
FCL: A FORMAL LANGUAGE FOR WRITING

CONTRACTS

FCL: A FORMAL LANGUAGE FOR WRITING CONTRACTS

By

QIAN HU, M.Sc.

A Thesis

Submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by Qian Hu, May 2018

Doctor of Philosophy (2018) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: FCL: A formal language for writing contracts

AUTHOR: Qian Hu

M.Sc.

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: xi, 132

ii

To my family

Abstract

Contracts are legally enforceable agreements between two or more parties. The

agreements can contain temporally based conditions, such as actions taken by the

contract parties or events that happen, that trigger changes to the state of the con-

tract when the conditions become true. Since the structure of these conditions can

be very complex, it can be difficult to write contracts in a natural language in a clear

and unambiguous way. A better approach is to have a formal language with a pre-

cise semantics to represent contracts. Contracts expressed in such a language have a

mathematically precise meaning and can be written, analyzed, and manipulated by

software.

This thesis presents fcl, a formal language with a precise semantics for writing

general contracts that may depend on temporally based conditions. Motivated by

carefully selected examples of contracts, we derive a set of desirable requirements

that a formal language of contracts should support. Based on the requirements, we

clearly define the notion of contract and address what it means to fulfill or breach a

contract. We present the formal syntax and semantics of fcl. We also successfully

formalize different kinds of contracts in fcl and develop a reasoning system for fcl.

iii

Acknowledgements

First and foremost, I would like to express my gratitude to my academic supervisor

Dr. William M. Farmer for his unwavering support, invaluable guidance, and conti-

nuous encouragement throughout the development and advancement of my research

studies and my life.

My special thanks go to the members of my supervisory committee: Dr. Jacques

Carette, Dr. Ridha Khedri, and Dr. Tom Maibaum for all of their valuable advices

and thoughtful comments on my research work. I also appreciate the help and moral

support from all of other individuals whom I have interacted with throughout my

graduate studies.

Furthermore, I want to extend my sincere thanks to the Natural Sciences and En-

gineering Research Council of Canada (NSERC) and McMaster University graduate

scholarship which have provided the financial support during my doctoral studies.

Last, but certainly not least, I would like to thank my dear family and friends

from the bottom of my heart for all of their love, support, and encouragement.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Motivation for the Research . 2

1.1.1 What is a Contract? . 2

1.1.2 Example: a Contract with Observables and Conditions 3

1.1.3 The Role of Observables and Conditions 5

1.1.4 Why do We Need a Precise Description? 6

1.1.5 Why do We Need a Formal Representation? 7

1.2 Our Approach . 8

1.3 Contributions . 9

1.4 Structure of the Thesis . 10

2 Background 12

2.1 Contract Concepts . 12

v

2.2 Deontic Aspects of Contracts . 14

2.3 Simple Type Theory . 16

3 Guiding Ideas 18

3.1 Requirements of a Language for Contracts 18

3.2 Contract Examples . 21

4 Related Work 25

4.1 Contract Formalisms . 26

4.2 Models of Computation Based Approach 29

4.2.1 Lee’s Approach . 29

4.2.2 D&S’s Approach . 32

4.3 Functional Programming Based Approach 33

4.4 Event-Condition-Action Based Approach 36

4.4.1 G&M’s approach . 36

4.4.2 GHM’s Approach . 39

4.5 Action/Trace Based Approach . 41

4.5.1 AEHSS’S Approach . 41

4.5.2 BBE’s Approach . 43

4.6 Deontic Logic Based Approach . 45

4.6.1 P&S’s Approach . 45

4.6.2 Wyner’s Approach . 46

4.6.3 OASIS LegalRuleML TC’s Approach 47

vi

5 Simple Type Theory 53

5.1 Syntax . 53

5.1.1 Types . 53

5.1.2 Languages . 54

5.1.3 Expressions . 55

5.1.4 Definitions and Abbreviations 57

5.2 Semantics of STT . 59

5.2.1 Frame . 59

5.2.2 Interpretations . 59

6 FCL: The Syntax 63

6.1 The Language L0 . 64

6.2 Observables . 66

6.3 Actions . 67

6.4 FCL . 68

6.4.1 Constant Definitions . 69

6.4.2 Agreements . 70

6.4.3 Rules . 72

6.4.4 Contracts . 73

6.4.5 The Syntax of FCL . 73

7 FCL: The Semantics 75

7.1 Models . 75

vii

7.2 Agreements . 76

7.3 Rules . 76

7.4 Contracts . 77

7.4.1 Expansion of Models . 77

7.4.2 State of Contracts . 77

8 Examples expressed in FCL 80

8.1 FCL: Expressivity Issues . 80

8.1.1 Permissions . 80

8.1.2 Reparations . 81

8.1.3 Continuous Actions . 83

8.1.4 Avoid Paradoxes . 83

8.2 An American Call Option . 84

8.3 A Sale of Goods Contract . 87

8.4 A Lease Contract . 91

9 A Reasoning System 97

9.1 Definitions . 98

9.2 Judgments . 98

9.3 Rules of Inference . 99

9.4 Example . 102

9.4.1 Case 1: Contract is Fulfilled 102

9.4.2 Case 2: Contract is Breached 105

viii

10 Conclusion and Future Work 107

10.1 Highlights of Contributions . 108

10.2 Comparison of the Approaches . 109

10.3 Final Remarks . 116

10.4 Future Work . 117

A FCL: The Implementation 118

A.1 Basic Data Types and Expressions 118

A.2 Action . 120

A.3 Agreements and Rules . 121

A.4 Contracts . 122

A.5 Example: An American Call Option 123

ix

List of Tables

3.1 Contract Perspectives and Features 19

4.1 Main Advantages and Disadvantages of Contract Formalisms 27

4.2 Requirements comparison matrix . 28

5.1 The Built-In Constant Symbols of L 55

6.1 The constants for Int of L0 . 65

6.2 The constants for contracts of L0 . 65

8.1 Constants for an American Call Option 85

8.2 Constants for a Sale of Goods Contract 88

8.3 Constants for a Lease Contact . 93

10.1 Comparison of our approach with other approaches 110

10.2 Comparison of our language with other approaches 111

10.3 Comparison of our language with other approaches 112

10.4 Comparison of our language with other approaches 113

x

List of Figures

8.1 Execution of the American Call Option C 86

8.2 Execution of the Sale of a Printer contract C 92

xi

Chapter 1

Introduction

A contract records, orally or in writing, a legally binding agreement between two or

more parties [48]. It specifies obligations, permissions, and prohibitions for the parties

involved in the contract. Although contracts are considered to be legally binding and

can be very complex, they are usually expressed in a natural language such as English.

Since the natural language does not have a precise semantics, it is often not clear what

a contract is intending to say.

A major goal of our research is to help people write contracts that have a clear

meaning and can be readily analyzed and simplified. One way of achieving this goal

is by using formal methods, which are mathematically based languages, techniques,

and tools to mechanically process complex contracts for various activities such as

specifying, verifying, and analyzing contracts.

This thesis presents fcl, a formal language for writing general contracts. It is

based on the joint research with my supervisor, William M. Farmer, published in [20]

and [21]. The language has a formal syntax and a precise semantics and thus can be

readable by computers, too. The main purpose of this language is to specify contracts

1

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

as unambiguously, completely, and succinctly as possible. This chapter introduces the

problem domain of this thesis and argues the need for writing contracts in a formal

language. More precisely, Section 1.1 motivates the need for a formal language with

a precise semantics for expressing general contracts. Section 1.2 gives an overview of

fcl and discusses the key idea behind the design of fcl. Section 1.3 summarizes the

contributions of this thesis. Section 1.4 outlines the structure of the remainder of this

thesis.

1.1 Motivation for the Research

1.1.1 What is a Contract?

A contract is an artifact with certain properties. There is not a clear consensus of

which of these properties are necessary and which are optional. We favor the definition

of a contract given by Brian Blum in [11, p. 2]. He says a contract must have each of

the following properties:

P1 Is an oral or written agreement.

P2 Involves at least two parties.

P3 Includes at least one promise made by the parties.

P4 Establishes an exchange relationship between the parties.

P5 Is legally enforceable.

A contract is created only because the parties reach agreement on the terms of

the contract (P1). The parties are the people or entities that have mutually agreed

2

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

to the contract and are bound by its terms and conditions. For any contract to be

valid, there must be at least two parties (P2). Typically, one party makes an offer

and the other party accepts it. In addition, to be valid a contract must involve the

parties in an exchange of something of value such as services, goods, or a promise to

perform some action (P4). Note that the exchange of money is not necessary.

A contract involves a promise (P3) which Blum defines as an “undertaking to act

or refrain from acting in a specified way at some future time” [11, p. 5]. We think

of “undertaking to act” as the deontic notion of obligation. Similarly, we understand

“refrain from acting” as the deontic notion of prohibition. Obligation and prohibition

are concepts studied in deontic logic [42].

We will use an expanded definition of a contract that includes “degenerate con-

tracts” that would not be considered contracts according to Blum’s definition but are

convenient to include in the space of all possible contracts. For example, a contract is

void if it violates the law [7]. Void contracts are not legally enforceable agreements, so

by Blum’s definition they are not genuine contracts (P5). We will consider them to be

contracts, but we will designate them as being degenerate. Similarly, we will consider

an agreement between two parties that does not include a promise or establish an

exchange relationship between the parties as a degenerate contract.

1.1.2 Example: a Contract with Observables and Conditions

A contract records a legally binding agreement between parties. The meaning of a

contract — that is, what the agreement is — often depends on certain things that can

be observed, called observables, such as actions taken by the parties of the contract,

events that happen, and values (like a stock price) that fluctuate with respect to time.

3

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

To illustrate the role of observables and conditions that depend on them in a

contract, we will consider the following simple example.

Example 1.1.1. Consider an American call option for purchasing one share of a

certain kind of stock on June 30, 2015 for $5. The expiration date of the option is

December 17, 2015 (and so the option may be exercised on any date from June 30,

2015 to December 17, 2015). The strike price1 of the option is $80. The transaction

of the sale of the stock must be finished within 30 days of payment.

An American option is a contract that gives the owner the right, but not the

obligation, to buy or sell a specified asset at a specified price on or before a specified

date [23]. This example describes the conditions that are required for the sale of one

share of stock. It shows the role that observables and conditions commonly play in

contracts. If a payment of $5 on June 30, 2015 is made to the option seller to buy

the option (first condition), the option contract will become effective. If the option

buyer exercises the option by paying $80 to the option seller on or before December

17, 2015 (the second condition), the option seller will transfer one share of the stock

to the option buyer within 30 days after the option is exercised. The payments of $5

and $80 are both observables on which the first and second conditions respectively

depend. The transference of the stock is also an observable.

This American call option can be deconstructed into three components:

(1) Condition 1: The option buyer gives the option seller $5 on June 30, 2015 to

buy an American call option consisting of a conditional agreement composed of

the following two components.

1The price at which the asset may be bought or sold in an option contract (also called the exercise
price) [33, p. 7]

4

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(2) Condition 2: The option buyer chooses to exercise the option by paying $80

to the option seller on or before December 17, 2015.

(3) Agreement: The option seller is obligated to transfer one share of stock to the

option buyer no later than 30 days after the option is exercised.

The contract thus has the following form:

if Condition 1

then

if Condition 2

then Agreement

A conditional agreement is an agreement that comes into effect only when a certain

condition is met. Both if-then parts of the contract are conditional agreements. The

second conditional agreement consists of Condition 2 and Agreement, and the first

conditional agreement consists of Condition 1 and the second conditional agreement.

The offer time of the American call option is the time the option contract is offered

by the option seller to possible buyers. At the offer time, the option contract is not

a legally binding agreement. It becomes a legally binding agreement only when the

option contract is purchased by the option buyer (i.e., the time when Condition 1

is satisfied).

1.1.3 The Role of Observables and Conditions

A contract is an agreement that is often composed of various sub-agreements, and

some of these sub-agreements may be conditional agreements like the American call

option. When the values of the observables in the condition make the condition true,

5

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

the agreement of the conditional agreement becomes effective. Different agreements

may be generated when the observables have different values. Conditional agreements,

like either of the two in the American call option, can be viewed as “rules” that are

applied when certain conditions become true.

As time goes on, and more and more conditions become true as the result of rules

being applied, more and more agreements come into effect. The state of a contract at

a time t is the set of agreements and rules that are in effect at t. The meaning of the

agreements and rules of a contract depend on the values of observables mentioned in

them. The state of a contract as a set of agreements and rules can evolve overtime.

A contract like the American Call Option is dynamic in the sense that it contains

temporally based conditions that trigger changes to the state of the contract when

the conditions become true.

A trace of a contract is the sequence of states of the contract that are generated

over time starting at the offer time of the contract. A “model” of a contract gives

each observable in the model at each time a value. A model of observables determines

a trace of a contract. The meaning of a contract is thus a mapping from models of

observables to traces of the contract. Contracts are equivalent if they produce the

same traces from the same observables. Thus the meaning of a contract and how the

state of the contract evolves over time depend on the values of observables mentioned

in the contract.

1.1.4 Why do We Need a Precise Description?

Since the structure of the conditions in a contract can be very complex, it can be

difficult to write dynamic contracts in a natural language in a clear and unambiguous

6

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

way. Ambiguous contract specifications can be a major source of conflict between

the parties involved in the contract. For example, the contract parties may think

they agree on a contract, but later disagree on what the contract requires. Writing

a contract in a formal language can help to make the meaning of the contract un-

derstandable. Precision of language and careful specification of procedures can help

to reduce the potential confusion and disagreement in the contracting process and

execution, and can help to improve communication between parties.

In order to address these inherent complexities in contracts, there is a need to

have a consistent, precise, and complete description mechanism for complex dynamic

contracts to improve communication between parties. A formal definition of a contract

is presented in Section 7.4.

1.1.5 Why do We Need a Formal Representation?

Another important issue is to understand why we need a formal representation of a

contract. In [2], K.A. Adams describes the different kinds of uncertain meaning in

contract language: ambiguity, failure to be sufficiently specific, mistakes, conflicts,

failure to address an issue, and vagueness. If there are uncertain clauses in a contract,

and all options to determine the meaning fail, it may be possible to sever and void

just those affected clauses. The use of formal methods can greatly increase our under-

standing of contracts by revealing the above uncertain meanings that might otherwise

go undetected.

Contract professionals that deal with complex contracts have to process them for

various activities. Those activities include generating legal documents, monitoring

their execution for performance, analyzing their ramifications for planning, valuation,

scheduling, supply chain management, production planning, tax reporting, decision

7

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

support, reasoning about violations of obligations, and other back-end activities. Con-

tracts — in particular, dynamic contracts — are naturally becoming more complex

as the complexity of the world and human interaction grows. Continuing to write

complex contracts in natural language is not sustainable if we want the contracts to

be understandable and analyzable.

A precise formal language for writing contracts can be seen as a tool to help people

understand and manage contracts. If a contract is written in a formal language with

a precise semantics then it becomes a formal object that has a mathematically precise

meaning and that can be manipulated by software. A formal contract of this kind can

be written, analyzed, and manipulated in various ways with the help of sophisticated

software tools.

1.2 Our Approach

This thesis presents fcl, a Formal Contract Language with a precise semantics for

expressing general contracts that may depend on temporally based conditions. We

think of a contract in two ways. Syntactically, a contract is a written expression

satisfying certain syntactic conditions. Semantically, a contract is a set of temporally

based promises between parties. Writing a contract in a formal language can help to

make the meaning of the contract understandable.

The underlying logic of fcl is a version of simple type theory called stt. Simple

type theory is a natural extension of first-order logic which has a very simple syntax. In

simple type theory there are types built up from atomic types using type constructors.

fcl consists of several kinds of syntactic objects that include the types and expressions

from stt. We use a theory of stt as our base theory. On top of the stt theory, we

8

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

build fcl.

1.3 Contributions

We summarize our contributions below.

• Derivation of a set of desirable requirements that fcl should support, motiva-

ted by carefully selected examples of contracts. The requirements of fcl are

presented in Chapter 3.

• Provision of a more precise notion of contract: We produce a clear definition of

what a contract is (see Section 1.1.3 for more details).

• Development of a formal language for writing a wide range of contracts: We

present fcl, an expressive formal contract language for writing general con-

tracts. fcl has a formal syntax (see Chapter 6) and a precise semantics (see

Chapter 7).

• Demonstration of the expressivity of our language: We formalize in Chapter 8

three kinds of contracts, an option contract, a sale of printer contract, and a

lease contract in fcl. The formalizations of these three examples explain how

contract concepts can be written in fcl.

• Development of methods for analyzing contracts written in the language: We

present a reasoning system for fcl in Chapter 9. As we will show, our reasoning

system can address what it means to fulfill or breach a contract.

The work presented in this thesis was done in collaboration with my supervisor,

William M. Farmer. We developed the underlying ideas of fcl and designed its

9

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

syntax and semantics together as well as the reasoning system for fcl. I formulated

our definition of a contract, derived the requirements for fcl, worked out the details

of fcl, developed the examples that illustrate the use of fcl, and conducted an

extensive review of the literature related to this thesis. stt, the underlying logic of

fcl, is previous work done by Dr. Farmer.

1.4 Structure of the Thesis

This thesis is based on our research published in [20] and [21]. It provides more

details and explanations of our contract language fcl. The remainder of this thesis

is organized as follows.

Chapter 2 introduces the required background. This chapter aims to familiarize the

reader with the domain of investigation and to clarify the concepts mentioned in the

thesis.

Chapter 3 presents a set of requirements for an unambiguous formal language for

writing contracts.

Chapter 4 provides a survey of the current state-of-the-art in the literature with

respect to the formalisms aiming at defining a language for writing contracts.

Chapter 5 presents the underlying logic of fcl.

Chapter 6 gives a full presentation of the syntax of fcl.

Chapter 7 presents the formal semantics of fcl.

Chapter 8 shows how the examples of contracts from Chapter 3 are expressed in

fcl.

Chapter 9 introduces a system for reasoning about contracts written in fcl. This

10

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

chapter also shows how this reasoning system can be used to simulate a contract over

time.

Chapter 10 highlights and assesses the contributions made by this thesis. This

chapter also draws conclusions and suggests avenues for future work.

11

Chapter 2

Background

This chapter aims to familiarize the reader with the domain of investigation and to

clarify the concepts that are used throughout this thesis. Section 2.1 gives definitions

relevant to contracts. Section 2.2 introduces the standard deontic logic. Section 2.3

introduces simple type theory.

2.1 Contract Concepts

In this section, we review some selected literature on contracts [7, 11, 48, 58] and give

a list of relevant definitions.

Definition 2.1 (Party). Parties are the people or entities that have mutually agreed

to the contract and are bound by its terms and conditions. In the case of written

agreements, the parties are typically identified as the people or entities that signed

the agreement.

Definition 2.2 (Term). Term refers to the time period during which a contract is in

force. For example, a lease with a one-year term lasts for a year.

12

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Definition 2.3 (Obligation). An obligation expresses what an individual ought to

do.

Definition 2.4 (Permission). A permission expresses what an individual may do.

Definition 2.5 (Prohibition). A prohibition expresses what an individual ought not

do.

Definition 2.6 (Internal Event). An internal event refers to actions that can be

performed by the parties of the contract.

Definition 2.7 (External Event). An external event refers to events that cannot be

controlled by the parties of the contract.

Definition 2.8 (Valuation of a contract). A valuation of a contract is an estimation

of the total economic value of the goods or services exchanged over the term of the

contract.

Definition 2.9 (Breach of contract). One of the contract parties’ failure to fulfill his

or her obligations as described in the contract is known as a breach of the contract.

Definition 2.10 (Blame assignment). If a contract is breached, a blame assignment

is a determination of who among the contract parties will be held responsible for the

breach of the contract.

Definition 2.11 (Void contract). A void contract is a contract that violates the law—

such as a contract to engage in wagering, money laundering, or restraint of trade. The

most famous example is a hit man’s contract to murder someone. A void contract is

not enforceable, and courts will treat it as if it never existed.

13

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

2.2 Deontic Aspects of Contracts

Deontic logic is usually regarded as an applied form of modal logic. There are three

common modal operators O, P, and F of deontic logic. The interpretations of the

formulas OA, PA, and FA are, respectively, that A is obligatory, A is permitted, and

A is forbidden, where A specifies an assertion. The modal operators obey the usual

mutual relationships

OA ≡ ¬P¬A PA ≡ ¬O¬A FA ≡ ¬OA FA ≡ ¬PA,

are closed under logical equivalence (i.e., if A ≡ B then OA ≡ OB), and satisfy the

axiom OA =⇒ PA (i.e., if A is obligatory, then A is permitted). The latter implies

the internal coherency of the obligations in a contract, or, in other words, something

forbidden will not be done by executing an obligation.

Some contracts also specify the rights and permissions that the parties have. One

may want to make a distinction between “rights” and “permissions”, between having

the power to do something and the permission to do so, but for certain kinds of

analysis these distinctions are not needed.

Unfortunately, deontic logic in general suffers from a number of well-known para-

doxes:

• Ross’s paradox [52] arises from the theorem Oϕ→ O(ϕ∨ψ) which has an in-

stance: “if it is obligatory that one mails the letter then it is obligatory that one

mails it or burns it”. It is typically viewed as a side effect of the interpretation

of ‘or’ in natural language.

• The paradox of commitment [32] is based on the instance Fϕ→ O(ϕ→ ψ)

14

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

which is interpreted as saying that “if it is forbidden to steal a car, then you are

obliged to run over a pedestrian if you steal a car”.

• The Good Samaritan’s paradox [38] arises from the rule that if ` (ϕ∧ψ)→

ψ, then ` O(ϕ ∧ ψ) → Oψ. If we substitute ϕ for “the good Samaritan helps

the victim who has been hurt” and ψ for “the victim has been hurt”, and given

that the good Samaritan ought to help the victim who has been hurt, then it

follows that the victim ought to be hurt.

• Free choice permission paradox [43] is based on the instance P(ϕ ∨ ψ) →

Pϕ ∧ Pψ which is interpreted as saying that “if it is permitted that one mails a

letter or burns it, then one is allowed to both mail a letter and burn it”.

• Gentle murderer’s paradox [43] arises when a contradiction is derived. Gentle

murderer’s paradox consists of the following sentences:

(1) John is obligated not to kill his mother (O¬ϕ).

(2) If John kills his mother, then John is obligated to kill her gently (ϕ→ Oψ).

(3) John kills his mother (ϕ).

(4) If Jone kills his mother gently, John kills his mother (ψ → ϕ).

(5) Therefore, John is obligated to kill his mother (Oϕ, contradicting (1)).

• Chisholm’s paradox [12] is arises from the theorem (Oϕ∧O(ϕ→ ψ)∧(¬ϕ→

O¬ψ) ∧ ¬ϕ) → ⊥. The impact of this theorem is that certain intuitively con-

sistent formula are in fact inconsistent in standard deontic logic. Chisholm’s

paradox consists of the following four sentences:

(1) It ought to be that a certain man goes to the assistance of his neighbors

(Oϕ).

15

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(2) It ought to be that if he does go, he tell them he is coming (O(ϕ→ ψ)).

(3) If he does not go then he ought not to tell them he is coming (¬ϕ→ O¬ψ).

(4) He does not go (¬ϕ).

These paradoxes are not actually logical paradoxes in the normal sense. They

are mismatches between intuition and what the logic actually captures. Thus, a

contract that is represented in standard deontic logic may contain a mismatch between

intention of the contract drafter and the actual logical consequences. Unlike many

approaches that are based on the deontic logic to design a contract formalism [31, 45,

49, 50, 51], we design our language based on the simple type theory, thus avoiding

these kinds of paradoxes (see Section 8.1.4 for details).

fcl can express agreements inspired by the obligations, prohibitions, and permis-

sions of deontic logic. We interpret an agreement in a contract inspired by the terms

of deontic obligation and prohibition.

2.3 Simple Type Theory

fcl can be built up based on any chosen high-order logic. We will assume in this

thesis that the underlying logic of fcl is a version of simple type theory [19].

Simple type theory is a natural extension of first-order logic which has several

advantages over it [19]. In particular, (1) types denote nonempty sets of values; they

are used to organize entities. All values have types and operations are restricted to

entities of a certain type. Thus the types provide a means to distinguish entities by

their values, for example, between numbers, set of numbers, functions from numbers

16

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

to sets of numbers, sets of such functions, etc. (2) Functions can be applied to higher-

order values such as sets, relations, and functions. (3) Functions can be used to

represent other kinds of values such as sets and relations. For example, a set can be

represented by a function which maps elements to truth values, and so if an element

is in the set, then the function that represents the set maps that element to true.

(4) Quantification can be applied not only to individual variables as in first-order

logic, but also to higher-order variables. (5) Functions can be defined by lambda

abstraction, for example, λx . x2 defines the function x 7→ x2. (6) Definite description

builds an expression of the form Ix : α . P that denotes the unique value x of type α

that satisfies the property P .

Simple type theory has a very simple and highly uniform syntax, and it is based on

the same semantic principles as first-order logic. It is very well understood and easy to

work with. Simple type theory is more expressive than first-order logic in a practical

sense. Because it includes strong support for specifying a hierarchy of higher-order

functions and is equipped with full higher-order quantification and definite description,

mathematical ideas can be expressed much more directly in it than in first-order

logic [19].

17

Chapter 3

Guiding Ideas

This chapter aims to present a set of desirable requirements for an unambiguous and

rigorous formal language of contracts. We first presents the desirable properties of a

formal language for contracts in Section 3.1. Section 3.2 introduces three reference

examples in the thesis and further discusses the requirements of fcl based on these

examples.

3.1 Requirements of a Language for Contracts

A contract records, orally or in writing, a legally binding agreement between two or

more parties [48]. It must include the time when the contract was entered into, the

contracting parties, the object of the contract (eg. the item to be purchased or the

amount to be borrowed), the material value (eg. the price of the item), and sanctions

in the event of a breach of contract and applicable laws. A precise formal language

intended to represent contracts can be seen as a tool to help people to understand

and manage contracts.

18

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

A business normally wants to sign a good contract. From the view of our work,

a good contract formalism should be both an “internally good” and an “externally

good” contract. The meaning of “internally” and “externally” good contracts can

be explored by the perspectives and features given in Table 3.1. Here the “external’

means an external monitoring tool for analyzing the performance of contracts.

Table 3.1: Contract Perspectives and Features
Perspective Features Descriptions

C
o
n
tr

a
ct

In
te

rn
a
l

Expressiveness

1. Capability to capture con-
tract content (the time when
the contract was entered into,
the item to be purchased, the
amount to be borrowed, etc.).
2. Capability to represent three
types of contract commitment
(obligations, permissions, and
prohibitions).
3. Capability to express two or
more parties.

1. Formal semantics.
2. Be capable of repre-
senting contract commit-
ments such as obliga-
tions, permissions, and
prohibitions.

C
o
n
tr

a
ct

E
x
te

rn
a
l Monitoring

1. Capability to express and
monitor actions of a contract.
2. Capability to detect a viola-
tion when executing a contract.
3. Capability to identify which
party is responsible for the bre-
ach of a contract.

The contract language
must be capable of veri-
fying who violated a con-
tract agreement. For all
actions of a contract exe-
cution, it must be capa-
ble of monitoring and de-
tecting faults.

Enforcement

1. Capability to express laws
and regulation.
2. Capability to express repara-
tional agreements.

If a violation of a con-
tract is detected, what
enforcement will be ap-
plied to responsible par-
ties.

As described in Section 1.1.1, Brian Blum in [11, p. 2] gives a list of properties

that a contract must have. A compact summary of the issues involved in contract

management is provided in [34, 35]. The author of [36] includes a list of features that in

19

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

his opinion a contract language should provide. We present here the requirements that

our language should meet. These requirements are derived from the definition and

properties of contracts provided by Brian Blum, our analysis of the contract examples

introduced in 1.1.2 and 3.2, the perspectives and features of contracts covered in

Table 3.1, our investigations of the related work presented in Chapter 4, and the

requirements given in [36].

We think our language should have a formal syntax and a precise semantics (R1)

and should be able to do the following things.

R2 Distinguish between absolute and relative times.

R3 Specify contract commitments (obligations, permissions, or prohibitions).

R4 Express agreements that depend on the actions by the parties to the contract.

R5 Express reparational agreements.

R6 Enable the dynamic calculation of values.

R7 Specify contracts involving multiple parties.

R8 Express agreements that depend on events that cannot be controlled by the

parties of the contract.

R9 Express both instantaneous and continuous actions.

R10 Describe the laws and regulations that will be used in case of disputes.

In the next section, we provide three contract examples to illustrate the require-

ments that a formal language for writing contracts should satisfy.

20

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

3.2 Contract Examples

The primary purpose of having a formal language for writing contracts is to help

people have a good understanding of a contract. In order to guarantee that the

parties of a contract share a common understanding of the contract, we require that

the contract uses terms defined in a shared grammar and has a precise semantics (R1).

We consider first Example 1.1.1, an American Call Option contract. The contract

is a bilateral agreement between the contract buyer and seller. This example contract

describes how and when the sale of one share of stock, in return for $80, is to be carried

out. An agreement is an understanding between parties. It creates obligations to do

or not do the specific things that are the subject of that agreement. The modeling

of contract commitments (R3) is a self-nominated requirement, given our previous,

informal definition of contracts. Agreements can be conditional (R4) on what actions

are taken during the execution of a contract, as illustrated in clause 2, where the

permission for Party A to buy one share of IBM stock at $80 from Party B is contingent

upon Party A exercising the option before the expiration date. A proper formalization

of time and temporal information is required. We are not only interested in the actual

time points at which an action happens but also in deadlines. Clause 1 is an example

of an absolute deadline and clause 3, on the other hand, exemplifies a relative deadline,

where the deadline of transfer depends on the time of payment. Thus, our contract

language needs to capture the dynamic obligations, permissions, and prohibitions of

contracts, provide explicit parties and thus it provides the possibility of specifying

multi-party contracts, and provide explicit time to capture the notions of absolute

and relative times (R2).

21

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Consider next an extended example of a sale of a laser printer contract in Exam-

ple 3.2.1 from [35, p. 5].

Example 3.2.1. The contract consists of five clauses:

(1) Seller agrees to transfer and deliver to Buyer one laser printer within 22 days

after an order is made.

(2) Buyer agrees to accept the goods and to pay a total of $200 for them according

to the terms further set out below.

(3) Buyer agrees to pay for the goods half upon receipt, with the remainder due

within 30 days of delivery.

(4) If Buyer fails to pay the second half within 30 days, an additional fine of 10%

has to be paid within 14 days.

(5) Upon receipt, Buyer has 14 days to return the goods to Seller in the original,

unopened packaging. Within 7 days thereafter, Seller has to repay the total

amount to Buyer.

Although this example contract is very simple, two points should be noticed.

First, a contract usually specifies actions to be taken in case of the violation of a

part of the contract. In the deontic literature [42], this is known as contrary-to-duty

obligations (CTDs) or reparational obligations. Clause 4 of this contract is an example

in which a potential violation can generate obligations to “repair” the violation (R5).

Second, consider the total amount specified in clause 5. Taken literally, it would

imply that the total amount the seller must repay to the buyer in case of the printer

is returned should be $200 as stated in clause 2. Actually, this is not the intention

of this contract. In fact, the total amount to repay is the amount that the buyer has

22

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

already paid the seller. Also notice that the deadline for returning the total amount

to the buyer depends on the time the buyer returns the printer to the buyer. The

time at which the buyer makes a return depends on the time that the delivery of

a printer is made. Thus, a language for writing contracts should be able to define

and use procedures that enable the dynamic calculation of values (R6) such as those

deadlines based on relative time, or amounts of money for payment.

The buyer and seller in this example are parties of this contract. The carrier that

delivers the goods is an example of a third party (R7) who will be called on to join the

contract when the Buyer places an order to purchase a laser printer from the Seller.

Parties are the people or entities that have mutually agreed to the contract and are

bound by its terms and conditions. In the case of written agreements, the parties are

typically identified as the people (may on behalf of a company or entity) that signed

the agreement. A third-party is bound in a contract by a relation with the parties in

contract.

Now consider next an example lease contract [35, p. 6]:

Example 3.2.2. The contract consists of five clauses:

(1) The term of this lease is for 3 months, beginning on January 1, 2011.

(2) At the expiration of said term, the lease will automatically be renewed for a

period of one month unless either party (Landlord or Tenant) notifies the other

of its intention to terminate the lease at least one month before its expiration

date.

(3) The landlord has the obligation to provide one apartment to the tenant throug-

hout the term.

23

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(4) The tenant has the obligation to pay the amount of $1000 per month to the

landlord, with payment due on the 7th day of each month.

(5) The rent is adjusted semi-annually according to the Consumer Price Index

(CPI).1

Clauses 2 and 4 are examples of instantaneous and continuous actions (R9), re-

spectively. Clause 5 illustrates how contracts may depend on external, time-varying

observables (R8).

Thus, our contract language needs to capture the dynamic obligations, permissi-

ons, and prohibitions of contracts, provide explicit parties as well as the possibility of

specifying multi-party contracts, and provide explicit time to capture the notions of

absolute and relative times.

The list of requirements of a language for contracts not only allows us to com-

pare existing formal approaches to contracts, but it also provides a guideline for

constructing new formalisms.

1The CPI in the United States is defined by the Bureau of Labor Statistics as “a measure of the
average change over time in the prices paid by urban consumers for a market basket of consumer
goods and services.” For example, if the tenant is paying $1000 a month and the CPI jumps 5% in
one year, the monthly rent will jump to $1050.

24

Chapter 4

Related Work

Currently, several different approaches aiming at defining a formal language for writing

contracts have been proposed. According to T. Hvitved [35] there are three main

categories of contract formalisms: logic based formalisms (e.g., classical [17], modal,

deontic [31, 45, 49, 50, 51], and defeasible logic [27, 53]), event-condition-action (ECA)

based formalisms [26, 41], and action/trace based formalisms [3, 39]. Also, other

contract formalisms worth mentioning use functional programming ([46, 47]) or models

of computation (e.g., FSMs [39], Petri Nets [14, 40]).

Most formalisms are applicable specifically to contracts in general. Some resear-

chers [8, 46, 47] have given extensive attention to automating the calculations of the

monetary values of the financial contracts. Other researchers [5, 6] have sought to

define a rule interchange language for the legal domain. There are also efforts to build

common taxonomies [1, 9, 10, 55] of financial terms and events that can be used to

specify events and actions in the contract automation process.

This chapter surveys the literature and discusses the existing research relevant to

our work conducted by various academic and industry research groups in the area

25

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

of formalized contracts. Specifically, Section 4.1 examines the current research that

aims at defining a formal language for representing contracts. In particular, it looks at

existing classifications of different approaches and discusses the advantages and disad-

vantages of different approaches. The remaining sections go through the approaches

from the different categories of contract formalisms.

4.1 Contract Formalisms

Our language fcl is most closely related to the languages used by the ten approaches

below. Table 4.1 shows the main advantages and disadvantages of the kinds of contract

formalisms that these approaches are based on.

• R. Lee (Lee) [40].

• A. Goodchild, C. Herring, and Z. Milosevic (GHM) [26].

• S. L. Peyton Jones and J. M. Eber (PJ&E) [46, 47].

• G. Governatori and Z. Milosevic (G&M) [28, 31, 41].

• J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen (AE-

HSS) [3].

• A. Daskalopulu and M. Sergot (D&S) [14, 16, 24, 25].

• C. Prisacariu and G. Schneider (P&S) [22, 49, 50, 51].

• Wyner (Wyner) [58].

• P. Bahr, J. Berthold, M. Elsman (BBE) [8].

26

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Table 4.1: Main Advantages and Disadvantages of Contract Formalisms
Contract
Language

Approach Advantage Disadvantage

Models of
computation
based
languages

1 Lee

2. D&S

1. Widely used in business
world and industry.

2. Intuitive for technical
and business people to
write and understand

Not a strictly rigorous
approach.

Functional
programming
based
language

PJ&E Rigorous formal approach. Not easily understood
by technical and busi-
ness people.

ECA-based
languages

1. GHM

2. G&M

1. Widely used in business
world and industry.

2. Intuitive for technical
and business people to
write and understand.

Not a strictly rigorous
approach.

Action/trace
based
languages

1. AEHSS

2. BBE

Rigorous formal approach. Not easily understood
by technical and busi-
ness people.

(Deontic)
Logic based
languages

1. P&S

2. Wyner

3. OASIS

Rigorous formal approach 1. Not easily under-
stood by technical and
business people.

2. Not widely used in
business world and in-
dustry.

• OASIS LegalRuleML Technical Committee (OASIS) [5, 6].

Table 4.2 shows a comparison of fcl and those approaches based on the contract

design requirements introduced in Chapter 3. We notice that none of those approaches

has reached enough maturity to be considered a solution to the problem of the formal

definition of a contract. Only a few models come with a precise, formal semantics,

but these are too simple. For example, since PJ&E [46, 47] focuses almost entirely on

finding the value of a contract; they consider the semantic meaning of a contract to

27

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

T
ab

le
4.2:

R
eq

u
irem

en
ts

com
p
arison

m
atrix

L
e
e

D
&
S

P
J
&
E

G
&
M

G
H
M

A
E
H
S
S

B
B
E

P
&

S
W

y
n
e
r

O
A
S
IS

F
C
L

R
1

√
√

√
√

√
√

√

R
2

√
√

√
√

√
√

√
√

R
3

√
√

√
√

√
√

√
√

√
√

√

R
4

√
√

√
√

√
√

√
√

√
√

√

R
5

√
√

√
√

√
√

√
√

√

R
6

√
√

√
√

√

R
7

√
√

√
√

√
√

√

R
8

√
√

√
√

√
√

√
√

R
9

√
√

√

R
10

√

28

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

be its value. Most approaches [26, 40, 41, 46] lack a formal semantics and a reasoning

system even though they provide a good framework for monitoring contracts. We find

this surprising since one of the purposes of defining a contract language is to have a

formal, unambiguous semantics. More detailed comparisons of the related works will

be given later in Section 10.2.

In the following sections we will examine the approaches with respect to the ca-

tegories in the first column of Table 4.1. Each paper in this Chapter includes its own

related work section which lists works that are more closely related to the specific

approach. We present here some more generally related work aiming at designing a

formal language for writing contracts. Notice that, the fonts of each section follow

the fonts that are used in the paper.

4.2 Models of Computation Based Approach

Many contracts can be well modeled as processes. A contract can change from one

state to another in response to some events that are relevant to the contract. A con-

tract starts off in an initial state which describes each party’s obligations, permissions,

or prohibitions, and then transitions occur to move the contract from one state to the

next until finally the contract ends up in a terminal state, if one exists.

4.2.1 Lee’s Approach

R. Lee employs Petri Nets to support the automated design of trade procedures in

electronic contracting [40]. Contracts are viewed as Petri net transition systems,

where a set of states can be active at any point in time. The events that happen and

actions performed by contract parties are specified as attributes of transitions that

29

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

can trigger new states to become active and to deactivate some. The idea at the core

of Lee’s approach is to model the transition system with logic programming and to

model contract concepts such as obligations in terms of transitions. Lee introduces

the predicate ‘trans’:

trans([A1, . . . , Am], [B1, . . . , Bn], E).

This indicates a transition from a state satisfying the precondition [A1, . . . , Am] of the

transition, to a state satisfying the postcondition [B1, . . . , Bn] where [A1, . . . , Am] is

a predicate on the current active states and [B1, . . . , Bn] is a predicate on the new

active state. The parameter E is an action taken by one of the contracting parties

that causes the transition.

Lee’s approach on applying deontic logic to the case of contracting is based on

a suggestion by A.R. Anderson and O.K. Moore [4] relating deontic logic to alethic

modal logic using the definition

Oϕ↔ �(¬ϕ→ S)

where S is a propositional constant indicating the occurring from the violation of

one’s obligations. The representation of obligation (and other deontic concepts) in

the contracting model is based on an interpretation of contingent actions leading to

sanctions.

As an example of how contract aspects are modelled, consider the obligation for

party X to perform action A:

trans([s(0)], [s(1)], X : A).

30

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

trans([s(0)], [default(X)],¬X : A).

Here the notation default(X) indicating the state where party X has defaulted on

the contract. The action is obligatory, so therefore it results in the state of “default”

if it is not done. Hence, if X does action A, a transition is made from state s(0) to

state s(1). If X does not perform A, the contract goes to a default state, which is a

state indicates a breach of the contract.

We now show how Example 1.1.1 is encoded in Lee’s language.

Example 4.2.1. Let S(1), S(2), S(3), and S(4) be states of the contract. The contract

encoding is presented below:

C(buyer, seller, [S(1),S(2),S(3),S(4)]) :: =

trans([S(1)],[S(2)],buyer:rd(30−jun−2015):pay(seller,$5),

trans([S(2)],[S(3)],buyer:rb(17−dec−2015):pay(seller,$80),

trans([S(3)],[S(4)],seller:rb(30days):deliver(buyer,stock),

trans([S(3)],[default(seller)],∼seller:rb(30

days):deliver(buyer,stock)

Lee’s approach succeeds in capturing most of the aspects of a contract. It includes

the aspects of absolute and relative times (R2), contract commitments (R3), action-

dependent agreements (R4), reparational agreements (R5), multiple parties (R7), and

instantaneous and continuous actions (R9). The problem of Lee’s contracts and mo-

deling of deontic modalities lacks a clear language definition as well as a clear seman-

tics of contracts (R1). There is no account to external events (R8) nor description

of laws and regulations (R10). Another disadvantage of the Petri nets formalization

provided by Lee is that it does not handle well the dynamic calculation of values such

as monetary values (R6).

31

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

4.2.2 D&S’s Approach

A. Daskalopulu and M. Sergot (D&S) [16, 14] proposed a contract language based on

the Event Calculus [57]. In Daskalopulu’s PhD thesis [13], she mainly views contracts

from a legal perspective and translates them to a Petri-Net representation for reaso-

ning about violations. Her most current research [15, 24, 25] differs from her thesis but

focuses on evidence-based monitoring. D&S also propose a mapping from a contract

representation in event calculus to default logic [56]. The resulting representation

allows for defeasible reasoning [44] with contracts.

We now show how Example 1.1.1 is encoded in D&S’s language.

Example 4.2.2. We introduce the following notational conveniences:

b = buyer

s = seller

a = buys contract for $5

p = pays $80

g = gives stock to buyer

The contract encoding is presented below:

initially {Ob(a), 〈b : a〉T, 〈not b : a〉T}

1 [](Ob(a)→ [b : a]Obp)

2 [](Ob(a)→ [not b : a]¬Oba)

3 [](Ob(a)→ [not b : a] terminated)

4 [](Ob(p)→ [b : p]Osg)

5 [](Ob(p)→ [not b : p] terminated)

6 [](Ob(p)→ [not b : p]¬Osg)

32

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

7 [](Os(g)→ [s : g] terminated)

8 [](Os(g)→ [not s : g] terminated)

In Example 4.2.2, the keyword initially means that the following formula is

true at the start of contract execution. The [] symbol is the box from modal logic

and means “necessarily” (i.e. in every state) when there is nothing inside the box.

[b : a] is from dynamic logic and means “always after b has brought about a”. The

< b : a > means that it is possible that b can bring about a.

The approach provide by D&S includes the aspects of absolute and relative ti-

mes (R2), obligations and prohibitions (R3), action-dependent agreements (R4), re-

parational agreements (R5), and external events (R8). There is no account to dynamic

calculation of values (R6), multiple parties (R7), instantaneous and continuous acti-

ons (R9), nor description of laws and regulations (R10). D&S does not give a formal

account of actions that are not performed. In this approach, action that are not per-

formed are treated as “negative actions”. A negative action is informally described

with the not prefix. A precise formal account of these negative actions as well as a

clear semantics (R1) of contracts is needed.

4.3 Functional Programming Based Approach

S.L. Peyton Jones and J-M. Eber (PJ&E) present in the paper “Composing contracts:

An adventure in financial engineering” [46] a functional combinator language for mo-

deling the complex financial contracts traded in derivative markets. The design of

PJ&E’s language can be seen as a declarative, domain-specific language embedded in

Haskell. Let us consider an example [47] of a financial contract below.

33

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

C: The permission to choose on 30 June 2000 between:

D1 Both of

D11 Receive $100 on 29 Jan 2001.

D12 Pay $105 on 1 Feb 2002.

D2 An option exercisable on 15 Dec 2000 to choose one of:

D21 Both of

D211 Receive $100 on 29 Jan 2001.

D212 Pay $106 on 1 Feb 2002.

D22 Both of

D221 Receive $100 on 29 Jan 2001.

D222 Pay $112 on 1 Feb 2003.

Each Di represents a contract. That is, C is a contract formed by combining

together simpler contracts, such as D1, which in turn is formed from simpler contracts

D11 and D12.

The compositional structure of financial contracts is appropriate for formalization

in functional programming, which is compositional in nature. PJ&E define the set of

following contract constructors:

c ::= zero (no rights/obligations)

| one(k) (permission to transfer one unit of currency k)

| give(c) (reverse the permissions and obligations of c)

| and(c1,c2) (immediately acquire both c1 and c2)

| or(c1,c2) (immediately acquire either c1 or c2, but not both)

34

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

| cond(o,c1,c2) (immediately acquire c1 if o holds, otherwise c2)

| scale(o, c) (immediately acquire c where all amounts are scaled by o)

| when(o, c) (immediately acquire c as soon as o holds)

| anytime(o, c) (acquire c once, anytime o holds)

| until(o, c) (immediately acquire c, but abandon c once o holds)

where k ranges over currencies and o ranges over time-varying values.

PJ&E demonstrate how the compact library suffices for describing standard finan-

cial contracts such as zero-coupon bonds, options, swaps, and futures. The language

presented by PJ&E also provides a decomposition of these standard financial con-

tracts into individual payment commitments that are combined declaratively using a

small set of contract combinators.

We now show how Example 1.1.1 is encoded in PJ&E’s language.

Example 4.3.1. Let t be a time, n be an amount, and USD denote the USA currency.

We introduce the following notational conveniences:

receive on(d,n) = when(d,scale(n,one(USD))

pay on(d,n) = give(receive on(d,n))

With these definitions the contract can be expressed as follows:

c = when(2015−6−30,

and(pay on(2015−6−30,5),

when(2015−12−17,

or(and(pay on(2015−12−17,80),

receive on(add(2015−12−17,30),IBM)),

zero)

35

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

The combinator library of PJ&E supports absolute and relative times (R2), obli-

gations and prohibitions (R3), action-dependent agreements (R4), dynamic calcula-

tion of values (R6), and external events (R8). There is no account to reparational

agreements (R5), accounting for multiple parties (R7), instantaneous and continuous

actions (R9), nor the description of law and regulations (R10).

The strength of this approach is its ability to perform compositional analysis of

contracts expressed in the combinator library. For instance, they show how to give an

abstract valuation semantics to combinators to process a contract. But compared to

all other work, theirs is a special purpose language for expressing only the financial

contracts.

4.4 Event-Condition-Action Based Approach

4.4.1 G&M’s approach

G. Governatori’s approach is based on the business contract language (BCL) proposed

in [28, 29, 31, 41] to represent contracts. BCL is a domain specific language, designed

with the purpose of enabling event-based monitoring of business activities. It was

developed by taking into account several policy and community frameworks and an

expressive event language for the specification of event-based behavior as part of policy

expressions. The first presentations of BCL [41] used English to express contracts and

thus lacked a formal language.

The motivation for BCL is to enable monitoring of contract execution in an event-

based manner. A single event can be used to signify any one of the following:

• An action performed by one of the signatories to the contract, or any other

36

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

party mentioned in the contract.

• A temporal occurrence such as the passing of a deadline.

• A change in the contract state associated with a contract variable.

• A contract violation and other conditions associated with contract execution.

The grammar for BCL is as follows (keywords are in bold face, [·] denotes optio-

nality):

Contract ::= Policy∗

Policy ::= Policy: Name

Role: Role

Modality: Modality

Trigger: EP+

[Guard]

Behavior: EP

Modality ::= Obligation | Permission | Prohibition

EP ::= not E | E and E | E or E | E before E | ET before T

Guard ::= Guard: StateExp | violated(Name)

An event pattern is a means for describing a state of affairs that introduces spe-

cific relationships between events of relevance to business contracts. Examples of

event patterns are logical relationships between events, temporal relationships bet-

ween events, and temporal constraints on event patterns. Whereas events are atomic,

event patterns are used to describe complex events.

In terms of a semantic model of contracts, Governatori and Milosevic [28] introduce

the formal contract logic (FCL). FCL is restricted to ought-to-do statements. The

grammar for FCL is as follows:

37

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

l ::= p | ¬p (literals)

ml ::= Osl | ¬Osl | Psl | ¬Psl (modal literals)

⊗− exp ::= ml | Os1l1 ⊗ · · · ⊗Osnln (⊗-expressions)

| Os1l1 ⊗ · · · ⊗Osnln ⊗ Psn+1ln+1

ϕ ::= l→ ϕ | ml→ ϕ | ⊗− exp (policies)

where literals l are propositional atoms and events, and the connective ⊗ is used to

represent contrary-to-duty structures.

We now show how Example 1.1.1 is encoded in G&M’s language.

Example 4.4.1. Let Pi be the policies, where i refers to the clauses in the example

contract. The following events are used:

init: Initial the state of the contract

buy option: Buy an option

buy stock: Buy a stock

The contract encoding is presented below:

Policy: P1

Role: Buyer

Modality: Permission

Trigger: init

Behavior: buy option before 2015−06−30

Policy: P2

Role: Buyer

Modality: Permission

Trigger: buy option

38

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Behavior: buy stock before 2015−12−17

Policy: P3

Role: Seller

Modality: Obligation

Trigger: buy stock

Behavior: deliver before 30

G&M sketches how to map a subset of BCL to FCL and provides a Gentzen

systems for reasoning with deontic concepts. Besides a formal semantics (R1), this

approach also includes the aspects of absolute and relative times (R2), contract com-

mitments (R3), action-dependent agreements (R4), reparational agreements (R5),

multiple parties (R7), and external events (R8). There is no account to dynamic cal-

culation of values (R6), instantaneous and continuous actions (R9), and description

of laws and regulations (R10).

4.4.2 GHM’s Approach

A. Goodchild, C. Herring, and Z. Milosevic (GHM) [26] model contracts as sets of

policies. A policy specifies that a legal entity is either forbidden or obliged to perform

an action under certain event-based conditions. The grammar for policies is as follows:

Policy ::= VariableDeclaration∗

When Condition

Action

must [not] occur where Condition

otherwise Trigger

39

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Action ::= action(ActionName, Actor, Audience, Time)

Trigger::= trigger(ActionName, Audience)

where [·] denotes optionality and ∗ denotes zero or more occurrences.

We now show how Example 1.1.1 is encoded in GHM’s language.

Example 4.4.2. Let S and B be the seller and buyer of the option defined below:

S = Contract.Seller;

B = Contract.Buyer;

The contract is encoded as follows:

when Contract.State == ‘initial’

action(buy option,B,S,t)

must occur where

t ≤ 2015−6−30

otherwise

trigger(send notice of breach,∗,‘‘Buyer failed to buy contract’’)

when {delivery made and choose to exercise the option}

action(exercise option,B,S,t)

must occur where

t ≤ 2015−12−17

otherwise

trigger(send notice of breach,∗,‘‘Buyer failed to exercise the

option’’)

when buy share made

action(transfer stock,S,B,t)

40

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

must occur where

{t is within 30 days of payment}

otherwise

trigger(send notice of breach,∗,‘‘Seller failed to transfer stock’’)

This approach includes the aspects of contract commitments (R3), action-dependent

agreements (R4), dynamic calculation of values (R6), and explains how ECA can be

used to model contracts. Unfortunately, the policy language of GHM does not have

a semantics (R1). It also lacks a detailed description of the syntax; there is only

the incomplete grammar above. There is no account to absolute and relative ti-

mes (R2), reparational agreements (R5), dynamic calculation of values (R6), multiple

parties (R7), external events (R8), instantaneous and continuous actions (R9), nor

description of laws and regulations (R10).

4.5 Action/Trace Based Approach

4.5.1 AEHSS’S Approach

J. Andersen, E. Elsborg, F. Henglein, J.G. Simonsen and C. Stefansen (AEHSS) [3]

consider commercial contracts that govern the exchange of resources between mul-

tiple parties. The approach models transaction patterns of companies (agents) as

transfers of resources, referred to as events. This approach is inspired partly by the

compositional approach of Peyton Jones and Eber.

The grammar of AEHSS’s contract calculus is as follows:

k ::= letrec{fi[Xi] = ci}mi=1 in c

c ::= Success

41

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

| Failure

| c1 + c2

| c1||c2

| c1; c2

| f(a)

| transmit(A1, A2, R, T |P).c

where Xi is a vector of formal parameters for use in the embedded contract ci, A

denotes an agent, R denotes a resource, T denotes time, and P is a predicate.

AEHSS provides a trace-based semantic model for contracts. A trace is a finite

sequence of events, and events have the form

transmit(A1, A2, R, T)

denoting the transmission of resource R from agent A1 to agent A2 at time T . A de-

notational semantics maps contract specifications compositionally into sets of traces.

We now show how Example 1.1.1 is encoded in AEHSS’s language.

Example 4.5.1. Let t be a time. The contract encoding is presented below:

letrec

sale(b,s,payment,goods,t,days) =

(transmit(b,s,payment,T |T ≤ t).

(transmit(s,b,goods,T ′|T ′ ≤ T+days)).

option[b,s,fee,payment,goods,days,t1,t2] =

(transmit(b,s,fee,T |T ≤ t1).

Success

42

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

+

sale (b,s,payment,goods,t2,days)).

in

option(‘‘buyer’’,‘‘seller’’,5,80,IBM,30,2015−06−30,2015−12−17)

Besides a formal semantics (R1), absolute and relative times (R2), contract com-

mitments (R3), action-dependent agreements (R4), reparational agreements (R5),

dynamic calculation of values (R6), the contract language has support for multiple

parties (R7), and external events (R8). There is no account to instantaneous and

continuous actions (R9), nor description of laws and regulations (R10). T. Hvitved

[35] points out that in AEHSS’s calculus it is impossible to assign blame.

4.5.2 BBE’s Approach

P. Bahr, J. Berthold, and M. Elsman (BBE) present in [8] a multi-party contract lan-

guage for modeling financial contracts that is capable of expressing common FX and

other derivatives. The language includes a simple denotational cash-flow semantics

independent of any stochastic aspects. Besides, a reduction semantics for the lan-

guage that evolves contracts over time in accordance with the denotational semantics

is provided.

The syntax of BBE’s language is as follows:

types τ ::= Real | Bool

expressions e ::= x | r | b | obs(l, t) | op(e1, ·, en) | acc(λx . e1, d, e2)

contracts c ::= ∅ | let x = e in c | dc | c1&c2 | e× c | a(p→ q) |

if e within d then c1 else c2

43

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

where x ∈ Var, r ∈ R, b ∈ B, l ∈ Label, t ∈ Z, d ∈ N, a ∈ Asset, p, q ∈

Party, op ∈ Op

BBE formalizes their contract language in the Coq proof assistant [54]. Using

the code extraction functionality of the Coq system, they automatically extract an

implementation of an embedded contract domain-specific language in Haskell. They

also provide machine-checkable proofs (in Coq) of the key properties of the contract

language.

We now show how the Example 1.1.1 is encoded in BBE’s language.

Example 4.5.2.

if obs(buyer defaults,0) within 0

then 5 × USD(buyer → seller) &

if obs(buyer exercise option,0) within 170

then 80 × (USD(buyer → seller)) &

30 ↑ 1 × (Stock(seller → buyer))

else ∅

else ∅

Besides a formal semantics (R1), BBE’s cash-flow trace based approach [8] has

support for absolute and relative times (R2), contract commitments (R3), action-

dependent agreements (R4), reparational agreements (R5), dynamic calculation of

values (R6), multiple parties (R7), and external events (R8). There is no account

to instantaneous and continuous actions (R9), nor description of laws and regulati-

ons (R10).

44

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

4.6 Deontic Logic Based Approach

4.6.1 P&S’s Approach

C. Prisacariu and G. Schneider (P&S) [49, 50, 51] introduce a contract language CL

for expressing electronic contracts based on a combination of deontic, dynamic, and

temporal logics. The concepts that CL captures are drawn from legal contracts. As in

the logic of Governatori and Milosevic [30], CL restricts deontic modalities to ought-

to-do statements, that is deontic modalities can only be applied to actions that are

performed. On top, they add the modalities of dynamic logic to be able to reason

about what happens after an action is performed. CL also incorporates the notions

of contrary-to-duty and contrary-to-prohibition by explicitly attaching to the deontic

modalities a reparation that is to be enforced in case of violations.

The grammar of CL is as follows:

Contract ::= D;C

C ::= ϕ | OC(α) | P (α) | FC(α) | C → C | [δ]C | ⊥ (CL expressions)

α ::= a | 0 | 1 | α× α | α · α | α + α (deontic actions)

δ ::= a | 0 | 1 | δ × δ | δ · δ | δ + δ | δ∗ | ϕ? (dynamic actions)

ϕ ::= ϕ | 0 | 1 | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ (tests)

Actions are propositional atoms in CL. Deontic actions α are the actions used

inside the deontic modalities. The dynamic condition [δ]C means that if δ happens,

then C must be fulfilled. Dynamic actions δ are the actions used inside the dynamic

box modality [δ]C of CL. Dynamic actions extend deontic actions with a set of

Boolean tests denoted ϕ? and the Kleene ∗ operator. The ∗ operator enables the

clauses of the form [δ∗]C, that is, whenever δ happens then C should be fulfilled.

45

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Unlike the logic of G&M [28], P&S [50] presents a formal semantics (R1) in terms of

an extended fragment of the propositional µ-calculus. P&S [51] maps CL to an algebra

of actions for modeling concurrent contract actions and reasoning about violation.

This tool seems more effective than that of G&M [27, 30] and Daskalopulu [13, 14].

We now show how the Example 1.1.1 is encoded in P&S’s language.

Example 4.6.1. We introduce the following notational conveniences:

b = buyer buys contract for $5

p = buyer pays $80

g = seller gives stock to buyer

The contract encoding is presented below:

1 �P(b)

2 �[b]P(p)

3 �[p]O(g)

Besides a formal semantics (R1), CL supports contract commitments (R3), action-

dependent agreement (R4), and reparational agreements (R5). There is no account

to absolute times (R2), dynamic calculation of values (R6), multiple parties (R7),

external events (R8), instantaneous and continuous actions (R9), nor description of

laws and regulations (R10).

4.6.2 Wyner’s Approach

A. Wyner introduces in [58] the Abstract Contract Calculator — a flexible, open

framework, and implemented tool to express the contractual notions of permissions,

obligations, and prohibitions over abstract complex actions. The tool provides simple

46

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

and complex actions as state-transitions. In this work, deontically specified actions

are reduced to fine-grained markers of violation and fulfillment. A contract is given

as a contract state, which is a finite list of deontically specified actions relative to a

party of the contract, along with a set of rules. The rules of a contract can modify a

contract state relative to violation or fulfillment markers.

The main strength of the approach is that it allows alternative definitions of

actions and deontic notions to be represented and animated. By using a dynamic

language with violation and fulfillment markers, this approach can avoid many de-

ontic paradoxes. Besides a formal semantics (R1), this approach also includes the

aspects of contract commitments (R3), action-dependent agreements (R4), reparati-

onal agreements (R5), multiple parties (R7), and external events (R8). There is no

account to absolute times (R2), dynamic calculation of values (R6), instantaneous

and continuous actions (R9), nor the description of laws and regulations (R10).

4.6.3 OASIS LegalRuleML TC’s Approach

OASIS has many technical committees working on domain-specific components for

business documents. One of particular interest is the LegalRuleML Technical Com-

mittee (TC) [5, 6] who focuses on the creation of machine-readable forms of the content

of legal texts, such as legislation, regulations, contracts, and case law, for different

concrete Web applications.

OASIS LegalRuleML TC extends RuleML to provide a rule interchange language

with formal features specific for the legal domain. The work enables implementers to

structure the contents of the legal texts in a machine-readable format by using the

representation tools provided.

47

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Head/body relationship Notation Strength
body always head body → head strict

body sometimes head body =⇒ head defeasible
body not complement head body head defeater
body no relationship head

body always complement head body head strict
body sometimes complement head body head defeasible

body not head body head defeater

RuleML is an XML-based family of language for expressing two categories of rules:

reaction rules and derivation rules. The former are ECA based specifications, and the

latter are used for describing facts. LegalRuleML reuses and extends concepts and

syntax of RuleML. A rule of LegalRuleML is considered as a binary relationship

between the pre-conditions (or body) of the rule, and the effect (head) of the rule.

There are seven possible relationships between the body. The above table summaries

the relationships and the strengths of the relationships.

Strict rules are used for concluding new facts. For a strict rule body → head the

interpretation is that every time the body holds then the head holds. Defeasible rules

are rules that may be overruled by some other rule. For a defeasible rule, it is possible

to have exceptions to the rule, and it is possible to have prescriptions for the opposite

conclusion. Defeater rules are used to specify that the opposite conclusion does not

hold.

LegalRuleML introduces in [5] a suborder list that is a list of deontic formulas to

model penalties. It utilizes the defeasible deontic logic to reason about violations of

obligations.

We now show how the Example 1.1.1 is encoded in OASIS LegalRuleML.

Example 4.6.2. We have blocks for the specification of time:

48

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

<lrml:TimeInstants>

<ruleml:Time key="t1">

<ruleml:Data xsi:type="dateTime">

2015−06−30−01T00:00:00

</ruleml:Data>

</rulem:Time>

</lrml:TimeInstants>

<lrml:TimeInstants>

<ruleml:Time key="t2">

<ruleml:Data xsi:type="dateTime">

2015−12−17−01T00:00:00

</ruleml:Data>

</rulem:Time>

</lrml:TimeInstants>

The contract encoding is presented below:

<lrml:Statements key="option">

<lrml:PrescriptiveStatement key="#ps1">

<ruleml:Rule key=":rule1" closure="universal">

<lrml:hasStrength>

<lrml:Defeasible/>

<lrml:hasStrength>

<ruleml:if timsBlock="#t1">

<ruleml:Atom>

<ruleml:Rel iri="#buyOption"/>

<ruleml:Var>buyer</ruleml:Var>

49

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

</ruleml:Atom>

</ruleml:if>

<ruleml:then timesBlock="#t2">

<lrml:Suborderlist>

<lrml:Permission>

<ruleml:Atom>

<ruleml:Rel iri="#exerciseOption"/>

<ruleml:Var>buyer</ruleml:Var>

</ruleml:Atom>

</lrml:Permission>

</lrml:Suborderlist>

</ruleml:then>

</ruleml:Rule>

<lrml:PrescriptiveStatement key="#ps2">

<ruleml:Rule key=":rule1" closure="universal">

<lrml:hasStrength>

<lrml:Defeasible/>

<lrml:hasStrength>

<ruleml:if timesBlock="#t2">

<ruleml:Atom>

<ruleml:Rel iri="#exerciseOption"/>

<ruleml:Var>buyer</ruleml:Var>

</ruleml:Atom>

</ruleml:if>

<ruleml:then>

50

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

<lrml:Suborderlist>

<lrml:Obligation>

<ruleml:Atom timesBlock="#t3">

<ruleml:Rel iri="#buyStock"/>

<ruleml:Var>buyer</ruleml:Var>

<ruleml:Ind>80</ruleml:Ind>

</ruleml:Atom>

</lrml:Obligation>

</lrml:Suborderlist>

</ruleml:then>

</ruleml:Rule>

<lrml:PrescriptiveStatement key="#ps3">

<ruleml:Rule key=":rule1" closure="universal">

<lrml:hasStrength>

<lrml:Defeasible/>

<lrml:hasStrength>

<ruleml:if>

<ruleml:Atom>

<ruleml:Rel iri="#buyStock"/>

<ruleml:Var>buyer</ruleml:Var>

</ruleml:Atom>

</ruleml:if>

<ruleml:then>

<lrml:Suborderlist>

<lrml:Obligation>

51

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

<ruleml:Atom>

<ruleml:Rel iri="#transferStock"/>

<ruleml:Var>seller</ruleml:Var>

</ruleml:Atom>

</lrml:Obligation>

</lrml:Suborderlist>

</ruleml:then>

</ruleml:Rule>

Besides a formal semantics (R1), OASIS LegalRuleML supports absolute and re-

lative times (R2), contract commitments (R3), action-dependent agreement (R4),

reparational agreements (R5), multiple parties (R7), external events (R8), instanta-

neous and continuous actions (R9), and the description of laws and regulations (R10).

There is no account to dynamic calculation of values (R6).

52

Chapter 5

Simple Type Theory

This chapter presents the underlying logic of fcl, a version of simple type theory

based on the system stt presented in [19] and bestt presented in [18]. Our version

of simple type theory is also called stt. It includes additional new type constructors

and expression constants for reasoning with sets and tuples. Section 5.1 introduces

the syntax of stt and Section 5.2 gives the semantics of stt.

5.1 Syntax

5.1.1 Types

A type of stt is a string of symbols defined inductively by the formation rules below.

Let α, β, γ, . . . be syntactical variables ranging over types.

(1) A base type is a type of individuals or Bool, the type of propositions or truth

values.

(2) For any α and β, (α→ β) is a type of functions.

53

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(3) For any α and β, (α× β) is a type of ordered pairs.

(4) For any α, set[α] is a type of sets.

Let Ω denote the set of types of stt. The definition of a type shows that Ω is

composed of the base types and an infinite hierarchy of function types, product types,

and set types built from the base types. When there is no loss of meaning, a matching

pair of parentheses in a type may be omitted. The function type → is assumed to

associate to the right, so that α→ β → γ abbreviates (α→ (β → γ)).

5.1.2 Languages

Let V be a fixed infinite set of symbols which will be used to construct variables. A

language of stt is a tuple L = (B, C, τ) where:

• B is a set of symbols with Bool ∈ B called the base types of L. The types of L

are all the types formed from B using the type formation rules given above. Let

ΩL denote the set of types of L.

• C is a set of symbols called the constants of L. C includes the built-in constants

given in the left column of Table 5.1 as well as possibly other constant symbols.

• V and C are disjoint.

• τ : C → ΩL is a total function that assigns a type of L to each constant in

C. The definition of τ on the built-in constants is given in the right column of

Table 5.1.

∈α,⊂α,⊆α, ∅α,∪α and ∩α denote the usual set-theoretical operations for type α ∈

ΩL.

54

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Table 5.1: The Built-In Constant Symbols of L

Constant c Type τ(c)
make-pairα,β for all α, β ∈ ΩL (α→ β → (α× β))

firstα,β for all α, β ∈ ΩL ((α× β)→ α)
secondα,β for all α, β ∈ ΩL ((α× β)→ β)
make-setα for all α ∈ ΩL ((α→ Bool)→ set[α])
∈α for all α ∈ ΩL ((α× set[α])→ Bool)
⊂α for all α ∈ ΩL ((set[α]× set[α])→ Bool)
⊆α for all α ∈ ΩL ((set[α]× set[α])→ Bool)
∅α for all α ∈ ΩL set[α]
∪α for all α ∈ ΩL ((set[α]× set[α])→ set[α])
∩α for all α ∈ ΩL ((set[α]× set[α])→ set[α])

5.1.3 Expressions

Let L = (B, C, τ) be a language of stt. There are six kinds of expressions in stt.

An expression of type of α of stt is a string of symbols defined inductively by the

formation rules below. Let x, y, z, f, g, h, . . . denote members of V and c denote a

constant. exprL[A,α] asserts that A is an expression of type α of L.

Variable:
x ∈ V , α ∈ ΩL

exprL[(x : α), α]

Constant:
c ∈ C, α = τ(c)

exprL[c, α]

Function application:

exprL[A,α], exprL[f, α→ β]

exprL[f(A), β]

55

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Function abstraction:

x ∈ V , α ∈ ΩL, exprL[B, β]

exprL[(λx : α . B), (α→ β)]

Equality:
exprL[A,α], exprL[B,α]

exprL[(A = B),Bool]

Definite description:

x ∈ V , α ∈ ΩL, exprL[A,Bool]

exprL[(Ix : α . A), α]

Expressions of type Bool are called propositions or formulas. A predicate is an

expression of stt of type (α→ Bool) for any α ∈ ΩL. An equation is an expression of

the form A = B (where A and B are expressions of the same type). An occurrence of

a variable (x : α) is called bound if it occurs within the scope of a textually enclosing

λx : α or Ix : α; otherwise the occurrence is called free. An expression in which all

occurrences of variables are bound is called a closed expression. A sentence of L is a

closed formula of L.

A substitution is a function from a finite set of variables to expressions. Let

v1, v2, . . . , vn denote variables of the form (x1 : α), (x2 : α), . . . , (xn : α), respectively.

We write a substitution σ on {v1, v2, . . . , vn} as [v1 7→ A1, v2 7→ A2, . . . , vn 7→ An]

where σ(vi) = Ai for i = 1, 2, . . . n. The application of σ to an expression e, written

as eσ, is the result of simultaneously replacing all free occurrences of the variables

v1, v2, . . . , vn in the expression e with the expressions σ(v1), σ(v2), . . . , σ(vn), respecti-

vely.

We will often use the following abbreviation rules to write expressions in a more

compact form:

56

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(1) A variable (x : α) occurring in the bodyB of (� x : α . B), where � ∈ {λ,∀,∃, I}

may be written as x if there is no resulting ambiguity.

(2) A variable (x : α) occurring freely in an expression may be written as x if it is

clear from the rest of expression what its type must be.

(3) A matching pair of parentheses in an expression may be omitted if there is no

loss of meaning.

5.1.4 Definitions and Abbreviations

Let Aα, Bα, Cα, . . . denote syntactic variables ranging over expressions of type α of

L. We will assume that ϕ, ψ, . . . denote formulas, i.e., expressions of type Bool. We

introduce the following definitions and abbreviations:

true means (λx : Bool . x) = (λx : Bool . x).

false means (λx : Bool . true) = (λx : Bool . x).

¬ϕ means (ϕ = false) .

(Aα 6= Bα) means ¬(Aα = Bα).

(ϕ ∧ ψ) means (λ f : α . f(true)(true)) = (λ f : α . f(ϕ)(ψ))

where α = (Bool→ Bool→ Bool).

(ϕ ∨ ψ) means ¬(¬ϕ ∧ ¬ψ).

(ϕ ⊃ ψ) means (¬ϕ ∨ ψ).

(ϕ⇔ ψ) means (ϕ = ψ).

(∀x : α . ϕ) means (λx : α . ϕ) = (λx : α . true).

(∃x : α . ϕ) means ¬(∀x : α . ¬ϕ).

� x1 : α1, . . . , xn : αn . ϕ means (� x1 : α1 . (� x2 : α2, . . . , xn : αn . ϕ))

where � ∈ {λ,∀, ∃} and n ≥ 2.

57

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(Aα, Bβ) means (make-pairα,β(Aα)(Bβ)).

(Aα1 , . . . , Aαn) means (Aα1 , (Aα2 , . . . , Aαn))

where n ≥ 3.

(α1 × · · · × αn) means (α1 × (α2 × · · · × αn))

where n ≥ 3.

fβ(A1
α1
, . . . , Anαn

) means fβ((A1
α1
, . . . , Anαn

))

where n ≥ 2 and β = ((α1 × · · · × αn)→ γ).

#1(A1
α1
, . . . , Anαn

) means (firstα1,β((A1
α1
, . . . , Anαn

))

where n ≥ 2 and β = (α2 × · · · × αn).

#m(A1
α1
, . . . , Anαn

) means #(m− 1)(secondα1,β((A1
α1
, . . . , Anαn

)))

where 2 ≤ m ≤ n, and

β = (α2 × · · · × αn).

if(ϕ,Aα, Bα) means (Ix : α . ((ϕ ⊃ ((x : α) = Aα)) ∧

(¬ϕ ⊃ ((x : α) = Bα))))

where (x : α) does not occur in ϕ, Aα or Bα.

{(x : α) | ϕ} means (make-setα((λx : α . ϕ))).

(Aα ∈ Bβ) means (∈α (Aα, Bβ))

where β = set[α].

58

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

5.2 Semantics of STT

5.2.1 Frame

A frame for a language L = (B, C, τ) of stt is a collection {Dα : α ∈ ΩL} of nonempty

domains such that:

(1) DBool = {T,F}.

(2) For α, β ∈ ΩL, Dα→β is the set of all total functions mapping Dα to Dβ.

(3) For α, β ∈ ΩL, Dα×β is the set of all ordered pairs (a, b) such that a ∈ Dα and

b ∈ Dβ.

(4) For α ∈ ΩL, Dset{α} is the power set of Dα

DBool is the domain of truth values ; for α ∈ B\Bool, Dα is a domain of individuals ;

and, for α, β ∈ ΩL, Dα→β is a function domain, Dα×β is an ordered pair domain, and

Dset{α} is a set domain.

5.2.2 Interpretations

A model1 M of stt for a language L = (B, C, τ) is a tripleM = ({Dα : α ∈ ΩL}, I, e)

consists of a frame, a function e that maps each α ∈ Ω to a member of Dα, and an

interpretation function I that maps each constant c in C to an element of Dτ(c), which

is called the denotation of c, such that:

(1) For all α, β ∈ ΩL, I(make-pairα,β) is the function f ∈ Dα→β→(α×β) such that, for

all d1 ∈ Dα and d2 ∈ Dβ, f(d1)(d2) = (d1, d2).

1We are defining here the notion of a standard model as opposed to a general model.

59

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(2) For all α, β ∈ ΩL, I(firstα,β) is the function f ∈ D(α×β)→α such that, for all

d1 ∈ Dα and d2 ∈ Dβ, f((d1, d2)) = d1.

(3) For all α, β ∈ ΩL, I(secondα,β) is the function f ∈ D(α×β)→β such that, for all

d1 ∈ Dα and d2 ∈ Dβ, f((d1, d2)) = d2.

(4) For all α ∈ ΩL, I(make-setα) is the function f ∈ D(α→Bool)→set[α] such that, for

all d1 ∈ Dα→Bool, f(d1) = {d2 ∈ Dα | d1(d2) = T}.

(5) For all α ∈ ΩL, I(∈) is the function f ∈ D(α×set[α])→Bool such that, for all

d1 ∈ Dα and d2 ∈ Dset[α], f((d1, d2)) = T if d1 is a member of d2.

(6) For all α ∈ ΩL, I(⊂α) is the function f ∈ D(set[α]×set[α])→Bool such that, for all

d1 ∈ Dset[α] and d2 ∈ Dset[α], f((d1, d2)) = T if d1 is a proper subset of d2.

(7) For all α ∈ ΩL, I(⊆α) is the function f ∈ D(set[α]×set[α])→Bool such that, for all

d1 ∈ Dset[α] and d2 ∈ Dset[α], f((d1, d2)) = T if d1 is a subset of d2.

(8) For all α ∈ ΩL, I(∅α) = {}, the empty set.

(9) For all α ∈ ΩL, I(∪α) is the function f ∈ D(set[α]×set[α])→set[α] such that, for all

d1, d2 ∈ Dset[α], f((d1, d2)) = {d3 ∈ Dα | d3 ∈ d1 ∨ d3 ∈ d2}.

(10) For all α ∈ ΩL, I(∩α) is the function f ∈ D(set[α]×set[α])→set[α] such that, for all

d1, d2 ∈ Dset[α], f((d1, d2)) = {d3 ∈ Dα | d3 ∈ d1 ∧ d3 ∈ d2}.

An assignment into a frame {Dα : α ∈ ΩL} for L is a function θ whose domain

is the set of variables of L such that, for each variable (x : α) for L, θ(x : α) ∈ Dα.

Given an assignment θ, a variable (x : α), and d ∈ Dα, let θ[(x : α) 7→ d] be the

variable assignment θ′ such that θ′((x : α)) = d and θ′(X) = ϕ(X) for all variables

X 6= (x : α).

60

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

The valuation function forM is the binary function V that takes as arguments an

expression E of L and a variable assignment θ into the frame ofM and that satisfies

the six conditions below:

(1) Let E be a variable (i.e., E ∈ V of the form (x : α)) of stt. Then VMθ (E) =

θ(E).

(2) Let E be a constant (i.e., E ∈ C) of stt. Then VMθ (E) = I(E).

(3) Let E be of the form f(A). Then VMθ (E) = VMθ (f)(VMθ (A)), the result of

applying the function VMθ (f) to the argument VMθ (A).

(4) Let E be of the form (λx : α . B) where B is of type β. Then VMθ (E) is the

function f : Dα → Dβ such that, for each d ∈ Dα, f(d) = VMθ[(x:α)7→d](B).

(5) Let E be of the form A = B. If VMθ (A) = VMθ (B), then VMθ (E) = T; otherwise

VMθ (E) = F.

(6) Let E be of the form (Ix : α : A). If there is a unique d ∈ Dα such that

VMθ[(x:α)7→d](A) = T, then VMθ (E) = d; otherwise VMθ (E) = e(α), the canonical

error element for type α.

Let E be an expression of type α of L and ϕ be a formula. VMθ (E) is called the

value of E inM with respect to θ. For a closed expression E, Vθ(E) does not depend

on θ. A formula ϕ of L is valid in M if VMθ (ϕ) = T for all variable assignments θ

into M.

A theory of stt is a pair T = (L,Γ) where L is a language of stt and Γ is a set

of sentences of L called the axioms of T . T0, T1, T2, etc. denote theories.

61

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

A model of T is a model M for L in which each member of Γ is valid in M. T is

satisfiable if there is some model for T . A formula ϕ of L is a semantic consequence

of T , written as T |= ϕ, if ϕ is valid in every model for T .

In the rest of the thesis, let L = (B, C, τ) be a language of stt and T = (L,Γ) be

a theory of stt.

62

Chapter 6

FCL: The Syntax

In Chapter 5 we introduced stt, the underlying logic of fcl. fcl consists of several

kinds of syntactic objects that include types and expressions from stt. In this chapter

we give a full presentation of the syntax of fcl. We use a theory of stt as our base

theory. On top of the stt theory, we build fcl. We assume that each concept and

notation defined in Chapter 5 for stt is defined in fcl in the obvious way if it is not

explicitly defined in this chapter.

fcl has a parameter T that is a theory of stt that extends the base theory. T

includes any needed vocabulary and assumptions about the contracts that are being

considered. We consider a contract in fcl to be a set of components (definitions,

agreements, and rules) that can refer to “observables” and can include conditions

that depend on “observables”. Section 6.1 introduces L0, the base language of fcl.

Section 6.2 gives the concepts of observables and actions of fcl. The last part of this

chapter will focus on the presentation of fcl, a language based on L0 for expressing

contracts.

63

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

6.1 The Language L0

Let L0 = (B0, C0, τ0) be a language of fcl of stt where:

• B0 includes the following base types:

(1) Int denotes a type of integers.

(2) Time is an alias for Int. Hence, we assume that time is represented as a

discrete linearly ordered set of values such that each value has a predecessor

and a successor. The values many denote any convenient measure of time

such as days, hours, seconds, etc.

(3) String denotes a type of strings of a sequence of characters.

(4) Event, Act, Party, Currency, and Goods are unspecified types. Event is a type

of events. These can be actions performed by the parties of a contract

as well as events that the parties have no control over. Party is a type of

the parties of contracts. Currency is a type of the chosen unit of monetary

exchange. Goods is a type of products that are shipped between parties.

Act is a type of acts. An act performed by parties is called an action.

• C0 includes the constants given in the left column of Table 5.1, the constants of

the integers operations given in Table 6.1, and the constants for writing contracts

given in Table 6.2.

• The definition of τ on the constants in C0 is given in the right columns of

Table 5.1, Table 6.1, and Table 6.2.

We assume V includes Xtime. The variable (Xtime : Time) is used to instantiate ex-

pressions with the current time of a contract. Other base types and constants can be

added to B0 and C0 as needed.

64

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Table 6.1: The constants for Int of L0

Constant c Type τ(c)
0 Int

1 Int

+ ((Int× Int)→ Int)
− ((Int× Int)→ Int)
∗ ((Int× Int)→ Int)
< ((Int× Int)→ Bool)
≤ ((Int× Int)→ Bool)

Table 6.2: The constants for contracts of L0

Constant c Type τ(c)
toffer Time

obs-event ((Time× Event)→ Bool)
transfer ((Currency× Int)→ Act)
deliver ((Goods→ Act)

The constants given in the left column of Table 6.1 denote the usual integer opera-

tions. toffer is a time constant that is intended to represent the time a contract is offe-

red. obs-event is used to express the observation of events as described in section 6.2.

transfer is an unspecified constant that represents the transaction of monetary values.

transfer($,5) means the action of transferring $5. deliver is an unspecified constant that

represents the delivery of goods or products.

We define sub(ϕ, t) to be the set of substitutions σ that map the free variables in

the formula ϕ to appropriate closed expressions such that σ(Xtime) = t.

Let T0 = (L0,Γ0) be the theory of fcl of stt, where L0 = (B0, C0, τ0) and Γ0 is a

set of sentences that include the usual axioms for integer constants given in Table 6.1.

The constants toffer, obs-event, and transfer are unspecified by T0.

65

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

6.2 Observables

An observable is something that has a variable value that can be observed at a parti-

cular time [46, 47]. Let us look at a couple of examples. The temperature of a room

is an observable. Its value at a given time t is the temperature measured in the room

at t. An event is an observable whose value is either true or false. Its value at a given

time t is true [false] if the event occurs [does not occur] at t.

Definition 6.1 (Observable). In fcl, an observable is an application of the form

f(t, a1, . . . , an)

where f is a constant of type

Time× α1 × · · · × αn → β

with n ≥ 0.

Thus the value of the observable f(t, a1, . . . , an) depends on time in the sense that

it depends on the value of its first argument which is of type Time. The value of

f(t, a1, . . . , an) can also depend on the parameters a1, . . . , an. Notice that the obser-

vable of fcl is closer to a Lisp quotation, or a PROLOG fact, than other things.

Definition 6.2 (Observation). An observation of fcl is an equation

o = v

where:

• o is an observable f(t, a1, . . . , an) of type Time× α1 × · · · × αn → β.

66

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

• v is an expression of type β that denotes a possible value of the observable o.

When the output type of f is Bool, o = true and o = false can be written as o and ¬o,

respectively. An observational statement of fcl is a formula of stt constructed from

observations using the machinery of stt.

The two examples of observables mentioned above can be expressed in fcl as

Examples 6.2.1 and 6.2.2.

Example 6.2.1. Let obs-temp be a constant of type Time→ Int. Then obs-temp(t) = a

represents the observation that the temperature in a particular room is a at time t.

Example 6.2.2. obs-event(t, e) represents the observation that the event e occurs at

time t.

6.3 Actions

An action is an event that can be performed by the parties of a contract. There are

two sorts of entities involved in an action: subjects and objects. The former are the

entities who perform the action, while the latter are the entities that are acted upon

by the subjects. The subjects and objects are parties of the contract.

Definition 6.3 (Action). An action a of type Event is defined as a tuple of the form

(L, act,S,O)

where:

• L, of the type String, is the label of an action. Each action has a unique label.

67

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

• act, of the type Act, is the act of the action (i.e., the thing that is performed).

• S, of the type set[Party], is the set of subjects of the action.

• O, of the type set[Party], is the set of objects of the action.

Contracts typically include actions that specify the transfer of resources (money,

goods, services, and even pieces of information) between parties. The act of the

action would be the transfer of resources from one party (the subject) to another

party (the object). Thus an action of this kind encodes both what is transferred and

what parties are involved in the transference. Notice that there will be predicates

defined on Action.

6.4 FCL

fcl is a language with a parameter T = (L,Γ) that is a theory of stt that extends

the base theory T0 such that L0 ⊆ L and Γ0 ⊆ Γ. T is a theory of stt that serves as

a basis for defining the following components of fcl:

(1) Constant definitions.

(2) Agreements.

(3) Rules.

(4) Contracts.

T includes the machinery of T0 as well as any additional vocabulary and assump-

tions about the contracts that are being considered. A type of fcl (with parameter

68

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

T) is any type of the base language L and an expression of fcl (with parameter T)

is any expression of L.

In the following sections we will explain the components of fcl and conclude the

syntax of fcl.

6.4.1 Constant Definitions

Before presenting the syntax of fcl, we introduce the concepts of constant definition

as the definitions below. Let α and A be a type and an expression of fcl, respectively.

Definition 6.4 (Simple Constant Definition). A simple constant definition of fcl is

an expression D of the form

c = Aα

where:

• c is a new constant (i.e., a constant not in C).

• τ(c) = α.

• Aα is an expression of fcl (with possible new constants that are previously

defined) that defines the value of c.

Definition 6.5 (Constant Definition with Time Parameter). A constant definition

with a time parameter of fcl is an expression D of the form

f(t) = Aα

where:

• f is a new constant.

69

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

• τ(f) = Time→ α.

• t is an expression of type Time.

• Aα is an expression of fcl (with possible new constants) that defines the value

of f .

• f(t) is treated as a new constant in the semantics for fcl.

Note: This last kind of definition is not a standard definition of a function. It defines

the value of f at just a single value, namely, t. Other definitions can define f at other

values. Thus f will only particularly defined in a particular state of a contract.

Constant definitions are used, among other things, to define temporally based

values. The expressions in a contract may contain the new constants given in constant

definitions.

6.4.2 Agreements

An agreement is a promise to do or not do a specific action. It creates obligations or

prohibitions for the subjects of the agreement.

Definition 6.6 (Agreement). An agreement A of fcl is an expression of fcl (with

possible new constants) of either the form

O(a, T) or F(a, T)

where:

• a is an action, i.e., an expression denoting an action.

70

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

• T is a set of times, i.e., an expression of type set[Time].

• The operators O and F are inspired by the deontic operators for obligation and

prohibition [42].

O(a, T) is called an obligation; it represents the promise that the action a will be

observed at some time in T . F(a, T) is called a prohibition; it represents the promise

that the action a will not be observed at any time in T . O(a, T) and F(a, T) are

considered to be duals of each other.

We interpret an agreement in a contract inspired by the terms of deontic obligation

and prohibition. These concepts are utilized in expressions involving actions that are

executed by the parties of the contract. Thus, the concepts express what a party ought

to do or ought not do [37]. Permissions will be handled differently from obligations

and prohibitions. See Chapter 8 for details of how permissions are handled in our

language.

Obligations and prohibitions have the distinctive characteristic of being violable.

When a promise made in a contract is honored, we say the promise has been satisfied.

If it has not been honored, we say it has been violated. A promise may be restricted by

a temporal bound, that is, a period of time during which an obligation or prohibition

is in force. For example, a tenant may be obliged to pay rent on the first day of each

month. Thus violation of an obligation may arise in two ways [7]: a party obliged

to perform an action may fail to do so or the party performs a temporally bounded

obligatory action but not within the time period specified. Violation of a prohibition

may arise in just one way: a party may perform a temporally bounded prohibited

action during the time period specified. A permission will never be violated but may

expire: a party may fail to perform a temporally bounded permitted action within

the time period specified.

71

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Notice that a promise may not be restricted by a temporal bound. In this case,

an obligation can never be violated, and a prohibition can never be satisfied.

6.4.3 Rules

Definition 6.7 (Rule). A rule R of fcl is inductively defined as an expression of

the form

ϕ 7→ Q

where:

• ϕ is a formula of fcl (with possible new constants).

• Q is a set of constant definitions, agreements, and rules.

We assume that each free variable occurring in a constant definition or an agreement in

Q also occurs in ϕ. Note that this assumption is not made for the constant definitions

and agreements in the rules of Q.

The condition ϕ of a rule is an assertion that depends on the values of observables.

It can be an assertion that something has happened. We will see in Chapter 7 that,

if ϕ is satisfied at time t, the members of Q are added to the state of a contract at

time t+ 1. Thus a rule can dynamically change the state of a contract.

Definition 6.8 (Conditional Agreement). A conditional agreement of fcl is a rule

of the form

ϕ 7→ {A}

where A is an agreement.

72

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Thus, a conditional agreement is an agreement that comes into effect only when a

certain condition is satisfied.

6.4.4 Contracts

We think of a contract in two ways. Syntactically, a contract is a written expression

satisfying certain syntactic conditions. Semantically, a contract is a set of temporally

based promises between parties.

Definition 6.9 (Contract). A contract C of fcl is a pair

(t0,Q)

where:

• t0 is an expression of type Time representing the time the contract is offered to

the parties.

• Q is a set of constant definitions, agreements, and rules.

The parties of C are the parties mentioned in the rules in Q.

6.4.5 The Syntax of FCL

Definition 6.10 (FCL Syntax). The syntax of fcl is defined by the following gram-

mar:

73

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

D := c = Aα | f(t) = Aα

A := O(a, T) | F(a, T) where a denotes an action and T denotes a set of times.

R := ϕ 7→ Q where Q = {D1, . . . ,Dk,A1, . . . ,Am,R1, . . . ,Rn} with

k,m, n ≥ 0.

C := (t,Q) where t is an expression of type Time.

We use agreements to describe agreements that are independent of time and events and

use rules to describe how to add new agreements to a contract over time. Conditions

are assertions that depend on events. As we will see in the next chapter, a contract

has a “state” consisting of a set of constant definitions, agreements, and rules. The

state evolves over time like the state of a program evolves over time. A contract is

“fulfilled” when all the agreements in its state are satisfied and all the rules in its

state are no longer applicable. A contract is “breached” when some agreement in its

state is violated.

74

Chapter 7

FCL: The Semantics

In fcl, a contract is a set of components (definitions, agreements, and rules) that can

refer to “observables” and can include conditions that depend on “observables”. The

meaning of these components can change when the values of observables mentioned in

them change, and new components can be added when triggering conditions become

true. Hence the state of a contract as a set of components can evolve over time in

much the same way as the state of a computer program evolves over time.

In Chapter 6 we introduced the syntax of fcl. This chapter presents the formal

semantics of fcl. Section 7.1 introduces a model of fcl. Section 7.2 and 7.3 introduce

the semantics of agreements and rules in contracts. Section 7.4 explains how the state

of a contract changes.

7.1 Models

A model of fcl with parameter T = (L,Γ) is a model of T as an stt theory. Fix a

modelM = ({Dα : α ∈ ΩL}, I, e) for T . Let VM be the valuation function ofM that

75

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

assigns each (closed) expression of L a value in M. In particular, VM assigns each

observable f(t, a1, . . . , an) a value for all times t (and parameters a1, . . . , an). Thus a

model includes the values for all observables at all times.

7.2 Agreements

Let t be an expression of type Time. The value of an obligation O(a, T) inM at time

t is VM(ϕ) where ϕ is the formula

∃u : Time . u ∈ T ∧ u ≤ t ∧ obs-event(u, a).

The value of a prohibition F(a, T) in M at time t is VM(ψ) where ψ is the formula

∀u : Time . u ∈ T ⊃ (u ≤ t ∧ ¬obs-event(u, a)).

An agreement is satisfied inM at time t if its value inM at t is T. An agreement is

violated in M at time t if the value of its dual in M at t is T. We will occasionally

use an agreement O(a, T) or F(a, T) as a formula of fcl whose meaning is ϕ or ψ,

respectively.

7.3 Rules

Let R = ϕ 7→ Q be a rule of fcl, t be an expression of type Time, sub(ϕ, t) be the set

of substitutions defined in Section 6.1. The variable Xtime is used to instantiate a rule

with the current time of a contract. For any Q ∈ Q and substitution σ ∈ sub(ϕ, t), let

Q|σ be Qσ if Q is a constant definition or agreement and be Qσ′ if Q is a rule where

76

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

σ′ = σ[Xtime → Xtime]. Then define new-items(R,M, t) to be

{Q|σ |σ ∈ sub(ϕ, t) ∧ VM(ϕσ) = T ∧Q ∈ Q}.

R is active in M at t if VM(ϕσ) = T for some σ ∈ sub(ϕ, t). R is defunct in M

at t if VM(ϕσ) = F for all u ≥ t and all σ ∈ sub(ϕ, u). If R is defunct inM at t, then

R is not active in M at u and new-items(R,M, u) = ∅ for all u ≥ t.

7.4 Contracts

7.4.1 Expansion of Models

Before we present the semantics of contracts, we introduce the concept of expansion

as the definition given below.

Definition 7.1 (Sub-language). Let L = (B, C, τ) and L′ = (B, C ′, τ ′). L is a sub-

language of L′ written as L ⊆ L′ if C ⊆ C ′ and τ is a sub-function of τ ′.

Definition 7.2 (Expansion). If L ⊆ L′ and M = (D, I) is a model of L, then a

model M′ = (D, I ′) of L′ is an expansion of M to L′ if I is a sub-function of I ′.

7.4.2 State of Contracts

In fcl, the state of a contract is a set of constant definitions, agreements, and rules.

A contract could involve dynamic processes. As certain events happened, more and

more components of a contract are put into effect. The contract is progressively

realized in this way.

77

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Definition 7.3 (State of a Contract). Let C = (t0,Q) be a contract. The state of C

in M at time t, written state(C,M, t), is the set of constant definitions, agreements,

and rules defined inductively as follows:

(1) state(C,M, t0) = Q∪ {D}, where D is the constant definition toffer = t0.

(2) If t ≥ t0, then state(C,M, t+ 1) =

(state(C,M, t)) ∪
⋃

R∈Q

new-items(R,M′, t)

where M′ is the smallest expansion of M such that VM
′
(D) = T for each

constant definition D ∈ state(C,M, t).

The model M′ in clause 2 is called the C-expansion of M at time t. A model of the

contract C at time t is any C-expansion of a model of fcl at time t.

Note: We are employing a very simple model of concurrency in our semantics

for contracts: At each time t, all active rules are applied simultaneously and the

resulting new components – constant definitions, agreements, and rules — are added

to the state of the contract at the next point in time. There is no opportunity for

the application of rules to interfere with each other. In particular, a component can

never be removed from the state once it is added to it.

Definition 7.4 (Fulfilled Contract). A contract C is fulfilled in M at time t where

VM(t) ≥ VM(t0) if every agreement in state(C,M, t) is satisfied in the C-expansion

of M at t and every rule in state(C,M, t) is defunct in the C-expansion of M at t.

Definition 7.5 (Breached Contract). A contract C is breached inM at time t where

VM(t) ≥ VM(t0) if there is an agreement in state(C,M, t) that is violated in the

C-expansion of M at t.

78

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Definition 7.6 (Null Contract). A contract C is null inM at time t where VM(t) ≥

VM(t0) if state(C,M, t) contains no agreements and every rule in state(C,M, t) is

defunct in the C-expansion of M at t.

Notice that once a contract is fulfilled [breached], it is fulfilled [breached] forever. In

some cases, a contract may have agreements that can never be fulfilled, and then we

call it an unfulfillable contract. Of course, breached contracts are unfulfillable.

79

Chapter 8

Examples expressed in FCL

In this chapter, we will first explain the concepts of permissions and reparations of

contracts and how these concepts can be expressed in fcl, and then formalize in fcl

the examples introduced in Chapter 3.

8.1 FCL: Expressivity Issues

8.1.1 Permissions

An agreement is an understanding between parties. It creates obligations, permissi-

ons, or prohibitions to do the specific things that are the subject of that agreement.

Agreements of the form O(a, T) and F(a, T) are used in fcl to represent promises

in the form of obligations and prohibitions. Notice that agreements in fcl do not

include expressions formed using an operator corresponding to the deontic operator

P for permission.

Unlike an obligation or a prohibition, a permission is not a promise. We think a

80

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

permission given to one party can be expressed as an obligation (or prohibition) given

to a second party. We recall Example 1.1.1 to illustrate this. The clause 2 of this

example is a permission, saying that the buyer is permitted to exercise the option on

December 17, 2015. This permission can be considered as a conditional agreement,

saying that if the option buyer exercise the option on time, then the option seller is

obligated to transfer one share of stock to the option buyer within the deadline.

In fcl, one party’s permission to perform an action a will often be expressed by:

(1) The absence of an obligation to perform a;

(2) The absence of a prohibition to perform a; and

(3) A conditional agreement that says, if a is performed, then another party is

obligated to perform some action b.

Thus, a permitted action by one party will be expressed as a rule that can create a

second party’s obligation in response to the performance of this action.

In this case, some kinds of permissions can be expressed in fcl. Consider Ex-

ample 1.1.1 in which the option buyer is permitted to exercise the call option. This

permission is expressed by adding a rule ϕ 7→ B to the contract’s state where the

condition ϕ holds if it is observed that the buyer of the option exercises the option

and B includes an obligation that the seller of option sells to the buyer the goods

specified by the option. See Section 8.2 for details.

8.1.2 Reparations

A contract usually specifies actions to be taken in case of the violation of a part of

the contract. A conditional obligation arising in response to a violated agreement is

81

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

considered as a reparational agreement. To illustrate how a violation that arises in a

contract can be “repaired”, we recall Example 3.2.1.

Note that clause 3 of this example is a primary obligation, saying that the buyer is

obligated to pay the second half within 30 days of delivery. Clause 4 is an example of

reparational obligation in which an unfulfilled obligation can generate obligations to

“repair” this violation. It says what the buyer is obligated to do if he or she violates

the primary obligation.

Similar to the reparational obligation, a reparational prohibition is a conditio-

nal agreement arising in response to a violated prohibition. Both the reparational

obligations and reparational prohibitions are reparational agreements. In fcl, a re-

parational agreement will be expressed as a rule that can create other agreements or

rules in response to the violation of the primary agreement. To express the potential

violations, we introduce obs-event-during(t, e, T) to represent the observation at time t

that the event e occurred during the time period T .

In fcl, a reparational obligation of O(a, T) is expressed as a rule of the form

¬obs-event-during(Xtime, a, T) 7→ B.

The expression ¬obs-event-during(t, a, T) represents a potential violation of agreement

O(a, T). If an obligation is satisfied, the rule to “repair” this obligation will never be

active. Similarly, a reparational prohibition of F(a, T) is expressed as a rule of the

form

obs-event-during(Xtime, a, T) 7→ B.

A rule that represents a reparational prohibition of F(a, T) will always be defunct if

the agreement F(a, T) is satisfied.

82

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Consider clause 4 of Example 3.2.1, the reparational obligation of the primary

obligation given in clause 3 is the conditional agreement that, if the second half of

payment has not been observed within 30 days of delivery, then the buyer has to pay

an additional fine of 10% within 14 days. How this conditional agreement is expressed

in fcl is shown in Section 8.3.

Notice that the violation of an agreement will make a breach of a contract. If a

contract is reparable, then every related agreement that can “repair” the breach will

be considered as a reparational agreement and represented as a rule.

8.1.3 Continuous Actions

We need a proper formalization of time and temporal information of events as noted

in Section 3.1. In fcl, a continuous action that is performed throughout time T

is expressed as a repeated action that is performed at each time point during T .

Consider clause 1 of Example 3.2.2, the providing of an apartment to the tenant is a

continuous action that should be performed by the landlord throughout the term of

the lease. How this action is expressed in fcl is shown in Section 8.4.

8.1.4 Avoid Paradoxes

As described in Chapter 2 the standard deontic logic suffers from a number of well-

known paradoxes. These paradoxes are not actually logical paradoxes in the normal

sense. They are more or less confusions between the formal deontic concepts and

natural language. Although the operators O and F of fcl are inspired by the deontic

operators for obligation and prohibition, they are not deontic operators. Thus the

paradoxes in deontic logic that arise from these operators do not occur in fcl. For

83

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

example, the logical or is usually understood as a choice in the standard deontic logic.

This interpretation may produce the free choice permission paradoxes like “if it is

permitted that one mails a letter or burns it, then one is allowed to both mail a letter

and burn it”. In fcl, we can add two rules to avoid these paradoxes: 1) if one mails a

letter, then one is prohibited to burn it; 2) if one burns a letter, then one is prohibited

to mail it. It is possible, however, for a contract state to be produced that contains

contradictions, but this would be caused by a flaw in the contract, not a flaw in the

conceptual framework.

8.2 An American Call Option

We formalize here Example 1.1.1, an American Call Option, as a contract C of fcl.

Let T = (L,Γ) be an extension of T0, the base theory of fcl, such that:

• L = (B, C, τ) where:

– B = B0.

– C includes the members of C0 and the constants given in the left column

of Table 8.1.

– The definitions of τ on the new constants are given in the right column of

Table 8.1.

• Γ = Γ0.

C has two parties: a seller and a buyer. The unit of time is one day. Let the offer time

t0 of the contract, the time the seller offered the contract to the buyer, be some day

before June 30, 2015. C is defined as the pair (t0, {D1,D2,R1}) where:

84

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Table 8.1: Constants for an American Call Option

Constant c Type τ(c)
seller, buyer Party

“Buy Option” String

“Exercise Option” String

“Transfer Stock” String

D1 : tbuy = 0 (June 30, 2015).

D2 : texpire = 170 (December 17, 2015).

R1 is defined below.

C is constructed from two rules R1 and R2:

(1) Rule for Buying the Option:

R1 = ϕ1 7→ {R2} where:

ϕ1 = obs-event(tbuy, e1).

e1 = (“Buy Option”, transfer($5), {buyer}, {seller}).

R2 is defined below.

(2) Rule for Exercising the Option:

R2 = ϕ2 7→ {D3,A} where:

ϕ2 = obs-event(Xtime, e2) ∧Xtime ∈ [tbuy, texpire].

e2 = (“Exercise Option”, transfer($80), {buyer}, {seller}).

D3 : texercise = Xtime.

A = O(e3, [texercise, texercise + 30]).

e3 = (“Transfer Stock”, deliver(stock), {seller}, {buyer}).

85

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

state(C,M, t0) = {D1,D2,R1} null

state(C,M, tbuy + 1) = {D1,D2,R1,R2} null

state(C,M, texercise + 1) = {D1,D2,D3σ,Aσ,R1,R2} breached

fulfilled

R1 is defunct

R1 is active

R1,R2 are defunct

R2 is active

A is violated

A is satisfied; R1,R2 are defunct

Figure 8.1: Execution of the American Call Option C

tbuy, texpire, and texercise are new constants of type Time. [tbuy, texpire] is the interval

representing the set of times {tbuy, tbuy + 1, . . . , texpire − 1, texpire}. [texercise, texercise+30]

is the interval representing the set of times {texercise, texercise + 1, . . . , texercise + 30}.

e1, e2, and e3 denote expressions of type Event. Each of these three events are

actions by one of the two parties. “Buy Option”, “Exercise Option”, and “Transfer

Stock” are constants of type String. They are the labels of the three events e1, e2,

and e3, respectively. The three events are tied to the contract. For example, a more

exact name for “Buy Option” would be “Buy Option Described by Contract C”. We

assume that each of the three events can happen as most once. ϕ1 asserts the option

is bought on June 30, 2015, and ϕ2 asserts the option is exercised at a time after the

option is bought and before the option expires.

The state of C in a model M at time t ≥ t0, written as state(C,M, t), evolves

over time as indicated in Figure 8.1. How the state of C evolves depends on the

observables specified by M. In the figure, let u be the time that R2 becomes active,

i.e, when the buyer exercises the option. Let σ be the substitution that maps Xtime

86

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

to u. Applying σ has the effect of replacing Xtime with u, whose value is the time u.

D3σ is thus the equation texercise = u, but Aσ is A since Xtime does not occur in A.

8.3 A Sale of Goods Contract

We formalize here Example 3.2.1, the sale of a printer contract, as a contract C of

fcl. Let T = (L,Γ) be an extension of T0, the base theory of fcl, such that:

• L = (B, C, τ) where:

– B = B0.

– C includes the members of C0 and the constants given in the left column

of Table 8.2.

– The definitions of τ on the new constants are given in the right column of

Table 8.2.

• Γ includes Γ0 and the two sentences given below.

(1) ∀ t, t′ : Time, e : Event . (∃u : Time . u ≤ t ∧ u ≤ t′ ∧ obs-event(u, e)) ⇐⇒

obs-event-before(t, t′, e).

(2) ∀ t : Time, T : set[Time], e : Event . (∃u : Time . u ≤ t ∧ u ∈ T ∧

obs-event(u, e)) ⇐⇒ obs-event-during(t, T , e).

C has two parties: a seller and a buyer. The unit of time is one day. Let the offer

time t0 of the contract, the time the seller offered the contract to the buyer, be some

day before the buyer make an order. C is defined as the pair (t0, {R1}) where R1 is

defined below. C is constructed from the following nine rules:

87

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Table 8.2: Constants for a Sale of Goods Contract

Constant c Type τ(c)
seller, buyer Party

“Order Printer” String

“Deliver Printer” String

“Return Printer” String

“Return Payment” String

“Pay Seller” String

obs-event-before (Time× Time× Event→ Bool)
obs-event-during (Time× set[Time]× Event→ Bool)

% ((Int× Int)→ Int)

(1) Rule for Ordering a Printer:

R1 = ϕ1 7→ {D1,A1,R2}.

ϕ1 = obs-event(Xtime, e1) ∧ toffer ≤ Xtime.

e1 = (“Order Printer”, deliver(order), {buyer}, {seller}).

D1 : torder = Xtime.

A1 = O(e2, [torder, torder + 22]).

e2 = (“Deliver Printer”, deliver(printer), {seller}, {buyer}).

R2 is defined below.

(2) Rule for Delivering the Printer:

R2 = ϕ2 7→ {D2,D3,R3,R4,R5,R6}.

ϕ2 = obs-event(Xtime, e2) ∧Xtime ∈ [torder, torder + 22].

D2 : tdeliver = Xtime.

D3 : total-paid(Xtime) = 0.

R3,R4,R5 and R6 are defined below.

88

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(3) Rule for Returning the Printer:

R3 = ϕ3 7→ {D4,A2}.

ϕ3 = obs-event(Xtime, e3) ∧Xtime ∈ [tdeliver, tdeliver + 14].

e3 = (“Return Printer”, deliver(printer), {buyer}, {seller}).

D4 : treturn = Xtime.

A2 = O(e4(total-paid(Xtime)), [treturn, treturn + 7]).

e4 = λXtotal.(“Return Payment”, transfer(Xtotal), {seller}, {buyer}).

(4) Rules for Recording the Payment:

R4 = ϕ4 ∧ ¬ϕ5 7→ {D5}.

R5 = ¬ϕ4 ∧ ¬ϕ5 7→ {D6}.

ϕ4 = obs-event(Xtime, e5(Xpayment)) ∧ tdeliver ≤ Xtime.

e5 = λXpayment.(“Pay Seller”, transfer(Xpayment), {buyer}, {seller}).

ϕ5 = obs-event-before(Xtime, Xtime, e3).

D5 : total-paid(Xtime) = total-paid(Xtime − 1) +Xpayment.

D6 : total-paid(Xtime) = total-paid(Xtime − 1).

(5) Rules for Making Payments:

R6 = ¬ϕ6 7→ {A3,R7}.

ϕ6 = obs-event-before(Xtime, tdeliver + 1, e3).

A3 = O(e5(200 ∗ 0.5), [tdeliver, tdeliver + 1]).

R7 = ϕ7 ∧ ¬ϕ5 7→ {D7,R8}.

ϕ7 = obs-event(Xtime, e5(200 ∗ 0.5)) ∧Xtime ∈ [tdeliver, tdeliver + 1].

89

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

D7 : tfirst = Xtime.

R8 = ¬ϕ8 ∧ ¬ϕ5 7→ {R9}.

ϕ8 = obs-event-during(Xtime, [tfirst + 1, tdeliver + 14], e5(200 ∗ 0.5)).

R9 is defined below.

(6) Rules for Paying Fine for a Late Payment:

R9 = ¬ϕ9 7→ {A4,A5}.

ϕ9 = obs-event-during(Xtime, [tdeliver + 15, tdeliver + 30], e5(200 ∗ 0.5)).

A4 = O(e5(200 ∗ 0.5), [tdeliver + 31, tdeliver + 44]).

A5 = O(e5(0.1 ∗ 200 ∗ 0.5), [tdeliver + 31, tdeliver + 44]).

torder, tdeliver, treturn, and tfirst are new constants of type Time. Each of the five events

e1, e2, e3, e4, and e5 are actions by one of the two parties. We assume that the events

e1, e2, e3, e4 can happen at most once and the “Pay Seller” event e5 can happen at

most twice.

total-paid(t) represents the total amount that the buyer has been observed to have

paid the seller at time t. When rule R4 is active, D5 is generated. D5 is used to

add a payment to the total amount paid at the previous time point. D5 and D6

work together to record the happenings of the “Pay Seller” event e5 in the timeline.

obs-event-before(t, t′, e), a constant of type Time× Time× Event→ Bool, represents the

observation that at time t the event e occurred on or before time t′.

We identify that the buyer has the following options to choose from after he has

accepted the printer and made the first payment:

(1) Buyer makes a return within 14 days after the delivery is made.

90

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(2) Buyer makes the second payment within 14 days after the delivery made.

(3) Buyer makes the second payment between 15 to 30 days after the delivery made.

(4) Buyer makes the second payment with an additional fine between 31 to 44 days

after the delivery made.

R8 and R9 work together as a reparation if the second payment is not made on

time. Within 14 days the buyer has the first and second options to choose from. R8,

says if the first two options have not been chosen, then between 15 to 44 days the

buyer is obligated to make the second payment. If it is paid late, which means R9 is

active, then an additional fine must be paid.

The state of C in a model M at time t ≥ toffer, written as state(C,M, t), evolves

over time as indicated in Figure 8.2.

8.4 A Lease Contract

We formalize here Example 3.2.2, a lease contract, as a contract C of fcl. Let

T = (L,Γ) be an extension of T0, the base theory of fcl, such that:

• L = (B, C, τ) where:

– B = B0 ∪{Q,Notice, Service}. Q denotes a type of rational numbers. Notice

and Service are unspecified types.

– C includes the members of C0 and the constants given in the left column

of Table 8.3.

– The definitions of τ on the new constants are given in the right column of

Table 8.3.

91

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

state(C
,M

,t0)
=
{R

1 }
n
u

ll

b
re

a
ch

e
d

state(C
,M

,tord
er)

=
{···

,D
1 σ
,A

1 σ
,R

2 }

state(C
,M

,X
tim

e)
=
{···

,D
6 σ}

state(C
,M

,td
eliver)

=
{···

,D
2 σ
,D

3 σ
,R

3 ,R
4 ,R

5 ,R
6 }

state(C
,M

,X
tim

e)
=
{···

,D
5 σ}

b
re

a
ch

e
d

state(C
,M

,td
eliver+

1)
=
{···

,A
3 σ
,R

7 }
state(C

,M
,tretu

rn)
=
{···

,D
4 σ
,A

2 σ}
b

re
a
ch

e
d

fu
lfi

lle
d

state(C
,M

,tfirst)
=
{···

,D
7 σ
,R

8 }
fu

lfi
lle

d

fu
lfi

lle
d

state(C
,M

,td
eliver+

15)
=
{···

,R
9 }

b
re

a
ch

e
d

state(C
,M

,td
eliver+

31)
=
{···

,A
4 σ
,A

5 σ}
b

re
a
ch

e
d

fu
lfi

lle
d

R
1

is
d

efu
n

ct

R
1

is
active

A
1

is
violated

R
2

is
active

R
5

is
active

R
4

is
active

R
6

is
active

R
3

is
active

A
2

is
violated

A
2

is
satisfied

,
ru

les
are

d
efu

n
ct

A
3

is
violated

R
7

is
active

R
8

is
active

R
3

is
active

A
1 ,A

2
are

satisfied
,

ru
les

are
d

efu
n

ct

R
9

is
active

A
1 ,A

2
are

satisfied
,

ru
les

are
d

efu
n

ct

A
4

is
violated

A
5

is
violated

A
4 ,A

5
are

satisfied
,

ru
les

are
d

efu
n

ct

F
igu

re
8.2:

E
x
ecu

tion
of

th
e

S
ale

of
a

P
rin

ter
con

tract
C

92

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Table 8.3: Constants for a Lease Contact

Constant c Type τ(c)
landlord, tenant Party

“Contract Signed” String

“Tenant End Lease” String

“Landlord End Lease” String

“Provide Apartment” String

“Pay Rent” String

obs-cpi (Time→ Q)
obs-event-before (Time× Time× Event→ Bool)

provide (Service→ Act)
send (Notice→ Act)
max (Q×Q→ Q)

• Γ includes Γ0 and the two sentences given below.

(1) ∀ t, t′ : Time, e : Event . (∃u : Time . u ≤ t ∧ u ≤ t′ ∧ obs-event(u, e)) ⇐⇒

obs-event-before(t, t′, e).

(2) ∀x, y : Q . max(x, y) = if(x ≤ y, y, x).

C has two parties: a landlord and a tenant. The unit of time is one month. A month

m is divided into days so that m.n is the nth day in month m. Let the offer time t0

of the contract, the time the landlord offered the contract to the tenant, be some day

before January 01, 2016. C is defined as the pair (t0, {D1,D2,R1}) where:

D1 : tstart = 1.1 (2016-01-01).

D2 : texpire = 6.30 (2016-06-30).

R1 is defined below.

C is constructed from the following seven rules:

93

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(1) Rule for Signing the Contract:

R1 = ϕ1 7→ {R2,R3,R4,R5,R6} where

ϕ1 = obs-event(Xtime, e1) ∧ toffer ≤ Xtime ≤ tstart.

e1 = (“Contract Signed”, deliver(signature), {tenant}, {landlord}).

R2,R3,R4,R5 and R6 are defined below.

(2) Rule for Notifying the Termination of the Lease:

R2 = ϕ2 ∧ ϕ3 7→ {D3,D4,R7}.

ϕ2 = tstart ≤ Xtime.

ϕ3 = obs-event(Xtime, e2(Xmonth)) ∨ obs-event(Xtime, e3(Xmonth)).

e2 = λXmonth.(“Tenant End Lease”, send(Xmonth), {tenant}, {landlord}).

e3 = λXmonth.(“Landlord End Lease”, send(Xmonth), {landlord}, {tenant}).

D3 : tnotice = Xtime.

D4 : termination-month(Xtime) = Xmonth.

(3) Rule for Paying Rent before Notifying the Termination of the Lease:

R3 = ϕ2 ∧ (ϕ4 ∨ ϕ5) 7→ {A1,A2}.

ϕ4 = ¬(obs-event-before(Xtime, Xtime, e2(Xmonth))

∨ obs-event-before(Xtime, Xtime, e3(Xmonth))).

ϕ5 = (obs-event-before(Xtime, Xtime, e2(Xmonth))

∨ obs-event-before(Xtime, Xtime, e3(Xmonth)))

∧ ¬(1 ≤ Xmonth ∧Xtime ≤ tnotice +Xmonth).

A1 = O(e4, [Xtime, Xtime]).

e4 = (“Provide Apartment”, provide(appartment), {landlord}, {tenant}).

94

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

A2 = O(e5(rent-required(Xtime)), [Xtime.1, Xtime.7])

e5 = λXrent.(“Pay Rent”, transfer(Xrent), {tenant}, {landlord}).

(4) Rules for Annually Changing Rent:

R4 = ϕ6 7→ {D5}

R5 = ϕ7 ∧ ϕ8 7→ {D6}.

R6 = ϕ7 ∧ ¬ϕ8 7→ {D7}.

ϕ6 = (Xtime = tstart).

D5 : rent-required(Xtime) = 1000.

ϕ7 = obs-event(Xtime, e4) ∧ tstart + 1 ≤ Xtime.

ϕ8 = (Xtime%12 = 1).

D6 : rent-required(Xtime) = rent-required(Xtime − 1) ∗ obs-cpi(Xtime).

D7 : rent-required(Xtime) = rent-required(Xtime − 1).

(5) Rule for Paying Rent after Notifying the Termination of the Lease:

R7 = ϕ9 7→ {A1,A2}.

ϕ9 = max(texpire, tnotice) ≤ Xtime ∧Xtime ≤ tnotice + termination-notice(tnotice).

tstart, texpire, and tnotice are new constants of type Time. Each of the four events e1, e2,

e3, and e4 are actions by one of the two parties.

rent-required(t) represents the rent that the tenant has to pay to the landlord at time

t. When rule R4 is active, D5 is generated. D5 is used to record the amount of

rent required for the first month. D6 and D7 work together to calculate the required

amount of rent based on the observation of the CPI changes.

95

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

send(Xmonth) represents the length of time the tenant will stay in the apartment.

For example, if either the tenant or landlord sends to the other party a notice says the

tenant will move out of the apartment after 2 months, then Xmonth = 2.

96

Chapter 9

A Reasoning System

In Chapter 7 we have explained how a rule can change the state of a contract over

time. We think the state of a contract evolves over time like the state of a program

evolves over time. A contract is fulfilled when all the agreements in its state are

satisfied and all the rules in its state are no longer applicable. A contract is breached

when some agreement in its state is violated.

This chapter presents a reasoning system for fcl that is an extension of a proof

system for stt. The reasoning system of fcl can reason about whether a contract

is fulfilled or breached over time. Section 9.1 gives the definitions that are needed to

understand the rest of this chapter. Section 9.2 lists the additional judgments that

our reasoning system should include. The rules of inference for the reasoning system

are introduced in Section 9.3. An example of a simulation of a contract over time is

given in Section 9.4.

97

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

9.1 Definitions

Let T0 = (L0,Γ0) be the base theory of fcl, t be an expression of type Time, ϕ be a

formula, Γ be a set of formulas, A be an agreement, R be a rule, and C be a contract.

For a model M of fcl, M |= ϕ means VM(ϕ) = T and M |= Γ means M |= ψ for

all ψ ∈ Γ.

9.2 Judgments

A reasoning system for stt has a judgment of the form Γ ` ϕ that asserts ϕ logically

follows from Γ, i.e., M |= Γ impliesM |= ϕ for all modelsM of fcl. Since constant

definitions, agreements, and rules are not expressions of stt, we need the following

additional judgments in a reasoning system for fcl:

(1) Γ `C,t ϕ asserts that ϕ logically follows from Γ and C at t, i.e., M � Γ implies

M � ϕ for all models M of C at t.

(2) Agreement[Γ,A,C, t] asserts that A is in the state of C at t with respect to Γ,

i.e., M � Γ implies A ∈ state(C,M, t) for all models M of fcl.

(3) Rule[Γ,R,C, t] asserts that R is in the state of C at t with respect to Γ, i.e.,

M � Γ implies R ∈ state(C,M, t) for all models M of fcl.

(4) Satisfied[Γ,A,C, t] asserts that A is satisfied at t with respect to Γ, i.e.,M � Γ

implies that A is satisfied in M at t for all models M of C at t.

(5) Violated[Γ,A,C, t] asserts that A is violated at t with respect to Γ, i.e., M � Γ

implies A is violated in M at t for all models M of C at t.

98

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

(6) Defunct[Γ,R,C, t] asserts that R is defunct at t with respect to Γ, i.e., M � Γ

implies R is defunct in M at t for all models M of C at t.

(7) Fulfilled[Γ,C, t] asserts that C is fulfilled at t with respect to Γ, i.e., M � Γ

implies C is fulfilled in M at t for all models M of C at t,

(8) Breached[Γ,C, t] asserts that C is breached at t with respect to Γ, i.e., M � Γ

implies C is breached in M at t for all models M of C at t

The role of Γ is to specify the models in which C will be considered.

9.3 Rules of Inference

The reasoning system of fcl has the 16 rules of inference below including the usual

rules of inference for stt. The first rule of inference shows Γ `C,t ϕ extends Γ ` ϕ.

Inference Rule 1.

Γ ` ϕ
Γ `C,t ϕ

.

Inference Rule 1 says that if ϕ follows from Γ, then ϕ follows from Γ and C at t for

any contract C and time t.

Let t0 be an expression of type Time representing the time that a contract is

offered. The following four rules of inference show how the initial state of a contract

is established:

Inference Rule 2.

C = (t0,Q)

Γ `C,t0 toffer = t0

Inference Rule 3.

C = (t0,Q) D ∈ Q
Γ `C,t0 D

99

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Inference Rule 4.

C = (t0,Q) A ∈ Q
Agreement[Γ,A,C, t0]

Inference Rule 5.

C = (t0,Q) R ∈ Q
Rule[Γ,R,C, t0]

In fcl, once a constant definition, an agreement, or a rule has been added into

the state of a contract, it will be always in the state until the contract is terminated.

The following three rules of inference establish this property:

Inference Rule 6.

Γ `C,t D

Γ `C,t+1 D

Inference Rule 7.

Agreement[Γ,A,C, t]

Agreement[Γ,A,C, t+ 1]

Inference Rule 8.

Rule[Γ,A,C, t]

Rule[Γ,A,C, t+ 1]

Let R = ϕ 7→ {D1, . . . ,Dk,A1, . . . ,Am,R1, . . . ,Rn} be a rule where D1, . . . ,Dk

are constant definitions, A1, . . . ,Am are agreements, R1, . . . ,Rn are rules, and σ ∈

sub(ϕ, t). The following three rules of inference show how a rule changes the state of

a contract:

Inference Rule 9.

Rule[Γ,R,C, t],Γ `C,t ϕσ

Γ `C,t+1 D1σ, . . . ,Γ `C,t+1 Dkσ

Inference Rule 10.

Rule[Γ,R,C, t],Γ `C,t ϕσ

Agreement[Γ,A1σ,C, t+ 1], . . . ,Agreement[Γ,Amσ,C, t+ 1]

100

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Inference Rule 11.

Rule[Γ,R,C, t],Γ `C,t ϕσ

Rule[Γ,R1σ′,C, t+ 1], . . . ,Rule[Γ,Rnσ′,C, t+ 1]

where σ′ = σ[Xtime 7→ Xtime].

An agreement of fcl is a formula of fcl that asserts that something will be true

at a specified time. There is a rule of inference for satisfied agreements and a rule of

inference for violated agreements:

Inference Rule 12 (Satisfied Agreement).

Agreement[Γ,A,C, t],Γ `C,t A

Satisfied[Γ,A,C, t]
.

Inference Rule 13 (Violated Agreement).

Agreement[Γ,A,C, t],Γ `C,t A∗

Violated[Γ,A,C, t]

where A∗ is the dual of A (See Section 6.4.2 for the definition).

Let n be an integer with an expression of type Time representing n. There is a

rule of inference for defunct rules:

Inference Rule 14 (Defunct Rule).

Rule[Γ,R,C, t], (Γ `C,t ¬ϕσ for all n ≥ 0 and all σ with σ(Xtime) = t+ n)

Defunct[Γ,R,C, t]
.

The following two rules of inference are for fulfilled and breached contract:

Inference Rule 15 (Fulfilled Contract).

101

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Defunct[Γ,R,C, t] for all rules R such that Rule[Γ,R,C, t] holds

Satisfied[Γ,A,C, t] for all agreements A such that Agreement[Γ,A,C, t] holds

Fulfilled[Γ,C, t]
.

Inference Rule 16 (Breached Contract).

Violated[Γ,A,C, t] for some agreement A such that Agreement[Γ,A,C, t] holds

Breached[Γ,C, t]
.

9.4 Example

Our reasoning system can be used to both prove statements about a contract and

to simulate the unfolding of a contract over time. The latter is done by using Γ

to specify the observations that are expected over the course of the contract. The

reasoning system can be strengthened by introducing temporal operators that enable

one to say, for example, that it follows from Γ that C will eventually be fulfilled.

We formalized Example 1.1.1 in fcl in Chapter 8. We now demonstrate how to

simulate the unfolding of this American Call Option over time by using the reasoning

system of fcl. Section 9.4.1 gives an example of a fulfilled option and Section 9.4.2

presents the simulation of a breached option. The simulations of this American Call

Option correspond to its executions as shown in Figure 8.1 of Section 8.2.

9.4.1 Case 1: Contract is Fulfilled

The example contract C is defined as the pair (t0, {D1,D2,R1}). Let T1 = (L,Γ1) be

a theory of C andM = ({Dα : α ∈ ΩL}, I, e) be a model of T1. Let ψ1, ψ2, ψ3, ψ4, ψ5 ∈

Γ1 where:

102

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

ψ1: toffer ≤ tbuy.

ψ2: ∀ t : Time . obs-event(t, e1) ⇐⇒ t = tbuy.

ψ3: ∃ ! t : Time . obs-event(t, e2) ∧ t ∈ [tbuy, texpire].

ψ4: ∃ ! t : Time . obs-event(t, e3) ∧ t ∈ [texercise, texercise + 30].

ψ5: ∀ t : Time . t > texercise =⇒ ¬obs-event(t, e2).

Then the unfolding of this fulfilled option is simulated as shown below.

Γ1 `C,t0 toffer = t0 follows from C by Inference Rule 2. (9.1)

Γ1 `C,t0 D1 follows from C by Inference Rule 3. (9.2)

Γ1 `C,t0 D2 follows from C by Inference Rule 3. (9.3)

Rule[Γ1,R1,C, t0] follows from C by Inference Rule 5. (9.4)

Γ1 ` ψ1 by stt logic and Inference Rule 1. (9.5)

Γ1 ` ψ2 by stt logic and Inference Rule 1. (9.6)

Γ1 `C,tbuy ϕ1 follows from 9.1, 9.2, 9.5 and 9.6 by Inference Rule 1. (9.7)

Rule[Γ1,R1,C, tbuy] follows from 9.4 and 9.7 by Inference Rule 8. (9.8)

Rule[Γ1,R2,C, tbuy + 1] follows from 9.7 and 9.8 by Inference Rule 11. (9.9)

Γ1 ` ψ3 by stt logic and Inference Rule 1. (9.10)

Γ1 ` obs-event(u1, e2) ∧ u1 ∈ [tbuy, texpire] follows from 9.3, 9.10 by Inference Rule 1.

(9.11)

Γ1 `C,u1 ϕ2[Xtime 7→ u1] follows from 9.11 by Inference Rule 1. (9.12)

Rule[Γ1,R2,C, u1] follows from 9.9 and 9.11 by Inference Rule 8. (9.13)

Γ1 `C,u1+1 D3[Xtime 7→ u1] follows from 9.12 and 9.13 by Inference Rule 9. (9.14)

103

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Agreement[Γ1,A,C, u1 + 1] follows from 9.12 and 9.13 by Inference Rule 10. (9.15)

Γ1 ` ψ4 by stt logic and Inference Rule 1. (9.16)

Γ1 ` obs-event(u2, e3) ∧ u2 ∈ [texercise, texercise + 30] follows from 9.16 by Inference Rule 1.

(9.17)

Agreement[Γ1,A,C, u2] follows from 9.14, 9.15, and 9.17 by Inference Rule 7. (9.18)

Γ1 `C,u2 A follows from 9.17 and 9.18 by the definition of A. (9.19)

Satisfied[Γ1,A,C, u2] follows from 9.18 and 9.19 by Inference Rule 12. (9.20)

Rule[Γ1,R1,C, u2] follows from 9.4 and 9.17 by Inference Rule 8. (9.21)

Defunct[Γ1,R1,C, u2] follows from 9.6 and 9.21 by Inference Rule 14. (9.22)

Γ1 ` ψ5 by stt logic and Inference Rule 1. (9.23)

Rule[Γ1,R2,C, u2] follows from 9.9 and 9.17 by Inference Rule 8. (9.24)

Defunct[Γ1,R2,C, u2] follows from 9.23 and 9.24 by Inference Rule 14. (9.25)

Fulfilled[Γ1,C, u2] (9.26)

At time u2 there are two rules (9.21 and 9.24) in the state of the contract C and the

rules are defunct (9.22 and 9.25). And there is one agreement (9.18) which is satisfied

(9.20) in the state of C at u2. Thus 9.26 follows from 9.18, 9.20, 9.21, 9.22, 9.24, and

9.25 by Rule 15.

Note that the simulation of this example contract does not end up using all infe-

rence rules that are given in Section 9.3. Indeed, selected rules of inference will be used

while we simulate the unfolding of different contracts. For example, Inference Rule 4

will be applied only when we simulate a contract that contains an initial agreement.

104

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

9.4.2 Case 2: Contract is Breached

Let T2 = (L,Γ2) be a theory of C and M = ({Dα : α ∈ ΩL}, I, e) be a model of T2.

Let ψ1, ψ2, ψ3, ψ6 ∈ Γ2 where:

ψ6: ∀ t : Time . t ∈ [texercise, texercise + 30] =⇒ ¬obs-event(t, e3).

One can think of a scenario that constitute a breach of this option: the option seller

fails to deliver the specified stock to the option buyer on time. Then the unfolding of

this breached option is simulated as shown below. Note that the steps 9.27—9.41 are

the same as the steps 9.1—9.15 in Case 1.

Γ2 `C,t0 toffer = t0 (9.27)

Γ2 `C,t0 D1 (9.28)

Γ2 `C,t0 D2 (9.29)

Rule[Γ2,R1,C, t0] (9.30)

Γ1 ` ψ1 (9.31)

Γ2 ` ψ2 (9.32)

Γ2 `C,tbuy ϕ1 (9.33)

Rule[Γ2,R1,C, tbuy] (9.34)

Rule[Γ2,R2,C, tbuy + 1] (9.35)

Γ2 ` ψ3 (9.36)

Γ2 ` obs-event(u1, e2) ∧ u1 ∈ [tbuy, texpire] (9.37)

Γ2 `C,u1 ϕ2[Xtime 7→ u1] (9.38)

Rule[Γ2,R2,C, u1] (9.39)

Γ2 `C,u1+1 D3[Xtime 7→ u1] (9.40)

105

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Agreement[Γ2,A,C, u1 + 1] (9.41)

Γ2 ` ψ6 by stt logic and Inference Rule 1. (9.42)

Agreement[Γ2,A,C, texercise + 31] follows from 9.40 and 9.41 by Inference Rule 7.

(9.43)

Γ2 `C,texercise+31 A∗ follows from 9.42 and 9.43 by the definition of A. (9.44)

Violated[Γ2,A,C, texercise + 31] follows from 9.43 and 9.44 by Inference Rule 13.

(9.45)

Breached[Γ2,C, texercise + 31] follows from 9.43 and 9.45 by Inference Rule 16. (9.46)

106

Chapter 10

Conclusion and Future Work

The main goal of this thesis is to help people write contracts that have a clear meaning

and can be readily analyzed and simplified. One way of achieving this goal is by using

a formal language with a precise semantics to write contracts. Writing contracts

in a formal language can help understand the meaning of contracts. Precision of

the language and careful specification of the procedure of contracts can improve the

communication between parties. In this thesis we have presented such a language

named fcl. fcl is a formal language for writing general contracts that may contain

temporally based conditions. In this chapter, we review the contributions of our

research in Section 10.1, compare our approach with related works in Section 10.2

and 10.3, and discuss our future research directions in Section 10.4.

107

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

10.1 Highlights of Contributions

We presented the formal contract language fcl. We think of a contract in two ways.

Syntactically, a contract is a written expression satisfying certain syntactic conditi-

ons. Semantically, a contract is a set of temporally condition-based promises between

parties. Changes to the states of a fcl contract are triggered when the conditions

expressed in it become true.

fcl contains the attributes listed below that enable the requirements presented in

Chapter 3 to be fulfilled.

(1) fcl is formal and has a precise semantics. Since the underlying logic of fcl is a

version of simple type theory, the semantics of contracts written in fcl is based

on very well understood ideas.

(2) The parties of a contract in fcl are explicitly indicated in the contract, thus

fcl is able to specify multiple parties of a contract including third parties.

(3) Times relevant to a contract are expressed explicitly.

(4) fcl can express agreements inspired by the obligations, prohibitions, and per-

missions of deontic logic.

(5) fcl can express conditions that depend on events and other observables, and

include condition-based rules to introduce new constants and new agreements.

(6) fcl is able to express instantaneous as well as continuous actions in discrete

time.

We clearly defined what a contract is and what it means to fulfill and breach a

contract. We demonstrated the usefulness of fcl by applying fcl to various kinds of

108

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

contracts and successfully formalized them. We formalize an option contract, a sale

of a printer contract, and a lease. We validated fcl by developing a reasoning system

for fcl. In the next section, we will compare fcl with the previous proposed formal

contract languages.

10.2 Comparison of the Approaches

Table 4.1 and 4.2 that are introduced in Section 4.1, and Table 10.1,10.2, 10.3, and

10.4 show a comparison of the related work and fcl.

Several techniques are employed in the literature for developing a precise formal

language for specifying contracts. Most of the techniques, such as those given in [26,

28, 41], belong to the ECA-based scheme. GHM and G&M model contracts as sets

of policies. AEHSS provide an action-trace based language [3] to model contracts.

J&E’s functional programming based language [46, 47] and BBE’s cash-flow trace

based approach [8] use the idea of observables to specify events. P&S introduce

in [49, 50, 51] a dynamic, deontic action based language CL for expressing contracts.

Rather than providing a logical language for contracts, the OASIS extends RuleML to

provide a rule interchange language with formal features specific for the legal domain.

This enables implementers to structure the contents of the legal texts in a machine-

readable format by using the representation tools. We introduce in fcl the concept of

a rule that is (in its simplest form) a conditional agreement that depends on certain

observations. The use of observables to determine both the meaning of a contract

and how the state of the contract evolves over time provides a basis for monitoring

the dynamic aspects of a contract.

Not all the approaches can specify reparation clauses. LegalRuleML introduces a

109

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

T
ab

le
10.1:

C
om

p
arison

of
ou

r
ap

p
roach

w
ith

oth
er

ap
p
roach

es
P

e
rsp

e
ctiv

e
L
e
e

P
J
&
E

G
&
M

G
H
M

A
E
H
S
S

B
B
E

P
&
S

D
&
S

W
y
n
e
r

O
A
S
IS

F
C
L

1.
C

on
tract

E
x
p
ressiven

ess
1

T
im

e
an

d
ob

ject
√

√
√

√
√

√
√

2
C

on
tract

com
-

m
itm

en
ts

√
√

√
√

√
√

3
E

x
tern

al
th

ird
-

p
arties

√
√

√
√

4
N

ested
ru

les
√

√

2.
C

on
tract

M
on

itorin
g

1
A

ction
s

E
x
ecu

ti-
on

s

√
√

√
√

√
√

√
√

√
√

√

2
V

iolation
s

D
e-

tection

√
√

√
√

√
√

√
√

3
B

lam
e

assign
-

m
en

t
(√

)
√

√
√

3.
C

on
tract

E
n
forcem

en
t

1
A

p
p
licab

le
law

s
√

2
S
an

ction
s

in
th

e
even

t
of

a
b
reach

of
con

tract

√
√

√
√

√
√

√
√

4.
Im

p
lem

en
tation

1
C

on
tract

lan
-

gu
age

√
√

√
√

√

2
A

reason
in

g
sy

-
stem

√

110

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

T
ab

le
10

.2
:

C
om

p
ar

is
on

of
ou

r
la

n
gu

ag
e

w
it

h
ot

h
er

ap
p
ro

ac
h
es

R
es

ea
rc

h
D

o
m

a
in

M
et

h
o
d

o
lo

g
y

P
a
rt

ie
s

L
e
e

G
en

er
a
l

b
u

si
n

es
s

co
n
tr

a
ct

.
1
.

T
h

is
a
p

p
ro

a
ch

m
a
k
es

u
se

o
f

a
P

et
ri

n
et

n
o
ta

ti
o
n

to
m

o
d

el
co

n
tr

a
ct

s
a
n

d
th

en
tr

a
n

sl
a
te

th
e

n
o
ta

ti
o
n

in
to

lo
g
ic

p
ro

g
ra

m
-

m
in

g
.

2
.

C
o
n

si
d

er
o
n

ly
o
n

e
w

o
rl

d
in

st
ea

d
o
f

p
o
ss

ib
le

w
o
rl

d
se

m
a
n
ti

cs
.

M
u

lt
ip

le
(m

o
re

th
a
n

tw
o
)

p
a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
ec

ifi
ed

in
a

co
n
tr

a
ct

.
B

y
u

si
n

g
th

e
lo

g
ic

p
ro

g
ra

m
m

in
g

q
u

er
y

en
-

g
in

e,
it

is
a
b

le
to

id
en

ti
fy

w
h

o
h

a
v
e

o
u

t-
st

a
n

d
in

g
co

m
m

it
m

en
ts

.
D
&
S

D
ev

el
o
p

a
la

n
g
u

a
g
e

fo
r

th
e

sp
ec

ifi
ca

ti
o
n

o
f

th
e

le
g
a
l

a
sp

ec
ts

o
f

co
n
tr

a
ct

s.
C

o
n
tr

a
ct

s
a
re

re
p

re
se

n
te

d
in

ev
en

t
ca

lc
u

lu
s.

M
u

lt
ip

le
p

a
rt

ie
s

ca
n

b
e

ex
p

li
ci

t
sp

ec
i-

fi
ed

.
P
J
&
E

D
ev

el
o
p

a
la

n
g
u

a
g
e

fo
r

p
ri

ci
n

g
fi

n
a
n

ci
a
l

co
n
tr

a
ct

v
a
lu

a
ti

o
n

.
1
.

D
efi

n
e

a
se

t
o
f

co
n

st
ru

ct
o
rs

fo
r

co
n
tr

a
ct

s
a
n

d
d

em
o
n

st
ra

te
h

o
w

to
u

se
th

em
to

d
es

cr
ib

e
st

a
n

d
a
rd

fi
n

a
n

ci
a
l

co
n
tr

a
ct

s.
2
.

F
o
rm

a
li
ze

th
e

co
m

p
o
si

ti
o
n

a
l

st
ru

ct
u

re
o
f

fi
n

a
n

ci
a
l

co
n
tr

a
ct

s
in

fu
n

ct
io

n
a
l

p
ro

g
ra

m
m

in
g

la
n

g
u

a
g
e

H
a
sk

el
.

A
ll

co
n
tr

a
ct

s
a
re

tw
o
-p

a
rt

y
co

n
tr

a
ct

.
T

h
e

p
a
rt

ie
s

a
re

im
p

li
ci

tl
y

sp
ec

ifi
ed

.

G
&
M

D
ev

el
o
p

a
la

n
g
u

a
g
e

fo
r

b
u

si
n

es
s

co
n

-
tr

a
ct

ca
ll
ed

B
C

L
to

ex
p

re
ss

co
n
tr

a
ct

co
n

d
it

io
n

s
fo

r
ru

n
ti

m
e

co
n
tr

a
ct

m
o
n

i-
to

ri
n

g
.

1
.

S
im

il
a
r

to
G

H
M

’s
E

C
A

a
p

p
ro

a
ch

,
a

co
n
tr

a
ct

co
n

si
st

s
a

se
t

o
f

ro
le

s
a
lo

n
g

w
it

h
a

se
t

o
f

p
o
li
ci

es
.

2
.

A
n

ex
p

re
ss

iv
e

ev
en

t
la

n
g
u

a
g
e

fo
r

th
e

sp
ec

ifi
ca

ti
o
n

o
f

ev
en

t-
b

a
se

d
b

eh
a
v
io

r
a
s

p
a
rt

o
f

p
o
li
cy

ex
p

re
ss

io
n

.
3
.

T
h

e
la

n
g
u

a
g
e

is
th

en
m

a
p

p
ed

to
a

fr
a
g
m

en
t

o
f

st
a
n

d
d

eo
n
ti

c
lo

g
ic

(S
D

L
)

ex
te

n
d

ed
w

it
h

co
n
tr

a
ry

-t
o
-d

u
ty

(C
T

D
)

o
b

li
g
a
ti

o
n

s.
4
.

D
eo

n
ti

c
m

o
d

a
li
ti

es
a
re

re
st

ri
ct

ed
to

o
u

t-
to

-d
o

st
a
te

m
en

ts
.

5
.

T
h

e
la

n
g
u

a
g
e

is
X

M
L

-c
en

tr
ic

,
ex

p
lo

it
in

g
re

le
v
a
n
t

X
M

L
st

a
n

-
d

a
rd

s.

M
u

lt
ip

le
p

a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
e-

ci
fi

ed
in

a
co

n
tr

a
ct

,
b

u
t

it
is

n
o
t

a
b

le
to

id
en

ti
fy

w
h

o
h

a
v
e

o
u

ts
ta

n
d

in
g

co
m

m
it

-
m

en
ts

.

G
H
M

D
ev

el
o
p

a
d

o
m

a
in

sp
ec

ifi
c

la
n

g
u

a
g
e

(D
S

L
),

d
es

ig
n

ed
to

su
p

p
o
rt

a
b

st
ra

ct
i-

o
n

s
n

ee
d

ed
fo

r
th

e
ex

p
re

ss
in

g
o
f

b
u

si
-

n
es

s
co

n
tr

a
ct

.

B
a
se

d
o
n

th
e

E
C

A
p

a
ra

d
ig

m
,

co
n
tr

a
ct

s
a
re

m
o
d

el
ed

a
s

se
ts

o
f

p
o
li
ci

es
w

h
ic

h
sp

ec
if

y
th

a
t

fo
rb

id
d

en
o
r

o
b

li
g
ed

a
ct

io
n

s
a
re

tr
ig

g
er

ed
b
y

ev
en

ts
w

h
en

ce
rt

a
in

co
n

d
it

io
n

s
a
re

m
et

.

M
u

lt
ip

le
p

a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
e-

ci
fi

ed
in

a
co

n
tr

a
ct

,
it

is
n

o
t

a
b

le
to

id
en

ti
fy

w
h

o
h

a
v
e

o
u

ts
ta

n
d

in
g

co
m

m
it

-
m

en
ts

.
A
E
H
S
S

C
o
m

m
er

ci
a
l

co
n
tr

a
ct

.
1
.

P
ro

v
id

e
a

co
m

p
o
si

ti
o
n

a
l

sp
ec

ifi
ca

ti
o
n

o
f

co
n
tr

a
ct

s.
2
.

P
ro

v
id

e
a

tr
a
ce

-b
a
se

d
se

m
a
n
ti

c
m

o
d

el
fo

r
co

n
tr

a
ct

s.
T

w
o

p
a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
ec

ifi
ed

in
a

co
n
tr

a
ct

,
b

u
t

it
is

n
o
t

a
b

le
to

id
en

ti
fy

w
h

o
h

a
v
e

o
u

ts
ta

n
d

in
g

co
m

m
it

-
m

en
ts

.
B
B
E

D
ev

el
o
p

a
la

n
g
u

a
g
e

fo
r

p
ri

ci
n

g
fi

n
a
n

ci
a
l

co
n
tr

a
ct

v
a
lu

a
ti

o
n

.
1
.

P
ro

v
id

e
a

co
m

p
o
si

ti
o
n

a
l

sp
ec

ifi
ca

ti
o
n

o
f

co
n
tr

a
ct

s.
2
.

P
ro

v
id

e
a

tr
a
ce

-b
a
se

d
se

m
a
n
ti

c
m

o
d

el
fo

r
co

n
tr

a
ct

s.
M

u
lt

ip
le

p
a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
e-

ci
fi

ed
,

b
u

t
it

is
n

o
t

a
b

le
to

id
en

ti
fy

w
h

o
h

a
v
e

o
u

ts
ta

n
d

in
g

co
m

m
it

m
en

ts
.

P
&
S

D
ev

el
o
p

a
la

n
g
u

a
g
e

fo
r

th
e

a
u

to
m

a
ti

o
n

o
f

co
n
tr

a
ct

m
a
n

a
g
em

en
t

a
ct

iv
it

y.
1
.

In
tr

o
d

u
ce

a
lo

g
ic

fo
r

ex
p

re
ss

in
g

co
n
tr

a
ct

s
b

a
se

d
o
n

a
co

m
b

i-
n

a
ti

o
n

o
f

d
eo

n
ti

c,
d

y
n

a
m

ic
,

a
n

d
te

m
p

o
ra

l
lo

g
ic

s.
2
.

D
eo

n
ti

c
m

o
d

a
li
ti

es
a
re

re
st

ri
ct

ed
to

o
u

t-
to

-d
o

st
a
te

m
en

ts
.

3
.

P
re

se
n
t

a
tr

a
ce

se
m

a
n
ti

cs
fo

r
co

n
tr

a
ct

s

P
a
rt

ie
s

a
re

im
p

li
ci

tl
y

sp
ec

ifi
ed

.

W
y
n
e
r

D
ev

el
o
p

a
fu

lfi
ll
m

en
t

a
n

d
v
io

la
ti

o
n

m
a
rk

er
fo

r
g
en

er
a
l

el
ec

tr
o
n

ic
co

n
tr

a
ct

.
B

a
se

d
o
n

d
eo

n
ti

c
lo

g
ic

to
p

ro
v
id

e
a

ru
le

b
a
se

d
fr

a
m

ew
o
rk

fo
r

th
e

fu
lfi

ll
m

en
t

a
n

d
v
io

la
ti

o
n

m
a
rk

er
o
f

co
n
tr

a
ct

s.
M

u
lt

ip
le

p
a
rt

ie
s

ca
n

b
e

im
p

li
ci

tl
y

sp
e-

ci
fi

ed
in

a
co

n
tr

a
ct

.
O
A
S
IS

F
o
cu

se
s

o
n

th
e

cr
ea

ti
o
n

o
f

m
a
ch

in
e-

re
a
d

a
b

le
fo

rm
s

o
f

th
e

co
n
te

n
t

o
f

le
g
a
l

te
x
ts

,
su

ch
a
s

le
g
is

la
ti

o
n

,
re

g
u

la
ti

o
n

s,
co

n
tr

a
ct

s,
a
n

d
ca

se
la

w
,

fo
r

d
iff

er
en

t
co

n
cr

et
e

W
eb

a
p

p
li
ca

ti
o
n

s.

E
x
te

n
d

s
R

u
le

M
L

to
p

ro
v
id

e
a

ru
le

in
te

rc
h

a
n

g
e

la
n

g
u

a
g
e

fo
r

th
e

le
g
a
l

d
o
m

a
in

.
M

u
lt

ip
le

p
a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
e-

ci
fi

ed
.

O
u
r
s

G
en

er
a
l

co
n
tr

a
ct

.
D

es
ig

n
a

fo
rm

a
l

la
n

g
u

a
g
e

fo
r

w
ri

ti
n

g
co

n
tr

a
ct

s.
M

u
lt

ip
le

p
a
rt

ie
s

ca
n

b
e

ex
p

li
ci

tl
y

sp
e-

ci
fi

ed
.

111

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

T
ab

le
10.3:

C
om

p
arison

of
ou

r
lan

gu
age

w
ith

oth
er

ap
p
roach

es
T

im
e

C
o
n
tra

ct
S

ta
tes

S
ta

te
T

ra
n

sitio
n

s

L
e
e

1
.

A
d

o
p

t
id

ea
s

fro
m

R
U

ca
lcu

lu
s,

tim
e

a
re

ex
p

licitly
sp

ecifi
ed

a
s

ca
len

d
a
r

d
a
te

w
h

ich
is

a
n

in
terv

a
l
sca

le
ra

th
er

th
a
n

a
ra

tio
sca

le.
2
.

O
n

ly
co

n
sid

er
o
n

e
ty

p
e

o
f

tim
e

u
n

it,
a
n

in
teg

er
m

u
ltip

le
o
f

d
a
y
s,

ig
n

o
rin

g
o
th

er
u

n
its

su
ch

a
s

m
o
n
th

s
a
n

d
y
ea

rs.
3
.

T
em

p
o
ra

l
o
p

era
to

rs
a
re

in
tro

d
u

ced
a
n

d
th

u
s

a
b

le
to

sp
ecify

referen
ce

tim
e

a
s

d
ea

d
-

lin
es.

U
sin

g
T

ca
lcu

lu
s

to
m

o
n

ito
rin

g
th

e
tra

n
sitio

n
sy

-
stem

.
T

h
e

sta
tes

a
re

p
ro

p
o
sitio

n
s.

T
h

e
a
ctio

n
s

o
f

p
a
rties

a
re

sp
ecifi

ed
a
s

a
ttrib

u
tes

o
f

tra
n

sitio
n

s.

D
&
S

B
a
sed

o
n

th
e

ev
en

t
ca

lcu
lu

s
to

sp
ecify

th
e

tim
e

rela
tio

n
.

N
o
t

p
ro

v
id

ed
.

P
erfo

rm
a
n

ce
o
f

d
y
n

a
m

ic
a
ctio

n
s

trig
g
er

th
e

tra
n

-
sitio

n
s

o
f

co
n
tra

ct
sta

tes.
P
J
&
E

1
.

T
im

e
a
re

ex
p

licitly
sp

ecifi
ed

a
s

ca
len

d
a
r

d
a
te.

2
.

R
eferen

ce
a
b

so
lu

te
tim

e
b

a
sed

o
n

th
e

u
n

it
o
f

d
a
y
s.

A
co

m
p

o
sitio

n
a
l

sp
ecifi

ca
tio

n
o
f

co
n
tra

cts.
O

b
serv

a
tio

n
a
l

v
a
lu

es
trig

g
er

th
e

tra
n

sitio
n

s
o
f

co
n
ta

ct
sta

tes.

G
&
M

T
im

e
a
re

m
o
d

eled
a
s

a
set

o
f

in
teg

ers
w

ith
u

n
it

o
f

d
a
y
s.

A
set

o
f

p
o
licies.

H
a
p

p
en

in
g

o
f

co
m

p
lex

ev
en

ts
trig

g
er

th
e

tra
n

si-
tio

n
s

o
f

co
n
tra

ct
sta

tes.
G
H
M

T
im

e
lin

e
b

a
sed

o
n

seq
u

en
ce

o
f

sta
tes.

A
set

o
f

p
o
licies.

S
ta

te
ch

a
n

g
e

ca
u

sed
(o

n
ly

)
b
y

th
e

ex
ecu

tio
n

o
f

p
h
y
sica

l
a
ctio

n
s

(a
n

d
th

eir
in

d
irect

eff
ect).

A
E
H
S
S

1
.

T
im

e
a
re

m
o
d

eled
a
s

a
to

ta
lly

o
rd

ered
set

o
f

in
teg

ers.
2
.

It
is

a
b

le
to

m
o
n

ito
rin

g
th

e
a
b

so
lu

te
a
n

d
rela

tiv
e

tim
es.

A
co

m
p

o
sitio

n
a
l

sp
ecifi

ca
tio

n
o
f

co
n
tra

cts.
A

b
a
se

stru
ctu

re
o
f

co
n
tra

ct
is

a
tu

p
le

o
f

sets
o
f

reso
u

rces,
a
g
en

ts
a
n

d
tim

e.

T
h

e
a
ctio

n
s

w
h

ich
tra

n
sfer

reso
u

rce
fro

m
o
n

e
p

a
rty

to
a
n

o
th

er
a
t

so
m

e
sp

ecifi
c

tim
e.

B
B
E

T
im

e
lin

e
b

a
sed

o
n

seq
u

en
ce

o
f

sta
tes.

T
h

e
la

n
g
u

a
g
e

o
p

era
tes

w
ith

d
a
y
s

a
s

th
e

sm
a
llest

u
n

it
o
f

tim
e.

A
co

m
p

o
sitio

n
a
l

sp
ecifi

ca
tio

n
o
f

co
n
tra

cts.
O

b
serv

a
tio

n
a
l

v
a
lu

es
trig

g
er

th
e

tra
n

sitio
n

s
o
f

co
n
ta

ct
sta

tes.

P
&
S

T
em

p
o
ra

l
o
p

era
to

rs
a
re

in
tro

d
u

ced
to

sp
e-

cify
th

e
rela

tio
n

o
f

tim
e.

N
o
t

p
ro

v
id

ed
.

P
erfo

rm
a
n

ce
o
f

d
y
n

a
m

ic
a
ctio

n
s

trig
g
er

th
e

tra
n

-
sitio

n
s

o
f

co
n
tra

ct
sta

tes.
W

y
n
e
r

T
im

e
a
re

im
p

licit
sp

ecifi
ed

.
V

a
lu

ed
a
ctio

n
sp

ecifi
ca

tio
n

s
1
.

A
n
y

b
o
o
lea

n
ex

p
ressio

n
ca

n
u

p
d

a
te

th
e

co
n

-
tra

ct
h

isto
ry

(a
ctio

n
s

p
erfo

rm
ed

a
n

d
v
io

la
tio

n
s

o
r

fu
lfi

llm
en

ts
o
f

a
g
reem

en
ts

fo
u

n
d

).
2
.

B
a
sed

o
n

th
e

ru
le

fu
n

ctio
n

o
f
co

n
tra

cts
a
n

d
th

e
co

n
tra

ct
h

isto
ry

to
trig

g
er

th
e

ch
a
n

g
e

o
f

sta
tes.

O
A
S
IS

T
im

e
a
re

ex
p

licitly
sp

ecifi
ed

a
s

ca
len

d
a
r

d
a
te.

R
u

les
a
re

u
sed

to
trig

g
er

th
e

ch
a
n

g
e

o
f

sta
tes.

A
ru

le
o
f

th
e

w
o
rk

is
co

n
sid

ered
a
s

a
b

in
a
ry

rela
ti-

o
n

sh
ip

b
etw

een
th

e
p

re-co
n

d
itio

n
s

a
n

d
th

e
eff

ect
o
f

th
e

ru
le.

P
erfo

rm
a
n

ce
o
f

d
y
n

a
m

ic
a
ctio

n
s

trig
g
er

th
e

tra
n

-
sitio

n
s

o
f

co
n
tra

ct
sta

tes.

F
C
L

T
im

e
a
re

ex
p

licitly
sp

ecifi
ed

a
s

a
set

o
f

in
-

teg
ers

w
ith

ch
o
sen

u
n

its.
T

h
e

sta
te

o
f

a
co

n
tra

ct
is

a
set

o
f

co
n

sta
n
t

d
efi

-
n

itio
n

s,
a
g
reem

en
ts,

a
n

d
ru

les
o
f

th
e

co
n
tra

ct.
A

n
y

co
n

d
itio

n
ca

n
trig

g
er

a
n

u
p

d
a
te

o
f

th
e

co
n

-
tra

ct
sta

te.

112

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

T
ab

le
10

.4
:

C
om

p
ar

is
on

of
ou

r
la

n
gu

ag
e

w
it

h
ot

h
er

ap
p
ro

ac
h
es

C
o
n
tr

a
ct

V
a
lu

es
C

o
n
tr

a
ct

R
ep

a
ra

ti
o
n

s
C

o
n
tr

a
ct

S
em

a
n
ti

cs

L
e
e

N
o
t

p
ro

v
id

ed
.

N
o

m
ea

n
s

to
re

p
a
ir

a
co

n
tr

a
ct

.
N

o
fo

rm
a
l

se
m

a
n
ti

cs
p

ro
v
id

ed
.

D
&
S

V
io

la
ti

o
n

s
o
f

o
b

li
g
a
ti

o
n

s.
N

o
m

ea
n

s
to

re
p

a
ir

a
co

n
tr

a
ct

.
N

o
fo

rm
a
l

se
m

a
n
ti

cs
p

ro
v
id

ed
.

P
J
&
E

M
o
n

et
a
ry

v
a
lu

e
o
f

co
n
tr

a
ct

s.
N

o
m

ea
n

s
to

re
p

a
ir

a
co

n
tr

a
ct

.
O

n
ly

p
ro

v
id

e
m

ea
n

s
to

p
er

fo
rm

a
v
a
lu

a
ti

o
n

a
n

a
-

ly
si

s
o
f

co
n
tr

a
ct

s.
G
&
M

V
io

la
ti

o
n

s
o
f

o
b

li
g
a
ti

o
n

s.
C

o
n
tr

a
ry

-t
o
-d

u
ty

(C
T

D
)

o
b

li
g
a
ti

o
n

s
a
re

in
tr

o
d

u
-

ce
d

to
re

p
a
ir

v
io

la
te

d
o
b

li
g
a
ti

o
n

s.
A

p
o
ss

ib
le

w
o
rl

d
se

m
a
n
ti

cs
.

G
H
M

N
o
t

p
ro

v
id

ed
.

N
o

m
ea

n
s

to
re

p
a
ir

a
co

n
tr

a
ct

.
N

o
fo

rm
a
l

se
m

a
n
ti

cs
p

ro
v
id

ed
.

A
E
H
S
S

F
u

lfi
ll

m
en

t
a
n

d
b

re
a
ch

o
f

co
n
tr

a
ct

s.
C

T
D

P
ro

v
id

e
a

tr
a
ce

-b
a
se

d
se

m
a
n
ti

cs
.

B
B
E

M
o
n

et
a
ry

v
a
lu

e
o
f

co
n
tr

a
ct

s.
N

o
m

ea
n

s
to

re
p

a
ir

a
co

n
tr

a
ct

.
P

ro
v
id

e
re

d
u

ct
io

n
se

m
a
n
ti

cs
a
n

d
a

d
en

o
ta

ti
o
n

a
l

ca
sh

-fl
o
w

se
m

a
n
ti

c.
P
&
S

V
io

la
ti

o
n

s
o
f

o
b

li
g
a
ti

o
n

s.
C

T
D

P
ro

v
id

e
a

tr
a
ce

-b
a
se

d
se

m
a
n
ti

cs
.

W
y
n
e
r

F
u

lfi
ll

m
en

t
a
n

d
b

re
a
ch

o
f

co
n
tr

a
ct

s.
R

u
le

fu
n

ct
io

n
s

a
re

u
se

d
to

re
p

a
ir

a
co

n
tr

a
ct

.
U

ti
li
ze

th
e

d
eo

n
ti

c
lo

g
ic

to
re

a
so

n
a
b

o
u

t
v
io

la
ti

-
o
n

s
o
f

o
b

li
g
a
ti

o
n

s.
O
A
S
IS

F
u

lfi
ll

m
en

t
a
n

d
b

re
a
ch

o
f

co
n
tr

a
ct

s.
C

T
D

U
ti

li
ze

th
e

d
ef

ea
si

b
le

d
eo

n
ti

c
lo

g
ic

to
re

a
so

n
a
b

o
u

t
v
io

la
ti

o
n

s
o
f

o
b

li
g
a
ti

o
n

s.
F
C
L

F
u

lfi
ll

m
en

t
a
n

d
b

re
a
ch

o
f

co
n
tr

a
ct

s.
R

u
le

s
a
re

u
se

d
to

re
p

a
ir

a
v
io

la
ti

o
n

o
f

a
n

a
g
re

em
en

t.
B

a
se

d
o
n

th
e

si
m

p
le

ty
p

e
th

eo
ry

to
p

ro
v
id

e
se

-
m

a
n
ti

cs
to

re
a
so

n
a
b

o
u

t
fu

lfi
ll
m

en
t

a
n

d
b

re
a
ch

o
f

co
n
tr

a
ct

s.

113

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

suborder list that is a list of deontic formulas to model penalties. Wyner introduces

the concept of rule function for the contract reparation. We think the use of only

contrary-to-duty obligations to recover a contract when it is breached is too limited.

There is no provision provided for recovery from technical or business-related issues.

In fcl, we interpret an agreement in a contract in terms of the deontic concepts of

obligation and prohibition. These concepts are applied in expressions to actions that

are executed by the parties of the contract. Thus, the concepts express what a party

ought to do and or ought not do. fcl rules can also be used for reparational purposes

when an agreement is violated (see subsection 8.1.2).

With the exception of approaches provided by AEHSS, BBE, P&S, and OASIS,

all of the languages above are informal. The work of both AEHSS and P&S include

a trace-based reduction semantics model for contracts. These two approaches pro-

vide a run-time monitoring of the fulfillment and breach of a contract since the state

of a contract at a time is determined by the events that have happened. LegalRu-

leML utilizes the defeasible deontic logic to reason about violations of obligations.

Both GHM’s work and G&M’s work lack a formal semantics and a reasoning system

even though they provide a good framework for monitoring contracts. The semantics

provided by J&E in is based on stochastic processes. J&E’s approach provides the

ability to perform compositional analysis of monetary values of contracts. This work

can estimate the expected value of financial contracts. BBE’s trace-based semantics

allows the modification of a contract according to the passage of time and the values

of observables. But since both of the approaches provided by J&E and BBE pay

more attention to finding the monetary value of contracts, they consider the semantic

meaning of a contract to be its cash-flow gain or loss, which is too limited for general

114

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

contracts from our point of view. We find this lack of work on formal semantics sur-

prising since one of the main benefits of defining a contract language to be formal is

to enable the language to have a precise, unambiguous semantics.

Although the languages of AEHSS and P&S provide a formal mathematical model

for contracts with a formal semantics and are able to express some important features

of contracts, they are not as expressive as fcl. For example, in the case where a

contract is breached, the monitor should not only report a breach of contract, but

also who among the contract parties is responsible (blame assignment). Except for

the languages provided by BBE and OASIS, all the other contracts covered by these

approaches, including the work of AEHSS and P&S, are two-party contracts in which

the parties are implicit. These approaches are not able to determine who is to be

blamed when a contract is breached. Our language provides explicit participants and

thus provides the possibility of having contracts with both an unrestricted number of

parties and with blame assignment. If an agreement is violated, the subject of the

violated action is responsible for this violation.

Because time constraints are implicit in P&S’s CL language, it only has relative

deadlines where one party’s commitment to do something depends on when the other

party has performed an action. Our language fcl has not only relative temporal

constraints, but also absolute temporal constraints.

Notice that the domains and objectives of these approaches are varied, thus the

requirements of the languages are not the same. PJ&E’s and BBE’s work provide

means for the compositional analysis of values of financial contracts. AEHSS is con-

cerned with formalizing commercial contracts. The LegalRuleML TC focuses on the

creation of machine-readable forms of the content of legal texts, such as legislation,

regulations, contracts, and case law, for different concrete web applications. Most

115

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

other approaches, including our contract language fcl, consider the formalization of

general contracts that are agreements written by and for humans.

In addition, we view two other works particularly as worthy of investigation. The

first is the OASIS’s LegalRuleML which meets almost all our requirements of con-

tracts. An essential advantage of LegalRuleML is it is a markup language for the

semantic web. The second is the BBE’s work. They formalize their contract language

in the Coq theorem prover and automatically extract a Haskell implementation from

the Coq formalization. The resulting Haskell module can be used as a certified core

of a portfolio management framework. Our language fails to express laws and regu-

lations. And, besides that, we do not provide a full implementation of our language

or a reasoning system. We primarily focus on providing a formal language that can

be used to write contracts precisely.

10.3 Final Remarks

To our knowledge, none of the existing approaches captures all the intuitive properties

of contracts we have described in Chapter 3. More surprising is that many approaches

lack a formal semantics and a reasoning system. In contrast, this thesis introduces

fcl, a formal language for writing contracts that may contain temporally based con-

ditions. fcl has a precise semantics and a reasoning system. We believe fcl meets

the first nine requirements and can be extended to meet R10 to express laws and

regulations and thus identify agreements of a contract that are in conflict with the

underlying laws and regulations of the contract.

Since the standard deontic logic suffers from several well-known paradoxes, a con-

tract that is represented in such a logic may contain a mismatch between intention

116

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

of the contract drafter and the actual logical consequences. Unlike many approaches

that are based on deontic logic to design a contract formalism, the underlying logic

of fcl is simple type theory, thus the semantics of contracts written in fcl is based

on very well understood ideas and the logical tools for writing contracts in fcl are

very expressive..

Moreover, since fcl is a formal language, software-implemented formal methods

can be used to assist in the writing and analysis of fcl contracts. In particular, we

can use software tools to check whether an action in a contract has been performed or

not, to report whether a contract has been fulfilled or violated, to compute the value

of a contract, etc. We can also use software tools to reason about possible future

outcomes of a contract and about the relationship between different contracts.

10.4 Future Work

We propose the following improvements as our future work:

(1) Extending the design of fcl. fcl could be extended to handle more situations.

One example might be to extend fcl to express laws and regulations and to

thus identify agreements of a contract that are in conflict with the underlying

laws and regulations of the contract.

(2) Developing a module system for fcl with a rich language for expressing con-

tracts and combinators for building large contracts from smaller contracts.

(3) Developing a software tool to analyze and simplify contracts that could, for

example, be used to reason about the fulfillment and breach of contracts.

117

Appendix A

FCL: The Implementation

We present here the start of the implementation of fcl in Agda.

A.1 Basic Data Types and Expressions

We construct many of our expressions from basic Agda types. Boolean values, integers,

and propositional equality are imported from the standard library and opened to make

their content available. We include some useful modules from the Agda standard

library:

• Data.Bool defines the boolean values.

• Data.Integer defines the integers.

• Data.Fin defines an inductive families to represent the type of all numbers less

than a given number.

• Data.List defines finite lists.

118

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

• Data.Vec defines lists indexed by their length.

• Relation.Nullary defines a type for decidable relations, Dec:

data Dec (P :Set) : Set where

yes : (p : p) → Dec P

no : (¬ p : ¬ p) → Dec P

In terms of the given types of Agda, we have a type Time which is an alias of type

Z.

Time = Z

toffer and Xtime are constants of type Time.

Postulate

toffer : Time

Xtime : Time

The declaration of Currency data type is given below:

data Currency : Set where

GBP USD EUR ZAR KYD CHF : Currency

We use Pair to represent the product type.

record Pair (A B : Set) : Set where

constructor _,_

field

fst : A

snd : B

119

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

The membership relation is defined as follows:

data Either (A : Set) (B : Set) : Set where

left : A → Either A B

right : B → Either A B

isin : ∀ {A} → A → List A → Set

a isin [] = ⊥

a isin (x :: xs) = Either (a ≡ x) (a isin xs)

A.2 Action

An action is a record of type Action, which has fields for a L of type string, an A of

type Act, a S of type List Party, and an O of type List Party.

record Action : Set where

constructor action

field

L : String

A : Act

S : List Party

O : List Party

The label L of an action is its name. The S and O of an action are parties of the

contract where S is a set of subjects and O is a set of objects.

The act of an action is of type Act. The Act data type has two constructors:

transfer and deliver.

120

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

data Act : Set where

transfer : Currency → Z → Act

deliver : Goods → Z → Act

The declaration of the event datatype is given below. Event data type has a

constructor act.

data Event : Set where

act : Action → Event

A.3 Agreements and Rules

Inductive data types are dependent versions of algebraic data types as they occur in

functional programming. The data types Agreement, Rule, and Q are given by the

simultaneous — as denoted by the keyword mutual — inductive data types.

mutual

data Agreement : Set where

FF : Action → List Time → Agreement

OO : Action → List Time → Agreement

data Rule : Set where

→ : Bool → List Q → Rule

data Q : Set where

A : Agreement → Q

R : Rule → Q

121

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

The constructor OO and FF are used to represent agreements. OO represents the

obligations and FF represents the prohibitions.

A.4 Contracts

A contract is a record of type Contract, which has fields for a time of type Time and

a component of type List Q.

record Contract : Set where

constructor cntract

field

time : Time

component : List Q

List Q is a type of a set of constant definition, agreements, and rules.

The state of a contract is a record of type SOC, which has fields for a t of type

Time, and a state of type List Q.

record SOC : Set where

constructor State

field

t : Time

state : List Q

122

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

A.5 Example: An American Call Option

We implement here Example 1.1.1, an American Call Option, as a contract C of fcl.

We first introduce the constants and their types below.

postulate

buyer seller : Party

"Buy Option" : String

"Exercise Option" : String

"Transfer Stock" : String

texercise : Time

C has two parties: a seller and a buyer. t0 is the time the seller offered the contract to

the buyer be some day before tbuy.

postulate

t0 : Time

tbuy = 0

texpire = 170

Actions are listed below:

a1 = action "Buy Option" (transfer USD 5) (buyer :: []) (seller :: [])

a2 = action "Exercise Option" (transfer USD 80)

(buyer :: []) (seller :: [])

a3 = action "Transfer Stock" (deliver stock 1)

(seller :: []) (buyer :: [])

123

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

Events are listed below:

e1 = act a1

e2 = act a2

C contain an agreement as follows:

A = OO a3 [texercise,texercise + 30]

C is constructed from two rules R1 and R2:

R1 = obs-event tbuy e1 → (R2 :: [])

R2 = obs-event t e2 ∧ t isin [tbuy,texpire] → (A :: [])

124

Bibliography

[1] J. Ø. Aagedal. Quality of Service Support in Development of Distributed Systems.

PhD thesis, Department of Informatics, Faculty of Mathematics and Natural

Sciences, University of Oslo, 2001.

[2] K. A. Adams. Know your enemy: Sources of uncertain meaning in contracts.

Michigan Bar Journal, 95(10):40 – 45, October 2016.

[3] J. Andersen, E. Elsborg, F. Henglein, J. Simonsen, and C. Stefansen. Composi-

tional specification of commercial contracts. International Journal on Software

Tools for Technology Transfer (STTT), 8(6):485–516, 2006.

[4] A. R. Anderson and O. K. Moore. The formal analysis of normative concepts.

American Sociological Review, 22:9–17, 1957.

[5] T. Athan, H. Boley, G. Governatori, M. Palmirani, A. Paschke, and A. Wyner.

Oasis legalruleml. In E. Francesconi and B. Verheij, editors, ICAIL, pages 3–12.

ACM, 2013.

[6] T. Athan, G. Governatori, M. Palmirani, A. Paschke, and A. Z. Wyner. Le-

galRuleML: Design principles and foundations. In Wolfgang Faber and Adrian

Pashke, editor, The 11th Reasoning Web Summer School, pages 151–188, Berlin,

Germany, July 2015. Springer.

125

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[7] R. S. Attorney. Contracts: The Essential Business Desk Reference. Nolo, 2010.

[8] P. Bahr, J. Berthold, and M. Elsman. Certified symbolic management of financial

multi-party contracts. In Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada,

September 1-3, 2015, pages 315–327, 2015.

[9] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Contract aware components, 10

years after. Electronic Proceedings in Theoretical Computer Science, (37):86–100,

2010.

[10] A. Beugnard, J. M. Jézéquel, N. Plouzeau, and D. Watkins. Making components

contract aware. Computer, 32(7):38–45, 1999.

[11] B. A. Blum. Contracts: Examples and Explanations. Aspen Publishers, fourth

edition, 2007.

[12] R. M. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis,

24:33–36, 1963.

[13] A. Daskalopulu. Logic-based Tools for the Analysis and Representation of Legal

Contracts. PhD thesis, 1999.

[14] A. Daskalopulu. Model checking contractual protocols. Legal Knowledge and

Information Systems, JURIX, pages 35–47, 2000.

[15] A. Daskalopulu, T. Dimitrakos, and T. Maibaum. Evidence-based electronic

contract performance monitoring. Group Decision and Negotiation, 11(6):469–

485, 2002.

[16] A. Daskalopulu and M. Sergot. The representation of legal contracts. AI and

Society, 11:6, 1997.

126

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[17] H. Davulcu, M. Kifer, and I. Ramakrishnan. CTR-S: A logic for specifying

contracts in semantic web services. In Proceedings of the 13th international World

Wide Web conference on Alternate track papers & posters, pages 144–153. ACM,

2004.

[18] W. Farmer. A basic extended simple type theory. SQRL Report 14, McMaster

University, 2004.

[19] W. M. Farmer. The seven virtues of simple type theory. Journal of Applied Logic,

6:267–286, 2008.

[20] W. M. Farmer and Q. Hu. A formal language for writing contracts. In 2016

IEEE 17th International Conference on Information Reuse and Integration (IRI

2016), pages 134–141. IEEE, 2016.

[21] W. M. Farmer and Q. Hu. FCL: A Formal Language for Writing Contract, vo-

lume Quality Software Through Reuse and Integration of Advances in Intelligent

Systems and Computing. Springer International Publishing AG, 2018.

[22] S. Fenech, G. J. Pace, and G. Schneider. Automatic conflict detection on con-

tracts. In International Colloquium on Theoretical Aspects of Computing, pages

200–214. Springer, 2009.

[23] M. B. Finan. A discussion of financial economics in actuarial models: A prepa-

ration for exam MFE/3F. Prepared for Arkansas Tech University, 2015.

[24] G. K. Giannikis and A. Daskalopulu. Defeasible reasoning with e-contracts.

In Intelligent Agent Technology, 2006. IAT ’06. IEEE/WIC/ACM International

Conference on, pages 690–694, 2006.

127

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[25] G. K. Giannikis and A. Daskalopulu. The representation of e-contracts as default

theories. In H. Okuno and M. Ali, editors, New Trends in Applied Artificial

Intelligence, volume 4570 of Lecture Notes in Computer Science, pages 963–973.

Springer Berlin Heidelberg, 2007.

[26] A. Goodchild, C. Herring, and Z. Milosevic. Business contracts for B2B. In

Proceedings of the CAISE00 Workshop on Infrastructure for Dynamic Business-

to-Business Service Outsourcing, Stockholm, Sweden, 2000.

[27] G. Governatori. Representing business contracts in ruleml. International Journal

of Cooperative Information Systems, 14(02n03):181–216, 2005.

[28] G. Governatori and Z. Milosevic. A formal analysis of a business contract lan-

guage. International Journal of Cooperative Information Systems, 15(04):659–

685, 2006.

[29] G. Governatori, Z. Milosevic, and S. Sadiq. Compliance checking between busi-

ness processes and business contracts. In 2006 10th IEEE International Enter-

prise Distributed Object Computing Conference (EDOC’06), pages 221–232, Oct

2006.

[30] G. Governatori and D. H. Pham. Dr-contract: an architecture for e-contracts

in defeasible logic. International Journal of Business Process Integration and

Management, 4(3):187–199, 2009.

[31] G. Governatori and A. Rotolo. Logic of violations: A gentzen system for reaso-

ning with contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215,

2005.

128

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[32] S. O. Hansson. Semantics for more plausible deontic logics. Journal of Applied

Logic, 2:3 – 18, 2004.

[33] J. C. Hull. Options, Futures, and Other Derivatives. Prentice-Hall, 8th edition

edition, 2009.

[34] T. Hvitved. A survey of formal languages for contracts. In Fourth Workshop on

Formal Languages and Analysis of Contract-Oriented Software (FLACOS 2010),

2010.

[35] T. Hvitved. Contract formalisation and modular implementation of domain-

specific languages. PhD thesis, Department of Computer Science, University of

Copenhagen, 2012.

[36] T. Hvitved, F. Klaedtke, and E. Zălinescu. A trace-based model for multiparty

contracts. Journal of Logic and Algebraic Programming, 2011.

[37] S. Khosla and T. S. E. Maibaum. The prescription and description of state

based systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal

Logic in Specification, pages 243–294, Berlin, Heidelberg, 1989. Springer Berlin

Heidelberg.

[38] S. O. Kimbrough. A note on the good samaritan paradox and the disquotation

theory of propositional content. In Sixth International Workshop on Deontic

Logic in Computer Science (DEON 02), 2002.

[39] M. Kyas, C. Prisacariu, and G. Schneider. Run-time monitoring of electronic

contracts. Automated Technology for Verification and Analysis, pages 397–407,

2008.

129

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[40] R. M. Lee. A logic model for electronic contracting. Decision support systems,

4(1):27–44, 1988.

[41] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and S. Neal. A

unified behavioural model and a contract language for extended enterprise. Data

& Knowledge Engineering, 51(1):5–29, 2004.

[42] P. McNamara. Deontic logic. In E. N. Zalta, editor, The Stanford Encyclopedia

of Philosophy. Winter 2014 edition, 2014.

[43] J.-J. Meyer, F. Dignum, and R. Wieringa. The paradoxes of deontic logic revisited:

a computer science perspective. Number UU-CS-1994-38. University of Utrecht,

9 1994.

[44] J.-J. C. Meyer and J. Treur. Handbook of Defeasible Reasoning and Uncertainty

Management Systems: Volume 6: Dynamics and Management of Reasoning Pro-

cesses, volume Volume 6 of Handbook of Defeasible Reasoning and Uncertainty

Management Systems. Springer, 2011.

[45] A. Paschke, J. Dietrich, K. Kuhla, et al. A logic based sla management frame-

work. In 4th Semantic Web Conference (ISWC 2005), 2005.

[46] S. L. Payton Jones. Composing contracts: An adventure in financial engineering.

In Proceedings of the International Symposium of Formal Methods Europe on

Formal Methods for Increasing Software Productivity, volume 2021 of Lecture

Notes in Computer Science, page 435. Springer, 2001.

[47] S. L. Peyton Jones and J. M. Eber. How to write a financial contract. In

J. Gibbons and O. de Moor, editors, The Fun of Programming, Cornerstones in

Computing, pages 105–130. Palgrave, 2003.

130

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[48] J. Poole. Textbook on Contract Law. Oxford University Press, 11 edition, 2012.

[49] C. Prisacariu and G. Schneider. A formal language for electronic contracts. In

International Conference on Formal Methods for Open Object-Based Distributed

Systems, pages 174 – 189. Springer, 2007.

[50] C. Prisacariu and G. Schneider. Towards a formal definition of electronic con-

tracts. Technical report, Technical Report 348, Department of Informatics, Uni-

versity of Oslo, Oslo, Norway, 2007.

[51] C. Prisacariu and G. Schneider. A dynamic deontic logic for complex contracts.

The Journal of Logic and Algebraic Programming, pages 458–490, 2012.

[52] A. Ross. Imperatives and logic. Philosophy of Science, 11(1):30–46, 1944.

[53] I. Song and G. Governatori. Nested rules in defeasible logic. Rules and Rule

Markup Languages for the Semantic Web, pages 204–208, 2005.

[54] The Coq Development Team. The Coq Proof Assistant Reference Manual :

Version 8.7.2. Technical report, INRIA, 2017.

[55] V. Tosic and B. Pagurek. On comprehensive contractual descriptions of web ser-

vices. In The 2005 IEEE International Conference on e-Technology, e-Commerce

and e-Service, 2005. EEE’05., pages 444–449. IEEE, 2005.

[56] J. van Benthem and A. ter Meulen. Handbook of Logic and Language. Elsevier,

2 edition, 2010.

[57] F. Van Harmelen, V. Lifschitz, and B. Porter, editors. Handbook of Knowledge

Representation, volume Volume 1 of Foundations of Artificial Intelligence. Else-

vier Science, 2008.

131

Ph.D. Thesis - Qian Hu McMaster - Computing and Software

[58] A. Z. Wyner. Violations and Fulfillments in the Formal Representation of Con-

tracts. PhD thesis, Department of Computer Science, King’s College London,

2008.

132

