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Abstract

This thesis is concerned with the problem of coordinated energy management in a

network of grid-connected microgrids. In particular, the research investigates methods

for optimal coordinated control of storage units and sharing of electricity costs among

the microgrids. New multi-objective optimization models are proposed for efficient

integration of the microgrids local energy storage and renewable energy resources into

the power grid. In these models, individual microgrids can exchange power locally

with each other as well as with the utility grid. Components of the objective function

are the electricity costs of the individual microgrids over a rolling window of time,

e.g, a 24-hour prediction horizon. A pricing regime is introduced in which differences

in the local and grid buy and sell time-of-use rates of electricity incentivize local

inter-microgrid exchanges of power over power exchange with the grid. Optimization

problems are formulated and solved on a rolling horizon basis to allow for on-line

management of energy resources, using up-to-date forecast of microgrid electricity

demand, renewable generation, and electricity rates.

In Chapter 4, a novel formulation of a multiple-objective constrained optimization

is presented for solving the microgrids energy management problem under the pro-

posed electricity pricing regime using the concept of compromise programming. This

approach minimizes l1 or l2 distances of the microgrids cost vector to a utopia point
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in the solution space. Components of the utopia point are defined as the minimum

cost achievable by the corresponding microgrid when it always uses the favourable

local buy/sell rates. The proposed optimization models are in the form of convex

linear/quadratic programs without any binary or integer variables for l1/ l2 norms,

respectively. In Chapter 5, the multiple-objective optimization is converted to a

single-objective optimization by adding up the costs of the individual microgrids. An

equivalent linear program free of binary/integer variables is derived from the original

nonlinear optimization model, which can be effectively solved using existing solvers.

The total cost saving and computational complexity are significantly improved in this

method compared to the compromise programming technique in Chapter 4. In Chap-

ter 6, the multi-objective optimization is formulated as a lexicographic program, to

allow for preferential treatment of groups of microgrids based on pre-assigned priori-

ties. This, for example, allows for giving greater incentives to microgrids that bring

lager storage and renewable energy capacity into the network. Finally, in Chapter 7,

the optimization model is extended to enable dispatch of reactive power in addition

to real power. Simulation results with real data demonstrate that the proposed co-

ordinated energy management strategies can yield substantial cost savings, in some

cases in excess of 70 %, for the microgrids in the network compared to a case in

which they manage their resources individually. Moreover, the solution to the convex

binary/integer free optimization models can be obtained in real-time for a fairly large

network, making the proposed models suitable for on-line energy management.
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Chapter 1

Introduction

In Marnay et al. (2015), microgrids are defined “... electricity distribution systems

containing loads and distributed energy resources, (such as distributed generators,

storage devices, or controllable loads) that can be operated in a controlled, coor-

dinated way either while connected to the main power network or while islanded.”

Microgrids, enabled by advancements in the field of power electronics, can help realize

a truly distributed concept of the power system. The power grid of the future will

be an interconnected network of microgrids exchanging energy with each other. Dis-

tributed renewable energy sources and energy storage systems will be key components

of the grid. Microgrids will help better integrate these resources into the grid with the

aim of improving resiliency, reducing cost, and increasing penetration of renewable

energy. Intelligent management of the storage and renewable energy capacity within

the gird will be critical for successful implementation of this distributed generation

model.

In recent years, interest has grown in creating technology solutions that can help

transform the electric power grid from its current mostly centralized top-to-bottom
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model of operation to a more interactive distributed model. Energy losses in long-

distance transmission, unreliability and security vulnerabilities of the centralized op-

eration, and heavy reliance on polluting sources of energy are among some of the

concerns that have given rise to substantial research in the area of smart grid. In

this context, microgrids have emerged as an effective vehicle for enabling a bottom-

up transition to a distributed grid operation model. Microgrids can help integrate

distributed energy storage capacity and renewable power into the grid, increasing its

efficiency and resilience to natural and man-caused disruptive events. They can facil-

itate electrification of the transportation sector, which will have significant positive

economical and environmental consequences.

Energy storage devices and renewable sources of power are also becoming more

prevalent in the electricity grid. This is in large part due to a recognition by many

of the stakeholders of the need for transition to a distributed grid operation model

with more reliance on clean renewable energy. Distributed generation backed-up

by distributed energy storage can increase penetration of renewable energy, reduce

transmission losses, and enhance resiliency of the grid. Aside from its obvious en-

vironmental advantages, a distributed generation system can yield other significant

socio-economical benefits. It is not hard to envision a future grid in which small-scale

consumers can trade electricity among each other and with the grid. By participating

in such an open energy market, microgrid operators can lower their electricity cost

and help the grid reduce its dependence on conventional generation.

As microgrid energy systems become more prevalent, they create new opportuni-

ties for aggregation of resources and demand side management across multiple mi-

crogrids. Coordination of energy management among microgrids in a network can

2
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help them better utilize and share available storage and renewable energy resources.

The present work focuses on solving the energy management problem for a network

of grid-connected microgrids. Networks of microgrids with integrated energy man-

agement intelligence can help in the transition of the conventional power system into

a distributed operation model.

1.1 Problem Statement

This thesis focuses on the problem of energy storage management for a network of

microgrids connected to a utility grid. For the purpose of this work, a microgrid is

defined as a small electricity consumer, e.g, a residential home, that is potentially

equipped with an energy storage device and renewable sources such as wind and solar

energy. The term nanogrid may also be used to describe what is considered as a

microgrid here.

A notable application of the proposed storage control method is in a residential

community where individual units may be equipped with renewable energy sources

and energy storage devices. More broadly, the method could be used for control of

distributed renewable energy and energy storage assets available in a group of insti-

tutional, commercial, and industrial customers of a utility. In this work, it is assumed

that a number of microgrids (NoG) enter into a partnership to share their storage

and renewable energy resources, and the grid operator agrees to treat them as a single

customer. A typical configuration of such network is shown in Fig. 1.1. It should be

noted that no particular power distribution topology is assumed or required here. For

example in the case of a residential community, existing local power infrastructure

would be sufficient for the implementation of our resource sharing strategy. Only a

3
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Figure 1.1: Multiple microgrids participating in a coordinated control scheme to share
their storage and renewable energy resources.

communication infrastructure such as a secure Internet-based protocol is required for

the communication of measurements and control commands. A centralized controller

which would be owned and operated by the partnership, controls the storage devices

in the individual units, and also calculates their electricity costs using the optimiza-

tion framework proposed in the thesis. In this structure, the central controller acts as

a high-level decision-maker, and calculates the optimal values of the powers for each

unit. The battery charge/discharge commands would be sent to the local battery

power convertors controllers for execution.

A unique problem arising in the network configuration is the attribution of the

source/destination of the power each microgrid consumes or generates at the meter,

where is coupled to the grid. This attribution problem has a trivial solution in the

case of a single grid-connected microgrid, i.e., buying and selling power transactions

are solely with the grid. In multi-microgrid scenarios, however, there is no unique

4
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Inverter Controller 
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predication            

Electricity rate             
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Figure 1.2: hierarchy control levels in the proposed energy management system for a
network of microgrids

solution to the problem as buying and selling transactions can occur with the utility

grid, other microgrids in the network, or both.

Also, in coordinating energy management in a multi-microgrid system, there are

situations in which preferential treatment of microgrids based on some predefined

criteria may be desirable. For instance, microgrids with a larger investment in energy

storage and/or renewable energy capacity may be given a priority in the allocation of

benefits as an incentive for their participation in the coordinated energy management

scheme.

1.2 Proposed Solutions

In the proposed operation model, the microgrids in the network may be equipped

with solar/wind generation and energy storage units. They have the option to trade

energy with other local microgrids in the network or the utility grid. According to

the hierarchy control scheme depicted in Fig. 1.2, a central controller in the network

5
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solves a pre-specified optimization problem to make high-level decisions about the

battery charging/discharging power of each individual unit. These commands are

then sent to the low-level controllers of the corresponding power convertors. As shown

in Fig. 1.1, each microgrid net power Pu
i , i = 1, 2, · · · , NoG is metered. The actual

control variables are the battery powers denoted by Pbat
i . Note that the microgrid

net power is decomposed to a local Pl
i, and a grid Pg

i component. These are virtual

accounting variables representing local and grid power transactions. They would be

determined by the solution to the optimization problem and are used to calculate

the share of electricity cost for each microgrid. In this sense, local and grid power

transactions are completely transparent to the individual units as they are merely

virtual decompositions of their respective net power, Pu
i .

Typically in the case of a single grid-connected microgrid, the grid electricity

rates would depend on time of the day and the direction of the power flow; these

are denoted by the vectors cbg and csg, representing buy and selling prices, respec-

tively. Elements of these vectors correspond to different times during the day. In the

multiple-microgrid configuration of Fig. 1.1, the prices would be applicable to the net

power of all microgrids participating in the coordinated control scheme, Pg. This can

be simply computed by adding up the metered powers of the individual microgrids,

Pu
i . Note that while the figure shows only one feeder line for the network, in practice,

multiple feeder lines may serve the network, and this would not affect the problem

formulation.

In this thesis, the electricity rates for the local exchange of power among micro-

grids are represented by the vectors cbl and csl, for buying and selling respectively.

Furthermore, it is assumed that cbg � cbl � csl � csg. It is reasonable to assume

6
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that the price of buying, grid or local, is always higher or at least equal to the cor-

responding price of selling. The difference between the two rates can be considered

as an overhead infrastructure and power loss cost for the grid and the local network

operators. While the grid prices are usually set by the utility operator, the local

prices would be agreed upon by the microgrids participating in the local exchange

scheme. The local buy and sell prices would be within the gap in utility buy/sell

rates to encourage local power transactions and to reduce reliance on the grid power

for the network. By agreeing to sell locally at a lower rate and to buy locally at a

higher rate than the grid, the microgrids can mutually benefit from participating in

the local energy market as opposed to directly interacting with the grid on an indi-

vidual basis. The simulation results later in the thesis will indeed demonstrate that

the participating microgrids would substantially reduce their electricity cost under

such rate regime, compared to a case where they individually interact with the grid.

While the problem formulation and simulations are based on the above rate assump-

tion, if desired, alternative pricing scenarios can also be easily accommodated with

slight changes in the problem formulation. Therefore, this assumption is not limiting

the applications of the proposed methods.

The energy management algorithm operates centrally, making high-level decisions

for the average flow of powers in and out of the storage devices over the scheduling

control time steps, usually in the order of minutes. The decisions are then sent to

the low-level controllers of the power converters for the storage systems as reference

power commands. Solar/wind generation, if available, are assumed to be controlled

locally for maximum power, e.g, using maximum power point tracking algorithm for

the control of solar converter. The energy management algorithm also calculates

7
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the local and grid components of each microgrid power. This is all achieved by

formulating and solving a multi-objective optimization problem over a rolling control

window, using up-to-date predictions of the demand and renewable power in each

microgrid. Only the first/few steps of the control decisions are actually implemented

before rolling the window forward and re-solving the problem.

The optimization model is formulated on a rolling horizon basis to take advan-

tage of latest forecasts of the demand and renewable generation, and to respond to

changing electricity rates and grid requirements as they arise. The objective to min-

imize for each microgrid is the net cost of electricity, i.e., buying minus selling, and

any applicable peak demand cost. Four different formulations of the problem will

be presented, which are briefly described below. It should be noted that problem of

demand and generation forecast is beyond the scope of the current thesis. This data

is assumed to be available for use in the energy management algorithms.

1.2.1 Multi-Objective Optimization Based on Compromise

Programming

Using the concept of compromise programming Vira and Haimes (1983), a multi-

objective optimization model is formulated as a constrained minimization of the dis-

tance of the cost vector from a predefined utopia point. The elements of the utopia

point vector are the minimum cost achieved by each microgrid, assuming they could

always benefit from the local buy/sell prices. The proposed optimization problem is

convex and free of binary/integer variables. Two special cases of l1 and l2 distances

from the utopia point are considered that result in constrained linear and quadratic

optimizations, respectively.
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Figure 1.3: A network of grid-connected microgrids in the priority-based scheme;
microgrids in one row have the same priority; each microgrid may have its own local
storage and renewable power.

1.2.2 Minimizing Sum of the Costs

The multi-objective problem is converted to a conventional convex constrained op-

timization through a scalarization technique, namely the sum of the costs method

Koski and Silvennoinen (1987). The resulting objective is essentially the total elec-

tricity cost incurred by the network of microgrids. Sharing constraints are also intro-

duced to regularize the problem, i.e., to ensure a unique solution can be found that

is fair and equitable for all participating microgrids. The resulting optimization is a

convex linear program free of binary/integer variables.
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1.2.3 Priority-based Multi-Objective Optimization

The network policy with respect to transactions of power plays a critical role in

convincing microgrids with potentially conflicting goals to join the network. A multi-

objective optimization formulation using the concept of lexicographic programming

is introduced in this thesis that allows for preferential treatment of the microgrids

based on their priority group. This feature can be used to provide a higher incentive

to microgrid units with larger renewable and storage capacity for their participation in

the network. The rationale is that the units with bigger investments in the resources

should reap higher benefits from their participation. The concept of lexicographic

programming Migdalas et al. (2013) is applied to the multi-objective optimization

formulation of the energy management problem to account for microgrid priorities in

the conversion of the optimization formulation. Fig. 1.3 depicts a generic configura-

tion for a network with NoG = p1 + p2 + · · · + pq grid-connected microgrids. Here

q is the number of priority levels in the network, and microgrids in each row have

the same priority. The priorities can be assigned based on diverse factors such as the

microgrid storage and renewable energy capacity, the size of the microgrid, and any

other mutually agreed upon metric among the microgrids in the network. Bidirec-

tional power flows of the microgrids are metered at the points of their coupling to the

grid.

1.2.4 Management of Reactive Power

The first three contributions of this thesis focus on management of real power in the

microgrids in a network. The energy management formulations are further generalized

to accommodate transactions of reactive power among the microgrids and the grid.
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The objective function and constraints in the optimization are revised to account

for reactive power exchange. The resulting optimization problem is of quadratically

constrained linear/quadratic program form.

1.3 Summary of Contributions

In summary, the main contributions of this thesis are:

• Introducing a concept of operation for sharing renewable energy and storage

capacity in a network of microgrids through coordinated control of the storage

units and virtual decomposition of the microgrids metered power to local and the

grid components. This framework would encourage local power transactions and

can help substantially reduce the electricity cost of the microgrids, compared

to the case where microgrids individually exchange power with the grid using

its buy/sell rates.

• Developing four distinct multi-objective optimization formulations for on-line

computation of storage charge/discharge activities and local and grid compo-

nents of microgrid power transactions. These are:

– a formulation that would minimize l1/ l2 distances between the actual costs

vector and an ideal vector.

– a formulation that would minimize the total cost of the electricity for the

microgrids in the network.

– a formulation that can prioritize the participating microgrids based on

their attribution to predefined priority groups.
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– a generalized formulation for optimal dispatch of real and reactive power

that can be used for any network regardless of the type of loads or distance

between participants.

The key features of the proposed solutions are:

• The proposed grid/local rate scheme incentivizes local exchange of power over

that with the utility grid. This would eventually reduce the need for centralized

power generation in the grid.

• The resulting optimization formulations are convex linear/quadratic program

free of binary/integer variables. This would guarantee that a globally optimal

solution can be obtained in real-time for on-line control for a relatively large

network of microgrids.

• the proposed methods can be implemented over existing power distribution

networks, with addition of a data communication infrastructure.

• A novel utilization of aggregated energy storage in the network ensures the

longest possible uninterrupted operation in the event of islanding.

• In the scenarios considered in the thesis, the proposed network energy manage-

ment scheme substantially reduce the individual microgrid electricity costs, in

some cases in excess of 70 %. This is when the cost is compared to that from

optimally managed individually microgrids with the same local energy storage

and renewable generation capacity.
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1.3.1 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, a survey of the litera-

ture pertinent to the core topics of the thesis is presented. A generic multi-objective

optimization problem and different scalarization and non-scalarization techniques for

solving such problem are briefly reviewed in Chapter 3. In Chapter 4, a nonlin-

ear multi-objective optimization formulation of the energy management problem in

multi-microgrid network is presented. Using the concept of compromise programming,

linear/quadratic programming counterparts of the original problem are then devel-

oped that avoid binary/integer variables and can be solved in substantially shorter

times, making them suitable for real-time implementation. In Chapter 5, the multi-

objective optimization problem is converted to a conventional linear program with

the goal of minimizing the total electricity cost of the microgrids. In Chapter 6, a

new formulation of the multi-objective optimization is produced that would allow for

preferential treatment of microgrids based on their priority assignment. In Chapter 7,

the problem formulation is extended for optimal dispatch of real and reactive power

in a network regardless of the type of loads or distance between participants. The

thesis is concluded in Chapter 8 where some possible directions for future research

are also discussed.

1.4 Related Publications

The following publications have resulted from the research conducted in this thesis:

• M. Rafiee Sandgani and S. Sirouspour, “ Energy Management in a Network

of Grid-Connected Microgrids/Nanogrids Using Compromise Programming,” in
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IEEE Transactions on Smart Grid, September 2016; DOI: 10.1109/TSG.2016.2608281.

• M. R. Sandgani and S. Sirouspour, “Coordinated Optimal Dispatch of En-

ergy Storage in a Network of Grid-Connected Microgrids,” in IEEE Transac-

tions on Sustainable Energy, vol. 8, no. 3, pp. 1166-1176, July 2017; DOI:

10.1109/TSTE.2017.2664666.

• M. Rafiee Sandgani and S. Sirouspour, “Priority-based Microgrid Energy Man-

agement in a Network Environment,” in IEEE Transactions on Sustainable

Energy, November 2017; DOI: 10.1109/TSG.2016.2608281.

• M. Rafiee Sandgani; S. Sirouspour, “Optimal Dispatch of Real and Reactive

Power in a Network of Grid-connected Microgrids,” to be submitted to the

IEEE Transactions on Smart Grid.
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Chapter 2

Literature Survey

In Chapter 1, the problems addressed in this thesis were introduced along with brief

descriptions of the solutions and contributions to the literature. This chapter presents

a survey of the literature related to the thesis topic.

2.1 Basics of Microgrid Operation

A typical microgrid integrates elements of power generation with load and storage

capacity. Microgrids may be at residential, commercial, industrial or institutional

scales. A microgrid usually operates in either grid-connected or islanded mode. In

multi-microgrid configurations, there is the possibility of semi-islanded operation as

well. In the grid-connected mode, a microgrid either draws or supplies power from

or to the utility grid, depending on the generation and its local load. A microgrid

can isolate itself from the grid whenever a power quality event occurs. The main

goal of a grid-connected microgrid is to supply real and reactive powers under high

power quality injection constraints. In islanded mode, distributed generation units
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are required to supply regulated power under controllable voltage and frequency while

sharing the loads among themselves. Variations in voltage and frequency can become

more pronounced when microgrid switches over to islanded mode. In grid-connected

mode, the voltage and frequency are enforced by the grid. In island mode, the power

balance between generation and demand must be maintained and the bus frequency

and voltage must be controlled. This may require temporary shedding of loads if

sufficient power cannot be supplied. A smooth transition between these two modes

is required for maintaining a reliable supply of power for essential loads. Lopes et al.

(2006).

Since the equivalent physical inertia of a microgrid is quite smaller than that of the

main grid Nikkhajoei and Lasseter (2009), the control and management of an islanded

microgrid is often more challenging than a grid-connected microgrid. Medium or even

small interruptions may result in power quality and stability issues. Specifically, the

frequency and voltage quality would decline, and system stability would deteriorate.

Integrated energy storage can help maintain microgrid instantaneous power balance

and improve its dynamic performance through proper energy management strategies

Lee and Wang (2008). It can mitigate negative impacts of distributed generation

power fluctuations and other interruptions on system stability and power quality.

2.1.1 The Role of Energy Management System

The energy management system maintains the power quality, provides ancillary ser-

vices to the grid, helps microgrid to participate in energy markets, and generally

optimizes the microgrid operation Katiraei et al. (2008). It performs these functions

by considering requirements of the distribution network operator. The information

16



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

and communication infrastructure plays an important role in the operation of the en-

ergy management system. Microgrids increasing role in the grid poses new challenges

for their energy management systems De Brabandere et al. (2007). They should be

able to smoothly transition between islanded and grid-connected modes under in-

tentional or unintentional conditions, integrate demand side strategies, and handle

increasing penetration of renewable energy by developing advanced scheduling and

dispatching strategies.

2.1.2 Hierarchical Control

The overall microgrid management system is a complex multi-objective control sys-

tem that deals with issues from different technical areas, time scales, and physical

levels. Some areas of interest include load power sharing, voltage/frequency and

power quality regulation, market participation, and short/long-term scheduling. A

hierarchical control scheme has been proposed and widely accepted as a standardized

solution for efficient microgrids management, as depicted in Fig. 2.1. These three-

level hierarchical control is organized as follows Guerrero et al. (2013). The primary

control layer deals with the inner control of the distributed units by adding virtual

inertias and controlling their output impedances. The primary control also regulates

the local power, voltage, and current. It normally follows the set-points given by the

secondary level controller.

In the hierarchy, a secondary control appears on top of the primary control. Its

task is regulating the frequency and voltage amplitude deviations caused by the vir-

tual inertias and output virtual impedances and reducing harmonics. In addition,

this layer is responsible for frequency synchronization and power exchange with the
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main grid or other microgrids.

The tertiary control regulates the power flows between the grid and the microgrid

at the point of common coupling. Furthermore, the aim of tertiary control is to

introduce intelligence in the whole system. The tertiary control would attempt to

optimize the microgrid operation based on economical and efficiency-related metrics.

To this end, it relies on information from various sources to make high-level decisions

with respect to the operation of the microgrid.

It should be noted this is a hierarchical control scheme for a single microgrid con-

nected to the grid. In the case of multi-microgrid, it can be envisioned that there is

another control layer on top of this inner-microgrid hierarchy that regulates power

flow among the microgrids and utility grid in a coordinated way. Another configu-

ration that is suited more for the present study is a two-level hierarchy structure in

which high-level control makes the power flow decision and low-level control at the

inverters regulates the frequency and voltage amplitude to follow the reference powers

as depicted in 1.2.

2.2 Microgrid Control Strategies

This section reviews decentralized and centralized schemes in control of a microgrid.

2.2.1 Decentralized Control

In the primary layer of the hierarchical control, power electronic convertors inter-

face distributed energy resources to the microgrids. These converters are parallel-

connected throughout the microgrid. The droop control method is often applied to
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Figure 2.1: hierarchy in control of a microgrid

avoid circulating currents among the converters without the use of any critical com-

munication Katiraei and Iravani (2006). For parallel inverters, the droop method

consists of subtracting proportional parts of the output average real/reactive pow-

ers to the frequency/amplitude of each module to emulate virtual inertia (i.e., the

average real power of each module is linearly dependent on its frequency and the

average reactive power of each module is linearly dependent on voltage amplitude).

These control loops are also called P—f and Q—E droop Guerrero et al. (2006).

While highly reliable and flexible, the method has several drawbacks. For instance,
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the conventional droop method is not suitable when the paralleled system must share

nonlinear loads, because the control units should take into account harmonic currents.

Thus, harmonic-current-sharing techniques have been proposed to avoid circulating

distortion current when sharing nonlinear loads such as adding output virtual reactors

Guerrero et al. (2005). Furthermore, the power sharing in the droop control method

is affected by the units output and line impedances. The virtual output impedance

control loop can be utilized to solve this problem Yao et al. (2011). Other notable

disadvantages of the droop method are its load-dependent frequency and voltage

amplitude deviations. To solve these problems, a secondary controller can be im-

plemented to regulate the frequency and voltage amplitude in the microgrid Shafiee

et al. (2014a).

Decentralized microgrid controllers can be classified into three groups based on

the interconnecting line impedances. In highly dispersed networks, the impedances

are predominantly inductive and the voltage magnitudes and phase angles at different

sources can be very different. Chandorkar et al. (1993) showed that in such cases,

the distributed system could be operated without the use of phase-locked loops and

that real and reactive powers could be shared based on the converter ratings. When

the microgrid is spread out over a smaller area, the impedances are still inductive

but also have a significant resistive component. While the voltage magnitudes of the

sources are almost the same, their phases could be significantly different.

In very small networks, the line impedance is small and predominantly resistive.

Neither magnitude nor phase angle differences are significant at any point. The

voltage-droop control has limitations when used in microgrids with significant resistive

line impedance. In such cases, the usual real power-frequency droop and reactive
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power-voltage droop adopted from conventional power system control practice, no

longer hold. Instead, the real power is affected primarily by the voltage magnitude,

whereas the reactive power is mostly influenced by the phase angle difference Guerrero

et al. (2007). In all cases, the main common quantity is the steady-state frequency

which must be the same for all sources. In the grid-connected mode, the microgrid

frequency is determined by the grid. In the islanded mode, the frequency is decided

upon and enforced by the microgrid local controller. Decentralized control of inverters

requires set-points for real and reactive power. These references are usually produced

by the energy management system of the microgrid.

2.2.2 Centralized Control

In a centralized controller, the microgrid components are considered as one integrated

system. The overall system dynamics are derived and control signals are generated

using a proper control strategy. These control commands are then sent to the in-

verters and other units controllers in the microgrid via a communication network.

Kim et al. (2011) presented a general structure for centralized control of a microgrid

in involving two control layers: Microgrid Management System (MMS) and Local

Controller (LC). The MMS is a centralized controller that deals with management

functions such as disconnection and re-synchronization of the microgrid and the load

shedding process. In addition to this function, the MMS is responsible for super-

visory control of distributed generations and the energy storage system. The MMS

generates power output set-points for LCs. The LC is located at each microsource

and controls the power output according to the reference set by the MMS.

21



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

Tan et al. (2012) presented a centralized control system that coordinates parallel

operations of distributed generation inverters within a microgrid. Their approach

employs a model predictive control strategy that allows faster computational times

for large power microgrids by optimizing the steady-state and the transient models

separately.

2.3 Energy Management System in Microgrid

The problem of energy management of a microgrid has been extensively investigated

in the literature from the following perspectives:

• Mode of operation

– Grid-connected mode

– Island mode (stand-alone)

• Type of optimization

– Centralized

– Decentralized

• Optimal control

– Optimal power flow

– Economic dispatch

– Demand side management

– Carbon dioxide emission reduction
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• Structure of network

– Single microgrid

– Network of microgrids

Next, recent papers in each of these categories are briefly reviewed.

2.3.1 Mode of Operation

A microgrid should be capable of operating in grid-connected and islanded modes.

Microgrids should regulate their voltage and frequency in order to protect the grid

and the loads during transition between these operation modes. Islanded micro-

grids can supply the electricity needs of remote communities with underdeveloped

transmission infrastructure. Grid-connected microgrids can deliberately disconnect

themselves from the utility grid and continue to operate in islanded mode in the

event of a grid disruption or planned maintenance. The rest of this section reviews

the existing energy management strategies in islanded and grid-connected modes.

Islanded Mode

Dursun and Kilic (2012) examined the performance of three power management

strategies for a standalone microgrid. The strategies were initially designed to in-

crease the operation time of a fuel-cell unit and to ensure continuous flow of power in

the system. The authors devised a control algorithm to manage the power flow and

the fuel cell operation time in the network considering the battery state of charge and

load demand. To this end, three possible scenarios leading to their control strategies

were considered. Their most efficient strategy turned out to be: charge the battery
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if there is a surplus power in the microgrid and the battery is not fully charged, and

run the fuel-cell if the net demand is positive or battery is fully discharged. Liao

and Ruan (2009) proposed a power management control strategy for a standalone

microgrid equipped with energy storage and solar generation. In their approach, the

solar generation system provides the base load, whereas, the battery compensates

for fluctuations in demand. They control uni-directional and bi−directional DC-DC

converters to operate in a desired mode based on the battery state of charge and

weather conditions. The proposed power management strategy coordinates the two

sources to ensure that the power system operates at high efficiency with good dynamic

performance.

Dahmane et al. (2013) developed an algorithm for optimal power management of

a standalone hybrid system that contains solar, wind and diesel generators, as well as

battery energy storage. In their strategy, the solar unit operates at maximum power

using a maximum power point tracking algorithm to supply the load and the wind

generator only supplements the solar generation if a power shortage occurs. A diesel

generator is also available to meet the load demand and to charge the battery in the

absence of sufficient solar and wind powers, and when the battery is fully discharged.

Nfah et al. (2007) modelled and performed an energy analysis for a microgrid system in

a remote location in North Cameroon. The system aimed to supply rural households

and schools. They give priority to utilizing the wind energy and store any excess

energy in the battery. The diesel generator starts operating when the batteries are

fully discharged.

Sachs and Sawodny (2016) presented an advanced control strategy for optimal

microgrid operation using a two−layer model predictive method. The first layer
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computes optimal power dispatch commands, based on real−time predictions of future

power profiles. To improve the robustness of the control strategy to prediction errors,

a boundary value problem is solved to adjust the diesel generator power in the second

stage. The model predictive control framework is further used to adapt the weights

of the forecast algorithm. They focused on microgrids in remote rural areas with no

connection to the grid.

Grid-Connected Mode

Rani et al. (2013) proposed a photovoltaic system to supply DC loads from a grid-

connected system without any interruption. They developed a linear programming−based

energy flow management scheme to achieve this goal. Battistelli et al. (2012) assessed

the contribution of vehicle-to-grid systems to support energy management of small

electric power systems by providing a practical model for the microgrid. The assess-

ment was conducted by determining the power output of various generating units and

the input/output power from grid. Mohamed and Mohammed (2013) proposed an

algorithm to optimize the operation of a distribution system by considering the cost

and stability. Their energy management system controls the available power from ex-

isting energy sources to meet the demand. Energy generated from renewable sources

is given the highest priority. The batteries primarily act for large loads to enhance

the stability of the system and decrease voltage dips. They employed a fuzzy system

to determine the amount of energy required from the battery when renewable energy

sources are unable to satisfy the load.

Khodabakhsh and Sirouspour (2016) presented two methods for online optimal

control of an energy storage unit in a grid−connected microgrid. In their model,
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load demand, solar generation, and electricity rate are uncertain. Their primary op-

timization model is a scenario-based stochastic conditional value at risk. They used

a multivariate Gaussian distribution for modelling of the uncertainty. Worst-case

scenario-based stochastic conditional value at risk stochastic optimization approach

was then employed to obtain a second optimization model. This led to a set of robust

constraints with respect to price variations that guarantees reducing the computation

time. Sirouspour (2016) presented an off-line control strategy for an energy storage in

a grid-connected microgrid. He assumed that uncertainty in the microgrid electricity

cost and net demand with a priori known distributions. The energy management

system was formulated as a stochastic chance constraint optimization problem. The

equivalent deterministic convex nonlinear optimization formulation of the original op-

timization model was then derived and solved with standard optimization algorithms.

2.3.2 Type of Optimization

Based on the hierarchy introduced at the beginning of this chapter, the functions

of energy management system can be implemented in a centralized or decentralized

way. The level of decentralization depends on the amount of autonomy of the local

controllers. They can simply execute commands from the upper-level centralized con-

troller or make decisions locally based on information received from the other units.

Each approach has its own advantages and disadvantages, and one may be more suit-

able than the other depending on the type of microgrid (e.g., residential, commercial,

industrial), ownership of microgrids, network size and topology. Generally speaking,

computational and communication infrastructure costs are lower in a decentralized

system. These systems are also more flexible and easier to expand, and are more
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robust with respect to single-point failures. Centralized realizations have tighter con-

trol and supervision over the entire system, and their control algorithms are usually

easier to develop and implement.

Centralized Control

A centralized energy management system usually needs substantial computing power

and resources to process considerable amount of data in making decisions. It requires

reliable real-time communication in order to exchange information with the individual

units. According to the literature, centralized control is more suitable in the following

situations Tsikalakis and Hatziargyriou (2011); Olivares et al. (2011); Vaccaro et al.

(2011); Tsikalakis and Hatziargyriou (2008):

• small-scale microgrids where centralized information gathering and decision

making can be carried out with low communication and computation cost.

• when all the microgrids in the network have a common goal so that the central

energy management system can operate the network as one unit.

• military microgrids with strict security requirements.

• networks with a fixed configuration.

Yue et al. (2017) examined optimization-based scheduling of resources in a centralized

energy management system. In addition, they proposed a method for the control of

the voltages of various DC buses in a DC residential distribution system. Almada

et al. (2016) studied control and management of a microgrid with distributed en-

ergy resources connected to a single bus. Their microgrid management system uses

a centralized heuristic approach that considers a stochastic model for photovoltaic
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output power, a fuel cell, the state of charge of batteries, a variable load profile, and

the electricity tariff. Their goal was to integrate local energy resources into grid to

reduce cost and enhance reliability and quality of the power supply. They also eval-

uated the responses of the power converters of the distributed energy resources in

the microgrid during grid connection, standalone operation, and transition between

these operating modes. Prodan and Zio (2014) proposed a framework for microgrid

energy management based on the concept of rolling horizon control. The microgrid

considered in their work is connected to the grid via a transformer and contains a

local load, a wind turbine, and a battery unit. Optimal scheduling of the battery was

sought for minimizing cost. To this end, a predictive control framework was proposed

that considers cost, power consumption, and power generation profiles.

Decentralized Control

Decentralized controllers have been proposed as an alternative to centralized methods

to increase operation flexibility. Recent progress in communication technology and

information exchange algorithms have enabled the use of decentralized control and

management in practical applications Qiu et al. (2011).

An emerging research trend in distributed energy management is based on con-

cepts in multi-agent systems. The control hierarchy and functions in such schemes

are similar to those in centralized methods. However, the decision making authority

is transferred to the local controllers by increasing their autonomy. Local decisions

are made based on information on demand, power generation and electricity price

forecasts, and neighbouring controllers states. Decentralized control and energy man-

agement can eliminate the need for large central computing infrastructure since the
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decisions are made mostly at the local level. They can continue to operate in the event

of failure at a single unit. It is also easier to implement plug-and-play functionality in

a distributed system, which considerably enhances microgrid flexibility/expandability.

On the other hand, decentralized control requires good synchronization among the

units for safe and stable operation. Decentralized control and energy management is

preferable when Xu and Liu (2011); Liu et al. (2014); Colson et al. (2014):

• microgrid is large or its units are widely dispersed which makes centralized data

acquisition difficult.

• resources are owned by different entities who have their own operation goals

and require local decision making.

• microgrid system is expected to grow by installation of new units over time.

Mao et al. (2014) presented a multiagent-based hybrid energy management system

with both centralized and decentralized energy control functionalities. Within this

framework, three-level hierarchical energy management strategies were presented. A

coordinated energy management framework was realized by combining autonomous

control of local distributed energy resources at the local level with coordinated en-

ergy control at the central level. Kuznetsova et al. (2015) presented a microgrid

energy management method using robust optimization. Uncertainties in wind power

generation and loads were described in the form of prediction intervals. Their bench-

mark system was a microgrid comprising a middle-size train station with integrated

photovoltaic power production system, an urban wind power plant and a residential

district. They modelled each stakeholder was modelled as an agent, with the goal

of decreasing its cost/increasing its revenue. They showed how the probabilities of
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occurrence of certain events, e.g., failure of power lines, electricity demand, and price

peaks, highly condition reliability and performance indicators of the microgrid.

2.3.3 Optimal Control Techniques

Optimal control techniques for controlling microgrids can be classified according to the

objective function they minimize or maximize. The objective function can quantify

costumers satisfaction, reliability of the network, environmental impacts, etc.

Optimal Power Flow

Optimal power flow in a microgrid is challenging due to uncertainty in the loads,

generation units, state of charge of the batteries, and electricity rates models. Li

et al. (2012) studied power flow in a microgrid under variable load and generation

conditions. They considered typical properties of inverter-interfaced microsources,

including P-Q inverter, P-V inverter, and the converters rated current and linear

modulation constraints. They also investigated voltage enhancement and active power

losses. Conti et al. (2012) presented a weighted-sum objective function for solving

a multi-objective optimization problem within an optimal power flow framework in

a microgrid with multiple distributed generation units and battery storage systems,

using a niching evolutionary algorithm. Levron et al. (2013) presented a method

for optimal control of energy storage devices in a microgrid. Stored energy was

controlled to balance renewable. They also proposed an optimal power flow solution

that considers limits on the storage capacity, voltages, currents, and powers.

Morstyn et al. (2016) proposed a multi-agent dynamic optimal power flow strategy

for microgrids with distributed energy storage systems. This control strategy uses a
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convex formulation of the AC dynamic optimal power flow problem developed from

a d-q reference frame voltage-current model and linear power flow approximations.

The resulting convex dynamic optimal power flow problem is divided between au-

tonomous agents and solved based on local information and neighbour-to-neighbour

communication over a communication network, by using a distributed primal sub-

gradient algorithm. Ravichandran et al. (2016) proposed an online control scheme for

power flow energy management of a microgrid equipped with renewable generation,

battery, and integrated electric vehicles. They formulated the problem as a chance

constraint optimization in the form of mixed integer linear program. They showed

that in the presence of uncertainties in the prediction of demand, electric vehicles

state of charge and their connection time, the proposed energy management system

can significantly reduce cost and the probability of not meeting the electric vehicles

charging requirements, compared to a non-stochastic optimization formulation.

Economic Dispatch

Jin et al. (2017) proposed a dynamic economic dispatch method. They considered a

microgrid as a discrete time system, and defined dynamic economic dispatch as finding

the optimal control strategy for the system in a finite time period. They established a

dynamic economic dispatch model for microgrids and developed a dynamic program-

ming algorithm for solving the problem. Liang et al. (2012) introduced a decentralized

economic dispatch approach in which optimal decisions on power generation are made

by each generation unit locally without a central controller. They presented a het-

erogeneous wireless network architecture for microgrids to improve the convergence

speed of the general nonlinear multi-agent problem. Nutkani et al. (2017) presented a
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comprehensive economic dispatch scheme that considers distributed generation costs,

their power ratings, distributed generation dispatch priorities, and droop characteris-

tics. The proposed scheme also allows for on-line power reserve to be set and regulated

within the microgrid.

Demand Side Management

Wu et al. (2011) proposed a demand side management strategy considering uncer-

tainty in wind power generation. Their focus was on an isolated microgrid with one

wind turbine, one fast-responding conventional generator, and several users. In their

model, the users act as independent decision makers in shaping their own load pro-

files. Using the dynamic potential game theory, they analyzed and coordinated the

interactions among the users to efficiently utilize the available renewable and conven-

tional energy resources and minimize the total energy cost. They derived closed-form

expressions for the best responses for the users that participate in demand side man-

agement. Then, they investigated the efficiency of the constructed game model at its

equilibrium.

An energy management system for a renewable-based microgrid was proposed by

Palma-Behnke et al. (2011). It provided on-line set-points for each generation unit,

operation modes for a water supply system, and signals for consumers based on a

demand side management mechanism. The energy management system minimizes

the operational costs while supplying water and electric load demands. Logenthiran

et al. (2012) presented a demand side management strategy for a smart grid based

on a load shifting technique. A heuristic-based evolutionary algorithm that adapts

the heuristics in the problem was developed for solving the proposed optimization
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problem. A stochastic programming model was proposed by Aghajani et al. (2017)

to minimize operating costs and emissions from non-renewable sources in a micro-

grid. They used a probability density function to predict the wind speed and solar

irradiance. They also suggested the use of incentive-based payments as price offer

packages for implementing demand response programs.

Yaghmaee et al. (2017) proposed a two-tier cloud-based demand side management

to control residential load of customers equipped with local power generation and stor-

age facilities. They considered a power system consisting of multiple regions. In each

region, an edge cloud was utilized to find the optimal power consumption schedule

for customer appliances in that region. They proposed a two-level optimization algo-

rithm with a linear multilevel cost function. At the edge cloud, power consumption,

level of local storage, and power demand from local storage facilities and power grid

are scheduled. The core cloud gathers data on the total demand from consumers in

different regions and finds the optimal power consumption schedule for each region.

Carbon Dioxide Emission Reduction

Reducing carbon dioxide emissions has been a principal goal of many energy manage-

ment systems. To this end, variables directly linked to carbon dioxide emission have

been incorporated in energy management optimization models. Kanchev et al. (2012)

presented a microgrid energy management optimization model with local solar gen-

erators. Using predictions of available energy, state of charge of storage devices, and

load, the microgrid energy management system solves a 24-hour ahead operational

planning problem using the unit commitment approach. The objective function is ei-

ther the CO2 equivalent emissions, the fuel consumption or a trade-off between these
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two. Elsied et al. (2016) proposed an energy management system in order to optimize

microgrid performance in a real-time operation. A binary particle swarm optimiza-

tion algorithm is used to minimize energy cost and carbon dioxide and pollutant

emissions, while maximizing power from renewable energy resources.

2.3.4 Structure of Network

Two possible structures can be envisioned for a network of microgrids. Either all

microgrids are able to exchange energy with each other and the grid, or only individ-

ual microgrid transactions are permitted. For individual microgrids optimal control

strategy can be described as: seeking the cheapest source of energy, that could be off-

peak utility energy or an internal renewable energy for example, purchasing it to meet

the demand and storing the surplus in the energy storage unit. It would minimize the

purchase of grid energy during peak hours. However, in multi-microgrid scenarios,

due to the complexity of the system and competing objectives of the microgrids, the

optimal solution strategy can be much more complicated. In energy management in

a network of microgrids that is the main concern of this thesis, solutions are found

from multi-objective optimization problems, solved either centrally or in a distributed

fashion. In this section, recent studies in the literature are reviewed.

Single Grid-connected Microgrid

The problem of energy management has been studied extensively in the literature

for single grid-connected microgrids , e.g., see Kanchev et al. (2011); Zhang et al.

(2013); Arboleya et al. (2015). Malysz et al. (2014) presented an optimization-based

control method for a storage unit in a grid-connected microgrid. They considered
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the electricity cost, battery related operation costs, and utility oriented goals such as

peak reduction and load smoothing in their objective function. They also proposed

a robust counterpart of their nominal optimization problem to deal with uncertainty

in the prediction of demand and renewable energy. Shi et al. (2017) presented an

online energy management system for real-time operation of microgrids that takes into

account the power flow and underlying power distribution network and the associated

constraints. They modelled online energy management as a stochastic optimal power

flow problem and employed Lyapunov optimization to devise an online algorithm to

solve it in real time. Oriti et al. (2016) demonstrated a power electronics-based energy

management system. Their method controls a single-phase voltage source battery

inverter as a current source or a voltage source depending on the status of the AC grid

and the user preference. It also guarantees power for critical loads in the event of grid

failure and reduces the peak power by supplying some of the peak demand through

the battery. Liu et al. (2016) proposed an optimal bidding strategy in the day-ahead

market of a microgrid using a hybrid stochastic/robust optimization model. The

microgrid coordinates the energy consumption or production of its components, and

trades electricity both in day-ahead and real-time markets to minimize its operating

cost.

A number of papers have focused on energy efficiency and demand profile im-

provement in a single-microgrid, e.g., see Ferruzzi et al. (2015); Wang et al. (2014);

Baharlouei and Hashemi (2014). Pascual et al. (2015) proposed an energy man-

agement strategy for a residential microgrid consisting of photovoltaic panels and a

small wind turbine. Their proposed control strategy uses information on the battery

state of charge, the power at each microgrid node as well as the load and renewable
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generation forecasts to improve the microgrid power profile at the point of connection

to the grid. Wu et al. (2011) developed a mixed-integer-linear-program optimization

over a rolling horizon window for robust optimal control of a battery-based stor-

age system in a grid-connected electricity microgrid. The user electricity cost and

utility-oriented goals related to peak demand and load smoothing are included in the

objective function of the optimization problem. Utility and cost optimization have

been considered in a number of other papers as well, e.g., see Ahmadi et al. (2015);

Liu et al. (2015); Elsied et al. (2015). Jiang and Fei (2015) proposed a cost-effective

energy ecosystem in a community microgrid with distributed energy resources. The

energy ecosystem is to achieve high-quality energy service and low cost for all the

households. Ross et al. (2015) formulated a multi-objective optimization to optimize

different benefits that can be gained with a microgrid. The multi-objective optimiza-

tion was implemented through scalarization functions that are determined a priori

based on valuation functions applicable to specific microgrids and jurisdictions.

Multiple Microgrids

Potential economical and environmental benefits that could arise from coordinated

energy management of a group of microgrids have led to research in multi-microgrid

energy management. The problem of energy management in a network of microgrids is

a relatively new topic Fathi and Bevrani (2013); Asimakopoulou et al. (2013); Nguyen

and Le (2013); Rahbar et al. (2014). Coordinated energy management in such settings

can yield increased economic and environmental benefits for the consumers and utility

operators. Ouammi et al. (2015) presented a centralized model predictive control for
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optimal exchange of power in a network of microgrids. They assumed power trans-

mission lines exist between each pair of local microgrids. In their model, a microgrid

sells power when its net demand is negative, without taking into account the energy

level of the storage devices; consequently, the storage devices have no role in power

trading. Wang et al. (2015b) proposed a control strategy for coordinated operation

of networked microgrids in a distribution system. They formulated the problem as a

stochastic bi-level optimization with the distribution network operator at the upper

level, and the microgrids at the lower level. The resulting nonlinear optimization

model was approximated by a mixed integer linear program. However, mixed inte-

ger linear problems are non-convex optimizations with computation times that could

grow very rapidly with the size of the problem; this behaviour renders mixed integer

linear program-based optimization impractical for real-time energy management in

large networks of microgrids.

Wang et al. (2015a) introduced a hierarchical power scheduling approach to op-

timally manage power trading, storage and distribution in a smart power grid with

a macrogrid and cooperative microgrids. They formulated the problem as a con-

vex optimization problem and then decomposed it into a two-tier formulation, where

the first stage is an offline optimization. This was then approximated for online

implementation. They also proposed three algorithms to solve the problem hierar-

chically that are nonlinear with computational complexity in the order of N6. Song

et al. (2015) proposed an optimal electric energy management of a cooperative multi-

microgrid community with sequentially coordinated operations. Their goal was to

distribute the computations in order to make optimal 24-hour energy management of

multi-microgrids possible. They assume a combined heat and power generator exists
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in each microgrid. However, this work does not resolve the redundancy of the solu-

tion in a multi-microgrid energy management problem. The work of Chakraborty

et al. (2015) presented an optimal coalition formation mechanism in multi-microgrid

energy trading and analyzed the characteristics of an optimal response from a coali-

tional game theoretical perspective. The proposed method does not consider energy

storage devices and line capacity constraints. Moreover, it may yield solutions in

which a microgrid can simultaneously buy power from the grid and sell it to other

local microgrids.

Energy management in a multi-microgrid community can be decentralized Lv and

Ai (2016); Shafiee et al. (2014b); Hossain et al. (2016) or centralized Dagdougui et al.

(2016); Nikmehr and Najafi Ravadanegh (2016) frameworks. Olivares et al. (2014)

presented a mathematical formulation of the microgrid energy management problem

and its implementation in a centralized system for isolated microgrids. Using a model

predictive control framework, the optimal operation of the microgrid is determined

over an extended horizon of evaluation and recourse. The energy management prob-

lem is decomposed into unit commitment and optimal power flow problems in order to

avoid a mixed-integer non-linear formulation. The microgrid is modelled as a three-

phase unbalanced system with both dispatchable and non-dispatchable distributed

generation.

Arefifar et al. (2017) presented optimized and coordinated strategies for perform-

ing and assessing energy management in multiple microgrid systems. The energy

management process was formulated for multi-microgrid systems that simultaneously

incorporate several energy generation/consumption units, including different types of

distributed generators, energy storage units, electric vehicles, and demand response.

38



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

Due to the probabilistic nature of some loads and generators, a novel probabilistic

index was defined to measure the success of energy management scenarios in terms of

cost minimization. Moreover, by using the new index, common types of energy con-

trollers, such as distributed generations, storage units, electric vehicles and demand

side management were implemented simultaneously and individually, and the impact

of each addition on the performance index and operational costs is investigated.

Kou et al. (2017) presented a distributed economic model predictive control scheme

for coordinated stochastic energy management of multiple microgrids. Based on prob-

abilistic forecasts of renewable power generation and microgrid load, this scheme ef-

fectively handles uncertainties in both supply and demand. The proposed method

was evaluated on a system with ten interconnected microgrids. Fang et al. (2016)

presented a collective energy dispatch solution to optimally coordinate distributed

generation, distributed storage units and critical demands across multiple microgrids

based on a tree stem-leaves approach. The energy distribution network consisting

of multiple microgrids was modelled mathematically as a weighted matrix simulta-

neously considering power loss and reliability statistics. The revised minimum span-

ning tree algorithm was adopted to identify the optimal distributed generation-critical

loads and storage unit-critical loads mappings for energy supply; an algorithm using

linear matrix inequalities determined the non-critical loads to be supplied and added

them to the stems as tree leaves. Such energy network structure formed by stem

and leaves can vary over time in case that significant changes are identified during

microgrid operation and the functionalities can be implemented through intelligent

system management tools.
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2.4 Summary

A review of the state of the art in energy management of microgrids was presented

in this chapter. The review covered the literature from a number of different an-

gles, including the microgrid mode of operation (Section 2.3.1), type of optimization

problem (Section 2.3.2), optimal control approaches (Section 2.3.3), and structure of

network (Section 2.3.4).

40



Chapter 3

Multi-Objective Optimization

This chapter briefly reviews some fundamental concepts in multi-objective optimiza-

tion problems, that are used later in the thesis. The review is not comprehensive and

simply focuses on materials relevant to the future chapters. These include the concept

of Pareto optimality, and various scalarization and non-scalarization techniques for

seeking Pareto optimal solutions of a multi-objective optimization problem.

A typical multi-objective optimization problem is stated as

min
x

F(x) =

[
F1(x), · · · , Fk(x)

]T
subject to gi(x) ≤ 0, i = 1, · · · , n

hj(x) = 0, j = 1, · · · ,m

(3.1)

Here the goal is to minimize the objective vector F(x), which contains k scalar ob-

jectives, subject to n inequality and m equality constraints. The decision vector is

x ∈ Rq, where q is the number of independent decision variables. The feasible solu-

tion space is defined as X = {x|gi(x) ≤ 0, i = 1, · · · , n; &hj(x) = 0, j = 1, · · · ,m},
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that is the set of all decision vectors that satisfy the constraints of the problem, and

the attainable space is {F(x)|x ∈ X}, the set of objective vector values of feasible

points.

Unlike in their single-objective counterparts, the concept of optimality in multi-

objective optimization problems is not evident. In fact, there is typically no single

global optimal solution for such problems, but rather there exists a family of solutions

that satisfy some notion of optimality. The concept of Pareto optimality has been

widely used to characterize optimal solutions in vector optimization problems, and is

defined as follows Marler and Arora (2004)

Definition 1: A feasible solution x̂ ∈ X for the problem in (3.1) is Pareto optimal

(efficient), if there is no other x ∈X such that F(x) � F(x̂), with inequality relation

holding element-wise. If x̂ is Pareto optimal, F(x̂) is called a nondominated point.

The set of all Pareto optimal points x̂ ∈ X is denoted XE and called the efficient

set.

There are numerous methods for finding Pareto optimal points of a multi-objective

optimization problem by converting it to ordinary single-objective optimization prob-

lems Ehrgott (2006). These methods are often categorized based on whether they

yield necessary or sufficient conditions for Pareto optimality Ehrgott (2006). They

can be classified as scalarizing and non-scalarizing methods. These methods incor-

porate parameters such as coefficients, exponents, and constraint limits. By varying

these parameters they can generate the efficient set of the optimization problem. The

compromise programming and sum of the costs are two scalarization methods, and

the lexicographic programming is a non-scalarization method, that will be used in this

thesis for seeking Pareto optimal points of a multi-objective optimization problem.

42



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

They will be briefly discussed next.

3.1 Compromise Programming

The utopia point for a multi-objective optimization is defined as follows.

Definition 2: The point Fu =

[
F u
1 , · · · , F u

k

]T
given by

F u
i := min

x
{Fi(x)|x ∈X} (3.2)

is called the utopia point of the multi-objective optimization problem (3.1). The best

outcome of a multi-objective optimization problem is the utopia point. However, in

general, the utopia point is not attainable. Instead, a compromise solution may be

sought that is as close as possible to the utopia point, based on a conventional vector

norm. The following single-objective optimization may then be formulated on this

basis.

min
x

{ k∑
i=1

∣∣Fi(x)− F u
i

∣∣p} 1
p

subject to gi(x) ≤ 0, i = 1, · · · , n

hj(x) = 0, j = 1, · · · ,m

(3.3)

The objective function is lp-norm of the distance to the utopia point, and is strictly

monotone for 1 ≤ p ≤ ∞ Therefore, the solution to this optimization problem is

efficient (Pareto optimal) for the original multi-objective problem Ehrgott (2006).
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3.2 Weighted Sum of the Costs

One common scalarization method is the so-called weighted sum of the costs method,

which converts a multi-objective optimization to the following conventional single-

objective problem:

min
x

k∑
l=1

wlFl(x)

subject to gi(x) ≤ 0, i = 1, · · · , n

hj(x) = 0, j = 1, · · · ,m

(3.4)

Here the scalarized objective function is the weighted summation of all individual

costs of the multi-objective optimization problem (3.1). In Zadeh (1963), it has been

shown that if all of the weights are positive, the solution to (3.4) is Pareto optimal

for the original multi-objective optimization in (3.1).

3.3 Lexicographic Programming

A lexicographic optimization problem arises when the objectives of multi-objective

optimization problem have to be considered in a hierarchical manner. Lexicographic

order is defined as Migdalas et al. (2013):

Definition 3: Let y1,y2 ∈ Rz, and if y1 6= y2 let w? := min {w | y1
w 6= y2

w}, ≤lex

denotes the lexicographic order and is defined as y1 ≤lex y2 := y1
w? ≤ y2

w? or y1 = y2(

Here y1
w denotes wth element of vector y1.)

In this approach, the objectives are compared according to the lexicographic order
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in the attainable space. An optimal solution to such a problem is called lexicograph-

ically optimal as defined below.

Definition 4: A feasible solution x̂ ∈ X is lexicographically optimal if there is no

x ∈ X such that F(x) ≤lex F(x̂).

It can be shown a lexicographic optimal point is also Pareto optimal Ehrgott

(2006). In the lexicographic formulation, first the components of the objective vector

are arranged in the order of their importance. Then, the following optimization

problems are solved one at a time:

for s = 1, · · · , k.

min
x

Fs(x)

subject to gi(x) ≤ 0, i = 1, · · · , n

hj(x) = 0, j = 1, · · · ,m

Fl(x) = Fl(x
?
l ), l = 1, · · · , s− 1, s > 1

(3.5)

where s is the objective function position in the priority sequence and Fl(x
?
l ) is the

optimum of the lth function, found in the lth iteration.
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Chapter 4

Energy Management in a Network

of Grid-Connected Microgrids

Using Compromise Programming

In Chapter 2, the crucial role of energy management for efficient operation of a net-

work of microgrids was underlined. Moreover, the general form of a multi-objective

optimization problem for energy management and different approaches to solve this

problem were briefly reviewed. In this chapter, a multi-objective optimization model

for energy management in a network of microgrids with local storage and renewable

energy and with connection to the utility grid is proposed. The microgrids in the

network can exchange power locally with each other and with the utility grid. A

pricing regime is introduced in which favourable local buy/sell rates encourage local

exchange of power. The energy management, i.e. the control of storage devices and

computation of local and grid components energy transactions, is formulated as an
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optimization problem on a rolling horizon basis. The net cost of electricity, includ-

ing peak charge, is the objective to be minimized for each microgrid. The resulting

problem is essentially a constrained multi-objective optimization which will be con-

verted to a single-objective problem using the concept of compromise programming.

A utopia point is defined as a vector of best achievable costs for individual micro-

grids, when they can take advantage of the favourable local buy/sell prices at all

times. Norm l1 and l2 of the distance of the actual cost from the utopia cost are used

as the objective function to be minimized. Linear/quadratic programming counter-

parts of the original problem are then developed that avoid binary/integer variables

and can be solved in substantially shorter times, making them suitable for real-time

implementation.

4.1 General Nonlinear Optimization Model

Elements of the vector F(x) in (3.1), i.e. local objectives, are defined as the net

cost of electricity for the corresponding microgrids. Using the electricity rate scheme

introduced in Section 1.2, the corresponding single-objective optimization can be

stated as

min

{NoG∑
i=1

∣∣∣∣cblT [Pl
i

]+
+csl

T [
Pl
i

]−
+cbg

T
[Pg

i ]
+ +csgT [Pg

i ]
−+cpki P

pk
i −F u

i

∣∣∣∣p} 1
p

(4.1a)

subject to, for k = 1, · · · , Nh and i = 1, · · · , NoG
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Power Exchange constraints:

Pl,min
i � Pl

i + Pg
i � Pl,max

i (4.1b)

Pmg,min � Pg � Pmg,max (4.1c)

−P rcl,max
i h � Pl

i(k)−Pl
i(k − 1) + Pg

i (k)−Pg
i (k − 1) � P rcl,max

i h (4.1d)

NoG∑
j=1

Pl
j = 0 (4.1e)

NoG∑
j=1

Pg
j = Pg (4.1f)

Pl
i + Pg

i = Pbat
i + Pn

i (4.1g)

Battery Constraints:

Ei(k + 1) = Ei(k) + ηcih(k)
[
Pbat
i (k)

]+
+ ηdi

−1
h(k)

[
Pbat
i (k)

]− − P lossb
i h(k) (4.1h)

Pbat,min
i � Pbat

i � Pbat,max
i (4.1i)

Emin
i ≤ Ei(k + 1) ≤ Emax

i (4.1j)

ηcih
T
[
Pbat
i

]+
+ ηdi

−1
hT
[
Pbat
i

]− − P lossb
i hT1 = Efinal

i − E0
i (4.1k)

−P rcb,max
i h � Pbat

i (k)−Pbat
i (k − 1) � P rcb,max

i h (4.1l)
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Peak Shaving Constraints:

P pk
i ≥ 0

NoG∑
j=1

P pk
j ≥ Pg(k)− P b

−∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
≤ P pk

i −Pbg
i (k) ≤ ∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
(4.1m)

Island Mode Constraint:

NoG∑
i=1

Ei(k + 1) ≥
NoH∑
t=1

NoG∑
i=1

h(t+ k)Pn
i (t+ k) (4.1n)

In this formulation, [ • ]+ and [ • ]− denote non-negative part, i.e. [ • ]+ =

max(•, 0), and non-positive part, i.e. [ • ]− = min(•, 0) of a variable respectively.

Indices i and k refer to the microgrid and time step in the control horizon, respec-

tively. The optimization model is formulated over the control horizon h. A bold

variable is a decision vector over the control horizon containing values of control

decisions at all time steps. An explanation of the optimization constraints follows

next.

4.1.1 Single-Objective Cost

As stated earlier, local objectives are defined as the net cost of electricity for the cor-

responding microgrids. Here the single objective cost (4.1a) is the Euclidean distance

between the vector of local costs and their corresponding utopia point, the lowest

possible electricity costs for the individual microgrids, with an exclusive use of the
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preferred local buy/sell rates F u
i . In other words, the utopia point for each individ-

ual microgrid is calculated by assuming that they can purchase all required power

locally and also sell their surplus power locally as well to gain the highest possible

cost saving. Here only p = 1 or 2 , i.e., l1-norm and l2-norms, are considered.

4.1.2 Power Exchange Constraints

The constraints in (4.1b) ensure that net power of each microgrid remains within

the line capacity limits. Similarly, the aggregated net power of the microgrids, Pg,

is within the line limits defined in (4.1c). Changes in the microgrids net power over

consecutive sample times are limited by (4.1d) to avoid large power fluctuations.

The constraint (4.1e) simply states that local exchanges of power add up to zero,

i.e., the power bought locally is equal to power sold locally. The total power exchanged

with the utility grid is determined through (4.1f). The power balance constraint for

each microgrid is given in (4.1g), where Pbat
i is the battery power, Pg

i is power from/to

the utility grid, Pl
i is locally exchanged power, and Pn

i is net demand power. The net

demand vector, defined as the difference between local generation and the electricity

usage of the load, is given by

Pn
i = PLoads

i −PSolar
i −PWind

i , i = 1, · · · , NoG (4.2)

4.1.3 Battery Constraints

For the ith microgrid, the evolution of the stored energy can be expressed by a discrete-

time dynamic model in (4.1h). In this equation, Ei(k) is stored energy in ith microgrid

at time step k, that is usually in kWh unit, ηci and ηdi are charging and discharging
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efficiency of ith microgrid, h(k) is the length of each time step on the prediction

horizon measured in hours, P lossb
i is self discharging loss in kW . Constraints (4.1i)

and (4.1j) impose limits on the battery power and energy. The end of horizon battery

energy level is set by the constraint (4.1k). Large changes in battery charging or

discharging powers are prevented by (4.1l). Reducing the value of P rcb,max
i in this

constraint would yield a smoother battery charging/discharging profile, at the expense

of possibly not being able to fully utilize the battery capacity for electricity cost

reduction. Other forms of battery operation related costs and constraints similar to

those in our group’s earlier work in Malysz et al. (2014) could be easily incorporated

into the optimization formulation.

4.1.4 Peak Shaving Constraints

Utilities usually charge their larger consumers for their peak power in a billing cycle

if it is in excess of a base power P b. Here, the peak power is max(Pg(k)−P b), where

the max is computed over time. The variable P pk
i represents the contribution of the

i’th microgrid to the peak power and therefore the term cpki P
pk
i in the cost function

is the share of peak cost for the corresponding microgrid. The term cpki P
pk
i in the

cost function along with the peak shaving inequality constraints guarantee that at the

time of peak power when
∑NoG

j=1 P
p
j = max(Pg(k)−P b), the contribution of individual

microgrids to the peak power is correctly computed as P p
i = Pbg

i (k). Note that ∆1 is

a large positive number.
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4.1.5 Island Mode Constraint

It is desirable to guarantee continued operation of the microgrids in the event of an

emergency grid blackout for a certain amount of time. The linear inequality con-

straint in (4.1n) imposes an adaptive lower bound on the combined stored energy in

the network at any given time to ensure that the system can operate for at least NoH

time steps in the event of a blackout. Note that the predicted net demands of the

microgrids are used to compute the total required energy for continuous operation

during the blackout. Errors in these predictions could impact the actual minimum op-

eration time in the event of a black-out. For example, over-estimating the renewable

generation and under-estimating the demand would shorten this time. Choosing a

more conservative number for NoH would force the network to store a larger amount

of back-up energy for potential black-outs to account for such prediction uncertainty.

The downside to this approach is that a smaller portion of the network storage ca-

pacity could be utilized for reducing electricity costs during normal operation.

4.2 Counterpart Linear/Quadratic Optimization Model

It is straightforward to show that the proposed energy management optimization

formulation is convex. However, the nonlinear terms min(•) and max(•) in the ob-

jective and constraints render the problem rather difficult to solve. An equivalent

problem formulation is presented next that avoids min(•) and max(•). To this end,

let Pl
i = Pbl

i + Psl
i by introducing two new variables Pbl

i and Psl
i . The following
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constraints are also added to the formulation

Pbl
i � Pl

i

Pbl
i � 0

(4.3)

The terms in the cost function for the local buying and selling are replaced with

cbl
T
Pbl
i + csl

T
Psl
i = (cbl − csl)TPbl

i + csl
T
Pl
i (4.4)

Here it is assumed cbl � csl. This assumption is reasonable as a positive difference

between the buy and sell prices represents the cost of operating the local infrastruc-

ture. With this assumption and the presence of the terms in (4.4) in the cost, it is

straightforward to show that indeed

Pbl
i =

[
Pl
i

]+
= max(Pl

i, 0)

Psl
i =

[
Pl
i

]−
= min(Pl

i, 0) = Pl
i −Pbl

i (4.5)

This eliminates min(•) and max(•) from the problem formulation, leading to an

equivalent but an easier problem to solve.

The max and min involving Pg
i can be similarly eliminated. Two new variables

Pbg
i and Psg

i are defined and Pg
i = Pbg

i + Psg
i . The terms associated with the grid

buy/sell in the cost function are replaced with (cbg−csg)TPbg
i +csgTPg

i . The following

constraints are also added

Pbg
i � Pg

i

Pbg
i � 0

Psg
i = Pg

i −Pbg
i

(4.6)
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The battery power variable can be manipulated similarly. However, since this

variable does not appear in the cost function, a small term αTPc
i is added to the cost,

where αT is a vector with positive small elements. Now, by defining Pbat
i = Pc

i + Pd
i ,

and following similar steps as those in the previous case, the nonlinear max(•) and

min(•) terms involving the battery signals are removed.

Using the above results, the following equivalent convex optimization problem is

proposed

min

{NoG∑
i=1

∣∣∣∣(cbl−csl)TPbl
i +csl

T
Pl
i+(cbg−csg)TPbg

i +csgTPg
i+α

TPc
i+c

pk
i P

pk
i −F u

i

∣∣∣∣p+αTPbg

} 1
p

(4.7a)

subject to, for k = 1, · · · , Nh and i = 1, · · · , NoG

Power Exchange Constraints:

Pl,min
i � Pl

i + Pg
i � Pl,max

i (4.7b)

Pmg,min � Pg � Pmg,max (4.7c)

−P rcl,max
i h � Pl

i(k)−Pl
i(k − 1) + Pg

i (k)−Pg
i (k − 1) � P rcl,max

i h (4.7d)

NoG∑
j=1

Pl
j = 0 (4.7e)

NoG∑
j=1

Pg
j = Pg (4.7f)

Pl
i + Pg

i = Pbat
i + Pn

i (4.7g)
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Pbg �
NoG∑
j=1

Pg
j

Pbg � 0

Psg =
NoG∑
j=1

Pg
j −Pbg

(4.7h)

Pbl
i � Pl

i

Pbl
i � 0

Psl
i = Pl

i −Pbl
i

(4.7i)

Pbg
i � Pg

i

Pbg
i � 0

Psg
i = Pg

i −Pbg
i

(4.7j)

Battery Constraints:

Ei(k + 1) = Ei(k) + ηcih(k)Pc
i(k) + ηdi

−1
h(k)(Pbat

i −Pc
i)− P lossb

i h(k) (4.7k)

Pbat,min
i � Pbat

i � Pbat,max
i (4.7l)

Emin
i ≤ Ei(k + 1) ≤ Emax

i (4.7m)

ηcih
TPc

i + ηdi
−1

hT (Pbat
i −Pc

i)− P lossb
i hT1 = Efinal

i − E0
i (4.7n)

−P rcb,max
i h � Pbat

i (k)−Pbat
i (k − 1) � P rcb,max

i h (4.7o)

Pc
i � Pbat

i , Pc
i � 0 (4.7p)
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Peak Shaving Constraints:

P pk
i ≥ 0

NoG∑
j=1

P pk
j ≥ Pg(k)− P b

−∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
≤ P pk

i −Pbg
i (k) ≤ ∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
(4.7q)

Island Mode Constraint:

NoG∑
i=1

Ei(k + 1) ≥
NoH∑
t=1

NoG∑
i=1

h(t+ k)Pn
i (t+ k) (4.7r)

It must be noted that in this work, only the cases with p = 1, 2 are considered.

For p = 1, by defining new decision variables ti, i = 1, · · · , NoG, the optimization

problem (4.7) can be reformulated as a standard linear program,

min

{NoG∑
i=1

(
ti +αT (Pbl

i + Pbg
i + Pc

i) + ζP p
i

)
+αTPbg

}
(4.8a)

subject to all constraints from (4.7b) to (4.7r) and for i = 1, · · · , NoG

−ti ≤ (cbl−csl)TPbl
i +csl

T
Pl
i+(cbg−csg)TPbg

i +csgTPg
i+α

TPc
i+c

pk
i P

pk
i −F u

i +αTPbg ≤ ti

(4.8b)

where ζ is a small positive number.

For p = 2, the objective function is quadratic and all constraints are linear so

the optimization model using l2-norm is a standard quadratic program. Effective
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algorithms are available for solving linear and quadratic programming problems. Fi-

nally, it is worth noting that the total number of decision variables of the optimiza-

tion model is Nh · Nolv · NoG + Nogv · Nh + 2 · NoG for l1-norm formulation, and

Nh ·Nolv ·NoG+Nogv ·Nh+NoG for l2-norm formulation, respectively. Here Nolv

is the number of local decision variables that is 6, and Nogv is the number of global

decision variables that is 3 for this optimization problem.

No conventional generation unit has been considered in local microgrids in the

current formulation. However, conventional generation can be easily included in the

optimization formulation by adding a linear term to the cost function component

for each microgrid, representing the cost of such power, linear inequality constraints

for upper and lower bounds of conventional generation, and the corresponding power

term to the power balance equations, wherever applicable. This would not alter the

form of the resulting optimization problem.

4.2.1 Island Mode Operation

In the event of a blackout in the utility grid, the microgrids network can continue its

operation using the stored and available renewable energy. The energy constraints

related to island mode operation ensure that there is sufficient energy stored in system

for continued operation for at least NoH time steps during the blackout. The original

optimization formulation requires some adjustments so it can be used for energy

management in island mode. First at each step of rolling horizon control, the largest

possible control horizon is determined based on the current level of stored energy and

predicted net energy demand. This ensures longest possible operation if the blackout

persists. Moreover, since exchange of power with the grid is no longer feasible, the
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following constraints need to be imposed

Pg
j = 0 (4.9)

island mode inequality constraints are also no longer needed. The revised optimization

formulation can be used to determine optimal battery charge/discharge decisions.

4.3 Simulation Results

In this section, different operation scenarios are considered to analyze the response of

the proposed multi-microgrid energy management optimization models. The simula-

tions are carried out in the MATLAB environment using the IBM ILOG CPLEX LP

solver on an Intel Core 2 Duo 3.00 GHz running Windows 7. The electricity usage

and solar generation data used in the simulations have been provided by Burlington

Hydro Inc. (Burlington, ON, CANADA). The electricity usage data is from the util-

ity operator customers with peak usage over 50 kW and the solar energy generation

units are capable of up to 30 kW output power.

4.3.1 System Response

A multi-microgrid system with one hundred microgrids is considered. Summer elec-

tricity pricing in place in the province of Ontario, Canada are used, i.e., 6.2 ¢/kWh

( 7p.m.-7a.m.), 9.2 ¢/kWh (7a.m.-11a.m., and 5p.m.-7p.m), 10.8 ¢/kWh (11a.m.-

5p.m.). Denoting these prices by the vector cbuy, the other buy and sell prices are

set to cbl = 0.57cbuy, cbg = cbuy, csl = 0.5cbuy, csg = 0.07cbuy. The battery character-

istics are Emin
i = 0kWh, Emax

i = 50kWh, Pbat,max
i = −Pbat,min

i = 12kW, Prcb,max
i =
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−Prcb,min
i = 10kW/h, ηdi = ηci = 0.95, P lossb

i = 139W, and the end of horizon battery

energy level is set as Efinal
i = E0

i . The time-step averaged microgrid power/differential

power limits are chosen as Pl,max
i = −Pl,min

i = 25kW/h, Prcl,max
i = 20kW/h and

Pmg,max = −Pmg,min = 2500kW. The control prediction horizon is set to one day

with a variable time step vector h =

[
0.25 0.25 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3

]T
so,

Nh = 15 and rolling horizon controller runs every 15 minutes. The peak price is set

to cp = 11¢/kW for a 24hour optimization prediction window, which translates to an

effective 3.3$/kW peak price on a monthly basis.

The results of a 24-hour simulation with rolling horizon controller using the l1-

norm in the compromise programming method are plotted in Figs. 4.1 and 4.2. The

time of use electricity pricing divides the 24-hour window into five distinct time

intervals, separated by the dotted vertical lines. The first (0-7hours) and fifth (19-

24hours) intervals are the off-peak period with the lowest electricity cost, the second

(7-11hours) and fourth (17-19hours) intervals are mid-peak, and the third interval

(11-17hours) is peak, with the highest electricity cost. It is notable that the ex-

change of power with the utility grid occurs primarily during the off-peak hours in

the form of purchasing electricity at a low rate. During the on-peak and mid-peak

hours, the microgrids exchange power amongst themselves locally to take advantage

of the favourable local buy/sell prices. This clearly demonstrates the effectiveness of

cooperative energy management in scenarios where microgrids can participate in a

local energy market to minimize their cost or maximize their profit. The benefit of

this scheme to the grid operator is also evident from a shift of the demand to off-peak

hours, as seen in Fig. 4.2.d.

In summary, the coordinated control scheme enables the units in the partnership

59



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

0 5 10 15 20
0

5

10

15

Pbl
i

Time(h)−a

P
ow

er
(k

W
)

0 5 10 15 20

−15

−10

−5

0

Psl
i

Time(h)−b

P
ow

er
(k

W
)

0 5 10 15 20
0

5

10

15

Pbg
i

Time(h)−c

P
ow

er
(k

W
)

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

Psg
i

Time(h)−d

P
ow

er
(k

W
)

Figure 4.1: Exchange of powers in the compromise programming method using l1-
norm in grid-connected mode operation: (a) locally purchased powers, (b) locally sold
powers, (c) powers purchased from the utility grid, and (d) powers sold to the utility
grid.

to share their resources to substantially reduce their electricity cost. As a result,

the utility operator may collect smaller revenue but would have much greater control

over the demand side (via time of use price incentives) and can benefit from the

load shifting enabled by coordinated control of large groups of customers. This is a

practical way to transition to a more distributed model of grid operation, where there

would be less reliance on large centralized power generation.
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Figure 4.2: Power/energy signals in the compromise programming method us-
ing l1-norm optimization in grid-connected mode operation: (a) battery charg-
ing/discharging powers, (b) battery energy levels, (c) microgrids net demand powers,
and (d) the aggregate power exchanged with the utility grid.

The results of simulations with the compromise programming using l2-norm for-

mulation of the optimization problem are depicted in Figs. 4.3 and 4.4. It is noted

that the different colors in Figs. 4.1-4.4 represent data from different microgrids. As

it can be seen from these figures, the optimization model results are similar to the

previous case. A notable point here is that generally the power and energy profiles

resulting from the l2-norm formulation are smoother than those obtained from the

l1-norm optimization model; this is most likely due to the fact that the cost function
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Figure 4.3: Exchange of powers in the compromise programming method using l2-
norm in grid-connected mode operation: (a) locally purchased powers, (b) locally sold
powers, (c) powers purchased from the utility grid, and (d) powers sold to the utility
grid.

is differentiable in the former case. It is also noted that since the optimization models

employ a rolling horizon control strategy with the predicted demand, microgrids start

buying power from the utility grid and charging their batteries towards the end of

the day.
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Figure 4.4: Power/energy signals in the compromise programming using l2-norm in
grid-connected mode operation: (a) battery charging/discharging powers, (b) bat-
tery energy levels, (c) microgrids net demand powers, and (d) the aggregate power
exchanged with the utility grid.

4.3.2 Island Mode Operation

A blackout scenario during the normal operation of the system is considered here.

A network of ten microgrids is simulated. The batteries are assumed to be initially

charged at 50kWh, with Emax
i = 100kWh; moreover, NoH = 32 in the island mode

constraint. The results of simulations using l1-norm are presented in Figs. 4.5. and

4.6. The blackout occurs at 66h, i.e., the 18th hour of the third day, as denoted

by a dotted vertical line in all figures and continues for the rest of simulation time.
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Figure 4.5: Exchange of powers in a network of ten microgrids in the compromise pro-
gramming method using l1norm in island mode operation-blackout start time denoted
by the dotted vertical line: (a) locally purchased powers, (b) locally sold powers, (c)
powers purchased from the utility grid, and (d) powers sold to the utility grid.

As this marks the beginning of the night, solar power is no longer available and the

system has to rely solely on the stored energy for blackout operation. The grid-related

buy/sell powers are all zero during the blackout; as a result, the aggregate exchanged

power with the utility grid is also zero in Fig. 4.6.d. It is noted that the system keeps

operating beyond 74h which is the guaranteed operation time based on NoH = 32 in

the island mode constraint, until the batteries are fully discharged.
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Table 4.1: Optimization runtime for one control time step using l1-norm formulation
NoG Max. CPU Time(s) Avg. CPU Time(s) Number of Dec. Vars

5 1.1 0.3 505
10 2.7 0.8 965
25 11.5 7.9 2345
50 40.4 31.9 4645
100 228.9 180.8 9245
200 890.3 810.3 18445

4.3.3 Computational Complexity

A great feature of the proposed optimization models is that they are convex linear

programs free of binary decision variables, for which effective fast solvers exist. The

scalability of the computations of the algorithms with the number of microgrids is

investigated. Simulations have been carried out by varying the number of microgrids

and recording the average and maximum computation times of solving the optimiza-

tion problems, per time step of rolling horizon control. The results are reported in

Tables 5.2 and 4.2 using l1-norm and l2-norm, respectively. These results are pre-

sented in the form of bar graphs in Fig. 4.7. Given that control time steps are 15

minutes each, it is evident that even in for the case of 200 microgrids, an optimal

solution to the energy management problem can be found in real-time. Note that the

computation times of the two optimization formulations are similar. For compari-

son, the solution time for a formulation of the optimization problem involving binary

variables, which is not reported in this thesis, was in order of days running on the

same computer. Therefore, the absence of binary/integer variables in the proposed

optimization models is critical for achieving a real-time solution.
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Table 4.2: Optimization runtime for one control time step using l2-norm formulation
NoG Max. CPU Time(s) Avg. CPU Time(s) Number of Dec. Vars

5 1.3 0.3 500
10 3.7 1.4 955
25 13.1 9.1 2320
50 48.6 38.5 4595
100 250.3 201.2 9145
200 903.2 844.6 18245

4.3.4 System Performance

The performance of the proposed multi-microgrid energy management (EMS-MG)

optimization strategies is compared to two other cases. The basic case is when the

microgrids are connected directly to the utility without energy management control

(No-EMS). In the second case, the microgrids would still be directly connected to the

utility grid but perform their own individual optimal energy management (EMS-DG).

In this case as well as in the basic case, only grid buy and sell prices are applicable

since no local exchange of power is permitted. The formulation of the linear program

optimization problem for the single-microgrid system is not presented here due to

space constraints. Simulations have been carried out for a period of one month.

The results of the simulations are reported in Tables 4.3 and 5.3, using l1-norm

formulation and l2-norm formulations, respectively. It is noted that the EMS-MG

yields substantially lower total electricity cost than the other two strategies. Note that

since the microgrids exchange power locally, resources such as energy storage units and

solar power could be shared among them to achieve large savings, without the need

for installation of these capacities across all microgrids; this is an attractive feature

of the proposed multi-microgrid energy management strategies. Another interesting

observation is that larger networks of microgrids have larger pool of resources to share,
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Table 4.3: Comparison of electricity costs under three different configurations using
l1-norm

NoG EMS-MG EMS-DG Imp.(%) No-EMS Imp.(%)
5 481 916 47.05 1053 54.32
10 931 1833 49.20 2111 55.90
25 2331 5342 56.36 5596 58.34
50 5167 13654 62.15 14316 63.90
100 10431 33347 68.72 33670 69.02

Table 4.4: Comparison of electricity costs under three different configurations using
l2-norm

NoG EMS-MG EMS-DG Imp.(%) No-EMS Imp.(%)
5 477 916 47.93 1053 54.70
10 921 1833 49.75 2111 56.37
25 2301 5342 56.93 5596 58.88
50 5139 13654 62.36 14316 64.10
100 10409 33347 68.79 33670 69.08

generally achieving higher cost savings than small networks under the proposed multi-

microgrid energy management approach. For instance, a network of 100 microgrids

sees about 69.02% reduction in its total electricity bill at the end of the month,

compared to 54.32% for network of five(5).

4.4 Summary

In this chapter, a multi-objective optimization model for energy management in a

network of microgrids with local storage and renewable energy and with connection

to an external utility grid was presented. The microgrids can exchange power locally

with each other and with the utility grid. A pricing regime was introduced in which

favourable local buy/sell prices incentivize local exchange of power. Energy manage-

ment, i.e. the control of storage devices, was formulated as an optimization problem
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on a rolling horizon basis. The net cost of electricity, including peak charge, was

defined as the objective to be minimized for each microgrid. The resulting problem

is essentially a constrained multi-objective optimization which was converted to a

single-objective problem using the concept of compromise programming. A utopia

point was defined as a vector of best achievable costs for individual microgrids, when

they can take advantage of the favourable local buy/sell prices at all times. Norm

l1 and l2 of the distance of the actual cost from the utopia cost were used as the

objective function to be minimized.

In Section 4.2, a reformulation of the optimization problem was presented that

eliminates nonlinear min and max functions without the use of binary or integer

variables. This yielded convex linear and quadratic optimization problems for l1 and l2

norms, respectively, that can be effectively solved with existing optimization routines.

In Section 4.3, numerical simulations were carried out with actual electricity and solar

generation data. A comparison of the proposed multi-microgrid energy management

strategy with the cases with no energy management, and with independent microgrid

energy management showed a very substantial reduction in overall electricity cost

using the proposed approach. The computation times for solving the optimization

problem at each time step were also within the constraints of real-time implementation

for a network as large of 200 microgrids using a conventional desktop computer.
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Figure 4.6: Power/energy signals in a network of ten microgrids in the compromise
programming method using l1-norm optimization in island mode operation-blackout
start time denoted by the dotted vertical line: (a) battery charging/discharging pow-
ers, (b) battery energy levels, (c) microgrids net demand powers, and (d) the aggregate
power exchanged with the utility grid.
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Chapter 5

Coordinated Optimal Dispatch of

Energy Storage in a Network of

Grid-connected Microgrids by

Minimizing Sum of Costs

5.1 Optimization Model

In the previous chapter, the compromise programming was used to find a Pareto opti-

mal point of the general multi-objective optimization problem of energy management

in a network of grid-connected microgrids. The solutions minimized the norm-1 and

norm-2 distances between an ideal cost, i.e., the utopia point in the objective space,

and the actual cost. In this chapter, the sum of the electricity costs of the microgrids
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is used as the performance objective to convert the multi-objective optimization prob-

lem to a conventional single-objective optimization problem. Moreover, new fairness

constraints are introduced that would ensure all microgrids would fairly benefit from

participating in the network scheme. This concept will be discussed in details later

in this chapter.

Using the method proposed in Chapter 4, the nonlinear multi-objective optimiza-

tion model of optimal power dispatch for a multi-microgrid network can be converted

to a linear programming optimization problem. The steps taken for this conversion

are similar to those in the previous chapter and are omitted for brevity. The resulting

optimization model is given below.

min
NoG∑
i=1

(
(cbl−csl)TPbl

i +csl
T
Pl
i+ (cbg−csg)TPbg

i +csgTPg
i +αTPc

i

)
+ cpP p+βTPbg

(5.1a)

subject to, for k = 1, · · · , Nh and i = 1, · · · , NoG

Power Exchange constraints:

Pmg,min ≤ Pg ≤ Pmg,max (5.1b)

NoG∑
j=1

Pl
j = 0 (5.1c)

Pbg ≥
NoG∑
j=1

Pg
j

Pbg ≥ 0

(5.1d)

Pg =
NoG∑
j=1

Pg
j (5.1e)
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Pl,min
i ≤ Pl

i + Pg
i ≤ Pl,max

i (5.1f)

−P rcl,max
i h ≤ Pl

i(k)−Pl
i(k − 1) + Pg

i (k)−Pg
i (k − 1) ≤ P rcl,max

i h (5.1g)

Pl
i + Pg

i = Pbat
i + Pn

i (5.1h)

Pbl
i ≥ Pl

i

Pbl
i ≥ 0

Psl
i = Pl

i −Pbl
i

(5.1i)

Pbg
i ≥ Pg

i

Pbg
i ≥ 0

(5.1j)

Battery Constraints:

Ei(k + 1) = Ei(k) + ηcih(k)Pc
i(k) + ηdi

−1
h(k)(Pbat

i −Pc
i)− P lossb

i h(k) (5.1k)

Pbat,min
i ≤ Pbat

i ≤ Pbat,max
i (5.1l)

Emin
i ≤ Ei(k + 1) ≤ Emax

i (5.1m)

ηcih
TPc

i + ηdi
−1

hT (Pbat
i −Pc

i)− P lossb
i hT1 = Efinal

i − E0
i (5.1n)

−P rcb,max
i h ≤ Pbat

i (k)−Pbat
i (k − 1) ≤ P rcb,max

i h (5.1o)

Pc
i ≥ Pbat

i

Pc
i ≥ 0

(5.1p)
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Island Mode Constraint:

NoG∑
i=1

Ei(k + 1) ≥
NoH∑
t=1

NoG∑
i=1

h(t+ k)Pn
i (t+ k) (5.1q)

Peak Shaving Constraint:

P p ≥ 0

P p ≥ Pg(k)− P b

(5.1r)

Fair Power Exchange Constraints:

Pbg
i = xiP

bg (5.1s)

Psl
i = yiP

sl (5.1t)

Psl =
NoG∑
j=1

Psl
j (5.1u)

where

xi =
Pshare,b
i

max
(∑NoG

i=1 Pshare,b
i , ε

) (5.2)

yi =
Pshare,s
i

max
(∑NoG

i=1 Pshare,s
i , ε

) (5.3)

and

Pshare,b
i =


0, if Pn

i −min
( E0

i

h(1)
,Pbat,max

i

)
≤ 0

Pn
i −min

( E0
i

h(1)
,Pbat,max

i

)
, otherwise

(5.4)
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Pshare,s
i =


0, if Pn

i −min
( E0

i

h(1)
,Pbat,max

i

)
≥ 0

min
( E0

i

h(1)
,Pbat,max

i

)
−Pn

i , otherwise

(5.5)

An explanation of the optimization objective function and constraints follow next.

5.1.1 Scalarized Objective Function

First, it is noted that in the single-value aggregated cost function (5.1a), the weights

of local costs are all set to one. This simply implies that the optimal solution, which is

one of the Pareto optimal points, minimizes the total cost incurred by the microgrids

over the control horizon. Obviously, non-equal positive weights could also be used to

obtain other Pareto optimal solutions, but this is not considered in this thesis.

5.1.2 Power Exchange Constraints

All power exchange constraints were explained in Section 4.1.2.

5.1.3 Battery Constraints

All battery constraints were explained in Section 4.1.3.

5.1.4 Island Mode Constraint

Microgrids should be able to operate in island mode in the case of a power outage

in the main grid. A minimum energy level for the total storage in the network is

computed adaptively to ensure sufficient energy reserve in the case of a blackout

event. This is enforced by adding constraint (5.1q) to the optimization model, which

essentially requires sufficient stored energy for a minimum operation time during a
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blackout. In this constraint, NoH is the minimum number of time steps that the

multi-microgrid system should be able to continue its operation in island mode. Note

that the predicted net demand is used in the calculation of the required energy.

5.1.5 Peak Shaving Constraints

The term cpP p in objective function represents a peak power cost, associated with

the total peak power demand over a base demand P b at the point of coupling to the

utility grid. The inequality constraints in (5.1r) together with the positiveness of cp

guarantee that P p = max
(
Pg(k)− P b, 0

)
, where the maximum is computed over the

elements of vector.

5.1.6 Fair Power Exchange Constraints

As stated earlier, the local buy price is set to less than the grid buy price, and the

local sell price is higher than the grid sell price to incentivize local exchange of power.

Given this rate scheme, it is important to give fair opportunities for buying and selling

local power fairly among all microgrids as an incentive for their participation in the

network-based resource sharing. The proposed fairness constraints are given in (5.1s)

and (5.1u). The constraint (5.1s) simply requires that the purchased power from

the utility grid to be a portion, xi, of total buying from the utility grid, [Pg
i ]

+. The

buying factor xi is defined in (5.2) as a function of Pshare,b
i in (5.4); here ε is a small

positive number. Note that Pshare,b
i is defined for individual microgrids based on their

current net demand and battery energy level. The idea is to allocate microgrids with

higher net demand and lower stored energy a larger share of expensive grid power.

Similarly, fairness in selling is ensured by (5.1u), where Psl is total local sell power
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defined in (5.1u). The selling factor is defined in (5.3) and (5.5). Here a microgrid

with larger solar power and stored energy would have a larger allocation of preferred

local sell power.

It should be noted that the termαTPc
i can also be interpreted as the cost of battery

operation in the corresponding microgrid. In such case, elements of this vector, α,

are the cost associated with battery activities and can be determined based on the

battery useful lifetime as a function of number of charge/discharge cycles, battery

capacity, and its capital cost as follows:

α(i) = C
T

Et
in $h/kWh (5.6)

Here C is the initial capital cost of the battery, Et is the total charged/discharged

energy over the lifetime of the battery, and T is the length of the control step in

hours. The value of Et can be estimated as

Et =

Ncd−1∑
k=0

(1− δ)kEmax
bat =

1− (1− δ)Ncd

δ
Emax
bat , (5.7)

where Ncd is the rated lifetime of the battery in number of charge cycles, and δ is the

rate of decline in battery capacity per charge cycle.

Optimal battery charge/discharge activities and partitioning of power variables

to local/grid components are obtained by solving the optimization problem in (5.1),

with the decision variables listed in Table 5.1. Finally, it is worth noting that the

total number of decision variables of the optimization model is Nh · Nolv · NoG +

Nogv ·Nh+ 1. Here Nh is the number of time steps in rolling horizon window, Nolv

is the number of local decision variables that is 6, and Nogv is the number of global
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Table 5.1: Decision variables in the optimization model
Local Decision Variables

Pl
i Local exchange power of ith microgrid.

Pbl
i Local imported power to the ith microgrid.

Psl
i Local exported power from the ith microgrid.

Pg
i Exchange power of the utility grid with ith microgrid.

Pbg
i Purchased power from the utility grid by ith microgrid.

Psg
i Sold power to the utility grid by ith microgrid.

Pbat
i Charging/discharging power of ith microgrid.

Pc
i Charging power of ith microgrid.

Ei Battery energy level of ith microgrid.
Psl Total local imported power

Global Decision Variables
Pg Exchange power of the utility grid.
P p Auxiliary peak shaving variable.

decision variables that is 3 for this optimization problem.

5.2 Simulation Results

In this section, different operation scenarios are considered to analyze the performance

of the proposed multi-microgrid energy management optimization model. The simu-

lations are carried out in the MATLAB environment using the IBM ILOG CPLEX

LP solver on an Intel Core 2 Duo 3.00 GHz running Windows 7. The electricity usage

and solar generation data in the simulations have been provided by Burlington Hydro

Inc. (Burlington, ON, CANADA). The electricity usage data is from the utility op-

erator customers with peak usage over 50 kW and the solar energy generation units

are capable of up to 30 kW output power.
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5.2.1 System Response

A network with one hundred microgrids is considered. The electricity rates in the

province of Ontario, Canada at the time of data collection were off-peak ( 6.2 ¢/kWh

7p.m.-7a.m.), mid-peak (9.2 ¢/kWh 7a.m.-11a.m.), and on-peak (5p.m.-7p.m, 10.8 ¢/kWh

11a.m.-5p.m.). Denoting these rates by the vector cbuy, the other buy and sell prices

are set to cbl = 0.57cbuy, cbg = cbuy, csl = 0.5cbuy, csg = 0.07cbuy. The battery

characteristics are Emin
i = 0kWh, Emax

i = 30kWh, Pbat,max
i = −Pbat,min

i = 7.5kW,

Prcb,max
i = −Prcb,min

i = 5kW/h, ηdi = ηci = 0.95, P lossb
i = 139W, and the end of

horizon battery energy level is set as Efinal
i = E0

i . The time-step averaged microgrid

power/differential power limits are chosen as Pl,max
i = −Pl,min

i = 20kW/h, Prcl,max
i =

15kW/h and Pmg,max = −Pmg,min = 2000kW. The control prediction horizon is set to

one day with a variable time step vector h =

[
0.25 0.25 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3

]T
so, Nh = 15 and rolling horizon controller runs every 15 minutes. The peak price is

set to cp = 11¢/kW for a 24hour optimization prediction window, which translates

to an effective 3.3$/kW peak price on a monthly basis.

The results of a 24-hour simulation with rolling horizon controller are plotted in

Figs. 5.1 and 5.2. The time of use electricity pricing divides the 24-hour window

into five distinct time intervals, separated by the dotted vertical lines. The first

(0-7hours) and fifth (19-24hours) intervals are the off-peak period with the lowest

electricity cost, during which microgrids purchase power from the grid to meet their

load demand and charge their batteries. During the mid-peak time (7-11hours and 17-

19hours) microgrids exchange power mostly locally to take advantage of the favourable

local buy/sell prices. Local transactions are even more prevalent during the on-peak

period (11-17hours) when the grid electricity rate is the highest. It is also noteworthy
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that during the peak some microgrids are forced to sell some of their excess power

to the grid. This is due to the fairness constraint for selling. The charging of the

batteries at the end of the day is due to the rolling horizon nature of the controller;

the batteries are charged using inexpensive off-peak grid power to prepare for the

next day operation. The results in this section demonstrate, qualitatively, that the

proposed energy management scheme enables the microgrids in the network to share

their storage and renewable energy resources to reduce their electricity cost. The

benefit of this energy management scheme to the grid operator is also evident from a

shift of the demand to off-peak hours, as seen in Fig. 5.2.d.

5.2.2 Computational Complexity

As it was shown in the previous section, the proposed optimization model is a convex

linear program free of binary decision variables, for which effective fast solvers exist.

The scalability of the computations of the algorithms with the number of microgrids

is investigated. Simulations have been carried out by varying the number of micro-

grids and the average and maximum computation times for solving the optimization

problems, per time step of rolling horizon control have been recorded. The results are

reported in Table 5.2. Given that the control time steps are 15 minutes long, real-time

computation of the solution is possible even for a network as large as 200 microgrids.

This is a great advantage of such binary-free optimization model. For comparison, a

counterpart mixed-binary optimization model registered a computation time in the

order of days to converge to a solution for one time step on the same computer.
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Figure 5.1: Exchange of powers in the sum of costs optimization for a network of
100 microgrids: (a) locally purchased powers, (b) locally sold powers, (c) powers
purchased from the utility grid, and (d) powers sold to the utility grid.

5.2.3 System Performance

The electricity costs of the microgrids in the network are compared under four different

energy management strategies. The basic case, No-EMS, is when the microgrids are

connected to the utility grid without energy management control. In the second

case, EMS-DG, the microgrids optimally dispatch their storage unit on an individual

basis using the grid/buy sell rates. No local energy transaction is permitted among

the microgrids in either of these cases. A third case, EMS-MG-NB, is considered
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Figure 5.2: Power/energy signals in the sum of costs optimization for a network of
100 microgrids: (a) battery charging/discharging powers, (b) battery energy levels,
(c) microgrids net demand powers, and (d) the aggregate power exchanged with the
utility grid.

in which microgrids have no storage units but are still able to trade power locally

using the proposed optimization-based energy management strategy. While there is

no energy storage to dispatch in this case, local power transactions could still reduce

the electricity costs of the microgrids. The last scenario, EMS-MG-WB, adds energy

storage to the microgrids and implements the full optimization model with local

power transactions and coordinated dispatch of energy storage in the network. The

simulations are carried out for a period of one month.
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Table 5.2: Optimization runtime for one control time step as a function of number of
microgrids

NoG Max. Time (S) Avg. Time (S) Number of Dec. Vars
5 0.10 0.03 496
10 0.15 0.09 946
25 0.76 0.59 2296
50 3.31 2.88 4546
100 16.83 15.20 9046
200 92.12 86.72 18046

The results of the simulations are reported in Table 5.3. It is noted that the EMS-

MG-WB yields substantially lower total electricity cost than all other strategies, and

especially the two that treat microgrids individually. Interestingly, the case EMS-

MG-NB which allows for local power transactions but has no energy storage is also

performing significantly better than EMS-DG and No-EMS. This clearly underscores

the advantage that comes with treating microgrids as a network and allowing for local

power transactions, even in the absence of energy storage.

To demonstrate the benefits to each microgrid from participating in the network

scheme, individual monthly electricity costs for a network of ten microgrids are pre-

sented in Table 5.4 under the above control scenarios. It is evident from this table

that the electricity costs for all microgrids have substantially decreased under the

proposed coordinated energy management strategy, with or without energy storage.

Note that since the microgrids exchange power locally, resources such as energy

storage units and solar power could be shared among them to achieve large savings,

without need for installation of these capacities across all microgrids; this is an attrac-

tive feature of the proposed multi-microgrid energy management strategy. Another

interesting observation is that larger networks of microgrids have larger pool of re-

sources to share, generally achieving higher cost savings than small networks under
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the proposed approach. For instance, a network of 100 microgrids sees about 74.87%

reduction in its total electricity bill at the end of the month, compared to 57.26% for a

network of five(5). Also, a comparison of costs for individual microgrids under coordi-

nated (EMS-MG-WB) and non-coordinated (EMS-DG) energy management control

shows that all microgrids benefit from participating in the coordinated control scheme

in the form of lower electricity bill. This is significant as it provides incentive for every

microgrid to take part in the local power transactions. The use of energy storage in

the network in the case of EMS-MG-WB yields considerable reduction in electricity

cost compared to the case without them EMS-MG-NB. This may very well justify a

long-term return on investment on energy storage capacity in the network, although

a thorough economic analysis is warranted before any firm conclusion can be made.
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Table 5.3: Comparison of monthly electricity costs under four different configurations by varying number of micro-
grids in the network (Imp. is defined as percentage reduction of total electricity cost for each scenario compared
to the basic No-EMS scenario ).

NoG No-EMS ($) EMS-DG ($) Imp.(%) EMS-MG-NB ($) Imp.(%) EMS-MG-WB ($) Imp.(%)
5 1053 875 16.90 685 34.94 450 57.26
10 2111 1743 17.43 1317 37.61 856 59.45
25 5596 4666 16.62 3281 41.36 1978 64.65
50 14316 12445 13.07 8096 43.44 4402 69.25
100 33670 28489 15.39 16713 50.36 8461 74.87

Table 5.4: Comparison of monthly electricity costs of individual microgrids for a network consisting of 10 microgrids
under four control strategies.

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7 MG 8 MG 9 MG 10
No-EMS ($) 212 228 225 216 210 212 209 200 198 201
EMS-DG ($) 175 188 182 181 178 174 171 168 164 162

EMS-MG-NB ($) 135 142 139 136 132 135 127 126 123 122
EMS-MG-WB ($) 88 92 91 88 86 86 84 82 79 80
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5.2.4 Battery Sizing

To investigate the impact of the storage size on the system performance, a network

of 100 microgrids is considered. All microgrids are equipped with the same storage

capacity. Simulations have been carried out by varying the storage capacity. The

electricity costs for a one-month period are depicted in Fig. 5.3. As expected, in-

creasing the battery size would help reduce the electricity cost, as this would provide

greater flexibility for the energy management algorithm. However after certain point,

increasing the storage size has very little impact on the electricity costs since the

system cannot utilize the extra capacity any further.

5.3 Summary

In this chapter, a multi-objective optimization model was introduced for storage dis-

patch in a network of grid-connected microgrids with battery and renewable energy

assets. The microgrids in the network would be treated and billed as a single cus-

tomer by the grid operator. The costs of electricity including the peak cost for the

microgrids are the components of the objective vector in the optimization model. The

problem was then converted to a single-objective optimization by adding up the cost

components. In calculating the electricity cost, each microgrid net power was virtually

partitioned into local and grid components, with applicable local and grid buy/sell

electricity rates. A rate scenario was considered in which favourable local buy/sell

rates incentivize local exchange of power. Fairness constraints were introduced to

ensure that all microgrids would be able to benefit from the local buy/sell rates in an

equitable manner. In Section 5.2, simulations were carried out with real electricity,
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Figure 5.3: Electricity bill of a network of 100 microgrids for one month by varying
the batteries size.
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and solar generation data on a rolling horizon basis. The proposed multi-microgrid

resource sharing strategy was compared with alternative strategies, i.e., individual

microgrids with no storage control, and individual microgrids with independent stor-

age control. In both of these cases, no local energy transaction was allowed. The

results showed a very substantial reduction in the overall electricity cost using the

proposed resource sharing scheme. Another case was also considered in which micro-

grids had no storage capacity but were still able to carry out local power transactions

using the proposed optimization model. The results showed substantial reduction in

electricity cost due to local power transactions even in the absence of energy storage.

The computation times for solving the optimization problem at each time step were

also within the constraints of real-time implementation for a network as large of 200

microgrids using a conventional desktop computer.
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Chapter 6

Priority-based Microgrid Energy

Management in a Network

Environment

6.1 Optimization Model

Since each microgrid has competing goals with other microgrids, network policies for

energy transactions among the microgrids plays an important role in encouraging

participating in the network. The lexicographic programming model, which will be

introduced in this chapter, allows for preferential treatment of the microgrids based on

their assigned priority group. This feature can be used to provide a higher incentive

to microgrid units with larger renewable and storage capacity for their participation

in the network energy management scheme. Here the rationale is that the units with

bigger investments in resources should reap higher benefits from their participation.

This formulation is essentially a generalization of the methods in Chapters 4 and 5.
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When all microgrids are placed at the same priority level, one of the formulations in

Chapters 4 and 5 would emerge, depending on the cost objective used.

Let the set of microgrid priority level sets be

µl = {µl1, · · · , µli, · · · , µlq} (6.1)

where µli is the set of microgrid’s objective functions in ith level of priority. Now the

corresponding single-objective optimization can be stated as

for s = 1, · · · , q

min

{
§{µls}

}
(6.2a)

for k = 1, · · · , Nh and i = 1, · · · , NoG .

Here §{·} is an scalarization operator that can be similar to those defined in

Chapters 4 and 5. This operator uses a predefined method of scalarization like sum

of the costs or utopia point to transform the objective vector to an ordinary single-

objective cost function. In other words, §{·} operator takes the elements of the set

µls which is a subset of the objective function set and transforms them to a single

objective function according to a predefined method of scalarization. For example,

if the scalarization method is sum of the costs, this operator adds all elements of

set µls to generate a single cost function. Also, the auxiliary variables for obtaining

a linear/quadratic counterpart optimization model are added to the single-objective

cost of each level, which renders the total cost as in 6.2b. The optimization problem

is formulated as:
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min

{
§{µls}+αTPbg +

∑
j∈µl−µls

(
+αTPbl

j +αTPbg
j +αTPc

j +α(1)P pk
j

)}
(6.2b)

subject to, for k = 1, · · · , Nh and i = 1, · · · , NoG

Power Exchange constraints:

Pl,min
r �

∑
j∈MLr

Pl
j + Pg

j � Pl,max
r (6.2c)

Pmg,min � Pg � Pmg,max (6.2d)

−P rcl,max
i h � Pl

i(k)−Pl
i(k − 1) + Pg

i (k)−Pg
i (k − 1) � P rcl,max

i h (6.2e)

NoG∑
j=1

Pl
j = 0 (6.2f)

NoG∑
j=1

Pg
j = Pg (6.2g)

Pl
i + Pg

i = Pbat
i + Pn

i (6.2h)

Battery Constraints:

Ei(k + 1) = Ei(k) + ηcih(k)Pc
i(k) + ηdi

−1
h(k)(Pbat

i −Pc
i)− P lossb

i h(k) (6.2i)

Pbat,min
i � Pbat

i � Pbat,max
i (6.2j)

Emin
i ≤ Ei(k + 1) ≤ Emax

i (6.2k)

ηcih
TPc

i + ηdi
−1

hT (Pbat
i −Pc

i)− P lossb
i hT1 = Efinal

i − E0
i (6.2l)
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−P rcb,max
i h � Pbat

i (k)−Pbat
i (k − 1) � P rcb,max

i h (6.2m)

Pc
i � Pbat

i , Pc
i � 0 (6.2n)

Peak Shaving Constraints:

P pk
i ≥ 0

NoG∑
j=1

P pk
j ≥ Pg(k)− P b

−∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
≤ P pk

i −Pbg
i (k) ≤ ∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
(6.2o)

Island Mode Constraint:

NoG∑
i=1

Ei(k + 1) ≥
NoH∑
t=1

NoG∑
i=1

h(t+ k)Pn
i (t+ k) (6.2p)

Optimality of Higher Order Objective Function Sets Constraint:

§{µlw(x)} ≤ §{µlw(x?)}, w = 1, · · · , s− 1, s > 1 (6.2q)

Here the indices i, k, and s refer to the microgrid, time step in the control horizon,

and the priority level, respectively. The optimization model is formulated over the

control horizon with a bold variable denoting a decision vector containing values of

the control decisions at all time steps. The vector of decision variables, x, is given

by:

x = [Pl
i,P

g,Pbat, Ei, P
pk
i ] (6.3)

The optimization constraints are discussed next.
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6.1.1 Power Exchange Constraints

The constraints in (6.2c) ensure that net power at each point of the network remains

within the line capacity limits. Here, MLr is defined as r th set of microgrids with

power capacity limit which depends on network structure. One plausible configuration

can be simply considered by Pl,min
i � Pl

i + Pg
i � Pl,max

i , that is exchange power limit

constraint for each local microgrid. All the other power exchange constraints were

explained in Section 4.1.2.

6.1.2 Battery Constraints

All battery constraints were explained in Section 4.1.3.

6.1.3 Peak Shaving Constraints

All peak shaving constraints were explained in Section 4.1.4.

6.1.4 Island Mode Constraint

Island mode constraint has been addressed in Section 4.1.5.

6.1.5 Optimality of higher-Order Objective Function Sets

Constraint

This constraint guarantees that the minimum value of the objective sets of higher-

order priority microgrids is achieved at each iteration of the solving problem.

Depending on the choice of the scalarization operator, the final optimization prob-

lem can be of the linear or quadratic programming form. At each time step, central
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controller gathers all required the data, i.e., predictions of microgrids demand and

local renewable generation, and energy storage charge level, and solves the priority

optimization model q times to find power dispatch decisions for each microgrid.

6.2 Simulation Results

In this section, different operation scenarios are considered to analyze the response of

the proposed multi-microgrid energy management optimization models. The simula-

tions are carried out in the MATLAB environment using the IBM ILOG CPLEX LP

solver on an Intel Core 2 Duo 3.00 GHz running Windows 7. The electricity usage

and solar generation data used in the simulations have been provided by Burlington

Hydro Inc. (Burlington, ON, CANADA). The electricity usage data is from the util-

ity operator commercial customers with peak usage over 50 kW and the solar energy

generation units are capable of up to 30 kW output power.

6.2.1 System Response

A multi-microgrid system with one hundred microgrids is considered. The micro-

grids are grouped to three levels of priority, high priority consisting of 33 microgrids,

medium priority consisting of 33 microgrids, and low priority consisting of 34 mi-

crogrids. In all simulations the sum of cost method is employed as the scalarization

operator. Summer electricity rates in the province of Ontario, Canada are used, i.e.,

6.2 ¢/kWh ( 7p.m.-7a.m.), 9.2 ¢/kWh (7a.m.-11a.m., and 5p.m.-7p.m), 10.8 ¢/kWh

(11a.m.-5p.m.). Denoting these prices by the vector cbuy, the other buy and sell prices
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Figure 6.1: Local exchange powers in grid-connected mode operation: (a) purchased
powers by high priority microgrids, (b) purchased powers by medium priority micro-
grids, (c) purchased powers by low priority microgrids, (d) sold powers by high priority
microgrids, (e) sold powers by medium priority microgrids, and (f) sold powers by
low priority microgrids.

are set to cbl = 0.57cbuy, cbg = cbuy, csl = 0.5cbuy, csg = 0.07cbuy. The battery charac-

teristics are Emin
i = 0kWh, Emax

i = 25kWh, Pbat,max
i = −Pbat,min

i = 12kW, Prcb,max
i =

−Prcb,min
i = 10kW/h, ηdi = ηci = 0.95, P lossb

i = 139W, and the end of horizon battery

energy level is set as Efinal
i = E0

i . The time-step averaged microgrid power/differential

power limits are chosen as Pl,max
i = −Pl,min

i = 25kW/h, Prcl,max
i = 20kW/h and

Pmg,max = −Pmg,min = 2500kW. The control prediction horizon is set to one day

with a variable time step vector h =

[
0.25 0.25 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3

]T
so,

Nh = 15 and rolling horizon controller runs every 15 minutes. The peak price is set

to cp = 11¢/kW for a 24hour optimization prediction window, which translates to an

effective 3.3$/kW peak price on a monthly basis.
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Figure 6.2: Exchange of powers with the utility grid (a) purchased powers by high pri-
ority microgrids, (b) purchased powers by medium priority microgrids, (c) purchased
powers by low priority microgrids, (d) sold powers by high priority microgrids, (e) sold
powers by medium priority microgrids, and (f) sold powers by low priority microgrids.

The results of a 24-hour simulation with the rolling horizon controller are plotted

in Figs. 6.1, 6.2 and 6.3. The time of use electricity pricing divides the 24-hour win-

dow into five distinct time intervals, separated by the dotted vertical lines. The first

(0-7hours) and fifth (19-24hours) intervals are the off-peak period with the lowest

electricity cost, the second (7-11hours) and fourth (17-19hours) intervals are mid-

peak, and the third interval (11-17hours) is peak, with the highest electricity cost. It

is notable the high priority microgrids are mostly trading energy locally with other

microgrids, except in the beginning of the day, when there is no local energy in multi-

microgrid system. They also utilize other microgrids energy storage. The medium

and low priority microgrids purchase energy to first supply their demand, and then
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Figure 6.3: Power/energy levels of energy storage devices in grid-connected mode
(a) battery charging/discharging powers of high priority microgrids, (b) battery
charging/discharging powers of medium priority microgrids, (c) battery charg-
ing/discharging powers of low priority microgrids, (d) battery energy levels of high
priority microgrids, (e) battery energy levels of medium priority microgrids, and (f)
battery energy levels of low priority microgrids.

also serve the high priority microgrids. Furthermore, the high priority microgrids

purchase local energy during the on-peak and mid-peak hours, as it is expected be-

cause of their prioritization in reducing electricity costs. An interesting feature of

the proposed optimization model is that during on-peak hours even medium and low

priority microgrids take advantage of local transaction of energy as it can be seen

from Figs. 6.2 and 6.3. This locally purchased energy is mostly stored in the storage

units of those microgrids that can be later on used internally instead of purchasing

expensive energy from the utility grid.
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6.2.2 System Performance

The performance of the proposed multi-microgrid energy management system is com-

pared with the sum of the costs method, introduced in previous chapter, No-EMS,

when the microgrids are connected to the utility grid without energy management

control, and EMS-DG, when microgrids optimally dispatch their storage unit on an

individual basis using the grid/buy sell rates without access to the network resources

through the local buy/sell transactions for different size multi-microgrid system. In

each multi-microgrid configuration we assume that there are bNoG
3
c, where b•c is the

floor function, microgrids in high and medium priority levels and NoG − 2 ∗ bNoG
3
c

microgrids in low priority level. Total electricity costs for one month billing of each

level of priority for three different optimization models are presented in in Table 6.1.

Cost savings in four different comparisons are shown in this table: priority vs

No-EMS (Comp. 1), sum of the costs method vs No-EMS (Comp. 2), priority vs

sum of the costs method (Comp. 3), and priority vs EMS-DG (Comp.4). From

the results, it is clear that high priority microgrids achieve the largest cost saving

compared with the other two groups under the proposed lexicographic optimization

model. As expected, the sum of the costs method outperforms the lexicographic

model on the metric of total electricity cost and distributes the cost savings more

uniformly among all microgrids; it would be the method of choice if that is what is

desired. Nevertheless, as is evident in the comparison of priority vs EMS-DG, all

microgrids including those in the lower priority levels still benefit from significantly

lower electricity bills in the priority-based network scheme compared to individual

energy management. This demonstrates a clear incentive for all microgrids to share

their resources by participating in the network arrangement. The lexicographic model
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allows for prioritizing groups of microgrids and hence is more versatile than the sum

of the costs model. It would simply reduce to the sum of the costs model when only

priority group is involved. It is also noteworthy that, generally, the greater the size

of the network is the larger the cost savings are due to the availability of more local

resources in the network.
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Table 6.1: Comparison of electricity costs ($) under thre different optimization model No-EMS, priority and sum
of costs (SoC), for different priority levels, high priority (HP), medium priority (MP), and low priority (LP)
NoG PL No-EMS Priority Comp. 1(%) SoC Comp. 2(%) Comp. 3 (%) EMS-DG Comp. 4 (%)

10
HP 665 178 +73.23 271 +59.24 +34.3 540 67.04
MP 638 331 +48.12 260 +59.24 -27.3 553 40.14
LP 808 440 +45.54 325 +59.77 -35.4 650 32.08

25
HP 1706 385 +77.43 618 +63.77 +37.7 1352 71.52
MP 1798 893 +50.33 642 +64.29 -39.1 1423 37.24
LP 2092 1106 +47.13 718 +65.67 -54.3 1891 41.51

50
HP 4423 852 +80.74 1473 +66.69 +42.2 4074 79.09
MP 4624 1963 +57.54 1430 +69.07 -37.3 4055 51.59
LP 5269 2382 +54.79 1499 +71.55 -58.9 4316 44.81

100
HP 10202 1470 +85.59 2806 +72.49 +47.6 8803 83.30
MP 11071 4165 +62.38 2802 +74.69 -48.6 8770 52.08
LP 12397 4776 +61.47 2853 +76.98 -67.4 10916 56.25
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6.3 Summary

This chapter presented a multi-objective optimization model for energy management

in a multi-microgrid community with local storage and renewable energy and with

connection to a utility grid. The microgrids can exchange power locally with each

other over a common bus, and with the utility grid as well. Priority levels were defined

to classify the microgrids according to some importance measures. The lexicographic

programming was used to solve the general multi-objective optimization model and

prioritize the microgrids. In Section 6.2, numerical simulations were carried out with

actual electricity and solar generation data. A comparison of the proposed multi-

microgrid energy management strategy with the sum of the cost methods showed

the effectiveness of the method for high priority level microgrids (by reduction of the

electricity cost upto 47 %).
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Chapter 7

Optimal Dispatch of Real and

Reactive Power in a Network of

Grid-connected Microgrids

So far, the optimization models presented for the problem of energy management in

a network of microgrids only considered the optimal dispatch of real power. These

models work well as long as the network loads would be purely resistive and the mi-

crogrids are closed to each other. In other networks, the power management strategy

must also deal with dispatch of reactive power in addition to the real power. The

real and reactive power reference commands issued by the high-level energy manage-

ment system would be then sent to low-level microgrid inverters controllers. These

controllers can utilize these references in a droop control technique Lasseter (2002)

to also regulate frequency and voltage in the network, if required. In this chapter, a

general model for optimal dispatch of real and reactive power in a network of micro-

grids is presented. The effectiveness of the strategy will be demonstrated through a

102



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

set of simulations with real demand and solar generation data.

7.1 Optimization Model Formulation

Referring to Chapter 4, a general nonlinear optimization model can be developed for

the problem of real-reactive power dispatch in network of microgrids. The model

can be then converted to quadratically constrained linear/quadratic program using

similar techniques to those employed in Chapter 4. The general optimization model

is stated as:

min

{
† {F}

}
(7.1a)

subject to, for k = 1, · · · , Nh and i = 1, · · · , NoG

Power Exchange Constraints:

Sl,minr

2 � (
∑

j∈MLr

Pl
j + Pg

j )
2 + (

∑
j∈MLr

Ql
j + Qg

j )
2 � Sl,maxr

2
(7.1b)

Smg,min
2 � (Pg)2 + (Qg)2 � Smg,max2 (7.1c)

−P rcl,max
i h � Pl

i(k)−Pl
i(k − 1) + Pg

i (k)−Pg
i (k − 1) � P rcl,max

i h (7.1d)

NoG∑
j=1

Pl
j = 0 (7.1e)

NoG∑
j=1

Ql
j = 0 (7.1f)

NoG∑
j=1

Pg
j = Pg (7.1g)
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NoG∑
j=1

Qg
j = Qg (7.1h)

Pl
i + Pg

i = Pbat
i + Pn

i (7.1i)

Ql
i + Qg

i = Qbat
i + Qn

i (7.1j)

Pbg �
NoG∑
j=1

Pg
j

Pbg � 0

Psg =
NoG∑
j=1

Pg
j −Pbg

(7.1k)

Qbg �
NoG∑
j=1

Qg
j

Qbg � 0

Qsg =
NoG∑
j=1

Qg
j −Qbg

(7.1l)

Pbl
i � Pl

i

Pbl
i � 0

Psl
i = Pl

i −Pbl
i

(7.1m)

Qbl
i � Ql

i

Qbl
i � 0

Qsl
i = Ql

i −Qbl
i

(7.1n)
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Pbg
i � Pg

i

Pbg
i � 0

Psg
i = Pg

i −Pbg
i

(7.1o)

Qbg
i � Qg

i

Qbg
i � 0

Qsg
i = Qg

i −Qbg
i

(7.1p)

Battery Constraints:

Ei(k + 1) = Ei(k) + ηcih(k)Pc
i(k) + ηdi

−1
h(k)(Pbat

i −Pc
i)− P lossb

i h(k) (7.1q)

Sbat,mini

2 � (Pbat
i )2 + (Qbat

i )2 � Sbat,maxi

2
(7.1r)

Emin
i ≤ Ei(k + 1) ≤ Emax

i (7.1s)

ηcih
TPc

i + ηdi
−1

hT (Pbat
i −Pc

i)− P lossb
i hT1 = Efinal

i − E0
i (7.1t)

−P rcb,max
i h � Pbat

i (k)−Pbat
i (k − 1) � P rcb,max

i h (7.1u)

Pc
i � Pbat

i , Pc
i � 0 (7.1v)
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Peak Shaving Constraints:

P pk
i ≥ 0

NoG∑
j=1

P pk
j ≥ Pg(k)− P b

−∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
≤ P pk

i −Pbg
i (k) ≤ ∆1

(NoG∑
j=1

P pk
j −Pg(k) + P b

)
(7.1w)

Island Mode Constraint:

NoG∑
i=1

Ei(k + 1) ≥
NoH∑
t=1

NoG∑
i=1

h(t+ k)Pn
i (t+ k) (7.1x)

7.1.1 Scalarized Objective Function

In the single-objective cost of the problem (7.1a), †{•} operator is a scalarization

or non-scalarization single-objective cost maker for the multi-objective cost F. This

operator transforms the multi-objective cost to one of the forms introduced in chapters

4, 5 or 6. Here the local reactive cost of each microgrid is given by

FQi
= cblq

T [
Ql
i

]+
+ cslq

T [
Ql
i

]−
+ cbgq

T
[Qg

i ]
+ + csgq

T [Qg
i ]
− (7.2)

and the corresponding cost for the real power is

FPi
= cblp

T [
Pl
i

]+
+ cslp

T [
Pl
i

]−
+ cbgp

T
[Pg

i ]
+ + csgp

T [Pg
i ]
− (7.3)

The price vectors for the corresponding cost of reactive power can be chosen with a

strategy similar to local real power cost. Here decision about whether positive reactive
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power or negative reactive power would be beneficial to generate in the network relies

on the utility grid regulation for reactive power pricing.

7.1.2 Power Exchange Constraints

The constraints in (7.1b) ensure that net apparent power at each point of the net-

work remains within the line capacity limits. Here, MLr is defined as r th set of

microgrids with power capacity limit which depends on network structure. Similarly,

the net apparent power of the microgrids at the point of coupling to grid, is within

the line limits defined in (7.1c). Changes over consecutive sample times in the net

power of the microgrids are also limited by (7.1d) to avoid large fluctuations. The

constraints (7.1e) (7.1e) simply state that local exchanges of real and reactive power

add up to zero, respectively. The total real power exchanged with the utility grid is

determined through (7.1g) and the total reactive power exchanged with the utility

grid is determined through (7.1h). The real and reactive power balance constraint

for each microgrid is given in (7.1i) and (7.1i), where Pbat
i is the battery real power,

Pg
i is real power from/to the utility grid, Pl

i is locally exchanged power, Pn
i is net

demand power, Qbat
i is the battery reactive real power, Qg

i is reactive power from/to

the utility grid, Ql
i is locally exchanged reactive power, and Qn

i is net demand reactive

power.

It should be noted that there might exist some supplementary techniques in each

microgrid to compensate for the reactive power demand such as adding capacitor

banks to the network. Here Qbat
i captures the total reactive power compensation in

the network through such means. The decision about share of each subsystem can

be made by the low-level controllers in the microgrid. The real net demand vector,
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defined as the difference between produced real power by generation units and the

real power usage of the loads, is given by

Pn
i = PLoads

i −PSolar
i −PWind

i , i = 1, · · · , NoG (7.4)

Similarly, The reactive net demand vector, defined as

Qn
i = QLoads

i −QSolar
i −QWind

i , i = 1, · · · , NoG (7.5)

7.1.3 Battery Constraints

Constraints (7.1r) and (7.1s) impose limits on the battery apparent power and energy.

All the other constraints were described in Section 4.1.3.

7.1.4 Peak Shaving Constraints

Peak shaving constraint were fully described in Section 4.1.4.

7.1.5 Island Mode Constraint

Island mode constraint was explained in Section 5.1.4.

7.2 Simulation Results

In this section, different operation scenarios are considered to analyze the response of

the proposed multi-microgrid energy management optimization models. The simula-

tions are carried out in the MATLAB environment using the IBM ILOG CPLEX LP
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Figure 7.1: Exchange of real powers in a network of 100 microgrids: (a) locally
purchased real powers, (b) locally sold real powers, (c) real powers purchased from
the utility grid, and (d) real powers sold to the utility grid.

solver on an Intel Core 2 Duo 3.00 GHz running Windows 7. The electricity usage

and solar generation data used in the simulations have been provided by Burlington

Hydro Inc. (Burlington, ON, CANADA). The electricity usage data is from the util-

ity operator commercial customers with peak usage over 50 kW and the solar energy

generation units are capable of up to 30 kW output power.
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Figure 7.2: Exchange of reactive powers in a network of 100 microgrids: (a) locally
purchased reactive powers, (b) locally sold reactive powers, (c) reactive powers pur-
chased from the utility grid, and (d) reactive powers sold to the utility grid.

7.2.1 System Response

A multi-microgrid system with one hundred microgrids is considered. In all simu-

lations the sum of cost method that was used in Chapter 5 is used as the scalar-

ization operator. Summer electricity rates in the province of Ontario, Canada are

used, i.e., 6.2 ¢/kWh ( 7p.m.-7a.m.), 9.2 ¢/kWh (7a.m.-11a.m., and 5p.m.-7p.m),

10.8 ¢/kWh (11a.m.-5p.m.). Denoting these prices by the vector cbuy, the other buy

and sell prices are set to cblp = cblq = 0.57cbuy, cbgp = cbgq = cbuy, cslp = cslq = 0.5cbuy,
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Figure 7.3: Power/energy signals in the general real-reactive energy management
system for a network of 100 microgrids: (a) battery charging/discharging powers,
(b) battery energy levels, (c) microgrids real net demand powers, and (d) microgrids
reactive net demand powers.

csgp = csgq = 0.07cbuy. The battery characteristics are Emin
i = 0kWh, Emax

i = 50kWh,

Sbat,maxi = −Sbat,mini = 17kVA, Prcb,max
i = −Prcb,min

i = 10kW/h, ηdi = ηci = 0.95,

P lossb
i = 139W, and the end of horizon battery energy level is set as Efinal

i = E0
i .

The time-step averaged microgrid apparent power/differential power limits are cho-

sen as Sl,maxi = −Sl,mini = 35kVA, Prcl,max
i = 20kW/h, and Smg,max = −Smg,min =

3500KVA. The control prediction horizon is set to one day with a variable time step

vector h =

[
0.25 0.25 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3

]T
so, Nh = 15 and rolling hori-

zon controller runs every 15 minutes. The peak price is set to cp = 11¢/kW for

a 24hour optimization prediction window, which translates to an effective 3.3$/kW

peak price on a monthly basis.

111



Ph.D. Thesis - Mohsen Rafiee McMaster - Electrical & Computer Engineering

The results of a 24-hour simulation with rolling horizon controller are plotted in

Figs. 7.1 and 7.2. The time of use electricity pricing divides the 24-hour window into

five distinct time intervals, separated by the dotted vertical lines. The first (0-7hours)

and fifth (19-24hours) intervals are the off-peak period with the lowest electricity cost.

During off-peak and mid-peak hours, microgrids purchase real power from the grid

to meet their load demand and charge their batteries. During the on-peak time,

microgrids exchange real power mostly locally to take advantage of the favourable

local buy/sell prices. As it can be seen, microgrids do not sell their surplus power

to utility grid to take advantage of local transaction power among themselves. So,

the proposed energy management scheme enables the microgrids in the network to

share their storage and renewable energy resources to reduce their electricity cost.

Furthermore, The benefit of this energy management scheme to the grid operator

is also evident from a shift of the demand to off-peak hours. As it is depicted in

Fig. 7.2-d, the net reactive power demand of microgrids are mostly negative, so local

microgrids sell the reactive power to the utility grid. The net positive reactive power

demand of some microgrids during the on-peak hours is mostly supplied from local

sources, as is evident from the results.

7.3 Summary

In this chapter, a general real-reactive energy management system for a network

of microgrids was developed. This energy management model considers limits on

transaction of apparent power related to various line capacities in the system. These

limits translated into a set of quadratic constraints in the multi-objective optimization

model. The optimization problem is converted to a convex quadratically constrained
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linear/quadratic program, which solved with existing optimization solvers to obtain

a globally optimal solution in real time. The simulation results in Section 7.2 showed

the effectiveness of the approach.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, various strategies for sharing of renewable energy and storage capacity

in a network of grid-connected microgrids were proposed. A model of operation

and multi-objective optimization formulations were presented for solving the energy

management problem in such a network. In the proposed model, the microgrids

can exchange power locally with each other and with the utility grid. An electricity

rate regime was introduced in which favourable local buy/sell prices incentivize local

exchange of power. The energy management problem was formulated as a multi-

objective optimization problem on a rolling horizon basis to minimize the cost of

electricity for each microgrid. The optimization decision variables were the charge

and discharge commands of the batteries, and local and grid shares of power for each

microgrid at the point of its coupling to the grid.

In Chapter 4, a reformulation of the optimization problem was presented that

eliminates nonlinear min and max functions without the use of binary or integer
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variables. The compromise programming was used to find a Pareto optimal point of

the general multi-objective optimization problem. The objective functions were the

norm-1 and norm-2 of the distances between an ideal cost, i.e., the utopia point in

the objective space, and the actual cost. These yielded convex linear and quadratic

optimization problems for l1 and l2 norms, respectively, that can be effectively solved

with existing optimization routines.

In Chapter 5, the multi-objective optimization problem was converted to a con-

ventional single-objective optimization by adding the components of the cost vector.

Moreover, fairness constraints were introduced to ensure that all microgrids would be

benefit from the local buy/sell rates in an equitable manner. The final single-objective

optimization formulation was in the form of a linear program.

In Chapter 6, microgrids were classified into different priority groups. The lex-

icographic programming was used to solve the general multi-objective optimization

model and prioritize the microgrids based on their assigned priority. The final opti-

mization formulation was a linear or quadratic program depending on the scalarization

method employed in the lexicographic program. In Chapter 7, a general real-reactive

energy management system for a network of microgrids was developed. The energy

management model considered limits on transactions of apparent power related to var-

ious line capacities in the system. These limits then translated into a set of quadratic

constraints in the multi-objective optimization model. The optimization problem was

converted to a convex quadratically constrained linear/quadratic program, and was

solved with standard optimization solvers to obtain a globally optimal solution in real

time.

For all proposed energy management models, simulations were carried out with
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real electricity and solar generation data on a rolling horizon basis. A comparison of

the proposed multi-microgrid energy management strategies with the cases with no

energy management, and with independent microgrid energy management showed a

very substantial reduction in overall electricity cost, in some cases in excess of 70%.

The computation times for solving the optimization problem at each time step were

also within the constraints of real-time implementation for a network as large of 200

microgrids using a conventional desktop computer.

In summary, the contributions of this work are:

• A model of operation, and methods for control of storage units in a multiple-

microgrid system with the goal of sharing renewable energy and storage capacity

in the system. Proposed pricing regime in this work would encourage local

power transactions and can help substantially reduce the electricity cost of

the microgrids, compared to the case where microgrids individually exchange

power with the grid. This would end up reducing the need for centralized power

generation in the grid.

• Four distinct multi-objective optimization formulations for on-line computation

of storage charge/discharge activities and local and grid components of micro-

grid power transactions. These are:

– a formulation that would minimize a measure of distance between the units

actual costs and their ideal costs.

– a formulation that would minimize the total cost of the electricity for the

microgrids in the network.

– a formulation that can prioritize the participating microgrids based on
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their attribution to predefined priority groups.

– a generalized formulation for optimal dispatch of real and reactive power

that can be used for any network regardless of the type of loads or distance

between participants.

These optimization formulations are convex linear/quadratic program free of

binary/integer variables, which guarantee that a globally optimal solution can

be obtained in real-time for on-line control for a relatively large network of

microgrids.

• The proposed network energy management scheme substantially reduce the in-

dividual microgrid electricity costs, in some cases in excess of 70%. This is when

the cost is compared to that from optimally managed individual microgrids.

• Utilization of aggregated energy storage in the microgrid network ensure the

longest possible uninterrupted operation of the network in the event of islanding.

8.2 Future work

The proposed optimization models make use of a centralized energy management

system. As it was discussed in Chapter 2, a centralized energy management system

does have some advantages. However, a decentralized method for solving the multi-

objective optimization may also be developed. This can help increase robustness with

respect to single-component failures, reduce the need for communication of private

data over the network, and enable real-time solution for problems involving a greater

number of microgrids.
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Another possible direction for future work is to consider uncertainty in the pre-

diction of net demand and electricity in the optimization formulation, following a

similar line of work by our group in single-microgrid systems in Malysz et al. (2014);

Sirouspour (2016); Khodabakhsh and Sirouspour (2016); Ravichandran et al. (2016).

Developing prediction algorithms for power demand, renewable generation, and elec-

tric vehicle mobility represent another potential future research direction. In thesis,

optimization constraints were introduced to ensure a guaranteed network operation

time during a blackout. Other existing tecniques including load curtailment strate-

gies, e.g. see Nguyen et al. (2016), and backup generators may also be considered for

island mode operation of the network.

As it was explained in Chapter 4, no conventional generator unit has been consid-

ered in local microgrids. It was also stated that a simple model can be added to the

optimization model to capture the generator activity during steady state operation.

This can be extended to a more complicated model of the generator by considering

the fuel cost, ramping up constraints, turn on/shut down decisions, etc.

The proposed electricity rate regime exploited the gap between the grid buy/sell

rates electricity to encourage local exchange of power. The local electricity rates were

fixed and predefined. The impact of these cost reduction can be studied further with

the aim of developing dynamic rate selection schemes. Integration of electric vehicles

into the proposed control framework and exploring how fleets of electric vehicles and

the network of microgrids could be leveraged to provide transportation and energy

while using available resources most efficiently are all also promising avenues for future

work.
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The impact of storage size on system performance was briefly examined in Chap-

ter 5. There exists some work in literature on planning of resources in individual

microgrid, e.g, see Yu et al. (2014); Bahramirad et al. (2012). Optimal sizing of stor-

age and renewable power capacity in microgrid networks is yet another interesting

topic for future research.

The high-level energy management schemes proposed in this thesis generate real

and reactive power commands for low-level power converters, which are supposed

to enforce them. However, it is possible that these commands may not fully be

compatible with grid voltage and frequency stabilization requirements, particularly

in the case of reactive power control. A possible approach to address this potential

issue is to integrate a model of the local distribution network in the optimization

framework.
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Appendix A

Glossary of Terms and

Nomenclature

NoG Total number of microgrids.

Nh Number of time steps in control horizon.

h Vector of time step lengths in hours.

Emin
i Min. energy level of battery in ith microgrid.

Emax
i Max. energy level of battery in ith microgrid.

P lossb
i Self-discharge power loss of battery in ith microgrid.

ηci Charge efficiency of battery in ith microgrid.

ηdi Discharge efficiency of battery in ith microgrid.

P rcb,max
i Max. change in battery charge/discharge power per hour, for ithmicrogrid.

Pbat,min
i Min. charge/discharge real power of battery in ith microgrid.

Pbat,max
i Max. charge/discharge real power of battery in ith microgrid.

Sbat,mini Min. apparent power of battery in ith microgrid.

Sbat,maxi Max. apparent real power of battery in ith microgrid.
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Pl,max
i Max. allowable inflow of real power into ith microgrid.

Pl,min
i Min. allowable inflow of real power from ith microgrid.

Sl,maxr Max. allowable inflow of apparent power into ith microgrid.

Sl,minr Min. allowable inflow of apparent power into ith microgrid.

P rcl,max
i Max. change in inflow/outflow power per hour, for ith.

Pmg,min Min. allowable outflow of real power at the point of coupling to the utility grid.

Pmg,max Max. allowable outflow of real power at the point of coupling to the utility grid.

Smg,min Min. allowable outflow of apparent power at the point of coupling to the utility grid.

Smg,max Max. allowable outflow of apparent power at the point of coupling to the utility grid.

P b Power baseline in peak shaving constraint.

∆1 An arbitrary large positive number in peak shaving constraint.

Efinal
i Desired battery energy at the end of control horizon.

E0
i Actual battery energy at the start of control horizon.

α An arbitrary vector with small positive elements.

cbl or cblp Local electricity buying of real power price.

csl or cslp Local electricity selling of real power price.

cbg or cbgp Electricity buying price of real power from the utility grid.

csg or csgp Electricity selling price of real power to the utility grid.

cblq Local electricity buying of reactive power price.

cslq Local electricity selling of reactive power price.

cbgq Electricity buying price of reactive power from the utility grid.

csgq Electricity selling price of reactive power to the utility grid.

cpki Peak shaving penalty of ith microgrid.

NoH Minimum island mode operation time in number of time steps.

pi Number of microgrids in ith level of priority.
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q Number of priority levels in the network.

µli set of microgrids’ objective functions in ith level of priority.

MLr rth set of MGs with power capacity limit.

Pl
i Locally exchanged real power for ith microgrid.

Ql
i Locally exchanged reactive power for ith microgrid.

Pbl
i Share of locally imported real power to ith microgrid.

Qbl
i Share of locally imported reactive power to ith microgrid.

Psl
i Share of locally exported real power from the ith microgrid.

Qsl
i Share of locally exported reactive power from the ith microgrid.

Pg
i Share of real power exchanged with the utility grid by ith microgrid.

Qg
i Share of reactive power exchanged with the utility grid by ith microgrid.

Pbg
i Real power purchased from the utility grid by ith microgrid.

Qbg
i Reactive power purchased from the utility grid by ith microgrid.

Psg
i Real power sold to the utility grid by ith microgrid.

Qsg
i Reactive power sold to the utility grid by ith microgrid.

P pk
i Auxiliary peak shaving variable.

Pg Total real power exchanged with the utility grid.

Qg Total reactive power exchanged with the utility grid.

Pn
i Real net demand power of ith microgrid.

Qn
i Reactive net demand of ith microgrid.

Pbat
i Charging/discharging power of ith microgrid.

Qbat
i Battery inverter reactive power of ith microgrid.

Pc
i Charging power of ith microgrid.

Ei Battery energy level of ith microgrid.
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