AN EVALUATION OF A THIN FILM X-RAY IMAGING SENSOR WITH LASER READ-OUT

AN EVALUATION OF A THIN FILM X-RAY IMAGING SENSOR WITH LASER READ-OUT

By:

WILLIAM H.L. WAN, B.Sc.

A Project Report

Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements

for the Degree of

Master of Engineering

[Part A]

McMaster University Sept., 1986 MASTER OF ENGINEERING (Engineering Physics)

TITLE:	An Evaluation of a Thin Film X-ray Imaging Sensor With Laser Read-out								
AUTHOR :	Willian H.L. Wan, B.Sc.(University of Waterloo)								
SUPERVISOR:	Dr. N. Ramanathan* (Radiology Department, Toronto Western Hosiptal)								
NUMBER OF PAGES:	viii.69								

* Formerly with Picker International Canada, Inc.

ABSTRACT

This report describes the industrial research work done during the summer of 1986. The main objective of this research was to develop a high resolution X-ray imaging system for mammographic applications . The basic set up of such system is quite simple: it consists of an X-ray tube; an X-ray sensor (which is coupled to the read out electronics), and the optical scanner assembly which serves as the reading deivce. Based on the feasibility studies carried out two years ago, much of the work during the past summer was targetted to improve the existing prototype, and to test out the new X-ray sensors. A new optical assembly was built for this system, which was used to examine the optical resolution of the new sensors. Experimental results were analysed using calculations of the resolution (MTF) of the sensors, and the results indicate that the latest sensors are capable of resolving a 1 mm diameter object. Unforturnately, due to the limitation of time, no X-ray exposure test were done on test targets. However, a theoretical model describing the X-ray sensors responses to X-ray radiation and laser light (based on previous work carried out by A. Zermeno el al, 1979) is presented here. Also, the results of the research work, carried out since the feasibility study up until the end of the summer of 1986, indicate that the sensors have a great potential for achieving limiting resolutions in the range of "0.1 mm" objects.

ACKNOWLEDGEMENTS

I wish to thank my supervisor Dr. N. Ramanathan for his constant encouragement and guidence throughout this project. I would also like to thank the other two team members, Mr. Q. Nguyen and Mr. T. Khosla, for their contributions to this project, and Dr. O. Caparoletti and his team at O.R.F. for fabricating the sensors to our specifications.

I am also thankful to Dr. E. A. Ballik for his help in my study. Finally, I am grateful to the people in the Radiology Department of Toronto Western Hospital for their assistance in the completion of this report.

The Thin Film Mammography Project was financially supported by the National Research Council of Canada — Industrial Research Assistance Program (P.I.L.P.), and Picker International Canada, Incorporated.

TABLE OF CONTENTS

ABSTRAC	Г			iii					
ACKNOWLEDGEMENTS									
LIST OF FIGURES V									
LIST OF TABLES									
CHAPTER	1	INTRO	DUCTION	1					
CHAPTER	2	BASIC	C DESCRIPTION OF THE IMAGING SYSTEM	6					
		2.1	Sensor	8					
		2.2	Optical Assembly	11					
		2.3	Electronics Data Acquisition System	15					
CHAPTER	3	OPTIC	CAL ASSEMBLY OF THE SYSTEM	17					
		3.1	Basic Design Criteria	17					
		3.2	Major Considerations	19					
		3.3	The Assembly	22					
CHAPTER	4.	SENSC	DR ENERGETICS	28					
CHAPTER	5	EXPER	RIMENTAL RESULTS	34					
CHAPTER	6	DATA	ANALYSIS	39					
		6.1	MTF Definition	39					
		6.2	MTF Calculations	44					
		6.3	Analysis	45					
CHAPTER	7	CONCL	USIONS AND RECOMMENDATIONS	56					
REFERENC	ES			59					
APPENDIX	I								
- RAW DA	TA			60					

LIST OF FIGURES

Figure	1.1	The Basic Concepts of the Imaging System	2
	1.2	Layout of the Sensor	4
	2.1	The Large Format Sensor X-ray Imaging System	7
	2.2	Structure of the X-ray Sensor	9
	2.3	Optical Assembly of the Imaging System	12
	2.4	Laser Spot Position on the Sensor at different times of the scan	14
	2.5	Electronics of the Imaging System	16
	3.1	A Horizontal Straight Line Scan	18
	3.2a) b)	Basic Structure of a Laser Cavity Focussing of a Laser Beam by a Focussing lens	20 20
	3.3a) b)	Divergence of a Laser Beam Laser Beam Expander	23 23
	3.4	Layout of of the Optical Assembly	25
	3.5	Geometry of a Scan	27
	4.1	Structure of the Sensor as a Parallel Plate Capcitor	29
	4.2	Percentage Absorption vs KVp of X-ray	33
	5.1a) b) c)	Typical Optical Waveform Ideal Waveform Response Function of the Sensor	35 35 35
	6.1	Optical Waveform of Sensor #1126B	40
	6.2	Input Function	41
	6.3	Response Function of Sensor #1126B	42
	6.4	MTF vs s for Sensor #1126B at Scanspeed 128 lines/sec	46
	6.5	MTF vs s for Sensor #1126B at Scanspeed 256 lines/sec	47

6.6	5 MTF vs s for Sensor #1126B at Scanspeed 512 lines/sec	48
6.7	MTF vs s for Sensor #1114B at Scanspeed 128 lines/sec	49
6.8	8 MTF vs s for Sensor #1114B at Scanspeed 256 lines/sec	50
6.9	MTF vs s for Sensor #1114B at Scanspeed 512 lines/sec	51
6.1	LO MTF vs s for Sensor #870A at Scanspeed 128 lines/sec	52
6.1	ll MTF vs s for Sensor #870A at Scanspeed 256 lines/sec	53
6.1	L2 MTF vs s for Sensor #870A at Scanspeed 512 lines/sec	54

LIST OF TABLES

Table. II.1	Thickness of PbO and SiO of Sensor #870A, #1114B and #1126B	10
V.1	Amplitudes, rise and fall constants of each Sensor at Scanspeed 128, 256 and 512 lines/sec	38
VI.1	Limiting resolution of Sensor #870A, #1114B and #1126B at Scanspeed 128, 256 and 512 lines/sec	55

CHAPTER 1

INTRODUCTION

The main objective of this Thin Film Mammography Project is to develop a high resolution X-ray imaging system. One major application of X-ray mammography is the early detection and diagnosis of breast cancer. An early warning sign showing the development of breast cancer is the identification of minute calcium deposits in the breast [1]. These calcium particles are usually 0.1 to 1.0 mm in diameter. The capability to detect and identify such "microcalicifaction" is a key to successful early diagnosis of breast cancer, and this is what the high resolution X-ray imaging system would have to accomplish.

This research project was undertaken by the Engineering Research Group of Picker International Canada, Inc. The research group was headed by Dr. N.Ramanathan, with Mr. Q.Nguyen, Mr. T.Khosla and the author as members of the research team. The imaging system employs, instead of the conventional X-ray screen/film, a thin film of semiconductor material deposited on a glass substrate, as the X-ray sensor (it is fabricated at the Ontario Research Foundation by Dr. O. Caparoletti according to specification provided by Picker). The basic idea of the imaging system is shown in Fig. 1.1. The image of the object, impressed on the sensor by X-ray radiation, is read off by a laser flyingspot scan [1,2]. During the scan, a photocurrent is produced by the sensor due to the incident laser light. The amplitude of this photocurrent signal depends on the amount of X-ray radiation

Figure 1.1 The Basic Concepts of The Imaging System

incident on the sensor. The photocurrent signal can be digitized easily and stored numerically in a computer. Then, using the basic parameters of the imaging system, the image of the object can be reconstructed. Note that unlike the conventional X-ray screen/film, the X-ray sensor is reusable. Also, the image can be developed by the computer, which is much faster than the conventional process. Due to the new approach in X-ray imaging, the understanding of the X-ray sensor response to X-ray radiation and laser light (i.e. the solid-state physics of the sensor) becomes an integral and key part of the research program.

During the period from 1983 to 1984, a feasibility study for the research program was carried out, a simple working model (prototype) was built and preliminary experiments were conducted. Results had shown that the program was definitely worthwhile of pursuing [1,2]. In the beginning of May, 1986, when this project was started, the prototype was brought back to working condition. The emphasis of the work, during the summer of 1986, was to improve the prototype (design a new optical assembly: carried out by the author), and to design a new data acquisition system (carried out by Mr. Q. Nguyen and Mr. T. Khosla). In addition, studies were carried out on the response of the sensor to X-ray radiation and HeNe red laser light. Three sets of sensors were tested; 1) sensor #870A (used in the prototype built in 1983), 2) sensor #1114B (fabricated at the beginning of the summer, 1986) and 3) sensor #1126B (the most recently fabricated). A multiplestrip layout was employed for the two new sensors, instead of the areal layout used for sensor #870A, see Fig. 1.2.

Figure 1.2 Layout of The Sensors

In this report, a brief description of the system is presented in Chapter 2. A more detailed discussion concerning the optical assembly is given in Chapter 3. Currently, the response of the thin film sensor to X-ray radiation is not fully understood yet. However, a simple theoretical model for the sensor [7] presented in Chapter 4 will serve as a guide for the time being. The results and the analysis are presented in Chapters 5 and 6, respectively. Finally, conclusions and recommendations are made and presented in Chapter 7.

CHAPTER 2

BASIC DESCRIPTION OF THE IMAGING SYSTEM

The large format sensor X-ray imaging system can be broken down into several basic components, and they are the: i) X-ray tube, ii) sensor, iii) optical assembly, and iv) the electronics data acquisition system (Fig. 2.1).

The basic principles of how this imaging system works are: a) the X-ray tube produces the X-ray radiation for the exposure; b) after being attenuated by the target, the radiation will impress an "image" on the sensor; c) then, the optical scanner will read off the information by using a laser flying-spot scan across the sensor, which produces a photocurrent signal; d) finally, this current is converted into digital information for analysis and display. It should be noted that the X-ray exposure taken in this system (i.e., step 'a' and step 'b') are same as any other conventional system; the major difference is how the "picture" or "image" is being developed. In this system, a specially fabricated X-ray sensor, which is a thin film of semiconductor materials, is used in place of the conventional X-ray screen or film, and the image is processed using steps 'c' and 'd'.

This chapter will briefly describe each of the major components of the imaging system, except for the X-ray tube, which is the same as any other conventional system.

Figure. 2.1 The Large Format Sensor X-ray Imaging System

2.1 Sensor

The X-ray sensor is a sandwich structure of semiconductor materials (Fig. 2.2). The X-ray detector layer is made out of tetragonal PbO (lead monoxide), and the insulator is SiO (silicon monoxide). In this study, three different batches of sensors were tested. They are denoted as sensor #870A, #1114B, and #1126B. The basic structure of these sensors are the same, except that the thicknesses of PbO and SiO layers for each sensor are different (Table II.1).

PbO is chosen as the X-ray detector material because of its strong X-ray absorption coefficient [2], and its sensitivity to red light. From previous experiments, results had shown that the absorbed X-ray would induce charges on the PbO layer. When laser light is incident on the PbO, these induced charges would be dissipated as current (i) with its amplitude proportional to X-ray the X-ray dose absorbed by the sensor. However, the PbO is also a photoconductor. Consequently, laser light will produce a) even in the absence of X-rays. Therefore, photocurrent (i laser during a laser flying-spot scan across the sensor, the photocurrent is a combination of the current due to X-ray and the current due to laser light [2]. Experiments have shown that the photocurrent measured can be expressed as:

i = i - i . (2.1)
meas laser X-ray
Although the reason for this anomalous behaviour (difference
of i and i rather than the sum) of Eq.(2.1) is still
laser X-ray
not known. However, the equation provides the basics information
necessary to analyse the data and to extract the "image" out.

layer:

1	-	- g	1	a	S	35	S	ub	S	tr	a	t	e							
2		-		-	-	-	-	-		-		-	-	٦.	-	-	-	 -	-1	

- 2 transparent electrode
 3 X-ray detector layer (PbO)
 4 insulating layer (SiO)
 5 silvered electrode

Sensor	Thickn	ess of
	PbO	
#870A	80 µm	40 µm
#1114B	43 µm	27 µm
#1126B	43 µm	81 µm

57

Table II.1 Thickness of PbO and SiO of Sensor #870A, #1114B and #1126B A more detailed discussion about the sensor energetics will be presented in Chapter 4.

2.2 Optical Assembly

The optical assembly of the imaging system is basically a laser scanner, which is made up of a rotating polygon mirror, plane mirrors, focussing optics, and a laser source (Fig. 2.3). The assembly is used for reading the sensor by providing a laser flying-spot scan. As mentioned in section 2.1, the photocurrent, i , produced due to incident laser light, also depends on the meas amount of X-ray absorbed by the sensor. Depending on the object, different locations on the sensor absorb different amounts of X-ray radiation and produce the latent "image" on the sensor. Therefore, as the laser spot scans across the sensor, the photocurrent varies according to the distribution of X-ray absorbed across the sensor. Because the laser spot takes a finite time to scan across the sensor, the measured signal is a function of time, i.e., i = i (t), corresponding to meas meas different locations on the sensor. Using the velocity of the laser spot on the sensor surface (v), i (t) can be transformed meas into i (x), where x is defined as the position on the meas sensor, and it is given by:

$$x = v.t$$
 . (2.2)

In the present optical assembly, the scanner only provides a horizontal straight line scan, because the sensor has a multiplestrip layout. However, if desired, the scanner can be modified to provide vertical scan motion as well by using a stepping motor

a) General Concepts

Figure 2.3 Optical Assembly of the Imaging System

for the vertical motion. Then i (t) can be transformed into meas

i (x,y), where x and y are defined as the horizontal meas and vertical positions on the sensor, given by:

$$x = v.(t-t_{n-1})$$
, (2.3)

$$y = \Delta y.(n-1)$$
 (2.4)

for $t_{n-1} < t < t_n$,

and $n = 1, 2, 3, 4, \dots$,

where v is velocity of the laser spot as it scans across the sensor. Ay is the increment of the laser spot position on the sensor in the verical direction, due to the stepping motor, and (t_{n-1}, t_n) is the time interval during which the laser spot is on $\frac{th}{1}$ its n line scan (Fig. 2.4).

It can be assumed that i is constant throughout the scan. laser Therefore, Eq.(2.1) can be rewritten as

i (x) = i - i (x). (2.5) X-ray laser meas Since i (x) is proportional to the amount of X-ray absorbed X-ray at x, the "image" of the target can be reconstructed. A more detailed discussion concerning the optical assembly (i.e., its basic design criteria, major considerations and limitations) will be presented in Chapter 3.

2.3 Electronics Data Acquisition System

The data acquisition system, is made up of i) a current control "Noise Subtraction Scheme" amplifying circuit [3], ii) a digital storage oscilloscope (Tektronix model# 468), and iii) an X-Y plotter. Viewing the system electronically, the silvered

terminal of the sensor is connected to the input of the amplifying circuit, then the output of the amplifier is connected to the digital storage scope; on the other hand, the transparent terminal of the sensor is connected to the positive (+) terminal of a dc bias source, and from the negative (-) terminal of the dc bias, it is connected to the ground of the amplifying circuit (Fig. 2.5).

During a laser flying spot scan, a photocurrent signal will be generated as the spot passes through the sensor. This signal is first amplified by the "Noise Subtraction Scheme" amplifier. Then the amplified signal is collected and stored by the oscilloscope. A "hard copy" of this amplified signal can be obtained with the X-Y plotter.

Figure 2.5 Electronics of the Imaging System

CHAPTER 3

OPTICAL ASSEMBLY OF THE SYSTEM

As discussed in section 2.2, the optical assembly serves to read the image on the sensor. It is basically a laser scanner consisting of several major components, including i) an 8-facet polygon mirror (with a dc motor drive)[†], ii) plane mirrors, iii) a red HeNe laser source and iv) focussing optics. During the feasibility study (1983 to 1984), a simple working model was used. However, for the actual development of the system, a more compact and carefully designed optical assembly is required; As a result, most of the work carried out during the summer of 1986, was improving the optical assembly. This chapter presents the basic design criteria, major limitations and considerations of the new assembly.

3.1 Basic Design Criteria

In the imaging system, the sensor layouts are in multiple-strip form (i.e., #1114B and #1126B). Requiring a straight line scan. Therefore, the new scanner has to provide a horizontal straight line scan covering a width of approximately 14 inches (or 36 cm) wide with a scan angle of $\pm 20^{\circ}$. The desirable spatial resolution is 2048 pixels/line; thus, requiring a laser spot diameter of approximately 100 µm (Fig. 3.1).

† — Lincoln Laser Company: Model #S-600-010-LVB0B

3.2 Major Considerations for Scanner Design

The material used for the X-ray sensor is tetragonal PbO, chosen for its high X-ray absorption coefficient [2]. This material is also highly sensitive to visible red light. Therefore a HeNe red laser was used as the light source. Some principles of laser physics and geometrical optics should be considered, before discussing any further with the design. The laser employed was a Melles Griot HeNe laser, model #05LHP141, operating @ λ = 6328Å, with 4 mW cw output power and a Gaussian irradiance profile (i.e. TEM., mode). Therefore, this section will assume Gaussian beam optics.

A TEM., mode laser output beam has a wavefront curvature and beam radius given by

$$R(z) = z \left[1 + \left(\frac{\pi w_o^2}{\lambda z} \right)^2 \right]$$
(3.1)

and $W(z) = W_0 [1 + (\frac{\lambda z}{\pi W_0^2})^2]^{1/2}$ (3.2)respectively [4,5]. Where λ is the laser wavelength, and W_o is the minimum beam radius at z = 0 (Fig. 3.2).

When focussing the laser beam with an aberration free lens (i.e. an achromats lens) the final minimum spot size is not zero, as simple geometrical optics might suggest, but it is given by

$$W_{o} = \frac{\lambda f}{\pi W}$$
(3.3)
for f >> $\frac{\pi W_{o}^{2}}{\lambda}$, where W is the original beam radius at the lens,
f is the focal length of the lens, λ is the wavelength of the
laser, and W_{o} is the spot radius at the focal plane (Fig.3.2b).

The depth of focus, Z_f, of a focussed beam is also a very useful

f

a)Basic Structure of a Laser Cavity

b)Focussing of a Laser beam by a Focussing Lens

Figure 3.2

parameter. It is defined as the range where the laser spot size remains minimal within some specified percentage (5% or 10%) of defocussing.

For example, let $Z_f = 2\Delta z$, in the 10% defocussing case. Substitution of $W(\pm \Delta z) = 1.10W_0$ into equation (3.2) yields $W(\pm \Delta z) = W_0 \left[1 + \left(\frac{\pm \Delta z \lambda}{\pi W_0^2}\right)^2\right]$

and,

$$1.10W_{o} = W_{o} [1 + (\frac{\pm \Delta z \lambda}{\pi W_{o}^{2}})^{2}]^{1/2}$$

$$1.21 = 1 + \frac{\Delta z^{2} \lambda^{2}}{\pi^{2} W_{o}^{4}}$$

$$0.21 = \frac{\Delta z^{2} \lambda^{2}}{\pi^{2} W_{o}^{4}}$$

$$\Delta z = \frac{0.46 \pi W_{o}^{2}}{\lambda}$$

 $= 1.10W_{o}$,

Therefore, the depth of focus for 10% defocussing is

 $Z_{f} = 2\Delta z = \frac{0.92\pi W_{o}^{2}}{\lambda}. \qquad (3.4)$

Similary, for a 5% defocussing,

$$Z_{\uparrow} = \frac{0.64\pi W_0^2}{\lambda} . \tag{3.5}$$

Another limitation on the scanner performance is the divergence of the laser beam (Fig. 3.3a). The Melles Griot HeNe laser has an output beam diameter of 0.8 mm [6]. From the divergence equation given as

$$\Theta = 0.637 \frac{\Lambda}{D} , \qquad (3.6)$$

- 2

where \wedge is the wavelength, and D is the aparture. The divergence angle Θ is equal to 0.5 mrad. From simple geometry, a 1 m focal length lens will have a spot size of,

$$2f\Theta = 2 (1000 \text{ mm}) (0.5 \times 10 \text{ rad})$$

= 1.0 mm

1.0 mm in diameter. Therefore, in order to focus the laser beam

down to a spot size of 100 μ m (see section 3.3), the original beam must be expanded first. Form Eq.(3.6), it can be seen that the beam divergence is inversely proportional to the beam diameter (or aparture).

The purpose of a laser beam expander is to expand a collimated beam of diameter d_1 to a collimated beam of diameter d_2 . The simplest setup of a beam expander is to have two simple focussing lenses and place them along the same optical axis with their focal planes coincide with each other (Fig. 3.3b). The expansion ratio is given as

 $d_1:d_2 = f_1:f_2$, (3.7) where f_1 and f_2 are the focal lengths of lens 1 and lens 2, respectively.

3.3 The Assembly

A Melles Griot 10X beam expander (model #09LBM003) is adopted to the HeNe laser providing an 8 mm diameter output beam. From Eq.(3.6),

$$= 0.637 \frac{\lambda}{D}$$

$$= 0.637 (\frac{-6328 \text{\AA}}{-3})$$

$$= 0.0504 \times 10 \text{ rad}$$

which gives a divergence angle of ~ 0.05 mrad (a reduction of 10X in beam divergence). An achromats lens of focal length f = 1.0 m is used as the focussing lens. From Eq.(3.3),

$$W_{o} = \frac{\Lambda f}{\pi W}$$
$$= \frac{(6328 \text{\AA})(1.0 \text{ m})}{\pi (4.0 \text{ mm})}$$

a) Divergence of the Laser Beam

1

b) Laser Beam Expander

Figure 3.3

 $W_{o} = 50.36 \, \mu m$

2Wo = 100.7 µm

This yields a spot diameter of approximately 101 um. Substitute Wo into Eqs.(3.4) or (3.5) gives,

	Zf	=	$\frac{0.92 \pi W_c^2}{\lambda}$	(for	10%	defocussing)
		=	$\frac{0.92 \pi (50.36 \mu m)^2}{(6328 \text{\AA})}$				
		=	11.6 mm				
or	zf	=	$\frac{0.64 \pi W_o^2}{\lambda}$	(for	5%	defocussing)
		=	8.1 mm				

The depth of focus is 11.6 mm or 8.1 mm for a 10% defocussing or a 5% defocussing, respectively.

The general design concept is quite simple. The laser light from the HeNe laser is first expanded, and then focussed back down to a spot size of ~100 µm in diameter, using a 1.0 m focal length Immediately after the focussing lens, plane mirrors are lens. used for redirecting the converging beam to the rotating polygon mirror, which provides the actual laser flying-spot scan. A layout of this optical assembly is shown in Fig. 3.4. The distance from the focussing lens to the sensor (i.e., $L \rightarrow M_1 \rightarrow M_2$ \rightarrow M₃ \rightarrow R \rightarrow M₄ \rightarrow S) is set equal to the focal length of the focussing lens (1.0 m). In the present device, the distance from the polygon mirror to the sensor, i.e., $R \rightarrow M_4 \rightarrow S$, is 600 mm. For a depth of focus, Zr, of 11.6 mm (the 10% defocussing case), the optical scanner allows a width of ~24.0 cm for which the laser spot size remains minimal (within a 10% defocussing) across the sensor. This geometry is shown in Fig.3.5. Although the present device does not satisfy the basic design criteria of a

b) Top view

Figure 3.4 Layout of the Optical Assembly

14 in. (or 36 cm) scan, the 3 sets of sensors used for testing the imaging system only have a width of 5 cm. Therefore, at this stage of development, the optical assembly is adequate for the data analysis experiments.

CHAPTER 4

SENSOR ENERGETICS

At the present time, a complete physical model for how the sensor interacts with a combination of X-ray radiation and laser light is not fully understood. However, there are theoretical models that attempt to describe this kind of interaction. The following simple model is based on the work of Zermeno et al [7].

Consider the basic configuration of the sensor (Fig. 2.2) and the electronics of this system (Fig. 2.4) again. The sensor can be viewed as a parallel plate capacitor with two different kinds of dielectric materials, PbO and SiO, placed in between the plates (Fig. 4.1). The capacitance of the sensor is a combination of the capacitance of the PbO layer and the SiO layer, i.e.,

 $\frac{1}{C} = \frac{1}{C} + \frac{1}{C}, \qquad (4.1)$ sensor PbO SiO
where C_{PbO} is the capacitance/unit area of the PbO layer, and C_{SiO}
is the capacitance/unit area of the SiO layer.

Also, C_{PLO} and C_{SiO} are given by

$$C_{Pb0} = \frac{K_{Pb0} \mathcal{E}_{\bullet}}{d_{Pb0}}$$
(4.2a)

and

 $C_{\text{si0}} = \frac{K_{\text{si0}}E_{\bullet}}{d_{\text{si0}}}$ (4.2b)

where K_{PbO} , K_{SiO} are the dielectric constants of PbO and SiO, and d_{PbO} , d_{SiO} are the thickness of PbO and SiO layer, respectively. With a bias voltage, V, applied across the circuit (Fig. 2.4), the potential across the PbO layer is given as

$$V_{Pb0} = \frac{2 V C_{5i0}}{C_{5i0} + C_{Pb0}} .$$
 (4.3)

Figure 4.1 Structure of the Sensor as a Parallel Plate Capacitor With incident laser light, the charge stored per unit area of the PbO layer, Q_{Laser} , will produce a photocurrent, expressed as the following equations,

$$Q_{\text{Laser}} = \frac{2 V C_{\text{sio}}}{C_{\text{sio}} + C_{\text{Pbo}}}$$
(4.4a)

$$i_{\text{Laser}} = \frac{dQ_{\text{Laser}}}{dt} . \qquad (4.4b)$$

Eq.(4.4b) gives the value of the photocurrent, when no X-ray radiaion has been absorbed by the sensor. However, if the sensor is exposed to radiation, then the value of the charge store is reduced in proportion to the radiation dose. i.e.,

 $Q = Q - Q . \qquad (4.5a)$ total laser X-ray Taking the time dervivative of (4.5a) gives

i = i - i . (4.5b) meas laser X-ray The value of Q can be determined by defining the X-ray photogeneration efficiency

$$\eta = \frac{d\xi}{dn} E, \qquad (4.6)$$

where § is the X-ray energy absorbed, n is the number of neutralized charge on the PbO layer, and E is the electric field across the PbO layer. Also, the number of neutralized charges, n, can be defined as

$$n = \frac{Q_x A}{e} , \qquad (4.7)$$

where Q_x is the surfaced charge neutralized/unit area, A is the area of the PbO layer, and e is the elementary charge.

The X-ray energy absorbed by the PbO layer is defined as

$$\tilde{S} = fXA$$
, (4.8)

where f is the fraction of energy absorbed, and X is the intensity of X-ray.

Finally, the electric field across the PbO layer is

$$E = \frac{Q_{Pb0}^*}{C_{Pb0} d_{Pb0}} \qquad (4.9)$$

where Q_{Pb0}^{*} is the instantenous charge across the PbO layer. Substituting Eqs.(4.9) (4,8) and (4.7) into Eq.(4.6) yields

$$\eta = \frac{feQ_{PbO}^{*}}{C_{PbO}} \frac{dX}{dQ_{x}}$$
(4.10)

However Q^* can be expressed as

$$Q^{*} = \left[\frac{2 \vee C_{Pk0} \zeta_{5:0}}{C_{Pk0} + \zeta_{5:0}} - Q_{x} \frac{C_{Pk0}}{C_{Pk0} + \zeta_{5:0}} \right].$$
(4.11)

Combining Eqs.(4.10) and (4.11) yields

$$\begin{split} \eta &= \frac{fe}{C_{Pb0} d_{Pb0}} \leq \left[\frac{2VC_{Pb0} C_{Si0}}{C_{Pb0} + C_{Si0}} - Q_{x} \frac{C_{Pb0}}{C_{Pb0} + C_{Si0}} \right] \frac{dX}{dQ_{x}} \\ \eta &= \left[\frac{2feVC_{Si0}}{(C_{Si0} + C_{Pb0}) d_{Pb0}} - \frac{feQ_{x}}{(C_{Si0} + C_{Pb0}) d_{Pb0}} \right] \frac{dX}{dQ_{x}} \\ \frac{dQ_{x}}{dX} &= \frac{2feVC_{Si0}}{(C_{Si0} + C_{Pb0}) d_{Pb0}} - \frac{fe}{(C_{Si0} + C_{Pb0}) d_{Pb0}} Q_{x} \\ \frac{dQ_{x}}{dX} &= \frac{fe}{(C_{Si0} + C_{Pb0}) d_{Pb0}} Q_{x} - \frac{2feVC_{Si0}}{(C_{Si0} + C_{Pb0}) d_{Pb0}} = 0 . \end{split}$$
(4.12)

The solution to differential equation (4.12) is $-\frac{fe}{n(c_{1}+f_{2})}X$

$$Q_{x} = 2C_{5i0}V \left[1 - e^{\eta(C_{5i0} + C_{Pb0})d_{Pb0}}\right].$$
 (4.13)

The charge seen by the external circuit when Q_{\times} is neutralized by X-rays is

$$Q_{X-ray} = Q_{X} \left[\frac{C_{sio}}{C_{sio} + C_{Pbo}} \right]$$

= $\frac{2VC_{sio}^{2}}{C_{sio} + C_{Pbo}} \left[1 - e^{-\frac{fe}{\eta(C_{sio} + C_{Pbo})d_{Pbo}} X} \right].$ (4.14)

Substituting Eq.(4.14) into Eq.(4.5) gives

$$Q = \frac{2 \sqrt{C_{sio}^2}}{C_{sio} + C_{Pk0}} - \frac{2 \sqrt{C_{sio}^2}}{C_{sio} + C_{Pk0}} \left[1 - e^{-\frac{\gamma(C_{sio} + C_{Pk0})d_{Pk0}}{C_{sio} + C_{Pk0}}} \right], \quad (4.15)$$

and upon illumination by laser light, Q_{total} , results in a photocurrent expressed as,

i = i - i
meas laser X-ray
=
$$\frac{d}{dt}$$
 [Q - Q]
= $\frac{d}{dt}$ Q. (4.16)
total

)

As mentioned in Chapter 2, this photocurrent, i_{meas} , is first amplified by a current-to-voltage converter amplifier, and than measured and stored by an oscilloscope (Fig. 2.5).

Most of the variables (or parameters) in Eq.(4.15) can be easily determined. The capacitance/unit area of PbO and SiO can be calculated using Eqs.(4.2a) and (4.2b). The dielectric constants of PbO and SiO are $K_{PbO} = 18$ and $K_{SiO} = 2$. The thickness of the two layers are given in Table II.1, Ch.2. Photogeneration Efficiency, η , is an intrinsic constant. The fraction of X-ray absorbed, f, by the sensor during an exposure, appears to be dependent on the energy of the dose (Fig. 4.2), results of the X-ray absorption tests of a sensor, indicate a linear relation between absorption and exposure.

At present, there are insufficient expermental data to fully demonstrate the validity of this theoretical model. However, the model can be used as a basis and a guide for improving the sensor performance. For example, Eq.(4.5b) suggests that the X-ray "image" information is given by

i = i - iX-ray laser meas Also, Eqs.(4.15) and (4.16) suggest that

0 < i < i laser meas which means that the maximum i can have is i When X-ray laser there is no X-ray exposure, i is equal to 0. However, when X-ray there is strong X-ray exposure, approaches i 1 X-ray laser Therefore, the dynamic range of the "image" (i.e., gray scale black to white) can be improved by increasing i laser

Figure 4.2 Percentage Absorption vs KVp of X-ray

CHAPTER 5

EXPERIMENTAL RESULTS

Initial testing of the new scanning device employed sensor #1126B with the test conditions given as: 30 volts dc applied to the sensor, and the scan speed set at 128, 256 or 512 lines/sec. Same experiments were repeated using sensors #1114B and #870A.

As mentioned in Chapter 2, the photocurrent from the sensor is first amplified by the current-to-voltage converter-amplifier. Next, the amplified waveform is collected and stored by a storage oscilloscope. Finally, the waveform is plotted using an X-Y recorder. The raw X-Y recorder data for each sensor (shown in Appendix I) uses the Y-axis for voltage and the X-axis for time measurement [3].

In Section 2.2, it was shown that every spatial position on the sensor is directly proportional to the time into the scan, which is given by

x = v.t, (5.1)

where x is the position on the sensor, v is the velocity of the laser flying spot on the surface of the sensor, and t is the time into the scan. Therefore, the time axis on the measured data, can be transformed easily into spatial position.

The data collected from a simple straight line scan (without any X-ray modulation) typically appears as a signal with a rising portion when the laser spot is on the sensor, and starts falling once the laser spot leaves the sensor (Fig. 5.1a). Ideally, the

a) Typical Optical waveform

b) Ideal Waveform

c) Response Function of the Sensor

signal should appear as a rectangular waveform (Fig. 5.1b), Unfortunately, no real system has such an ideal response. However, one can consider the measured signal as a convolution of the input signal (the rectangular wave) and the response function (Fig. 5.1c) of the sensor. Mathematically, this is expressed as,

$$o(x) = i(x) \otimes r(x) \qquad (\otimes - \text{ convolution operator})$$
$$= \int_{-\infty}^{\infty} i(u) \cdot r(x-u) \, du , \qquad (5.2)$$

where o(x) is the measured signal, i(x) is the input function, and r(x) is the response function.

The input function (in relative amplitude) and response function are represented by

$$i(x) = \begin{cases} 0 & x < -L/2 \\ 1.0 & -L/2 < x < L/2 \\ x > L/2 & , \end{cases}$$
(5.3)
$$r(x) = \begin{cases} 0 & x < -h \\ -\mu_{c}(x+h) \\ r_{1} & (1-e &) & -h < x < 0 \\ -\mu_{d} & x \\ A & e & x > 0 \end{cases}$$
(5.4)

respectively, where L is the width of the sensor (5 cm in this case), μ_c and μ_d are the rise and fall (or charge and discharge) constants of the sensor, respectively. The parameters

$$h = \frac{1}{\mu_c}$$

and

and

$$A = r_1 (1 - e)$$

are defined such that r(x) is continous at x equal to 0. Also, the parameter r_1 is defined as

$$r_1 = \frac{e}{\left[\frac{1}{\mu_c} + \frac{e-1}{\mu_d}\right]}$$

for normalization purpose. This gives

1

$$\int_{-\infty}^{\infty} r(x) dx = 1.0 .$$
 (5.5)

The rise and fall constants of each sensor at different scan speed are estimated from the experimental waveforms (Table V.1). In Chapter 6, the experimental data are analysed and compared, and conclusions are stated

Scan- speed (lps)	sensor #870A			sensor #1114B			sensòr #1126B		
	μ _c	μ _d	Vmax	μ	μ _d	V _{max}	μ	μ _a	Vmax
128	0.1359	0.1280	0.550	0.7349	0.3812	0.950	1.5238	1.0166	0.188
256	0.2089	0.0750	0.325	0.3813	0.2310	0.650	0.8860	0.6100	0.170
512	0.2887	0.0673	0.200	0.2298	0.1277	0.400	0.5573	0.3812	0.138

-1 μ_c and μ_d are the rise and fall constants (cm v_{max} is the amplitude (Volts) Note :)

Table V.1 Amplitudes, rise and fall constants of each sensor at scanspeeds 128, 256 and 512 lines/sec

.38

CHAPTER 6

DATA ANALYSIS

From the waveforms obtained during the experiments, the rise and fall constants of each sensor at different scan speeds are estimated (Chapter 5, Table V.1). These results are used to calculate the response function of the sensors. In this chapter, the MTF (Modulation Transfer Function) of the sensors are derived from their response functions. Then these MTFs are used for analysis and comparison.

6.1 MTF Definition

As discussed in Chapter 5, the output waveform obtained from the sensor (Fig. 6.1), resulting from a scan, is considered to be the convolution of an input function (Fig. 6.2) and a response function (Fig. 6.3), expressed mathematically in Eq.(5.2) as

 $o(x) = i(x) \otimes r(x)$

First, consider taking the Fourier transform of each function in Instead of integration in the space-domain, the Eq.(5.2). procedure becomes multiplication in the spatial-frequency-domain

 $[8,9]; i.e., if O(s) = \mathcal{F}[O(x)],$

 $I(s) = \mathcal{F}[i(x)],$

and

where

$$R(s) = \mathcal{F}[r(x)];$$

$$\mathcal{F}[f(x)] = F(s) = \int_{-\infty}^{\infty} f(x) \cdot e^{-i2\pi t} dt$$

i2πxs ∫ f(x).e F(S) =

Eq.(5.2) can be put in the form of:

$$O(s) = I(s) \cdot R(s)$$
 (6.1)

dx

Figure 6.1 Optical Waveform of Sensor #1126B

Figure 6.2 Input Function

Figure 6.3 Response Function of Sensor #1126B

The MTF is defined as the Modulus of the Fourier Transform of the response function of the sensor [10], i.e.,

$$MTF(s) = | \mathcal{F}[r(x)]|$$

= | R(s)|
= [R(s) \cdot R^*(s)] , (6.2)

where $R^*(s)$ is the complex conjugate of R(s).

The MTF, which is a function of spatial frequency, is used as a measurement of the image quality of a particular system. To understand this, one should take several steps backward to Eq.(5.2). In an ideal imaging system, the response function is a delta-function (i.e., r(x) = s(x)) defined by [9],

$$s(x) = 0$$
 for $x \neq 0$, (6.3a)

$$S(x) dx = 1.0$$
 . (6.3b)

Furthermore, the delta-function has the property that

 $\int_{-\infty} f(x) \delta(x-x_{o}) dx = f(x_{o}) .$ (6.3c) Therefore, if the response function is a δ -function, then the output signal is equal to the input signal; i.e.,

$$o(x) = i(x) \otimes r(x)$$

= $i(x) \otimes \delta(x)$
= $\int_{-\infty}^{\infty} i(u) \delta(x-u) du$
= $i(x)$. (6.4)

In this case, the MTF of the system would be,

```
MTF(s) = | \mathcal{F}[r(x)]|
= | \mathcal{F}[s(x)]|
= 1.0 (6.5)
```

for all spatial frequencies, i.e., $0 < s < \infty$. Therefore, in an ideal imaging system, the MTF is equal to 1.0 for all s values. However, in practice the response function is not a §-function, but it is a function with finite width, and finite duration of rising and falling portions. Thus, the MTF will always be less than or equal to 1.0 for any value of s.

6.2 MTF Calculation

The response function, r(x), of the sensor, defined in Chapter 5, Eq.(5.4) is expressed as

$$r(x) = \begin{cases} 0 & x < -h \\ -\mu_{c}(x+h) \\ r_{1}(1-e) & -h < x < 0 \\ -\mu_{d}x \\ A e & x > 0 \end{cases}$$

where μ_c and μ_d are the rise and fall constants, respectively,

$$h = \frac{1}{\mu_c}$$

and

$$A = r_1 (1 - \frac{1}{e})$$

such that r(x) is continuous at x equal to 0. Also, from Eq.(5.5), the normalization factor is given as

$$\mathbf{r}_{1} = \frac{\mathbf{e}}{\left[\frac{1}{\mu_{c}} + \frac{\mathbf{e}-1}{\mu_{d}}\right]}$$

From Eq.(6.2), the MTF of the sensor is defined as 1/2MTF(s) = [R(s) · R^{*}(s)] ,

where R(s) is the Fourier transform of r(x), i.e. $R(s) = \int_{-\pi}^{\infty} r(x) e dx . \qquad (6.6)$

For r(x) defined as Eq.(4.4), R(s) would be equal to

imhs
R(s) = r₁ [he sinc(hs)
i2mhs

$$- \frac{(e - 1/e)}{\mu_c + i2\pi s} + \frac{(1-1/e)}{\mu_d + i2\pi s}$$
, (6.7)

where s is the spatial frequency (i.e. cycles/cm).

6.3 Analysis

The MTF is a measurement of image quality. By defining a minimum MTF value acceptable to an imaging system (0.03 for commercial TV set), then there would be a corresponding maximum s value on the MTF verses s plot. This maximum s value is commomly defined as the limiting resolution of the particular imaging system [10].

The minimum acceptable MTF value is 0.001 for the imaging system studied in this project [11]. From the plots of MTF verses s for each sensor at different scan speeds (Fig. 6.4 to 6.12), the limiting resolution of each sensor is determined. As an example, take sensor #1126B at scan speed of 128 lines/sec (Fig. 6.4). For all MTF values greater than or equal to 0.001, the corresponding maximum possible s value is ~8.5 cycles/cm. Thus, the limiting resolution of sensor #1126B at a scan speed of 128 lines/sec is 8.5 cycles/cm. This means that the sensor can resolve a maximum of 8.5 spots in a region of 1.0 cm wide. Alternatively, the minimum resolvable spot size is given as the reciprocal of the limiting resolution, i.e.,

> $\frac{1}{8.5 \text{ cm}^{1}} = 0.12 \text{ cm}$ = 1.2 mm

for this particular case. Similarly, the limiting resolutions of the other cases were determined, and the results are tabulated in Table VI.1. These results show that sensor #1126B has the highest resolution of all three, followed by sensor #1114B and sensor #870A. In addition, the results show that scanning at a slow speed improves the image resolution, except for the case of sensor #870A, which seems to be independent of the scan speed.

S

S

Figure 6.12 MTF vs s for Sensor #870A at at Scanspeed 512 lines/sec

Scanspeed	(cycles/cm) limiting resolution of sensor					
(111100) 000)	#870A	#1114B	#1126B			
128	1.0	4.0	8.5			
256	0.8	2.2	5.0			
512	1.0	1.4	3.2			

Table VI.1 Limiting resolution of sensor #870A, #1114B and #1126B at scanspeed 128, 256 and 512 lines/sec

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

By the end of the summer of 1986, the optical assembly was built, and several experiments were carried out using this assembly to test the optical resolution of the sensors. In addition, X-ray absorption tests on the sensors were completed, and a theoretical model describing the sensor response to X-ray and laser light is also presented.

From the optical tests and the data analysis on the three different sensors presented in Chapter 6, it was shown that sensor #1126B has the highest resolution, followed by sensor #1114B and sensor #870A. Also, the results presented in Chapter 5 indicate that sensor #1114B has the strongest signal amplitude, followed by sensor #870A and sensor #1126B (note that sensor #870A is from the prototype of the feasibility study carried out in 1984). Due to the limitation of time, no X-ray exposure were done using this imaging system. However, from the feasibility study carried out 2 years ago, actual X-ray images were developed [2]. Therefore, once it is possible to carry out the X-ray exposure test with this imaging system, then comparison can be made with the theoretical model presented in Chapter 4.

Once again, the major achievements for this project over this summer can be summerized as the following:

 the optical signal gain of the new sensors are higher then the old sensor, and the signal-to-noise ratio is also improved [3];

- ii) the new sensors have faster response to an optical scan, thus higher optical resolution;
- iii) a new optical scanner assembly was built, with much higher mechanical stability than the old model, and with the laser spot size focussed down to ~100 um, and an effective scan width of 24 cm (i.e., where the laser spot size remains minimal), and finally,
- iv) the optical resolution achieved for this system is ~10 cycles/cm, i.e. minimum resolvable object is ~1 mm in diameter.

Even with the sucesses to date, there are still several area that need to be investigated. The first obvious area is to start the X-ray exposure measurement on test targets using this system, and then to compare the results with the theoretical model presented in Chapter 4. The structure of the sensor should also be changed as well. At present, the glass substrate side faces the optical assembly and the silvered electrode side faces the X-ray tube. When the laser spot hits the sensor, it passes through the glass medium first, which causes dispersion of the laser beam. This dispersion could severely affect the resolution of the system. Therefore, it would be advisable to modify the sandwich structure of the sensor (Fig. 2.2); i.e., set layer 2 to be the silvered electrode and layer 5 to be the transparent electrode, and have the glass substrate side face the X-ray tube and the transparent electrode side face the optical assembly. Thus, results in much reduced dispersion. The resolution would be improved if the

response of X-ray sensor is faster (i.e., faster rise and fall time). This would involve the detailed study of the solid-state physics of the sensor's material. Another recommendation is the use of a holographic disk (produced by PULSON INDUSTRIES, INC and HOLOTEK) as the scanner, rather than the polygon mirror. With the polygon mirror, the performance is susceptible to the mechanical vibration of its dc drive motor. The holographic disk is almost immune to wobble in the motor [12]. Finally, a fast computerized data acquisition system is required, in order to achieve any significant improvement on the present system.

REFERENCES

- Thin Film Mammography Progect Proposal for I.R.A.P.; N.Ramanathan; Picker International Canada(internal report); 1985.
- Final Project Report on Large Format Sensor Feasibility -The Laser Scanned X-ray Imaging System; N.Ramanathan; Picker International Canada(internal report); 1985.
- Report on Design of Front End Wide Band Amplifier for Large Area Sensor for X-ray Imaging System; Q.Nguyen, T.Khosla; Picker International Canada(internal report); 1986.
- 4. Laser Electronics; J.T.Verdeyen; Prentice-Hall; 1981.
- Optical Electronics; A.Yariv; Holt-Rinehart and Winston; 1985.
- 6. Optics Guide 3; Melles Griot; 1985.
- Laser Readout of Electrostatic Images; A.Zermeno et al; SPIE Vol.173, Application of Optical Instructmentation in Medicine VII; 1979.
- Fourier Transform and its Applications, 2nd Edition; R.N.Bracewell; McGraw Hill; 1978.
- Mathematical Methodes for Physicists, 2nd Edition; G.Arfken; 1980.
- Phase Effect in Diagnositic Radiological Images; J.E.Gray, M.Trefler; Medical Physics, Vol.3, No.4, Jul/Aug 1976.
- 11. Private Communication; N.Ramanathan; 1986.
- Hologon Laser Scanner for Non-impact Printing; C.J.Kramer; SPIE Proceeding, Vol.390, 1983.

APPENDIX I :-RAW DATA

METRIC

ALL .

17.20

-

@ 512 lines/sec

#1/26B

1.600 msec

A. 1. 1.

2

@ 256 lines / sec #1114B

@ 512 lines/sec

#1114B

870 A @ 256 lines/sec

101

870 A @ 512 lines/sec

