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Abstract

Cognitive radio had been proposed as a methodology for over-coming the inefficiency

of the conventional static allocation of the available spectrum in wireless communi-

cation networks. The majority of opportunistic spectrum access schemes in cognitive

radio networks (CRNs) rely on the Listen-Before-Talk (LBT) model due to the half-

duplex nature of conventional wireless radios. However, LBT suffers from the prob-

lem of high collision rates and low secondary user throughput if time is misaligned

among the secondary users (SUs) and the primary users (PUs). This problem can be

mitigated by leveraging full-duplex (FD) communications that facilitate concurrent

sensing and transmission. This thesis considers the problem of optimal opportunistic

multi-channel spectrum sensing and access using FD radios in the presence of un-

certain primary user (PU) activity statistics. A joint learning and spectrum access

scheme is proposed. To optimize its throughput, the SU sensing period has to be

carefully tuned. However, in absence of exact knowledge of the PU activity statistics,

the PU’s performance may be adversely affected. To address this problem, a robust

optimization problem is formulated. Analysis shows that under some non-restrictive

simplifying assumptions, the robust optimization problem is convex. The impact

of sensing periods on the PU collision probability and the SU throughput are ana-

lyzed, and the optimal sensing period is found via convex optimization. An ε-greedy
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algorithm is proposed for use by the SU to learn the PUs’ activity statistics in multi-

channel networks. It is shown that sublinear regrets can be attained by the proposed

estimation and robust optimization strategy. Simulation studies demonstrate that

the resulting robust solution achieves a good trade-off between optimizing the SU’s

throughput and protecting the PU.
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Chapter 1

Introduction

1.1 Overview

With the explosive growth in wireless data demand, spectrum scarcity has emerged

as a primary problem for wireless service providers. Meanwhile, numerous studies

conducted by agencies such as the Federal Communications Commission (FCC) in

the United States have shown that much of the licensed spectrum remains unoccupied

for long periods of time [2]. This has motivated the development of cognitive radio

(CR) systems to efficiently exploit the under-utilized spectrum. CRs or secondary

users (SUs) are wireless devices that can intelligently monitor and adapt to their

environment and, hence, they are able to share the spectrum with the licensed primary

users (PUs), operating whenever the PUs are idle. The key components of CR systems

are mechanisms for spectrum sensing and spectrum access. Spectrum sensing allows

the SUs to learn their environment prior to spectrum access, which is when the SUs

actually transmit their data. Many existing opportunistic spectrum access solutions

have been developed for radios that are half-duplex. To avoid excessive interference to
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OFFPU ON OFF ON
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Figure 1.1: The misalignment problem

the PUs, an SU needs to first sense the availability of a selected channel for some time

before commencing with transmission. This is known as the Listen-Before-Talk (LBT)

model. However, LBT may suffer from the problem of time misalignment resulting

in high collision rates and low PU throughput [3]. Consider the illustrative example

in Figure 1.1, where “ON” and “OFF” indicate when the PU or the SU is active and

inactive, respectively. In the example, the SU’s first sensing period partially overlaps

with the inactive period of the PU. As a result, the SU will start its transmission

once it has sensed that the PU is idle. In reality, however, its transmission collides

with that of the PU. The second sensing period partially overlaps with the active

period of the PU. Consequently, the SU decides to refrain from transmitting the

next frame while in reality it could have taken advantage of the idle spectrum. To

resolve this problem, the best option is for the SU to sense and transmit at the same

time. Recently, there has been significant progress in the development of full-duplex

(FD) radios [4] that allow a device to transmit and receive at the same time over

the same frequency by combining different self-interference cancellation techniques.

In addition to potentially doubling the wireless capacity [5], we see that FD can

also be leveraged to resolve the afore-mentioned misalignment problem as the SU can

continue to sense the spectrum during its transmission. We find both analytically and

3
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through simulation studies that the length of sensing/transmission periods in FD CR

remains a critical parameter to be tuned in order to optimize the SU’s throughput,

and that the optimal sensing period depends on the PU statistics. These statistics

are unknown to the SU and the SU needs to estimate them online.

In scenarios where there are multiple accessible channels with unknown PU activ-

ity statistics, a sequential learning approach that estimates the PU channel statistics

while performing spectrum access is warranted. In sequential learning, an agent needs

to make decisions in face of incomplete knowledge. Necessarily, there is a tension be-

tween operating on the best known channel and learning the availability of other

PU channels, resulting in an instance of the so-called exploration and exploitation

trade-off.

We will address this tradeoff in the development of a multi-channel opportunistic

spectrum access scheme using FD radios under uncertainty in the PU statistics. We

limit this study to a basic scenario, in which the SU transmitter-receiver pair com-

municate with one another by opportunistically accessing one of many PU channels.

Multiple access schemes where multiple SUs access the same channel can be developed

on top of the proposed approach and will be considered in our future work.

In our proposed spectrum access scheme, the SU operates at two time scales. At

the micro time scale, the SU switches between sensing-only (SO), receiving-only (RO)

and sensing-and-transmit (ST) states as dictated by the Sensing-and-Selectively-

Transmit (SaST) protocol that we propose herein. At the macro-scale, which is

of the same order of the PU state changes, the transition of the SU among PU chan-

nels is governed by a sequential learning policy. The efficiency of different sequential

learning policies is measured in terms of their associated regret. Regret is defined

4
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as the difference between the expected payoff gained by a “genie” (an unattainable

ideal) who always uses the optimal scheme, and that obtained by the given policy.

1.2 Thesis Contributions

A closed-form analytic model is derived to characterize the impact of the sensing

period and the PU idle probability on both the collision probability with the PU and

the SU’s throughput. To maximize the SU throughput while ensuring that the PU’s

performance is not adversely affected, we formulate a constrained robust optimization

problem that accounts for the uncertainty in the SU’s knowledge of the PU’s statistics

in the single channel case. We also develop a methodology based on sufficient statistics

that enables the SU to learn the PU’s statistics over time. We prove that under

mild relaxation, such an optimization problem is convex, and hence can be efficiently

solved. We also prove that its solution asymptotically converges to the optimal one.

In the multi-channel scenarios, we devise a joint learning and spectrum access

policy using the solution to the robust optimization problem as a building block. In

contrast to the analysis in [6–8], which is based on an idealized model of no sensing

errors, the incorporation of spectrum sensing errors into our model results in sub-

optimal throughput (and thus regret) even when the best channel is being accessed.

This complicates the analysis of regrets. We show through rigorous analysis that the

proposed scheme converges to the optimal solution incurring sublinear regrets. Ex-

tensive evaluation studies show that the theoretical model agrees with the simulation

results, and the proposed algorithm provides a good trade-off between optimizing the

SU’s throughput and protecting the PUs. To the best of our knowledge, this is the

first work that considers joint learning PU statistics and optimal control of the SU’s

5
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protocol parameters in a constrained setting. Our work makes the following new

contributions.

• First, we formulate the single-channel robust optimal spectrum access problem

under SaST with uncertainty in the SU’s knowledge of the PU statistics and

prove its convexity under mild assumptions.

• Second, we propose a joint learning and spectrum access policy for FD radios

that takes into account unknown PU activities and spectrum sensing errors and

operates on multiple channels.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we first present definitions

for CR, challenges that CR faces, spectrum sharing models, classifications of CR and

the main functions of CR. We also introduce spectrum sensing and briefly discuss

different spectrum sensing techniques. Then we discuss FD wireless communication

in more detail. Research works related to FD communication and spectrum access

schemes in cognitive radio networks (CRNs) are summarized. In Chapter 3, we discuss

the proposed system model, assumptions, and the proposed learning and spectrum

access strategy using FD radios. The performance of the SaST protocol is analyzed

and the optimal spectrum access is formulated as a convex optimization problem for

a single channel CRN in Chapter 4. In Chapter 5, we extend the problem formulation

to the case of multi-channel CRNs. We also introduce the proposed strategy used to

learn the PUs’s activity statistics and analyze its performance. Finally, we conclude

and discuss some future work in Chapter 6.
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Chapter 2

Background and Related Work

In this chapter, we present background information on CRs and FD radios, and closely

related work in literature.

2.1 Cognitive Radio

With the exponential growth of wireless devices and the prevalence of various radio

technologies, e.g. cellular communication, WiFi, Bluetooth, the scarcity of wire-

less spectrum has arisen as a dominant problem in wireless communication. Under-

utilization of licensed spectrum motivated the development of CR systems. In CR,

PUs are licensed users and can use the spectrum at any time. SUs transmit when the

PUs are not active. FCC mandates that the negative impact of SUs on PU operations

should be minimized. This is often accomplished by spectrum sensing and dynamic

spectrum access (DSA).

7
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2.1.1 Main Functions of Cognitive Radio

The cognitive cycle for DSA is shown in Figure 2.1 and has three main parts [1].

1. Spectrum analysis: For this task, a CR analyzes the spectrum to collect infor-

mation about which channels are used and which are vacant. It also tries to

identify each channel’s capacity and maximum transmission rate.

2. Channel selection: After identifying vacant channels and their capacities, a CR

chooses the channel that is best fit to its desired Quality of Service (QoS).

3. Controlling the transmission power and spectrum management: Having iden-

tified the best channel and its characteristics, the CR tunes its transmission

settings to avoid interfering PUs or other SUs. It also keeps monitoring the

channel in case it becomes unavailable.

2.1.2 Cognitive Radio Challenges

From the discussion above, one can see that an SU needs to be able to detect spec-

trum holes (unused frequency channels), use them when vacant, detect when a PU

tries to use the bandwidth, and either hop to another spectrum or stop transmitting

altogether when that happens. The fact that an SU is an unlicensed user means that

PU’s quality of service (QoS) may be negatively affected. To reduce this effect, SUs

are required to detect the presence of a licensed user even at low signal-to-noise ratios

(SNR), which is proven to be a challenging task to achieve [9], [10]. Furthermore,

since SUs try to access the same channel at the same time, contention will ensure.

This would degrade the overall efficiency of spectrum usage.

8
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Figure 2.1: Cognitive cycle for dynamic spectrum access (DSA) [1]

2.1.3 Spectrum Sensing

According to the IEEE 802.22 standard an SU needs to achieve 0.9 probability of

detection, and must be able to vacate the channel within two seconds in case a PU

starts using it. This implies that continuous sensing is needed to determine if a PU is

using the channel. Therefore, spectrum sensing is at the heart of CR systems. There

are three main approaches: energy detection, feature detection and matched filter

based detection.

9
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2.1.3.1 Energy Detector

An energy detector (ED) samples the received signal from the PU channel, and takes

a decision based on the energy of the signal. ED is usually used when little or no

information is available regarding the waveform of PU’s signal. It is easy to imple-

ment. However, if the information about the noise is not available, the performance

of energy detection based spectrum sensing becomes unpredictable. Moreover, ED

can not differentiate whether the signal comes from legitimate PUs and other SUs

making it susceptible to emulation attacks [11].

2.1.3.2 Feature Detector

For many PUs, there are often specific features associated with the PUs’ transmitted

waveforms. These features can help the SU differentiate between noise or other SUs’,

and PUs’ signals. For instance, in a cyclostationary feature detector, cyclostationary

features such as a cyclic prefix, suffix, or the carrier frequency can be utilized. This

type of detector has the advantage that it can easily differentiate between noise and

PU signals because the former does not include any cyclic information [12], [13].

2.1.3.3 Matched Filter Detector

When the PU’s transmitted signal and/or modulation scheme is/are known, the

matched filter detector is the best detector [14]. This is due the fact that matched

filters have faster response and are easy to implement. However, such information

is not always available. One work around is to implement a matched filter for each

modulation type (resulting in increase in system complexity), or to provide the SUs

with limited information about the PUs under a certain regulating body.

10
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PU Frame1 PU Frame2 PU FrameN

τ T − τ

Figure 2.2: LBT Protocol

2.1.4 The Listen Before Talk Protocol

Many existing CR systems employ the so-called listen before talk (LBT) protocol

for DSA as illustrated in Figure 2.2. In this protocol, an SU listens to (senses) the

spectrum for a specific periodic interval of time (τ), and then talks (transmits) or

remains silent (stays idle) for another interval of time (T − τ) depending on the

outcomes of spectrum sensing. The larger the sensing period is, the more the SU

is certain of its decision about the presence of PUs and hence less interference to

the PUs. However, this means that much time is wasted just for the sensing. To

maximize the SU’s throughput, a smaller value for τ is desirable as it increases its

data transmission time. Therefore, in LBT, there exists a trade-off between protecting

PUs and maximizing spectrum efficiency [15], [16].

11
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Figure 2.3: Full-duplex wireless communications

2.2 Full-Fuplex Wireless Communications

All commercial radios can transmit and receive simultaneously over two different

frquency bands or transmit and receive over the same frequency but at different times.

Recently, there has been significant progress in the development of FD radios [4], [17]

that allow a device to transmit and receive at the same time by combining passive

and active SIC techniques. Due to its potential to double the spectrum efficiency, FD

communication is considered one of the candidate technologies for 5G and 802.11ax

networks [5].

2.2.1 Self Interference Cancellation (SIC)

The main challenge faced in the implementation of FD wireless communication is the

huge difference between the self-interference (SI) power resulting from the wireless

device’s own transmission and the power of the signal of interest received from another

wireless device. The SI power as measured in some experiments was 50-100 dB

higher than the power of the received signal of interest. The FD receiver receives the

combination of the SI and the signal of interest. Intuitively speaking, if the receiver

subtracts its own transmitted signal from the received combination, the resulting

12
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Figure 2.4: Different SIC techniques

signal should be the signal of interest. However this is difficult to implement in

practice for to two reasons. First, the magnitude of the received signal could be

too large due to the high SI power, causing saturation to the receiver’s amplifier.

Second, the high power of the SI signal compared to the received signal of interest,

the automatic gain control (AGC) will be driven by the SI signal. In conventional

digital receiver implementations, this can lead to high quantization noise on the signal

of interest [18].

Therefore, it is important for an FD receiver to reduce SI prior to decoding the

signal of interest. This process is called self-interference suppression (SIS). SIC aims

to model the distortions of the received SI signal from the its original transmitted

signal. Using those models, the FD receiver can compensate for those distortion.

SIC techniques can be classified into passive SI suppression (PSIS) and active SI

cancellation (ASIC), as shown in Figure 2.4. In the rest of this section, we give a

brief introduction to different SIS schemes.
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TX1 RX TX2

d d + λ2

Figure 2.5: λ/2 based antenna cancellation

2.2.1.1 Passive Self Interference Suppression (PSIS)

PSIS aims to decrease the power of the propagated electromagnetic signal by electro-

magnetically isolating the transmit antenna(s) (TA(s)) from the receive antenna(s)

(RA(s)) of the same node. This reduces the received power of the SI signal at the

RAs [19]. There are various PSIS techniques including antenna separation, antenna

cancellation, antenna polarization and directional antenna based suppression.

Antenna Separation In an FD node that has separate TAs and RAs, the path-loss

between TAs and RAs can be simply increased by increasing the distances between

those antennas. Around 40 dB of SI suppression can be achieved if antennas were

separated by 30 cm [20]. Despite the simplicity of this approach, it is limited by the

size of the device. Smaller form factor will limit the separation distance more and

hence the achievable suppression.

Antenna Cancellation With antenna cancellation, multiple TAs are used to make

the transmitted images of the signal add destructively at the RA. This can be achieved

by two ways:

λ/2 based antenna cancellation In this technique, two TAs and one RA are

used. The TAs are placed such that the distance from the two TAs to the RA are

14
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Figure 2.6: Symmetry based antenna cancellation

d and d + λ/2, where λ is the wavelength of the center carrier frequency. When the

singals transmitted from both antennas are in phase, this result in the two signals

arriving at the RA 180◦ out-of-phase. Hence adding destructively as illustrated in

Figure 2.5. In [21], the authors showed that this approach can achieve up to 30 dB

of SIS. Nonetheless, due to the dependency of this approach on the value of λ, it can

be only applied to narrowband signals.

Symmetry based antenna cancellation This technique can be applied to

both narrowband and wideband signals as it does not depend on λ. Proposed by the

author of [22], the phase shift is done internally such that two copies of the singal

feeding the two TAs are 180◦ out-of-phase as illustrated in Figure 2.6. It was shown

in [23], that this approach can achieve up to 30 dB of SIS.

Antenna Polarization In this technique, the antennas of an FD node can be

designed so that it only transmits vertically polarized signals while receiving only

horizontally polarized ones. Based on the results shown in [24], this can help achieve
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up to 15 dB of SIC.

Directional Antenna More passive SIS can be achieved using beamforming and/or

directional antennas. This can be done through aligning the null direction of the TA

towards the RA, as discussed in [25].

2.2.1.2 Active Self Interference Cancellation (ASIC)

PSIS techniques alone, are not sufficient for bringing the SI power down to the noise

floor level. Hence, more powerful techniques are required. In ASIC, one exploits the

knowledge of the transmitted signal to suppress it. To do so, one first estimates the

SI channel and uses the knowledge of the transmitted signal to subtract the estimate

from the received signal at the receiver. ASIC can be implemented in both the analog

and digital domains as will be discussed below.

Analog Active Self Interference Cancellation Analog active self interference

cancellation (AASIC) is performed in the analog domain, i.e. before the analog-

to-digital converter (ADC) at the receiver. Based on where the reference signal is

selected we can classify AASIC techniques into:

Post-mixer Analog Cancellation In this case, the cancellation signal is gen-

erated by by applying the RF transmitted signal after the mixer to a tapped delay line

that emulates the SI channel. An example of post-mixer cancellation was proposed

in [17]. The configuration of the canceller proposed in [17] is illustrated in Figure 2.7,

where the blocks marked di are constant delays and the parameters ai are tuned by

a control algorithm that aims to minimize the undesired signal. It was shown in [4]
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Figure 2.7: The post-mixer canceller, where PA stands for Power Amplifier and LNA
is the Low Noise Amplifier

that this SIC scheme can achieve up to 45 dB of SI for a 10 MHz WiFi signal.

Pre-mixer Analog Cancellation In analog pre-mixer cancellation, the trans-

mitted data is used to generate the analog cancellation signal [20]. Figure 2.8 illus-

trates the scheme, where c1 is the cancellation signal that will be sent through an

additional transmitter radio. It has been shown in [19] that this scheme can achieve

up to 31 dB of SIC.

Baseband Analog Cancellation In baseband analog cancellation, the cancel-

lation signal is generated in baseband and the cancellation is done in baseband [26], [27].

A block diagram of a baseband analog canceller is illustrated in Figure 2.9. The au-

thors of [26] showed experimentally that this scheme can achieve more 10 dB of SIC.
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Figure 2.9: Baseband analog canceller

Digital Active Self Interference Cancellation This SIC scheme operates in the

digital domain after the ADC at the receiver using the transmitted data as a reference

signal, as shown show in Figure 2.8 and Figure 2.9. Operating in digital domain is

advantageous as it requires less complex circuits than in analog domain. To perform

digital cancellation, the cancellation circuit needs first to estimate the SI channel.

The transmitted data are then processed using the channel estimate to generate the
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samples to be subtracted from the received data. In [4], digital cancellation was

implemented using the least square algorithm for channel estimation, due to its low

complexity. In this case, the channel is the combination of the wireless channel

and the analog cancellation circuit effects. The authors of [4] showed that their

implementation could achieve 25-30 dB of digital cancellation on a 10 MHz WiFi

signal.
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2.3 Related Work

In this section, we discuss related work in CRNs and FD wireless communications.

2.3.1 Full-Duplex for Cognitive Radio

The idea of using FD techniques in CRNs has attracted a lot of interest recently [28].

In [29], [30], a Listen-and-talk (LAT) protocol was proposed with the help of the FD

technique that allows SUs to simultaneously sense and access the vacant spectrum. In

LAT, an SU switches between a sensing-only state, and a sensing-and-transmit states

in close synchronization with the PU’s activities. In [31], Cheng et al. considered the

use of FD to allow non-time-slotted transmission of SUs, as an FD SU can abort the

transmission when it senses the presence of a PU.

In [32], Afifi and Krunz considered an SU that can operate in either simultaneous

transmit-and-sense mode or the simultaneous transmit-and-receive mode following a

brief sensing period, and proposed an optimal mode-selection strategy that maximizes

the SU’s utility function subject to a constraint on the PU collision probability. In

[33], it is assumed that the active/idle periods of different PU channels are identically

distributed and are known beforehand through measurements. An SU switches to

a different PU channel when the PU on the current channel is very likely to be

busy. In [34], a MAC protocol was proposed for multichannel non-time-slotted CRNs.

It is assumed that the PU also senses the spectrum before transmission to avoid

collision. The SU alternates between FD and HD modes and uses FD in the absence

of synchronization between the PU’s and SU’s frames. The proposed MAC protocol

in [34] maximizes the channel utilization of the SUs in multi-channel settings without

compromising PU throughputs. In our work, we aim to protect the PU without the
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need for the PU to sense the spectrum.

2.3.2 Sequential Learning for Multi-channel CR

The problem of opportunistic spectrum access is similar to the multi-arm bandit

(MAB) problem [35]. The MAB problem has been extensively investigated in the

sequential learning literature. In the MAB problem, a gambler needs to decide the

sequence of plays among a row of slot machines. The gambler’s objective is to maxi-

mize the total reward earned through the sequence of played machines. In our case,

the gambler is the SU and the slot machines are the PUs’ channels. Several authors

have investigated learning strategies to maximize the payoff to the SUs by choosing

the order of PU channels to access.

Zheng et al. illustrated the theoretical foundation of the MAB problem and dis-

cussed its applications in the context of radio resource management [36]. Lai et al.

applied the upper confidence bound 1 (UCB1) algorithm [37] to single SU channel

selection and later extended it to consider Markovian payoffs for the case of multi-

ple SUs in [7]. Liu and Zhao [8] formulated the problem of SU channel selection as

a decentralized MAB problem, and presented a policy that achieves asymptotically

logarithmic regret (defined as the difference between the throughput attainable over

the best channel and that attained by the proposed policy) in time. Anandkumar [6]

proposed two policies for distributed learning and access which achieve order optimal-

ity in terms of regret. In addition to learning the channel availability, the SUs also

learn the other users’ strategies and the total number of users in the system through

channel feedback.

Kalathil et al. proposed in [38] an online learning algorithm for multiple SUs in
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CRNs. The potential for collision among SUs picking the same channel is considered.

The learning scheme in [38] is decentralized and the SUs do not coordinate in accessing

a channel. The proposed learning algorithm was found to achieve a regret that is

logarithmic in time. Existing work applying the principles of the MAB problem to

full duplex cognitive radios assumes perfect sensing where an SU can always correctly

sense whether a PU channel is available or not. Furthermore, only HD communication

is allowed. In our work, we will use an ε-greedy algorithm [39] under the assumption

of imperfect sensing and the use of FD.

2.3.3 Uncertainty in the knowledge of PU parameters

To be able to operate in a CRN, an SU needs to estimate a lot of parameters. These

parameters include noise level, PUs’ activity rates and channel gains between the SU

and the PUs. In [40], [41] and [42], the effect of noise uncertainty on the performance

of energy detectors in PU detection was discussed. Statistical modelling of the un-

certainty and performance bounds for the probability of detection were investigated.

The authors of [43], examined the generalized energy detector, where the squaring

of amplitude of received samples in conventional energy detector is replaced by an

arbitrary positive operator. It was shown that the conventional energy detector is

the best energy detector under noise uncertainty. In [43], the SNR wall, defined as

the SNR threshold below which it is impossible to satisfy a given detection require-

ment, was derived for the generalized ED in case of noise uncertainty. In [44], a

robust optimization problem for SU power control was formulated to maximize the

SU’s throughput and limit the interference to PUs under the uncertainty in the PUs’

locations. However, to the extent of our knowledge, we are the first to consider the
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effect of uncertainty in the SU’s knowledge of the PU’s activity statistics.
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Chapter 3

System Model and SU Strategy

SU2 SO SO SO SO SO RO RO ST RO RO ST ST SO SO SO 

SU1 SO SO SO SO SO ST ST RO ST ST RO RO SO SO SO 

PU ON OFF OFF ON 

RO 

ST 

Figure 3.1: The SU to SU communication

To establish a model for the system of interest, consider a setting in which multiple

PUs operate on K different channels K = {1, 2, . . . , K}. The occupancy of channel

k ∈ K is assumed to follow a slotted Bernoulli process with an (unknown) parameter

θk (called the idle probability) and a frame duration T . While the parameter θk is not

known to the SU, the SU can estimate θk using past observations. The SU can utilize

an FD radio to sense and transmit at the same time. The SU can be in one of three

states: SO (sensing-only) state, RO (receive-only) and ST (sensing and transmitting)

state. As the names suggest, in the SO state, the SU only senses the channel; in the

RO state, the SU only receives the data transmitted from another SU; and in the
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ST state, the SU senses the PU’s channel and transmits to another SU on the same

channel at the same time. The transmitting SU is the one responsible for sensing the

PU’s channel it is currently using.

The communication between two SUs is illustrated in Figure 3.1. In the RO and

SO states, the SU uses HD. The SU uses FD only when it is in the ST state. As the

ST and RO states can not exist in the same SU at the same time, we only consider

SO and ST states in our modelling. Hence, we will not mention the RO state for the

rest of this thesis.

3.1 SU Strategy

In CR, the SU should operate transparently to the PU. Hence, the SU should not

assume any sort of coordination with the PU. In addition, in order to ensure that

the PU’s communication quality is not significantly affected, we restrict the collision

probability with the PU to be within acceptable levels. We assume that the SU

can estimate the boundaries of the PU’s frames and exactly know their duration T .

However, it does not have to be perfectly synchronized with it. At the beginning of

a PU frame, the SU needs to make two decisions.

• Which PU channel in K to operate on, and

• What is the sensing and transmission slot duration τ .

Clearly, the SU should try to operate on the channel that will maximize its

throughput. However, in absence of the exact knowledge of PU channel statistics,

a sequential learning strategy needs to be adopted that updates the estimates of θk
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Figure 3.2: The SU activity modelled as a two-state machine

Figure 3.3: PU Frames vs. SU slots

and selects a channel in each frame. In Chapter 5, we adopt the ε-greedy policy for

MABs [37] as our sequential learning strategy.

Upon selecting a PU channel, the SU starts from the SO state. After sensing the

channel for a duration τ , depending on its detection of the currently accessed PU

channel state (busy or idle), the SU either stays in the SO state or transits to the

ST state for the next slot. It stays in this state for a further duration τ . In the

ST state, it both senses and transmits simultaneously. The process is then repeated.

The state transitions of the SU within one frame are illustrated Figure 3.2. We call

this scheme the Sensing-and-Selectively-Transmitting (SaST) protocol. We will start

by developing the SaST protocol for a single PU channel. Then, in Chapter 5, we

will generalize the SaST protocol for the multi-channel case. In summary, the SU

operates on two time scales: frames of size T , which coincide with that of PUs for

channel selection; and slots of size τ < T for transitions between the SO and ST
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states (Figure 3.3). The rationale behind this protocol is that the switching delay

between transmitting and receiving states in typical wireless devices is much faster

(tens of nano-seconds or less) than switching between channels, which may take up to

several milliseconds. The key notations used in the rest of the thesis are summarized

in 3.1.

Table 3.1: Key notations

Symbol Definition

T PU frame duration
τ SU slot duration
γ Ratio of the PU’s signal power and the noise power at the SU
fs Sampling frequency
Pd Probability of detection
Pf Probability of false alarm
Pc Probability of collision
η Decision threshold
θk The probability that PU k is idle
λ SU throughput
P̄c Maximum allowable collision probability

C0(C1) SU throughput in absence of (with) PU transmissions

3.2 PU Detection

The SU uses energy detection to sense the presence of PUs. We refer to the situation

when the PU is idle as hypothesis H0, and the situation when the PU is active as

hypothesis H1. Under hypothesis H1, the discrete signal received at the SU can be

represented as

y(m) = s(m) + u(m), (3.1)
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where y(m), s(m) and u(m) are the amplitudes of the mth sample of the total received

signal, the (scaled version of the) PU’s signal and the noise signal received at the SU

receiver, respectively. Under hypothesis H0, the discrete signal received at the SU

can be represented as

y(m) = u(m). (3.2)

In hypothesis testing, a test statistic is a qauntity derived from the samples used to

decide to support either H0 or H1 [45]. For energy detection, the test statistic is [46],

M =
1

dτfse

dτfse∑
m=1

|y(m)|2, (3.3)

where τ is the sensing duration and fs is the sampling frequency. Typically, many

samples would be taken in each sensing duration, and hence, fs � 1
τ
. As energy

detection is a threshold-based detection, the probability of false alarm Pf and the

probability of detection Pd can be written as,

Pf = Pr(M > η|H0), (3.4)

and

Pd = Pr(M > η|H1), (3.5)

where η ≥ 0, Pr indicates the probability and η is the detection threshold. Ta-

ble 3.2 summarizes the various probabilities of interest. In frequency-flat additive

white Gaussian noise (AWGN) channels with zero-mean circularly symmetric com-

plex Gaussian (CSCG) noise and complex-valued PSK signals, the probability of

detection is a function of the sensing duration τ and the decision threshold η [46],
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Table 3.2: Probabilities of Interest

P (H0|H0) = 1− Pf The probability that the SU observes that the PU is idle
given the PU is idle.

P (H0|H1) = 1− Pd The probability that the SU observes that the PU is
idle given the PU is active (also called the probability of
misdetection Pm).

P (H1|H0) = Pf The probability that the SU observes that the PU is
active given the PU is idle (also called the probability of
false alarm Pf ).

P (H1|H1) = Pd The probability that the SU observes that the PU is
active given the PU is active (also called the probability
of detection Pd).

namely,

Pd(η, τ) = Q
((

η

σ2
u + σ2

i

− γ − 1

)√
τfs

2γ + 1

)
, (3.6)

where σ2
p, σ

2
i and σ2

u are the received PU’s signal power, the residual self-interference

power and the noise power at the SU’s receiver, respectively. The term γ =
σ2
p

σ2
u+σ2

i

is the signal-to-noise-plus-residual-interference ratio (SNRIR) of the received signal

under hypothesis H1. The notion Q denotes the standard Q-function [47]. The

probability of false alarm is given by

Pf (η, τ) = Q
((

η

σ2
u + σ2

i

− 1

)√
τfs

)
. (3.7)

When the SU operates in the SO state, σ2
i = 0. Therefore, when the SU operates

in the ST mode, the SI power depends on the used self-interference cancellation

(SIC) techniques used. Recent research shows that the self interference power can

be reduced to or below the noise floor [48], [49] and [50]. However. in this thesis we

assume perfect SIC, i.e. σ2
i = 0 and γ =

σ2
p

σ2
u

in both ST and SO states. The effects of

the SI residual power will be considered in our future work.
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As γ ≥ 0, the argument of the Q-function in (3.6) is always less than the corre-

sponding one in (3.7). As the Q-function is monotonically decreasing function with

its argument, we have that Pd(η, τ) ≥ Pf (η, τ).

To guarantee a specific level of protection for the PU, we can set the probability

of detection to a fixed value Pd = P̄d. For a given τ , we can compute η as,

η = σ2
u

(
1 + γ +Q−1(P̄d)

√
2γ + 1

τfs

)
. (3.8)

The resulting false alarm probability is

Pf (τ, P̄d) = Q
(√

2γ + 1 Q−1(P̄d) + γ
√
τfs

)
. (3.9)

3.3 The SaST protocol in a single channel network

with known PU idle probability

The duration τ for which the SU senses (and transmits) is critical to the performance

of both the SU and the PU. A smaller τ incurs larger false alarm and misdetection

probabilities. Misdetecting an active PU causes collisions with the PU, while false

alarms reduce the attainable throughput of the SU. Thus, τ needs to be chosen

to maximize the secondary user throughput subject to the constraint on collision

probability.

To find the optimal τ , in this section, we first provide an analytical characterization

of the SU throughput and the PU collision probability constraint given the PU idle

probability under the SaST protocol. First we will derive the formula for the simplest

case of one SU and one PU. Then, we will generalize the formula for multiple PUs in
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Chapter 5. For simplicity, we will remove the subscript k from θk for the single PU

channel case in the rest of this chapter and in Chapter 4.

3.3.1 Two-state Markovian Approximation of PU Activities

First, we approximate the SU’s view of the PU’s activities as a two-state Markov

chain. This allows a closed-form representation of the aforementioned quantities. It

will be verified through simulations that such an approximation does not introduce

too much error.

Consider discretized time points with separation τ . The PU can be in one of the

two states: active (“1”) or idle (“0”). Let P p
ij be the probability that the primary

user transitions from state i to j where i, j ∈ {0, 1}. Recall that the frame duration

of the PU is T . The number of SU slots in T is T/τ . When the SU senses the last

slot of an active frame of the PU, it sees the transition from the active to idle states

if the PU next goes to an idle frame. Thus, P p
10 = τθ

T
. Likewise, when the SU senses

the last slot of an idle frame of the PU, it sees the transition from the idle to active

states if the PU goes to an active frame. We have P p
01 = τ(1−θ)

T
. Therefore, the PU

state transition matrix as observed by the SU is given by,

PPU =

 1− τ(1−θ)
T

τ(1−θ)
T

τθ
T

1− τθ
T

 (3.10)
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Table 3.3: The joint system states

State PU SU
S1 1 1
S2 0 1
S3 1 0
S4 0 0

3.3.2 System Markov chain

To obtain a joint Markov model for both the SU and the PU, we identify the four pos-

sible states for the system shown in Table 3.3. In the table, “1” represents the PU/SU

being in the active/ST state and “0” represents the PU/SU being in the idle/SO state.

The state diagram of the combined Markov chain is shown in Figure 3.4, where Pjk

is the transition probability from state Sj to state Sk.

Given the false alarm and detection probabilities of the spectrum sensing system,

the state transition matrix is given by,

P =



(1− Pd)P p11 (1− Pd)P p10 PdP
p
11 PdP

p
10

(1− Pf )P p01 (1− Pf )P p00 PfP
p
01 PfP

p
00

(1− Pd)P p11 (1− Pd)P p10 PdP
p
11 PdP

p
10

(1− Pf )P p01 (1− Pf )P p00 PfP
p
01 PfP

p
00


. (3.11)

To understand how P is derived, we note first that the transition of PU states

is independent of those of the SU. On the other hand, transitions of the SU’s state
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Figure 3.4: Combined Markov chain state diagram

depends on the current SU and PU states. As a concrete example,

Pr(S2|S1) =

Pr(the PU transitions from active to idle)× Pr(SU stays in the active state)

= (1− Pd)P p
10,

as the PU goes from the active state to the idle state with probability P p
10, and SU

stays in the active state when it misdetects an active PU as idle in the current slot

with the probability (1− Pd).

3.3.3 Steady state probabilities

Let the steady state probabilities of the system be denoted by πππ = [π1,1, π0,1, π1,0, π0,0],

where the first and the second subscripts indicate the state of the PU and the SU,
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respectively. We have

πππP = πππ, (3.12)

and ∑
i

πi = 1. (3.13)

Solving (3.12) and (3.13) yields,

π1,1 = (1− Pd)(1− θ)P p11 + (1− Pf )θP p01, (3.14)

π0,1 = (1− Pf )θP p00 + (1− Pd)(1− θ)P p10, (3.15)

π1,0 = PfθP
p
01 + Pd(1− θ)P p11, (3.16)

π0,0 = PfθP
p
00 + Pd(1− θ)P p10. (3.17)

In the special case when there is no sensing error, i.e., Pd = 1, and Pf = 0, P and

πππ will be,

P =



0 0 P p
11 P p

10

P p
01 P p

00 0 0

0 0 P p
11 P p

10

P p
01 P p

00 0 0


,

and

πππ = [θP p
01 θP p

00 (1− θ)P p
11 (1− θ)P p

10] . (3.18)

Substituting (3.8), (3.9) and (3.10) in (3.11), (3.14)–(3.17), we can obtain the

transition matrix and steady state probabilities for the joint PU and SU states as

functions of τ , θ and P̄d.
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3.3.3.1 Collision Probability and the SU’s throughput

Now, we are in the position to analyze the performance of the SaST protocol in terms

of the collision probability Pc and the SU’s throughput λ. We define the collision

probability as the probability that the SU is in the ST state while the PU is in the

active state. Using Bayes’ rule, this can be expressed as the conditional probability

Pc(τ, θ) = P (SU is active | PU is active) =
P (SU is active, PU is active)

P (PU is active)
=

π1,1

1− θ , (3.19)

where π1,1 is the probability that the PU and SU are both active (collision with the

PU). This is better than using π1,1 as a measure for the effect on the PU because it

protects the PU regardless of its activity rate. From (3.10) and (3.14), we have that

Pc(τ, θ) = (1− Pd)(1−
τθ

T
) + (1− Pf )

τθ

T

= 1− Pd + (Pd − Pf )
τθ

T
, (3.20)

where we have left the dependence of Pd and Pf on τ implicit. The SU may transmit

in two different cases. The first is when the PU is idle and the channel is free. In this

case, the SU’s channel capacity (SU throughput) is C0 = B log2(1+γs), where γs is the

SNR of the transmitting SU’s signal received at the receiving SU’s receiver when only

the SU is transmitting (no collision), and B is the bandwidth. On the other hand,

when the SU collides with the PU, the SU throughput is C1 = B log2

(
1 + γs

1+γ

)
.

Clearly, C0 � C1. The average SU throughput is thus,

λ(τ, θ) = π1,1C1 + π0,1C0, (3.21)
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where π0,1 is the probability that the PU is idle and the SU is active. Because πi,j are

functions of both τ and θ, the average SU throughput in (3.21) can thus be expressed

as,

λ(τ, θ) = π1,1C1 + π0,1C0. (3.22)

Using (3.17),(3.15) and (3.22) we find

λ(τ, θ) =
(C0 − C1)(Pd − Pf )τ

T
θ2 +

(
C0(1− Pf )− C1(1− Pd) + (2− Pd − Pf )

τ(C0 − C1)

T

)
θ

+ (1− Pd)C1 + (1− Pf )
(
C0 − (C0 − C1)

τ

T

)
, (3.23)

where, once again, we have left the dependence of Pd and Pf on τ implicit.For the

rest of this thesis, we will drop the word “average” from the average SU throughput.

3.4 Model Validation

In order to validate our model, we simulated a single channel netwrok in which the PU

transmits QPSK-modulated signals with passband bandwidth of 6MHz when active.

The sampling frequency is at the Nyquist rate fs = 6MHz. An AWGN channel

model is assumed where the noise is characterized as a zero-mean CSCG process. In

CRNs, we are interested in detecting PUs at very low SNR in order to protect the

PU. Two different values are used for the SNR of the received signal from a PU at

the SU receiver. To calculate the detection threshold for the energy detector, we

set γ = −15dB. When examining collisions between the PU and SU, we are more

interested in the high SNR regime, hence γ = 20dB is used. The target probability of

detection is chosen to be P̄d = 0.99. The SNR of the SU transmissions is γs = 20dB,
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and thus the normalized SU throughputs in both cases are C̄0 = log2 (1 + γs) = 9.9582

bps/Hz and C̄1 = log2

(
1 + γs

1+γ

)
≈ 1.

We validate the model by comparing both the SU throughput and the collision

probability from the simulation and the theoretical results. The PU frame duration is

set to be T = 5 msec. Figure 3.5a shows the theoretical and simulation results for the

SU throughput as a function of the SU slot duration τ for different values of PU’s idle

probability θ. For example, for θ = 0.7 the maximum achievable throughput is 3.829

bps/Hz at τ ∗ = 2.9 msec. It is clear from the figure that simulation results almost

coincide with the theoretical prediction. We also observe that the SU throughput is

a concave function of the slot length τ . Figure 3.5b shows the collision probability

and theoretical model. Again, we observe a good agreement between the two. Also,

the monotonicity of Pc with respect to τ can be verified in the figure.

We notice also that both the analytical and simulation curves coincide when T/τ =

q, where q is a positive integer. In Figure 3.5, this is clear when τ= 0.5, 1, 2.5 and

5 msec. This is due the way our model was derived. However, even in that case we

can that the collision probability analytic form acts as an upper-bound for the actual

collision probability. This is a desirable property, as one of our goals is to protect the

PU.
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Figure 3.5: SU throughput (λ) and collision probability (Pc) vs slot duration (τ) for
single channel FD spectrum sensing with T = 5msec and P̄d = 0.99
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Chapter 4

Optimal Single-Channel SaST

Protocol

The goal of this chapter is to design an optimal SaST protocol such that the SU

throughput is maximized while the interference to the PU is kept acceptable. When

the PU’s idle probability is known, such a problem can be formulated in a straight-

forward manner. The problem can be formulated as:

P1 : max
τ

λ(τ, θ)

s.t. Pc(τ, θ) ≤ P̄c

τ ∈ [0, T ],

(4.24)

where λ(τ, θ) was given in (3.23), Pc(τ, θ) was give in (3.20) and P̄c is the maximum

allowable collision probability. Clearly, the solution to (4.24) guarantees that the

collision probability would not exceed P̄c.

However, in practice, the PU’s idle probability is not known a priori and needs to
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Figure 4.6: instants of updating the estimation of θ.

be estimated by the SU. A robust optimization is needed to account for the uncer-

tainty in the PUs idle probability. Next, we first discuss the formulas for parameter

estimation, and then present the robust optimization problem and its respective so-

lution for single channel CRN.

4.1 Estimation of θ

The value of θ is unknown to the SU and it needs to be estimated. Let θ̂(n) be the

estimated idle probability of the PU at frame n. The value of θ̂(n) can be updated

every slot. However, since the PU state remains the same during its entire frame, we

can update θ̂(n) every PU frame duration T . To determine the actual state of the

PU, we can take our decision about the channel to update the estimation of θ based

on sensing outcomes through the whole PU frame duration T . This provides a more

reliable decision compared to that at the slot level as shown in Figure4.6.

Denote by zn the binary variable indicating whether the PU is sensed to be active

in frame n. Using (3.3), zn can be found by

zn =

 0 if M ≤ η

1 if M > η
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Lemma 1. Let Pd(T ) and Pf (T ) denote the probabilities of detection and false alarm

as the result of sensing outcomes over duration T , respectively. Then the estimator

θ̂(n) =
Pd(T )−

∑n
i=1 zi
n

Pd(T )− Pf (T )
, (4.25)

is an unbiased estimator of θ at frame n.

Proof. E
[
θ̂(n)

]
= E

[
Pd(T )−

∑n
i=1 zi
n

Pd(T )−Pf (T )

]
=

Pd(T )−
∑n
i=1 E[zi]
n

Pd(T )−Pf (T )
= Pd(T )−E[zi]

Pd(T )−Pf (T )
.

Note that E [zi] = θPf (T ) + (1− θ)Pd(T ). Then E
[
θ̂(n)

]
= θ. Hence, θ̂(n) is an

unbiased estimator of θ at frame n.

4.2 Robust Optimization Problem

As the value of θ is estimated by the SU, a robust optimization is needed to account

for the uncertainty in the PU’s idle probability. In this case, what is known to the

SU is the observations it makes regarding the PU’s activity. The SU seeks to account

for the uncertainty in its estimate of θ̂ by constraining its estimate of the collision

probability with the PU, given its observations. The optimization problem P1 can

be rewritten as

P2 : max
τ

λ(τ, θ̂(n))

s.t. P (col|z1, z2, . . . , zn) ≤ P̄c

τ ∈ [0, T ],

(4.26)

where P (col|z1, z2, . . . , zn) is the posterior estimated collision probability given the

past observations of the PU activities at the SU receiver up to frame n. It was shown

in in the proof of Lemma 1 that the unbiased estimator θ̂(n) in (4.25) is a sufficient

statistic for the observations. Hence P (col|z1, z2, . . . , zn) = P (col|θ̂(n)).
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4.3 Solving the Optimization Problems

Equations (3.20) and (3.23) in Chapter 3 explicitly state the dependence of the col-

lision probability Pc and the SU throughput λ on the slot length τ and the PU idle

probability θ. Thus, to solve P1 and P2, we need to first analyze the properties of λ

and Pc with respect to τ and θ.

Lemma 2. The SU throughput λ(τ, θ) has the following properties:

a) For fixed τ , λ(τ, θ) is a continuous and monotonically increasing function of θ.

b) For fixed θ, λ(τ, θ) is a concave function of τ for τ > τ0 =
(
− b

2
+
√
− 1
γ

+ b2

4

)2

/fs,

where b = γ
√

2γ + 1Q−1(P̄d).

Proof. a) In (3.23), since 1−Pf (τ) > 1−Pd(τ) for all values of τ and since C0 � C1,

the coefficients of the first and second order terms in right hand side of (3.23)

are positive. In other words, with fixed τ , λ(τ, θ) monotonically increases with

θ ∈ (0, 1).

b) To determine the concavity of the objective function, we take the 2nd order deriva-

tive of λ(τ, θ) with respect to τ ,

∂2

∂τ 2
λ(τ, θ) = 2

(1− θ)θ
T

(C0−C1)
d

dτ
Pf (τ)−θ

[
C0 − (C0 − C1)

(1− θ)τ
T

]
d2

dτ 2
Pf (τ).

(4.27)

From the definition of Pf (τ) in (3.9), we have that

d

dτ
Pf (τ) = −γ

2

√
fs

2πτ
e−

x2

2 , (4.28)
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where

x =
√

2γ + 1 Q−1(P̄d) + γ
√
τfs. (4.29)

We observe that d
dτ
Pf (τ) is negative and that C0 > C1. Hence, the first term on the

right hand side (RHS) of (4.27) is negative. Given that observation, since θ > 0

and τ ≤ T , a sufficient condition for ∂2

∂τ2λ(τ, θ) to be negative is that d2

dτ2Pf (τ) is

positive. Evaluating the second derivative of Pf (τ) we have

d2

dτ 2
Pf (τ) =

γ

4

√
fs
2π
e−

x2

2

(
τ−

3
2 + τ−1γx

√
fs

)
, (4.30)

where x was defined in (4.29). Hence, a sufficient condition for d2

dτ2Pf (τ) to be

positive is

τ−
1
2 + γ

√
(2γ + 1)fsQ−1(P̄d) + γ

√
τfs > 0. (4.31)

Therefore, a sufficient condition for λ(τ, θ) to be concave in τ is for the sampling

rate fs to be high enough that the number of samples in the SU slot, τfs, satisfies

τfs >

(
− b

2
+

√
−1

γ
+
b2

4

)2

, (4.32)

where b = γ
√

2γ + 1Q−1(P̄d). When P̄d = 0.99 and γ = 0dB, the lower bound is

less than 5. And as γ increases this lower bound approaches 0. Hence, in most

situations of interest this lower bound is close to 0. The value for τ0 in Lemma 2b)

is obtained by rearranging the expression in (4.32).

Lemma 3. The collision probability Pc(τ, θ) has the following properties:

a) For fixed τ , Pc(τ, θ) is a continuous and monotonically increasing function of θ.
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b) For fixed θ, Pc(τ, θ) is a continuous and monotonically increasing function of τ .

Proof. a) From (3.20), since Pd(τ) − Pf (τ) > 0, it is clear that Pc(τ, θ) increases

linearly with θ for any fixed value of τ .

b) From (4.28), we see that d
dτ
Pf (τ) is strictly negative and thus Pf (τ) decreases

with τ . Therefore, by (3.20), Pc(τ, θ) monotonically increases with τ since Pd(τ)−

Pf (τ) > 0.

When combined, the results in points b) of Lemmas 2 and 3 show that in almost

all cases of practical interest problem P1 is a convex optimization problem, and hence

any locally optimal solution is globally optimal. In particular, if the value of τ for

which ∂λ(τ, θ)/∂τ is zero lies in (τ0, T ] then that value of τ is a globally optimal

solution.

To develop a strategy for solving the robust optimization problem in P2 we make

the following observation:

Lemma 4. Under specific conditions, the probability of collision P (col|oz1, z2, . . . , zn)

is upper-bounded by

PUB
c (τ, θ̂(n)) = (1−Pd)(εn + 1) + (Pd−Pf (τ))

[
θ̂(n) + εn +

√
−1

2n
ln(εn)

]
τ

T
, (4.33)

where θ̂(n) is the SU’s estimate of θ after n observations, and εn is any number such

that 0 ≤ εn ≤ 1. A sufficient condition for this upper-bound to be convex in τ and εn

is e−2n ≤ εn ≤ e−0.5

n
and τ0 < τ ≤ T .
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Proof. The estimate θ̂(n) is an unbiased estimate for θ, i.e. E[θ̂(n)] = θ. Hence, using

the Chernoff-Hoeffding bound [37], we have

P
(
θ̂(n) ≤ θ − a

n

)
≤ e

−2a2

n ∀a ≥ 0, (4.34)

or

P
(
θ ≥ θ̂(n) +

a

n

)
≤ e

−2a2

n ∀a ≥ 0. (4.35)

Let e
−2a2

n = εn, then

P

(
θ ≥ θ̂(n) +

√
− ln(εn)

2n

)
≤ εn. (4.36)

Given the observation (estimation) θ̂, the probability of collision is found as

P (col|θ̂) =

∫
θ

P (col|θ)P (θ|θ̂)dθ (4.37)

P (col|θ̂) =

∫
θ≤θ̃

P (col|θ)P (θ|θ̂)dθ +

∫
θ>θ̃

P (col|θ)P (θ|θ̂)dθ (4.38)

As P (col|θ) and P (θ|θ̂) are both positive, then given θ̃ and that θ ∈ [0, 1],

∫ θ̃

0

P (col|θ)P (θ|θ̂)dθ ≤ max
0≤θ≤θ̃

{P (col|θ)}
∫ θ̃

0

P (θ|θ̂)dθ. (4.39)

Similarly ∫ 1

θ̃

P (col|θ)P (θ|θ̂)dθ ≤ max
θ̃≤θ≤1

{P (col|θ)}
∫ 1

θ̃

P (θ|θ̂)dθ. (4.40)

From the monotonic nature of Pc(τ, θ) with θ (see Lemma 3),

max
0≤θ≤θ̃

P (col|θ) = Pc(τ, θ̃) = (1− Pd) + (Pd − Pf (τ))
τ θ̃

T
, (4.41)
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and

max
θ̃≤θ≤1

P (col|θ) = Pc(τ, 1) = (1− Pd) + (Pd − Pf (τ))
τ

T
. (4.42)

If we choose θ̃ = θ̂(n) +
√
− ln(εn)

2n
, then using (4.36) we get

∫ 1

θ̃

P (θ|θ̂)dθ = P

(
θ ≥ θ̂n +

√
− ln(εn)

2n

)
≤ εn, (4.43)

and ∫ θ̃

0

P (θ|θ̂)dθ ≤ 1 (4.44)

Using (4.37) – (4.44), an upper bound for (4.37) can be expressed as

P (col|θ̂(n)) ≤ Pc

(
τ, θ̂(n) +

√
− ln(εn)

2n

)
+ εnPc(τ, 1). (4.45)

The upper bound on the right hand side can then be expressed as

PUB
c (τ, εn; θ̂(n)) = (1−Pd)(εn+1)+(Pd−Pf (τ))

[
θ̂n + εn +

√
−1

2n
ln(εn)

]
τ

T
. (4.46)

For ease of notation, in some parts of the remaining analysis we will drop the subscript

n from εn. To determine the convexity of PUB
c (τ, εn; θ̂(n)) in τ and εn, we will evaluate

the Hessian matrix of the function f(τ, ε) = PUB
c (τ, ε; θ̂), which we denote by

[
fττ fτε
fετ fεε

]
,

and determine whether it is positive semidefinite.
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From (4.46) we have that

fεε = −τ(−ε+ 2(ε+ 1) log(ε) + 1)(Pd − Pf (τ))

4n2Tε2
(
− log(ε)

2n

)3/2
, (4.47)

fττ =

(
ε

(√
− log(ε)

2n
− 1

)
−
√
− log(ε)

2n
− θ̂(ε+ 1)

)(
τP ′′f (τ) + 2P ′f (τ)

)
T

, (4.48)

fετ = fτε =

(
2ε

(
2n(θ̂ + 1)

√
− log(ε)

2n
+ log(ε)

)
+ ε− 1

)(
Pd − τP ′f (τ)− Pf (τ)

)
4nTε

√
− log(ε)

2n

(4.49)

A condition for the Hessian matrix of f to be positive semidefinite is that fττ ≥ 0 ,

fεε ≥ 0 and fττfεε−fτεfετ ≥ 0. A sufficient condition for this is when e−2n ≤ ε ≤ e−0.5

n
.

Hence, when e−2n ≤ εn ≤ e−0.5

n
, the upper bound in (4.33) is convex.

Using insights from Lemma 4 we can safely approximate the robust optimization

problem in (4.26) by the following convex optimization problem

P3 : max
τ,εn

λ(τ, θ̂(n))

s.t. PUB
c (τ, εn; θ̂(n)) ≤ P̄c

τ ∈ (τ0, T ]

e−2n ≤ εn ≤
e−0.5

n

(4.50)

Here safety means that every feasible solution to P2 is feasible for P1 [51]. As n→∞,

θ̂(n)→ θ. Therefore, if εn → 0 and − 1
2n

ln(εn)→ 0, then PUB
c (τ, εn; θ̂(n))→ Pc(τ, θ).

That means that as n→∞ the formulation in P3 approaches the original formulation
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in P1. In the robust optimization literature, P1 is called the nominal problem while

P2 is called the robust optimization problem.

4.4 Performance Evaluation

Figures 4.7a and 4.7b together illustrate the motivation for finding a robust solution

when θ̂ differs from θ. The results in both figures are the outcome of solving the

nominal problem (P1) substituting θ̂ for θ. We show in Figures 4.7a and 4.7b the

achievable throughput and the actual collision probability, respectively. In both fig-

ures, θ = 0.8. We notice that for the smaller values of T , designs obtained when θ

is under estimated appear to provide greater throughput , i.e., θ̂ < θ, λ > λ∗ where

λ∗ is the maximum throughput achieved using P1 when θ̂ = θ. However, this is due

to the fact that the collision probability constraint is violated, i.e. Pc > P̄c. For

example, when T = 5msec, if θ̂ = 0.7, the throughput (Figure 4.7a) is approximately

2.9 bps/Hz, which is greater than the optimal throughput for θ̂ = θ = 0.8, which is

2.6 bps/Hz. This is at the expense of higher collision probability (Figure 4.7b) at

around 0.115, which violates the collision probability constrain of 0.1.

On the other hand, we observe that for larger T (e.g., T = 50msec and T =

100msec, the P̄c constraint is always satisfied (Figure 4.7b) and the throughput is

less sensitive to the estimation errors in θ̂ (Figure 4.7a). Thus, we conclude that it is

desirable to operate the SaST protocol under large T ’s.

Figure 4.8b combines learning with optimization. It shows how using robust

optimization prevents the actual probability of collision Pc from exceeding the limit

of P̄c. However, if we use the nominal optimization problem, the actual probability of

collision exceeds P̄c. This robustness comes at the expense of less SU throughput as
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seen in Figure 4.8a. We also notice that as time increases the results obtained from

solving P3 approaches the results obtained from solving P1. This agrees with the

discussion we made earlier in this chapter.
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(a) The actual SU throughput
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Figure 4.7: The actual SU throughput and the actual collision probability vs the
estimation of the PU idle probability (θ̂) for P̄c = 0.1, P̄d = 0.99 and different values
of PU frame duration (T ) in single channel FD spectrum sensing
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(a) The actual SU throughput

(b) The actual collision probability

Figure 4.8: The actual probability of collision and the actual SU throughput vs time in
case of solving nominal problem (P1) and robust problem (P3), T = 5msec, θ = 0.9,
P̄d = 0.99 and P̄c = 0.1
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Chapter 5

Multi-channel SaST Protocol

In the previous two chapters, we investigated the problem of the SU trying to access

the channel of one PU with unknown idle probability θ. However, in practice, multiple

PU channels are available for access with idle probabilities are not known a priori.

Therefore, an optimal SU strategy needs to learn the statistics on individual PU

channel(s), decide which channel to operate on and the slot length to use. In this

process, the SU faces the trade-off between exploiting the best channel known so far

and exploring less known channels.

5.1 Estimation of PUs’ Idle Probabilities

Before presenting the learning strategy, we first extend the notations from Chapter 4

to the multi-channel case. Let θ̂k(n), k ∈ K denote the estimated idle probability of

PU channel k, Lk(n) denote the number of times the PU channel k has been accessed

up until frame n and kn ≤ n denote the channel accessed at frame n. Similar to 4.25
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the unbiased estimator of the idle probability of PU channel k, θk is given by

θ̂k(n) =
Pd(T )−

∑n
i=1 zi·I{ki=k}
Lk(n)

Pd(T )− Pf (T )
, (5.1)

where I{·} is the Kronecker delta function.

5.2 Sequential Learning Algorithm

In multi-channel SaST, learning and channel switching occur at the time scale of PU

frames, while spectrum sensing and access are performed on a slot by slot basis. The

SU first selects each PU channel once. Then, at the beginning of each PU frame,

the SU decides which PU channel to sense and access using the following modified

ε-greedy policy [37]. Every T seconds, the SU will do the following:

1. With probability εn = min
{

1, c
n

}
, n > K, the SU picks a random channel

uniformly from K = {1, 2, . . . , K}, where c is a constant.

2. With probability 1− εn, the SU picks the channel kn based on some criteria we

will discuss later in this chapter.

In both cases, the SU updates the estimate θ̂kn using (5.1) based on the observations

in the (n− 1)th PU frame. The SU uses the updated estimate θ̂kn(Lkn(n)) and solves

P3 to find τkn to use this value in sensing and accessing the PU channel for the rest

of the nth PU frame. The SU can pick a PU channel based on one of two criteria:

• Maximum λ (denoted as λmax scheme): In this case, the SU solves P3 for

all K channels using the current estimate θ̂k(n) and picks the channel kn =

arg maxk∈K λ
(
τk, θ̂k(n)

)
as the channel to sense.
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• Maximum θ̂ (denoted as θmax scheme): In this case, the SU picks the channel

kn = arg maxk∈K θ̂k(n) as the channel to sense. This choice arises from insight

into Lemma.2, which shows that if τ is fixed the SU throughput increases with

θ. We note however, that this selection scheme overlooks the collision constraint

and the uncertainty in θ̂.

In the λmax selection scheme the SU has to solve P3 K times whenever it picks a

channel. On the other hand, the θmax scheme requires the SU to solve P3 only once.

This shows that the θmax is much more computationally efficient than the λmax. In

the rest of this chapter, we assume the SU is using the θmax scheme whenever it is

supposed to pick a channel on a non-random sense.

5.3 Regret and Performance Analysis

In the sequential learning literature, regret is typically used to characterize the per-

formance of an online policy Φ with respect to an optimal offline solution. In our case

the regret will be the difference between the throughput when selecting the channel

using SaST and the throughput obtained if the best channel was selected. Lemma 2

proves that the best channel is the one that has the highest idle probability θ. In par-

ticular, in multi-channel CRNs, we can define the expected cumulative regret using

the online policy Φ at frame n as,

RΦ
n = E

n∑
t=1

{(λ∗ − λkt(t))T}, (5.2)

where λ∗ = maxk∈K λk and λkt(t) are the average throughput of the best PU channel

and channel kt at frame t, respectively. There are two sources of regret. First, when
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the SU is accessing an inferior channel, it has lower throughput since the respective

PU is more active and the transmission opportunity is less. This first type of regret

is denoted by RΦ
inf(n). Second, even when the SU is accessing the best channel, it

incurs lower throughput than the optimal off-line scheme due to the use of the “safe”

approximation of the collision constraint that led to the convex formulation of the

robust slot length optimization problem in which leads to using a suboptimal τ by

the SU. We denote this second type of regret by RΦ
opt(n).

As the SU uses the ε-greedy policy described earlier, the percentage of time that

an inferior channel is selected decreases over time. Furthermore, if j∗ denotes the best

channel and as the best channel is selected more often, θ̂j∗ would approach θj∗ and

the instantaneous regret would approach zero. Therefore, we expect that the total

expected regret would only grow sublinearly over time. This intuition is formalized

in the following theorem.

Theorem 1. The expected cumulative regret can be attributed to two sources:

• Regret incurred when selecting an inferior channel (RΦ
inf), where RΦ

inf = O(log n).

• Regret incurred when selecting the best channel (RΦ
opt), where RΦ

opt = o(n).

And hence the cumulative regret is RΦ
n = o(n).

Proof. As discussed earlier, the expected regret can be attributed to two sources: the

regret incurred when an inferior channel is accessed, and the regret incurred when

the optimal throughput is not attained due to uncertainty in the PU activities in the

best channel. In other words,

RΦ
n = RΦ

inf (n) +RΦ
opt(n). (5.3)
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Next, we will show that both regrets grow sublinearly over time under some weak

conditions.

Regret incurred when selecting the best channel When selecting the best

channel j∗, the SU may not be able to transmit at the optimal throughput due

to the estimation error in θ̂j∗ and relaxation in the robust optimization problem.

However, intuitively, as the number of times selecting the best PU channel increases,

P3 approaches P1 and θ̂j∗(n) approaches θj∗ . This results an instantaneous regret

that decreases in time. Next, we prove this intuition rigorously. Note that to show

that the cumulative regret RΦ
opt(n) is o(n), it suffices to show that the instantaneous

regret in the best channel converges to zero. To do so, we recall from (5.1) that

θ̂j(n) =
Pd(T )−

∑n
i=1 zi·I{ki=j}
Lj(n)

Pd(T )− Pf (T )
,

and that as n→∞, Lj(n)→∞ and
∑n
i=1 zi·I{ki=j}
Lj(n)

→ E [zi|ki = j]. Hence,

lim
n→∞

θ̂j(n) =
Pd(T )− E [zi|ki = j]

Pd(T )− Pf (T )
. (5.4)

Therefore,

lim
n→∞

θ̂j(n) =
Pd(T )− (θjPf (T ) + (1− θj)Pd(T ))

Pd(T )− Pf (T )
, (5.5)

and finally

lim
n→∞

θ̂j(n) = θj.
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Regret incurred when selecting an inferior channel Let j∗ be the index of

the best channel. The probability that at time t channel j 6= j∗ will be chosen is,

P(kt = j) ≤ εt
K

+
(

1− εt
K

)
P
(
θ̂j(t− 1) ≥ θ̂j∗(t− 1)

)
(5.6)

We have

P
(
θ̂j(t− 1) ≥ θ̂j∗(t− 1)

)
≤ P

(
θ̂j(t− 1) ≥ θj +

δj
2

)
+ P

(
θ̂j∗(t− 1) ≤ θj∗ −

δj
2

)
(5.7)

where δj = θj∗ − θj. We bound the first term as follows,

P
(
θ̂j(t− 1) ≥ θj +

δj
2

)
= P

(
θ̂j(t− 1)− θj ≥

δj
2

)
.

From (5.5) this can be written as

P
(
θ̂j(t− 1) ≥ θj +

δj
2

)
= P

(
1

Lj(t)

t∑
i=1

zi · I{ki=j} − E [zi] ≤ − (Pd(T )− Pf (T ))
δj
2

)
(5.8)

Define δ̆j = (Pd(T )− Pf (T )) δj. From Chernoff-Hoeffding bound, we have

P

(
1

Lj(t)

t∑
i=1

zi · I{ki=j} − E [zi|ki = j] ≤ − δ̆j
2

)
≤ e−δ̆

2
jLj(t)/2 (5.9)

Denote xt = 1
2K

∑t
i=1 εi. Following the steps of the proof in [37] with minor modifi-

cations, we have

P
(
θ̂j(t− 1) ≥ θj +

δj
2

)
≤ xte

−xt
5 +

2

δ̆2
j

e−δ̆
2
j bxtc/2 (5.10)
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The same bound holds for P
(
θ̂j∗(t− 1) ≤ θj∗ − δj

2

)
. For t ≥ t′ = c we have

xt ≥
c

K
ln
te1/2

c

Using (5.6) – (5.10) and the lower bound on xt, we get

P(kt = j) ≤ c

Kt
+

2c

K
ln

(
te1/2

c

)(
te1/2

c

) −c
5K

+
4

δ̆2
j

(
te1/2

c

)−δ̆2j c
2K

, (5.11)

for j 6= j∗.

With properly chosen c, the last two terms decrease faster than 1/t. Thus,

RΦ
inf (n) =

n∑
t=1

(λ∗ − λki(t))T (5.12)

≤
n∑
t=1

∑
j 6=j∗

P (kt = j)λ∗T (5.13)

≤ 2c log(n)λ∗T, (5.14)

where λ∗ = maxk∈K λk. As a result, the cumulative regret RΦ
n = o(n).

A couple of comments are in order. First, since the expected cumulative regret

is sublinear over time, the instantaneous regret actually converges to zero. Thus,

the proposed policy is a non-regret policy. Second, in determining the regrets, we

are comparing against an optimal policy that stays in the most available channel the

whole time. a PU frame is out of the scope of the thesis.
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5.4 Performance Evaluation

To evaluate the performance of the proposed multichannel SaST protocol, we have

simulated a CRN that has K = 10 channels. The idle probabilities of the PUs are

[0.2 0.8 0.7 0.1 0.6 0.4 0.25 0.9 0.45 0.65]. Therefore, the optimal channel is j∗ = 8,

which has the highest idle probability of θ8 = 0.9. Figure 5.1 shows θ̂ for 3 channels

out of the 10 PU channels using ε-greedy algorithm and robust optimization. We

see that θ̂8 converges faster than other channels to θ8 = 0.9. We notice also that

θ̂ corresponding to the channel with smallest θ converges much slower and after 15

seconds, the estimation of θ̂4 is still far from the true value which is θ4 = 0.1. This

is due to the fact that using ε-greedy algorithm, the best channel is accessed more

often through time.

Using ε-greedy algorithm and robust optimization, Figure 5.2 shows the total

cumulative regret with its two components: the regret from selecting an inferior

channel RΦ
inf(n), and the regret from inaccurate estimation in the optimal channel

RΦ
opt(n) for T = 5msec. We can see how the cumulative regret grows sublinearly,

which illustrates the convergence of the multi-channel SaST protocols. We observe

that RΦ
inf(n) dominates RΦ

opt(n). Figure 5.3 compares the cumulative regret when the

SU chooses the PU channel to be sensed based on λmax criterion and the regret when

the SU chooses the channel based on θmax in both robust and nominal formulations.

As expected, the instantaneous regret of the the nominal and robust problem will be

equal as θ̂ converges to θ. In the nominal formulation, θmax and λmax are the same.

Figure 5.4 shows the actual probability of collision for the multi-channel case. It is

clear in Figure 5.4a that using the solving the robust problem, the actual collision

probability never exceeds P̄c = 0.1. However, in Figure 5.4b, the collision probability
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Figure 5.1: Convergence of the estimated idle probability (θ̂) on 3 out of 10 available
channels using ε-greedy algorithm and robust optimization, T = 5msec

constraint is violated. It is also clear that the cumulative regret from solving the

nominal problem is less than the ones from solving the robust problem. This agrees

with the results in Figure 4.8a and which comes at the expense of violating the PU’s

constraint as illustrated in Figure 5.4 which is something the PU can not tolerate.

Hence, robust optimization is a must in order to keep the PU protected.
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Figure 5.4: The actual probability of collision vs time for multichannel case using ε-
greedy algorithm in case of solving nominal problem (P1) and robust problem (P3),
T = 5msec, P̄d = 0.99 and P̄c = 0.1
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Chapter 6

Conclusion and Future Work

FD wireless communication has is an enabling technology for CR. It can help an SU

react as fast as possible to changes in PUs’ activities, hence limiting the interference

with the PUs to its minimum. Our research focused on the protecting the PUs during

the stage at which the SUs are learning the wireless environment.

In Chapter 2, we introduced both CR and FD. We showed discussed the work

done by other researchers on the track of applying FD in CR.

In Chapter 3, we derived our system model and explained the FD SU strategy.

We introduced the different states which the SU may be in. We showed the how

the SU’s slot duration can affect the PU. We derived the state machine for both the

SU and the combined PU-SU system. We derived the state transition probabilities

of the Markov chain. We derived the formula for the SU’s throughput and collision

probability as functions of the SU slot duration and the PU idle probability. We

showed through simulation, that our analytical model is a good approximation.

In Chapter 4, we introduced the trade-off between maximizing the SU’s through-

put and keeping the interference with the PU to an acceptable level. We formulated
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both the nominal and robust optimization problems. We proved that the optimization

problem is a convex problem. Our simulation results demonstrate that our proposed

scheme protects the PU from excessive collision when the SU’s estimation of the PU’s

statistics is not accurate.

In Chapter 5, we generalized the optimization problems to the case when there are

multiple PU channels available. We used the ε-greedy algorithm for learning and ex-

ploiting the learned PUs activities. We proved that proposed scheme incurs sublinear

cumulative regret over time and we illustrated that result through simulation.

In this thesis, the effect of the self-interference was not considered. As future

work, the problem can be reformulated taking into consideration the residual self-

interference. This will change the probability of detection and the probability of

false alarm expressions. In consequence, the expressions of the SU’s throughput and

collision probability will also change. We assumed that the SU knows the limits of the

PU’s frame to update the PU’s activity statistics at the end of each PU’s frame. As

future work, practical protocols that relax the synchronization requirement between

PUs and SUs can be designed and implemented. That means to find an unbiased

estimator for the PU’s idle probability that can be updated every SU slot duration.

In this thesis, we assumed an SU uses FD to sense and transmit to another SU

simultaneously over the same frequency channel. However, the communication be-

tween two SUs uses HD communication. The work in this thesis can be extended to

investigate protocols that can use FD in the communication between two SUs as well.

A comparison between the maximum achievable SU throughput using the proposed

protocol in this thesis and the optimal SU throughput that can be achieved using HD

techniques can be done as well. In addition, the proposed strategy can be extended
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to take into account channel switching delay.
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