In the asymptotic limit E2 = 64A4 +O(A2) as A→∞, the eigenvalues

λ0 and λ± defined by (2.62) and (2.63) are given asymptotically by

λ0 ≈ i|E|, λ+ ≈ iE, λ− ≈ iE, (2.68)

where the remainder terms are O(1) as |E| → ∞. The values λ0, λ+, and λ− are

close to each other as E → +∞.

Remark 8. Computations in the proof of Theorem 9 can be extended to the branch

(c) of Lemma 4. Indeed, λ0 ∈ iR for branch (c) with either Ω < −2
√

2|γ| or Ω ∈
(−2
√

2|γ|,−|γ|), and E near ±E0. On the other hand, λ0 ∈ R if Ω ∈ (−2
√

2|γ|,−|γ|)
and E near 0. As a result, branch (c) is spectrally stable in the former case and is

spectrally unstable in the latter case, in agreement with Theorem 8.

Remark 9. Observe in the proof of Theorem 9 that λ± /∈ iR if |Ω| < |γ|. In this

case, branch (b) of Lemma 4 is spectrally unstable. This instability corresponds to

the instability of the zero equilibrium for |Ω| < |γ|, in agreement with the result of

Proposition 1.

Before presenting numerical approximations of eigenvalues of the spectral problem

(2.54), we compute the Krein signature of wave continuum. This helps to interpret

instabilities and resonances that arise when isolated eigenvalues ±λ0 cross the con-

tinuous bands near points ±λ+ and ±λ−. The Krein signature of simple isolated

eigenvalues is defined as follows.

Definition 12. Let φ ∈ `2(Z) be an eigenvector of the spectral problem (2.54) for an

isolated simple eigenvalue λ0 ∈ iR. Then, the energy quadratic form 〈H′′Eφ, φ〉`2 is

nonzero and its sign is called the Krein signature of the eigenvalue λ0.

Definition 12 is used to simplify the presentation. Similarly, one can define the

Krein signature of isolated multiple eigenvalues and the Krein signature of the con-

tinuous spectral bands in the spectral problem (2.54) [68]. The following lemma char-

acterizes Krein signatures of the spectral points arising in the proof of Theorem 9.
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Lemma 7. Fix γ 6= 0, |Ω| > |γ|, and E > 0 with E 6= ±E0. Assume the non-

degeneracy condition (2.61). For every ε > 0 sufficiently small, we have the following

for the corresponding branches of Lemma 4:

(a) the subspaces of −iSH′′E in `2(Z) near ±λ+, ±λ−, and ±λ0 have positive, neg-

ative, and positive Krein signature, respectively;

(b) the subspaces of −iSH′′E in `2(Z) near ±λ+, ±λ−, and ±λ0 have negative, pos-

itive (if E > E0) or negative (if E < E0), and positive Krein signature, respec-

tively;

(c) all subspaces of −iSH′′E in `2(Z) near ±λ+, ±λ−, and ±λ0 (if λ0 ∈ iR) have

negative Krein signature.

Proof. We proceed by the perturbation arguments from the limit ε = 0, where

−iSH′′E = −iSL is a block-diagonal operator consisting of 4 × 4 blocks. In par-

ticular, we consider the blocks for n ∈ Z\{0}, where Ln is given by (2.50). Solving

(2.53) at ε = 0 and λ = λ±, we obtain the eigenvector

ϕn = −Ω, ψn = 0, χn = ±E0 + iγ, νn = 0, n ∈ Z\{0}.

As a result, we obtain for the eigenvector φn = (ϕn, ψn, χn, νn):

Kn := 〈Lnφn, φn〉`2 = Ω(|ϕn|2 + |χn|2)− (E + iγ)χnϕ̄n − (E − iγ)ϕnχ̄n

= 2ΩE0(E0 ± E).

For branch (a), Ω > |γ| and E > E0. Therefore, Kn > 0 for λ = λ+ and Kn < 0

for λ = λ−.

For branch (b), Ω < −|γ| and either E > E0 or E ∈ (0, E0). In either case,

Kn < 0 for λ = λ+. On the other hand, for λ = λ−, Kn > 0 if E > E0 and Kn < 0 if

E ∈ (0, E0).

For branch (c), Ω < −|γ| and E ∈ (0, E0). In this case, Kn < 0 for either λ = λ+

or λ = λ−.

Finally, the Krein signature for the eigenvalue λ = λ0 denoted by K0 follows from

the computations of eigenvalues µ1,2,3 in the proof of Theorem 7. We have K0 > 0 for

branches (a) and (b) because µ1,2,3 > 0 and we have K0 < 0 for branch (c) because

µ1,3 < 0, whereas the eigenvalue µ2 > 0 is controlled by the result of Lemma 6.
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The signs of all eigenvalues are nonzero and continuous with respect to parameter

ε. Therefore, the count above extends to the case of small nonzero ε.

The spectrum of −iSH′′E is shown at Figure 2.4. Panels (a), (b) and (c) correspond

to branches shown at Figure 2.3.

(a) We can see on panel (a) of Figure 2.4 that λ0, λ± do not intersect for every

E > E0 and are located within fixed distance O(1), as |E| → ∞. Note that the

upper-most λ0 and λ+ have positive Krein signature, whereas the lowest λ− has

negative Krein signature, as is given by Lemma 7.

(b) We observe on panel (b) of Figure 2.4 that λ+ intersects λ0, creating a small

bubble of instability in the spectrum. The insert shows that the bubble shrinks

as ε → 0, in agreement with Theorem 9. There is also an intersection between

λ− and λ0, which does not create instability. These results are explained by the

Krein signature computations in Lemma 7. Instability is induced by opposite

Krein signatures between λ+ and λ0, whereas crossing of λ− and λ0 with the

same Krein signatures is safe of instabilities. Note that for small E, the isolated

eigenvalue λ0 is located above both the spectral bands near λ+ and λ−. The gap

in the numerical data near E = E0 indicates failure to continue the breather

solution numerically in ε, in agreement with the proof of Theorem 6.

(c) We observe from panel (c) of Figure 2.4 that λ0 and −λ− intersect but do not

create instabilities, since all parts of the spectrum have the same signature, as

is given by Lemma 7. In fact, the branch is both spectrally and orbitally stable

as long as λ0 ∈ iR, in agreement with Theorem 8. On the other hand, there is

Es ∈ (0, E0), if Ω ∈ (−2
√

2|γ|,−|γ|), such that λ0 ∈ R for E ∈ (0, Es), which

indicates instability of branch (c), again, in agreement with Theorem 8.

As we see on panel (b) of Figure 2.4, λ0 intersects λ+ for some E = E∗ > E0. In

the remainder of this section, we study whether this crossing point is always located

on the right of E0. In fact, the answer to this question is negative. We shall prove for

branch (b) that the intersection of λ0 with either λ+ or −λ− occurs either for E∗ > E0

or for E∗ < E0, depending on parameters γ and Ω.
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Figure 2.4: The spectrum of −iSH′′E for different branches of breathers.
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Lemma 8. Fix γ 6= 0, Ω < −|γ|, and E > 0 along branch (b) of Lemma 4. There

exists a resonance λ0 = λ+ at E = E∗ with E∗ > E0 if Ω ∈ (Ω∗,−|γ|) and E∗ ∈ (0, E0)

if Ω ∈ (−5|γ|,Ω∗), where

Ω∗ := −
√

1 + 5
√

2√
2

|γ|. (2.69)

Moreover, if Ω < −5|γ|, there exists a resonance λ0 = −λ− at E = E∗ with

E∗ ∈ (0, E0).

Proof. Let us first assume that there exists a resonance λ0 = λ+ at E = E∗ = E0 and

find the condition on γ and Ω, when this is possible. From the definitions (2.62) and

(2.63), we obtain the constraint on A2:

(4A2 + Ω)2 − Ωγ2

4A2 + Ω
= E2

0 = Ω2 − γ2.

After canceling 4A2 since A2 ≥ A2
+ > 0 with A2

+ given by (2.27), we obtain

16A4 + 12ΩA2 + 2Ω2 + γ2 = 0,

which has two roots

A2 = −3

8
Ω± 1

8

√
Ω2 − 4γ2.

Since A2 ≥ A2
+, the lower sign is impossible because this leads to a contradiction√

|Ω| − 2|γ| −
√
|Ω|+ 2|γ| ≥ 0.

The upper sign is possible if |Ω| ≥ 2|γ|. Using the parametrization (2.25), we substi-

tute the root for A2 to the equation E2
0 = E2 and simplify it:

Ω2 − γ2 =
(

2|Ω|+
√

Ω2 − 4γ2
)2

1− 4γ2(
|Ω|+

√
Ω2 − 4γ2

)2


=

2
√

Ω2 − 4γ2
(

2|Ω|+
√

Ω2 − 4γ2
)2(

|Ω|+
√

Ω2 − 4γ2
) .
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This equation further simplifies to the form:√
Ω2 − 4γ2(9Ω2 − 7γ2) + Ω(31γ2 − 7Ω2) = 0.

Squaring it up, we obtain

8Ω6 − 4Ω4γ2 − 102Ω2γ4 − 49γ6 = 0,

which has only one positive root for Ω2 given by

Ω2 =
1 + 5

√
2

2
γ2.

This root yields a formula for Ω∗ in (2.69). Since there is a unique value for

Ω ∈ (−∞,−|γ|), for which the case E∗ = E0 is possible, we shall now consider

whether E∗ > E0 or E∗ < E0 for Ω ∈ (−∞,Ω∗) or Ω ∈ (Ω∗,−|γ|).
To inspect the range E∗ < E0, we consider a particular case, for which the inter-

section λ0 = λ+ = −λ− happens at E = 0. In this case, A2 = A2
+ given by (2.27), so

that the condition λ2
0 = −E2

0 can be rewritten as

4(γ2 − |γ|Ω) = Ω2 − γ2.

There is only one negative root for Ω and it is given by Ω = −5|γ|. By continuity, we

conclude that λ0 = λ+ for Ω ∈ (−5|γ|,Ω∗) and λ0 = −λ− for Ω ∈ (−∞,−5|γ|), both

cases correspond to E∗ ∈ (0, E0).

Finally, we verify that the case λ0 = λ+ occurs for E∗ > E0 if Ω ∈ (Ω∗,−|γ|).
Indeed, λ0 = i(8A2 +2Ω+O(A−2)) and λ+ = i(8A2 +Ω+E0 +O(A−2)) as A→∞, so

that Im(λ0) < Im(λ+) as E →∞. On the other hand, the previous estimates suggest

that Im(λ0) > Im(λ+) for every E ∈ (0, E0) if Ω ∈ (Ω∗,−|γ|). Therefore, there exists

at least one intersection λ0 = λ+ for E∗ > E0 if Ω ∈ (Ω∗,−|γ|).

Remark 10. The existence of the resonance at E = 0 for some parameter configura-

tions predicted by Lemma 8 is in agreement with the numerical results in [135, 136]

on the scalar parametrically forced dNLS equation that follows from system (2.5) un-

der the reduction (2.6). It was reported in [135, 136] that the instability bubble for

breather solutions may appear for every nonzero coupling constant ε = 0 in a narrow

region of the parameter space.
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2.7 Summary

We have reduced Newton’s equation of motion for coupled pendula shown on Figure

2.1 under a resonant periodic force to the PT -symmetric dNLS equation (2.9). We

have shown that this system is Hamiltonian with conserved energy (2.17) and an

additional constant of motion (2.18). We have studied breather solutions of this model,

which generalize symmetric synchronized oscillations of coupled pendula that arise if

E = 0. We showed existence of three branches of breathers shown on Figure 2.3. We

also investigated their spectral stability analytically and numerically. The spectral

information on each branch of solutions is shown on Figure 2.4. For branch (c), we

were also able to prove orbital stability and instability from the energy method. The

technical results of this Chapter are summarized in Table 1 and described as follows.

Table 2.1: A summary of results on breather solutions for small ε. Here, IB is a
narrow instability bubble seen on panel (b) of Figure 2.4.

|E| > E0 |E| < E0

Parameter
intervals

Ω > |γ| Ω < −|γ| Ω < −|γ| Ω < −|γ|
Existence point 1 point 3 point 2 point 4

on Figure 2.3 on branch (a) on branch (b) on branch (b) on branch (c)
Continuum Sign-indefinite Sign-indefinite Negative Negative

Spectral
stability

Yes Yes (IB) Yes (IB)
Depends

on parameters
Orbital
stability

No No
Yes

if |λ0| > |λ±|
Yes

if spectrally stable

For branch (a), we found that it is disconnected from the symmetric synchronized

oscillations at E = 0. Along this branch, breathers of small amplitudes A are con-

nected to breathers of large amplitudes A. Every point on the branch corresponds

to the saddle point of the energy function between two wave continua of positive and

negative energies. Every breather along the branch is spectrally stable and is free of

resonance between isolated eigenvalues and continuous spectrum. In Chapter 3, we

will prove long-time orbital stability of breathers along this branch.

For branch (b), we found that the large-amplitude breathers as E → ∞ are con-

nected to the symmetric synchronized oscillations at E = 0, which have the smallest

(but nonzero) amplitude A = A+. Breathers along the branch are spectrally stable
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except for a narrow instability bubble, where the isolated eigenvalue λ0 is in resonance

with the continuous spectrum. The instability bubble can occur either for E > E0,

where the breather is a saddle point of the energy function between two wave con-

tinua of opposite energies or for E < E0, where the breather is a saddle point between

the two negative-definite wave continua and directions of positive energy. When the

isolated eigenvalue of positive energy λ0 is above the continuous spectrum near λ+

and ±λ−, orbital stability of breathers can be proved by using the technique in [42],

which was developed for the dNLS equation.

Finally, for branch (c), we found that the small-amplitude breathers at E → E0

are connected to the symmetric synchronized oscillations at E = 0, which have the

largest amplitude A = A−. Breathers are either spectrally stable near E = E0 or

unstable near E = 0, depending on the detuning frequency Ω and the amplitude of

the periodic resonant force γ. When breathers are spectrally stable, they are also

orbitally stable for infinitely long times.
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Chapter 3

Metastability in Discrete Systems

3.1 Background

We consider the system of amplitude equations (2.9), which is reproduced here for

convenience without factor 2 for the time derivatives:{
idun
dt

= ε (vn+1 − 2vn + vn−1) + iγun + Ωvn + 2 [(2|un|2 + |vn|2) vn + u2
nv̄n] ,

idvn
dt

= ε (un+1 − 2un + un−1)− iγvn + Ωun + 2 [(|un|2 + 2|vn|2)un + ūnv
2
n] ,

(3.1)

where {un, vn}n∈Z are complex-valued amplitudes that depend on time t ∈ R, whereas

(Ω, γ, ε) are real-valued parameters arising in a physical context described below. We

assume Ω 6= 0, γ > 0, and ε > 0 throughout this Chapter.

The remarkable property of the PT -symmetric dNLS equation (3.1) is the exis-

tence of the cross–gradient symplectic structure (2.16) with two conserved quanti-

ties (2.17) and (2.18) bearing the meaning of the energy and charge functions. For

convenience, we reproduce again the cross-gradient symplectic structure

i
dun
dt

=
∂H

∂v̄n
, i

dvn
dt

=
∂H

∂ūn
, n ∈ Z, (3.2)

and the Hamiltonian function

H =
∑
n∈Z

(|un|2 + |vn|2)2 + (unv̄n + ūnvn)2 + Ω(|un|2 + |vn|2)

−ε|un+1 − un|2 − ε|vn+1 − vn|2 + iγ(unv̄n − ūnvn). (3.3)
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The Hamiltonian system (3.2) has an additional gauge symmetry, with respect to the

transformation {un, vn}n∈Z → {eiαun, eiαvn}n∈Z, where α ∈ R. The charge function

related to the gauge symmetry is written in the form

Q =
∑
n∈Z

(unv̄n + ūnvn). (3.4)

The energy and charge functions H and Q are conserved in the time evolution of the

Hamiltonian system (3.2). Compared to the other physically relevant PT -symmetric

dNLS equations [79, 114, 115], where the Hamiltonian structure is not available

and analysis of nonlinear stability of the zero equilibrium and time-periodic local-

ized breathers is barely possible, we are able to address these questions for the PT -

symmetric dNLS equation (3.1), thanks to the Hamiltonian structure (3.2) with two

conserved quantities (3.3) and (3.4).

The temporal evolution of the PT -symmetric dNLS equation (3.1) is studied in

sequence space `2(Z) for sequences (u, v) as functions of time. Global existence of

solutions in `2(Z) follows from an easy application of Picard’s method and energy

estimates (Proposition 3). The global solution in `2(Z) may still grow at most ex-

ponentially in time, due to the destabilizing properties of the gain-damping terms in

the system (3.1). However, thanks to coercivity of the energy function (3.3) near the

zero equilibrium, we can still obtain a global bound on the `2(Z) norm of the solution

near the zero equilibrium, provided it is linearly stable. Moreover, for Ω > (γ + 4ε),

the global bound holds for arbitrary initial data. The corresponding result is given

by the following theorem (proved in Section 2). A similar result for a single dimer is

deemed as the spontaneous PT -symmetry restoration in [16].

Theorem 10. For every Ω > (γ+4ε) and every initial data (u(0), v(0)) ∈ `2(Z), there

is a positive constant C that depends on parameters and Ω, γ, ε and (‖u(0)‖`2 , ‖v(0)‖`2)

such that

‖u(t)‖2
`2 + ‖v(t)‖2

`2 ≤ C, for every t ∈ R. (3.5)

The bound (3.5) also holds for every Ω < −γ and every (u(0), v(0)) ∈ `2(Z) with

sufficiently small `2(Z) norm.
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Remark 11. As shown in Chapter 2, the zero equilibrium of the PT -symmetric dNLS

equation (3.1) is linearly stable if |γ| < γ0, where the PT phase transition threshold

γ0 is given by

γ0 :=

{
Ω− 4ε, Ω > 0

|Ω|, Ω < 0.

The zero equilibrium is linearly unstable if |γ| ≥ γ0. Thus, the constraints on pa-

rameters in Theorem 10 coincide with the criterion of linear stability of the zero

equilibrium.

We shall now characterize breathers supported by the PT -symmetric dNLS equa-

tion (3.1). These are solutions of the form

u(t) = Ue−iEt, v(t) = V e−iEt, (3.6)

where the frequency parameter E is considered to be real and the sequence (U, V ) ∈
`2(Z) is time-independent. By continuous embedding, we note that (U, V ) ∈ `2(Z)

implies the decay at infinity: |Un|+ |Vn| → 0 as |n| → ∞. The breather is considered

to be PT -symmetric with respect to the operators in (2.11) if V = Ū .

Thanks to the cross-gradient symplectic structure (3.2), (U, V ) ∈ `2(Z) in (3.6) is

a critical point of the extended energy function HE : `2(Z)→ R given by

HE := H − EQ, (3.7)

where H and Q are given by (3.3) and (3.4). The Euler–Lagrange equations for HE

produce the stationary PT -symmetric dNLS equation:

EUn = ε
(
Ūn+1 − 2Ūn + Ūn−1

)
+ iγUn + ΩŪn + 6|Un|2Ūn + 2U3

n, (3.8)

which corresponds to the reduction of the PT -symmetric dNLS equation (3.1) for the

breather solution (3.6) under the PT symmetry V = Ū .

We denote a solution of the PT -symmetric dNLS equation (3.1) in `2(Z) by

ψ = (u, v) and the localized solution of the stationary dNLS equation (3.8) by

Φ = (U, V ). We fix parameters γ > 0, Ω > γ, and E ∈ (−∞,−E0) ∪ (E0,∞). The

following theorem (proved in Section 3) formulates the main result of this Chapter.
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Theorem 11. For every ν > 0 sufficiently small, there exists ε0 > 0 and δ > 0 such

that for every ε ∈ (0, ε0) the following is true. If ψ(0) ∈ `2(Z) satisfies ‖ψ(0)−Φ‖l2 ≤
δ, then there exist a positive time t0 . ε−1/2 and a C1 function α(t) : [0, t0] →
R/(2πZ) such that the unique solution ψ(t) : [0, t0] → `2(Z) to the PT -symmetric

dNLS equation (3.1) satisfies the bound

‖eiα(t)ψ(t)− Φ‖l2 ≤ ν, for every t ∈ [0, t0]. (3.9)

Moreover, there exists a positive constant C such that |α̇ − E| ≤ Cν, for every

t ∈ [0, t0].

Remark 12. The statement of Theorem 11 remains true for ε = 0. In this (anti-

continuum) limit, Theorem 11 gives nonlinear stability of the standing localized state

Φ compactly supported at the central site n = 0. The bound (3.9) is extended in the

case ε = 0 for all times t ∈ R.

Remark 13. It becomes clear from the proof of Theorem 11 for ε 6= 0, see inequality

(3.59) below, that the bound (3.9) on the perturbation φ to the stationary solution Φ

is defined within the size of O(ε1/2 + δ). Therefore, if Φn = O(ε|n|) for every n 6= 0

(Proposition 4), then the perturbation term is φn = O(ε1/2 + δ) for every n ∈ Z. This

is a limitation of the result of Theorem 11. Not only it holds for long but finite times

t0 = O(ε−1/2) but also it gives a larger than expected bound on the perturbation term

φ. It may be quite possible to improve the approximation result with a sequence of

normal form transformations, similar to what was done recently in [110].

Remark 14. The statement of Theorem 11 can be improved on a shorter time scale

t0 = O(1). In this case, see inequality (3.58) below, the perturbation term φ has the

size of O(ε + δ). Thus, the perturbation term φn at n = ±1 is comparable with the

standing localized state Φn at n = ±1, but it is still much larger than Φn for every n

such that |n| ≥ 2.

Remark 15. Theorem 11 cannot be extended to the solution branch with Ω < −γ < 0

and |E| > E0 (point 3 on Figure 2.3) because the second variation of ΛE at (U, V )

is not coercive and does not control the size of perturbation terms. This analytical

difficulty reflects the unfortunate location of the discrete and continuous spectra that

leads to a resonance studied in Chapter 2. No resonance was found for the solution

branch with Ω > γ > 0 and |E| > E0 (point 1 on Figure 2.3) and this numerical
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result from Chapter 2 is in agreement with the analytical method used in the proof of

Theorem 11.

The remainder of this Chapter is devoted to the proof of Theorems 10 and 11.

3.2 Proof of the global bound

The following proposition gives the global existence result for the PT -symmetric

dNLS equation (3.1).

Proposition 3. For every (u(0), v(0)) ∈ `2(Z), there exists a unique solution

(u, v)(t) ∈ C1(R, `2(Z)) of the PT -symmetric dNLS equation (3.1) such that

(u, v)(0) = (u(0), v(0)). The unique solution depends continuously on initial data

(u(0), v(0)) ∈ `2(Z).

Proof. Since discrete Laplacian is a bounded operator in `2(Z) and the sequence space

`2(Z) forms a Banach algebra with respect to pointwise multiplication, the local well-

posedness of the initial-value problem for the PT -symmetric dNLS equation (3.1)

follows from the standard Picard’s method. The local solution (u, v)(t) exists in

C0([−t0, t0], `2(Z)) for some finite t0 > 0. Thanks again to the boundedness of the

discrete Laplacian operator in `2(Z), bootstrap arguments extend this solution in

C1([−t0, t0], `2(Z)).

The local solution is continued globally by using the energy method. For any

solution (u, v)(t) in C1([−t0, t0], `2(Z)), we obtain the following balance equation from

system (3.1):
d

dt

∑
n∈Z

(|un|2 + |vn|2) = −γ
∑
n∈Z

(|un|2 − |vn|2).

Integrating this equation in time and applying Gronwall’s inequality, we get

‖u(t)‖2
l2 + ‖v(t)‖2

l2 ≤
(
‖u(0)‖2

l2 + ‖v(0)‖2
l2

)
e|γt|, t ∈ [−t0, t0].

Therefore ‖u(t)‖l2 and ‖v(t)‖l2 cannot blow up in a finite time, so that the local

solution (u, v)(t) ∈ C1([−t0, t0], `2(Z)) is continued for every t0 > 0.

A critical question also addressed in [79, 115] for other PT -symmetric dNLS

equations is whether the `2(Z) norms of the global solution of Proposition 3 remain
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bounded as t→∞. In the context of the Hamiltonian PT -symmetric dNLS equation

(3.1), this question can be addressed by using the energy function given by (3.3). In

what follows, we use coercivity of the energy function and prove the result stated in

Theorem 10.

Proof of Theorem 10. We use γ > 0 and ε > 0 everywhere in the proof. If

Ω > (γ + 4ε), the following lower bound is available for the energy function H given

by (3.3) using Cauchy–Schwarz inequality:

H ≥ (Ω− γ − 4ε)
(
‖u‖2

`2 + ‖v‖2
`2

)
. (3.10)

Since H is time-independent and bounded for any (u, v)(t) ∈ C1(R, `2(Z)) due to the

continuous embedding ‖u‖`4 ≤ ‖u‖`2 , we obtain the time-independent bound (3.5) for

any Ω > (γ + 4ε).

If Ω < −γ, the following lower bound is available for the energy function −H:

−H ≥ (|Ω| − γ)
(
‖u‖2

`2 + ‖v‖2
`2

)
−
(
‖u‖2

`2 + ‖v‖2
`2

)2
, (3.11)

where the continuous embedding ‖u‖`4 ≤ ‖u‖`2 has been used. If ‖u(0)‖`2 + ‖v(0)‖`2
is sufficiently small, then |H| is sufficiently small, and the bound (3.5) with sufficiently

small C holds for every t ∈ R. �

Remark 16. For every Ω ≤ (γ + 4ε), the energy functions H or −H do not pro-

duce a useful lower bound, which would result in a time-independent bound on the

`2(Z) norm for the global solution (u, v)(t). This is because the continuous embedding

‖u‖`4 ≤ ‖u‖`2 is not sufficient to control H or −H from below. If the lattice is trun-

cated on a finitely many (say, N) sites, then the bound ‖u‖`2 ≤ N1/4‖u‖`4 can be used

to obtain from (3.3):

H ≥
(
‖u‖4

`4 + ‖v‖4
`4

)
− (γ + 4ε− Ω)N1/2

(
‖u‖2

`4 + ‖v‖2
`4

)
.

Thus, the time-independent bound on the `4(ZN) (and then `2(ZN)) norms for the

global solution (u, v)(t) restricted on N sites of the lattice Z is available for every Ω.

However, the control becomes impossible in the limit N →∞ if Ω ≤ (γ + 4ε).
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Remark 17. It is an interesting open question to investigate if the global dynamics of

the PT -symmetric dNLS equation (3.1) on the infinite lattice is globally bounded in

time for Ω ≤ (γ+ 4ε). This open question would include the case −γ ≤ Ω ≤ (γ+ 4ε),

when the zero equilibrium is linearly unstable, and the case Ω < −γ with sufficiently

large initial data (u(0), v(0)) ∈ `2(Z), when the zero equilibrium is linearly stable but

the bound (3.11) can no longer be closed. This open question is addressed numerically

for a similar model without phase invariance in [46], where it was shown that l2 norm

of the solution grows while l∞ norm remains finite.

3.3 Proof of metastability

We divide the proof of Theorem 11 into several subsections.

3.3.1 Characterization of the localized solutions

For ε = 0, a solution to the stationary dNLS equation (3.8) is supported on the central

site n = 0 and satisfies

(E − iγ)U0 − ΩŪ0 = 6|U0|2Ū0 + 2U3
0 . (3.12)

The parameters γ and Ω are considered to be fixed, and parameter E is thought

to parameterize a continuous branch of solutions of the nonlinear algebraic equation

(3.12). Substituting the decomposition U0 = Aeiθ with A > 0 and θ ∈ [0, 2π) into the

algebraic equation (3.12), we obtain

sin(2θ) =
γ

4A2 + Ω
, cos(2θ) =

E

8A2 + Ω
, (3.13)

from which the solution branches of E versus A are obtained in Chapter 2 as shown

on Figure 2.3. The dependence of E versus A is given analytically by

E2 = (Ω + 8A2)2

[
1− γ2

(Ω + 4A2)2

]
. (3.14)

Persistence of the central dimer in the unbounded lattice with respect to the coupling

parameter ε is given by the following proposition.
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Proposition 4. Fix γ > 0, Ω > γ, and E 6= ±E0, where E0 :=
√

Ω2 − γ2 > 0. There

exist ε0 > 0 sufficiently small and C0 > 0 such that for every ε ∈ (−ε0, ε0), there exists

a unique solution U ∈ l2(Z) to the difference equation (3.8) such that

∣∣U0 − Aeiθ
∣∣ ≤ C0|ε|, |Un| ≤ C0|ε||n|, n 6= 0, (3.15)

where A and θ are defined in (3.13). Moreover, the solution U is smooth in ε.

Proof. Persistence and smoothness of a solution U ∈ l2(Z) to the difference equation

(3.8) in ε, as well as the first bound in (3.15), were proved in Theorem 6.

It remains to prove the second bound in (3.15), for which we employ the implicit

function theorem (see Section 1.5.6). Inspecting the difference equation (3.8) shows

that if U±1 = O(|ε|) according to the bound (2.33), then Un = U−n can be expressed

by using the scaling transformation

Un = ε|n|W|n|, ±n ∈ N, (3.16)

where the sequence W ∈ `2(N) is found from the system

EWn−iγWn−ΩW̄n = W̄n−1 +ε2W̄n+1−2εW̄n+6ε2|n||Wn|2W̄n+2ε2|n|W 3
n , n ∈ N, (3.17)

with W0 = U0 given by the previous result. Let x = {Wn}n∈N, X = `2(N), y = ε,

Y = R, and Z = `2(N) in the definition of system F : X × Y → Z. Then, we have

F (x0, 0) = 0, where x0 = {W (0)
n }n∈N is a unique solution of the recurrence equation

EW (0)
n − iγW (0)

n − ΩW̄ (0)
n = W̄

(0)
n−1, n ∈ N, (3.18)

starting with a given W
(0)
0 = U0. Indeed, each block in the left-hand side of system

(3.18) is given by the invertible matrix[
E − iγ −Ω

−Ω E + iγ

]
,

with eigenvalues λ± = E ± E0 6= 0. Hence, a unique solution for W (0) ∈ `∞(N) is

found from the recurrence relation (3.18). Moreover, since DxF (0, 0) : X → Z is one-

to-one and onto (as a lower block-triangular matrix with invertible diagonal blocks),

the solution W (0) is actually in X = `2(N). By the implicit function theorem, for
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every ε 6= 0 sufficiently small, there exists a unique solution W ∈ `2(N) to the system

(3.17) such that

‖W −W (0)‖`2(N) < C ′′′|ε|, (3.19)

where a positive constant C ′′′ is independent of ε. Thus, the second bound in (3.15)

is proved from (3.16) and (3.19).

3.3.2 Decomposition of the solution

Let ψ = (u, ū, v, v̄) denote a solution of the PT -symmetric dNLS equation (3.1) in

`2(Z) given by Proposition 3. Let Φ = (U, Ū , V, V̄ ) denote a localized solution of the

stationary dNLS equation (3.8) given by Proposition 4. Let φ = ψ − Φ = (u, ū,v, v̄)

denote a perturbation to Φ. Note that these are extended 4-component variables

at each lattice site (concatenated by the complex conjugate functions) compared to

the two-component variables used in the formulation of Theorem 11. The extended

variables are more suitable for dealing with the energy functions such as (3.7) or (6.3),

which we reproduce here for convenience:

ΛE := H − E(u0v̄0 + ū0v0). (3.20)

By using the energy function (3.20), we introduce the energy difference function

∆ := ΛE(Φ + φ)− ΛE(Φ). (3.21)

Let us write the expansion for ∆ explicitly:

∆ = N1(φ) +N2(φ) +N3(φ) +N4(φ), (3.22)

where the linear part is

N1(φ) = E
∑

n∈Z\{0}

(
V̄nun + Vnūn + Ūnvn + Unv̄n

)
, (3.23)

the quadratic part is

N2(φ) =
1

2
〈H′′Eφ, φ〉l2 + E

∑
n∈Z\{0}

(v̄nun + vnūn) , (3.24)
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whereas the cubic and quartic parts of ∆ denoted by N3(φ) and N4(φ) are not im-

portant for estimates, thanks to the bounds

|N3(φ)| ≤ C3‖φ‖3
l2 , |N4(φ)| ≤ C4‖φ‖4

l2 , (3.25)

where C3, C4 are positive constants and we have used continuous embedding

‖u‖`p ≤ ‖u‖`2 for any p ≥ 2.

In the next three subsections, we show that the quadratic part N2(φ) is positive,

the linear part N1(φ) can be removed by a local transformation, and the time evolution

of ∆ can be controlled on a long but finite time interval.

In what follows, all constants depend on parameters γ > 0, Ω > γ, and

E ∈ (−∞,−E0) ∪ (E0,∞). The parameter ε > 0 is sufficiently small, and unless

it is stated otherwise, the constants do not depend on the small parameter ε.

3.3.3 Positivity of the quadratic part of ∆

The quadratic part (3.24) can be analyzed by a parameter continuation from the

case ε = 0. Compared to the self-adjoint (Hessian) operator H′′E : `2(Z) → `2(Z)

which is a second variation of HE in (3.7), the Hessian operator for N2(φ) denoted by

Λ′′E : `2(Z)→ `2(Z) is given by

Λ′′E = M̃+ εL, (3.26)

where L is the discrete Laplacian operator applied to blocks of φ at each lattice site

n ∈ Z:

(Lφ)n = φn+1 − 2φn + φn−1,

and the blocks of M̃ at each site n ∈ Z are given differently for n = 0 and n 6= 0. For
n = 0, the 4-by-4 matrix block of M̃0 is given by

M̃0 =


Ω + 8A2 4A2 cos(2θ) −E − iγ + 8A2 cos(2θ) 4A2

4A2 cos(2θ) Ω + 8A2 4A2 −E + iγ + 8A2 cos(2θ)

−E + iγ + 8A2 cos(2θ) 4A2 Ω + 8A2 4A2 cos(2θ)

4A2 −E − iγ + 8A2 cos(2θ) 4A2 cos(2θ) Ω + 8A2

 ,
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whereas for n 6= 0, we have

M̃n =


Ω + 8|Un|2 2(U2

n + Ū2
n) −iγ + 4(U2

n + Ū2
n) 4|Un|2

2(U2
n + Ū2

n) Ω + 8|Un|2 4|Un|2 +iγ + 4(U2
n + Ū2

n)

+iγ + 4(U2
n + Ū2

n) 4|Un|2 Ω + 8|Un|2 2(U2
n + Ū2

n)

4|Un|2 −iγ + 4(U2
n + Ū2

n) 2(U2
n + Ū2

n) Ω + 8|Un|2

 .

The following proposition characterizes eigenvalues of M̃ at ε = 0.

Proposition 5. Fix ε = 0, γ > 0, Ω > γ, and E 6= ±E0, where E0 :=
√

Ω2 − γ2 > 0.

The matrix block of M̃n has three positive and one zero eigenvalues for n = 0 and

two double positive eigenvalues for every n 6= 0.

Proof. If ε = 0, the stationary state of Proposition 4 is given by Un = 0 for every

n 6= 0 and U0 = Aeiθ, where A and θ are defined by the parametrization (3.13).

Using relations (3.13) and (3.14), as well as symbolic computations with MAPLE,

we found that the 4-by-4 matrix block M̃0 has a simple zero eigenvalue and three

nonzero eigenvalues µ1, µ2, and µ3 given by

µ1 = 2(Ω + 4A2),

µ2,3 = Ω + 12A2 ±
√

(Ω− 4A2)2 +
16ΩA2γ2

(Ω + 4A2)2
.

It is shown in Chapter 2 that µ1, µ2, µ3 > 0 for every point on the solution branch

with Ω > γ > 0, and |E| > E0.

For every n ∈ Z\{0}, the 4-by-4 matrix block of M̃n is given by

M̃n =


Ω 0 −iγ 0

0 Ω 0 +iγ

+iγ 0 Ω 0

0 −iγ 0 Ω

 .

Each block has two double eigenvalues µ+ and µ− given by

µ+ = Ω + γ, µ− = Ω− γ,

which are positive since Ω > γ.
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By Proposition 5, if ε = 0, then N2(φ) ≥ 0 for every φ ∈ `2(Z) and, moreover,

N2(φ) = 0 if and only if φ is proportional to an eigenvector supported at n = 0.

The existence of the zero eigenvalue at ε = 0 is related to the gauge symmetry of

the PT -symmetric dNLS equation (3.1). Both for ε = 0 and ε 6= 0, there exists a

nontrivial kernel of the Hessian operator H′′E : `2(Z) → `2(Z) associated with the

standing localized state (U, V ), thanks to the identity

H′′E(σΦ) = 0, (3.27)

where the blocks of the eigenvector σΦ are given by

(σΦ)n := (Un,−Ūn, Vn,−V̄n), n ∈ Z. (3.28)

In the limit of ε → 0, the eigenvector σΦ is supported at the central site n = 0 and

it corresponds to the zero eigenvalue of the matrix block M̃0. By using Proposition

5 and identity (3.27), we can now state that if ε = 0, then N2(φ) = 0 if and only if

φ ∈ span{σΦ}.
By the perturbation theory for linear operators (see Section 1.5.6), the strictly

positive part of Λ′′E remains strictly positive for a sufficiently small ε. On the other

hand, the simple zero eigenvalue may drift away from zero if ε 6= 0.

In order to avoid a problem of degeneracy (or even slight negativity) of Λ′′E, we

introduce a constrained subspace of `2(Z) by

l2c(Z) = {φ ∈ l2(Z) : 〈σΦ, φ〉l2 = 0}. (3.29)

If ε = 0 and φ belongs to l2c(Z), then the quadratic form N2(φ) in (3.24) is strictly

positive and coercive. By the perturbation theory for linear operators (Appendix A),

for ε 6= 0 sufficiently small, the quadratic part N2(φ) given by (3.24) for φ ∈ l2c(Z),

remains strictly positive and coercive. This argument yields the proof of the following

proposition.

Proposition 6. Fix γ > 0, Ω > γ, and E 6= ±E0. There exist ε0 > 0 sufficiently

small and C2 > 0 such that for every ε ∈ (−ε0, ε0),

N2(φ) ≥ C2‖φ‖2
`2 for every φ ∈ l2c(Z), (3.30)

where l2c(Z) is given by (3.29).
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Bounds (3.25) and (3.30) allow us to estimate the principal part of ∆ in (3.22)

from below, e.g.

|∆−N1(φ)| ≥
(
C2 − C3‖φ‖`2 − C4‖φ‖2

`2

)
‖φ‖2

`2 for every φ ∈ l2c(Z).

However, the linear part N1(φ) is an obstacle for such estimates. Therefore, we need

to remove the obstacle by a local transformation.

3.3.4 Removal of the linear part of ∆

Let us define

φ = φ̃+ ρ, (3.31)

where φ̃ = (ũn, ũn, ṽn, ṽn) is a new variable and ρ = (a, ā, b, b̄) is a correction term

to be found uniquely by removing the linear term N1(φ). Since the breather is PT -

symmetric with V = Ū , we shall look for a PT -symmetric correction term with b = ā.

The easiest way of finding a ∈ `2(Z) is to write the Euler–Lagrange equations for

the energy function ΛE given by (3.20). For the PT -symmetric solution with v = ū,

the Euler–Lagrange equations for ΛE take the form

Eunδn,0 = ε (ūn+1 − 2ūn + ūn−1) + iγun + Ωūn + 6|un|2ūn + 2u3
n, (3.32)

where δn,0 is the Kronecker symbol supported at n = 0. Let u = U + a, where U

is a solution of the stationary dNLS equation (3.8). Then, a satisfies the nonlinear

equation

Eanδn,0 − Ωān − iγan − ε(ān+1 − 2ān + ān−1)− 12|Un|2ān
−6(U2

n + Ū2
n)an − 6Un(a2

n + ā2
n)− 12Ūn|an|2 − 6|an|2ān − 2a3

n= EUn(1− δn,0),(3.33)

where n ∈ Z. Thanks to the bounds (3.15) Proposition 4, the right-hand side of

system (3.33) is small in ε. The following proposition characterizes a unique solution

to system (3.33). This solution with b = ā defines a unique ρ in the transformation

(3.31).
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Proposition 7. Fix γ > 0, Ω > γ, and E 6= ±E0. There exist ε0 > 0 sufficiently

small and C1 > 0 such that for every ε ∈ (−ε0, ε0), there exists a unique solution

a ∈ `2(Z) to the system (3.33) such that

|a0| ≤ C1ε
2, |an| ≤ C1|ε||n|, n ∈ Z\{0}. (3.34)

Proof. The proof repeats the three steps in the proof of Proposition 4. On the sites

n ∈ Z\{0}, the Jacobian operator DxF (0, 0) is block-diagonal with identical blocks

given by [
−iγ −Ω

−Ω iγ

]
. (3.35)

Each block is invertible thanks to the constraint Ω > γ. On the central site n = 0, the

Jacobian operator DxF (Aeiθ, 0) coincides with the block (2.35), which is invertible for

every γ 6= 0, Ω > γ > 0, and |E| > E0 (see Theorem 6 in Chapter 2). Thus, existence

and uniqueness of solutions to the nonlinear system (3.33) for small ε is established

with two applications of the implicit function theorem.

In order to justify the bound (3.34), we use (3.16) and substitute

a0 = ε2A0, an = ε|n|A|n|, ±n ∈ N (3.36)

to the system (3.33). The sequence {An}n∈N is found from the system

−ΩĀn − iγAn − ε2Ān+1 + 2εĀn − Ān−1(1− δn,1)− ε2A0δn,1

−6ε2|n|(W 2
n + W̄ 2

n)An − 12ε2|n||Wn|2Ān − 6ε2|n|Wn(A2
n + Ā2

n)

−12ε2|n|W̄n|An|2 − 6ε2|n||An|2Ān − 2ε2|n|A3
n = EWn, (3.37)

whereas the term A0 satisfies the nonlinear equation

EA0 − ΩĀ0 − iγA0 − 2Ā1 + 2εĀ0 − 6(U2
0 + Ū2

0 )A0 − 12|U0|2Ā0

−6ε2U0(A2
0 + Ā2

0)− 12ε2Ū0|A0|2 − 6ε4|A0|2Ā0 − 2ε2A3
0 = 0. (3.38)

It follows from the invertibility of the block (2.35) that there exists a unique solution

to the nonlinear equation (3.38) for A0 ∈ C if ε is sufficiently small and A1 ∈ C is
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given. The solution satisfies the bound

|A0| ≤ C ′|A1|, (3.39)

where the positive constant C ′ is ε-independent. By substituting this solution for

A0 ∈ C to the system (3.37), we observe that the leading-order system is given by the

recurrence equation

−ΩĀ(0)
n − iγA(0)

n − Ā(0)
n−1(1− δn,1) = EWn, n ∈ N. (3.40)

Since Ω > γ, there exists a unique solution A(0) ∈ `∞(N) of the leading-order system

(3.40). Moreover, because the Jacobian operator DxF (0, 0) is one-to-one and onto,

the solution A(0) is actually in `2(N). By using the implicit function theorem again,

for ε 6= 0 sufficiently small, there exists a unique solution A ∈ `2(N) to the system

(3.37) satisfying the bound

‖A− A(0)‖`2(N) < C ′′|ε|, (3.41)

where the positive constant C ′′ is ε-independent. Combining bounds (3.39), (3.41)

with the representation (3.36) yields the bounds (3.34).

By using the transformation (3.31), we rewrite the expansion (3.22) in the following

equivalent form

∆ = ∆0 + ∆2(φ̃) + ∆3(φ̃) + ∆4(φ̃), (3.42)

where the φ̃-independent term ∆0 is given by

∆0 := N1(ρ) +N2(ρ) +N3(ρ) +N4(ρ),

the quadratic and cubic parts ∆2(φ̃) and ∆3(φ̃) are ε-close to N2(φ̃) and N3(φ̃), while

∆4(φ̃) = N4(φ̃). The following proposition characterizes each term of the decompo-

sition (3.42). The new definitions of constants override the previous definitions of

constants.
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Proposition 8. Fix γ > 0, Ω > γ, and E 6= ±E0. There exist ε0 > 0 sufficiently

small and C0, C1, C2, C3, C4 > 0 such that for every ε ∈ (−ε0, ε0), we have

|∆0| ≤ C0ε
2, (3.43)

‖φ̃‖l2 ≤ ‖φ‖l2 + C1ε, ‖φ‖l2 ≤ ‖φ̃‖l2 + C1ε, (3.44)

‖∆3(φ̃)‖l2 ≤ C3‖φ̃‖3
l2 , ‖∆4(φ̃)‖l2 ≤ C4‖φ̃‖4

l2 , (3.45)

and

∆2(φ̃) ≥ C2‖φ̃‖2
`2 for every φ̃ ∈ l2c(Z). (3.46)

Proof. Since ρ is constructed in Proposition 7 with the PT -symmetric correction term

b = ā, it is true that ρ ∈ `2
c(Z). Therefore, the condition φ ∈ `2

c(Z) is satisfied if and

only if φ̃ ∈ `2
c(Z). Since the constants C2, C3, and C4 in the bounds (3.25) and (3.30)

are ε-independent, whereas ∆2, ∆3, and ∆4 are ε-close to N2, N3, and N4 in space

`2(Z), then the bounds (3.45) and (3.46) follow from the bounds (3.25) and (3.30)

respectively, thanks to the smallness of ε.

In order to obtain the bounds (3.43) and (3.44), we use the bounds (3.15) and

(3.34) and obtain

|N1(ρ)| ≤ C
∑

n∈Z\{0}

ε2|n| ≤ C ′ε2, ‖ρ‖2
l2 ≤ C

ε4 +
∑

n∈Z\{0}

ε2|n|

 ≤ C ′ε2, (3.47)

where the positive constants C, C ′ are ε-independent and ε is sufficiently small. Since

N2, N3, and N4 are quadratic, cubic, and quartic respectively, the bound (3.43) is

obtained from the triangle inequality and the estimates (3.47). The bounds (3.44)

follow from the triangle inequality and the second estimate (3.47).

3.3.5 Time evolution of ∆

We recall that H given by (3.3) is a constant of motion for the PT -symmetric dNLS

equation (3.1). On the other hand, the part of Q at n = 0 satisfies the balance

equation

i
d

dt
(u0v̄0 + ū0v0) = ε [ū0(u1 + u−1)− u0(ū1 + ū−1) + v̄0(v1 + v−1)− v0(v̄1 + v̄−1)] . (3.48)
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If the initial data ψ(0) ∈ l2(Z) is close to Φ in the sense of the bound

‖ψ(0)−Φ‖`2 ≤ δ, then the unique solution ψ(t) ∈ C1(R, l2(Z)) to the PT -symmetric

dNLS equation (3.1) with the same initial data can be defined in the modulation form

ψ(t) = e−iα(t)σ [Φ + φ(t)] , (3.49)

as long as the solution remains close to the orbit of Φ under the phase rotation in

the sense of the bound (3.9). Note again that the vectors ψ, Φ, and φ are extended

4-component vectors at each lattice site compared to the 2-component vectors used

in the formulation of Theorem 11. As a result, the gauge symmetry is represented by

the matrix operator σ defined by (3.28).

The decomposition (3.49) is defined uniquely only if a constraint is imposed to

φ(t) ∈ `2(R). In agreement with the definition (3.29) on the constrained space `2
c(R),

we impose the orthogonality condition:

〈σΦ, φ(t)〉l2 = 0. (3.50)

The decomposition (3.49) under the orthogonality condition (3.50) and the modu-

lation equation for α are justified in the next section. Here we estimate how the

time-dependent energy quantity ∆ changes along the solution ψ(t) ∈ C1(R, l2(Z))

represented by the decomposition (3.49).

The rate of change of ∆ defined by (3.21) along the solution ψ(t) represented by

(3.49) is obtained from (3.48) as follows:∣∣∣∣d∆

dt

∣∣∣∣ ≤ CEε‖Φ0 + φ0‖ (‖Φ1 + φ1‖+ ‖Φ−1 + φ−1‖) (3.51)

where CE is a positive ε-independent constant. By using the bounds (3.15) and (3.34),

the transformation (3.31), and the triangle inequality (3.44), we obtain from (3.51):∣∣∣∣d∆

dt

∣∣∣∣ ≤ CEε
(

1 + ‖φ̃0‖
)(

ε+ ‖φ̃1‖+ ‖φ̃−1‖
)

≤ C ′Eε
(
ε+ ‖φ̃0‖+ ‖φ̃1‖+ ‖φ̃−1‖+ ‖φ̃0‖2 + ‖φ̃1‖2 + ‖φ̃−1‖2

)
, (3.52)

where C ′E is another positive ε-independent constant.
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Let us now define a ball in the space `2
c(Z) of a finite size K > 0 by

MK :=
{
φ ∈ `2

c(Z) : ‖φ‖`2 ≤ K
}
. (3.53)

From estimates (3.45) and (3.46), there is a positive K-dependent constant CK such

that

∆−∆0 ≥ CK‖φ̃‖2
`2 for every φ̃ ∈MK . (3.54)

By using coercivity (3.54) in the ball MK and the Young inequality

|ab| ≤ α

2
a2 +

1

2α
b2, a, b ∈ R,

where α ∈ R+ is arbitrary, we estimate

‖φ̃0‖+ ‖φ̃1‖+ ‖φ̃−1‖ ≤
√
C−1
K (∆−∆0) ≤ α

2CK
+

1

2α
(∆−∆0),

where ∆−∆0 ≥ 0 follows from (3.54). Substituting this estimate to (3.52) yields∣∣∣∣d∆

dt

∣∣∣∣ ≤ CEε
(
ε+ α + (∆−∆0) + α−1(∆−∆0)

)
, (3.55)

for another constant CE > 0. In what follows, we will set the scaling parameter α

such that α → 0 as ε → 0. Therefore, the constant α−1 is much larger compared to

unity. Integrating (3.55) with an integrating factor,∣∣∣∣ ddte−CEεα−1t(∆−∆0)

∣∣∣∣ ≤ CEε(ε+ α)e−CEεα
−1t,

we obtain with the Gronwall’s inequality:

∆(t)−∆0 ≤ eCEεα
−1t

(
∆(0)−∆0 + CEε(ε+ α)

∫ t

0

e−CEεα
−1sds

)
≤ eCEεα

−1t (∆(0)−∆0 + α(ε+ α)) . (3.56)

It is clear from the estimate (3.56) that ∆(t)−∆0 is small only if α→ 0 as ε→ 0. If

α = ε, then

α = ε : ∆(t)−∆0 ≤ eCEt
(
∆(0) + C0ε

2
)
,

where the bound (3.43) has been used and C0 is an ε-independent constant. Therefore,
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if ∆(0) is small, then ∆(t) remains small on the time scale t = O(1) as ε → 0. On

the other hand, if α = ε1/2, then the estimate (3.56) yields

α = ε1/2 : ∆(t)−∆0 ≤ eCEε
1/2t (∆(0) + C0ε) ,

so that ∆(t) remains small on the time scale t = O(ε−1/2).

The initial value for ∆(0) is estimated from (3.42), (3.43), and (3.44). By (3.44),

for every φ(0) ∈Mδ with δ > 0 sufficiently small, we have φ̃(0) ∈MK with K = δ+ε

and there are positive (ε,δ)-independent constants C,C ′ such that

|∆(0)| ≤ C
(
ε2 + ‖φ̃(0)‖2

`2

)
≤ C ′(ε2 + δ2). (3.57)

By using the triangle inequality (3.44), coercivity (3.54), and the bound (3.57), we

finally obtain the following two estimates:

α = ε : ‖φ(t)‖2
`2 ≤ CeCEt

(
ε2 + δ2

)
and

α = ε1/2 : ‖φ(t)‖2
`2 ≤ CeCEε

1/2t
(
ε+ δ2

)
,

where the positive constant C is independent of ε and δ. Comparing with the bound

(3.9) stated in Theorem 11, we obtain

α = ε, t0 . 1 : C(ε+ δ) ≤ ν (3.58)

and

α = ε1/2, t0 . ε−1/2 : C
(
ε1/2 + δ

)
≤ ν, (3.59)

where t0 is the final time in the bound (3.9) and C is another positive (ε,δ)-independent

constant. For every ν > 0, there exist ε0 > 0 and δ > 0 such that inequalities (3.58)

and (3.59) can be satisfied for every ε ∈ (0, ε0). The statement of Theorem 11 is

formulated on the extended time scale corresponding to the inequality (3.59). The

short time scale corresponding to the inequality (3.58) is mentioned in Remark 14.
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3.3.6 Modulation equations in `2
c(Z)

It remains to show how we can define the decomposition (3.49) under the constraint

(3.50) for a solution to the PT -symmetric dNLS equation (3.1) and how the evolution

of α in time t can be estimated from the modulation equation. Here we modify

standard results on modulation equations, see, e.g., Lemmas 6.1 and 6.3 in [56] for

similar analysis. For reader’s convenience, we only give the main ideas behind the

proofs.

Proposition 9. There exist constants ν0 ∈ (0, 1) and C0 ≥ 1 such that, for any

ψ ∈ l2(Z) satisfying

d := inf
α∈R
‖eiασψ − Φ‖l2 ≤ ν0, (3.60)

one can find modulation parameter α ∈ R/(2πZ) such that ψ = e−iασ(Φ + φ) with

φ ∈ `2
c(Z) satisfying d ≤ ‖φ‖l2 ≤ C0d.

Proof. We consider a function f : R→ R given by

f(α) := 〈σΦ, eiασψ − Φ〉`2 = 0.

Let α0 ∈ R/(2πZ) be the argument of the infimum in (3.60). Then, |f(α0)| ≤ d‖Φ‖`2
by the Cauchy–Schwartz inequality. On the other hand, the derivative f ′(α0) is

bounded away from zero because

f ′(α0) = 〈σΦ, iσeiα0σψ〉`2 = i‖Φ‖2
`2 + i〈Φ, eiα0σψ − Φ〉`2 ,

where the second term is bounded by d‖Φ‖`2 and the first term is d-independent.

The function f : R → R is smooth in α. By the implicit function theorem, for any

d > 0 sufficiently small, there is a unique solution of the equation f(α) = 0 for α near

α0 such that |α − α0| ≤ Cd, where C is d-independent. By the triangle inequality,

‖φ‖l2 ≤ C0d, where C0 is also d-independent.

Proposition 10. Assume that the solution ψ(t) to the PT -symmetric dNLS equation

(3.1) satisfies d(t) ≤ ν for every t ∈ [0, t0], where d(t) is given by (3.60). Then

the modulation parameter α(t) defined by (3.49) in Proposition 9 is a continuously

differentiable function of t and there is a positive constant C such that |α̇−E| ≤ Cν,

for every t ∈ [0, t0].
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Proof. Let ψ(t) ∈ C1(R, l2(Z)) be a solution to the PT -symmetric dNLS equation

(3.1). Substituting the decomposition (3.49) into the PT -symmetric dNLS equation

(3.1), we obtain the evolution equation in the form

iφ̇ = SH′′Eφ+ (E − α̇)σ(Φ + φ) +N(φ), (3.61)

where the bounded invertible operator S : `2(Z) → `2(Z) represents the symplectic

structure (3.2) of the PT -symmetric dNLS equation (3.1), N(φ) contains quadratic

and cubic terms in φ, and the gauge invariance of the PT -symmetric dNLS equation

(3.1) has been used. From the condition (3.50), projecting the evolution equation

(3.61) to σΦ yields

α̇− E =
〈H′′ESσΦ, φ〉`2 + 〈σΦ, N(φ)〉`2

‖Φ‖2
`2 + 〈Φ, φ〉`2

. (3.62)

By Proposition 9, if d(t) ≤ ν is sufficiently small for every t ∈ [0, t0], then ‖φ(t)‖`2 ≤
C0d(t) for a positive constant C0. Then, the denominator in (3.62) is bounded away

from zero, whereas the numerator is bounded by Cd(t), which yields the bound |α̇−
E| ≤ Cν, for every t ∈ [0, t0].
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Chapter 4

Krein signature in Hamiltonian

Systems

4.1 Background

We consider the prototypical example of the one-dimensional Gross-Pitaevskii (GP)

equation arising in the context of cigar-shaped Bose–Einstein (BEC) condensates [116,

119]. The model takes the form of the following defocusing nonlinear Schrödinger

(NLS) equation with a harmonic potential [31, 76]:

i∂tu = −∂2
xu+ V (x)u+ |u|2u, (4.1)

where u represents the complex wave function and V characterizes the external po-

tential. The probability density of finding atoms at a given location and time is

characterized by |u|2.

In the case of magnetic trapping of the BECs [116, 119], the potential V is real-

valued and is given by

V (x) = Ω2x2, (4.2)

where Ω is the ratio of longitudinal to transverse confinement strengths of the parabolic

trapping. The NLS equation (4.1) with the potential (4.2) is a Hamiltonian system

written in the symplectic form

i
∂u

∂t
=
δH

δū
, (4.3)
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where H is the following real-valued Hamiltonian function

H(u) =

∫
R

[
|∂xu|2 + V (x)|u|2 +

1

2
|u|4
]
dx. (4.4)

In the setting of the NLS equation (4.1) with the potential (4.2), the linear Hamil-

tonian system can be formulated as the spectral problem

JLv = λv, (4.5)

where L is a self-adjoint unbounded operator in the space of square-integrable func-

tions L2(R) with a dense domain in L2(R) and J is a skew-adjoint bounded operator

in L2(R). The operators L and J are assumed to satisfy J2 = −I and JL+ L̄J̄ = 0,

thanks to the Hamiltonian symmetry.

If λ0 ∈ C is an eigenvalue of the spectral problem (4.5), then it is neutrally stable

if Re(λ0) = 0 and unstable if Re(λ0) > 0. Thanks to the Hamiltonian symmetry of

L and J , the eigenvalues appear in symmetric pairs relative to the axis Re(λ) = 0.

Indeed, if v is an eigenvector of the spectral problem (4.5) for the eigenvalue λ, then

w = −Jv̄ is an eigenvector of the same spectral problem (4.5) with the eigenvalue

−λ̄. Indeed, substituting v = J̄w̄ into (4.5) yields

JLJ̄w̄ = λJ̄w̄ ⇔ L̄w̄ = λJ̄w̄ ⇔ J̄L̄w̄ = −λw̄ ⇔ JLw = −λ̄w.

Definition 13. For a nonzero eigenvalue λ0 ∈ C of the spectral problem (4.5) with

the eigenvector v0 in the domain of L, we define the Krein quantity K(λ0) by

K(λ0) := 〈Lv0, v0〉, (4.6)

where 〈·, ·〉 is the standard inner product in L2(R).

Proposition 11. Krein quantity in (4.6) satisfies the following properties:

1. K(λ0) is real if λ0 ∈ iR.

2. K(λ0) is nonzero if λ0 ∈ iR\{0} is simple.

3. K(λ0) is zero if λ0 ∈ C\{iR}.
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The Krein signature is defined as the sign of the Krein quantity K(λ0) for a

simple neutrally stable eigenvalue λ0 ∈ iR\{0}. If parameters of the NLS equation

(4.1) change, parameters of the spectral problem (4.5) change, however, the simple

eigenvalue λ0 ∈ iR remains on the axis Re(λ) = 0 unless it coalesces with another

eigenvalue or a part of the continuous spectrum, thanks to the preservation of its

multiplicity and the Hamiltonian symmetry of eigenvalues. In this case, the eigenvalue

λ0 and its Krein quantity K(λ0) are at least continuous functions of the parameters

of the NLS equation (4.1).

It is quite typical in the parameter continuations of the spectral problem (4.5) to

see that the simple eigenvalue λ0 ∈ iR coalesces at a bifurcation point with another

simple eigenvalue λ′0 ∈ iR and that both eigenvalues split into the complex plane as

unstable eigenvalues past the bifurcation point. The Krein signature is a helpful tool

towards predicting this instability bifurcation in the sense of the following necessary

condition.

Theorem 12 (Necessary condition for instability bifurcation.). Under some non-

degeneracy constraints, the double eigenvalue λ0 = λ′0 ∈ iR of the spectral problem

(4.5) with a bifurcation parameter ε ∈ R splits into a pair of complex eigenvalues

symmetric relative to Re(λ) = 0 for ε > 0 only if there exist two simple eigenvalues

λ0, λ
′
0 ∈ iR with the opposite Krein signature for ε < 0.

In other words, if two neutrally stable eigenvalues of the same Krein signature move

towards each other in the parameter continuation of the spectral problem (4.5), then

their coalescence will not result in the onset of instability, whereas if the two neutrally

stable eigenvalues have the opposite Krein signature, their coalescence is likely to

result in the onset of instability, subject to technical non-degeneracy constraints.

The concept of Krein signature in the infinite-dimensional setting, e.g. for the

NLS equation, was introduced independently in works [68, 107]. It was justified in

a number of mathematical publications [38, 70] and it remains a practical tool to

trace instability bifurcations in physically relevant Hamiltonian systems [113, 130]

(see review in [83]).

The purpose of this Chapter is to explain definitions and properties of the Krein

signature on the prototypical example of the NLS equation (4.1) with the potential

(4.2).

85



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

4.2 Krein signature for the NLS equation

In the context of the NLS equation (4.1) with the potential (4.2), we consider the

nonlinear stationary states of the form u(x, t) = e−iµtφ(x), where µ ∈ R is referred to

as the chemical potential [45] and the real-valued function φ satisfies the differential

equation

µφ(x) = −φ′′(x) + x2φ(x) + φ(x)3, (4.7)

where we have set Ω = 1 without loss of generality. In the linear (small-amplitude)

limit, we obtain the quantum harmonic oscillator with the eigenvalues µn = 1 + 2n,

n ∈ N0 := {0, 1, 2, ...} and the L2-normalized eigenfunctions

ϕn(x) =
1√

2nn!
√
π
Hn(x)e−x

2/2, (4.8)

where Hn is the Hermite polynomial of degree n, e.g., H0(x) = 1, H1(x) = 2x,

H2(x) = 4x2 − 2, etc.

Each eigenfunction ϕn for a simple eigenvalue µn generates a branch of solutions

bifurcating in the stationary problem (4.7). This follows from the general Crandall–

Rabinowitz bifurcation theory [41] and is generally used in physics community, see,

e.g., [51, 143]. Each branch can be approximated by the following expansion in terms

of the small parameter ε: {
µ = µn + ε2µ

(2)
n + . . . ,

φ = εϕn + ε3ϕ
(3)
n + . . . ,

(4.9)

where (µn, ϕn) is the n-th eigenvalue–eigenfunction pair, (µ
(2)
n , ϕ

(3)
n ) are the next-order

correction terms to be found, and the dots denote the higher-order corrections terms.

The n-th branch of the nonlinear stationary states is smooth with respect to the

small parameter ε, which parameterizes both µ and φ, whereas it has a square-root

singularity when it is written in terms of the parameter µ− µn.

The formal solvability condition for the correction terms (µ
(2)
n , ϕ

(3)
n ) yields

µ(2)
n =

∫
R
ϕn(x)4dx > 0, (4.10)
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which implies that the branch of nonlinear stationary states extends towards µ > µn.

The limit µ → ∞ can be rescaled as the semi-classical limit of the stationary NLS

equation. Each n-th branch of the nonlinear stationary states is uniquely extended to

the limit µ → ∞, where it is matched with the asymptotic approximation involving

bound states of n dark solitons on the background of V in (4.2) [40, 106].

When considering the stability of the nonlinear stationary state of the form

u(x, t) = e−iµtφ(x), we linearize the NLS equation (4.1) with the expansion

u(x, t) = e−iµt
[
φ(x) + δ

(
a(x)e−λt + b̄(x)e−λ̄t

)
+ . . .

]
, (4.11)

where δ is a formal small parameter. To the leading order in δ, the eigenvalue–

eigenvector pair (λ, v) with v = (a, b)T is found from the spectral problem

Lv = −iλσ3v, (4.12)

where σ3 = diag(1,−1) and the linear operator L is written in the differential form:

L =

[
−∂2

x + x2 − µ+ 2φ(x)2 φ(x)2

φ(x)2 −∂2
x + x2 − µ+ 2φ(x)2

]
. (4.13)

The operator L is extended to a self-adjoint operator in L2(R) with the domain

H2(R) ∩ L2,2(R) (see [62], Ch. 4, p.37), where H2(R) is the Sobolev space of square

integrable functions and their second derivatives and L2,2(R) is the space of square

integrable functions multiplied by (1 + x2). The spectrum of L is purely discrete

(see [121], Ch. XIII, Theorem 16 on p.120).

The spectral problem (4.12) takes the abstract form (4.5) with the self-adjoint op-

erator L given by (4.13) and the skew-symmetric operator J = iσ3. The Hamiltonian

symmetry J2 = −I and JL + L̄J̄ = 0 (or, equivalently, σ3L = L̄σ3) is satisfied. The

eigenvalues are symmetric relative to the imaginary axis. To be precise, if λ0 is an

eigenvalue with the eigenvector v0 = (a, b)T , then −λ0 is another eigenvalue with the

eigenvector σ3v̄0 = (a,−b)T by the Hamiltonian symmetry σ3L = L̄σ3.

In addition to the Hamiltonian symmetry, the operator L in (4.13) satisfies

σ1L = L̄σ1, which implies that the eigenvalues are symmetric relative to the real

axis. Indeed, if λ0 is an eigenvalue with the eigenvector v0 = (a, b)T , then λ̄0 is an-

other eigenvalue with the eigenvector σ1v̄0 = (b̄, ā). Hence, the unstable eigenvalues
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with Re(λ0) > 0 occur either as pairs on the real axis or as quadruplets in the complex

plane, whereas the neutrally stable eigenvalues with Re(λ0) = 0 occur as pairs on the

imaginary axis.

For each nonzero eigenvalue λ0 ∈ C of the spectral problem (4.12) with the eigen-

vector v0 = (a, b)T ∈ H2(R) ∩ L2,2(R), the Krein quantity K(λ0) introduced in (4.6)

can be written explicitly as follows:

K(λ0) = 〈Lv0, v0〉 = −iλ0〈σ3v0, v0〉 = −iλ0

∫
R
(|a(x)|2 − |b(x)|2)dx. (4.14)

If K(λ0) is nonzero and real, the sign of K(λ0) is referred to as the Krein signature.

In what follows, we only consider eigenvalues with λ0 ∈ iR+, for which −iλ0 > 0.

Let us verify the three main properties of the Krein quantity K(λ0).

Proof of Proposition 11.

1. If λ0 ∈ iR, then (−iλ0) ∈ R. The integral in (4.14) is also real. Hence, K(λ0)

is real.

2. Let us write the eigenvalue problem (4.13) for the generalized eigenvector vg:

(L+ iλ0σ3)vg = σ3v0. (4.15)

If λ0 ∈ iR\{0}, then v0 is in the kernel of the adjoint operator (L + iλ0σ3)∗,

and Fredholm solvability condition of the above equation is 〈σ3v0, v0〉 = 0. If

K(λ0) = 0, then there exists a solution to the nonhomogeneous equation (4.15),

so that λ0 is not simple. Hence, K(λ0) 6= 0.

3. Using self-adjoint property of L, one can write

〈Lv0, v0〉 = 〈v0,Lv0〉,

which can be expanded as

−iλ0〈σ3v0, v0〉 = iλ̄0〈v0, σ3v0〉,

where the equality holds either for λ0 ∈ iR or 〈σ3v0, v0〉 = 0. Hence K(λ0) = 0

for λ0 6∈ iR.
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Let us now illustrate how the Krein signatures can be used to predict instability

bifurcations from multiple neutrally stable eigenvalues of the spectral problem (4.12).

We restrict consideration to the small-amplitude limit. If ε = 0 and µ = µn, the linear

operator (4.13) becomes diagonal:

L0 =

[
−∂2

x + x2 − µn 0

0 −∂2
x + x2 − µn

]
(4.16)

and the eigenvalues are located at σ(L0) = {2(m − n), m ∈ N0}, where n ∈ N0 is

fixed. Because of the skew-symmetric operator J = iσ3 in the right-hand side of the

spectral problem (4.12), these eigenvalues are mapped to the imaginary axis in the

pairs λ ∈ ±i{2(m− n), m ∈ N0}.
If n = 0, the ground state branch (4.9) leads to a double zero eigenvalue and

a set of simple eigenvalues in pairs λ ∈ ±i{2m, m ∈ N0\{0}}. The double zero

eigenvalue is preserved in ε due to gauge symmetry, whereas the simple neutrally stable

eigenvalues are preserved on the imaginary axis due to Hamiltonian symmetry (at least

for small ε). Moreover, each eigenvalue has a positive Krein signature, therefore, by

the necessary condition for instability bifurcations, no complex eigenvalue quartets

can arise in parameter continuations of solutions to the spectral problem (4.12) in ε.

These spectral stability properties are natural for the ground state solution.

If n = 1, the first excited state branch (4.9) associated with a single dark soliton

[40, 106] leads to a double zero eigenvalue, a pair of double eigenvalues λ = ±2i, and

a set of simple eigenvalues in pairs λ ∈ ±i{2(m− 1), m ∈ N0\{0,±1}}. The double

zero eigenvalue is again preserved in ε due to gauge symmetry but the pair of nonzero

double eigenvalues λ = ±2i may split if ε 6= 0. Note that two linearly independent

eigenvectors exist for λ0 = 2i:

v1 =

[
ϕ2

0

]
, v2 =

[
0

ϕ0

]
. (4.17)

The two eigenvectors induce opposite Krein signatures for the coalescent double eigen-

value since K(λ0) > 0 for v1 and K(λ0) < 0 for v2. Therefore, by the necessary condi-

tion on the splitting of the double eigenvalues, we may anticipate unstable eigenvalues

for small ε.

Similarly, if n = 2, the second excited state branch (4.9) associated with two dark
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solitons [40, 106] leads to a double zero eigenvalue, two pairs of double eigenvalues

λ = ±2i and λ = ±4i, and a set of simple eigenvalues in pairs λ ∈ ±i{2(m − 2),

m ∈ N0\{0,±1,±2}}. The double zero eigenvalue is again preserved in ε due to gauge

symmetry but the pairs of nonzero double eigenvalues λ = ±2i and λ = ±4i may split

if ε 6= 0. Note that two linearly independent eigenvectors exist as follows:

λ0 = 2i : v1 =

[
ϕ3

0

]
, v2 =

[
0

ϕ1

]
(4.18)

and

λ0 = 4i : v1 =

[
ϕ4

0

]
, v2 =

[
0

ϕ0

]
. (4.19)

Again, the two eigenvectors induce opposite Krein signatures for each coalescent dou-

ble eigenvalue, hence by the necessary condition on the splitting of the double eigen-

values, we may anticipate unstable eigenvalues for small ε.

In order to compute definite predictions whether or not the double eigenvalues

produce instability bifurcations for the first and second excited states, we shall proceed

using perturbation theory arguments. We substitute expansion (4.9) into the spectral

problem (4.12) and expand it into powers of ε2 as follows:

(L0 + ε2L1 + . . . )v = −iλσ3v, (4.20)

where

L1 =

[
2ϕn(x)2 − µ(2)

n ϕn(x)2

ϕn(x)2 2ϕn(x)2 − µ(2)
n

]
. (4.21)

Let −iλ = ω0 + ε2ω1 + . . . , where ω0 is a coalescent double eigenvalue and ω1 is

a correction term. Representing v = c1v1 + c2v2 + . . . and projecting the perturbed

spectral problem (4.20) to the eigenvectors v1 and v2 yield the matrix eigenvalue

problem

M

[
c1

c2

]
= ω1σ3

[
c1

c2

]
, (4.22)

where Mij = 〈L1vi, vj〉, 1 ≤ i, j ≤ 2, and the L2 normalization of eigenvectors has

been taken into account.
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Let us consider the first excited state n = 1 bifurcating from µ1 = 3. For ε = 0,

the eigenvalue at ω0 = 2 is double with two eigenvectors (4.17). However, there exists

a linear combination of v1 and v2 which produces the so-called dipolar oscillation

(also known as the Kohn mode, see explicit solutions in [77]) and thus the eigenvalue

at ω0 = 2 related to this linear combination is independent of the variations of the

chemical potential in ε. The shift of the eigenvalue for another linear combination of

v1 and v2 has been the subject of intense scrutiny as it is associated with the oscillation

frequency of the dark soliton in the parabolic trap [28, 109].

By using (4.10) for n = 1, we find µ
(2)
1 = 3/(4

√
2π). The matrix M in the matrix

eigenvalue problem (4.22) is computed explicitly as

M =

[
1

8
√

2π
1

8
√
π

1
8
√
π

1
4
√

2π

]
. (4.23)

Computations of eigenvalues of the matrix eigenvalue problem (4.22) yield 0 and

−1/(8
√

2π). The zero eigenvalue corresponds to the dipolar oscillations. The nonzero

eigenvalue near ω0 = 2 is given by the following expansion:

ω = 2− 1

6
(µ− 3) + . . . (4.24)

Numerical results on the top left panel of Figure 4.1 confirm this prediction. The

smallest nonzero eigenvalue remains below ω0 = 2 and approaches ω →
√

2 as µ→∞,

in agreement with the previous results [28, 109].

It is relevant to indicate that the asymptotic limit of the eigenfrequencies of the

ground state solution with n = 0 can be computed in the limit of large µ [132] (see

also [77] for a recent account of the relevant analysis). These modes include the

so-called dipolar oscillation, quadrupolar oscillation, etc. (associated, respectively,

to m = 1, m = 2, etc.) and the corresponding eigenfrequencies are given by the

analytical expression in the limit µ→∞:

ωm =
√

2m(m+ 1), m ∈ N. (4.25)

We can see from the top left panel of Fig. 4.1 that these frequencies of the ground

state solution are present in the linearization of the first excited state in addition to

the eigenfrequency ω∗ =
√

2, which corresponds to the oscillation of the dark soliton

inside the trap.

91



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

Figure 4.1: The top left panel corresponds to the case of the first excited state, the top
right one corresponds to the second excited state, while the bottom panel corresponds to
the third excited state. Eigenvalues of negative (positive) Krein signature are shown in
red (green), complex eigenvalues are shown in black. For the first excited state, only the
lowest nonzero eigenfrequency has a negative Krein signature (but its linear degeneracy
with a symmetry mode yields no instability). For the second excited state, there are two
degenerate modes at 2 and 4. Only the latter yields the quartet of complex eigenvalues. For
the third excited states, there are three degenerate modes at 2, 4, and 6, the last two yield
quartets of complex eigenvalues.

While the example of the first excited state is instructive, it does not show any

instability bifurcations due to coalescence of eigenvalues of the opposite Krein signa-

tures. This is because although the eigenfrequency at ω0 = 2 is double, the dipolar

oscillations do not allow the manifestation of an instability as a result of resonance.

However, the onset of instability can still be found for the other excited states, e.g.

for the second excited state corresponding to n = 2 bifurcating out of µ2 = 5.

By using (4.10) for n = 2, we find µ
(2)
2 = 41/(64

√
2π). At ε = 0, the eigenvalue

at ω0 = 2 is double with the two eigenvectors (4.18). The dipolar oscillation mode

is present again and corresponds to the eigenvalue at ω0 = 2 independently of the

variations of the chemical potential in ε. The other eigenvalue at ω0 = 2 is shifted for
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small ε. The matrix M in the matrix eigenvalue problem (4.22) is computed explicitly

as

M =

[
5

32
√

2π
15

64
√

3π
15

64
√

3π
15

64
√

2π

]
. (4.26)

Computations of eigenvalues of the matrix eigenvalue problem (4.22) yield 0 and

−5/(64
√

2π). The nonzero eigenvalue near ω0 = 2 is given by the following expansion:

ω = 2− 5

41
(µ− 5) + . . . (4.27)

While the degeneracy at ω0 = 2 does not lead to the onset of instability, let us

consider the double eigenvalue at ω0 = 4 with the two eigenvectors (4.19). The matrix

M in the matrix eigenvalue problem (4.22) is computed explicitly as

M =

 1
512
√

2π
9

128
√

3π

9
128
√

3π
7

64
√

2π

 . (4.28)

The complex eigenvalues of the matrix eigenvalue problem (4.22) are given by

(−55 ± 3
√

23i)/(2048
√

2π). The complex eigenvalues near ω0 = 4 are given by the

following expansion:

ω = 4 +
−55± 3

√
23i

656
(µ− 5) + . . . (4.29)

The eigenvalues remain complex for values of µ & 5 but coalesce again on the imagi-

nary axis at µ ≈ 13.75 and reappear as pairs of imaginary eigenvalues of the opposite

Krein signatures. This reversed instability bifurcation takes place in a complete agree-

ment with the necessary condition for the instability bifurcations.

In the large chemical potential limit, the eigenfrequencies of the linearization at

the excited state with n = 2 include the same eigenfrequencies of the linearization

at the ground state with n = 0 given by (4.25), see the top right panel of Fig. 4.1.

In addition, two modes with negative Krein signature appear due to the dynamics of

the two dark solitary waves on the ground state. One mode represents the in-phase

oscillation of the two dark solitons and it is continued from the eigenvalue expanded

by (4.27) to the limit µ → ∞, where it approaches ω∗ =
√

2. The other mode

represents the out-of-phase oscillation of the two dark solitons and it appears from
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the complex pair (4.29) which reappears back on the imaginary axis for higher values

of the chemical potential µ. Asymptotic approximation of the out-of-phase oscillation

in the limit µ→∞ is reported in [40].

This pattern continues for other excited states with n ≥ 3. The bottom panel on

Fig. 4.1 shows the case n = 3. For every n ≥ 3, there are n double eigenvalues with

opposite Krein signature at ε = 0. If ε 6= 0, the lowest double eigenvalue does not

lead to instability due to its linear degeneracy with the dipolar symmetry mode. The

remaining n − 1 double eigenvalues may yield instability bifurcations with complex

eigenvalues. For large µ, these eigenvalues reappear on the imaginary axis after the

reversed instability bifurcations in agreement with the necessary condition for the

instability bifurcation. The n eigenvalues of negative Krein signature characterize

n dark solitons on the top of the ground state solution. As such, they provide a

rather lucid example of the nature and relevance the negative Krein signature concept.

Further details can be found in [40] for the large µ case and in [74] for the small µ

case.
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Chapter 5

Krein signature in PT -symmetric

systems

5.1 Background

In this Chapter, we address the following nonlinear Schrödinger’s equation (NLSE)

with a general complex potential:

i∂tψ + ∂2
xψ − (V (x) + iγW (x))ψ + g|ψ|2ψ = 0, (5.1)

where γ ∈ R is a gain–loss parameter, g = +1 (g = −1) defines focusing (defocusing)

nonlinearity, and the real potentials V and W satisfy the even and odd symmetry,

respectively:

V (x) = V (−x), W (−x) = −W (x), x ∈ R. (5.2)

In quantum physics, the complex potential V +iγW is used to describe effects observed

when quantum particles are loaded in an open system [32, 45]. The intervals with

positive and negative imaginary part correspond to the gain and loss of quantum

particles, respectively. When gain exactly matches loss, which happens under the

symmetry condition (5.2), the potential V + iγW is PT -symmetric with respect to

the parity operator P and the time reversal operator T , defined in Chapter 1. The

NLSE (5.1) is PT -symmetric under the condition (5.2) in the sense that if ψ(x, t) is

a solution to (5.1), then

ψ̃(x, t) = PT ψ(x, t) = ψ(−x,−t)
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is also a solution to (5.1).

The NLSE (5.1) with a PT -symmetric potential is also used in the paraxial nonlin-

ear optics. In that context, time and space have a meaning of longitudinal and trans-

verse coordinates, and complex potential models the complex refractive index [124].

Another possible application of the NLSE (5.1) is Bose-Einstein condensate, where it

models the dynamics of the self-gravitating boson gas trapped in a confining poten-

tial V . Intervals, where W is positive and negative, allow one to compensate atom

injection and particle leakage, correspondingly [32].

Here we deal with the stationary states in the NLSE (5.1) and introduce Krein

signature of isolated eigenvalues in the spectrum of their linearization. We prove that

the necessary condition for the onset of instability of the stationary states from a de-

fective eigenvalue of algebraic multiplicity two is the opposite Krein signature of the

two simple isolated eigenvalues prior to their coalescence. Compared to the Hamil-

tonian system in Chapter 4, or the linear Schrödinger equation in [105], the Krein

signature of eigenvalues cannot be computed from the eigenvectors in the linearized

problem, as the adjoint eigenvectors need to be computed separately and the sign of

the adjoint eigenvector needs to be chosen by a continuity argument.

5.2 Stationary states, eigenvalues of the lineariza-

tion, and Krein signature

Let us define the stationary state of the NLSE (5.1) by ψ(x, t) = Φ(x)e−iµt, where

µ ∈ R is a parameter. In the context of Bose-Einstein condensate, µ has the meaning

of the chemical potential [45]. The function Φ(x) : R → C is a suitable solution of

the stationary NLSE in the form

−Φ′′(x) + (V (x) + iγW (x))Φ(x)− g|Φ(x)|2Φ(x) = µΦ(x), (5.3)

where x ∈ R. We say that Φ is a PT -symmetric stationary state if Φ satisfies the

PT symmetry:

Φ(x) = PT Φ(x) = Φ(−x), x ∈ R. (5.4)

In addition to the symmetry constraints on the potentials V and W in (5.2), our basic

assumptions are given below. Here and in what follows, we denote the Sobolev space
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of square integrable functions with square integrable second derivatives by H2(R) and

the weighted L2 space with a finite second moment by L2,2(R).

Assumption 1. We assume that the linear Schrödinger operator L0 := −∂2
x + V in

L2(R) admits a self-adjoint extension with a dense domain D(L0) in L2(R).

Remark 18. If V ∈ L2(R) ∩ L∞(R) as in (5.43), then Assumption 1 is satisfied

with D(L0) = H2(R) (see [63], Ch. 14, p.143). If V is harmonic as in (5.44), then

Assumption 1 is satisfied with D(L0) = H2(R) ∩ L2,2(R) (see [62], Ch. 4, p.37).

Assumption 2. We assume that W is a bounded and exponentially decaying potential

satisfying

|W (x)| ≤ Ce−κ|x|, x ∈ R,

for some C > 0 and κ > 0.

Remark 19. Both examples in (5.43) and (5.44) satisfy Assumption 2. By Assump-

tion 2, the potential iγW is a relatively compact perturbation to L0 (see [121], Ch.

XIII, p.113). This implies that the continuous spectrum of L0 + iγW is the same

as L0. If V ∈ L2(R) ∩ L∞(R), then the continuous spectrum of L0 is located on the

positive real line. If V is harmonic, then the continuous spectrum of L0 is empty

(see [121], Ch. XIII, Theorem 16 on p.120).

Assumption 3. We assume that for a given µ ∈ R, there exist γ∗ > 0 and a bounded,

exponentially decaying, and PT -symmetric solution Φ ∈ D(L0) ⊂ L2(R) to the sta-

tionary NLSE (5.3) with γ ∈ (−γ∗, γ∗) satisfying (5.4) and

|Φ(x)| ≤ Ce−κ|x|, x ∈ R,

for some C > 0 and κ > 0. Moreover, the map (−γ∗, γ∗) 3 γ 7→ Φ ∈ D(L0) is

real-analytic.

Remark 20. Since the nonlinear equation (5.3) is real-analytic in γ, the Implicit

Function Theorem (see [142], Ch. 4, Theorem 4.E on p.250) provides real analyticity

of the map (−γ∗, γ∗) 3 γ 7→ Φ ∈ D(L0) as long as the Jacobian operator

L :=

[
−∂2

x + V + iγW − µ− 2g|Φ|2 −gΦ2

−gΦ
2 −∂2

x + V − iγW − µ− 2g|Φ|2

]
(5.5)

is invertible in the space of PT -symmetric functions in L2(R).
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Remark 21. Under Assumption 3, we treat µ as a fixed parameter and γ as a varying

parameter in the interval (−γ∗, γ∗). The interval includes the Hamiltonian case γ = 0.

In the context of the example of V in (5.43), it will be more natural to fix the value

of γ and to consider the parameter continuation of Φ ∈ D(L0) with respect to µ. The

continuation results for the latter case are analogous to what we present here under

Assumption 3.

We perform the standard linearization of the NLSE (5.1) near the stationary state

Φ by substituting

ψ(x, t) = e−iµt [Φ(x) + u(x, t)]

into (5.1) and truncating at the linear terms in u:iut = (−∂2
x + V + iγW − µ− 2g|Φ|2)u− gΦ2u,

−iūt = (−∂2
x + V − iγW − µ− 2g|Φ|2)u− gΦ

2
u.

Using u = Y e−λt and u = Ze−λt with the spectral parameter λ yields the spectral

stability problem in the form

L
[
Y

Z

]
= −iλσ3

[
Y

Z

]
, (5.6)

where σ3 = diag(1,−1) is the third Pauli’s matrix and L is given by (5.5). Note that

if λ 6∈ R, then Z 6= Y .

Lemma 9. The continuous spectrum of the operator iσ3L : D(L0)×D(L0)→ L2(R)×
L2(R), if it exists, is a subset of iR.

Proof. Thanks to the Assumptions 1, 2 and 3, W and Φ2 terms in (5.5) are relatively

compact perturbations to the diagonal unbounded operator L0 := diag(L0−µ, L0−µ),

where L0 = −∂2
x + V is introduced in Assumption (A1). Therefore,

σc(iσ3L) = σc(iσ3L0) ⊂ iR,

where σc(A) denotes the absolutely continuous part of the spectrum of the operator

A : D(A) ⊂ L2(R)→ L2(R).
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Remark 22. If V ∈ L2(R) ∩ L∞(R) and µ < 0, then

σc(iσ3L) = i(−∞,−|µ|] ∪ i[|µ|,∞).

If V is harmonic, then σc(iσ3L) is empty.

Definition 14. We say that the stationary state Φ is spectrally stable if every nonzero

solution (Y, Z) ∈ D(L0)×D(L0) to the spectral problem (5.6) corresponds to λ ∈ iR.

We note the quadruple symmetry of eigenvalues in the spectral problem (5.6).

Lemma 10. If λ0 is an eigenvalue of the spectral problem (5.6), so are −λ0, λ̄0, and

−λ̄0.

Proof. We note the symmetry of L and σ3:

L = σ1Lσ1, σ3 = −σ1σ3σ1, (5.7)

where σ1 = antidiag(1, 1) is the first Pauli’s matrix. If λ0 is an eigenvalue of the

spectral problem (5.6) with the eigenvector v0 := (Y, Z), then so is λ0 with the

eigenvector σ1v0 = (Z, Y ). We note the second symmetry of L and σ3:

L = PLP , σ3 = Pσ3P . (5.8)

If λ0 is an eigenvalue of the spectral problem (5.6) with the eigenvector v0 := (Y, Z),

then so is −λ0 with the eigenvector PT v0(x) = (Y (−x), Z(−x)). As a consequence

of the two symmetries (5.7) and (5.8), −λ0 is also an eigenvalue with the eigenvector

Pσ1v0(x) = (Z(−x), Y (−x)).

Besides the spectral problem (5.6), we also introduce the adjoint spectral problem

with the adjoint eigenvector denoted by (Y #, Z#):

L∗
[
Y #

Z#

]
= −iλσ3

[
Y #

Z#

]
, (5.9)

where

L∗ :=

[
−∂2

x + V − iγW − µ− 2g|Φ|2 −gΦ2

−gΦ
2 −∂2

x + V + iγW − µ− 2g|Φ|2

]
.
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Remark 23. Unless γ = 0 or Φ = 0, the adjoint eigenvector (Y #, Z#) cannot be

related to the eigenvector (Y, Z) for the same eigenvalue λ.

Our next assumption is on the existence of a nonzero isolated eigenvalue of the

spectral problem (5.6).

Assumption 4. We assume that there exists a simple isolated eigenvalue λ0 ∈ C\{0}
of the spectral problems (5.6) and (5.9) with the eigenvector v0 := (Y, Z) ∈ D(L0) ×
D(L0) and the adjoint eigenvector v#

0 := (Y #, Z#) ∈ D(L0)×D(L0), respectively.

Lemma 11. Under Assumption 4, if λ0 ∈ iR, then the corresponding eigenvectors

v0 := (Y, Z) and v#
0 := (Y #, Z#) can be normalized to satisfy

Y (x) = Y (−x), Z(x) = Z(−x), x ∈ R (5.10)

and

Y #(x) = Y #(−x), Z#(x) = Z#(−x), x ∈ R. (5.11)

Proof. By Lemma 10, if λ0 ∈ iR is a nonzero eigenvalue with the eigenvector

v0 := (Y, Z), so is −λ0 = λ0 with the eigenvector PT v0. Since λ0 is a simple eigen-

value, there is a constant C ∈ C such that v0 = CPT v0. Taking norms on both sides,

we have |C| = 1. Therefore C = eiα for some α ∈ [0, 2π], and α can be chosen so

that v0 satisfies v0 = PT v0 as in (5.10). The same argument applies to the adjoint

eigenvector v#
0 := (Y #, Z#).

We shall now introduce the main object of our study, the Krein signature of the

simple nonzero isolated eigenvalue λ0 in Assumption 4.

Definition 15. The Krein signature of the eigenvalue λ0 in Assumption 4 is the sign

of the Krein quantity K(λ0) defined by

K(λ0) = 〈v0, σ3v
#
0 〉 =

∫
R

[
Y (x)Y #(x)− Z(x)Z#(x)

]
dx. (5.12)

The following lemma states the main properties of the Krein quantity K(λ0).
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Lemma 12. Assume (A4) and define K(λ0) by (5.12). Then,

1. K(λ0) is real if λ0 ∈ iR\{0}.

2. K(λ0) 6= 0 if λ0 ∈ iR\{0}.

3. K(λ0) = 0 if λ0 ∈ C\{iR}.

Proof. First, we prove that if f and g are PT -symmetric functions, then their inner

product 〈f, g〉 is real-valued. Indeed, this follows from

〈f, g〉 =

∫
R
f(x)g(x)dx =

∫ +∞

0

(
f(x)g(x) + f(−x)g(−x)

)
dx

=

∫ +∞

0

(
f(x)g(x) + f(x)g(x)

)
dx.

Since λ0 ∈ iR\{0} is simple by Assumption 4, then the eigenvectors v0 := (Y, Z) and

v#
0 := (Y #, Z#) satisfy the PT -symmetry (5.10) and (5.11) by Lemma 11. Hence,

the inner products in the definition of K(λ0) in (5.12) are real.

Next, we prove that K(λ0) 6= 0 if λ0 ∈ iR\{0} is simple. Consider a generalized

eigenvector problem for the spectral problem (5.6):

(L+ iλ0σ3)

[
Yg

Zg

]
= σ3

[
Y

Z

]
. (5.13)

Since λ0 /∈ σc(iσ3L) is isolated and simple by Assumption 4, there exists a solu-

tion vg := (Yg, Zg) ∈ D(L0) × D(L0) to the nonhomogeneous equation (5.13) if and

only if σ3v0 is orthogonal to v#
0 , which is the kernel of adjoint operator L∗ + iλ0σ3.

The orthogonality condition coincides with K(λ0) = 0. However, no vg exists since

λ0 ∈ iR\{0} is simple by Assumption 4. Hence K(λ0) 6= 0.

Finally, we show that K(λ0) = 0 if λ0 ∈ C\{iR}. Taking inner products for the

spectral problems (5.6) and (5.9) with the corresponding eigenvectors yields〈Lv0, v
#
0 〉 = −iλ0〈σ3v0, v

#
0 〉,

〈v0,L∗v#
0 〉 = iλ0〈v0, σ3v

#
0 〉,

hence
i(λ0 + λ0)K(λ0) = 0.

If λ0 ∈ C\{iR}, then λ0 + λ0 6= 0 and K(λ0) = 0.
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We shall now compare the Krein quantity K(λ0) in (5.12) for simple eigenvalues

of the PT -symmetric spectral problem (5.6) with the corresponding definition of the

Krein quantity in the Hamiltonian case γ = 0 and in the linear PT -symmetric case

Φ = 0.

In the Hamiltonian case (γ = 0), the operator L in the spectral problem (5.6)

is self-adjoint in L2(R), that is, L = L∗. The standard definition of Krein quantity

[69, 92] is given by

γ = 0 : K(λ0) = 〈Lv0, v0〉 = −iλ0

∫
R

[
|Y (x)|2 − |Z(x)|2

]
dx. (5.14)

If γ = 0 and λ0 ∈ iR, then the adjoint eigenvector (Y #, Z#) satisfies the same

equation as (Y, Z). Therefore, it is natural to choose the adjoint eigenvector in the

form:

γ = 0 : Y #(x) = Y (x), Z#(x) = Z(x), x ∈ R, (5.15)

in which case the definition (5.12) yields the integral in the right-hand side of (5.14).

Note that the signs of K(λ0) in (5.12) and (5.14) are the same if λ0 ∈ iR+.

Remark 24. Since the potential V is even in (5.2), the eigenvector v0 := (Y, Z)

of the spectral problem (5.6) for a simple eigenvalue λ0 ∈ iR\{0} is either even or

odd in the Hamiltonian case γ = 0 by the parity symmetry. It follows from the PT -

symmetry (5.10) that the PT -normalized eigenvector v0 is real if it is even and is

purely imaginary if it is odd.

Remark 25. Since the adjoint eigenvector v#
0 := (Y #, Z#) satisfying the PT -symmetry

condition (5.11) is defined up to an arbitrary sign, the Krein quantity K(λ0) in (5.12)

is defined up to the sign change. In the continuation of the NLSE (5.1) with respect

to the parameter γ from the Hamiltonian case γ = 0, the sign of the Krein quantity

K(λ0) in (5.12) can be chosen so that it matches the sign of K(λ0) in (5.14) for

λ0 ∈ iR+ and γ = 0. In other words, the choice (5.15) is always made for γ = 0 and

the Krein quantity K(λ0) is extended continuously with respect to the parameter γ.

In the linear PT -symmetric case (Φ = 0), the spectral problem (5.6) becomes

diagonal. If Z = 0, then Y satisfies the scalar Schrödinger equation

(
−∂2

x + V (x) + iγW (x)− µ
)
Y (x) = −iλY (x). (5.16)
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The PT -Krein signature for the simple eigenvalue λ0 ∈ iR of the scalar Schrödinger

equation (5.16) is defined in [105] as follows:

Φ = 0, Z = 0 : K(λ0) =

∫
R
Y (x)Y (−x)dx. (5.17)

If λ0 ∈ iR, then the adjoint eigenfunction Y # satisfies a complex-conjugate equation

to the spectral problem (5.16), which becomes identical to (5.16) after the parity

transformation. Therefore, it is natural to choose the adjoint eigenfunction Y # in the

form:

Φ = 0, Z = 0 : Y #(x) = Y (−x), x ∈ R,

after which the definition (5.12) with Z = 0 corresponds to the definition (5.17). If

Y = 0, then Z satisfies the scalar Schrödinger equation

(
−∂2

x + V (x)− iγW (x)− µ
)
Z(x) = iλZ(x). (5.18)

The PT -Krein signature for the simple eigenvalue λ0 ∈ iR of the scalar Schrödinger

equation (5.18) is defined by

Φ = 0, Y = 0 : K(λ0) =

∫
R
Z(x)Z(−x)dx, (5.19)

which coincides with the definition (5.12) for Y = 0 if the adjoint eigenfunction Z#

is chosen in the form:

Φ = 0, Y = 0 : Z#(x) = −Z(−x), x ∈ R. (5.20)

Note that if the choice Z#(x) = Z(−x) is made instead of (5.20), then the definition

(5.12) with Y = 0 is negative with respect to the definition (5.19).

5.3 Necessary condition for instability bifurcation

Recall that the eigenvalue is called semi-simple if algebraic and geometric multiplicities

coincide and defective if algebraic multiplicity exceeds geometric multiplicity. Here

we consider the case when the nonzero eigenvalue λ0 ∈ iR of the spectral problem

(5.6) is defective with geometric multiplicity one and algebraic multiplicity two. This
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situation occurs in the parameter continuations of the NLSE (5.1) when two simple

isolated eigenvalues λ1, λ2 ∈ iR\{0} coalesce at the point λ0 6= 0 and split into the

complex plane resulting in the instability bifurcation. We will use the parameter γ to

control the coalescence of two simple eigenvalues λ1, λ2 ∈ iR.

Our main result states that the instability bifurcation occurs from the defective

eigenvalue λ0 ∈ iR of algebraic multiplicity two only if the Krein signatures of K(λ1)

and K(λ2) for the two simple isolated eigenvalues λ1, λ2 ∈ iR before coalescence are

opposite to each other. Therefore, we obtain the necessary condition for the instability

bifurcation in the PT -symmetric spectral problem (5.6), which has been proven for

the Hamiltonian spectral problems [69, 92].

Remark 26. The necessary condition for instability bifurcation allows us to predict

the transition from stability to instability when a pair of imaginary eigenvalues collide.

Pairs with the same Krein signature do not bifurcate off the imaginary axis if they

collide, whereas pairs with the opposite Krein signature may bifurcate off the imaginary

axis under a technical non-degeneracy condition (5.27) below.

First, we state why the perturbation theory can be applied to the spectral problem

(5.6).

Lemma 13. Under Assumptions 1, 2, and 3, the operator

L : D(L0)×D(L0)→ L2(R)× L2(R)

in the spectral problem (5.6) is real-analytic with respect to γ ∈ (−γ∗, γ∗). Conse-

quently, if L(γ0) with γ0 ∈ (−γ∗, γ∗) has a spectrum consisting of two separated parts,

then the subspaces of L2(R) × L2(R) corresponding to the separated parts are also

real-analytic in γ.

Proof. Operator L depends on γ via the potential iγW and the bound state Φ, the

latter is real-analytic for γ ∈ (−γ∗, γ∗) by Assumption 3. The assertion of the lemma

follows from Theorem 1.7 in Chapter VII on p.368 in [71].

By Lemma 13, simple isolated eigenvalues λ1, λ2 ∈ iR of the spectral problem (5.6)

and their eigenvectors v1 := (Y1, Z1) and v2 := (Y2, Z2) are continued analytically in γ

before the coalescence point. Similarly, the adjoint eigenvectors v#
1 := (Y #

1 , Z#
1 ) and

v#
2 := (Y #

2 , Z#
2 ) of the adjoint spectral problem (5.9) for λ1, λ2 ∈ iR are continued
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analytically in γ. Therefore, the Krein quantities K(λ1) and K(λ2) are continued

analytically in γ.

Let γ0 denote the bifurcation point when the two eigenvalues coalesce: λ1 = λ2 =

λ0 ∈ iR\{0}. For this γ0 ∈ R, we can define a small parameter ε ∈ R such that

γ = γ0 + ε. If L is denoted by L(γ), then L(γ) can be represented by the Taylor

expansion:

L(γ) = L(γ0) + εL′(γ0) + ε2L̂(ε), (5.21)

where L̂(ε) denotes the remainder terms,

L′(γ0) =

[
iW − 2g∂γ|Φ(γ0)|2 −g∂γΦ2(γ0)

−g∂γΦ2(γ0) −iW − 2g∂γ|Φ(γ0)|2

]
, (5.22)

and ∂γ denotes a partial derivative with respect to the parameter γ. Since the re-

mainder terms in L̂(ε) come from the second derivative of Φ in γ near γ0, then

L̂(ε) ∈ L2(R) ∩ L∞(R) thanks to Assumption 3.

Instead of Assumption 4, we shall now use the following assumption.

Assumption (A4′). For γ = γ0, we assume that there exists a defective isolated

eigenvalue λ0 ∈ iR\{0} of the spectral problems (5.6) and (5.9) with the eigenvector

v0 := (Y0, Z0) ∈ D(L0)×D(L0), the generalized eigenvector vg := (Yg, Zg) ∈ D(L0)×
D(L0) and the adjoint eigenvector v#

0 := (Y #
0 , Z#

0 ) ∈ D(L0) × D(L0), the adjoint

generalized eigenvector v#
g := (Y #

g , Z
#
g ) ∈ D(L0)×D(L0), respectively.

By setting λ0 = iΩ0, we can write the linear equations for the eigenvectors and

generalized eigenvectors in Assumption (A4′):

L(γ0)v0 = Ω0σ3v0,

L(γ0)vg = Ω0σ3vg + σ3v0, (5.23)

L∗(γ0)v#
0 = Ω0σ3v

#
0 ,

L∗(γ0)v#
g = Ω0σ3v

#
g + σ3v

#
0 . (5.24)

The solvability conditions for the inhomogeneous equations (5.23) and (5.24) yield

the following elementary facts.
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Lemma 14. Under Assumption (A4′), we have

K(λ0) = 〈v0, σ3v
#
0 〉 = 0. (5.25)

and

〈vg, σ3v
#
0 〉 = 〈v0, σ3v

#
g 〉 6= 0. (5.26)

Proof. Since vg exists by Assumption (A4′), the solvability condition for (5.23) implies

(5.25), see similar computations in Lemma 12. Since the eigenvalue λ0 is double, no

second generalized eigenvector ṽg exists from solutions of the inhomogeneous equation

L(γ0)ṽg = Ω0σ3ṽg + σ3vg.

The nonsolvability condition for this equation implies 〈vg, σ3v
#
0 〉 6= 0. Finally, equa-

tions (5.23) and (5.24) yield

〈vg, σ3v
#
0 〉 = 〈vg, (L∗ − Ω0σ3)v#

g 〉 = 〈(L − Ω0σ3)vg, v
#
g 〉

= 〈σ3v0, v
#
g 〉 = 〈v0, σ3v

#
g 〉,

which proves the symmetry in (5.26).

Remark 27. Since the generalized eigenvectors are given by solutions of the inho-

mogeneous linear equations (5.23) and (5.24) and the eigenvectors satisfy the PT -

symmetry (5.10) and (5.11), the generalized eigenvectors also satisfy the same PT -

symmetry (5.10) and (5.11).

The following result gives the necessary condition that the defective eigenvalue λ0

in Assumption (A4′) splits into the complex plane in a one-sided neighborhood of the

bifurcation point γ0.

Theorem 13. Assume 1, 2, 3, (A4′), and the non-degeneracy condition

〈L′(γ0)v0, v
#
0 〉 6= 0. (5.27)

There exists ε0 > 0 such that two simple eigenvalues λ1, λ2 of the spectral problem

(5.6) exist near λ0 for every ε ∈ (−ε0, ε0)\{0} with λ1,2 → λ0 as ε→ 0. On one side

of ε = 0, the eigenvalues are λ1, λ2 ∈ iR and

sign [K(λ1)] = −sign [K(λ2)] . (5.28)
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On the other side of ε = 0, the eigenvalues are λ1, λ2 /∈ iR.

Proof. We are looking for an eigenvalue Ω(ε) of the perturbed spectral problem(
L0 + εL̃(ε)

)
v(ε) = Ω(ε)σ3v(ε), (5.29)

such that Ω(ε) → Ω0 as ε → 0. Here we denote operators from the decomposition

(5.21) as L0 = L(γ0) and L̃(ε) = L′(γ0) + εL̂(ε). Since Ω0 is a defective eigen-

value of geometric multiplicity one and algebraic multiplicity two, we apply Puiseux

expansions [82]: {
Ω(ε) = Ω0 + ε1/2Ω̃(ε),

v(ε) = v0 + ε1/2a(ε)vg + εṽ1(ε),
(5.30)

where v0 and vg are the eigenvector and the generalized eigenvector for the eigen-

value Ω0, a(ε) is the projection coefficient to be defined, and Ω̃(ε) and ṽ1(ε) are the

remainder terms. To define ṽ1(ε) uniquely, we add the orthogonality condition

〈ṽ1(ε), σ3v
#
0 〉 = 〈ṽ1(ε), σ3v

#
g 〉 = 0. (5.31)

Plugging (5.30) into (5.29) and dropping the dependence on ε for L̃, ṽ1, a and Ω̃ gives

us the nonhomogeneous equation(
L0 − Ω0σ3 + εL̃ − ε1/2Ω̃σ3

)
ṽ1 = h, (5.32)

where

h = ε−1/2(Ω̃− a)σ3v0 − L̃v0 + a
(
Ω̃σ3 − ε1/2L̃

)
vg.

By Assumption (A4′), the limiting operator σ3(L0 − Ω0σ3) has the two-dimensional

generalized null space X0 = span{v0, vg} ⊂ L2(R) × L2(R). Since Ω0 /∈ σc(σ3L0) is

isolated from the rest of the spectrum of σ3L0, the range of σ3(L0−Ω0σ3) is orthogonal

with respect to generalized null space Y0 = span{σ3v
#
0 , σ3v

#
g } ⊂ L2(R) × L2(R) of

the adjoint operator (L∗0 − Ω0σ3)σ3. As a result, σ3(L0 − Ω0σ3) is invertible on an

element of Y ⊥0 and the inverse operator is uniquely defined and bounded in Y ⊥0 . In

other words, there exist positive constants ε0, Ω0, and C0 such that for all |ε| ≤ ε0,

|Ω̃| ≤ Ω0, and all σ3f ∈ Y ⊥0 , there exists a unique (L0 − Ω0σ3)−1f ∈ D(L0)×D(L0)
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satisfying the orthogonality conditions (5.31) and the bound

‖(L0 − Ω0σ3)−1f‖L2 ≤ C0‖f‖L2 . (5.33)

In order to provide existence of a unique (L0 − Ω0σ3)−1f , we add the orthogonality

constraints 〈f, v#
0 〉 = 〈f, v#

g 〉 = 0. By using (5.26) and (5.31), we obtain two equations

from (5.32):

ε〈L̃ṽ1, v
#
0 〉+ 〈L̃v0, v

#
0 〉 = Ω̃a〈vg, σ3v

#
0 〉 − ε1/2a〈L̃vg, v#

0 〉, (5.34)

and

ε〈L̃ṽ1, v
#
g 〉+ 〈L̃v0, v

#
g 〉 = Ω̃a〈vg, σ3v

#
g 〉 − ε1/2a〈L̃vg, v#

g 〉
+ ε−1/2(Ω̃− a)〈v0, σ3v

#
g 〉. (5.35)

Since L̃ and Ω̃σ3 are relatively compact perturbations to (L0 − Ω0σ3), there exists a

unique solution of the nonhomogeneous equation (5.32) under the constraints (5.34)

and (5.35) satisfying the orthogonality conditions (5.31) and the resolvent estimate (5.33).

In particular, there exist positive constants ε0, Ω0, A0, and C0 such that for all |ε| ≤ ε0,

|Ω̃| ≤ Ω0, and |a| ≤ A0, the solution ṽ1 ∈ D(L0)×D(L0) of equation (5.32) satisfies

the estimate

‖ṽ1‖L2 ≤ C0

(
ε−1/2|a− Ω̃|+ 1

)
. (5.36)

Equation (5.35) yields

ε−1/2(a− Ω̃) =
1

〈v0, σ3v
#
g 〉
(

Ω̃a〈vg, σ3v
#
g 〉 − ε1/2a〈L̃vg, v#

g 〉

− 〈L̃v0, v
#
g 〉 − ε〈L̃ṽ1, v

#
g 〉
)
,

where 〈v0, σ3v
#
g 〉 6= 0 due to Lemma 14. Combining with the estimate (5.36), we

obtain for some C1 > 0

|a− Ω̃| ≤ C1ε
1/2 and ‖ṽ1‖L2 ≤ C1. (5.37)
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Equation (5.34) yields

Ω̃a =
1

〈vg, σ3v
#
0 〉
(
〈L̃v0, v

#
0 〉+ ε1/2a〈L̃vg, v#

0 〉+ ε〈L̃ṽ1, v
#
0 〉
)
,

where 〈vg, σ3v
#
0 〉 6= 0 due to Lemma 14. Thanks to (5.37), we obtain

|Ω̃− Ωg| ≤ C2ε
1/2,

where C2 > 0 is a constant, and Ωg is a root of the quadratic equation

Ω2
g =
〈L′(γ0)v0, v

#
0 〉

〈vg, σ3v
#
0 〉

, (5.38)

with L′(γ0) given by (5.22). Since L′(γ0)v0, vg, and v#
0 satisfy the PT -symmetry

conditions, both the nominator and the denominator of (5.38) are real-valued by the

same computations as in the proof of Lemma 12. By the assumption (5.27), Ω2
g is

nonzero, either positive or negative.

Let us assume that Ω2
g > 0 without loss of generality and pick Ωg > 0. Then

ε1/2Ωg ∈ R if ε > 0 and we obtain the expansions for the two simple eigenvalues:Ω1(ε) = Ω0 + ε1/2Ωg +O(ε),

Ω2(ε) = Ω0 − ε1/2Ωg +O(ε)

and their corresponding eigenvectors:v1(ε) = v0 + ε1/2Ωgvg +O(ε),

v2(ε) = v0 − ε1/2Ωgvg +O(ε).

The same expansions hold for eigenvectors of the adjoint spectral problems corre-

sponding to the same eigenvalues Ω1,Ω2:v
#
1 (ε) = v#

0 + ε1/2Ωgv
#
g +O(ε),

v#
2 (ε) = v#

0 − ε1/2Ωgv
#
g +O(ε).
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The leading order of Krein quantities for eigenvalues λ1 = iΩ1 and λ2 = iΩ2 is given

by K(λ1) = 〈v1, σ3v
#
1 〉 = ε1/2Ωg〈vg, σ3v

#
0 〉+ ε1/2Ωg〈v0, σ3v

#
g 〉+O(ε),

K(λ2) = 〈v2, σ3v
#
2 〉 = −ε1/2Ωg〈vg, σ3v

#
0 〉 − ε1/2Ωg〈v0, σ3v

#
g 〉+O(ε),

which is simplified with the help of (5.26) toK(λ1) = 2ε1/2Ωg〈vg, σ3v
#
0 〉+O(ε),

K(λ2) = −2ε1/2Ωg〈vg, σ3v
#
0 〉+O(ε).

Since ε1/2Ωg ∈ R and 〈vg, σ3v
#
0 〉 6= 0, we obtain (5.28). If ε < 0, then ε1/2Ωg ∈ iR, so

that λ1, λ2 /∈ iR.

Remark 28. If the non-degeneracy assumption (5.27) is not satisfied, then Ωg = 0

and the perturbation theory must be extended to the next order. In this case, the

defective eigenvalue λ0 = iΩ0 may split along iR both for ε > 0 and ε < 0.

5.4 Numerical Approximations

We approximate nonlinear modes Φ of the stationary NLSE (5.3) and eigenvectors

(Y, Z) of the spectral problem (5.6) with the Chebyshev interpolation method [137].

This method was recently applied to massive Dirac equations in [112]. Chebyshev

polynomials are defined on the interval [−1, 1]. The stationary NLSE (5.3) is defined

on the real line, therefore we make a coordinate transformation for the Chebyshev

grid points {zj = cos( jπ
N

)}j=Nj=0 :

xj = L arctanh(zj), j = 1, 2, . . . , N − 1, (5.39)

where x0 = +∞ and xN = −∞. The scaling parameter L is chosen so that the grid

points {xj}j=N−1
j=1 are concentrated in the region where the nonlinear mode Φ changes

fast. We apply the chain rule for the second derivative:

d2u

dx2
=

d

dx

(
du

dx

)
=

d

dz

(
du

dz

dz

dx

)
=
d2u

dz2

(
dz

dx

)2

+
du

dz

d2z

dx2
,
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where
dz

dx
=

1

L
sech2

(x
L

)
=

1

L
(1− z2)

and
d2z

dx2
= − 2

L2
sech2

(x
L

)
tanh

(x
L

)
= − 2

L2
z(1− z2).

The first and second derivatives for ∂z and ∂2
z are approximated by the Chebyshev

differentiation matrices DN and D2
N , respectively (see p.53 in [137]).

The stationary NLSE (5.3) is written in the form:

F (Φ) := (−∂2
x + V + iγW − µ− g|Φ|2)Φ = 0. (5.40)

We fix µ, γ, g, V , W and use Newton’s method to look for a solution Φ satisfying

Assumption 3: [
Φn+1

Φ̄n+1

]
=

[
Φn

Φ̄n

]
− L−1

n

[
F (Φn)

F̄ (Φn)

]
, (5.41)

where Ln is the Jacobian operator to the nonlinear problem (5.40), which coincides

with (5.5) computed at Φn. Since Φ(x0) = Φ(xN) = 0, the Jacobian operator Ln is

represented by the 2(N − 1)× 2(N − 1) matrix.

It follows by the gauge transformation that

L
[

iΦ

−iΦ̄

]
=

[
0

0

]
, (5.42)

where L is computed at Φ. Therefore, L is a singular operator for every parameter

choice of equation (5.40). However, if the eigenvector satisfies the symmetry Z̄ = Y

as in (5.42), then the eigenvector does not satisfy the PT -symmetry:

PT
[

iΦ

−iΦ̄

]
=

[
−iΦ(−x)

iΦ(−x)

]
= −

[
iΦ

−iΦ̄

]
.

Hence, L is invertible on the space of PT -symmetric functions satisfying (5.4). In

terms of the coefficients of Chebyshev polynomials, the restriction means that the

even-numbered coefficients are purely real, whereas the odd-numbered coefficients are

purely imaginary.
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‖Φexact − Φnumerical‖2

N = 50 1.5× 10−6

N = 100 2.4× 10−13

N = 500 2.2× 10−13

Table 5.1: The numerical error for the exact solution (5.45) versus N .

Choosing a first guess for the iterative procedure (5.41) depends on the choice of

the potentials V and W . For the Scarf II potential

V (x) = −V0 sech2(x), W (x) = sech(x) tanh(x), (5.43)

where V0 ∈ R is a parameter, one can use a scalar multiple of the sech(x) function for

the first branch of solutions and a scalar multiple of the sech(x) tanh(x) function for

the second branch of solutions [3] (See also Appendix B. For the confining potential

V (x) = x2, W (x) = xe−
x2

2 , (5.44)

one can use the corresponding Gauss-Hermite functions of the linear system for each

branch [145].

The spectral problem (5.6) uses the same operator L and can be discretized simi-

larly. One looks for eigenvalues and eigenvectors of the discretized matrix by using the

standard numerical methods for non-Hermitian matrices. For example, MATLAB R©

performs these computations by using the QZ algorithm.

Throughout the numerical results, we pick the value of a scaling parameter L to be

L = 10. This choice ensures that Φ remains nonzero up to 16 decimals on the interior

grid points {xj}j=N−1
j=1 . The algorithm was tested on the exact solution derived in

Appendix C for the Scarf II potential (5.43) with V0 = 1 and µ = γ = −1:

Φ(x) = sinα sech(x) exp

[
i

2
cosα arctan(sinh(x))

]
, (5.45)

where α = arccos(2/3). Table 5.1 shows a good agreement between exact and numer-

ical results.

Once we computed eigenvalues and eigenvectors for the spectral problem (5.6), we

proceed to computations of the Krein quantity defined by (5.12). Several obstacles

arise in the definition of the Krein quantity:
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1. Eigenvectors of the Chebyshev discretization matrices are normalized with re-

spect to z.

2. Eigenvectors are not necessarily PT -symmetric.

3. The sign of the adjoint eigenvectors relative to the eigenvectors is undefined.

Here we explain how to deal with these difficulties.

1. The eigenvectors are normalized in the L2([−1, 1]) norm with respect to the

variable z. In order to normalize them in the L2(R) norm with respect to the

variable x, we perform the change of coordinates (5.39). In particular, we use

integration with the composite trapezoid method on the grid points {xj}j=N−1
j=1

and neglect integrals for (−∞, xN−1) and (x1,+∞).

2. In order to restore the PT -symmetry condition (5.10), we multiply the compo-

nent Y of the eigenvector (Y, Z) by eiθ with θ ∈ [0, 2π] and require

eiθY (x) = e−iθY (−x) ⇒ 2iθ = log
Y (−x)

Y (x)
,

where the point x is chosen so that Y (x) and Y (−x) are nonzero. For example,

we compute θ for all interior grid points {xj}j=N−1
j=1 for which Y (xj) 6= 0 and

take the average. Both Y and Z in the same eigenvector are rotated with the

same angle θ. Similarly, this step is performed for Y # and Z# according to the

PT -symmetry condition (5.11).

3. We fix the sign of the adjoint eigenvectors at the Hamiltonian case γ = 0 by

using (5.15). Then we continue the eigenvectors and the adjoint eigenvectors for

simple eigenvalues before coalescence points. Numerically, we take two steps in

γ: γ1 < γ2, with |γ2 − γ1| � 1. Suppose that the sign of eigenvector for γ1 has

been chosen already. We take eigenvectors for γ1 and γ2 and compare them. If

eigenvectors have been made PT -symmetric and properly normalized, then the

norm of their difference is either small (the eigenvectors are almost the same)

or close to 2 (the eigenvectors are negatives of each other). We choose the sign

of the eigenvector so that the norm of their difference is small.
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With the refinements described above, we can now compute the Krein quantity

K(λ) defined by (5.12) using the same numerical method as the one used for comput-

ing the norms of eigenvectors.

In numerical computations, we have often encountered situations when eigenvalues

nearly coalesce, but the standard MATLAB R© numerical routines do not approximate

well the coalescence of eigenvalues. In order to check if the eigenvectors are linearly

dependent near the possible coalescence point, we compute the norm of the difference

between the two eigenvectors and plot it with respect to the parameter γ. If the

difference between the two eigenvectors vanishes as γ is increased towards the coales-

cence point, we say that the defective eigenvalue arises at the bifurcation point. If the

difference remains finite, either we are dealing with the semi-simple eigenvalue at the

coalescence point or the two simple eigenvalues pass each other without coalescence.

5.5 Numerical Examples

In the numerical examples, we set N = 500. This gives enough accuracy for com-

puting eigenvalues, as it was shown in [112]. We will demonstrate numerical results

in Figures 5.1,5.2,5.3 and 5.4. Each figure displays branches of the nonlinear modes

Φ versus a parameter used in the numerical continuations (either µ or γ), where the

blue solid line corresponds to stable modes and the red dashed line denotes unstable

ones. The top and middle panels show the power curves of ‖Φ‖2, a sample profile of

the nonlinear mode Φ, and the spectrum of linearization before and after the insta-

bility bifurcation. The bottom panels show the imaginary part of eigenvalues λ and

the Krein quantity of isolated eigenvalues. Green color corresponds to eigenvalues

λ ∈ iR with the positive Krein signature, red – to those with the negative Krein sig-

nature, and black color is used for complex eigenvalues λ /∈ iR and for the continuous

spectrum.

Figure 5.1 (a)-(f) shows the instability bifurcation for the Scarf II potential (5.43)

studied in [105] in the focusing case with g = 1. Here V0 = 2, γ = −2.21, and the

first branch of the nonlinear modes Φ is considered. As two eigenvalues with different

Krein signatures coalesce, they bifurcate into a complex quadruplet, in agreement

with Theorem 13. Note that there is a small region of stability for the nonlinear

modes Φ of small amplitudes, as it was shown in [105].
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Figure 5.1: Scarf II potential (5.43) with V0 = 2, γ = −2.21. (a) Power curves versus
µ. (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d)
Same for point B. (e) Im(λ) for the spectrum of linearization versus µ. (f) Krein
quantities for isolated eigenvalues versus µ.
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Figure 5.2: Scarf II potential (5.43) with V0 = 3, γ = −3.7. (a) Power curves versus
µ. (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d)
Same for point B. (e) Im(λ) for the spectrum of linearization versus µ. (f) Krein
quantities for isolated eigenvalues versus µ.
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Figure 5.3: Confining potential (5.44), scaled as in (5.46). (a) Power curves versus
γ. (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d)
Same for point B. (e) Im(λ) for the spectrum of linearization versus γ. (f) Krein
quantities for isolated eigenvalues versus γ.
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Figure 5.4: Confining potential (5.44), scaled as in (5.46). (a) Power curves versus
γ. (b) Amplitude profile for point A. (c) Spectrum of linearization for point A. (d)
Same for point B. (e) Im(λ) for the spectrum of linearization versus γ. (f) Krein
quantities for isolated eigenvalues versus γ.
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Figure 5.2 (a)-(f) shows the instability bifurcation for the Scarf II potential (5.43)

studied in [17] in the focusing case with g = 1. Here V0 = 3, γ = −3.7, and the second

branch of the nonlinear modes Φ is considered. The second branch is unstable with

at least one complex quadruplet for all values of parameter µ used. The imaginary

part of this complex quadruplet is not visible in Figure 5.2 (e) as it coincides with

the location of the continuous spectrum. In the presence of this complex quadruplet,

we observe a coalescence of two simple eigenvalues λ1, λ2 ∈ iR and the instability

bifurcation into another complex quadruplet. Numerical evidence confirms that the

eigenvalues have the opposite Krein signatures prior to collision, allowing us to predict

the instability bifurcation, in agreement with Theorem 13.

Figures 5.3,5.4 (a)-(f) show the confining potential (5.44) studied in [1], in the

defocusing case with g = −2. Compared to (5.44), we use a scaled version of this

potential to match the one in [1]:

V (x) = x2, W (x) = 2Ω−3/2xe−
x2

2Ω , (5.46)

where Ω = 10−1 is a scaling parameter. There are four branches of the nonlinear modes

Φ shown, out of which we highlight only the third and fourth branches. The first

branch is stable, whereas the second branch becomes unstable because of a coalescence

of a pair of eigenvalues ±λ ∈ iR with the negative Krein signature at the origin [1].

The third and fourth branches are studied in Figures 5.3 and 5.4.

In Figure 5.3 we can see that there are three bifurcations occurring at γ1 ≈ 0.07,

γ2 ≈ 0.1031 and γ3 ≈ 0.1069. For each bifurcation two eigenvalues with different Krein

signatures collide and bifurcate off to the complex plane in accordance with Theorem

13. In addition, two simple eigenvalues with different Krein signatures nearly coalesce

near γ4 ≈ 0.1. Figure 5.5 (a) shows the norm of the difference between the two

eigenvectors and two adjoint eigenvectors for the two simple eigenvalues while γ is

increased towards γ4. As the difference does not vanish, we rule out this point as

the bifurcation point for the defective eigenvalue. Consequently, the eigenvalues are

continued past this point with preservation of their Krein signatures.

In Figure 5.4 we can see three bifurcations occurring at γ1 ≈ 0.1303, γ2 ≈ 0.1427,

and γ3 ≈ 0.2078. At γ1, an eigenvalue pair with negative Krein signature coalesce at

zero and become a pair of real (unstable) eigenvalues. As γ is increased towards γ2,

two eigenvalues with opposite Krein signature move towards each other. Figure 5.5 (b)

119



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

illustrates that the norm of the difference between the two eigenvectors and the two

adjoint eigenvectors vanishes at the coalescence point. Therefore, we conclude that

at γ2 we have a defective eigenvalue which does not split into a complex quadruplet.

According to Theorem 13, the defective eigenvalue does not split into complex unstable

eigenvalues only if the non-degeneracy condition (5.27) is not satisfied. Similar safe

passing of eigenvalues of opposite Krein signature through each other is observed

in [105]. The behavior near γ2 shows that having opposite Krein signatures prior to

coalescence of two simple eigenvalues into a defective eigenvalue is a necessary but

not sufficient condition for the instability bifurcation. At γ3, two eigenvalues with

opposite Krein signatures coalesce and bifurcate into a complex quadruplet according

to Theorem 13.

#

#

Figure 5.5: The norm of the difference between the two eigenvectors and the two
adjoint eigenvectors prior to a possible coalescence point: (a) for Figure 5.3 (b) for
Figure 5.4.
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Chapter 6

Conclusion

In this thesis, we have presented several new contributions to stability analysis in

PT -symmetric systems both in discrete and continuous settings. Let us review the

original results and provide some possible considerations for future work.

6.1 Summary of Main Results

Chapter 2 is dedicated to the study of existence and stability of breather type solutions

in infinite-dimensional dNLS model (1.3). These are solutions of the form

u(t) = Ue−iEt, v(t) = V e−iEt,

where the frequency parameter E is real, and the sequence (U, V ) ∈ l2(Z) is time-

independent. Existence and spectral stability of breathers can be characterized in

the limit of small coupling constant ε, when breathers bifurcate from solutions of the

dimer equation arising at a single site, say the central site at n = 0. This technique

was introduced for the PT -symmetric systems in [80, 115] and is applied to the system

of amplitude equations (1.3) in Chapter 2.

Figure 6.1 represents branches of the time-periodic solutions of the central dimer

at ε = 0, where the amplitude of the central dimer A = |U0| = |V0| is plotted

versus the frequency parameter E. The left panel corresponds to the solution with

Ω > γ > 0, whereas the right panel corresponds to the solution with Ω < −γ < 0.

The constraint |γ| < |Ω| is used for stability of the zero equilibrium at ε = 0 outside

the central dimer. The values ±E0 with E0 :=
√

Ω2 − γ2 correspond to bifurcation
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of the small-amplitude solutions. The small-amplitude solutions are connected with

the large-amplitude solutions for Ω > γ > 0, whereas the branches of small-amplitude

and large-amplitude solutions are disconnected for Ω < −γ < 0.
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Figure 6.1: Time-periodic solutions of the PT -symmetric dimer with A = |U0| = |V0|
versus frequency E for γ = 1

2
and (a) Ω = 3

4
> γ or (b) Ω = −3

4
< −γ.

Every time-periodic solution supported at the central dimer for ε = 0 is continued

uniquely and smoothly with respect to the small coupling parameter ε by the implicit

function arguments. The resulting breather is symmetric about the central site and

PT -symmetric so that

Vn = Ūn = Ū−n = V−n, n ∈ Z. (6.1)

Moreover, the breather profile decays fast at infinity.

Since breather solutions (U, V ) are critical points of the extended energy function

HE := H − EQ, (6.2)

we study the nonlinear stability of breathers by the Lyapunov method if the second

variation of HE is sign-definite in `2(Z). The second variation of HE is given by

a quadratic form associated with the self-adjoint (Hessian) operator H′′E : `2(Z) →
`2(Z).

For the two solution branches with Ω < −γ < 0 and |E| < E0 (points 2 and 4 on

Figure 6.1), it is shown in Chapter 2 that the infinite-dimensional part of the spectrum

of H′′E in `2(Z) is negative definite and the rest of the spectrum includes a simple zero

eigenvalue due to gauge symmetry and either three (in case of point 2) or one (in
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case of point 4) positive eigenvalues. As a result, the nonlinear orbital stability of

the corresponding breathers is developed in Chapter 2 by using the standard energy

methods [42, 68].

On the other hand, for the solution branches with |E| > E0 (points 1 and 3 on

Figure 6.1), it is shown in Chapter 2 that the spectrum of H′′E in `2(Z) includes

infinite-dimensional positive and negative parts. Therefore, for |E| > E0 both for

Ω > γ > 0 and Ω < −γ < 0, (U, V ) is an infinite-dimensional saddle point of the

extended energy function HE. This is very similar to the Hamiltonian systems of the

Dirac type, where the zero equilibrium and standing waves are located in the gap

between the positive and negative continuous spectrum.

Spectral stability of the solution branches with Ω > γ > 0 and |E| > E0 is

proved for sufficiently small ε under the non-resonance condition, which is checked

numerically. On the other hand, the solution branch with Ω < −γ < 0 and |E| > E0

is spectrally stable for sufficiently small ε almost everywhere except for the narrow

interval in the parameter space, where the non-resonance condition is not satisfied.

Since in both cases, (U, V ) is an infinite-dimensional saddle point of the extended

energy function HE, the standard energy methods [68] can not be applied to the

proof of nonlinear stability of the solution branches with |E| > E0.

The main contribution of Chapter 3 is a proof of long-time nonlinear stability

of the infinite-dimensional saddle point (U, V ) by using the asymptotic limit of small

coupling parameter ε. The novel method which we develop there works for the solution

branches with Ω > γ > 0 (point 1 on Figure 6.1) but does not work for the solution

branch with Ω < −γ < 0 and |E| > E0 (point 3 on Figure 6.1).

To remedy the difficulty with the energy method, we select the energy function in

the form

ΛE := H − E(u0v̄0 + ū0v0). (6.3)

Note that ΛE is different from the extended energy function HE in (6.2), since ΛE

only includes the part of Q at the central site n = 0, where (U, V ) is supported if

ε = 0. With the definition of ΛE given by (6.3), we obtain a function with a positive

second variation at (U, V ), however, two new obstacles arise now:

• the first variation of ΛE does not vanish at (U, V ) if ε 6= 0;

• the value of ΛE is no longer constant in the time evolution of the dNLS equation

(1.3).
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The first difficulty is overcome with a local transformation of dependent variables.

However, due to the second difficulty, instead of the nonlinear stability for all times,

as in Lyapunov’s stability theorem (see Section 1.5), we only establish a long-time

nonlinear stability of the breather on a long but finite time interval. This long-time

stability is usually referred as metastability.

We note that the energy functional similar to (6.3) is typically used in the normal

form transformations as the leading-order Hamiltonian, where it can be adopted for

the proof of asymptotic stability of breathers under some restrictive assumptions on

the nonlinear functions [12]. Compared to this approach, we do not use dispersive

decay estimates and hence have no control on the perturbations to extend the time

interval for long-time stability of breathers to all times.

Chapter 4 does not contain original results. We review the Hamiltonian theory,

including the necessary condition for instability bifurcation as a result of the splitting

upon collision of two eigenvalues of opposite Krein signature. An instructive case

example from the area of Bose–Einstein condensation provides a countable sequence

of nonlinear states bifurcating from eigenstates of a quantum harmonic oscillator. The

Krein signature is defined for the linearized NLS equation at each of these nonlinear

states in the Hamiltonian case.

In Chapter 5 we introduce the Krein quantity for simple isolated eigenvalues in

the linearization of the nonlinear modes in the PT -symmetric NLS equation. We

prove that the Krein quantity is zero for complex eigenvalues and nonzero for simple

purely imaginary eigenvalues. When two simple eigenvalues coalesce on the imaginary

axis in a defective eigenvalue, the Krein quantity vanishes and we prove under the

non-degeneracy assumption that this bifurcation point produces complex unstable

eigenvalues on one side of the bifurcation point. This result shows that the main

feature of the instability bifurcation in Hamiltonian systems is extended to the PT -

symmetric NLS equation.

There are nevertheless limitations of this theory in the PT -symmetric systems.

First, the adjoint eigenvectors are no longer related to the eigenvectors of the spectral

problem, which opens up a problem of normalizing the adjoint eigenvector relative to

the eigenvector. We fix the sign of the adjoint eigenvector in the Hamiltonian limit

and continue the sign off the Hamiltonian limit by using continuity of eigenvectors

along the parameters of the model.
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Second, if the bifurcation point corresponds to a semi-simple eigenvalue, then the

bifurcation theory does not lead to the same conclusion as in the Hamiltonian case.

The first-order perturbation theory results in the non-Hermitian matrices, hence it is

not clear how to conclude on the splitting of the semi-simple eigenvalues on each side

of the bifurcation point.

Finally, coalescence of the simple purely imaginary eigenvalues at the origin and

the related instability bifurcations are observed frequently in the PT -symmetric sys-

tems and they are not predicted from the Krein quantity. Therefore, we conclude

that the stability theory of Hamiltonian systems cannot be fully extended to the PT -

symmetric NLS equation, only the necessary condition for the instability bifurcation

can be, as is shown in Chapter 5.

6.2 Future Directions

This thesis leads to the following open questions and directions for further studies:

• It is known that in Hamiltonian systems negative Krein signature of an eigen-

value can lead to nonlinear instability even if the stationary state is linearly

stable [78]. It is worthwhile to use our definition of PT -Krein signature to ver-

ify whether the same phenomena is present in general PT -symmetric systems.

• In the studies of the spectral stability problems, we have often encountered bi-

furcation at zero, i.e. when the smallest eigenvalue coalesces with its symmetric

counterpart at λ = 0. The role of bifurcation at zero is not well understood.

Classical bifurcation theory suggests that there might exist additional stationary

states appearing after this bifurcation, i.e., a symmetry-breaking point occurs.

Notice that unlike PT -symmetry breaking point defined in a linear system, this

symmetry-breaking bifurcation occurs in the nonlinear system and is of interest

in its own.

• It is worthwhile to consider two-dimensional PT -symmetric version of nonlinear

Schrödinger equation arising in condensed matter theory [43, 73, 116]. Using

a traditional simplification, one can replace the non-local interaction potential

with a localized short-range interaction proportional to the delta function. This

leads to the Gross–Pitaevskii equation, more precisely to nonlinear Schrödinger
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equation with cubic nonlinearity and with a spatially dependent trap poten-

tial stationary in a frame rotating with a certain frequency about the vertical

axis. The equation in question, like many other nonlinear Schrödinger equations,

supports the existence of localized-in-space solutions of different kinds. In par-

ticular, one could look for vortex-type solutions and investigate their stability

properties in the case of complex-valued PT -symmetric potential.

• In the Hamiltonian version of the Gross–Pitaevskii equation (with real-valued

potential) there has been a great progress in numerical algorithms utilizing the

so-called Evans function [83]. Evans function enables one to find spectra more

efficiently and precisely. It will be worthwhile to adapt Evans function to PT -

symmetric systems and equip the algorithm with the ability to compute PT -

Krein signature.

Overall, there are a number of other challenging problems in the topic of PT -symmetry.

One can study formation of PT -symmetric rogue waves in inhomogeneous and non-

Hermitian optical systems, or the connection between modulational instability and

formation of PT -symmetric lattice solitons, to name a few [39].
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Appendix A

Perturbation theory near

Hamiltonian case

In this Appendix we attempt to build a connection between eigenvectors and adjoint

eigenvectors of the stability problem (5.6) near the Hamiltonian case γ = 0. We

show that there is no simple relationship between eigenvectors of original and adjoint

operators. This is the reason why we have to compute both eigenvectors in Krein

signature definition for PT -symmetric systems.

A.1 Series in γ

Recall the eigenvalue problem (5.6) describing the spectrum of linearization about a

stationary state Φ: [
L −Φ2

−Φ2 L∗

][
Y

Z

]
= iλσ3

[
Y

Z

]
, (A.1)

where L = −∂2
x + V (x) + iγW (x) − µ − 2|Φ(x)|2, and W (x),Φ(x) decay to zero at

x→ ±∞. Moreover, V (−x) = V (x),W (−x) = −W (x) are real-valued functions, and

µ ∈ R. Recall that Φ(x) is PT -symmetric: Φ(x) = Φ(−x) and satisfies the equation

µΦ = (−∂2
x + V (x) + iγW (x)− |Φ|2)Φ. (A.2)
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Let γ = 0 in eigenvalue problem (A.1). Then it can be rewritten as:[
L0 −Φ2

0

−Φ2
0 L0

][
Y0

Z0

]
= iλ0σ3

[
Y0

Z0

]
, (A.3)

where we have used the fact that operator L0 = −∂2
x + V − µ− 2|Φ0|2 is self-adjoint.

We will denote operator in (A.3) as L0. For λ0 ∈ iR problem (A.3) is self-adjoint. If

λ0 is also simple, then the eigenvector for the adjoint operator can be chosen so that[
Y ∗0

Z∗0

]
=

[
Y0

Z0

]
. (A.4)

Recall that Φ0 satisfies the following equation:

µΦ0 = (−∂2
x + V (x)− |Φ0|2)Φ0. (A.5)

Notice that coefficients in this equation are all real, therefore Φ0(x) ∈ R. Since Φ0(x)

is also PT -symmetric, it follows that it is an even function.

Putting λ0 = iΩ0,Ω0 ∈ R simple, we set γ 6= 0, γ ∈ R and employ perturbation

theory. First of all, we write series in γ for all terms that depend on γ. Notice that

Φ, although not visibly, depends on γ. We write series up to O(γ3):

iλ(γ) = −Ω0 − iγΩ1 − γ2Ω2 +O(γ3),

Φ(γ) = Φ0 + iγΦ1 + γ2Φ2 +O(γ3),[
Y (x; γ)

Z(x; γ)

]
=

[
Y0

Z0

]
+ iγ

[
Y1

Z1

]
+ γ2

[
Y2

Z2

]
+O(γ3),[

Y ∗(x; γ)

Z∗(x; γ)

]
=

[
Y0

Z0

]
+ iγ

[
Y ∗1

Z∗1

]
+ γ2

[
Y ∗2

Z∗2

]
+O(γ3).

Let us write O(γ) terms for (A.2):

µΦ1 = (−∂2
x + V (x)− |Φ0|2)Φ1 +WΦ0 − Φ2

0(Φ1 + Φ1). (A.6)

As we can see, this equation has real-valued coefficients and thus Φ1(x) is real-valued.

Symmetries of coefficients in the equation also imply that Φ1(x) is an odd function:
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Φ1(−x) = −Φ1(x). For O(γ2) terms, (A.2) gives

µΦ2 = (−∂2
x + V (x)− |Φ0|2)Φ2 −WΦ1 − Φ0Φ2

1 − Φ2
0(Φ2 + Φ2). (A.7)

From here we have Φ2(x) ∈ R, and Φ2(x) is even: Φ2(x) = Φ2(−x).

A.2 O(γ) balance equations

Let us rewrite eigenvalue problem (A.1) for γ 6= 0, keeping only O(γ) terms:

(L0 + Ω0σ3)

[
Y1

Z1

]
= (−W (x) + 2σ1Φ0Φ1 − Ω1)σ3

[
Y0

Z0

]
, (A.8)

and the adjoint problem becomes

(L0 + Ω0σ3)

[
Y ∗1

Z∗1

]
= (W (x) + 2σ1Φ0Φ1 − Ω1)σ3

[
Y0

Z0

]
. (A.9)

According to the Fredholm theory, (A.8) and (A.9) have solutions only when the

right-hand side is orthogonal to the kernel of corresponding adjoint operator, in our

case consisting of a single eigenvector [Y0, Z0]T . Let us split the right-hand side into

several terms and consider them separately:

• W (x)σ3[Y0, Z0]T :〈
W (x)σ3

[
Y0

Z0

]
,

[
Y0

Z0

]〉
=

∫
R
W (x)(Y 2

0 − Z2
0)dx = 0, (A.10)

as an integral of odd function over the real line is equal to zero.

• σ1Φ0Φ1σ3[Y0, Z0]T :〈
σ1Φ0Φ1σ3

[
Y0

Z0

]
,

[
Y0

Z0

]〉
=

∫
R

Φ0Φ1(Y0Z0 − Z0Y0) = 0. (A.11)
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• Ω1σ3[Y0, Z0]T : 〈
Ω1σ3

[
Y0

Z0

]
,

[
Y0

Z0

]〉
= Ω1

∫
R
(Y 2

0 − Z2
0)dx, (A.12)

where the integral is nonzero. This follows from nonexistence condition for the

generalized eigenvector [Yg, Zg]
T , as eigenvalue λ0 = iΩ0 is assumed to be simple.

Therefore we must choose Ω1 = 0.

Moreover, if [Y1, Z1]T is orthogonal to [Y0, Z0]T , then the solution of (A.8) is unique.

Same holds for the adjoint counterpart. By adding and subtracting (A.8) with (A.9),

we can relate eigenvectors in a unique way.

Note that both (A.8) and (A.9) have real-valued coefficients, which also have odd

symmetry, therefore [Y1, Z1]T and [Y ∗1 , Z
∗
1 ]T are both real-valued functions and possess

odd symmetry property.

A.3 O(γ2) balance equations

Collecting only O(γ2) terms in (A.1) for γ 6= 0, we get

(L0 + Ω0σ3)

[
Y2

Z2

]
= (W (x)− 2σ1Φ0Φ1)σ3

[
Y1

Z1

]

+

([
2Φ2

1 + 4Φ0Φ2 −Φ2
1 + 2Φ0Φ2

−Φ2
1 + 2Φ0Φ2 2Φ2

1 + 4Φ0Φ2

]
− Ω2σ3

)[
Y0

Z0

]
. (A.13)

For the adjoint problem we have:

(L0 + Ω0σ3)

[
Y ∗2

Z∗2

]
= (−W (x)− 2σ1Φ0Φ1)σ3

[
Y ∗1

Z∗1

]

+

([
2Φ2

1 + 4Φ0Φ2 −Φ2
1 + 2Φ0Φ2

−Φ2
1 + 2Φ0Φ2 2Φ2

1 + 4Φ0Φ2

]
− Ω2σ3

)[
Y0

Z0

]
. (A.14)

In both equations (A.13), (A.14), coefficients are given by real-valued even functions,

therefore [Y2, Z2]T , [Y ∗2 , Z
∗
2 ]T are real-valued and even, as well.

We could employ Fredholm theory again, but this time the projections on the ker-

nel of the adjoint operator would have to be incorporated in the coefficient Ω2, which
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will be nonzero, in general. If both [Y2, Z2]T and [Y ∗2 , Z
∗
2 ]T exist and are orthogo-

nal to [Y0, Z0]T , they are unique and so is their relationship (add or subtract (A.13)

and (A.14)).

To find a relationship between [Y, Z]T and [Y ∗, Z∗]T we could use the obtained

equations to split each eigenvector as [Y, Z]T = [Y +, Z+]T + [Y −, Z−]T , and adjoint

eigenvector as [Y ∗, Z∗]T = [Y +, Z+]T − [Y −, Z−]T . Let us consider this separation for

the first order in γ: [
Y1

Z1

]
=

[
Y +

1

Z+
1

]
−
[
Y −1

Z−1

]
, (A.15)[

Y +
1

Z+
1

]
= (2σ1Φ0Φ1 − Ω1)σ3

[
Y0

Z0

]
,[

Y −1

Z−1

]
= W (x)σ3

[
Y0

Z0

]
.

For the next order in γ we get[
Y2

Z2

]
=

[
Y +

2

Z+
2

]
−
[
Y −2

Z−2

]
,[

Y +
2

Z+
2

]
= (−2σ1Φ0Φ1)σ3

[
Y1

Z1

]

+

([
2Φ2

1 + 4Φ0Φ2 −Φ2
1 + 2Φ0Φ2

−Φ2
1 + 2Φ0Φ2 2Φ2

1 + 4Φ0Φ2

]
− Ω2σ3

)[
Y0

Z0

]
,[

Y −2

Z−2

]
= W (x)σ3

[
Y1

Z1

]
.

Unfortunately, here [Y +
2 , Z

+
2 ]T depends on both [Y +

1 , Z
+
1 ]T and [Y −1 , Z

−
1 ]T through (A.15).

Therefore the solution cannot be separated into [Y +, Z+]T and [Y −, Z−]T parts inde-

pendent of each other, and there is no simple relationship between eigenvectors and

adjoint eigenvectors for γ 6= 0.

131



Appendix B

Spectrum of the linear problem for

Scarf II potential

In this Appendix we are going to derive analytic formulas for eigenvalues and eigen-

functions of the stationary problem for linear Schrödinger equation with Scarf II type

potential (1.12). Our goal is to correct the mistake of [3], where the author missed

one of the solutions to the eigenvalue problem.

Consider a linear Schrödinger equation:

i∂tψ + ∂2
xψ − U(x)ψ = 0,

with Scarf II potential

U(x) = V1 sech2(x) + iV2 sech(x) tanh(x),

where V1, V2 are real constants. We will be looking for stationary modes in the form

ψ(x, t) = Φ(x)eiEt, where E ∈ R, Φ(x) decays to zero at infinity, and solves

Φxx + (−E + V1 sech2(x) + iV2 sech(x) tanh(x))Φ = 0. (B.1)

This equation can also be viewed as an eigenvalue problem for E with eigenfunctions

Φ. In that case the mode Φ is stable when E is real, and unstable otherwise, due to

symmetry of eigenvalues in PT -symmetric systems. Using a change of coordinates

z = 1
2
(1 − i sinh(x)) and a substitution Φ = z−p(1 − z)−qw(z), we can rewrite linear
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stationary problem (B.1) as

z(1− z)w′′(z) +

(
−2p+

1

2
− (−2p− 2q + 1)z

)
w′(z)−

(
(p+ q)2 − E

)
w(z) = 0, (B.2)

where p, q are given by:

p1,2 = −1

4
± 1

2

√
1

4
+ V1 + V2, q1,2 = −1

4
± 1

2

√
1

4
+ V1 − V2. (B.3)

Recall Gauss hypergeometric equation [58]:

z(1− z)
d2u

dz2
+ (γ − (α + β + 1)z)

du

dz
− αβu = 0, (B.4)

where α, β, γ ∈ C are constants. Comparing (B.4) with (B.2), one can find α, β, γ:
α = 1

2
∓ 1

2

√
1
4

+ V1 + V2 ∓ 1
2

√
1
4

+ V1 − V2 ±
√
E,

β = 1
2
∓ 1

2

√
1
4

+ V1 + V2 ∓ 1
2

√
1
4

+ V1 − V2 ∓
√
E,

γ = 1∓
√

1
4

+ V1 + V2.

(B.5)

The solution of (B.4) is given by hypergeometric series [58]:

u = F (α, β, γ, z)

= 1 +
α · β
γ · 1 z +

α(α + 1)β(β + 1)

γ(γ + 1) · 1 · 2 z2 +
α(α + 1)(α + 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2) · 1 · 2 · 3 z3 + . . .

Notice that when α or β is a negative integer, series are truncated and contain finitely

many terms. More precisely, α and β have to satisfy one of the quantization condi-

tions:

α = −n or β = −n, where n = 0, 1, 2, . . . (B.6)

The final solution of (B.1) is given by

Φ(x) =

(
1− i sinh(x)

2

)−p(
1 + i sinh(x)

2

)−q
F

(
α, β, γ,

1− i sinh(x)

2

)
, (B.7)

where by quantization condition F is a polynomial of degree n. In order for the

eigenfunction Φ(x) to satisfy the boundary condition at ±∞, the following inequality

133



Mathematics — McMaster University PhD Thesis — Alexander Chernyavsky

must hold:

0 ≤ n < Re(p+ q),

or, using (B.3),

0 ≤ n < Re

(
−1

2
± 1

2

√
1

4
+ V1 + V2 ±

1

2

√
1

4
+ V1 − V2

)
, (B.8)

where the upper bound has to be positive. Therefore minus-minus sign combination

cannot be chosen for both ± in (B.8). Note that the expression in brackets is real

when |V2| < V1 + 1
4
.

Using either one of quantization conditions (B.6) and definitions of α, β in (B.5),

we derive a formula for n and discuss all possible cases:

n = −1

2
± 1

2

√
1

4
+ V1 + V2 ±

1

2

√
1

4
+ V1 − V2 ±

√
E. (B.9)

In order for inequality (B.8) to be satisfied, the minus sign for
√
E must be selected.

Out of 8 possible combinations, there are only 3 left:

n(1) = −1

2
+

1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 − V2 −

√
E,

n(2) = −1

2
+

1

2

√
1

4
+ V1 + V2 −

1

2

√
1

4
+ V1 − V2 −

√
E,

n(3) = −1

2
− 1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 − V2 −

√
E.

The case n(1) was studied in detail in [3], where it was shown that the corresponding

eigenvalue E(1) becomes complex for |V2| > V1 + 1
4
. Unfortunately, in [3] branches n(2)

and n(3) were omitted, and author did not discuss why eigenvalue bifurcates off to

the complex plane. We know from bifurcation theory that generally such bifurcation

happens when two simple discrete eigenvalues coalesce on the real axis, or a simple

discrete eigenvalue collides with continuous spectrum, in our case located on the

real axis [0,+∞). Using expressions for n(j) above, we can write three branches of
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eigenvalues explicitly:

E(1)
n =

(
−n− 1

2
+

1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 − V2

)2

,

E(2)
n =

(
−n− 1

2
+

1

2

√
1

4
+ V1 + V2 −

1

2

√
1

4
+ V1 − V2

)2

,

E(3)
n =

(
−n− 1

2
− 1

2

√
1

4
+ V1 + V2 +

1

2

√
1

4
+ V1 + V2

)2

.

Notice that for V2 = V1 + 1
4
, eigenvalues corresponding to first and second branches

coalesce and bifurcate off to the complex plane for V2 > V1+ 1
4
. Also, for V2 = −V1− 1

4
,

first and third branches coalesce and bifurcate into the complex plane for V2 < −V1− 1
4
.

For example, for V1 = 1, V2 = 1.2, the upper bound for n for first and second

branches is positive and nonzero, therefore n = 0 gives E
(1)
0 ≈ 0.1556, E

(2)
0 ≈ 0.0292,

and for V2 = 1.25 these two are equal: E
(1)
0 = E

(2)
0 ≈ 0.0844. For V2 > 1.25 both

become complex. See also Figure B.1.
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a) b)

Figure B.1: First two eigenvalues for spectral problem (B.1) with n = 0. Red color

corresponds to E
(1)
0 , whereas blue corresponds to E

(2)
0 . a) Real parts b) Imaginary

parts.
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Appendix C

Wadati potentials: exact solutions

In this Appendix we derive a formula for exact solutions for PT -symmetric stationary

NLS (1.11) with Wadati-type potentials, for which Scarf II potential (1.12) is a special

case. The technique used here was presented in [17], where authors described the

way to construct potentials for which exact solutions are available. Notice that the

exact solutions are obtained for the full nonlinear equation, unlike the Appendix B.

The exact solutions obtained via this method were used for verification of numerical

algorithms presented in Chapter 5.

C.1 Derivation

Let us write the problem (A.2) for the nonlinear mode Φ:

Φxx + (U2 − iUx)Φ + 2Φ|Φ|2 = µΦ,

where Φ(x) = Φ(−x) is PT -symmetric, µ ∈ R is a real eigenvalue parameter, and

U(x) = U(−x) is a real valued function. Let us rewrite this equation as a system of

equations: dΦ
dx

= iUΦ−Ψ,

dΨ
dx

= µΦ− iUΦ + 2|Φ|2Φ,
(C.1)

where Ψ = −dΦ/dx+ iUΦ. Take

Φ = aeiθ, Ψ = beiχ, (C.2)
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where a(x), b(x), θ(x), χ(x) are real-valued functions of x. Substituting these into

system (C.1), one can get:

ax = −b cos ν,

bx = a(2a2 + µ) cos ν,

a(U − θx) = b sin ν,

b(χx + U) = −a(2a2 + µ) sin ν,

(C.3)

where ν(x) = χ(x)− θ(x). System (C.3) has a conserved quantity:

a2(µ+ a2) + b2 = 0. (C.4)

From here we can see that µ must be chosen negative: µ = −κ2, κ ∈ R.

Using (C.4) and first equation in (C.3), we get:∫ x

0

dy

a
√
κ2 − a2

= −
∫ x

0

cos ν(y)dy + C,

and choosing seed function cos ν(y), we take D(x) to be

D(x) = κ

∫ x

0

cos ν(y)dy + C,

where constant of integration C can be chosen to be zero without loss of generality.

Then we rewrite the equation for a:

a = κ sech(D(x)),

and for b

b = a
√
κ2 − a2 = κ2 sech(D(x)) tanh(D(x)).

Adding and subtracting two last equations in (C.3), one can get:

U = −νx
2

+
a

2b
(2κ2 − 3a2) sin ν (C.5)

and

θ = −ν
2
−
∫
a3

2b
sin νdx. (C.6)
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The main idea of [17] can be summarized as follows: given a seed function cos ν(x),

find potential U and exact solution Φ(x), namely find a(x) and θ(x). We would also

like to find an exact solution in a simple form.

One can rewrite equation (C.5) as

U =
(cos ν(x))′

2 sin ν(x)
− κ sin ν(x)

2 tanh(D(x))
+

3

2
κ sin ν(x) tanh(D(x))

or, using the definition of D(x), as

U =
(cos ν(x))′

2 sin ν(x)
− κ sin ν(x)

2 tanh
(
κ
∫

cos ν(x)dx
) +

3

2
κ sin ν(x) tanh

(
κ

∫
cos ν(x)dx

)
.

From here we can see that to construct a potential (and a corresponding exact solu-

tion), one needs a smart choice of a seed function cos ν(x). As we see, it is not trivial

to find a seed function cos ν(x) such that U(x) will be independent of κ. Otherwise

the solutions obtained by this method will only be valid for fixed µ.

C.2 An example

Let us select the seed function as

cos ν =
sinh(κx)√

1− κ sin2 α + sinh2(κx)
, (C.7)

where α ∈ (0, π
2
) is a parameter. Then

D(x) = arctanh

√
1− κ sin2 α sech2(κx),

a = κ3/2 sinα sech(κx), (C.8)

b = κ5/2 sinα sech(κx)

√
1− κ sin2 α sech2(κx). (C.9)
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In order to find U , we need to find νx and sin ν, as well:

νx =
−κ cosh(κx)(1− κ sin2 α)

,
(cosh2(κx)− κ sin2 α)

√
1− κ sin2 α,

sin ν =

√
1− κ sin2 α

cosh2(κx)− κ sin2 α
.

Let us write equation for U :

U =
κ cosh(κx)

√
1− κ sin2 α

2(cosh2(κx)− κ sin2 α)
+

cosh(κx)
√

1− κ sin2 α

2κ(cosh2(κx)− κ sin2 α)
(2κ2 − 3κ3 sin2 α sech2(κx))

=
3

2
κ sech(κx)

√
1− κ sin2 α,

where for κ = 1 we obtain Scarf II potential (1.12) with V0 = −9
4

cos2 α, and

V1 = −3
2

cosα. The associated exact solution Φ = aeiθ follows from (C.6), (C.8)

and (C.9):

Φ(x) = sinα sech(x) exp

[
i

2
cosα arctan(sinh(x))

]
. (C.10)
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