
MAXIMUM RATE OF GROWTH OF ENSTROPHY IN THE NAVIER-STOKES

SYSTEM ON 2D BOUNDED DOMAINS



MAXIMUM RATE OF GROWTH OF ENSTROPHY IN THE NAVIER-STOKES

SYSTEM ON 2D BOUNDED DOMAINS

By

ADAM ANDRZEJ SLIWIAK, B. Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

of Master of Science

McMaster University

©Copyright by Adam A. Sliwiak, August 2017



MASTER OF SCIENCE (2017) McMaster University

(Computational Science and Engineering) Hamilton, Ontario

TITLE: MAXIMUM RATE OF GROWTH OF ENSTROPHY

IN THE NAVIER-STOKES SYSTEM ON 2D BOUNDED

DOMAINS

AUTHOR: Adam A. Sliwiak, B. Sc. (Warsaw University of Technology)

SUPERVISOR: Dr. Bartosz Protas

NUMBER OF PAGES: viii, 66

ii



Lay Abstract

For many decades, scientists have been investigating fundamental aspects of the Navier-

Stokes equation, a central mathematical model arising in fluid mechanics. Although the

equation is widely used by engineers to describe numerous flow phenomena, it is still an

open question whether the Navier-Stokes system always admits physically meaningful

solutions. To address this issue, we want to explore its mathematical aspects deeper

by analyzing the behaviour of the enstrophy, which is a quantity associated with the

vorticity of the flow and a convenient measure of the regularity of the solution. In this

study, we consider a planar and incompressible flow bounded by solid walls. Using basic

tools of mathematical analysis and optimization theory, we propose a computational

method enabling us to find out how much enstrophy can such a flow produce instan-

taneously. We present numerical evidence that this instantaneous growth of enstrophy

has a well-defined asymptotic behavior, which is consistent with physical assumptions.
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Abstract

One of the key open problems in the field of theoretical fluid mechanics concerns the

possibility of the singularity formation in solutions of the 3D Navier-Stokes system in

finite time. This phenomenon is associated with the behaviour of the enstrophy, which

is an L2 norm of the vorticity and must become unbounded if such a singularity occurs.

Although there is no blow-up in the 2D Navier-Stokes equation, we would like to investi-

gate how much enstrophy can a planar incompressible flow in a bounded domain produce

given certain initial enstrophy. We address this issue by formulating an optimization

problem in which the time derivative of the enstrophy serves as the objective functional

and solve it using tools of the optimization theory and calculus of variations.

We propose an efficient computational approach which is based on the iterative steepest-

ascent procedure. In addition, we introduce an easy-to-implement method of computing

the gradient of the objective functional. Finally, we present computational results ad-

dressing the key question of this project and provide numerical evidence that the max-

imum enstrophy growth exhibits the scaling dE/dt ∼ CE2 for C > 0 and E0 → ∞. All

computations are performed using the Chebyshev spectral method.
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1 Introduction

This thesis concerns one of the most famous equations of mathematical physics de-

scribing the motion of fluids — the Navier-Stokes equation (NSE). For decades, both

scientists and engineers have been striving to better understand complex phenomena

involving fluid flows. Thorough comprehension of the physics of fluids enables aerospace

designers to optimize the shape of different components of a plane wing leading to re-

duced fuel consumption. The solution of the Navier-Stokes equation is necessary for

hemodynamicists to visualize the process of drug delivery in a human body. These are

just two examples among many other that show the huge importance of the field of fluid

mechanics in the world of advanced technology. Paradoxically, despite of its ubiquity,

many aspects of the mathematical nature of NSE are still unexplored. For many years,

mathematicians has been trying to answer the question if solutions to NSE in 3D, for

a large period of time, are physically justified. This mystery has been promoted by the

Clay Institute to the rank of a Millennium Problem and a scientist who manages to pro-

vide a rigorous explanation will be awarded a one million dollar prize. A solid proof of

the existence of smooth solutions to the three-dimensional incompressible Navier-Stokes

equations defined globally in time would mean that the Millennium Problem is solved

and would be a major breakthrough in Fluid Mechanics research[7].

As the title indicates, we are interested in the Navier-Stokes system on a bounded do-

main. For simplicity, the density parameter ρ is assumed to be constant meaning that

the flow is incompressible. In the further analysis, the value of ρ will be assumed to be

one. The equation also involves another parameter, namely the kinematic viscosity ν.

Based on a balance of momentum in Newton’s second law and the conservation of mass,
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a complete formulation of a 3D Navier-Stokes system can written in the following form:

∂v

∂t
+ (v · ∇)v +∇p− ν∆v = 0 in Ω ⊂ R3, (1a)

∇ · v = 0 in Ω ⊂ R3, (1b)

v · n = v · s = 0 on ∂Ω, (1c)

v(x, 0) = v0(x) in Ω ⊂ R3, (1d)

where the vector v = [u(x, t), v(x, t), v(x, t)] and scalar function p(x, t) respectively

denote velocity and pressure, while x is a 3-dimensional position vector. The symbol Ω

represents a 3-dimensional domain, a subset of R3. Constraint (1b) is a mathematical

representation of the incompressibility of a fluid, and boundary condition (1c), through

the projection on both the normal unit vector n and tangential unit vector s, ensures

that the velocity vector is zero on the boundary. Finally, since (1a) is a parabolic PDE,

we need to provide initial condition (1d) to close the system. The fourth term of (1a) is

associated with viscous forces, but in many problems of hydrodynamics there might also

appear other effects, such as external forces, e. g., due to gravity. System (1) without

both the viscous term (ν = 0) and the boundary condition v · s = 0 is referred to as the

Euler equation.

The Millennium Problem itself does not assume that the domain is bounded. It involves

the question if, given ν > 0 and a smooth and divergence-free initial condition v0, there

exist smooth functions v and p satisfying (1) excluding boundary conditions. In 1989,

Foias and Temam showed in [8] that the solutions to the 2D NSE on a periodic domain

are analytic in time, unlike in the 3D case where the solutions turn out to be analytic

only for a small (finite) interval of time. It means that there is still no guarantee that

even if the initial condition v0 is smooth, the solution to the 3D NSE is also smooth for

2
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all time. If the magnitude of v0 is sufficiently small, then unique and smooth solutions

are proven to exist for t→∞. Nevertheless, it is still an open question if smooth initial

data with a large magnitude might lead to some form of singularity. There are many

different methods of studying this problem, and one of them involves the enstrophy E(t),

which is the L2-norm of the vorticity function ω,

E(t) =
1

2

∫
Ω

|ω(x, t)|2dΩ, (2)

where

ω = ∇× v. (3)

The usefulness of this quantity relies of the fact that singularity formation is strictly

related to the behavior of the enstrophy. In the same publication [8], Foias and Temam

also proved that boundedness of the enstrophy implies regularity of solutions and vice

versa. Thus, a mathematical answer, in the form of rigorous estimates, to the question

regarding the enstrophy growth is crucial in the study of regularity. Using a variational

maximization approach, Lu and Doering showed in 2008 [14] how rapidly the enstrophy

can grow in the 3D periodic setting. They concluded that the estimate

dE
dt
≤ CE(t)3 (4)

is indeed sharp. One can understand the word ”sharpness” as an existence of divergence-

free vector fields that saturate a given upper bound. In the literature, there exists

a family of analogous results for both the Burgers Equations and 2D Navier-Stokes

equation, and the majority of them involve periodic/unbounded domains. Ayala and

Protas studied the maximum growth of enstrophy growth in the Burgers Equation in

[2], where they used a variational search technique to find extreme solutions. In 2014,

3
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the same researchers [1] performed a careful analysis on a 2D periodic domain, where

they studied the maximum palinstrophy growth. This quantity, given by the formula

P(t) =
1

2

∫
Ω

|∇ω(x, t)|2dΩ, (5)

was used instead of enstrophy in the study of the extreme behaviour of the 2D periodic

Navier-Stokes equation, since on 2D domains without solid boundaries the enstrophy

may only decreased.

Another big question question is what is the upper bound of the enstrophy when the

solution evolves over a finite range of time [0, T ] and if the existing finite-time estimates

are sharp or not. This problem can be mathematically written as follows,

max
v0∈X(Ω),E(0)=E0

E(T ), (6)

where X denotes some Sobolev space. In 2011, Ayala and Protas computed numerically

the enstrophy growth over a finite time for the Burgers Equation [2], and three years

later they successfully finished a similar study on a periodic 2D Navier-Stokes system

[1], using palinstrophy instead of enstrophy. There remains an open question how the

enstrophy E(t) behaves in the 3D setting.

Based on this short literature review, a related question that arises is what is the max-

imum enstrophy growth on a bounded domain. What is the impact of the boundaries

on the extreme behaviour exhibited by solutions of an equation and what is the effect of

the vorticity generation at the solid walls? Can we extrapolate the results obtained for

periodic domains to the cases involving boundaries? The role of boundaries in extreme

behavior for the Euler equation has been analysed by Hou and Luo in [16]. Their results

indicate that the presence of bounded domains may lead to a finite-time blow-up. Is

there a similar result for the bounded 3D Navier-Stokes equation? Unfortunately, the

4
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answer is negative and, moreover, there even does not exist any estimates for the max-

imum enstrophy/palinstrophy growth in lower space dimensions. Although there is no

blow-up in the 2D Navier-Stokes system, even on bounded domains, it is still worthwhile

to study how much enstrophy can an incompressible flow produce, depending on E0. In

other words, we aim to answer the question what are the upper bounds on the extreme

behaviour, as characterized by the instanteneous growth of enstrophy, in 2D Navier-

Stokes flows on bounded domains. This is indeed the primary goal of this project, in

which we will develop and validate tools enabling us to study such problems on bounded

domains with different shapes. Thus, the following chapters of this thesis will address

the problem of the maximum enstrophy growth of a two-dimensional Navier-Stokes sys-

tem that is defined on a bounded domain. This work is computationally-based in the

sense that all conclusions rely on numerical results. The proposed numerical algorithm

is based on the vorticity transport equation, while the key mathematical tool enabling

us to compute dE/dt involves variational optimization. Numerical calculations are per-

formed using a Chebyshev spectral collocation method, an approach that is suitable for

problems defined on bounded domains and, which is very important, guarantees spec-

tral accuracy. Unfortunately, the numerical results will not be verified with analytical

estimates, since there seems to be no such estimates available for the problem at hand.

Undoubtedly, a derivation of such estimates is one of the major goals for the future

research.

The structure of the main part of the thesis is the following: Chapter 2 is devoted to

the mathematical aspects of the two-dimensional Navier-Stokes equation, especially in

the context of bounded domains, in Chapter 3 we will focus on the analytical tools used

to compute the maximum instantaneous enstrophy growth on a bounded domain (that

chapter will cover two different approaches of solving our main problem, namely the

method of Euler-Lagrange equations and the gradient-based method), the final part of

5
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Chapter 3 includes a careful analysis of the solutions in the limit E0 → 0, in chapters

4 and 5 we study specific numerical methods relevant for this project and discuss the

most important computational results, respectively, the final remarks and comments

regarding the whole project are put together in Chapter 6.

6
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2 2D Navier-Stokes Equation

The system of two-dimensional Navier-Stokes equations describes the dynamics of planar

viscous flows and it can mathematically be written exactly like 3D equivalent (1). This

section will be devoted to such flows, especially in the context of the streamfunction-

vorticity formulation that will turn out to be very convenient in the study of the extreme

behaviour.

2.1 Vorticity Transport Equation

In many scientific and engineering applications, however, instead of the velocity, it is

more convenient to use the concept of the vorticity ω, defined in (3), which in the case

of 2D space, is equivalent to the pseudoscalar ω,

ω = ω · k = ∇⊥v =
∂v

∂x
− ∂u

∂y
, (7)

where k denotes a unit vector perpendicular to the xy-plane. Based on the above

definition and the fact that the flow is incompressible, we can take the curl of (1), and

the first term of on left side becomes

∇× ∂v

∂t
=

∂

∂t
(∇× v) =

∂ω

∂t
. (8)

In the same manner, the last term of the LHS becomes

∇× (ν∆v) = ν∆ω, (9)

7
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while the curl of the pressure gradient vanishes, because p is a scalar function. Moreover,

the convection term can be rewritten in the following way,

v · ∇v =
1

2
∇(v · v)− v × (∇× v) = ∇

(
v2

2

)
− v × ω (10)

and, therefore,

∇× (v · ∇v) = ∇×∇
(
v2

2

)
−∇× (v × ω) = ∇× (ω × v)

= (v · ∇)ω − (ω · ∇)v + ω(∇ · v) + v(∇ · ω).

(11)

By incompressibility, the third term of (11) vanishes. The last term also disappears,

because a divergence of a curl of any smooth vector is zero. Since we are considering

two-dimensional incompressible flows, the second term also goes away. Finally, we can

conclude that the evolution equation for the scalar function ω is

∂ω

∂t
+ (v · ∇)ω = ν∆ω. (12)

This parabolic PDE is widely known as the vorticity transport equation and it is also

a convection-diffusion type of an equation, which means that the vorticity is both dif-

fused and convected. Unfortunately, there are no boundary conditions for ω, which is

troublesome from the computational point of view. In order to surmount this difficulty,

it might be helpful to use the concept of the streamfunction. Such a function, denoted

by ψ, is related to the velocity field v by the following identity,

v = ∇× ψk. (13)

8
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which implies that

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (14)

Lines of constant ψ are called streamlines and are tangent to the velocity vector field.

The kinematic relation between the streamfunction and the vorticity can be derived

using (1b), (7) and (14). Thus, we obtain an elliptic PDE,

∆ψ = −ω, (15)

that is defined inside the domain Ω. Because of the no-slip boundary conditions for

the velocity field, we conclude that the streamfunction satisfies both the homogeneous

Dirichlet and Neumann conditions,

ψ =
∂ψ

∂n
= 0 on ∂Ω. (16)

Equations (12), (15), and (16) lead to the vorticity-streamfunction formulation of 2D

Navier-Stokes system (1). One of the biggest advantages of this system is the fact that

the solution pair (ω, ψ) automatically satisfies the incompressibility constraint, which

means that the corresponding velocity field is divergence-free in both the continuous and

discrete setting. Analysing this formulation, we can easily observe the parabolic-elliptic

character of NSE. It features two Laplace operators associated with both unknown vari-

ables, ω and ψ, and there are two boundary conditions for the streamfunction. The

lack of a boundary condition for the vorticity, however, is a source of both analytic

and numerical complications, which we will discuss later. Relation (15) and boundary

conditions (16) imply zero average property of the vorticity field, which can be shown

9
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by a simple integration by parts,

∫
Ω

ωdΩ = −
∫

Ω

∆ψdΩ =

∮
∂Ω

∂ψ

∂n
dσ = 0. (17)

To sum up, we can notice that using the concept of the vorticity and the streamfunc-

tion, we reduce the NSE system (1) in 2D space to equations (12), (15) with boundary

conditions (16). Once the vorticity-streamfunction system is solved, the velocity can be

computed by taking appropriate partial derivatives of the streamfunction. It is more

complicated to retrieve the pressure, since one has to solve the Pressure Poisson Equa-

tion (PPE) with suitable boundary conditions, and this will be discussed in the next

section.

2.2 Pressure Poisson Equation

In our further derivations, we will need different relations between the pressure and

vorticity (or streamfunction) and, therefore, we would like to take a closer look at the

former. To determine the pressure, we should take the divergence of momentum equa-

tion (1a). Such manipulation leads to the following Pressure Poisson Equation (PPE)

equation,

∆p = −∇ · [(v · ∇)v] = 2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
. (18)

The RHS of the above equation can also be expressed in terms of the stress σ and

vorticity ω,

∆p = −1

2
(σ2 − ω2), (19)

where σ2 = s2
11 + s2

12 and s11 = 2∂xu = −2∂yv, s12 = ∂yu + ∂xv. Both s11 and s12 are

components of the stress tensor. An alternative form of the PPE has been derived by

10
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Salih in [20], where the RHS is written in terms of derivatives of the streamfunction

only,

∆p = 2

[
∂2ψ

∂x2

∂2ψ

∂y2
−
(
∂2ψ

∂x∂y

)2
]
. (20)

The above form of the PPE might be particularly useful in the context of solving the

Vorticity Transport Equation, since it does not involve the velocity vector and, therefore,

the pressure can be directly computed if the pair (ω, ψ) is known. All equations (18),

(19) and (20) are defined inside the bounded domain Ω. We still need some relations

that associate the pressure function with either the vorticity or streamfunction on the

boundary ∂Ω. There are different approaches to find suitable boundary conditions.

One of them has been suggested by Salih in [20], where the author derives a couple

of pressure-vorticity relations in Cartesian coordinate system. For the purpose of this

project, we will correlate the vorticity and pressure in the normal/tangential coordinate

system. A sketch of such a system is provided in Figure 1.

Figure 1: Normal and tangent vectors to the boundary ∂Ω.

Using the definition of the vorticity and assuming no-slip boundary conditions, we can

11
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re-express this quantity in the normal/tangiential system:

ω =

[
− ∂

∂n
,
∂

∂s

]
· [vs, vn] = −∂vs

∂n
, (21)

where vs and vn are respectively tangential and normal components of the velocity field

v. We can now project equation (1a) on the normal vector n and write the normal

derivative of the pressure function as a function of the vorticity,

∂p

∂n
= νn ·∆v = ν

(
∂2

∂s2
+

∂2

∂n2

)
vn = ν

∂

∂n

∂vn
∂n

= −ν ∂
∂n

∂vτ
∂s

= ν
∂

∂s

(
−∂vτ
∂n

)
= ν

∂ω

∂s
.

(22)

Analogously, making use of the same properties of the velocity field and the projection

of (1a) on s, one can derive the tangential derivative of the pressure function,

∂p

∂s
= νs ·∆v = ν

(
∂2

∂s2
+

∂2

∂n2

)
vτ = ν

∂

∂n

∂vτ
∂n

= −ν ∂ω
∂n

. (23)

These two identities, (22) and (23), are defined on the boundary ∂Ω and resemble the

Cauchy-Riemann equations for complex-analytic functions, but the similarity is only

superficial. We can now utilize them to close the Pressure Poisson Equation. Since they

are derived from NSE, either of them can serve as a boundary condition for the PPE.

2.3 Instantaneous Growth of Enstrophy

Another aspect of the Navier-Stokes equation, relevant for this project, is the instanta-

neous rate of the enstrophy growth that is simply computed by taking the time derivative

of E ,

dE
dt

=
1

2

d

dt

∫
Ω

ω2dΩ =

∫
Ω

ω
∂ω

∂t
dΩ = −

∫
Ω

ω(v · ∇)ωdΩ + ν

∫
Ω

ω∆ωdΩ. (24)

12
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Furthermore, using the fact that the velocity is a divergence-free vector field, one can

show that the cubic term of (24) vanishes. Since

∫
Ω

ω(v · ∇)ωdΩ =

∫
Ω

ω∇ · (ωv)dΩ = −
∫

Ω

ω(v · ∇)ω +

∮
∂Ω

ω2(v · n)dσ, (25)

and due to the non-slip boundary conditions the line integral cancels out, which means

that the cubic term also disappears. Thus, the instantaneous enstrophy growth can be

written in the following form:

dE
dt

= ν

∫
Ω

ω∆ωdΩ . (26)

This relation constitutes the central part of this thesis, since we are interested in com-

puting the maximum value of dE/dt for a given value of the initial enstrophy E0. Unlike

in the case of periodic domains, (26) is not sign-definite, since after the integration by

parts, ∫
Ω

ω∆ωdΩ = −
∫

Ω

|∇ω|2dΩ +

∮
∂Ω

∂ω

∂n
ωdσ, (27)

the boundary term does not vanish. The following chapters cover a detailed description

of both mathematical and computational tools that will enable us to determine the

maximum of dE/dt for given fields ω with prescribed enstrophy E0.

13
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3 Maximum Enstrophy Growth as a Variational Op-

timization Problem

Our goal is to compute the maximum enstrophy growth for fields ω with a prescribed

initial enstrophy E0. We will solve this optimization problem using basic tools of the

optimization theory and calculus of variations. According to [12], there are four major

elements of most optimization problems:

� An objective functional J ,

� Control variables and control space,

� State variables and state space,

� Any constraints imposed on both control and state variables.

As regards the objective (cost) functional, it is naturally defined as the time derivative

of the enstrophy, thus

J (ω) =
dE
dt

= ν

∫
Ω

ω∆ωdΩ. (28)

The vorticity field ω such that E(ω) = E0 is our control variable. We can understand

this quantity as the initial condition for the vorticity transport equation (12). Both

the control and state spaces must be Sobolev spaces H1(Ω). This is the minimum

regularity requirement based on the trace theorem and will be explained in detail in

the subsequent sections of this chapter. Since we consider a bounded domain, we have

to take into account the constraint associated with the no-slip boundary conditions for

the velocity field. Moreover, we also must ensure that the Pressure Poisson Equation

14
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is satisfied. Using the streamfunction and vorticity as the state variables, however, we

can incorporate these requirements into our optimization problem, which can formally

be written in the following way:

max
ω∈H1(Ω)

J (ω) (29a)

subject to
1

2

∫
Ω

ω2dΩ = E0, (29b)

∆ψ = −ω in Ω, (29c)

∆p = 2

[
∂2ψ

∂x2

∂2ψ

∂y2
−
(
∂2ψ

∂x∂y

)2
]

in Ω, (29d)

ψ =
∂ψ

∂n
= 0 on ∂Ω. (29e)

It is clear now that the presence of constraints (29b) and (29d) makes this problem

nonlinear, meaning that we will need to apply a suitable iterative method. There exist

few well-known methods of solving optimization problems of this class. For the purpose

of this project, we will focus on, first, the Eulerian-Lagrangian formulation approach

and, second, the gradient-based method. While the latter is more convenient from the

numerical point of view, the Euler-Lagrange formulation is nonetheless very useful as it

provides valuable insights about the structure of the optimization problem.

3.1 Euler-Lagrange Equations

Proposed in the mid-eighteenth century, the Euler-Lagrange equation is a very useful

tool to characterize maxima (or minima) of functionals. The method of computing the

extrema of a functional is analogous to the well-known Fermat’s theorem (also known as

interior extremum theorem), which says that a local extremum corresponds to the point

at which the first derivative (perturbation) of a function vanishes. However, before we

perturb functional (28), we have to incorporate the constraints listed in (29) by adding

15
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extra terms and multiplying them by suitable Lagrange multipliers. Therefore, let us

augment (28) in the following way,

JA(ω) = J (ω) + λ

(
1

2

∫
Ω

ω2dΩ− E0

)
+

∫
Ω

ϕ (∆ψ + ω) dΩ, (30)

where the constant λ and function ϕ = ϕ(x) are the Lagrange multipliers. Subsequently,

we can compute the perturbation of the augmented functional and set it to zero, i. e.

J ′A(ω, ω′) = ν

∫
Ω

ω∆ω′ + ω′∆ωdΩ + λ

∫
Ω

ωω′dΩ +

∫
Ω

ϕ(∆ψ′ + ω′)dΩ = 0. (31)

To construct a system of Euler-Lagrange equations, we have to expand (31) integrating

it by parts,

J ′A(ω, ω′) = 2ν

∫
Ω

∆ωω′dΩ + ν

∮
∂Ω

ω′
∂ω

∂n
− ω∂ω

′

∂n
dσ + λ

∫
Ω

ωω′dΩ

+

∫
Ω

∆ϕψ′ + ϕω′dΩ +

∮
∂Ω

ϕ
∂ψ′

∂n
− ψ′∂ϕ

∂n
dσ

=

∫
Ω

(2ν∆ω + λω + ϕ)ω′dΩ +

∫
Ω

∆ϕψ′dΩ− ν
∮
∂Ω

ω′
∂ω

∂n
+ ω

∂ω′

∂n
dσ = 0,

(32)

and setting all terms proportional to ω′ and ψ′ to zero. We can observe that in the

boundary integral of (32), there is a normal derivative of the perturbed vorticity, which

prevents us from directly setting up the system of Euler-Lagrange equations. In order

to overcome this obstacle, we will make use of boundary relation (23) between the

vorticity and pressure that was derived in the previous chapter. Therefore, by performing

integration by parts with respect to σ, the term in question in (32) can be rewritten as

follows:

ν

∮
∂Ω

ω
∂ω′

∂n
dσ = −

∮
∂Ω

ω
∂p′

∂s
dσ =

∮
∂Ω

∂ω

∂s
p′dσ. (33)

16
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It is now evident that we need another relation between the (perturbed) pressure and

vorticity in order to express the former. Putting (19) and (22) together and computing

their perturbations with respect to ω′, we end up with a Poisson PDE for p′,

∆p′ = −σσ′ + ωω′ in Ω, (34a)

∂p′

∂n
= ν

∂ω′

∂s
on ∂Ω. (34b)

One can easily notice that the term σσ′ is a function of the velocity, which should be

further represented in terms of the vorticity,

v(x) =

∫
Ω

K(x,x′)ω(x′)dΩ +∇φ, (35)

where K denotes the Biot-Savart kernel defined as

K(x,x′) =
1

2π

(x− x′)⊥

|x− x′|2
, (36)

while φ is the potential required to satisfy the wall-normal velocity boundary condition.

It is the solution of the following Laplace’s equation,

∆φ = 0 in Ω, (37a)

∂φ

∂n
= −n ·

∫
Ω

K(x,x′)ω(x′)dΩ on ∂Ω. (37b)

To shorten the notation, we can write φ as a function of the vorticity using the integral

(convolution) operator L associated with sytem (37) as φ = L∗ω. Thanks to the linearity

of systems (34) and (37), we define the perturbed pressure function on the boundary as

17
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follows,

p′|∂Ω =

∫
Ω

G(x,x′′)ωω′dΩ

+

∫
Ω

G(x,x′′)

{
4
∂u

∂x

[∫
Ω

D1 ·K(x′′,x′)ω(x′)dΩ + D1 · ∇L ∗ ω′
]

+

(
∂u

∂y
+
∂v

∂x

)[∫
Ω

D2 ·K(x′′,x′)ω(x′)dΩ + D2 · ∇L ∗ ω′
]}

dΩ

+ νM
∂ω′

∂s
,

(38)

where D1 =
[
∂
∂x
, 0
]T

and D2 =
[
∂
∂y
, ∂
∂x

]T
denote differential operators, M is a Neumann-

to-Dirichlet operator, while G denotes the fundamental solution of Laplace’s equation

in 2D space given by

G(x,x′) =
1

2π
ln|x− x′|. (39)

Finally, we can plug (38) in (33) and derive the final form of the objective functional in

which all terms will be proportional to either ω′ or ψ′,

J ′A(ω, ω′) =

∫
Ω

{
[2ν∆ω + λω + ϕ]ω′ + ω

[∮
∂Ω

∂ω

∂s
G(x,x′)ds

]
+

∮
∂Ω

∂ω

∂s

∫
Ω

G(x,x′′)

[
4
∂u

∂x
(D1 ·K(x′′,x′) + D1 · ∇L(x′′,x′))

+

(
∂u

∂y
+
∂v

∂x

)
(D2 ·K(x′′,x′) + D2 · ∇L(x′′,x′))

]
dσdΩ ω′

}
dΩ

+

∫
Ω

∆ϕψ′dΩ + ν

∮
∂Ω

[
∂ω

∂n
− ∂

∂s
M∗∂ω

∂s

]
ω′dσ = 0,

(40)

where M∗ is the adjoint of the Neumann-to-Dirichlet map M . The final step is to

convert (40) to the system of Euler-Lagrange equations simply by setting all the terms

proportional to ω′ and ψ′ to zero, in compliance with the fundamentals of calculus

of variations. Thus, including the initial enstrophy constraint, the full system can be

18
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written in the following form:

2ν∆ω + λω + ϕ+ ω

[∮
∂Ω

∂ω

∂s
G(x,x′)ds

]
+

∮
∂Ω

∂ω

∂s

∫
Ω

G(x,x′′)

[
4
∂u

∂x
(D1 ·K(x′′,x′) + D1 · ∇L(x′′,x′)) in Ω, (41a)

+

(
∂u

∂y
+
∂v

∂x

)
(D2 ·K(x′′,x′) + D2 · ∇L(x′′,x′))

]
dσdΩ = 0

∆ψ = −ω in Ω, (41b)

∆ϕ = 0 in Ω, (41c)

ψ =
∂ψ

∂n
= 0 on ∂Ω, (41d)

∂ω

∂n
=

∂

∂s
M∗∂ω

∂s
on ∂Ω, (41e)

1

2

∫
Ω

ω2dΩ = E0 (enstrophy constraint). (41f)

The pair (ω, ψ) satisfying system (41) is the solution to optimization problem (29). We

can see that the derived Euler-Lagrange system is nonlinear, which is evident in equations

(41a) and (41f). It consists of three equations defined inside the domain Ω, each involving

a Laplace operator. Additionally, the system includes three boundary conditions, two

associated with the streamfunction and one with the vorticity. Although there are no

explicit boundary conditions for ϕ, we conclude that the system is well-posed. From the

numerical point of view, solving (41) directly might be very challenging, since one would

have to set up a costly Newton’s iteration scheme for a problem of the type f(x) = 0,

where x is a vector containing all the three unknown functions. Moreover, since the

whole system has been constructed using the standard Euler-Lagrange formulation, it

also involves Lagrange multipliers that would be somehow evaluated during Newton’s

iteration. Another numerical challenge is the accurate inversion of elliptic operators,

using the Green’s function or Biot-Savart kernel. To avoid these difficulties, one could
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solve the maximization problem using a completely different approach, a method that

is much more computationally-friendly, namely the gradient-based method.

3.2 Gradient-Based Method

Since the main goal of this work is to find the maximum instantaneous growth of en-

strophy, i. e., to solve the optimization problem (29), we can apply a very convenient

computational method belonging to the family of gradient-based methods for maximiza-

tion problems. The idea is to utilize one of the popular optimization algorithms, such as

the steepest ascent method. Regardless of the specific method choice, it is necessary to

derive the gradient of the objective functional. This section highlights all mathematical

tools we need to derive the gradient of J with respect to the H1 topology, including the

definition of the Gateaux differential and the Riesz representation theorem.

By the first-order optimality condition (31), we know that the perturbation of the aug-

mented cost function is zero. In addition, according to the results presented by Luen-

berger [15], we can write the perturbation of the cost function in terms of the Gateaux

(directional) derivative, i. e.

J ′(ω, ω′) = lim
ε→0

J (ω + εω′)− J (ω)

ε
, (42)

where ω′ represents an arbitrary direction of the perturbation in the space H1(Ω). Ac-

cording to (32), the above Gateaux differential can be rewritten as

J ′(ω, ω′) =

∫
Ω

2ν∆ωω′dΩ− ν
∮
∂Ω

ω′
∂ω

∂n
− ω∂ω

′

∂n
dσ

=

∫
Ω

2ν∆ωω′dΩ− ν
∮
∂Ω

ω′
∂ω

∂n
dσ +

∮
∂Ω

∂ω

∂s
p′ds.

(43)
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The terms associated with the Lagrange multipliers of the perturbed augmented cost

functional (32) can also be expressed in the analogous way, however, these terms are not

critical in our algorithm. To find the vorticity field ω̃ that maximizes cost functional

(28), one can use the following iterative steepest-ascent method

ω(n+1) = ω(n) + τn∇H1J (ω(n)), (44a)

ω(0) = ω∗, (44b)

where ω∗ is the initial guess for the maximizing vorticity field such that the corresponding

streamfunction satisfies two homogeneous boundary conditions, i. e. ψ∗ = ∂ψ∗
∂n

= 0 and

ω∗ = −∆ψ∗ and, moreover, both boundary vorticity-pressure relations (22)–(23) hold.

Consequently, ω(n) can be viewed as an approximation of ω̃ after the nth iteration and

ω̃ = limn→∞ ω
(n), while τn is the step size which may vary from iteration to iteration.

One can notice that this approach does not involve the evaluation of the Lagrange

multipliers, which would be inevitable using Newton’s method to solve (41).

The central part of this algorithm is the evaluation of the cost functional gradient,

∇H1J (ω), in the H1 topology. Before we derive it, however, it is very important to

explain why the H1 space is necessary for the vorticity function. Cost functional (28) can

be integrated by parts giving rise to two integrals (see (27)),
∫

Ω
(∇ω)2dΩ and

∮
∂Ω
ω ∂ω
∂n

dσ.

The former indicates clearly that the regularity requirement is ω ∈ H1. An analogous

analysis for the line integral is not so straightforward. Nevertheless, we can use the trace

theorem [6] to verify that the space H1 offers sufficient regularity for the vorticity on the

boundary. Therefore if ω ∈ H1(Ω) and ∇ω ∈ L2(Ω) in Ω, then, by the trace theorem,

ω ∈ H1/2(∂Ω) and ∇ω ∈ H−1/2(∂Ω). This observation leads to the conclusion that the

line integral
∮
ω ∂ω
∂n

dσ is bounded as long as ω ∈ H1(Ω). It means that the H1 topology

is sufficient for the objective functional and its Gateaux differential to be well defined.
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We can now use the Riesz representation theorem [21] to find the relation between

J ′(ω, ω′) and the gradient ∇H1J (ω). Before we utilize this theorem, we must define

inner products in the L2 and H1 topologies, respectively,

〈z1, z2〉L2
=

∫
Ω

z1z2dΩ ∀z1, z2 ∈ L2(Ω), (45a)

〈z1, z2〉H1 =

∫
Ω

z1z2dΩ + l

∫
∇z1 · ∇z2dΩ ∀z1, z2 ∈ H1(Ω). (45b)

The parameter l is an adjustable constant [19] and, in our derivations, is assumed to be

1. Therefore, as functional (28) is linear and bounded, the following identity is true,

J ′(ω, ω′) =
〈
∇L2J (ω), ω′

〉
L2

=
〈
∇H1J (ω), ω′

〉
H1
. (46)

Before we proceed, however, we will state and prove a lemma that is crucial not only in

the anlysis of the L2-gradient, but also throughout the entire thesis.

Lemma 1. Let f be a sufficiently smooth harmonic function. If the vorticity func-

tion ω corresponds to a velocity field satisfying no-slip boundary conditions (1c), then∫
Ω
ωfdΩ = 0.

Proof. Using Green’s identities,

∫
Ω

∆ψf −∆fψdΩ =

∮
∂Ω

∂ψ

∂n
f − ∂f

∂n
ψdσ (47)

and relations (15), (16), we conclude that

∫
Ω

ωfdΩ = 0. (48)
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Thus, in the L2 topology, the gradient ∇L2J (ω) is defined up to a harmonic function,

which means that for every function f such that ∆f = 0, the identity

〈
∇L2J (ω), ω′

〉
L2

=
〈
∇L2J (ω) + f, ω′

〉
L2

(49)

always holds. Similarly, for any constant c ∈ R, we have the following identity for the

H1 inner products and associated gradients,

〈
∇H1J (ω), ω′

〉
H1

=
〈
∇H1J (ω) + c, ω′

〉
H1
, (50)

which is true because the vorticity has zero mean. Applying the definition of the H1

inner product, we will rewrite identity (46) explicitly and then integrate it by parts in

order obtain a form that is consistent with (43),

J ′(ω, ω′) =
〈
∇H1J (ω), ω′

〉
H1

=

∫
Ω

(
∇H1J (ω)

)
ω′ +∇

(
∇H1J (ω)

)
· ∇ω′dΩ

=

∫
Ω

[
(Id−∆)∇H1J (ω)

]
ω′dΩ +

∮
∂Ω

∂

∂n

[
∇H1J (ω)

]
ω′dσ.

(51)

The ultimate goal of further steps is to re-express (51) in a way that both the area

and boundary integrals involve functions that explicitly involve ω′ as a factor which

will allow us to involve the Riesz theorem. This formula satisfies our needs except for

the boundary integral involving the perturbation of the pressure field p′. In order to

rewrite this term to a more convenient form, we will make use of the harmonic function

f satisfying

∆f = 0 in Ω, (52a)

∂f

∂n
=
∂ω

∂s
on ∂Ω. (52b)
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Moreover, we will consider elliptic system (34), thanks to which the pressure perturbation

can be expressed in terms both the perturbed velocity and vorticity fields. By linearity,

the solution to this system can be represented as a superposition of solutions p1 and p2

to two subproblems,

∆p′1 = 0 in Ω, (53a)

∂p′1
∂n

= ν
∂w′

∂s
on ∂Ω, (53b)

and

∆p′2 = 2

(
∂u′

∂x

∂v

∂y
+
∂u

∂x

∂v′

∂y
− ∂u′

∂y

∂v

∂x
− ∂u

∂y

∂v′

∂x

)
:= R′ in Ω, (54a)

∂p′2
∂n

= 0 on ∂Ω. (54b)

Using Green’s identities, the relation

∮
∂Ω

∂f

∂n
p′1 −

∂p′1
∂n

fdσ =

∫
∂Ω

p′1∆f − f∆p′1dΩ = 0 (55)

is always true and, therefore, we have

∮
∂Ω

∂ω

∂s
p′1dσ =

∮
∂Ω

∂p′1
∂n

fdσ =

∮
∂ω

ν
∂ω′

∂s
fdσ = −

∮
∂Ω

ν
∂f

∂s
ω′dσ. (56)

By the same token, we conclude that

∮
∂Ω

∂ω

∂s
p′2dσ =

∫
Ω

p′2∆f − f∆p′2dΩ = −
∫

Ω

fR′dΩ. (57)

Combining the results from (56) and (57), we obtain a new form of the Gateaux differ-
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ential,

J ′(ω, ω′) = 2ν

∫
Ω

ω′∆ωdΩ−
∫

Ω

fR′dΩ− ν
∮
∂Ω

(
∂f

∂s
+
∂ω

∂n

)
ω′dσ, (58)

which is still not in a form consistent with Riesz theorem (46), since the integral
∫

Ω
fR′dΩ

requires further treatment. Based on the fact that we impose two boundary conditions

on the streamfunction (ψ = ∂ψ
∂n

= 0 on ∂Ω), we infer that for every function h with

sufficient regularity, the identity

∫
Ω

−ω′hdΩ =

∫
Ω

ψ′∆hdΩ (59)

is always true, regardless of the boundary conditions satisfied by h (see Lemma 1).

Subsequently, assuming that ∆h = ∂a
∂y

and denoting a = ∂b
∂x

, we conclude

−
∫

Ω

ω′hdΩ =

∫
Ω

∆hψ′dΩ = −
∫

Ω

au′dΩ =

∫
Ω

b
∂u′

∂x
dΩ, (60)

where both a and b are smooth functions. Identity (60) clearly shows that the second

integral of (58), consisting of derivatives of the velocity vector components, can be

rewritten to a form, in which the integrand is proportional to ω′. Making use of this

observation, we can now define a new function g that satisfies

∆g = 2

(
∂2

∂x∂y

(
f
∂v

∂y

)
+

∂2

∂x2

(
f
∂u

∂y

)
− ∂2

∂x∂y

(
f
∂u

∂x

)
− ∂2

∂y2

(
f
∂v

∂x

))
in Ω, (61a)

g = arbitrary on ∂Ω, (61b)

which can be incorporared into (58) giving rise to the final form of the perturbed cost
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functional (Gateaux differential),

J ′(ω, ω′) =

∫
Ω

[2ν∆ω + g]ω′dΩ− ν
∮
∂Ω

[
∂f

∂s
+
∂ω

∂n

]
ω′dσ, (62)

in which every term is proportional to ω′, which means that our primary goal has

been accomplished. The function g is a solution to a Poisson equations with arbitrary

boundary condition, which is consistent with the fact that the L2 gradient, ∇L2J (ω),

is not unique and defined up to an arbitrary harmonic function. In the final step, we

will make a comparison of (51) and (62), from which we can deduce the elliptic PDE

system,

(Id−∆)∇H1J (w) = 2ν∆ω + g in Ω, (63a)

∂

∂n

[
∇H1J (w)

]
= −ν

(
∂f

∂s
+
∂ω

∂n

)
on ∂Ω, (63b)

that enables us to compute the H1 gradient. We observe that a Neumann boundary

condition is imposed on ∇H1J (w), and it may appear that the gradient is defined up to

a constant. However, since the zero-mean property also applies to it, the H1 gradient

is indeed unique. In actual computations, one has to take this aspect into account by

computing the appropriate constant when solving Neumann problem (63).

3.3 Solution in the Limit of Small Enstrophies E0 → 0

It is possible to compute the solution of Euler-Lagrange system (41) in the limit E0 → 0

by performing a formal series expansion in powers of the initial enstrophy E0, according

to the analogous study that has been carried out by Ayala and Protas in [1]. This goal

can be achieved in three main steps: first, a simpler form of (41) should be derived, using

the previously defined functions f and g, second, all unknown functions are expanded
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using a formal series expansion with respect to E0 and, finally, all the expansions should

be plugged into the Euler-Lagrange equations, giving rise to a hierarchy of linear systems,

each corresponding to a different power of E0. Making use of Gateaux differential (62)

augmented by a term involving the initial enstrophy constraint (vide (31)),

J ′(ω, ω′) =

∫
Ω

[2ν∆ω + g]ω′dΩ− ν
∮
∂Ω

[
∂f

∂s
+
∂ω

∂n

]
ω′dσ + λ

∫
Ω

ωω′dΩ, (64)

and the functions f and g, we can write an Euler-Lagrange system, equivalent to (41),

in the following way,

2ν∆ω + g = −λω in Ω, (65a)

∆ψ + ω = 0 in Ω, (65b)

∆f = 0 in Ω, (65c)

∆g −N (ψ, f) = 0 in Ω, (65d)

ψ =
∂ψ

∂n
= 0 on ∂Ω, (65e)

∂ω

∂n
+
∂f

∂s
= 0 on ∂Ω, (65f)

∂ω

∂s
− ∂f

∂n
= 0 on ∂Ω, (65g)

1

2

∫
Ω

ω2dΩ = E0 (enstrophy constraint). (65h)

where N (ω) is a nonlinear term that corresponds to the RHS of (61) and is defined as

N (ψ, f) = 2

(
∂2

∂x∂y

(
f
∂v

∂y
(ψ)

)
+

∂2

∂x2

(
f
∂u

∂y
(ψ)

)
− ∂2

∂x∂y

(
f
∂u

∂x
(ψ)

)
− ∂2

∂y2

(
f
∂v

∂x
(ψ)

))
.

(66)
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In order to examine the behaviour of the eigenpair [(ω, ψ, f, g)T , λ] of Euler-Lagrange

system (65) in the limit of E0 → 0, we will use the following series expansions,

ω = ω0 + E1/2
0 ω1 + E1

0ω2 +O(E3/2
0 ), (67a)

ψ = ψ0 + E1/2
0 ψ1 + E1

0ψ2 +O(E3/2
0 ), (67b)

f = f0 + E1/2
0 f1 + E1

0f2 +O(E3/2
0 ), (67c)

g = g0 + E1/2
0 g1 + E1

0g2 +O(E3/2
0 ), (67d)

λ = λ0 + E1/2
0 λ1 + E1

0λ2 +O(E3/2
0 ). (67e)

In the next step we plug ansatz (67) into system (65), and collecting all terms propor-

tional to E0
0 , we obtain

2ν∆ω0 + g0 = −λ0ω0 in Ω, (68a)

∆ψ0 + ω0 = 0 in Ω, (68b)

∆f0 = 0 in Ω, (68c)

∆g0 −N (ψ0, f0) = 0 in Ω, (68d)

ψ0 =
∂ψ0

∂n
= 0 on ∂Ω, (68e)

∂ω0

∂n
+
∂f0

∂s
= 0 on ∂Ω, (68f)

∂ω0

∂s
− ∂f0

∂n
= 0 on ∂Ω, (68g)

1

2

∫
Ω

ω2
0dΩ = 0 (enstrophy constraint), (68h)

which implies that ω0 ≡ 0 and, consequently, the functions ψ0, g0 also vanish, while

f0 = c0 is constant. Based on this conclusion, and the fact that

N (·, c0) = 0, (69)
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we collect terms proportional to E1/2
0 giving rise to the linear system

− 2ν∆ω1 − g1 = λ0ω1 in Ω, (70a)

−∆ψ1 − ω1 = 0 in Ω, (70b)

−∆f1 = 0 in Ω, (70c)

−∆g1 = 0 in Ω, (70d)

ψ1 =
∂ψ1

∂n
= 0 on ∂Ω, (70e)

∂ω1

∂n
+
∂f1

∂s
= 0 on ∂Ω, (70f)

∂ω1

∂s
− ∂f1

∂n
= 0 on ∂Ω, (70g)

1

2

∫
Ω

ω2
1dΩ = 1 (enstrophy constraint), (70h)

which is in fact a generalized eigenvalue problem. Since we aim to obtain the solution

in the limit E0 → 0, it is sufficient to truncate all expansions at the order O(E1
0 ).

There are three important features of (70) that can be used in our further work. First

and foremost, it provides a solution to the problem of the maximum enstrophy growth

in the limit E0 → 0. Second, the family of eigenfunctions ω1 can be used in the steepest-

ascent algorithm as the initial guess ω∗. Finally, it is relatively easy to implement

the system, since it involves basic differential operators and, moreover, the unknown

constant c0 does no longer appear. In Appendix A, we investigate algebraic properties

of eigenvalue problem (70) and, based on this analysis, we conclude that the eigenvalue

λ0 is indeed real, while the system is sign-definite. This fact is crucial, especially from

the computational point of view, since one may encounter numerical problems in the

case of square domains. Using the Chebyshev spectral method to discretize the LHS of

system (70) we observe that the resulting matrix is singular, and therefore one needs

additional treatment to desingularize it. A detailed description of numerical difficulties
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associated with PDE operators of this type and possible remedies are included in the

next chapter.
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4 Numerical Methods

In this chapter we are going to review all numerical approaches that have been used to

solve the optimization problem. Firstly, we will briefly review the Chebyshev spectral

method, a spectral technique that is suitable for non-periodic domains. In the context of

circular domains, we will also mention a hybrid Chebyshev-Fourier method. Moreover,

a detailed description of computational problems associated with numerical implemen-

tation of eigenvalue problem (70) will be provided. Finally, we will highlight the most

important aspects of the optimization algorithm and propose suitable methods to reduce

the computational cost of the entire process.

4.1 Spectral Collocation Method

There exist two major families of fast spectral methods, the Fourier and Chebyshev

method. The former is appropriate for periodic domains but, due to the Gibbs phe-

nomenon at the boundaries, is not suitable for bounded domains. The latter, on the

other hand, is free from this numerical artifact and therefore we are going to utilize

it to discretize our unknown functions in space. Thus, every unknown function of a

single variable, here denoted as u(x), will be approximated using the discrete truncated

Chebyshev series,

u(x) ≈ uN(xi) =
N∑
k=0

ûkTk(xi), i = 0, ..., N, (71)
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where xi is a set of N collocation (interpolation) points, which in our case are the

Gauss-Lobatto points defined by

xi = cos

(
πi

k

)
, i = 0, ..., k, (72)

while Tk denotes the Chebyshev polynomial of degree k defined for x ∈ [−1, 1] as

Tk(x) = cos(kcos−1x), k = 0, 1, 2, ... (73)

Based on the Chebyshev approximation, we can easily differentiate any smooth function

in the physical space. Assuming that u denotes an array of the values of u(xi) at N

collocation points, the derivative u′ can be easily computed as

u′ = DNu, (74)

where u′ is a vector consisting of approximated values of u′(xi), while DN denotes the

Chebyshev differentiation matrix, whose detailed description can be found in [11]. The

derivatives u(n) of a higher order n ≥ 1 can be obtained by elevating DN to the power

of n and applying the resulting matrix to u. These recipes can be generalized to any

higher space dimension. The present problem concerns two-dimensional domains and,

therefore, we take a closer look at the approximation of functions of two variables and

their derivatives. In the Cartesian coordinate system, we set up a grid based on N

Gauss-Lobatto points in each direction, usually referred to as a ”tensor-product grid”.

An example of the Cartesian grid of this type is illustrated in Figure 2(a). The most

straightforward way to compute a partial derivative of the function v(x, y) is to apply

Kronecker products, according to [13]. Let v be the corresponding vector of function

values, while vx and vy be arrays consisting of first-order partial derivatives of v w.r.t
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the x- and y-coordinate, evaluated at the tensor product grid, then

vx = DN ⊗ IN , vy = IN ⊗DN , (75)

where IN is an N -dimensional identity matrix, and the symbol ⊗ denotes the Kronecker

product.

To discretize efficiently an equation or system of equations defined on a circular domain,

one should transform the Cartesian coordinate system into the polar one using the

following formulae:

x = rcos θ, y = rsin θ. (76)

The most natural way to discretize a two-dimensional disk is to create a periodic Fourier

(equispaced) grid in the azimuthal direction θ and a nonperiodic Chebyshev/Gauss-

Lobatto grid in the radial direction r, such that

θ ∈ [0, 2π], r ∈ [0, 1]. (77)

Analogously to the 2D Cartesian case, we aim to construct a tensor-product grid, but this

time each coordinate corresponds to a different node configuration. This also implies that

the function v(r, θ) is approximated using the truncated Fourier series with respect to

the azimuthal coordinate. Nonetheless, according to [22],the discretization of a circular

domain, like the one above, exhibits some crucial drawbacks. One of them is unnecessary

concentration of grid nodes near the origin r = 0, especially in the cases for which we

expect smooth solutions. This approach is both inelegant and wasteful in terms of

storage requirements. An interesting remedy for this inconvenience has been proposed

by Fornberg in [9] and [10], who suggested to take r ∈ [−1, 1] instead of r ∈ [0, 1], while

θ continues to span over [0, 2π]. The main characteristic of this representation is the
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fact that each point (x, y) corresponds to two distinct points (r, θ). In other words, the

map from (r, θ) to (x, y) is 2-to-1. Apart from the less severe point clustering near the

origin, Fornberg’s method features a reduced total number of gridpoints and, what is

important, higher-order accuracy in the radial direction. Figure 2(b) shows a typical

spectral grid based on the Chebshev-Fourier discretization. Another crucial aspect is

that the Fourier pseudospectral method can still be applied in the azimuthal direction.

From the practical point of view, it is important to notice a symmetry condition in

(r, θ)-space:

v(r, θ) = v(−r, (θ + π)mod 2π), (78)

based on which it is relatively simple to assemble the differentiation matrix with respect

to both polar coordinates, following the guidelines suggested by Trefethen in [22].
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0.5

1
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Figure 2: Spectral grids (red dots) based on Chebyshev discretization in the Carte-
sian coordinate system (a), and based on Chebyshev-Fourier discretization in the polar
system (b).

A common disadvantage of spectral collocation methods is the fact that the differenti-

ation matrix DN is always poorly conditioned. This characteristic may play a crucial
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role in solving large linear systems that are generated using such methods. On the

other hand, however, both Chebyshev and Fourier methods, or a combination of both,

guarantee spectral accuracy, provided the solution is analytic. In the case of standard

finite-difference or finite-element methods, we observe algebraic convergence, which im-

plies that for some constant m > 0 the error decreases as O(N−m) when N → ∞.

The spectral accuracy means that much faster convergence is achieved, namely O(c−N),

where c is some positive constant. Figure 3 shows the convergence of the error in the

numerical solution of a 2D Poisson equation with the source term and Dirichlet bound-

ary conditions chosen such that the exact solution of the problem is v(x, y) = e2(x+y).

The error is computed as an L∞-norm of the difference between the numerical result

vN(x, y) and the manufactured analytical solution.
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|v
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Figure 3: Relation between the absolute error and the grid resolution N in the solution
of the test problem based on the 2D Poisson equation. This plot illustrates the accuracy
of the Chebyshev spectral method.

35



M.Sc. Thesis - A. A. Sliwiak McMaster University - CSE

We can observe that the error plot consists of two distinct branches. The first one,

located in the left-hand side of the plot, clearly exhibits spectral convergence, that is,

the error decreases with the rate of O(c−N). For N > 10, however, the error increases,

which is a consequence of dominating round-off errors. This observation, however, does

not imply that N = 10 is sufficient grid resolution for our main problem, which will be

evident in Chapter 5.

4.2 Generalized Eigenvalue Problem

In this section, we will focus on a few numerical aspects involving solutions of the

generalized eigenvalue problem (70), putting emphasis on the square domain. A few

remarks regarding the circular domain, however, will be provided at the and of the

section. Assuming a square domain Ω = [−1, 1] × [−1, 1], all differential operators of

this system are discretized using a Chebyshev spectral collocation method described as

discussed in section 4.1. Consequently, the continuous linear system (70) is transformed

to a generalized algebraic eigenvalue problem, which can be symbolically written as

Ay = λBy, (79)

where y denotes a column vector with the discretizations of all four eigenfunctions

stacked up in it. The matrix A corresponds to the PDE operator involving boundary

conditions (LHS of the continuous sytem (70)), while B mostly consists of zeros, with

the exception of rows associated with ω. Figure 4 illustrates the sparsity pattern of the

matrices A and B.
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Figure 4: Sparsity patterns of the two block matrices, A (a) and B (b), generated for the
resolution parameter N = 16 on the square domain. The dashed lines separate different
blocks.

A careful inspection of the structure of the nature of A leads to the observation that

it contains four zero columns, that correspond to the corner points of the g̃1 function,

therefore one needs to remove all the corner collocation points. In addition to that, a

direct implementation of linear system (70) applying the Chebyshev collocation method

leads to some other numerical difficulties. It turns out that, after the removal of all the

corner nodes, the matrix A still features a total rank deficiency of 5. This problem has

two different sources. First, due to the lack of Dirichlet boundary conditions, we observe

that the function f1 is defined up to a constant. Second, system (70) involves both a

function (g̃) that has no prescribed boundary conditions and the streamfunction (ψ), on

which homogeneous Dirichlet and Neumann boundary conditions are imposed. One can

observe a very similar set of functions and boundary conditions in the Stokes system.

As shown in [5], such a configuration results in numerical artifacts, which leads to four

37



M.Sc. Thesis - A. A. Sliwiak McMaster University - CSE

null eigenvalues of (79). Therefore, in order to solve eigenvalue problem (79), we need to

ensure that the rank of the matrix A is equal to its dimension. The first source can be

neutralized easily by fixing the value of the f1 function at an arbitrary node. The other

problem, however, requires more sophisticated treatment. According to the extensive

analysis of a very similar phenomenon presented by Peyret in his book [18], and also in [5]

together with Ehrenstein, one has to remove another four collocation points. The choice

of these four points is not obvious and must follow the rules introduced by Bwemba

and Pasquetti in [4]. Ehrenstein and Peyret in [5] suggest to delete the following set of

points:

P1 = (x1,−1), P2 = (xN−1,−1), P3 = (x1, 1), P4 = (xN−1, 1).

Once all collocation points (both the corner points and the ones suggested above) are

removed, the determinant of A is no longer zero. Thus, the generalized eigenvalue

problem can be easily solved with any linear algebra package, for example, the com-

mand [y,lambda]=eig(A,B) in MATLAB solves (79) using the QZ algorithm. Due

to a very large condition number of A, the application of some high precision toolboxes

might be inevitable [17].

In the case of a circular domain, no additional treatment is required. A direct imple-

mentation of the block matrices A and B leads a very similar structure as shown in

Figure 4.

4.3 Optimization Algorithm

Finally, we will focus on the core part of the thesis, namely the optimization algorithm

that was outlined in (44). To initiate the steepest ascent procedure for a given initial

enstrophy E0 , we need to determine three ingredients:

� the initial guess of the vorticity field ω0,
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� H1 gradient ∇H1J (ωn),

� step size τn.

Since the primary goal of this project is to find the maximum instantaneous enstrophy

growth dE/dt for increasing enstrophy values E0, it is natural to use an eigenfunction

of the eigenvalue problem (70) as the initial guess ω∗, since it provides the solution to

the optimization problem in the limit E0 → 0. The H1 gradient can be easily computed

by solving elliptic systems (52), (61) and (63) and, clearly, it must be updated at each

iteration step. The step size τn can be evaluated in a variety of ways. An accurate com-

putation of this parameter, however, might significantly accelerate the whole procedure

and, therefore, the implementation of an efficient method might be inevitable. In this

project we will use Brent’s algorithm [3], where the evaluation of the step size

τn = arg max
τ>0

J (ωn + τ∇H1J (ωn)), (80)

is based on an iterative procedure, whose task is to find the extremum of the function

ωn + τ∇H1J (ωn) by sampling it at a set of sample points. The MATLAB command

fminbnd() utilizes exactly the same idea to find a minimum (or maximum) of a single-

variable function.

Another important aspect of the optimization algorithm is a proper enforcement of the

initial enstrophy constraint. In other words, we have to ensure that the L2 norm of the

vorticity field throughout the steepest ascent procedure is fixed and equal to E0. To

satisfy this requirement, at every iteration step of both the steepest ascent and Brent’s

procedures the updated vorticity field ωn+1 = ωn + τ∇H1J (ωn) must be projected onto

the set V = {ω ∈ H1 : ||ω||L2 = 2E0} by normalizing ωn+1 in the following way:

ωn+1 :=
ωn+1

||ωn+1||L2

E0. (81)
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The combination of line maximization (80) with constraint (81) can be interpreted as an

arc optimization of the vorticity field ω over the set V , which is schematically illustrated

in Figure 5.

Figure 5: Scheme of the arc optimization of the vorticity field ω over the set V . At every
iteration step of the steepest ascent algorithm, the updated vorticity field is projected
back onto the circle V .

Because of the nonconvex nature of the optimization problem (29), the proposed al-

gorithm may fail. For certain values of E0, we observe discontinuous ”jumps” in the

function max dE/dt(E0). Therefore, to reduce the probability of failure, we will utilize

the continuation method, in which the optimal vorticity state computed for the initial

enstrophy E0−∆E0 will be used as the initial guess for E0, where ∆E0 is some sufficiently

small positive real number.

To sum up, in order to compute the maximum enstrophy growth dE/dt for a given E0,

one has to solve the eigenvalue problem (70) and then proceed with the steepest ascent

scheme (44) repeatedly for increasing values of E0 taking into account all the guidelines

mentioned in this section. Algorithm 1 clearly outlines the entire optimization proce-

40



M.Sc. Thesis - A. A. Sliwiak McMaster University - CSE

dure. Following the continuation approach, for the initial enstrophy E0 + ∆E0 one can

repeat steps 4-7 of Algorithm 1 using ωn(E0) as the initial guess ω∗.

Algorithm 1 Input: E0, Output: max dE/dt

1. Solve eigenvalue problem (70).

2. Choose ω0 from the set of eigenfunctions of (70).

3. Project ω0 onto V .

4. Set ε, dJ .

5. Set n=0.

6. While dJ > ε

i Compute the H1 gradient ∇H1J (ωn) by solving (52), (61) and (63).

ii Compute τn such that

τn = arg max
τ>0

J

(
ωn + τ∇H1J (ωn)

||ωn + τ∇H1J (ωn)||L2

E0

)
,

using Brent’s method.

iii ωn+1 = ωn + τ∇H1J (ωn).

iv Project ωn+1 onto V .

v ∆J = (J (ωn+1)− J (ωn))/J (ωn).

vi ωn = ωn+1.

vii n = n+ 1.

7. max dE/dt := J (ωn).
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5 Computational Results

In this chapter, all computational results, grouped in three categories, will be presented.

Firstly, we will validate the computations, which means that we will check their accuracy

by performing convergence test of certain quantities with respect to different parame-

ters, such as the resolution parameter N , number of iterations in the steepest ascent

algorithm, etc. Secondly, eigenfunctions of (70) corresponding to the first six leading

eigenvalues will be illustrated. Finally, we will focus on the central part of this thesis,

namely the maximum instantaneous enstrophy growth and the corresponding extreme

states of the vorticity. In all numerical experiments, the viscosity parameter ν is fixed

and equals to 1, while the tolerance number ε (vide Algorithm 1) is 10−10. In most

numerical examples, two sets of the results will be presented, one corresponding to the

square domain whose lenght/width is 2 , and the other to the circular domain with the

radius 1. In section 5.3, we will use the phrase ”the nth branch” which refers to the

relation between the maximum enstrophy growth and the initial enstrophy E0, where

the extreme states converge to the nth eigenfunction of (70) as E0 → 0. The quantity

of maximum enstrophy growth will be simply denoted as max dE/dt.

5.1 Validation

Our first numerical experiment is to investigate the convergence of the eigenvalues of (70)

with respect to the resolution parameter N on the square domain. Figure 6 illustrates

the behaviour of the relative error corresponding to the four leading eigenvalues, on

linear-logarithmic scale. This type of axis scaling enables us to examine if the method

exhibits the spectral convergence. We observe that the error decay is not as fast as the
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one in Figure 3, which is a consequence of the matrix modification described in section

4.2. In the case of the circular domain, the convergence rate of the relative error is

comparable to the one in Figure 3.
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Figure 6: Relation of the relative error correspoding to the first four eigenvalues of
(70) with respect and the resolution parameter N on the square domain. Each branch
corresponds to a different eigenvalue.

Another test involves the behaviour of max dE/dt with respect to the number of iter-

ations n. Figure 7 depicts six branches, each corresponds to a different value of the

enstrophy E0. The quantity ∆J marked on the vertical axis is defined in Algorithm

1. A careful analysis of all the branches leads to the conclusion that for higher values

E0, one needs more iterations to obtain the desired accuracy. On the other hand, for

smaller values of E0, after only very few iterations we obtain a solution with the machine

precision.
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Figure 7: Relation of the absolute value of ∆J and the number of iterations n. Each
data set corresponds to a different value of E0.

The final and most important numerical test we would like to perform is the so-called

κ-test. It is a reliable tool to verify if the H1 gradient, which is a central ingredient of

the steepest-ascent algorithm, is computed correctly. The κ-test makes use of both the

definition of the Gateaux differential (42) and the Riesz representation theorem (46).

Thus, given a vorticity field ω and its perturbation ω′, we compute the quantity

κ(ε) =
ε−1(J (ω + εω′)− J (ω))

〈∇H1J (ω), ω′〉H1

, (82)

as a function of the parameter ε. The biggest challenge of the κ-test is to generate

both the functions ω and ω′, since they must satisfy all the requirements listed in (29).

One of the simplest approaches is to solve eigenvalue problem (70) and choose any two

eigenfunctions and one of them will serve as the reference state ω, whereas the other one
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as the perturbation ω′.

Theoretically, in the limit ε → 0, κ(ε) should approach 1. Figure 8 puts together

results of two κ-tests performed on both a square and circular domains. Although

both experiments involve an equal number of grid points, we observe one significant

difference between them. The one corresponding to the circular domain exhibits much

better accuracy, the quantity |κ(ε) − 1| is at least two orders of magnitude lower than

the analogous result for the square domain.
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Figure 8: Comparison of the results of two κ-tests performed on a square domain (left)
and circular domain (right). Both domains involve the same numbers of grid points.
The quantity |κ(ε)− 1|, marked on the vertical axis, reflects the order of magnitude of
the numerical error. In both cases, we selected the second and third eigenfunction of
problem (70) that were used ad ω and ω′ in (82).

Despite the mentioned difference between the two plots in 8, there are a few common

features. We observe that in both cases the error is large for very small values of ε. This

is a clear consequence of the round-off errors that dominate when ε < 10−8. For bigger
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values of ε, on the other hand, the truncation error prevails leading to significant errors

when ε > 10−6.

5.2 Numerical Solution of Eigenvalue Problem (70)

According to Algorithm 1, in order to initiate the steepest ascent algorithm one has

to solve eigenvalue problem (70) first, since an initial guess is needed. As shown in

section 3.3, the set of eigenfunctions of (70) is a good approximation of the solution of

optimization problem in the limit E0 → 0. Moreover, the eigenvalue problem provides

proper candidates for the κ-test.

Figures 9 and 10 illustrate the eigenfunctions corresponding to the leading six eigenval-

ues, computed on the square an circular domains. All the eigenvalues are both real and

positive, which is consistent with the analysis of the algebraic properties of (70) in Ap-

pendix A. We observe that the eigenfunctions associated with larger eigenvalues exhibit

higher variability in space. In Figure 9, we can distinguish two different arrangements of

the vortex cells, aligned and rotated with respect to the domain. A similar observation

was highlighted in [1], where Ayala and Protas studied an analogous problem on a peri-

odic domain for small palinstrophies. As noted in the captions of Figures 9 and 10, there

exist eigenvalues with the algebraic multiplicity of two (and the geometric multiplicity

of one), and their corresponding eigenfunctions are related via a rotation symmetry. All

the eigenfunctions are normalized, such that the constraint (70g) is satisfied.
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Figure 9: Illustration of eigenfunctions associated with the six leading eigenvalues on the
square domain. Their corresponding eigenvalues (truncated to the hundredth decimal
number) are: (a) 20.53, (b) 44.11, (c) 44.11, (d) 60.41, (e) 77.05 and (f) 80.61.
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Figure 10: Illustration of eigenfunctions associated with the six leading eigenvalues
on the circular domain. Their corresponding eigenvalues (truncated to the hundredth
decimal number) are: (a) 29.36, (b) 52.75, (c) 52.75, (d) 81.41, (e) 81.41 and (f) 98.44.
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5.3 Maximum Instantaneous Enstrophy Growth and Extreme

Vortex States

The final section of this chapter is devoted to the numerical results that have been

generated using Algorithm 1. This procedure enables us to compute the maximum

instantaneous enstrophy growth for the given value of enstrophy E0, as well as the

corresponding extreme vortex states. Figure 11 depicts a typical dependence of the

maximum enstrophy growth and intermediate values of E0. We can distinguish two

distinct regimes, I and II, where max dE/dt decreases and increases, respectively. This

is a similar behaviour to what we can observe in the work of Protas and Ayala [1].

Figure 11: Typical dependence of the maximum enstrophy growth max dE/dt on E0

for moderate values of the enstrophy . In this plot, we can distinguish two distinct
behavioral regimes: (I), when the function is decreasing and (II), when we observe an
increasing tendency. This is the fourth branch and corresponds to the square domain.

The dependence of max dE/dt on E0 for small enstrophy values obtained for five different

maximizing branches is presented in Figures 12(a) and 12(b) for the square and circular

domain, respectively.
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Figure 12: Dependence of the maximum enstrophy growth max dE/dt on E0 for small
values of the enstrophy. The plot contains five different branches, on both the square
(a) and circular (b) domains. Their continuation, for large values of E0 is presented in
Figure 13.

Figure 13: Dependence of the maximum enstrophy growth max dE/dt on E0 for large
values of the enstrophy. The plot contains five different branches, on both the square
(a) and circular (b) domains. Their continuation, for small values of E0 is presented in
Figure 12. An upper part of these branches is zoomed in (in the circle), so we could see
their relative arrangement.
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It is clear that in the limit E0 → 0 the branches corresponding to larger eigenvalues are

characterized by smaller values of max dE/dt. However, what distinguishes the two plots

in Figure 12 is the fact that on the circular domain max dE/dt decreases much faster

(even one order of magnitude). Analogously, Figure 13 depicts the continuation of the

same branches for high values of E0, on a logarithmic scale. It features five parallel lines

with the slope 2. We can notice that the relative arrangement of these branches is exactly

the same as in Figure 12. The final question we would like to address in this thesis is:

how do the corresponding extreme vortex states look like? We visualize approximation of

ω̃, obtained in the steepest ascent method (44). Figures 14-16 present six extreme vortex

states on the square domain corresponding to the first, fourth and fifth branch, thanks

to which we can observe how the extreme states change as E0 increases. A characteristic

feature of the extreme states with large enstrophys is the fact that large vortices appear

at all four corners, whereas no structures are visible in the center of the domain. We

observe a similar behaviour in Figures 17-18, which illustrate the extreme vortex states

on the circular domain, for different values of E0. Finally, Figure 19 juxtaposes extreme

vortex states in the limit E0 → 0 with those corresponding to a higher value of E0. We

notice that all the vortices tend to congregate at the boundary, while the number of

the vortices strictly depends on the frequency of the oscillations of the initial guess ω∗.

Regardless of the type of a domain, the extreme states corresponding to low values of E0

do not deviate much, from the qualitative point of view, from the eigenfunctions of (70).

The majority of presented vortex states are highly symmetric, which a consequence of

two facts: first, we consider symmetric domains only (i.e., a square and a unit circle)

and, second, vorticity equation (12) does not involve any terms that might affect this

property. A few vorticity optimizers, for example (b)-(f) in Figure 17 or (b) in Figure

19, do not exhibit this feature, which is a result of insufficient grid resolution.
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Figure 14: Extreme vortex states associated with the first branch, on the square domain.
The illustrated optimizers correspond to the following values of the initial enstrophy E0:
(a) 0.01, (b) 0.1, (c) 5, (d) 20, (e) 50 and (f) 10000.
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Figure 15: Extreme vortex states associated with the fourth branch, on the square
domain. The illustrated optimizers correspond to the following values of the initial
enstrophy E0: (a) 0.01, (b) 0.4, (c) 5, (d) 20, (e) 60 and (f) 10000.
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Figure 16: Extreme vortex states associated with the fifth branch, on the square domain.
The illustrated optimizers correspond to the following values of the initial enstrophy E0:
(a) 0.01, (b) 0.1, (c) 20, (d) 50, (e) 100 and (f) 10000.
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Figure 17: Extreme vortex states associated with the second branch, on the square
domain. The illustrated optimizers correspond to the following values of the initial
enstrophy E0: (a) 0.01, (b) 1, (c) 5, (d) 20, (e) 50 and (f) 10000.
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Figure 18: Extreme vortex states associated with the fifth branch, on the circular do-
main. The illustrated optimizers correspond to the following values of the initial enstro-
phy E0: (a) 0.01, (b) 10, (c) 20, (d) 50, (e) 100 and (f) 10000.
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Figure 19: Extreme vortex states associated with the ninth ((a) and (b)), tenth ((c) and
(d)), and fourteenth branch ((e) and (f)), on the circular domain. Pictures (a), (c), (e)
correspond to the limit E0 → 0, while pictures (b), (d), (f), to E0 = 10000.

57



M.Sc. Thesis - A. A. Sliwiak McMaster University - CSE

6 Final Remarks

In this thesis we proposed an efficient computational approach to find the instantaneous

maximum enstrophy growth in the 2D Navier-Stokes system with respect to the initial

enstrophy E0. To achieve our ultimate goal, we utilized the gradient-based method,

which is a simple numerical tool useful for optimization problems. The biggest challenge

of this project, however, was to find the H1 gradient ∇H1J (ω) of objective functional

(28). We had to pay close attention to the fact that the H1 gradient itself must satisfy

all constraints listed in (29). Moreover, we aimed to develop a method that is relatively

easy to implement. Thanks to the meticulous analytical calculations in Chapter 3, we

managed to derive the H1 gradient satisfying all requirements. The proposed method is

based on numerical computations involving simple elliptic-type problems. Finally, this

procedure is incorporated in steepest-ascent algorithm (44) enabling us to characterize

the maximum instantaneous enstrophy growth. In addition to that, using formal se-

ries expansions, we derived eigenvalue problem (70) that corresponds to the solution

of optimization problem (29) in the limit E0 → 0. Solving (70), we can analyse the

behaviour of the maximum enstrophy growth for small values of E0 and we also provide

a proper initial guess (satisfying all constraints) for the steepest-ascent procedure. An-

other advantage of the gradient-based method is the fact that it prevents us from the

direct coding of elliptic operators, such as those appearing in system of Euler-Lagrange

equations (41). To program the Green’s function, for instance, we would have to apply

sophisticated numerical methods to handle the problem of the singularity.

Algorithm 1 shows all the steps required to compute the instantaneous enstrophy growth

numerically. To discretize all differential operators in space, we used spectral methods
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that guarantee spectral accuracy. Nevertheless, this accuracy is not always achieved

due to different numerical interventions, such as the deletion of corner nodes required to

desingularize the matrix in the case of square domains. To accelerate the steepest-ascent

algorithm, we employed Brent’s method that turns out be very simple to implement.

It reduces the number of iterations to just a few, which makes the whole procedure

computationally efficient.

The core question we asked at the beginning of this study is how much enstrophy a flow

can produce on a bounded domain. Figures 11,12 and 13 answer this question and also

show that the maximum enstrophy growth can be described as,

dE
dt

= CnE2
0 for E0 →∞, (83)

or, alternatively, using the Reynolds number Re0 corresponding to E0,

dE
dt

= C̃nRe
4
0 for Re0 →∞, (84)

where both Cn > 0 and C̃n > 0 denote constants associated with the nth branch.

These constants decrease as n gets bigger. The above observation is consistent with

the statement that there is no blow-up in the 2D Navier-Stokes system. Moreover, the

numerical result affirms another statement, namely that the H1 topology is sufficient

in the study of the boundedness of the maximum enstrophy growth on 2D bounded

domains.

All numerical experiments were performed on both the square and circular domains to

investigate if the shape has any impact on the results. It turned out that there are

some minor differences. One of them can be found in Figure 12, where we observe that

for small E0’s, the values of the maximum enstrophy growth tend to be much smaller

(by even one order of magnitude) on the circular domain than the corresponding values

59



M.Sc. Thesis - A. A. Sliwiak McMaster University - CSE

on the square domain. Another difference involves the extreme states of the vorticity.

In the case of circular domains, for big values of E0, all vortices tend to cluster at the

boundary, while their total number depends on the branch index. On the square domain,

however, there always appear four vortices, one at each corner, regardless on the branch

number. Based on simple algebraic manipulations, we also conclude that the solutions

of eigenvalue problem (70) on the circular domain are separable, which means that they

can be written as a product of two independent functions, e. g.

ω1(r, θ) = R1(r)T1(θ), (85)

where T1 is a simple trigonometric function, while R1 belongs to the family of Bessel

functions. This characteristic is clearly visible in Figure 10 and resembles the one in

the 2D Stokes system. Another aspect we would like to highlight is the fact that on the

circular domain there exists a continuous family of eigenfunctions parametrized by an

arbitrary rotation angle. It means that if we rotate the solution presented in 10 by an

arbitrary angle, the obtained vorticity field will still be a solution of eigenvalue problem

(70). The orientation of all function maps on the circular domain strictly depends on

the method of spatial discretization.

There exist a few analogies between our results and those presented by Ayala and Protas

(in [1]), who performed a similar study on periodic domains. First of all, the solutions of

the optimization problem in the limit E0 → 0, as shown in Figures 9 and 10, exhibit two

types of vortex arrangements, aligned and rotated with respect to the domain. More-

over, the relation between the maximum enstrophy growth and the initial enstrophy

E0 (vide Figure 11) features two distinct regimes; first, for small values of E0 when the

function decreases and, second, corresponding to moderate and large values of E0 when

it increases.
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Although this project is considered to be very successful, both from the mathematical

and numerical points of view, there are still a lot of aspects that should be further anal-

ysed. There is still a shortage of rigorous mathematical proofs or estimates involving

cases with bounded domains. It means that at present none of the results presented

in Chapter 5 can be supported by corresponding analytical estimates. Furthermore, an

analogous analysis in the three-dimensional space would provide us an insight into the

enstrophy production process in the 3D space. Lastly, it is desirable to improve cer-

tain parts of Algorithm 1, to make it even more computationally efficient. The biggest

limitation of the proposed procedure is the fact that it is sometimes complicated to

compute a full branch of the relation max dE/dt vs. E0 (vide Figure 11 or 13). Since

the optimization problem (29) is nonconvex, in the actual continuation process we ob-

serve characteristic discontinuous ”jumps” from one branch to another and sometimes

it is required to manually refine the E0 grid to avoid this phenomenon. Therefore, the

process of generating a branch requires a few numerical attempts or, sometimes, it is

recommended to apply the backward continuation technique. A full automation of the

branch generating procedure would certainly save our time.

This thesis is focused on the methodology enabling us to optimize the maximum en-

strophy growth in the 2D Navier-Stokes system on bounded domains at t = 0 only.

What do these results imply about solutions for t > 0? To answer this question, one

would have to modify the proposed technique, which would involve the solution of the

vorticity-streamfunction system over time. Another interesting computational tool that

might used in the study of the extreme behaviours in the Navier-Stokes system is shape

optimization. This approach can be used to find the optimal domain shape on which

the cost functional is maximum and all constraints are satisfied. Undoubtedly, these are

just two of a few scientific goals for the future, that will help us to better understand

the phenomenon of enstrophy production.
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A Algebraic Properties of the Linear Operator As-

sociated with (70)

The purpose of this section is to take a closer look at the PDE operator associated

with (70), here denoted as D. To shorten the notation, we will denote f̃ = [ω, ψ, g, f ]T .

Firstly, we will check if the linear operator is symmetric, which can be proven by showing

that the following identity is true:

〈
Df̃1, f̃2

〉
L2

=
〈
f̃1,Df̃2

〉
L2

, (86)

where f̃1 = [ω1, ψ1, g1, f1]T and f̃2 = [ω2, ψ2, g2, f2]T . The LHS of (86) will be further

denoted as A, while the RHS as B. Therefore, using the equations of (70) and integrating

them by parts, we obtain

A =

∫
Ω

(−2ν∆ω1 − g1)ω2 + (−ω1 −∆ψ1)ψ2 −∆g1g2 −∆f1f2dΩ

=

∫
Ω

(−2ν∆ω1 − g1)ω2dΩ = λ0

∫
Ω

ω1ω2dΩ,

(87)

and, analogously,

B =

∫
Ω

(−∆ω2 − g2)ω1 + (−ω2 −∆ψ2)ψ1 −∆g2g1 −∆f2f1dΩ

=

∫
Ω

(−∆ω2 − g2)ω1dΩ = λ0

∫
Ω

ω2ω1dΩ,

(88)

which means that

A = B, (89)

and, therefore, the operator D is symmetric. This conclusion implies D admits real

eigenvalues only.
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Another important aspect that we want to study is the sign-definiteness of D. One

can use exactly the same methodology as above to investigate the sign of the following

quantity, 〈
Df̃ , f̃

〉
L2

= C, (90)

which leads to,

C =

∫
Ω

(−∆ω − g)ω + (−ω −∆ψ)ψ −∆gg −∆ffdΩ

=

∫
Ω

(−∆ω − g)ωdΩ = λ0

∫
Ω

ω2dΩ = λ0

(91)

It is now clear that the value of C does not depend on any of the functions in f̃ , but

only on the parameter (eigenvalue) λ0. This observation means that the operator D is

sign-definite.
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