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Abstract 

Metabolomics is the systematic analysis of low-molecular weight compounds 

(metabolites) within biological systems that represent molecular endpoints of gene 

expression and environmental exposures. A major goal of metabolomics is 

achieving better understanding of the pathophysiology of complex disease 

processes while elucidating mechanisms of action of nutrients, toxins, and/or 

drugs. Multisegment injection-capillary electrophoresis-mass spectrometry (MSI-

CE-MS) is a high-throughput microseparation platform that is ideal for the 

analysis of polar/ionic metabolites from volume-restricted biological samples. 

This thesis includes two major metabolomics projects using MSI-CE-MS that are 

aimed at contributing new advances in public health and chronic disease 

prevention. Chapter II presents an analysis of the metabolome from patients with 

phenylketonuria (PKU) — a genetic disease affecting phenylalanine (Phe) 

metabolism that requires lifelong dietary restriction to prevent irreversible 

intellectual disabilities. A targeted and nontargeted metabolomics approach using 

matching urine and plasma samples was conducted to confirm known markers of 

PKU and identify new markers associated with dietary adherence and disease 

progression. Along with increased excretion of Phe catabolites in urine, high 

plasma Phe was associated with decreased excretion of acylcarnitines and greater 

excretion of histidine catabolites, suggesting impaired fatty acid oxidation and 

micronutrient deficiencies, respectively. Overall, this may provide a strategy to 
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objectively monitor dietary adherence beyond standard dietary records or patient 

recall. Chapter III investigates the impact of electronic cigarette smoke exposure 

on the placental metabolome as a model cell line of fetal development. Evidence 

of altered amino acid metabolism, in addition to changes in acylcarnitines and 

metabolites associated with cellular proliferation, were observed in more 

susceptible first trimester placental cells and were attributed to flavouring agents 

irrespective of nicotine dosage. This work supports the hypothesis that flavoured 

e-cigarette formulations pose a significant health risk in comparison to 

unflavoured formulations and supports the need for further risk assessment and 

careful regulation of these products to prevent deleterious birth outcomes in 

pregnant mothers. 
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1.1 Metabolomics 

The metabolome refers to the comprehensive set of low-molecular weight 

(<1500 Da) compounds (i.e., metabolites) within an organism.1 Metabolites are 

intermediates and by-products of metabolic reactions necessary for cellular 

metabolism, including maintenance, growth, and normal function of the cell.2 The 

metabolome consists of primary and secondary metabolites, with the former being 

essential for cell function (e.g., amino acids and fatty acids). Secondary 

metabolites are end-products of primary metabolites that are unessential for 

growth but serve important functions, such as communication or defence.2,3 The 

human metabolome includes endogenous metabolites formed as by-products of 

cellular metabolism as well as exogenous metabolites that are derived from 

environmental exposures, such as diet, drugs, and pollutants.4 The metabolome is 

considered to best reflect the molecular phenotype of an organism since 

metabolites represent "real-world" molecular endpoints of gene expression closely 

associated with phenotype.5 Metabolomics is, therefore, critical in deciphering the 

role of genes or enzymes of unknown function,6 as well as understanding the 

pathophysiology of complex human diseases.5 Metabolomics involves 

nontargeted metabolite profiling and strives to identify and quantify all 

metabolites that can be detected and identified in a complex biological specimen 

(e.g., urine, plasma, cell extract, etc.).7 In contrast, metabolic profiling is a 

targeted approach that involves the analysis of a specific set of metabolites (i.e., 
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compound class or members of a metabolic pathway), whereas metabolic 

fingerprinting involves the comparison of patterns of metabolites that change in 

response to a perturbation, such as disease, that does not require their 

identification. The integration of genomics, transcriptomics, proteomics, and 

metabolomics allows for a more holistic understanding of the complex 

interactions between genes and the environment.8 Importantly, changes in 

metabolite concentrations due to a perturbation (e.g., smoke exposure, genetic 

mutation, and habitual diet) are often more readily measured in comparison to 

changes in gene expression, protein concentrations, or enzyme activity.9 

1.1.1 Applications of Metabolomics 

The metabolic phenotype or metabotype of an organism is a reflection of the 

interactions between genetic, epigenetic, and other confounding factors, such as 

sex, age, ethnicity, and diet.9 For this reason, the study of metabolomics has had a 

major impact in the fields of genetics, medicine, nutrition, and toxicology.5 

Metabolites can be measured by temporal and spatial perturbations in the steady-

state concentration or flux of metabolites when using stable-isotope labeled 

tracers.9 Urine and blood (i.e., serum or plasma) are the most common biological 

fluids used in metabolomics as their collection is minimally invasive and they are 

frequently used in clinical medicine for diagnosis, prognosis, and treatment 

monitoring. In particular, urine analysis is advantageous as it provides insights 

into the complex interactions of host metabolism, microflora activity, 

environment, and lifestyle. For instance, drug screening often relies on urine 
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specimens to confirm therapeutic drug compliance and to detect potential misuse 

of illicit drugs of abuse (e.g., synthetic opioids) given the unreliability of patient 

self-reporting.10  

In addition, metabolomics can assist in applications such as improved disease 

diagnostics or dietary interventions optimal for individual patients.7 Disease 

processes alter metabolic pathways and, ultimately, specific metabolites that can 

serve as biochemical markers (i.e., biomarkers) for early detection of treatable 

human diseases even prior to overt clinical symptoms.9,11 For example, metabolite 

profiling using tandem mass spectrometry (MS/MS) has revolutionized clinical 

medicine via multiplexed screening of a panel of biomarkers associated with 

dozens of inborn errors of metabolism (IEM).12 An IEM is a rare disease that is 

characterized by a genetic mutation resulting in partial or complete loss of 

enzyme activity, leading to disruption of important metabolic pathways.12 

Metabolic dysfunction in IEM leads to a deleterious accumulation of substrate, 

formation of toxic intermediates, and/or deficiency of key downstream products 

of enzyme action. In this case, biomarkers for IEM are associated with 

accumulation/deficiency of metabolites in urine or blood, which are significantly 

elevated/decreased relative to healthy/nonaffected individuals.12 Recently, a new 

class of biomarker has been discovered for early detection of galactosemia, an 

IEM in which galactose metabolism is severely impaired in affected infants, 

resulting in learning disabilities, cataracts, and neurological impairments if left 

untreated.13 In this case, significant elevations in N-galactated amino acids in 
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neonates with galactosemia offers a more robust biomarker for neonatal screening 

from dried blood spots (DBS) using multiplexed MS/MS technology as compared 

to conventional fluorescence-based enzyme assays, which are prone to false 

positives. 

Drug discovery and safety is another growing field of interest in 

metabolomics, which can elucidate drug targets (i.e., enzymes) and their 

underlying mechanisms of action, including potential non-specific or off-target 

activity that contribute to cytotoxicity.14,15 Metabolomic methods to identify genes 

or enzymes affected by a disease (i.e., pathway analysis or metabolic flux 

analysis) are valuable for the identification of novel drug targets.16 Additionally, 

many inhibitors of enzyme activity are structurally related to the enzyme’s natural 

substrate and/or co-factors. For example, nontargeted metabolomic analysis of 

human fibroblasts infected with human cytomegalovirus (HCMV) with liquid 

chromatography-mass spectrometry (LC-MS) showed elevations in citric acid 

cycle intermediates and acetylated amino acids.17 Analysis of metabolic flux 

using isotopic labeling implicated acetyl-CoA carboxylase (ACC) as a novel 

target for the treatment of HCMV by impairment of viral replication.16 

Conventional methods used for chemical library testing rely on robotics or 

computational high-throughput screening technology to identify drug candidates, 

which is supplemented with absorption, distribution, metabolism, excretion,
 and 

toxicology (ADMET) analysis for prediction of favorable drug-like properties.18 

Metabolomics streamlines this process as it can be used for the detection of 
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possible toxic by-products of drug metabolism and can be combined with in vitro 

cell-based approaches (e.g., cell culture assays).   

Recently, “precision medicine” has been introduced as a strategy to improve 

disease treatment by taking into account individual genetic, metabolic, 

environmental, and lifestyle variability.19 Metabolic signatures of disease risk 

(i.e., predictive biomarkers) for individual patients will allow for better 

understanding of the origins of health and disease, including biomarkers for 

assessing variation in drug response and risk assessment of disease recurrence 

(i.e., cancer).20 Furthermore, metabolomics can aid in determining an optimal 

balance between drug efficacy and toxicity. For example, treatment for 

schizophrenia targets dopamine, serotonin, and glutamate neurotransmitter 

systems, however there is a large variation in individual response to treatment and 

side effects, which is poorly understood.21 Metabolomics has been applied to 

better understand pathways that are altered by antipsychotic drugs in individuals 

with schizophrenia. One study examined the effects of atypical antipsychotics 

(e.g., olanzapine, risperidone, aripiprazole) on phospholipids and fatty acid 

concentrations, noting the possibility of liver lipases as possible side targets of 

these drugs.22 Also, methotrexate is an anti-folate drug used for the treatment of 

rheumatoid arthritis and many cancers.23 Methotrexate inhibits dihydrofolate 

reductase, which leads to attenuation in the de novo synthesis of purine 

nucleotides.24 However, due to the high toxicity of methotrexate therapy with 

significant variability in individual responses, there is a need to evaluate treatment 
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efficacy through continuous monitoring.23 A 1H NMR method identified 11 serum 

metabolites, including uric acid, uracil, hypoxanthine, and trimethylamine-N-

oxide (TMAO), which vary significantly with methotrexate response in 

individuals with early rheumatoid arthritis; these metabolites may serve as 

promising biomarkers to evaluate the efficacy of methotrexate treatment in 

patients.  

The field of nutritional metabolomics is a powerful way for evaluating the 

impact of habitual dietary patterns on an individual’s health status.25 Habitual diet 

is typically measured through dietary records,26-28 where individuals 

quantitatively and qualitatively record everything they eat and drink over a 

defined time period.29 Other, less accurate, measures of dietary intake include 

dietary recalls, in which an interviewer prompts the participant to recall all food 

consumed within a period of time, and food frequency questionnaires, in which 

the participant responds to standardized questions regarding their food intake. 

However, there are major issues in clinical studies evaluating dietary intake based 

on food frequency questionnaires, diet records, or recalls since they are unreliable 

and subject to selective reporting bias, especially in the case of obese and elderly 

individuals who tend to underestimate caloric intake.30-33 For example, in studies 

examining the relationship between diet and obesity, there is a high incidence of 

underreporting foods high in calories, fats, and carbohydrates.30,33 In this context, 

biomarkers of specific food intake (i.e., cruciferous vegetables, citrus fruits, red 

meat) can provide a reliable indicator of an individual’s habitual dietary patterns, 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 8 

while avoiding self-reporting bias issues when relying on diet records.30 Thus, the 

use of biomarkers allows a more objective and accurate measurement of dietary 

intake as it takes into account nutrient bioavailability and individual 

metabolism.31 Furthermore, while diet is one of the major modifiable lifestyle 

factors contributing to the alarming increase in prevalence of obesity, diabetes, 

and cardiovascular disease (CVD) worldwide,30 the relationship between diet, 

metabolic health, and chronic disease risk is not well understood.34 In the case of 

metabolic diseases with strict nutrition requirements to avoid deleterious health 

outcomes, the combination of nutritional metabolomics and standardized dietary 

records would be an asset for physicians/dieticians in making appropriate 

diet/treatment interventions for patients based on the individual’s metabotype.35,36 

Exposomics describes the response of organisms and biological systems to 

the totality of environmental exposures over a lifetime.37,38 Specific 

environmental exposures, such as chemical pollutants, tobacco smoke, and 

environmental toxins, have independent yet often synergistic effects on an 

individual’s chronic disease risk. In the case of tobacco smoke, metabolomics 

analysis of urine allows the differentiation of smokers and non-smokers based on 

differences in endogenous metabolites in addition to the presence of tobacco-

specific metabolites, such as nicotine, cotinine, and trans-hydroxycotinine.39 For 

example, a number of intermediate metabolites in the glutathione pathway are 

lower in the urine of smokers in comparison to non-smokers, which is consistent 

with previous studies on cigarette smoke exposure leading to oxidative stress 
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response and glutathione depletion. Indeed, the long-term impact of deleterious 

environmental exposures at early stages of life is often unknown when evaluating 

risk assessment; therefore, there is growing interest to explore the cumulative 

effect of multiple exposures on health outcomes, including pre-natal exposures 

during fetal development.38-40 

1.1.2 Analytical Techniques for Metabolomics: NMR and MS  

Metabolomic analysis is challenging due to the wide chemical diversity of 

metabolites in terms of differences in their physiochemical properties (i.e., 

molecular weight, polarity, hydrophobicity, solubility, volatility, and stability) 

and their wide dynamic range spanning over six order of magnitude (pM to 

mM).41,42 As a result, metabolomics relies on complementary hyphenated 

instrumental methods in order to expand coverage of the human metabolome.43 

The validation of these methods is of utmost importance to ensure adequate 

precision, accuracy, and robustness for routine analysis without interferences or 

matrix effects.42 However, there is no single analytical platform that can resolve, 

detect, and identify all metabolites that may exist in real-world biological samples 

– the vast majority of which comprise unknown compounds that lack chemical 

standards or reference spectral databases.5 

Nuclear magnetic resonance (NMR) and, increasingly, high-resolution mass 

spectrometry (MS) are major instrumental platforms used in discovery-based 

metabolomics research. 1H NMR is widely used in metabolomics since the vast 

majority of known metabolites contain hydrogen (abundance > 99.98%) and 
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analysis is rapid due to the short relaxation time of the 1H nucleus.42,44 Routine 

analysis with one dimensional 1H NMR spectra enables simultaneous detection of 

all hydrogen-containing low-molecular weight metabolites above a concentration 

of 10 µM.45 Typical 1H NMR spectra of biological fluids are very complex due to 

the presence of hundreds of endogenous and exogenous metabolites, which result 

in many overlapping resonance peaks. The majority of studies using NMR as a 

profiling technique use pattern recognition techniques (i.e., PCA) together with 

spectral binning to classify samples as normal or abnormal. While NMR cannot 

detect below micromolar concentrations, it is advantageous as it is non-invasive, 

non-destructive, rapid, and requires minimal sample preparation without 

chromatographic separation.5,44 Further, the peak area corresponding to a 

compound in the NMR spectrum is directly related to the concentration of the 

nuclei of study, which allows for direct quantification in complex matrices.46 

NMR also allows the analysis of liquid biological samples, intact tissues, or 

tissues in vivo. For these reasons, NMR is often used for high-throughput 

metabolic fingerprinting and profiling while also offering a more robust platform 

than MS for large-scale studies over years in duration.45 The major drawbacks of 

NMR, however, include poor sensitivity that limits metabolome coverage, large 

sample requirements, and high infrastructure costs.5 While data processing was a 

limitation of NMR-based metabolomics in the past, Bayesil software developed 

by the Wishart research group enables rapid (< 5 min) processing of NMR spectra 

with spectral fitting to biofluid-specific libraries.47 Further, full characterization is 
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not possible using 1H NMR for some metabolites (i.e., proton deficient functional 

groups), such as with ether sulfate conjugates of hydroxyl groups present in drug 

metabolites, phosphates, or N-oxides.48,49 

MS is increasingly applied in metabolomic studies since it offers greater 

sensitivity and selectivity, notably when coupled to high efficiency separation 

techniques.7 In addition, it provides useful qualitative structural information and 

excellent quantitative performance, especially when using stable-isotope internal 

standards to correct for potential matrix effects.42,50 In MS, metabolites are 

ionized in the source of the mass spectrometer, separated as gas-phase ions by a 

mass analyzer according to their mass-to-charge (m/z) ratio, and detected by a 

transducer that measures electrical charge reflecting ion abundance.42 After 

detection, signals are generated for ions and displayed as a mass spectrum 

showing their relative abundance (i.e., ion counts) as a function of their m/z.50 The 

most common ionization methods used in MS-based metabolomics are electron 

ionization (EI) and electrospray ionization (ESI). EI is a hard ionization technique 

typically used for the analysis of volatile compounds in the gas-phase when using 

GC/MS; however, new interface designs have been developed in LC-MS to allow 

for direct EI.51 Ionization with EI occurs when a neutral molecule of a metabolite 

collides with a high-energy electron bean (70 eV), creating a parent ion and 

multiple fragment ions. As the process occurs in the gas-phase, it is inert to matrix 

interferences unlike atmospheric pressure ionization methods widely used in LC-

MS. As a “hard” ionization technique, extensive fragmentation of the molecular 
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ion occurs, which provides a molecular fingerprint for unknown compound 

identification by comparing with mass spectral libraries (e.g., NIST).52 In 

contrast, ESI is a “soft” ionization technique in which samples are introduced into 

the MS as a fine spray of charged droplets following direct infusion of liquid or 

liquid-based effluent after separation.50 A drying gas evaporates the solvent, 

increasing the charge density of the droplets. Charged ions are then accelerated 

towards the inlet of the mass analyzer under an applied voltage, where they are 

focused electrokinetically via ion optics prior to mass analysis. ESI is the 

preferred ionization technique for polar/ionic compounds and is routinely used 

following LC and CE separations.39,53 However, ionization efficiency in ESI is 

highly dependent on the physicochemical properties of a metabolite, which can 

vary over three orders of magnitude.54 Moreover, ESI is prone to ion suppression 

and enhancement effects that are matrix dependent, especially if sample workup 

and/or separation conditions are not optimized prior to ionization.55  

Mass resolution and accuracy in MS are dependent on the type of mass 

analyzer used and are important for the confident determination of a likely 

molecular formula for an unknown ion based on its m/z and isotope pattern. Mass 

resolution is the ability to distinguish separation between two equal intensity 

peaks of different m/z and is defined by !
"!

, where 𝑚 is the mass and Δ𝑚 is the 

peak width, which is typically measured by an ion’s signal at full width at half 

maximum (FWHM).56 Mass accuracy is the ratio of the error in the m/z 

measurement to the true m/z and is assessed in parts per million (ppm). Time-of-
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flight (TOF) mass analyzers are often used in metabolomics as they are ideal to 

couple with high efficiency separation techniques due to their fast scanning data 

acquisition, high mass resolution and accuracy, unlimited mass range, and good 

robustness.7,57 A mass reflectron in TOF-MS utilizes an ion mirror to compensate 

for differences in kinetic energies (KE) of ions leaving the source to enhance 

mass resolution (Figure 1.1).58 Ions are generated in the source and accelerated 

under an electric field, where they are subsequently allowed to travel within a 

"field-free" drift tube under vacuum. Following mass calibration, the TOF-MS 

measures the ion’s characteristic drift time and ion abundance, which is converted 

into a signal within a mass spectrum (i.e., m/z versus ion count).57 The KE of an 

ion is dependent on its charge and the electric field strength (KE = 𝑧𝑒𝑉, where z = 

charge, and eV = electric field strength). Ions are separated within the drift tube 

according to their m/z (A) with flight time being dependent on m/z and total 

distance travelled within the flight tube:58 

𝑡) = 𝑑 ∙ ! -
./∙0

	 (1)	

where, td is the ion’s flight time, d is the distance from the ion source to the 

detector, e is the charge on an electron, and V is the accelerating potential. Thus, 

the m/z of an ion is directly proportional to its flight time, where lighter ions with 

the same charge state (i.e., small m/z) travel the fastest and reach the detector first 

prior to larger and more bulky ions.  
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Figure 1.1. Schematic of reflectron TOF-MS. Ions separate within the drift tube according to their 
m/z (A). The reflectron compensates for variations in ion flight with ions of the same m/z, 
allowing them to reach the detector at the same time (B). Figure adapted from (58). 

Tandem MS (MS/MS) requires the coupling of multiple mass analyzers in 

series, which allows for multiple steps of mass selection for improved selectivity 

and structural elucidation. For instance, a quadrupole time-of-flight (QTOF)-MS 

system incorporates a low resolution quadrupole mass analyzer (Q1) as a primary 

mass filter to select a precursor ion prior to collisional-induced dissociation (CID) 

within a collisional/reaction cell (Q2) filled with an inert neutral gas, such as 

Ar.59,60 High-resolution product ion scanning (i.e., fragmentation spectra) is then 

acquired by a TOF, which serves as the third mass analyzer (Q3).50 Unknown 

compound identification often requires CID experiments at an optimal collisional 

energy (e.g., 10, 20, 40 V) when using MS/MS to generate characteristic product 

ion spectrum with residual precursor ion still detected. Recent advances in 

fragmentation algorithms now allows for in-silico prediction of MS/MS spectra 
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for rapid identification of unknown compounds, which is important when 

commercial standards do not exist or when reference libraries are incomplete.61 

1.1.3 Analytical Techniques for Metabolomics: Separation Methods 

Coupling MS with an electrophoretic or chromatographic separation method 

enhances the performance of metabolomic analysis of complex biological samples 

as it reduces matrix effects and ion suppression, allows for isomeric resolution, 

and provides additional qualitative information for unknown identification, such 

as retention or migration time.62 Gas chromatography-mass spectrometry 

(GC/MS) is the method of choice for the analysis of volatile, non-polar, and 

thermally stable metabolites.42 A vast majority of metabolites analyzed by 

GC/MS (i.e., polar metabolites), however, require chemical derivatization to 

improve their volatility and retention properties. Pre-column chemical 

derivatization can complicate chromatographic separation and quantification due 

to the formation of multiple or incomplete derivatization products. For instance, 

several metabolite classes containing more than one functional group will form 

multiple products following derivatization with reactive silylating agents, which 

complicates data analysis.42,63 GC/MS based metabolomics typically uses EI as 

the ionization method, which allows metabolite identification based on matching 

with extensive EI-MS spectral libraries and/or de novo structural elucidation of 

fragmentation spectra.42 

LC-MS often avoids chemical derivatization and it is better suited for 

resolving a wider range of non-volatile polar and nonpolar compounds with less 
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complicated sample workup as compared to GC/MS. Separation selectivity by 

LC-MS is dependent on the stationary phase used as the analytical column; 

reversed-phase LC-MS (RPLC-MS) using C8 or C18 as stationary phases is widely 

used for the resolution of complex mixtures of non-polar metabolites, such as 

lipids.64 RPLC-MS suffers from poor retention of highly polar/ionic metabolites 

as they are not retained by the stationary phase and elute with the solvent 

front.42,65 In this case, separation for polar/ionic compounds can be realized by ion 

pair-RPLC66 or alternatively by hydrophilic interaction chromatography (HILIC) 

using polar stationary phases with weak ion-exchange properties (e.g., silica) 

together with acetonitrile-rich elution solvents.42,65 The coupling of LC with MS 

allows for improved selectivity, sensitivity, and reproducibility by reducing 

matrix effects and isobaric interferences that also complements unknown 

identification by MS/MS.67  

Capillary electrophoresis-mass spectrometry (CE-MS) is a complementary 

microseparation platform to GC/MS and LC-MS in metabolomics since a large 

fraction of metabolites found in biological samples, such as urine, are 

hydrophilic/ionic metabolites, including amino acids, organic acids, nucleotides, 

and nucleosides, in addition to secondary metabolites as their intact glucuronide 

or sulfate conjugates.63,68,69 CE separations are based on differences in the 

electrophoretic mobility (µep) of an ion (i.e., charge density) in free solution under 

an electric field. Hyphenation of CE to MS typically uses a coaxial sheath liquid 

interface, where solvent is delivered to the end of the capillary as a terminal 
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electrolyte reservoir at a rate of 5 to 10 µL/min to form a stable spray under an 

applied voltage (3-5 kV). This makes up for the low flow rate at the capillary 

outlet in CE (10-100 nL/min), which is not sufficient for microspray formation 

alone.70 Additionally, this interface provides a closed electrical contact with the 

BGE and electrode for stable spray formation in ESI (Figure 1.2).54,70,71 The 

nebulizer gas flow outside of the Taylor cone also assists in the formation and 

desolvation of charged droplets in the electrospray process. A major advantage of 

the coaxial sheath liquid interface is that it allows for independent optimization 

from separation conditions, while also providing a homogenous solvent 

composition for spray formation during the separation, unlike gradient elution 

programs used in LC-MS. Importantly, CE-MS analyses are typically fast with 

high separation efficiency, do not require extensive workup of highly saline 

biological samples, and are highly cost-effective due to limited use of organic 

solvents/reagents while using inexpensive bare fused-silica capillaries rather than 

LC columns. Additionally, CE requires only small sample volumes (< 5  µL), 

which makes it an ideal technique for analyzing volume-restricted biological 

samples (e.g., DBS cut-outs containing about 3 µL of whole blood)72 while also 

allowing for “single cell” metabolomic studies.73 However, a major constraint in 

CE-MS is that concentration sensitivity is limited as a result of small injection 

volumes (5-10 nL) and post-capillary dilution effects due to the coaxial sheath 

liquid interface leading to additional dilution of the CE effluent during 

ionization.70 Alternatively, various sheathless interfaces have been developed to  
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Figure 1.2. Setup of a CE-ESI-MS system showing separation in the CE capillary and the coaxial 
sheath liquid interface coupling CE to ESI prior to sampling into the MS for detection. Figure 
adapted from (54).  

improve concentration sensitivity in CE-MS, but have not yet been widely 

adopted yet due to their high costs and/or poor robustness.74 Additionally, 

separations in CE are prone to large migration time variability due to changes in 

the electroosmotic flow (EOF) when using bare/uncoated fused-silica capillaries, 

however this can be readily overcome by use of internal standard(s) for 

normalization of migration (i.e., relative migration time) or the use of dynamic 

warping algorithms for time alignment during data processing.75 Overall, CE-MS 

has limited metabolome coverage in terms of resolution and detection of 

nonpolar/neutral metabolites in comparison to RPLC-MS. New advances in non-

aqueous CE-MS (NACE-MS) may allow for analysis of non-polar yet ionized 

long-chain fatty acids and phospholipids, however it is not routinely used nor has 

it been rigorously validated.76 
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1.2 Capillary Electrophoresis-Mass Spectrometry 

CE involves the electrophoretic separation of charged ions within a narrow-

bore open-tubular fused-silica capillary in free solution, where the background 

electrolyte (BGE) composition largely determines selectivity (e.g., pH, ionic 

strength, organic additives).77 The capillaries used for CE separations are also 

coated with polyimide to prevent capillary breakage while ensuring thermal 

stability. Capillaries range from 10 to 130 cm in length with inner diameters 

between 25 to 100 µm. The small inner diameter and high surface-volume ratio of 

the capillary allows for efficient heat dissipation upon application of high voltages 

(30 kV maximum). CE is a high efficiency microseparation technique (number of 

theoretical plates, N ≈ 106) with the ability to resolve a wide range of metabolite 

classes within complex sample mixtures that also functions as an effective de-

salter to prevent ion suppression in ESI-MS.  

1.2.1 Electrokinetic Separation in CE 

Separation of metabolites in CE is dependent on two electrokinetic separation 

principles: the bulk EOF of the solution and the discrete electrophoretic mobility 

(µep) of a solute (i.e., metabolite). The silanol groups on the capillary wall are 

partially de-protonated and are predominately negatively charged as a function of 

solution pH (pH > 5). The negatively charged silanol surface attracts positive ions 

from the buffer, forming an electric double layer of cations.78 When a voltage is 

applied, the mobile or diffuse layer migrates toward the cathode, resulting in a net 
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flow of solution (EOF) in that direction. In general, a faster EOF occurs under 

alkaline conditions when using low ionic strength buffers in low viscosity 

solvents at high temperature. The electrophoretic mobility is dependent of the 

velocity of an ion under an applied electric field. Importantly, µep is dependent on 

the effective charge density of an ion (i.e., molecular volume and pKa) under a 

defined background electrolyte (BGE) and ambient conditions, such as pH, ionic 

strength, temperature, and solvent viscosity. While the EOF transports all analytes 

equally in a sample towards a fixed detector (or ion source), differences in µep 

impact selectivity in CE, where cations migrate prior to neutral compounds, 

which co-migrate with the EOF, and anionic species migrate counter to the EOF 

as depicted in Figure 1.3. Each ion has an apparent mobility (µapp), which is 

determined by the apparent migration velocity (vapp) and the electric field strength 

(E). µapp can be determined experimentally from the apparent migration time of 

the analyte (tm) and separation conditions used in CE, including voltage and 

capillary length:77  

𝜇677 =
89::
;

= 	 <=∙<>
0∙?@

 (2) 

where, Ld is the length of the capillary from the inlet to the detector, V is the 

applied voltage, and Lc is the total length of the capillary. 
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Figure 1.3. Separation of cationic, neutral, and anionic components in a sample by capillary 
electrophoresis. The EOF is a bulk flow of solution towards the cathode and detector that is a 
result of the doubly charged cationic layer at the capillary wall. The differences in electrophoretic 
mobility results in cationic species reaching the detector first (positive µep), followed by neutral 
(µep = 0) and anionic species (negative µep). 

1.2.1.1 Electroosmotic Flow 

The EOF is the bulk flow of solution that is generated upon application of 

voltage across a buffer-filled fused-silica capillary. The surface of the capillary 

walls possesses a net negative charge due to the deprotonation of silanol 

functional groups at high pH (pKa ≈ 6.3).79 The capillary wall attracts a double 

layer of cationic species within the BGE solution; the innermost layer of cations is 

adsorbed to the capillary wall (Stern layer), while the outermost layer is a diffuse 

layer of mobile cations.80,81 The cations in the outer layer migrate towards the 
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cathode, transporting bulk solution with a mobility of µeo, as described by the 

Smoluchowski equation: 

𝜇/A =
B∙C
DE∙F

 (3) 

where, e is the dielectric constant of the buffer, h is the viscosity of the buffer, 

and z is the zeta potential of the capillary surface.80 z reflects the effective charge 

near the capillary surface and arises as a result of the electric potential difference 

between the Stern layer and the bulk solution.81 The magnitude and sign of z and, 

subsequently, the EOF can be altered by changes in buffer pH, the presence of 

organic modifiers (i.e., organic solvent, surfactants), and ionic strength. Under 

acidic buffer conditions (pH < 4), the silanol groups are protonated, which 

effectively suppresses the EOF as highlighted in Figure 1.4. In contrast, the 

addition of cationic surfactants in the buffer (e.g., CTAB) reverses the effective 

charge with formation of a lipid bilayer on the capillary surface thereby also 

reversing the direction of the EOF. As a result, the EOF is highly sensitive to 

properties of the capillary surface and composition of the BGE, which ultimately 

impacts the apparent migration time for polar/ionic metabolites in CE. 

Due to the narrow internal diameter of the capillary, the velocity distribution 

of EOF is nearly uniform resulting in a flat or ‘plug flow’ (Figure 1.5). Pressure-

driven systems, such as HPLC or GC, have non-uniform velocities across the 

column creating a parabolic flow profile.79 The flat plug flow profile 

characteristic of the EOF reduces the effect of band broadening (i.e., resulting in 
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Figure 1.4. The relationship between the EOF and pH. At pH <3, the EOF is effectively 
suppressed.79 

 
Figure 1.5. Comparison of the parabolic/laminar flow profile for a pressure-driven system such as 
LC and the flat ‘plug’ EOF flow profile that is generated for solute transport in CE. The plug flow 
profile of the EOF in CE allows for higher efficiency separations and reduces the band broadening 
effect observed in LC or GC. 

sharper peaks) that is observed in pressure-driven systems due to increased 

frictional forces present near the column walls.78,80 This is a major reason for the 

higher efficiency separation in CE since band broadening is primarily determined 

by longitudinal diffusion, whereas HPLC is also subject to additional processes, 

such as Eddy diffusion and mass transfer. 

Plug Flow

Parabolic/Laminar Flow
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1.2.1.2 Electrophoretic Mobility 

The electrophoretic mobility µep (cm2 V-1 s-1) is a fundamental property of an 

analyte under defined experimental conditions.77 µep depends on both analyte 

physiochemical properties and BGE conditions that impact the effective charge 

and molecular size/shape of an analyte. Overall, µep is proportional to the net 

charge of the analyte (q) and inversely proportional to its hydrated hydrodynamic 

radius (RH) and solution viscosity when assuming a spherical and uniformly 

charged ion based on the following equation:79 

𝜇/7 =
8G:
;
= H

IEFJK
 (4) 

The effective charge density of an ion is thus the key parameter that controls 

both the direction and magnitude of µep; cations and anions will have positive and 

negative µep, respectively, whereas neutral analytes will co-migrate with the EOF 

with a µep of 0 (cations > neutral > anions). Neutral compounds can be resolved in 

CE, however, when using charged surfactants (e.g., SDS) as pseudo-stationary 

phases in the BGE due to dynamic solute partitioning during electromigration, 

which is referred to as micellar electrokinetic chromatography (MEKC)—a 

widely used mode of separation in CE.79 However, most surfactants are not 

compatible with ESI-MS since they are non-volatile and thus contribute to 

deleterious ion suppression.82 Overall, separation in CE is highly dependent on 

buffer pH. At high pH (alkaline/neutral), the EOF is strong and transports all ionic 
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species towards the detector, where selectivity is determined by differences in 

their µep. Under acidic conditions, the EOF is suppressed, which results in the 

migration of negatively charged species (µep > µeo) towards the anode where they 

exit at the capillary inlet. Under these counter-flow conditions, only cationic 

species can be fully resolved since they co-migrate with the EOF in the same 

direction. For the separation of strong anions (pKa < 2) such as sulfate, sulfite, and 

chloride, an acidic BGE under reversed polarity can be applied for improved 

selectivity.83 This results in the electrokinetic rejection of cations and weak acids 

in complex biological samples (e.g., urine), allowing for selective detection of 

strong anions by CE with indirect UV detection without spectral interferences. 

1.2.2 Applications of CE-MS in Metabolomics 

The high separation efficiency, small sample requirements, and low 

operating costs makes CE-MS an attractive platform in metabolomics.68 

Additionally, higher sample throughput with improved data fidelity can be 

achieved when using multisegment injection (MSI)-CE-MS, where serial sample 

plugs are injected sequentially between buffer segments prior to separation.84,85 

After a voltage is applied, ions are then able to migrate as a series of resolved 

zones under steady-state conditions prior to ESI-MS as shown in Figure 1.6. 

MSI-CE-MS also allows for the design of novel data workflows to encode mass 

spectral information temporally for biomarker discovery when performing non-

targeted metabolite profiling. For instance, a dilution trend filter can be used as a 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 26 

robust screening tool for peak picking in metabolomics by rejecting background 

ions and spurious signals via injection of a representative pooled sample that is 

serially diluted with a blank as a control. Authentic features are those that are not 

present in the blank, show a linear response with dilution, and can be measured 

with adequate precision (CV < 40%). Furthermore, quality assurance (QA) can be 

achieved by inclusion of a pooled quality control (QC) sample in the injection 

configuration within each run when using MSI-CE-MS.85 This allows the 

monitoring of long-term system drift and overall technical precision while 

applying batch correction algorithms during large-scale studies where there is 

evidence of bias.86 Thus, MSI-CE-MS offers a multiplexed separation platform 

for high-throughput metabolite profiling while implementing versatile data 

workflows to reduce false discoveries with QC/QA. 

Soga et. al. first reported the use of CE-MS for the comprehensive analysis 

of anionic metabolites in bacterial samples in 2002.87 While its use in 

metabolomics has since grown significantly, CE-MS-based metabolomics still 

represents a small fraction of metabolomic studies as compared to more 

established methods based on GC/MS and LC-MS.88 For instance, in 2016, there 

were over 1,730 publications in metabolomics (Web of Science search query with 

metabolom* or metabonom* in title) with about 56% of all reports utilizing NMR 

or MS-based detection. Of these, only 2.4% utilized CE-MS as opposed to 

GC/MS (22.6%), LC-MS (38.6%), and NMR (36.4%). The major benefits and  
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Figure 1.6. Format for multisegment injection (MSI) of seven samples within a single capillary 
for CE-MS (A).84 Ions migrate in a series of zones with the generation of the EOF before 
ionization and detection by TOF-MS (B). The use of MSI-CE-MS allows the quantification of co-
migrating and isomeric metabolites (C). Figure modified from (84). 

limitations of CE-MS are summarized in Table 1.1, including recent 

technological advances to overcome major constraints.89-93 Primary limitations in 

CE-MS for metabolomics include poor concentration sensitivity, method 

robustness, and precision for apparent migration times. Furthermore, there are few 

commercial vendors that offer service support and there is a lack of customized 

software packages for processing CE-MS metabolomics data.94 Also, very few 

studies published in the literature have performed rigorous and long-term 

validation studies using CE-MS, including intermethod comparisons or external 

validation as part of proficiency or round-robin testing.95 Recently, Boizard et.  
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Table 1.1. Major strengths and limitations of CE-MS in metabolomics. 

Strengths 
• Low sample volume (< 5  µL) that is ideal for mass-limited samples 
• Low operating costs (i.e., capillary/buffers) 
• Ideal for polar/ionic compounds in highly saline biological samples 
• Limited sample pretreatment required 

Limitations 

• Poor concentration sensitivity  
• Migration time/EOF variation 
• Difficulty with metabolite identification 
• Problems with long-term method robustness 

Recent 
Advances 

• Improvement of throughput by up to 101 with MSI84 
• Sensitivity improvements with sheathless/low-flow interfaces89,90 
• Expanded metabolome coverage with nonaqueous-CE76 
• On-line preconcentration to increase sample volume loading91  
• Improved EOF control/migration time precision with column coating 

strategies92 
• Chemical derivatization to improve solute ionization and separation 

performance for low abundance metabolites by introduction of a 
charged/hydrophobic group93 

 

al.95 used a CE-MS-based analysis pipeline to illustrate its long-term stability in 

measuring the urinary metabolome using the same sample over a period of 4 

years. CE-MS-based metabolomic analysis of urine samples has also been applied 

to the discovery of novel biomarkers of cigarette smoking,96 targeted screening 

for glutaric acid acidurias,97 discovery of potential predictive markers for cancers 

as well as therapy efficiency,98,99 and for the screening/quantitation of drugs of 

abuse.100 The development of MSI-CE-MS greatly increases sample throughput 

without added infrastructure costs that is ideal for application in large-scale 

clinical or epidemiological studies. DiBattista et. al.13 demonstrated an 

accelerated data workflow for unambiguous identification and quantification of 

biomarkers of IEMs from neonatal DBS extracts when using MSI-CE-MS that 

was compared with validated methods based on stable isotope dilution-direct 
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infusion MS/MS within an accredited clinical laboratory facility. In this case, 

duplicate injections of three presumptive IEM samples were analyzed with a 

pooled QC sample representing a healthy neonatal control. This strategy was 

validated for detection of known IEM biomarkers for the routine analysis of > 20 

IEM, including phenylketonuria (PKU). Additionally, nontargeted metabolite 

profiling of DBS identified new putative biomarkers of galactosemia that may 

allow for low cost multiplexed MS/MS screening without the need for 

colorimetric enzyme bioassays. Nontargeted metabolite profiling was also 

recently applied using MSI-CE-MS in volume-restricted sweat samples from 

screen-positive infants for cystic fibrosis (CF).86 Several discriminating 

metabolites associated with CF-affected infants were identified, including 

asparagine and glutamine. Unexpectedly, two exogenous metabolites, pilocarpic 

acid, a hydrolysis product of the sweat stimulating drug pilocarpine, and mono(2-

ethylhexyl)phthalic acid (MEHP), a metabolite of the plasticizer bis(2-

ethylhexyl)phthalate (DEHP), were secreted at significantly lower concentrations 

in comparison to age-matched nonaffected infants. These results suggest that CF 

infants have a higher risk for paraoxanase (PON 1) deficiency, which is an 

enzyme associated with lipid metabolism, xenobiotic detoxification, and bacterial 

biofilm regulation, shedding new insights into the underlying pathophysiology of 

CF.   
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1.3 Metabolomics Workflow: From Data to Information 

The primary goal of metabolomics is the comprehensive analysis of all 

metabolites that are detectable in a biological sample in order to derive systematic 

understanding of an organism on a molecular level. Nontargeted metabolite 

profiling enables the identification of unexpected compounds of clinical or 

biological significance, which can be applied for improved screening, diagnosis, 

and/or treatment monitoring of individual patients.101 However, pre-analytical 

steps associated with experimental design, cohort selection, sample 

collection/storage and sample workup, as well as post-analytical steps involving 

peak picking, time alignment, statistical analysis, metabolite identification, and 

biochemical interpretation, are all essential components within a metabolomics 

workflow.102 Figure 1.7 provides an overview of an accelerated data workflow 

developed for biomarker discovery in metabolomics when using MSI-CE-MS. 

The experimental design used for hypothesis testing is critical to control for 

different and often confounding variables within a study that can contribute to 

bias or false discoveries (e.g., age, sex, BMI, co-morbidity).103 This includes the 

implementation of standardized protocols for sample collection, preparation, and 

storage, especially in small underpowered pilot studies. Moreover, rigorous 

method validation and daily preventative maintenance/mass calibration routines 

for instrumentation are also required, including stringent QC/QA to minimize bias 

when performing large-scale metabolomics studies over long periods of time.103 

Method validation is a critical step as it ensures the method is reproducible, 
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Figure 1.7. Components of an accelerated data workflow for nontargeted metabolomic studies 
using MSI-CE-MS. Experimental design (1) is critical for controlling different variables within a 
study, and includes standardized sample collection and preparation. A dilution trend filter (2) can 
be used for an untargeted primary screen of unique sample-derived metabolites, while excluding 
spurious signals and background ions. Method validation and quality assurance (3) by analyzing 
QC samples within each run over the entire study duration ensures that the method is reproducible, 
accurate, and robust. Data visualization and hypothesis testing (4) is then carried out after pre-
processing (i.e., normalization, scaling, transformation) using multivariate and univariate statistics, 
which is followed by the qualitative/quantitative identification of biologically significant 
metabolites and related metabolic pathways associated with the study design (5). Adapted from 
(85). 

accurate, and robust, such that measured changes in metabolic responses are not 

due to technical variations or systematic bias. This is achieved by analyzing 

representative QC samples intermittently over the entire duration of the study. 
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The QC also provides selection criteria for molecular features when performing 

nontargeted metabolite profiling based on acceptable technical precision (CV < 

40%).103 

Following data acquisition, data pre-processing involves the application of 

various processes to the raw data prior to statistical analysis, including correction, 

normalization, scaling, and transformation. Batch-correction provides a way to 

adjust raw data in order to reduce variability and correct for systematic error as 

reflected by changes in response for QC samples analyzed over time.86 

Normalization is useful to correct for variations in sample composition, sample 

recovery, and/or sample injection volume, such as with creatinine normalization 

to correct for differences in hydration status in human urine.104,105 Also, 

normalization of ion responses for all measured metabolites in CE-MS is often 

performed when using an internal standard (IS) and/or recovery standard (RS) 

that are added to all samples at a fixed concentration in order to correct for 

differences in on-column injection volumes between samples.106 In the case of 

skewed data distributions, a logarithmic transformation is also frequently applied 

to a data matrix as required for application of parametric statistical tests. 

Additionally, autoscaling is a common data pretreatment method in metabolomics 

during explorative analysis (i.e., mean-centered data divided by its standard 

deviation for each metabolite) in order to provide equal weight when comparing 

metabolite responses that vary over a wide dynamic range irrespective of their 

abundance.107 Additional data transformations may be required depending on the 
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type of biological specimen, the biological question to be answered, and the 

underlying origin(s) of variance, such as normalization of metabolite response to 

dried mass for wet tissue biopsies.  

Statistical analysis, which involves univariate and multivariate statistical 

tests, is a major step in the data workflow in metabolomics, allowing sample 

classification, correlation between features, and identification of significant 

features, all of which are important for biological/biochemical interpretation.107 

Univariate statistical methods test the significance of individual features between 

different groups. With data that is distributed normally, Student’s t-test and one-

way analysis of variance (ANOVA) are widely used. Non-normal data require 

nonparametric statistical tests such as the Mann-Whitney U test to compare the 

difference between two groups. Receiver operating characteristic (ROC) curves 

are also utilized to assess the performance of a biomarker for differentiating 

between two states (i.e., healthy versus disease) by observing how a critical 

threshold affects sensitivity and specificity.108,109 In addition to ROC curves, 

scatter plots, histograms, and box plots are used to visualize and evaluate data 

trends terms of their overall statistical significance after adjusting for covariates 

(e.g., age and sex).109 Multivariate statistical methods are classified as 

unsupervised or supervised, where unsupervised methods classify the data without 

knowledge of sample classification.7 Supervised methods, however, have known 

classifications (i.e., disease state versus healthy subjects) and are useful for 

identification and ranking of biomarkers. Principal component analysis (PCA), an 
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unsupervised multivariate method used for reduction of data dimensionality and 

filtering noise in order to cluster samples based on the underlying variance of the 

data, is often used as a starting point for data exploration. PCA transforms the 

data into ranked principal components (PCs) which are latent variables that 

explain the directionality of maximum data variance. The first principal 

component (PC1) possesses the highest variance within the data set, with each 

subsequent orthogonal PC representing the next greatest variance. The PCA 

scores plot can give an overview of the data in terms of trends/pattern recognition, 

grouping, and outlier detection.107 Furthermore, PCA is useful for comparing the 

technical variance of the method based on clustering of repeat QC samples 

relative to the much greater biological variance of study groups examined. 

Statistical parameters such as effect size and average fold-change should be 

reported along with the probability (p-value) with confidence intervals (e.g., 95% 

confidence). Hierarchical cluster analysis (HCA) is another unsupervised 

multivariate method that clusters data based on the differences between pairs of 

samples/features.7 Small distances between pairs suggest that the samples have 

greater similarity in terms of their overall metabolic phenotype. The partial least 

squares discriminant analysis (PLS-DA) is a supervised multivariate statistical 

method that plots the regression of the data matrix (x-axis) against a classification 

matrix (y-axis). The goal of a PLS-DA model is to optimize the separation 

between sample classes, while identifying features responsible for class 

separation.106,107 As the number of hypothesis tests increase (i.e., with the number 
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of features), the frequency of type I errors (i.e., false positives) also increases—

this is known as the multiple testing problem.110 In metabolomics, multiple 

hypothesis testing should be applied by using appropriate adjustments, such as 

false discovery rate (FDR) or more conservative Bonferroni correction. 

The final step in the metabolomics workflow is the interpretation of the data 

based on known metabolic pathways, which allows further understanding and 

characterization of specific metabolic stressors. This is often challenging as many 

biomarkers do not have well-understood biochemical pathways and/or roles in 

disease pathophysiology. Furthermore, the interpretation of the significance of 

changes in a large number of metabolites is also difficult, however visualization 

can be carried out using metabolic pathway maps.111 Initial validation of putative 

biomarkers must be carried out prior to translation as a way to reduce false 

discoveries; pre-validation can be carried out by measuring putative biomarkers in 

an independent set of samples (i.e., replication) in a different patient population 

using the same analytical platform and/or by cross-validation by re-analyzing 

same samples using a different platform. For validation of biomarkers using a 

more targeted data workflow, the analytical figures of merit of the assay must be 

determined to demonstrate adequate linearity, sensitivity, limit of detection, 

robustness, and reproducibility of measurement in samples without complicated 

sample workup. Importantly, the biomarker must offer a measurable clinical 

benefit in terms of improving patient health outcomes (e.g., higher positive 

predictive value, reduced mortality or morbidity), or reducing healthcare costs.112 
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For example, TMAO, a metabolite of dietary choline, phosphatidylcholine, and L-

carnitine, has been extensively validated by several research groups independently 

as a biomarker for cardiovascular disease, including atherosclerosis.113 Further 

investigation into the clinical value of TMAO also confirmed its contributory role 

in the development of renal dysfunction.114 Sarcosine is another biomarker for 

predicting aggressive prostate cancer in high risk patients, however its biological 

mechanisms and clinical utility are still being evaluated relative to conventional 

prostate specific antigen (PSA).113  

1.4 Thesis Overview and Objectives 

Metabolomics is a powerful way to elucidate the effect of many single or 

multiple stressors on human health, including perturbations induced by genetic 

mutations, dietary patterns, and/or environmental exposures. One of the main 

priorities of metabolomics is to better understand the pathophysiology associated 

with human diseases, including the role of potentially modifiable lifestyle factors, 

such as smoking and habitual diet. A better understanding of these mechanisms is 

essential for improved disease prevention on a population level, in addition to 

predicting an individual’s susceptibility to environmental stressors. Metabolomics 

has the potential to improve the screening and diagnostics of IEM, where early 

detection relies on analysis of sensitive yet specific disease-associated 

biomarkers.115 In the case of PKU, which is a potentially debilitating genetic 

disease affecting phenylalanine metabolism that leads to lifelong cognitive 
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impairment if left untreated, new advances for dieticians to objectively measure 

adherence to a low protein diet will greatly improve clinical outcomes. However, 

birth outcomes are not only dependent on dietary patterns and genetics, but also 

on lifelong chemical exposures especially during critical stages of fetal 

development. In this case, metabolomics offers a novel approach to reveal the 

sub-acute toxicity effects of low level exposure to vapour from electronic 

cigarettes (“e-cigarettes”) using first trimester placental cells as a relevant cell 

model system for prenatal exposures.  

The work in this thesis aims to address two major projects in metabolomics 

associated with public health with a focus on chronic disease prevention relevant 

to pediatric medicine. Chapter II focuses on the impact of diet and nutrition on 

the urinary and plasma metabolome of PKU patients. In PKU, a severe 

accumulation of circulating Phe coupled to a deficiency in Tyr leads to 

irreversible neurotoxic effects such as cognitive impairments, reduced melanin 

production, and growth deficiencies.116,117 This can be readily prevented with 

lifelong dietary restriction of Phe using specialized medical foods that promote 

normal growth without undernutrition. The major research objectives associated 

with this project were to perform targeted/nontargeted metabolomics to confirm 

known and reveal unknown biomarkers associated with severe PKU and explore 

its relationship to dietary adherence for individual patients. The first component 

of this project focused on (a) the validation of the MSI-CE-MS method in 

measuring clinically monitored and relevant biomarkers of PKU (Phe and Tyr) in 
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comparison to the reference method for amino acid analysis based on UPLC-UV. 

In addition, (b) the targeted analysis of several known Phe catabolites associated 

with PKU was performed, including gut microflora-derived metabolites of 

aromatic amino acids, demonstrating a correlation of these metabolites to Phe 

concentrations measured in both plasma and urine. Finally, (c) the nontargeted 

analysis was applied to identify novel biomarkers associated with PKU, which 

highlighted that urinary acylcarnitines and catabolites of histidine were strongly 

correlated to excreted concentrations of Phe. This may provide a way in which to 

monitor consequences of dietary inadherence, such as macronutrient (e.g., 

essential fatty acids) and micronutrient/vitamin deficiencies (e.g., folic acid), or 

hormonal changes. Metabolomics research examining PKU pathophysiology is 

extremely limited and there is little work focused on the complex interactions of 

the PKU diet, which includes protein restriction and supplementation with amino 

acid formula, or other treatment options that impact the metabolome. 

Chapter III focuses on the examination of the metabolic effects of e-

cigarettes on placental trophoblast cells at different stages of development. E-

cigarettes are advertised as a harm reduction alternative to tobacco cigarettes and 

users inhale vaporized liquids containing propylene glycol and/or glycerol, 

nicotine in concentrations ranging from 0-24 mg/mL, and a wide range of 

flavouring agents and chemical additives. Relative to tobacco smoke, e-cigarette 

aerosol has been demonstrated to be less cytotoxic in vivo; however, long-term 

biological effects simulating sub-acute exposure to vaporized flavour additives 
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within these solutions is unknown. It has been demonstrated that some flavour 

additives commonly found in e-cigarette solutions (e.g., diacetyl and 

cinnamaldehyde) are associated with severe implications on human health, such 

as the development of respiratory disease.118 E-cigarettes represent a serious 

potential threat to public health as a result of advertising and unawareness coupled 

with sparse research efforts in the field. In particular, research into chronic 

exposure to flavoured e-cigarettes is urgently needed for high risk populations 

during critical periods of development (i.e., adolescents and during pregnancy). In 

order to better elucidate the potential effects of e-cigarettes, exposure of first and 

third trimester trophoblast cells to unflavoured and flavoured e-cigarette liquid 

vapour was carried out as a function of nicotine dosage. The major achievements 

of this project included: (a) the characterization of e-cigarette liquid formulations 

with different analytical methods with a focus on volatile components in addition 

to polar/ionic components; (b) the validation of the preparation of exposed cell 

growth media; and (c) the targeted and nontargeted analysis of placental cell 

exposure to (i) unflavoured/simple, (ii) nicotine-containing, and (iii) flavoured e-

cigarette liquids. Overall, this works offers valuable insight on the potential harm 

of e-cigarettes on fetal development. Furthermore, the identification of 

metabolites that are significantly altered in placental cells, such as acylcarnitines 

and metabolites of fatty acid oxidation, will aid in identifying enzyme targets and 

metabolic pathways that may be affected by components in e-cigarette vapour. As 

it is known that e-cigarette liquids and their vapours are incredibly complex, this 
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work provides a basis for further analysis into specific flavouring additives and 

their deleterious effects on placental function. Furthermore, this work strives to 

apply metabolomics using a unique data workflow by MSI-CE-MS to evaluate the 

effects of potentially modifiable lifestyle factors (i.e., diet, smoking) on human 

health, with emphasis on genetic diseases in children in support of universal 

newborn screening programs, and public health as related to an alarming increase 

in e-cigarette smoking prevalence among young adults.  
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2.1 Abstract 

Phenylketonuria (PKU) is an inherited metabolic disease caused by a 

deficiency of the enzyme phenylalanine hydroxylase (PAH), which is required for 

the conversion of phenylalanine (Phe) from dietary protein sources to tyrosine 

(Tyr). Management of PKU primarily involves lifelong dietary restriction of Phe 

while consuming a low protein diet that is essential to prevent irreversible 

cognitive impairment and severe mental disabilities early in life. Metabolomics 

offers a systematic approach to identify pathognomonic markers of PKU 

associated with clinical outcomes, as well as monitor dietary adherence during 

treatment monitoring. In this work, the urine and plasma metabolome of a cohort 

of classic PKU patients (n = 23) was characterized using multisegment injection-

capillary electrophoresis-mass spectrometry (MSI-CE-MS) in order to confirm 

known disease biomarkers associated with Phe catabolism, as well as identify new 

markers associated with disease progression and dietary compliance. An 

intermethod comparison of MSI-CE-MS was first validated for accurate 

quantification of plasma Phe and Tyr from PKU patients relative to UPLC-UV, 

which demonstrated good mutual agreement with bias under 10%. We also 

confirmed that plasma Phe concentrations were strongly correlated with the 

excretion of urinary Phe as well as several host derived Phe catabolites and gut 

microflora by-products, such as N-phenylacetylglutamine, phenylpyruvate, and 

phenylsulfate. Nontargeted metabolite profiling by MSI-CE-MS based on 
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circulating plasma Phe levels and Phe excretion in urine was also carried out to 

identify novel biomarkers associated with PKU disease status. Multivariate and 

univariate analysis of single-spot urine samples classified by Phe excretion 

showed significant decreases in carnitine and short- and medium-chain 

acylcarnitines, which suggested that accumulation of Phe and phenylacetate is 

associated with inhibition of fatty acid b-oxidation. Additionally, two histidine 

catabolites in urine were strongly correlated with Phe excretion, which may 

reflect micronutrient/vitamin deficiencies caused by poor dietary adherence. 

Overall, analysis of the urine metabolome from PKU patients has demonstrated its 

potential clinical utility for therapeutic treatment monitoring, as it is noninvasive, 

it includes several clinically relevant pathognomonic markers of PKU, and it may 

allow for evaluation of dietary compliance and/or nutritional deficiencies that is 

especially problematic in older children and adults. 

2.2 Introduction 

2.2.1 Inborn Errors of Metabolism 

Inborn errors of metabolism (IEM) are rare genetic diseases causing partial 

or complete loss of enzyme activity, which can have severe implications in birth 

outcomes for affected children, including death or lifelong disabilities.1,2 The 

predominant mechanism in the majority of IEM is protein misfolding and loss of 

function as a result of various types of genetic mutations.3 The folding of proteins 

into their three-dimensional native conformations is necessary for full 
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functionality; mutations in the amino acid sequence may lead to reduced 

thermodynamic stability due to changes in hydrophobic interactions between side 

chains.1,3 Molecular chaperones are responsible for regulating protein assembly 

and for stabilizing protein conformations from natural (e.g., heat shock or 

oxidative stress) and acquired (e.g., genetic mutations) stress.4 Early diagnosis 

and treatment of IEM is critical to avoid the onset of adverse health outcomes.5 

Universal newborn screening (NBS) was first implemented in the early 1960s 

with the successful detection of PKU.6 Robert Guthrie first introduced a bacterial 

inhibition assay for the screening of PKU that employed dried blood spots (DBS) 

on filter paper as a simple method for specimen collection and transport. 

Population-based screening of newborns for PKU has contributed to significant 

socioeconomic benefits due to early detection and prevention of lifelong 

developmental disabilities with long-term healthcare savings as compared to 

symptomatic diagnosis.7,8 Prior to the introduction of tandem mass spectrometry 

(MS/MS), PKU and congenital hyperthyroidism were widely screened in infants 

at birth using conventional biochemical assays.9 However, the advent of MS/MS 

technology within accredited clinical laboratories now allows for selective, 

sensitive, and high-throughput screening of biomarkers associated with dozens of 

IEM at incremental costs in a multiplexed manner unlike classic immunoassay 

and enzyme kinetic assays.8-10 
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2.2.2 Phenylketonuria 

PKU is an autosomal recessive disorder due to a functional deficiency of 

hepatic phenylalanine hydroxylase (PAH), the enzyme responsible for catalyzing 

the hydroxylation of L-phenylalanine (Phe) to L-tyrosine (Tyr).11,12 Human PAH 

is a homo-tetrameric enzyme that requires binding of iron (II), together with 

molecular oxygen (O2) and a redox-active co-factor, tetrahydrobiopterin (BH4), to 

the active site as shown in the reaction scheme in Figure 2.1.13 In humans, PAH 

is the initial rate-limiting step in the degradation of Phe from dietary protein. 

Mammalian PAH is composed of four identical 50 kDa subunits (Figure 2.2), 

each of which possesses an N-terminal regulatory domain (residues 1-110), a 

catalytic domain (residues 111-410), and a C-terminal oligomerization domain 

(residues 411-452).10,14 Binding of Phe to the regulatory domain leads to 

conformational changes involving the dimer-tetramer equilibrium, triggering the 

activation of PAH.15,16 

 

 
Figure 2.1. The PAH-catalyzed reaction converting Phe to Tyr in the presence of iron, molecular 
oxygen, and tetrahydrobiopterin (BH4).11 
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Figure 2.2. Crystal structure of tetrameric human PAH.17 Each subunit consists of three domains: 
the N-terminal regulatory domain, the catalytic domain, and the C-terminal oligomerization 
domain. 

Clinically relevant mutations of PAH lead to protein misfolding, resulting in 

a severe accumulation of Phe, as well as a risk for Tyr deficiency if not 

supplemented in the diet.  There are over 600 known PKU-causing mutations — 

the majority of which are missense mutations (62%) or small/large deletions 

(13%) on the PAH gene, which is located on chromosome 12q23 (Table 2.1).17,18 

While some mutations are variants of unknown significance (13%) or benign 

variants (13%), the majority of mutations are pathogenic or likely pathogenic 

(74%),19 affecting PAH enzymatic activity, oligomerization, thermal stability, 

and/or folding. These mutations are associated with reduced activity (i.e., residual 

activity range of 2% to 70%) or complete abolishment of PAH activity (i.e., < 2% 

residual activity), which is most commonly associated with classic PKU.18-21 The 

PKU phenotype is a complex trait with Mendelian inheritance that shows a broad 

range of symptoms that manifest among affected individuals. Moderate to severe 

Oligomerization/
tetramerization

domain

Regulatory 
domain

Catalytic 
domain
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Table 2.1. Most common disease-causing mutations associated with classic PKU.22-26 

PAH Mutation Mutation Type Frequency Phenotype 

R408W Missense 9.22% 
Affects catalytic domain, severe structure 
mutation, decreased stability, folding 
defect23 

IVS10-11G>A Splice 7.24% Loss of catalytic activity due to 
conformational change24 

I65T Missense 5.60% Affects regulatory domain, impaired 
hydrophobic packing at dimer interface25,26 

R261Q Missense 4.91% Affects catalytic domain, impaired 
dimer/tetramer formation25 

P281L Missense 4.01% Affects catalytic domain, active site 
mutation26 

 

phenotypes (i.e., classic PKU) are a result of severe mutations that are present 

homozygously or heterozygously with a mild mutation, whereas higher residual 

enzymatic activity of PAH as a result of a mild mutation usually leads to a milder 

disease phenotype.27,28 Phenotypic variability between individuals with the same 

genotype is thought to be a result of between subject differences in gene products 

involved in protein stability, such as molecular chaperones.28 PKU is diagnosed 

based on repeat measurement of elevated Phe in plasma shortly after birth 

following a screen-positive result by MS/MS in NBS. In this case, Phe is grossly 

elevated well above a population mean of about 60 µM for healthy infants with 

unrestricted feeding (e.g., breast feeding or formula).29 An upper cut-off of Phe 

above the 99th percentile of a normal infant population is often used to reduce 

false negatives and maximize detection of PKU in affected infants; however, this 

is periodically reviewed and adjusted.30 Classic or severe PKU makes up the 

majority of PKU cases requiring prompt treatment, and is defined by plasma Phe 

> 1,200 µM, whereas mild PKU is classified by Phe concentrations ranging from 
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600 to 1,200 µM.17 Additionally, non-PKU hyperphenylalaninemia (HPA) is 

defined for screen-positive infants with plasma Phe concentrations that are 

between an upper reference limit of 120-150 µM and 600 µM. Non-PKU HPA is 

related to mild mutations affecting PAH, however do not lead to major elevations 

of Phe or Phe metabolites and thus do not require treatment. Malignant PKU is 

caused by defects in the synthesis or recycling of the PAH co-factor, BH4, and can 

usually be discriminated from PKU with a BH4 loading test.31 Table 2.2 

highlights that the prevalence of PKU varies widely by country and ethnicity, 

however it is highest in Turkey (1:2,600) and Ireland (1:4,500).11 Also, it is most 

prevalent among Caucasians (1:10,000 births), whereas it has a much lower 

incidence among Japanese.11,29 

 

Table 2.2. Incidence of PKU by country.11,12,32 

Country Incidence 
Turkey 1:2,600 
Ireland 1:4,50011 

Israel (Yemenite Jewish) 1:5,300 
Scotland 1:5,300 
Czechoslovakia 1:7,000 
Australia 1:10,000 
Hungary 1:11,000 
Denmark 1:12,000 
France 1:13,500 
United Kingdom 1:14,300 
Norway 1:14,500 
Canada 1:15,00012 
United States 1:15,00032 
China 1:17,000 
Italy 1:17,000 
Japan 1:125,000 
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2.2.2.1 Pathogenesis and Clinical Symptoms of PKU 

The accumulation of Phe from PKU leads to irreversible brain damage 

resulting in intellectual impairment and poor cognitive function in affected 

children.17 Phe is an essential amino acid that is derived exclusively from diet 

and/or proteolysis (i.e., protein turn-over).31 Clinical symptoms also include 

eczema and hypopigmentation of the skin and hair due to reduced melanin 

production, as well as growth deficiencies and behavioural problems such as 

hyperactivity, aggressiveness and anxiety.17,33,34 Severely elevated levels of Phe 

and its catabolites leads to neurotoxicity due to oxidative stress, mitochondrial 

dysfunction, altered cerebral protein/neurotransmitter synthesis, and impaired 

lipid metabolism.35 There is evidence of increased protein and lipid oxidative 

damage, increased production of reactive oxygen species, and decreased 

antioxidant levels in PKU patients as a result of accumulation of Phe and its 

catabolites. Another mechanism contributing to the neurotoxicity in classic PKU 

is related to a deficiency in essential amino acids in the brain as a result of 

saturation of the large amino acid transporter 1 (LAT-1) by Phe.17,36 The LAT-1 

transporter is responsible for delivering the large neutral amino acids (LNAA) 

across the blood-brain barrier.36 LAT-1 has the highest affinity to Phe in 

comparison to the other LNAAs; elevated blood Phe therefore leads to increased 

uptake of Phe into the brain compromising transport of other LNAAs. For 

instance, Tyr is a precursor of melanin, L-thyroxine, and the catecholamine 

neurotransmitters dopamine, norepinephrine, and epinephrine.11 The latter 
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neurotransmitters rely on tyrosine hydroxylase activity to form the key 

intermediate, 3,4-dihydroxy-L-phenylalanine (DOPA), that is inhibited by 

elevated Phe.37 Also, saturation of LAT-1 leads to reduced availability of the 

other LNAAs, which impairs cerebral protein synthesis and monoaminergic 

neurotransmitter synthesis.38 Impaired transport of tryptophan (Trp) across the 

blood-brain barrier leads to reduced brain serotonin synthesis.39 Serotonin and 

dopamine are involved in post-natal brain development and maturation, which 

may explain some of the cognitive disabilities in classic PKU patients. Recent 

work has shown decreased cerebral glucose metabolism and deficiencies of 

proteins involved in glycolysis and the tricarboxylic acid (TCA) cycle in PKU 

mouse models.21 Impaired lipid metabolism is suggested to be a factor in the 

hypomyelination commonly associated with PKU patients; many lipoproteins, 

such as cholesterol, high-density lipoprotein (HDL), low-density lipoprotein 

(LDL), and long-chain polyunsaturated fatty acids, are lower in individuals with 

PKU.35 The pathogenesis of PKU is still not fully understood; however, it is 

proposed that the combination of metabolic alterations as a result of high Phe 

leads to brain damage and cognitive impairment in PKU. In this context, new 

advances in nontargeted metabolite profiling of PKU patients may contribute to a 

better understanding of the pathophysiology of PKU, as well as differences in 

disease progression and treatment responses of individual patients with the same 

genotype. 
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2.2.3 Current Treatment Options for PKU 

The early detection of PKU by universal NBS programs and immediate 

dietary restriction of Phe prevents the onset of severe symptoms. However, 

population screening needs to be integrated with treatment monitoring since 

lifelong dietary restriction of Phe and amino acid supplementation is essential to 

ensure normal growth and development during infancy and throughout 

childhood.11 Other treatment options with varying success include Phe restriction 

together with LNAA therapy, as well as supplementation with the enzyme’s 

natural co-factor, BH4, or enzyme replacement therapy using PEGylated 

phenylalanine ammonia-lyase (PAL) for classic PKU patients. The synthetic form 

of BH4, sapropterin hydrochloride (Kuvan), acts as a chaperone that assists in the 

folding/stabilization of mutant PAH, and is most effective in non-PKU HPA 

patients or patients with mutations causing defects in BH4 synthesis/recycling.40 

While Kuvan may allow for less restrictive dietary adherence, it is expensive (i.e., 

up to $166,000 USD per year)41 and, importantly, only 40% of mild-to-moderate 

PKU cases are found to be responsive to Kuvan treatment.42 PAL, an enzyme 

found abundantly in yeast, plants, and fungi, is responsible for the 

biotransformation of Phe into trans-cinnamic acid and ammonia.43 The 

conjugation of PAL with polyethylene glycol (PEG) improves drug stability, 

efficacy, and safety, at the expense of a reduction in PAL activity by 75%.44,45 

Treatment with PAL is currently undergoing phase 3 clinical trials to assess its 

efficacy for reducing circulating Phe in PKU patients (i.e., > 30% to be 
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considered therapeutically effective);43 however, it is limited by its high costs, the 

need for daily subcutaneous injections, and potential adverse effects (e.g., 

immune reactions and infection) that require careful therapeutic monitoring.44 

There is, therefore, a critical need for new treatment strategies that are both cost 

effective and efficacious for treatment of classic PKU, which ultimately supports 

normal growth and development during childhood without burdensome lifelong 

dietary restrictions. 

2.2.3.1 Lifelong Dietary Management for Classic PKU  

Following confirmatory diagnosis of mild or classic PKU (blood Phe > 360 

µM),26 dietary restriction of Phe is initiated promptly to promote normal growth 

and neurodevelopment.11 Dietary management is not recommended for mild PKU 

or HPA with blood Phe levels between 120 and 360 µM, however they are still 

monitored closely to ensure Phe levels do not increase with higher protein intake. 

The goal of dietary restriction is to maintain blood Phe concentrations within safe 

limits (120-360 µM), however diet should still allow adequate protein intake to 

prevent undernutrition.26,45 Phe restriction, when supplemented with reduced or 

Phe-free amino acid mixtures, is very effective in preventing symptoms of PKU. 

However, the specific diet for individual PKU patients vary based on the 

estimated tolerance for Phe, which is influenced by residual PAH activity, as well 

as other genetic factors (i.e., mutation), age, sex, growth, general health, and 

disease severity.47 Frequent monitoring of the patient’s diet and plasma Phe levels 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 61 

is thus required to ensure treatment success. Within the first year of life, blood 

Phe levels are typically monitored weekly, with special care to monitor during 

periods of rapid growth and/or introduction of solid food.26 In children between 1 

and 12 years, monitoring is decreased to biweekly or monthly. Foods high in 

protein (e.g., dairy, meat, fish, eggs, legumes, nuts/grains) are excluded from the 

diet and Phe-free protein is sourced from commercial medical foods and/or infant 

formula. The PKU formula, which is enriched in amino acids (excluding Phe), 

minerals, vitamins, and other nutrients, provides > 80% of the individual’s protein 

and energy needs for classic PKU patients.47 Furthermore, supplementation with 

LNAAs (e.g., Leu, His, Trp, Tyr, Met) has shown to reduce brain Phe 

concentrations, with improved neuropsychological outcomes in treated PKU 

patients.48 Medical foods which have been modified to be low-protein and/or Phe-

free are an important calorie source for PKU patients given their dietary 

restrictions.26  

Glycomacropeptide (GMP), which is derived from cheese whey and occurs 

naturally in bovine milk, is a source of naturally Phe-free protein.45,49 It is a 64-

amino acid glycophosphopeptide that contains no aromatic amino acids in its 

primary structure (i.e., Phe, Tyr, Trp) with a high fraction of isoleucine (Ile) and 

threonine (Thr) residues.49 With the addition of other LNAAs, GMP offers an 

alternative protein-source to the synthetic amino acid formulations widely used in 

PKU medical foods and formula. GMP supplements have been reported to be 

more palatable than conventional formulas in addition to improving the efficiency 
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of protein utilization, nitrogen retention, and long-term bone health.50 Also, the 

use of GMP within the diet of PKU patients may improve dietary compliance; 

however, the metabolic and nutritional impacts of GMP are still being 

investigated.49 However, GMP often still contains low residual levels of Phe from 

whey protein impurities that requires testing for quality assurance.51 Indeed, short 

term studies have shown no significant changes in plasma Phe levels with an 

increase in blood Tyr.51,52 Daly et. al.49 reported loss of blood Phe control 

(increased blood Phe and decreased Tyr) with 6-month pilot treatment of GMP in 

22 PKU patients. The mixed results suggest that careful monitoring of individuals 

consuming GMP-containing medical foods should be carried out, including better 

process control and manufacturing standards in GMP products. The introduction 

of more palatable medical foods, including high purity GMP-based medical foods, 

has improved dietary adherence of PKU patients, especially into adulthood. These 

medical foods, however, are more expensive in comparison to non-modified foods 

and costs are not likely to be fully covered, if at all, by third-party insurance 

payers.26 Many PKU patients struggle with maintaining their blood Phe 

concentrations within the range of 120 to 360 µM, as recommended by the 

American College of Medical Genetics and Genomics (ACMGG).53 A study by 

the National PKU Alliance (NPKUA) showed that, of 625 survey participants, 

less than half (46.7%) reported blood Phe under 360 µM. Additionally, dietary 

adherence for adults is much lower than that of young children and adolescents, 

with children being 3-times more likely to keep blood Phe levels within the 
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recommended range. For example, blood Phe over 360 µM was reported in 25.5% 

of individuals under 18 years (n = 329), in comparison to 61.5% of adults (n = 

286).53 One of the major challenges associated with dietary compliance is poor 

insurance coverage of medical formula and low-protein food products.30 In the 

United States, 50% of states provide no coverage or only partial coverage of 

medical formula for PKU and other orphan diseases; for individuals without 

coverage, the cost of formula/medical foods or the insurance deductible cost for 

those with coverage may be too high for the patient to afford. Several 

socioeconomic barriers exist such as unemployment, few adult PKU clinics, 

transportation-related issues, and lack of familial support which collectively 

contribute to poor accessibility and dietary adherence. Since current treatments 

are limited by high costs and variable efficacy, there is an urgent need for better 

strategies to improve health outcomes in affected PKU patients. 

2.2.4 Metabolomic Studies of PKU 

In clinical metabolomics, the nontargeted profiling of metabolites in complex 

biological samples has offered new insights into the mechanisms of disease, 

including biomarker discovery, as required for improved screening, diagnosis, 

and/or treatment monitoring.54-56 A major hurdle, however, is understanding the 

physiological roles of metabolites and their pathways in affected patients. To date, 

there have been few metabolomic studies of PKU, which have primarily focused 

on targeted profiling of known compounds associated with the disease, such as 
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catabolites of Phe and Tyr. For instance, targeted metabolomics using GC/MS and 

LC-MS/MS reported that PKU children following a Phe-restricted diet with low 

dietary intake of saturated/unsaturated fatty acids had lower serum free carnitine 

(C0) and acylcarnitine (C2, C3, C6, C18) levels as compared to healthy controls.57 

Recently, a study by Blasco et. al.58 conducted a cross-platform (GC/MS, NMR, 

amino acid analyzer) metabolomics study comprising 118 known metabolites 

detected in matching urine and plasma samples from a small cohort of PKU 

patients. Using univariate and multivariate statistical analysis, the authors 

demonstrated a negative correlation between Arg, a-aminobutyric acid, and Phe, 

in contrast to a positive correlation between Arg, succinic acid, Gln, and Tyr. This 

work also confirmed the pathophysiology of PKU due to elevated circulating Phe 

concentrations contributed to aberrant metabolic pathways associated with protein 

synthesis, central energy metabolism, and oxidative stress. Recently, Ney et. al.59 

used metabolomics to assess metabolites and neurotransmitters derived from Tyr 

and Trp in PKU patients consuming a standard Phe-free fortified diet as compared 

to a GMP medical food product. This study noted reduced bioavailability and 

altered metabolism of Tyr and Trp in PKU patients consuming a standard amino 

acid formulation as a result of changes in intestinal microflora activity. However, 

long-term dietary studies are still required to fully validate the efficacy of 

specialized Phe-restricted protein products on improving primary clinical 

outcomes (i.e., growth and cognitive function) among classic PKU patients. Given 

the highly variable phenotype that is dependent on the complex interactions of 
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genes, diet, and gut microbiota, there is an urgent need to better characterize the 

metabolome of PKU patients that may also objectively assess dietary compliance 

or identify poor responders to intervention. 

Herein, we examined the plasma and urine metabolome using multisegment 

injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS)60,61 from a 

representative cohort of 23 classic PKU patients spanning various ages, disease 

severity, and nutritional status. This cross-sectional study confirmed that plasma 

Phe was strongly correlated with urinary excretion of a Phe, as well as a wide 

range of Phe catabolites, such as phenylsulfate, phenylpyruvate and N-

phenylacetylglutamine. Nontargeted metabolite profiling by MSI-CE-MS was 

also carried out to identify novel biomarkers associated with PKU disease status 

when using complementary univariate and multivariate statistical methods. 

Overall, the goal of this project was to expand understanding of the metabolic 

phenotype of classic PKU patients who exhibit highly different circulating Phe 

levels due to poor dietary compliance.  

2.3 Experimental 

2.3.1 Chemicals and Reagents 

All chemicals were obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). 

All aqueous buffers and stock solutions were prepared with deionized water 

(dH2O) using a Thermo Scientific Barnstead EasyPure II LF ultrapure water 

system and stored in plastic, transport tubes. Amino acid standard mixtures, 
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internal standards, and the sodium azide solutions were stored at 4˚ C, whereas 

aqueous background electrolytes (BGE) and sheath liquid solutions were stored at 

room temperature. 

2.3.2 Instrumentation 

Therapeutic monitoring of PKU patients based on circulating concentrations 

of Phe and Tyr was performed by a validated amino acid analyzer based on a 

Waters Acquity UPLC system with UV detection using a MassTrak kit for amino 

acids. MSI-CE-MS experiments were performed using an Agilent G7100A CE 

system interfaced with a coaxial sheath liquid Jet Stream electrospray ion (ESI) 

source with heated gas to an Agilent 6230 time-of-flight-mass-spectrometer 

(TOF-MS). The nebulizer gas in the ESI source and the drying gas for MS were 

nitrogen gas, and the damping/collision gas was helium gas. The sheath liquid for 

positive ion mode was 60% MeOH/H2O with 0.1% formic acid and was 50% 

MeOH/H2O for negative ion mode conditions. Purine and HP-921 were added 

into the sheath liquid (0.02%) for reference mass calibration (m/z 121.050873 and 

m/z 922.009798, respectively). The instrument was run in 2GHz extended 

dynamic range (EDR) mode. An uncoated fused-silica capillary with an internal 

diameter of 50 µm and total capillary length of 120 cm was conditioned by 

flushing with methanol, 1 M sodium hydroxide (NaOH), deionized H2O (dH2O), 

and background electrolyte (BGE) at high pressure for 30 min each. The BGE 

used for positive-ion mode (detection of cationic metabolites) was 1 M formic 
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acid with 15% acetonitrile (ACN) at pH 1.8, whereas the BGE for negative-ion 

mode (detection of anionic metabolites) was 50 µM ammonium bicarbonate 

(NH4HCO3) at pH 8.5. For MSI, the samples were injected hydrodynamically 

(100 mbar, 5 s) between spacer segments of BGE (100 mbar, 40 s), for a total 

injection time of approximately 5 min.60 A QC sample was included in a 

randomized position in the MSI injection sequence. After sample injection, an 

applied voltage of 30 kV was applied to begin separation for a total run time of 45 

to 60 min. All runs were performed with the capillary temperature maintained at 

25˚C. Between runs, the capillary was flushed with BGE for 10 min. At the 

beginning of each day, an amino acid standard mixture run and QC run (6 

injections of the QC sample with a dH2O blank) were performed to assess 

instrument performance prior to running plasma/urine samples. Capillaries were 

rinsed with dH2O (10 min) and air (10 min) for overnight storage. 

2.3.3 Study Cohort Selection and Ethics Approval 

25 PKU patients were recruited to participate in a 1 year cross-sectional 

study. The majority of PKU patients had an initial diagnosis of classic PKU based 

on elevated plasma Phe (> 1,200 µM) with the exception of 2 cases having mild 

PKU or HPA.  Participants were approached and recruited by convenience during 

regular clinical visits to McMaster Children’s Hospital. The study protocol was 

approved by the Hamilton Integrated Research Ethics Board (HiREB project 

#1459, July 2016). Signed informed consent was acquired from all participants. 
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Most participants provided a random single-spot urine sample at each 

appointment as well as provided access to food records, patient information, and 

non-fasting plasma specimens as part of routine therapeutic monitoring during 

clinical visits. All identifiers except age, sex, clinical diagnosis, treatment regime, 

and formula information were removed and replaced with a study number to 

protect participant privacy.  

2.3.4 Sample Collection and Preparation 

Random single-spot urine samples were collected mid-stream in sterile 

containers during clinical visits and stored at 4˚C prior to the addition of 

preservative solution (1 mM sodium azide) with recovery standards (RS) 100 µM 

4-flourophenylalanine (F-Phe) and 100 µM HEPES.62 Urine samples were thawed 

on ice, vortexed for 30 s, and particulate matter was precipitated by centrifugation 

at 1,500 g for 5 min. Urine was then diluted five-fold in dH2O with 20 µM 3-

chlorotyrosine (Cl-Tyr) and 50 µM naphthalene monosulfonic acid (NMS) as 

internal standards (IS). Blood samples were collected in heparin-coated tubes and 

plasma was separated. Blood plasma remaining after clinical testing was aliquoted 

and stored at -80˚C prior to analysis. For infant/child PKU patients who had 

frequent clinical appointments, repeat plasma samples were collected over an 8 

month period. Plasma was diluted four-fold with dH2O containing 20 µM Cl-Tyr, 

20 µM F-Phe, 20 µM NMS, and 5 mM 13C-glucose as IS/RS and vortexed for 30 

s. Plasma proteins were filtered by ultracentrifugation using a 3 kDa MWCO 
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Nanosep centrifugal device (Pall Life Sciences, Washington, NY, USA) at 14,500 

g for 15 min.  

2.3.5 Data Processing  

After extraction of raw data with Mass Hunter Workstation Qualitative 

Analysis software (Agilent Technologies Inc.), nontargeted metabolite profiling 

was performed using Molecular Feature Extractor (MFE) and Molecular Formula 

Generator (MFG) within Qualitative Analysis. A dilution trend filter was first 

applied when using MSI-CE-MS based on a serial 7-plug sample injection of a 

pooled urine or a pooled plasma sample (1x, 2x, 4x, 8x) from the PKU cohort 

together with a blank (dH2O).60 This strategy allowed for identification of 

authentic, yet reliable, molecular features originating from samples while 

rejecting spurious or background signals that comprise a majority of signals 

generated during spray formation in ESI-MS.60 Urine and plasma samples were 

subsequently analyzed using MSI-CE-MS with a pooled QC sample included in a 

randomly selected injection position. All samples were run in positive and 

negative ion mode conditions over a period of 1 week. Urine and plasma 

metabolites were tentatively identified from a compiled personal database library 

and/or searching an online metabolomic databases including METLIN 

(http://metlin.scripps.edu) and the Human Metabolome Database (http://hmdb.ca). 

In urine, 58 cationic and 18 anionic metabolites were consistently detected with 

adequate precision in the QC samples (CV < 40%, n = 5) in the majority of classic 

PKU cases (present in > 75% of samples). In plasma, 36 cationic and 19 anionic 
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metabolites were detected in the pooled QC with adequate precision (CV < 40%, 

n = 15) and consistently measured in > 75% of samples. Unique metabolites 

annotated by their characteristic accurate mass (m/z) and relative migration time 

(RMT) as their molecular ion (MH+ or M-H-) were extracted based on a target 

peak list selected from the dilution trend filter after excluding redundant signals 

derived from co-migrating adducts or in-source fragments. Peaks were smoothed 

(Savitzky-Golay quadratic/cubic function, 15 points) and integrated in profile 

mode using a 10 ppm mass window. Ion responses and migration times were 

normalized to an IS (i.e., Cl-Tyr for positive ion mode and NMS for negative ion 

mode) to improve method precision.  

2.3.6 Calibration and Method Validation 

External calibration curves for Phe and Tyr were prepared in triplicate (n = 3) 

using MSI-CE-MS by serial dilution in dH2O with 20 µM Cl-Tyr and 20 µM F-

Phe as IS. Linearity was measured over a 400-fold concentration range (0.5 µM to 

200 µM). Linear least-squares regression was used to calculate the calibration 

equation for Phe (𝑦 = 0.148𝑥 − 0.205) and Tyr (𝑦 = 0.182𝑥 − 0.177). Good 

linearity (R2 > 0.996) was observed for each calibration curve. The LOD was 

estimated based on a signal-to-noise ratio (S/N) of ≈ 3 to be 0.1 µM and 0.3 µM 

for Phe and Tyr, respectively. MedCalc (MedCalc® Software) was used for 

intermethod comparison analysis (Bland-Altman percent difference, Passing-
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Bablok regression) of plasma Phe and Tyr concentrations measured independently 

by MSI-CE-MS and UPLC-UV.  

2.3.7 Statistical Data Analysis 

Extracted ion electropherograms were prepared in Igor Pro 5.0 (Wavemetrics 

Inc., Lake Oswego, OR, USA). Linear regression was performed in Excel 2007 

(Microsoft Inc., Redmond, WA, USA). SPSS Statistics (IBM, v. 23) and 

MetaboAnalyst 3.0 (McGill University) were used for data 

normalization/transformation and univariate/multivariate statistical tests. Features 

with > 75% missing values were removed from the data set. Missing values (i.e., 

no signal integrated) were estimated by half of the minimum value. Urinary 

metabolites were corrected using probabilistic quotient normalization (PQN) to 

correct for differences in urine dilution.63 Urinary and plasma metabolites were 

assessed for normality using the Shapiro-Wilk test. Nonparametric tests were used 

on nontransformed data that did not show normality with log-transformation. 

Group differences between normally distributed metabolites were assessed using 

t-tests and one-way ANOVA, whereas non-normally distributed data was assessed 

using Mann Whitney U or Kruskal-Wallis H tests as appropriate. Correlation 

analysis was assessed using a Spearman’s ranks test. For multivariate statistical 

analysis, data were log-transformed, mean-centered, and scaled by dividing by the 

standard deviation of each variable (i.e., auto-scaling). Also, partial least squares-

discriminant analysis (PLS-DA) was used to identify metabolites that discriminate 

between circulating Phe status (i.e., low versus high) among PKU patients, with 
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feature selection determined by variable importance in projection (VIP) scores 

(MetaboAnalyst 3.0) to rank significant features associated with disease severity. 

2.4 Results and Discussion 

2.4.1 Study Design and Cohort Characteristics for PKU Patients 

A representative cohort of 23 classic PKU patients (defined as Phe > 1,200 

µM upon initial diagnosis) and 2 mild PKU/HPA (Phe from 160 to 360 µM) 

patients provided urine and/or blood plasma samples in this cross-sectional 

metabolomics study. A summary of the characteristics of the PKU cohort (classic 

PKU) is highlighted in Table 2.3, with individual information for each patient 

reported in Supplementary Table S2.1. Overall, the cohort was comprised of 

infants, children, and adults (aged from 0.2 to 50 years) with plasma Phe 

concentrations ranging from 30 to over 1,500 μM. Individuals with mild 

PKU/HPA (n = 2) were excluded from the study in order to focus analysis on 

classic PKU patients recommended to follow Phe-restricted diets. Adult patients 

(> 18 y) were found to have, on average, three-fold higher plasma Phe 

concentrations as compared to children and were two times more likely to have 

plasma Phe concentrations greater than the recommended ACMGG cut-off of 360 

µM. Furthermore, there was a significantly greater frequency of poor dietary 

adherence among adults since they were less likely to be consuming specialized 

Phe-free amino acid formula/medical foods. This confirms previous work 

reporting higher blood Phe concentrations and poor dietary compliance in adult 
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Table 2.3. Summary of the cohort of 23 classic PKU patients grouped by age (adult vs. children) 
recruited in this cross-sectional study with matching plasma and urine specimens collected. 

Criterion Children 
0 – 18 y 

Adults 
> 18 y 

Age (years) 
n 14 9 
Mean (SD) 7.2 (4.3) 32.1 (9.3) 
Min – Max 0.2 – 14.0 23.0 – 50.0 

Sex Male, n (%) 
Female, n (%) 

9 (64%) 
5 (36%) 

3 (33%) 
6 (67%) 

Plasma Phe (µM)1 

Missing, n (%) 1 (7.1%) 4 (44.4%) 
< 360 µM, n (%) 9 (64.3%) 1 (11.1%) 
> 360, n (%) 4 (28.6%) 4 (44.4%) 
Average (SD) 263.2 µM (173.7) 862.4 µM (500.4) 

Treatment Formula2, n (%) 14 (100%) 4 (44.4%) 
Kuvan, n (%) 4 (28.6%) 1 (11.1%) 

Dietary Adherence3 Poor, n (%) 0 (0%) 6 (66.6%) 
Excellent, n (%) 9 (64.3%) 1 (11.1%) 

1 Significantly different plasma Phe concentration between children and adult PKU patients (p < 0.05) 
2 Phe-free amino acid supplementation  
3 Dietary adherence was evaluated using diet records and ranked as 'poor’ if it was noted that they were 
not following a controlled diet and/or food intake showed high Phe consumption. 

 

PKU patients in comparison to children.53,64 Additionally, one adult patient (50 y) 

was not screened by NBS at birth and did not benefit from early detection and 

treatment. The PKU cohort is thus highly heterogeneous, which introduces 

challenges in data interpretation due to large biological variability in circulating 

Phe status that are confounded by factors such as age, dietary compliance and 

disease progression.  

2.4.2 Method Validation and Intermethod Comparison 

MSI-CE-MS was applied as a high-throughput platform for nontargeted 

metabolite profiling of plasma filtrates (n = 19) and single-spot/random urine (n = 

16) specimens collected from 23 classic PKU cases over a recruitment period of 8 

months, with 12 patients providing matching plasma and urine samples. Repeat 
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plasma samples were also collected over time among a subset of recently 

diagnosed PKU infants. In this case, multiplexed CE separations together with 

high-resolution MS allows for rapid screening of diverse classes of polar/ionic 

metabolites in conjunction with accelerated data workflows for biomarker 

discovery with quality assurance.55 For instance, serial sample injections enable 

analysis of seven randomized sample plugs within a single run, including a pooled 

urine or plasma filtrate specimen to serve as a quality control (QC). Figure 2.3 

depicts an overlay of CE current traces from a total of 40 runs for 272 samples 

using (A) acidic BGE/positive ion and (B) alkaline BGE/negative ion modes for 

analysis of cationic and anionic metabolites, respectively. This provides a simple 

means to monitor for instrument stability and robustness during data acquisition 

over 8 days when using MSI-CE-MS. Overall, there was good reproducibility in 

CE current traces between days with CVs < 3%. Additionally, quality assurance 

measures also included the use of control charts for monitoring the recovery 

standard (F-Phe, 20 µM) within all samples analyzed (including pooled QC 

specimens) by MSI-CE-MS in positive ion mode as shown in Figure 2.4. Overall, 

the apparent ion response ratio measured for F-Phe in positive ion mode (total n = 

136) displays normal random variation in plasma (CV = 4.7%) and urine (CV = 

6.5%) within acceptable limits with only one outlier exceeding outer limits of 

confidence. The apparent ion response ratio for F-Phe measured in negative ion 

mode showed similar trends for plasma (CV = 20.6%) and urine (CV = 24%) with 

all data points within the limits of confidence. This provides confidence when 
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Figure 2.3. Overlay of CE current traces for 40 runs over 8 days by MSI-CE-MS for metabolomic 
analyses of plasma and urine samples with full-scan data acquisition in (A) positive and (B) 
negative ion mode detection. There was good reproducibility in CE current traces in positive and 
negative ion mode with CVs of 1.8% and 2.6%. Upper and lower action limits (dashed line) for 
excluding runs were determined by ±3SD. 
 

 
Figure 2.4. A control chart depicting relative peak area (RPA) of recovery standard 4-
fluorophenylalanine (F-Phe) over 83 blood plasma samples (red), 28 urine samples (blue), and 
pooled plasma (15) and urine (10) QC samples (black) for a total of 136 injections. The solid line 
represents the average RPA, and the dotted lines represent the upper and lower action limits 
(±3SD). 

evaluating the reliability in both sample preparation and instrument performance 

(i.e., technical precision) in order to reduce bias that contributes to false 

discoveries in metabolomics.65 Figure 2.5 shows extracted ion electropherograms 

(positive ion mode) for Phe and Tyr in plasma filtrate samples, in which the QC is 

located in position 5 of the 7-serial sample injection format for this run. Control 
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Figure 2.5. Representative extracted ion electropherograms for (A) Phe and (B) Tyr, with the 
pooled QC sample in position 5 of 7 within the MSI injection sequence. The TOF-MS spectra are 
shown as insets, with mass errors < 5 ppm. Control charts highlighting the analytical performance 
based on the integrated peak areas of Phe/Tyr relative to an internal standard (Cl-Tyr) within the 
QC for plasma (n = 15) and urine (n = 5) are shown on the right. CVs are < 10%, which shows 
excellent precision. The mean is represented as a solid line, whereas the upper and lower action 
limits (±3D) are dashed lines. 

charts for the QC sample within each run show excellent technical precision, as 

shown for Phe and Tyr with CVs < 10%. Similarly, Figure 2.6 highlights the low 

technical variation as reflected by the tight clustering of the QC group as 

compared to total biological variation among classic PKU patients, as shown in a 

principal component analysis (PCA) 2D scores plot for plasma (A) and urine (B). 

In this case, the median CV for all features within the data matrix (nplasma = 55 

over 30 runs; nurine = 76 over 10 runs) was 14.0% and 14.5% for plasma and urine, 

respectively, which demonstrates acceptable technical variation within both sets  

A

7 x10
4

6

5

4

3

2

1

0

Io
n 

C
ou

nt
s

40353025201510
Time (min)

Phenylalanine
166.0863:0.913

B

1.6 x10
4

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Io
n 

C
ou

nt
s

40353025201510
Time (min)

Tyrosine
182.0812:0.949

B2-3 B4-1

B9-3

B1-2

QC

B24-1

B16-1

B2-3

B4-1

B9-3

B1-2

QC

B24-1

B16-1

m/z

C
ou

nt
s

Mass error: -0.27 ppm

m/z

C
ou

nt
s

Mass error: 0.93 ppm

MH+

MH+

R
P

A

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

0 5 10 15

CV = 9.3%

PLASMA

4.2
4.4
4.6
4.8
5.0
5.2

QC Sample

R
P

A

CV = 1.3%

URINE

1 2 3 4 5

QC Sample

0.70
0.80
0.90
1.00
1.10
1.20

0 5 10 15

CV = 2.7%

CV = 4.1%

URINE

PLASMA

1 2 3 4 5

R
P

A
R

P
A

0.28
0.30
0.32
0.34
0.36
0.38
0.40



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 77 

 
Figure 2.6. 2D scores plot from principal component analysis (PCA) of (A) 55 cationic and 
anionic metabolites detected in plasma filtrate and (B) 76 cationic and anionic metabolites 
detected in urine samples when using MSI-CE-MS showing the low technical variation of the QC 
samples analyzed within every run in comparison to all PKU patients. Urine samples were 
classified based on cut-offs determined from correlation of matched urine/plasma samples: ‘low’ 
(urinary Phe < 75 µM), ‘moderate’ (75 < urinary Phe < 200 µM), or ‘high’ (urinary Phe > 200 
µM). All data was log-transformed and autoscaled. An overview of the overall data structure is 
shown with 2D heatmaps with hierarchical cluster analysis (HCA). 

of biological samples. The 2D heat maps with HCA provide an overview of the 

data structure for plasma and urine samples. In plasma (A), major differences in 

certain LNAAs (e.g., Gln, Ala, His, Thr, and Tyr), creatine, and other metabolites 
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were evident between samples with low (i.e., < 120 µM) and high (i.e., > 360 

µM) circulating Phe. In urine samples (B), samples with high Phe are clustered 

away from low Phe, with visual differences between Phe-related metabolites.  

Measured plasma Phe concentrations among PKU patients ranged from 30 to 

over 1,500 µM (median = 275 µM; IQR = 342 µM) whereas Tyr concentrations 

ranged from 30 to 200 µM (median = 60 µM, IQR = 48 µM). Plasma Phe and Tyr 

concentrations were not normally distributed as determined by a Shapiro-Wilk 

test (p-value < 0.001, n = 88). Also, measured plasma Phe and Tyr concentrations 

demonstrated a weak, negative correlation with each other, as determined with a 

Spearman’s rank test (rs = -0.243, p < 0.05). In order to evaluate the accuracy of 

MSI-CE-MS for reliable measurement of known biomarkers of PKU, an 

intermethod comparison with UPLC-UV was performed as shown in Figure 2.7. 

Overall, random distributions of plasma concentrations were evident about a 

mean when comparing MSI-CE-MS relative to UPLC-UV data with an average 

bias of -14.8% and +9.8% for Phe and Tyr, respectively, as illustrated in Bland-

Altman % difference plots (A). The Bland-Altman plot identified only one sample 

as an extreme outlier for plasma Phe that exceeded the confidence interval range 

for limits of agreement. A strong correlation (p < 0.00001) was observed between 

the two methods based on Spearman’s ranks coefficients of 0.979 (Phe) and 0.948 

(Tyr), which was also reflected by slopes close to unity when using Passing-

Bablok regression analysis (B). Passing-Bablok regression also showed a small 

degree of bias for Phe and Tyr (-22% and -12%, respectively) with greater 
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Figure 2.7. Bland-Altman % difference plot (A) and Passing-Bablok regression analysis (B) 
comparing Phe (blue, top) and Tyr (red, bottom) concentrations as determined by MSI-CE-MS 
relative to UPLC-UV. In A, the mean % difference (-14.8% and +9.8%) is shown as a solid black 
line, the upper and lower limits of agreement (± 1.96 SD; 19.0% and -48.7% Phe; -19.7% and 
39.4% Tyr) are red dotted lines, and the zero line is a black dotted line. In B, the slope and y-
intercept are indicated with the 95% confidence interval. The regression line is a solid black line, 
the 95% confidence interval lines are dotted red lines, and the unity line is a dashed blue line.   

deviation of MSI-CE-MS from UPLC-UV values at higher concentrations. 

Overall, the extent of the bias (10-15%) between the two methods was similar to 

the technical variation measured by QC runs (median CV = 14%) for 

metabolomics data, as well as for Phe and Tyr (CV < 10%) when using MSI-CE-

MS as shown in Figure 2.5. It can be concluded that MSI-CE-MS provides 

consistent measurements of plasma Phe and Tyr concentrations that are mutually 

agreeable with validated UPLC-UV protocols. As a result, MSI- CE-MS offers a 

M
SI

-C
E-

M
S 

Ph
e 

(m
M

)

(M
SI

-C
E-

M
S 

- L
C

-M
S/

M
S)

 / 
Av

er
ag

e 
(%

)

Ty
r_
C
E

(M
SI

-C
E-

M
S 

- L
C

-M
S/

M
S)

 / 
Av

er
ag

e 
(%

)

Mean of Phe (µM): MSI-CE-MS and UPLC-UV

Mean of Tyr (µM): MSI-CE-MS and UPLC-UV

(M
SI

-C
E-

M
S–

U
PL

C
-U

V)
 / 

Av
er

ag
e 

(%
)

(M
SI

-C
E-

M
S–

U
PL

C
-U

V)
 / 

Av
er

ag
e 

(%
)

UPLC-UV Phe (µM)

M
SI

-C
E-

M
S 

Ph
e

(µ
M

)

UPLC-UV Tyr (µM)

M
SI

-C
E-

M
S 

Ty
r (

µM
)

BA

0 0.5 1.0 1.5 2.0x103 0 0.5 1.0 1.5 2.0x103

0 0.5 1.0 1.5 2.0x102 0 0.5 1.0 1.5 2.0x102

2.0x102

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

1.6x103

1.4

1.2

1.0

0.8

0.6

0.4

0.2

n = 84
Slope = 0.88 (0.83 to 0.94)

n = 84
Slope = 0.78 (0.74 to 0.84)

Mean
-14.8%

-1.96 SD
-48.7%

+1.96 SD
19.0%

+1.96 SD

39.4%

Mean
9.8%

-1.96 SD

-19.7%

0



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 80 

reliable and higher-throughput platform for therapeutic monitoring of PKU 

patients relative to UPLC-UV methods that rely on a single sample injection 

format with long total analysis times (> 45 min) as required for gradient elution 

and column reconditioning.55  

2.4.3 Targeted Metabolite Profiling: Primary Markers of PKU 

Plasma Phe concentrations were highly variable among classic PKU patients 

as summarized in Figure 2.8, however, no other known biomarkers of PKU 

derived from aberrant Phe catabolism were detected in plasma samples with MSI-

CE-MS. The majority of subjects with PKU (about 58% from PKU cases) fall 

within or below the optimal therapeutic cut-off range of 120–360 µM, most of 

whom were children (median age = 6.0 y), which is now considered a lifelong 

maintenance range for Phe as recently recommended by ACMGG.26,53 However, 

some earlier guidelines had proposed a more relaxed upper threshold 

concentration of 600-900 µM for adults and adolescents over the age of 12 y.66 In 

our study, there were 4 PKU patients with plasma Phe exceeding 600 µM, and 2 

who had grossly elevated levels of Phe (> 1 mM). Upon closer examination, both 

individuals were adult PKU patients (> 30 y) and, at the time of sample 

collection, they were not taking a specialized Phe-free amino acid formula or 

following a Phe-restricted diet as determined from patient/diet records. The 

relationship between patient age and plasma Phe concentrations in individuals 

with PKU was also evaluated with a Spearman’s rank correlation analysis, which 
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Figure 2.8. Frequency distribution of plasma Phe concentrations (µM) measured by MSI-CE-MS 
for all samples (blue) and initial plasma samples upon consent (green). The frequency is listed in 
grey above each bar, whereas the median age and sex distribution (%M) is listed for each grouping 
at the top of the graph. The majority of samples fall within or below the goal therapeutic range of 
120 to 360 µM. Age was a significant factor (p < 0.05) associated with higher Phe concentrations, 
whereas sex was not significant different for Phe status. 

demonstrated a moderate positive correlation (rs = 0.671, p < 0.01, n = 19). It has 

been demonstrated that dietary adherence/irregularities becomes more 

problematic as PKU patients age,53,66,67 with higher plasma Phe concentrations 

more often reported among adults in comparison to children likely due to parental 

control.56 However, several studies have shown adverse health effects in the adult 

PKU patient population with prolonged Phe > 600-900 µM, including a decrease 

in cerebral protein synthesis and higher oxidative stress,68-70 which has prompted 

a change in current dietary policies relevant to adult PKU patients. 

In this work, urine metabolite responses were normalized by probabilistic 

quotient normalization (PQN). While random single-spot urine samples are far 

more convenient to collect than 24-h urine specimens, disadvantages include 

greater variation caused by differences in individual hydration status, which 
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ultimately impacts urinary metabolite concentrations.71 Normalization of 

metabolite concentrations/responses to urinary creatinine is often used to correct 

for variations in hydration status, assuming normal kidney function and protein 

intake.73 Creatinine is a by-product of muscle metabolism (formed from creatine 

and phosphocreatine in the muscle) and is excreted in the urine by glomerular 

filtration.71,73 However, the rate of creatinine excretion is variable across different 

patient demographics, such as differences in age, sex, and protein intake.71,74 As 

this study involves the comparison of adults and children with classic PKU who 

are recommended to follow protein-restricted diets, creatinine excretion is thus 

not appropriate.71 For this reason, probabilistic quotient normalization (PQN) was 

used to overcome the limitations of urinary creatinine while reducing biological 

variance caused by random differences in hydration status. In this case, PQN 

calculates a ‘probable’ dilution factor from the median distribution of quotients of 

sample responses relative to a reference response (i.e., pooled QC urine sample) 

for each molecular feature.63 

Urinary Phe concentrations (corrected with PQN) ranged from 25 to 800 µM 

(median = 206 µM; IQR = 293 µM). As expected, plasma Phe concentrations 

were strongly correlated to matching urinary excretion of Phe when using a 

Spearman’s rank correlation analysis (rs = 0.895, n = 21, p < 0.0001). A strong 

positive correlation was also observed for urinary Phe without PQN correction (rs 

= 0.836, p < 0.0001). Phe is derived from two sources: intake of dietary protein 

and turnover of endogenous protein to recycle free amino acid pools.75 
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Approximately 25% of free Phe is incorporated into proteins, whereas the 

majority of remaining Phe (~ 70%) undergoes hydroxylation to Tyr.75 Thus, 

alternative metabolic pathways are needed to alleviate excess Phe in PKU, which 

occur enzymatically via decarboxylation and transamination (Figure 2.9).15 

Decarboxylation and transamination of Phe accounts for less than 6% of Phe 

metabolism in otherwise healthy individuals.76 As a result, PKU is characterized 

by the accumulation and higher urinary excretion of several Phe-derived 

catabolites normally present at low concentration levels in healthy individuals.77 

In our work, N-phenylacetylglutamine, phenylsulfate, and o-hydroxy 

phenylacetate were detected consistently in over 90% of samples, whereas 

phenylpyruvate and phenyllactate were detected in 57 and 37% due to their lower 

abundance, respectively. However, phenylacetate was not detected in any of the 

urine samples from classic PKU cases since it undergoes conjugation (as its 

activated acyl-coenzyme A ester) with glutamine to form the major urinary 

metabolite, N-phenylacetylglutamine. Phenylsulfate is derived from gut microbial 

metabolism and sulfation of Tyr, along with p-cresol sulfate, which were both 

detected in urine.78 Aside from Phe, N-phenylacetylglutamine was most abundant 

of Phe catabolites in urine, as observed by the extracted ion electropherogram 

overlay for a pooled urine QC in Figure 2.10. A Spearman’s rank order 

correlation was next performed to determine the relationship between urinary Phe 

and Phe-derived metabolites. As expected, circulating plasma Phe and urinary Phe 

excretion showed strong, positive correlations with N-phenylacetylglutamine, 
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Figure 2.9. Metabolism of Phe in humans. L-Phe is introduced through dietary protein sources and 
is recycled through amino acid pools. Hydroxylation of L-Phe by PAH in the presence of BH4 and 
molecular O2 produces L-Tyr. L-Phe is also metabolized through decarboxylation and 
transamination to produce various catabolites, which are excreted in urine, where red indicates 
detected metabolites from PKU patients. Figure modified from (11). 

phenylsulfate, phenylpyruvate, and o-hydroxyphenylacetate, which were all 

statistically significant (p < 0.003), with the exception of phenyllactate and p-

cresol sulfate (Table 2.4). In addition, when comparing individual PKU patients 

with significantly elevated plasma Phe (i.e., plasma Phe > 360 µM, n = 10) to 

optimal therapeutic levels (i.e., plasma Phe < 360 µM, n = 7), urinary Phe, o-

hydroxyphenylacetate, N-phenylacetylglutamine, and phenylpyruvate were 

significantly elevated (p < 0.05) (Figure 2.11), whereas phenylsulfate was not 

significantly different.   
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Figure 2.10. Extracted ion electropherogram overlay for Phe, N-phenylacetylglutamine, p-cresol 
sulfate, phenylsulfate, phenyllactate, phenylpyruvate, and o-hydroxyphenylacetate for a 
representative pooled urine QC sample using MSI-CE-MS with a serial dilution trend filter. Phe 
was detected in positive ion mode with ion responses scaled down by a factor of 2, whereas all 
other anionic metabolites were detected in negative ion mode.  

Table 2.4. Spearman’s rank correlation results between excreted urinary Phe and its association 
with its major catabolites N-phenylacetylglutamine, phenylsulfate, phenyllactate, phenylpyruvate, 
and o-hydroxyphenylacetate.  

Phe Catabolite m/z:RMT:mode n Correlation 
Coefficient (rs) 

p-value 

Phenylpyruvate 163.0401:0.981:n 16 0.862 1.8E-5 

N-Phenylacetylglutamine 263.1037:0.801:n 26 0.787 2.0E-6 

Phenylsulfate 172.9913:1.158:n 31 0.563 1.0E-3 

o-Hydroxyphenylacetate 151.0400:0.969:n 28 0.543 3.0E-3 

Phenyllactate 165.0557:0.923:n 11 0.347 N.S. 
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Figure 2.11. Box-and-whisker plots showing median fold-change and p-values for urinary Phe, N-
phenylacetylglutamine, o-hydroxyphenylacetate, and phenylpyruvate when grouped by plasma 
Phe concentrations of 360 µM as a cut-off to signify likely dietary compliance of PKU patients to 
ensure optimal therapeutic outcomes.  

These results are consistent with previous studies, which have demonstrated 

a positive correlation of urinary excretion of major Phe catabolites, including 

phenylpyruvate, with circulating Phe levels.77 Michals et. al.77 demonstrated that 

individuals with a history of noncompliance to their PKU diet were observed to 

have higher excretion of these same metabolites. This study suggests that Phe 

catabolites may differ in individuals with the same blood Phe level due to 

differences in residual PAH activity and expression of other enzymes that degrade 
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shown that phenylpyruvate and phenylacetate inhibit metabolism of ketone 

bodies77 and carnitine synthesis,79 respectively, and may contribute to the 

pathophysiology of the disease spectrum in PKU.79 For instance, Xiong et. al.80 

recently demonstrated that phenylpyruvate, phenylacetate, phenyllactate, o-

hydroxyphenylacetate, and N-phenylacetylglutamine are prominent biomarkers of 

PKU when using GC/MS following pre-column derivatization.80 The gold 

standard of PKU diagnosis remains plasma Phe or the ratio of Phe/Tyr; however, 

there are some reports indicating that the Phe/Tyr method generates false 

positives when discriminating PKU from patients with biopterin defects.80,81 In 

contrast, urine sampling is noninvasive in comparison to blood sample collection, 

and includes a panel of other clinically relevant pathognomonic markers of PKU, 

offering a more convenient approach for continuous therapeutic monitoring with 

random single-spot urine specimens during clinical visits. 

2.4.4 Nontargeted Metabolite Profiling: Beyond Altered Phe Catabolism 

A nontargeted metabolomics approach for the profiling of PKU patients was 

next carried out to identify metabolites associated with PKU severity and dietary 

adherence aside from the known markers of PKU, including Phe, Tyr, and related 

Phe catabolites in urine. 

2.4.4.1 Plasma Metabolome Analysis 

For nontargeted metabolome analysis of plasma filtrate samples, plasma Phe 

response was classified as low (Phe < 120 µM, n = 4), medium (120 µM < Phe < 
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360 µM, n = 6), high (Phe > 360 µM, n = 5), or uncontrolled (i.e., not taking 

formula and poor/uncontrolled diet, n = 3). A summary of classic PKU patients 

within each class is listed in Table 2.5. Repeat plasma filtrate samples were not 

included in this analysis since they were only collected from infants/children who 

receive clinical testing on a weekly or monthly basis. A nontargeted metabolomic 

approach was used to elucidate whether there were markers of dietary intake (i.e., 

protein) in individuals with sub-optimum Phe levels (i.e., high/uncontrolled) 

above the recommended therapeutic range, which may be used as a more 

objective approach to monitor for dietary compliance. Multivariate data analysis 

was carried out to visualize metabolomic differences between PKU patients with 

elevated Phe (i.e., above the therapeutic cut-off) in comparison to individuals with 

low/moderate plasma Phe and individuals not consuming a specialized amino acid 

formula or likely not following a protein-restricted diet. A 2D scores plot from a 

PLS-DA is shown in Figure 2.12. PKU patients with uncontrolled diets were 

discriminated by high levels of Phe and low levels of propionylcarnitine (C3), 

phosphoric acid, histidine (His), Tyr, citric acid, and creatine. Nonparametric 

univariate analysis (Mann-Whitney U tests) with nontransformed RPAs between 

PKU patients with low/moderate plasma Phe levels and PKU patients on 

uncontrolled diets confirmed these trends in addition to lower levels of 

asymmetric dimethylarginine (ADMA) and elevated levels of glycine (Gly) (p < 

0.05). PKU patients not following a controlled diet were also not consuming a 

specialized amino acid formula; as a result, differences in plasma concentrations  
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Table 2.5. Summary of PKU patients within each class examined for nontargeted plasma 
metabolome analysis.  

Class 
Low 

< 120 µM 
n = 4 

Medium 
120-360 µM 

n = 6 

High 
> 360 µM 

n = 5 

Uncontrolled 
> 800 µM 

n = 3 

Phe Range 
Median 

39-108 µM 
85 µM 

163-295 µM  
238 µM 

383-663 µM 
450 µM 

899-1548 µM 
1082 µM 

Age Range (Med.) 2-6 (3.4) y 0.2-50 (8) y 9-24 (11) y 30-43 (37) y 
Sex % Male 75% 50% 60% 66% 
Kuvan % 0% 50% 20% 0% 

 

 
Figure 2.12. Separation between PKU patients with low/moderate plasma Phe (A, Phe < 360 µM, 
n = 9), high plasma Phe (B, Phe > 360 µM, n = 5), and patients on an uncontrolled diet not taking 
specialized amino acid formula (C, n = 3) as depicted in a 2D scores plot when using PLS-DA 
with cross-validation (R2 = 0.998, Q2 = 0.299). All data was log-transformed, and autoscaled, with 
VIP used to assign top-ranked plasma metabolites associated with Phe response in classic PKU. 
Patients with high Phe (> 360 µM) are predominantly discriminated by top-ranking metabolites 
with VIP scores > 1.5, including Phe, propionylcarnitine (C3), phosphoric acid, His, and Tyr.  

of amino acids and amino acid metabolites are expected considering differences 

in intake. We were interested in examining differences in individuals following a 

Phe-restricted diet in order to better understand metabolic differences contributing 

to Phe response. Nonparametric univariate analysis (Kruskal-Wallis H tests) 
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showed inverse correlations with a-aminoadipic acid, serine (Ser), leucine (Leu), 

and isoleucine (Ile) and a positive correlation with creatinine (p < 0.05), which 

were all significantly different between groups (Table 2.6). Creatinine is a 

biomarker of meat intake; however, no additional trends or significant differences 

were observed for other markers of meat and protein intake (i.e., 3-

methylhistidine and carnosine), aside from creatine (Figure 2.13).82,83 In addition, 

creatine was determined to be negatively correlated with plasma Phe (Spearman’s 

rank test, rs = -0.693, p < 0.005). The opposing trends seen in creatine and 

creatinine is likely a result of differences in age and/or muscle mass between 

assigned classes. Overall, analysis of plasma samples of patients with classic PKU 

does not give significant insight on adherence to a low protein diet through the 

examination of dietary biomarkers within individuals taking amino acid 

supplement formulas. Lower levels of amino acids present in the formula (i.e., 

Leu, Ile, and Ser) as well as their breakdown products (Figure 2.13), such as  

Table 2.6. Significant metabolites when comparing PKU patients with low, moderate, and high 
plasma Phe concentrations as determined by Kruskal-Wallis H tests. Fold-change (FC) is based on 
median RPAs for high Phe/low Phe. Correlation (rs) with Phe was carried out by a Spearman’s 
rank correlation test. PKU patients following an uncontrolled diet were excluded from this 
comparison in order to better understand phenotypic differences between individuals taking a 
specialized amino acid formula and following a Phe-free diet.  

Metabolite m/z:RMT:mode p-value Effect size FC rs (p-value) 
Phe 166.0863:0.913:p 2.06E-3 0.357 6.415 — 
Leu 132.1019:0.835:p 3.20E-2 0.357 0.519 -0.554 (p < 0.05) 
Ile 132.1019:0.823:p 2.14E-2 0.322 0.465 -0.593 (p < 0.05) 
Creatinine 114.0662:0.565:p 2.06E-2 0.357 1.854 0.775 (p < 0.01) 
a-aminoadipic acid 162.0761:0.914:p 1.30E-2 0.357 0.258 -0.639 (p < 0.05) 
Ser 106.0499:0.825:p 1.09E-2 0.357 0.540 -0.725 (p < 0.05) 
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Figure 2.13. Box plots for plasma metabolites determined to be significantly different when 
grouped by plasma Phe concentrations. Fold-changes are based on median RPAs for high Phe/low 
Phe, where high Phe > 360 µM and low Phe < 120 µM. The amino acids Ser, Ile, and Leu, in 
addition to Lys breakdown intermediate, a-aminoadipic acid, are all decreased with high Phe, 
suggesting reduced dietary intake (i.e., formula).  
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a-aminoadipic acid, a metabolic intermediate of lysine metabolism, however, 

may suggest that these individuals are not consuming the prescribed amount of 

formula consistently or there are metabolic alterations in pathways associated 

with protein synthesis and central metabolism as reported by Blasco et. al.58 It is 

also likely that there are differences in the time of day in which individuals take 

their formula in addition to meal timing prior to a blood sample collection (i.e., 

non-fasting state), which would affect concentrations of plasma Phe and 

circulating amino acids.84  

In contrast to a recent nontargeted metabolomics analysis of adult PKU 

patients not following restricted diets using GC/MS, NMR, and an amino acid 

analyzer,58 our study focuses on the metabolome of patients following a Phe-

restricted diet and consuming amino acid formulas. In the multi-platform pilot 

study performed by Blasco et. al.,58 the analysis of urine and blood plasma 

samples from 10 adult patients with classic PKU (n = 6), mild PKU (n = 3), and 

mild HPA (n = 1) showed metabolic alterations in Glu, succinate, Arg, and a-

aminobutyric acid, highlighting major changes in amino acid metabolism, which 

is expected with grossly elevated levels of Phe (i.e., Phe > 1 mM). Our analysis of 

plasma samples from 3 PKU patients not following a Phe-restricted diet, however, 

did not show the same trends observed by Blasco et. al., which is likely a result of 

small sample size in both studies. Similarly, our study focused on a small subset 

of PKU patients; however, our study demonstrates subtle metabolic differences 

between individuals with variable Phe responses who are following a restricted 
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diet rather than the severe metabolic phenotype of PKU on an unrestricted diet 

compared to healthy individuals. This highlights important factors that may 

provide better understanding of PKU disease progression, which is highly 

relevant for PKU treatment especially among adult patients. 

2.4.4.2 Urine Metabolome Analysis 

A primary goal of this project was to evaluate the metabolic phenotype of a 

diverse cohort of classic PKU patients recommended to follow a Phe-restricted 

diet beyond monitoring for circulating Phe concentrations, including recently 

diagnosed infants, children/adolescents, and adults. Defined urinary Phe reference 

concentrations in PKU patients based on disease severity and dietary adherence 

have not been established since it is not routinely measured in a clinical setting. 

Urinary Phe response for classic PKU patients was classified based on correlation 

with matching plasma Phe response. Low/moderate urinary Phe (Phe < 200 µM, n 

= 7) excretion was defined as plasma Phe concentrations under 360 µM, whereas 

high Phe excretion was defined by urinary Phe exceeding 200 µM (i.e., plasma 

Phe > 360 µM, n = 4). PKU patients on an uncontrolled diet who were not 

consuming a Phe-free amino acid formula were included as a positive control (n = 

5). Urinary Phe excretion was variable for these patients (i.e., 208-816 µM) 

despite matched plasma Phe levels > 800 µM for 3 of these patients. A summary 

of classic PKU patients included within each class is listed in Table 2.7. In order 

to better visualize the metabolic phenotype difference among classic PKU patients  
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Table 2.7. Summary of classic PKU patients examined for nontargeted urinary metabolome 
studies with low/moderate urinary Phe excretion (< 200 µM, n = 7), high urinary Phe excretion (> 
200 µM, n = 4), and PKU patients not taking an amino acid supplement with a poor/uncontrolled 
diet (n = 5). 

Class Low/Moderate High Uncontrolled 

Urinary Phe < 200 µM 
n = 7 

> 200 µM 
n = 4 

208-816 µM 
n = 5 

Plasma Phe Range (median) 163-530 (253) µM 382-662 (450) µM 899-1548 (1082) µM* 

Age Range (median) 0.2-50 (9.0) y 9-14 (12) y 23-43 (30) y 

Sex % Male 60% 50% 40% 

Kuvan % 43% 25% 0% 

* Matched plasma samples were collected for 3 of 5 PKU patients not consuming a specialized amino acid 
formula. 

 

likely following Phe-restricted diets based on urinary Phe excretion, a 2D scores 

plot from a PLS-DA was constructed based on PQN-corrected, log-transformed, 

and autoscaled data (Figure 2.14). In this case, low/moderate and high Phe 

excretion in urine were largely discriminated from PKU patients not taking an 

amino acid formula or following a restricted diet by 11 top-ranked metabolites 

with VIP scores > 1.5, including N-phenylacetylglutamine, Phe, phenylpyruvate, 

N-methylnicotinamide, Gly, and 3-methylhistidine. To evaluate differences in the 

metabolic phenotype of PKU patients not taking a specialized amino acid 

supplement with poor dietary adherence (i.e., uncontrolled group) and PKU 

patients following a Phe-restricted diet with urinary Phe excretion that is 

consistent with plasma Phe levels under/within the recommended therapeutic 

range (i.e. low/moderate urinary Phe group), nonparametric univariate statistical 

analysis was carried out with Mann-Whitney U tests. In this case, N- 

methylnicotinamide (p = 2.5E-3), urocanic acid (p = 1.8E-2), carnitine (p = 3.0E-

2), choline (p = 3.0E-2), and pantothenic acid (p = 3.4E-2) were lower in the  
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Figure 2.14. Separation between PKU patients with low/moderate (A, n = 7) and high Phe 
excretion in urine (B, n = 4) and PKU patients not taking a specialized amino acid formula who 
were not following a Phe-restricted diet (C, n = 5) as depicted in a 2D scores plot when using 
PLS-DA with cross-validation (R2 = 0.997, Q2 = 0.631). All data was corrected with PQN, log-
transformed, and autoscaled. Multivariate analysis of PQN-corrected RPAs was used for selection 
of top-ranked urinary metabolites related to Phe excretion in PKU.  

uncontrolled group, whereas markers of protein intake,82,83 including 3-

methylhistidine (p = 1.0E-2), carnosine (p = 3.0E-2), and creatinine (p = 4.8E-2), 

were elevated significantly. Choline and pantothenic acid (vitamin B5) are both 

essential nutrients/vitamins present in PKU amino acid formulas that are deficient 

in the PKU diet, whereas N-methylnicotinamide is a urinary metabolite of niacin, 

which is also present in the PKU amino acid formula.85 Furthermore, low dietary 

intake of carnitine, choline, vitamin B5, and niacin are reported in PKU patients 

following a restricted diet.86 

To better visualize group separation between PKU patients consuming amino 

acid formula likely following Phe-restricted diets with low/moderate and high Phe 

excretion in urine, a second 2D scores plot from a PLS-DA was constructed 
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(Figure 2.15). High Phe excretion in urine was largely discriminated from 

low/moderate Phe excretion by 11 metabolites with VIP scores > 1.5, which 

included Phe, C0, C2, and His metabolites (i.e., urocanic acid, imidazoleacetic 

acid, imidazolelactic acid). Additionally, a comparison of metabolites in urine 

samples from individuals with low/moderate and high Phe excretion was 

performed using nonparametric univariate statistical analysis. Table 2.8 

summarizes the most significant metabolites based on PQN-corrected RPAs when 

using a Mann-Whitney U test, including p-values, effect size, and median fold-

change (FC). 

Imidazoleacetic acid (m/z:RMT 127.0502:0.674) was found to be 

significantly elevated in PKU patients with high urinary Phe excretion. 

Imidazoleacetic acid and imidazolelactic acid (m/z:RMT 157.0609:0.745), were 

identified following an untargeted search of a pooled QC when using a dilution 

trend filter by MSI-CE-MS. These molecular features were determined to be 

singly charged ions (MH)+ based on their ESI+ mass spectrum (Supplementary 

Figure S2.1) and tentatively identified based on their likely molecular formula 

and Metlin search. PQN-normalized urinary imidazolelactic acid and 

imidazoleacetic acid excretion were also observed to be strongly positively 

correlated with urinary Phe concentrations with Spearman’s rank correlation 

coefficients of 0.883 (p = 4.8E-10) and 0.846 (p = 5.2E-4), whereas only 

imidazolelactic acid was positively correlated with circulating plasma Phe 

concentrations (rs = 0.818, p = 0.002, n = 12). Indeed, imidazolelactic acid and  
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Figure 2.15. Group separation between PKU patients consuming a specialized amino acid formula 
and following a Phe-restricted diet with low/moderate (n = 7) and high (n = 4) Phe excretion in 
urine shown in a 2D scores plot by PLS-DA with cross-validation (R2 = 0.974, Q2 = 0.361). All 
data was corrected with PQN, log-transformed, and autoscaled. Multivariate analysis of PQN-
corrected RPAs was used for the selection of top-ranked urinary metabolites associated with Phe 
excretion in PKU.  

Table 2.8. Significant metabolites when comparing PQN-normalized urine with low/moderate and 
high Phe excretion as determined by Mann-Whitney U tests. Fold-change (FC) is based on median 
RPAs for high Phe relative to low/moderate Phe.  

Metabolite m/z:RMT:mode p-value Effect size FC 
Imidazoleacetic acida 127.0502:0.674:p 1.10E-2 0.302 2.21 
Valerylcarnitine (C5) 246.1705:0.812:p 1.40E-2 0.292 0.20 
Acetylcarnitine (C2) 204.1230:0.724:p 1.70E-2 0.282 0.20 
Carnitine (C0) 162.1123:0.713:p 1.70E-2 0.282 0.19 
His 156.0768:0.624:p 2.70E-2 0.262 1.62 
Phe 166.0863:0.913:p 4.20E-2 0.242 3.80 
N-Phenylacetylglutamine 263.1037:0.801:n 4.20E-2 0.242 2.64 
a Imidazoleacetic acid was tentatively identified by mass match using the ESI+ mass spectrum 
and Molecular Formula Generator (MFG). 

 

imidazoleacetic acid were both determined to be significantly different with Phe 

excretion when analyzing samples grouped by low (n = 4), moderate (n = 3), and 

high (n = 4) urinary Phe (Figure 2.16).  
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Figure 2.16. Box plots showing differences in urinary excretion of two histidine catabolites, 
imidazoleacetic acid and imidazolelactic acid, when classified as low (< 75 µM, n = 4), moderate 
(75 µM < Phe < 200 µM, n = 3), or high (Phe > 200 µM, n = 4) urinary Phe. Fold-changes (FC) 
are based on median RPAs for high Phe/low Phe. 

Imidazolelactic acid and imidazoleacetic acid are by-products of histidine 

catabolism in mammals and are known components of human urine.87 Histidine 

degradation occurs along two pathways; the major pathway involves the 

deamination of histidine via histidase to urocanic acid, followed by further 

breakdown to glutamic acid. However, an alternative histidine pathway involves 

the enzyme histidine-pyruvate aminotransferase to produce imidazolepyruvic acid 

(not detected in urine), imidazoleacetic acid, and imidazolelactic acid (Figure 

2.17).88 Imidazolelactic acid has also been reported to be elevated in patients with 

liver cirrhosis, along with histidine and urocanic acid, a major product of histidine 

catabolism.89 In liver cirrhosis, enzymatic conversion of histidine to glutamate is 

blocked due to folic acid deficiency, which results in the increased excretion of 

formiminoglutamic acid and its precursor urocanic acid.90 The enzymes histidase 

and histidine-pyruvate aminotransferase are also differentially induced as a result 
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Figure 2.17. Histidine metabolism in mammals occurs through two pathways.87 The major 
pathway leads to the formation of glutamic acid, whereas alternative histidine metabolism 
produces imidazoleacetic acid and imidazolelactic acid. Urinary metabolites detected by MSI-CE-
MS are highlighted in red. 

of dietary and hormonal influences.88 For example, histidase activity is induced 

with consumption of a high protein diet or due to high cortisol levels and reduced 

with a low protein diet, whereas histidine-pyruvate aminotransferase activity 

increases with high glucagon levels. Alternatively, lower levels of imidazoleacetic 

acid and imidazolelactic acid may indicate the deficiency of folic acid and/or 

vitamin B12, as tetrahydrofolic acid is a required co-factor for the conversion of 

formiminoglutamic acid to glutamic acid.91,92 High dietary intake of folic acid is 

reported for PKU patients consuming amino acid supplements and protein 

substitutes and is often reported to be higher than the reference range of healthy 

adults.93 Another study indicated that, when examining PKU patients taking 

specialized amino acid formulas, 94% of children (n = 34) and 73% of adult 

patients (n = 22) were consuming folic acid levels well above recommended daily 

intake. A strict PKU diet low in protein contains few natural sources of both folic 

acid and vitamin B12, and intake from these sources is minor in comparison to 

ALTERNATIVE HISTIDINE 
METABOLIC PATHWAY

L-Histidine

MAJOR HISTIDINE 
METABOLIC PATHWAY

HISTIDINE-PYRUVATE 
AMINOTRANSFERASE

HISTIDASE

Urocanic acidImidazolepyruvic acid

Imidazoleacetic acid Imidazolelactic acid

Formiminoglutamic acid

Glutamic acid

FORMIMINOTRANSFERASE

FH4



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 100 

that obtained from amino acid supplements.93,94 As a result, the increased 

excretion of imidazolelactic acid and imidazoleacetic acid may suggest a 

deficiency in folic acid and/or vitamin B12, which may provide a way to assess 

adherence of formula intake, including the need to monitor for adequate vitamin 

sufficiency in classic PKU patients following lifelong Phe-restricted diets. 

Lower urinary excretion of C0 and short- and medium-chain acylcarnitines, 

C2 and C5, was also observed in individuals with high Phe and PKU patients not 

taking specialized amino acid formula or following a restricted diet (Figure 2.18), 

which were all negatively correlated with urinary Phe (rs = -0.653, -0.679, and -

0.683, respectively, with p < 0.01). Carnitine facilitates the transport of long-chain 

fatty acids for mitochondrial b-oxidation and is both acquired from dietary intake 

as well as produced endogenously from its precursor N-trimethyllysine.79,95 

Carnitine deficiency has been observed in patients with PKU as a result of 

minimal intake of red meats and dairy products, deficiencies in carnitine 

synthesis, and inhibition by Phe degradation products.79 N-trimethyllysine, was 

determined to be a discriminating feature in the PLS-DA model (Figure 2.15), 

however had a VIP score under 1.5 and univariate analysis did not show a 

significant difference between low/moderate Phe excretion and high Phe 

excretion. Furthermore, PKU patients with high Phe are at a higher risk of 

carnitine deficiency due to the accumulation of phenylacetate as an intermediate 

by-product of Phe catabolism, which acts as an inhibitor of carnitine biosynthesis 

due to the formation of O-phenylacetyl-L-carnitine.79 The negative correlation of  
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Figure 2.18. Box plots showing differential urinary excretion of carnitine (C0) and acylcarnitines 
(C2 and C5) based on urinary Phe, grouped by low/moderate (< 200 µM, n = 7) or high (Phe > 
200 µM, n = 4) excretion, with PKU patients not consuming a specialized amino acid formula or 
following a restricted diet as a control (n = 5). Fold-changes (FC) are based on median RPAs for 
low/moderate:high Phe or low/moderate Phe:uncontrolled. 

free carnitine and other short- and medium-chain acylcarnitines with urinary Phe 

in classic PKU patients is thus a consequence of both increased phenylacetate and 

lower dietary carnitine intake, which is consistent with lower carnitine 

bioavailability that may contribute to greater mitochondrial stress if a Phe-

restricted diet is not adhered consistently. 

2.4.5 Evaluation of Metabolome Variation in Children with PKU 

Infants and young children with PKU are monitored frequently (weekly to 

monthly) to ensure blood Phe levels stay within an adequate range.26 Figure 2.19 

shows a control chart of blood Phe concentrations throughout sample collection 

for three PKU patients (ages 2 mo to 2 y at time of recruitment). Phe 

concentrations show random variations over several months, where two children 

(A and B) had one sample with blood Phe outside the therapeutic range. These 

fluctuations may be a result of supplement and meal timing.84 Fluctuations of Phe  
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Figure 2.19. Plasma Phe concentrations throughout sample collection for three infants recently 
diagnosed with classic PKU under 2 y. Patient 1 (2 mo, A) showed variable levels of Phe 
throughout sample collection, patients 8 and 10 (2 y, B and C, respectively) had consistent Phe 
levels, aside from two time points where Phe exceeded the recommended therapeutic range, which 
are indicated by arrows.  

within 24 h is noted for individuals with PKU, with periods of fasting (i.e., 

overnight) resulting in higher levels of Phe. Timing of consumption of the amino 

acid formula also affects fluctuation in plasma Phe concentrations, with increased 

blood Phe occurring 90 min after a meal. Day-to-day concentrations in blood Phe 

for adults considered to have good control over their PKU may vary by up to 

400%, as a result of diet, growth rate, and general health.  For older children, Phe 

levels appear to be relatively stable, however this is likely a result of the 

combination of parental control as well as the previous determination of 

appropriate Phe allowance and/or the child/family becoming accustomed to 
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catering to this specialized diet. Overall, it is shown that plasma Phe 

concentrations are well maintained within therapeutic guidelines (i.e., < 360 µM), 

with intermittent fluctuations likely to be a result of meal timing. There were only 

two cases with plasma Phe > 360 µM, however there is no evidence of higher 

Phe/protein intake (i.e., no elevations in biomarkers of protein intake). 

Spearman’s rank correlation analysis of repeat plasma samples from children with 

PKU demonstrated moderate negative correlations of plasma Phe with alanine 

(Ala; rs = -0.534, p < 0.005), His (rs = -0.422, p < 0.005), and threonine (Thr; rs = 

-0.399, p < 0.005), which may suggest reduced formula intake and substandard 

dietary intake. As a result, repeat analysis of plasma samples from recently 

diagnosed infants with classic PKU demonstrate a far greater consistency of 

maintaining Phe levels within an optimal therapeutic range due to better dietary 

compliance with formula feeding as compared to the adult PKU patients in our 

study who were more likely to have Phe concentrations over the 360 µM cut-off. 

2.5 Conclusion 

It has been demonstrated that MSI-CE-MS offers a reliable yet high-

throughput platform for the diagnosis and therapeutic monitoring of PKU 

patients, which were consistent with previously validated UPLC-UV methods 

performed within a clinical laboratory setting with low bias (< 20%) and 

acceptable long-term technical precision (CV < 15%). Additionally, MSI-CE-MS 

allows for nontargeted and broad-spectrum screening of a diverse number of 
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polar/ionic metabolites present in human biofluids, including plasma and urine. 

Plasma Phe concentrations were observed to be highly variable among a cohort of 

classic PKU patients, with the majority of cases having plasma Phe concentrations 

within the recommended therapeutic range of 120 µM to 360 µM. Similar to 

previous studies, higher plasma Phe concentrations were typically observed in 

older PKU patients who tend to struggle more with dietary adherence. A targeted 

analysis of known Phe catabolites associated with PKU, including Tyr and 

various Phe catabolites, was carried out to explore the potential of urine as a 

biospecimen for therapeutic monitoring of PKU patients as an alternative to blood 

collection, which is highly invasive. It was shown that urinary excretion of Phe is 

strongly correlated with circulating blood Phe. Furthermore, Phe catabolites (N-

phenylacetylglutamine, phenylsulfate, phenylpyruvate, and o-hydroxy 

phenylacetate) were shown to have strong, positive correlations with urinary Phe 

excretion and circulating plasma Phe concentrations. In particular, phenylpyruvate 

showed median fold-change responses that were approximately 4-fold greater 

than that of urinary Phe for individuals with grossly elevated levels of plasma 

Phe. This may represent a better way to discriminate PKU patients from non-PKU 

patients, while providing detailed information regarding disease status that is 

dependent on dietary habits. Nontargeted metabolomic studies were also 

performed in conjunction with multivariate and univariate data analysis of plasma 

filtrate samples, which showed a significant elevation in the plasma 

creatinine/creatine ratio with decreased levels of a-aminoadipic acid, Ser, Ile, and 
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Leu among classic PKU patients as a function of their plasma Phe concentrations. 

Individuals not following a restricted diet or consuming an amino acid formula 

had increased levels of several plasma markers of protein/meat intake, such as 

carnosine, creatinine, and 3-methylhistidine. Multivariate and univariate analysis 

of single-spot urine samples after PQN normalization classified by low/moderate 

or high Phe excretion showed significant decreases in carnitine and two 

acylcarnitines (C2 and C5), which is consistent with lower carnitine intake in the 

PKU diet, in addition to a greater risk for mitochondrial stress caused by high 

levels of Phe and phenylacetate. Similarly, significant elevations in urinary 

imidazolelactic acid and imidazoleacetic acid excretion were also observed, which 

were strongly correlated with Phe excretion. Imidazolelactic acid and 

imidazoleacetic acid are catabolites of His that are excreted in urine with His 

loading, which may be caused by hepatic stress as a result of poor dietary 

compliance in terms of low protein intake and/or a deficiency in folic acid or 

vitamin B12. Overall, this study demonstrated the high variability in the 

metabolic phenotype of classic PKU patients as reflected by distinctive metabolic 

perturbations measured in both plasma and urine. Limitations of this study include 

poor standardization of food records that relied on patient/parental recall 

accompanying biospecimen collection, which made interpretation of dietary status 

difficult. Future work will aim to better elucidate the differences in 

metabolic/nutritional status of PKU patients, which will require the control of diet 

and interventions. For example, in order to better study the relationship of diet 
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with circulating and excreted Phe concentrations, a standardized dietary intake 

(i.e., meal plan) for all PKU patients is needed in order to overcome the 

limitations introduced by food records. Further, to study the effect of individuals 

with mediocre or poor dietary adherence, the introduction of foods higher in Phe-

content would allow us to study potential dietary markers and metabolic 

perturbations with a direct correlation to their intake.  
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2.7 Supplementary Tables and Figures 

 
Figure S2.1. Extracted ion electropherogram and ESI+ mass spectrum for imidazoleacetic acid 
and imidazolelactic acid in urine. These molecular features were determined to be singly charged 
due to isotope spacing of ~1 ppm. Molecular Formula Generator (Qualitative Analysis) and a 
database search (Metlin) were used to tentatively identify these compounds. 
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Table S2.1. Clinical characteristics of PKU patients. 
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3.1 Abstract 

Electronic cigarettes (e-cigarettes) are popularly marketed as a healthier 

alternative to conventional cigarettes, with use in young adults skyrocketing over 

the past five years. The general perception that e-cigarettes are low-risk is of 

concern to public health, notably among individuals who are dependent on 

smoking cessation during critical periods of their lives, such as women during 

pregnancy. Indeed, tobacco smoke and nicotine exposure during pregnancy has 

been associated with deleterious birth outcomes due to impairments in placenta 

development and nutrient exchange; however, current research on the health 

impacts of e-cigarette exposure is sparse. Herein, we evaluated the effects of e-

cigarette smoke exposure on the metabolome of placental cells as a model system 

when using multisegment injection-capillary electrophoresis-mass spectrometry 

(MSI-CE-MS) and headspace-gas chromatography-mass spectrometry (HS-

GC/MS). MSI-CE-MS was applied for nontargeted profiling of polar/ionic 

metabolites from cell extracts in order to derive better mechanistic insights into 

the potential harmful effects of various components of e-cigarette smoke, 

including nicotine dosage and a wide range of flavour agents and undocumented 

chemical additives. We first evaluated the effects of e-cigarette vapour following 

exposure to first and third trimester placental cells, which confirmed that the first 

trimester placental cell line was more susceptible to chemical exposures. Next, we 

evaluated the effects of unflavoured and flavoured e-cigarette formulations as a 
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function of nicotine dosage. As expected, flavoured e-cigarette vapours 

containing nicotine led to more pronounced changes in placental metabolism 

relative to analogous flavourless products and nicotine-free controls, including 

changes in neutral amino acids, acylcarnitines, g-aminobutyric acid, and an 

intermediate in thymine metabolism, suggesting altered metabolic pathways 

associated with protein and neurotransmitter synthesis which are critical for 

placental development and function. This timely study supports the hypothesis 

that flavoured e-cigarette vapour poses a higher risk to placental function than 

unflavoured vapour that is relevant to fetal health and development. Overall, 

elucidating the risk flavoured e-cigarette vapours pose on placental health will aid 

in the development of public policy regarding the regulation and marketing of an 

expanding array of e-cigarette products aimed primarily at young adults and 

women.   

3.2 Introduction 

3.2.1 Cigarette and Tobacco Usage 

Tobacco use is the leading cause of preventable death worldwide, causing 

over 6 million deaths annually with 10% of these deaths being the result of 

second-hand smoke.1,2 Exposure to tobacco smoke is associated with the 

development of many chronic diseases, such as throat and lung cancer, 

cardiovascular disease (CVD), and chronic obstructive pulmonary disease.3 

Furthermore, tobacco smoke exposure leads to oxidative stress, dysregulation of 
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cellular metabolism, and cytotoxicity.4,5 Tobacco smoke is composed of over 

6,000 chemicals, of which 93 have been identified by the United States Food and 

Drug Administration (FDA) as harmful or potentially harmful constituents 

(HPHCs) that are inhaled, ingested, or absorbed into the body and cause direct or 

indirect harm to users of tobacco products.6 The HPHCs are classified on the basis 

of being possible carcinogens, having adverse respiratory/cardiac effects, being 

reproductive/developmental toxicants, or being psychostimulants prone to abuse 

and addiction. Along with nicotine, which accounts for 95% of alkaloid content in 

tobacco, several minor tobacco alkaloids, such as anabasine, N-nitrosonornicotine 

(NNN), and nornicotine are listed as addictive, reproductive and developmental 

toxicants, and/or cardiovascular toxicants.6,7  

Nicotine is primarily responsible for tobacco dependence and addiction.8 

Upon inhalation and introduction of nicotine into the lungs, it is rapidly absorbed 

into circulation and reaches the brain where it binds to nicotinic cholinergic 

receptors.9 Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion 

channels distributed throughout the central nervous system (CNS) that are 

responsible for modulating neuron excitability and synaptic communication.10,11 

Binding of nicotine or the endogenous substrate acetylcholine opens the channel, 

allowing entry of sodium and calcium ions, which results in neurotransmitter 

release.10,12 The release of dopamine induces a pleasurable sensation, which 

promotes the ‘reward’ of nicotine.10,11 Additionally, nicotine results in the release 

of glutamate, a facilitator of dopamine release, and g-aminobutyric acid (GABA), 
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an inhibitor of dopamine release. Long-term exposure and tolerance to nicotine 

results in desensitization of nAChRs (ligand-induced closure and 

unresponsiveness) and neuroadaptation.11 Neuroadaptation occurs when the body 

begins to compensate for nicotine so that it can continue to function normally, 

leading to nicotine tolerance and dependence. Inhibition by GABA is diminished 

with nAChR desensitization; however, glutamate still facilitates the release of 

dopamine, which leads to an enhanced responsiveness to nicotine. Anxiety and 

stress-related symptoms of nicotine withdrawal occur when the receptors become 

sensitized again, whereas nicotine binding alleviates these symptoms. Similarly, 

maintaining plasma nicotine levels and receptor desensitization prevents 

withdrawal symptoms.13  

3.2.2 Electronic Cigarettes (‘E-Cigarettes’) 

While nicotine is the primary determinant of addiction to tobacco products, 

the majority of tobacco-related diseases are associated with repeated exposure to 

other chemicals, additives, and combustion by-products in smoke.8 Efforts to limit 

tobacco-related death and disease have focused on harm reduction by use of non-

combustible, less toxic, nicotine-containing products instead of conventional 

cigarettes. Tobacco harm reduction is a public health framework that focuses on 

reducing the deleterious consequences of tobacco smoke exposure.14 Nicotine 

replacement therapies (NRTs) are a form of tobacco harm reduction and are 

considered medicinal products for smoking cessation, but not as long-term 

smoking substitutes. An ideal NRT provides nicotine at incrementally lower 
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dosages over time to prevent withdrawal symptoms while minimizing additional 

health risks.15  

Electronic nicotine delivery systems (ENDS) and electronic non-nicotine 

delivery systems (ENNDS) are handheld devices, including electronic cigarettes 

(e-cigarettes), that deliver an aerosol to the user to mimic the behavioural rituals 

and sensory properties of smoking.16,17 The first e-cigarette was introduced in 

China in 2003 as a device to aid in smoking cessation.18 The popularity of e-

cigarettes has since greatly expanded, with Canada and the United States being 

the predominant markets involved in their manufacture and sale.19 E-cigarettes are 

now advertised as a healthier alternative to smoking conventional cigarettes, as a 

smoking cessation aid, for use where smoking is not allowed, and for use in social 

settings.18,20 While there are several generations of e-cigarette devices, the 

common components include a mouthpiece, flow sensor, heating coil (atomizer), 

a battery source, and solution storage cartridge (Figure 3.1).17 Commercial e-

cigarette devices allow the user to fill the cartridge with an e-cigarette liquid (e-

liquid) of their choice. The e-liquids contain a solvent (vegetable 

glycerin/glycerol with propylene glycol), natural and artificial flavourings, and 

nicotine at concentrations ranging from 0 to 24 mg/mL.21 The atomizer contains a 

heating coil that heats and vaporizes the e-liquid. Vaporization is activated by 

pressing a button on the device that heats the e-liquid to 70-100˚C.22,23 The 

vaporized liquid then cools and condenses to an aerosol that can be inhaled 

through the mouthpiece. The composition of the e-cigarette aerosol is dependent  
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Figure 3.1. Third-generation e-cigarette. The e-cigarette device contains a tank for the e-liquid, a 
vaporization chamber with a heating element (atomizer), power/voltage control, and battery.   

on the ingredients of the e-liquid, the electrical characteristics of the heating 

source, and the temperature the e-liquid reaches.21 Regular e-cigarette users have 

been reported to ‘vape’ 3 to 4 mL of e-liquid per day, which corresponds to a 

dosage of up to 96 mg of nicotine for e-liquids with higher nicotine content (i.e., 

24 mg/mL formulations);24,25 however, only one quarter to one third of this 

nicotine is vaporized and absorbed into the bloodstream, which occurs at a much 

slower rate in comparison to tobacco cigarettes.26 Trends among e-cigarette users 

suggests that, in terms of number of puffs and nicotine content, 2 to 3 mL e-liquid 

is approximately equivalent to a pack of cigarettes. 

3.2.3 E-Cigarette Liquid Formulations and Product Regulations 

E-cigarettes are considered to be less harmful than conventional cigarettes 

since e-liquids contain fewer chemical components than processed tobacco and 

involve vaporization (70-100˚C) instead of combustion at much higher 
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temperatures (400-900˚C).23,27 Additionally, the concentrations of toxic 

compounds found in cigarette smoke, such as acrolein, are significantly reduced 

(92-99% lower) in e-cigarette aerosol.28,29 Compounds measured in e-cigarette 

aerosol include the major constituents, including nicotine, propylene glycol, and 

glycerol.30 Known nicotine-related impurities and thermal decomposition 

products of propylene glycol and glycerol have also been detected. Glycerol, 

propylene glycol, and many of the flavouring additives are listed as ‘food grade’ 

and/or have a ‘generally recognized as safe’ (GRAS) designation by the Flavor 

and Extracts Manufacturing Association (FEMA) and the U.S. Food and Drug 

Administration (FDA).29 FEMA states that GRAS certification applies only to 

oral intake of these additives and not exposure via inhalation. Moreover, e-

cigarette manufacturers are recommended to refrain from claiming that flavour 

ingredients used in e-liquid products are safe because they have this 

classification.31 Furthermore, the safety of the long-term inhalation of these 

substances is not known or thoroughly investigated. E-cigarettes and their 

aerosols have also commonly been reported to contain a variety of other 

components that are not listed on the label, such as acetone, acrolein, 1,3-

butadiene, formaldehyde, ethanol, and tobacco alkaloids.29 Acrolein is a 

dehydration product of glycerol, and exposure has been observed to cause 

irritation, lung damage, and CVD in cigarette smokers.32 E-liquids are available in 

a plethora of flavours, including tobacco, confectionary, and fruity flavourings.29 

Sweet-flavoured e-liquids often contain diacetyl and/or acetyl propionyl.31 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 124 

Diacetyl (2,3-butanedione) is a food-grade flavour additive used in butter 

flavourings and chronic inhalation of diacetyl vapours has been reported to cause 

bronchiolitis obliterans (‘popcorn lung’) — a disease that obstructs the 

bronchioles of the lung as a result of damage and inflammation.33,34 Also, 

cinnamon flavoured products often contain cinnamaldehyde and 2-

methoxycinnamaldehyde, which are unstable upon heating and associated with 

cellular toxicity.35-37 The diverse number of popular e-liquid flavourings is highly 

concerning as it may make e-cigarette products more attractive to youth.29 In 

addition, they may be unsafe when inhaled despite a GRAS classification and 

may produce toxic degradation products even during vaporization. Currently, 

there are no systematic studies evaluating the long-term safety of e-cigarette use, 

notably among a growing number of adolescents and young adults who are the 

main demographic users of these products.  

Self-reported use of e-cigarettes in addition to e-cigarette sales has 

significantly increased since 2011, with the global e-cigarette market expected to 

exceed $10 billion USD by the end of 2017.38,39 Presently, e-cigarette products are 

not regulated by the Canadian government. Provincial regulations ban the sale of 

nicotine-containing e-cigarette products as they are regulated as drugs and/or drug 

delivery devices, however they are still widely available for purchase at most 

commercial ‘vape’ retailers.40,41 An amendment to the Tobacco Act—Bill S-5 

Tobacco and Vaping Products Act—will introduce new legislation for the 

manufacturing, sale, labelling, and advertising of e-cigarette products, which will 
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likely come into effect in 2018.42 In August 2017, Health Canada began a three 

month consultation period to gather input from stakeholders, consumers, health 

professionals, and the general public regarding e-cigarette regulations.43 The 

Electronic Cigarette Trade Association (ECTA) of Canada was founded in 2011 

by e-cigarette vendors with the objective to build and maintain a set of safety 

standards for e-cigarette products to protect manufacturers and consumers.44 

ECTA standards include proper documentation for hardware, blind e-liquid 

testing, and labelling requirements. It is not a legal requirement for businesses 

involved in the manufacturing and sale of e-cigarette products to join the ECTA; 

there are only 26 e-cigarette manufacturers within Canada currently registered as 

members. Standards for members of the ECTA require nicotine concentrations to 

be within 10% of the concentration reported on the label and to be under threshold 

levels of harmful compounds such as diethylene glycol and diacetyl (Table 3.1).45 

Table 3.1. E-liquid manufacturing and ingredient standards set by the Electronic Cigarette Trade 
Association (ECTA) of Canada.45 

Component/Element Protocol LOD Tolerance 
Nicotine concentration GC/FID 0.1 mg/mL ± 10% 
Diethylene glycol GC/FID < 20 µg/mL < 100 µg/mL 
Acetaldehyde HPLC/UV < 1 µg/mL < 100 µg/mL 
Acetoin HPLC/UV < 1 µg/mL None (informational) 

Diacetyl HPLC/UV < 1 µg/mL 
Non-detection goal 
> 100 µg/mL – fail 

Formaldehyde HPLC/UV < 1 µg/mL < 30 µg/mL 

Acetyl propionyl HPLC/UV < 1 µg/mL 
Non-detection goal 
> 100 µg/mL – fail 

pH level, % Water Karl Fischer analysis  Target pH: 5.0-8.5 
% Propylene glycol   ± 10% 
% Vegetable glycerin   ± 10% 
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3.2.4 Biological Effects of E-Cigarettes 

It has been demonstrated that a number of e-liquid products lead to 

cytotoxicity and decreased cell viability in vitro, with the majority of toxicity 

being attributed to flavour additives.35 To date, only one study has utilized 

metabolomics as a systematic screening tool to evaluate e-cigarette liquid toxicity 

and its mechanism of action. Aug et. al.46 used metabolomics to study the effects 

of e-cigarette liquids directly on human bronchial epithelial cells in comparison to 

cigarette smoke condensate using LC-MS. Treatment of bronchial cells with an 

unflavoured e-cigarette liquid led to significant increases in glutamate, glutamine, 

proline, arginine, histidine, and xanthine, which indicated an increase in protein 

turnover and/or reduction in protein biosynthesis, which is comparable to adverse 

effects seen with cigarette smoke exposure. The authors also showed that 

treatment with antioxidants (e.g., N-acetyl-cysteine) attenuated these metabolic 

changes induced by e-cigarette liquid exposure, implicating a mechanistic role to 

oxidative stress. Exposure to e-cigarette liquids has also been shown to initiate 

inflammatory responses and oxidative stress in a variety of cell types.47,48-50 qPCR 

analysis of e-cigarette liquid exposure has shown induced expression of genes 

related to oxidative stress response in human bronchial cells, including increases 

in expression of genes that catalyze the production of antioxidant glutathione 

(GSH) and glutathione peroxidases, which are the primary antioxidant enzymes 

required for detoxifying hydrogen peroxide.47 A recent study by Hwang et. al.48 

demonstrated that there was a significant increase in pro-inflammatory mediators 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 127 

after exposure of normal human lung fibroblast cells to specific flavours of e-

liquid solutions. In this case, an inflammatory response was evident with exposure 

to cinnamon flavours, but not tobacco/grape flavoured e-liquids or propylene 

glycol and/or glycerol alone. Furthermore, pro-inflammatory mediators IL-6, IL-

1a, IL-13, and MCP-1 were increased in the lungs of mice exposed to tobacco 

flavoured e-cigarette aerosol in comparison to a control. Other studies note that e-

cigarette smoke exposure reduced antimicrobial activity of alveolar macrophages, 

decreased activity of human leukocytes, and increased oxidative stress 

response.48,49 The impaired ability of macrophages, neutrophils, and epithelial 

cells to kill bacteria is detrimental to normal host defence function and can 

increase susceptibility to bacterial infections. Several studies have indicated 

cytotoxic effects in epithelial lung cells and human keratinocytes with flavoured 

e-cigarette liquids.48,50 Relative to tobacco smoke, e-cigarette aerosol led to 

significantly lower cytotoxicity in vitro in various cell models; however, the long-

term biological effects with exposure to flavoured and flavourless e-cigarette 

vapour are still quite sparse in the literature.50-51  

Currently, there is inadequate evidence to promote the safe use of e-cigarettes 

as a smoking cessation aid since it also risks increasing nicotine usage among 

young adults. One of the issues with current research regarding e-cigarettes is the 

lack of a standardized research protocol that allows the comparison of e-cigarette 

aerosol among studies and to tobacco smoke. Most studies to date have examined 

exposure of the concentrated or diluted e-liquid solution directly, without 
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studying the generated aerosol under relevant conditions to human exposure. 

Furthermore, research efforts have so far focused on cell viability and cellular 

stress responses, with only one study conducting a nontargeted metabolomics 

analysis on bronchial cells. Importantly, risk assessment of e-cigarette vapour 

exposure on placental tissues have yet to be investigated in the context of 

elucidating potential deleterious impacts on fetal development during pregnancy.  

3.2.5 E-Cigarette Use in Canada 

In 2015, the prevalence of Canadians over 15 who have reported trying an e-

cigarette increased by 4% since 2013 to approximately 3.9 million Canadians (or 

13% of population), comprising about 26% of youth (ages 15 to 19 y) and 30% of 

young adults between 20 to 24 y (Figure 3.2).52 E-cigarette use is highest among 

youth, women, and current smokers looking to use e-cigarettes as a smoking 

cessation aid.20,52 The reason behind current and former smokers using e-

cigarettes is predominantly to aid them in reducing cigarette smoking or to 

alleviate cravings, as they are perceived to be less harmful, less addictive, and 

more socially acceptable than cigarettes.20 Fruit flavoured e-cigarette liquids are 

most popular among youth and young adults (44% and 39%, respectively).52 The 

use of flavouring promotes youth initiation for tobacco products as it reduces the 

harsh taste of tobacco and increases appeal of use by marketing.53-54 E-cigarette 

liquid packaging and advertising is also a factor in youth initiation, as a number of 

brands offer candy-like flavours (e.g., soft drinks, cotton candy), which have 

appealing tastes and smells.54 Also, the general consensus that e-cigarettes are a  
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Figure 3.2. The prevalence of Canadians who have used e-cigarettes has increased significantly 
since 2013, with usage being highest among youth (ages 15-19) and young adults (ages 20-24).52 

healthier alternative to cigarettes is concerning for individuals who are dependent 

on smoking cessation during critical stages of their life, such as pregnancy.18,55 

Among pregnant women, 74% believe they are less harmful than conventional 

cigarettes and 72% believe they will help smoking cessation; the increased 

acceptance of e-cigarettes and lack of knowledge regarding their potential harm 

has inadvertently led to lower stigma surrounding their use during pregnancy.55,56 

For instance, of 100 pregnant women surveyed (2016), 23% indicated that they 

were current e-cigarette users, which accounts for almost half of women e-

cigarette users in the study (n = 49).57 It is known that cigarette smoking and 

nicotine exposure during pregnancy has detrimental effects on both the mother 

and fetus; nevertheless, despite this, 66% of women continue to smoke during 

pregnancy, which corresponds to approximately 14% of pregnant women in 

Canada.58,59,60 Presently, there is no available research on the consequences of e-

cigarette use on maternal reproductive health or its effects on the developing 
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fetus.61 As a result, there is an urgent need to fully investigate the potential toxic 

health effects of e-cigarettes given the perception among pregnant women that 

they are safer than tobacco products, before recommending their use as a smoking 

cessation aid.62 

3.2.6 Role of the Placenta in Pregnancy 

Proper fetal development and growth depends on the selective transport of 

nutrients and waste products by the placenta, which serves as a key interface 

between the maternal circulatory system and the fetus.63 The placenta develops 

during pregnancy to produce hormones and growth factors, including fetal growth 

hormone (GH) and insulin-like growth factor 1 (IGF-1).63,64 Likewise, placental 

hormones secreted into maternal circulation act as signals to induce changes in 

maternal metabolism, whereas growth factors modulate placental function and 

fetal growth.64 The placenta is formed within the trophectoderm of the blastocyst 

after invasion into the maternal endometrium. The blastocyst eventually forms the 

embryo, and the outer layer of the blastocyst—the trophoblast—combines with 

the maternal endometrium to form the placenta.64,65 In early pregnancy, the 

placenta develops a vascular network for circulation between the mother and 

fetus.66 In addition to mediating implantation and establishing maternal-fetal 

nutrient exchange, the placenta initiates maternal recognition of pregnancy and 

modulates growth and maternal metabolism by secreting growth factors and 

cytokines.66,67 It is also responsible for providing antioxidant capacity to protect 

the embryo from oxidative stress within the placenta.68 Later in pregnancy, the 
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placenta begins to compete with the fetus for maternal substrates such as glucose 

and oxygen, and its role shifts to support the exponential growth of the fetus. 

Placental development and function can be altered significantly by environmental 

factors, leading to detrimental effects such as restricted growth.67 Conditions with 

altered placental and fetal growth, such as maternal nutrient deprivation and 

environmental stress, are associated with reduced placental blood flow, fetal 

oxygenation, and nutrient uptake.69 The placenta during the first trimester of 

pregnancy is particularly vulnerable to oxidative stress as the early placenta 

develops in a low oxygen environment.70  

In vitro studies of environmental stress on the placenta can be carried out by 

examining human trophoblast cell lines. For instance, the HTR-8/SVneo and 

BeWo choriocarcinoma trophoblast cell lines are representative models for first 

and third trimester placental cells, respectively.71 Trophoblast cells are important 

for the development of fetal-maternal nutrient exchange; changes in transporters, 

hormones, and metabolites within these cells as a result of exposure to 

environmental stress will give valuable insight on effects on human placental 

growth and development. Harmful effects on BeWo cells are indicative of 

impaired growth of the placenta, whereas effects on HTR-8/SVneo cells would 

indicate improper blastocyst implantation and placentation in vivo.71 Impaired 

placenta growth can disrupt the maintenance of key physiological pathways, 

which alter the transfer of nutrients.69,71 For example, disruption of the 

maintenance of vascular endothelial growth factors (VEGF) through oxidative 
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stress can lead to impaired vascular development and a reduced supply of 

nutrients to the fetus.72 The Wnt signalling pathway plays a role in regulating 

embryo development, cell fate, proliferation, migration, and cell homeostasis; 

disruptions in Wnt signalling is thought to alter the transcription of genes critical 

for placental cell differentiation, migration, and proliferation.73  

3.2.7 Smoking and Nicotine Exposure During Pregnancy 

Tobacco smoking during pregnancy is associated with intrauterine growth 

restriction (IUGR), pre-term delivery, and neonatal apnea.74,75 Nicotine from 

tobacco smoke is absorbed into the bloodstream through the oral cavity and lungs, 

crosses the placenta to the embryo, and accumulates in fetal blood and amniotic 

fluid where it binds to nAChRs.76 The nAChRs are expressed throughout the fetal 

nervous system, are elevated during critical developmental periods, and regulate 

fetal brain maturation.75 Prenatal nicotine exposure leads to over-exposure to 

maternal glucocorticoids, increased blood glucose, and increased decomposition 

of lipids and proteins.76 Other tobacco derived metabolites have also been shown 

to be transported into the placenta.77 Abnormalities in maternal circulation as a 

result of tobacco exposure has been shown to negatively impact fetal 

development. Frequently reported consequences of tobacco smoking include 

increased oxidative stress, deregulation of DNA methylation, and altered gene 

expression.77,78 Recently, Rolle-Kampczyk et. al.77 used a targeted metabolomics 

approach using LC-MS/MS after phenylisothiocyanate-derivatization to examine 

the impact of prenatal tobacco smoke exposure on maternal serum and fetal cord 
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blood. This study is the first examination of the impact of tobacco smoke on 

human fetal metabolism and assessed 163 metabolites including amino acids, 

acylcarnitines, and phosphatidylcholines. Significant changes in diacyl- and acyl-

ether phospholipids, acylcarnitines, and amino acids were observed in fetal cord 

blood with maternal tobacco smoking in comparison to no exposure.77 A 

reduction in acylcarnitines was linked with reduced energy consumption, as the 

fetus primarily uses fatty acid oxidation for energy metabolism, as reflected by 

lower birth weight outcomes in newborns of maternal smokers. While this study 

represents the first analysis of tobacco exposure on the fetal metabolome, it is 

limited in its targeted approach, variability of tobacco smoke exposure between 

maternal smokers, and collection of samples, as maternal serum was collected at 

the 34th week of pregnancy and fetal samples were collected on day of birth. In 

all, there is sufficient evidence suggesting that prenatal tobacco smoke exposure 

leads to significant changes in energy metabolism within the fetus; however, there 

is little evidence of the potential harmful effects of e-cigarette vapour on maternal 

and fetal health. Also, based on the importance of placental function during 

pregnancy and its role in nutrient/waste transport at the maternal-fetal interface, it 

represents an excellent model for studying the impact of tobacco smoking and e-

cigarette vapour exposure on both maternal health and fetal growth/development. 

Nontargeted metabolomics is a valuable approach for evaluating the impact 

of e-cigarette use, which may provide insight into its potential mechanism of 

action. Metabolomics analysis of placental cells/tissues has so far focused on 
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studying the effects of hypoxic stress and the development of preeclampsia using 

UPLC-MS, GC/MS, and NMR.79 MSI-CE-MS is a high-throughput approach that 

is able to analyze a broad range of polar/ionic metabolites from mass limited 

samples, such as murine placental tissue and cell extracts.80-82 In MSI-CE-MS, 

serial sample injections enables the analysis of seven samples within a single run, 

which offers an accelerated data workflow for biomarker discovery with quality 

assurance based on temporal signal pattern recognition.82 Previous studies 

examining e-cigarette exposure have been limited by focusing on phenotypic 

changes such as cell viability and cytotoxicity and/or targeting specific genes 

within oxidative stress pathways. It is hypothesized that the vapours from 

flavoured e-cigarette formulations have a more pronounced effect on the placental 

metabolome than flavourless formulations, as has been previously demonstrated 

in lung fibroblast cells and human keratinocytes.48,50 Metabolomics plays a 

critical role in deciphering the mechanistic action of environmental exposures on 

the metabolic phenotype especially when detecting evidence of sub-acute toxicity 

on a susceptible model.83-86 As a result, identifying subtle changes in the 

metabolic phenotype of placental cells will allow us to reveal the impact of e-

cigarette vapour exposure relevant to fetal development. Furthermore, the effects 

of e-cigarette vapour are likely to be very complex with synergistic contributions 

from both nicotine and various flavouring additives. 

In this study, first and third trimester trophoblast cells were exposed to 

flavoured and nonflavoured e-cigarette vapours at two different nicotine dosages. 
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Characterization of the e-liquids was first performed by MSI-CE-MS and HS-

GC/MS as complementary methods to profile a chemically diverse range of 

polar/ionic and volatile organic compounds, including nicotine and nicotine-

related metabolites, flavour additives, and breakdown products of propylene 

glycol and glycerol. Metabolomic studies were also performed on placental cell 

extracts using MSI-CE-MS after 48 h exposure to diluted e-cigarette vapour with 

and without nicotine. First trimester placental cells were determined to be more 

susceptible to e-cigarette exposures as reflected by major perturbations in amino 

acid metabolism in comparison to third trimester cells. Overall, this pilot study 

aimed to evaluate the potential sub-acute toxicity of exposure to e-cigarette 

vapours on placental function using a metabolomics approach in order to better 

understand the potential harm e-cigarettes pose to maternal and fetal health.  

3.3 Materials and Methods 

3.3.1 Chemicals and Reagents 

All chemicals were obtained from Sigma-Aldrich Inc. (St. Louis, MO, USA). 

E-liquids (Blacklisted, Blue Balls) were purchased from a local e-cigarette/e-

liquid retailer (Oakville, ON, CA). All aqueous buffers and stock solutions were 

prepared with deionized water (dH2O) using a Thermo Scientific Barnstead 

EasyPure II LF ultrapure water system and stored in plastic, transport tubes. 

Standard calibrant solutions, e-liquids, and internal standards were stored at 4˚C.  



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 136 

3.3.2 Instrumentation: CE-MS and GC/MS 

MSI-CE-MS experiments were performed using an Agilent G7100A CE 

system interfaced with a coaxial sheath liquid Jet Stream electrospray ion (ESI) 

source with heated gas to an Agilent 6230 time-of-flight-mass-spectrometer 

(TOF-MS). The nebulizer gas in the ESI source and the drying gas for MS were 

nitrogen gas, and the damping/collision gas was helium gas. The sheath liquid for 

positive ion mode was 60:40 MeOH:H2O with 0.1% formic acid supplied at a 

flow rate of 10 µL/min, whereas 1:1 MeOH:H2O was used for negative ion mode 

conditions. Purine and HP-921 were added into the sheath liquid (0.02%) for 

reference mass calibration (m/z 121.050873 and m/z 922.009798, respectively). 

The instrument was run in 2GHz extended dynamic range (EDR) mode. CE 

separations were performed using uncoated fused-silica capillaries (Polymicro 

Technologies, AZ, USA) with an internal diameter of 50 µm and total capillary 

length of 120 cm. All separations were performed with an applied voltage of 30 

kV at a constant capillary temperature of 25˚C. The background electrolyte (BGE) 

for positive ion mode detection was 1 M formic acid, 15% v acetonitrile, pH 1.8, 

whereas the BGE for negative ion mode detection for resolving anionic 

metabolites was 50 mM ammonium bicarbonate, pH 8.5.  For MSI, samples were 

injected hydrodynamically (100 mbar, 5 s) alternating between spacer segments 

of BGE (100 mbar, 40 s) for a total injection of seven samples within a single run, 

with an injection time of about 5 min and total run time of 50 min. A QC sample 

was injected in a randomized position within the seven sample plug serial 
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injection sequence in MSI-CE-MS. The CE capillary was first conditioned by 

flushing with MeOH, 1 M NaOH, H2O, and BGE at high pressure for 30 min 

each, whereas between runs, the capillary was flushed with BGE for 10 min. For 

cell culture media and e-liquids, the capillary was flushed with 1 M NaOH and 

BGE for 15 min at the beginning of each day of runs. At the beginning of each 

day, an amino acid standard mixture and QC run (6 QC samples including a dH2O 

blank) were performed to assess instrument performance prior to analysis of 

diluted e-liquid solutions, culture media, or randomized placental cell extracts as 

samples. Capillaries were then rinsed with dH2O (10 min) and air (10 min) for 

overnight storage.  

Headspace (HS)-GC/MS was used for the analysis of volatile/neutral organic 

compounds present in e-liquid solutions that were not readily analyzed by MSI-

CE-MS. HS-GC/MS analyses were performed using an Agilent 6890 N gas 

chromatograph, equipped with a DB-17ht column (30 m × 0.25 mm i.d. × 0.15 µm 

film, J & W Scientific) and a retention gap (deactivated fused silica, 

5 m × 0.53 mm i.d.), and coupled to an Agilent 5973 MSD single quadruple mass 

spectrometer. In a crimp seal vial, 2 mL of the e-cigarette liquid was heated at 

80°C for 10 min, and 200 µL of the headspace was analyzed in splitless mode. 

The injector temperature was 250°C and carrier gas (helium) flow was 

0.8 mL/min with constant flow. The transfer line was 280°C and the MS source 

temperature was 230°C. The column temperature was set at 40°C, raised to 300°C 

at 15°C/min, and held at 300°C for 1 min. Mass spectra were acquired using 
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electron ionization (EI) using full scan from m/z 35 to 800. Data processing was 

performed by Agilent Enhanced Data Analysis MSD ChemStation D.03.00.611, 

Bruker DataAnalysis 4.0 SP4, and AMDIS 2.71. Compounds were identified 

through library searches using NIST/EPA/NIH Mass Spectral Library 2008 (NIST 

2008, Gaitherburg, MD, USA). Compounds with scores over 80 which were 

detected in at least 2 of the 3 replicates for each e-liquid were included in the final 

compound list.  

3.3.3 Culture and Preparation of Exposed Placental Cell Extracts 

E-cigarette vapour was produced using a third-generation e-cigarette device 

(EVOD KangerTech, Shenzhen, Guangdong, China), which had a refillable 

chamber for e-liquids.87 The mouthpiece of the e-cigarette was connected to 5/16” 

PVC Nalgene tubing. The tubing inserted into the bottom of a 250 mL 

Erlenmeyer flask (at the level of cell culture) through a rubber stopper. A 4 mm 

stopcock was inserted before the first flask to control flow (a ¼ opening was used 

for media preparation). Outflow from the first flask was connected to a second 

Erlenmeyer flask via 5/16” PVC Nalgene tubing. The second flask was connected 

to a vacuum pump (GAST, Benton Harbor, MI, USA) with an in-line HEPA-

VENT filter (GE Healthcare, Little Chalfont, Buckinghamshire, UK). E-liquids 

(Blacklisted and Blue Balls) contained either 0 or 12 mg/mL nicotine (Blacklisted 

with 0 mg/mL nicotine = BL0; Blacklisted with 12 mg/mL nicotine = BL12; Blue 

Balls with 0 mg/mL nicotine = BB0; Blue Balls with 12 mg/mL nicotine = 

BB12). E-liquid volume was selected based on the average daily use reported by 
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e-cigarette users. To prepare the F-12K and RPMI vape-conditioned media stock, 

3 mL of e-liquid was vaporized by simultaneous activation of e-cigarette and 

vacuum pump for 10 s into 30 mL of Ham’s F-12K Nutrient Mixture (Kaighn’s 

Modification, Corning, Manassas, VA, US) or Roswell Park Memorial Institute 

(RPMI)-1640 medium (Buffalo, NY, US), followed by 3 s rest period.  

Two different placental cell lines were used as models for e-cigarette vapour 

exposure studies in this work, namely first trimester HTR-8/SVneo trophoblast 

cells and third trimester BeWo choriocarcinoma cells (Cedarlane, Burlington, ON, 

CA). The HTR-8/SVneo cells (1.3´105 cells/well) and BeWo cells (4.7´105 

cells/well) were plated on 6-well plates (Falcon, Corning, NY, US) and grown in 

RPMI or F-12K medium with 1% L-glutamine. After reaching 80% confluency, 

cells were split and incubated in F-12K or RPMI control maintenance media or 

media with 1% or 10% v/v vape-conditioned media stock for 48 h. BeWo cells 

were exposed to 10% v/v conditioned media stock for BL0 (n = 3), BL12 (n = 3), 

BB0 (n = 3), BB12 (n = 3), in addition to control cells (n = 3) which were 

exposed to a control maintenance F-12K media without e-cigarette vapour, 

whereas HTR-8/SVneo cells were exposed to 1% or 10% v/v conditioned media 

stocks for BL0 (n = 5), BL12 (n = 5), BB0 (n = 5), BB12 (n = 5), in addition to 

control cells (n = 10), which were exposed to a control maintenance RPMI media 

without e-cigarette vapour. Metabolite extraction for metabolomics analysis was 

adapted from a method by Sapcariu et. al.88 for adherent cells. Post-growth 

medium was also collected for analysis of residual nutrients and/or secreted 
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metabolites. Cells were then washed three times with 1 mL aliquots of 0.9% NaCl 

solution to avoid potential MS spectral interferences from phosphate buffered 

saline solution.88 In our work, cellular metabolism was quenched by the addition 

of 250 µL 1:1 MeOH:H2O pre-chilled at -20˚C. Wells were then scraped with a 

1.8 cm cell scraper and cell extracts from three wells (750 µL total volume) were 

transferred together into a 1.5 mL centrifuge microtube, flash frozen with liquid 

N2, and then stored at -80˚C prior to cell extraction and analysis. 

3.3.4 Metabolite Extraction and Sample Preparation 

BeWo cells (~ 1.4 ´ 106) and HTR-8/SVneo cells (~ 3.9 ´ 105) were 

subjected to two repeated freeze-thaw cycles, vortexed for 30 s, and centrifuged at 

14,000 ´ g for 10 min. 5 µL of each extract was diluted 2-fold in dH2O. 

Successive freeze-thaw cycles were not found to further enhance metabolite 

recovery from cell extracts. Placental cell extracts were filtered using a 3 kDa 

MWCO Nanosep centrifugal device (Pall Life Sciences, Washington, NY, US) at 

14,500 ´ g for 15 min to remove cellular proteins. Placental cell filtrates were 

spiked with recovery standards (RS), including 25 µM 4-fluorophenylalanine (F-

Phe) and 50 µM HEPES, and then dried for 3 h using a Vacufuge Concentrator 

(Eppendorf, Westbury, NY, US) with a cold trap attachment using a slurry of dry 

ice and isopropanol. Extracts were then reconstituted in 60 µL dH2O with internal 

standards (IS), namely 25 µM 3-chlorotyrosine (Cl-Tyr) and 50 µM sodium-2-

naphthalene sulfonate (NMS). Technical replicates (n = 3, BeWo and HTR-
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8/SVneo cells) were used for method optimization in order to maximize the 

overall recovery of metabolites from placental cell extracts.  

3.3.5 Data Processing 

Nontargeted metabolite profiling by MSI-CE-MS was performed using 

Molecular Feature Extractor (MFE) and Molecular Formula Generator (MFG) 

when using Mass Hunter Workstation Qualitative Analysis software (Agilent 

Technologies Inc.). A dilution trend filter based on a serial seven plug sample 

injection of a pooled placental cell extract and a blank was performed by MSI-

CE-MS as a simple strategy to identify reproducible yet authentic molecular 

features, while also allowing for the rejection of spurious signals and exclusion of 

redundant responses derived from same metabolites, including in-source 

fragments, isotopes, and salt adducts.80 BeWo and HTR-8SV/neo cells were run 

separately from e-cigarette liquids at various dilutions (10- to 1000-fold) in dH2O 

spiked with 25 µM Cl-Tyr and 50 µM NMS as IS. Samples were then analyzed by 

MSI-CE-MS in randomly assigned injection positions with a pooled QC analyzed 

in one of the seven injection positions with each run. Samples were run in positive 

and negative ion mode conditions over a period of 1 week as described 

previously.89 Molecular features were tentatively identified based on a compiled 

personal database and/or searching online MS/MS metabolite databases, including 

METLIN and Human Metabolome Database in cases when authentic standards 

were not available. In BeWo and HTR-8/SVneo cells, 40 cationic and 9 anionic 
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metabolites were reliably detected (Supplementary Table S3.1) with adequate 

precision in the QC samples (CV < 40%, n = 9) and consistently measured in > 

75% of individual placental cell extract samples of the same cell type. Molecular 

features (MH+ or M-H-) for known and unknown metabolites were extracted 

based on their characteristic accurate mass and relative migration time (m/z:RMT) 

based on a targeted list determined from a dilution trend filter in profile mode 

using a 10 ppm mass window. Peaks were smoothed (Savitzky-Golay 

quadratic/cubic function, 15 points), integrated, and ion responses were 

normalized relative to an IS (i.e., Cl-Tyr and NMS for positive ion mode and 

negative ion mode detection, respectively) to improve method precision. 

3.3.6 External Calibration Curve and Nicotine Quantification 

Calibration standards for nicotine (m/z 163.1230) at seven concentrations (5 

to 200 µM) were prepared in deionized water using 25 µM Cl-Tyr and F-Phe as 

IS. External calibration curves were each performed in triplicate using a 7-sample 

injection format in MSI-CE-MS in order to compare nicotine concentrations with 

reported e-cigarette nicotine dosage in formulation, as well as confirm nicotine in 

vaped media prior to placental cell exposure. Linear least-squares regression was 

used to calculate the calibration equations for nicotine in dH2O (𝑦 = 0.119𝑥 +

0.539). Good linearity (R2 > 0.995) was observed over a 40-fold dynamic range. 

The limit of detection (LOD = 0.28 µM) and limit of quantification (LOQ = 0.93 

µM) for nicotine were calculated from the regression line: 𝐶<_` = 3𝑠b
c
÷ 𝑏 and 
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𝐶<_f = 10𝑠b
c
÷ 𝑏, where 𝑠b

c
 is the standard deviation of the response and b is 

the slope of the regression line, with confirmation by measuring the average S/N 

for the lowest calibrant solution.90 

3.3.7 Statistical Data Analysis 

Extracted ion electropherograms were prepared in Igor Pro 5.0 (Wavemetrics 

Inc., Lake Oswego, OR, USA), whereas linear regression for calibration curves 

was performed in Excel 2007 (Microsoft Inc., Redmond, WA, USA). SPSS 

Statistics (IBM, v. 23) and MetaboAnalyst 3.0 (McGill University) were used for 

univariate and multivariate statistical tests, respectively. Missing values (i.e., no 

signal integrated) were estimated by half of the minimum relative peak area 

(RPA). HTR-8/SVneo cells were received in two batches due to the requirement 

of additional replicates. A large difference was observed in RPAs of samples 

received in different batches. Placental cell metabolites were corrected using 

probabilistic quotient normalization (PQN)91 to correct for differences in sample 

preparation and cell culture conditions. PQN calculates a probable normalization 

factor for each sample from the median distribution of quotients of sample 

responses to a QC response within each MSI-CE-MS run as a reference for each 

feature. Before PQN correction, the overall technical variation was adequate 

(median CV of QC samples = 24%, n = 9), in comparison to biological variation 

within control samples prior to correction (median CV = 83%, n = 49). Correction 

with PQN reduced the biological variation by 2-fold (median CV of PQN-
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corrected controls = 36%, n = 49). Normality of metabolite responses was 

assessed using the Shapiro-Wilk test. Metabolites that were not normally 

distributed were log-transformed prior to univariate and multivariate statistical 

analysis. Group differences between normally distributed metabolites were 

assessed using t-tests and one-way ANOVA, whereas skewed data was assessed 

using Mann-Whitney U and Kruskal-Wallis H tests. For multivariate analysis, 

data was log-transformed, mean-centered, and scaled by dividing by the standard 

deviation of each variable (i.e., auto-scaling). Partial least squares-discriminant 

analysis (PLS-DA) was used to select features that discriminate treatment 

response between groups with metabolite ranking determined by variable 

importance in projection (VIP) scores above a minimum threshold (VIP > 1.5) 

3.4 Results and Discussion 

3.4.1 Nicotine Dosage and Alkaloid Impurities in E-Cigarette Liquids 

MSI-CE-MS is well suited for the analysis of polar and ionic compounds 

from volume-restricted biological samples, such as placental cell extracts. 

Importantly, multiplexed separations greatly increase sample throughput while 

allowing for novel data workflows for biomarker discovery with quality 

assurance. Currently, e-cigarette liquids are not regulated by the Canadian 

government and thus there is a great deal of batch variability between commercial 

e-cigarette products based on manufacturing protocols and purity/grade of major 

constituents, such as propylene glycol, glycerol, and nicotine.92 In addition, the 
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nicotine content in some e-cigarette liquids show high disparity from what is 

reported on its label, with some cases of nicotine being detected in e-cigarette 

liquids advertised to contain no nicotine. As a result, quantification of nicotine 

concentrations and nicotine-related impurities and degradation products was 

performed in representative e-cigarette liquids using MSI-CE-MS. Dilution of e-

cigarette liquids in deionized water (from 10- to 1000-fold) was required due to 

their high viscosities, while also ensuring that measured nicotine ion responses 

were within the upper linear dynamic range of the calibration curve 

(Supplementary Figure S3.1).  

As expected, nicotine was not detected in the Blacklisted (unflavoured) or 

Blue Balls (blue-raspberry flavoured) e-cigarette liquids that were labelled to 

contain 0 mg/mL nicotine (BL0 and BB0), as shown in extracted ion 

electropherogram overlays in Figure 3.3. Therefore, nicotine concentrations were 

below 3.0 µM or 450 ng/mL based on an effective detection limit following a 10-

fold dilution for e-liquid solutions. For the formulations of Blacklisted (BL12) 

and Blue Balls (BB12) advertised to contain 12 mg/mL of nicotine, the 

concentrations differed from reported amounts by 13.8% (10.35 ± 0.77 mg/mL) 

and 10.4% (13.25 ± 0.79 mg/mL), respectively. Although deviations in reported 

nicotine concentrations are quite reasonable in comparison to previous studies 

reporting differences ranging from 45 to 131%, the ECTA’s quality control 

protocols require nicotine concentrations to be within 10% of the concentration 
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Figure 3.3. Extracted ion electropherogram of nicotine (163.1230:0.472) for a representative MSI-
CE-MS run of e-cigarette liquids containing 0 and 12 mg/mL nicotine with an injection order of 0 
mg/mL Blacklisted (BL0), Blue Balls (BB0), CinJacks (C0, not discussed), blank, 12 mg/mL 
Blacklisted (BL12), Blue Balls (BB12), and CinJacks (C12, not discussed). The TOF-MS spectra 
for nicotine showing its molecular ion (MH+) and isotope pattern with calculated mass error is 
shown as an inset. 

reported on the label.93 Also, the current lack of government regulation of e-

cigarette products and manufacturing practices has led to a large number of tested 

products (43%) claiming to contain 0 mg/mL actually containing residual 

amounts of nicotine.94 

MSI-CE-MS detected several nicotine-related compounds/impurities in the 

12 mg/mL e-cigarette liquid formulations, which were not detected in the 

equivalent nicotine-free brands (Table 3.2), including alkaloids derived from 

tobacco plants, such as nornicotine, anatabine, and cotinine. Furthermore, two 

unknown compounds (m/z:RMT), including a faster migrating isobar of cotinine 

(177.1022:0732) and an unknown cation (189.1598:0.781), were likely nicotine 

alkaloids since they were only detected in the 12 mg/mL nicotine formulations 

and have similar mobilities to other nicotine alkaloids. Nicotine impurities and 

degradation products are commonly detected in e-cigarette liquids.95 The nicotine  
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Table 3.2. Nicotine degradation products and minor tobacco alkaloids detected in e-liquid 
formulations with 12 mg/mL nicotine by MSI-CE-MS in positive ion mode. The total percent 
abundance of known tobacco/nicotine-related compounds was in Blacklisted and Blue Balls was 
1.85% and 1.63%, respectively. 

Compounda Formula m/z:RMT Mass 
Error 

Type of 
Impurity 

% Abundanceb 

BL12 BB12 

Nicotine C10H14N2 163.1230:0.526 0.15 ppm — —  

Anatabine C10H12N2 161.1070:0.547 2.02 ppm Tobacco alkaloid 1.04% 0.59% 

2'-Hydroxynicotine C10H14N2O 179.1179:0.556 0.06 ppm Degradation 0.52% 0.58% 

Nicotine N’-oxide C10H14N2O 179.1179:0.566 0.50 ppm Tobacco alkaloid 0.23% 0.39% 

Cotinine C10H12N2O 177.1022:0.757 1.47 ppm Tobacco alkaloid 0.05% 0.06% 

Nicotyrine C10H10N2 159.0917:0.722 1.73 ppm Tobacco alkaloid 0.03% 0.01% 
a All metabolites were tentatively identified by mass match using the ESI+ mass spectrum and Molecular 
Formula Generator (MFG), with confirmation performed by high resolution, accurate MS/MS. 
b % abundance relative to major alkaloid, nicotine, assuming similar ionization efficiency (n = 3). 

 

that is used in e-cigarette liquids is extracted from tobacco and its purity varies 

depending on the manufacturer and grade. For example, according to the 

European Pharmacopoeia, pharmaceutical grade nicotine can contain up to 0.3% 

of nicotine impurities, comprising minor tobacco alkaloids and degradation 

products.92 Anatabine was the most abundant minor alkaloid detected in both 

Blacklisted and Blue Balls e-cigarette liquids, corresponding to about 0.6% to 

1.0% of total nicotine content; similarly, anatabine and nornicotine are the most 

abundant minor tobacco alkaloids in most tobacco strains and in tobacco 

products.96 In addition, several minor tobacco alkaloids arise as a result of 

oxidation during tobacco processing, including cotinine, nicotyrine, and nicotine 

N’-oxide (NNO). Collectively, the relative abundance of nicotine impurities 

detected in the Blacklisted and Blue Balls e- cigarette liquids examined was about 

1.8% and 1.6%, respectively, which suggests that a poorer grade of nicotine was 

used for these products. Further, the presence of high quantities of nicotine 
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impurities suggest oxidative degradation occurred during manufacturing or as a 

result of interactions with packaging and handling/storage (i.e., 

temperature/light).92 

3.4.2 Characterization of Volatile Organics in E-Cigarette Liquids 

All e-cigarette liquids examined in this work listed propylene glycol, 

glycerol, nicotine (12 mg/mL formulations only), and “artificial/natural 

flavourings” on their labels. MSI-CE-MS was not optimal for the analysis of e-

cigarette liquids for volatile organics other than nicotine and its alkaloid 

impurities or degradation products. As shown in Table 3.3, MSI-CE-MS analysis 

of 10-fold diluted e-cigarette liquids revealed only a small list of compounds that 

were not reported on the label. In addition to glycerol, propylene glycol, and their 

degradation products (i.e., acrolein and propionaldehyde), 4 features that were 

only detected in the Blue Balls e-liquids were tentatively identified as flavour 

compounds, including benzaldehyde (bitter almond/cherry).97 Total 

characterization of e-cigarette liquid solutions by MSI-CE-MS was not possible 

given that the majority of flavour additives are nonpolar/uncharged. Also, the 

majority of features identified in positive ion mode detection were neutral 

compounds, such as propylene glycol and ethyl maltol, and thus co-migrate with 

the EOF and are prone to ionization suppression/enhancement effects. 

The chemical profile of the e-liquid aerosol is more relevant to the vaping 

process in terms of assessing the impact of human exposure than the profile of the 

liquid components.28 In addition, many flavour additives are neutral organic 
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Table 3.3. List of compounds detected by MSI-CE-MS in Blacklisted and Blue Balls e-cigarette 
liquids. Analysis was repeated in triplicate. 

Compounda Formula m/z:RMT:mode Mass 
Error 

Abundanceb 
BL BB 

Glycerol C3H8O3 93.0546:1.527:p 0.22 ppm — — 
Unknownc — 215.0533:1.527:p — — 45.2% 
Unknown C8H8O3 151.0407:0.958:n 4.85 ppm 3.4% 41.6% 
Propionaldehyde C3H6O 59.0491:1.527:p 2.39 ppm 9.4% 9.2% 
Acrolein C3H4O 57.0335:1.523:p 0.15 ppm 3.9% 4.0% 
Unknown C8H8N4O2 191.0572:0.845:n 1.90 ppm — 2.0% 
Benzaldehyde C7H6O 107.0495:1.527:p 0.55 ppm — 1.8% 
Ethyl maltol C7H8O3 141.0546:1.527:p 3.40 ppm 0.7% 1.7% 
Propylene glycol C3H8O2 77.0599:1.526:p 2.10 ppm 1.4% 1.4% 
Unknown C5H10O2 101.0608:0.993:n 0.03 ppm — 0.2% 
a All metabolites were tentatively identified by mass match using the ESI+ mass spectrum 
and Molecular Formula Generator (MFG). 
b % abundance relative to major constituent, glycerol (vegetable glycerin), that were 
measured in triplicate. 
c Formula could not be determined by MFG or database search. 

 

compounds that are not resolved under the buffer conditions for separations in 

MSI-CE-MS. As a result, headspace (HS)-GC/MS was used as a complementary 

method that is ideal for characterizing volatile organic mixtures as required for 

environmental, flavour, and fragrance analysis.98 Temperatures for aerosol 

generation within e-cigarettes generally range from 40˚C to 100˚C, with many e-

cigarette manufacturers limiting operating temperatures to under 100˚C to avoid 

the production of toxic degradation products derived from glycerol or propylene 

glycol.99 Table 3.4 lists compounds identified in the flavourless (Blacklisted) and 

blue-raspberry flavoured (Blue Balls) e-liquids by HS-GC/MS (n = 3) after 

equilibration and sampling headspace of e-liquid solutions with heating at 80˚C.  

Argon, propylene glycol, and butyl isovalerate were detected in all e-liquids 

analyzed. Argon is often used to flush oxygen-sensitive pharmaceutical products, 
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Table 3.4. List of compounds detected by HS-GC/MS in Blacklisted and Blue Balls e-cigarette 
liquids with nicotine concentrations of 0 and 12 mg/mL. HS-GC/MS analysis was completed in 
triplicate and compounds appearing in at least two repeat samples with mass spectral library match 
scores > 80% are listed. Propylene glycol and butyl isovalerate were detected in all e-liquid 
formulations, whereas nicotine was detected only in the 12 mg/mL formulations of Blacklisted 
and Blue Balls.  

Compound Molecular 
Formula 

M 
(m/z) 

RT 
(min) 

NIST 
Score 

Relative 
Abundanceb Flavour 

Propylene glycola  C3H8O2 76 3.341 97.0 — — 

Benzyl acetate  C9H10O2 150 7.276 92.8 28.8% Fruit97 

Isoamyl acetate C7H14O2 130 3.798 90.5 28.1% Apple/banana97 

Ethyl acetate C4H8O2 88 2.741 92.2 25.8% Citrus106 

b-Damascenone C13H18O 190 8.944 94.2 21.9% Apple107 

Ethanol C2H6O 46 2.561 91.5 17.4% — 

Ethyl butyrate C6H12O2 116 3.363 91.4 17.4% Strawberry/apple108 

Isoamyl butyrate C9H18O2 158 5.209 95.5 12.0% Fruit97 

Butyl isovaleratea C9H18O2 158 5.092 81.5 0.3%, 11.2% Fruity97 

Ethyl isovalerate C7H14O2 130 3.611 86.8 11.2% Apple/fruit97 

Hexyl acetate C8H16O2 144 4.889 88.2 9.3% Apple/banana97 

Benzyl alcohol C7H8O 108 6.057 90.6 9.2% Boiled cherries97 

Nicotinec C10H14N2 163 8.921 95.0 7.4%, 1.5% — 

Linalool C10H18O 154 5.727 94.2 6.0% Floral/lemon97 
a Detected consistently in all Blacklisted and Blue Balls e-liquid formulations analyzed in this study. 
b % Abundance of volatile organic compounds relative to propylene glycol, that were measured in 
triplicate (n = 3). 
c Detected only in e-liquids containing 12 mg/mL nicotine. 

 

such as nicotine, before closure and long-term storage.100 Butyl isovalerate is a 

flavouring additive contributing a fruity flavour that has ‘Generally Recognized as 

Safe’ (GRAS) approval by the FDA.97 Further, there were significant levels of 

siloxanes detected in the aerosol of all of the e-liquids analyzed. Polysiloxanes are 

used as plastic additives and have been previously detected in a variety of e-liquid 

aerosols, however its presence is attributed to background impurities presented by 

the analytical method (i.e., GC column).101-103 The Blue Balls e-liquid contained 

ethanol, which is typically used as a solvent for flavourants,104 and ethyl acetate, 
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which is also used as an extraction solvent.105 The Blue Balls e- liquid also 

contained ten known fruit-based flavour additives (i.e., apple, banana, citrus) 

which were not found in the unflavoured e-liquid. The majority of these 

compounds are esters (i.e., isoamyl acetate) and alcohols (i.e., linalool). As 

expected, the Blue Balls e-liquid vapour was much more complex than the 

unflavoured e-liquids (Blacklisted), which is evident when comparing the total 

ion chromatogram traces for both nicotine-free formulations (Figure 3.4). 

 
Figure 3.4. Total ion chromatograms when using HS-GC/MS comparing the chemical profile of 
(A) Blacklisted and (B) Blue Balls e-cigarette liquid formulations with 0 mg/mL nicotine. Peaks 
are identified as 1 = propylene glycol, 2 = ethanol, 3 = ethyl acetate, 4 = ethyl butyrate, 5 = ethyl 
isovalerate, 6 = isoamyacetate, 7 = hexyl acetate, 8 = butyl isovalerate, 9 = isoamyl butyrate, 10 = 
linalool, 11 = benzyl alcohol, 12 = b-damascenone. 
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3.4.3 Preparation and Validation of E-Cigarette Vapour Media 

In order to evaluate the effects of e-cigarettes on human placental cells in a 

manner relevant to human exposures (i.e., inhalation of vapours), cell growth 

media were prepared following their direct exposure to e-cigarette vapours as 

described in the experimental section. Placental cells were then subsequently 

exposed to 1% and 10% v/v dilutions of e-cigarette vapour-exposed cell growth 

media for 48 h. The higher dose 10% v/v vapour media was first evaluated to 

assess whether exposure elicited an observable change in either first and third 

trimester placental cellular metabolism, whereas exposure to the 1% v/v vapour 

media was used to mimic low level exposures that would be more relevant to 

model impact on humans after e-cigarette vapour inhalation based on known 

blood nicotine concentrations in cigarette smokers.109 Nicotine concentrations in 

the undiluted BL12 and BB12 vape-conditioned media stocks (i.e., cell growth 

media exposed to e-cigarette vapour from 3 mL of e-liquid) corresponded to about 

1% of nicotine content in Blacklisted and Blue Balls e-liquids (10.35 and 13.25 

mg/mL) as summarized in Table 3.5. Nicotine content in the BB12 vape-

conditioned F-12K media stock prepared for exposure of third trimester placental 

cells was 4-fold lower than the other stocks, which was likely caused by an error 

in the vaping process since nicotine content in the Blue Balls e-liquid is largely 

consistent with its label concentration. Furthermore, the concentrations in the 10% 

v/v vape-conditioned media corresponded to about 15-20% or on average 23 

µg/mL of nicotine in the stock solutions (~125 µg/mL). 1% v/v vape-conditioned  
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Table 3.5. Nicotine content in original growth media (undiluted stock), as well as 10% and 1% v/v 
vape-conditioned media prepared for treatment of first and third trimester placental cells. 1% v/v 
vape-conditioned media was not prepared for F-12K media. Concentrations for the 1% v/v vape-
conditioned media were estimated since concentrations levels were below the method LOD.  

Vape Stock Solution and 
Labeled Nicotine Dosage 

Nicotine Dosage for Placental Cell Exposure 
Conditioned 

Growth Media 
10% v/v Diluted 

Media 
1% v/v Diluted 

Media 
F-12K Blacklisted (12 mg/mL) 129 ± 19.4 µg/mL 23 ± 3 µg/mL — 

F-12K Blue Balls (12 mg/mL) 29 ± 4.0 µg/mL 4.5 ± 0.1 µg/mL — 

RPMI Blacklisted (12 mg/mL) 130 ± 20.7 µg/mL 25 ± 3 µg/mL 2.5 µg/mL 

RPMI Blue Balls (12 mg/mL) 115 ± 6.0 µg/mL 21 ± 1 µg/mL 2.1 µg/mL 

 

media were prepared only for Blacklisted and Blue Balls in the RPMI media for 

treatment of first trimester placental cells. Nicotine concentrations in the 1% 

vapour stocks were below the method LOD following dilution and could not be 

measured directly, however they were estimated based on the 10% v/v vapour 

media concentrations (~2.3 µg/mL) as listed in Table 3.5. In addition, nicotine- 

related impurities (i.e., tobacco alkaloids and degradation products) were detected 

in e-cigarette liquids, but were not detected in any of the conditioned media due to 

their much lower abundances (< 1% of nicotine). Nicotine concentrations were 

measured explicitly for two reasons—firstly, to evaluate the consistency of the 

method when preparing media exposed to e-cigarette vapours, which 

demonstrated that nicotine concentrations were, for the most part, consistent 

across both media types and flavours, and, secondly, to provide verification that 

nicotine and other components of the e-liquids were integrated into media for 

placental cell exposure. 
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3.4.4 Placental Cell Exposure to E-Cigarette Vapour 

To evaluate the effects of e-cigarette vapours on placental cells, first 

trimester (HTR-8/SVneo) and third trimester (BeWo) trophoblast cells were 

treated in media exposed to Blacklisted (unflavoured) or Blue Balls (blue-

raspberry flavour) e-cigarette vapour. After cells were grown to 80% confluency 

(about 1.3 ´ 105 and 4.7 ´ 105 cells/well for HTR-8/SVneo and BeWo cells, 

respectively), they were incubated in either 1% or 10% v/v vape-conditioned 

media (BL0, BL12, BB0, BB12) or control maintenance media for 48 h. 

Metabolism was then quenched with 1:1 MeOH:H2O and cells were extracted 

prior to metabolomic analysis using MSI-CE-MS. The quenching/extraction 

procedure was optimized for maximizing metabolite extraction efficiency while 

using a minimum number of wells to achieve adequate sensitivity and 

metabolome coverage by MSI-CE-MS. MSI-CE-MS was performed under acidic 

(positive ion mode) and alkaline (negative ion mode) conditions for the detection 

of cationic and anionic metabolites derived from placental cell extracts, 

respectively. For washing of placental cells, 0.9% NaCl and a minimal volume 

(250 µL) of 1:1 MeOH:H2O pre-chilled to -20˚C was used as an extraction 

solution during cell scraping.70 The pooling of placental cells derived from 3 

wells of a 6-well plate (approximately 3.9´105 and 1.4´106 cells total for HTR-

8/SVneo and BeWo cell lines) and use of two consecutive freeze-thaw cycles 

were found to provide optimal metabolite recovery and coverage in this work. 

Overall, this optimized extraction procedure demonstrated good technical 
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precision (n = 3) for non-exposed HTR-8/SVneo cell extracts with a median CV = 

7% (ranging from 0.8% to 31.4%) for 49 polar/ionic metabolites consistently 

measured in the majority of placental cells that also satisified selection criteria 

when performing a dilution trend filter (Supplementary Table S3.1).80 Only 10 

anionic metabolites were consistently detected in placental cells, which is likely a 

result of lower sensitivity when using negative ion mode in addition to inadequate 

cell densities.110 Of these 49 metabolites, 12% were unknown and were annotated 

based on their characteristic m/z:RMT. Among the known compounds, the 

majority were amino acids (44%), acylcarnitines (10%), and various amino acid 

derivatives (8%). 

The analysis of placental cells treated with BL0, BL12, BB0, and BB12 

vape-conditioned media and control maintenance media with MSI-CE-MS was 

first evaluated with a current trace overlay (Figure 3.5) for a total of 42 runs in 

(A) positive ion mode using an acidic BGE and (B) negative ion mode using an 

alkaline BGE. The current trace provides a way to monitor instrument stability 

and robustness during data acquisition.111 Overall, there was good reproducibility 

throughout runs with CV < 2.5% for positive and ion mode; however, in negative 

ion mode, a number of runs were discarded due to current drops and/or current 

variability outside cut-off limits exceeding ± 3SD. In addition, quality assurance 

protocols were also carried out by monitoring a recovery standard (F-Phe, 25 µM) 

within all samples analyzed (n = 78), including pooled QC samples (Figure 3.6),  
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Figure 3.5. An overlay of CE current traces from 42 runs performed over 8 days of analysis in 
positive and negative ion mode. Excellent reproducibility was observed in positive and negative 
ion mode (CV = 2.5% and 2.3%, respectively), however a number of runs in negative ion mode 
were discarded due to significant variation in the current and/or current drops/crashes. Upper and 
lower limits of agreement are denoted by dotted grey lines (± 3SD). 

 
Figure 3.6. Control chart depicting relative peak area (RPA) of recovery standard 4-
fluorophenylalanine (F-Phe) over 50 HTR-8SV/neo cells (blue), 15 BeWo cells (green), and 13 
pooled QCs (black) in positive ion mode. The solid line represents the average RPA and the dotted 
lines represent the upper/lower control limits (± 3SD). BeWo and HTR-8/SVneo cells were 
analyzed by MSI-CE-MS on different dates. 

which gave an indicator of long-term precision of both cellular extraction and 

MSI-CE-MS performance for both cell types with only 1 outlier (BeWo) 

exceeding agreement limits (± 3SD). The apparent ion response ratio for F-Phe 
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measured in positive (CV = 16.3%) and negative (CV = 20.2%) ion mode 

displayed acceptable random variation.  

BeWo and HTR-8/SVneo cells were treated with 10% v/v BL0, BL12, BB0, 

and BB12 vape-conditioned media to evaluate whether the presence of vaped e-

cigarette additives led to changes in placental cell metabolism in comparison to 

control cells which were not exposed to e- cigarette vapour. To determine the 

susceptibility of first and third trimester cells to e-cigarette exposure, we 

examined metabolite profiles without e-cigarette exposure (i.e., control) in 

comparison to cells treated with the e-cigarette vapour we hypothesized would 

have the greatest effect on placental metabolism. There were no significant 

differences in metabolite profiles with treatment of 10% v/v BB12 (n = 3) in 

comparison to controls (n = 3) observed in BeWo cells (Mann-Whitney U test, p 

> 0.05), which suggests that the concentrations of nicotine and other e-cigarette 

liquid components in the diluted vape-conditioned media did not produce a 

significant effect and/or the treatment was too short in duration (48 h) to elicit a 

measurable change in cellular metabolism. This was confirmed by comparing 

control BeWo cells with the other e-liquid vape-conditioned media (BL0, BL12, 

and BB0) using Mann-Whitney U tests, which demonstrated no significant 

differences between groups. In contrast, first trimester HTR-8/SVneo cells treated 

with control maintenance media (n = 10) and 10% BB12 (n = 5) showed major 

differences in responses for several metabolite classes, including amino acids and 

acylcarnitines.  A more pronounced effect on the first trimester cell line is 
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consistent with current knowledge regarding placental development and 

susceptibility to stressors.89 First trimester placental cells are known to be more 

susceptible to chemical influences as a result of active differentiation and 

chemical/environmental stressors that can cause significant detrimental effects on 

DNA methylation and gene expression.89,112 In addition, maternal smoking has 

been observed to be less harmful at the end of pregnancy than in early pregnancy, 

as third trimester trophoblast cells are highly differentiated with higher resistance 

to chemical exposures. In the first trimester, the placenta develops in a hypoxic 

environment and is more vulnerable to oxidative stress.70 For this reason, first 

trimester HTR-8/SVneo cells were further investigated when using a lower dose 

exposure/sub-acute toxicity study when using nontargeted metabolite profiling by 

MSI-CE-MS. 

HTR-8/SVneo cells treated with 1% and 10% v/v e-cigarette vape-

conditioned media were received in two batches due to the requirement of 

additional replicates. A large difference was observed in ion responses of the 

same cell lines received in two different batches that were prepared over a time 

period spanning 6 months, which is depicted in the 2D scores plot of a principal 

components analysis (PCA) that provides an overview of the total data variance 

(Figure 3.7). As the QC samples measured over the two batches were consistent, 

the likely source of batch differences is changes in sample preparation and/or cell 

culture conditions, and was not a result of instrumental issues. To correct for the 

observed batch differences between samples, probabilistic quotient normalization 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 159 

 
Figure 3.7. 2D scores plot from principal component analysis (PCA) of 49 cationic and anionic 
metabolites detected in first trimester HTR-8/SVneo cells showing (A) uncorrected data and (B) 
PQN-corrected data in comparison to the adequate technical variation within the QC samples 
analyzed within each run. PQN correction reduced the total biological variation from 83% to 36% 
(median CV). All data was log-transformed and autoscaled.  

 (PQN)91 was applied using a pooled QC as a reference for normalization 

purposes, which reduced the total biological variation in treated/control cells as 

reflected by a median CV for all placental cell metabolites being reduced from 

83% (uncorrected, A) to 36% (B). Furthermore, PCA also shows the adequate 

technical variation with the overall clustering of the QC group in comparison to 

the total biological variation; in this case, the median CV for all features within 

the data set was 24.0% (n = 49 over 9 runs). An overview of the overall data 

structure for treated HTR-8/SVneo cells is shown in the 2D heat map with 

hierarchical cluster analysis (HCA) (Figure 3.8) based on 49 cationic and anionic 

metabolites which were consistently measured in all placental cell extracts. To 

visualize differences as a result of exposure to e-cigarette vapour, a 2D scores plot 

from a partial least squares-discriminant analysis (PLS-DA) was next applied 
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Figure 3.8. Hierarchical cluster analysis (HCA) 2D heatmap of PQN-corrected, autoscaled, and 
log-transformed metabolomic data showing the overall data structure for HTR-8/SVneo cells 
treated with 1% and 10% v/v e-cigarette vapour conditioned media (n = 5 in each group) and 
control maintenance media (n = 10). 

based on PQN-corrected, log-transformed, and autoscaled data for (A) 10% v/v 

and (B) 1% v/v e-cigarette vape- conditioned media (Figure 3.9). In this 

supervised PLS-DA model, cells treated with 10% v/v vape-conditioned media 

had clear separation of the flavour-exposed cells (BB12 and BB0), which cannot 

be seen with treatment with the 1% v/v vape-conditioned media under otherwise 

identical conditions. As seen in the VIP scores ranking for exposed cells, several  
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Figure 3.9. PLS-DA 2D scores plot for HTR-8/SVneo cells exposed to (A) 10% v/v and (B) 1% 
v/v e-cigarette vape-conditioned media. All data was corrected with PQN, log-transformed, and 
autoscaled. Multivariate analysis of PQN-corrected RPAs was used for the selection of top-ranked 
placental metabolites responsible for group separation. Top-ranked metabolites that were 
consistently altered for both exposures are indicated by an asterisk.  

metabolites were consistently associated with differences observed between 

groups, namely GABA, asparagine (Asp), 4-hydroxyproline, isoleucine (Ile), and 

propionylcarnitine (C3). The separation of the BB0 and BB12 groups in the 10% 

v/v e-cigarette vape-conditioned media group agree with our original hypothesis 
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that the exposure of flavored e-liquids at higher doses have a stronger perturbation 

on placental metabolism for susceptible first trimester cell lines. 

3.4.4.1 First Trimester Placental Cell Exposure to Unflavoured E-Cigarette 

Vapour 

The chemical composition of the unflavoured Blacklisted e-cigarette liquids 

was much simpler than the flavoured Blue Balls e-liquid, containing propylene 

glycol and glycerol as its main constituents in addition to some breakdown 

products and other minor additives as presented in Table 3.3 and Table 3.4. As 

research regarding the biological effects of e-cigarette exposure is limited and 

many studies fail to include unflavored, nicotine-free e-liquid vapours as a 

control, the first objective in this work was to evaluate the effect of the basic e-

liquid constituents (i.e., propylene glycol, glycerol, and breakdown products) on 

first trimester placental cells using univariate statistical tests. Relative peak area 

(RPA) responses for metabolites were not normally distributed, as determined by 

Shapiro-Wilk tests (p value < 0.001, n = 49).  As a result, nonparametric 

univariate analysis (Kruskal-Wallis H) was performed on non-transformed, PQN-

corrected data to compare cells treated with control maintenance media (n = 10), 

1% v/v BL0 vape-conditioned media (n = 5), and 10% v/v BL0 vape-conditioned 

media (n = 5) in order to evaluate the effect of major solutes in nicotine-free and 

flavourless e-cigarette vapours. Overall, there were no significant differences 

observed between control cells and cells exposed to BL0 vape-conditioned media 

at either dosage. Cell exposure to BL0 shows metabolite profiles similar to the 
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control cells, which suggests that the basic constituents of the e-cigarette vapour 

do not have a measurable effect on placental cell metabolism and survival at these 

concentrations. Toxicological studies have demonstrated that the aerosols of the 

two humectants used as the e-cigarette liquid base, propylene glycol and glycerol, 

do not cause cell toxicity in vitro113 or in vivo114-116; however, a recent study by 

Scheffler and et. al.117 demonstrated that human bronchial epithelial cells exposed 

to vapours from 99.5% pure propylene glycol and glycerol experienced reduced 

cell viability and higher oxidative stress in comparison to cells exposed to clean 

air.117 This study, however, assessed exposure to concentrated propylene glycol 

and glycerol independently, whereas e-cigarette liquids are usually composed of 

mixtures of the two humectants, and so assessing them independently is not 

a proper control for the major constituents of e-cigarette liquids.  

Previous work has shown that nicotine is easily absorbed into the 

bloodstream with smoking, where it crosses the placenta and accumulates in fetal 

blood and amniotic fluid.76 Next, the impact of nicotine dosage in unflavoured e-

cigarette vapours was evaluated with Kruskal-Wallis H tests comparing control 

cells (n = 10), cells treated with 1% v/v BL12 vape-conditioned media (n = 5), and 

cells treated with 10% v/v BL12 vape-conditioned media (n = 5), which 

corresponded to exposure to 25 µg/mL and 2.5 µg/mL nicotine, respectively. As 

expected, in first trimester placental cells treated with 1% v/v or 10% v/v BL12 

vape-conditioned media, there were significant decreases in several amino acids 

in comparison to control/unexposed cells (Table 3.6). Three neutral amino acids,  
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Table 3.6. Significant metabolites altered in first trimester placental cells when comparing 
unexposed control cells, 1% v/v BL12 vape-conditioned media, and 10% v/v BL12 vape 
conditioned media as determined by Kruskal-Wallis H tests in order to evaluate the effect of 
nicotine on placental cells. Fold-change (FC) is based on median RPAs and the FCs reported are 
for 10% or 1% v/v BL12/control. All data was corrected with PQN.  

Metabolite m/z:RMT:mode p-value Effect size 
Fold-change 

1% v/v 10% v/v 
Isoleucine 132.1019:0.865:p 1.10E-2 0.385 0.564 0.692 
Dihydrothymine 129.0658:0.754:p 1.50E-2 0.192 0.676 0.780 
Iminoglycinea 74.0237:0.981:p 1.60E-2 0.332 0.630 0.627 
Proline 116.0706:0.925:p 1.60E-2 0.332 0.718 0.740 
Methionine 150.0589:0.915:p 3.00E-2 0.315 0.787 0.756 
a Significantly different from 10% v/v BL0 vape-conditioned media. 

 

namely Ile, proline (Pro), and methionine (Met), were expressed at significantly 

lower concentrations in placental cells exposed to vape-conditioned media at both 

dosage levels (1% and 10% v/v) in comparison to unexposed control cells as 

depicted in box plots comparing PQN-corrected data (Figure 3.10), with median 

fold-changes (FC) in responses ranging from 1.3-fold to 1.8-fold. Comparing cells 

exposed to 1% v/v BL12 vape-conditioned media to cells exposed to 1% v/v BL0 

vape-conditioned media showed no significant differences, whereas a significant 

decrease in iminoglycine was observed for cells treated with 10% v/v BL12 in 

comparison to BL0 vape-conditioned media. While there are no significant 

differences between treatment with 1% and 10% v/v BL12 vape-conditioned 

media, box plots for Ile and Pro highlight that there may be a dose-dependent 

effect, with larger FC differences for 10% v/v treatment groups. These results are 

consistent with prenatal nicotine exposure studies in fetal blood plasma of rats,76 

which showed decreases in Ile and Met with nicotine exposure, as well as second  
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Figure 3.10. Box plots showing the effect of treatment with 1% (n = 5) and 10% (n = 5) v/v BL12 
vape-conditioned media in comparison to control cells (n = 10). Groups that were significantly 
different are marked with an asterisk. Fold-changes (FC) are based on median RPAs for the 10% 
v/v BL12 treatment group and control cells. Data shown is corrected with PQN. 

trimester amniotic fluid in humans,118 which showed dysregulation of Pro and 

Met metabolism. Iminoglycine is an oxidation product of glycine (Gly) and the 

iminoglycine transport system is involved in the intracellular transport of uptake 

of glycine, proline, and hydroxyproline, which may further implicate nicotine in 

the inhibition of amino acid transport.118,119 Large biological variation was 

observed within the 1% v/v BL0 vape-conditioned media treatment group, which 

may be the reason for not detecting a significant effect with 1% v/v BL12 vape-

conditioned media. While decreases in Ile and Pro were observed in comparison 

to 10% v/v BL0 vape-conditioned media, the FCs were smaller and differences 
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were not as significant. This may also suggest that the basic constituents of the e-

cigarette liquids do indeed have a minor impact on placental cellular metabolism 

despite not being statistically significant due to the small sample size in this pilot 

study.  

3.4.3.2 First Trimester Placental Cell Exposure to Flavoured E-Cigarette 

Vapour  

The major concern in regard to e-cigarette usage is the unknown effects of 

flavour additives present in e-cigarette liquids and, although they are generally 

safe for human consumption, long-term exposure studies on susceptible cell 

models have been sparsely reported in the literature. Several flavoured e-liquids 

have been demonstrated to be cytotoxic to a number of cell types (e.g., human 

bronchial epithelial cells) but, for the most part, these effects have been observed 

with high levels of exposure involving direct exposure of cells to the viscous e-

liquid solution. In contrast, we evaluate the effect of low-dosage e-cigarette 

vapour exposure on placental cells with biologically relevant dosage levels of 

nicotine upon subsequent dilution. Since metabolite ion responses were not 

normally distributed, as determined by Shapiro-Wilk tests (p < 0.001, n = 49), 

Mann-Whitney U tests were performed to assess the impact of flavouring 

additives on first trimester placental cell metabolism through treatment with BB0 

vape-conditioned media. As it has been demonstrated that cells treated with 1% 

and 10% v/v BL0 had metabolic signatures similar to the controls, cells treated 

with 10% v/v BL0 vape-conditioned media were used as a ‘vape control’ to 
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account for exposure to the major e-liquid constituents and to increase certainty 

that any metabolic perturbations detected are likely caused by the complex array 

of flavour compounds within vape-exposed media. No significant differences 

were observed in cells treated with low dosage of 1% v/v BB0 vape-conditioned 

media (PQN normalized data) in comparison to unexposed control cells. In 

contrast, significant decreases in GABA, Ile, Pro, and dihydrothymine in addition 

to an elevation in iso-C5 were measured in cells treated with 10% v/v BB0 vape-

conditioned media in comparison to unexposed cells (Figure 3.11). Decreases in 

GABA and iso-C5 were also significant in comparison to the ‘vape’-control, 10% 

v/v BL0 (Table 3.7). Overall, placental cells treated with the high dose of the 

flavoured e-liquid vapour (10% v/v BB12) showed the largest difference between 

control cells or were similar to trends observed in cells treated with 10% v/v BB0 

vape-conditioned media, as observed in the PLS-DA 2D scores plot presented in 

Figure 3.9, which confirmed our original hypothesis that the combination of 

nicotine and flavour additives would lead to synergistic effects and a stronger 

perturbation on placental cell metabolism. Multivariate analysis with PLS-DA 

highlighted iso-C5, proline, and GABA as the major discriminating features with 

VIP scores > 1.5 for group separation between unexposed control cells, cells 

exposed to 10% v/v BL0 and BL12, and, importantly, cells exposed to 10% v/v 

BB0 and BB12, which was consistent with outcomes from univariate analysis 

with nontransformed data. Additionally, the effects of flavoured e-cigarette 

vapour at the higher dose (10% v/v) clearly differs from that of the unflavoured e- 
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Figure 3.11. Box plots showing the effects of flavoured e-cigarette vapour at 1% and 10% v/v on 
GABA, Ile, Pro, and iso-C5 in comparison to control cells. In general, dose-dependent effects are 
observed for all metabolites shown, with cells treated with 10% v/v vapour exposed media had a 
more significant effect on metabolite levels. The addition of nicotine (i.e., BB12) showed the same 
trend. Data shown is corrected with PQN. 

Table 3.7. Significant metabolites when comparing cells treated with control maintenance media 
and 10% v/v BB0 vape-conditioned media as determined by Mann-Whitney U tests in order to 
compare the effects of flavouring agents in nicotine-free e-cigarette vapours. Fold-change is based 
on median RPAs for PQN-corrected data. 

Metabolite m/z:RMT:mode p-value Effect size Fold-change 
Proline 116.0706:0.925:p 2.50E-3 0.367 0.651 
Isoleucine 132.1019:0.865:p 3.00E-3 0.349 0.598 
Dihydrothymine 129.0658:0.754:p 3.80E-3 0.332 0.699 
GABAa 104.0706:0.647:p 4.00E-3 0.367 0.378 
Iso-C5a 246.1700:0.826:p 8.00E-3 0.402 2.657 
a Significant difference was also observed between cells exposed to 10% v/v BL0 and 10% v/v 
BB0 vape-conditioned media. 

 
 
cigarette vapour. With exposure to BB0 and BB12 in 10% v/v vape-conditioned 
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also demonstrated the same trend, however was only significant when comparing 

cells treated with 10% v/v BL0 and BB0 vape-conditioned media, whereas 

responses of other measured acylcarnitines (C2-C4) and carnitine (C0) were 

similar to that of the control. 

Importantly, significant decreases in GABA (2.6- to 3.9-fold change) were 

observed with exposure to both 10% v/v BB0 and BB12 as compared to lower 

dosage (1% v/v) and controls. GABA is synthesized from glutamate via glutamate 

decarboxylase and is the primary inhibitory neurotransmitter in the central 

nervous system (CNS).120 In the CNS, glutamate decarboxylase is activated to 

synthesize GABA as a response to stress. GABA and its receptors are present in 

peripheral tissues, such as the ovaries and placenta, although its function in these 

tissues has not been fully explored;121 however, there is evidence that GABA 

plays a role in cellular apoptosis in trophoblast cells, which is involved in normal 

placental development. An impairment in GABA synthesis and/or its receptors 

could lead to imbalances in normal placental function, growth, and transport.121,122 

Further, decreases in the amino acids Ile and Pro and an intermediate of thymine 

metabolism, dihydrothymine, were observed in cells treated with 10% v/v BL12, 

BB0, and BB12, which suggests that both nicotine and flavour additives present 

in the Blue Balls vapour have a cumulative effect on DNA synthesis and/or 

metabolism. Nicotine exposure has been shown to interfere with DNA synthesis 

and proliferation. For example, acute nicotine administration led to reduced 

synthesis of DNA in brain regions in neonatal rats.123 Also, a study by Ginzkey et. 
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al.124 demonstrated that exposure of human bronchial cells to nicotine led to 

significant DNA damage likely as a result of oxidative stress. Changes in amino 

acid metabolism can have serious implications on protein synthesis and cellular 

metabolism, which is essential for the normal growth and development of a fetus 

during pregnancy. While changes in placental metabolism have been shown to be 

induced by the presence of flavouring additives in e-cigarette vapour, it is 

essential to validate these small yet measurable effects on protein/gene expression 

and cell phenotype/function in order to better link the mode of action of these 

bioactive compounds. Collaborative work studying the effect of Blacklisted vape-

conditioned media exposure on trophoblast viability and function demonstrated 

that HTR-8/SVneo trophoblast angiogenesis was significantly altered (p < 0.05) 

by decreasing distinct tube arrangements.125 This work shows that, although a 

change was not seen on the metabolite level with treatment with 1% v/v BL0, 

early placental development could be affected by exposure to even the basic e-

liquid constituents. Furthermore, BeWo cells treated with unflavoured 

(Blacklisted) and flavoured (Blue Balls) e-cigarette vape-conditioned media were 

found to have evidence of altered growth and development.87 For example, 10% 

v/v flavoured e-cigarette vapour was shown to reduce vascular endothelial growth 

factor A (VEGF) expression in BeWo cells. Combined with the metabolomics 

data presented, it is suggested that the Blue Balls e-cigarette vapour may have 

more potent effect on placental cell development and function that would 
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contribute to a risk to normal fetal growth and development for women e-cigarette 

smokers during pregnancy. 

E-cigarette liquids are very complex mixtures, as demonstrated by MSI-CE-

MS and HS-GC/MS analysis of polar/ionic (i.e., nicotine impurities) and volatile 

organic compounds (i.e., flavour additives), which identified 28 compounds 

altogether. Placental trophoblast cells were exposed to two concentrations of 

flavourless and flavoured e-cigarette vapours at levels that did not induce 

cytotoxicity in order to evaluate potential acute effects on placental development, 

function, and metabolism. Exposure of HTR-8/SVneo cells to e-cigarette vapour 

with nicotine and flavour additives led to subtle changes in amino acid 

metabolism in addition to other cellular metabolites. To better evaluate the size 

effect of these differences, lead compounds need to first be verified with MS/MS 

and/or by spiking standards into the cell matrix, in addition to quantification with 

external calibration curves. While this study was limited by small sample sizes (n 

= 5) for each treatment group in addition to the lack of a standardized method to 

correct for cell content (e.g., protein or DNA concentrations), cumulative 

differences in the presence of flavour and nicotine (i.e., comparison of BB0 and 

BB12 treatments) suggest that a number of components have an impact on 

placental metabolism and, potentially, development/function. While the 

mechanism of these changes and the potential harm e-cigarettes pose on maternal 

health cannot be concluded directly from this study, it is demonstrated that there 

are metabolic perturbations as a result of e-cigarette exposure, particularly to the 
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flavoured and nicotine-containing e-cigarette liquids. Examining only one flavour 

greatly limits the scope of this work and, in order to have a better understanding 

of e-cigarette vapour exposure, a larger study involving placental cells treated 

with various flavours of e-cigarette vapours is warranted. Also, exposure studies 

to individual flavour additives that have been vaporized under the same 

conditions will allow better assessment of the safety of certain e-cigarette flavours 

as a whole, with the potential of improving pending regulation of e-cigarette 

products. 

3.5 Conclusion 

E-cigarette liquids are complex matrices consisting of a base solution made 

up of a combination of propylene glycol and glycerol, nicotine at different 

dosages, and various natural and artificial flavourings. A comparative analysis of 

flavourless and blue raspberry-flavoured e-liquid formulations with MSI-CE-MS 

and headspace-GC/MS confirmed the complexity of these consumer products 

popular among young adults, and it was demonstrated that these e-liquids contain 

more constituents than listed on their labels (i.e., at least 13 compounds not 

including various flavour additives). Nicotine-containing e-liquids were also 

shown to contain a significant amount of tobacco impurities and related nicotine 

degradation products. As expected, the blue-raspberry flavoured e-liquid 

contained a significantly larger number of flavour compounds, which possess 

GRAS designation by the FDA and FEMA.  
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This work was a pilot study to explore the putative effects of e-cigarette 

vapour on placental metabolism using first trimester and third trimester 

trophoblast cells. Placental cells represent a relevant in vitro model of pregnancy 

when studying effects of chemical/environmental exposures, as placental 

dysfunction will negatively affect maternal health and fetal development.126 No 

significant changes at the metabolite level were observed in third trimester cells in 

comparison to altered metabolite profiles measured in first trimester cells. This 

result was not surprising as first trimester placental cells are known to be more 

susceptible to chemical influences.127 This is consistent with maternal smoking, 

which has been shown to be less harmful at the end of pregnancy as third 

trimester trophoblast cells have a higher resistance to chemical influences. No 

effect was observed in first trimester cells exposed to an unflavoured e-cigarette 

liquid vapour matrix without nicotine and metabolite profiles were similar to 

control cells. It was determined that the flavourless and blue raspberry flavoured 

e-cigarette liquids advertised as 0 mg/mL nicotine did not contain nicotine above 

a detection threshold (LOD) of 0.3 µM. In low dose exposure studies, the e-

cigarette liquid base components (i.e., propylene glycol and glycerol) do not have 

a measurable perturbation on cellular metabolism, which allowed us to evaluate 

the effects of flavoured and nicotine-containing e-liquids with some confidence 

since the observed changes were a direct result of flavour additives and/or 

nicotine and nicotine impurities. Similarly, synergistic effects were observed with 

exposure to the more complex e-cigarette liquid vapours in the presence of 
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nicotine. The inclusion of nicotine led to alterations in amino acids (Ile, Met, Pro) 

which was observed at both exposures of vapour explored (1% and 10% v/v) and 

is consistent with studies involving prenatal nicotine exposure leading to 

alterations in Pro and Met metabolism.118 The presence of flavouring in the e-

cigarette vapour matrix led to subtle changes in normal trophoblast amino acid 

metabolism, which was not observed in the presence of the base e-liquid. This 

supports the hypothesis that the flavour compounds added to e-cigarette liquids to 

increase their desirability can contribute to alterations in placental metabolism, 

which may in turn have a deleterious impact on maternal and fetal health with 

chronic long-term e-cigarette exposure. This study demonstrates that the ‘safe’ 

designation given to flavour additives in regard to ingestion may not apply when 

the route of exposure is inhalation. Additionally, there is a critical need to 

evaluate the safety of these additives for the general population and high-risk 

individuals, such as pregnant women and their developing fetus. 
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3.7 Supplementary Tables and Figures 

 

 
Figure S3.1. Extracted ion electropherogram for nicotine calibration standards with concentrations 
ranging from 0.5 to 200 μM in dH2O. The nicotine calibration curve is shown, with the line of best 
fit is represented as a dotted line. Error bars show the standard deviation (n = 3).  
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Table S3.1. Summary of 49 metabolites consistently detected in first trimester HTR-8/SVneo 
cells, including m/z, RMT, ionization mode (p = ESI+, n = ESI-), molecular formula, and 
compound ID. 

m/z:RMT:mode Formula Mass 
Error Compound ID Classification 

74.0237:0.981:p C2H3NO2 3.83 ppm Iminoglycine Amino acid 
derivative 

76.0393:0.738:p C2H5NO2 4.20 ppm Glycine Amino acid 

90.0550:0.614:p C3H7NO2 2.72 ppm Unknown Unknown 

90.0550:0.783:p C3H7NO2 1.61 ppm Alanine Amino acid 

104.0706:0.647:p C4H9NO2 0.05 ppm  g-amino-butyric acid Amino acid 
derivative 

104.1070:0.557:p C5H13NO 1.05 ppm Choline Quaternary 
ammonium salt 

106.0499:0.868:p C3H7NO3 3.12 ppm Serine Amino acid 

116.0706:0.925:p C5H9NO2 2.54 ppm Proline Amino acid 

118.0863:0.858:p C5H11NO2 0.47 ppm Valine Amino acid 

120.0655:0.907:p C4H9NO3 1.00 ppm Threonine Amino acid 

129.0658:0.754:p C5H8N2O2 2.74 ppm Dihydrothymine Ureide 

132.0655:1.021:p C5H9NO3 0.15 ppm 4-Hydroxyproline Amino acid 
derivative 

132.0767:0.770:p C4H9N3O2 4.14 ppm Creatine Amino acid 

132.1019:0.865:p C6H13NO2 0.04 ppm Isoleucine Amino acid 

132.1019:0.874:p C6H13NO2 0.72 ppm Leucine Amino acid 

133.0608:0.905:p C4H8N2O3 1.74 ppm Asparagine Amino acid 

133.0972:0.578:p C5H12N2O2 0.72 ppm Ornithine Amino acid 

134.0448:0.982:p C4H7NO4 0.63 ppm Aspartic acid Amino acid 

147.0764:0.926:p C5H10N2O3 1.23 ppm Glutamine Amino acid 

147.1128:0.595:p C6H14N2O2 2.07 ppm Lysine Amino acid 

148.0604:0.936:p C5H9NO4 0.23 ppm Glutamic acid Amino acid 

150.0589:0.915:p C5H11NO2S 0.49 ppm Methionine Amino acid 

156.0768:0.635:p C6H9N3O2 0.94 ppm Histidine Amino acid 

160.1331:0.713:p C8H17NO2 1.84 ppm Unknown Unknown 

162.1124:0.726:p C7H15NO3 1.42 ppm Carnitine (C0) Amino acid 
derivative 

166.0863:0.935:p C9H11NO2 0.93 ppm Phenylalanine Amino acid 

175.1190:0.626:p C6H14N4O2 0.27 ppm Arginine Amino acid 

182.0812:0.965:p C9H11NO3 2.91 ppm Tyrosine Amino acid 
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202.1809:0.804:p C11H23NO2 0.72 ppm Unknown Unknown 

204.1231:0.772:p C9H17NO4 1.15 ppm Acetylcarnitine (C2) Acyl carnitine 

205.0972:0.935:p C11H12N2O2 1.73 ppm Tryptophan Amino acid 

218.1387:0.803:p C10H19NO4 0.07 ppm Propionylcarnitine (C3) Acyl carnitine 

232.1543:0.814:p C11H21NO4 0.15 ppm Butyrylcarnitine (C4) Acyl carnitine 

246.1700:0.826:p C12H23NO4 0.06 ppm iso-valerylcarnitine (iso-C5) Acyl carnitine 

246.1700:0.831:p C12H23NO4 3.59 ppm Valerylcarnitine (C5) Acyl carnitine 

284.0984:1.128:p C10H13N5O5 3.33 ppm Guanosine Purine nucleoside 

307.0833:1.027:p C20H32N6O12S2 0.79 ppm Glutathione (oxidized) Peptide 

308.0911:1.094:p C10H17N3O6S 1.68 ppm Glutathione (reduced) Peptide 

337.1693:0.831:p C16H24N4O2S 0.08 ppm Unknown Unknown 

89.0244:1.173:n C3H6O3 0.93 ppm L-Lactic acid Hydroxy carboxylic 
acid 

102.0561:0.939:n C4H9NO2 4.43 ppm Unknown Unknown 

128.0353:1.029:n C5H7NO3 4.56 ppm Oxoproline Amino acid 
derivative 

132.0302:1.003:n C4H7NO4 0.24 ppm Iminodiacetic Acid Amino acid 

135.0299:0.516:n C4H8O5 0.02 ppm Threonic acid Sugar acid 

137.0465:0.516:n C5H6N4O 2.80 ppm 8-Hydroxypurine Purinone 

179.0562:0.516:n C6H12O6 1.74 ppm Glucose Hexose 

183.0887:0.513:n C7H12N4O2 0.27 ppm Unknown Unknown 

505.9885:1.248:n C10H16N5O13P3 3.10 ppm ATP 
Purine 

ribonucleoside 
triphosphate 

662.1018:0.639:n C21H27N7O14P2 0.54 ppm NAD+ (5’→5’)-
Dinucleotide 

a Most probable formula is presented in the case of unknowns/tentatively identified compounds 

b All metabolites were tentatively identified by mass match using the ESI+/ESI- mass spectrum, 
Molecular Formula Generator (MFG), and Metlin database search. 
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4.1 Overview of Major Thesis Contributions 

Metabolomics is a powerful tool that can be used to improve upon our 

understanding of various aspects of human health and assess the impact of 

different stressors on metabolic networks. In this thesis, two major projects in 

metabolomics associated with public health and disease management/prevention 

have been presented. Chapter I presents an overview of the role of metabolomics 

in disease diagnostics and biomarker discovery in addition to exploring the impact 

of endogenous and exogenous factors on the metabolome of biological systems. 

Further, it presents the various analytical platforms widely used in metabolomics, 

with a focus on the platform used in this work: multisegment injection-capillary 

electrophoresis-mass spectrometry (MSI-CE-MS). Finally, it discusses the data 

workflow involved in metabolomic analysis, including study design, quality 

assurance, method validation, and statistical analysis. As presented, metabolomics 

represents a valuable tool in understanding the pathophysiology of human 

diseases and targets/mechanisms of various stressors, such as environmental 

contaminants, on human health.  

In Chapter II, a nontargeted metabolomics approach was applied to analyze 

the impact of controlled and relaxed diets within a small set of individuals with 

phenylketonuria (PKU), a potentially debilitating metabolic disease with 

compromised phenylalanine (Phe) to tyrosine (Tyr) conversion. Severe 

accumulation of Phe and Tyr deficiency in PKU leads to irreversible neurological 
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impairments, which can be readily prevented with immediate dietary restriction of 

Phe-containing foods (i.e., protein heavy foods) and supplementation with non-

Phe amino acids formulas.1 This work has demonstrated the applicability of MSI-

CE-MS for the screening of PKU that is validated against the clinical screening 

method of ultra-performance liquid chromatography with ultraviolet detection 

(UPLC-UV) in monitoring biomarkers of PKU (Phe and Tyr) in blood. 

Furthermore, a number of Phe- and Tyr-derived catabolites were detected in the 

urine of PKU patients, including N-phenylacetylglutamine, phenylsulfate, 

phenylpyruvate, phenyllactate, and o-hydroxyphenylacetate. These Phe 

catabolites, excluding phenyllactate, were found to have strong and positive 

correlations with urinary Phe excretion, which demonstrates the potential for the 

use of urine as a less invasive biospecimen for therapeutic monitoring of PKU 

patients. Also, the use of MSI-CE-MS can minimize analysis times while 

maintaining accuracy for reliable quantification of clinically relevant metabolites, 

as well as a wide range of polar/ionic metabolites that can act as biomarkers of 

disease status in PKU, providing detailed information regarding the metabolic 

phenotype of individual patients. Multivariate and univariate analysis of single-

spot urine samples from individuals with highly variable concentrations of plasma 

Phe demonstrated lower levels of carnitine and acylcarnitines (C2 and C5), 

suggesting an inhibition of fatty acid b-oxidation and mitochondrial stress in PKU 

patients who do not maintain Phe levels within optimal therapeutic target ranges 

due to poor dietary compliance. This is consistent with results seen by Weigel et. 
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al.,2 who demonstrated reduced carnitine bioavailability as a result of increased 

levels of phenylacetic acid in individuals with PKU on a diet with zero or minimal 

intake of red meats and dairy products. Products of alternative histidine 

metabolism, imidazolelactic acid and imidazoleacetic acid, were also found to be 

significantly correlated with urinary Phe excretion, suggesting the presence of 

hormonal changes (i.e., glucagon) as a result of excess Phe or deficiencies of folic 

acid and/or vitamin B12. There were also significant elevations in 

creatinine/creatine (p < 0.05) and lower levels of Leu, Ile, a-aminoadipic acid, 

and Ser in individual PKU patients with plasma Phe concentrations exceeding the 

therapeutic target range of 360 µM set by the American College of Medical 

Genetics and Genomics (ACMGG). The purpose of this work was to evaluate 

markers of dietary intake in individuals with levels of Phe greater than the 

recommended clinical concentration as a way of monitoring dietary compliance. 

Creatinine is a marker of meat intake and an elevation may suggest the increased 

consumption of meat products and/or protein; however, no significant elevations 

in other markers of protein intake (e.g., 3-methylhistidine and carnosine) were 

observed.3,4 For nontargeted analysis, only individuals supplementing their diet 

with a Phe-free amino acid formula were included in order to minimize variability 

of response. Lower levels of amino acids present in these formulas (Leu, Ile, and 

Ser) may indicate that individuals with higher levels of Phe are not consuming the 

prescribed amount of formula consistently or this may be a result of timing of 

sample collection and/or meals.5 Metabolomics studies examining the 
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pathophysiology of PKU has been limited, with little work focused on the impact 

of complex interactions of the PKU diet and/or treatment on the metabolome. 

Overall, this project demonstrates the complexity of the PKU disease spectrum 

due to confounding factors such as age, dietary compliance, and disease severity. 

Chapter III explores the potential deleterious effects of e-cigarette vapour 

exposure on placental cell function in the first and third trimester. E-cigarettes are 

generally considered by the public to be a healthier alternative to smoking 

conventional tobacco cigarettes; however, the biological effects of vaporized 

flavour additives in popular e-cigarette liquid formulations is largely unknown. 

Furthermore, e-cigarettes represent a serious public health risk due to unregulated 

advertising, unawareness, and limited availability of long-term studies assessing 

their impact. Aside from the listed constituents of propylene glycol, glycerol, 

nicotine, and flavourings, there is little detail regarding ingredients in e-cigarette 

liquids that is provided by the manufacturer. Analysis of various e-cigarette 

liquids (flavourless, blue raspberry) by MSI-CE-MS and headspace-gas 

chromatography-mass spectrometry (HS-GC/MS) confirmed the chemical 

complexity of these consumer products. Nicotine-containing e-liquids (12 mg/mL 

nicotine concentration) also contained many tobacco impurities and nicotine 

degradation products, such as cotinine, nicotyrine, and 2-hydroxynicotine. Also, 

the blue raspberry flavoured e-liquid contained 12 known flavour additives which 

are generally recognized as safe (GRAS) for human ingestion by the Flavor and 

Extracts Manufacturing Association (FEMA) and the U.S. Food and Drug 



M.Sc. Thesis – Jennifer Wild; McMaster University – Chemistry and Chemical Biology 

 192 

Administration (FDA), but have not been evaluated for safety when inhaled.6 

Exposure to a flavourless e-liquid vapour without nicotine showed no measurable 

metabolic differences in comparison to first trimester and third trimester control 

cells. However, first trimester trophoblast cells were determined to be more 

susceptible to the effects of e-cigarette vapour exposure as no significant 

metabolic differences were observed in third trimester cells under treatment with 

flavoured (Blue Balls) and flavourless (Blacklisted) e-liquid vapour media at two 

dosage levels. This is consistent with reports demonstrating the higher 

susceptibility of the first trimester to chemical exposures.7 Indeed, the presence of 

flavour additives led to acute, yet significant, changes in amino acid metabolism 

(Pro, Ile) and importantly, GABA synthesis/transport. This supports the 

hypothesis that the GRAS designation assigned to flavour compounds may not be 

applicable with inhalation and that these compounds pose a risk to human health, 

especially within critical periods of development. Overall, this work provided 

valuable insight into the potential harm of e-cigarettes on fetal development and 

provides a basis for future analysis into the effects of specific flavouring agents 

on placental metabolism. 

4.2 Evaluating the Impact of Nutrition on the PKU Metabolome 

The study presented in Chapter II has a number of uncontrolled variables, 

which significantly reduces the statistical power of the conclusions made in this 

thesis. In this study, a small number of individuals with PKU were recruited. The 
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target study population was 30 PKU patients, with varying disease severities (i.e., 

non-PKU HPA, mild PKU, and classic PKU), with age grouping distributions of 

infants/young children (n = 10), adolescents/teenagers (n = 10), and adults over 

18 y (n = 10). Patients were recruited by convenience with recruitment occurring 

during their regularly scheduled appointments at McMaster Children’s Hospital. 

While age distributions were fairly consistent with target subgroups, with the 

exception of infants/young children under 6 y (n = 6), there was a discrepancy 

between number of plasma samples obtained for individual patients, which was 

predominantly based on age. Infants are monitored weekly for the first year of 

life, whereas children between 1 and 12 y are typically monitored biweekly or 

monthly.8 In contrast, adults are only monitored 1-2 times per year. Due to a short 

recruitment and sample collection period (< 8 months), samples were, for the 

most part, limited to 1 spot urine and blood plasma sample for teenager/adult 

patients. One of the major objectives in this study was to monitor dietary 

compliance; however, the lack of samples corresponding to older PKU patients 

makes this difficult since adherence to the restrictive PKU diet becomes more 

irregular with patient age and, in general, the diets of infants and young children 

are often tightly controlled by parents.9 In addition, the study did not recruit 

healthy individuals for controls, but rather individuals with a non-PKU metabolic 

disease. Comparison of individuals with PKU with the non-PKU group is, 

therefore, not representative of the difference between the healthy and diseased 

state and there is expected to be considerable metabolic variations within the 
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control group due to the differing diagnoses and treatment plans (e.g., protein-

restricted and non-protein restricted diets). For this reason, they were not included 

in the statistical comparisons. In addition, we could not use individuals with mild 

PKU or hyperphenylalaninemia (HPA) as a control group for comparison of 

metabolic differences with disease severity as only two individuals recruited had 

this diagnosis.  

Meal timing in relation to sample collection and the degree of completeness 

and/or detail with dietary records represented another significant source of 

variation within this study. Consumption of the amino acid supplement and 

periods of fasting may be responsible for fluctuations of Phe and other 

metabolites of interest within and between individuals.5 There was no participant 

requirement prior to sample collection (e.g., 12 h fasting), which adds a 

significant source of variability between patients and between time points, which 

makes data analysis and interpretation difficult. Furthermore, diet records were 

not very detailed or were absent for some individuals recruited. A well-controlled 

study where the premise of using metabolomics as a way of monitoring dietary 

compliance could be evaluated will require the use of controlled meal plans 

and/or detailed diet records. For example, a study with some individuals having 

full compliance and low Phe/protein intake and others with slightly increased Phe 

intake, which would result in Phe concentrations that exceed clinical 

recommendations (360 µM), would allow a better association of diet and Phe 

response. Analysis of compliance could therefore be evaluated with more 
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confidence with control over diet. In addition, requirements with meal timing and 

fasting prior to sample collections will also improve the study design, especially 

within individuals taking an amino acid supplement and following a controlled 

diet. Furthermore, a set number of matched plasma and urine samples need to be 

collected for each study participant for better visualization of the effect of diet 

over the PKU metabolome within individuals. In addition to extreme variability 

presented with age, dietary compliance/records, as well as samples collected, the 

study size is far too small to be considered statistically powerful, especially in 

terms of biomarker discovery. The study should be repeated, with tighter control 

as described, with a larger number of individuals of each age grouping in addition 

to a healthy set of controls. 

The observation of a positive correlation of urinary Phe and products of 

alternative histidine metabolism, imidazolelactic acid and imidazoleacetic acid, 

requires deeper investigation into changes in hormone levels (i.e., glucagon and 

cortisol) and vitamin/micronutrient deficiencies (i.e., folic acid and vitamin B12) 

as a result of adherence or non-adherence to tight dietary regulations and 

supplementation with amino acids. The identification of these metabolites must be 

confirmed using MS/MS fragmentation patterns in addition to the use of internal 

standards for confirmation of fragmentation and relative migration. It has been 

shown that glucagon stimulates hepatic phenylalanine hydroxylase in rats10 and 

amino acid loading (i.e., Arg and Phe) results in the rise of plasma insulin and 

glucagon in humans.11 Further, increased insulin and glucagon secretion leads to 
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reduced extracellular concentrations of amino acids, stimulation of amino acid 

transport for protein synthesis, and activation of enzymes involved in 

gluconeogenesis and urea synthesis, in addition to tyrosine a-ketoglutarate 

transaminase and phenylalanine pyruvate transaminase.11 The enzyme 

phenylalanine pyruvate transaminase also shows specificity towards histidine 

(i.e., histidine pyruvate transaminase); histidine pyruvate transaminase is the 

enzyme responsible for the conversion of His to imidazolepyruvic acid and, 

further, imidazoleacetic acid and imidazolelactic acid.12 Further investigation into 

the enzymatic activity of phenylalanine/histidine pyruvate transaminase in 

addition to hormone secretion in individuals with PKU in comparison to healthy 

controls upon amino acid and/or increased intake of Phe will give more insight 

into the complex relationship of diet and metabolism within PKU.  

4.3 Targeted Evaluation of Vaporized Flavour Chemicals in E-Cigarettes 

The study presented in Chapter III is a pilot study for the initial evaluation of 

the potential toxic health effects of flavoured e-cigarettes vapours. There are a 

number of limitations to this study, which includes issues with normalization (i.e., 

PQN vs. normalization to protein concentration) and small sample sizes (n = 5 for 

each treatment group). Protein concentrations were determined using the Bradford 

Assay in order to normalize the data and account for differences in cell growth 

between treatment groups.13,14 Cells were grown in different batches spanning 

several months apart and protein concentrations were determined at the time of 
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receiving samples. Sample pretreatment required the concentration and 

reconstitution of cell extracts, leaving minimal amounts for protein concentration 

determination. On average, there was a 7-fold difference between protein 

concentrations measured for different batches under the same exposure 

conditions. Probabilistic quotient normalization (PQN) was carried out to correct 

for batch-to-batch differences between protein concentrations as well as to correct 

for the differences in relative peak area (RPA) responses of metabolites being 

analyzed. PQN normalization thereby enabled concentration comparison of 1% 

and 10% v/v exposed placental cells by reducing total biological variation from 

83% to 36% (median CV of 48 features). 

As a pilot study, this work has shown that there is reason to be concerned 

with the potential effects of e-cigarettes; however, these results must be validated 

by repeating the study with a larger sample population and more controlled 

experimental design in order to minimize systematic differences between 

batches.15 Sample sizes for each treatment group should be between 10 to 40 in 

order to increase confidence and significance within the study.16 Further, the 

experimental design must be adjusted as to avoid batch effects, with 

normalization used to correct for unwanted variation that arises as a result of 

sample preparation, treatment, and instrumental analysis.17 While normalization 

using protein concentration is common for metabolomics studies, the presence of 

buffers and solvents for quenching can result in inaccurate protein measurements. 

Furthermore, in this study, there was limited cell extract available for reliable 
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concentration determination using the Bradford Assay. DNA concentration 

measurements from the sample cell pellet, which is discarded in the sample 

preparation process, may be a better technique for data normalization as it has 

been determined to be a more accurate representation of cell number. Further, a 

method to validate consistency in vapour media preparation and protocol is 

necessary, especially considering an automatic machine was not utilized. 

Limitations in the e-cigarette vapour apparatus such as over-use of the e-cigarette 

and exposing the vapour system to the open environment when refilling the e-

cigarette cartomizer may have resulted in inconsistent media exposure to the e-

cigarette vapour.18 Determination of nicotine concentrations in the vapour 

exposed media (BB12 and BL12) for first trimester trophoblast cells showed 

similarity in nicotine concentrations, demonstrating consistency in media 

exposure; however, there is no way to evaluate the integration of the e-cigarette 

vapour into the media for the e-liquids containing no nicotine.  

A limited evaluation of flavoured e-cigarette liquids has been presented due 

to the nature of this pilot study. The blue raspberry flavoured e-liquid was chosen 

as it has been demonstrated that women of reproductive age are more likely to 

choose fruity flavours and this flavour was the most popular at the site of 

purchase.18,19 The thorough examination of only one flavour greatly reduces the 

strength and scope of this research due to the large variety of flavours available 

and flavour additives that may pose a risk to human health. In order to determine 

the agent(s) responsible for changes observed with exposure to flavoured e-
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cigarette liquids, it is necessary to perform exposure studies with varying 

concentrations to monitor potential sub-acute toxicity and cytotoxicity of isolated 

flavour additives. Further, a more comprehensive analysis of a large variety of 

flavoured e-cigarette liquids is necessary to better assess the potential risk e-

cigarettes pose on human and, in particular, maternal/fetal health. 

4.4 Overall Perspective 

In summary, this work has presented an application of metabolomics using a 

unique data workflow based on MSI-CE-MS to evaluate the effects of modifiable 

lifestyle factors such as disease and smoking on human health with an emphasis 

on disease prevention and management. Nontargeted metabolomics analysis of 

the PKU metabolome when considering the complex interactions of diet and 

treatment with altered metabolism is extremely limited and this thesis strives to 

improve the understanding of the impact of diet/nutrition on PKU. Also, the 

effects of e-cigarette vapour in vitro and in vivo is a relatively new field of 

research, and this work demonstrates the benefits of a nontargeted metabolomics 

approach to assessing the sub-acute toxicity of e-cigarette vapour.20 Overall, this 

thesis has demonstrated the applicability of metabolomics using MSI-CE-MS in 

the evaluation of the potential toxic health effects of e-cigarette flavouring 

additives, as well as the important impact of diet compliance and continuous 

therapeutic monitoring on manageable genetic diseases, such as PKU, for 

prevention of adverse health outcomes in both children and older adults.  
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