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Abstract

In this thesis, we investigate pricing Asian options and basket options under different

Monte Carlo methods. It is observed that the prices of Asian options and basket

options are based on the combinations of stocks prices, while the stocks follow a

geometric Brownian motion (GBM). For the price of Asian options, a benchmark

price is computed first. A partial differential equations (PDE) (one dimension in

time and one in space) due to Večeř with the constant volatility of Asian call option

is numerically solved and gives the option prices which we use as a benchmark. After

that, three Monte Carlo methods are used to simulate Asian option prices: naive

Monte Carlo, antithetic Monte Carlo and control variate. Comparing them with the

benchmark and by evaluating the absolute error, mean square error and computation

time, we eventually find that control variate method is the most efficient method for

pricing Asian options. Next, to price basket options, we choose two different control

variate, a classical one and a novel one. After applying these two control variates,

we evaluate the performance by mean square error, length of 95% confidence interval

and computation time. Taking all factors into consideration, the new control variate

is more useful for pricing basket options.
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Chapter 1

Introduction

Options are a type of derivative security with their prices intrinsically linked to the

price of underlying assets. Basically, options grant the holders the right but not the

obligation to buy or sell the corresponding underlying asset at an appointed price

on or before a certain date. Among these, Asian options are securities whose payoff

includes the time average of the underlying stock prices. The prices of Asian options

examined in the chapter 2 of this thesis will be calculated using arithmetic mean of

the underlying in option’s payoff. There are some important differences of properties

between arithmetic average price and geometric average price, see Zhang (1998)[1].

The property of distribution of the stock price makes it possible to obtain an analyti-

cal formula for the geometric average Asian option price. However, it is impossible to

express the prices of Asian options in a closed form formula when option’s payoff de-

pends on arithmetic underlying asset prices mean, see Curran (1994)[22]. Therefore,

a numerical method has to be used in pricing arithmetic Asian option: Monte Carlo

can be such a method. Although the analytical evaluation of a statistic is based on its

sampling distribution, nothing can be done when there is no strong theory regarding
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the statistic. That is why Monte Carlo is significant, because it provides an alterna-

tive way to evaluate the statistic in random samples, see Mooney (1997)[2]. In order

to obtain a more accurate estimator, a large number of samples of the underlying

asset price path has to be simulated. Because improving accuracy of estimator is

very time consuming, some variance reduction techniques are used to increase the

efficiency of Monte Carlo methods, see Wiklund (2012)[3]. Naive Monte Carlo is the

most straightforward way to do the simulation. Improvements for naive Monte Carlo

method are antithetic variates and control variates, which can reduce the variance

to some extent, see Mehrdoust and Vajargah (2012)[13]. In order to evaluate the

performance of different Monte Carlo methods, the Večeř approach of pricing Asian

options will be used as a benchmark (in his approach the price of the Asian option

is characterized by a simple one-dimensional PDE) applied to both discrete and con-

tinuous cases, see Večeř (2001)[10].

Chapter 3 of the thesis deals with pricing of basket options. A basket option is an

option on a collection or basket of assets, typically stocks. It gives the holder the

right but not the obligation to purchase a prespecified fixed portfolio of stocks at

a fixed strike price, see Milevsky and Posner (1998)[24]. Their payoff depends on

the arithmetic weighted average of the underlying asset prices and there is no closed

form solution for the price of basket options, see Dingeç and Hörmann (2013)[24].

There are some approximations available for their prices, see Ju (2002)[4], Deelstra

(2010)[5] and Zhou and Wang (2008)[6]. Apart from the naive Monte Carlo, Dingeç

and Hörmann (2013)[24] provides a classical control variate and a novel control variate

for pricing arithmetic average basket options. In chapter 3 by choosing a conditional

geometric average price as a control variate, we show that the efficiency and accuracy

2
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of the simulated basket option prices are greatly improved.

3



Chapter 2

Asian Option

2.1 Introduction of Asian Option

Asian option payoff includes the time average of the underlying asset price. The

average may be over the entire time period between initiation and expiration or may

be over some period of the time that begins later than the initiation of the option

and ends with the option’s expiration. The average may be continuous,

1
T

∫ T

0
S(t)dt, (2.1)

or discrete,
1
m

m∑
j=1

S(tj), (2.2)

where 0 < t1 < t2 < · · · < tm = T . Based on an average asset price, Asian option

payoff is more difficult to manipulate.

4
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To derive the partial differential equations for Asian option price, assume the under-

lying stock price follows a geometric Brownian motion (GBM)

dS(t) = rS(t)dt+ σS(t)dW̃ (t), (2.3)

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion under the risk-neutral measure P̃.

Taking fixed-strike Asian call as an example, we can adapt the arguments to treat

Asian put option easily. For a continuously sampled fixed-strike Asian call, the payoff

at time T is

V (T ) =
 1
T

∫ T

0
S(t)dt−K

)+

, (2.4)

and for a discrete sampled fixed-strike Asian call, the payoff at time T is

V (T ) =
 1
m

m∑
j=1

S(tj)−K
+

, (2.5)

where the strike price K is a nonnegative constant. The price at time t prior to the

expiration time T of this call is given by the risk-neutral pricing formula

V (t) = Ẽ[e−r(T−t)V (T )|F(t)], 0 ≤ t ≤ T. (2.6)

According to the usual iterated conditioning argument, for all 0 ≤ t < s ≤ T ,

Ẽ[e−rsV (s)|F(t)] = Ẽ{Ẽ[e−rTV (T )|F(s)]|F(t)} (2.7)

= Ẽ[e−rTV (T )|F(t)] (2.8)

= e−rtV (t). (2.9)

5
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Therefore the discounted price process {e−rtV (t)}, t ≥ 0 is a martingale under P̃.

2.2 Partial Differential Equations of Asian Option

Prices

2.2.1 Augmentation of the State for Continuously Sampled

Asian Fixed Strike Call

Because the Asian option payoff V (T ) in (2.4) is path-dependent and V (T ) depends

on the whole path of the stock, V (t) is not a function of t and S(t) only. Therefore,

in order to augment the state S(t), define a second process

Z(t) =
∫ t

0
S(u)du (2.10)

The stochastic differential equation for Z(t) is thus

dZ(t) = S(t)dt. (2.11)

Corollary 2.2.1. Diffusions are Markov processes.

Governed by the pair of stochastic differential equations


dS(t) = rS(t)dt+ σS(t)dW̃ (t)

dZ(t) = S(t)dt,

6
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the two dimensional processes {(S(t), Z(t))}, t ≥ 0 is a diffusion, so by the above

Corollary 2.2.1 the two dimensional process is Markov process. Furthermore, the call

payoff V (T ) depends only on T and Z(T ), by the formula

V (T ) =
 1
T
Z(T )−K

+

, (2.12)

then the call payoff V (T ) is a function of T and (S(T ), Z(T )). This implies that there

must exist some function v(t, s, z) such that Asian call price V (t) in (2.6) is given as

V (t) = v(t, S(t), Z(t)) = Ẽ

e−r(T−t)V (T )|F(t)
 (2.13)

= Ẽ

e−r(T−t)
 1
T
Z(T )−K

+

|F(t)
 (2.14)

The function v(t, s, z) satisfies a partial differential equation (PDE) as stated in the

next theorem.

Theorem 2.2.2. The Asian call price function v(t,s,z) of (2.13) satisfies the partial

differential equation

vt(t, s, z) + rsvs(t, s, z) + svz(t, s, z) + 1
2σ

2s2vss(t, s, z) = rv(t, s, z), (2.15)

where 0 ≤ t < T, s ≥ 0, z ∈ (0,+∞), and the three boundary conditions

v(t, 0, z) = e−r(T−t)( z
T
−K)+, 0 ≤ t < T, z ∈ R, (2.16)

lim
z↓0

v(t, s, z) = 0, 0 ≤ t < T, s ≥ 0, (2.17)

v(T, s, z) = ( z
T
−K)+, s ≥ 0, z ∈ R (2.18)

7
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Proof. Cause under the risk-neutral measure P̃, dtdt = 0, dtdW̃ = 0, dS(t)dZ(t) =

dZ(t)dZ(t) = 0. Taking the differential of the P̃ martingale e−rtV (t) = e−rtv(t, S(t), Z(t)),

we can obtain that

d(e−rtv(t, S(t), Z(t)))

= e−rt[− rv + vt + rSvs + Svz + 1
2σ

2S2vss]dt+ e−rtσSvsdW̃ (t), (2.19)

where e−rtv(t, S(t), Z(t)) is a martingale, then the dt term in this formula must be

zero, hence

vt(t, S(t), Z(t)) + rS(t)vs(t, S(t), Z(t)) + S(t)vz(t, S(t), Z(t))

+ 1
2σ

2S2(t)vss(t, S(t), Z(t)) = rv(t, S(t), Z(t)). (2.20)

After replacing S(t) and Z(t) by the dummy variables s and z respectively, we obtain

(2.15).

Noting that the stock price S(t) must always be nonnegative, we have s ≥ 0. For the

boundary conditions, if S(t) = 0 and Z(t) = z for some value of t, then by Black-

Scholes-Merton Equation, S(u) = 0 for all u ∈ [t, T ], therefore Z(T ) = Z(t) = z,

and the value of the Asian call at time T is ( z
T
−K)+. Then discounted from T to

t, (2.16) can be given. If we hold s fixed and let z → −∞, then Z(T ) goes to −∞,

which means the payoff of the call option on the expiring date will approach zero. So

by (2.14) the boundary condition there is (2.17). The last one (2.18) is the payoff of

the call.

However, solving 2.15 may be cumbersome due to the 2-dimensionality in the space

of the equation. The reduction of dimensionality is required to simplify PDE. That

8
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is why Večeř approach will be introduced next.

2.2.2 The Večeř Dimensionality Reduction Approach for Con-

tinuously Sampled Asian Fixed Strike Call

First, considering the case of a continuously sampled Asian call with the average from

time T − c to the option’s expiration T , the payoff is

V (T ) =
1
c

∫ T

T−c
S(t)dt−K

+

, (2.21)

here c is a constant satisfying 0 < c ≤ T and K is a nonnegative constant. While

admitting the possibility that the average may be over less than the entire time period,

the case in Theorem 2.2.2 is a special one included in this example. To price this call,

a hedging portfolio process with the value at time T

X(T ) = 1
c

∫ T

T−c
S(u)du−K (2.22)

is created. Suppose γ(t) is a nonrandom function of time t denoting the number of

stocks held in the hedging portfolio. It holds that dγ(t)dγ(t) = dγ(t)dS(t) = 0.

To replicate the Asian call with payoff (2.21), set γ(t) with r 6= 0 as

γ(t) =


1
rc

(1− e−rc), 0 ≤ t ≤ T − c,

1
rc

(1− e−r(T−t)), T − c ≤ t ≤ T,

(2.23)

9
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and take the initial capital as

X(0) = 1
rc

(1− e−rc)S(0)− e−rTK. (2.24)

We adopt a strategy in the time interval [0, T − c] that at time 0, we buy 1
rc

(1− e−rc)

shares of the stock, costing 1
rc

(1 − e−rc)S(0). But our initial capital is not sufficient

to do this, and we must borrow e−rTK from the money market account. For 0 ≤ t ≤

T − c, the value of our holdings in the stock is 1
rc

(1− e−rc)S(t) and we owe e−r(T−t)K

to the money market account. Therefore,

X(t) = 1
rc

(1− e−rc)S(t)− e−r(T−t)K, for 0 ≤ t ≤ T − c. (2.25)

For T − c ≤ t ≤ T , we can compute X(t) by integrating the differential of er(T−t)X(t)

from T − c to t, to obtain

X(t) = 1
rc

(1− e−r(T−t))S(t) + e−r(T−t)
1
c

∫ t

T−c
S(u)du− e−r(T−t)K, (2.26)

T − c ≤ t ≤ T.

Therefore, as designed,

X(T ) = 1
c

∫ T

T−c
S(u)du−K, (2.27)

and

V (T ) = X+(T ) = max{X(T ), 0}. (2.28)

10
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as desired. The price of the Asian call at time t prior to expiration is

V (t) = Ẽ[e−r(T−t)V (T )|F(t)] = Ẽ[e−r(T−t)X+(T )|F(t)]. (2.29)

To calculate the right side of (2.29), Y (t) is defined to be

Y (t) = X(t)
S(t) = e−rtX(t)

e−rtS(t) . (2.30)

Next we compute the differential of Y (t). Since

d(e−rtS(t)) = −re−rtS(t)dt+ e−rtdS(t) = σe−rtS(t)dW̃ (t), (2.31)

and

d(e−rtX(t)) = γ(t)σe−rtS(t)dW̃ (t), (2.32)

by Itô’s product rule, we can have

dY (t) = σ[γ(t)− Y (t)][dW̃ (t)− σdt]. (2.33)

So the process Y (t) is not a martingale under the risk-neutral measure P̃. If we change

measure as

W̃ S(t) = W̃ (t)− σt, (2.34)

then we have

dY (t) = σ[γ(t)− Y (t)]dW̃ S(t), (2.35)

11
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which makes Y (t) become a martingale under the probability measure P̃S and W̃ S(t), 0 ≤

t ≤ T is a Brownian motion. Returning to the option price V (t) of (2.29), we can

write it as

V (t) = S(t)ẼS[Y +(T )|F(t)], (2.36)

where ẼS[...|F(t)] denotes conditional expectation under the probability measure P̃S.

Because Y is a Markov process under P̃S, there exists a function of t and Y (t) such

that

g(t, Y (t)) = ẼS[Y +(T )|F(t)]. (2.37)

Therefore, at time T ,

g(T, Y (T )) = ẼS[Y +(T )|F(T )] = Y +(T ). (2.38)

The partial differential equation and its boundary conditions are given in the theorem

below, which summarizes the findings.

Theorem 2.2.3. (Večeř). For 0 ≤ t ≤ T , the price V (t) at time t of the continuously

averaged Asian call with payoff (2.21) at time T is

V (t) = S(t)g
t, X(t)

S(t)

, (2.39)

where g(t,y) satisfies the partial differential equation

gt(t, y) + 1
2σ

2(γ(t)− y)2gyy(t, y) = 0, 0 ≤ t < T, y ∈ R. (2.40)

12
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The boundary conditions for g(t, y) are

g(T, y) = y+, y ∈ R, (2.41)

lim
y→−∞

g(t, y) = 0, 0 ≤ t ≤ T, (2.42)

lim
y→∞

[g(t, y)− y] = 0, 0 ≤ t ≤ T. (2.43)

X(t) is given as (2.25) and (2.26) and γ is taken to be (2.23).

Proof. Actually, X(t) defined in (2.22) can be any real number, and the denominator

of Y (T ) can only be positive number, so y can be any real number which leads to the

third boundary condition (2.43).

The usual iterated conditioning argument shows that the right-hand side of (2.37) is

a martingale under P̃S, which means the differential of g(t, Y (t)) should contain no

dt term. By Itô-Doeblin Formula, this differential is

dg(t, Y (t)) = gt(t, Y (t))dt+ gy(t, Y (t))dY (t)

+ 1
2gyy(t, Y (t))dY (t)dY (t)

=
gt(t, Y (t)) + 1

2σ
2(γ(t)− Y (t))2gyy(t, Y (t))

dt
+ σ(γ(t)− Y (t))gy(t, Y (t))dW̃ S(t). (2.44)

Using the fact that g(t, Y (t)) is a martingale, we can conclude that g(t, y) satisfies

(2.40).

If 0 ≤ t ≤ T is given, when Y (t) is very negative, the probability of Y (T ) being

negative is near 1 and hence the probability of Y +(T ) being zero is near 1. Then

g(t, Y (t)) in (2.37) approaches zero. On the other hand, when Y (t) is large, this

13
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causes the probability that Y (T ) > 0 is near one, followed by the fact that the right-

hand side of (2.37) is approximately equal to ẼS[Y (T )|F(t)]. Because of the fact

that under P̃S, {Y (t)}, t ≥ 0 the process is a martingale, we get the probability that

g(t, Y (t)) = Y (t) is 1, leading to (2.43).

2.2.3 Discretely Sampled Asian Fixed Strike Call

When it comes to a discretely sampled Asian call with strike price K, the stock under

risk neutral measure is still given as (2.3) and denote the option holder’s trading

strategy by qt, the number of shares held at time t.

The discrete average Asian option payoff could be achieved by taking a step function

approximation of the stock position qt of its continuous average option counterpart.

Taking Asian fixed strike call into account, we take q(t) = 1− t
T

and X(0) = S(0)−K.

A step function approximation of 1− t
T

is

q(t) = 1− 1
n

[
n
t

T

]
, (2.45)

where [·] denotes the integer part function.

Thus we get the discrete average Asian fixed strike call payoff

 1
n

n∑
k=1

S

((
k

n

)
· T
)
−K

+

. (2.46)

In this case, a simple PDE and its boundary condition of Asian options is achieved

by Jan Večeř [10], given as the theorem below.

14
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Theorem 2.2.4. The PDE of Asian options price in this case is given as

ut + r(qt − z)uz + 1
2(qt − z)2σ2uzz = 0, (2.47)

with the boundary condition

u(T, z) = z+, (2.48)

where qt = q(t) = 1− 1
n
[n t

T
].

The price of the Asian option at time 0 is given as

V (0, S0, X0) = S0 · u
(

0, X0

S0

)
, (2.49)

in which X0 = S0 −K.

2.2.4 Numerical Solutions to the PDE(2.47)

Now it is time to numerically compute the solution to the partial differential equations

(2.47). We follow Crank-Nicolson (C-N) numerical scheme. To begin with, let us set

a uniform grid as

zi = z0 + i · dz, for 0 ≤ i ≤ m, (2.50)

tj = j · dt, for 0 ≤ j ≤ n, (2.51)

where z0 = −1, zm = 1, t0 = 0 and tn = T . So i represents the spacing points with

one terminal point zm = 1 being the Asian option whose strike price K equal to 0

and the other endpoint z0 = −1 being the Asian option whose strike price K equal to

double of the stock price. And j represents the time, m = zm−z0
dz

and n = T
dt

. Because

15
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the PDE will be evaluated at every mesh points, by using the fact that dt = T−0
n

,

q(tj) = 1− 1
n

[
n · j · dt

T

]
= 1− 1

n

[
n · j

T
· T
n

]
= 1− j

n
. (2.52)

Then using a simple notation ui,j = u(tj, zi) and qj = q(tj), the Crank-Nicolson

method transforms each component of the PDE using the following discrete approx-

imations.

ut = ∂u

∂t
≈ ui,j+1 − ui,j

dt
, (2.53)

uz = ∂u

∂z
≈ 1

2

(
ui+1,j+1 − ui−1,j+1

2dz + ui+1,j − ui−1,j

2dz

)
, (2.54)

uzz = ∂2u

∂z2 ≈
1

2(dz)2

(ui+1,j+1 − 2ui,j+1 + ui−1,j+1) + (ui+1,j − 2ui,j + ui−1,j)
.
(2.55)

Substitute (2.53), (2.54) and (2.55) into the original PDE (2.47) and evaluate the

PDE at the point (tj, zi) to get

ui,j+1 − ui,j
dt

+ r · (qj − zi) ·
1
2

ui+1,j+1 − ui−1,j+1

2dz + ui+1,j − ui−1,j

2dz


+1

2(qj − zi)2σ2 · 1
2(dz)2

(ui+1,j+1 − 2ui,j+1 + ui−1,j+1) + (ui+1,j − 2ui,j + ui−1,j)
 = 0

(2.56)

Then arrange the equations by putting the new time terms j + 1 on the right and

putting the present time terms j on the left side, then a finite discretization scheme
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for (2.47) is given as

[
− 1

2r(qj − zi)dz + 1
2(qj − zi)2σ2

]
ui−1,j +

[
− 2(dz)2

dt
− (qj − zi)2σ2

]
ui,j

+
[

1
2(qj − zi)2σ2 + 1

2r(qj − zi)dz
]
ui+1,j =[

1
2r(qj − zi)dz −

1
2(qj − zi)2σ2

]
ui−1,j+1 +

[
− 2(dz)2

dt
+ (qj − zi)2σ2

]
ui,j+1

+
[
− 1

2r(qj − zi)dz −
1
2(qj − zi)2σ2

]
ui+1,j+1 (2.57)

Let us suppose that

aij = σ2(qj − zi)2, bij = r(qj − zi)dz and γ = (dz)2

dt
, (2.58)

then the equation above can be expressed as

1
2(aij − bij)ui−1,j − (aij + 2γ)ui,j + 1

2(aij + bij)ui+1,j =

− 1
2(aij − bij)ui−1,j+1 + (aij − 2γ)ui,j+1 −

1
2(aij + bij)ui+1,j+1,

(2.59)

with the boundary condition ui,n = z+
i . For the boundary conditions at z0 and zm,

we can take

u0,j = 0 and um,j = 2um−1,j − um−2,j,

where the second equality comes from the linear interpolation. Therefore, writing out

(2.59) for i = 1, 2, . . . ,m − 1 we obtain a system of m − 1 linear equations for the

m − 1 unknowns u1,j, u2,j, u3,j, . . . , um−1,j and the corresponding tridiagonal system
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of the equations in (2.59) can be shown as



−(a1j+2γ) 1
2 (a1j+b1j) 0 ··· ··· ··· ··· 0

1
2 (a2j−b2j) −(a2j+2γ) 1

2 (a2j+b2j)
... ...

0 1
2 (a3j−b3j) −(a3j+2γ) 1

2 (a3j+b3j)
... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... 0

... ... 1
2 (am−2 j−bm−2 j) −(am−2 j+2γ) 1

2 (am−2 j+bm−2 j)
0 ··· ··· ··· ··· 0 −bm−1 j (bm−1 j−2γ)


(m−1)×(m−1)

·



u1,j

u2,j

u3,j
...
...
...

um−2,j
um−1,j


(m−1)×1

=



(a1j−2γ) − 1
2 (a1j+b1j) 0 ··· ··· ··· 0

− 1
2 (a2j−b2j) (a2j−2γ) − 1

2 (a2j+b2j)
... ...

0 − 1
2 (a3j−b3j) (a3j−2γ) − 1

2 (a3j+b3j)
...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... 0

... − 1
2 (am−2 j−bm−2 j) (am−2 j−2γ) − 1

2 (am−2 j+bm−2 j)
0 ··· ··· ··· 0 bm−1 j −(bm−1 j+2γ)


(m−1)×(m−1)

·



u1,j+1

u2,j+1

u3,j+1
...
...
...

um−2,j+1
um−1,j+1


(m−1)×1

(2.60)

for j = 0, 1, . . . , n− 1.

That is to say, these equations must be solved at each time level j = n−1, n−2, . . . , 0.

According to the boundary condition ui,n = z+
i , i = 1, . . . ,m − 1, starting from the

time level j = n − 1, we can solve the tridiagonal system of equations in (2.60) one

by one to ui,0, and then use the equation in (2.49) to get the results, which has been

done in MATLAB.
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when r = 0.15, S(0) = 100 and T = 1.

σ fixed strike K price at time 0 of Večeř method

0.05

95 11.094

100 6.795

105 2.745

0.10

90 15.399

100 7.028

110 1.414

0.20

90 15.642

100 8.409

110 3.556

0.30

90 16.513

100 10.210

110 5.731

Table 2.1: Results of Večeř method for fixed strike Asian call

As has been stated in [10], C-N method has the highest convergence order in dt. So

the numerical results got from this method are stable and convergent.
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2.3 Monte Carlo Methods for Asian Option with

Constant Volatility

2.3.1 Approximation of Continuous Asian Option

Because Kemna and Vorst (1990) had concluded that no explicit formula for the value

of an average-value option can be found in [7], simulation methods are expected to

be used in this case. However, there are two kinds of average, where one is from

continuous sampling, given as
1
T

∫ T

0
S(t)dt, (2.61)

and another is from discrete sampling,

1
n

n∑
j=1

S(tj), (2.62)

where 0 < t1 < t2 < · · · < tn = T . To address both of these issues simultaneously and

apply simulation method into pricing asian option from different samples uniformly,

using a sum to approximate an integral is desired to be introduced. Therefore, in this

thesis, we may approximate (2.61) by follows:

1
n

n∑
j=1

S(tj), (2.63)

where t0 = 0, tn = T , dt = T
n

and tj = j · dt. When n is large enough, this formula

will be a satisfactory approximation of (2.61).

In other words, whatever the average is, pricing Asian option can always be solved

by estimation of a discrete arithmetic Asian option.
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2.3.2 Naive Monte Carlo Method for Arithmetic Average

Asian Option

2.3.2.1 Theoretical Foundation

In Naive Monte Carlo simulation, one typically uses unbiased estimators of an un-

known quantity, usually those estimators are just sample averages. Its variance is the

common measure of performance of such an estimator, see [8], which is the same as

its mean square error for a unbiased estimator. Also, a confidence interval for the

target quantity can be created by using the standard error of the estimator. However,

there are still a lot of methods we can take to reduce the standard deviations of Naive

Monte Carlo in order to improve the convergence of the algorithm, such as antithetic

variates and control variates, as in [9] which will be discussed later. Generally, Monte

Carlo simulation relies on two major theorems in probability theory, the Law of Large

Number (LLN) and The Central Limit Theorem.

Theorem 2.3.1. Law of Large Numbers (LLN).

Sample average converges almost surely to the expected value. If X1, X2, . . . , is an

infinite sequence of independent and identically distributed (i.i.d.) Lebesgue integrable

random variables with expected value E(X1) = E(X2) = · · · = µ, then

X̄n
a.s.−−→ µ when n→∞.

Theorem 2.3.2. Central Limit Theorem (CLT).

Let {X1, · · · , Xn} be a random sample of size n, which is a sequence of i.i.d. random
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variables drawn from distributions of expected value given by µ and finite variances

given by σ2. Then

√
n

 1
n

n∑
i=1

Xi − µ

⇒ N(0, σ2), as n→∞,

where ⇒ denotes weak convergence. Then a 100(1− α)% confidence interval for µ is

(
1
n

n∑
i=1

Xi −
Zα

2
σ

√
n
,

1
n

n∑
i=1

Xi +
Zα

2
σ

√
n

)

As n → ∞, the interval length converges to 0, in which the only remained point is

the sample average 1
n

∑n
i=1 Xi.

2.3.2.2 Application in Asian Option

As has been stated above, the stock price S(t) can be denoted as a geometric Brownian

motion given by

dS(t) = rS(t)dt+ σS(t)dW̃ (t), (2.64)

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion under the risk-neutral measure P̃.

Then we can write

S(t) = S(0) exp{σW̃ (t) + (r − 1
2)σ2)t}. (2.65)
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Let 0 = t0 < t1 < t2 < · · · < tn = T where T is the expiration time. Therefore, as in

[15]

S(tj) = S(tj−1) exp{σ(W̃ (tj)− W̃ (tj−1)) + (r − 1
2σ

2)(tj − tj−1)}, (2.66)

for j = 1, . . . , n. And (W̃ (tj)−W̃ (tj−1)) ∼ N(0, tj− tj−1). If tj = j ·dt, for 0 ≤ j ≤ n,

then

(W̃ (tj)− W̃ (tj−1)) ∼ N(0, dt). (2.67)

Suppose Zj ∼ N(0, 1) and so
√
dtZj ∼ N(0, dt). Hence, we can have

S(tj) = S(tj−1) exp{σ(
√
dtZj) + (r − 1

2σ
2)dt}, for 1 ≤ j ≤ n. (2.68)

For the Asian call option, the payoff at time T is given as

V (T ) =
 1
n

n∑
j=1

S(tj)−K
+

(2.69)

and the option price at time t can be given as

V (t) = Ẽ[e−r(T−t)V (T )|F(t)], for 0 ≤ t ≤ T. (2.70)

In this case, the option price at time 0 is expected to be calculated, which is

e−rT · Ẽ

 1
n

n∑
j=1

S(tj)−K
+ . (2.71)
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Therefore, our point is to estimate the second term Ẽ[( 1
n

∑n
j=1 S(tj)−K)+]. And set

C = Ẽ

 1
n

n∑
j=1

S(tj)−K
+ . (2.72)

Choosing arithmetic average price Asian call option, we use the Monte Carlo method

with m simulated paths to price the Asian option.

To generate m different simulation paths, let us suppose that Zij is a random sample

from i.i.d. N(0, 1), so Zij i.i.d.∼ N(0, 1), 1 ≤ i ≤ m, 1 ≤ j ≤ n, then

~Z1 = (Z11, Z12, . . . , Z1n),

~Z2 = (Z21, Z22, . . . , Z2n),

...

~Zm = (Zm1, Zm2, . . . , Zmn).

Using ~Zi in ith simulation to generate the stock price, for the stock price at time tj

of ith simulation path, it follows as

SZij(tj) = S(0) · exp

σ√dt
j∑

k=1
Zik + (r − 1

2σ
2) · j · dt

 . (2.73)
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Then the estimation value of C at every different simulation path is given as

H(~Z1) =
 1
n

n∑
j=1

SZ1,j(tj)−K
+

, (2.74)

H(~Z2) =
 1
n

n∑
j=1

SZ2,j(tj)−K
+

,

...

H(~Zm) =
 1
n

n∑
j=1

SZm,j(tj)−K
+

.

Because of the fact that every ~Zi is i.i.d. and every H(~Zi) has the same structure, it

can be considered that the expected value of H(~Zi) satisfies

E{H(~Z1)} = E{H(~Z2)} = . . . = E{H(~Zm)} = C, (2.75)

and

Var{H(~Z1)} = Var{H(~Z2)} = . . . = Var{H(~Zm)} = η2, (2.76)

which here can be set as η2.

By LLN and CLT, when m→∞, the average of H(~Z1), H(~Z2), . . ., H(~Zm) converges

to C, which means

1
m

m∑
i=1

H(~Zi)→ C = E

( 1
n

n∑
j=1

S(tj)−K)+

 . (2.77)

Obviously, this is an unbiased estimator of C.

Thus, it is reasonable to estimate arithmetic Asian call option price at time 0 by the
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formula below

e−rT · 1
m

m∑
i=1

H(~Zi). (2.78)

2.3.2.3 Algorithm of Naive Monte Carlo for Asian Call Option Pricing

The algorithm realized by Matlab is as following:

set sum = 0

for i = 1 to m

for j = 1 to n

use ~Zi ∼ N(0,1) to generate SZi1(t1), SZi2(t2), · · · , SZin(tn)

set sum = sum+ max

0,
∑n

j=1 SZij (tj)
n

−K


end

end

set V (0) = e−rT · sum
m

The numerical results are presented in the Table 2.2 and followed the table, corre-

sponding analysis will be given then.

2.3.3 Antithetic Variates Method for Average Asian Option

2.3.3.1 Introduction of Antithetic Variates Method

According to CLT 2.3.2, the smaller the variance is, the smaller the length of the

100(1− α) confidence interval will be. So variance reduction means a more accurate

estimation. Reducing the standard deviation which is the square root of variance can

be achieved by combining correlated estimators in [13]. Antithetic variates are based

on this consideration to construct a sequence of antithetic variates which are perfectly

negatively correlated with the basic random variables. For example, in normal case,
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an i.i.d. sequence of standard normal samples, X1, . . . , Xn is generated first. After

that, one constructs Yi = −Xi. The resulting Y1, . . . , Yn will also be an i.i.d. sequence

of standard normals with each Yi being perfectively negatively correlated with Xi.

Compared with the Naive Monte Carlo estimators, which calculating an estimator of

E(H(X)) by using 1
n

∑n
i=1 H(Xi), antithetic variates method computes it by using

1
2n

n∑
i=1

(H(Xi) +H(Yi)). (2.79)

Obviously, this is also a unbiased estimator since Xi and Yi are identically distributed

and

ρ(Xi, Yi) = −1. (2.80)

In fact, it can also be shown specifically in our case that the variance of the antithetic

variates estimator is always equal to or less than the original estimator, which will be

presented next.

2.3.3.2 Application of pricing Asian Option

In the Naive Monte Carlo case, we have got Zij i.i.d.∼ N(0, 1), for j = 1, . . . , n and

i = 1, . . . ,m. When applied in the antithetic variates method, another antithetic

variates have to be chosen to reduce the variance. Here we can take Xij = −Zij, for

j = 1, . . . , n and i = 1, . . . ,m. Then Xij and Zij are perfectly negatively correlated

and Xij
i.i.d.∼ N(0, 1), for j = 1, . . . , n and i = 1, . . . ,m. Now we are able to use the

two kinds of random variables to generate two stock price path and combine them

together to get the estimator of the Asian stock price at time 0.
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According to what has been done in the Naive Monte Carlo section, relying on ~Z1,
~Z2, . . ., ~Zm, we have got H(~Z1), H(~Z2), . . ., H(~Zm), which satisfies

E{H(~Zi)} = C, for i = 1, . . . ,m, (2.81)

and

Var{H(~Zi)} = η2, for i = 1, . . . ,m. (2.82)

Let
~X1 = (X11, X12, . . . , X1n),

~X2 = (X21, X22, . . . , X2n),

...

~Xm = (Xm1, Xm2, . . . , Xmn).

Through taking the same strategy as Naive Monte Carlo for ~X1, ~X2, . . ., ~Xm, we

can generate another m simulation paths and the estimation value of C at this m

simulation paths can be indicated as

H( ~X1) =
 1
n

n∑
j=1

SX1,j(tj)−K
+

, (2.83)

H( ~X2) =
 1
n

n∑
j=1

SX2,j(tj)−K
+

,

...

H( ~Xm) =
 1
n

n∑
j=1

SXm,j(tj)−K
+

.
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It is because ~Xi and ~Zi are identically distributed that all expectations of H( ~Xi) for

i = 1, . . . ,m are also C and all variances of H( ~Xi) for i = 1, . . . ,m are η2. So

E[H( ~Xi)] = C for i = 1, . . . ,m

and

Var[H( ~Xi)] = η2, for i = 1, . . . ,m.

By LLN and CLT, when m → ∞, the average of H(~Z1), H(~Z2), . . ., H(~Zm) and

H( ~X1), H( ~X2), . . ., H( ~Xm) converges to C, which means

1
2m ·

 m∑
i=1

H( ~Xi) +
m∑
i=1

H(~Zi)
→ C. (2.84)

Obviously, this is also an unbiased estimator for C.

Consequently, by antithetic method, the estimation of Call Asian Option price at

time 0 can be expressed as

e−rT · 1
2m ·

 m∑
i=1

H( ~Xi) +
m∑
i=1

H(~Zi)
. (2.85)

2.3.3.3 Proof of Variance Reduction

Actually, the main reason to do simulation in this way is its realization of variance

reduction compared with the Naive Monte Carlo method, proved by the following.

If we do the same number of simulations in Naive Monte Carlo method and Antithetic

method simultaneously, supposing 2m simulation paths. The simulation result of
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Naive Monte Carlo for C is given as

1
2m

2m∑
i=1

H(~Zi) = M (2.86)

where we set it as M . Because all ~Zi, for i = 1, . . . , 2m are i.i.d., H(~Zi), for i =

1, . . . , 2m are i.i.d., which has been stated above. The variance of M can be calculated

as

V ar(M) = η2 × 2m× 1
(2m)2 = η2

2m. (2.87)

The simulation result of Antithetic Method for C can be expressed as

1
2m ·

 m∑
i=1

H( ~Xi) +
m∑
i=1

H(~Zi)
. (2.88)

If we let

Ai = H(~Zi) +H( ~Xi)
2 , for i = 1, . . . ,m,

then the simulation result of Antithetic Method is given as

1
m
{A1 + A2 + · · ·+ Am}. (2.89)

Due to the fact that all H(~Zi) are i.i.d. and all H( ~Xi) are i.i.d., it accounts for all Ai

for i = 1, . . . ,m are i.i.d.. Thus, the variance of Ai is

V ar(Ai) = 1
4[η2 + η2 + 2Cov(H(~Zi), H( ~Xi))] = 1

2[η2 + Cov(H(~Zi), H( ~Xi))]
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In this case, when H(~Zi) and H( ~Xi) are independent, then Cov(H(~Zi), H( ~Xi)) = 0,

leading to

Var(Ā) = 1
2η

2 ×m× 1
m2 = η2

2m,

which is equal to the variance of M . However, if ~Zi increases, then the stock price

generated by it will increase at the same time, which means H(~Zi) will non-decrease.

Apart from this, according to the fact that ~Xi = −~Zi, the values of ~Xi will de-

crease, leading to the decrease of the stock price generated by it. Thus, H( ~Xi)

is non-increasing at the same time. Therefore, we can draw the conclusion that

Cov(H( ~Xi), H(~Zi)) ≤ 0. Hence,

Var(Ai) ≤
1
2η

2.

From this step, we can get that

Var(Ā) ≤ η2

2m = Var(M).

In summary, antithetic method can reduce the variance of the estimator.

2.3.3.4 Algorithm of Antithetic Method for Asian Call Option Pricing

The algorithm which has been implemented in MATLAB is as following:
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set sum1 = 0

for i = 1 to m

for j=1 to n

use ~Zj ∼ N(0,1) to generate S1Zi1(t1), S1Zi2(t2), . . ., S1Zin(tn)

set sum1 = sum1 + max

0,
∑n

j=1 S1Zij (tj)
n

−K


end

end

set sum2 = 0

for i = 1 to m

for j=1 to n

use ~Xj ∼ N(0,1) to generate S2Xi1(t1), S2Xi2(t2), . . ., S2Xin(tn)

set sum2 = sum2 + max

0,
∑n

j=1 S2Xij (tj)
n

−K


end

end

set V (0) = e−rT · 1
2( sum1

m
+ sum2

m
)

The numerical results are also presented in the Table 2.3 and followed the table, cor-

responding analysis will be given then.
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2.3.4 Control Variates Method for Average Asian Option

2.3.4.1 Introduction of Control Variates

The concept of control variates is that in order to estimate a quantity from data, the

information about another can be used to adjust the original estimator. Suppose we

want to estimate some mean value E(h(X)) = µh and this has been done by using

a Naive Monte Carlo estimator X̄h = 1
n

∑n
i=1 h(Xi). Suppose that the same data

set, {Xi, 1 ≤ i ≤ n}, can be used to estimate a known quantity, so that this sample

can be used to adjust the naive estimator because the actual estimation error can be

computed. If let E(g(X)) = µg which is known, at the same time, we can also use

the Naive Monte Carlo estimator X̄g = 1
n

∑n
i=1 g(Xi). Then E[X̄g −E(g(X))] = 0. If

X̄g is correlated with X̄h, we can improve the estimator of µh by using

X̄h + â(X̄g − E(g(X))), (2.90)

where â should be chosen to minimize the mean square error, which is just the variance

in this unbiased case. The variance of

X̄h + â(X̄g − E(g(X))) (2.91)

can be calculated as follows

Var[X̄h + â(X̄g − E(g(X)))] = Var(X̄h) + â2Var(X̄g) + 2âCov(X̄h, X̄g). (2.92)
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Differentiating it with respect to â gives

dVar[X̄h + â(X̄g − E(g(X)))]
dâ

= 2âVar(X̄g) + 2Cov(X̄h, X̄g). (2.93)

By setting it to zero we obtain that

â = −Cov(X̄g, X̄h)
Var(X̄g)

, (2.94)

which is the optimal choice of â. Although the quantities of Cov(X̄g, X̄h) and V ar(X̄g)

are not known, we can estimate them using the same simulation sample. Then X̄g is

called control variate. The more highly a control variate is correlated with the Naive

Monte Carlo estimator, the larger the possible variance reductions are, conform [16].

2.3.4.2 Application to Asian Option by taking Geometric Average Option

Price as a Control Variate

This method uses the price of a related option whose value can be computed analyti-

cally. There are many choices that we can use as a control variate, such as European

options, Geometric Average options and American option as in [17]. Actually, most

Asian options traded are arithmetic average options, that is why we always calculate

the Asian option price by using the arithmetic average by default. However, for the

price of geometric average option, there is a formula for the price of that using Black-

Scholes framework because the geometric average shares a vital property with stock

price, which is the lognormal distribution. Besides, geometric Asian call prices often

served as a control variate while valuing continuous Asian call option, see [14]. Thus,
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this research focuses on taking the price of the geometric option as control variates

to estimate an arithmetic one. Let an arithmetic mean of stock price be S̄A(0, T ) and

let the corresponding geometric mean of stock price be S̄G(0, T ), then

S̄A = 1
n

n∑
j=1

S(tj), (2.95)

S̄G = exp
 1
n

n∑
j=1

log(S(tj))
. (2.96)

Therefore, the payoff for a geometric call Asian option at time T will be given by

max{S̄G −K, 0}, (2.97)

where K is the strike price.

Black-Scholes Formula for Geometric Call Asian Options

As a control variable, a closed form solution for a geometric Asian option exists[18].

Our next step is to state the explicit formula for the price of the geometric average

Asian option. Sample the stock price n times from 0 to T as above with time interval

dt = T
n

. Therefore, let Zj ∼ N(0, 1), for j = 1, . . . , n and the simulated stock price

are

S(t1) = S(0) · exp
{
σ
√
dtZ1 +

(
r − σ2

2

)
dt

}
, (2.98)

S(t2) = S(0) · exp
{
σ
√
dt(Z1 + Z2) +

(
r − σ2

2

)
2dt

}
, (2.99)

· · ·

S(tk) = S(0) · exp

σ√dt
k∑
j=1

Zj +
(
r − σ2

2

)
k · dt

 , (2.100)
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· · ·

S(tn) = S(T ) = S(0) · exp

σ√dt
n∑
j=1

Zj +
(
r − σ2

2

)
n · dt

 , (2.101)

Then the natural log of geometric average stock price from 0 to T , S̄G will be

lnS̄G(T ) = 1
n

[lnS(t1) + lnS(t2) + · · ·+ lnS(T )] (2.102)

= 1
n

n · lnS(0) + σ ·
√
dt

n∑
i=1

i∑
j=1

Zj +
(
r − σ2

2

)
n∑
i=1

i · dt

 (2.103)

= lnS(0) +
(
r − σ2

2

)
· dt 1

n

n∑
i=1

i+ σ
1
n

√
dt

n∑
i=1

i∑
j=1

Zj (2.104)

=⇒

lnS̄G(T ) = lnS(0) +
(
r − σ2

2

)
· 1
n
· T
n
·
n∑
i=1

i+ σ

√
T

n

1
n
·
n∑
i=1

i∑
j=1

Zj (2.105)

Because Zj ∼ N(0, 1), then

E[lnS̄G(T )] = lnS(0) +
(
r − σ2

2

)
T

n2 ·
n(1 + n)

2 + 0 (2.106)

= lnS(0) +
(
r − σ2

2

)
· n+ 1

2n · T (2.107)

and

Var[lnS̄G(T )] = σ2 · T
n
· 1
n2 ·

n(n+ 1)(2n+ 1)
6 (2.108)

= σ2 · (n+ 1)(2n+ 1)
6n2 · T. (2.109)
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Since the geometric average price is log-normal distributed, we can apply the usual

Black-Scholes formula to get the result. And the usual Black-Scholes formula is given

as

Theorem 2.3.3. For a European call expiring at time T with strike price K, the

Black-Scholes-Merton price at time t, if the time-t stock price is x, is

c(t, x) = xN(d1(T − t, x))−Ke−r(T−t)N(d2(T − t, x)), (2.110)

where

d1(T − t, x) = 1
σ
√
T − t

 log x

K
+
r + 1

2σ
2

(T − t)
, (2.111)

d2(T − t, x) = d1(T − t, x)− σ
√
T − t, (2.112)

and N(y) is the cumulative standard normal distribution. Conform [15].

In order to apply the Black-Scholes formula directly, let

σ∗2 = σ2 (n+ 1)(2n+ 1)
6n2 . (2.113)

Then for finding the r∗ we suppose E[lnS̄G(T )] = lnS(0) + (r∗ − σ∗2

2 )T so that

r∗ − σ∗2

2 =
(
r − σ2

2

)
· n+ 1

2n , (2.114)

=⇒

r∗ = σ∗2

2 +
(
r − σ2

2

)
· n+ 1

2n , (2.115)
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Black-Scholes formula for the geometric Asian call option price at t = 0 is

D1 =
ln
(
S(0)
K

)
+
(
r∗ + 1

2σ
∗2
)
T

σ∗
√
T

, (2.116)

D2 = D1− σ∗
√
T , (2.117)

Gbs = e−r
∗T

S(0) · exp(r∗T ) ·N(D1)−KN(D2)
. (2.118)

Choosing â to minimize the mean square error

Let PA be the Naive Monte Carlo estimator of arithmetic Asian option prices and PG

be the Naive Monte Carlo estimator of geometric Asian option prices. If we want to

compute

PA + â(PG −G) (2.119)

to adjust the results of Naive Monte Carlo, the proper value of â has to be pinpointed,

where it is better to get less variances for the same sample size.

Define

Acv = PA + â(PG −Gbs). (2.120)

First, whatever the value of â is, Acv is always a unbiased estimator of arithmetic

Asian option price at time 0. Because Gbs is the expectation of PG, then

E(Acv) = E(PA) + âE(PG −Gbs) = E(PA) + â[E(PG)−Gbs] = E(PA), (2.121)

which means its variance is just the mean square error. In order to find the proper

value of â, let us write the variance of Acv.

Var(Acv) = Var(PA) + â2Var(PG) + 2âCov(PA, PG). (2.122)
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Differentiating it to â gives

dVar(Acv)
dâ

= 2âVar(PG) + âCov(PA, PG), (2.123)

by setting it to zero and we obtain

â = −Cov(PA, PG)
Var(PG) . (2.124)

Substitute it in (2.122) and the variance of control variable estimator is

Var(Acv) = Var(PA)− Cov2(PA, PG)
Var(PG)

= (1− ρ2)Var(PA),

in which ρ is the correlation coefficient of PA and PG. It is obvious that the closer the

absolute value of ρ is to 1, the greater the variance can be reduced by this method[19].

Actually, the value of −â can be calculated as the slop coefficient of the linear regres-

sion line as in [20]. Let

PA = a0 − â(PG −Gbs),

so −â is just the slope coefficient of the linear regression line of PA and PG. The

Figure 2.1 presents a scatter plot of PA and PG for a sample size n = 10000 with

S(0) = 100, K = 100, σ = 0.05, r = 0.15 and T = 1.
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Figure 2.1: Scatter plot of arithmetic average Asian and geometric average Asian
option prices

Figures of other parameters can also be done. Because the forms of different pa-

rameters are very similar and the coefficients of lines for different parameters always

approximate to 1, other figures will not be presented here. Consequently, the corre-

lation of PA and PG is seen very close to 1, which means the variance can be highly

reduced and it is appropriate to let â be −1. Hence, the adjusted estimator can be

expressed as

Acv = PA + (Gbs − PG). (2.125)

Then it can be implemented in MATLAB so that the corresponding results will be

presented in Table 2.4 and followed by the analysis.
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2.3.5 Numerical Experiments of Asian Call Option

In this section, taking Večeř method results as benchmarks, comparison of results of

different methods for fixed Asian call when r = 0.15, S(0) = 100 and T = 1 will

be presented and the performance of all the methods will be evaluated from three

aspects in table below, which are absolute error, mean square error and computation

time.

when r = 0.15, S(0) = 100, T = 1 and number of simulations is 10000.

σ Fixed Strike K

Benchmark

(Price at time 0 of

Večeř method)

Standard Monte Carlo Absolute Error Root Mean Square Error

Computation

Time

(sec.)

0.05

95 11.094 11.068 0.026 0.0272 6.85

100 6.795 6.768 0.027 0.0271 7.75

105 2.745 2.715 0.030 0.0234 8.76

0.10

90 15.399 15.345 0.054 0.0544 8.34

100 7.028 6.968 0.060 0.0506 7.54

110 1.414 1.383 0.031 0.0271 6.98

0.20

90 15.642 15.523 0.119 0.1053 9.62

100 8.409 8.289 0.120 0.0900 8.87

110 3.556 3.480 0.076 0.0633 6.85

0.30

90 16.513 16.331 0.182 0.1508 7.64

100 10.210 10.051 0.159 0.1298 7.45

110 5.731 5.614 0.117 0.1029 6.05

Table 2.2: Comparison of results of Večeř and Naive Monte Carlo method for fixed
strike Asian call
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when r = 0.15, S(0) = 100, T = 1 and number of simulations is 10000.

σ Fixed Strike K

Benchmark

(Price at time 0 of

Večeř method)

Antithetic Variables Method Absolute Error Root Mean Square Error

Computation

Time

(sec.)

0.05

95 11.094 11.094 0.000 0.0192 11.93

100 6.795 6.795 0.000 0.0191 13.06

105 2.745 2.741 0.004 0.0165 9.20

0.10

90 15.399 15.398 0.001 0.0384 9.94

100 7.028 7.023 0.005 0.0357 10.57

110 1.414 1.398 0.016 0.0191 8.09

0.20

90 15.642 15.630 0.012 0.0743 10.78

100 8.409 8.379 0.030 0.0634 11.77

110 3.556 3.521 0.035 0.0446 11.69

0.30

90 16.513 16.481 0.032 0.1062 11.56

100 10.210 10.157 0.053 0.0914 9.44

110 5.731 5.676 0.055 0.0723 10.58

Table 2.3: Comparison of results of Večeř and Antithetic Variates method for fixed
strike Asian call
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when r = 0.15, S(0) = 100, T = 1 and number of simulations is 10000.

σ Fixed Strike K

Benchmark

(Price at time 0 of

Večeř method)

Control Variables Method Absolute Error Root Mean Square Error

Computation

Time

(sec.)

0.05

95 11.094 11.094 0.000 6.7552× 10−4 10.58

100 6.795 6.795 0.000 6.9862× 10−4 6.33

105 2.745 2.746 0.001 7.6819× 10−4 8.03

0.10

90 15.399 15.398 0.001 0.0015 7.82

100 7.028 7.028 0.000 0.0016 7.13

110 1.414 1.415 0.001 0.0018 7.42

0.20

90 15.642 15.641 0.001 0.0043 7.68

100 8.409 8.409 0.000 0.0046 7.66

110 3.556 3.556 0.000 0.0047 5.99

0.30

90 16.513 16.514 0.001 0.0093 7.59

100 10.210 10.208 0.002 0.0094 8.52

110 5.731 5.737 0.006 0.0098 7.37

Table 2.4: Comparison of results of Večeř and Control Variates method for fixed strike
Asian call

The results presented in Table 2.2 show the shortcomings of Naive Monte Carlo

method compared with the results of Table 2.3 and Table 2.4. As strike price K

increases, although the mean square errors decrease, the simulations become less effi-

cient for the reason that the estimators go down much faster than the corresponding

mean square errors. Since the convergence of our schemes is where our interest lies,

before the computation time is taken into account, the absolute errors and mean

square errors should be emphasized first. Obviously, the absolute errors and mean

square errors of Naive Monte Carlo in Table 2.2 are much larger than those of An-

tithetic Variates and Control Variates method. Consequently, Naive Monte Carlo

should be considered to be not efficient for Asian options pricing and variance reduc-

tion technique, as what has been done in antithetic variates and control variates, is
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necessary.

Table 2.3 shows figures got from Antithetic Variates method. It is easy to see that all

the absolute errors decrease when compared with the figures in Table 2.2. Although

the computation time of Antithetic Variates method has the tendency to increase,

which is acceptable if we want to get better simulation, mean square errors have been

cut down, with each of them in Table 2.3 being almost 2
3 of those in Table 2.2. So it

can be concluded that Antithetic Variates method is more efficient for Asian option

than Naive Monte Carlo, however it only achieves a relatively low gain compared to

the Control Variate method.

Taking geometric average Asian option as a control variate has also been done with

such set of calculations displayed in Table 2.4. Its absolute errors have been accu-

rated to 3 decimals, which means generally lower than them of Antithetic Variates.

On the other hand, the computation time data are only a little less than those of

Table 2.3 whereas the mean square errors differ dramatically, since the root mean

square errors of the estimators with geometric average Asian option as the control

variate have been reduced by approximately 90% for every data compared with those

of Antithetic Variate method. Besides, Figure 2.2 shows a scatter plot of comparison

of Asian option price results from Control Variate method and Antithetic Variate for

randomly generating m=10000 samples with S(0) = 100, K = 100, σ=0.05, r = 0.15,

T = 1 and dt = 1× 10−4. It can be observed that the prices spread in the Antithetic

Variates method is much greater than that of Control Variate estimators, implying

variance reduction of Control Variate method.
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Figure 2.2: Scatter plot of Asian prices with sample size 10000 from Antithetic Vari-
ates method V.S. Control Variates method

Thus based on the results obtained from Table 2.2, Table 2.3, and Table 2.4, the

Control Variate method is more appropriate and efficient for Asian options pricing.
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Chapter 3

Basket Option

3.1 Introduction of Basket Option

Basket Options are popular multivariate derivative securities and their payoff depends

on the weighted average of the underlying asset prices. In this study, as most cases

do, let us suppose the price of basket options depends on the weighted arithmetic

average of the prices of d different assets with correspondingly different weights of

the assets, denoted as ω1, ω2, , . . . , ωd. Thus, we can assume that each ωi > 0 and∑d
i=1 ωi = 1. Let Si(t) denote the price of the asset i at time t. Then the weighted

arithmetic average of the asset prices is given by

d∑
i=1

ωiSi(T ), (3.1)

in which Si(T ) is the price of the asset i at maturity T . Consequently, taking Basket

Call Option with fixed strike price K as an example, we can write the call payoff as
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the form

V (T ) =
 d∑
i=1

ωiSi(T )−K
+

, (3.2)

where K is a nonnegative constant.

For the prices of the underlying assets, we consider they follow the Geometric Brow-

nian Motion (GBM) model with constant volatilities σi, a constant risk free interest

rate r and constant continuous dividend yields δi, given as

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t)− δiSi(t)dt, (3.3)

and under GBM,

Si(t) = Si(0) · exp
[(
r − δi −

σi
2

2

)
t+ σiWi(t)

]
, i = 1, . . . , d, and 0 ≤ t ≤ T. (3.4)

Therefore, the price of basket call option at time t prior to the expiration time T is

given by the risk-neutral pricing formula as

V (t) = Ẽ[e−r(T−t)V (T )|F(t)], 0 ≤ t ≤ T. (3.5)

Because ert is F(t) measurable, then

V (t) = ertẼ[e−rTV (T )|F(t)] (3.6)

and

e−rt · V (t) = Ẽ[e−rTV (T )|F(t)]. (3.7)
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According to the usual iterated conditioning argument which has been done in 2.7,

2.8 and 2.9, it can be concluded that the discounted price process {e−rtV (t)}, t ≥ 0

is a martingale under P̃.

3.2 The PDE of Fixed-Strike Basket Call with Con-

stant Volatility and Constant Dividend Yield

To derive the PDE for this basket option call price, suppose St = (S1(t), S2(t), . . . , Sd(t))T .

Since V (T ) in 3.2 is a function of S1(T ), . . . , Sd(T ), and 3.5, this implies that there

must exist some functions f(t, S1(t), . . . , Sd(t)) and g(t, S1(t), . . . , Sd(t)) such that

the basket call price V (t) and the discounted basket call price e−rtV (t) are given as

V (t) = g(t, S1(t), . . . , Sd(t)) (3.8)

and

e−rtV (t) = f(t, S1(t), . . . , Sd(t)) = f(t,St
T ) (3.9)

= e−rtg((t, S1(t), . . . , Sd(t)). (3.10)
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By Itô-Doeblin formula drift-diffusion processes, we have

de−rtV (t) = df(t, St
T ) (3.11)

= ∂f

∂t
dt+ (∇sf)TdSt

T + 1
2(dSt)T (Hsf)dSt (3.12)

=

∂f∂t + (∇sf)Tµt + 1
2Tr[G

T
t (Hsf)Gt]

dt
+ (∇sf)TGtdW(t), (3.13)

where ∇sf is the gradient of f with respect to (w.r.t.) Si(t), Hsf is the Hession

matrix of f w.r.t. Si(t), and Tr is the trace operator. And µt, Gt and dW(t) are

given in the equation 3.15 below, such as

dSt = µtdt+ GtdW(t). (3.14)

Since dSi(t) = rSi(t)dt+ σiSi(t)dWi(t)− δiSi(t)dt, then we can have

µt = [rS1(t)− δ1S1(t), . . . , rSd(t)− δdSd(t)]T , (3.15)

Gt =



σ1S1(t) 0 0 · · · 0

0 σ2S2(t) 0 · · · 0

0 0 σ3S3(t) · · · 0
... ... . . . . . . ...
... ... . . . . . . ...

0 0 · · · · · · σdSd(t)


d×d

(3.16)
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and

dW(t) =



dW1(t)

dW2(t)
...
...

dWd(t)


d×1

. (3.17)

By the property of martingale, the dt term in 3.13 has to be 0. As a result, we can

have
∂f

∂t
+ (∇sf)T · µt + 1

2Tr[G
T
t (Hsf)Gt] = 0, (3.18)

in which

∂f

∂t
= e−rt · (−r) · g(t, S1(t), . . . , Sd(t)) + e−rt

∂g

∂t
(3.19)

= e−rt ·
[
∂g

∂t
− r · g

]
, (3.20)

∇sf =
[

∂g

∂S1(t) , . . . ,
∂g

∂Sd(t)

]T
· e−rt (3.21)

and

Hsf =



∂2g
∂s2

1

∂2g
∂s1∂s2

· · · · · · ∂2g
∂s1∂sd

... ... · · · · · · ...

... ... · · · · · · ...

... ... · · · · · · ...

... ... · · · · · · ∂2g
∂s2
d


d×d

· e−rt. (3.22)
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Thus the equation 3.18 can be simplified as

∂g

∂t
+

d∑
i=1

∂g

∂si
· (r − δi) · si + 1

2

d∑
i=1

d∑
j=1

σiσjsisj ·
∂2g

∂si∂sj
= rg, (3.23)

with boundary conditions


g(T, s1, . . . , sd) = (∑d

i=1 ωisi −K)+,

lim(s1,s2,...,sd)→(0,0,...,0) g(t, s1, s2, . . . , sd) = 0.
(3.24)

Consequently, this is a highly dimensional PDE and it is very hard to get numerical

results for it. Based on this fact, Monte Carlo Method of pricing Basket Option will

be introduced later.

3.3 Monte Carlo Method for Basket Option with

Constant Volatility

3.3.1 Naive Monte Carlo Method for Basket Call Option

According to 3.4 and 3.2, it is clear that the payoff of basket call is

V (T ) =
 d∑
i=1

ωiSi(T )−K
+

, (3.25)

where

Si(T ) = Si(0) · exp
[(
r − δi −

σi
2

2

)
T + σiWi(T )

]
, i = 1, . . . , d. (3.26)
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By the property of GBM, Wi(T ) ∼ N(0, T ) for i = 1, . . . , d and they are correlated

standard Brownian motions with correlations ρij. Therefore, the main problem to

simulate the stock price will be generating Wi(T ), i = 1, . . . , d, in which they are

correlated with each other. In fact , it is easier for us to generate some independent

standard normal variables in practice. So our goal is to find the relationship between

Wi(T ), i = 1, . . . , d and some independent standard normal variables. To find the

relationship of Wi(T ) and some independent standard normal variables, for basket

option, let us define R as d× d correlation matrix with entries ρij, such as

R =

 ρij


d×d

, (3.27)

and suppose L is the solution of LLT = R obtained by Cholesky factorization, in

which the entries of the matrix L are Lij. Because [W1(T ),W2(T ), . . . ,Wd(T )]T fol-

lows a multivariate normal distribution, given as

[W1(T ),W2(T ), . . . ,Wd(T )]T ∼ N(0,Σ) (3.28)
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where

Σ =



√
T
√
T

. . .
. . .
√
T





ρ11 · · · · · · · · · ρ1d

... . . . ...

... . . . ...

... . . . ...

ρd1 · · · · · · · · · ρdd





√
T
√
T

. . .
. . .
√
T


= TR

(3.29)

From the Linear Transformation Property, if ξ = [ξ1, ξ2, . . . , ξd]T ∼ N(0, I), in which

ξ1, . . . , ξd are i.i.d. N(0, 1), and X = 0 + Lξ, then X ∼ N(0,LLT) as in [21]. Hence,

Lξ ∼ N(0,LLT). (3.30)

Furthermore,
√
TLξ ∼ N(0, TLLT) = N(0, TR) = N(0,Σ). (3.31)

Obviously,
√
TLξ can be used to replace [W1(T ), . . . ,Wd(T )] in the simulation pro-

cedure. Note that the i-th element of the vector Lξ can be written as ∑i
j=1 Lijξj as

L is lower triangular since the matrix R is symmetric. Consequently, the stock price

at time T can be written as the form

Si(T ) = Si(0) exp
(r − δi − σ2

i

2

)
T + σi

√
T

i∑
j=1

Lijξj

 , i = 1, . . . , d. (3.32)

The detailed algorithm of the naive simulation with n different simulation paths is

presented as Table 3.1 below.
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Algorithm of Naive Monte Carlo Method for Basket Call Option

Conditions: given sample size n, maturity T , number of asset d, weights of assets ωi,

initial asset price Si(0), strike price K, constant volatility σi, divident yields δi,

correlation matrix R, and risk free interest rate r, for i = 1, . . . , d.

1. Compute the Cholesky factor L of R, where LLT = R.

2. for m = 1 to n

3. Generate i.i.d. standard normal variates ξi ∼ N(0, 1), i = 1, 2, . . . , d.

4. Let Si(T ) = Si(0) exp
[(
r − δi − σ2

2

)
T + σi

√
T
∑i
j=1 Lijξj

]
,

i = 1, . . . , d

5. Set Ym = e−rT
(∑d

i=1 ωiSi(T )−K
)+

.

6. end for

7. Compute the sample mean Ȳ = ∑n
m=1 Ym/n and the standard deviations of Yi’s.

8. Return the estimation Ȳ and its 95% confidence interval.

Table 3.1: Algorithm of Naive Monte Carlo Method of Basket Call Option

Concerning the convergence of Ȳ , as has been proved in section 2.2.2, by using LLN

and CLT Ȳ can be proved as an unbiased estimation of discounted payoff of basket

call e−rTV (T ) and it converges to e−rTV (T ) when the sample size n goes to infinity.

The numerical results are presented in the Table 3.5 and followed the table, the

corresponding analysis will be given then.

3.3.2 Classical Control Variate for Basket Call Option

From Naive Monte Carlo of basket call option, the estimator Ym, for m = 1, . . . , n can

be obtained from every simulation path. As has been stated in section 2.4.1, apart
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from the original estimator of discounted payoff of basket call, a control variable is

necessary to do some correction of the naive result. Suppose Q is the control variate,

and E[Q] is its known expectation. Then the every estimator of basket call from

every simulation path is given as the from

YCV = Y + a(Q− E[Q]). (3.33)

As has been proved in 2.94, the optimal coefficient minimizing the variance is

a∗ = −Cov(Y,Q)
Var(Q) . (3.34)

The most important factor to affect the accuracy of the control variate method is the

choice of control variate. As has been proved in section 2.4.2, only if the absolute

value of correlation coefficient between control variate and the actual variate we want

to estimate is close to 1, then the variance of our estimator can be reduced a lot,

which means the control variate has to be highly related with the payoff of the basket

option. Thus, in classical control variate, the payoff of a geometric average call is

used as a control variate, with the payoff function as

PG = (G−K)+ (3.35)

and

G = S1(T )ω1 · S2(T )ω2 · · ·Sd(T )ωd = exp
(

d∑
i=1

ωi · logSi(T )
)
. (3.36)

There are some reasons to choose PG as a control variate. The payoffs of the geometric

and the arithmetic average options are close to each others because of the close value
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of Si(T ). Actually, arithmetic and geometric averages yield the same result if all

prices S1(T ), . . . , Sd(T ) are the same. So it is a wise choice to use the payoff of the

geometric average option PG as a control variate. Therefore, the simulation estimator

for the price (without discount) is

YCV = PA + a(PG − µG), (3.37)

where PA is the payoff of the arithmetic average basket call given as

PA =
(

d∑
i=1

ωiSi(T )−K
)+

, (3.38)

and

µG := E[PG]. (3.39)

Just as what has been done in Naive Monte Carlo method, the estimation of stock

prices from different simulation paths can be easily obtained by the form 3.32, so

estimators of geometric average payoff can be calculated. It brings our attention to

the expectation of PG. The solution of µG has been given in [23], as

µG = exp
(
µs̃ + σ2

s̃

2

)
· Φ(−h+ σs̃)−K · Φ(−h), (3.40)

where Φ() denotes the cumulative distribution function (cdf) of the standard normal

distribution,

h = logK − µs̃
σs̃

(3.41)
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and

µs̃ = E[logG], (3.42)

σ2
s̃ = Var(logG). (3.43)

There are also corresponding equations for them, as

µs̃ =
d∑
i=1

ωiµ̃i, (3.44)

and

σ2
s̃ =

d∑
i=1

d∑
j=1

ωiωjσ̃iσ̃j ρ̃ij, (3.45)

where

µ̃i = E[logSi(T )], (3.46)

σ̃2
i = Var(logSi(T )) (3.47)

and ρ̃ij is the correlation between logSi(T ) and logSj(T ). For basket options,

µ̃i = logSi(0) +
(
r − σi −

σ2
i

2

)
T, (3.48)

σ̃i = σi
√
T . (3.49)

Since the vector

logSi(T ) = logSi(0) +
(
r − δi −

σ2
i

2

)
T + σiWi(T ) (3.50)
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is a linear transformation of W (T ),

ρ̃ij = ρij. (3.51)

Since according to 3.34 the optimal value a∗ can be pinpointed by the formula

a∗ = −Cov(PA, PG)
Var(PG) , (3.52)

it is found that for different sample size, different simulation paths and different val-

ues of parameters in this case, the value of a∗ is always very close to −1 in most cases.

Then a∗ = −1.

The detailed algorithm of the classical control variate method with n different simu-

lation paths is presented as Table 3.2 below as well.
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Algorithm of Classical Control Variate for Basket Call Option

Conditions: given sample size n, maturity T , number of asset d, weights of assets ωi,

initial asset price Si(0), strike price K, constant volatility σi, divident yields δi,

correlation matrix R, risk free interest rate r, for i = 1, . . . , d and a∗.

1. Compute the Cholesky factor L of R, where LLT = R.

2. Compute µG by using the given formula 3.40.

3. for m = 1 to n

4. Generate i.i.d. standard normal variates ξi ∼ N(0, 1), i = 1, 2, . . . , d.

5. Let Si(T ) = Si(0) exp
[(
r − δi − σ2

2

)
T + σi

√
T
∑i
j=1 Lijξj

]
,

i = 1, . . . , d

6. Set PA = e−rT (∑d
i=1 ωiSi(T )−K)+ and PG = (exp(∑d

i=1 ωi logSi(T ))−K)+.

7. Let Ym = e−rT (PA + a∗(PG − µG))

8. end for

9. Compute the sample mean Ȳ = ∑n
m=1 Ym/n and the standard deviations of Yi’s.

10. Return the estimation Ȳ and its 95% confidence interval.

Table 3.2: Algorithm of Classical Control Variate for Basket Call Option

3.3.3 New Control Variate for Basket Call Option

However the variance of our estimation can be reduced by the classical control variate

above when compared with the Naive Monte Carlo for basket call option, this tech-

nique is not efficient enough, while the computational requirements for obtaining a

reasonably accurate estimate become excessive as the number of assets rises, as stated

in [22]. Besides, according to the introduction in chapter 2.4.1, the more highly a

control variate is correlated with the Naive Monte Carlo estimator, the larger the
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possible variance can be reduced. So for the arithmetic payoff of basket call, the most

highly correlated variate is itself. Therefore, if a partially exact approximation based

on the composition of the arithmetic payoff can be used as a control variate, a more

accurate simulation method will be found then, as in [23]. By using conditioning, the

main part of the arithmetic payoff is decided as a new control variate to see whether a

better result can be got, evaluated by the mean square error, length of 95% confidence

interval and computation time.

Here an alternative approach is introduced below. In order to find a highly corre-

lated control variate, which can reduce the variance, itself, the arithmetic payoff, is

a good choice. However, paths that end up giving 0 payoff should not be sampled.

So this approach decomposes the arithmetic payoff of basket call option into two

parts by conditioning on the geometric mean price. If let A = ∑d
i=1 ωiSi(T ), then the

arithmetic payoff can be expressed as

(A−K)+ = (A−K)+
1{G≤K} + (A−K)+

1{G>K}, (3.53)

where G is defined in 3.36 and K is the strike price. Since A represents the arithmetic

average and G denotes the geometric average, A ≥ G for all possible terminal asset

values. Then the second term can be simplified as

(A−K)+
1{G>K} = (A−K)1{G>K}. (3.54)

The idea is to use exactly the second term (A − K)1{G>K} as control variate for

pricing basket call option. As has been done in last section, arithmetic average stock

price and geometric average price is highly correlated, indicating that in most of
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replications, A and G are generally closer. So the first term in 3.53 can be considered

as 0 due to the strong dependence between A and G. The conclusion is the second

term (A−K)1{G>K} should be taken as a control variate. Put it in another way, the

payoff PA, defined as 3.38, will be equal to this control variate in most of replications,

implying a strong linear dependence. Define

Q = (A−K)1{G>K}, (3.55)

thus the control variate estimator is simply as

YNCV = PA + c(Q− E[Q]). (3.56)

The simulations of Naive simulation estimator PA and control variate Q are straight-

forward to get according to the simulations of stock prices. However the closed form

solution of E[Q] has to be found. let E[Q] be denoted by µQ. Based on the compo-

sition of µQ into two parts, µQ can be written as

µQ = E[(A−K) · 1{G>K}] = E[A1{G>K}]−K · P (G > K). (3.57)

By using µs̃ and σs̃ in 3.44 and 3.45, log geometric average can be standardized as

X = logG− µs̃
σs̃

, (3.58)

so X ∼ N(0, 1). Consequently, the second term in the equation 3.57 can be expressed

as

K · P (G > K) = K · P (X > h) = K · Φ(−h), (3.59)

61



M.Sc. Thesis - Jin Zeng McMaster - Mathematics and Statistics

where h = logK−µs̃
σs̃

as defined in 3.41.

As for the first term in equation 3.57, it is evaluated by exploiting the fact that

Curran (1994) in [22] gives a closed formula of the conditional expectation of Si(T ),

i = 1, . . . , d, as

E[Si(T )|X = x] = exp
(
µ̃i + aix+ σ̃i

2 − ai2

2

)
, (3.60)

where ai denotes the covariance between X and logSi(T ), and

ai = Cov(X, logSi(T )) = σ̃i
σs̃

d∑
j=1

ωjσ̃j ρ̃ij, (3.61)

where σ̃i, σs̃, σ̃j and ρ̃ij are given as above in 3.44, 3.45, 3.48, 3.49, and 3.51. Then

µQ =
d∑
i=1

E[ωiSi(T )1{G>K}], (3.62)

=
d∑
i=1

ωi

∫ +∞

K
E[Si(T )|X = x]Φ′(x)dx. (3.63)

By integration, the closed form of µQ is

µQ =
(

d∑
i=1

ωie
µ̃i+

σ̃i
2

2 Φ(−h+ ai)−KΦ(−h)
)
. (3.64)

Next step will be determining the value of c. According to 3.34 the optimal value

c∗ can be pinpointed by the formula c∗ = −Cov(PA,W )
Var(W ) . It is found that for different

sample size, different simulation paths and different values of parameters in this case,

the value of c∗ is always very close to −1 in most cases.
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The detailed algorithm of the classical control variate method with n different simu-

lation paths is presented as Table 3.3 below.

Algorithm of New Control Variate for Basket Call Option

Conditions: given sample size n, maturity T , number of asset d, weights of assets ωi,

initial asset price Si(0), strike price K, constant volatility σi, divident yields δi,

correlation matrix R, risk free interest rate r, for i = 1, . . . , d and c∗.

1. Compute the Cholesky factor L of R, where LLT = R.

2. Compute µW by using the given formula 3.64.

3. for m = 1 to n

4. Generate i.i.d. standard normal variates ξi ∼ N(0, 1), i = 1, 2, . . . , d.

5. Let Si(T ) = Si(0) exp
[(
r − δi − σ2

2

)
T + σi

√
T
∑i
j=1 Lijξj

]
, i = 1, . . . , d

6. Set PA =
(∑d

i=1 ωiSi(T )−K
)+

, G = exp
(∑d

i=1 ωi logSi(T )
)

and A = ∑d
i=1 ωiSi(T ).

7. Let W = (A−K)1{G>K}

8. Let Ym = e−rT (PA + c∗(W − µW ))

9. end for

10. Compute the sample mean Ȳ = ∑n
m=1 Ym/n and the standard deviations of Yi’s.

11. Return the estimation Ȳ and its 95% confidence interval.

Table 3.3: Algorithm of New Control Variate for Basket Call Option

3.3.4 Numerical Experiments of Basket Call Option

In this section, numerical experiments will be performed through Naive Monte Carlo,

the Classical Monte Carlo and the New Monte Carlo For the values of correlations

ρij, constant volatilities σi, dividend yields δi, weights of assets ωi and number of

assets d, for i = 1, . . . , d and j = 1, . . . , d, this case will use the data from popular
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G-7 Index-linked guaranteed investment certificates (ILGICs) given in Milevsky and

Posner (1998). The basket option is embedding on the products linked to the perfor-

mance of the G-7 stock market, including Canada, France, Germany, Italy, Japan, U.

K. and U. S..

i Country Index
Weight

ωi

Volatility

σi

Dividend Yield

δi

Correlation ρij

Canada France Germany Italy Japan U. K. U. S.

1 Canada TSE 100 0.10 0.1155 0.0169 1.0000 0.3500 0.1000 0.2700 0.0400 0.1700 0.7100

2 France CAC 40 0.15 0.2068 0.0239 0.3500 1.0000 0.3900 0.2700 0.5000 -0.0800 0.1500

3 Germany DAX 0.15 0.1453 0.0136 0.1000 0.3900 1.0000 0.5300 0.7000 -0.2300 0.0900

4 Italy MIB30 0.05 0.1799 0.0192 0.2700 0.2700 0.5300 1.0000 0.4600 -0.2200 0.3200

5 Japan Nikkei 225 0.20 0.1559 0.0081 0.0400 0.5000 0.7000 0.4600 1.0000 -0.2900 0.1300

6 U. K. FTSE 100 0.10 0.1462 0.0362 0.1700 -0.0800 -0.2300 -0.2200 -0.2900 1.0000 -0.0300

7 U. S. S&P 500 0.25 0.1568 0.0166 0.7100 0.1500 0.0900 0.3200 0.1300 -0.0300 1.0000

Table 3.4: Parameters of the G-7 Indices Basket Option

Three methods for pricing basket call options, Naive Monte Carlo, the classical control

variate and the new control variate, are implemented when some parameters have

been given as above, and other parameters are selected as Si(0) = 100, i = 1, . . . , 7,

risk free interest rate r = 0.063 and sample size n = 10000. The performance of

different methods will be evaluated from three aspects, mean square error, length of

95% confidence interval and computation time.
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when risk free interest rate r = 0.063, Si(0) = 100, i = 1, . . . , 7 and sample size n = 10000.

Time T Fixed Strike K Naive Monte Carlo Root Mean Square Error 95% Confidence Interval Length of the Interval
Computation Time

(sec.)

0.5

80 21.6161 0.0668 [21.4852, 21.7470] 0.2618 0.0233

100 3.9034 0.0480 [3.8093, 3.9975] 0.1882 0.0179

120 0.0224 0.0036 [0.0153, 0.0295] 0.0142 0.0273

1

80 23.1604 0.0939 [22.9764, 23.3444] 0.3680 0.0266

100 6.2480 0.0722 [6.1064, 6.3896] 0.2832 0.0263

120 0.3481 0.0177 [0.3135, 0.3828] 0.0693 0.0201

2

80 26.0681 0.1310 [25.8113, 26.3248] 0.5135 0.0228

100 10.2495 0.1093 [10.0353, 10.4637] 0.4284 0.0293

120 2.0659 0.0540 [1.9600, 2.1718] 0.2118 0.0242

3

80 28.7309 0.1585 [28.4202, 29.0415] 0.6213 0.0579

100 13.7795 0.1389 [13.5073, 14.0517] 0.5444 0.0157

120 4.4929 0.0888 [4.3188, 4.6670] 0.3482 0.0254

Table 3.5: Results of Naive Monte Carlo Method for Pricing Basket Call Option

when risk free interest rate r = 0.063, Si(0) = 100, i = 1, . . . , 7 and sample size n = 10000.

Time T Fixed Strike K Classical Control Variate Root Mean Square Error 95% Confidence Interval Length of the Interval
Computation Time

(sec.)

0.5

80 21.6041 0.0031 [21.5980, 21.6103] 0.0123 0.0225

100 3.8830 0.0033 [3.8765, 3.8895] 0.0130 0.0213

120 0.0235 8.5667× 10−4 [0.0218, 0.0251] 0.0034 0.0248

1

80 23.1453 0.0063 [23.1330, 23.1576] 0.0247 0.0215

100 6.2203 0.0067 [6.2071, 6.2335] 0.0264 0.0269

120 0.3564 0.0039 [0.3489, 0.3640] 0.0152 0.0215

2

80 26.0514 0.0127 [26.0265, 26.0763] 0.0498 0.0292

100 10.2164 0.0137 [10.1896, 10.2431] 0.0535 0.0202

120 2.0674 0.0117 [2.0445, 2.0903] 0.0458 0.0223

3

80 28.7116 0.0192 [28.6740, 28.7493] 0.0753 0.0221

100 13.7454 0.0206 [13.7051, 13.7858] 0.0807 0.0190

120 4.4760 0.0197 [4.4374, 4.5147] 0.0773 0.0206

Table 3.6: Results of Classical Control Variate for Pricing Basket Call Option
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when risk free interest rate r = 0.063, Si(0) = 100, i = 1, . . . , 7 and sample size n = 10000.

Time T Fixed Strike K New Control Variate Root Mean Square Error 95% Confidence Interval Length of the Interval
Computation Time

(sec.)

0.5

80 21.6022 1.2122× 10−5 [21.6022, 21.6023] 4.7520× 10−5 0.0473

100 3.8828 6.4116× 10−4 [3.8815, 3.8840] 0.0025 0.0350

120 0.0238 3.1308× 10−4 [0.0232, 0.0245] 0.0012 0.0501

1

80 23.1409 2.0149× 10−4 [23.1405, 23.1413] 7.8982× 10−4 0.0403

100 6.2196 0.0012 [6.2173, 6.2219] 0.0046 0.0244

120 0.3538 0.0011 [0.3516, 0.3560] 0.0044 0.0408

2

80 26.0435 0.0013 [26.0409, 26.0461] 0.0052 0.0374

100 10.2199 0.0032 [10.2137, 10.2261] 0.0124 0.0418

120 2.0542 0.0032 [2.0480, 2.0604] 0.0124 0.0504

3

80 28.7007 0.0022 [28.6965, 28.7050] 0.0086 0.0257

100 13.7441 0.0046 [13.7350, 13.7531] 0.0181 0.0296

120 4.4553 0.0056 [4.4443, 4.4663] 0.0220 0.0229

Table 3.7: Results of New Control Variate for Pricing Basket Call Option

To compare these three methods, let us focus on Table 3.5 and 3.6 first. Because the

mean square errors of every different time and every different strike price in Table

3.6 have been decreased by at least 5 times and a maximum of 20 times, reducing to

the two digits after decimal point. For the same situation as in the length of 95%

confidence interval, length of the interval in Table 3.5 is much larger than that in

Table 3.6. In terms of computation time, there is no obvious difference between these

two methods. However, the accuracy of simulation results has been greatly improved

by the classical control variate method, which is more important for a simulation

method. Therefore, it can be concluded that the performance of classical control

variate is better than the naive Monte Carlo.

When it comes to the new control variate, because the classical control variate method

did a greater job than naive Monte Carlo, then classical control variate method and

new control variate method should be compared next. Given the same conditions, if
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we take a part of conditional arithmetic payoff as a control variate, the mean square

error and length of 95% confidence interval can be reduced drastically. The mean

square error and length of 95% confidence interval in Table 3.6 are at least 3 times

and 256 times at most as large as those in Table 3.7. Taken computation time into

consideration, although the computation time of Table 3.7 is slightly larger than the

new control variate, because the new control variate needs to use some variables in the

classical one, there is no distinguished increase for the computation time when using

new control variate. However, the convergence and accuracy of the simulation are

enhanced certainly, implying that the new control variate method is more efficient,

compared with the classical one.

In conclusion, based on the results of Table 3.5, 3.6 and 3.7, among these three meth-

ods, the new control variate is more useful for pricing basket options from the aspects

of convergence and efficiency.
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Chapter 4

Conclusion

In this thesis, the novelty is the comprehensive implementation and comparison of

different Monte Carlo methods both for Asian options and basket options. In terms

of Asian options, a benchmark using Večeř dimensionality reduction approach is cal-

culated first. By comparing the results from naive Monte Carlo, antithetic Monte

Carlo and control variate Monte Carlo with the benchmark, we found that for pricing

Asian options control variate method has the best performance among these three

Monte Carlo methods because of its variance reduction and efficiency. We applied

control variate methods to basket options as well. Although there is no benchmark

for basket option pricing, the performance of variance reduction can still be expected.

After carrying out naive Monte Carlo, the classical control variate and novel control

variate approaches, it is obvious that the novel control variate method has the best

efficiency and convergence. For further research it would be interesting to study other

control variates with better efficiency for pricing options in classical models and new

models (e.g. models with price impact).
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