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Abstract 


The receiver operating characteristic (ROC) curve has been recommended to repre

sent the performance of a diagnostic test. For decades many new methods and theory 

of ROC curve have been developed. Among them the summary indices: the projected 

length of the ROC curve (P LC) and the area swept out by the ROC curve (ASC) 

firstly proposed by Lee provoked interests. More recently meta-analytic methods for 

diagnostic test accuracy have been developed and the summary receiver operating 

characteristic (S ROC) curve has been recommended to represent the performance 

of a diagnostic test based on the meta-analysis. The basic properties of the SROC 

curve were discussed by Walter (2002). Based on his findings on the SROC curve, 

my project focuses on studying the summary indices P LC and ASC in the context of 

SROC curve. The mathematical expressions of these two indices and their variances 

are derived firstly in my project. Then the main characteristics of these two indices 

are discussed by resorting to software R codes in details. We find that P LC index 

is symmetric with respect to parameters lal and lbl (a and b are the coefficients of 

the regression model proposed by Moses et al. (1993)); affected mostly by the new 

proposed index M, ASC index lacks symmetry with respect to b for fixed a or lacks 

symmetry with respect to a for fixed b. The homogeneous values of P LC provide a 
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good approximation in heterogeneous studies. P LC index gains its maximum J2 in 

the heterogeneous case. But as a---+ oo, ASC attains its maximum 0.5 in the homo

geneous case. Our example illustrates that the heterogeneous variances of both P LC 

and ASC are larger than the homogeneous estimates and the big values of var(PLC) 

and var(ASC) both indicate the worst situation for estimating these two indices in the 

diagnostic test. 

Key Words: ROC curve; SROC curve; meta-analysis; the projected length of the 

curve ( P LC); the area swept out by the curve ( ASC); homogeneous; heterogeneous; 

mathematical expressions 
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Chapter 1 

Introduction 

1.1 Historical Background 

Before the development of the summary receiver operating characteristic (SROC) 

curve, the receiver operating characteristic (ROC) curve has been recommended to 

represent the performance of a diagnostic test. The ROC curve is a plot of the diag

nostic test's sensitivity (i.e., the test's ability to detect the condition of interest) versus 

its false-positive rate (i.e., the test's inability to recognize normal anatomy) (Zhou et 

al., 2002). In 1971, Lusted postulated that it was worthy to measure the performance 

of the observers with the test. He argued that the ROC curve provides an ideal means 

of studying observer performance since the curve illustrates how different criteria for 

interpreting a test produce different values for the test's false-positive rate and sensi

tivity. In 1966, Green and Swets were first to estimate the ROC curve by using the 

Gaussian model. A decade later, Metz (1978) described the studies by using the area 

under the ROC curve (AUG) as the measure of test accuracy. A pivotal paper was 
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the article written by Hanley and McNeil (1982) which provided a simple method of 

estimating AUC without any assumptions about the distribution of the test results. 

From then on, AUG was recognized as a useful index to provide a global picture of 

the performance of false-positive rates from 0 to 1. In 1996, Lee and Hsiao proposed 

two new summary indices, the projected length of the ROC curve (PLC) and the area 

swept out by the ROC curve (ASC), to summary the ROC curve. These two indices 

can avoid the shortcoming of the traditional AU C index and render them good alter

natives for evaluating the overall performance of a diagnostic test (Lee et al., 1996). 

More recently, meta-analytic methods for diagnostic test accuracy have been developed 

and are generally employed to summarize the evidence in the medical literature for 

the efficacy of treatment. The SROC curve was proposed by Moses et al. (1993) as a 

mean of summarizing a test's sensitivity and specificity from multiple studies without 

the assumption that all of the studies used the same cutpoint (Zhou et al., 2002). New 

methods based on the SROC curve have since been developed. The basic properties 

of the SROC curve were discussed by Walter (2002). He proposed the AUG and Q* 

as the useful summary index of the curve. The expressions for AUC and its standard 

error were firstly derived. 

1.2 Scope of the Study 

Based on Walter's findings on the SROC curve, my project focuses on studying the 

summary indices PLC and ASC in the context of SROC curve. The mathematical 

expressions of these two indices and their variances are mainly discussed. 
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In Chapter 2, ROC curve is discussed firstly. The discussion focuses on the sum

mary indices of the ROC curve: AUG, PLC and ASC. The concepts of PLC and 

ASC were firstly mentioned by Lee et al. (1996). The basic properties and simple 

mathematical methodology of the calculation of these two indices were studied in the 

context of ROC curve. But the approach will sometimes create problems if the choice 

of the various cutoff points is not straightforward and the study of a diagnostic test is 

based on data from a meta-analysis. We need to explore the new methodology to find 

reasonable expressions of index P LC and ASC in the SROC curve and study their 

basic properties. In this chapter we also introduce some basic concepts and properties 

of SROC curve which lay a foundation for our further studies of P LC and ASC. 

In Chapter 3, the expressions of P LC and the variance of P LC are derived. The 

main characteristics of P LC in SROC curve are discussed. We find that P LC index 

is symmetric with respect to parameters IaI and lbl. The homogeneous values of P LC 

provide a good approximation in heterogeneous studies. P LC index gains its maximum 

V2 in the heterogeneous case. Our example illustrates that the heterogeneous variances 

of P LC are larger than the homogeneous estimates and the big values of var(P LC) 

indicate the worst situation for estimating P LC index in the diagnostic test. 

In Chapter 4, the expressions of ASC and the variance of ASC are derived. The 

main characteristics of ASC in SROC curve are discussed. We find that ASC index 

is affected mostly by the new proposed index M. Although AUG index is symmetric 

with respect to IaI and lbl, ASC index lacks symmetry with respect to b for fixed a 

or lacks symmetry with respect to a for fixed b since M index performs the same. 

As a ----* oo, ASC attains its maximum 0.5 in the homogeneous case. Our example 

illustrates that the heterogeneous variances of ASC are larger than the homogeneous 
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estimates and the big values of var(ASC) indicate the worst situation for estimating 

ASC index in the diagnostic test. 

Finally, in Chapter 5, we draw some conclusions based on the work in this project. 
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Chapter 2 

ROC and SROC Curve 

2.1 Introduction 

The accuracy of a diagnostic test is measured by comparing the test results to 

the true condition status of the patient. The true condition status is one of binary 

states: the condition is present or the condition is absent. Test results indicating 

the condition's presence are called positive; those indicating its absence, negative. If 

we denote the total number patients as N; the number of patients with and without 

the condition is n 1 and n 0 respectively; the number of patients with the condition 

who test positive and negative is s 1 and s0 respectively; and the number of patients 

without the condition who test positive and negative is r 1 and r 0 respectively, then 

N = n 1 + n0 = s1 + s0 + r 1 + ro. 

The true positive rate (T P R, or sensitivity) is the probability that the test result 

is positive given that the condition is present. Here T P R = sifn1 . The true negative 

rate (TNR, or specificity) is the probability that the test result is negative given that 
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the condition is absent. Here TNR = r0 /n0 . These two rates are two basic measures 

of diagnostic accuracy. On the other hand, the false positive and negative rate can 

be denoted as F P R (= 1 - TNR) and F N R (= 1 - T P R) respectively. The true 

positives and negatives indicate the correct diagnosis. But the false ones can cause 

harm by delaying treatment and providing false reassurance. 

Many diagnostic tests yield a numeric measurement rather than a binary result. 

Therefore, the decision threshold is often used as a cutoff to define positive and neg

ative test and, subsequently, to define sensitivity and specificity in the diagnostic test 

result. In a test the observer establishes a decision threshold firstly and then uses it to 

label cases as positive or negative. The conditions categorizing the thresholds can be 

described as: definitely not present, probably not present, possibly present, probably 

present or definitely present. One threshold corresponds to one pair of sensitivity and 

specificity. Different thresholds cause the sensitivity and specificity inherently change 

as one increases and the other decreases. Thus both sensitivity and specificity must 

be reported along with the corresponding decision threshold in a diagnostic test (Zhou 

et al., 2002). 

2.2 ROC Curve and its Features 

In the diagnostic medicine the parameter of interest mostly is the distinction be

tween diseased and nondiseased on the basis of a particular threshold. For this purpose, 

probabilistic attributes such as T P R and TNR are often used. In studies of diagnos
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tic tests with a quantitative test result and a dichotomous reference standard (disease 

present/absent), the relation between T P R and TNR is often represented by a receiver 

operating characteristic (ROC) curve. The usual situation for a ROC curve is that 

in a single study one or more pairs of T P R and F P R (which is equal to 1 - TNR) 

are plotted in a unit square and then connected empirically to stand for the whole 

range of possible threshold values graphically. Each point on the graph is generated 

by a different decision threshold with F P R as x-coordinate and T P R as y-coordinate. 

There are two key features of ROC curve that make it ideal for studying diagnostic 

tests. First, the curve displays all positive cut points and thus supply estimates of the 

frequency of various outcomes. Second, the curve allows the use of previous probabili 

ties of the condition to determine the best cut point for a given test in a given setting 

(Zhou et al., 2002). 

Several summary indices are associated with the ROC curve. One of the most 

popular measures is the area under the ROC curve (AUG). AUG is the probability 

that the test value of a randomly selected diseased subject exceeds that of a randomly 

selected nondiseased subject (Seong et al., 2004). AUG is a measure of the overall 

performance of a diagnostic test and is interpreted as the average value of sensitivity 

for all possible values of specificity. It can take on any value between 0 and 1, since 

both the x and y axes have values ranging from 0 to 1. The closer AUC is to 1, the 

better the overall diagnostic performance of the test, and a test with an AUG value 

of 1 is one that is perfectly accurate. The practical lower limit for the AUC of a 

diagnostic test is 0.5. The line segment from (0, 0) to (1, 1) has an area of 0.5. If we 

were to rely on pure chance to distinguish those subjects with versus those without a 

particular disease, the resulting ROC curve would fall along this diagonal line, which 
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is referred to as the chance diagonal. A diagnostic test with an AUG value greater 

than 0.5 is, therefore, at least better than relying on pure chance, and has at least 

some ability to discriminate between subjects with and without a particular disease 

(Seong et al., 2004). 

Although the AUG index plays an important role in summarizing the entire ROC 

curve, this index can sometimes fall short of being a good measure of overall perfor

mance. It may erroneously rate a perfect or nearly perfect threshold as one without any 

diagnostic value. In their paper Lee and Hsiao (1996) firstly proposed two alternative 

summary indices for the ROC curve: PLC (the projected length of the ROC curve) 

and ASC (the area swept out by the ROC curve). These two indices, as mentioned 

by Lee, can avoid the main drawbacks for the AUG index and can represent well the 

variability of the ROC curve from the diagonal line in the unit square. 

PLC is the sum of all of the projected lengths of the ROC curve onto the negative 

diagonal line (the line connecting (0,1) and (1,0)) (Lee et al., 1996). It's interesting to 

notice that the length of some projected segment should be counted repeatedly if some 

different parts of the ROC curve all project to this same segment. For ASC, we can 

imagine a ray emanating from the origin (0,0) to each point in the ROC curve. As the 

point moving from the origin to the right-uppermost point (1,1), the ray will sweep out 

some areas. The total area swept out by the ROC curve is denoted as ASC (Lee et al., 

1996). Again we can note that some areas should be counted repeatedly if these regions 

are swept out more than once. The hypothetical ROC curve in Figure 2.1 can be used 

as an illustration. The PLC index for this example (Figure 2.1 (a)) is: a'+ b' + c'. 

The ASC index for this example (Figure 2.1 (b)) is: A+ 2B +C. For a threshold 

with no diagnostic value, the ratio of being diseased and of being nondiseased after 
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measuring will be 1. The corresponding ROC curve in this situation runs along the 

diagonal line, and both the projected length and swept out areas are zero. Once the 

ROC curve deviates from the diagonal line, no matter how small the deviation is and 

where it occurs, the indices of P LC and ASC will sum up the deviations. This shows 

that each of the index may be more sensitive than the conventional AUC for detecting 

differences between the threshold distributions of the diseased and the nondiseased 

(Lee et al., 1996). The maximal value the PLC can attain is J2. And the maximal 

value the ASC can get is 1/2. 

c' 

.. b' c 

A 
B 

(a) (b) 

Figure 2.1: Two hypothetical ROC curves that consist of three segments of straight 

lines: (a) to demonstrate P LC index and (b) to demonstrate ASC index 

In their paper Lee and Hsiao (1996) suggested ways to calculate PLC and ASC 

through a numerical example. The ROC curve in his example is an empirical curve 

which is formed by varying the possible cutoff points of the threshold and then connect

ing them with straight lines. The situations here are simplified so that the calculation 
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of the indices can be easily done by using the rudimentary knowledge of Calculus and 

Linear Algebra. Figure 2.2 presents how the ROC curve works in Lee's example. The 

hypothetical empirical ROC curve is composed of the line segment AB, BC and CD. 

It's clear that the index AUG is the sum of the areas of the two trapezoids under the 

curve. If AF : ( )2, - )2) is denoted as a unit vector parallel to the negative diagonal 

line, the norm of this vector IAFI is equal to 1. And the scalar projection of AB on 

AF is: compA-pAB = A~·:r = AB · AF, the dot product of the line segment and 

the defined unit vector. Similarly we can get the scalar projection of BC, CD on AF 

respectively. Thus P LC can be expressed as the sum of those scalar projections. Index 

ASC can also be expressed through the cross product of the vectors. Since the area of 

ABC is equal to ~lAB x ACI and the area of ACD is ~lAC x ADI, ASC is the sum 

of those triangles' areas. 

D 

F 

Figure 2.2: A hypothetical ROC curve to demonstrate Lee's example 
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To obtain the performance indices for a threshold measured in such simple situa

tion, we can apply the above methodology for the calculation. But this approach will 

sometimes create problems if the choice of the various cutoff points is not straightfor

ward and the study of a diagnostic test is based on data from a meta-analysis. In a 

meta-analysis the summary receiver-operating characteristic ( SROC) curve instead 

of ROC curve is intended to represent the relationship between T P R and F P R across 

studies, recognizing they may have used different thresholds. Smoothed fitting instead 

of the empirically fitting of the SROC curve is needed by using a regression model 

proposed by Moses et al. (1993). Situations become complicated now. We need to 

explore the new methodology to find reasonable expressions of index PLC and ASC 

in the SROC curve and study their basic properties. 

2.3 SROC Curve and its Features 

More recently statistical methods for synthesizing diagnostic test accuracy studies 

such as meta-analysis have been developed. Meta-analysis is the systematic and quan

titative review of the results of a set of individual medical studies all concerning the 

same or a closely related research question, intended to integrate their findings (Zhou 

et al., 2002). Current meta-analytic methods are generally applicable to a selection of 

studies reporting estimates of T P R and F P R to studies whose results are reported 

using an equal number of ordered categories. S ROC curve were proposed as a means 

of summarizing a test's T P R and F P R from multiple studies without the assumption 
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that all of the studies used the same thresholds. In a single study, changing the thresh

old necessarily results in monotonic changes in T P R and F P R. But in a meta-analysis, 

in contrast to the ROC analysis, the set of (FP R, T P R) points need not necessarily 

yield a unique, monotonic curve (Walter, 2002). At the same time, in the early days 

meta-analysis was always done under the assumption that the true effect measure was 

homogeneous across all studies. However, usually there is heterogeneity between the 

treatment effects in the different studies, making the homogeneity unrealistic. Those 

factors make the study of SROC and its summary indices more complicated. 

In his paper Walter (2002) firstly deduced the relationship between T P Rand F P R 

as an expression. This expression was constructed on the smoothed fitting of the 

SROC curve which is achieved by using a regression model proposed by Moses et al. 

(1993). In his theory, he denoted the dependent and independent variables in the 

regression as 

D = ln ( T p R ) 
1-TPR 

- ln ( F p R ) 
1-FPR 

(2.1) 

and 

TPR FPR 
S = ln ( 1 - T P R) + ln ( 1  F P R) (2.2) 

respectively. The regression equation 

D = a+bS (2.3) 

can be fitted by standard least squares methods, assuming that D is approximately 

normally distributed for a given value of S. Here, a is equal to ln(OR), the diagnostic 

log-odds ratio; the coefficient b represents the dependence of the test accuracy on 

threshold. Once the regression has been fitted, reverse the transformation in the 

expression of D and S and hence the relationship between T P R and F P R can be 

12 




expressed as 
exp(_Q_)( FPR ) i~%

TPR = 1-b 1-FPR (2.4)
1 + exp(_il:_)( FPR )~

1-b 1-FPR 

This expression gives T P R at any value of F P R, and hence the entire SROC 

curve. This expression set up the foundation of the further work on the expressions of 

P LC and ASC in my project. 

Before we start to derive the expression for PLC and ASC, we need to introduce 

some basic concepts and properties of S ROC curve. 

1. 	 Since S ROC curve is defined as the plot of test T P R as the y coordinate versus 

its F P R as the x coordinate, the expression ofTP Rand F P R can be rewritten 

as 
1+b

exp( a ) ( x ) 'i'"'b 
- !( ) - l=b I=;; y- X - 1+b (2.5)

1 + exp(_Q_)(---'£__) 1-b
1-b 1-x 

2. 	 Since AUG is the area under the SROC curve, and 0 ~AUG~ 1, AUG can be 

calculated as 
1+b 

1 	 exp( a )( x )'i'"'b
AUG= { 1=b I=;; - ll.!!. dx (2.6)

lo 1 + exp(_Q_) (----'£__) 1-b 
1-b 1-x 

3. 	 In the homogeneous case b = 0, 

exp(a)(6) 
AUChom = lo

1 

( )( x )dx (2.7) 
o 	 1 + exp a 1_x 

where AUChom indicates the AUG for homogeneous studies. If a= 0, then the 

special value AUChom = ~ should be used instead. 

4. 	 As suggested by Moses et al. (1993), at the ideal top-left corner of the SROC 

space, we can identify a point Q* on the curve where T P R = 1 - F P R. Since 

the family of curves defined by a fixed value of a all pass through this common 

13 




point, Q* represents the diagnostic threshold at which the probability of a correct 

diagnosis is constant for all subjects. Q* has co-ordinates 

1TPR = exp(a/2) FPR= 	 (2.8)
1 + exp(a/2)' 1 + exp(a/2) 

5. 	 When b =/= 0 the SROC curve has a region where TPR < FPR which lies below 

the main diagonal. In this region the test would be predicted to be performing 

worse than at random. Here we can identify another point Q' on the curve where 

the S ROC curve crosses the diagonal and has co-ordinates 

TPR = FPR = exp(-aj2b) (2.9)
1 + exp( -a/2b) 


whatever b > 0 or b < 0. 
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Chapter 3 

The Projected Length of the SROC 

Curve (PLC) 

3.1 Derivation of Equations of PLC 

PLC is the sum of all of the projected lengths of the SROC curve onto the negative 

diagonal line. Figure 3.1 shows a set of three SROC curves all with a= 2 (Fig 3.1(a)) 

or a= -2 (Fig 3.1(b)) but different values of band curves all with b = 0.5 (Fig 3.1(c)) 

orb= -0.5 (Fig 3.1(d)) but different values of a respectively. In those figures non-zero 

values of b make the SROC curves crossing the diagonal at point Q'. Point Q' lies 

close to the lower-left corner when a and b have the same sign (positive or negative); 

and it is close to the upper-right corner when a and b have different sign. Point Q' 

separates the whole curve into two parts: the region lying below the main diagonal 

and the region lying above the main diagonal. We name these two area as Region A 

and Region B respectively. In each region the maximum distance between the curve 

15 




and the diagonal exists. If we denote the maximum distance in Region A as d1 and 

the maximum distance in Region B as d2 , P LC can be expressed as 

(3.1) 

by definition. 

We know that the formula for the distance d from a point P1 ( x1 , yl) to the line 

ax+ by+ c = 0 is: d = la~cl. Then the distance from any point (x, y) on the 

SROC curve to the diagonal y = x (or, -x + y = 0) is: d = 1-);YI. Since the curve 

can be expressed as 
l+b

exp( a)( x )1-b 
- f( ) - I=b I=Xy- X - l+b 

1 + exp(_Q_)(_2_) 1-b
1-b 1-x 

and the co-ordinates of point Q' are 

TPR = FPR = exp(-a/2b) 
1 + exp(-a/2b)' 

denote d1 and d2 as the distance from any point (x, y) on the S ROC curve to the 

diagonal y = x in Region A and B respectively, then d1 and d2 can be expressed as 

x-1+ 1 
1+ 

l+exp( l".b )( 1:X:x) T=b exp( -a/2b)
d1 = --------~~~~--- 0 < X < -------'---:--'------:-----:- (3.2)

V2 1 + exp(-a/2b)' 

-x + 1- 1+ 
l+exp( 1".b )( 1:"x) T=b exp( -a/2b)

d2 = ------------=---~--"---- ------,-------:------:- < X < 1, (3.3)
V2 1 + exp( -a/2b) 

when b > 0 or 

X- 1 + 1+b 

l+exp( 1".b )( 1:X:x) T=b exp( -a/2b)
d1 = ------~~~~--- ---'----'---'--- < X < 1, (3.4)

V2 1 + exp(-a/2b) 
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-x + 1- 1+ 
l+exp( 1~b )( 1.':x) I=1i exp(-a/2b)

d2 = ------=--=--:.---=----=-- O<x< , (3.5)
)2 1 + exp(-a/2b) 

when b < 0. 

Fermat's Theorem says, for a function f(x), iff has a local maximum at x = c, 

and if f'(c) exists, then f'(c) = 0 (Stewart, 2003). For the function d1 = g(x, a, b), if 

d1 has the maximum d1 at x = v(a, b), and suppose ~d1 1 = g'(v(a, b), a, b) exists, 
x x=v(a,b) 

then g' (v(a, b), a, b) = 0 by Fermat Theorem . 

If we differentiate both sides of equation (3.2) or (3.4) on x and let it equal to be 

0, after some calculations, we get 

b 2b
expC~b)( i~b)( 1_:x) 1-b (I_!x)2 

2b = 1. (3.6) 
[1 + exp(1~b)C_:x)1-bj2 

Similarly, if we differentiate both sides of equation (3.3) or (3.5) on x and let it equal 

to be 0, we also get the same equation like (3.6). 

If v1 (a, b) is denoted as the solution of equation (3.6) as 0 < x < ::~~(~~~~b) for1 
b > 0 or as ::~~(~~~~b) < x < 1 for b < 0, d1 has the maximum d1 at x = VI (a, b).1 
Similarly, if we denote v2(a,b) as the solution of equation (3.6) as ::~~(~~~~b) < x < 11 
forb> 0 or as 0 < x < ::~~(~~~~b) forb< 0, d2 has the maximum d2 at x = v2(a, b).1 
The maximum distance d1 and d2 can be expressed as 

v1 (a,b) -1 + 1 
1+

1+exp(_Q_)( VJ(a,b) )I=li1-b 1-v1 (a,b) exp(-a/2b)
d1 = ------~~--~~--- 0 < X < ----=--'--------'------'- (3.7)

)2 1 + exp(-a/2b)' 

1
-v2 (a, b) + 1 - 1+ 

1+exp(_Q_)( v2(a,b) )I=li1-b 1-v2(a,b) exp( -a/2b)
d2 = -------~--~~~-- ----,------,------,- < X < 1, (3.8)

)2 1 + exp( -a/2b) 
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when b > 0, or 

1v1 (a, b) - 1 + li_b 
1+exp(___£_)( v1 (a,b) ) r=b

1-b 1-v1 (a,b) exp( -a/2b)
d1 = ---------=-----"-'--'---- --------;------,--,-,- < X < 1, (3.9)

}2 1 + exp( -aj2b) 

- v2 (a, b) + 1 - 1 
1+ 

1+exp(___£_)( vz(a,b) )r=b
1-b 1-v2 (a,b) exp(-a/2b)

d2 = ------------;:=------=_;__:__- O<x< , (3.10)
}2 1 + exp( -a/2b) 

when b < 0. Thus, the derivation of P LC = 2(d1 + d2 ) is obtained completely. 
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Figure 3.1: SROC curve (a) and (b) with various values ofb; (c) and (d) 
with various values of a. 
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3.2 The Behaviour of PLC 

3.2.1 Introduction 

Odds Ratio ( 0 R) is often used in meta-analyses of the accuracy of diagnostic tests. 

It is defined as the odds of a positive test result relative to a negative test result among 

patients with the condition divided by the odds of a positive test result relative to a 

negative test result among patients without the condition. It can be written as 

OR= TPR/(1- TPR) (3.11)
FPR/(1- FPR) 

OR > 1 indicates the odds of a positive test result is greater for patients with the 

condition; 0 R = 1 indicates the positive test result is the same for patients with and 

without the condition; OR < 1 indicates the odds of a positive test result is greater 

for patients without the condition (Zhou et al., 2002). In SROC curve, a= ln(OR) 

and it conveys the test's accuracy in discriminating cases from non-cases. a -----+ oo 

(OR-----+ oo), SROC curve moves closer to the upper-left corner and this indicates a 

perfect test with no errors in distinguishing cases from non-cases; a ~ 0 ( 0 R ~ 1), 

the curve is close to the diagonal and the test is no better than pure chance; a < 0 

( 0 R < 1), the test discriminates cases and non-cases in the wrong direction and worse 

than at random; a -----+ -oo (OR -----+ 0), curve moves closer the lower-right corner 

and such situations are unlikely to occur in practice (Walter, 2002). Since as a 2: 4 

(OR 2: 55) or a S -4 (OR S 0.02) the difference for the curve changes slowly, my 

project focuses on lal S 3. 

Parameter b can be interpreted as the dependence of the test accuracy on threshold. 

b ~ 0, the studies are homogeneous and there is no relationship between OR and 
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threshold; Ibl ---T 1, the curve degenerates to the horizontal or vertical line and there 

is no relationship ofTP R and F P R; lbl > 1, there is negative relationship between 

T P R and F P R and such situations are unlikely to occur in practice (Walter, 2002). 

In SROC curve we only consider the situations under lbl < 1. Since lbl > 0.4 are the 

extreme values, my project focus on lbl :::; 0.3. 

3.2.2 The Behaviour of PLC 

Figure 3.1(a) shows the family of curves defined by a fixed positive value of a all 

pass through common point Q* and are symmetric about it. Similar thing is seen in 

Figure 3.1 (b) if the curves are flipped 180° around the diagonal. But this time the 

curves are symmetric about another common point. We call it P*. This implies that 

the alternative index P LC should perform the same as S ROC curve, although the area 

under the curve (AUG) shrinks when a changes from positive to negative. The values 

in Table 3.1 to Table 3.4 are computed by numerical integration when -3 :::; a:::; 3 and 

-0.3 :::; b :::; 0.3. Table 3.3 shows the values of P LC which are symmetric for the fixed 

values of IaI and lbl. This indicates P LC index in a perfect test keeps the same as 

the one in a worst test. But this does not suggest that the projected length d1 and d2 

have the same behavior as P LC, although P LC is the sum of these two lengths. The 

values of d1 in Table 3.1 and values of d2 in Table 3.2 show that both d1 and d2 are 
A A 

only symmetric for the fixed value of a. For fixed a, all P LC, d1 and d2 decline slowly 

as b increases from large negative values (decreasing heterogeneity) to 0 (homogeneous 

studies) and increase slowly as b increases from 0 (homogeneous studies) to large 

positive values (increasing heterogeneity). The percentage change for PLC compared 

to the homogeneous values is less than 6 per cent in most cases. Accordingly, the 
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homogeneous values of P LC provide a good approximation in heterogeneous studies. 

Interestingly, as suggested by Table 3.1 and 3.2, d1 and d2 perform on the opposite 

direction for the fixed value of b, but they have the same behavior for the fixed value 

of a. That is, they decrease first as b goes from negative to zero and then increase as 

b moves from zero to positive. Thus, both d1 and d2 attain the minimum value in the 

homogeneous case. So does the P LC. 

For completeness, we must mention the situation where P LC attains its maximum. 

We discuss before that the maximal value the P LC index can attain in the ROC 

curve is J2. We can get the same conclusion for PLC index in SROC curve, since 

the maximum value of the sum of d1 and d2 is v'2/2. This can be seen from Table 

3.4 which show the numerical values of P LC when 0 ::; b ::; 0.9 and 1 ::; a ::; 10. As 

a--+ oo, PLC--+ 1.4142 (or J2) with a curve that is close to the upper-left corner of 

the SROC space when a > 0 or a curve that is close to the lower-right corner when 

a < 0 by symmetry. 

The zero value of P LC corresponds to the S ROC curve running along the diagonal 

line. This situation indicates a cut-off point with no diagnostic value. Once the S ROC 

curve deviates from the diagonal line, the P LC index will sum up the deviation. 

Since P LC index in a perfect test (a --+ oo) is symmetric to the one in a worse 

test (a --+ -oo), the greater value of P LC indicate the great probability of a correct 

diagonal when a > 0 and the great probability of a wrong diagonal when a < 0. We 

can never say the greater value of P LC implies a perfect test unless the value of AUG 

is bigger as well and parameter a is positive. 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.9267306 0.7025319 0.4371681 0.1908746 0.0526614 0.0110170 0.0021253 

0.9112282 0.6764624 0.3924688 0.1269060 0.0162252 0.0014047 0.0001158 

0.9015382 0.6594725 0.3592875 0.0633532 0.0006988 0.0000047 0.0000000 

0.8982363 0.6535323 0.3463673 0.0000000 0.0000000 0.0000000 0.0000000 

0.9015382 0.6594725 0.3592875 0.0633532 0.0006988 0.0000047 0.0000000 

0.9112282 0.6764624 0.3924688 0.1269060 0.0162252 0.0014047 0.0001158 

0.9267306 0.7025319 0.4371681 0.1908746 0.0526614 0.0110170 0.0021253 

Table 3.1: values of 2d1 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.0021253 0.0110170 0.0526614 0.1908746 0.4371681 0.7025319 0.9267306 

0.0001158 0.0014047 0.0162252 0.1269060 0.3924688 0.6764624 0.9112282 

0.0000000 0.0000047 0.0006988 0.0633532 0.3592875 0.6594725 0.9015382 

0.0000000 0.0000000 0.0000000 0.0000000 0.3463673 0.6535323 0.8982363 

0.0000000 0.0000047 0.0006988 0.0633532 0.3592875 0.6594725 0.9015382 

0.0001158 0.0014047 0.0162252 0.1269060 0.3924688 0.6764624 0.9112282 

0.0021253 0.0110170 0.0526614 0.1908746 0.4371681 0.7025319 0.9267306 

Table 3.2: values of 2d2 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.9288559 0.7135490 0.4898295 0.3817493 0.4898295 0.7135490 0.9288559 

0.9113441 0.6778671 0.4086940 0.2538119 0.4086940 0.6778671 0.9113441 

0.9015383 0.6594772 0.3599863 0.1267064 0.3599863 0.6594772 0.9015383 

0.8982363 0.6535323 0.3463673 0.0000000 0.3463673 0.6535323 0.8982363 

0.9015383 0.6594772 0.3599863 0.1267064 0.3599863 0.6594772 0.9015383 

0.9113441 0.6778671 0.4086940 0.2538119 0.4086940 0.6778671 0.9113441 

0. 9288559 0. 7135490 0.4898295 0.3817493 0.4898295 0. 7135490 0.9288559 

Table 3.3: values of P LC 

b\a 1 2 3 4 5 6 7 8 9 10 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.3463673 0.6535323 0.8982363 1.077057 1.199654 1.280073 1.331306 1.363341 1.383138 1.395283 

0.3599863 0.6594772 0.9015383 1.079000 1.200820 1.280778 1.331733 1.363600 1.383295 1.395378 

0.4086940 0.6778671 0.9113441 1.084767 1.204291 1.282879 1.333007 1.364373 1.383764 1.395663 

0.4898295 0.7135490 0.9288559 1.094526 1.210056 1.286354 1.335114 1.365651 1.384540 1.396134 

0.5896391 0.7686353 0.9571719 1.109675 1.218592 1.291338 1.338083 1.367438 1.385620 1.396788 

0.7005284 0.8405507 0.9982114 1.132305 1.231154 1.298445 1.342183 1.369841 1.387044 1.397640 

0.8193848 0.9261165 1.0521063 1.164014 1.249291 1.308742 1.348045 1.373202 1.388989 1.398775 

0.9455035 1.0233487 1.1183498 1.205735 1.274399 1.323485 1.356594 1.378134 1.391832 1.400417 

1.0800848 1.1320446 1.1969599 1.258308 1.307796 1.344019 1.368964 1.385492 1.396173 1.402965 

1.2276058 1.2551311 1.2900685 1.323737 1.351459 1.372157 1.386679 1.396471 1.402904 1.407060 

Table 3.4: values of P LC when 0 ::; b ::; 0.9 and 1 ::; a ::; 10 
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3.3 Derivation of the Variance of PLC 

From equation (3.7) to (3.10), we find that d1 and d2 are functions of the regression 

parameters a and b, since v1(a, b) and v2 (a, b) are functions of a and b. Hence the 

variability in P LC is a function of the sample variation in aand band can be estimated 

by the delta method. The delta method expands a function of a random variable about 

its mean, usually with a 1-step Taylor approximation, and then takes the variance. For 

example, if we want to approximate the variance of G(X) where X is a random variable 

with mean JJo and G is differentiable, we can try 

G(X) =G(~Jo) +(X- ~Jo)G'(M) 

by Taylor expansion so that 

var(G(X)) =var(X)[G'(M)] 2
. 

Thus, by using this method, an approximate variance for P LC is: 

A A A(8PLC)2 (8PLC)2 (8PLC) (8PLC) 
var(PLC) = oa var(ii) + [)b var(b) + 2 ob cov(ii, b),oa 

(3.12) 

where, 

8PLC = 2od1 + 2ad2 
8a 8a 8a 

(3.13) 

8PLC = aJ1 ad2.2 2 (3.14)
ob ab + ab 

To solve 8PLCIoa, we need to find the expressions of odd8a and ad218a sepa

rately. The expression of 8d1I8a can be expressed as 
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A v1 (a, b) - 1 + 1 
1+ 

[)d [) [ 1+exp( _!L)( v!(a,b) ) r:::b ] _1 _ _ 1-b 1-v1(a,b) 
oa - oa V2 

1 ex ( a )( v1(a,b) )~[1 + (l+b) ov1(a,b)]] 
= J_ 8v1(a, b) - 1=b p 1=b 1-v1(a,b) v1(a,b)p~v1(a,b)) ---aa (3.15)

V2 [ Qa [1 +exp(___!!__)( V1(a,b) ) 1:':b]2
1-b 1-v1(a,b) 

Since v1(a, b) is denoted as the solution of equation (3.6) which can maximize the 

value of d1, the unknown factor ov1(a, b)loa involved in the expression (3.15) can be 

deduced by differentiating both sides of equation (3.6) on a when x = v1 (a, b) first and 

then reversing the transformation. Hence the result is: 

_1__ 2[1 +ex (__!!:_._)( V1(a,b) ) i"=~] V1(a,b)(1-v1(a,b))
1-b P 1-b 1-v1(a,b) l+b 

(3.16)
2[1 +ex ( a )( v1(a,b) )~] 2b 2 · 

P 1-b 1-v1(a,b) - (1-b)v1(a,b)(1-v1(a,b)) - 1-v1(a,b) 

Similarly, by using the same way, ad21oa and the unknown factor 8v2 (a, b) Ioa 

involved in the expression of ad21oa can be expressed respectively as 

A [ 1 ( a )( v2(a,b) )~[1 (l+b) ov2(a,b)]l8d2 = _1__ 8v2(a, b) 1=b exp 1=b 1-v2(a,b) + v2(a,b)(1-v2(a,b)) ---aa ( )
3 17

oa V2 oa + [1+exp(___!!__)(v2(a,b))i"=~J2 '.
1-b 1-v2(a,b) 

_1__ 2[1 + exp(___!!__)( V2(a,b) ) i"=~] V2(a,b)(1-v2(a,b))
1-b 1-b 1-v2(a,b) l+b 

(3.18)
2[1 +ex ( a )( v2(a,b) ) i:':~] 2b 2

P 1-b 1-v2(a,b) - (1-b)v2(a,b)(1-v2(a,b)) - 1-v2(a,b) 

Also, to solve oPLCI [)b we need to find the expressions of odd[)b and ad21ob 
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separately. By using the same method of deducing the equation of addaa and addaa, 

addab and addab can be expressed as 

1. 

ad1 = _1_ [av1(a, b)] __1_ X 


ab v'2 ab v'2 

exp(~)( v1(a,b) )i~~[a+ 2 ln( v 1(a,b) )+ (1-b2) 8v1(a,b)]
(1-b)2 1-v1(a,b) 1-v1(a,b) vl(a,b)-v1(a,b) 2 8b ] ( )

[ 
1 ( b) 1+b ' 

3 
.
19

[1+exp(__!!:_)( v a, )1-b]21-b 1-v1(a,b) 

2. 

av1 (a, b) 

ab 


[(1 +exp(__!!:_)( v1(a,b) )i~~)v1(a,b)(l+v1(a,b))][a+ 2 ln( v1(a,b) )] 
_ 1-b 1-v1(a,b) (l+b)2 1-v1(a,b) 

- b 1 + 1 (1 +ex ( a )( v1(a,b) )~)
1-bv1(a,b)(1+v1(a,b)) 1-v1(a,b) - P 1-b 1-v1(a,b) 

1 [ + 21 ( v1(a,b) )] + 1
2(1-b)2 a n 1-v1(a,b) (l+b)2 

(3.20)
' ( b) _ill ' b 1 + 1 (1 + ex ( a ) ( v1 a, ) 1_b)

1-b v1(a,b)(l+v1(a,b)) 1-v1(a,b) - P 1-b 1-v1(a,b) 

3. 

ad2 = __1 [av2(a, b)]+ _1 X 


ab v'2 ab v'2 

exp(q)( v2(a,b) )~[a+ 2 ln( v 2 (a,b) ) + (1-b2) 8v2(a,b)] 

[ (1-b)2 1-v2(a,b) 1-v2(a,b) v2(a,b)-v2(a,b)2 8b ] (3.21) 

[1 +exp(__!!:_)( v2(a,b) )i~~]2 ' 
1-b 1-v2(a,b) 

4. 

[( 1 + exp(__!!:_) ( v2(a,b) ) i~~) v2(a,b)(l+v2(a,b))] [a+ 2 ln( v2(a,b) )]
1-b 1-v2(a,b) (l+b)2 1-v2(a,b) 


b 1 + 1 (1+ (a)( v2(a,b) )~)

1-bv1(a,b)(l+v1(a,b)) 1-vl(a,b) - exp 1-b 1-v2(a,b) 


1 [ 21 ( v2(a,b) )] 1

2(1-b)2 a+ n 1-v2(a,b) + (l+b)2 

1+b . (3.22) 
b 1 + 1 (1 +ex (a)( v2(a,b) ) 1-b)

1-b v1(a,b)(l+v1(a,b)) 1-v1(a,b) - P 1-b 1-v2(a,b) 
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Thus, the derivation of var(PLC) is obtained completely. 

3.4 The Behaviour of the Variance of PLC 

We know that, for a function f(x), because f'(x) represents the slope of the curve 

y = f (x) at the point (x, f (x)), it tells us the direction in which the curve proceeds 

at each point. So it is reasonable to expect that information about f'(x) will provide 

us with information about f (x). Evaluation of var( PLC) requires numerical methods 

to deal with the partial derivatives (3.13) and (3.14). Our next step is to study what 

those derivatives involved in var(PLC) can tell. 

The Increasing/Decreasing Test tells us that, for a function f(x), if f'(x) > 0 on 

an interval, then f is increasing on that interval; if f' (x) < 0 on an interval, then 

f is decreasing on that interval (Stewart, 2003). By using this test, on the interval 

-3 ~ a ~ 3, d1 is a decreasing function of a for the fixed value of b; d2 performs 

in the opposite direction under the same situation. For -2 ~ a S -1, d1 decreases 

progressively steeper. But before and after that interval, d1 decreases slowly. As 

a--too, 8dif8a is close to 0 and this implies that the length of d1 vanishes for large a. 

On the opposite, for 1 S a S 2, d2 increases progressively steeper. But as a --t -oo, 

the length of d2 vanishes for large negative values of a. This can be verified by the 

numerical values in Table 3.5 and 3.6 and the Figure 3.1(c) and 3.1(d) visually. 

The First Derivative Test says that, for a continuous differentiable function f(x), 

suppose c is a critical number, if f' changes from positive to negative at c, f has 
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a local maximum at c; if f' changes from negative to positive at c, f has a local 

minimum at c; if f' does not change sign at c, f has no local maximum or minimum 

at c (Stewart, 2003). We mentioned in the last section that d1 and d2 perform on the 

opposite direction for the fixed value of b, but they have the same behavior for the 

fixed value of a. That is, both of them decrease as b goes from negative to zero and 

then increase as b goes from zero to positive. This conclusion can be proved again by 

Table 3. 7 and 3.8. And since addab and ad2/ab change sign from negative to positive 
A A 

at b = 0, both d1 and d2 attain the minimum value in the homogeneous case. 

Since PLC index is the sum of d1 and d2 , its performance will be affected by these 

two parts. In Table 3.9, aPLCjaa changes sign from negative to positive at a= 0, 

PLC attains its minimum value at a= 0; on the other hand, in Table 3.10, aPLCjab 

changes sign from negative to positive at b = 0, P LC attains its minimum value at 

b = 0, the homogeneous case. 

To explore the effects of var(PLC) we use expression (3.12) with various values of 

a and b and keep var(b) and cov(a, b) fixed at their observed values based on data for 

the lymphangiography test for cervical cancer metastases (Scheidler et al., 1997). In 

that case the values of var(a), var(b) and cov(a, b) are calculated by using the standard 

regression software and obtained as 0.14297, 0.06305 and 0.05285 respectively. If we 

plug in those values in (3.12), the numerical values for var(PLC) are shown in Table 

3.11. This example illustrates that the heterogeneous variances are larger than the 

homogeneous estimates. Since PLC are symmetric for the fixed values of lal and lbl, 

var(PLC) are also symmetric under the same condition. var(P LC) decreases with 

respect to values of lbl. The big values of var(PLC) indicate the worst situation for 

estimating P LC index in the diagnostic test. 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-0.09801845 -0.1250829 -0.1354480 -0.1015308 -0.038743954 -8.945266e-03 -1.762227e-03 

-0.10196789 -0.1320208 -0.1472386 -0.1021093 -0.019150036 -1.747158e-03 -1.447294e-04 

-0.10455676 -0.1371136 -0.1597735 -0.1024524 -0.001738399 -1.182885e-05 -7.970748e-08 

-0.10546247 -0.1390256 -0.1661727 0.00000000 0.000000000 0.00000000000 0.0000000000 

-0.10455676 -0.1371136 -0.1597735 -0.1024524 -0.001738399 -1.182885e-05 -7.970748e-08 

-0.10196789 -0.1320208 -0.1472386 -0.1021093 -0.019150036 -1.747158e-03 -1.447294e-04 

-0.09801845 -0.1250829 -0.1354480 -0.1015308 -0.038743954 -8.945266e-03 -1. 762227e-03 

Table 3.5: values of ad!/aa 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

1.762227e-03 8.945266e-03 0.038743954 0.1015308 0.1354480 0.1250829 0.09801845 

1.447294e-04 1.747158e-03 0.019150036 0.1021093 0.1472386 0.1320208 0.10196789 

7.970748e-08 1.182885e-05 0.001738399 0.1024524 0.1597735 0.1371136 0.10455676 

0.0000000000 0.000000000 0.000000000 0.0000000 0.1661727 0.1390256 0.10546247 

7.970748e-08 1.182885e-05 0.001738399 0.1024524 0.1597735 0.1371136 0.10455676 

1.447294e-04 1.747158e-03 0.019150036 0.1021093 0.1472386 0.1320208 0.10196789 

1.762227e-03 8.945266e-03 0.038743954 0.1015308 0.1354480 0.1250829 0.09801845 

Table 3.6: values of ad2/oa 

30 




b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-9.07990e-02 -1.49342e-01 -2.42068e-01 -0.321284 -0.2193111 -0.078563952 -2.12763e-02 

-6.35718e-02 -1.09511e-01 -2.00697e-01 -0.318612 -0.1368337 -0.021031034 -2.46447e-03 

-3.28331e-02 -5.86550e-02 -1.23328e-01 -0.317095 -0.0208897 -0.000260315 -2.55117e-06 

-1.05562e-10 -2.84723e-10 -3.95647e-10 0.0000000 0.0000000 0.0000000000 O.OOOOOe+OO 

3.283310e-02 5.865500e-02 1.23328e-01 0.3170950 0.0208897 0.0002603150 2.551170e-06 

6.357180e-02 1.095110e-01 2.00697e-01 0.3186120 0.1368337 0.0210310340 2.464470e--03 

9.079900e-02 1.493420e-01 2.42068e-01 0.3212840 0.2193111 0.0785639520 2.127630e-02 

Table 3.7: values of adl/ab 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-2.12763e-02 -0.078563952 -0.2193111 -0.321284 -2.42068e-01 -1.49342e-01 -9.07990e-02 

-2.46447e-03 -0.021031034 -0.1368337 -0.318612 -2.00697e-01 -1.09511e-01 -6.35718e-02 

-2.55117e-06 -0.000260315 -0.0208897 -0.317095 -1.23328e-01 -5.86550e-02 -3.28331e-02 

O.OOOOOe+OO 0.000000000 0.0000000 0.0000000 6.523046e-10 7.739514e-10 4.730930e-10 

2.551170e-06 0.000260315 0.0208897 0.3170950 1.233280e-01 5.865500e-02 3.283310e-02 

2.464470e-03 0.021031034 0.1368337 0.3186120 2.006970e-01 1.095110e-01 6.357180e-02 

2.127630e-02 0.078563952 0.2193111 0.3212840 2.420680e-01 1.493420e-01 9.079900e-02 

Table 3.8: values of ad2 j fJb 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-0.1925124 -0.2322753 -0.1934080 2.4996320e-10 0.1934080 0.2322753 0.1925124 

-0.2036463-0.2605473-0.2561771 3.1519830e-10 0.2561771 0.2605473 0.2036463 

-0.2091134 -0.2742035 -0.3160703 1.7999340e-10 0.3160703 0.2742035 0.2091134 

-0.2109249 -0.2780513 -0.3323454 O.OOOOOOe+OO 0.3323454 0.2780513 0.2109249 

-0.2091134 -0.2742035 -0.3160703 -1.805570e-10 0.3160703 0.2742035 0.2091134 

-0.2036463 -0.2605473 -0.2561771 -2.133612e-10 0.2561771 0.2605473 0.2036463 

-0.1925124 -0.2322753 -0.1934080 -2.593674e-10 0.1934080 0.2322753 0.1925124 

Table 3.9: values of oPLCjoa 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-2.24151e-01 -4.55812e-01 -9.22758e-01 -1.285136 -9.227584e-01 -4.55812e-01 -2.24151e-01 

-1.32073e-01 -2.61084e-01 -6.75061e-01 -1.274447 -6.750611e-01 -2.61084e-01 -1.32073e-01 

-6.56714e-02 -1.17831e-01 -2.88435e-01 -1.268378 -2.884352e-01 -1.17831e-01 -6.56714e-02 

-2.11124e-10 -5.69445e-10 -7.91294e-10 0.0000000 1.304609e-09 1.547900e-09 9.461850e-10 

6.567140e-02 1.178310e-01 2.884350e-01 1.268378 2.884352e-01 1.178310e-01 6.567140e-02 

1.320730e-01 2.610840e-01 6.750610e-01 1.274447 6.750611e-01 2.610840e-01 1.320730e-01 

2.241510e-01 4.558120e-01 9.227580e-01 1.285136 9.227584e-01 4.558120e-01 2.241510e-01 

Table 3.10: values of 8PLC/8b 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.013027611 0.03200391 0.07789820 0.1041318 0.07789820 0.03200391 0.013027611 

0.009871936 0.02119351 0.05639426 0.1024068 0.05639426 0.02119351 0.009871936 

0.007975319 0.01504007 0.02916443 0.1014338 0.02916443 0.01504007 0.007975319 

0.006360639 0.01105337 0.01579154 0.0000000 0.01579154 0.01105337 0.006360639 

0.007975319 0.01504007 0.02916443 0.1014338 0.02916443 0.01504007 0.007975319 

0.009871936 0.02119351 0.05639426 0.1024068 0.05639426 0.02119351 0.009871936 

0.013027611 0.03200391 0.07789820 0.1041318 0.07789820 0.03200391 0.013027611 

Table 3.11: values of var(PLC) 
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Chapter 4 

The Area Swept Out by the SROC 

Curve (ASC) 

4.1 Derivation of Equations of ASC 

AUG refers to the area under the SROG curve; ASG is the area swept out by the 

SROG curve. Since some regions of these two indices overlap, we can find a useful 

expression of ASG by resorting to AUG. 

Figure 4.1 shows the SROG curve with b = 0. In the homogeneous case, ASG is 

the region between the curve and the diagonal. It can be simply expressed as 

1
ASG= AUG-- for all a> 0 ( 4.1) 

2' 

or 

1
ASG =--AUG for all a< 0. ( 4.2) 2 ) 
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Figure 4.1: SROC curve when b =0 

35 




For the heterogeneous case, when both a and bare positive (see Figure 4.2(a)), we 

can imagine a ray emanating from the origin (0,0) to each point in the SROC curve. 

This ray is a line can be expressed as y = kx, here k is the slope of the line. As the 

point moving from the origin to the left-uppermost corner (0,1), the slope of the line 

will reach its maximum at some point of the curve when the line still touches the curve 

except for the origin. This line is the tangent line of the curve. It can be expressed 

as y = k*x, here k* is the slope of the tangent line. We call the tangency point as 

M' (h(a, b), f (h(a, b), a, b)) and the area swept out until the tangent line as M. 

Figure 4.2 (a) to (d) shows the SROC curve in the heterogeneous case when a> 0 

and b > 0 (a), a > 0 and b < 0 (b), a < 0 and b > 0 (c) and a < 0 and b < 0 (d) 

respectively. The SROC curve crosses the diagonal at point Q'. We mentioned before 

that Point Q' separates the whole curve into two regions both of which are surrounded 

by the main diagonal and the curve; one is small and the other is big. We also notice 

that if we let a ray emanate from the origin to each point in the curve as described 

before, the area surrounded by the tangent line, main diagonal line and the curve will 

be swept twice. If we always define the smaller area as A, the bigger area as B, the 

area between the tangent line and the curve as M and the area swept out twice as C, 

the ASC index for these four situations is always ASC = A+B+2C, but C = M -A 

when a and b have the same sign and C = M - B when a and b have the different sign; 

B = AUC +A- ~ when a is positive and B = A+~ -AUC when a is negative. If we 

plug in the values of C and B in the expression of ASC, we get the final expression 

for ASC as 

1 
ASC =AUG+ 2M-2' (4.3) 

36 



when a > 0, b > 0 and a < 0, b > 0, or 

1 
ASC = 2M+ "2 - AUC (4.4) 

when a > 0, b < 0 and a < 0, b < 0. 

We mentioned before that line y = kx is any line that goes through the origin 

0(0, 0). k is the slope of the line. The tangent line y = K*x is a special case of 

y = kx which goes through tangency point M' (h(a, b), f (h(a, b), a, b)). k* is the slope 

of tangent line. It's the maximum value of k when line y = kx intersects the S ROC 

curve y = f(x, a, b) at point M'. 

To find the expression of k*, consider equation 

kx = f(x, a, b) 

when the line and the curve intersect. The equation above can be rewritten as 

1 1 1 
k=-f(x,a,b)=-[1- 1±£] (4.5) 

x x 1 + exp(__g,_)(--'E-) 1-b
1-b 1-x 

If we differentiate both sides of equation ( 4.5) on x and let it equal to be 0, after 

some calculations, we get 

-'----(1_+---'-b) (-1-) _ 1 + exp (-a-) (-x-) ~:+:~ (4.6)
(1- b) 1- X - 1- b 1- X 

Denote h(a, b) as the solution of equation ( 4.6), by Fermat Theorem, h(a, b) is the 

value of x that maximizes k. And the maximum value k is 

k* = h(~, b) f(h(a, b), a, b) (4.7) 

Since M is the area surrounded by the tangent line y = k* x and the curve f (x, a, b) 

on the interval between the origin and tangency point M'(h(a, b), f(h(a, b), a, b)), M 
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can be expressed as 
rh(a,b) 

M = Jo [k*x- f(x, a, b)]dx (4.8) 

when a > 0, b > 0 and a < 0, b > 0, or 

rh(a,b) 
M = Jo [f(x, a, b)- k*x]dx (4.9) 

when a > 0, b < 0 and a < 0, b < 0. And equation ( 4.3) and ( 4.4) can be rewritten as 

1
ASG =AUG+ 2M- 2 

11 1h(a,b) 1 
= f(x, a, b)dx + 2 [k*x- f(x, a, b)]dx-- (4.10) 

0 0 2 

when a > 0, b > 0 and a < 0, b > 0, or 

1
ASG =2M+ 2 - AUG 

h(a,b) 1 11 
= 2 [f(x, a, b)- k*x]dx +- - f(x, a, b)dx (4.11)

1 0 2 0 

when a > 0, b < 0 and a < 0, b < 0. 

Thus, the derivation of ASG is obtained completely. 
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Figure 4.2: SROC curve to illustrate ASC 
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4.2 The Behaviour of ASC 

Like PLG index, ASG index is also symmetric but in different way. Table 4.1 

shows that M index with a > 0 and b > 0 is symmetric to M index with a < 0 and 

b < 0; M index with a> 0 and b < 0 is symmetric to M index with a < 0 and b > 0. 

Table 4.2 shows that AUG index with a > 0 and b > 0 is symmetric to AUG index 

with a > 0 and b < 0; AUG index with a < 0 and b > 0 is symmetric to AUG index 

with a < 0 and b < 0. Although ASG is affected both by AUG and M, Table 4.3 

shows that ASG is symmetric under the same situation with M. 

When b is positive, for a fixed number b, M decreases as a increases. Because of 

symmetry, M performs on the opposite direction for the fixed value of b when b is 

negative. When b = 0, as a -+ 0, M -+ 0. The zero value of M corresponds to the 

SROG curve running along the diagonal line. This situation indicates a cut-off point 

with no diagnostic value. We should notice that for a fixed value a, as b changes from 

negative to positive, the values do not change smoothly. The values have a big jump 

from small values to big ones when a is negative, and vice versa when a is positive. 

That's because the area defined as M are quite different when b changes the sign. 

Figure 4.2 can show this visually. 

AUG index can be interpreted as the probability that the diagnostic test values 

for a random pair of diseased and non-diseased individuals would be correctly ranked. 

It ranges from 1 for a perfect test to 0 for a test which never diagnoses correctly. In 

Table 4.2, for fixed value b, as a changes from negative to positive, AUG increases 

smoothly. For fixed negative value a, AUG declines slowly as b increases from large 

negative values (decreasing heterogeneity) to 0 (homogeneous studies) and increase 

40 




slowly as b increases from 0 (homogeneous studies) to large positive values (increasing 

heterogeneity). For fixed positive value a, AUG behaves in the opposite direction. 

The percentage change in each case compared to the homogeneous values is less than 

2 per cent. Accordingly, the homogeneous AUG values in each case provide a good 

approximation in heterogeneous studies. AUG is maximized in homogeneous case 

when a> 0. 

Affected by the unsteady values of M index, for a fixed value of a, as b changes 

from negative to positive, the values for ASG are not smooth, too. But for the fixed b, 

ASG decrease as b changes from negative to zero and vice versa as b changes from zero 

to positive. In Table 4.6, as a -----t oo, ASG -----t 0.5, the maximum values. The greater 

value of ASG indicate the great probability of a correct diagonal when a > 0 and the 

great probability of a wrong diagonal when a< 0. We can never say the greater value 

of ASG implies a perfect test unless the value of AUG is bigger as well and parameter 

a is positive. 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.0031149 0.0080574 0.0238334 0.0738144 0.1761180 0.2914206 0.3802369 

0.0007984 0.0023486 0.0092543 0.0493470 0.1651769 0.2918472 0.3836511 

0.0000735 0.0002386 0.0012727 0.0247165 0.1610621 0.2936977 0.3861273 

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.3861273 0.2936977 0.1610621 0.0247165 0.0012727 0.0002386 0.0000735 

0.3836511 0.2918472 0.1651769 0.0493470 0.0092543 0.0023486 0.0007984 

0.3802369 0.2914206 0.1761180 0.0738144 0.0238334 0.0080574 0.0031149 

Table 4.1: values of M when -0.3.:::; b.:::; 0.3 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.1205152 0.2124975 0.3430187 0.5 0.6569813 0.7875025 0.8794848 

0.1163888 0.2086500 0.3406381 0.5 0.6593619 0.7913500 0.8836112 

0.1138727 0.2063023 0.3391853 0.5 0.6608147 0.7936977 0.8861273 

0.1130273 0.2055132 0.3386969 0.5 0.6613031 0.7944868 0.8869727 

0.1138727 0.2063023 0.3391853 0.5 0.6608147 0.7936977 0.8861273 

0.1163888 0.2086500 0.3406381 0.5 0.6593619 0.7913500 0.8836112 

0.1205152 0.2124975 0.3430187 0.5 0.6569813 0.7875025 0.8794848 

Table 4.2: values of AUG when -0.3.:::; b.:::; 0.3 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.3857146 0.3036173 0.2046481 1.476288e-01 0.1952547 0.2953387 0.3809890 

0.3852080 0.2960472 0.1778705 9.869400e-02 0.1709919 0.2923444 0.3836910 

0.3862743 0.2941749 0.1633601 4.943300e-02 0.1613095 0.2936977 0.3861273 

0.3869727 0.2944868 0.1613031 1.665335e-16 0.1613031 0.2944868 0.3869727 

0.3861273 0.2936977 0.1613095 4.943300e-02 0.1633601 0.2941749 0.3862743 

0.3836910 0.2923444 0.1709919 9.869400e-02 0.1778705 0.2960472 0.3852080 

0.3809890 0.2953387 0.1952547 1.476288e-01 0.2046481 0.3036173 0.3857146 

Table 4.3: values of ASC when -0.3 ~ b ~ 0.3 

b\a 1 2 3 4 5 6 7 8 9 10 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.0012727 0.0002386 0.0000735 0.0000267 0.0000103 0.0000041 0.0000016 0.0000007 0.0000001 0.0000000 

0.0092543 0.0023486 0.0007984 0.0003118 0.0001294 0.0000551 0.0000237 0.0000103 0.0000043 0.0000015 

0.0238334 0.0080574 0.0031149 0.0013183 0.0005849 0.0002656 0.0001219 0.0000561 0.0000260 0.0000120 

0.0423160 0.0177131 0.0077593 0.0035632 0.0016865 0.0008117 0.0003940 0.0001920 0.0000938 0.0000458 

0.0630129 0.0307949 0.0150383 0.0074594 0.0037527 0.0019052 0.0009723 0.0004976 0.0002551 0.0001309 

0.0850644 0.0466232 0.0249310 0.0132587 0.0070574 0.0037637 0.0020102 0.0010747 0.0005748 0.0003074 

0.1080855 0.0646656 0.0372780 0.0210838 0.0118151 0.0065916 0.0036693 0.0020401 0.0011335 0.0006295 

0.1320571 0.0846568 0.0519554 0.0310134 0.0182066 0.0105848 0.0061193 0.0035262 0.0020282 0.0011648 

0.1575374 0.1068256 0.0691217 0.0432612 0.0264845 0.0159882 0.0095685 0.0056969 0.0033811 0.0020028 

Table 4.4: values of M when 0 ~ b ~ 0.9 and 1 ~ a ~ 10 
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b\a 1 2 3 4 5 6 7 8 9 10 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.6613031 0.7944868 0.8869727 0.9426356 0.9726354 0.9875386 0.9945183 0.9976513 0.9990155 0.9995975 

0.6608147 0.7936977 0.8861273 0.9419086 0.9720952 0.9871774 0.9942950 0.9975210 0.9989419 0.9995562 

0.6593619 0.7913500 0.8836112 0.9397430 0.9704833 0.9860960 0.9936239 0.9971284 0.9987224 0.9994365 

0.6569813 0.7875025 0.8794848 0.9361842 0.9678236 0.9842998 0.9924978 0.9964609 0.9983432 0.9992279 

0.6537347 0.7822532 0.8738467 0.9313053 0.9641543 0.9817966 0.9909055 0.9954987 0.9977836 0.9989117 

0.6497090 0.7757380 0.8668315 0.9252036 0.9595246 0.9785959 0.9888322 0.9942167 0.9970173 0.9984650 

0.6450156 0.7681285 0.8586050 0.9179955 0.9539918 0.9747081 0.9862608 0.9925864 0.9960144 0.9978616 

0.6397887 0.7596272 0.8493575 0.9098109 0.9476182 0.9701449 0.9831736 0.9905778 0.9947432 0.9970733 

0.6341802 0.7504593 0.8392955 0.9007879 0.9404704 0.9649206 0.9795552 0.9881623 0.9931722 0.9960706 

0.6283513 0.7408600 0.8286313 0.8910686 0.9326193 0.9590547 0.9753946 0.9853145 0.9912712 0.9948246 

Table 4.5: values of AUG when 0::; b::; 0.9 and 1 ::; a::; 10 

b\a 1 2 3 4 5 6 7 8 9 10 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.1613031 0.2944868 0.3869727 0.4426356 0.4726354 0.4875386 0.4945183 0.4976513 0.4990155 0.4995973 

0.1633601 0.2941749 0.3862743 0.4419620 0.4721158 0.4871856 0.4942982 0.4975224 0.4989421 0.4995562 

0.1778705 0.2960472 0.3852080 0.4403666 0.4707421 0.4862062 0.4936713 0.4971490 0.4987310 0.4994395 

0.2046481 0.3036173 0.3857146 0.4388208 0.4689934 0.4848310 0.4927416 0.4965731 0.4983952 0.4992519 

0.2383667 0.3176794 0.3893653 0.4384317 0.4675273 0.4834200 0.4916935 0.4958827 0.4979712 0.4990033 

0.2757348 0.3373278 0.3969081 0.4401224 0.4670300 0.4824063 0.4907768 0.4952119 0.4975275 0.4987268 

0.3151444 0.3613749 0.4084670 0.4445129 0.4681066 0.4822355 0.4902812 0.4947358 0.4971640 0.4984764 

0.3559597 0.3889584 0.4239135 0.4519785 0.4712484 0.4833281 0.4905122 0.4946580 0.4970102 0.4983323 

0.3982944 0.4197729 0.4432063 0.4628147 0.4768836 0.4860902 0.4917938 0.4952147 0.4972286 0.4984002 

0.4434261 0.4545112 0.4668747 0.4775910 0.4855883 0.4910311 0.4945316 0.4967083 0.4980334 0.4988302 

Table 4.6: values of ASC when 0 ::; b ::; 0.9 and 1 ::; a ::; 10 
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4.3 Derivation of 	the Variance of ASC 

From equation (4.8) and (4.9), we find that M is the functions of the regression 

parameters a and b, since h(a, b) is the functions of a and b. Hence the variability in 

ASC is a function of the sample variation in a and b. Using the delta method, an 

approximate variance for ASC is: 

A A A 	 A(8ASC)2 (8ASC)2 (8ASC) (8ASC)
var(ASC) = oa var(a)+ f)b var(b)+2 oa f)b cov(a, b) (4.12) 

here, 

8ASC 8AUC oM 
--+2-	 (4.13)

oa oa oa 

when a > 0, b > 0 and a < 0, 	b > 0 or 

8ASC = 8M_ 8AUC
2	 ( 4.14) 

oa oa oa 

when a > 0, b < 0 and a < 0, 	b < 0. Similarly, 

8ASC 8AUC oM 
(4.15)ob = ob + 2 ob 

when a > 0, b > 0 and a < 0, b > 0 or 

8ASC = 8M_ 8AUC
2	 (4.16)

ob ob ob 

when a > 0, b < 0 and a < 0, 	b < 0. 

For the sake of convenience we only consider the situation when a > 0, b > 0. The 

calculation under other situations are similar. 

To solve 8ASC/8a we need to find the expressions of 8AUCj8a and 8Mj8a sep

arately. 8AUC / oa is easily calculated and can be expressed as 
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l+b aAUG - ..!!___ {1 exp( 1~b)C~x) 1-b d 

aa - aa [lo 1 + exp( _!!:____ )( ___iL )~ x]


1-b 1-x 

( X ) ~+~1 1 - (--) exp (-a-) t [ x '"'J'dx. (4.17)
- 1 - b 1 - b Jo 1 ( a )( x )+ exp 1-b 1-x 1--b 

We know that the Leibniz integral rule can give a formula for differentiation of a 

definite integral whose limits are functions of the differential variable. That is, 

a rb(z) j(x, z)dx = rb(z) aj~x, z) dx + j(b(z), z) aba(z) - j(a(z), z) aaa(z) (4.18) 
aZ la(z) la(z) Z Z Z 

Since the limits ( h(a, b) ) of the differentiation of the integral of M are functions of 

the differential variable, if we apply the Leibniz integral rule, aMIaa can be expressed 

as 

aM = ..!!___ {h(a,b) [j(h(a, b), a, b) _ j( b)]d 
aa aa Jo h(a, b) X X, a, X 

= rh(a,b) !!_[f(h(a,b),a,b) - j( b)]d
lo aa h(a,b) X x,a, X 

+ah~~ b) [j(h~~~~)~)a, b) h(a, b) - f(h(a, b), a, b)J 

= rh(a,b) !!_[f(h(a,b),a,b) -j( b)]d
lo aa h(a,b) X X,a, X 

- ..!!___ [j(h(a, b), a, b)] rh(a,b) - rh(a,b) ..!!___ 
- aa h(a,b) lo xdx lo aaf(x,a,b)dx 

= !!_[f(h(a,b),a,b)] [h(a,b)J 2
- rh(a,b) ..!!___!( b)d (4.19)Oa h(a, b) 2 Jo aa X, a, X. 

The next step is to solve the two parts of the differentiation ( 4.19) of M separately. 

rh(a,b) a 

lo aaf(x,a,b)dx 
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1+b 

= (-1-) exp (-a-) {h(a,b) [ (,"x)= •+•rdx (4.20) 
1- b 1- b lo 1 +exp( ~b)( _:x) 1 -b1 1 

and 

~ [f(h(a, b), a, b)] 
8a h(a,b) 

= [~f(h( b) b)] 1 _ f(h(a, b), a, b) 8h(a, b) 
8a a, 'a, h(a, b) [h(a, b)J2 8a 
R [1 l+b ah(a,b)l

1=b + h(a,b)(1-h(a,b)) aa 
(4.21)

(1 + R) 2h(a, b) (1 + R)[h(a, b)J2 

h(a b) l+b
where, R = expC~b)( _h(~,b)) 1 -b, and 8h(a,b)jaa can be expressed as 1 

a )( h(a,b) )i+%ah(a, b) exp( 1-b 1-h(a,b) 
(4.22)aa l+b [1 ( a )( h(a,b) ) i!%][1-h(a,b)] 2 - exp 1-b 1-h(a,b) 

which is solved by differentiating both sides of equation ( 4.6) on a. 

If we plug all the results of equation (4.20), (4.21) and (4.22) into the expression 

of (4.19), aMjaa can be expressed finally as: 

aM = ~ [f(h(a, b), a, b)] [h(a, b)] 2 


aa aa h(a, b) 2 

1+b 

1 a 1h(a,b) (___3:_) 1-b1-x d---exp-- x ( 4.23) 
(1- b) (1- b) o [1 +expC~b)C_:x)i!%]2 · 

Similarly, to solve aASCjab we need to find the expressions of aAUCjab and 

aMjab separately. aAUCjab is easily calculated and can be expressed as 

1 
l+b 

aAuc _ a [1 expC~b)C:x) 1-b d ] 
---- l+b X 

8b 8b o 1+expC~b)C_:x)1-b 
1+b 

1 )2 ( a ) 11 c:x) 1-b [a+ 2lnC:x)l d 
---exp--( x (4.24) 
- 1-b 1-b o [1+(1_:x)~expC~b)F 

and aMIab can be expressed as 
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aM=!!__ {h(a,b) [f(h(a,b),a,b) -j( b)]d 
ab ab Jo h(a, b) X X, a, X 

= rh(a,b) !!__ [f(h(a, b), a, b) - f( b)]d
Jo ab h(a, b) X X, a, X 

+ah~~,b) [f(h~~~~)~)a,b)h(a,b)- f(h(a,b),a,b)] 

= rh(a,b) !!__ [f(h(a, b), a, b) - j( b)]d 
Jo ab h(a, b) X X, a, X 

- !!__[f(h(a,b),a,b)] rh(a,b) - rh(a,b) !!__ 
- ab h(a, b) lo xdx lo abf(x, a, b)dx 

= ~[j(h(a,b),a,b)] [h(a,b)j2- rh(a,b) !!_f( b)d 
(4.25)ab h(a, b) 2 Jo ab X, a, X. 

where, 

rh(a,b) a 

lo abf(x, a, b)dx 


!±£ 
= loh(a,b) !!__ [-ex_p--'(1=-~-=--b)--=C=-=x=-)-1~....,.-b-..,...] 

l+b dx 
0 ab 1 + exp(__2:._)(_:!:_) 1~b1-b 1-x 

1 )2 ( a ) lh(a,b) (~) i~~ [a+ 2ln( ~ )]= ( -- exp -- 1 x 1+b 1 x dx ( 4.26) 
1- b 1- b o [1 + c:x) 1~b expC~b)F 

and 

!!__ [f(h(a, b), a, b)] 

ab h(a, b) 


= [~ f(h( b) b)] 1 - f(h(a, b), a, b) ah(a, b) 
ab a, )a, h(a, b) [h(a, b)J2 ab 

- (1~b)2 S[a + 2lnC~~('!:b)) + h(a,bi~~~~)(a,b)) Bhb~,b)l soh(a,b) 
- [1 + Sj2h(a, b) - [1 + S][~b(a, b)J2 (4·27) 

v(a b) l+b
where, S = expC~b)C-v('a,b))1~b, and ah(a,b)jab can be expressed as 

a )( h(a,b) )i~~[ + 21 ( v(a,b) )] 2(ah (a, b) - exp 1=b 1-h(a,b) a n 1-h(a,b) - (1-h(a,b)) 
(4.28)

ab - (1-b2
) [ ( a )( h(a,b) ) 12

\]
[1-h(a,b)]2 1 - exp 1-b 1-h(a,b) ~ 
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which is solved by differentiating both sides of equation ( 4.6) on b. 

If we plug all the results of equation (4.26), (4.27) and (4.28) into the expression 

of ( 4.25), 8~ can be expressed finally as: 8

aM = ~[f(h(a, b), a, b)] [h(a, b)j2 

ab ab h(a,b) 2 


1+b 
1 a lh(a,b) (--"'---) 1-b [a+ 2ln(--"'--- )]

-(--)2 exp(--) 1-x Hb 1-x dx. (4.29) 
1- b 1- b 0 [1 + ( l~x) 1-b expc~b)J2 

4.4 The Behaviour of the Variance of ASC 

From Table 4.7 to 4.12 we can deduce: aAUCjaa does not change sign and keeps 

positive everywhere; aAUCjab changes sign from negative to positive as a changes 

from negative to positive and b is negative and changes sign from positive to negative 

as a changes from negative to positive as well but b is positive; aMIaa changes sign 

from positive to negative as b changes sign from negative to positive no matter what 

sign a has; aMjab changes sign from negative to positive only when lal is a small 

number; aASCjaa performs the similar as aMjaa. 

By using the Increasing/Decreasing Test and the First Derivative Test, we can 

explain the phenomena above as: 1. aAUCjaa is an increasing function of a for the 

overall range of a; since AUG---+ 1 as a---+ oo, it has no critical point. 2. aAUCjab is 

a decreasing function of b in the interval of a < 0, b < 0 or a > 0, b > 0; an increasing 

function in other intervals. Since it changes sign as what is described above, aAUCjab 

has a local minimum at b = 0 if a is negative and a local maximum at b = 0 if a is 
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positive. 3. aMIaa is an increasing function of a as b is negative; a decreasing function 

of a as b is positive. Since M --r 0 as a --r -oo when b is negative and M --r 0 as 

a --r 00 when b is positive, it has no critical value in these two intervals. 4. aMIab is 

an increasing function of b as a is positive; a decreasing function of b as a is negative. 

Since M --r 0 as b --r -oo when a is positive and M --r 0 as b --r oo when a is negative, 

it has no critical value in these two intervals. 

For a function f (x), f' (x) also can be interpreted as the rate of change of f (x) 

with respect to x (Stewart, 2003). AUG is increasing or decreasing smoothly both on 

a and b. It attains maximum increasing rate at a= 0 for aAUGiaa and maximum 

rate of changing at lbl = 0.3 for aAUGiab in our study. But M is not increasing or 

decreasing smoothly both on a and b. It attains maximum rate of changing at ial = 1 

for aMiaa and the one at lbl = 0.3 for aMiab but with a little fluctuation at ial = 2. 

So dose the ASG, since it 's affected more by M than by AUG. 

Still use the data for the lymphangiography test for cervical cancer metastases as 

an example. The numerical values of var(ASG) are shown in Table 4.13. We find 

that the values are symmetric in the direction of diagonal line. Again, this example 

illustrates that the heterogeneous variances are larger than the homogeneous estimates. 

var(ASG) decreases with respect to values of lbl. The big values of var(ASG) indicate 

the worst situation for estimating ASG index in the diagnostic test. 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.0729001 0.1117777 0.1472541 0.1620163 0.1472541 0.1117777 0.0729001 

0.0726689 0.1126326 0.1492886 0.1645779 0.1492886 0.1126326 0.0726689 

0.0725248 0.1131535 0.1505302 0.1661412 0.1505302 0.1131535 0.0725248 

0.0724759 0.1133284 0.1509476 0.1666667 0.1509476 0.1133284 0.0724759 

0.0725248 0.1131535 0.1505302 0.1661412 0.1505302 0.1131535 0.0725248 

0.0726689 0.1126326 0.1492886 0.1645779 0.1492886 0.1126326 0.0726689 

0.0729001 0.1117777 0.1472541 0.1620163 0.1472541 0.1117777 0.0729001 

Table 4.7: values of aAUC/aa 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

2.7919530e-03 8.167656e-03 2.7296760e-02 7.7650190e-02 1.183474e-01 1.0537800e-01 7.1651820e-02 

7.9123000e-04 2.802580e-03 1.4561570e-02 7.8809820e-02 1.353774e-01 1.1139440e-01 7.2573320e-02 

7.8421710e-05 3.186230e-04 2.7725140e-03 7.9520300e-02 1.492981e-01 1.1299320e-01 7.2448000e-02 

7.0563500e-14 1.032994e-14 1.6844760e-15 7.0622300e-15 1.684476e-15 1.0329940e-14 7.0563500e-14 

-7.244800e-02 -1.129932e-01 -1.492981e-01 -7.952030e-02 -2.772514e-03 -3.186230e-04 -7.842171e-05 

-7.257332e-02 -1.113944e-01 -1.353774e-01 -7.880982e-02 -1.456157e-02 -2.802580e-03 -7.912300e-04 

-7.165182e-02 -1.053780e-01 -1.183474e-01 -7.765019e-02 -2.729676e-02 -8.167656e-03 -2.791953e-03 

Table 4.8: values of aMIaa 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-4.901810e-02 -4.56790e-02 -2.825940e-02 6. 759101e-17 2.825940e-02 4.567900e-02 4.901810e-02 

-3. 334560e-02 -3.11 066e-02 -1. 924920e-02 2.639123e-1 7 1. 924920e-02 3.11 0660e-02 3 .334560e-02 

-1.687460e-02 -1.57496e-02 -9. 747000e-03 1.274580e-17 9. 747000e-03 1.574960e-02 1.687460e-02 

1.886226e-09 7.11316e-10 2.379433e-10 8.406933e-18 -2.379443e-10 -7.113153e-10 -1.886226e-09 

1.687460e-02 1.57496e-02 9. 74 7000e-03 2.657200e-17 -9. 747000e-03 -1.574960e-02 -1.687460e-02 

3.334560e-02 3.11066e-02 1.924920e-02 4.293945e-17 -1.924920e-02 -3.110660e-02 -3.334560e-02 

4.901810e-02 4.56790e-02 2.825940e-02 4.124409e-17 -2.825940e-02 -4.567900e-02 -4.901810e-02 

Table 4.9: values of aAUC/ab 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-3.393334e-02 -7. 727298e-02 -1. 690690e-01 -2 .436464e-O 1 -1.333144e-O 1 1.043612e-02 3 .394953e-02 

-1.365966e-02 -3. 733254e-02 -1.176538e-01 -2.456046e-01 -7.972659e-02 1.620432e-02 3.167964e-02 

-2.515624e-03 -8.009466e-03 -3.974565e-02 -2.468739e-01 -5.056434e-03 1.296401e-02 1.541730e-02 

-1. 008961e-07 -3. 703316e-08 -1. 361046e-08 -1.433240e-09 -1.361046e-08 3. 703316e-08 1.008961 e-07 

-1.541730e-02 -1.296401e-02 5.0564340e-03 2.4687390e-01 3.9745650e-02 8.009466e-03 2.515616e-03 

-3.169902e-02 -1.620432e-02 7.9726590e-02 2.4560460e-01 1.1765380e-01 3.733254e-02 1.365966e-02 

-3.394839e-02 -1.043612e-02 1.3331440e-01 2.4364640e-01 1.6906900e-01 7. 727298e-02 3.393334e-02 

Table 4.10: values of aMjab 
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b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-0.06731619 -0.09544239 -0.09266058 -0.006715919 0.08944073 0.09897828 0.07040353 

-0.07108644 -0.10702744 -0.12016545 -0.006958249 0.12146625 0.11015619 0.07247775 

-0.07236796-0.11251625-0.14498517-0.007100600 0.14806625 0.11283281 0.07237119 

-0.07247590 -0.11332840 -0.15094760 -0.166666700 0.15094760 0.11332840 0.07247590 

-0.07237119 -0.11283281 -0.14806594 0.007100600 0.14498517 0.11251625 0.07236796 

-0.07247775 -0.11015619 -0.12146625 0.006958249 0.12016545 0.10702744 0.07108644 

-0.07040353 -0.09897828 -0.08944073 0.006715919 0.09266058 0.09544239 0.06731619 

Table 4.11: values of 8ASCj8a 

b\a -3 -2 -1 0 1 2 3 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

-1.884858e-02 -1.088670e-01 -3.098786e-01 -4.872928e-01 -2.948882e-01 -6.655161e-02 1.8878680e-02 

6. 02628 70e-03 -4.355848e-02 -2 .160584e-O 1 -4. 912093e-01 -1. 787024e-O 1 1.3007700e-03 3. 0052450e-02 

1.1843350e-02 -2.693327e-04 -6.974429e-02 -4.937479e-01 -1.985987e-02 1.0178400e-02 1.3959990e-02 

-1. 999060e-07 -7. 335500e-08 -2.698297 e-08 2 .8664800e-09 -2.7 45886e-08 -7.477763e-08 -2. 0367840e-07 

-1.395999e-02 -1.017840e-02 1.9859870e-02 4.9374790e-01 6.974429e-02 2.6933270e-04 -1.184335e-02 

-3.005245e-02 -1. 300770e-03 1.7870240e-O 1 4. 9120930e-0 1 2 .160584e-01 4.3558480e-02 -6.02628 7 e-03 

-1.887868e-02 6.6551610e-02 2.9488820e-01 4.8729280e-01 3.098786e-01 1.0886700e-01 1.8848580e-02 

Table 4.12: values of 8ASC/ 8b 
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-3 -2 -1 0 1 2 3b\a 

0.0008043777 0.003147897 0.010316919 0.014632027 0.009414318 0.002376146 0.0005906360-0.3 

0.0006794769 0.002250099 0.007751964 0.014858760 0.006417216 0.001719800 0.0005777397-0.2 

0.0006670016 0.001813195 0.004380848 0.015007403 0.003470092 0.001705326 0.0006543166-0.1 

0.0006509881 0.001705211 0.003257597 0.003971391 0.003257597 0.001705211 0.0006509881 0 

0.0006543166 0.001705326 0.003470092 0.015007403 0.004380848 0.001813195 0.0006670016 0.1 

0.0005777397 0.001719800 0.006417216 0.014858760 0.007751964 0.002250099 0.0006794769 0.2 

0.0005906360 0.002376146 0.009414318 0.014632027 0.010316919 0.003147897 0.00080437770.3 

Table 4.13: values of var(ASC) 
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Chapter 5 

Conclusion 

The expressions of P LC index and ASC index and their basic properties have 

been established in this project. All the results rely on the validity of the regression 

model proposed by Moses. Numerical integration are used to deal with all the deduced 

expressions of P LC and ASC when -3 ::; a ::; 3 and -0.3 ::; b ::; 0.3. 

It was found that P LC index is symmetric with respect to IaI and Ibl. The homo

geneous values of P LC provide a good approximation in heterogeneous studies. As 

a -----+ 0 and b -----+ 0, PLC -----+ 0, the corresponding SROC curve will run along the 

diagonal line. P LC attains its minimum in the homogeneous case and this indicates 

a cut-off point with no diagnostic value. Once the SROC curve deviates from the 

diagonal line, the P LC index will sum up the deviation. As a -----+ oo, P LC gains its 

maximum J2 in the heterogeneous case. P LC is a decreasing function of a when a 

is negative and an increasing function of a vice versa. On the other hand, P LC is a 

decreasing function of b when b is negative and an increasing function of b vice versa. 

Our example illustrates that the heterogeneous variances of P LC are larger than the 
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homogeneous estimates and the big values of var(P LG) indicate the worst situation 

for estimating P LG index in the diagnostic test. 

The deduction of ASG's expression related to properties of AUG. But ASG index 

is affected mostly by the new proposed index M. Although AUG index is symmetric 

with respect to lal and lbl, ASG index lacks symmetry with respect to b for fixed a 

or lacks symmetry with respect to a for fixed b since M index performs the same. 

Similarly, affected by the unsteady values of M, for fixed a, as b changes from negative 

to positive, the values for ASG are not smoothed, although AUG change smoothly. 

As a --+ 0 and b--+ 0, the emanating rays do not spread out and its ASG index is zero. 

Once the SROC curve deviates from the diagonal line, the ASC index will sum up 

the deviation. When a--+ oo, ASC attains its maximum 0.5 in the homogeneous case. 

ASC is a decreasing function of a when b is positive and an increasing function of a 

vice versa. On the other hand ASC is a decreasing function of b when a is negative 

and an increasing function of b when a is positive. Our example illustrates that the 

heterogeneous variances of ASC are larger than the homogeneous estimates and the 

big values of var(ASC) indicate the worst situation for estimating ASG index in the 

diagnostic test. 
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Appendix A 

Source R codes for PLC 

#Function: PLC.1 
function (n) { 

my.b <- matrix(NA, nrow = 7, ncol 7) 
s <- 0 
for (bin seq(-0.3, -0.1, 0.1)) { 

my.a <- matrix(NA, nrow = 1, ncol 7) 


t <- 0 

for (a in seq(-3, 3, 1)) { 


SROC <- function(x, a, b) { 
u = a/(1 - b) 
v = (1 + b)/(1 - b) 
d = 1 + exp(u) * (x/(1 - x))~v 

y = 1 - 1/d 

y 
} 

Q.star <- function(a, b) { 
x = exp(-a/(2 * b))/(1 + exp(-a/(2 * b))) 
y = X 

c(x, y) 

} 


q.star <- Q.star(a, b) 

dist <- function(x, y) { 


d = abs(-x + y)/sqrt(2) 
d 
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} 

xx2 <- seq(q.star[1], 1, (1 - q.star[1])/n) 

d2 <- dist(xx2, SROC(xx2, a, b)) 

t <- t + 1 

my.a[t] <- max(d2) 


} 


s <- s + 1 


my.b[s, ] <- my.a 

} 

b = 0 

my.a <- matrix(NA, nrow = 1, ncol 7) 

t <- 0 

for (a in seq(-3, -1, 1)) { 


SROC <- function(x, a, b) { 

u = a/(1 - b) 


v = (1 + b)/(1 - b) 

d = 1 + exp(u) * (x/(1 - x))~v 


y = 1 - 1/d 

y 


} 


Q.star <- function(a, b) { 
x = exp(-a/(2 * b))/(1 + exp(-a/(2 * b))) 
y = X 

c(x, y) 
} 

q.star <- Q.star(abs(a), b) 
dist <- function(x, y) { 


d = abs(-x + y)/sqrt(2) 

d 


} 

xx2 <- seq(q.star[1], 1, (1- q.star[1])/n) 

d2 <- dist(xx2, SROC(xx2, a, b)) 

t <- t + 1 

my.a[t] <- max(d2) 


} 

t <- t + 1 
my.a[t] <- 0 
for (a in seq(1, 3, 1)) { 

SROC <- function(x, a, b) { 

u = a/(1 - b) 

v = (1 + b)/(1 - b) 
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d = 1 + exp(u) * (x/(1 - x))~v 

y = 1 - 1/d 

y 
} 

Q.star <- function(a, b) { 
x = exp(-a/(2 * b))/(1 + exp(-a/(2 * b))) 
y = X 

c (x, y) 
} 


q.star <- Q.star(a, b) 

dist <- function(x, y) { 


d = abs(-x + y)/sqrt(2) 

d 


} 


xx1 <- seq(O, q.star[1], q.star[1]/n) 

d1 <- dist(xx1, SROC(xx1, a, b)) 

t <- t + 1 

my.a[t] <- max(d1) 


} 

s <- s + 1 
my.b[s, ] <- my.a 
for (bin seq(0.1, 0.3, 0.1)) { 

my.a <- matrix(NA, nrow = 1, ncol = 7) 

t <- 0 

for (a in seq(-3, 3, 1)) { 


SROC <- function(x, a, b) { 
u = a/(1 - b) 

v = (1 + b)/(1 - b) 
d = 1 + exp(u) * (x/(1 - x))~v 

y = 1 - 1/d 
y 


} 


Q.star <- function(a, b) { 
x = exp(-a/(2 * b))/(1 + exp(-a/(2 * b))) 
y = X 

c(x, y) 
} 


q.star <- Q.star(a, b) 

dist <- function(x, y) { 


d = abs(-x + y)/sqrt(2) 
d 
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} 


xx1 <- seq(O, q.star[1], q.star[1]/n) 

d1 <- dist(xx1, SROC(xx1, a, b)) 

t <- t + 1 

my.a[t] <- max(d1) 


} 


s <- s + 1 

my.b[s, ] <- my.a 


} 


my.b 

} 
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Appendix B 

Source R codes for ASC 

#Function: M.1 
function (n) { 

my.b <- matrix(NA, nrow = 4, ncol 7) 
s <- 0 
for (bin seq(O, 0.3, 0.1)) { 

my.area <- matrix(NA, nrow 1, ncol 7) 

t <- 0 

for (a in seq(-3, 3, 1)) { 


my.x <- matrix(NA, nrow = 1, ncol = n) 
my.x.star <- matrix(NA, nrow = 1, ncol n) 
height.sroc <- matrix(NA, nrow = 1, ncol = n) 
sroc <- function(x, a, b) { 

u a/(1 - b) 


v = (1 + b)/(1 b) 

d 1 + exp(u) * (x/(1 - x))-v 

y 1 - 1/d 


} 

slope <- function(x, a, b) { 
u = a/(1 - b) 
v = (1 + b)/(1 - b) 
d 1 + exp(u) * (x/(1 - x))-v 
k (1 - 1/d)/x 
k 

} 


xx <- seq(1e-05, 1, len 10000) 

k <- slope(xx, a, b) 

k.order <- order(k) 
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r <- k.order[10000] 

the . X <- XX [r] 

kx <- function(k, x) { 


y = k * X 
} 

base.x <- the.x/n 
for (i in 1:n) { 

my.x[i] = i * base.x 
my.x.star[i] = my.x[i] - base.x/2 
height.sroc[i] = kx(max(k), my.x.star[i]) - sroc(my.x.star[i], 

a, b) 

} 


t <- t + 1 

my.area[t] <- sum(height.sroc * base.x) 


} 

s <- s + 1 

my.b[s, ] <- my.area 


} 

my.b 
} 

#Function: AUC.1 
function (n) { 

sroc.area <- matrix(NA, nrow = 4, ncol 7) 
r <- 0 
for (bin seq(O, 0.3, 0.1)) { 

my.area <- matrix(NA, nrow 1, ncol 7) 

t <- 0 

for (a in seq(-3, 3, 1)) { 


my.x <- matrix(NA, nrow = 1, ncol = n) 
my.x.star <- matrix(NA, nrow = 1, ncol n) 
height.sroc <- matrix(NA, nrow = 1, ncol = n) 
sroc <- function(x, a, b) { 

u = a/(1 - b) 


v = (1 + b)/(1 b) 


d 1 + exp(u) * (x/ (1 - x)) ~v 


y 1 - 1/d 

} 

base.x <- 1/n 

for (i in 1 :n) { 
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my.x[i] = i * base.x 
my.x.star[i] = my.x[i] - base.x/2 
height.sroc[i] = sroc(my.x.star[i], a, b) 

} 

t <- t + 1 
my.area[t] <- sum(height.sroc * base.x) 

} 

r <- r + 1 
sroc.area[r, ] <- my.area 

} 

sroc.area 
} 
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Appendix C 

Source R codes for Graphs 

# figure 1: 
function () { 

SROC <- function(x, a, b) { 

u = a/(1 - b) 
v = (1 + b)/(1 - b) 
d = 1 + exp(u) * (x/(1 - x))~v 

y = 1 - 1/d 
} 

diagonal <- function(x) { 
y = X 

} 

xgr <- seq(O, 1, len = 40) 
ygr <- seq(O, 1, len = 40) 
plot(xgr, ygr, xlab = "FPR", ylab = "TPR", main= "(a) a=2, b=0.5,0,-0.5", 

type = "n'') 
lines(xgr, SROC(xgr, 2, 0.5), lty = 2) 
lines(xgr, diagonal(xgr), lty = 1) 
lines(xgr, SROC(xgr, 2, -0.5), lty = 3) 
lines(xgr, SROC(xgr, 2, 0), lty = 4) 
legend(x = 0.7, y = 0.3, legend= c("b=0.5", "b=O", "b=-0.5"), 

lty = c(2, 4, 3)) 
} 

# figure 2: 
function () { 

SROC <- function(x, a, b) { 
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u = a/(1 - b) 
v = (1 + b)/(1 - b) 
d = 1 + exp(u) * (x/(1 
y = 1 - 1/d 

} 

diagonal <- function(x) { 
y = X 

} 

xgr <- seq(O, 1, len = 40) 
ygr <- seq(O, 1, len = 40) 
plot(xgr, ygr, xlab = 11 FPR 11 

, ylab = 11 TPR 11 
, main 11 (b) a=-2,b=0.5,0,-0.5 11 

, 

type = ''n 11 
) 

lines(xgr, SROC(xgr, -2, 0.5), lty = 2) 
lines(xgr, diagonal(xgr), lty = 1) 
lines(xgr, SROC(xgr, -2, -0.5), lty = 3) 
lines(xgr, SROC(xgr, -2, 0), lty = 4) 
legend(x = 0.1, y = 0.9, legend= c( 11 b=0.5 11 

, 
11 b=0 11 

, 
11 b=-0.5 11

), 

lty = c(2, 4, 3)) 
} 

#figure 3: 
function () { 

SRDC <- function(x, a, b) { 
u = a/(1 - b) 
v = (1 + b)/(1 - b) 
d 1 + exp(u) * (x/(1 - x))-v 
y 1 - 1/d 

} 

diagonal <- function(x) { 
y = X 

} 

xgr <- seq(O, 1, len = 40) 
ygr <- seq(O, 1, len = 40) 
plot(xgr, ygr, xlab = 11 FPR 11 

, ylab 11 TPR 11 
, main 11 (c) b=0.5,a=2,0,-2 11 

, 

11 n 11type = ) 


lines(xgr, SROC(xgr, 2, 0.5), lty 2) 

lines(xgr, diagonal(xgr), lty = 1) 

lines(xgr, SROC(xgr, -2, 0.5), lty = 3) 

lines(xgr, SROC(xgr, 0, 0.5), lty = 4) 

legend(x = 0.75, y = 0.3, legend= c( 11 a=2 11 

, 
11 a=0 11 

, 
11 a=-2 11 

), 
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lty c(2, 4, 3)) 
} 

#figure 4: 
function 0 { 

SROC <- function(x, a, b) { 
u = a/(1 - b) 

v = (1 + b)/(1 - b) 
d 1 + exp(u) * (x/(1 - x))~v 

y 1 - 1/d 
} 

diagonal <- function(x) { 
y = X 

} 

xgr <- seq(O, 1, len = 40) 
ygr <- seq(O, 1, len = 40) 
plot (xgr, ygr, xlab = "FPR", ylab = "TPR'', main "(d) b=-0.5,a=2,0,-2", 

type = "n") 
lines(xgr, SROC(xgr, 2, -0.5), lty = 2) 
lines(xgr, diagonal(xgr), lty = 1) 
lines(xgr, SROC(xgr, -2, -0.5), lty = 3) 

lines(xgr, SROC(xgr, 0, -0.5), lty = 4) 
legend(x = 0.7, y = 0.2, legend= c("a=2", "a=O", "a=-2"), 

lty = c(2, 4, 3)) 
} 

#figure 5: 
function () { 

slope <- function(x, a, b) { 
u = a/(1 - b) 
v = (1 + b)/(1 - b) 
d 1 + exp(u) * (x/(1 - x))~v 

k (1 - 1/d)/x 
k 

} 


xx1 <- seq(1e-04, 1, len 10000) 

k <- slope(xx1, 2, 0.5) 

k.order <- order(k) 

my.xx1 <- xx1[k.order[10000]] 


66 



SROC <- function(x, a, b) { 


u = a/ (1 - b) 

v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


y = 1 - 1/d 

} 

diagonal <- function(x) { 
y = X 

} 

xgr <- seq(O, 1, len = 40) 
ygr <- seq(O, 1, len = 40) 
xgr.1 <- seq(O, my.xx1, len= 40) 
plot (xgr, ygr, xlab = "X", ylab = "y", main "(a) ASC:a=2,b=0.5", 

type = "n") 

lines(xgr, diagonal(xgr), lty = 1) 

lines(xgr, SROC(xgr, 2, 0.5), lty = 2) 

lines(xgr.1, max(k) * xgr.1, lty = 2) 


} 

#figure 6: 
function () { 

slope <- function(x, a, b) { 

u = a/(1 - b) 


v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


k (1 - 1/d)/x 

k 


} 

xx1 <- seq(1e-04, 1, len 10000) 

k <- slope(xx1, 2, -0.5) 

k.order <- order(k) 

my.xx1 <- xx1[k.order[1]] 

SROC <- function(x, a, b) { 


u = a/(1 - b) 

v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


y 1 - 1/d 

} 

diagonal <- function(x) { 

y = X 
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} 


xgr <- seq(O, 1, len = 40) 

ygr <- seq(O, 1, len = 40) 

xgr.1 <- seq(O, my.xx1, len= 40) 


11 X11 11 y 11 11plot(xgr, ygr, xlab = , ylab , main (b) ASC:a=2,b=-0.5 11 
, 

type = ''n 11 
) 


lines(xgr, diagonal(xgr), lty = 1) 

lines(xgr, SROC(xgr, 2, -0.5), lty = 2) 

lines(xgr.1, min(k) * xgr.1, lty = 2) 


} 

#figure 7: 
function 0 { 

slope <- function(x, a, b) { 
u a/(1 - b) 


v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


k (1 - 1/d)/x 

k 

} 


xx1 <- seq(1e-04, 1, len 10000) 

k <- slope(xx1, -2, 0.5) 

k.order <- order(k) 

my.xx1 <- xx1[k.order[10000]] 

SROC <- function(x, a, b) { 


u = a/(1 - b) 


v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


y 1 - 1/d 

} 


diagonal <- function(x) { 

y = X 


} 


xgr <- seq(O, 1, len = 40) 

ygr <- seq(O, 1, len = 40) 

xgr.1 <- seq(O, my.xx1, len= 40) 


11 X11plot (xgr, ygr, xlab = , ylab 11 Y", main 11 (c) ASC:a=-2,b=0.5 11 
, 

11 n 11type = ) 


lines(xgr, diagonal(xgr), lty = 1) 

lines(xgr, SROC(xgr, -2, 0.5), lty = 2) 
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lines(xgr.1, max(k) * xgr.1, lty 2) 
} 

#figure 8: 
function () { 

slope <- function(x, a, b) { 
u = a/ (1 - b) 
v = (1 + b)/(1 - b) 
d 1 + exp(u) * (x/(1 - x))~v 

k (1 - 1/d)/x 
k 

} 

xx1 <- seq(1e-04, 1, len = 10000) 
k <- slope(xx1, -2, -0.5) 
k.order <- order(k) 
my.xx1 <- xx1[k.order[1]] 
SROC <- function(x, a, b) { 

u = a/(1 - b) 

v = (1 + b)/(1 - b) 
d 1 + exp(u) * (x/(1 - x))~v 

y 1 - 1/d 
} 

diagonal <- function(x) { 
y = X 

} 

xgr <- seq(O, 1, len = 40) 
ygr <- seq(O, 1, len= 40) 
xgr.1 <- seq(O, my.xx1, len= 40) 
plot(xgr, ygr, xlab ="X", ylab "y", main "(d) ASC:a=-2,b=-0.5", 

type = "n") 
lines(xgr, diagonal(xgr), lty = 1) 
lines(xgr, SROC(xgr, -2, -0.5), lty 2) 
lines(xgr.1, min(k) * xgr.1, lty = 2) 

} 

#figure 9: 
function () { 

SROC <- function(x, a, b) { 
u = a/(1 - b) 
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v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


y 1 - 1/d 

} 

diagonal <- function(x) { 
y = X 


} 


xgr <- seq(O, 1, len = 40) 

ygr <- seq(O, 1, len = 40) 


11plot (xgr, ygr, xlab = 11 FPR 11 
, ylab = 11 TPR 11 

, main (a) ASC:a=2,b=0 11 
, 

11 n 11type = ) 


lines(xgr, SROC(xgr, 2, 0), lty 2) 

lines(xgr, diagonal(xgr), lty = 1) 


} 

#figure 10: 
function 0 { 

SROC <- function(x, a, b) { 

u = a/(1 - b) 

v = (1 + b)/(1 - b) 

d 1 + exp(u) * (x/(1 - x))~v 


y 1 - 1/d 

} 


diagonal <- function(x) { 

y = X 


} 


xgr <- seq(O, 1, len = 40) 

ygr <- seq(O, 1, len = 40) 


11plot(xgr, ygr, xlab = 11 FPR 11 
, ylab = 11 TPR 11 

, main (b) ASC:a=-2,b=0 11 
, 

11 n 11type = ) 


lines(xgr, SROC(xgr, -2, 0), lty = 2) 

lines(xgr, diagonal(xgr), lty = 1) 


} 
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