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Abstract 


Physiological signals when subjected to digital signal processing algorithms often 

reveal information about their origin and how they are regulated. Recently, it has been 

shown that when power spectrum of the heart rate variability signal is computed, 

physiological mechanisms about how the autonomic nervous system modulates the sinus 

node of the heart can be unraveled. During the past several years, computation of the 

power spectrum of heart rate variability has progressed from Blackman-Tukey algorithm 

and autoregressive modelling to Wigner-Ville distribution. 

In this thesis, we describe the development of appropriate algorithms for QRS 

detection from an ECG signal to obtain a heart rate signal, interpolation of heart rate 

variability signal and the computation of power spectrum. We also describe mathematical 

details underlying time-frequency analysis, specifically for the Wigner-Ville distribution. 

We present a software package in C++, for computing the Wigner-Ville distribution of 

the heart rate variability signal. 

As applications of these methods in physiology and clinical medicine, we found 

that the power spectrum of the heart rate variability of premature infants can help us 

understand the ontogeny of the autonomic nervous system. Similarly, physiological 

effects of atropine, methacholine and allergen challenges can be elucidated using the 

power spectrum of heart rate variability in small animals, such as a rat model. 

Furthermore, a progressive tilt model in human subjects is used to compare power 

spectrum obtained from the Blackman-Tukey method, autoregressive modelling and the 

Wigner-Ville distribution. Finally, an application of the Wigner-Ville distribution 

technique to study the changes that take place in the autonomic regulation of the heart 

during different stages of sleep is presented. 
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Chapter 1 

Autonomic Nervous System and Types of 

Hemodynamic Signals 


1.1 INTRODUCTION 

Recent studies on the analysis of heart rate variability (HRV) & blood pressure 

variability (BPV) signals using digital signal processing methods in adult, pediatric and 

newborn human subjects have provided significant insights into the understanding of 

autonomic control of heart rhythms. Specifically, HRV studies through power spectral 

analysis (PSA) have brought out a better understanding of the role the autonomic nervous 

system (ANS) plays in homeostasis and in pathological conditions such as myocardial 

infarction, diabetic neuropathy, congestive heart failure, and sudden cardiac death 

(Lombardi et al., 1987; Lishner, et al, 1987; Saul et al., 1988; Myers et al, 1986; 

Dougherty, et al, 1992). 

During the last 15 years, digital signal processmg methods for computing 

appropriate indices from HRV/BPV have advanced from simple time domain statistics 
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such as mean & standard deviation (Hon and Lee, 1965) to 24 hour HR.V data analysis 

using AR modelling & time-frequency analysis (TF A). Our laboratory has examined a 

number of these techniques in healthy controls and patients (Kamath and Fallen, 1993). 

This thesis extends such work by developing appropriate algorithms for monitoring 

neural modulation of the sinus node in premature infants and animal models. 

Furthermore, we also explored the usefulness of time-frequency analysis in healthy 

controls during passive tilt studies and in sleep. The objectives of this thesis are as 

follows: 

A. To review and develop HRV algorithms for studying premature infants in a neonatal 

nursery. 

B. To develop algorithms for evaluating the autonomic nervous system in a rat model 

and study the effect of atropine and methacholine. 

C. To test algorithms for time-frequency analysis ofHRV recorded in a tilt study and 

compare results obtained using AR method. 

D. To assess various stages of sleep in healthy volunteers usmg time-frequency 

analysis and compare the results obtained through AR method. 

In addition, the software described in this thesis was written usmg C++, 

incorporating Modularization and Object-Oriented Programming (OOP) techniques, 

which enabled me to achieve proficiency in the development ofDigital Signal Processing 

(DSP) methods and user interface design. Finally, Graphic User Interface (GUI) and 2­

D/3-D plotting were implemented to generate a user-friendly environment, which enables 

a broad range of users including physicians, psychologists, kinesiologists, and biologists 

to take full advantage of this novel signal processing tool. 
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In the first chapter we introduce the physiological concepts of autonomic nervous 

system (ANS), its influence on the heart, the types of hemodynamic signals which 

facilitate the study of ANS, and respiratory sinus arrhythmia. 

1.2 OVERVIEW OF AUTONOMIC NERVOUS SYSTEM 

The autonomic nervous system plays a very important role in the regulation of the 

viscera, glands, heart, and blood vessels, as well as other smooth muscles (Hockman, 

1987). The ANS is made up of two functional branches: the sympathetic (SMP) branch 

and the parasympathetic (PSMP) branch. Specifically for the heart, sympathetic fibers 

terminate at the sinus node pacemaker, conduction system, atria, ventricles, and coronary 

vessels. The parasympathetic fibers in the vagus nerve terminate at the sinoatrial and 

atrioventricular nodes, atrial and ventricular musculature, and coronary vessels. All blood 

vessels receive sympathetic fibers and some vessels supplying visceral organs such as the 

heart also receive parasympathetic fibers (Figure 1.1) (Hockman, 1987). 

1.3 TYPES OF HEMODYNAMIC SIGNALS 

There are two types of beat-to-beat hemodynamic signals that can be used to 

facilitate the noninvasive investigation of heart function: beat-to-beat heart rate 

variability (HRV) and beat-to-beat blood pressure variability (BPV) (including systolic & 

diastolic BPV). They are obtained from electrocardiogram (ECG) and blood pressure 

(BP) signals respectively. The critical requirement for obtaining the HRV signal from 

ECG signal is the identification of the instantaneous R-R interval (Figure 1.2), which is 
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Figure 1.1 Diagram depicts nerve supply to the heart from both branches of the autonomic nervous 
system. Preganglionic fibers from both branches are represented by solid lines. Postganglionic fibers from 
both branches are represented by dashed lines: terminals from the sympathetic branch are distributed to the 
pacemaker, conduction system, atrial and ventricular myocardiwn, and coronary vessels; and from the 
parasympathetic branch fibers terminate in the sinoatrial and atrioventricular nodes, atrial and ventricular 
musculature, and coronary vessels. (From Hockman CH, Essentials ofautonomic function. Springfield IL, 
pp. 42, 1987). 



5 

R 

15000 

10000 

5000 T 

Q s 
-5000 

0 0.1 0.2 0.3 0.~ 0.5 0.6 0.7 0.8 0.9 
Time (1) 

(a) 

15000 

10000 

5000 

Tlme (1) 

(b) 

Figure 1.2 Illustration of the basic concepts utilized in QRS detection: (a) QRS complex & T-wave. 
(b) Sample ECG signal of6 heartbeats. (c) Five R-R intervals obtained from previous sample signal. (d) R­
R interval signal of a sample ECG signal containing 300 heartbeats. 
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called QRS detection and is discussed in detail in Chapter 2. Computation of BPV signal 

requires the original BP signal and a knowledge of peak position of the QRS. It utilizes 

the fact that the BP peak (systolic BP) and BP trough (diastolic BP) always occur 

between two adjacent QRS complexes. 

Recognition of beat-to-beat fluctuations in heart rate and blood pressure dates 

back to the 18th century (Hales, 1733). Similar variations have since been noted in stroke 

volume and ECG morphology and are believed to represent the interplay between both 

exogenous (eg. environmental stress) and endogenous (eg. respiratory related fluctuations 

of intrathoratic pressure) cardiovascular perturbations and the resultant response of 

hemodynamic regulatory mechanisms (Harvey, 1997). 

Today HR.V analyses in both the time and frequency domains have proven to be 

viable tools for the noninvasive assessment of cardiac autonomic function (Kamath and 

Fallen, 1993; Task Force 1996). This tool has been used to assess cardiovascular 

responses to various pharmacological agents (Vybiral et al., 1990) and physiological 

maneuvers such as orthostasis/postural tilt (Pagani et al., 1986), the Valsalva maneuver 

(Ziegler et al., 1992) and exercise (Kamath, 1991). Recent work has focused on 

developing joint time-frequency analysis (TFA) (Jasson et al., 1997; Novak et al., 1993; 

Pola et al., 1996) because of its potential for extracting useful information from 

nonstationary signals. Time-frequency analysis is the focus of Chapter 3 in this thesis. 

1.4 RESPIRATORY SINUS ARRHYTHMIA 

At rest the heart rate increases with inspiration and decreases with expiration. 

This beat-to-beat variation of heart rate, which occurs during a respiratory cycle, has been 
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of interest to physiologists since the middle of the last century (Ludwig, 1847). This 

phenomenon is called respiratory sinus arrhythmia (RSA) and has been well documented 

(Katona et al., 1975; Brown et al., 1993; Harvey, 1997). Three mechanisms are proposed 

to account for the coupling of heart rate oscillations with the respiratory cycle (Hirsch et 

al., 1981; Harvey, 1997). 

The first mechanism involves the direct influence of medullary respiratory 

neurons on cardiomotor neurons in the brain stem (Hirsch et al., 1981). Indeed, Levy et 

al. (1966) observed RSA of heart rate in the absence of respiratory movements or blood 

pressure variations in dogs with the respiratory muscles paralyzed. Under the same 

conditions, deepening anesthesia affecting the respiratory centers resulted in the abolition 

of these heart period oscillations. The second mechanism is that blood pressure 

fluctuations secondary to respiratory movements affect heart period via mechanisms 

mediated by atrial stretch receptors and arterial baroreceptors. Thirdly, evidence suggests 

that thoracic stretch receptors (located in the lungs and chest wall) modulate heart rate as 

a reflex response to pulmonary inflation (Hirsch et al., 1981). In addition, there is no 

respiratory sinus arrhythmia during vagotomy. 

Other indirect mechanisms, including the Bainbridge and baroreflex arcs 

contribute to the respiratory linked oscillations in heart rate (Novak et al., 1993). On 

inspiration, the chest cavity enlarges resulting in a decreased intrapleural pressure and a 

subsequent augmentation of venous return to the right atrium. This increase in atrial 

blood volume has a direct effect on receptors located in the wall of the atrium near the 

veno-atrial juctions and results in activation of the Bainbridge reflex which is manifested 

by an increase in heart rate (Harvey, 1997). The resultant increase in pulmonary arterial 
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and venous pressure leads to a subsequent augmentation in venous return to the left 

atrium and an increased left ventricular stroke volume. Consequently, increased pressure 

in the systemic arteries will result in a stimulation of aortic and carotid baroreceptors, 

which result in vagoafferent stimulation and reflex slowing of the heart rate. On 

expiration the intrathoracic pressure returns to baseline and the atria are subsequently 

unloaded. As a result the heart rate returns to pre-inspiration levels. 

Whenever possible the respiration signal should be recorded along with ECG 

signal because of its tremendous influence on the modulation ofheart rate. 



Chapter 2 

Algorithms for the Computation of Power Spectrum 
of Heart Rate Variability 

2.1 OVERVIEW 

In this chapter we discuss as to how to compute heart rate variability (HR.V) 

signal from a given ECG signal and estimate the power spectrum (PS) from HRV signal. 

The most important step in the computation of HRV signal is QRS detection, which 

stands for the peak detection algorithm in ECG signal. The resultant HRV signal is 

subjected to the interpolation and highpass filtering processes to obtain an equally 

sampled (2Hz) HRV signal ready for PS computation. Furthermore, two commonly used 

PS methods, i.e. autoregressive method and Blackman-Tukey procedure, are described in 

detail. 

10 
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2.2 QRS DETECTION 

2.2.1 Algorithms 

QRS detection is the first step in a series of computational tasks in HRV signal 

analysis system. Its purpose is to determine the R-R intervals from the original ECG 

signal. In signal processing domain, QRS detection is not always easy because of 

inherent physiological variability of QRS complexes and contamination of the signal by 

various types of noise (Pan and Tompkins, 1985). For example, ECG signal is corrupted 

by following types of noise: power line interference (~60 Hz), electrode contact noise, 

motion artifacts, muscle contractions (electromyogram or EMG), baseline drift and ECG 

amplitude modulation by respiration (Figure 2.1) (Friesen, 1990). 

QRS detectors implemented in software can be divided into following two 

subgroups: linear QRS detector and neural-network-based QRS detector. The linear QRS 

detector typically consists of the following processing steps: linear processing, a 

nonlinear transformation, and decision rules for detecting the R-waves (Pahlm and 

Sornmo, 1984). Linear processing may include a digital bandpass filter, a first order or 

second order derivative computation (Friesen, 1990), and a moving window integrator 

(Pan and Tompkins, 1985). The nonlinear transformation that is often used involves 

squaring of the amplitude of the ECG signal following linear processing (Pan and 

Tompkins, 1985). Its purpose is to enhance the difference of magnitude of QRS periods 

from non-QRS periods. 

Decision rules are a set of criteria that a sample in ECG signal must meet in order 

to be characterized as a fiducial point on R-wave. Good decision rules lead to robust QRS 

detection. The decision rules may consist of several steps that determine the presence of 
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Figure 2.1 Noisy ECG signals: (a) power line interference and motion artifacts (b) loose contacts (c) 
ECG amplitude modulation by respiration (low frequency) and EMG (high frequency). (From Friesen GM 
et al., IEEE Trans. Biomed Eng., vol. 37, no. 1, pp. 85-98, 1990) 
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an R-wave such as adaptive threshold, T-wave discrimination (see Figure 1.1 for example 

ofT-wave), and search-back techniques. A basic method used to locate a QRS complex 

is to compare the current signal magnitude to a pre-set threshold (usually a percentage of 

the signal envelope). The adaptive threshold technique utilizes that basic concept but also 

adjusts the threshold according to the evolving signal envelope and hence compensates 

the effects of baseline wandering and/or sudden changes in the QRS amplitude. The T­

wave discrimination technique makes use of the fact that in ECG signals, there is a 

physiological refractory period of at least 200 ms after a QRS complex and before the 

next one occurs. Search-back technique continuously compares the current R-R time 

interval to the average interval and re-searches a period if the interval is much longer than 

the average value. 

Not all of the aforementioned techniques have to be utilized in a specific QRS 

detector. The techniques should be chosen based on their performances and the 

requirement of efficiency and complexity. Among the methods utilized in the linear 

processing, a digital bandpass filter has the advantage of best handling combinations of 

noise if the contribution from each of the individual noise types can be limited (Friesen, 

1990). A derivative calculation is good at reducing the effect of low-frequency drift and 

enhancing the transition from baseline to peak. However it also enhances the high­

frequency noise (due to EMG). The idea of combining these two (removing high­

frequency noise then perform derivative) to achieve the best result is not realizable due to 

the following reason. The EMG noise (frequency content is from DC to 10kHz (Webster, 

1978)) overlaps with the QRS complex (frequency content is from 2 to 100Hz with a 

peak around 10 to 15 Hz (Ruha, 1997)). Hence, in the linear processing, we prefer to 
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utilize a digital bandpass filter, rather than a combination of a filter followed by a 

computation of the derivative. 

The neural-network-based QRS detector utilizes an artificial neural network 

(ANN) adaptive whitening filter to model the lower frequencies of the ECG signal that 

are inherently nonlinear and nonstationary. The residual signal that contains mostly 

higher frequency QRS complex energy is then passed through a linear matched filter to 

detect the location of QRS complex. The strength of this approach lies in its high success 

rate on very noisy patient records in the MIT/Blli arrhythmia database (99.5% compared 

to 96.5% oflinear methods) (Xue, Hu, and Tompkins, 1992). 

In the current study, we developed a QRS detection algorithm based on the work 

ofRuha (1997). The algorithm is able to achieve good time accuracy in a relatively noisy 

environment, while at the same time, maintains low computational complexity. The QRS 

detection algorithm, details of which are given in the next section, includes a linear 

digital filtering process and a decision rule (Figure 2.2). The linear filtering process 

contains two linear bandpass filters (prefiltering bandpass & bandpass) which aim to 

attenuate noise and enhance the features used for detection. The decision rule is based on 

an adaptive amplitude comparison procedure and a T -wave discrimination technique. 

Since the threshold is continuously adapting to the envelope ofECG signal, the algorithm 

is able to capture the dynamic changes that occur during transient physiological states 

such as tilt or exercise. No search-back algorithm is utilized. 

During the filtering stage, we use two bandpass filters to attenuate the low 

frequency and high frequency noise. Since we know that the QRS complex contains 

signal components in the frequency band from 2-100 Hz with a peak at 10-15 Hz, the 
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first band pass filter (0.5-35 Hz) is chosen to filter out the DC component, power line 

interference, and high frequency (EMG) noise. The second bandpass filter (15-40 Hz) is 

chosen to further remove the low frequency motion artifacts (2 to 10 Hz). In addition, 

utilizing the band 15-40Hz instead of 10-35Hz provides a significant reduction of the T­

wave (Figure 2.6 (b)&(c)). 

In the development of decision rules, principles from communications theory 

were applied for defining the threshold level. Assuming a heart rate of 60 beats/min, the 

QRS threshold should be around 60% of the peak value. In reality, the threshold should 

be set at a lower level (30-40%) in order to decrease the amount of false negatives 

(missed beats). This is at the expense of an increase in false positives that can be 

corrected more easily than false negatives in the post-processing stage. Besides, the 

threshold level must adapt to varying ECG signal envelopes in order to remain at the 

same relative level and maintain the desired detection properties. 

2.2.2 Details of the Algorithms Employed 

In the linear filtering process, the first bandpass filter is chosen to be a 48th order 

FIR filter with pass band 0.5-35 Hz (Figure 2.3). The second bandpass filter is chosen to 

be a 48th-order FIR filter with passband 15-40Hz (Figure 2.4 (a)). The order of the FIR 

filter is chosen due to the following reasons. While comparing 48th-order, 24th-order, and 

12th-order FIR filters, we found that the amplitude response of the 48th-order FIR filter 

has much sharper transition at the 3-dB point (Figure 2.4 (a)-( c)). As a result, it is shown 

in Figure 2.5 (a)-(c) that the 48th-order FIR filter is able to attenuate the T-wave 

considerably. Figure 2.6 shows signals at various steps in the linear filtering process. The 
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QRS decision rule is then implemented on the filtered ECG signal using an adaptive 

threshold. The threshold continuously adapts to 40% of the maximum value of the 

filtered ECG over the previous 2 seconds. After each positive QRS detection, the 

threshold is raised to 120% of the latest maximum value for 200 ms in order to prevent 

false detection due to a T -wave. The QRS detection algorithm with adaptive threshold 

comparison can be described using a pseudo-code as follows (Ruha, 1997). 

Variable definitions: 

ENV: envelope of filtered ECG signal 

THR: threshold constant (0.4) 

THRES : threshold coefficient 

DET: binary value detection signal 

ETR: envelope rise rate constant (1.2 /s) 

EHC: envelope hold time constant (2 s) 

T_LASTP: detection threshold keep time (200 ms) 


For ("each output sample x(i) from the filtered ECG signal") 

if (x(i) > THRES * ENV) 


then DET(i) = 1 else DET(i) = 0. 
if (x(i) > ENV) then ENV = ENV +ETR *x(i). 
if(x(i) < ENV) and ("EHC seconds has passed since the previous update") 

then ENV = 0.9*ENV. 

if (DET(i) = 1) and (DET(i-1) = 0) 


then THRES = 1.2. 

if ("more than T _ LASTP has passed since the previous detection") and 

(THRES > THR) then 
THRES = 0.9*THRES. 

The QRS detection algorithm developed according to the above constraints was 

able to detect practically all of the QRS complexes of the signals recorded from healthy 

controls and patients in our laboratory. The algorithm shows an error rate of ±2 ms when 

tested against the results obtained using visual verification through CODAS data 

playback system (DATAQ Instruments, Inc., Akron Ohio 44333, USA). This is roughly 

0.2% error for a heart rate of 60 beats/min. 
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2.3 FURTHER PROCESSING FOR HRV SIGNAL 

After obtaining the R-R interval signal, we convert it into an instantaneous heart 

rate (HR.) signal by inversion (e.g. R-R interval: 1000 ms leads to HR.: 1 beat/s). 

Following this, a 2 Hz re-sampling procedure is implemented on the HR. signal using 

linear interpolation technique. Finally we filter out the 0-0.025 Hz frequency component 

for reasons that are explained in Section 2.4.5 below. 

2.4 POWER SPECTRUM COMPUTATION 

2.4.1 Algorithms 

For a given signal, the power spectrum (PS), or often called power spectral 

density (PSD), describes the distribution of power with frequency (Kay, 1988). For a 

signal x(t), sampled at equal intervals of time, Lit, the PS is defined as the mean square 

value of the signal for each frequency component, over the frequency range for which the 

signal exists. The PS thus represents the average distribution of the power across the 

frequency range of interest. The computation of PS has been associated with Fourier 

transform (FT) of a signal and therefore power spectrum Pxif), is often expressed simply 

as the square of the absolute value of the FT of the signal. If X(j) represents the FT of 

x(t), 

Px(/) =X(f)X*(f) =I X(f) 12 (2.1) 

where x• (f) is the complex conjugate ofX(j) . The Fourier transform and inverse Fourier 

transform are described as follows: 

12X (f) = [ x(t)e- 1ifldt (2.2) 
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(2.3) 

In reality, PS given by Equation 2.1 is called a raw estimate of PS and is not generally 

accepted as a statistically reliable and robust estimate of the power spectrum of x(t). 

Computation of PS of real life signals involves obtaining a reliable, smooth, and stable 

estimate of the raw PS represented by Equation 2.1, across the frequency band of interest. 

A stable computation of the PS of a cardiac event time series, such as HRV 

signal, can be performed using a number of techniques. Among them, Blackman-Tukey 

(BT) method and autoregressive (AR) procedure are the two most commonly used. 

2.4.2 Blackman-Tukey Algorithm for Computing the PS of HRV Signal 

The Blackman-Tukey (BT) method is based on the Weiner-Khinchin relationship, 

which states that the power spectrum, Psr(f), ofa signal equals the Fourier transform (FT) 

of the autocorrelation function (ACF) of the signal. A discrete time version of this 

relationship can be stated as: 

n 

Pnr(f) =_Lrxx[k]exp(-J2tdk) -112 5 f 51/2 	 (2.4) 
k =l 

where rxx[k] = E[xn+kXn*] is the autocorrelation function (ACF) of lag k and n is the 

number of lags used. The following steps are used for computing the PS (Jenkins and 

Watts, 1968). 

1. 	 Compute the raw spectrum by squaring the FFT of the data. 

2. 	 Compute the inverse FFT to obtain the ACF. 

3. 	 Multiply the ACF by a lag window, such as the Bartlett window, and truncate the 

ACF to some specific value. 
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4. 	 Compute the FFT of the windowed ACF to obtain a smoothed PS using the discrete 

version of the FFT: 

M 

PBr(f) =11M l:w[k]r.xx[k]exp(- j27ifk) 	 (2.5) 
k=-M 

where the Bartlett window w[k] = 1-IM\11 and M is the length of the window. 

The advantage of the BT method is that a single realization of the random process 

is adequate to compute PS. If the ACF decays rapidly, a particularly long record is not 

needed. Finally, the computation of the ACF involves a smoothing operation, which 

reduces the variance ofPS (Bendat and Piersol, 1986). 

2.4.3 Autoregressive Modelling for Computing the PS of HRV Signal 

In the autoregressive (AR) approach, the signal x[n], at any instant n, is defined as 

a linear combination of past values plus a disturbance (Kay, 1988): 

p 

x(n)=-l:a(k)x(n-k)+u(n), n=p+l, ... ,N, N>>p (2.6) 
k=l 

where a[k], k = 1,2 ...pare the autoregressive parameters used to describe the process that 

generates the signal. We can gain more insight to the process that generates the signal by 

investigating from a digital filter viewpoint. For an all-pole filter with output {x(n)} 

defined as shown in Figure 2.7 (a) and the input {u(n)} is a white noise sequence, the 

denominator polynomial H(z) of the filter transfer function is defined as 

p 

H(z) =1+2:akZ-k . 	 (2.7) 
k=l 
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1 1 
u(n) ... H(z) t------•... x(n) 

(a) 

+ ..u(n) 
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~P(z) = - fakZ-k 
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(b) 

Figure 2.7 AR process seen from a filter viewpoint: (a) AR process can be seen as the output signal 
x(n) from an all-pole filter driven by white noise u(n). (b) Alternative interpretation emphasizing the 
prediction process (xJn) is predicted value ofx(n)). (From Reilly JP, 1998). 
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1
Thus the filter transfer function IS Taking z-transform of the input-output

H(z) 

relationships we have 

1
X(z) =--U(z) or X(z)H(z) =U(z). (2.8)

H(z) 

Converting the above relationship back into the time domain and realizing that 

multiplication in the z-domain is convolution in time, we get 

p 

x(n)+ La(k)x(n-k)=u(n) (2.9) 
k= l 

or 

p 

x(n) =-La(k)x(n-k)+u(n). (2.10) 
k=l 

Notice that the above equation is the same as Equation 2.6. Equations 2.6 and 2.10 show 

that there are two equivalent interpretations for an AR process: (1) The sequence is 

defined as a linear combination of past values plus a disturbance; (2) The sequence is the 

output of an all-pole filter, the input of which is excited by white noise. We can rearrange 

the block diagram of2.5 (a) according to 2.5 (b) to emphasize the interpretation of point 

(1) mentioned above. Note that the polynomial P(z) is given as 

p 

P(z) =-La(k)z-k . (2.11) 
k= l 

To verify that the overall transfer function ofFigure 2.7 (b) is the same as that of Figure 

2.7 (a), we realize that the transfer function ofFigure 2.7 (b) is given by 

X(z) = X(z)P(z) +U(z), 

(2.12) X(z) =T(z)= 1 = 1 

U(z) 1-P(z) 1+ :L:= atZ-t 


1 
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where T(z) is the transfer function of the system. 

The process is termed an autoregressive process in that the sequence x(n) is a 

linear regression on itself with u(n) representing the error. If we move the weighted 

summation term to left side ofEquation 2.6 and perform z-transform, we get 

p 

(1 + La[k]z-k)X(z) =U(z) . (2.13) 
k = l 

Rearranging the terms we obtain 

X (z) = --~-(.:.....:z)=----- (2.14) 
1+ l:a[k]z-k 

k = l 

and 

X (f) = X (ei2trf) = __U--=U:....._.2.....::nj.....:.)_ 
p 

(2.15) 
1+ L:a[k]e- i 2trfk 

k = l 

where we utilize the relationship between Fourier-transform and z-transform: z =e12trf . 

Since PAR(/) = IX(/) 12 and U02nf}, the power ofwhite noise u(n), is cr2 
, AR PSis (Kay 

and Marple, 1981; Kay, 1988): 

()2
PAR(/)= __p ____ (2.16) 

(1 + La[k]e -Jl,.. )2 
k=l 

In order to calculate the AR PS using Equation 2.16, we must first solve the coefficients 

a[k] in Equation 2.6. In the following, we first explain the idea of prediction error filter 

(PEP) then describe the derivation of one solution (Yule-Walker equations) to this 

problem from a matrix computation viewpoint (Reilly, 1998; Kay, 1988). The prediction 

error filter (PEP) accepts an autoregressive process x(n) as input and outputs the 
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corresponding prediction error u(n). This filter is obtained from the AR generating filter 

ofFigure 2.7 (a) by interchanging the input and output sequences and inverting the filter 

transfer function (Figure 2.8 (a)). An equivalent structure making use of the prediction 

polynomial P(z) is shown in Figure 2.8 (b), where it is clearly shown that the prediction 

error output u(n) is the difference between the predicted value Xe(n) (subscript e stands 

for estimate) and the true value x(n). 

After illustrating the idea of PEF, we now move on to the derivation of Yule­

Walker equations. Equation 2.6 can be expressed in matrix form as 

Xp = Xa+u (2.17) 

where 

Xp+ I Up+l 

-a2Xp + 2 Up+ 2
Xp= a=u= 

-apXN UN 

...Xp XI 

Xp+l •• • X2 
n=p+1, ... ,N, N>>p.X= 

XN-1··· XN- p 

To solve for the coefficients a, we use the idea of the PEF. For our purposes, we choose 

the coefficients a to minimize the prediction-error power. This makes the prediction Xe(n) 

as close as possible to x(n) in the 2-norm sense. The coefficients aLS (subscript LS stands 

for least square) found in such a manner minimize II Xp- Xa u; and are therefore given as 

the solution to the normal equations: 

XTXar.s = XTXp . (2.18) 

Taking expectations in Equation 2.18 we get 
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p 

H(z) = 1+ 'Latz-k x(n) ... t-------~~~ u(n)
k=l 

(a) 

+
x(n) _.. _.. (u)n... ... 

·~ 
-

p .. P(z) = - 'Latz-k ... 
k~l Xe(n) 

(b) 

Figure 2.8 Forward prediction-error filter (PEF): (a) Basic configuration of forward PEF. (b) 
Alternative interpretation emphasizing prediction process. (From Reilly JP, 1998). 
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(2.19) 


If {x(n)} is stationary and ergodic, the matrix E(XTX) becomes 

rxx(O) rxx(-1) rxx(-2) rxx(-(p -1)) 

rxx(1) rxx(O) rxx(-1) 

E(XTX) = rxx(2) rxx(I) rxx(O) =R (2.20) 

rxx(p -1) rxx(1) rxx(O) 

where rx:x(k) = E[xn+kx/] is the autocorrelation function (ACF) of lag k, and R is the 

covariance matrix of {x}. Likewise, from E(XTXp) in Equation 2.19, we get: 

rxx(I) 

E(XTXp) = rxx(2) (2.21) 

rxx(p) 

Equation 2.19 is therefore represented as 

(2.22) 

Equation 2.22 is the expectation of the normal equations used to determine the 

coefficients of a stationary AR process. The finite-sample version of Equation 2.22 is 

referred to as the Yule-Walker equations (2.23): 

rxx(O) rxx(-1) rxx(-(p-1)) -a1 rxx(I) 

rxx(I) rxx(O) rxx(-(p- 2)) -02 rx(2) 
(2.23)= 

-ap rxx(p)rxx(p -1) rxx(p- 2) · · · rxx(O) 

From the regression Equation 2.17, we have 

0'
2 = E(uTu) = E[(Xp- Xars? (Xp- Xars)] 

(2.24) 
= E(Xpr Xp- x/Xars- arsTXTXp +arsTXTXars). 

Substituting Equation 2.19 into the above where 
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E(XTXp) = rp =Rar.s, (2.25) 

and the fact that E(Xpr Xp) =ro to get 

2 T T T
CY = ro - rp ar.s - ar.s rp +ar.s rp 

(2.26) 
=ro - rpT ar.s. 

Combining Equation 2.22 and 2.26 together into one matrix equation as follows: 

2rxx(O) rxx(-1) rxx(-p) 1 CY 

GI 0rxx(l) rxx(O) rxx(-(p -1)) 
(2.27)= 

rxx(p) rxx(p -1) ... rxx(O) Gp 0 

where the first row is given by Equation 2.26 and the remaining rows are given by 

Equation 2.22 with a new first column coming from the right side of the equation. These 

equations are called forward prediction-error equations. By varying the forward 

prediction-error equations, we obtain backward prediction-error equations as 

0rxx(O) rxx(-1) rxx(-p) Gp 

rxx(1) rxx(O) rxx(-(p -1)) 
(2.28)= 

0G! 

(j2rxx(p) rxx(p -1) ... rxx(O) 1 

Equations 2.27 and 2.28 can be solved jointly using the Levinson-Durbin 

recursion (LDR), which requires only O(n2
) flops comparing to O(n3

) of Gaussian 

elimination method. The idea ofLevinson-Durbin recursion is to start with a simple 1 x 1 

system of equations. Then by induction we use that result to solve a 2 x 2 system, and 

recursively iterate until the solution to a p x p system is obtained. In summary, the 

Levinson-Durbin algorithm recursively computes the parameter sets {a1(1), CY; } , 
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{az(l),az(2) , a-;}, ... , {ap(l),ap(2), .. .,ap(p),a-~}. The final set at order pis the desired 

solution ofthe Yule-Walker equations. The recursive algorithm is initiated by 

G1(1) =- r.a:(1) (2.29)
r.a(O) 

(2.30) 

with the recursion fork= 2, 3, .. . , p given by 

k- 1 

r.a(k)+ "L.ak - l(l)rxx(k-1) 
Gk(k) =- 1=1 2 (2.31) 

a-k- 1 

Gk(i) =Gk - I(i) +Gk(k)a;_1(k- i), i =1,2,...,k -1 (2.32) 

(2.33) 

The form of the algorithm given in Equation 2.31-2.33 is due to Levinson (1947), who 

formulated an efficient means of solving a hermitian Toeplitz set of equations, and to 

Durbin (1960), who refined the algorithm to take advantage of the special form of the 

right-hand-side vector. 

One of the difficulties while computing PS using the AR method is that the model 

order, p, which describes the signal, is not predefined. For the HRV time series recorded 

during various physiological conditions, the statistical properties of the signal may differ. 

Hence, there is no single model order that uniformly describes HRV signals recorded 

from these diverse sources. Changing the model order across different physiological 

conditions and/or patients may introduce a new variable into the computation of PS. A 

number of criteria are defined in the literature to assist the selection of the model order 

(Kay and Marple, 1981~ Kay, 1988~ 1985). In this thesis we chose a model order between 

12-14. This number is supported by Akaike information criterion (AIC) using six sets of 

http:2.31-2.33
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HRV data from healthy subjects (three male and three female, average age: 24±1 years) 

during both supine and standing condition (Figure 2.9 & 2.10). The AIC is defined as 

(Akaike, 1974): 

AIC(k) =Nln fJk + 2k (2.34) 

where N is the data record length, pk is the estimate of the white nmse vanance 

(prediction error power) for the kth order AR model. 

2.4.4 Comparison between Autoregressive Modelling & Blackman-Tukey Method 

The AR PS usually has higher resolution than BT PS . It is due to an implicit 

extension of the measured ACF (Kay, 1988). Assume that an AR PS is desired and that 

the known ACF samples are { r.xx(O),r.xx(1), ... ,r.n{p)} . The AR coefficients are found by 

substituting the known ACF samples into the Yule-Walker equations and solving. Then 

the AR PS as defined on the z-plane is 

2 "" 

PAR,e(z) = eYe• • = l:rx.:,e(k)z-k (2.35) 
Ae(z)Ae (1/ Z ) k=--«> 

where the subscript "e" denotes the estimated quantities. It can be shown that the implied 

ACF r.n:, e(k)' which is given by the inverse z-transform of pAR, e' is 

r.n:(k) forO~ k ~ p 

r.n: e(k) = p (2.36)
' { - :ttae(/)rx.:,e(k -/) fork> p . 

Hence the estimate of the ACF matches the known ACF up to lag p and the remaining 

samples are extrapolated by a recursive difference equation. In contrast to AR method, 

BT procedure windows the known ACF sequence and then extrapolates the sequence by 

appending zeros, thus giving rise to the usual smearing of the spectral estimator. The AR 
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Figure 2.9 Examples of A.kaike information criterion (AlC) in model order selection in six different 
healthy subjects (supine position). The data record length N is 256 and the model order k varies from 0 to 
30. It is shown that the AJC(k) reaches a minimum around model order 12 for five of the six data sets 
(except (e)). 
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Figure 2.10 Examples of Akaike information aiterion (AIC) in model ordec selection in six different 
healthy subjects (standing position). The data record length N is 256 and the model ordec k varies from 0 to 
30.1t is shown that theAIC(l) reaches a minimum around model ordec 12 for three of the six data sets ((b), 
(d), (f)). Out of the other three data sets, two have a model ordec less than 10 and one has a model order 
more than 15. Hence the average model ordec is still around 12. 
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spectral estimator extrapolates the autocorrelation sequence according to Equation 2.36. 

As seen in Figure 2.11, the resultant spectral estimate is a less biased version of the true 

one. In summary, when the AR modelling assumption is valid, AR PS is less biased and 

has a lower variability than BT PS (Kay, 1988). 

2.4.5 Frequency Bands and their Physiological Relevance 

In Figure 2.12 the power spectrum of BT method of a 128 sec long HRV signal 

under supine condition is shown. It is stated in literature that there are three major 

frequency bands in the power spectrum in human subjects as well as in unconscious, 

anesthetized dogs (Sayers, 1973; Akselrod et al. , 1981; Kamath and Fallen, 1993). A low­

frequency (LF) peak that appears within the spectral band ranging from 0.06 to 0.15 Hz is 

associated with baroreceptor-mediated blood pressure control and believed to contain 

mainly a sympathetic component (Akselrod et al. , 1981). A high-frequency (HF) peak in 

the range 0.15 to 0.5 Hz is strongly correlated with parasympathetically mediated 

respiratory sinus arrhythmia. A very-low-frequency (VLF) peak below 0.05 Hz has been 

linked with vasomotor control and/or temperature control. In the current study, the very­

low-frequency band is removed before the calculation of PS because the frequency 

resolution in this band is poor and its huge peak usually obscures the study of the other 

two (LF & HF) bands. 

The LF power, calculated by a summation of the power under the PS curve 

between 0.06 Hz to 0.15 Hz, is an index of the sympathetic modulation of the heart. On 

the other hand, the HF power, calculated by the same method but between 0.15 to 0.5 Hz 

band, reflects the modulation of the parasympathetic (or vagal) modulation of the heart. 
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Figure 2.11 Implied autocorrelation extrapolatioo ofBT & AR power spectrum: (a) BT procedure. (b) 
AR method. (From Kay SM. Modem spectral estimation- theory & application. Prentice-Hall: Englewood 
Cliffi>, NJ, pp. 180-181, 1988). 
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Finally the LF:HF ratio, the ratio between LF power and HF power, is an index of the 

balance between sympathetic and parasympathetic modulation of the sinus node. 

2.5 COMPUTATION OF HRV PS FROM HEALTHY CONTROL SUBJECTS 

In this section we demonstrate a step-by-step signal processing procedure to 

compute the AR & BT power spectrum from the raw ECG signal. A sample ECG signal 

recorded from a healthy control under supine condition for 5 min is used for analysis. In 

Figure 2.13 (a)-(t) it is shown that there are six signal processing stages: original ECG 

signal (2.13 (a)), linear digital bandpass filtering (2.13 (b)), QRS-detection and 

determination ofR-R interval (2.13 (c)), calculation ofHR signal (2.13 (d)), interpolation 

ofHR signal (2.13 (e)), and highpass filtering (2.13 (f)). 

Comparing power spectra obtained by AR and BT methods (Figure 2.13 (g) & 

(h)), it is found that the two methods yield similar mean LF:HF ratio throughout the 5 

min data but AR power spectra are smoother and have well-defined peaks. Hence it is 

more helpful in identifying the central frequency (defined as the frequency corresponding 

to the peak in the PS). 
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Figure 2.13 Signal processing results obtained from a five min loog sample ECG signal tmder supine 
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Chapter 3 

Theory and Software Implementation of 

Time-Frequency Distribution 


3.1 BACKGROUND 

The usefulness of time-frequency distribution (TFD) in Medicine is based on the 

nonstationary nature of most physiological signals. Signals recorded from human subjects 

are a function of a number of biological variables. For example, physiological conditions 

such as exercise, and postural changes do not satisfy the criteria for stationarity, a basic 

assumption while computing power spectra using traditional methods such as Blackman-

Tukey (BT) algorithm or autoregressive (AR) procedure (Kamath and Fallen, 1993). New 

techniques from the class of time-frequency distributions include Wigner-Ville 

distribution (WVD), wavelet transform (WT), short-time Fourier transform (STFT) may 

prove to be more relevant while dealing with nonstationary signals. Among these 

methods, Wigner-Ville distribution provides the most accurate estimate with the highest 

frequency resolution (Novak et al., 1997). The smoothed Wigner-Ville distribution has 

51 
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been demonstrated to be a good estimation method for short nonstationary time series 

(Novak et al., 1997). Its resolution is enhanced by independent time and frequency 

smoothing using a moving N-event data window (Novak et al., 1993). This chapter 

describes Wigner-Ville distribution and its implementation for analyzing the HR.V signal. 

Time-frequency distributions map a one-dimensional signal into a two­

dimensional function of time and frequency. They are conceptually similar to a musical 

score with time running along one axis and frequency running along the other axis (Lin 

and Chen, 1996). The time-frequency plane gives an indication of which spectral 

components are present at any time instant. Hence this technique permits one to 

understand and describe situations elegantly where the frequency content of a signal is 

changing with time. 

The time-frequency distributions of a signal can be divided into two main classes: 

linear (please see Equation 3.3 for an example) and quadratic time-frequency 

distributions (please see Equation 3.9 below) (Hlawatsch and Boudreaux-Bartels, 1992; 

Cohen, 1989). Comparing Equation 3.3 and 3.9 we can see that a fundamental difference 

is the signal order utilized in the integrals. For the linear distribution, an integral of first 

order signal terms is used, while for quadratic method an integral of second order terms is 

computed. From a signal processing point of view, a linear time-frequency distribution 

means that if a signal is a linear combination of some frequency components, its time­

frequency distribution is the same linear combination of each individual TFD component. 

Linearity is a desirable property in any application involving multi-component signals. 

Unfortunately the most commonly used linear method STFT has a crucial drawback, i.e., 

there is tradeoff between time and frequency resolutions. A longer window length gives 
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better frequency resolution but poorer time resolution, while a shorter window length 

gives better time resolution but poorer frequency resolution. Unfortunately, both time and 

frequency resolutions cannot be improved simultaneously. 

On the contrary, the quadratic methods do not satisfy the property of linearity but 

are able to improve the time and frequency resolutions simultaneously. This group of 

methods includes the Wigner-Ville distribution, the exponential distribution (ED), and 

the reduced interference distribution (RID) (Chen and Lin, 1996). 

The following is an example of the non-linear property of WVD. Assume x(t) 

contains two sinusoids of frequency jj, h as: 

x(t) = At exp(j27iftt) + A2 exp(j27if 2t), f2 ~ ft (3.1) 

The WVD can be shown to be (Garudadri, 1987): 

where o(f - fi) is an impulse centered at f = f;. It can be seen that the WVD of a two-

component signal contains not only the addition of the WVD of two single-component 

signals but also an extra term whose frequency lies in the middle of the two original 

frequency components. The extra item is called cross-term. It makes the interpretation of 

WVD difficult. However, Equation 3.2 also reveals that the amplitude of the cross-term is 

oscillating along time, which suggests we might use time smoothing to remove the cross-

term. 
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3.2 ALGORITHMS 

3.2.1 Short-Time Fourier Tans form 

The STFT is a natural extension of the ordinary Fourier transform. It localizes the 

frequency components in time by sliding a window, h(t), along the signal x(t) and then 

taking the Fourier transform as shown below: 

X (t, f) = 
+«>Jx(r)h(t-r)e-i21Cfrdr (3.3) 
-Cl() 

By moving the window h(t), this process maps the signal into a two-dimensional function 

in a time-frequency plane. The main advantage of this method is its ease of 

implementation and application of fast Fourier transform algorithm for its computation 

(Lin and Chen, 1996). It is the most efficient method for computing a time-frequency 

mapping of a one dimensional signal varying with time. Furthermore, it is evident that the 

STFT is a linear time-frequency representation. However, the crucial drawback inherent 

in the STFT method is that there is tradeoff between time and frequency resolutions. For 

a particular signal, a particular window may be more appropriate (to yield better 

resolution) than another. If there is a signal that consists of two distinct signal 

components, each requires its own window for best results, clearly one window will not 

suffice. Therefore, one needs to test the type and the length of the window according to 

the practical situation. The spectrogram of a signal is defined as the squared magnitudes 

ofthe linear STFT (Lin and Chen, 1996): 

2SPEC(t,f) =I 
+«>

Jx(r)h(t- r)e-i21Cfrdr 1 (3.4) 
-Cl() 

The difference between the spectrogram and STFT is that STFT is linear signal 

decomposition and there are no cross-terms between signal components. However, the 
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spectrogram (Equation 3.4) is a bilinear signal energy distribution due to the magnitude 

squaring operation. Thus, the spectrogram also has cross-terms. 

3.2.2 Quadratic Time-Frequency Distribution 

In the definition of quadratic time-frequency transforms, the basic required 

condition will be determination of a two-dimensional function of time and frequency, 

which should represent an energy density per unit time and unit frequency. Thus, the 

energy associated with the time and frequency intervals !::.! and !:::.f, respectively, would 

be defmed by p(t,f)!:::.f!::.t. However, point by point defmition of time-frequency energy 

densities in the time-frequency plane is not possible, since the uncertainty principle 

prevents us from defining the concept of energy at a specific instant and frequency. This 

is the reason why some more general conditions are considered. Namely, one requires 

that the integral p(t, f) over f, for a particular instant of time should be equal to the 

instantaneous power of the signal; while the integral over time for particular frequency 

should be equal to the spectral energy density function. These conditions are known as 

marginal properties (Stancovic, 1994). In summary, it is desirable that time-frequency 

distribution of a signal z(t) satisfies the following basic properties (Cohen, 1992): 

+«> +«>

f fp(t,f)dfdt =E (3.5) 
-co -co 

+«> 

fp(t,f)df =I z(t) 12 (3.6) 
-«> 


+«> 


fp(t,f)dt =I Z(f) 12 (3.7) 
-«> 

where E and Z(f) denote the energy and the Fourier transform of z(t) respectively. 
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3.2.3 A General Class of Quadratic Time-Frequency Distributions 

Most popular time-frequency representations can be expressed in terms of the 

general quadratic time-frequency representation proposed by Cohen (1966, in a quantum 

mechanics context). This is defined as (Boashash, 1991): 

+<O+«>+«> . • 1 1 . 
p.(t,f) = J J J e12"v(u-t)g(v, z)z (u - 2r)z(u +2.r)e-12

1ffrdvdudr (3.8) 
-co-oo-oo 

where z(t) is the analytic signal and g(v, r)is termed kernel defining a particular 

distribution. Different kernels produce different distributions, such as the Wigner-Ville 

distribution, the spectrogram, the exponential distribution, and the reduced interference 

distribution. Desirable distribution properties and associated kernel requirements 

(sufficient conditions) are summarized in Table 3.1 (Lin and Chen, 1996). Once a kernel 

is chosen, the distribution is fixed. Table 3.2 illustrates how two commonly used 

distributions satisfy the desirable properties as defined in Table 3.2. Please note in Table 

3.2, 'PI, P2, ... , PIO' refer to properties listed in Table 3.1. 
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T bl 3 1 D . bl d. t .b f rt. a e . es1ra e 1s n u 1on prope 1es 
Properties 
P1 -real-valued 
P2 ­ time shift 
P3 - frequency shift 
P4 -time marginal 

Mathematical expressions 
Pz(t,f) = Pz*(t,f) 
Iff(t) = z(t-Q thenp_t(tJ)_ = P:~:(t-to, f) 

Iff{t) = z(t)expQ2nfot) then pt(t,f) = Pz(t,f-fo) 

[Pz(t,j)dj =I z(t) 12 

P5- frequency marginal 
(pz(t,j)dt =I Z(f) 12 

P6 - instantaneous frequency [[fp(t, j)dj]![[p(t,f)df] = fi(t) 

P7 ­ group delay 
[[tp(t,j)dt]/[[p(t,j)dt] =Tg(j) 

P8 -time support 
P9 ­ frequency support 
P 10 - nonnegativity 

If z(t) = 0 for ltl >T, then Pz(t,f) = 0 for ltl >T 
IfZ(f) = 0 for I~> 2n0, then Pz(t,f) = 0 for I~> 2n0 
pz(t,t) ;?: 0 

T bl 3 2 C ompanson b t 1 mear d.lStn.bUf lOllSa e . eween tw0 bT 
Name Kernel Pl P2 P3 P4 PS P6 P7 P8 P9 PlO 

WVD 1 X X X X X X X X X 

spectrogram oow(u -1/2-r)e-j21rtll 

roo.w(u + 1/2-r)du 

X X X X 

3.2.4 Wigner-Ville Distribution 

The concept of WVD was introduced by Wigner in the field of physics and 

incorporated into signal analysis by Ville (1948). A general definition of the continuous 

WVD of any complex function z(t) is given by: 

Wz(t , j) = 
+«> 

Jz(t + -r /2)z* (t- -r /2)e -i2trftd-r (3 .9) 
-00 

where t is the time domain variable and f is the frequency variable. The * denotes the 

complex conjugate. This estimator is sometimes referred to as the Wigner distribution 

(WD) if z(t) is a real function. The WVD yields high resolution in both time and 
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frequency and has several nice properties, including preservation of time and frequency 

support, instantaneous frequency, group delay, etc. (see Table 3.2). WVD also gives a 

remarkably good result for the linear chirp signal: 

x(t) =nT(t) cos 2;r(fot +at 2 I 2) (3.10) 

where TI T(t) is a rectangular function of unit amplitude and duration T. Figure 3.1 (a) 

illustrates one linear chirp signal with the parameters: T = 500(s), .fo= O(Hz), a = 0.001 

(signal sampling rate is 2Hz). The 2-D contour plot of the WVD is illustrated in Figure 

3.1 (b). The range ofthe frequency is from 0-0.5 Hz, which models the frequency range 

of the heart rate variability signal. 

The main drawback ofthe WVD is that it produces cross-terms (or interference) if 

the signal contains more than one frequency component due to its quadratic nature (see 

Equation 3.2). Besides, the WVD is generally not fully positive for the total range oftime 

and frequency, which obscures its physical interpretation (Cohen, 1992). We can 

minimize these problems as follows: a) we can use an analytic signal instead of real 

signal to suppress cross-terms between positive and negative frequencies and b) we can 

perform time and frequency smoothing to suppress regions where spectra are negative 

and also reduce cross-terms. 

3.2.5 Necessity and Calculation of Analytic Signal 

In most practical cases, the signals to be analyzed consist only of real values. In 

these cases it is necessary to form the corresponding analytic signal. To see the 

importance of using the analytic signal, consider the Wigner distribution (WD) defined 

by: 
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Figure 3.1 A sample oflinear chirp signal: (a) Signal in time domain. (b) 2-D contour plot of 
Wigner-Ville distribution. 
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Wx(t, f) = 
-t<OJx(t + r/2)x•(t- r/2)e-i 2trfr dr (3 .11) 
-<t) 

where x(t) is the real signal to be analyzed. This distribution differs from the Wigner-

Ville distribution (Equation 3.9) by its use of the real signal, x(t), instead of the analytic 

signal, z(t). The relationship between the Wigner distribution and Wigner-Ville 

distribution is (Boashash B., 1991): 

1
Wx(t,f) = -[Wz(t,f) + Wz(t,- f)]+ r(t,f) (3 .12) 

4 

where r(t,f)represents the cross-terms between positive and negative frequencies and is 

oscillatory in nature. For example, if x(t) is the chirp signal of Equation 3.1 0, then 

(Boashash, 1991): 

f 2
1 2 1r(t,f) =-ITr(t)IIB·(f)cos2;r(--2fot-at --) (3.13)Fa a 8 

where IIr(t) is a rectangular function of unit amplitude and duration T and B' = B(J­

2lti/1J and a = BIT. From the above example, we can clearly see that the WVD will 

produce cross-terms between positive and negative frequencies if we do not use the 

analytic signal. 

The analytic signal z(n) corresponding to x(n) is defined in the discrete time 

domain as: 

z(n) = x(n) + jH[x(n)] (3.14) 

where H[x(n)] represents the Hilbert transform of x(n). Alternatively, the analytic signal 

can be defined in the frequency domain as: 
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2X(f), 0<f<112 

Z(/) = X(f), f=O (3.15)
{

0, -112 <f <0. 

There are two main methods to obtain an analytic signal from a real world and in 

our case, a physiological signal. A direct method is to use its frequency definition: a 

signal with no negative frequency components. That is, form the Fourier transform of the 

signal, set the negative frequency values to zero, and perform the inverse Fourier 

transform. Another method is to use a Hilbert transform filter to produce the required 

complex component of the signal, which when added to the real part produces the desired 

analytic signal as given by Equation 3 .14. Hilbert transform filter has the ideal impulse 

response given in Equation 3.16. 

2sin z(m/2) for n ~0 
h(n) = 7lTl (3.16)

{
0, foro =0 

3.2.6 Time and Frequency Smoothing 

As mentioned previously, in order to suppress negative regions and cross-terms it 

is necessary to apply smoothing in the time and frequency domain. Theoretically the 

smoothing process is a 2-D convolution of the WVD with a function G(t,j) given by 

(Garudadri, 1987): 

1 --­
W(t,f) = 2 ffwc-r,~)G(t--r,f -~)dm~ (3 .17) 

7r_ao--CX> 

It is shown that using G(t,j) as definied below (DeBruijin, 1967) can help the situation: 

(3 .18) 
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With TQ ~ 1, the Equation 3 .17 yields a positive WVD. Here, T and n define the amount 

of smear in the time and frequency domains respectively. Such a smoothed WVD has no 

cross-terms and no negative regions. The price paid is a smear in the time and frequency 

domain and a loss in the phase information. However, partially smoothed WVD has 

proved to be a very useful tool (Garudadri, 1987). 

Large computational savings can be achieved by computing the smoothed WVD 

directly, rather than computing the WVD and then performing a 2-D convolution. In 

analog form, the smoothed WVD is given directly by (Garudadri, 1987): 

+«> +«> 
2Wz(t,f) = Jl h(r /2) 1 Jz(t +r/2- r')z.(t- r /2- r')g(r')dr'e-i2

trfr dr (3 .19) 
-00 - 00 

where t is the time variable and f is the frequency variable, g(r') and h(r I 2) are the time 

and frequency smoothing window respectively. For discrete signals, the smoothed WVD 

is given by (Novak, 1993): 

1 N - 1 M • . 
2Wz(n,m) =-NL:I h(k) 1 [ Lg(p)z(n+ p+k)z (n+ p -k)]e-12"*"' 1N (3 .20) 

2 k=O p=-M 

where n is the time index, m is the frequency index, g(p) and h(k) are time and frequency 

smoothing windows respectively. M is the parameter defining the time smoothing 

window width and N is the time window over which a spectral estimation is calculated. 

3.2.7 Choice of the Smoothing Windows 

In order to use Equation 3.20 to produce the smoothed Wigner-Ville distribution 

of a given signal, we must decide the window shape and corresponding parameters. For 

our specific application, a rectangular time window g(p) with length 2M+ 1 (M =9) 

(Novak, 1993) and a Gaussian frequency window h(k) with length N (N = 127) have been 
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chosen. Note first that the length of the time window g(p), 2M+ 1, is much shorter than N 

in this case. Also the time window g(p) is centered at the actual time index, n, (see 

Equation 3.20, p =-M, .. . , +M). Therefore this smoothing method is able to provide a 

good time resolution. The Gaussian frequency window h(k) is given by: 

(k - Nt2i 

h(k) =e 2(Nno)1 Os k s N-1 (3 .21) 

With these parameters, it has been possible to generate reliable estimates of time-

frequency distributions that follow the signal structure particularly well under 

nonstationary conditions. Moreover, they allow a better evaluation of the frequency 

content oftransitory periods that cannot be obtained otherwise (Novak et al. , 1993). 

3.3 SOFTWARE PACKAGE FOR COMPUTING THE TFD 

3.3.1 Overview of Software Package 

We have developed a C++ software package called Wigner95, to compute and 

display Wigner-Ville distribution of the heart rate variability signal. Wigner95 is written 

in Visual C++ language and developed in Microsoft Visual Studio97. Its main purpose is 

to compute the Wigner-Ville distribution in an efficient, user-friendly and intuitive 

fashion in a Windows95 environment. Modern object-oriented programming (OOP) 

principles have been incorporated. Furthermore careful documentation will enable one to 

extend or upgrade the package in the future. The package has been tested for simulated 

and real world physiological data, namely the HRV. 
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3.3.2 Software Design 

Initially, a software package for computing Wigner-Ville distribution was 

developed using MATLAB. Experience gained from this exercise led me to define the 

specifications for Wigner95. Two important software engineering concepts have been 

utilized right from the beginning of the software development, i.e. modularization and 

object-oriented programming. First, in order to achieve modularization, the software 

design task is divided into four modules, i.e. Main Application Module, User Input 

Module, Data Analysis Module and Graphical Output Module. Their relationship is 

illustrated in Figure 3.2. Notice the user-computer interaction takes place in the two-way 

control between Main Application Module and User Input Module. The Graphical Output 

Module can be influenced by either Main Application Module (when program first starts) 

or User Input Module (when user intentionally click a button). 

Functions of individual modules are as follows. Main Application Module is used 

to initialize, organize and direct all the windows and standard function calling. User Input 

Module is intended to get input from the user, such as to get the name of the target data 

file. Data Analysis Module performs an extensive mathematical calculation on the input 

R-R interval signal and transform it into the joint time-/frequency- domain mapping. This 

module is the inner core of the software and contains a lot of user-defined functions. 

Lastly User Output Module is used to display warning/help boxes and the figures to 

inform user the state of the program and demonstrate the results of the internal processing 

respectively. It also produces hardcopies of all the figures. Due to the need of a 

comprehensive demonstration, it includes many user-defined drawing functions. 
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User Input 
Module 

Main 
Application 
Module 

Data Analysis 
Module 

Figure 3.2 Relationship between four modules 
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Second, in order to utilize the concept of object-oriented programming, one needs 

to understand the concept of class. A class is an entity that groups data and functions 

together to perform a task. A module may contain as many classes as it needs. The 

relationships between different modules and the classes of Wigner95 are shown in Table 

3.3. 

able . l c asses T 3 3 R 1 e a tons f h"tp between modu es an d l 
Modules Related classes 
Main Application CWigner95App, CMainFrame, CChildFrame 
User Input ClrrnameDlg, CPatientDlg 
Data Analysis CWigner95Doc 
Graphical Output CPlotRR WVD, CPlotLfHfVw, CWarnDlg, CAboutDlg 

3.3.3 Design of Main Application Module 

The Main Application Module includes an application class (CWigner95App ), a 

main frame class (CMainFrame) and a child frame class (CChildFrame). Functions of the 

application class include starting up the software package, carrying out the initialization 

of the windows and displaying the main frame window. In order to perform a user-

defined function, we add functionality to the existing Microsoft Foundation Class (MFC) 

library. The two related functions in the application class are listed in Table 3.4. 

Table 3 4 F . uncf10nartay add d . e 10 tw0 funcftons o f r fappitca ton c ass 
Function name Functionality added 
InitlnstanceQ Definition of two Multiple Document Template pointers, whose 

functions are to group the document class, view class and window 
OnFileNewO Direct the command flow to the Data Analysis Module when user first 

starts the program 

The main frame class (CMainFrame) and child frame class (CChildFrame) control all 

frame features of the windows such as the menu bar, toolbar and icons. The most 

important purpose of these classes is to create new windows or to activate existing ones. 
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These operations are invoked by window messages, and the proper classes must be 

arranged to receive and act on these messages. The description of these actions is listed in 

Table 3.5 . 

.fr .3 5 D amewmdTable . escnpt10n o f operations m ow c ass 
Function acting on 
window message 

Class being served Operation 

On ViewLfhflfhfQ CPlotLfHfVw Create or activate window of the figure 
ofLF power, HF power, LF:HF ratio, 
R-R interval versus time 

On ViewRrwvdQ CPlotRR WVD - Create or activate window of the 
contour figure ofWigner-Ville 
distribution 

3.3.4 Design of User Input Module 

In general, User Input Module must provide an intuitive interface between the 

user and the software. In Wigner95, two task-oriented dialog boxes are created in order 

to achieve that goal and they are related to two dialog classes, i.e. CPatientDlg and 

CirrnameDlg. These are accomplished by the aid ofMicrosoft visual resource editor. 

3.3.5 Design of Data Analysis Module 

The purpose of the Wigner95 software package is to produce Wigner-Ville 

Distribution (WVD) from the original R-R interval data series. Due to the intensive 

computation involved with this technique, a lot of effort has been directed towards an 

optimum design ofData Analysis Module. 

The general data operation performed from R-R interval retrieval to WVD 

calculation is illustrated in the flowchart in Figure 3.3 . The detailed WVD calculation is 

illustrated in Figure 3.4. 
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Retrieve R-R 
interval (RR) 
from data file 

.. Get instantaneous 
heart rate (HR.) by 
in versing RR 

.. Perform linear 
interpolation on 
HR. 

•.. .. .. 

.. 
Perform 6 times (opposite 
direction) 2nd order high­ .. 

Calculate Wigner-
Ville distribution 
from the filteredp pass filter on the p 

interpolated HR. HR. 

Figure3.3 Block diagram ofdata operation from R-R retrieval to WVD calculation 
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Calculate analytic signal . . 
Z(n) = S(n) +j Hilbert[S(n)] 

Apply rectangular 
window of length 
L toZ(n) 

Apply rectangular time-smoothing 
window of length 2M+1 on lh kernel 

M 

L:Z(n + k)z• (n- k) 
k=O 
(Other halfknown by symmetry) 

Plot results 

Apply Gaussian frequency­
smoothing window oflength N to 
time-smoothed kernel 

Pad one zero and call FFf 
to compute spectrum 

Figure 3.4 Flowchart of the algorithm implementing the WVD. (Mainly from Boashash, Time­
frequency signal analysis, in Haykin S., Ed, Advances in Spectrum Analysis and Array Processing, vol. 1, 
Prentice Hall, pp. 459, 1991). 
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CWigner95Doc class holds the data and the functions that operate on the data. 

The description of the data and the functions are listed in Table 3.6 and 3.7. Since the 

computation demands several big arrays, care is taken to reuse the arrays as many times 

as possible. Because the original code was developed in MATLAB, the array index is 

chosen to start from one instead of zero (except W). 

T bl 3 6 D escnp11on o fd t . tgner95Da e . a am c ass cw· oc 
Data Description 
CWigner95Doc: :irr in sec Holds the lx12000 R-R interval series in second 
CWigner95Doc: :hr Holds the lx12000 heart rate series in Hz 

Reused to hold the filtered interpolated heart rate series 
CWigner95Doc: :intp hr Holds the lx12000 inte!]>_olated heart rate series in Hz 
CWigner95Doc:: W Holds the 128x12000 Wigner-Ville Distribution array 

T bl 3 7 D f tgner95Descnp11on o ffunc tons m c ass cw·a e . f oc 
Function Description 
Intp mrgQ Interpolate the heart rate series 
Filter20 High-pass filter the interpolated heart rate series 
Hilbert20 Perform Hilbert transform on filtered heart rate series 
Wigner20 Calculate Wigner-Ville distribution 
Fft comp2Q Perform FFT transform on complex data series 
Iffi20 Perform inverse FFT transform on complex data series 
Fft h2 20 Perform FFT transform on real data series 

A maJor challenge while estimating the Wigner-Ville Distribution was the 

computation of Hilbert transform. Based on our experience with programming using 

MATLAB, frequency domain method was chosen. A Visual C++ FFT transform and 

inverse FFT transform on complex data series was developed using algorithms available 

in literature (Kay, 1988). Relationships among these operations are illustrated in Figure 

3.5. The arrow direction means 'builds on' . 
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Wignec-Ville 

Distribution 


Inverse FIT 
transform on 

complex series 

on analytic signals 

complex series 

FFf transform on 
real series 

Figure3.5 Relationships among signal processing operation modules 
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3.3.6 Design of Graphical Output Module 

The critical part of a signal processing software is to show user a meaningful and 

intuitive graphical output. Efforts have been made to display an accurate, clear and 

comprehensive picture of what has been computed using Wigner95. Two classes 

involved and the related functions are listed in Table 3.8. In order to draw the contour 

figure we must extract the contour lines from a two-dimensional array. A public domain 

contour-plot function called conrecO was downloaded from the world wide web 

(http ://www. mhri . edu. au/~pdb/, search "conrec") and linked with the in-house C++ code. 

This led to display similar to that obtained from MATLAB. 

Table 3 8 . Graplh'tea1 d' tsp.Iay c asses an dfunctlons 
Class Function Description 
CPlotRR WVD - WriteHeadO Write the patient information as the header 

DrawRRvsTimeO Draw R-R interval versus time 
ContourWVDO Draw contour ofWigner-Ville Distribution 

CPlotLfHfVw WriteHeadO Write the patient information as the header 
DrawRRvsTimeO Draw R-R interval vs. time in second 
DrawPower vs TimeO Draw LF, HF power and LF:HF vs time 

3.3.7 Demonstration of Graphical User Interface 

The following figures are the major dialog boxes and output plots of Wigner95 

(Figure 3.6-3 .11). 

3.3.8 Software Testing 

The testing of Wigner95 was performed in two stages. First stage focused on 

testing the validity of Wigner-Ville distribution algorithms using the simulated signals 

generated by MATLAB. Second stage focused on testing the Visual C++ software 

package against an algorithm written in MATLAB. 

http://www.mhri.edu.au/~pdb
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Figure 3.6 Dialog box for user to enter the name of the target data file 

Figure 3.7 Dialog box for user to enter the new patient information 
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Figure 3.8 Wigner95 user interlace for the information sheet ofR-R interval and Wigner-Ville 
contour plot. 
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Clinical Neurocardiology Laboratory 

McMaster University 

Name: heathy controll Hosp.ID: 123 IDX: 321 

Condition:supine Meds: n/a 

Age: 25 Sex: Male Date: 99/1/10 Time: lOam 
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Figure3.9 Wigner95 printout for the information sheet ofR-R interval and Wigner-Ville contour 
plot. 
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Figure 3.10 Wigner95 user interlace for the information sheet ofR-R interval and Low-Frequency 
(LF) power & High-Frequency (HF) power & LF:HF ratio. 
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Figure 3.11 Wigna-95 printout for the information sheet ofR-R interval and Low-Frequency (LF) 
power & Hi_gh-Frequency (HF) power & LF:HF ratio. 
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In Section 3.2.4, we briefly demonstrated the result of the WVD of a linear chirp 

with the parameters: T = 500(s),.fo= O(Hz), a= 0.001 (signal sample rate is 2Hz) (Figure 

3.1). The result of the WVD can be tested in light of the parameters chosen in the 

implementation of the WVD, such as time smoothing window and frequency smoothing 

window. One can make the following observations: 

a) The chirp signal is not detected in the WVD time-frequency (T-F) plane until around 

32nd second. This is because in order to produce one power spectrum at time n, 32 

seconds of data before and after the instance of time n, are needed. Hence the earliest 

detection will happen at 32nd second. 

b) 	 The chirp signal disappears in the WVD T -F plane at around 468th second although 

the signal continues until 5001
h second. Again, a 32 seconds of data after the current 

time instance n, is required. The latest detectable instant oftime is 500-32 = 468 (s). 

c) 	 Finally, the most prominent contour line (or the highest peaks in 3-D display) of the 

WVD in the T -F plane faithfully reflects the instantaneous frequency of the chirp 

signal. For example, at t = 100 (s), using the Equation 3.10 we know the 

instantaneous frequency should be: 0+(0.001)(100) = 0.1(Hz), which appears in 

Figure 3.1 (b). 

We generated another simulated signal x(t) to test the Wigner95 (see Figure 3.12 
(a)): 

0.5 sin(2n-0.1t) + sin(2n-0.2t), 0::; t::; 500(s) 
X (t) = 	 (3.22){sin(2n-0.1t) + 0.5 sin(2n-0.2t), 500::; t::; 1000(s) 

The signal contains two frequency components, i.e. 0.1 Hz and 0.2 Hz. The dynamics is 

reflected in the amplitude of these two components. During the first 500 seconds, 

http:sin(2n-0.2t
http:sin(2n-0.1t
http:sin(2n-0.2t
http:sin(2n-0.1t
http:500(s),.fo
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Figure 3.12 1000-second long simulated testing signal with two frequency components (0.1 Hz & 0.2 
Hz), the amplitudes of these two components change abruptly at 500111 second. (a) A 100-second long 
sample display centered at SOOth second. (b) 2-D contour plot of Wigner-Ville distribution. (c) 3-D plot of 
Wigner-Ville distribution. 
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(c) 

Figure 3.12 (contd) 
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component at 0.2 Hz has amplitude that is twice as high as at 0.1 Hz. And during the next 

500 seconds, the situation is opposite to the first 500 seconds. This signal design 

simulates the dynamic changes that take place in the heart rate signal during a passive tilt 

from 0° to 90°. The 2-D and 3-D results of the WVD for Equation 3.22 are illustrated in 

Figure 3.12 (b)-(c) . One can see that Wigner95 is able to accurately locate the two 

frequency components 0.1 Hz and 0.2 Hz and capture the amplitude change. In addition, 

the WVD demonstrates a good time resolution at the time instant of abrupt change of the 

frequency content. 

The two-dimensional Wigner-Ville distribution array computed through 

Wigner95 was compared with results obtained through MATLAB software. These 

results agree with each other, up to 5 decimal places. 

3.4 Wigner-Ville Distribution of the Heart Rate Variability Signal 

A ten-minute segment ofthe R-R interval signal (Figure 3.13 (a)) recorded during 

a 'supine-tilt operation-90° tilt' experiment was used for evaluation ofthe Wigner95. The 

recording was started 5 minutes before the tilt operation. At the 5th minute, the tilt 

operation from 0° to 90° was carried out in about 15 seconds. The recording was stopped 

at about the tenth minute. The signal was then analyzed using Wigner95 software to 

demonstrate the application of the WVD in real life setting (Figure 3.13 (b)-( d)). In 

addition, the signal was processed using conventional power spectral analysis methods 

i.e., AR and BT algorithms (Figure 3.13 (e)-(f)). 

We can make following observations from these results: 
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Figure 3.13 A sample often-minute long R-R interval signal and results from three different signal 
processing techniques: (a) R-R interval signal. (b) 3-D plot ofWigner-Ville distribution . .(c) 2-D contour 
plot ofWigner-Ville distribution. (d) LF, HF, LF:HF ratio along with R-R interval signal. (e) Four AR 
power spectra. (f) Four BT power spectra. 
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a) 	 All three methods are able to demonstrate, through changes in the LF power, HF 

power and LF:HF ratio, the difference between supine position and 90° tilt (Table 

3.9-3.11). For example, from the statistics generated by the AR method, the LF:HF 

ratio increased from 0.66 (first 128 sec data) to 1.32 (last 128 sec data) for a change 

from supine to 90° tilt. For the BT method, the LF:HF ratio increased from 0.91 (first 

128 sec data) to 6.01 (last 128 sec data) for a similar change in the position of the 

body. And the WVD algorithm showed an increase from 0.59 (first 128 sec data) to 

3.39 (last 128 sec data). 

b) 	 Conventional power spectral computation and the WVD technique show a large 

difference in their ability to capture the dynamics that occurred at the 5th minute 

(Figure 3.13 (a)). Both AR & BT methods only provide four power spectra (one for 

every 128-second data segment) while WVD is able to produce 1072 power spectra 

(2x600-128 = 1 072) through the 10 minute data. Hence subtle details of the changes 

in power spectra are revealed. 

In order to fully make use of the information in the 3-D plot of WVD, we 

generated a display of the LF power, HF power and LF:HF ratio versus the same 10­

minute time index along with R-R interval (Figure 3.13 (d)). By examining this figure, 

we can identify a significant increase in LF power at the 300th second even though the R­

R interval decreased only at the 360th second. Using WVD technique to investigate the 

nonstationary signals originating in the autonomic nervous system is a topic we want to 

explore in greater depth in the future. 

http:3.9-3.11
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T bl 3 9 S . . fAR f 10 . HRV .a e . tatlstlcs o power spectra o - nun signa 
LF power HF power LF:HF ratio 

0-128 second 4042.81 6168.13 0.66 
128-256 second 5643.45 6286.57 0.9 
256-384 second 7008.37 6347.9 1.1 
384-512 second 5091.67 3844.17 1.32 

T bl 3 10 S . . fBT f 10 . HRV .a e . tatiStlCS 0 power spectra o - nun signa 
LF power HFpower LF:HF ratio 

0-128 second 120.12 132.5 0.91 
128-256 second 138.77 111.98 1.24 
256-384 second 154.3 98.37 1.57 
384-512 second 217.61 36.23 6.01 

T bl 311 S . . f f 10 . HR.V .a e . tatistics o averaged WVD 0 - nun SI~ na1.m every 128 sec 
LF power HF power LF:HF ratio 

0-128 second 2.62 4.7 0.59 
128-256 second 4.02 3.47 1.37 
256-3 84 second 13.85 7.99 2.32 
384-512 second 9.33 3.21 3.39 



Chapter 4 

Ontologie Assessment of the Autonomic Nervous System 

in Preterm and Full term Infants through 


Power Spectral Analysis 


4.1 INTRODUCTION 

The delivery and subsequent management of very low birth weight (VLBW) 

premature infants in the neonatal intensive care unit (NICU) provides a unique 

opportunity to study the ontogeny of the ANS. To date, development and maturation of 

the ANS in infants of 24 to 28 weeks gestational age (GA) has not been adequately 

studied. Previous studies in premature infants and in animal models imply a sympathetic 

predominance in the developing fetus until birth, at which point parasympathetic outflow 

becomes evident (Clairambault et al., 1992; Pomeranz et al., 1985; Malliani et al., 1991). 

Recently, in a cross-sectional study of 35 neonates, Chatow et al. (1995) found that 

sympathetic modulation ofHR was the predominant component of the HRV signal with 

increasing gestational and post-natal age. 

The objective of the present study was to employ the non-invasive methodologies 
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developed in this research on PS/HRV to study longitudinally the post-natal development 

and maturation of the ANS in VLBW premature infants of 24-28 weeks gestational age. 

The study reported in this chapter was conducted in collaboration with Dr. Kevin 

Jacobson from the Department of Pediatrics at McMaster University Medical Center. I 

developed and tested the algorithms of power spectral analysis of premature infant ECG 

signal. In addition, I helped him to analyze the data and interpret the results. 

4.2METHODS 

4.2.1 Patient Population 

Fourteen consecutive premature infants of GA 24-28 weeks admitted to the NICU 

and 41 full term healthy infants of GA 38-41 weeks were recruited at McMaster 

University Medical Center between June 1997 and December 1997. Ethics approval was 

obtained from the McMaster University Medical Center Hospital Ethics Advisory 

committee prior to commencement of the study. Written informed consent was obtained 

from parents prior to the inclusion of any infant into the study. 

Medications and health status of all subjects including the mothers were 

documented. All recruited preterm infants had a birth weight of <1200 g (mean 

873±223g). On each infant, continuous ECG and respiratory data were recorded between 

10 AM and 4 PM for 20 minutes during quiet or active sleep (determined qualitatively by 

observation of head and limb movements). Lead II ECG was recorded from monitors (PC 

Express 90308, Space Labs Medical, Redmond, W A, USA), and sampled at 500 Hz. 

Recordings were obtained weekly during the first four weeks of life (initial recording at 

2.6±0.9 days), biweekly for the next four weeks, and then monthly until discharge. Three 

recordings were obtained from infants who were less than 26 weeks GA, but were 
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omitted from further analysis due to poor quality of the data and insufficient sample size 

of the population. An average of 6 recordings was obtained for each infant between birth 

and discharge. Age was expressed as conceptional age (CA = gestational age (GA) + 

post- natal age (PA)). In addition blood pressure data were recorded, twice daily from the 

arterial line in those infants who had an arterial line and then via cuff occlusion at 4 AM 

and4PM. 

We also recorded heart rate and respiratory data for comparison from 41 full term 

infants delivered either vaginally or by cesarean section, and admitted to the nursery at 

the McMaster University Medical Center for observation. These full term infants (n=41, 

Table 4.1), gestational age 38-41 weeks (39.9±1.3 weeks) had no abnormalities or 

complications on delivery. Following informed parental consent, a single recording for 

each infant was obtained 8-36 hours after birth. Three ECG electrodes were attached to 

the chest, and real-time, 20-minute recordings of HR and respiratory data were sampled 

at 500Hz by a NARCO Scientific monitor (model HRRM71-1) and stored on a personal 

computer. 

4.3 DATA ANALYSIS 

4.3.1 Signal Acquisition and Power Spectral Analysis of Heart Rate Variability 

The neonatal ECG and respiration signals were digitized using a 12 bit analog-to­

digital converter (AT/CODAS, DATAQ Instruments, Inc., Akron, Ohio 44333, USA) at 

500 Hz and processed on a Personal Computer. A QRS detection algorithm was 

implemented in the software to locate a stable and noise independent fiducial point on the 

R-wave (Ruha et al., 1997). An RR-interval series was then generated from the 

continuous ECG data. Occasional ectopic beats were corrected using ectopic correction 
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26.4 ±0.8 872.9 ±223.2 
8:6 

Full m:f= n/a 39.9±1.3 3556.9± 533.4 
Term 24:17 

(n=41) 

Table 4.1 Subject demographics. 
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algorithms (Kamath and Fallen, 1995). A beat-to-beat heart rate variability signal was 

computed and then re-sampled at 6 Hz using linear interpolation to obtain an equally 

sampled time series. A record length of 768 points from the re-sampled signal (128 

seconds) was selected for power spectral analysis. Since the mean value of the signal 

contributes only to the direct current (DC) value of the PS/HRV, the mean value of the 

signal was removed and the equally sampled HRV signals were fed through a fourth 

order high-pass Butterworth filter with a cut-off of 0.015 Hz (Oppenheim and Schafer, 

1975). A Blackman-Tukey power spectral algorithm was then applied to the zero mean, 

filtered heart rate variability data (Kay and Marple, 1981). The power spectrum was 

divided into two bands: low frequency (LF, 0.02-0.2 Hz) and high frequency (HF, 0.2-1.0 

Hz). The area subtended by each spectral band was then computed by numerically 

integrating the power contained therein. This was expressed in absolute units 

(beats/mini!Hz. The LF:HF ratio was then computed as the ratio of these areas and used 

as a measure ofsympathovagal balance (Akselrod et al., 1981; Kamath and Fallen, 1993; 

Kamath and Fallen, 1995; Pagani et al., 1986; Hirsch and Bishop, 1981). 

4.3.2 Respiratory Signal Analysis 

A frequency analysis of the respiratory signal was performed using Blackman­

Tukey algorithm (Kay and Marple, 1981), for each recording session. 

4.3.3 Sleep State Assessment 

In full term and preterm subjects, quantitative analysis of sleep state was 

performed, using modified Prechtl guidelines (Prechtl, 1974). Patients were observed and 
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categorized according to the following criteria; eyes open or closed; duration and 

magnitude of startles, head, arm and leg movements; presence or absence of 

vocalizations. Using this information, sleep states were assigned as: a) quiet sleep (QS); 

b) active sleep (AS). 

4.3.4 Statistical Analysis 

The HR.V indices derived from power spectral analysis of HR.V were analyzed by 

a two-way analysis of variance (ANOV A) on each individual preterm infant, and then 

collectively according to CA. Regression analysis was performed to compare respiratory 

frequencies to HRV parameters, as classified by sleep state, gender and mode of delivery. 

A multivariate analysis of variance (MANOV A) was also performed, using CA as the 

grouping factor, and LF:HF area and blood pressure (AM and PM considered separately) 

as the dependent variables. Results with a p value <0.05 were considered statistically 

significant. Results are expressed as group mean values ± SEM, unless otherwise stated. 

Statistical analysis was carried out using SPSS/PC+ statistical package software for 

Windows (Version 6.1, SPSS Inc., Chicago, IL, USA). 

4.4RESULTS 

From the 15 preterm infants with 84 recording sessiOns, 14 infants with 72 

recording sessions were analyzed for this study. Recordings from one infant were 

excluded from analysis due to poor quality ECG signals. The population was grouped 

according to CA: group A (n=13, 26-28 weeks), group B (n=13, 28-30 weeks), group C 

(n=9, 30-32 weeks), group D (n=8, 32-34 weeks), groupE (n=6, 34-36 weeks), group F 
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(n=5, 36-38 weeks). As the population size decreased significantly over time, subgroup 

analysis was performed on 5 preterm infants in whom recordings were obtained for the 

full duration of the study from 26 to 38 weeks CA (Figure 4.2). The analysis of the 

smaller group revealed similar changes in PS/HRV parameters as compared to the entire 

group of preterm infants (n=14). The full term infant data (n=41), (Table 4.1) was 

analyzed as a single group (group G), and was used as a comparative control to groups A 

to F. However, Group G was not used in the statistical analysis of preterm infants. 

Figure 4.1 shows a sample power spectrum of HRV from a preterm infant 

recorded during six periods of the study. No significant change was observed in the 

mean resting heart rate (HR) of the study group for the duration of the study. As shown in 

Figure 4.2, analysis of the heart rate spectra in all preterm infants revealed that the LF:HF 

area increased initially from 26 to 30 weeks CA, peaked at 30-32 weeks and decreased 

during subsequent recordings. Two-way analysis of variance using conceptional age 

groups A to F, revealed an increase in the LF:HF area to a maximal level at 30-32 weeks 

CA (p=0.053). 

In preterm infants with increasing CA, no noticeable differences were observed in 

the HR during AS or during QS. The LF:HF area increased progressively with CA in 

preterm infants during AS, however, there were no appreciable changes over time in the 

LF:HF ratio during QS (Figure 4.3). This finding suggests an increase in responsiveness 

of the ANS with increasing CA, which is likely due to sympathetic nervous system 

activation. In full term infants, the LF:HF area was found to be higher during AS than 

during QS. In these infants, the respiratory frequency had a negative correlation of 0.46 

with LF:HF area (Figure 4.4), whereas in preterm infants, no significant correlation 
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Figure 4.1 Multiple HRVIPS data of a premature infant (Pl). HRV/PS as seen- by Power 
((beats/mini) versus Frequency (Hz). A vertical line at 0.2 Hz shows the separatioo of low frequency (LF) 
and high frequency (HF) powers. Each panel represents the power spectra of 20 minutes of HRV data, and 
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GA. (b) 28-30 weeks GA. (c) 30-32 weeks GA, (d) 32-34 weeks GA, (e) 34-36 weeks GA, (t) 36-38 weeks 
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(0.13) was observed (Figure 4.5). 

A plot of systolic (SBP) and diastolic blood pressure (DBP) with CA showed a 

bimodal distribution resembling that observed with LF:HF ratio, which was confirmed by 

MANOVA, (Figure 4.6) with CA as the grouping factor, and LF:HF area and blood 

pressure (AM and PM considered separately) as the dependent variables (p<0.05). 

4.5 PHYSIOLOGICAL RELEVANCE 

This longitudinal study in the preterm infant population was designed to evaluate 

non-invasively the ontogeny of the ANS using power spectral analysis of heart rate 

variability. Our results suggest a sympathetic predominance in early post-natal life with a 

peak in sympathetic outflow at 30-32 weeks followed by an increase in vagal outflow and 

an increase in ANS responsiveness with increasing post-natal age. 

A limitation of the study is the high drop out rate of infants due to early transfer 

of healthier babies to outlying health care centers. Therefore, a subgroup analysis was 

performed on the 5 preterm infants in whom recordings were obtained for the full 

duration ofthe study from 26 to 38 weeks CA (10.0 ± 1.1 weeks). Analysis ofthe HRV 

parameters from this group (n=5) was in agreement with the HRV indices of the larger 

group (n=14) (Figure 4.7). 

Assali et al (1978) have previously demonstrated sympathetic predominance in 

resting HR. in lambs prior to term delivery, which was followed by a post-natal increase 

in parasympathetic modulation. In a cross-sectional study of preterm infants, 

Clairambault et al. (1992) have observed a gradual increase in LF power from 31 weeks 

to 41 weeks CA, and a rapid increase in HF power at 36-38 weeks CA. Our observation 
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Figure 4.7 Infant LF:HF versus conceptional age. Group A (24-28 weeks, n=5); group B (28-30 
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of increased LF:HF area for CA of 26-34 weeks can thus be interpreted as evidence of 

increasing sympathetic modulation of the sinus node. Furthermore, the subsequent 

decrease in LF:HF area with increasing CA in our study represents an increasing vagal 

modulation and maturation of the parasympathetic nervous system. These observations 

are in agreement with Clairambault et al. (1992). In addition, a diminished LF:HF ratio in 

full term infants lends support to the belief that the development reached at term reflects 

a later stage in ANS maturation in-utero. The LF:HF area ratio in the preterm population 

at 36-38 weeks CA was not significantly different from that observed in full term infants 

(7.10±1.27 at 36-38 weeks vs 5.49±0.51 at 38-41 weeks GA, NS), suggesting that the ex­

utero maturation of the ANS in preterm infants reaches a similar end point. 

Using sleep state as an independent variable (active or quiet sleep), the 

responsiveness of the ANS can be observed through the changing LF:HF area. Our 

findings among preterm infants, although not statistically significant, suggest that during 

active sleep, LF power increases progressively with increasing CA. This lends support to 

the hypothesis that a decline in LF:HF area seen after 30-32 weeks CA is not due to a 

decline in sympathetic modulation, but rather due to an increase in the vagal outflow. 

Van Ravenswaaij-Arts et al. (Clairambault et al., 1992; Van Ravenswaaij-Arts et al., 

1991; Eiselt et al., 1993; Van Ravenswaaij-Arts et al., 1994), also noted an increase in LF 

in infants during AS. Other investigators have confirmed these observations 

(Clairambault et al., 1992; Eiselt et al., 1993; Harper et al., 1987). 

Due to frequent mechanical ventilation in the very low birth weight population, 

the influences of respiration was difficult to ascertain. A majority of infants studied 

required ventilator assistance at birth and for up to two months post delivery. There was 

http:5.49�0.51
http:7.10�1.27
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poor correlation between respiratory frequency and LF:HF ratio in both preterm and full 

term infants (Figure 4.4 & 4.5). 

Similarities in progression of LF:HF ratio and blood pressure with CA suggest 

maturational mechanisms of both ANS and hemodynamic systems are working 

concomitantly. The commonly observed spike in blood pressure in very low birth weight 

infants a few weeks after birth has previously been an unexplained phenomenon 

(Georgief et al., 1996; Greenough and Emerey, 1993; Alpert, 1995). Previous studies 

have attempted to correlate clinical interventions with the rise in blood pressure (Georgief 

et al., 1996; Greenough and Emerey, 1993). Studies using intravenous morphine 

infusions have failed to demonstrate any significant effect on mean arterial blood 

pressure (Sabatino, et al., 1997), whereas, in a small, uncontrolled trial of ventilated 

preterm infants requiring post-natal steroids, blood pressure has been seen to increase 

(Cabanas et al., 1997). In a prospective study of infants in 14 regional NICU's, blood 

pressure was found to correlate significantly with post-conceptional age. However, 

treatment variables were found to have had some small influence (Zubrow et al., 1995). 

While the influence of medications such as corticosteroids and inotropic agents cannot be 

ruled out, it is more likely that these observations are due to maturation of the ANS and 

represent central ontological mechanisms modifying sympathetic and parasympathetic 

outflow of the ANS. 



Chapter 5 


Heart Rate Variability in Small Animal Models 


5.1 INTRODUCTION 

In many studies involving human subjects, it is not possible to test the effects of 

stress and a number of pharmacological agents. In such studies, rat models have been 

useful. Development of algorithms suitable for studying PS/HRV of small animal models 

was a challenge that has interested our group. In this chapter we describe development 

and application of algorithms for evaluating heart rate variability (HR.V) and its power 

spectra (PS) during experimental investigations on a rat model. 

The autonomic nervous system contributes to the control of respiratory function. 

The vagus nerve can modulate airway narrowing and is a determinant of bronchomotor 

tone (Barnes, 1995). Acetylcholine released from postganglionic cholinergic nerves 

induces airway smooth muscle contraction and mucus secretion, effects that are blocked 

by muscarinic antagonists such as ipratropium bromide or atropine (Osmond, 1995). 

104 
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In the PS of HRV of the rat, two distinct frequency bands can be identified, 

associated with sympathetic and vagal activity. The first, low frequency (LF) band is 

observed within the spectral band ranging from 0.015 to 1.0 Hz, and largely reflects 

sympathetic activity. The second, high frequency (HF) band (1.0 - 3.0 Hz), is very 

strongly correlated with vagal activity (Kuwahara et al., 1994; Sgoifo et al., 1994; Rubini 

et al., 1993; Cerutti et al., 1991; Japundzic, 1990). Thus LF:HF power ratio can be used 

as an index of relative sympathovagal balance in the rat. 

These parameters can be obtained from freely moving animals through telemetric 

ECG recordings using implanted recording devices, thereby providing a non-invasive 

signature of vagal and sympathetic outflow that is not confounded either by anaesthesia 

or restraint. 

In the present study, we examined changes in vagal and sympathetic outflow in 

freely moving, previously sensitized rats, following atropine, methacholine and antigen 

challenges. At the same time, airflow obstruction was assessed by whole body 

plethysmography. 

These studies were conducted in collaboration with Dr. Veljko Djuric from the 

Department of Psychiatry and Behavioural Neurosciences at McMaster University. I 

developed/tested the algorithms of power spectral analysis of rat ECG signal and helped 

him to analyze the data and interpret the results. 

The objective of this chapter is a) to develop algorithms suitable for processing 

ECG signals in a rat model and to compute the power spectrum of HRV signal during 

normal condition and b) to evaluate algorithms designed to compute PS/HRV during 

pharmacological interventions known to alter sympathovagal balance. 
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5.2METHODS 


Prior approval for this study was obtained from McMaster University Animal 

Care Committee and all procedures were conducted in accordance with the Guidelines of 

the Canadian Council of Animal Care. 

5.2.1 Animal Surgery 

All experiments were performed on freely moving male Sprague Dawley rats 

(Charles River Breeding Laboratories, Saint Constant, QC, Canada). The rats (10-14 

weeks old at the beginning of each experiment) were housed in standard micro-isolator 

cages equipped with filter hoods, and specific-pathogen free environment under 

controlled temperature (20° C). They were maintained on a 12:12 hour light-dark cycle 

starting at 8 AM, with free access to standard rat chow and tap water. 

Rats were first anaesthetized with ketamine hydrochloride (90 mg/k:g) and 

xylazine (20 mg/k:g) mixture given intramuscularly, and then implanted with a Data 

Sciences International (DSI) biopotential activity transmitter TAIOETA-F20 (10). The 

transmitter was placed in the back of the animals, and the two implanted ECG electrodes 

were respectively positioned on the right anterior chest wall, near the shoulder, and the 

left upper abdominal musculature, so that the heart was located between the two 

electrodes. The rats were given acetaminophen for analgesia in the next two days. 

5.2.2 Sensitization to Antigen 

After recovery from surgery (2-3 weeks) the rats were sensitized to ovalbumin 

(OA). The rats were first immunized with a subcutaneous injection of 10 Jlg of OA 

(grade V, Sigma Chemical Co., StLouis, MO) mixed with 4.4 mg aluminum hydroxide 
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gel and an rp injection of Bordetella pertussis vaccme (Connaught Laboratories, 

Willowdale, Ontario, Canada; 1 ml containing 1010 organisms). Fourteen days later, the 

animals were boosted with a subcutaneous injection of 10 J..lg of OA in aluminum 

hydroxide gel (Djuric, 1995). 

5.2.3 Experimental procedure 

ECG signal was recorded before, during and after atropine, methacholine, and 

antigen challenges. Three weeks following sensitization to OA rats were injected with 

five consecutive intraperitoneal injections of 0, 0.5, 2.5, 5.0 and 7.5 mglkg of atropine 

methyl bromide (Sigma Chemical Co., St Louis, MO) each given at 30 min intervals. 

Atropine methyl bromide has no CNS penetration, being a quaternary amide. Seventy­

two hours later the rats inhaled aerosols of saline and four-fold increasing concentrations 

of methacholine (Sigma Chemical Co., St Louis, MO) ranging from 4 mg/ml to 256 

mg/ml, each for 5 min. ProNeb compressor nebulizer with an airflow of 5 litres/min 

(Pari-Werk GmbH, Stamberg, Germany) was used to generate aerosols. The order of 

atropine and methacholine challenge was balanced across the rats. Seventy-two hours 

after the last atropine or methacholine challenge (28 days after initial sensitization) the 

rats were subjected to antigen challenge (inhalation of 5% OA for 5 min). 

5.2.4 Measurement of bronchoconstriction 

In each animal, airflow was assessed using non-invasive bias flow ventilated 

whole body plethysmographic technique and non-invasive pulmonary analyser (Buxco 

Electronics Inc., Sharon, CT, USA) as was described previously (Djuric, 1998). 
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Experience to date has shown that the enhanced pause (Penh) is a reliable and sensitive 

index of bronchoconstriction, superior to other derived parameters such as box pressure 

or box flow, in assessing the degree of bronchoconstriction (Djuric, 1998, Hamelman, 

1997). This index ofbronchoconstriction was calculated on-line for every breath from the 

air flow derived parameters. 

Baseline data were recorded for 5 min at the end of 10-15 min habituation period 

in the plethysmograph. The animal was then moved to an identical chamber for a 5 min 

challenge with either nebulized antigen, saline or methacholine. Following challenge, the 

animal was returned to the plethysmograph and data were recorded for 10 minutes. Penh 

values averaged across ten consecutive 1 min periods after challenge were considered to 

be an index of bronchoconstriction. 

5.2.5 Processing of ECG signal and power spectral analysis of heart rate variability 

A telemetry system (Data Sciences International, St. Paul, Minnesota) was 

employed for gathering ECG data from freely moving rats. The ECG signal was digitized 

using a 12 bit analog conversion (DATAQ Instruments, Akron, Ohio) and recorded on a 

Pentium-90 MHz computer (Dell Dimension XPS90, Dell Computer Corporation, Austin, 

Texas) using a 1kHz sampling frequency. 

Data were processed as follows. A QRS detection algorithm was implemented in 

the software to locate stable and noise independent fiducial point on the R wave (Ruha, 

1997). An R-R interval series was then generated from the continuous ECG data. A 

beat-to-beat heart rate variability signal was computed, and then resampled at 6 Hz using 

linear interpolation to obtain an equally sampled time series. A record length of 768 
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points from the resampled signal (128 seconds) was selected for power spectral analysis. 

The mean value of the signal was removed and the equally sampled HR.V signals were 

fed through a fourth order high pass Butterworth filter with a cut-off of 0.015 Hz. 

Blackman-Tukey power spectral method was then applied to demeaned filtered heart rate 

variability data. The information contained within the power spectrum was analyzed in 

the following manner. From published literature we found much of the LF power was in 

the range of0.015- 1Hz and HF power was in the range 1.0-3.0 Hz (Kuwahara, 1994, 

Cerutti, 1991). The maximum peak amplitudes of the LF and HF bands were identified. 

The frequencies at which these peaks occurred (central frequencies) were obtained and 

the area subtended by each spectral band was then computed by numerically integrating 

the power contained therein. This was expressed in absolute units (beats/min)2 /Hz. In 

addition, the normalized areas within both LF and HF bands were derived by dividing the 

integrated power within each band by the total power contained in the entire spectrum. 

The LF:HF ratio was computed as the ratio of these normalized areas. 

5.2.6 Bronchoalveolar lavage 

Bronchoalveolar lavage (BAL) was done 24 hours after antigen challenge. Rats 

were anaesthetized with Halothane (Halocarbone Laboratories, River Edge, NJ) and then 

euthanised by exanguination through the inferior vena cava. The lungs were lavaged 

with 10 ml of sterile PBS in consecutive fractions of 5, 2 and 3 mi. The BAL was 

centrifuged for 10 min at 1100 rpm. 
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5.2.7 Cell Counting 

Total cell counts were done using Trypan Blue stain (Gibco Lab, NY) and were 

counted in Neubauer chamber (VWR/Canlab, Toronto, Ontario, Canada) under a light 

microscope. Differential cell counts were determined from cytospin preparations stained 

by DiffQuick stain (Baxter Scientific, McGaw Park, ll) under a light microscope using 

basic morphology. Percentage and absolute number of each cell type were calculated 

from the average of 400 consecutively counted cell under X400 magnification. Allergen­

induced airway inflammation was assessed by counting inflammatory cells (neutrophils 

and eosinophils) relative to mononuclear cells (macrophages, monocytes and 

lymphocytes). 

5.2.8 Data Analysis 

All respiratory and heart rate variability data after either methacholine or atropine 

challenge were analyzed by repeated measures analysis ofvariance (in order to determine 

a cumulative dose response). Responses to antigen challenge were analyzed by repeated 

measures analysis of variance (LF:HF power, before and after antigen challenge), one­

way analysis of variance (comparing indices of airway inflammation between the group 

challenged with antigen and the group challenged with saline) and by a split-plot analysis 

of variance (comparing the group challenged with antigen and the group challenged with 

saline with respect to bronchoconstriction and respiratory rate). The level of statistical 

significance was set at p < 0.05. All data were expressed as mean ± standard error of 

mean (SEM). 
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5.3 RESULTS 

5.3.1 Power Spectral Analysis of Heart Rate Variability 

Different patterns of heart rate variability were observed across four experimental 

conditions in this study. The atropine challenge reduced, while methacholine and antigen 

challenges enhanced beat-to-beat heart rate variability that was observed at baseline 

(Figure 5.1). Corresponding PS of HRV revealed that atropine challenge enhanced LF 

(predominately sympathetic) spectral component, while methacholine and antigen 

challenges enhanced HF (parasympathetic) component (Figure 5 .2). 

5.3.2 Effect of Cumulative Atropine & Methacholine Challenges on 

Sympathovagal Balance 

Increasing concentrations of cholinergic antagonist, atropine, induced rise in 

sympathetic dominance and dose-dependent increase of LF:HF power ratio (p = 0.005, 

Figure 5 .3). Increasing concentrations of inhaled cholinergic agonist methacholine, led to 

dose-dependent decrease of LF:HF power ratio (p = 0.001) indicating methacholine­

induced rise in parasymapthetic dominance relative to baseline (Figure 5.4). 

5.3.3 Effect of Antigen Challenge on Sympathovagal Balance 

Seventy-two hours after the last atropine/methacholine challenge rats were 

subjected to antigen challenge (inhalation of 5% OA for 5 min). Exposing sensitized rats 

to nebulized antigen led to profound changes in their autonomic balance (p = 0.03) 

indicating antigen-induced rise in vagal activity (Figure 5.5). 
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Figure 5.1 Example of R-R interval variability series obtained wtder four experimental conditions: 
A) at baseline; B) following i.p. injection of 7.5 mglkg atropine; C) following 5 min inhalation of 256 
mg/ml methacholine; and D) following inhalation of nebulized antigen. The presence of high frequency 
oscillations (spikes) is an indication of increased vagal activity. Note the absence of high frequency 
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challenges. 
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5.3.4 Effect of Cumulative Atropine and Methacholine Challenges on Breathing 

Consecutive injections of atropine had no effects on respiration. There was no 

statistically significant effect of atropine on either bronchoconstriction (p = 0.541) or 

respiration rate (p = 0.525, Figure 5.6). Exposing rats to nebulized methacholine led to 

dose-dependent increase in bronchoconstriction (p < 0. 001) and a dose-dependent 

decrease ofrespiration rate (p< 0.001, Figure 5.7). 

5.3.5 Effect of Antigen Challenge on Breathing 

Differences between sensitized SD rats that were challenged with antigen as 

compared to saline were clearly established. Five-minute exposure to aerosolized antigen 

resulted in laborious breathing. There was a statistically significant difference between 

the two groups across the 10 min post-challenge period with respect to 

bronchoconstriction (p = 0.006) and frequency ofrespiration (p < 0.001, Figure 5.8). 

5.3.6 Effect of Antigen Challenge on Airway Inflammation 

The difference in the early phase reaction was accompanied by a difference in 

cell counts taken 24 hours after the challenge. Total number ofwhite blood cells obtained 

from BAL fluids was greater in rats challenged with OA (p = 0.016) indicating more 

pronounced inflammation . In addition, BAL fluids from animals challenged with 

antigen had relatively more inflammatory cells: neutrophils (p < 0.001) and eosinophils 

(p<0.001) and consequently, relatively fewer mononuclear cells (p < 0.001, Table 5.1). 

Table 5.1 shows the effect of 5 min exposure to nebulized ovalbumin on the immune cell 

profile of male SD rats that were challenged either with antigen or saline. Each value 



118 

1.00 

..= 
~ = 0.50 

TT 	 T________• 

~--------!--------!,--------r 1 

O.OO.____-::-------:~------:~---;J._------.J 

0 0.5 2.5 5.0 7.5 

dose of atropine (mg/kg) 

200 

ol'"( = 
8 150 

........... 

rl.l 

.:=.... 
~ 
Q) 
~ 

,.Q 100 

T 

J. •·-----T

J. 

•T 
TT• "" 

J. 
J. 

• 

50~------~------~------~------;.J._--------..J
0 	 0.5 2.5 5.0 7.5 

dose of atropine (mg/kg) 
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represents mean ± SEM for a given cell type identified in the BAL fluid 24 hours after 

the challenge. 

Table 5.1 Allergen-induced airway inflammation. 

{PRIVATE} Total number 
of{PRIV ATE } 
white blood cells x 106 

% Mononuclear 
cells 

% Neutrophils % Eosinophils 

Saline (n = 9) 1.03 ± 0.11 98.62 ±0.39 1.08± 0.30 0.30± 0.17 

{PRIVATE 
}OA(n = 9) 

2.30± 0.46 57.21± 5.43 26.26 ± 4.78 16.53± 3.53 

5.4 PHYSIOLOGICAL RELEVANCE 

In vivo animal model is an indispensable tool for the study of pathophysiology 

of asthma. They offer the possibility to examine the mechanisms of asthma at a depth not 

possible with human studies, and to investigate risk factors and potential treatment 

interventions at a preclinical stage. Procedures involving anesthesia, surgical 

interventions and/or removal of tissues and cells from the animal for in vitro 

measurements provide only imperfect correlates of the in vivo pathophysiological 

response, and in particular of the integrative control mechanisms involved. However, in 

recent years, in vitro rather than in vivo observations often direct asthma related research 

(Persson, 1997). 

In this study, we present an in vivo model suitable for the study of the 

relationship between the autonomic nervous system, the immune system and airway 

hyperresponsiveness in spontaneously breathing, unrestrained animals. The model 

provides simultaneous measurements of the respiratory function (whole body 

plethysmography), and of the autonomic nervous system (ECG telemetry) in conscious 

rats. 
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This experimental approach is uniquely suitable for longitudinal studies 

involving large numbers of animals. The only invasive procedure involved in our model 

is the minor surgical intervention (performed a number of weeks prior to the 

experiments) to implant the transmitters. Thus, the actual data collection is completely 

non-invasive and can be performed repeatedly during the lifetime of the experimental 

animal. The two components of our experimental model can operate either 

simultaneously or independently providing an opportunity to monitor respiratory and/or 

autonomic function during different phases of an experiment. Other current animal 

models of increased airway responsiveness preclude such long-term in vivo assessments. 

The present study describes respiratory and autonomic changes following 

methacholine, atropine, and antigen challenges in freely moving rats under controlled 

experimental conditions. Methacholine- and antigen-induced bronchoconstriction was 

paralleled by a decrease in frequency of respiration and an increase in parasympathetic 

(vagal) activity. The methacholine- and antigen-induced changes in respiration are 

consistent with the previous observations (Djuric, 1998). Changes in heart rate during 

intravenous allergen challenge have been reported in mice (Martin, 1993). To the best of 

our knowledge, this is the first evidence of vagally mediated cardiac reflex response 

following challenge with either nebulized methacholine or nebulized antigen. This 

response was present in all animals suggesting that changes in respiratory parameters 

reflect a general shift in autonomic regulation. 

There was no cumulative dose response to atropine, neither with respect to 

bronchoconstriction nor with respect to respiratory rate. This finding is in accordance 

with earlier studies reporting that atropine had no effects on respiration in dogs (Hsu, 
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1985) and monkeys (Birnbaum, 1988). On the other hand, as indicated by increases in 

LF:HF power ratio, there was a marked dose-dependant vagolytic effect of atropine 

indicating that sympathovagal balance can be manipulated in spite of any apparent 

changes in respiration. 

The BAL fluids from rats challenged with antigen contained significantly more 

white blood cells, particularly inflammatory cells (eosinophils and neutrophils). This 

profile is similar to the cellular distribution in BAL fluid recovered from asthmatics 

after exposure to allergen. Data from this study are in line with our previous findings 

that severity of bronchoconstriction is highly predictive of subsequent airway 

inflammation. 

The methodology outlined above can be used to further address relationship 

between autonomic function and experimental asthma. Recently, Djuric et al. (1998) 

reported that genetically transmitted autonomic dysfunction (cholinergic 

hyperresponsiveness) of Flinders Sensitive Line (FSL) rats was highly predictive of 

their increased susceptibility to allergen-induced bronchoconstriction and 

inflammation of the airways. Other data (Djuric, 1997) indicate that it is the 

heightened basal sympathetic tone that predisposes the FSL rats to their cholinergic­

and antigen hyperresponsiveness. Chronic inflammatory diseases such as rheumatoid 

arthritis, insulin-dependent diabetes mellitus and multiple sclerosis have been 

associated with an increase in baseline sympathetic tone (Wietse, 1996). This 

alteration of autonomic function may be an index of disease and may also in part 

determine its expression. More experiments are needed in order to establish whether 

there is a similar change in symapatho-vagal balance associated with chronic 
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inflammation of the airways, and whether high resting sympathetic tone invariably 

predisposes to heightened responsiveness to vagal stimulation (Spaziani et al. , 1996). 

Many medications that are currently prescribed for asthma (P2 agonists, 

anticholinergics, theophylline) are sympathomimetic, but we know very little about their 

short- and long-term effects on autonomic nervous system function. Studying how the 

autonomic nervous system responds to repeated allergen challenges and concurrent 

treatment with anti-asthma medications may elucidate the potential neural mechanisms 

underlying airway hyperresponsiveness and other phenomena attributable to bronchial 

asthma. 

Our data demonstrate that changes in the autonomic nervous system occur in 

parallel with respiratory changes following methacholine or antigen challenge. This 

provides additional evidence supporting the role of the autonomic nervous system in 

asthma. Quantitative information derived from the power spectral analysis of heart rate 

variability reflects changes in sympathetic and parasympathetic regulatory activities that 

occur during experimental asthma. Methacholine- or antigen-induced bronchoconstriction 

results in a general change in autonomic balance and development of parasympathetic 

dominance. Neural factors are involved in response to antigen challenge and thus may be 

relevant for the expression of asthma. Studies involving unanaesthesized, non-intubated 

animals may lead to important insights into neuro-immune regulation in experimental 

asthma. Studying autonomic activation can be important for better understanding of 

various phenomena attributable to bronchial asthma. 



Chapter 6 

Applications of Time-Frequency Analysis in 

Physiological Studies 


6.1 INTRODUCTION 

In this chapter, we present applications of Time-Frequency Analysis 

(TF A) of HR.V signal recorded during non-stationary states in human volunteers. 

Specifically we discuss the results of two studies conducted on healthy human subjects 

during tilt and during sleep. 

6.2 TIME-FREQUENCY ANALYSIS OF HRV DURING HEAD-UP TILT 

The objective of this study is to evaluate the TF A algorithm during head-up tilt 

(passive tilt). Once a human subject assumes the upright posture, there is increased 

vulnerability to the effects of gravity on the circulation (Wieling and Lieshout, 1997). 

The crucial problem posed by the upright posture is the vertical displacement of blood 

below the heart resulting in a decline in venous return. Because the heart cannot pump 

out what it does not receive, ventricular stroke volume declines with each beat and 
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arterial pressure tends to fall. A senes of cardiovascular-regulatory mechanisms or 

reflexes are activated to offset the imbalances in the circulation. The dynamics of the 

underlying cardiovascular control mechanisms should be taken into account when 

investigating orthostatic circulatory control (Wieling and Lieshout, 1997). An 

investigation of passive tilt may help us to understand the cause of certain cardiovascular 

pathophysiology such as vasovagal syncope. 

6.2.1 Methods 

6.2.1.1 Subjects 

Seven subjects (four male and three female; average age 24 ± 1 years) 

participated in this study. The studies were conducted in the Radiology Unit at McMaster 

University Medical Center. Ethics approval was obtained from the McMaster University 

Medical Center Hospital Ethics Advisory Committee prior to commencement of the 

study. Written informed consent was obtained from each subject prior to the data 

recording. 

6.2.1.2 Measurements 

The subjects were instructed to lie on an electrical tilt table (angle adjustable from 

0° to head-up 90°). The electrocardiogram (ECG) signal, the respiration signal and the 

blood pressure signal were amplified through an ECG monitor (Hewlett-Packard), a 

respiration monitor (Narco Scientific) and a blood pressure monitor (Finapres) 

respectively. The outputs of all the monitors were connected to the CODAS data 

acquisition system and interfaced with a personal computer (Gateway 2000/486). 
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6.2.1.3 Experimental Design 

The experimental recording took 75 minutes. The tilt table was set to the varying 

angles according to the following protocal, where angle 1 and angle 2 were randomly 

assigned to either 30° or 60°. This experimental design ensures that subjects go through 

all three different angles. Figure below outlines the experimental protocal. 

15 (min) 10 10 10 10 10 10 (min) 

I I
angle 1 0° 

I
angle 2 0° 

I 

6.2.2 Wigner-Ville Distribution of HRV during Tilt 

Three of the seven data sets were discarded since the respiratory frequency was 

too low (~0 . 15 Hz), which leads to a combined peak in the PS/HRV consisting ofLF & 

HF peaks. In each ofthe remaining HRV data from four subjects there were three major 

transition periods: (1) Supine to 90° tilt; (2) Supine to 60° tilt; (3) Supine to 30° tilt. A 

five-minute segment ofHRV recorded in the supine state and three five-minute (different 

angles) segments during tilt were subjected to analysis. There were four five-minute 

segments for each subject. For each data set, the Wigner-Ville distribution, as well as AR 

and BT power spectra, were calculated. The results ofWVD are shown in Figure 6.1-6.4 

and the results of AR and BT methods are illustrated in Figure 6.5-6.6. It can be seen that 

the LF:HF ratio in the time-frequency plane increases as the tilt angle increases. 
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Figure 6.1 Example of Wigner-Ville distribution obtained during supine condition: (a) R-R interval 
vs. time. (b) Wigner-Ville distribution 3-D plot (powervs. time & frequency) . (c) Wigner-Ville distribution 
2-D contour plot. (d) Power (LF & HF) and LF:HF ratio vs. time plotted along with R-R interval vs. time 
for comparison. 
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Figure 6.1 (contd.) 
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Figure 6.2 Example of Wigner-Ville distribution obtained during 30° tilt: (a) R-R interval vs. time. 
(b) Wigner-Ville distribution 3-D plot (power vs. time & frequency). (c) Wigner-Ville distribution 2-D 
contour plot. (d) Power (LF & HF) and LF:HF ratio vs. time plotted along with R-R interval vs. time for 
comparison. 
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Figure 6.3 Example of Wigner-Ville distribution obtained during 60° tilt: (a) R-R interval vs. time. 
(b) Wigner-Ville distribution 3-D plot (power vs. time & frequency). (c) Wigner-Ville distribution 2-D 
contour plot. (d) Power (LF & HF) and LF:HF ratio vs. time plotted along with R-R interval vs. time for 
comparison. 
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Figure 6.3 (contd.) 
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Figure 6.4 Example of Wigner-Ville distribution obtained during 90° tilt: (a) R-R interval vs. time. 
(b) Wigner-Ville distribution 3-D plot (power vs. time & frequency). (c) Wigner-Ville distribution 2-D 
contour plot. (d) Power (LF & HF) and LF:HF ratio vs. time plotted along with R-R interval vs. time for 
comparison. 
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Figure 6.5 Autoregressive power spectrum ofHR.V signal during supine and tilt: (a) Supine. (b) 30 
degree tilt (c) 60 degree tilt (d) 90 degree tilt 
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Figure 6.5 (contd.) 
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Figure 6.6 Blackman-Tukey power spectrum of HR.V signal during supine and tilt: (a) Supine. (b) 
30 degree tilt (c) 60 degree tilt (d) 90 degree tilt 
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Figure 6.6 (contd.) 
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6.2.3 Comparison ofWVD with AR & BT 

In order to compare the WVD technique with AR & BT methods, we averaged 

the power spectral density ofWVD over a five-minute time interval to get indices ofLF 

power, HF power and LF:HF ratio. When we compared LF:HF ratios obtained from 

WVD technique (Table 6.3) and AR & BT methods (Table 6.1-6.2), the mean LF:HF 

ratio demonstrates an increasing trend as angle increases, irrespective of the method used. 

The averaged LF:HF ratio is then plotted separately for three different techniques (Figure 

6.7 (a)-(c)), while the combined plot of all three methods is shown in Figure 6.7 (d). The 

WVD produces a variance which is less than that due to BT method but greater than that 

due to AR method. However, it seems that the WVD and BT methods both have a higher 

sensitivity of discriminating the change of LF:HF ratio from supine state to upright 

position. 

6.2.4 Physiological Relevance 

During supine state, there is no specific demand on the heart to supply blood 

against gravity Therefore, the LF/HF ratio is low During 90° tilt, the blood pressure 

tends to fall due to gravity and is therefore supported by the sympathetic outflow in the 

form of increased venous return. Hence LF/HF ratio reaches a maximum. LF/HF ratio 

increases proportionately with increasing values of the tilt angle. 



141 

T bl e 61 Mean LF HF ratio over ~5·mm at tcour diffierent ang.1es usmg ARPS atgon.thma . 1 
LF:HF at 0° LF:HF at 30° LF:HF at 60° LF:HF at 90° 

Subject! 0.79 1.17 1.94 N/A 
Su~ject2 0.69 1.26 1.74 1.67 
Subject3 0.66 0.9 1.23 1.61 
Subject4 1.73 0.97 1.42 1.56 

a . 5 . tc diffiT bl e 62Mean LFHF ratio over ~ mm at our erent ang.1es usmg BTPS allgon.thm 
LF:HF at 0° LF:HF at 30° LF:HF at 60° LF:HF at 90° 

Subjectl 1.18 2.23 7.98 NIA 
Subject2 0.64 4.61 5.26 7.77 
Subject3 0.61 2.3 3.74 4.82 
Subject4 1.08 2.27 4.75 7.35 

5 . tc diffi 1 .hmT bl e 63Mean LFHF ratio over~ mm at our 1a . erent angJ es usmg WVD algont 
LF:HF at 0° LF:HF at 30° LF:HF at 60° LF:HF at 90° 

Subject! 1.08 2.19 7.04 N/A 
Subject2 0.62 4.56 4.94 6.77 
Subject3 0.62 1.69 2.9 5.45 
Subject4 0.94 2.3 4.28 6.33 

a e . d t d d d . f tc thr al .thmsT bl 6 4 C ompansonofthe group average an s an ar evta Ion or ee Igon 
LF:HF at 0° LF:HF at30° LF:HF at60° LF:HF at 90° 

AR 0.97 1.08 1.58 1.61 
BT 0.88 2.85 5.43 6.65 
WVD , 0.82 2.69 4.79 6.18 
Stdev AR 0.51 0.17 0.32 0.06 
StdevBT 0.29 1.17 1.81 1.6 
StdevWVD 0.23 1.28 1.72 0.67 
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Figure 6. 7 Comparison of mean LF:HF ratio obtained using AR, BT & WVD methods: (a) LF:HF 
versus angle using AR method. (b) LF:HF versu.c: angle using BTmethod. (c) LF:HF'versus angle using 
WVD method. (d) Combined plot ofLF:HF versus angle using AR, BT & WVD techniques (bar with no 
pattern: AR; bar with diagonal line: BT; bar with dots: WVD). 
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6.3 TIME-FREQUENCY ANALYSIS OF HRV DURING SLEEP 

The objective of the second study was to examine the usefulness of analyzing 

PSIHRV using Wigner-Ville distribution and autoregressive model during different 

stages of sleep. Recent clinical studies suggest that an analysis of HR.V during various 

sleep stages provides additional useful information in patients who had a myocardial 

infarction (Vanoli, 1994). Determination of a sleep stage is based on the combined 

information from electroencephalogram (EEG), electro-oculogram (EOG), and 

electromyogram (EMG) recordings. There are five sleep stages each with distinct EEG, 

EOG, and EMG activity characteristics (Figure 6.8). These five stages normally appear in 

a cyclic fashion (stage 1-2-3-4-3-2-REM) with cycle duration varying between 70 to 120 

minutes. Sleep stages 3 and 4 last longer than other stages of sleep. Further, stages 3 and 

4 are present early in the night and decrease during early morning, while REM sleep 

shows the opposite trend (Huggins, 1998). 

6.3.1 Experiment Design 

6.3.1.1 Subjects 

Six subjects (two female, four male; mean age 22.7 ± 1.5 years) took part in this 

study. The sleep studies were conducted in the clinical neuroscience sleep investigation 

unit at McMaster University Health Science Center in collaboration with J. Huggins, 

from the department ofKinesiology (Huggins, 1998). 
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Sleep Stage Scoring Criteria 

AWAKE 

EOG EMG EEG 
(top 2 traces) {middle trace) (bottom 2 traces) 

-Blinking -High level -Alpha waves 
{8-12Hz) 

(a) 

STAGE 2 


EOG EMG EEG 

-No eye 
movements 

-Moderate level -Theta waves 
{3-7Hz) 
-K-complexes 
-Sleep spindles 
{12-14Hz) 

(b) 

STAGE 3&4 


EOG EMG EEG 

-No eye -Low level -Delta waves 
movements {0.5-2 Hz) 
{similar to 
EEG) 

(c) 

REM 


EOG EMG EEG 

-Rapid Eye -Low to non­ -Sawtooth 
Movement existent theta waves 

{may contain 
sleep spindles) 

(d) 

Figure 6.8 Sleep stage scoring criteria using EOG (top two traces), EMG (middle trace), and EEG 
(lower two traces). (a) Awake stage. (b) Sleep stage 2. (c) Sleep stage 3&4. (d) REM sleep. (From Huggins 
JD, 1998). 
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6.3.1.2 Measurements 

Specific variables recorded include EEG, EOG, EMG, ECG and respiration. EEG 

data consisted of two channels each from occipital and central electrodes, positioned 

according to the international 10-20 electrode placement system for recording EEG (Daly 

and Pedley, 1990). EOG electrodes were placed above and below the right and left canthi 

of the eyes respectively, for two traces. Two EMG electrodes were attached beneath the 

chin. These six traces were amplified through a polysomnograph (Grass, model 8-20D). 

Two ECG lead and respiration traces were amplified through an ECG and an impedance 

plethysmograph (Hewlett-Packard). The polysomnograph and the amplifiers were 

interfaced with a personal computer (Gateway 2000/486) through CODAS resulting in 

eight channels ofdata. The sampled data was stored on a hard disk for off-line analysis. 

6.3.2 Data Analysis 

For each subject, three ten-minute long segments of the data during various sleep 

stages were subjected to analysis. Data was examined during following states: 

wakefulness, stage 2 (light sleep), stage 3 and 4 (slow wave sleep), REM. Each state of 

sleep was visually scored throughout the nightly recording and checked during off-line 

analysis according to standard criteria. 

The ECG signal was processed as described in Chapters 2 and 3. We identified 

QRS complexes, constructed a time series of R-R intervals and computed the 

autoregressive power spectra. The 2-D autoregressive power spectra ofHRV are shown 

in Figure 6.9 for a sample subject. The Wigner-Ville distribution of the R-R interval was 

computed using Wigner95, the software package developed for this thesis and described 
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in Chapter 3. The results of Wigner-Ville distribution are shown in Figure 6.10-6.11 for 

stage 3&4 and REM sleep respectively. The ratio of low frequency power (LF: 0.04-0.15 

Hz) to high frequency power (HF: 0.15-0.5 Hz) can be monitored during all sleep stages 

using AR method (Figure 6.9). Furthermore, as shown in Figure 6.11 the Wigner-Ville 

distribution provides more descriptive information in time-frequency plane. There is a 

consistent increase in the HF power of the power spectra using both AR method and 

Wigner-Ville distribution during sleep stage 3&4 (Figure 6.9 (c) and Figure 6.10 (b)). On 

the other hand, there is no dominant HF peak in time-frequency plane during REM sleep 

(Figure 6.11 (b)). 

From a physiological point of view, this can perhaps be explained as follows . 

There is a functional resemblance between sleep and its apparent antithesis, exercise 

(Verrier, 1996). Both activities involve motor programs of the central nervous system, 

and appropriate central autonomic patterns are activated. The surges in sympathetic 

activity and reduction in baroreceptor sensitivity associated with REM sleep and severe 

exertion during wakefulness may precipitate myocardial ischemia, and trigger ventricular 

tachyarrhythmias. Therefore it is possible to explain the lack of dominant HF peak in 

REM sleep. 

Further studies are needed to understand physiological mechanisms during 

different stages of sleep and may provide insights in the heart function of patients 

following a myocardial infarction. 

http:0.04-0.15
http:6.10-6.11


149 

R-Rillefv.ll 

800 


750 


100 200 300 800 

Tine (s) 

(a) 

1.5 

0.5 

0 

(b) 

Figure 6.10 Results ofWigner-Ville distribution for sleep stage 3&4: (a) R-R interval. (b) 3-D plot of 
WVD. (c) 2-D contour plot ofWVD. (d) R-R, LF power, HF power, and LF:HF ratio versus time. 

http:R-Rillefv.ll


150 

Cooloor of WVD 

600 

~ 

500 
c: = == 

400 

===­
'¥' 
V> =-====--=-=­¥300 
~ 

200 

~ 

100 

c'd:dk 
0 

0 	 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 .~ 0 .~5 0.5 
Frequency(Hz) 

(c) 

(d) 

Figure 6.10 (contd) 



151 

R-R lnter;al 

1600 


1300 


I 

~ 1200 


i! 
~ 	1100 


1000 


900 


100 200 300 400 600 

Tine (o) 


(a) 

F~) 

4 


3 


(b) 

Figure 6.11 Results of Wigner-Ville distribution for REM sleep: (a) R-R interval. (b) 3-D plot of 
WVD. (c) 2-D contour plot ofWVD. (d) R-R, LF power, HF power, and LF:HF ratio versus time. 



152 

CSJ? L""- -c;:::::::> 

<···CW ­

200 


~(<~~ ~il'liOJ;;; 
100 


= 

0 
0 	 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5 

frequency(Hz) 

(c) 

Power 

r'~a:1000 ~ 
a: 

500 

0 100 200 300 400 500 600 


!~f \p_Ji::;Ji)C~ l 

0 100 200 300 400 500 600 


!f====l
0 100 200 300 400 500 600 


~~~' '-----~A~~ ~X ~=·~~l
~	 ! - -o- 100 200 300 400 500 600 

Tine(s) 

(d) 

Figure 6.11 (contd) 



Chapter 7 


Summary 


7.1 SUMMARY 

The work described in this thesis discusses the theoretical issues, algorithms and 

results of our studies involving digital signal processing of hemodynamic signals. In 

Chapter 1, we review the current literature on power spectral analysis of heart rate 

variability (HRV) and its use in studying autonomic nervous system (ANS). We also 

present the objectives of our work. 

Off-line implementations of QRS detection, construction of HR.V signal and 

computation ofthe power spectrum (PS) ofHRV are described in Chapter 2. Specifically, 

autoregressive (AR) modelling method and Blackman-Tukey (BT) algorithm are 

discussed. Our results show that the QRS detection algorithm developed for this study 

was successful in detecting QRS complexes of the ECG signals recorded from healthy 

controls and patients in our laboratory with an error rate of less than -Q.2%. It was also 

shown that AR modelling method and BT algorithm revealed two distinctive frequency 

153 
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bands (LF & HF) and thus provide a useful index (LF:HF ratio) for measunng 

sympathovagal balance. 

While the concept of power spectral analysis has been employed in the study of 

ANS for more than a decade (Pomeranz et al. , 1985), the analysis of HRV using time­

frequency distribution (TFD) techniques has been investigated only for the last five years 

(Novak et al. , 1993). Theoretical details and a C++ software package for computing time­

frequency distribution of HRV, in particular, Wigner-Ville distribution (WVD) 

technique, are presented in Chapter 3. We found that an average of Wigner-Ville 

distribution computed from 128-second HRV signal yielded results comparable to those 

obtained from AR modelling method and BT algorithm. In addition, WVD technique 

provided more relevant information and detail in the time-frequency plane because of a 

large number of power spectra. 

Success of our algorithms and software can only be measured by their application 

m evaluating human and animal autonomic nervous system. Towards this end, we 

describe in Chapter 4, the application of power spectral analysis for studying the 

ontogeny of ANS in premature infants. Our results suggest that a sympathetic 

predominance in early post-natal life (with a peak in sympathetic outflow at 30-32 

weeks) is followed by an increase in the vagal outflow and an increase in the ANS 

responsiveness for increasing post-natal age. In Chapter 5, the applications of power 

spectra of HRV in studying the ANS of a rat model are presented. The study shows that 

power spectral analysis ofHRV is sensitive enough to detect dose-dependent changes in 

nervous activity following atropine and methacholine challenge and provide additional 

evidence supporting the role of the autonomic nervous system in asthma. 
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In an attempt to test the usefulness of time-frequency distribution, a tilt paradigm 

is described in Chapter 6 to delineate a quantitative comparison of AR, BT and WVD 

techniques. The results show that WVD technique produces a continuous index (LF:HF 

ratio) of sympathovagal balance and with greater detail than that generated by AR and 

BT methods. Finally, an application of WVD technique to study the changes that take 

place in the ANS function during different stages of sleep is presented. 
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