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Abstract

This thesis examines three important topics in empirical finance: The nonparametric condi-

tional beta, the propagation of risks between markets, and the predictability of the market

return density using economics and financial variables.

First, I introduce a model that links the conditional beta to the second order conditional

moments of returns. A key insight of my approach is that if the joint distribution of stock

returns and market returns are correctly specified, then it follows that their contemporaneous

pricing relationship is completely determined by the associated conditional distribution. The

model that I propose is able to study the effects of a big shock in the market on the beta of

an individual stock or a portfolio. This approach allows the beta to be a flexible function of

the sign and size of the market portfolio which is absent in the finance literature. My results

demonstrate that beta does depend on the market portfolio in a nonlinear manner. This

carries implications for systematic risk measurement significantly different than what we have

in a fixed parametric model. My model nests the Gaussian and Student-t distribution as

special cases but importantly allows for deviations from the elliptic family of distributions.

This includes asymmetric distributions. I extend the model to include more assets and

provide a test to see if other factors are priced. My empirical results illustrate that in

the event of big shocks in the market the firm’s beta coefficient can go down or shoot up,

depending on the market conditions (volatility).

Second, I extend the literature on the spillover effects or contagion effects that focus on
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the transmission of shocks through moments to spillover effects on the conditional density

and seek to shed greater light on the contemporaneous information transmission between

markets. The objective is to develop a joint model of returns on two different markets

governed by an infinite mixture model from which the conditional density of the first market

given the returns of the other market can be derived. This enables us to study how a shock

in one market influences the contemporaneous and future (one-day-ahead, one-week-ahead,

and one-month ahead) conditional density of the other market. This makes it possible to

explore the contemporaneous spillover effects of big shocks in one market on various features

of the density of the other market such as conditional expected return, volatility, skewness

and kurtosis, and value at risk.

Third, I investigate the predictability of the market return density using financial and

macroeconomic variables. The objective is to develop a Bayesian nonparametric model of the

distribution of market returns where the weights of the mixture change over time. Available

information on financial and macroeconomic variables is employed to predict the weights

of the mixture components in the predictive density of market returns over time. This

permits the density of market returns to be unknown and to change over time. Moreover, the

proposed model examines whether certain financial and macroeconomic variables convey any

useful information about the predictive density which extends the literature on an important

question in empirical finance, the predictability of market return. Using the proposed stick-

breaking model, instead of focusing only on the conditional mean or variance of market

return, I investigate whether these variables are useful in predicting the entire density of

stock returns through predicting the time-varying weights of the mixture density. I seek to

predict features of the market return density in addition to what is captured by the first and

second moments. This matters in empirical distributions in finance and economics where

we might have heavy tails and asymmetry. I provide evidence that these features can be

of great value in applications such as asset allocation and risk management. I evaluate the
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incremental improvement in the predicted density of market returns statistically by the log

predictive likelihood criteria and economically by a portfolio selection application.
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Chapter 1

Introduction

This thesis examines three important topics in financial econometrics with a particular focus

on estimating an accurate model for financial asset returns using Bayesian nonparametric

methods. These topics are of interest to individual investors, managers and policy makers.

Informed decisions must take into account the possibility that asset values may increase or

decrease as well as the likelihood of these events. This work aims to advance the method-

ology of modeling asset returns that allows the innovation distribution to be unknown and

to change over time. Most of the literature has concentrated on modeling the conditional

(co)variance of returns in forms of stochastic volatility and (multivariate) generalized autore-

gressive conditional heteroskedasticity (GARCH) models with a fixed parametric innovation

density. This means that once volatility dynamics are removed, the innovations distribution

is constant over time.

This research considers the estimation of an unknown density for the return innovations

rather than making a specific assumption. The Bayesian nonparametric approach relies on

estimating an infinitely countable mixture of distributions to approximate the true underly-

ing density and yields exact finite sample inference. This results in more accurate predictive

densities for individual assets and portfolios of assets. It also provides better measures of
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risk.

In the first essay, I design and estimate a multivariate Bayesian nonparametric model to

study the conditional beta in the capital asset pricing model (CAPM) framework. This study

extends recent work that assumes beta changes over time but is fixed at time t as a function

of the contemporaneous value of market return. This model is able to study how big shocks in

the market affect the beta of an individual stock or a portfolio. There is a large literature that

derives testable implications from conditional CAPM. One route to a conditional CAPM is

from Hansen and Richard (1987). This model links the second order conditional moments of

returns to the conditional beta which determines the risk premium of an asset. One strand of

the literature (Bollerslev et al., 1988; Bali and Engle, 2010; Engle, 2016) has investigated this

model through a multivariate GARCH model (MGARCH). Recently Engle (2016) proposes

a multivariate normal GARCH model from which the conditional distribution defines the

dynamic beta coefficient. This directly links time-varying second moments to the time-

varying beta in a consistent fashion. The parametric pricing relationship holds more generally

for the elliptic family of distributions. This is an attractive approach but may be limiting if

the parametric distributional assumptions are not valid.

A key insight of my approach is that if the joint distribution of stock returns and market

returns are correctly specified then it follows that their contemporaneous pricing relationship

is completely determined by the associated conditional distribution. I semiparametrically

model the conditional distribution as a countably infinite mixture of normals (Jensen and

Maheu, 2013) using a Dirichlet process prior (Ferguson, 1973). Each normal component

in the mixture has a conditional covariance directed by a MGARCH process. The mixing

is over both the mean vector and the covariance matrix. Parsimony is guaranteed by the

almost surely discrete Dirichlet process prior used for the mixture components. To overcome

the infinite-dimensionality of the problem, I apply slice sampler introduced in Walker (2007).

My model nests the Gaussian and Student-t distribution as special cases but importantly
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allows for deviations from the elliptic family of distributions. This includes asymmetric

distributions. The proposed approach allows the beta to be a flexible function of the sign and

size of the market portfolio. Although the time series of the realized conditional betas from

the semiparametric model are similar to the benchmark model, I find that beta coefficient

does depend on the market portfolio nonlinearly, hence implications for systematic risk

measurement is very different than in a fixed parameter model.

In the parametric model, beta is constant at each time and does not depend on the

contemporaneous value of market return, while with the proposed semiparametric model, I

find that beta changes when we have a significant market correction or crash versus mod-

est moves in the market. I extend the model to include more assets and provide a test to

check if other factors are priced. When the market is highly volatile, beta is not affected

by unexpected shocks in the market return. While in a calm market, beta can change dra-

matically from unexpected shocks. For stocks which are highly correlated with the market,

an unexpected shock during calm periods increases the beta coefficient. The effect is the

reverse for the stocks with low correlation with the market. In other words, when an asset

is highly correlated with the market, large moves in a stable market increase the conditional

covariance between the market and the asset more than they increase the conditional vari-

ance of the market, resulting in a significant increase in the beta coefficient. When an asset

has low conditional correlation with the market, large moves in a stable market increase the

conditional variance of the market more than they increase the conditional covariance be-

tween the market and the asset, leading to a drop in conditional beta. These are important

contemporaneous nonlinear dynamics that are absent in other models.

In an attempt to properly estimate the shock spillovers among markets, in the second

essay, I develop a joint model of returns on two different markets governed by an infinite mix-

ture model from which the conditional density of one market given the returns of the other

market can be derived. This enables us to study how a shock in one market influences the
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contemporaneous and future (one-day-ahead, one-week-ahead, and one-month ahead) condi-

tional density of the other market. The proposed model extends the literature on “spillover

effects” or “contagion effects” that focus on transmission through conditional moments to

spillover effects on the entire density.

There is a vast body of literature on the topic of return spillover and volatility spillover

among different markets. One strand of literature estimates the lagged volatility spillover

among markets mostly by working in a multivriate GARCH-BEKK (Engle and Kroner,

1995) setting (Darbar and Deb, 1997; Reyes, 2001; Caporale et al., 2006; Gardebroek and

Hernandez, 2013; Mensi et al., 2014). The BEKK model captures any significant lagged

information transmission among asset volatilities. Another line of studies investigates the

contemporaneous spillover effect of a shock in one market on the expected return of the

second market. This is usually done by an ad hoc multi-step estimation procedure; first a

model is estimated for the returns of the first market, and then the residuals are used as

regressors for the returns of the second market (Ng, 2000; Christiansen, 2007; Balli et al.,

2015; Apergis and Miller, 2008). This multi-step procedure assumes that the shocks to

the first market are external drivers for the second market, which is not necessarily true.

This approach also assumes that the contemporaneous shocks to the first market affect the

expected return of the second market linearly.

I propose an infinite mixture model for capturing the contemporaneous spillover effects

without imposing any assumption on the linearity of spillover effects or the externality of the

shocks. With the speed of information transmission among markets these days, estimating

the contemporaneous spillovers is of considerable importance. I model the return density

of both markets jointly using Dirichlet process mixture model, allowing an unconstrained

interaction of markets. Each normal component in the mixture has a conditional covariance

directed by a MGARCH-BEKK process. The mean vector and the covariance matrix of

the assets are assumed to be component-specific. By estimating the joint density and then
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deriving the conditional density, I am able to study the spillover effects of the lagged and

contemporaneous shocks in either of the markets on the shape of the entire density of the

other market as opposed to the extant literature that mainly focuses on spillovers effects

on the first and second moments. This enables us to explore the contemporaneous spillover

effects of big shocks in one market on different features of the density of the other market

such as conditional expected return, volatility, kurtosis, value at risk, etc.

The proposed model can be used to assess risk transmission among any class of assets.

For example, it can estimate how a stock market crash in the US market will affect the

Canadian markets. More generally, it can measure financial stress. For instance, conditional

on a 3% drop in the oil market, what is the probability that the US market will drop by

more than 3%? Density intervals and other probability statements can be directly derived

from this model.

I apply the proposed model to a dataset on S&P 500 and oil returns, and also a dataset

on S&P TSX returns and oil returns, studying contemporaneous and lagged spillover effects

of a shock in oil market on Canada market and the US market. The results show that the

contemporaneous transmission of shocks from oil market to both Canada market and the

US market are more significant than the lagged spillovers. I provide empirical evidence that

a big positive or negative shock in oil market can affect the shape of the entire conditional

density of the Canada market returns and the US market returns, increasing the value at

risk of an investments in these markets in the event of both positive and negative shocks.

The third essay extends the literature on predictability of market return. I develop a

Bayesian nonparametric model of the distribution of market return where the weights of the

mixture change over time. Available information on financial and macroeconomic variables

is employed to predict the weights of the mixture components in the predictive density of

market return over time. This permits the density of the innovations to be unknown and

to change over time. Moreover, the proposed model examines whether certain financial
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and macroeconomic variables convey any useful information about the predictive density of

market return which extends the literature on an important question in empirical finance,

predictability of market return.

To estimate the predictive density of market returns, I consider a Bayesian nonparametric

mixture model for the distributions over time that allows the mixing distribution to change

with time. In general, this can be done by allowing time-variation in the weights of the

mixture, the atoms, or both. See for example MacEachern (1999); De Iorio et al. (2004);

Gelfand et al. (2005); Teh et al. (2006); Griffin and Steel (2006); Duan et al. (2007); Rodriguez

and ter Horst (2008).

Here, I assume that atoms are constant, and variation of the mixing distribution over time

comes from the time-varying weights. To determine the weights at each time, I use avail-

able information on financial and macroeconomic variables. I propose a new nonparametric

mixture model based on the dependent stick-breaking prior of Rodriguez and Dunson (2011)

where the time-varying sticks are determined by probit transformations of linear combination

of the predictors. This permits the density of innovations to change over time. Moreover,

this is a novel and flexible approach by which I examine whether the financial/economic

variables carry any useful information to predict the market return’s time-varying density.

Prediction of stock market returns and being able to profit by timing the market using

available information has been an interesting topic in finance literature. Predictability of

the market returns can be exploited in areas such as asset allocation and risk management.

There are contradicting conclusions on whether available information on the financial and

macroeconomic variables can improve the out-of-sample predictability of market returns.

Rozeff (1986); Fama and French (1988); Campbell and Shiller (1988); Cutler et al. (1991);

Hodrick (1992); Rapach and Wohar (2006) and Lettau and Ludvigson (2001) report that

certain financial variables explain a significant fraction of movements in stock returns. On

the other hand, many studies have criticized the forecasting power of the financial and
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macroeconomic variables (see for example Goetzmann and Jorion (1993); Nelson and Kim

(1993); Bossaerts and Hillion (1999); Ferson et al. (2003); Engstrom (2003); Goyal and Welch

(2003); Lettau and Ludvigson (2005); Ang and Bekaert (2006) and Welch and Goyal (2008)).

These studies either conclude that there is no strong evidence supporting the out-of-sample

forecasting power of these variables or show that the statistics for many of these predictors

are spuriously significant.

The studies mentioned above along with many others only investigate the predictability of

mean returns. For an extensive review see Rapach and Zhou (2013). However, out-of-sample

point forecasts of market returns do not convey any information about the uncertainty of the

realized returns nor the spread and shape of the return distribution, while this information

may be valuable for investors. The economic value of a return forecast depends not only on

the point forecasts but the entire return distribution.

Although the value of predictors for the predictive mean is unclear, there is evidence that

predictors help explain other features of the predictive distribution. Schwert (1989), Engle

et al. (2012), Christiansen et al. (2012), Paye (2012), and Asgharian et al. (2013) use various

financial and macroeconomic factors to predict the volatility of stock returns. Allowing for

predictability of the conditional mean and the conditional variance of stock returns, Cenesi-

zoglu and Timmermann (2012) examine different forecasting models with different predictors

using Welch and Goyal (2008) data. They show that using these predictors can improve the

economic performance of the prediction models upon constant mean and variance, although

this is not the case when the focus is only on statistical measures.

The literature on the predictability of the entire density of market returns using financial

and economic predictors is scarce. Some studies investigate this matter through predictabil-

ity of the conditional mean and conditional variance, as mentioned above. Cenesizoglu and

Timmermann (2008) propose a quantile approach to capturing predictability in the distribu-

tion of stock returns and find that many of the economic variables studied in the literature
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are useful in predicting the tails of the return distribution but not necessarily its center.

Instead of focusing only on the conditional mean, conditional variance, or a few quantiles

of market excess returns, I investigate whether these financial and macroeconomic variables

are useful in predicting the one-period-ahead full density of monthly US stock returns. I

attempt to predict features of the market return density in addition to what is captured by

the first and second moments. This is particularly important in financial and econometric

applications where we usually have heavy tails and asymmetry. I provide evidence that these

features can be important in applications such as portfolio selection.

To estimate the proposed model, I apply a Gibbs sampler along with the slice sampler

of Walker (2007), the collapsed sampler of Rodriguez and Dunson (2011), and Metropolis-

Hastings sampler. The findings add to the growing literature on predictability of market

returns. My results show that certain predictors are useful in predicting the density of

market returns. I evaluate the incremental improvement in the predicted density of market

return statistically by a log-predictive likelihood criteria (Bayes factors) and economically

by a portfolio optimization application. The statistical and economic performance of the

proposed model is superior over different benchmark models. The strongest predictive ability

is found from the kitchen sink case which includes all predictors under study, stock variance,

dividend payout ratio, earning price ratio, and dividend price ratio.

The rest of the dissertation proceeds as follows. Chapter 2 reviews the Bayesian methods

and nonparametric approaches that I use in all three essays. Chapter 3 examines how the

beta coefficient of a firm depends on the market return. Chapter 4 focuses on the contempo-

raneous spillover of shocks in one market into the entire density of other markets. Chapter

5 studies the predictability of the market return density using financial and economics vari-

ables. Chapter 6 concludes.
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Chapter 2

Bayesian Inference and

Nonparametric Approaches

The asset return models in all three chapters are extended in a Bayesian nonparametric

framework. The Bayesian nonparametric approach relies on estimating an infinitely count-

able mixture of distributions to approximate the true underlying density and yields exact

finite sample inference. To avoid iterating the same literature in each section, this section

reviews the definitions and different techniques in Bayesian inference and nonparametric

methods with some simple examples and applications.

2.1 Bayesian Inference

Bayesian inference is an approach to decision making in the presence of uncertainty (in the

data, in the statistical model and the parameters of the model). In the classic approach,

statistical inference can only be defined for experiments that are repeatable. Many experi-

ments in the social sciences are one time events (e.g., the market closing at tomorrow) that

do not fit a repeated experiment design. The classic approach must assume a fictitious world

in which tomorrow’s stock market close occurs again and again under identical conditions.
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If these conditions cannot be met (which is usually the case) then the unknown future event

is not a random variable and cannot be interpreted by classic statistical methods. Unlike

classic inference, Bayesian approach does not require repeated experiments to define prob-

ability. Bayesian approaches also view unknown events with uncertainty and express this

uncertainty using a probability distribution. The unknown events do not have to be subject

to repetition. Both Bayesian and classic approaches view the unknown model parameters

fixed, but the Bayesians express their uncertainty about these parameters using probability.

Bayesian analysis is simply applying Bayes Theorem and updating a prior distribution

to a posterior distribution. Bayes rule shows us how our prior beliefs are changed once we

observed an event. The result is the posterior probability.

Using Bayes Theorem we can obtain the posterior distribution of a set of parameters, θ,

after observing the data from time 1 to T, p(θ|y1:T ), as follows

p(θ|y1:T ) =
p(y1:T |θ)p(θ)∫
p(y1:T |θ)p(θ)dθ

∝ p(y1:T |θ)p(θ)

where p(θ) denotes the prior density, and p(y1:T |θ) is often called the likelihood. The denomi-

nator is the integrating constant and called the marginal likelihood. Therefore, the posterior

is proportional to the likelihood times the prior. That is, we update the prior beliefs to

posterior beliefs after observing the data. All inference about θ is conducted through the

posterior and conditions on the data, y1:T . Only the information contained in the likelihood

function matters for inference. Therefore, Bayesian inference is based on what did occur as

opposed to classical inference that is concerned about what might have happened. Bayesian

approach is ex post and Bayesian inference is conditional on the observed data. The Bayesian

approach can be very useful for real time estimation in which new data continually arrives

and model estimated need to be updated because this approach to learning is sequential in

nature and involves repeated application of Bayes’ rule.
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Once we have the posterior density of the parameters, θ, we can calculate the posterior

expectation of any function of the parameters, h(θ) as

E(h(θ)|y1:T ) =

∫
h(θ)p(θ|y1:T )dθ (2.1)

For example, the posterior mean of the parameters can be calculated as

E(θ|y1:T ) =

∫
θp(θ|y1:T )dθ (2.2)

As in the classical statistical approach, a Bayesian believes that there exists a true but

unknown model parameter. However, the difference is that the Bayesian can use a distribu-

tion to express uncertainty. A prior is used to summarize the uncertainty regarding θ before

we observe the data and learn from it. One way of selecting priors is to plot the pdf of

the observed data and conjecture the values of the parameter that are more or less likely.

When it is possible to identify the form of a posterior distribution, we say that the prior and

data density are conjugate. That is, if F is a class of data densities and P a class of priors,

then P is conjugate for F if for any likelihood of data that belongs to F and any prior of

the parameters that belongs to P, the posterior distribution of the parameters also belongs

to P. In most cases we assume independence between parameters. Thus the parameters’

joint prior density can be written as the product of the prior densities of the parameters

separately. This expedites sampling from the posterior density.

We can obtain the posterior distribution, either analytically or we obtain a series of draws

from it which can be used to estimate a number of features of the unknown parameter’s

distribution such as the posterior mean and standard deviation, the posterior median and

other quantiles, 100(1−α)% density regions. Most often, the posterior distribution does not

have a standard and known form. Therefore, it is difficult or impossible to obtain the features

like the posterior mean analytically. Development of Markov chain Monte Carlo (MCMC)
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technology has successfully solved the problem of computational complexity. The simulation

and numerical methods provide a sample from the posterior. Then we can estimate posterior

moments and other features of the density using this sample. There are several approaches

to simulating from a distribution such as Importance Sampling, Gibb Sampler where we have

conditionally conjugate priors, and Metropolis-Hastings where the conditional distributions

are of unknown forms.

The predictive density for the modelM is defined as the conditional distribution of yt+1

given y1:t = {y1, ..., yt} where all parameter uncertainty has been integrated out.

p(yt+1|y1:t,M) =

∫
p(yt+1|θ, y1:t,M)p(θ|y1:t,M)dθ (2.3)

This is the key quantity used in forecasting and model comparison. Suppose we have another

model M′ and evaluate the predictive density at the data yt+1 using M′. If we find that

p(yt+1|y1:t,M) > p(yt+1|y1:t,M′) then this means that modelM is better able to account for

the observation yt+1. We can compare models on a subset of data which tends to minimize

an effect the prior distribution has.

The criteria that I use to compare different models in the next chapters is the value of

the predictive likelihood. For each particular model M, the predictive likelihood for rL:T ,

L < T is expressed in terms of the one-step-ahead predictive likelihoods,

m(rL:T |r1:L−1,M) = ΠT
t=Lp(rt|r1:t−1,M) (2.4)

where L > 1 is chosen to eliminate the influence of the priors on model comparison. Usually

in computing these quantities, which tend to be small, it is best to work with the log-

predictive likelihoods.

Assume that data y1:T follows one of two models M1 or M2 with densities p(y1:T |M1)

12
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and p(y1:T |M2). The posterior odds ratio is

p(M1|y1:T )

p(M2|y1:T )
=
p(y1:T |M1)p(M1)

p(y1:T |M2)p(M2)

If the prior probabilities are equal, p(M1) = p(M2), then the posterior odds equal the

Bayes factor. If the Bayes factor is 10, then it suggests thatM1 is 10 times better at explain-

ing the data compared to M2. In comparing two models (M1 versus M2) a rough guide is

that a log-Bayes factor bigger than 3 is a strong evidence for outperformance of M1 and a

log-Bayes factor bigger than 5 is a very strong evidence for outperformance of M1 against

M2 (Kass and Raftery (1995) ). Bayesian model comparisons favours parsimonious model

specifications. Complex models are only chosen if they provide an improved description of

the data. We can compare nested or non-nested models using predictive likelihoods.

2.2 Dirichlet Process Mixture (DPM) Model

The financial literature has recognized for some time (Fama, 1965; Mandelbrot, 1997) that

return distributions exhibits fat tails and asymmetry which are significantly different than

the normal distribution. This phenomena is more evident in daily and higher-frequency

returns and has led many researchers to use different models to explain skewness and excess

kurtosis. Mixture models provide a flexible approach to capture these features of the return

distribution.

Mixture models can be divided into two categories in finance. Continuous mixtures

have a mixing variable which follows a continuous distribution. The stochastic volatility

model of Clark (1973) and the subsequent literature (Taylor, 1994) is a good example of

this specification. The second class of models is discrete mixtures. Examples include a finite

mixture of normals and Markov switching models. Here, I focus on discrete mixture models

used in finance.

13
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In the mixture model analysis, how to determine the number of mixtures is a fundamental

problem. The traditional method including model selection based on different number of

clusters may over-fit or under-fit the data. While a Bayesian non-parametric model side-

steps this part, it allows the data set to determine its own clusters without actually doing

the model selection. Suppose the observation follows an unknown distribution which we try

to investigate, the Bayesian method defines a known prior distribution for the underlying

unknown distribution. The prior distribution in the non-parametric approach is the space

of distributions.

A typical model for yt in the Bayesian nonparametric framework is

f(y) =

∫
f(y|θ)dH(θ) (2.5)

H(·) =
∞∑
g=1

ηgδθg(·) (2.6)

where H is almost surely discrete, f(.|.) is a kernel density, and η = (η1, η2, ...) is a vector

of the weights such that ηg ≥ 0 for all g,
∑∞

g=1 ηg = 1 and δx(·) denotes the distribution

degenerate at x. θ1, θ2, ... are assumed to be draws from some known distribution. H is

the unknown discrete mixing distribution and from a Bayesian perspective requires a prior

assumption.

An infinite mixture model of this form can flexibly represent a wide range of continuous

distributions. This nonparametric model is often embedded in a richer time-series model in

the finance literature since it is able to capture the fat tails and skewness existing in the

financial data but not able to capture time dependencies.

Before discussing the model in (2.5)-(2.6) I review selection of a prior for H and some

of its properties. By far the most popular prior for H is the Dirichlet process (DP) prior.

The DP, introduced by Ferguson (1973), is a distribution of probability measures over a

measurable space. A draw from a DP, say H, is a discrete distribution with a countable
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number of atoms. The DP is indexed by two parameters: a positive scalar α, called the

concentration parameter, and a base distribution H0. The draw H ∼ DP (α,H0) is centered

on the base distribution which serves as a prior guess. The concentration parameter controls

how close we believe the unknown H is to H0. The larger α, the stronger belief in H0 and

the more distinct atoms we have with significant mass. This prior is convenient in that we

can center it around a well known family of parametric distributions such as the Gaussian,

and impose some measure of parsimony on the predictive density of yt through α.

A key feature of the DP is that for any finite partition {A1, ..., AK} of the parameter

space,

H(A1), ..., H(AK)|α,H0 ∼ D(αH0(A1), ..., αH0(AK)), (2.7)

where D(a1, ..., aK) denotes a Dirichlet distribution with parameter vector (a1, ..., aK). This

property implies E[H(Ai)] = H0(Ai) and V(H(Ai)) = H0(Ai)(1−H0(Ai))
(1+α)

.

There are several different representations for the DP: the Chinese restaurant represen-

tation, the Polya-urn process, and the stick-breaking representation. A Chinese Restaurant

Process (CRP), displayed in Figure 2.1, is a distribution over partitions. Imagine a restau-

rant with an infinite number of tables that have a unique dish θg ∼ H0 that is eaten at each

table. A new customer φn (the nth customer) chooses an empty table with probability α
n−1+α

which is served the new dish θ ∼ H0 or decides to sit at one of the occupied tables that have

dish θg, g = 1, . . . , K with probability c
n−1+α

where c is the number of people sitting at that

table.

Another closely related representation for a draw from H ∼ DP (α,H0), is the Polya Urn

Scheme. Imagine an urn with α black balls. Whenever a black ball is drawn, a new color is

generated from H0 and the new color ball along with the black ball is placed back in the urn.

If the drawn ball is non-black, it is placed back together with a ball with the same color.
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Figure 2.1: Chinese restaurant process.

Thus, the nth new ball that we put in the urn is the same color as one of the existing colors,

say color g, in the urn with probability ng
n−1+α

where ng is the number of existing balls with

color g, or has a new color with probability α
n−1+α

. Blackwell and MacQueen (1973) prove

that the distribution of colors after n draws converges to a discrete distribution that follows

a DP. Let sn be an indicator and record the color of the nth ball. If the first ball is s1 ∼ H0,

thereafter ball colors are generated as

sn+1|s1:n ∼
K∑
g=1

ng
α + n

δsn,g +
α

α + n
δsn,K+1 (2.8)

where δh,g denotes the Kronecker delta and K is the current number of distinct colors.

The observations from a Polya urn are exchangeable and this key point means we can

always rearrange our sample to assume we are dealing with the last observation and apply

the Polya urn (conditional distribution) results. This is the basis of the Gibbs sampler we

discuss below.

Another, constructive definition of the DP, is due to Sethuraman (1994) and often referred

to as a Stick-Breaking Representation due to the construction of the weights. A draw from
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the DP, H ∼ DP (α,H0) almost surely has the form

H(·) =
∞∑
g=1

ηgδθg(·) (2.9)

η1 = v1, ηg = vg

g−1∏
l=1

(1− vl), g ≥ 2 (2.10)

vl
iid∼ B(1, α), l = 1, 2, ... (2.11)

θg
iid∼ H0, g = 1, 2, .... (2.12)

This formulation and the CRP/Polya Urn provide different avenues to posterior sampling.

Note that any draw H from a DP (α,H0) is a discrete probability measure (Ferguson,

1973) and, therefore, it is possible for a sample from H to have repeated elements. Moreover,

the DP can not be used as a prior for distribution of continuous variables. To deal with this

issue, Lo (1984) introduces the Dirichlet process mixture (DPM) model and suggests working

with a hierarchical model. The DPM model takes the following form

yt|φt ∼ F (φt), t = 1, ..., T (2.13)

φt
i.i.d.∼ H (2.14)

H|α,H0 ∼ DP (α,H0) (2.15)

where F (φt) is the distribution associated with density f(yt|φt). If F () is a continuous

distribution then so is the DPM model. The parameters, φt, are assumed to be distributed

according to an unknown distribution H which follows the Dirichlet process prior.

Equivalently, the model in the form of Equation (2.5) with H from Equations (2.9)-(2.12)

becomes

p(yt) =
∞∑
g=1

ηgf(yt|θg) (2.16)
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where θg represent the unique draws from H0
1 while φt in Equation (2.14) represent draws

from H which may have repeats.

With the advent of Markov chain Monte Carlo (MCMC) methods Escobar (1994) and

Escobar and West (1995) provide tractable approaches to posterior simulation. This is the

first generation of posterior samplers.

Here, I discuss the Gibbs sampling method for the model in Equations (2.13)-(2.15).

Denote the set of distinct values of all φts by θ = {θ1, θ2, ..., θK} of size K ≤ T . Con-

ditional on K, we introduce indicators st = g if φt = θg so that, given st = g and θ,

yt ∼ F (θg). The configuration set S = {s1, ..., sT} partitions the data y1:T = {y1, ..., yT}

into K distinct groups so that the ng = #{t : st = g} observations in group g have

the same parameter value θg. Also define Ig = {t : st = g} for the set of indices of

observations in group g and Yg = {yt : st = g} as the corresponding group of obser-

vations. Define φ−t = {φ1, ..., φt−1, φt+1, ..., φT}, S−t = {s1, ..., st−1, st+1, ..., sT}, K(t) =

as the number of distinct values in φ−t and n
(t)
g = #{st ∈ S−t : st = g}, then West et al.

(1994) show that the Gibbs sampling steps are

• φt|α, φ−t, y1:T , t = 1, . . . , T ,

• θ|α, S, y1:T ,

• α|S, y1:T .

The first step is a consequence of samples from the DP being exchangeable and is based on

the following

(φt|φ−t, S−t, K(t), y1:T ) ∼ α

T − 1 + α
h(yt)H(dθ|yt) +

1

T − 1 + α

K(t)∑
g=1

n(t)
g f(yt|θg)δθg (2.17)

where h(yt) =
∫
f(yt|θ)dH0(θ) is the predictive density derived from the prior evaluated at

1Assuming H0 is a continuous distribution.
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yt and H(dθ|yt) ∝ f(yt|θ)dH0(θ) the posterior distribution based on one observation. This

stage generates a new configuration by sequentially sampling indicators from the posteriors

st =


g w.p.

n
(t)
g

T−1+α
f(yt|θg),

K(t) + 1 w.p. α
T−1+α

h(yt),

for any index t. If st = K(t) + 1, draw a new φt from H(dθ|yt). The second sampling step

θ|α, S, y1:T , is not necessary but it tends to improve the mixing of the Markov chain. The

first step only changes one parameter at a time conditional on all others while the second

step allows for an update of all unique θ at one time. The final sampling step of α follows

the Gibbs step from Escobar and West (1995).

West et al. (1994) derive the conditional predictive density for future data yT+1,

p(yT+1|θ, S, α, y1:T ) =
α

α + T

∫
f(yT+1|θK+1)dH0(θK+1) +

K∑
g=1

ng
α + T

f(yT+1|θg) (2.18)

where θK+1 is a new independent draw from H0. Note that Equation (2.18) represents

a potentially infinite mixture model since for each new observation there is a possibility

(proportional to α) to introduce a new parameter θ.

The final estimate of the predictive density is obtained by integrating out the parameter

uncertainty. Given M Gibbs draws of φ(m), S(m) and α(m) the estimate is

p(yT+1|y1:T ) ≈ 1

M

M∑
m=1

p(yT+1|θ(m), S(m), α(m), y1:T ). (2.19)

There are important alternatives to the Gibbs sampler. Equation (2.9) represents the DP

as a countably infinite sum of atomic measures, which leads to the infinite mixture for the

density of yt in Equation (2.16). The second generation of posterior sampling methods allow

for inference on H and use Equation (2.16) directly. One approach is to truncate this infinite
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mixture to a finite number large enough to approximate the true model. Ishwaran and James

(2001) provide details on the approximation and block sampling methods. A second approach

to deal with the infinite number of parameters in Equation (2.16) is the slice sampler method

of Walker (2007). He introduces a latent variable that randomly truncates the model to a

finite mixture model, but whose marginal distribution preserves the original model. This

turns an infinite dimensional sampling problem into a finite one.

Once we have the sample from the posterior distribution of the unknown parameters, θ,

we can approximate the posterior mean of any function h(θ) as

E(h(θ)|y1:T ) =

∫
h(θ)p(θ|y1:T )dθ ≈ 1

M

M∑
g=1

h(θ(g)) (2.20)

where θ(g), g = 1, ...,M is the sample drawn from the posterior density of θ using MCMC

algorithms. Often a burn-in sample is considered and the random draws at the beginning

of the MCMC algorithm are dropped from the sample in order to ensure the convergence of

the random draws is achieved.

An application of the DPM to stock returns To illustrate how an infinite mixture

model is able to capture the fat tails in a data series, I nonparametrically estimate the

density of gold returns, applying the DPM model and using the Gibbs sampler discussed

above. The data are the monthly log-returns from January 1970 to November 2012 with

T = 515 observations. Table 2.1 displays summary statistics of the dataset. This table

shows that monthly returns of gold display skewness and excess kurtosis.

Total number Mean Variance Skewness Kurtosis
515 0.327 4.6 8.1 1.26

Table 2.1: Summary statistics of gold returns. The data set is the monthly returns from
January 1970 to November 2012.
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In this example, θ = (µ, h), and the base measure, H0, is assumed to have a conjugate

prior of

H0(µt, ht) ≡ NG(µt, ht|µ0, ρ,
α0

2
,
β0

2
)

µ0 = 0, ρ = 4, α0 = 4, β0 = 20, α ∼ G(a, b)

where NG(.) is the normal-gamma distribution2 and G(a, b) is the gamma distribution3.

Using the results above we have

h(yt) ∝ tα0

(
yt|µ0,

β0(1 + ρ)

α0 ρ

)
4. (2.21)

H(dθ|yt) ∝ NG
(
µ, h|µ̄t, (1 + ρ)−1,

α0 + 1

2
,
ω∗t
2

)
(2.22)

in which

µ̄t =
yt + ρµ0

1 + ρ
, ω∗t = −(1 + ρ)µ̄t

2 + y2
t + ρµ2

0 + β0. (2.23)

tν(µ, σ
2) denotes a Student-t density with location µ, scale parameter σ2 and degree of

freedom ν and tν(x|µ, σ2) is the associated density function evaluated at x.

The predictive density given parameter draws is a mixture of normals and Student-t

distributions,

p(yT+1|θ, S, α) =

=
α

α + T

∫
f(yT+1|µk+1, hk+1)dH0(µk+1, hk+1) + Σk

g=1

ng
α + T

f(yT+1|µg, hg)

=
α

α + T
tα0

(
yT+1|µ0,

(
β0

α0

)(
1 +

1

ρ

))
+

k∑
g=1

ng
α + T

φ(yT+1|µg, hg). (2.24)

2(X,T ) ∼ NG(µ, ρ, α, β), with density f(x, τ |µ, ρ, α, β) =
βα
√
ρ

Γ(α)
√

2π
τα−1e−τβe

−ρτ(x−µ)2
2 .

3X ∼ G(a, b), with density f(x|a, b) = ba

Γ(a)x
a−1e−xb. Then we have E(x) = a

b .
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The predictive density is obtained by averaging this result over the MCMC draws as in

Equation (2.19).

After running the MCMC algorithm for M = 7000 iterations and dropping the first

M0 = 1000 draws as burn-in, I estimate predictive density. Figure 2.2 shows the estimated

nonparametric predictive density of monthly returns with α ∼ G(1, 24) (the first panel) as

well as its logarithmic scale plot (the second panel) in comparison to the normal distribu-

tion with mean and variance equal to sample mean and sample variance, respectively. The

nonparametric model captures significant deviations from the normal distribution by using

approximately 5 components, on average. The log-density of the nonparametric model dis-

plays thicker upper tails meaning large increases in gold prices are more likely than large

drops. The posterior mean of the precision parameter α is 0.17.
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Figure 2.2: Comparison of nonparametric predictive density with the normal distribution.
The second panel shows the associated log-densities

Pooling data into different clusters is a distinct advantage of the DPM model. For

instance, Fisher et al. (2015) use the DPM in the context of a linear factor structure to
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classify the skill of mutual funds into sub-populations.

The DPM model is suitable for modeling an unknown i.i.d. distribution such as the un-

conditional distribution of returns. Without modification it cannot deal with the pronounced

volatility dynamics in return data. For this reason the DPM is often embedded in a more

sophisticated time-series specification of returns. I turn to some examples next.

GARCH-DPM and SV-DPM

To make the model richer and more suitable for financial data, recent research combines the

DPM model with a time series model of volatility such as GARCH or stochastic volatility.

GARCH The first class of studies incorporates the GARCH (Bollerslev, 1986) functional

form into the infinite mixture model. From the perspective of GARCH literature, these

models impose an ARMA structure on squared innovations along with a parametric Nor-

mal, Student-t, or in some cases (Bauwens et al., 2007; Galeano and Ausin, 2010) a finite

mixture of normals for the innovation density. By extending GARCH models to a Bayesian

semiparametric setting, the functional form of the conditional density of the data can be

estimated nonparametrically in the same framework as DPM model (2.13)-(2.15) but with a

GARCH factor entering into each of the components of this mixture. For general reviews on

multivariate GARCH (MGARCH) models, see Bauwens et al. (2006), and Virbickaite et al.

(2015).

Kalli et al. (2013) define an infinite mixture model with GARCH components to estimate

a unimodal and asymmetric conditional return distribution. The unknown distributionH has

a stick-breaking prior (SBP) with a standard exponential distribution as the base distribution

H0. The SBP is a more general case of the DP for which there exists less tractable results.

With the SBP, the rate of weights decay is controlled by potentially an infinite number

of parameters, instead of only one parameter, α, which is the case for DP. Kalli et al.

(2013) look at the daily log returns of three stock indices and find evidence in favor of their
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semiparametric model against GARCH, EGARCH, and GJR-GARCH models. Other work

on Bayesian nonparametric GARCH models are Lau and Cripps (2012) and Auśın et al.

(2014).

Jensen and Maheu (2013) propose a Bayesian nonparametric modeling approach for the

MGARCH model,

yt|µt, Bt,Σt ∼ N (µt,Σ
1/2
t B−1

t (Σ
1/2
t )′), t = 1, ..., T, (2.25)

Σt = Γ0 + Γ1 � yt−1y
′
t−1 + Γ2 � Σt−1, (2.26)

µt, Bt|H
iid∼ H, (2.27)

H|α,H0 ∼ DP (α,H0), (2.28)

H0(µt, Bt) ≡ N (µ0, V0)−W(P, ν + d− 1), ν ≥ 1, (2.29)

where yt = (y1t, ..., ydt)
′

is the d-dimensional vector of returns and the symbol � denotes the

Hadamard product. They assume a parametric model for the dynamics of the conditional

covariance matrix of returns (Equation (2.26)) proposed by Ding and Engle (2001), and a

DPM prior for the multivariate distribution of the returns Equations (2.27)-(2.29). In the

Sethuraman (1994) representation of the DPM model, this model can be cast as an infinite

mixture of multivariate normals with mixing over both the location and scale matrix of the

normal components,

f(yt|Σt) =
∞∑
g=1

ηgφ(yt|µg,Σ1/2
t B−1

g (Σ
1/2
t )′) (2.30)

η1 = v1, ηg = vg

g−1∏
l=1

(1− vl), g ≥ 2 (2.31)

vl
iid∼ B(1, α), l = 1, 2, ... (2.32)

θg ≡ (µg, Bg)
iid∼ H0, g = 1, 2, .... (2.33)
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This nests the Gaussian case when η1 = 1 and ηg = 0, g > 1. When µg = µ, ∀g and α→∞,

H → H0 and we obtain a Student-t distribution.

Using the conditionally conjugate priors (normal and Wishart) as the base measure,

H0, slice sampling methods from Walker (2007) and Kalli et al. (2009) can be used for

posterior simulation. In contrast to the previous example that was based on the Polya urn

and integrated the unknown H out, slice sampling works directly with the infinite mixture

representation in Equation (2.30). In the following sampling steps S = {s1, ..., sT} is the

configuration set where st = g if the tth observation uses the gth component’s parameters

(µg, Bg), and ng = #{t : st = g}. u1, . . . , uT are the auxiliary variables introduced by Walker

(2007) to make the sampling more tractable.

Step 1 The posterior distribution of (µg, Bg), g = 1, ..., K: Using the transformation zt =

Σ
−1/2
t yt, and making use of conditionally conjugate prior we have

Bg|yT , S, µg,ΣT ∼ W

(
P−1 +

∑
t:st=g

(zt − Σ
−1/2
t µg)(zt − Σ

−1/2
t µg)

′)−1, ng + d− 1 + ν0

)

µg|yT , S, Bg,Σ
T ∼ N (µ̄, V̄ ) (2.34)

in which

V̄ =

(∑
st=g

Σ
−1/2′

t B−1
g Σ

−1/2
t + V −1

0

)−1

, µ̄ = V̄

(∑
st=g

Σ
−1/2′

t B−1
g zt + V −1

0 µ0

)
.

(2.35)

Step 2 Updating vg, g = 1, ..., K: By the conjugacy of the generalized Dirichlet distribution

to multinomial sampling (Ishwaran and James, 2001) we have

vg|S ∼ B

(
1 +

T∑
t=1

1(st = g), α +
T∑
t=1

1(st > g)

)
. (2.36)

Then update η according to Equation (2.31).
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Step 3 Updating ut, t = 1, ..., T (Walker, 2007):

ut|S ∼ U(0, ηst)

Then we update K such that
∑K

g=1 ηg > 1−min{ut}Tt=1. Additional ηg and (µg, Bg),

will need to be generated from the priors if K is incremented.

Step 4 Updating S (Walker, 2007): For each t = 1, ..., T ,

p(st = g|yT ,ΣT ) ∝ 1(ηg > ut)φ(yt|µg,Σ1/2
t B−1

g (Σ
1/2
t )′), g = 1, ..., K (2.37)

Step 5 Updating GARCH parameters Γ = {Γ0,Γ1,Γ2}: Assuming prior p(.) for Γ

p(Γ|µ,B, S, yT ,ΣT ) ∝ p(Γ)×
T∏
t=1

φ(yt|µst ,Σ
1/2
t B−1

st (Σ
1/2
t )′) (2.38)

which is not of standard form, and the Metropolis Hastings sampler can be applied.

Given a large number of draws from the sampling steps above, the predictive density of

yT+1 given yT can be approximated using M draws of the posterior as follows:

f(yT+1|yT ) ≈ 1

M

M∑
m=1

φ(yT+1|µ(m)

s
(m)
T+1

,Σ
(m)1/2

T+1 B
(m)−1

s
(m)
T+1

Σ
(m)1/2

′

T+1 ) (2.39)

where x(m) is the mth draw of parameter x, and s
(m)
T+1 at each iteration m is one of the K(m)

components, say component g, with probability η
(m)
g , or is a new component with probability

1 −
∑K(m)

g=1 η
(m)
g . Note that we are able to compute Σ

(m)
T+1 at each iteration of the algorithm

from:

Σ
(m)
T+1 = Γ

(m)
0 + Γ

(m)
1 � yTy′T + Γ

(m)
2 � Σ

(m)
T .

This is recursively computed from t = 1 to t = T + 1.
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Jensen and Maheu (2013) consider two datasets, equity return and foreign exchange rate,

to estimate the model employing Polya urn and stick-breaking sampling schemes. Compar-

ison of the Bayes factors and density forecasts with parametric GARCH models (Gaussian

and Student-t innovations) support the flexible semiparametric approach, particularly in the

case of asymmetric distributions and during high volatile periods.

Working with a univariate version of the model Auśın et al. (2014) estimate the return

density of Hang Seng Index and Bombay Stock Exchange index and carry out Bayesian

prediction of the value-at-risk.5 They compare the results of the semiparametric model with

a Gaussian, a Student-t, and a mixture of two zero mean Gaussian distributions, and find

significant differences in the return predictive distribution, particularly in the tails.

Stochastic Volatility The second class of studies combine stochastic volatility with a

DPM model. The main difference of the SV model with GARCH, is that conditional on

time t information, the conditional variance is stochastic and can be thought of as the

impact of an unobserved news flow process.

Jensen and Maheu (2010) extend the standard SV specification that has parametric

return innovations to the following semiparametric (SV-DPM) setting

yt ∼ N (µt, λ
−2
t exp(ht)) (2.40)

ht|ht−1 ∼ N (δht−1, σ
2
v) and ht ⊥ yt, |δ| < 1 (2.41)

(µt, λ
2
t )
′ ∼ H (2.42)

H ∼ DP (H0, α) (2.43)

H0(µt, λ
2
t ) ≡ N (m, (τλ2

t )
−1)− G(ν0/2, s0/2) (2.44)

5Value-at-risk indicates the potential loss associated with an unfavorable movement in market prices over
a given time period at a certain confidence level.
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The latent log volatility ht follows a parametric, stationary, first-order autoregressive (AR)

process defined with the AR parameter δ but the rest of the model is nonparametric inasmuch

no assumption is made about the underlying distribution of return innovations. Note that,

assuming ht ⊥ yt, Jensen and Maheu (2010) remove any leverage effect (Jacquier et al., 2004).

Equations (2.42) and (2.43) assume the mixture’s probabilities and parameters follow the

DP prior. The base distribution, H0, is a conjugate conditional normal-gamma distribution.

The Sethuraman (1994) representation for this semiparametric model is

yt ∼
∞∑
g=1

ηgN (cg, d
−2
g exp(ht)) (2.45)

with the mixture weights distributed as η1 = v1, ηg = vg
∏g−1

l=1 (1 − vl), g > 1, where vl ∼

B(1, α). The mixture parameters (cg, d
2
g) have the NG distribution (Equation (2.44)). They

construct an MCMC sampling method for the model and apply it to a long series of daily

market returns and find strong deviations from both normal and Student-t distributions.

To take into consideration the correlation between returns and volatility innovations

(Jacquier et al., 2004; Nakajima and Omori, 2009), Jensen and Maheu (2014) extend the

univariate algorithm of the semiparametric stochastic volatility model above by lifting the

assumption of yt ⊥ ht. To model the unknown joint distribution of return and volatility

innovations (ut and vt in the following expressions), they choose a DPM model (ASV-DPM)

as below,

yt = µ+ exp(ht/2)ut (2.46)

ht = δht−1 + vt (2.47)

(ut, vt)
′ ∼ N2(0,Λt) (2.48)

Λt ∼ H (2.49)

H ∼ DP (H0, α) (2.50)
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They compare the ASV-DPM model with the parametric SV models by daily predictive

Bayes factors.6 The empirical experiment provides evidence favoring the nonparametric

asymmetric stochastic volatility model more often than the parametric version.

Delatola and Griffin (2013) extend the parametric, linearized stochastic volatility model

of Omori et al. (2007) to capture the leverage effect in an infinite mixture model. They

include a constant leverage effect and nonparametrically model the distribution of the log-

squared returns. The semiparametric stochastic volatility model with leverage effect in this

case is specified as

y∗t = ht + z∗t (2.52)

ht = δht−1 + dtρσv exp(µt/2)[a∗ + b∗(y∗t − ht − µt)] + σv(1− ρ2)ε∗t (2.53)

z∗t ∼ N (µt, δσ
2
z) (2.54)

µt ∼ H (2.55)

H ∼ DP (α,H0) (2.56)

where a∗ = exp(δσ2
z/8), b∗ = 0.5a∗, dt = sign(yt), and same as in Nakajima and Omori

(2009) and Jacquier et al. (2004), y∗t = log(y2
t + c) and z∗t = log(u2

t ) ∼ F which can be

approximated by a mixture of normal distributions.

Kalli and Griffin (2015) define a Bayesian nonparametric model for cross-sectional ag-

gregation of AR(1) models (Robinson, 1978; Granger, 1980) to account for long memory

in volatility. Suppose that we have d time series, {hi1, ..., hiT}di=1, where each time series

6The predictive likelihood is defined as,

m(yL, . . . , yT |yL−1,M) =

T∑
t=L

f(yt|yt−1,M) (2.51)

where M denotes the particular model, and L < T is chosen to eliminate the influence of the priors. The
one-step-ahead predictive likelihoods f(yt|yt−1,M), can be estimated by computing the sample mean of
the likelihood using MCMC draws of the unknown parameters and latent variables conditional on the data
history yt−1.
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follow an AR(1) process with persistence parameter Φi
iid∼ FΦ. The finite aggregate process

is written as

ht =
d∑
i=1

hit
d
, t = 1, ..., T. (2.57)

An infinite aggregate process assumes that d in Equation (2.57) goes to infinity. Kalli and

Griffin (2015) assume that the stochastic volatility follows an infinite aggregate process,

yt = β exp(ht/2)ut, (2.58)

ht =
∞∑
g=1

ht(Φg, σ
2πg), (2.59)

where ut ∼ N (0, 1) and πg is the proportion of the variation in ht explained by the gth process

associated with AR parameter Φg. This parametrization flexibly models the dependence of

the volatility process in financial time series. The persistence parameter of each AR(1)

process is independently drawn from a distribution Fφ which is estimated nonparametrically

following a DP prior. They apply the linearized model of SV (Harvey et al., 1994), and also

use a finite approximation to the DP (Ishwaran and Zarepour, 2000; Neal, 2000; Kim and

Shephard, 1998). The empirical results in the daily returns of HSBC and Apple Inc. show

significant difference in the distributions of the volatility persistence, suggesting different

lasting effect of the information in these two sets of return.

Mixture modeling appears in many other areas of finance. Mixture models underpin a

great deal of research in empirical finance. Development and use of these modeling methods

will continue to be a central component of empirical work in finance.
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Chapter 3

Essay 1: Nonparametric Dynamic

Conditional Beta

3.1 Introduction

This chapter nonparametrically estimates the dynamic conditional beta of a stock using a

Bayesian semiparametric multivariate GARCH model. This extends Engle’s (2016) para-

metric version of dynamic conditional beta to the case of an unknown general continuous

distribution. In this setting the whole distribution can affect the compensation for risk.

Researchers have long studied the beta coefficient of a stock which represents the nondi-

versifiable risk arising from exposure to market movements. Traditional approaches estimate

the beta coefficient by regressing excess stock returns on the excess market return as in the

one-factor Capital Asset Pricing Model (CAPM, Sharpe (1964) and Lintner (1965)), or ex-

ploiting more empirically supported asset pricing models, such as Fama-French three-factor

model, which incorporate additional explanatory variables (Fama and French (1993)). Our

multivariate model nests both cases, but allows for time variation in the conditional second

moments. There is a large literature based on multivariate GARCH (MGARCH) models
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that link a time varying beta to the conditional second moments. Some examples include

Bollerslev et al. (1988),Giannopoulos (1995), McCurdy and Morgan (1992) and Choudhry

(2002).

Recently Bali et al. (2016) proposes a multivariate normal GARCH model from which

the conditional distribution defines the dynamic beta coefficient. This directly links time-

varying second moments to the time-varying beta in a consistent fashion. The parametric

pricing relationship holds more generally for the elliptic family of distributions. This is an

attractive approach but may be limiting if the parametric distributional assumptions are not

valid.

A key insight of our approach is that if the joint distribution of excess stock returns and

market returns are correctly specified then it follows that their contemporaneous pricing

relationship is completely determined by the associated conditional distribution. Therefore,

we semiparametrically model the conditional distribution as a countably infinite mixture of

normals. Each normal component in the mixture has a conditional covariance directed by

a MGARCH process. Our model nests the Gaussian and Student-t distribution as special

cases but importantly allows for deviations from the elliptic family of distributions. This

includes asymmetric distributions which the elliptic family omit being only symmetric. The

mixing is over both the mean vector and covariance matrix.

We follow Jensen and Maheu (2013) to implement a Bayesian semi-parametric MGARCH

model and extend it to allow for asymmetric shocks in volatility. The data strongly sup-

port the semiparametric MGARCH specification over Gaussian and Student-t distributional

alternatives.

We use a new approach to selecting the number of factors in a model. Since spefications

with a different number of factors are not comparable by the usual Bayes factors due to

different dimensions of the dependent variable we select the number of factors based on the
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marginal predictive likelihood. This relies on the marginal predictive likelihood of the indi-

vidual stock return derived from models with different dimensions and is directly comparable

across specifications. Empirically, the one factor model is strongly supported for all stocks

compared to specifications with Fama-French factors and momentum.

In this framework, the conditional distribution of stock returns given the market excess

return (and possibly other factors) can be represented as an infinite mixture with weights

written as functions of the value of the market excess return. Consequently, the beta coeffi-

cient of a security at each time will depend nonparametrically on the contemporaneous value

of market return, as opposed to the beta derived from existing models which is insensitive

to the contemporaneous value of the market return.

Although the time series of the realized conditional betas from the semiparametric model

are similar to the benchmark model, we find significant nonlinear dependence in beta as a

function of the contemporaneous value of the market excess return. In the parametric models,

beta is constant as a function of the market excess return.

When the market is highly volatile, beta is not affected by unexpected shocks in the

market return. While in a calm market, beta can change dramatically from unexpected

shocks. For stocks which are highly correlated with the market, an unexpected shock during

calm periods increases the beta coefficient. The effect is the reverse for the stocks with

low correlation with the market. In other words, when an asset is highly correlated with

the market, large moves in a stable market increase the conditional covariance between

the market and the asset more than they increase the conditional variance of the market,

resulting in a significant increase in the beta coefficient. When an asset has low conditional

correlation with the market, large moves in a stable market increase the conditional variance

of the market more than they increase the conditional covariance between the market and

the asset, leading to a drop in conditional beta. These are important contemporaneous

nonlinear dynamics that are absent in other models.
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The remainder of the chapter is structured as follows. We begin by reviewing the bench-

mark model which is an MGARCH model with Student-t innovations. Section 3.3 provides

a general theoretical setting of the multivariate model used in this study, key features of

the semiparametric MGARCH model, and the use of the Dirichlet process prior. Posterior

sampling is detailed in Section 3.4. The derivation of the nonparametric dynamic condi-

tional beta is presented in Section 3.5. Data is introduced in Section 3.6, and Section 3.7

assesses models with different number of factors and compares the performance of the pro-

posed model to the benchmark model. Applications of the semiparametric model are found

in Section 3.8, and Section 3.9 provides some implications of the semiparametric model

in finance. Section 3.10 concludes and an Appendix defines distributions and collects the

detailed derivations.

3.2 Benchmark Model

Our benchmark model is a straightforward extension of Bali et al. (2016). Bali et al. (2016)

defines dynamic conditional beta using a multivariate GARCH (MGARCH) model assuming

a multivariate normal distribution as the joint density of stock returns and factors. We

replace the normal distribution with a Student-t to accommodate the fat-tails in the data.

Let the excess stock return on asset i be ri,t and a vector of regressors (factors) including

the excess market return be rf,t = (rf1,t, rf2,t, ..., rfq ,t)
′
. rt = (ri,t, r

′

f,t)
′ is assumed to follow

the MGARCH-t

rt|r1:t−1 ∼ t(µ,Ht, ν), (3.1)

Ht = Γ0 + Γ1 � (rt−1 − η)(rt−1 − η)′ + Γ2 �Ht−1, (3.2)

where t(µ,Σ, ν) denotes a t-distribution (see appendix) with mean vector µ, scale matrix Σ

and degree of freedom ν and r1:t−1 = {r1, . . . , rt−1} is the information set available at time
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t − 1. The scale matrix, Ht, is based on the vector-diagonal multivariate GARCH model

of Ding and Engle (2001) but other MGARCH formulations could be used. The symbol �

denotes the Hadamard product. The parameter is Γ = {Γ0,Γ1,Γ2, η}, with the symmetric

positive definite matrices parameterized as Γ0 = Γ
1/2
0 (Γ

1/2
0 )′, Γ1 = γ1(γ1)′, and Γ2 = γ2(γ2)′

where Γ0 is a lower triangular (q + 1)× (q + 1) matrix and γ1, γ2 and η are (q + 1)-vectors.

η permits a nonlinear asymmetric response to shocks and can be considered a multivariate

version of the asymmetric GARCH model (Engle and Ng, 1993).

Partition rt = (r
′
1,t, r

′
2,t)

′
into a k1 and k2 (k1+k2 = q+1) vector and similarly µ = (µ

′
1, µ

′
2)
′

and

Ht =
[
H11,t H12,t

H12,t H22,t

]
.

Applying the properties of the Student-t distribution (Roth, 2013) the conditional distribu-

tion of r1,t given r2,t is

r1,t|r2,t ∼ t(µ1|2, Ht,1|2, ν1|2), (3.3)

µ1|2 = µ1 +H12,tH
−1
22,t(r2,t − µ2), (3.4)

Ht,1|2 =
ν + (r2,t − µ2)

′
H−1

22,t(r2,t − µ2)

ν + k2

(H11,t −H12,tH
−1
22,tH

′

12,t), (3.5)

ν1|2 = ν + k2, (3.6)

where the conditional mean is µ1|2, the conditional scale matrix is Ht,1|2 and the degree of

freedom ν1|2.

This is a useful result in that it tells us how the conditional distribution of r1,t reacts to

any value of r2,t. For instance, if r1,t ≡ ri,t and conditioning on one factor, the excess market

return, r2,t ≡ rm,t, substituting into Equation (3.4) directly gives a dynamic risk premium

for asset i as

E[ri,t|rm,t, Ht] = µi +H12,tH
−1
22,t(rm,t − µm). (3.7)
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This tells how the expected excess return of asset i reacts to any value of the market. If the

market shock is zero (rm,t = µm) then the expected value is µi but for all other realizations

the market shock impacts the expected return of the asset. Engle identifies the dynamic

conditional beta that arises from the joint relationship as

βt = H12,tH
−1
22,t. (3.8)

This is the derivative of Equation (3.7) with respect to rm,t. A conditional pricing relationship

is obtained by setting r2,t ≡ E[rm,t|r1:t−1] and substituting into Equation (3.7).

There are several advantages to modeling excess returns in this way. First, it confronts

the simultaneous nature of the asset return and the factors that price the risk premium.

Rather than specifying a single equation partial equilibrium relationship the model begins

with the full joint dynamics. Second, the joint distribution of the asset and the factors

directly pins down the conditional distribution and the implications for the risk premium.

The dynamic beta is a function of the conditional covariance matrix. This is a general result

that holds for the elliptic family of distributions.

We estimate the model from a Bayesian perspective. The posterior density has the non-

standard form

p(µ,Γ, ν|r1:T ) ∝ p(ν)p(µ)p(Γ)×
T∏
t=1

t(rt|µ,Ht, ν), (3.9)

where t(rt|µ,Ht, ν) is the density of the Student-t distribution, and p(ν)p(µ)p(Γ) is the prior

density for µ,Γ, ν. Posterior draws of the parameters vector are simulated with a Metropolis-

Hastings sampler.

Although attractive, the conditional distribution in Equation (3.3) has some drawbacks.

The conditional beta derived from MGARCH-t model, at each time, is constant with respect
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to the contemporaneous value of market return (Equation 3.8), and consequently, the con-

ditional expected return of the stock is a linear function of the factor returns. This pricing

relationship will not hold for more general distributions not belonging to the elliptic family.

The elliptic family of distributions are symmetric about their mean and do not account for

asymmetry observed in financial returns.

This model imposes a strong assumption on the functional form of the joint distribution

of the data. In this chapter, I remove this restrictive assumption by employing a Dirichlet

process mixture (DPM) to model the unknown joint distribution of returns. This results in

a potentially non-constant conditional beta and a nonlinear conditional expected return of

the stock as a function of the contemporaneous value of the market return.

3.3 MGARCH-DPM Model

Unlike the benchmark model that assumes a specific parametric joint distribution for the

individual asset returns and the factors, we model this joint distribution nonparametrically

by an infinite mixture of normal distributions which can approximate any continuous multi-

variate distribution. Recall that rt = (ri,t, rf1,t, ..., rfq ,t)
′ represents the excess return vector

of an individual stock and q factors at time t. The infinite mixture representation can be

written as

rt|Ht, µ, B,W ∼
∞∑
j=1

ωjN(µj, (H
1/2
t )Bj(H

1/2
t )′). (3.10)

where H
1/2
t is the Cholesky decomposition of Ht, µ = {µ1, µ2, . . . }, B = {B1, B2, . . . } and

W = {ω1, ω2, . . . } is the vector of the weights, such that ωj ≥ 0 for all j and
∑∞

j=1 ωj = 1.

The mixing is over the mean vector and the component Bj of the covariance matrix. The

second component, Ht of the covariance matrix captures volatility clustering through time

but is not a function of j. Bj is a symmetric positive definite matrix which scales Ht to yield

a better estimate of the joint density of data.
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The conditional mean can be derived in exactly the same way as in the benchmark

model except it will follow an infinite mixture of conditional normal distributions. If rft =

(rf1,t, ..., rfq ,t)
′

then the conditional density of ri,t given rf,t is a mixture distribution as well

and the conditional expectation can be written as the following weighted mixture

E(ri,t|rf,t, Ht) =
∞∑
j=1

qj(rf,t)E(ri,t|rf,t, µj, Bj, Ht). (3.11)

The weights, qj(rf,t) are a function of the factors and affect how much each conditional

expectation, E(ri,t|rf,t, µj, Bj, Ht), in the mixture contributes. The details on the derivations

will be explained later but for now it is important to see that unlike the parametric model the

conditional expectation is not a linear function of the factors. To obtain the nonparametric

conditional beta, we take the derivative of Equation (3.11) with respect to the desired factor.

The conditional beta is not constant in general but it changes as the contemporaneous value

of the corresponding factor changes. The next section introduces the Dirichlet process prior

to estimate this model. In Section 3.5 we derive the nonparametric conditional beta.

In Bayesian inference the Dirichlet process (DP) prior (Ferguson, 1973) is a standard

prior used for infinite dimensional objects such as Equation (3.10). A draw from a DP, G ∼

DP (α,G0), is almost surely a discrete distribution and is governed by two parameters. The

concentration parameter α, a positive scalar and a base distribution G0. The nonparametric

distribution G is centered on the base distribution G0, which can be considered as the prior

guess; E(G) = G0. The concentration parameter measures the strength of belief in G0.

The larger α, the stronger belief in G0 and the more distinct elements we have with non-

negligible mass. Lo (1984) introduces Dirichlet process mixture (DPM) model in which G is

the mixing measure over a continuous kernel. This has become a standard Bayesian approach

to nonparametric estimation of an unknown continuous distribution. In this chapter, G is the

unknown distribution that governs the mixing over the mean vector and covariance matrix
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of the normal kernel in our mixture model.

The model (MGARCH-DPM) is an extension of Jensen and Maheu (2013) and allows for

asymmetry in the MGARCH process from shocks to volatility and fat tails without making

any restrictive assumption. The hierarchical form of the model is,

rt |φt, Ht ∼ N(ξt, H
1/2
t Λt(H

1/2
t )′), t = 1, ..., T (3.12)

φt ≡ {ξt,Λt}|G ∼ G, (3.13)

G| α,G0 ∼ DP (α,G0), (3.14)

G0 ≡ N(µ0, D)×W−1(B0, ν0), (3.15)

Ht = Γ0 + Γ1 � (rt−1 − η)(rt−1 − η)′ + Γ2 �Ht−1. (3.16)

In this model ξt is a (q + 1)-vector and Λt is a symmetric positive definite matrix and Ht

follows the same MGARCH specification as the benchmark parametric model. W−1(B0, ν0)

represents an inverse Wishart distribution (see appendix) with scale matrix B0 and degree

of freedom ν0.

Sethuraman (1994) characterizes a stick-breaking representation of the DP. Combin-

ing this with the normal kernel gives the associated stick breaking representation of the

MGARCH-DPM density as

p (rt|µ,B,W,Ht) =
∞∑
j=1

ωjN(rt|µj, H1/2
t Bj(H

1/2
t )′), (3.17)

ω1 = v1, ωj = vj

j−1∏
l=1

(1− vl), j > 1, (3.18)

vj
iid∼ Beta(1, α), (3.19)

µj
iid∼ N(µ0, D), Bj

iid∼ W−1(B0, ν0), (3.20)

where N(rt|µj, H1/2
t Bj(H

1/2
t )′) denotes the multivariate normal density with mean µj and
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covariance H
1/2
t Bj(H

1/2
t )′ evaluated at rt. Note that µ and B are the set of unique points

of support in the discrete distribution G while ξt and Λt denote draws from G in Equation

(3.13), with the possibility of repeated draws of µj and Bj.

The model nests several special cases. First, the Gaussian model is obtained when α→ 0

as ω1 = 1, ωj = 0,∀j > 1 and B1 = I. The Student-t model results from µj being constant

for all j and α→∞, since G→ G0, the inverse Wishart distribution.

3.4 Posterior Sampling

To estimate the unknown parameters in Equations (3.12)-(3.16), we apply an MCMC sampler

along with the slice sampler of Walker (2007). Slice sampling introduces a latent variable,

ut ∈ (0, 1), to elegantly convert an infinite sum to a finite mixture model which makes the

sampling feasible. Estimating the joint posterior density of ut and other model parameters

and then integrating out the slice variable ut recovers the desired posterior density. In

practice, this means jointly sampling all parameters including the slice variable but then

discarding ut. Define ut such that the joint density of (rt, ut) given (W,Θ ≡ (µ,B)) is given

by

f(rt, ut|W,Θ) =
∞∑
j=1

1(ut < ωj)N(rt|µj, (H1/2
t )′BjH

1/2
t ). (3.21)

Let s1:T = {s1, ..., sT} be the configuration set that partitions the data r1:T into c distinct

clusters such that observation rt is assigned parameter θst = (µst , Bst). Let nj = {#t|st = j}

be the number of observations allocated to state j. The full likelihood is

p(r1:T , u1:T , s1:T |W,Θ) = ΠT
t=11(ut < ωst)N(rt|µst + Γstrt−1, (H

1/2
t )Bst(H

1/2
t )′), (3.22)
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and the joint posterior is proportional to

p(W1:K)ΠK
j=1p(µj, Bj)Π

T
t=11(ut < ωst)N(rt|µst + Γst , (H

1/2
t )Bst(H

1/2
t )′) (3.23)

where K is the smallest natural number that satisfies the condition
∑K

j=1 ωj > 1−min{ut}Tt=1

and W1:K denotes the finite set of W and similarly for other parameters µ1:K and B1:K .

Having defined the notation, the steps of the MCMC algorithm are discussed next.

Steps of MCMC algorithm for MGARCH-DPM Model

1. The posterior distribution of θj = (µj, Bj), j = 1, ..., K: Using the transformation

zt = H
−1/2
t rt, and applying the results of conditionally conjugate priors for the linear

regression model we have

Bj|r1:T , s1:T , µj,Γ ∼ W−1

(
nj + ν0, B0 +

∑
st=j

(zt −H−1/2
t µj)(zt −H−1/2

t µj)
′

)
(3.24)

µj|r1:T , s1:T , Bj,Γ ∼ N(µ̄, D̄) (3.25)

in which

D̄−1 = D−1 +
∑
t|st=j

H
−1/2′

t B−1
j H

−1/2
t , µ̄ = D̄

∑
t|st=j

H
−1/2′

t B−1
j zt +D−1µ0

 . (3.26)

2. Updating vj, j = 1, ..., K.

vj|S ∼ Beta

(
1 +

T∑
t=1

1(st = j), α +
T∑
t=1

1(st > j)

)
. (3.27)

Then we update W1:K based on Equation (3.18).

3. Updating ut, t = 1, ..., T . ut|s1:T ∼ U(0, ωst). Then update K such that
∑K

j=1 ωj >

41



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

1−min{ut}Tt=1. Additional ωj and θj will need to be generated from the priors if K is

incremented.

4. Updating s1:T . For each t = 1, ..., T ,

p(st = j|r1:T ) ∝ 1(ωj > ut)N(rt|µj, H1/2
t Bj(H

1/2
t )′), j = 1, ..., K. (3.28)

5. Updating α: Assuming a gamma prior α ∼ G(a0, b0) (see appendix) α can be sampled

following the two steps below (Escobar and West, 1995). Recall that c is the number

of alive clusters defined as the number of clusters in which at least one observation is

allocated. Note that c ≤ K. Then the sampling steps are as follows.

(a) (τ |α, c) ∼ Beta(α + 1, T ).

(b) Sample α from

α|τ ∼ πτG(a0 + c, b0 − log(τ)) + (1− πτ )G(a0 + c− 1, b0 − log(τ)),

where πτ is defined by πτ
1−πτ = a0+c−1

T (b0−log(τ))
.

6. Updating GARCH parameters Γ = (Γ
1/2
0 , γ1, γ2, η). The conditional posterior is

p(Γ|µ,B, S, r1:T , H1:T ) ∝ p(Γ)×
T∏
t=1

N(rt|µst , H
1/2
t Bst(H

1/2
t )′) (3.29)

which is not of standard form, and we apply a Metropolis-Hastings sampler. Given

the current value Γ of the chain, the proposal Γ′ is sampled Γ′ ∼ N(Γ, V̂ ). The draw

is accepted with probability

min{p(Γ′|µ,B, S, r1:T , H1:T )/p(Γ|µ,B, S, r1:T , H1:T ), 1},
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and otherwise rejected. V̂ is proportional to the inverse Hessian matrix of ` =

log[p(Γ|µ,B, S, r1:T , H1:T )] evaluated at its posterior mode, Γ̂, which is computed once

at the start of estimation. V̂ is scaled to achieve an acceptance rate between 0.2 and

0.5. In this chapter we apply Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to

approximate the posterior mode of `.

3.5 Nonparametric Dynamic Conditional Beta

To study the behaviour of the conditional beta of an individual stock, we first consider a

special case of our model, rt = (ri,t, rm,t) where ri,t and rm,t represent an individual stock’s

excess return and the market excess return, respectively. Applying the posterior sampling

algorithm, we sample model parameters for many iterations and after dropping a set of

burn-in draws we have the following set of sampled parameters:

{(µ(g)
j , B

(g)
j ), v

(g)
j , j = 1, ..., K(g)}, {s(g)

t , u
(g)
t , t = 1, ..., T}, H(g)

1:T = {H(g)
1 , ..., H

(g)
T }, (3.30)

for g = 1, ...,M where M is the number of MCMC iterations. At each iteration g = 1, ...,M

of the algorithm, a draw of G|r1:T , can be written as

G(g) =
K(g)∑
j=1

ω
(g)
j δ

θ
(g)
j

+

1−
K(g)∑
j=1

ω
(g)
j

G0(θ), (3.31)

where θ
(g)
j = (µ

(g)
j , B

(g)
j ) and δ

θ
(g)
j

is a mass point at θ
(g)
j .

Combining this with the normal kernel gives the predictive density for the generic return
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(ri,t, rm,t) conditional on G(g) as

p(ri,t, rm,t|r1:T , G
(g)) =

K(g)∑
j=1

ω
(g)
j f(ri,t, rm,t|θ(g)

j ) +

1−
K(g)∑
j=1

ω
(g)
j

∫ f(ri,t, rm,t|θ)G0(θ)dθ,

(3.32)

where f(ri,t, rm,t|θ) is the multivariate normal density.

To assess the nonlinear regression function E(ri,t|rm,t, r1:T ), or the conditional beta of

the individual stock i, we require the conditional density derived from this predictive (joint)

density of (ri,t, rm,t). Therefore,

p(ri,t|rm,t, r1:T , G
(g)) =

p(ri,t, rm,t|r1:T , G
(g))

p(rm,t|r1:T , G(g))
(3.33)

=
p(ri,t, rm,t|r1:T , G

(g))∑K(g)

j=1 ω
(g)
j f2(rm,t|θ(g)

j ) +
(

1−
∑K(g)

j=1 ω
(g)
j

) ∫
f2(rm,t|θ)G0(θ)dθ

=
K(g)∑
j=1

q
(g)
j (rm,t)f(ri,t|rm,t, θ(g)

j ) +

1−
K(g)∑
j=1

q
(g)
j (rm,t)

 f(ri,t|rm,t, G0), (3.34)

where

q
(g)
j (rm,t) =

ω
(g)
j f2(rm,t|θ(g)

j )∑K(g)

j=1 ω
(g)
j f2(rm,t|θ(g)

j ) +
(

1−
∑K(g)

j=1 ω
(g)
j

) ∫
f2(rm,t|θ)G0(θ)dθ

(3.35)

and f2(rm,t|θ(g)
j ) is the marginal (normal) density of rm,t and f(ri,t|rm,t, G0) is the conditional

distribution using the base measure. The terms q
(g)
j (rm,t) determine which components in

the mixture receive more weight. Clusters that have a marginal density f2(rm,t|θ(g)
j ) that has

a higher likelihood value for rm,t will receive larger weights. The marginal density, and hence

relative weight of clusters, will change with rm,t as well as over time through the MGARCH

component, Ht. These features will determine the relative weights on the cluster specific

conditional expectations which we derive next.

Our focus is on the conditional mean of ri,t given rm,t. Using the properties of the normal
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distribution the conditional mean directly comes from Equation (3.34) and is

E(ri,t|rm,t, r1:T , G
(g)) =

K(g)∑
j=1

q
(g)
j (rm,t)[µ

(g)
j,1 + β

(g)
jt (rm,t − µ(g)

j,2 )]+ (3.36)1−
K(g)∑
j=1

q
(g)
j (rm,t)

 ∫ [µ1 + βt(rm,t − µ2)]N(rm,t|µ2, (H
(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB∫
N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB
.

The cluster specific beta is defined as

β
(g)
jt =

(H
(g)1/2

t BjH
(g)1/2

′

t )12

(H
(g)1/2

t BjH
(g)1/2

′

t )22

(3.37)

where the subscript (i, j) on ()ij denotes element (i, j) of the matrix and βt in the second

line of Equation (3.36) is defined as β
(g)
jt except Bj is replaced with B. The numerator and

denominator in the last term of Equation (3.36) can be approximated by simulation.

Integrating all parameter and distributional uncertainty results in an estimate of the

predictive conditional mean as

E(ri,t|rm,t, r1:T ) ≈ 1

M

M∑
g=1

E(ri,t|rm,t, r1:T , G
(g)). (3.38)

The predictive mean of the conditional beta is the derivative of this conditional expectation

of ri,t given rm,t, Equation (3.38) with respect to rm,t. This is,

bm,t(rm,t) =
∂E(ri,t|rm,t, r1:T )

∂rm,t

∣∣∣
rm,t=rm,t

. (3.39)

Full details on this derivative and estimate are provided in the appendix.

In the case that we have more than one factor, we follow the same process. We first

estimate the joint model and back out the conditional distribution of the stock return ri,t

given all factors. The nonparametric conditional beta in this case is a vector. It is defined
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analogously to Equation (3.39) as the partial derivative with respect to the factor. For

instance in the case of the Fama-French 3-factor model with size factor (rSMB,t), value factor

(rHML,t), and market factor (Fama and French, 1993), beta for size factor is defined as

bSMB,t =
∂E(ri,t|rm,t, rSMB,t, rt,HML, r1:T )

∂rSMB,t

∣∣∣ rm,t=rm,t
rSMB,t=rSMB,t
rHML,t=rHML,t

(3.40)

with a similar expression for the other factor coefficients bm,t and bHML,t.

3.6 Data

We use the value-weighted index constructed by the Center of Research in Security Prices

(CRSP) as a proxy for market returns. Daily market excess returns as well as five individual

stock excess returns for IBM, General Electric or GE, Exxon or XOM, Amgen or AMGN,

and bank of America or BAC are obtained from 2000/01/03 to 2013/12/31 (3521 daily

observations). Excess returns are derived after subtracting the risk-free return approximated

by the three-month Treasury bill rate. All returns are scaled by 100. Figure 3.1 displays the

data and Table 3.1 reports summary statistics. All individual stocks display skewness and

excess kurtosis. Figure 3.1 shows that returns with absolute large (small) value tend to be

followed by other large (small) absolute returns reflecting volatility clustering. Daily data

for the size factor, rSMB,t, value factor, rHML,t, and momentum factor, rMOM,t, are obtained

from Kenneth French’s website.

3.7 Model Performance

The criteria that we use to compare different models is the value of the log-predictive like-

lihood. For each particular modelM (i.e., MGARCH-t or MGARCH-DPM), the predictive
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likelihood for rL:T , L < T is expressed in terms of the one-step-ahead predictive densities,

m(rL:T |r1:L−1,M) = ΠT
t=Lp(rt|r1:t−1,M) (3.41)

where L > 1 is chosen to eliminate the influence of the priors on model comparison. We

can approximate the one-step-ahead predictive likelihoods, p(rt|r1:t−1,M), by averaging the

data density over draws of the unknown parameters conditional on the data history r1:t−1.

This integrates out parameter and distributional uncertainty as

p(rt|r1:t−1,M) =

∫
p(rt|θ, r1:t−1,M)p(θ|r1:t−1,M)dθ (3.42)

≈ 1

M

M∑
g=1

p(rt|θ(g), r1:t−1,M)

where θ(g) is a posterior draw from p(θ|r1:t−1,M) and p(rt|θ(g), r1:t−1,M) is the data density

given θ(g) and r1:t−1 for model M.

The following priors are used in estimation. In the MGARCH-t model, ν ∼ U(2, 100),

and µ ∼ N(0, 0.1I) for both models. For each of GARCH parameters in both models, we

set Γ
1/2
0,ij ∼ N(0, 100)1S, γ1,i ∼ N(0, 100)1S and γ1,i ∼ N(0, 100)1S, i = 1, . . . , q + 1, j ≤ i as

prior distribution where S denotes the following restriction: diag(Γ
1/2
0 ) > 0, γ11 > 0, γ22 > 0

to impose identification. For the concentration parameter α ∼ G(0.1, 0.3). The prior on

α controls the number of the distinct components in the mixture model, although with a

large number of observations the effect of the prior is diminished. For the hyper-parameters

of the base measure G0, we set B0 = (ν0 − q − 1)I which makes E(B) = I and centers

the conditional covariance of rt at Ht. ν0 = 8, but other values for ν0 do not change our

conclusions.
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Based on Equation (3.42), the predictive likelihoods for the two models are estimated as

p(rt|r1:t−1,MGARCH-t) ≈ 1

M

M∑
g=1

t(rt|µ(g), H
(g)
t , ν(g)), (3.43)

p(rt|r1:t−1,MGARCH-DPM) ≈ 1

M

M∑
g=1

N(rt|µ(g)

s
(g)
t

, H
(g)1/2

t B
(g)

s
(g)
t

H
(g)1/2

′

t ). (3.44)

Note that we are able to compute H
(g)
t at each iteration of the MCMC since we have

H
(g)
t−1 and GARCH parameters: H

(g)
t = Γ

(g)
0 + Γ

(g)
1 � (rt−1 − η(g))(r − η(g))′t−1 + Γ

(g)
2 �H

(g)
t−1.

In MGARCH-DPM model, at each iteration g, s
(g)
t

To determine the factors to be used, we compare the values of the marginal predictive

likelihood of the individual stock return derived from each model, using different factors.

The predictive likelihoods discussed above are directly comparable but when comparing a

model with 2 factors versus 3 factors the independent variable rt is 2 dimensional and 3

dimensional, respectively. These predictive likelihood values are not comparable. Instead

we compare the marginal predictive likelihood for the individual stock return only. This

is obtained from each full model after integrating out the factors in each model. For in-

stance, for excess stock return i we compare the one-factor model against the two-factor

model with p(ri,t|ri,1:t−1, rf1,1:t−1) and p(ri,t|ri,1:t−1, rf1,1:t−1, rf2,1:t−1). These marginal predic-

tive likelihoods are derived from the full predictive likelihood. For example, the first one

is obtained from p(ri,t, rf1,t|ri,1:t−1, rf1,1:t−1) by marginalizing out rf1,t. This can be done di-

rectly on the terms (3.43) and (3.44) by selecting the associated univariate marginal density

from the multivariate Student-t and normal on the right hand side of these equations.

We first compare the performance of the MGARCH-DPM model with different factors.

These factors include market excess return, size factor and value factor from the Fama-French

3-factor model, and the momentum factor. The set of factors can be extended to include any

factor. Table 3.2 reports the marginal log-predictive likelihood of IBM, BAC, GE, XOM and
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AMGN, for the MGARCH-DPM model, for 2012/03/12 to 2013/12/31 (500 observations)

when we use different factors. The table shows that, for all stocks under study, 1-factor

model with market excess return as the only factor results in a better marginal predictive

likelihood compared to the 3 and 4-factor models. The evidence for one factor is very strong.

For instance, the log-predictive Bayes factor for the 1 factor IBM model against the 3 factor

version is 243.35. Therefore the remainder of the empirical results focus on the the 1-factor

model.

Table 3.3 reports the log-predictive likelihoods for the 1-factor MGARCH-t and MGARCH-

DPM models, and the log-Bayes factor over 2012/03/12 to 2013/12/31. Bivariate models

based on daily excess returns on IBM, GE, XOM, AMGN and BAC each with excess market

returns are considered. The results strongly support our semi-parametric model relative to

the benchmark model. For instance, log-Bayes factors are all greater than 211. This is very

strong evidence of significant deviations from the Student-t MGARCH model.

Figure 3.2 displays the time-series of the market and IBM excess returns as well as the

difference in the log-predictive likelihood of the two models using

log p(rt|r1:t−1,MGARCH-DPM)− log p(rt|r1:t−1,MGARCH-t). (3.45)

Positive values favour the MGARCH-DPM specification. This figure shows that the MGARCH-

DPM model almost always outperforms MGARCH-t model. There are large differences when

the market or IBM returns are extreme.

3.8 Applications of Semiparametric Conditional Beta

This section presents empirical estimates of the nonparametric dynamic conditional beta

from the MGARCH-DPM model for several individual stocks and compares them with the

corresponding counterpart from the parametric MGARCH-t model. Not only does the beta
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computed in this way change over time, but also the time-varying conditional beta is sensitive

to the contemporaneous value of excess market return. This implies that the value of the

systematic risk of an asset at each time depends on the level of the market return.

The model is applied to derive a nonparametric conditional beta (calculated in Sec-

tion 3.5) using excess returns on a single stock and on the market return (q = 1). This

results in a conditional expected return of the individual stock comparable to the condi-

tional CAPM model.

The analysis reported here is based on 25000 iterations of the MCMC algorithm. The

first 15000 draws were dropped as burn-in and the following 10000 used for inference. The

average acceptance rate of GARCH parameters is about 20% and about 30% for parametric

and nonparametric models, respectively.

Tables 3.4-3.8 report the posterior mean and the 0.95 probability density intervals of the

fixed parameters for both models and for different stocks. The estimated MGARCH param-

eters from the two models are consistent. The tables report c, the number of components in

the mixture used to estimate the unknown density. On average, the bivariate joint density

of IBM, XOM, GE, and BAC with the market is estimated using about 3.6-6.3 components

but the density intervals indicate considerable uncertainty. However, for AMGN and the

market, about 15 components are used, showing that this joint density is far more complex

than the others. These results are compatible with the small degree of freedom estimated in

the benchmark models. Estimates of η1 and η2 are consistently positive indicating a larger

response to the conditional covariance from negative shocks.

Figures 3.3-3.7 compare the posterior mean of the realized beta over time derived from

both models for each of the stocks. For MGARCH-t model, the posterior mean of Equation

(3.8) is reported while for the MGARCH-DPM model the posterior mean of Equation (3.39)

is evaluated at the realized excess market return value for time t. As seen in the figures,

both models result in very similar time series for the conditional beta.
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Figures 3.8-3.12 illustrate posterior mean of each stock’s conditional beta as a function

of the contemporaneous market excess return using Equation (3.39) at several dates. These

figures show that beta is changing over time and, more importantly, at each time the value

of beta is sensitive to the contemporaneous value of the market excess return. For each

stock there are dates that beta is a constant function of the market return which would

be consistent with the MGARCH-t model. However, each stock has dates in which beta is

nonlinearly dependent on the market return. Moreover, often beta is asymmetrically related

to the market; when the market excess return increases (large positive values), conditional

beta drops more significantly (Figures 3.8-3.10).

The nonlinear relationship between beta and the market transfers directly into the con-

ditional expected excess return. For example, Figure 3.13 displays the posterior mean of

the conditional expected excess return of IBM given different values of the contemporaneous

market excess return, derived from Equation (3.38), for dates for which the conditional betas

are illustrated in Figure 3.8. This figure clearly shows how the nonlinear conditional beta

results in the nonlinear conditional expected return.

To investigate the significance of this nonlinear relationship Figures 3.14-3.18 display the

posterior mean of the nonparametric conditional beta as a function of the market excess

return as well as the 0.90 density intervals for selected dates for each stock. Beta derived

from the MGARCH-t model is included and is a constant function at each time. It is clear

from these figures that there are significant departures in beta from the constant beta from

the MGARCH-t model.

Finally, Figures 3.19-3.23 provide a three dimensional version of Figures 3.8-3.12 for each

stock. In some periods beta is essentially flat and consistent with the MGARCH-t model

while in other times beta is very sensitive to the market return.
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3.8.1 Summary of Empirical Results

As the empirical results illustrate, the conditional beta is time-varying and at each time

depends on the contemporaneous market excess return, as opposed to the constant beta of

the benchmark model.

The previous results show some periods in which the conditional beta is insensitive to

the value of rm,t (beta is almost constant with respect to rm,t) while in other time periods

beta changes significantly with rm,t. To measure the sensitivity of bm,t(rm,t) to rm,t at each

time t consider the following measure

dt = max
rm,t

bm,t(rm,t)−min
rm,t

bm,t(rm,t), (3.46)

where bm,t(rm,t) is defined in Equation (3.39). Large values of dt indicate that bt(rm,t) is

strongly sensitive to rm,t, while a dt = 0 indicates no sensitivity. The MGARCH-t model has

a dt = 0 for all t. Figure 3.24 illustrates this dt over time for all individual stocks. Among

these four stocks, the dynamic conditional beta for IBM and BAC have the most sensitivity

and XOM has the least sensitivity to rm,t. What is apparent is that during relatively high

volatility periods such as 2002-03, 2009 and 2011:6-2012, dt attains its smallest values over

the sample. In these periods shocks to the market are expected to be large. During lower

volatility periods large shocks to the market and firms are unexpected and the conditional

beta adjusts accordingly.

To investigate how bm,t(rm,t) changes with different market conditions Figures 3.25-3.29

show the broad trends that we find in all stocks. When the market is highly volatile, an

individual stock’s conditional beta is less affected by unexpected shocks in the contempora-

neous market return. While in a calm market, the conditional beta changes remarkably from

unexpected shocks to the market. However, the changes depend on the stocks correlation

with the market.
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When the market is calm, an unexpected shock increases the conditional beta for a stock

that is highly correlated with the market, while this effect is completely the reverse for stocks

with low correlation with the market. In other words, when an asset is highly correlated with

the market, a large move in a stable market increases the conditional covariance between the

market and the asset more than it increases the conditional variance of the market, resulting

in a significant increase in the conditional beta. When an asset is less correlated with the

market, a large move in a stable market increases the conditional variance of the market

more than it increases the conditional covariance between the market and the asset, leading

to a drop in the conditional beta.

It is often the case that the effect on bm,t(rm,t) from rm,t is asymmetric. Frequently

bm,t(rm,t) is more sensitive to large positive values of rm,t compared to negative values. In

addition, when the market is calm, we see both u-shape and inverse u-shape patterns for the

conditional beta of all stocks.

3.9 Implications of the semiparametric model in Fi-

nance

From Equation (3.34), we are able to examine the whole conditional density of the stock

given factors. Therefore we are able to study the individual stock’s conditional expected

return under different risk scenarios. For example, the semiparametric model allows us to

study the effect of big shocks in the factors (i.e., market return) on stock’s expected return

and risk measures such as value-at-risk.

Consider the predictive conditional expected return of IBM at time t derived from the

1-factor model, E[rIBM,t|rm,1:t−1, rIBM,1:t−1]. Using the semiparametric model, this value

is a nonlinear function of rm,t. Therefore, when a large shock is expected to the market,

this shock affects our expectation of the IBM return nonlinearly. While in the benchmark
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model this effect is linear. For instance, Figure 3.30 illustrates IBM’s predictive conditional

expected return for a specific date (2000-11-30). From this figure we can assess the expected

impact of a large positive or negative shock to the market on the value of IBM’s return.

Consider a second example of a large realized market shock in 2008-10-28. We can study

how the semiparametric model is able to predict the effect of this shock on IBM’s expected

return. Figure 3.31 shows IBM’s predictive conditional expected return for this day derived

from the benchmark model and the semiparametric model. The realized market return and

IBM on this day are %9.77 and %9.56, respectively. This point is illustrated on the graph

as well. It is clear how the nonlinearity resulting from the semiparametric model reduces

the prediction error. This shows how we can benefit from the semiparametric model in the

events that we expect big positive or negative shocks in the market (i.e., a political event, a

new financial policy).

Figure 3.31 shows only one specific date. We looked at all dates that the market has

realized a big shock (more than 6%) and compared the performance of the semiparametric

model with the benchmark. The root mean squared error of the prediction for the benchmark

and the semiparameric model is 8.394 and 8.131, respectively, showing the outperformance

of the semiparametric model by 3.2% improvement in prediction.

In addition to the expected return, the semiparametric model enables us to study the

effect of big shocks in the market on IBM’s whole conditional density and different risk

measures. Figure 3.32 illustrates the effect of +5% and −5% shocks in the market return

on IBM’s predictive conditional density on 2012-05-17 derived from the semiparametric 1-

factor model. The value at risk of investment in IBM when we have no shock in the market

is 2.306%. A +5% shock in the market return decreases the value at risk to 0.180%, while

a −5% shocks in the market return increases the value at risk to 4.471%. Therefore, we can

carry out different risk scenario analyses in order to indicate the effect of big shocks in the

market on our investment in a specific firm.
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3.10 Conclusion

This chapter derives a dynamic conditional beta representation using a Bayesian semipara-

metric multivariate GARCH model. We show how to select the number of factors and that

the predictive Bayes factors strongly support this semiparametric model over a multivariate

GARCH with Student-t innovations. Empirically we find the time-varying beta from our

model nonlinearly depends on the contemporaneous value of excess market return. In highly

volatile markets, beta is almost constant, while in stable markets, the beta coefficient can

depend asymmetrically on the contemporaneous value of the market excess return.

3.11 Appendix

3.11.1 Distributions

If r ∼ t(µ,Σ, ν) then the density function of the Student-t (Bauwens et al., 2000) is

f(r|ν, µ,Σ) =
Γ(ν+p

2
)

Γ(ν
2
)πp/2

|Σ|−1/2

[
1 +

1

ν
(r− µ)TΣ−1(r− µ)

]−(ν+p)/2

, ν > 0.

The q× q matrix B follows an inverse Wishart density with a symmetric positive definite

scale matrix B0 and degree of freedom ν0 ≥ q + 1, if its pdf can be written as

f(B|B0, ν0) =
|B0|ν0/2

2
qν0
2 π

q(q−1)
4 Πq

i=1Γ(ν0+1−i
2

)
|B|−

ν0+q+1
2 exp

[
−1

2
tr(B−1B0)

]
,

with E(B) = 1
ν0−q−1

B0.

The pdf of the Gamma distribution G(a, b) with shape parameter a and scale parameter

b is written as

f(x|a, b) =
ba

Γ(a)
xa−1e−xb, x ∈ (0,∞), E(x) =

a

b
.
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3.11.2 Derivation of the nonparametric conditional beta

E(ri,t|ri,t, r1:T , G
(g)) =

K(g)∑
j=1

q
(g)
j (rm,t)[µ

(g)
j,1 + β

(g)
jt (rm,t − µ(g)

j,2 )]+ (3.47)1−
K(g)∑
j=1

q
(g)
j (rm,t)

 ∫ [µ1 + βt(rm,t − µ2)]N(rm,t|µ2, (H
(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB∫
N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB
.

Let

A1 =

∫
[µ1 + βt(rm,t − µ2)]N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB, (3.48)

A2 =

∫
N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB. (3.49)

A1 and A2 can be easily approximated by Monte Carlo simulation as follows

A1 ≈
1

N

N∑
n=1

[µn,1 + β
(g)
n,t (rm,t − µn,2)]N(rm,t|µn,2, (H(g)1/2

t BnH
(g)1/2

′

t )22) (3.50)

A2 ≈
1

N

N∑
n=1

N(rm,t|µn,2, (H(g)1/2

t BnH
(g)1/2

′

t )22) (3.51)

where µn and Bn, n = 1, ..., N are i.i.d draws from the prior p(µ,B) which in our model is

N(µ|µ0, D) and W−1(B|B0, ν0), and

β
(g)
nt =

(H
(g)1/2

t BnH
(g)1/2

′

t )12

(H
(g)1/2

t BnH
(g)1/2

′

t )22

. (3.52)

Now we obtain the posterior mean of the nonparametric conditional beta by taking the

derivative of Equation (3.47):

bm,t(rm,t) =
1

M

M∑
g=1

bm,t(rm,t, G
(g)) =

1

M

M∑
g=1

∂E(ri,t|rm,t, r1:T , G
(g))

∂rm,t

∣∣∣
rm,t=rm,t

. (3.53)
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After replacing A1 and A2 with their approximations we have

∂E(ri,t|rm,t, r1:T , G(g))

∂rm,t
≈
K(g)∑
j=1

q
(g)
j (rmt )β

(g)
jt (3.54)

+
K(g)∑
j=1

q
′(g)
j (rmt )[µ

(g)
j,1 + β

(g)
jt (rmt − µ

(g)
j,2 )]

−
K(g)∑
j=1

q
′(g)
j (rmt )

∑
n[µn,1 + β

(g)
tn (rmt − µn,2)]N(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)∑
nN(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)

+

1−
K(g)∑
j=1

q
(g)
j (rmt )

 {∑n β
(g)
tn N(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)∑
nN(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)

+

∑
n[µn,1 + β

(g)
tn (rmt − µn,2)]N ′(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)∑
nN(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)

−
[
∑
n[µn,1 + β

(g)
tn (rmt − µn,2)]N(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)]
∑
nN
′(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)

[
∑
nN(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)]2
}

where β
(g)
jt , β

(g)
nt , and q

(g)
j (rmt ) are defined in Equations (3.37), (3.52), and (3.35), respectively,

and N ′(x|.) is the derivative of the pdf of Normal distribution with respect to x. In the

case that we have more than one factor (say q factors), the derivations follow similarly

but the derivative will be a vector of size q, each element of which is the coefficient of the

corresponding factor.

Stock Mean Variance Skewness Kurtosis Max Min
Market 0.017 1.744 -0.070 7.067 11.350 -8.950

IBM 0.028 3.070 0.230 7.834 13.019 -15.567
GE -0.003 4.277 0.323 8.397 19.702 -12.797

XOM 0.032 2.672 0.367 11.163 17.180 -13.950
AMGN 0.034 4.758 0.508 5.907 15.090 -13.437
BAC 0.031 10.701 0.891 23.399 35.261 -28.969

Table 3.1: Summary statistics of the daily excess returns on the market portfolio, IBM, GE, XOM
and AMGN, BAC from 2000/01/03 to 2013/12/31 (3521 observations).
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Log Marginal Predictive Likelihood
Stock 1-factor model 3-factor model 4-factor model

IBM −774.37 −1017.72 −1240.97
AMGN −917.05 −1200.30 −1347.57
BAC −1071.36 −1235.12 −1451.62
XOM −671.59 −889.56 −1074.24
GE −774.43 −970.31 −1123.54

Table 3.2: This table reports the marginal log-predictive likelihood for MGARCH-DPM model,
for the last 500 observations, from 2012/03/12 to 2013/12/31. Data are daily excess market, HML,
and SMB returns coupled with excess returns on IBM, BAC, and AMGN from 2000/01/03 to
2013/12/31.

log-predictive likelihood
Model IBM GE XOM AMGN BAC

MGARCH-DPM −983.27 −964.99 −875.47 −1140.12 −1473.11
MGARCH-t −1353.67 −1369.03 −1300.21 −1571.32 −1684.72

log-Bayes factor vs MGARCH-t 370.40 404.04 424.74 431.20 211.61

Table 3.3: This table reports the log-predictive likelihood for the bivariate MGARCH-t and
MGARCH-DPM models and the log-Bayes factors, for the last 500 observations, from 2012/03/12
to 2013/12/31. Bivariate data are daily excess market returns coupled with excess returns on IBM,
GE, XOM, AMGN, and BAC from 2000/01/03 to 2013/12/31.
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IBM MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.102 (0.055, 0.146) 0.023 (0.015, 0.037)
γ02 −0.043 (−0.081, 0.003) −0.042 (−0.053,−0.034)
γ03 0.020 (0.001, 0.053) 0.020 (0.002, 0.048)
γ11 0.247 (0.199, 0.307) 0.150 (0.144, 0.160)
γ12 0.267 (0.232, 0.313) 0.224 (0.210, 0.233)
γ21 0.971 (0.965, 0.977) 0.975 (0.971, 0.977)
γ22 0.953 (0.945, 0.961) 0.955 (0.951, 0.961)
µ1 0.025 (0.016, 0.046)
µ2 0.041 (0.022, 0.074)
ν 5.37 (5.01, 5.54)
c 5.6 (3.00, 11.0)
α 0.571 (0.070, 1.61)
η1 0.570 (0.349, 0.714) 0.807 (0.776, 0.864)
η2 0.533 (0.434, 0.618) 0.507 (0.451, 0.644)

Table 3.4: IBM Estimates: This table displays posterior mean and 95% density intervals (DI) for
the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on IBM
and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
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XOM MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.141 (0.108, 0.182) 0.110 (0.012, 0.200)
γ02 0.014 (−.003, 0.030) 0.016 (−0.058, 0.073)
γ03 0.014 (0.001, 0.041) 0.032 (0.001, 0.082)
γ11 0.250 (0.223, 0.283) 0.228 (0.165, 0.310)
γ12 0.238 (0.198, 0.287) 0.228 (0.175, 0.288)
γ21 0.956 (0.947, 0.965) 0.958 (0.935, 0.977)
γ22 0.960 (0.953, 0.969) 0.958 (0.939, 0.974)
µ1 0.025 (−0.076, 0.129)
µ2 0.022 (−0.050, 0.092)
ν 9.89 (6.16, 13.90)
c 3.6 (2.00, 9.00)
α 0.324 (0.011, 1.15)
η1 0.480 (0.345, 0.591) 0.436 (−0.051, 0.775)
η2 0.524 (0.436, 0.613) 0.514 (0.279, 0.708)

Table 3.5: XOM Estimates: This table displays posterior mean and 95% density intervals (DI) for
the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on XOM
and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
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GE MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.061 (0.023, 0.093) 0.031 (0.012, 0.056)
γ02 −0.033 (−0.054,−0.014) −0.029 (−0.039,−0.008)
γ03 0.018 (0.001, 0.052) 0.036 (0.022, 0.052)
γ11 0.196 (0.174, 0.216) 0.170 (0.145, 0.188)
γ12 0.204 (0.181, 0.225) 0.180 (0.168, 0.192)
γ21 0.974 (0.967, 0.981) 0.974 (0.970, 0.981)
γ22 0.964 (0.957, 0.970) 0.971 (0.967, 0.974)
µ1 0.004 (−0.034, 0.029)
µ2 0.049 (0.015, 0.071)
ν 6.47 (5.35, 7.05)
c 5.04 (3.00, 10.0)
α 0.501 (0.060, 1.42)
η1 0.554 (0.414, 0.707) 0.633 (0.555, 0.785)
η2 0.464 (0.395, 0.539) 0.463 (0.416, 0.561)

Table 3.6: GE Estimates: This table displays posterior mean and 95% density intervals (DI) for
the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on GE
and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).

61



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

AMGN MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.137 (0.089, 0.171) 0.084 (0.065, 0.106)
γ02 −0.011 (−0.031, 0.012) −0.028 (−0.044,−0.007)
γ03 0.016 (0.001, 0.039) 0.034 (0.015, 0.059)
γ11 0.211 (0.182, 0.239) 0.165 (0.156, 0.175)
γ12 0.188 (0.172, 0.211) 0.228 (0.195, 0.242)
γ21 0.965 (0.945, 0.958) 0.973 (0.971, 0.976)
γ22 0.951 (0.945, 0.958) 0.956 (0.950, 0.965)
µ1 0.002 (−0.014, 0.035)
µ2 0.038 (0.024, 0.070)
ν 5.81 (5.56, 6.08)
c 15 (7.00, 28.0)
α 2.41 (0.500, 5.21)
η1 0.508 (0.428, 0.596) 0.768 (0.686, 0.876)
η2 0.542 (0.459, 0.630) 0.479 (0.443, 0.566)

Table 3.7: AMGN Estimates: This table displays posterior mean and 95% density intervals (DI)
for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on
AMGN and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
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BAC MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.064 (0.024, 0.115) 0.065 (0.045, 0.091)
γ02 −0.031 (−0.062, 0.012) −0.022 (−0.036,−0.008)
γ03 −0.007 (−0.061, 0.042) 0.029 (0.004, 0.051)
γ11 0.284 (0.235, 0.351) 0.219 (0.206, 0.238)
γ12 0.212 (0.183, 0.260) 0.213 (0.197, 0.229)
γ21 0.962 (0.954, 0.968) 0.962 (0.956, 0.966)
γ22 0.955 (0.945, 0.963) 0.963 (0.956, 0.969)
µ1 0.000 (−0.033, 0.033)
µ2 0.040 (0.021, 0.072)
ν 6.37 (5.992, 6.839)
c 6.24 (3.000, 12.000)
α 0.658 (0.092, 1.800)
η1 0.436 (0.326, 0.547) 0.472 (0.400, 0.554)
η2 0.414 (0.333, 0.501) 0.432 (0.354, 0.558)

Table 3.8: BAC Estimates: This table displays posterior mean and 95% density intervals (DI) for
the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on BAC
and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
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Figure 3.1: Daily excess returns on the market, IBM, GE, XOM, AMGN and BAC.
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Figure 3.2: The first panel indicates the difference of log predictive likelihood of the two models correspond-
ing to each of the last 500 observations, from 2012/01/05 to 2013/12/31, for MGARCH-t and MGARCH-
DPM. The second and third panel illustrate the time series returns on IBM and the market.
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Figure 3.3: IBM: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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Figure 3.4: XOM: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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Figure 3.5: GE: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.

66



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Be
ta

t

MGARCH-t

MGARCH-DPM

Figure 3.6: AMGN: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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Figure 3.7: BAC: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

-6 -4 -2  0  2  4

B
e
t
a

Market Excess Return

30/11/2000

30/10/2013

14/05/2003
06/10/2006

26/08/2009

18/10/2012

Figure 3.8: IBM: posterior mean of conditional beta as a function of the market excess return for different
dates.
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Figure 3.9: XOM: posterior mean of conditional beta as a function of the market excess return for different
dates.
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Figure 3.10: GE: posterior mean of conditional beta as a function of the market excess return for different
dates.
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Figure 3.11: AMGN: posterior mean of conditional beta as a function of the market excess return for
different dates.
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Figure 3.12: BAC: posterior mean of conditional beta as a function of the market excess return for different
dates.
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Figure 3.13: IBM: posterior mean of the conditional expected excess return of IBM given different values
of the contemporaneous market excess return for different dates.
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Figure 3.14: The posterior mean and 0.90 density intervals of IBM’s conditional beta as a function of the
excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated
with MGARCH-t model.
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Figure 3.15: The posterior mean and 0.90 density intervals of XOM’s conditional beta as a function of the
excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated
with MGARCH-t model.
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Figure 3.16: The posterior mean and 0.90 density intervals of GE’s conditional beta as a function of the
excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated
with MGARCH-t model.
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Figure 3.17: The posterior mean and 0.90 density intervals of AMGN’s conditional beta as a function of
the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated
with MGARCH-t model.
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Figure 3.18: The posterior mean and 0.90 density intervals of BAC’s conditional beta as a function of the
excess market return from the MGARCH-DPM model. The red line shows the beta coefficients estimated
with MGARCH-t model.
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Figure 3.19: The posterior mean of IBM’s nonparametric conditional beta as a function of excess market
return and time from 2009-07 to 2010-03 estimated with MGARCH-DPM model.

Figure 3.20: The posterior mean of XOM’s nonparametric conditional beta as a function of excess market
return and time from 2006-08 to 2007-01 estimated with MGARCH-DPM model.
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Figure 3.21: The posterior mean of GE’s nonparametric conditional beta as a function of excess market
return and time from 2009-12 to 2010-06 estimated with MGARCH-DPM model.

Figure 3.22: The posterior mean of AMGN’s nonparametric conditional beta as a function of excess market
return and time from 2005-02 to 2005-08 estimated with MGARCH-DPM model.
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Figure 3.23: The posterior mean of BAC’s nonparametric conditional beta as a function of excess market
return and time from 2012-10 to 2013-04 estimated with MGARCH-DPM model.
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Figure 3.24: Variability of conditional beta with respect to the contemporaneous value of market excess
returns over time for different stocks.
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Figure 3.25: IBM: conditional beta as a function of the market excess return for various dates grouped by
market conditions and correlation.
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Figure 3.26: XOM: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.
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Figure 3.27: GE: conditional beta as a function of the market excess return for various dates grouped by
market conditions and correlation.
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Figure 3.28: AMGN: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.
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Figure 3.29: BAC: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.
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MGARCH-t model.
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Chapter 4

Essay 2: How Does Risk Propagate?

Contemporaneous and Lagged effects

4.1 Introduction

With the speed of information transmission between different markets these days, it is benefi-

cial for investors, policymakers and regulators to be able to determine the contemporaneous

shocks spillover from one market to another and how it affects various features (such as

moments, tails, and value-at-risk) of the conditional density of the other markets. In this

chapter, we study the information transmission among different markets. We develop a

joint model of returns on two separate markets governed by an infinite mixture model from

which the conditional density of one market given the returns of the other market can be

derived. This makes it possible to study how a shock in one market influences the contem-

poraneous and future (one-day-ahead, one-week-ahead, and one-month ahead) conditional

density of the other market in a general setting. The proposed model extends the literature

on “spillover effects” or “contagion effects” that focus on transmission through conditional

moments to spillover effects on the entire density.
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More importantly, we provide a way to assess different risk scenarios, contemporaneously.

In the efficient markets where information is transmitted almost simultaneously, it is benefi-

cial for policymakers and regulators to be able to determine for example how the Canadian

market will be contemporaneously affected if a big shock happens in the oil market. There

is a vast literature studying the lagged effects on the volatility and some ad hoc procedures

to estimate the contemporaneous spillover effects on the expected returns. To the best of

our knowledge, this is the first work that provides us with insights into the contemporaneous

spillover effects and market interactions in a general setting and enables us to carry out risk

scenario analyses which are particularly useful in stress testing.

Understanding the cross-market relationships is important to global investors, regulators

and policymakers, hedge fund managers, and other participants in the financial markets.

There is a large body of literature on the topic of return spillover and volatility spillover

among different markets. We can categorize the related articles into three classes: The

lagged spillover effect of the returns of one market on the expected returns of the other

market, the lagged spillover effect of the shocks to one market on the variance of the other

market, and the contemporaneous spillover effect of the shocks to one market on the expected

returns of the other market.

The first category of the studies, which is the most natural one, is done through a time

series regression model or a vector autoregressive (VAR) model by using the lagged returns

of one market as regressors on the right hand side of the regression equation of the returns

of the other market.

The second group of studies estimates the lagged volatility spillover among markets.

Many articles in the literature find significant volatility spillovers between developed and

emerging markets (Wei et al., 1995), within individual equity markets (Hamao et al., 1990;

Reyes, 2001), between commodities (Apergis and Rezitis, 2003), between derivatives (Ab-

hyankar, 1995; Pan and Hsueh, 1998; Eom et al., 2002), and between financial markets in the
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same country (Darbar and Deb, 1997). Estimating the dynamic volatility spillover effects is

mostly done by working in the multivariate GARCH-BEKK1 framework which flexibly al-

lows volatility interactions among markets. Caporale et al. (2006) study the transmission of

South East Asia financial crisis into other developed stock markets by estimating a bivariate

GARCH-BEKK model using the likelihood ratio tests. They find that during crises volatility

spillover effects are unidirectional from the markets in turmoil to the others as opposed to the

bidirectional spillovers in the normal periods. Gardebroek and Hernandez (2013) examine

volatility transmission in oil, ethanol and corn prices, and show how a shock in one market

affects other markets. Using GARCH-BEKK and DCC-GARCH models, Mensi et al. (2014)

study how OPEC news announcements influence the spillover effects between oil and cereal

markets.

The third strand in the literature studies the contemporaneous spillover effect of shocks

in one market on the expected return of the other market. In the literature, this is usually

done by an ad hoc multi-step procedure; first, a model is estimated for the returns of the

first market, and then the residuals (or squared residuals) are used on the right-hand side

of the regression equation for the returns of the other market. Applying this procedure, Ng

(2000) studies the spillovers from a regional shock in Tokyo market and a global shock in the

US market into the expected return of a particular PacificBasin market. He first assumes

a bivariate asymmetric dynamic GARCH(1,1) model for the weekly returns on the Tokyo

stock market and S&P 500 to estimate the shocks to the Tokyo market, ejat , and to the US

market, eust . Then the estimated shocks are used as regressors in the return equation of each

of the PacificBasin markets in a univariate GARCH framework.

rt = µ0 + βrt−1 + γt−1r
ja
t−1 + δt−1r

us
t−1 + φeust + ψejat + et, et ∼ N(0, σ2

t )

In this model, the coefficients φ and ψ denote the contemporaneous spillover effects on the

1GARCH-BEKK representation proposed by Engle and Kroner (1995).
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market under analysis from the world and the regional market, respectively. Note that there

is a strong assumption here; S&P 500 returns and Tokyo stock returns are assumed to be

external drivers for the local market returns. Another restrictive assumption here is the

linearity; the shocks to the world and to the region affect the local market returns linearly.

Christiansen (2007) follows the same logic in three steps; she first estimates a model for

the US returns as a proxy for the world market, then estimates a model for European market

returns, using the estimated residuals of the first step on the right hand side of the regression

equation. In the last step, she estimates a model for the local market returns, assuming that

the estimated residuals from the first and second steps are exogenous regressors for the

local market returns, and the corresponding coefficients are the spillover effects. Basing on

the multi-step procedure, Balli et al. (2015) finds evidence of significant contemporaneous

spillover effects from developed markets to emerging markets. Baele (2005) considers a

Markov switching model in the second step and estimates the time-varying contemporaneous

spillovers from the US and European markets into the local markets.

Apergis and Miller (2008) follow the same multi-step process and recover the oil-supply

shocks, global aggregate-demand shocks, and global oil-demand shocks from the first step.

Then they determine the contemporaneous effect of these structural shocks on the stock

market returns in eight countries in a vector autoregressive framework.

The multi-step procedure for estimating the contemporaneous spillover effect assumes

that the shocks to the first market are external drivers for the other market, which is not

necessarily true. This approach also assumes that the contemporaneous shocks to the first

market affect the expected return of the other market linearly. We propose a model for

capturing the contemporaneous spillover effects in a general setting without imposing any

assumption on the linearity of spillover effects or the externality of the shocks. In our

approach, we model the return density of both markets jointly, allowing an unconstrained

interaction. Moreover, by estimating the joint density and then deriving the conditional
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density, we are able to study the effects of the contemporaneous shocks in either of the

markets on the entire shape of the conditional density of the other market. This enables us

to explore the contemporaneous spillover effects of big positive or negative surprises in one

market on different features of the other market’s conditional probability density function

such as the conditional expected return, volatility, kurtosis, and value-at-risk. The proposed

model can be used to assess risk transmissions among any class of assets. For example, it

can estimate how a stock market crash in the US market will affect the Canadian markets,

contemporaneously. More generally, it can measure financial stress. For instance, conditional

on a 3% drop in the oil market what is the probability that the US market will drop by more

than 3%? Density intervals and other probability statements can be directly derived from

this model.

In this chapter, we consider a semiparametric model for the multivariate joint density of

the assets without imposing any restriction on the form of the joint density. Volatility clus-

tering is taken into account by the flexible BEKK multivariate GARCH model. BEKK model

discloses any significant lagged information transmission among asset volatilities. Moreover,

we define a second component for the covariance matrix, a state-specific constituent for the

part of the covariance matrix that is not captured by the GARCH structure. In this model,

the mean vector of the assets is assumed to be state-specific as well. We estimate the joint

density in a Bayesian framework. The full conditional density can be backed out to study

how a shock in one market will affect the conditional density of the other market. Note that

this is a general case that nests all the cases under the heading of the conditional moments’

spillover effect.

We apply the proposed model to a dataset on S&P 500 and oil returns (difference in

log-prices), and also a dataset on S&P TSX returns and oil returns, exploring the contempo-

raneous and lagged spillover effects of a surprise in oil market on Canada market and the US

market. The results show that the contemporaneous transmission of shocks from oil market
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to both Canada market and the US market is more significant than the lagged spillovers. I

provide empirical evidence that a big positive or negative shock in oil market can affect the

shape of the entire conditional density of the Canada market returns and the US market

returns, increasing the value-at-risk of an investment in these markets in the event of both

positive and negative shocks.

The remainder of the chapter is structured as follows. Section 4.2 provides a general theo-

retical setting of the model used in this study, key features of the semiparametric MGARCH

model, and the use of the Dirichlet process prior followed by details of the posterior sam-

pling. The benchmark model is introduced in Section 4.3. Section 4.4 presents an outline of

the data, followed by the empirical results. Section 4.5 concludes.

4.2 Semiparametric Model

In this section, we introduce in detail the model framework that we use to estimate the

spillover effects. Let rt = (r1
t , ..., r

q
t ) be the vector of returns at time t. In case we are inter-

ested in studying the spillover effects between two markets, q equals 2. We model the joint

distribution of rt nonparametrically by an infinite mixture of normal distributions which can

approximate any continuous multivariate distribution (Ghosal, 1999). This semiparametric

model, referred to as MGARCH-DPM, can be written as the following equation in a Dirichlet

process mixture (DPM) model framework

rt = µt + Γtrt−1 + εt, εt ∼ N(0, H
1
2
t Bt(H

1
2
t )′), t = 1, ..., T (4.1)

θt ≡ {µt,Γt, Bt}|G ∼ G, (4.2)

G|α,G0 ∼ DP (α,G0), (4.3)

Ht = C ′0C0 + A′εt−1ε
′
t−1A+ F ′Ht−1F. (4.4)
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In this model, µt and the residuals εt = rt − µt − Γtrt−1 are q-vectors, and Bt and Ht

are q × q matrices. H
1/2
t is the Cholesky decomposition of Ht. G is the mixing measure

over a continuous kernel. The mixing is over the mean vector and the component B of the

covariance matrix of a normal distribution. The second component, Ht, of the covariance

matrix captures volatility clustering over time.

Equation (4.4) represents the MGARCH structure used in this chapter which is based on

the BEKK multivariate GARCH model of Engle and Kroner (1995). The sufficient condition

for positive definiteness of Ht is that at least one of the C0 or F be of full rank (Engle

and Kroner, 1995). C0 is a q by q lower triangular matrix, and A and F are matrices of

dimmension q×q. A is a matrix of coefficients aij that capture the lagged shock interactions

among markets, and F is a matrix of coefficients fij that capture the lagged volatility spillover

effects between markets i and j. MGARCH-BEKK structure in Equation (4.4) has been used

in the literature mostly to derive the lagged spillover effects of variances among markets. The

expanded formulas for the covariance with this structure for q = 2 are given by

h11,t = c2
11 + a2

11ε
2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a2

21ε
2
2,t−1 (4.5)

+ f 2
11h11,t−1 + 2f11f21h12,t−1 + f 2

21h22,t−1,

h12,t = c11c12 + a11a12ε
2
1,t−1 + (a11a22 + a21a12)ε1,t−1ε2,t−1 + a22a21ε

2
2,t−1 (4.6)

+ f11f12h11,t−1 + (f11f22 + f21f12)h12,t−1 + f21f22h22,t−1,

h22,t = c2
12 + c2

22 + a2
12ε

2
1,t−1 + 2a12a22ε1,t−1ε2,t−1 + a2

22ε
2
2,t−1 (4.7)

+ f 2
12h11,t−1 + 2f12f22h12,t−1 + f 2

22h22,t−1.

In Equation (4.3), G is the unknown distribution that governs the mixing over µt, the
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VAR coefficients, Γt, and the first part of the covariance matrix of the normal kernel in the

mixture model, Bt. Bt is a symmetric positive definite matrix that accounts for the part of

the covariance matrix that is not captured by GARCH dynamics. A draw from a DP, G ∼

DP (α,G0), is almost surely a discrete distribution and is governed by two parameters. The

concentration parameter α, a positive scalar and a base distribution G0. The nonparametric

distribution G is centered on the base distribution G0, which can be considered as the prior

guess; E(G(∆)) = G0(∆) for the measurable set ∆. The concentration parameter measures

the strength of belief in G0. The larger α, the stronger belief in G0 and the more distinct

elements we have with non-negligible mass.

Sethuraman (1994) characterizes a stick-breaking representation of the DP. Combin-

ing this with the normal kernel gives the associated stick breaking representation of the

MGARCH-DPM density as

p(rt|µ,Γ, B,W,Ht) =
∞∑
j=1

ωjN(rt|µj + Γjrt−1, H
1/2
t Bj(H

1/2
t )′), (4.8)

ω1 = v1, ωj = vj

j−1∏
l=1

(1− vl), j > 1, (4.9)

vj
iid∼ Beta(1, α) (4.10)

(µj,Γj)
iid∼ N(β0, D), Bj

iid∼ W−1(B0, ν0), (4.11)

where N(rt|µj + Γjrt−1, H
1/2
t Bj(H

1/2
t )′) denotes the multivariate normal density evaluated

at rt. The model nests several special cases. First, the Gaussian model is obtained when

α→ 0 and B1 = I. The Student-t model results from µ and Γ being constant for all mixture

components and α→∞, since G→ G0, the inverse Wishart distribution.

To estimate the unknown parameters in Equations (4.8)-(4.11), we apply an MCMC sam-

pler along with the slice sampler of Walker (2007). Slice sampling introduces a latent variable,

ut ∈ (0, 1), to elegantly convert an infinite sum to a finite mixture model which makes the

94



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

sampling feasible. Estimating the joint posterior density of ut and other model parameters

and then integrating out the slice variable ut recovers the desired posterior density. In prac-

tice, this means jointly sampling all parameters including the slice variable but then discard-

ing ut. Define ut such that the joint density of (rt, ut) given (W = {ω1, ω2, ...},Θ ≡ (µ,Γ, B))

is given by

f(rt, ut|W,Θ) =
∞∑
j=1

1(ut < ωj)N(rt|µj + Γjrt−1, (H
1/2
t )′BjH

1/2
t ). (4.12)

Let s1:T = {s1, ..., sT} be the configuration set that partitions the data r1:T into c

distinct clusters such that observation rt is assigned parameter θst = (µst ,Γst , Bst). Let

nj = {#t|st = j} be the number of observations allocated to state j. The full likelihood is

p(r1:T , u1:T , s1:T |W, θ) = ΠT
t=11(ut < ωst)N(rt|µst + +Γstrt−1, (H

1/2
t )Bst(H

1/2
t )′), (4.13)

and the joint posterior is proportional to

p(W1:K)ΠK
j=1p(µj, Bj)Π

T
t=11(ut < ωst)N(rt|µst + Γstrt−1, (H

1/2
t )Bst(H

1/2
t )′) (4.14)

where K is the smallest natural number that satisfies the condition
∑K

j=1 ωj > 1−min{ut}Tt=1

and W1:K denotes the finite set of W and similarly for other parameters µ1:K , Γ1:K and B1:K .

Note that in the proposed model we have path dependency in the GARCH recursions

(Equation 4.4). At each iteration g of the MCMC, we compute K(g) different GARCH

processes to take into consideration the path dependency through εt−1 (Haas et al., 2004).

At each iteration of the MCMC, we have K(g) distinct clusters which is analogous to having

K(g) different states in a Markov switching framework. Therefore, we need to keep track of
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K(g) different GARCH processes, Hj
t , j = 1, ..K(g), t = 1, ..., T :

Hj
t = C ′0C0 + A′εjt−1ε

j ′
t−1A+ F ′Hj

t−1F.

Having defined the notation, the steps of the MCMC algorithm are discussed next.

4.2.1 Sampling Steps

Step 1 The posterior distribution of θj = (µj,Γj, Bj), j = 1, ..., K: Equation (4.28) can be

rewritten as

rt = Xtβ + εt, εt ∼ N(0, H
1
2
t Bt(H

1
2
t )′), t = 1, ..., T (4.15)

where Xt is a vector of 1 (for the intercept) and the lagged returns, and β =

V ec(µ,Γ). Using the transformation zt = H
−1/2
t rt, X̄t = H

−1/2
t Xt, and et = H

−1/2
t εt,

we have

zt = X̄tβ + et, et ∼ N(0, Bt), t = 1, ..., T (4.16)

And we can apply multivariate regression results for conditionally conjugate priors

(Karlsson, 2013) to obtain the posterior distributions of the parameters:

Bj|r1:T , S, µj,Γj, H1:T ∼ iW
(
nj + ν0, B0 + Σt:st=j(zt − X̄tβj)(zt − X̄tβj)

′) (4.17)

βj|r1:T , s1:T , Bj, H1:T ∼ N(β̄, D̄) (4.18)

in which

D̄ = (Σst=jX̄
′
tB
−1
j X̄t +D−1)−1 (4.19)

β̄ = D̄(Σst=jX̄
′
tB
−1
j zt +D−1β0) (4.20)
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Step 2 Updating vj, j = 1, ..., K (Ishwaran and James, 2001):

vj|S ∼ Beta(1 + ΣT
t=11(st = j), α + ΣT

t=11(st > j)). (4.21)

Then we update W based on recently generated vjs: ω1 = v1, ωj = vj
∏j−1

i=1 (1 −

vi), j > 1.

Step 3 Updating ut, t = 1, ..., T (Walker, 2007):

ut|S ∼ Uni(0, ωst)

Then we update K such that ΣK
j=1ωj > 1 −min{ut}Tt=1. Additional ωj and θj will

need to be generated from the priors if K is incremented.

Step 4 Updating s1:T (Walker, 2007): For each t = 1, ..., T ,

p(st = j|r1:T ) ∝ 1(ωj > ut)N(rt|µj, H1/2
t Bj(H

1/2
t )′), j = 1, ..., K (4.22)

Step 5 Updating α: Assuming Gamma(a0, b0) as the prior distribution of α, we can update

α following the two steps below (See Escobar and West (1995))

(a) Given the most recent values of α and d, sample η from (η|α, d) ∼ Beta(α+1, T ).

(b) Given d and just generated η, sample the new α from

α|η, d ∼ ΠηΓ(a0 + d, b0 − log(η)) + (1− Πη)Γ(a0 + d− 1, b0 − log(η)), (4.23)

where d is the number of alive clusters to which at least one observation has been

assigned, and Πη is defined by Πη
1−Πη

= a0+k−1
n(b0−log(η))

.
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Step 6 Updating GARCH parameters Ψ = {c0,ij, aij, bij}i,j≤q:

p(Ψ|β,B, s1:T , r1:T , H1:T ) ∝ p(Ψ)×
T∏
t=1

N(rt|βst , H
1/2
t Bst(H

1/2
t )′), (4.24)

which is not of standard form, and we apply a Metropolis Hastings sampler. Given

the current value Ψ of the chain, the proposal Ψ′ is computed by

Ψ′ = Ψ +N(0, V̂ ). (4.25)

Ψ′ is accepted with probability min{p(Ψ′|β,B, S, r1:T , H1:T )/p(Ψ|β,B, S, r1:T , H1:T ), 1},

otherwise, Ψ′ is rejected and Ψ is selected as the draw. In Equation (4.25), V̂ is the

inverse Hessian matrix of ` = log[p(Ψ|β,B, S, r1:T , H1:T )] at its posterior mode, Ψ̂.2

We can obtain V̂ in Equation (4.25) by numerically optimizing `.3

4.2.2 Conditional Density

Applying the posterior sampling algorithm, we sample model parameters for many iterations

and after dropping a set of burn-in draws we have the following set of sampled parameters:

{(µ(g)
j ,Γ

(g)
j , B

(g)
j ), v

(g)
j , j = 1, ..., K(g)}, {s(g)

t , u
(g)
t , t = 1, ..., T}, H(g)

1:T = {H(g)
1 , ..., H

(g)
T },

(4.26)

2To achieve an acceptance rate of parameters between 0.2 and 0.5, we can scale V̂ .
3We apply Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to find the posterior mode of `.
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for g = 1, ...,M where M is the number of MCMC iterations. At each iteration g = 1, ...,M

of the algorithm, a draw of G|r1:T , can be written as

G(g) =
K(g)∑
j=1

ω
(g)
j δ

θ
(g)
j

+

1−
K(g)∑
j=1

ω
(g)
j

G0(θ), (4.27)

where θ
(g)
j = (µ

(g)
j ,Γ

(g)
j , B

(g)
j ) and δ

θ
(g)
j

is a mass point at θ
(g)
j .

We can estimate the joint density of rt. For the sake of simplicity, we consider a special

case of our model, rt = (rot , r
us
t ) where rot and rust represent the oil market return and the US

market return, respectively. Combining Equation (4.27) with the kernel density f(.) gives

the predictive joint density of oil returns and the US market returns conditional on G(g) as

p(rot , r
us
t |r1:T , G

(g)) = ΣK(g)

j=1 ω
(g)
j f(rot , r

us
t |θ

(g)
j )+

(
1− ΣK(g)

j=1 ω
(g)
j

)∫
f(rot , r

us
t |θ)G0(θ)dθ (4.28)

The kernel density here is a normal density. Applying the properties of the conditional

and marginal distributions of the jointly normal random variables (Bauwens et al., 2000),

we are able to simplify the conditional distribution of rus given ro. To minimize notational

clutter, we drop the iteration superscript, g, but note that at each iteration we use the most

recently updated parameters.

prus|ro(r
us
t |rot , r1:T , G) = ΣK

j=1qj(r
o
t )N(rust |µj,us + Γj,usrt−1 + βjt(r

o
t − µj,o − Γj,ort−1), cjt)

+
(
1− ΣK

j=1qj(r
o
t )
) A1

A2

(4.29)

where

βjt =
(H

1
2
t BjH

1
2

′

t )us,o

(H
1
2
t BjH

1
2

′

t )o,o

(4.30)

cjt = (H
1
2
t BjH

1
2

′

t )us,us − (H
1
2
t BjH

1
2

′

t )us,o(H
1
2
t BjH

1
2

′

t )−1
o,o(H

1
2
t BjH

1
2

′

t )us,o (4.31)
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qj(r
o
t ) =

ωjN(rot |µj,o + Γj,ort−1, (H
1
2
t BjH

1
2

′

t )o,o)

ΣK
j=1ωjN(rot |µj,o + Γj,ort−1, (H

1
2
t BjH

1
2

′

t )o,o) +
(
1− ΣK

j=1ωj
)
A2

(4.32)

And

A1 =

∫
N(rot , r

us
t |µ+ Γrt−1, H

1
2
t BH

1
2

′

t )N(β|β0, D)× iW (B|B0, ν0)dβdB, (4.33)

A2 =

∫
N(rot |µo + Γort−1, (H

1
2
t BH

1
2

′

t )o,o)N(β|β0, D)× iW (B|B0, ν0)dβdB. (4.34)

where the subscript (o,o) in ()o,o denotes element (1,1) of the matrix, and other subscripts

are defined similarly. β includes elements of vector µ and matrix Γ, and A1 and A2 can be

easily approximated by Monte Carlo simulation. Therefore, the formula for the conditional

distribution will be written as

p(rust |rot , r1:T , G) = ΣK
j=1qj(r

o
t )N(rust |µj,us + Γj,usrt−1 + βjt(r

o
t − µj,o − Γj,ort−1), cjt)

+
(
1− ΣK

j=1qj(r
o
t )
) ΣnN(rot , r

us
t |µn + Γnrt−1, H

1
2
t BnH

1
2

′

t )

ΣnN(rot |µn,o + Γn,ort−1, (H
1
2
t BnH

1
2

′

t )o,o)
(4.35)

where

βnt =
(H

1
2
t BnH

1
2

′

t )us,o

(H
1
2
t BnH

1
2

′

t )o,o

(4.36)

and

cnt = (H
1
2
t BnH

1
2

′

t )us,us − (H
1
2
t BnH

1
2

′

t )us,o(H
1
2
t BnH

1
2

′

t )−1
o,o(H

1
2
t BnH

1
2

′

t )us,o. (4.37)

µn,Γn, and Bn, n = 1, ..., N are i.i.d draws from the priors. Equation (4.35) can be rewritten

as the following equation so the contemporaneous shock spillover from oil returns into the
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US return density is more obvious.

p(rust |rot , r1:T ) = ΣK
j=1qj(ε

o
t )N(rust |µj,us + Γj,usrt−1 + βjt(

εot︷ ︸︸ ︷
rot − µj,o − Γj,ort−1), cjt)

+
(
1− ΣK

j=1qj(ε
o
t )
)
A(εot ) (4.38)

where εot denotes the shock in the oil returns (if state j occurs), and A(εot ) is a nonlinear

function of εot . Unlike the literature, we pursue the joint estimation first and then derive

the density of the US market conditional on the oil market return. By estimating the joint

density, we do not lean on the externality assumption; that the shocks to the oil market

are external drivers for the US market. Moreover, the contemporaneous effect of a shock in

oil returns on the expected return of the US market is potentially nonlinear while the ad

hoc approaches in the literature for studying the contemporaneous spillover effect assume

linearity.

4.2.3 Transmission of shocks from time t to t+ h:

Thus far, we have looked at the contemporaneous spillover effect of shocks in one market on

the other market. Now, we study the propagation of these shocks into the other market’s

conditional density over time. If we have a shock in the oil market today, how does this

shock transmit to the US market over time? To investigate the effect of a shock (for example

5% shock) in the oil return at time t on the conditional density of the US market at time

t+ 1, we take the following steps at each iterations of the MCMC:

1. Set roilt,shock.

The sample mean of the oil return is zero with 4 decimal point precision. We define

shocks as roilt,shock = 5% = 0.05.
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2. Take a draw for rust,shock ∼ p(rust |roilt,shock) which is a mixture model:

p(rust |rot , r1:T , G) =
K∑
j=1

qj(r
o
t )N(rust |µj,us + Γj,usrt−1 + βjt(r

o
t − µj,o − Γj,ort−1), cjt)

+
(
1− ΣK

j=1qj(r
o
t )
) ΣnN(rot , r

us
t |µn + Γnrt−1, H

1
2
t BnH

1
2

′

t )∑
nN(rot |µn,o + Γn,ort−1, (H

1
2
t BnH

1
2

′

t )o,o)
(4.39)

(4.40)

To do so, we take a draw of the component j = 1, 2, ..., K + 1 with probabilities

q1(rot ), q2(rot ), ..., qK(rot ), 1−
∑K

j=1 qj(r
o
t ). If we choose the last component, then take a

draw from a mixture model with M components and weights wn =
N(rot |µn,o+Γn,ort−1,(H

1
2
t BnH

1
2
′

t )o,o)∑
nN(rot |µn,o+Γn,ort−1,(H

1
2
t BnH

1
2
′

t )o,o)

.

3. Set rt,shock = (rust,shock, r
oil
t,shock).

4. Using rt,shock, update the GARCH components {Ht+1}.

5. rt+1,shock has a mixture density:

p(rust+1,shock, r
o
t+1,shock|r1:T , G) = ΣK

j=1wjN(rot+1,shock, r
us
t+1,shock|µj + Γjrt,shock, H

1
2
t+1BjH

1
2

′

t+1)

+
(
1− ΣK

j=1wj
) ∫

f(rust+1,shock, r
o
t+1,shock|θ)G0(θ)dθ

6. Take a draw from the joint density: (rust+1,shock, r
o
t+1,shock).

7. Obtain the conditional density of rust+1 given rot+1,shock from

p(rust+1|rot+1,shock, r1:T , G) = (4.41)

ΣK
j=1qj(r

o
t+1,shock)N(rust+1|µj,us + Γj,usrt,shock + βj,t+1(rot+1,shock − µj,o − Γj,ort,shock), cj,t+1)

+
(
1− ΣK

j=1qj(r
o
t+1,shock)

) ΣnN(rot+1,shock, r
us
t+1|µn + Γnrt,shock, H

1
2
t+1BnH

1
2

′

t+1)

ΣnN(rot+1,shock|µn,o + Γn,ort,shock, (H
1
2
t+1BnH

1
2

′

t+1)o,o)
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8. Repeat steps 6 and 7 (e.g., 1000 times) and take the average of conditional density in

Equation (4.41) over this 1000 iterations as p(rust+1|rot,shock, r1:T ) in the current iteration

of MCMC.

9. Go to the next iteration of MCMC.

We can generalize this process to get the effect of a 5% shock in oil market at time t on

the conditional density of the US market at time t + 5 by adding the following steps after

step 6:

At each iterations of the MCMC, after drawing unknowns from the posteriors we do the

following steps:

1. Set roilt,shock = 5% or roilt,shock = 5%.

2. Take a draw for rust,shock ∼ p(rust |roilt,shock) which is a mixture model.

3. Set rt,shock = (rust,shock, r
oil
t,shock).

4. Using rt,shock, update the GARCH components {Ht+1}.

5. rt+1,shock has a mixture density:

p(rust+1,shock, r
o
t+1,shock|r1:T , G) = ΣK

j=1wjN(rot+1,shock, r
us
t+1,shock|µj + Γjrt,shock, H

1
2
t+1BjH

1
2

′

t+1)

+
(
1− ΣK

j=1wj
) ∫

f(rust+1,shock, r
o
t+1,shock|θ)G0(θ)dθ

Take a draw from this joint density: (rust+1,shock, r
o
t+1,shock) ∼ p(rust+1,shock, r

o
t+1,shock|r1:T , G).

6. for j = 1 : 4 do the following steps:

• Using rt+j,shock, update the GARCH components {Ht+j+1}.
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• rt+j+1,shock has a mixture density:

p(rust+j+1,shock, r
o
t+j+1,shock|r1:T , G) =

ΣK
j=1wjN(rot+j+1,shock, r

us
t+j+1,shock|µj + Γjrt+j,shock, H

1
2
t+j+1BjH

1
2

′

t+j+1)

+
(
1− ΣK

j=1wj
) ∫

f(rust+j+1,shock, r
o
t+j+1,shock|θ)G0(θ)dθ

• Take a draw from the joint density: (rust+j+1,shock, r
o
t+j+1,shock).

7. Obtain the conditional density of rust+5 given rot+5,shock from

p(rust+5|rot+5,shock, r1:T , G) = (4.42)

ΣK
j=1qj(r

o
t+5,shock)N(rust+5|µj,us + Γj,usrt+4,shock + βj,t+5(rot+5,shock − µj,o − Γj,ort+4,shock), cj,t+5)

+
(
1− ΣK

j=1qj(r
o
t+5,shock)

) ΣnN(rot+5,shock, r
us
t+5|µn + Γnrt+4,shock, H

1
2
t+5BnH

1
2

′

t+5)

ΣnN(rot+5,shock|µn,o + Γn,ort+4,shock, (H
1
2
t+5BnH

1
2

′

t+5)o,o)

8. Repeat steps 7 and 8 (e.g., 1000 times) and take the average of conditional density in

Equation (4.42) over this 1000 iterations as p(rust+5|rot,shock, r1:T ) in the current iteration

of MCMC.

9. Go to the next iteration of MCMC.

In step 7, if we had new draws, we add the new component with wK+1 = vK+1Πj<K+1(1−

vj) where vK+1 ∼ Beta(1, α).

Following the steps mentioned above, we are able to obtain the conditional density

p(rust+5|rot,shock, r1:T ). Similarly, we simulate the conditional density of the US market h-

period-ahead (h = 1, 5, 22 for one day, one week, and one month, respectively) given a

shock in the oil market return today, roilt,shock. By setting roilt,shock, we can perform different

scenario analyses and examine how for example a big positive shock in oil market today
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would transmit to the US market in the future. It is very important for policy makers and

also for investors to understand these relationships.

4.2.4 Lagged Shocks Spillover Effect on Volatility

In the proposed semiparametric model, estimating the lagged spillover of a shock in one

market to the volatility of the other market is not as straightforward as the models in the

literature. In the semiparametric model, the volatility at each time t has two components;

Ht that follows a GARCH-BEKK process, and a second component Bst which is component-

specific. Therefore, the lagged spillover effect of a shock in oil market on the volatility of the

US market can be numerically approximated by

∂volus,t
∂εo,t−1

=
(H

1
2
t BstH

1
2

′

t |εt−1)11 − (H
1
2
t BstH

1
2

′

t |εt−1+(0,δ)′)11

δ
(4.43)

where volus,t is the volatility of the US market at time t.

4.3 Benchmark: MGARCH-BEKK Model with Student-

t Innovations

As our benchmark model, we consider a multivariate GARCH-BEKK-t model where the

innovations follow a multivariate Student-t distribution. In estimating the spillover effects

in the benchmark model, we follow the same steps as we do in the semiparametric model. We,

first, estimate the joint density of the returns from two separate markets and then derive the

density of one market conditional on the other market’s returns. In the benchmark model,

we assume that this joint density is a multivariate Student-t density. This is a restrictive

assumption compared to the proposed model, but it still is more extensive than what has

been considered in the literature. In the following formulation, rt is the vector of returns, µ
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is the mean vector, Γ is the autoregressive coefficient matrix, and Ht is the dynamic scale

matrix of the innovations, εt.

rt = µ+ Γrt−1 + εt, εt ∼ t(0, Ht, ν), t = 1, ..., T, (4.44)

Ht = C ′0C0 + A′εt−1ε
′
t−1A+ F ′Ht−1F. (4.45)

The on-diagonal elements of Γ provide the measures of own-mean lagged spillovers, whereas

the off-diagonal elements measure the cross-mean lagged spillovers between markets. The

scale matrix, Ht, follows an MGARCH structure with the set of parameters A,F , and C0.

C0 is a lower triangular matrix, and A is a q by q matrix of coefficients aij that capture the

lagged shock interactions among markets. F is a q by q matrix of coefficients fij that capture

the lagged volatility spillover effects between markets. The attractive property of GARCH-

BEKK model is that the conditional covariance matrices are positive definite (Silvennoinen,

Annastiina Teräsvirta, 2009). This model, with normal density instead of student-t density,

is commonly used in the literature to study the lagged volatility spillover among different

markets. This is a special case of the proposed semiparametric model where µj is constant

for all js and α −→∞, since G −→ G0. We use this model to estimate the lagged volatility

spillovers and the contemporaneous shock spillovers between markets in a parametric setting.

4.3.1 Sampling Steps

We have

rt = µ+ Γrt−1 + εt, εt ∼ t(0, Ht, ν), t = 1, ..., T (4.46)

Step 1 Updating parameters Ψ = (c0,11, c0,21, c0,22, a11, a12, a21, a22, b11, b12, b21, b22) (with iden-

tification restrictions c0,11 > 0, c0,22 > 0, a11 > 0 and b11 > 0), ν, and elements of vec-

tor µ and matrix Γ (β = elemnts of µ and Γ). Assuming the prior p(β) ∼ N(β0, D)
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and p(Ψ) ∼ N(Ψ0, E) (truncated), then the posterior density is

p(Ψ, β, ν|r1:T , H1:T ) ∝ p(Ψ)p(β)p(ν)×
T∏
t=1

t(rt|µ,Γ, Ht, ν) (4.47)

which is not of standard form, and we apply a Metropolis-Hastings sampler. Given

the current value (Ψ, β, ν) of the chain, the proposal (Ψ, β, ν)′ is computed by

(Ψ, β, ν)′ = (Ψ, β, ν) +N(0, V̂ ) (4.48)

(Ψ, β, ν)′ is accepted with probability min{p(Ψ, β, ν)′|r1:T , H1:T )/p((Ψ, β, ν)|r1:T , H1:T ), 1},

otherwise, (Ψ, β, ν)′ is rejected and (Ψ, β, ν) is selected as the draw. In Equation

(4.48), V̂ is the inverse Hessian matrix of ` = log[p(Ψ, β, ν|r1:T , H1:T )] at its posterior

mode, ̂(Ψ, β, ν).4 We can obtain V̂ in Equation (4.48) by numerically optimizing `.

4To achieve an acceptance rate of parameters between 0.2 and 0.5, we can scale V̂ .
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4.4 Empirical Results

4.4.1 Spillover Effects of a Shock in Oil Market on Canada Market

In this section, we study shock spillovers from oil market to Canada market. Data are from

Toronto Stock Exchange returns, and West Texas Oil returns, from Bloomberg website,

ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations). We estimate the model

parameters for both the benchmark model and the semiparametric model. We go on to

illustrate the contemporaneous and lagged spillover effects of big surprises in oil market on

the conditional density of the Canada market returns. Returns are calculated as log returns.

The time series of daily returns are illustrated in Figure 4.1, and Table 4.1 displays the

summary statistics of the datasets. The skewness coefficients are different from zero, and

the kurtosis coefficients are above three for both series. These findings indicate that the

probability distributions of the oil and S&P TSX returns are skewed and leptokurtic.

Model Performance

The criteria that we use to compare different models is the value of the log-predictive like-

lihood and the log-Bayes factor. Bayesian model comparisons favours parsimonious model

specifications. Complex models are only chosen if they provide an improved description of

the data. For each particular model M (i.e., MGARCH-BEKK-t or MGARCH-DPM), the

predictive likelihood for rL:T , L < T is expressed in terms of the one-step-ahead predictive

likelihoods,

m(rL:T |r1:L−1,M) = ΠT
t=Lf(rt|r1:t−1,M). (4.49)
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We compare the models on a subset of data (starting from t=L) which tends to minimize

the effect the prior distributions have. Each predictive likelihood is estimated as,

f(rt|r1:t−1,M) =

∫
f(rt|θ, r1:t−1)p(θ|r1:t−1)dθ, (4.50)

≈ 1

M

M∑
g=1

f(rt|θ(g), r1:t−1). (4.51)

where θ(g), g = 1, ...,M is the posterior draws of the model parameters given r1:t−1.

Based on Equation (4.51), the predictive likelihoods for the two models can be written

as

f(rt|r1:t−1,MGARCH-BEKK-t) ≈ 1

M

M∑
g=1

t(rt|µ(g),Γ(g), H
(g)
t , ν(g)) (4.52)

and

f(rt|r1:t−1,MGARCH-DPM) ≈ 1

M

M∑
g=1

N(rt|µ(g)

s
(g)
t

,Γ
(g)

s
(g)
t

, H
(g)1/2

t B
(g)

s
(g)
t

H
(g)1/2

′

t ) (4.53)

In MGARCH-DPM model s
(g)
t at each iteration g is one of the K(g) components, say

component j, with probability ω
(g)
j , or is a new component with probability 1−

∑K(g)

j=1 ω
(g)
j .

The model with the larger predictive likelihood value is the one most consistent with the

data. Usually in computing these quantities, which tend to be small, it is best to work with

the log-predictive likelihood. In comparing two models (M1 versus M2) a rough guide is

that a log-Bayes factor bigger than 3 is a strong evidence for outperformance of M1 and a

log-Bayes factor bigger than 5 is a very strong evidence for outperformance of M1 against

M2.

The following priors are used in estimation. In the MGARCH-BEKK-t model, ν ∼
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U(2, 100), and β ∼ N(0, 0.1I) for both models where β = (µ,Γ). For each of the GARCH

parameters in both models, we set Ψ ∼ N(0, 100) truncated to impose identification. In

MGARCH-DPM, for the concentration parameter we set α ∼ G(0.1, 0.3). The prior on α

controls the number of the distinct components in the mixture model, although with a large

number of observations the effect of the prior is diminished. For the hyper-parameters of the

base measure G0, we set B0 = (ν0−q−1)I which makes E(B) = I and centers the conditional

covariance of rt at Ht. ν0 = 8, but other values for ν0 do not change our conclusions.

Table 4.2 reports the log-predictive likelihoods and the log-Bayes factor over 2012/10/03

to 2015/12/31 with L = T − 800. The results strongly support our semi-parametric model

relative to the benchmark model.

Figure 4.2 displays the time-series of the oil returns and S&P TSX returns as well as the

difference in the log-predictive likelihood of the two models at each time using

log p(rt|r1:t−1,MGARCH-DPM)− log p(rt|r1:t−1,MGARCH-BEKK-t). (4.54)

Positive values favour the MGARCH-DPM specification. This figure shows that the MGARCH-

DPM model almost always outperforms MGARCH-BEKK-t model. There are large differ-

ences when the returns are extreme.

Parameter Estimation for S&P TSX and WTO

Table 4.3 reports the posterior mean of the constant parameters estimated using the bench-

mark model and the proposed model along with the %95 density intervals. Both models

show strong positive values for f11 and f22. The semiparametric model uses about 4.3 mix-

ture components in average to estimate the joint density of the S&P TSX and the oil market

returns.

Figure 4.3 shows the estimated time-varying posterior mean of the correlation between

S&P TSX and oil returns obtained from the benchmark and the semiparametric model. It
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shows that the benchmark model overestimates the correlation.

Density Estimation

Figure 4.4 illustrates the posterior density of S&P TSX at time t conditional on the realized

value of oil return at time t for three different days selected from a highly volatile period,

a low volatile period, and a normal period. This figure supports our semiparametric model

since the shape of the estimated posterior conditional density of each day is compatible with

the period it lies in, in terms of the volatility level.

Figure 4.5 shows the posterior density of S&P TSX at time t conditional on the realized

value of oil return at time t from 2007-01 to 2011-01. This figure illustrates how the estimated

density evolves over time.

Scenario Analysis

In this section, we carry out a set of comparative risk scenario analyses. How a big shock

in the oil market would contemporaneously affect the shape of conditional density of the

Canada market return. Risk scenario analysis is useful in stress testing, evaluating risks to

the financial system. One goal in stress testing might be assessing the impact of various

potential risks that can be transmitted to a market. As an example, we would like to answer

the question of ‘How the mean or volatility of a market would be affected by a severe but

plausible shock in other markets?’ With the provided model in this chapter, we are able to

answer a more comprehensive question: How the conditional density of a market would be

affected by a contemporaneous shock in another market? The answer to these questions gives

valuable insights into the portfolio optimization problems, the diversification opportunities,

and the future regulations.

Figures 4.6 and 4.7 illustrate the contemporaneous spillover effect from a shock in the oil

market to the S&P TSX conditional density and compare the results with the benchmark.
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As the second panel illustrates, with the benchmark model, the contemporaneous effect of

a big positive or negative shock in oil market on the TSX market is symmetric. When the

market is volatile, a positive shock in oil market shifts the contemporaneous conditional

density of TSX to the right, and a negative shock in oil market shifts the contemporaneous

conditional density of TSX to the left. When the market is calm, the effect is the opposite;

a positive shock in oil market shifts the contemporaneous conditional density of TSX to the

left, and a negative shock in oil market shifts the contemporaneous conditional density of

TSX to the right.

The contemporaneous spillover effect of a shock in the oil market on the TSX market

derived from the benchmark is symmetric; the shifts in the conditional density in these

two cases are almost the same amount but in opposite directions. This is not the case

with the semiparametric model. Using the proposed model, we find that a positive 10%

and a negative 10% shock in the oil market spill over into the TSX market asymmetrically.

When the market is calm, a positive shock in the oil market shifts the contemporaneous

conditional density of TSX to the right, and a negative shock in the oil market shifts the

contemporaneous conditional density of TSX to the left. These shifts are not the same

amount for positive and negative shocks, and the resulting conditional densities are skewed

and leptokurtic. When the market is volatile, a positive shock in the oil market has almost

no effect on the TSX conditional density contemporaneously while a negative shock in oil

market shifts the contemporaneous conditional density of TSX to the left. Both positive and

negative shocks result in a fatter lower tail than the case with no shock to the oil market.

Figures 4.8 and 4.10 show how a ±10% shock in the oil market propagates to the condi-

tional density of the S&P TSX over time in the semiparametric model and the benchmark

model for volatile and calm periods. Figures 4.9 and 4.11 illustrate the corresponding log of

the conditional densities in order to make the tail comparison easier. The first plot on top
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left shows the transmission of a ±10% in oil market into the TSX market contemporane-

ously. The remaining three plots illustrate the lagged spillover of these shocks into the TSX

market after one day (h=1), one week (h=5), and one month (h=22). Assuming a shock

in oil market at time t, the returns of the TSX market at time t+1 (h=1), t+5 (h=5) and

t+22 (h=22) are simulated using the semiparametric model, and the conditional densities

are estimated. These plots show how the effect of a big shock in oil market on the TSX

market disappears as we go forward over time. The contemporaneous effect is the most

significant one.

Spillover Effects on Value-at-Risk

In this section, we assess downside risks faced by an investor who invests in the market

portfolio. We look at the one-period-ahead value-at-risk for $10,000 investment in S&P TSX

at 5% level. We need to find the value VaR5%
t+1 that with probability 0.05 the loss on our

investment is bigger than VaR5%
t+1. In another words,

p(Rt+1 < −VaR5%
t+1) = 0.05

where Rt+1 is the return on our investment after one period, Rt+1 = 10, 000 × er
TSX
t+1 .

Table 4.4 reports the effect of a shock in oil market on the one-period-ahead value-at-risk

for $10,000 investment in S&P TSX at 5% level. In the semiparametric model, positive and

negative shocks both increase the predictive value-at-risk. The benchmark model underesti-

mates the predictive value-at-risk of the investment in S&P TSX when we have a shock in

oil market.

Lagged Spillover Effect

We are also able to estimate how a shock in the oil market today affects the volatility of the

TSX market tomorrow. This lies under the heading of volatility spillover in the literature.
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To compute the lagged spillover effect, we use the posterior mean of the following

∂h11,t

∂ε2,t−1

=
(H

1
2
t BstH

1
2

′

t |εt−1)11 − (H
1
2
t BstH

1
2

′

t |εt−1+(0,δ)′)11

δ
(4.55)

Figure 4.12 illustrates an oil market shock spillover into the volatility of TSX market over

time (Using the posterior mean of Equation (4.55)). Unlike similar work in the literature,

the estimated spillover effect from both models is not constant over time and increases when

market volatility goes up. Moreover, this figure shows that the lagged volatility spillover

effects are underestimated in the benchmark model.

4.4.2 Spillover Effects of a Shock in the Oil Market on the US

Market

In this section we study shock spillovers from oil market to the US market. Data are

from S&P 500 returns and West Texas Oil returns, from Bloomberg website, ranging from

Jan 3, 2000 to Dec 31, 2015 (3965 observations). We estimate the model parameters for

both the benchmark model and the semiparametric model. We go on to illustrate the

contemporaneous and lagged spillover effects of big surprises in oil market on the conditional

density of the US market returns. Returns are calculated as log returns. The time series of

daily returns are illustrated in Figure 4.13, and Table 4.5 displays summary statistics of the

datasets.

The skewness coefficients are different than zero and the kurtosis coefficients are above

three for both series. These findings indicate that the probability distributions of the oil and

S&P returns are skewed and leptokurtotic.
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Model Performance

Table 4.2 reports the log-predictive likelihoods and the log-Bayes factor with L = T − 500.

The results strongly support our semi-parametric model relative to the benchmark model.

Figure 4.14 displays the time-series of the oil returns and S&P TSX returns as well as

the difference in the log-predictive likelihood of the two models at each time using

log p(rt|r1:t−1,MGARCH-DPM)− log p(rt|r1:t−1,MGARCH-BEKK-t). (4.56)

Positive values favour the MGARCH-DPM specification. This figure shows that the MGARCH-

DPM model almost always outperforms MGARCH-BEKK-t model. There are large differ-

ences when the returns are extreme.

Parameter Estimation

Table 4.7 reports the posterior mean of the constant parameters estimated using the bench-

mark model and the proposed model along with the %95 density intervals. Both models

show strong positive values for f11 and f22. The semiparametric model uses about 3.1 mix-

ture components in average to estimate the joint density of the S&P 500 and the oil market

returns. Figure 4.15 shows the estimated time-varying posterior mean of the correlation be-

tween S&P 500 and oil returns obtained from the benchmark and the nonparametric model.

Density Estimation

Figure 4.16 shows the posterior density of S&P500 at time t conditional on the realized value

of oil return at time t. This figure illustrates how the estimated density evolves over time.
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Scenario Analysis

Investors, fund managers, and regulators are interested in knowing how various potential

risks in other markets can be transmitted to the markets of their interest. For example, one

might want to know how a big shock in the oil market would contemporaneously affect the

conditional density of the US market returns. In this section, we use the benchmark model

and the proposed model to examine how the conditional density of the US market would be

affected by a contemporaneous shock in the oil market.

Figures 4.17 and 4.18 illustrate the contemporaneous spillover from a shock in the oil

market to the conditional density of the S&P 500 returns and compare the results with the

benchmark. In the benchmark model, the shifts in the conditional density in the cases of

positive and negative shocks in the oil market are almost the same amount but in opposite

directions. While in the proposed model, a positive 10% and a negative 10% shock in the

oil market spill over into the S&P 500 market asymmetrically. When the market is calm, a

positive shock in oil market shifts the contemporaneous conditional density of S&P 500 to

the right, and a negative shock in oil market shifts the contemporaneous conditional density

of S&P 500 to the left. These shifts are not the same amount for positive and negative

shocks, and the resulting conditional densities are skewed and leptokurtic. When the market

is volatile, a positive shock in oil market has almost no effect on the S&P 500 conditional

density contemporaneously while a negative shock in oil market shifts the contemporaneous

conditional density of S&P 500 to the left. Both positive and negative shocks result in a

fatter lower tail than the case with no shock to the oil market.

This also can be of interest to investors and policy makers to examine how a ±10% shock

in oil market propagates to the conditional density of the S&P TSX over time in the DPM-

GARCH model and benchmark model for volatile and calm periods. Figures 4.19 and 4.21

show risk transmission into the entire conditional density of the US market, and Figures 4.20

and 4.22 illustrate the corresponding log of the conditional densities in order to make tail
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comparison easier. The first plot on top left shows the transmission of a ±10% in oil market

into the S&P 500 market contemporaneously. The remaining three plots illustrate the lagged

spillover of these shocks into the S&P 500 market after one day (h=1), one week (h=5), and

one month (h=22). These plots show how the effect of a big shock in oil market on the S&P

500 market disappears as we go forward over time. The contemporaneous effect is the most

significant one.

We can use the proposed model to measure financial stress. For instance, conditional

on a 10% drop in oil market, what is the probability that U.S. market will realize a loss

more than 5%? To this end, we examine the contemporaneous and lagged effects of shocks

in oil market on the left tail of the conditional densities where the losses occur. Table 4.8

reports the effect of a drop in oil market on the probability of 5% loss in the U.S. market

contemporaneously and after one day, one week and one month at three different dates. In

general, the contemporaneous effect of a 10% drop in the oil market on the probability of

5% loss in the US market is more significant than the lagged effects, particularly during a

volatile period.

Spillover Effects on Value-at-risk

Table 4.9 reports the effect of a shock in oil market on the one-period-ahead value-at-risk

for $10,000 investment in S&P 500 at 5% level. In the semiparametric model, positive and

negative shocks both increase the predictive value-at-risk. The benchmark model underes-

timates the predictive value-at-risk of the investment in S&P 500 when we have a shock in

oil market.
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4.5 Conclusion

We propose a model to allow a shock in one market to influence the contemporaneous and

future (one-day-ahead, one-week-ahead, and one-month ahead) conditional density of the

other market. This model extends the literature on spillover effects or contagion effects that

focus on the transmission of shocks through moments to spillover effects on the conditional

density. We provide a general approach to assess different risk scenarios, contemporaneously.

With the speed of information transmission nowadays, it is beneficial for policymakers and

regulators to be able to determine the contemporaneous spillover from shocks in one market

to different aspects of the conditional density of the other market such as the conditional

moments, tails, and value-at-risk.

We apply the proposed model to study how a shock in oil market affects the conditional

density of S&P 500 returns and S&P TSX returns. The contemporaneous spillover effect

of a shock in oil market on the TSX and S&P 500 markets derived from the benchmark

is symmetric; the shifts in the conditional density in these two cases are almost the same

amount but in opposite directions. This is not the case with the semiparametric model. Using

the proposed model, we find that a positive 10% and a negative 10% shock in the oil market

spill over into the TSX and S&P 500 asymmetrically. When the market is calm, a positive

shock in oil market shifts the contemporaneous conditional density of TSX and S&P 500 to

the right, and a negative shock in oil market shifts the contemporaneous conditional density

of TSX and S&P 500 to the left. These shifts are not the same amount for positive and

negative shocks, and the resulting conditional densities are skewed and leptokurtic. When

the market is volatile, a positive shock in oil market has almost no effect on the TSX and

S&P 500 conditional density contemporaneously while a negative shock in oil market shifts

the contemporaneous conditional density of TSX and S&P 500 to the left. Both positive and

negative shocks result in a fatter lower tail than the case with no shock to the oil market.

We also study the effect of the shocks in oil market on the value-at-risk of an investment
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in S&P 500 and S&P TSX. Positive and negative shocks in oil market both increase the

predictive value-at-risk. The benchmark model underestimates the predictive value-at-risk

of the investment in the market portfolio when we have a shock in the oil market.

119



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

Mean Variance Skewness Kurtosis Min Max
TSX 0.0047 0.250 -0.646 9.010 -4.251 4.069

WT Oil Return 0.002 1.019 -0.030 5.479 -7.228 9.539

Table 4.1: Summary statistics of the daily returns on oil returns and S&P TSX, from 2000/01/03
to 2015/12/31 (4021 observations).

Model log(predictive likelihood)
MGARCH-DPM −976.20

MGARCH-BEKK-t −1033.10

log Bayes factor 56.90

Table 4.2: log The Predictive Likelihood of the last 800 observations. Data are daily returns on
oil returns and S&P TSX, from 2000/01/03 to 2015/12/31 (4021 observations).
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TSX MGARCH-DPM MGARCH-BEKK-t

Parameter Post. Mean %95 DI Post. Mean %95 DI
c0,11 0.025 (0.012, 0.031) 0.038 (0.029 , 0.048)
c0,12 0.002 (-0.010, 0.010) -0.004 (-0.036, 0.031)
c0,22 0.005 (0.000, 0.011) 0.060 (0.043, 0.082)
a0,11 0.149 (0.113, 0.189) 0.234 (0.205, 0.269)
a12 -0.036 (-0.064, -0.012) -0.028 (-0.089, 0.036)
a21 0.017 (0.009, 0.025) 0.004 (-0.008, 0.016)
a22 0.021 (0.008, 0.034) 0.165 (0.142, 0.189)
f0,11 0.928 (0.918, 0.938) 0.960 (0.947, 0.969)
f12 0.001 (-0.009, 0.015) 0.008 (-0.011, 0.029)
f21 -0.054 (-0.063, -0.044) -0.001 (-0.003, 0.002)
f22 0.965 (0.957, 0.974) 0.980 (0.972, 0.984)
µ1 – – 0.018 (0.010, 0.028)
µ2 – – 0.005 (-0.015, 0.029)
Γ11 – – 0.033 (0.007, 0.064)
Γ12 – – 0.005 (-0.006, 0.016)
Γ21 – – 0.034 (-0.022, 0.099)
Γ22 – – -0.035 ( -0.068, 0.00)
ν – – 8.56 (7.26, 10.1)
k 4.3 (3.24,6.02) – –

Table 4.3: Posterior mean and %95 density intervals (DI) for the parameters of MGARCH-DPM
and MGARCH-BEKK-t models. Data are daily return on oil and S&P TSX, ranging from Jan 3,
2000 to Dec 31, 2015 (4021 observations).

Date Model
One-period-ahead value-at-risk

-10 % Shock No Shock +10% Shock

15/01/2015
MGARCH-DPM 90.983 75.314 113.550

MGARCH-BEKK 74.025 70.450 73.826

30/11/2011
MGARCH-DPM 108.111 77.795 107.913

MGARCH-BEKK 89.596 80.573 81.262

14/10/2008
MGARCH-DPM 271.253 246.900 252.946

MGARCH-BEKK 275.046 263.175 258.500

06/09/2013
MGARCH-DPM 93.856 47.078 80.772

MGARCH-BEKK 78.788 48.788 79.280

Table 4.4: Effect of a shock in oil market on the one-period-ahead value-at-risk for $10,000 investment in
S&P TSX at 5% level. Data used for estimation are the daily return on oil and S&P TSX, ranging from Jan
3, 2000 to Dec 31, 2015 (4021 observations).
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Mean Variance Skewness Kurtosis Min Max
S&P 0.015 1.572 -0.181 6.892 -9.035 10.79

WT Oil 0.002 1.019 -0.030 5.479 -7.228 9.539

Table 4.5: Summary statistics of the daily returns on oil returns and S&P 500, from 2000/01/03
to 2015/12/31 (3965 observations).

Model log(marginal likelihood)
MGARCH-DPM −1217.693

MGARCH-BEKK −1261.147

log Bayes factor 44.058

Table 4.6: log Marginal Likelihood of the last 500 observations. Data are daily returns on oil
returns and S&P 500, from 2000/01/03 to 2015/12/31 (3965 observations).
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S&P 500 MGARCH-DPM MGARCH-t

Parameter Post. Mean %95 DI Post. Mean %95 DI
c0,11 0.21 (0.011,0.033) 0.104 (0.089,0.124)
c0,12 -0.004 (-0.012,0.005) -0.011 (-0.034,0.014)
c0,22 0.011 (0.006,0.016) 0.054 (0.035,0.071)
a0,11 0.113 (0.100,0.140) 0.255 (0.231,0.282)
a12 -0.009 (-0.019,0.000) -0.020 (-0.040,0.003)
a21 0.029 (0.020,0.038) 0.021 (-0.003,0.050)
a22 0.030 (0.021,0.038) 0.159 (0.140,0.181)
f0,11 0.943 (0.934,0.949) 0.952 (0.942,0.960)
f12 0.006 (0.002,0.010) 0.007 (0.000,0.014)
f21 -0.054 (-0.058,-0.051) -0.004 (-0.010,0.001)
f22 0.971 (0.967,0.973) 0.981 (0.976,0.985)
µ1 – – 0.022 (0.005,0.048)
µ1 – – 0.016 (-0.008,0.037)
Γ11 – – -0.050 (-0.079,-0.026)
Γ12 – – 0.001 (-0.018,0.021)
Γ21 – – 0.010 (-0.015,0.037)
Γ22 – – -0.035 (-0.070,-0.004)
k 3.1 (2.65,4.12) – –

Table 4.7: Posterior mean and %95 density intervals (DI) for the parameters
of MGARCH-DPM and MGARCH-t models. Data are daily return on oil from
http://www.eia.gov/dnav/pet/pet pri spt s1 d.htm, and S&P 500 from CRSP: https://wrds-
web.wharton.upenn.edu/wrds/ds/crsp/index.cfm, ranging from Jan 3, 2000 to Dec 31, 2015 (3965
observations).

Probability of 5% loss in the US market when we have
a 10% drop in the oil market:

Date Shock in oil market Contemporaneously After 1 day After 1 week After 1 month

15/01/2015
No shock 0.0000524 0.0000185 0.0000192 0.000548

-10% shock 0.00222 0.000824 0.00084 0.00221

10/12/2008
No shock 0.10863 0.11549 0.10687 0.09031

-10% shock 0.21112 0.13696 0.12384 0.10564

14/10/2008
No shock 0.08332 0.08865 0.08559 0.07846

-10% shock 0.18354 0.10802 0.10059 0.09135

Table 4.8: Probability of 5% loss in the US market when we have a 10% drop in the oil market. Data are
daily return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
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Date Model
One-period-ahead value-at-risk

-10 % Shock No Shock +10% Shock

15/01/2015
MGARCH-DPM 186.636 181.532 293.603

MGARCH-BEKK 174.951 158.038 162.662

30/11/2011
MGARCH-DPM 263.661 237.435 338.730

MGARCH-BEKK 262.201 238.509 233.432

14/10/2008
MGARCH-DPM 609.062 569.726 589.790

MGARCH-BEKK 645.990 572.552 598.257

06/09/2013
MGARCH-DPM 179.371 102.075 233.465

MGARCH-BEKK 131.033 100.590 93.460

Table 4.9: Effect of a shock in oil market on the one-period-ahead value-at-risk for $10,000 investment in
S&P 500 at 5% level. Data are daily return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015
(3965 observations).
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Figure 4.1: Time series of the daily returns on oil returns and S&P TSX, from 2000/01/03 to 2015/12/31
(4021 observations)
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Figure 4.2: First panel: Log Bayes facor for the last 800 days. Second and third panel: Time series of the
daily returns of oil returns and S&P TSX, from 2010/10/23 to 2015/12/31 (800 observations)
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Figure 4.3: Estimated correlation between oil return and S&P TSX. Data are daily return on oil and S&P
TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
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Figure 4.4: Posterior conditional density estimated using the semiparametric model. Data are daily return
on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
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Figure 4.5: Posterior conditional density in three dimension estimated using the semiparametric model.
Data are daily return on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
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Figure 4.6: Risk Scenario Analysis when the market is highly volatile (14/10/2008). Contemporaneous
spillover effect from a ±10% shock in oil market return to the conditional density of the S&P TSX. Data
are daily return on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).

130



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-3 -2 -1  0  1  2  3

C
o
n
d
.
 
D
e
n
s
i
t
y

TSX

Contemporaneous Effect in DPM

10% shock
-10% shock
No shock 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-3 -2 -1  0  1  2  3

C
o
n
d
.
 
D
e
n
s
i
t
y

TSX

Contemporaneous Effect in MGARCH-BEKK

10% shock
-10% shock
No shock 

-12

-10

-8

-6

-4

-2

 0

 2

-3 -2 -1  0  1  2  3
L
o
g
 
C
o
n
d
.
 
D
e
n
s
i
t
y

TSX

Log pdf

10% shock
-10% shock
No shock 

-12

-10

-8

-6

-4

-2

 0

 2

-3 -2 -1  0  1  2  3

L
o
g
 
C
o
n
d
.
 
D
e
n
s
i
t
y

TSX

Log pdf

10% shock
-10% shock
No shock 

Figure 4.7: Risk Scenario Analysis when the market is calm (15/01/2015). Comparing the contempora-
neous spillover effect from a ±10% shock in oil market return to the conditional density of the S&P TSX
derived from the DPM model and the benchmark model. Data are daily return on oil and S&P TSX, ranging
from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
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Figure 4.8: Risk Scenario Analysis when the market is highly volatile (14/10/2008). Propagation of a
±10% shock in oil market return to the conditional density of the S&P TSX in the semiparametric model.
Data are daily return on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the TSX
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the TSX
market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the TSX market after one week (h=5), and one month (h=22), respectively.
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Figure 4.9: Risk Scenario Analysis when the market is highly volatile (14/10/2008). Log of the conditional
density of S&P TSX if we have a ±10% shock in oil market return in the semiparametric model. Data are
daily return on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the TSX
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the TSX
market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the TSX market after one week (h=5), and one month (h=22), respectively.
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Figure 4.10: Risk Scenario Analysis when the market is calm (15/01/2015). Propagation of a ±10% shock
in oil market return to the conditional density of the S&P TSX in the semiparametric model. Data are daily
return on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the TSX
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the TSX
market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the TSX market after one week (h=5), and one month (h=22), respectively.
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Figure 4.11: Risk Scenario Analysis when the market is calm (15/01/2015). Log of the conditional density
of S&P TSX if we have a ±10% shock in oil market return in the semiparametric model. Data are daily
returns on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the TSX
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the TSX
market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the TSX market after one week (h=5), and one month (h=22), respectively.
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Figure 4.12: Lagged spillover of one 1% of oil shocks into the TSX volatility. Data used for estimation are
the daily return on oil and S&P TSX, ranging from Jan 3, 2000 to Dec 31, 2015 (4021 observations).
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Figure 4.13: Time series of the daily returns on oil returns and S&P 500, from 2000/01/03 to 2015/12/31
(3965 observations)
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Figure 4.14: First panel: Log Bayes facor for the last 500 days. Second and third panel: Time series of
the daily prices of oil returns and S&P 500, from 2013/10/23 to 2015/12/31 (500 observations)
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Figure 4.15: Estimated correlation between oil return and S&P 500. Data are daily return on oil and S&P
500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
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Figure 4.16: Realized conditional density. Data are daily return on oil and S&P 500, ranging from Jan 3,
2000 to Dec 31, 2015 (3965 observations).
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Figure 4.17: Risk Scenario Analysis when the market is highly volatile (15/10/2008). Contemporaneous
spillover effect from a ±10% shock in oil market return to the conditional density of the S&P 500. Data are
daily return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).

139



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-4 -2  0  2  4

C
o
n
d
.
 
D
e
n
s
i
t
y

S&P 500

Contemporaneous Effect in DPM

10% shock
-10% shock
No shock 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-4 -2  0  2  4

C
o
n
d
.
 
D
e
n
s
i
t
y

S&P 500

Contemporaneous Effect in MGARCH-BEKK

10% shock
-10% shock
No shock 

-12

-10

-8

-6

-4

-2

 0

 2

-4 -2  0  2  4

L
o
g
 
C
o
n
d
.
 
D
e
n
s
i
t
y

S&P 500

Log pdf

10% shock
-10% shock
No shock 

-12

-10

-8

-6

-4

-2

 0

 2

-4 -2  0  2  4

L
o
g
 
C
o
n
d
.
 
D
e
n
s
i
t
y

S&P 500

Log pdf

10% shock
-10% shock
No shock 

Figure 4.18: Risk Scenario Analysis when the market is calm (31/12/2013). Comparing the contempo-
raneous spillover effect from a ±10% shock in oil market return to the conditional density of the S&P 500
derived from the DPM model and the benchmark model. Data are daily return on oil and S&P 500, ranging
from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
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Figure 4.19: Risk Scenario Analysis when the market is highly volatile (15/10/2008). Propagation of a
±10% shock in oil market return to the conditional density of the S&P 500 in the semiparametric model.
Data are daily return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the S&P 500
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the S&P
500 market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the S&P 500 market after one week (h=5), and one month (h=22), respectively.
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Figure 4.20: Risk Scenario Analysis when the market is highly volatile (15/10/2008). Log of the conditional
density of S&P TSX if we have a ±10% shock in oil market return in the semiparametric model. Data are
daily return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the S&P 500
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the S&P
500 market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the S&P 500 market after one week (h=5), and one month (h=22), respectively.
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Figure 4.21: Risk Scenario Analysis when the market is calm (31/12/2013). Propagation of a ±10% shock
in oil market return to the conditional density of the S&P 500 in the semiparametric model. Data are daily
return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the S&P 500
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the S&P
500 market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the S&P 500 market after one week (h=5), and one month (h=22), respectively.
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Figure 4.22: Risk Scenario Analysis when the market is calm (31/12/2013). Log of the conditional density
of S&P 500 if we have a ±10% shock in oil market return in the semiparametric model. Data are daily
return on oil and S&P 500, ranging from Jan 3, 2000 to Dec 31, 2015 (3965 observations).
The first plot on top left shows the contemporaneous spillover effect of ±10% in oil market on the S&P 500
market. The second plot on top right shows the lagged spillover effect of ±10% in oil market on the S&P
500 market after one day (h=1). The third and fourth plots show the lagged spillover effect of ±10% in oil
market on the S&P 500 market after one week (h=5), and one month (h=22), respectively.
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Chapter 5

Essay 3: Do financial variables help

predict the conditional distribution of

the market portfolio?

The extent of predictability in stock market returns has been a very active area of research.

Predictability of market returns has important implications for asset allocation and risk

management. Predictability is usually examined by regressing the stock market returns on a

lagged variable such as dividend yield as the predictor. There are contradicting conclusions

on whether available information on the financial and macroeconomic variables can improve

out-of-sample forecasts of market excess returns. In theory, the predictability of stock returns

can be consistent with an efficient stock market if the predictable component reflects a time-

varying risk premium.

Some articles provide empirical evidence that lends support to the predictability of market

returns. Rozeff (1986); Fama and French (1988); Campbell and Shiller (1988); Cutler et al.

(1991); Hodrick (1992); Lettau and Ludvigson (2001); Balvers et al. (1990) and Rapach and

Wohar (2006) report that certain financial variables such as dividend yield, price-earnings
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ratio, and the ratio of the dividend yield to the short-term interest rate can explain a sig-

nificant fraction of movements in monthly, quarterly, or annual stock returns. Pesaran and

Timmermann (1995) find that during calm periods predictability of stock returns is low while

during more volatile periods predictability is increased and could be exploited by investors.

Keijsers (2017) studies the predictive power of dividend payout ratio in a mixture model

with parameter instability and shows that assuming stable parameters can lead to enormous

losses for the long-term investor.

On the other hand, many studies find evidence against the forecasting power of the fi-

nancial and macroeconomic variables (see for example Goetzmann and Jorion (1993); Nelson

and Kim (1993); Bossaerts and Hillion (1999); Ferson et al. (2003); Engstrom (2003); Goyal

and Welch (2003); Lettau and Ludvigson (2005); Ang and Bekaert (2006) and Welch and

Goyal (2008)). These studies either conclude that there is no strong evidence supporting

the out-of-sample forecasting power of these variables or show that the statistics for many

of these predictors are spuriously significant.

The studies mentioned above along with many others only investigate the predictability

of mean returns. For an extensive review see Rapach and Zhou (2013). However, out-of-

sample point forecasts of the conditional mean do not convey any information about the

uncertainty of the realized returns nor the spread and shape of the return distribution, while

this information may be valuable for investors. The economic value of a return forecast

depends not only on the point forecasts but the entire return distribution.

Although the value of predictors for the predictive mean is unclear, there is evidence that

predictors help explain other features of the predictive distribution. Schwert (1989), Engle

et al. (2012), Christiansen et al. (2012), Paye (2012), and Asgharian et al. (2013) use various

financial and macroeconomic factors to predict the volatility of stock returns. Allowing for

predictability of the conditional mean and the conditional variance of stock returns, Cenesi-

zoglu and Timmermann (2012) examine different forecasting models with different predictors
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using Welch and Goyal (2008) data. They show that using these predictors can improve the

economic performance of the prediction models upon constant mean and variance, although

this is not the case when the focus is only on statistical measures.

The literature on the predictability of the entire density of market returns using financial

and economic predictors is scarce. Some studies investigate this matter through predictabil-

ity of the conditional mean and conditional variance, as mentioned above. Cenesizoglu and

Timmermann (2008) propose a quantile approach to capturing predictability in the distribu-

tion of stock returns and find that many of the economic variables studied in the literature

are useful in predicting the tails of the return distribution but not necessarily its center.

In this chapter, instead of focusing only on the conditional mean, conditional variance,

or conditional quantiles of market excess returns, we investigate whether these financial

and macroeconomic variables are useful in predicting the one-period-ahead full density of

monthly US stock returns. We attempt to predict features of the market return density in

addition to what is captured by the first and second moments. This is particularly important

in financial and econometric applications where we usually have heavy tails, asymmetry, or

multi-modality. We provide evidence that these features can be important in applications

such as portfolio selection.

We consider a mixture model for the distribution of market excess returns over time

where the predictors are used not only in forecasting the conditional mean but in predicting

the shape of the conditional density of market returns. This is done by allowing the weights

of the mixture to be determined using available information on the predictors.

To implement this, we use a Bayesian nonparametric mixture model that allows the mix-

ing distribution to change with time. In general, we can allow time-variation in the weights

of the mixture, the atoms, or both. See for example MacEachern (1999); De Iorio et al.

(2004); Gelfand et al. (2005); Teh et al. (2006); Griffin and Steel (2006); Duan et al. (2007);

Rodriguez and ter Horst (2008). In this chapter, we assume that atoms are constant, and
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variation of the mixing distribution over time comes from the time-varying weights. To

determine the weights at each time, we use available information on financial and macroe-

conomic variables. This is a novel and flexible approach by which we examine whether the

financial/macroeconomic variables carry any useful information to predict the time-varying

density of the market excess returns.

The time-varying weights in the model allow the mixture density to change over time,

and this variation in density is in addition to the changes caused by a time-varying mean and

variance. The infinite mixture model with time-varying weights can reveal changes to the

density not captured by the first and second moments. This makes a considerable difference

in the statistical and economic performance of the model as we demonstrate in our empirical

results.

To give a picture of this difference, we look at an example where we use the dividend

payout ratio as the only predictor for market excess returns in the proposed model and in

the linear regression model where the predictor is only used in forecasting the conditional

mean. Figure 5.1 illustrates the conditional density estimated by the two models in two

different periods. This reveals a notable difference in the level of uncertainty around the

conditional mean. The conditional means, however, are almost the same for both models.

This figure also shows how using available information on dividend payout ratio changes the

density over time in the proposed model while using this information only in the conditional

mean does not affect the shape of the density over time considerably.

We use the predictors studied in Welch and Goyal (2008), updated until December 2015.

Besides studying the out-of-sample point forecasts of the conditional mean which show lit-

tle or no improvement over the benchmark models, we evaluate the improvement in the

predictive density of market excess return by log-predictive Bayes factors. Moreover, the

economic gains of the proposed model is illustrated by a market timing exercise as well as a

portfolio selection problem for an investor who maximizes her expected utility. Our results
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show that the statistical and economic performance of the proposed model is superior over

different benchmark models. The greatest predictive ability is found from the kitchen sink

model which includes all predictors under study. We also illustrate how these financial and

macroeconomic variables are useful in predicting the conditional density, the conditional

moments and the conditional quantiles.

The remainder of the chapter is structured as follows. We begin by theoretical settings of

the proposed model and the posterior sampling steps in Section 5.1. Section 5.2 presents sim-

ulation results, and applications of the proposed model are found in Section 5.3. Section 5.4

concludes.

5.1 Model Specification

The question under study is whether stock returns can be predicted using a set of financial

and macroeconomic variables. To examine the predictive power of a variable, researchers

mainly focus on the conventional statistical criteria such as root mean squared forecasting

errors of the predicted mean. By far the most popular model in studying the predictability

of market returns using financial and economic variables is the following linear regression

model

yt = xt−1µ+ et (5.1)

where yt is the market return in excess of the risk-free rate, xt−1 denotes a row vector of the

lagged predictors, including 1 for the intercept term, used to forecast the conditional mean

of market returns, and et is the error vector (innovation) usually assumed to be i.i.d with

mean equal to zero. µ is the vector of regression coefficients including the intercept. This

model is estimated, and the in-sample and out-of-sample forecasting power of the prediction

model is usually compared with the constant mean model. The constant mean model is the

primary benchmark in the literature and corresponds to the case where no predictor is used
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in Equation (5.1) except for an intercept.

In contrast to Equation (5.1), the volatility could be time-varying (e.g., following a

GARCH process). Some articles study predictability in the conditional volatility through en-

tering the predictors in the volatility of the market returns (see for example Schwert (1989),

Christiansen et al. (2012), Paye (2012), and Asgharian et al. (2013)). One example is given

in the following specification

yt = xt−1µ+ et et ∼ N (0, σ2
t ) (5.2)

σ2
t = α0 + xt−1α1 + δ

et
σt

+ γσ2
t−1

The models in Equations (5.1) and (5.2) focus on the predictability of the conditional

mean and volatility but maintain the same innovation density for et. However, the density of

et may change over time as well. In this chapter, instead of focusing only on the predictive

mean or variance of market excess returns, we investigate the predictability of the entire

density which provides a complete measure of the uncertainty around the predictive mean;

the whole distribution for all possible outcomes.

To this end, we assume an infinite mixture model for the distribution of market excess

returns over time. The predictors are used not only in forecasting the conditional mean but

in predicting the general shape of the conditional density of market returns. This is done

by allowing the weights of the mixture to be determined using available information on the

predictors.

5.1.1 An Infinite Mixture Model with Time-varying Weights

We propose a novel approach to use different financial and macroeconomic variables to

estimate the time-varying predictive density of market excess returns. The density of excess
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returns is assumed to follow

ft(y) =

∫
f(y|θ)dGt(θ), t = 1, ..., T, (5.3)

where yt is the market excess return at time t, f(.|θ) is the kernel density with parameters

θ, and Gt is the time-varying mixing distribution. Gt can be continuous or discrete. Here,

we focus on the discrete case. To allow the mixing distribution, Gt, to change over time, we

can introduce dependence in the weights, the atoms, or both. Define,

Gt(.) =
∞∑
j=1

ωj(t)δθj(t)(.) (5.4)

ωj(t) = vj(t)
∏
l<j

(1− vl(t))

where 0 ≤ ωj(t) ≤ 1 and
∑∞

j=1 ωj(t) = 1 for all t, and δθj(t)(.) denotes a point mass at θj(t).

This is the general stick-breaking model (MacEachern, 1999; Rodriguez and ter Horst, 2008;

Griffin and Steel, 2006). θj(t)s are independent and identically distributed sample paths

from a stochastic process, and vj(t)s are i.i.d draws from a distribution with support over

(0, 1)1.

The general stick-breaking prior can be simplified by introducing dependence only in the

weights (constant atoms), or in the atoms (constant weights). Constant weight models are

usually computationally simpler but lack flexibility (MacEachern, 2000). In this chapter, we

assume that the atoms are constant over time, and introduce time-variation in the weights in

a model specification called Dependent Probit Stick-Breaking Prior put forward by Rodriguez

and Dunson (2011). The dependent probit stick-breaking prior is similar to the model in

Equation (5.4) when atoms are constant and vj(t)s are determined by probit transformations

of normal random variables:

1In the literature, one common way to define the time-varying weights is to let the sticks, vj(t)s, be i.i.d.
realizations from a stochastic process B(aj(t), bj(t)) where B(a, b) denotes the beta distribution.
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Gt =
∞∑
j=1

ωj(t)δθj , (5.5)

ωj(t) = vj(t)
∏
l<j

(1− vl(t)), (5.6)

vj(t) = Φ(αj(t)), j = 1, 2, ... (5.7)

where Φ(.) denotes the cumulative distribution function for the standard normal distribution,

{αj(t)}∞j=1 have Gaussian densities, and θjs are i.i.d draws from the base measure G0; θj
i.i.d∼

G0, j = 1, 2, .... The probit transformations ensure that the weights are well-defined and

satisfy 0 ≤ ωj(t) ≤ 1 and
∑∞

j=1 ωj(t) = 1 for all t.

We propose a nonparametric mixture model based on the dependent stick-braking prior of

Rodriguez and Dunson (2011) where available information on the predictors, xt−1, is used in

determining the time-varying sticks, vj(t)s, and hence in estimating the time-varying density

of the market excess return at time t.

The proposed model is specified as follows

yt ∼ ft(y) =
∞∑
j=1

ωj(t)N (yt|xt−1µj, σ
2
t ν

2
j ), t = 1, ..., T (5.8)

σ2
t = α + δε2t−1 + γσ2

t−1, where εt = yt − η (5.9)

(µj, ν
2
j )

i.i.d∼ G0, j = 1, 2, ... (5.10)

ωj(t) = Φ(xt−1βj)
∏
j′<j

(1− Φ(xt−1βj′)), j = 1, 2, ... (5.11)

G0 ≡ N (µ|µ0, V0)× IG(ν2|s0

2
,
v0

2
) (5.12)

βj
i.i.d∼ N (β0, B0), j = 1, 2, ... (5.13)
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where T is the number of observations. The vector of the predictors at time t−1 including 1

for the intercept term, xt−1, the vector of the unknown coefficients in the conditional mean,

µ, and the vector of the unknown coefficients in probit transformations, βj, are (p + 1)-

dimensional, where p is the number of predictors. The vector of the predictors at each time,

xt, includes 1 and the predictors of interest. For example, when examining the predicting

power of the dividend payout ratio, dt
pt

, we set xt = (1 dt
pt

). βjs are the unknown parameter

vectors describing how the weights of the mixture density respond to different values of the

predictors.

Here, the kernel density is Gaussian. The mixing is over µj and the component νj of the

variance, which are i.i.d draws from the base measure G0 and constant over time. The second

component of the variance, σt, captures volatility clustering over time. Equation (5.9) de-

notes the GARCH(1,1) process for σ2
t where the parameter η permits a nonlinear asymmetric

response to the shocks, εt. The component-specific parameter νj is a positive number which

scales σt to yield a better estimate of the density of yt. Variation of the mixing distribution

over time comes from the time-varying weights. The time-varying weights have stick-breaking

structure where the time-varying sticks are determined by probit transformations of a linear

combination of the lagged predictors, Φ(xt−1βj).

Equation (5.12) shows the base measure that we use for the component-specific parame-

ters, µj and νj. IG(s0, v0) represents an inverse gamma distribution with shape parameter

s0 and scale parameter v0
2. The vector of coefficients βj in the probit transformations for

each mixture component j has a normal prior (Equation (5.13)).

Available information on the predictors, xt−1, in addition to being used in predicting the

conditional mean of market returns (where the majority of the literature has focused), are

2The inverse gamma distribution’s probability density function is defined over the support x > 0

f(x|α, β) =
βα

Γ(α)
x−α−1exp(−β

x
).

Here, Γ(.) denotes the gamma function.

153



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

employed to predict the time-varying mixture weights. This translates into non-constant

weights if the predictors are statistically and practically useful in forecasting the entire

predictive density. If a predictor conveys no information about the predictive density of

market returns, the corresponding βjs will have estimated values near zero. If none of the

predictors are significant in forecasting the weights, we will have an infinite mixture model

with weights that do not change significantly over time, which in practice is equivalent to a

mixture model with constant weights.

The proposed model (Equations (5.8)-(5.13)) nests several special cases that we use as

our benchmarks. The first case is when xt−1 has only one element equal to 1 (i.e., when we

do not use any predictor; p=0). This case is equivalent to an infinite mixture model with

constant weights. The second case is when the mixture has only one component (ω1(t) = 1,

ωj(t) = 0,∀j > 1 and ν1 = 1.). This case is equivalent to a linear regression model with

time-varying mean and time-varying variance. The third case is achieved from the second

case where variance does not change over time (in GARCH specification we have δ = 0,

and γ = 0). This case is equivalent to a Gaussian linear regression model with time-varying

mean and constant variance. The fourth case is obtained from the third case when we use

no predictor in the conditional mean. This case is equivalent to linear regression model

with constant mean and constant variance which is the main benchmark considered in the

literature.

In Table 5.1, we introduce the benchmarks against which we compare the statistical and

economic performance of the proposed model later in our empirical experiments. The first

three models are popular linear regression models with constant/time-varying mean and

volatility. M0 is the constant mean and constant variance model and is analogous to the

prevailing mean model of Welch and Goyal (2008). No predictor is used in this model. In

M1, we use the predictors in the conditional mean. M2 extendsM1 to allow for time-varying

volatility through a GARCH(1,1) process.
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The next benchmark model we consider,M3, is an infinite mixture model in which, unlike

the proposed model in this chapter, weights are fixed; the vector of predictors includes only 1.

Our proposed model is an infinite mixture model where the predictors are used in predicting

the conditional mean and also in forecasting the time-varying weights of the mixture. We

could only use the predictors to forecast the weights of the mixture since it is possible

that adding new parameters to the model in the conditional mean might only increase the

dimension of the problem without adding any statistical or economic value. Therefore, in

our empirical studies, we consider two versions of the proposed model, M4 and M5.

Model Description

Benchmark Models
M0 Constant mean and constant variance yt = µ+ et, et ∼ N (0, σ2)

M1 Time-varying mean and constant variance yt = xt−1µ+ et, et ∼ N (0, σ2)

M2 Time-varying mean and variance
yt = xt−1µ+ et, et ∼ N (0, σ2

t )
σ2
t = α + δε2t−1 + γσ2

t−1

M3 Infinite mixture with constant weights
yt = µt + et, et ∼ N (0, σ2

t ν
2
t )

σ2
t = α + δε2t−1 + γσ2

t−1, (µt, ν
2
t ) ∼ G

Proposed Models

M4 Infinite mixture with time-varying weights
yt = µt + et, et ∼ N (0, σ2

t ν
2
t )

σ2
t = α + δε2t−1 + γσ2

t−1, (µt, ν
2
t ) ∼ Gt

M5
Infinite mixture with time-varying weights yt = xt−1µt + et, et ∼ N (0, σ2

t ν
2
t )

and predictors in the conditional mean σ2
t = α + δε2t−1 + γσ2

t−1, (µt, ν
2
t ) ∼ Gt

Table 5.1: List of the benchmark models and the proposed models. In all models, yt is the
market excess return and xt is a row vector of the predictors (financial or macroeconomic variables)
including 1 for the intercept.
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5.1.2 Sampling Steps

To estimate the unknown parameters in Equation (5.8)-(5.13), we apply a Gibbs sampler

along with the slice sampler of Walker (2007), the collapsed sampler of Rodriguez and Dunson

(2011), and Metropolis-Hastings sampler. In the following and other sections of the chapter

yj:t denotes {yj, yj+1, ..., yt}.

Step 1 The posterior distribution of (µj, v
2
j ), j = 1, ..., K: Assuming the conjugate pri-

ors G0 ≡ N (µ|µ0, V0) × IG(v2|, s0
2
, v0

2
), sampling from the posterior distribution of

the component-specific parameters is straightforward. First, we introduce indica-

tor variables {ξt}Tt=1 such that ξt = j if and only if observation yt is sampled from

component j. Then, we make the following transformation:

σ−1
t yt = σ−1

t xt−1µt + εt, εt ∼ N(0, v2
t ).

Then we can use the linear regression results to take posterior draws for (µj, v
2
j ).

ν2
j |y1:T , ξ, µj ∼ IG

(
nj + v0

2
,
s0 +

∑
ξt=j

(σ−1
t yt − σ−1

t xt−1µj)
2

2

)
,

µj|y1:T , ξ, ν
2
j ∼ N (µ̄, V̄ ), (5.14)

in which

V̄ =

(
V −1

0 +
∑
ξt=j

xt−1x
′
t−1

σ2
t ν

2
j

)−1

, (5.15)

µ̄ = V̄

(∑
ξt=j

xt−1yt
σ2
t ν

2
j

+ V −1
0 µ0

)
. (5.16)

Step 2 To overcome the infinite-dimensionality of the problem, we apply the slice sampler

introduced in Walker (2007) by defining auxiliary variables ut such that
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f(yt, ut|W ) =
∞∑
j=1

1(ut < ωj(t))N (yt|xt−1µj, σ
2
t ν

2
j ). (5.17)

then the joint posterior is proportional to

ΠT
t=1p(ω1(t), ..., ωK(t))ΠK

j=1p(µj, νj)Π
T
t=11(ut < ωξt(t))N (yt|xt−1µξt , σ

2
t ν

2
ξt)

K is the smallest number that satisfies the condition 1 −
∑K

j=1 ωj(t) < ut, for all

t. Details are not discussed here. We update the auxiliary variables {ut}Tt=1 as in

Equation 5.18, and K is the smallest number that satisfies Equation 5.19.

ut|ξ ∼ U(0, ωξt(t)) (5.18)

max
t
{1−

K∑
j=1

ωj(t)} < min{u1, ..., uT} (5.19)

Additional ωj(t) and (µj, νj) will need to be generated from the priors if K is incre-

mented.

Step 3 Updating ξt, t = 1, ..., T ,

p(ξt = j|y1:T ) ∝ 1(ωj(t) > ut)N (yt|xt−1µj, σ
2
t v

2
j ), j = 1, ..., K (5.20)

In order to sample the value of βjs, we use a data augmentation scheme developed in

Rodriguez and Dunson (2011) which allows us to implement another Gibbs sampling

scheme. We first define the set of conditionally independent auxiliary variables

zj(t) ∼ N (xt−1βj, 1). If we define ξt = j if and only if zj(t) > 0 and zr(t) < 0,∀r < j,
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then we have

p(ξt = j) = p(zj(t) > 0, zr(t) < 0,∀r < j) = Φ(xt−1βj)
∏
j′<j

(1− Φ(xt−1βj′)) = ωj(t)

Then the posterior for {zj(t)}t,j is written as

zj(t)|ξt ∼


N (xt−1βj, 1)1R− for j < ξt

N (xt−1βj, 1)1R+ for j = ξt

(5.21)

where N (µ, v)1A denotes the truncated normal distribution over A.

Then conditional on the augmented variables, we update {βj}Kj=1:

βj|zj,1:T ∼ N (β̄j, B
−1
j ) (5.22)

β̄j = B−1
j

∑
t|ξt≥j

xt−1zj(t) +B−1
0 β0


Bj =

∑
t|ξt≥j

xt−1x
′
t−1 +B−1

0


Step 4 Updating GARCH parameters: Assuming p(α, δ, γ, η) as the prior for GARCH pa-

rameters, the posterior will be written as

p(α, δ, γ, η|y1:T ) ∝ p(α, δ, γ, η)
T∏
t=1

N(yt|xt−1µξt , σ
2
t v

2
ξt) (5.23)

which is not of standard form, and we apply a Metropolis-Hastings sampler.
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5.1.3 Predictive Density Estimation

The predictive density is defined as the conditional distribution of yT+1 given y1:T where all

parameter uncertainty has been integrated out. This is the key quantity used in forecasting

and model comparison.

At each iteration g of the MCMC algorithm, we have the following set of sampled pa-

rameters

{(µ(g)
j , ν

(g)
j ), β

(g)
j , {z(g)

j (t)}Tt=1}K
(g)

j=1 , {ξ
(g)
t , u

(g)
t , σ

(g)
t }Tt=1, g = 1, ...,M

where M is the number of the MCMC iterations. At each iteration g of the algorithm, a

draw of GT+1|y1:T can be written as

G
(g)
T+1 =

K(g)∑
j=1

ω
(g)
j (T + 1)δ

(µ
(g)
j ,ν

(g)
j )

+

1−
K(g)∑
j=1

ω
(g)
j (T + 1)

G0(µ, ν2), g = 1, ...,M (5.24)

Combining this with the normal kernel gives us the predictive density of yT+1 at each

iteration g as

p(yT+1|y1:T , G
(g)
T+1) =

K(g)∑
j=1

ω
(g)
j (T + 1)N (yT+1|xTµ(g)

j , (σ2
T+1)(g)ν

(g)
j )

+

1−
K(g)∑
j=1

ω
(g)
j (T + 1)

∫ N (yT+1|xTµ, (σ2
T+1)(g)ν2)G0(µ, ν2)dµdν

(5.25)

At each iteration, yT+1 has a normal density with parameters specific to the component

j with weight ω
(g)
j (T + 1), j = 1, . . . , K(g) or follows a Normal density with new parameters

(µ, ν2) drawn from the base measure, G0, with weight 1−
∑K(g)

j=1 ω
(g)
j (T + 1). The predictive

density of yT+1 is estimated by averaging Equation (5.25) over all iterations of the MCMC
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algorithm.

p(yT+1|y1:T ) =
1

M

M∑
g=1

p(yT+1|y1:T , G
(g)
T+1) (5.26)

5.2 Simulation Results

In this section, the proposed model is tested on simulated data. The primary goal is to assess

how well the model can estimate the time-varying weights of the mixture density over time.

First, we simulate σ2
t for t = 1, 2, ..., 500 from a univariate GARCH(1,1) process, σ2

t =

α + δε2t−1 + γσ2
t−1, with σ2

0 = 0.01 and parameters α = 0, δ = 0.005, γ = 0.90, and

εt
i.i.d∼ N (0, 0.0003). Then, the data (yt, t = 1, ...500) is simulated according to a mixture of

two Normal densities.

N (−0.4, 0.2σ2
t ), N (0.5, 0.3σ2

t ) (5.27)

To draw the data, yts, from the mixture density, we need to have ω(t) = (ω1(t), ω2(t))

for all t. To this end, we first generate the vector xt−1 = (1, x∗t−1) for all t where x∗t s

are from a Guassian density. Then, the 2-vectors β1 and β2 are generated from Guassian

densities, and the weights are calculated using the stick-breaking structure given in Equation

(5.11). After normalizing the weights so that ω1(t) + ω2(t) = 1 for all ts, we generate our

sample yt, t = 1, ...500 from a mixture of two normal densities given in Equation (5.27).

This process produces data observations (xt, yt), t = 1, ..., 500 to which the proposed model

(M5) is applied, where xt−1s are used as values of the predictors over time to forecast the

time-varying weights.

The analysis reported here is based on 15000 iterations of the MCMC algorithm. The

first 5000 draws were dropped as burn-in and the following 10000 used for inference. The

average acceptance rate of the GARCH parameters is about 30%. Table 5.3 displays the
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posterior mean and 95% density intervals (DI) for the GARCH parameters in proposed

model, M5. The posterior mean of the number of components in the mixture used to

estimate the unknown density is 2.65.

The proposed infinite mixture with time-varying weights, M5, can potentially have an

infinite number of mixture components. But as the estimated weights in Figure 5.2 show,

only two components with weights significantly different than zero are recognized. The left

(right) plots illustrate the estimated and true weights of the first three components with the

highest weights for times that have been generated from the first (second) mixture component

in Equation (5.27). Note that the true weights of the third components are zero. As we see

in Figure 5.2, the weight forecasts using the proposed model capture the truth well.

If instead we apply the infinite mixture model with constant weights, M3, to the sim-

ulated data, the weights are constant over time. Figure 5.3 illustrates the estimated and

true weights of the first three components with the highest weights for times that have been

generated from the first (left plots) and second (right plots) mixture component. As we see,

the estimated weights are constant over time and consequently the same in the left and right

plots. The estimated weights are far from the true weights.

This study shows how the infinite mixture model with time-varying weights,M5, is able

to forecast the true weights of the mixture density over time using the predictor variables if

they are useful in determining the weights.

5.3 Empirical Results

5.3.1 Data

In our empirical analysis, we use monthly data on stock returns and a set of predictors

studied in Welch and Goyal (2008) from 1927 Jan to 2015 Dec (1067 observations). We use

monthly data for S&P 500 returns (continuously compounded including dividends) minus
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3-month T-bill as the market excess return. The annual mean and variance of the excess

market returns are 6.02% and 42.26%, respectively, for the full sample.

• Stock Variance (svar): Sum of squared daily returns on the S&P 500.

• Earnings Price Ratio (e/p): The difference between the log of earnings and the log of

prices.

• Dividend Payout Ratio (d/e): The difference between the log of dividends and the log

of earnings.

• Dividend Price Ratio (d/p): The difference between the log of dividends and the log

of prices.

• Dividend Yield (d/y): The difference between the log of dividends and the log of

lagged prices.

• Book-to-Market Ratio (b/m): The ratio of book value to market value for the Dow

Jones Industrial Average.

• Treasury Bill (tbl)

• Long Term Yield (lty)

• Long Term Spread (tms): The difference between the long term yield and treasury

bill.

• Default Yield Spread (dfy): The difference between BAA yield and AAA yield.

• Inflation (infl)

• Net Equity Expansion (ntis): The ratio of 12-month moving sums of net issues by

NYSE listed stocks divided by the total end-of-year market capitalization of NYSE

stocks.
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• A Kitchen Sink Regression (all): This includes all the aforementioned variables.

• Changes in industrial production (IP)

5.3.2 Estimates

The following priors are used in estimation. In linear regression models, µ ∼ N (0, 0.1Ip).

For GARCH parameters, we set (α, δ, γ, η) ∼ N (0, 100I4). In the probit stick-breaking

models, for the hyper-parameters of the base measure G0, we set µ0 = 0p, V0 = 10Ip, v0 = 2,

and s0 = 8. We set N (0, 0.01Ip) as the prior for the vector of coefficients in the probit

transformation, βjs, reducing the effect of less informative predictors.

Table 5.4 reports posterior mean and 95% density intervals for the GARCH parameters

in the proposed model, M5, when we use different predictors. For example, the first row

correspond to the case where we use the stock variance (svar) as the only predictor; xt =

(1 x∗t ) = (1 svart). There is clear evidence of GARCH-type heteroskedasticity in the data.

This table also reports the posterior mean of K, the number of alive components in the

mixture used to estimate the unknown predictive density. On average, the density of market

returns is estimated using about 5-9 distinct components. Estimates of η are consistently

positive indicating a larger response to the conditional variance from negative shocks.

5.3.3 Out-of-sample Point Forecasts of the Conditional Mean

In this section, we examine the out-of-sample performance of the proposed model (ability

to predict the conditional mean) and compare it with the out-of-sample performance of the

benchmark models. The out-of-sample point forecasts are generated using a 30-year rolling

window of the observations.

Table 5.5 displays the out-of-sample root mean squared forecasting error of the infinite

mixture modelM5 with time-varying weights and predictors in the conditional mean divided
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by that obtained by the candidates. The candidates are the benchmark models (M0 toM3)

and the proposed model when the predictors do not enter in the conditional mean (M4). The

results cover the out-of-sample period 1970-Jan to 2015-Dec (540 observations). Values less

than one indicate thatM5 outperforms the candidate, producing a lower root mean squared

forecasting error. For example, the second column compares the out-of-sample performance

of the infinite mixture model with time-varying weights and predictors in the conditional

mean,M5, with that of time-varying mean and constant variance model,M1. In the second

column, each row compares M5 with M1 when we use a specific predictor in both models.

For example, the second row corresponds to the case where we use dividend payout ratio

(d/e) as the only predictor; xt = (1 x∗t ) = (1 dt/et). As we see, there is little or no difference

in forecasting power of the two models when we focus on the predictability of the conditional

mean using the same predictor in both models. ComparingM5 with other candidates leads

to the same conclusion.

Figures 5.4 and 5.5 demonstrate the time series of the cumulative out-of-sample root

mean squared forecasting errors of the probit stick-breaking model with time-varying weights,

M5, divided by that of the constant mean and variance model,M0, for different predictors.

Looking at these figures, we are able to diagnose months with better (decreasing graph)

or worse (increasing graph) relative performance of M5 over the out-of-sample forecasting

period. In general, all figures show increasing pattern, approaching one after 1990 (except

for the inflation). This translates into no strong preference to any of the models, M5 or

M0. For the inflation case, the time series pattern illustrates superior performance of M5

relative to M0 most of the times throughout the out-of-sample period.

Comparison of the models based on the root mean squared forecasting errors focuses on

the accuracy of point forecasts and the predictability of the conditional mean. In the next

section, instead of studying the predictive mean, we compare different models based on their

ability to forecast the entire density of market returns.

164



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

5.3.4 Predictive Likelihood

To compare the performance of the models, we calculate each model’s predictive likelihood.

The predictive likelihood for yL:T , L < T is expressed in terms of the one-step-ahead predic-

tive likelihoods,

m(yL:T |y1:L−1,M) = ΠT
t=Lp(yt|y1:t−1,M) (5.28)

where M denotes a particular model, and L > 1 is chosen to eliminate the influence of

the priors on model comparison. The model with the larger value of predictive likelihood is

the one most consistent with the data. We can approximate the one-step-ahead predictive

likelihoods, p(yt|y1:t−1,M), by averaging the data density over draws of the unknown param-

eters conditional on the data history y1:t−1. This integrates out parameter and distributional

uncertainty as

p(yt|y1:t−1,M) =

∫
p(yt|Θ, y1:t−1,M)p(Θ|y1:t−1,M)dΘ (5.29)

≈ 1

M

M∑
g=1

p(yt|Θ(g), y1:t−1,M)

where Θ denotes the model parameters, Θ(g) is a posterior draw from p(Θ|y1:t−1,M), and

p(yt|Θ(g), y1:t−1,M) is the data density given Θ(g) and y1:t−1 for model M. Note that we

are able to compute σt at each iteration of the MCMC since we have σt−1 and the GARCH

parameters: σ2
t = α + δε2t−1 + γσ2

t−1.

Based on Equation (5.29), the predictive likelihood for the proposed model is estimated

as

p(yt|y1:t−1,M5) ≈ 1

M

M∑
g=1

N (yt|µ(g)

ξ
(g)
t

, (σ
(g)
t v

(g)

ξ
(g)
t

)2). (5.30)
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At each iteration g, ξ
(g)
t is drawn from one of the K(g) + 1 components with weights ω

(g)
j (t)

j = 1, . . . , K(g) and 1−
∑K(g)

j=1 ω
(g)
j (t). When ξ

(g)
t = K(g) +1, a new pair of parameters (µ, ν2)

is drawn from the base measure G0.

Table 5.6 reports the values of the log-predictive likelihoods for different models. Among

all models studied here, the infinite mixture model with time-varying weights and predictors

in the conditional mean, M5, when we use all predictors (the kitchen sink case), has the

largest value of the predictive likelihood and hence is the most consistent with the data.

To compare the proposed model with any of the candidates when we use the same pre-

dictors in both models, we compute the log-Bayes factor for the proposed model against

the candidate as the ratio of the predictive likelihoods (Equation 5.31). The candidates are

the benchmark models (M0 to M3) and the proposed model when the predictors are not

entered in the conditional mean (M4).

log Bayes factor of M5 vs M = log
m(yL:T |y1:L−1,M5)

m(yL:T |y1:L−1,M)
(5.31)

Positive values indicate that M5 produces better density forecasts relative to the candi-

date model, and a log-Bayes factor bigger than 5 is a very strong evidence for outperformance

of M5 against the candidate model. Table 5.7 reports the values of the log-Bayes factor of

the infinite mixture model with time-varying weights and predictors in the conditional mean,

M5, versus the candidate model when both models use the same predictor. Each row com-

paresM5 with the candidate when we use a specific predictor in both models. For example,

the second row corresponds to the case where we use dividend payout ratio (d/e) as the only

predictor; xt = (1 x∗t ) = (1 dt/et). This row shows that when we use dividend payout ratio

as the only predictor, M5 dominates all candidate models.

Compared to the constant mean and variance model, M0, and the time-varying mean
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model, M1, the results strongly support the proposed model when we use any of the pre-

dictors. Column 4 shows that even after the GARCH effects are accounted for (M2), the

time-varying mixture model, M5, improves density forecasts.

The log-Bayes factor ofM5 versusM3 (column 5) shows how allowing the weights of the

infinite mixture model to be determined by available information on predictors can improve

the performance of the model relative to when we have an infinite mixture model with

constant weights over time. Almost in all individual predictive models (except net equity

expansion), using the predictor in predicting the weights of the mixture density improves the

performance of the model. Our results reveal the stronger predictive ability for the kitchen

sink case, the stock variance, the dividend payout ratio, the earning price ratio, and the

dividend price ratio.

The log-Bayes factor of M5 versus M4 (the last column) shows whether using the pre-

dictive variable in predicting the conditional mean of the density in addition to using it in

predicting the weights of the mixture density adds any value to the model. In general, the

absolute values are smaller than 1 (except for the kitchen sink case), showing no significant

preference of the two models. For the kitchen sink case, the difference in log-predictive like-

lihood is 3.862. This means that using all predictors together in predicting the conditional

mean of the density in addition to using them in predicting the weights of the mixture density

improves the performance of the model in spite of increasing the model dimension.

Table 5.7 compares different models based on the entire log-predictive likelihood criteria

where all predictions of the sample contribute equally to the criteria. In practical applications

such as risk management, the ability of the models to predict the extremes might be more

interesting. Here, we examine the accuracy of the proposed model in describing the left tail

of the return distribution. Concentrating on the extreme events, we define the tail predictive

likelihood criteria to compare the proposed model with the benchmarks.
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mα(yL:T |y1:L−1,M) = ΠT
t=L

p(yt|y1:t−1,M)1{yt<zα}∫ zα
−∞ f(v|y1:t−1,M)dv

(5.32)

' ΠT
t=L

1
M

∑M
g=1N (yt|µ(g)

ξ
(g)
t

, (σ
(g)
t v

(g)

ξ
(g)
t

)2)1{yt<zα}

1
M

∑M
g=1 Φ(

zα−µ(g)
ξ
(g)
t

σ
(g)
t v

(g)

ξ
(g)
t

)

(5.33)

where zα is the lower α% quantile of the sample. 1{yt<zα} equals 1 if yt < zα and equals

0 otherwise. The division by the integration constant
∫ zα
−∞ f(v|y1:t−1,M)dv normalizes the

density on the tail region (Diks et al., 2011), and Φ(.) denotes the cumulative distribution

function for the univariate standard normal.

The second column of Table 5.8 reports the log-Bayes factor of the proposed model,

M5, versus the time-varying mean and constant variance model, M1. The results are for

L = 100 and α = 0.05. This table illustrates outperformance of the proposed model in

predicting the extreme events. To examine whether this ourperformance is related to the

time-varying weights or is only because of the GARCH structure of the conditional variance,

we also report the log-Bayes factor of the proposed model,M5, versus the time-varying mean

and variance model,M2, in the third column. The results strongly supportM5 againstM2

which shows using these financial variables in predicting the weights of the mixture improves

the predictive ability in the lower tail.

Weights over time

The difference between the infinite mixture model with constant weights and the infinite

mixture model proposed in this chapter is that in the latter the weights of the mixture

density at each period are potentially predicted by the available information on different

financial and macroeconomic variables. Since values of these predictors change over time,

we expect the predicted weights to change over time as well provided that these predictors
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are useful in forecasting the weights of the mixture density.

For the infinite mixture model with constant weights,M3, the weights do not change over

time. Figure 5.6 illustrates the posterior mean of the weights of the first five components of

the mixture density with the highest weights over time predicted byM3. When we estimate

M5 using a predictor x∗t (xt = (1 x∗t )), if the predictor is useful in forecasting the weights,

the weights will not be constant over time anymore. For example, Figure 5.7 illustrates the

weights over time estimated byM5 when we use the dividend payout ratio as the predictor,

xt = (1 dt/et). The predicted variation of weights over time results in a more accurate

predictive density.

We illustrate the weights predicted by M5 for different predictors (Figures 5.7-5.22).

These figures show that some of these predictors such as the kitchen sink case, the stock

variance, the dividend payout ratio, the earning price ratio, and the dividend price ratio have

strong predictive ability while the remaining variables seem not useful in forecasting the time-

varying weights, rendering almost constant weights over time. The predicted variation of

weights over time results in more accurate predictive densities as we illustrated in Table 5.7.

Density over time

In this section, we illustrate estimates of the predictive density of the market excess return

obtained by the proposed model and the benchmarks. The time-varying weights in the

proposed model make the mixture density change over time and this variation in density

is in addition to the changes caused by the time-varying conditional mean and conditional

variance. The infinite mixture model with time-varying weights and predictors in the con-

ditional mean, M5, is able to reveal changes to the density not captured by the first and

second moments which are overlooked by the linear regression models. This is important in

empirical distributions in finance and economics where we might have features such as heavy

tails and asymmetry. Exploiting these features can make a big difference in applications
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such as risk management and portfolio selections.

Figure 5.8 illustrates the out-of-sample predictive density of the market excess return at

different dates for four different months3 for the kitchen sink case. The predictive density

obtained from three models are illustrated; the proposed model, M5, the linear regression

model with time-varying mean and constant variance, M1, and the linear regression model

with time-varying mean and variance, M2.

This figure shows how market return density changes over time. When we apply the

linear regression model with constant variance, M1, the density is almost the same over

time while allowing time-variation in the volatility,M2, permits the volatility of the density

to change over time. However, the density remains symmetric and bell-shaped. Applying

the proposed model, M5, enables us to capture the asymmetry and fat tails. To facilitate

the tail comparisons, we illustrate the log of the probability density functions in the right

panels.

This figure also shows how the conditional density derived by different models changes

over time. Particularly, the blue density shows how available information on all predictors

helps estimate the conditional density. Although the conditional mean is almost the same

over time (implying that the predictors do not help forecast the conditional mean), the shape

of the density changes.

If we only focus on the point forecasts of the conditional mean, there is not much difference

between different models. For example, consider a month in oil shock period (1974-09).

Figure 5.9 compares the conditional mean and the conditional density of the market returns

derived from the linear regression model, M1, and the infinite mixture model with time-

varying weights and predictors in the conditional mean, M5, when we use all predictors in

both models (the kitchen sink case). As we see in the figure, the estimated mean derived

from the two models are not significantly different. However, the shape of the estimated

3The dates are 1932-09 in the great depression period, 1974-09 in the oil shock period, 2000-08 in the
bubble period, and 2009-02.
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density is different; the density derived from the linear regression model is symmetric and

does not illustrate any fat tails. The density obtained by applying the proposed model shows

skewness and positive kurtosis implying that using available information on all predictors

in forecasting the weights of the mixture density enables us to capture the skewness and

the fatter tails in the predictive density for this month. This shows that these predictive

variables are useful in forecasting the entire density, carrying valuable information on the

riskiness of the market returns.

Figure 5.10 displays the 5%, 25%, 75%, and 95% conditional quantiles over the full sam-

ple period using the estimates of the infinite mixture model with time-varying weights and

predictors in the conditional mean, M5, when we use all predictors (the kitchen sink case).

The variation of the conditional quantiles over time, particularly when we see asymmetry

in the upper and lower quantiles, supports the usefulness of the predictive variables in fore-

casting the conditional density of market returns. This includes the period following 1941,

1973-1975, 1979-1980, mid-1994, and 1996 where the decrease in the lower quantiles is more

than the increase in the upper quantiles, and 1931-1933, 2008-2009, and 1987 when the in-

crease in the upper quantiles is more than the decrease in the lower quantiles. The variation

in the quantiles during these periods is on top of what can be captured by time-varying

mean and volatility alone. This figure also shows the conditional mean predicted using this

model (the solid red line). As we see, the conditional mean is almost constant and equal

to zero over time, implying that the predictors are not useful in predicting the mean of the

conditional density.

We also examine the higher order moments of the stock return distribution (conditional

skewness and kurtosis). Figure 5.11 and 5.12 plot the time series of the conditional skewness

and the conditional excess kurtosis of the return distribution, respectively, over the full

sample period using the estimates of the infinite mixture model with time-varying weights

and predictors in the conditional mean, M5, when we use all predictors (the kitchen sink
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case). The return distribution is negatively skewed most of the time, and the conditional

excess kurtosis is mainly positive. Illustrating the periods with different levels of risk, these

figures are informative for investors.

In assessing whether a model helps investors obtain economic value, in most cases, mea-

sures of forecasting performance based on the first and second moments contain little informa-

tion, and, instead, the whole predictive distribution will be more important. In Section 5.3.5,

we use the predictive density of models to make portfolio decisions and then compare per-

formance of the proposed and benchmark models based on ex post utility outcomes. The

results show the superiority of the proposed model, when used as the basis for investment

decisions.

5.3.5 Economic Gains

In the previous sections, we demonstrated how using available information on certain fi-

nancial variables can improve the predictive density of market returns statistically. Now,

we investigate the economic improvement achieved by this predictability. We evaluate the

economic significance of the predictability of each model with two practical applications.

First, we use each model to find the optimal weights of a portfolio of two assets, the market

portfolio and the risk-free asset, and investigate the utility improvement produced by each

model for an investor who maximizes the expected utility to make her portfolio decisions.

Second, we carry out an experiment to illustrate the market timing ability of each model.

The results show the significant market timing ability of the proposed model as well as its

considerable utility improvement power when employed in portfolio selection decisions.

Utility Improvement

Consider an asset allocation problem where the investor allocates his money to a portfolio of

two assets: the market portfolio and the risk-free asset. At each time t, the investor obtains
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the optimal weight assigned to the market portfolio, w∗t , by maximizing her expected utility.

w∗t is derived from

w∗t = argmax
wt

E[U(wt, yt+1)|It,M] (5.34)

where It is the available information at time t, and M denotes a particular model. 1 − w∗t

is the optimal weight for risk-free asset.

When we have the full predictive density of yt+1, w∗t can be easily approximated as follows

assuming the right hand side of Equation (5.34) exists

w∗t ≈ argmax
wt

1

M

M∑
m=1

U(wt, y
m
t+1) (5.35)

where ymt+1, m = 1, ...,M are M draws from the predictive density estimated by model

M. This is particularly useful when the investor has utility functions such as power utility

for which there is no closed form expression for E[U(wt, yt+1)|It,M]. In order to limit the

leverage more than 100% and avoid short-selling, we constrain the weight on the market

portfolio by imposing 0 ≤ wt ≤ 2. The optimal weight at each time, w∗t , can be found

numerically.

To evaluate the economic gains obtained by the proposed model, M5, over the constant

mean model, M0, we calculate ∆; the maximum monthly return the investor would be

willing to give up for the economic benefit obtained by switching from M0 to M5.

te∑
t=ts

U(W re,M0

t+1 ) =
te∑
t=ts

U(exp−∆ W re,M5

t+1 ). (5.36)

where ts to te is the out-of-sample period. W re,M0

t+1 and W re,M5

t+1 are the realized wealth

of the investor at time t + 1 using the optimal weights determined at time t using M0 and

M5, respectively.

W re
t+1 = w∗t exp(rft + yret+1) + (1− w∗t ) exp(rft) (5.37)
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where yret+1 is the realized value of market excess return at time t+ 1. If ∆ > 0, then M5 is

preferred to M0.

We consider three types of utility functions:

• Power Utility (CRRA)

U(Wt+1) =
W 1−τ
t+1

1− τ

In the case of the power utility function, we need to impose the restriction 0 ≤ wt ≤ 1

to avoid unbounded values for the expected utility (Geweke 2001).

• Exponential Utility(CARA)

U(Wt+1) =
−1

τ
exp−τ(Wt+1)

• Quadratic Utility

U(Wt+1) = Wt+1 −
τ

2(1 + τ)
W 2
t+1

where Wt+1 = wt exp(rft+yt+1)+(1−wt) exp(rft), and τ denotes the coefficient of investor’s

risk aversion.

Table 5.9 displays the annualized basis point fee an investor would be willing to pay

to switch from M0 to M5. The out-of-sample period is from Jan 1985 to Dec 2015 (360

observations). Forecasts are obtained by estimating the models applying a rolling window

with the most recent 30 years of observations. Positive numbers show thatM5 outperforms

the constant mean model in terms of generating economic benefits. In most cases, an investor

is willing to pay to switch from the constant mean model to the proposed model. This table

also shows that a more risk-averse investor (higher τ) is ready to pay more to switch to

the proposed model; exploiting available information on the financial variables to extract

information about the riskiness of the market returns and shape of the market returns

predictive density is more valuable for an investor with higher degree of risk aversion. The
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more risk averse investors care more about characteristics of the predictive densities other

than the first and second moments. They value more the models that take into account the

entire density and render better estimations of the riskiness of the assets.

Table 5.10 and 5.11 compare the economic gains of the proposed model,M5, to the time-

varying mean and constant variance model, M1, and the time-varying mean and variance

model, M2, respectively. Almost in all cases, the investor is willing to pay to switch to the

proposed model.

Market Timing Portfolio

In another attempt to evaluate the economic improvement achieved by the proposed model,

we implement a simple investment strategy (market timing). The one-month-ahead forecast

of excess market returns (rmt+1) is compared to a target return (for example rtarget = 10%).

If P̂ (rmt+1 > rtarget) > ptarget, then the investor will invest only in the market in the following

month (t + 1), obtaining the actual market return in that period. However, if P̂ (rmt+1 >

rtarget) is less than ptarget, then the investor will invest only in the risk-free asset in the

following month, obtaining the actual risk-free return. This produces a time series of realized

investment returns (a portfolio of returns). We carry out this experiment for each forecasting

model and examine the ability of the models to time the market by studying the performance

of the portfolios obtained by each model.

The evaluation of portfolios obtained from different models is based on risk-return trade-

off approach and utility comparison. The utility function used here is the quadratic utility

with the risk aversion coefficient τ = 5.

U(Wt+1) = Wt+1 −
τ

2(1 + τ)
W 2
t+1

To compare the performance of two models, Ma and Mb, we calculate the performance fee

(∆) that an investor would pay to switch from the portfolio obtained by model a to the
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portfolio obtained by model b.

te∑
t=ts

U(WMa
t+1 ) =

te∑
t=ts

U(exp−∆ WMb
t+1 ). (5.38)

where ts to te is the out-of-sample period. WM
t+1 = ert+1 are the realized wealth of the investor

at time t + 1 using the forecasts obtained by Model M. We also calculate the Sharp ratios

for each model.

Table 5.12 reports the performance of market timing portfolios with ptarget = 0.5 and

rtarget = 0. The out-of-sample market timing is conducted from Jan 1960-Dec 2015. The

values reported in this table are annualized monthly values. Column 4 shows the values of

the Sharp ratios, and the values in the last column are annualized basis point performance

fees that an investor is willing to pay to switch from the model in the corresponding row

to M5. From this table, it can be seen that the portfolio obtained by the proposed model

yields higher average return, lower variance, and higher Sharpe ratio.

In order to truly examine the superiority of the proposed model in market timing, trans-

action costs must be taken into account. However, the emergence of ETFs has allowed for

low transaction costs when switching between a market proxy portfolio (ETF) and a bond

(possibly an ETF as well). Table 5.12 also shows the Sharpe ratios and ∆ obtained by

different models after accounting for transaction costs. Transaction costs are subtracted

from monthly returns depending on whether stocks (market) or the risk free asset (T-bills)

are chosen for that particular month. For example, if stocks are chosen in month t, then

the adjusted return for t after accounting for transaction costs is rt × (1 − c), where c is

the appropriate cost for stocks. Similar analysis is done for the risk-free asset. Following

Pesaran and Timmermann (1994), we use a cost of 0.5% for transaction costs of stocks, and

a cost of 0.1% for the risk free asset. From Table 5.12, it can be seen that the Sharpe ratios

and the annual fees are not significantly different after accounting for transaction costs.
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5.4 Conclusion

In this chapter, we propose a model to study the one-period-ahead out-of-sample predictabil-

ity of the US stock return density using financial and macroeconomic variables. In contrast

to the extant literature that focuses on the point forecasts of the conditional mean, we ex-

amine the predictability of the entire density which can be valuable for asset allocation and

risk management. We consider a Bayesian nonparametric mixture model that allows the

mixing distribution to change with time. In the proposed model, the weights of the mixture

are constructed as probit transformations of a linear combination of the predictors.

We compare statistical and economic measures of forecasting performance of the pro-

posed model with a set of benchmark models. Despite little or no improvement in point

forecasts, certain variables display significant out-of-sample predictive ability with respect

to the predictive density of market returns and increase economic value for investors when

employed in portfolio decisions. A risk-averse investor is willing to pay a performance fee to

switch from the benchmark models to the infinite mixture model proposed in this chapter.

We also illustrate how these financial and macroeconomic variables are useful in predicting

the conditional density, the conditional moments and the conditional quantiles.
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Model Description

Benchmark Models
M0 Constant mean and constant variance yt = µ+ et, et ∼ N (0, σ2)

M1 Time-varying mean and constant variance yt = xt−1µ+ et, et ∼ N (0, σ2)

M2 Time-varying mean and variance
yt = xt−1µ+ et, et ∼ N (0, σ2

t )
σ2
t = α + δε2t−1 + γσ2

t−1

M3 Infinite mixture with constant weights
yt = µt + et, et ∼ N (0, σ2

t ν
2
t )

σ2
t = α + δε2t−1 + γσ2

t−1, (µt, ν
2
t ) ∼ G

Proposed Models

M4 Infinite mixture with time-varying weights
yt = µt + et, et ∼ N (0, σ2

t ν
2
t )

σ2
t = α + δε2t−1 + γσ2

t−1, (µt, ν
2
t ) ∼ Gt

M5
Infinite mixture with time-varying weights yt = xt−1µt + et, et ∼ N (0, σ2

t ν
2
t )

and predictors in the conditional mean σ2
t = α + δε2t−1 + γσ2

t−1, (µt, ν
2
t ) ∼ Gt

Table 5.2: List of the benchmark models and the proposed models. In all models, yt is the
market excess return and xt is a row vector of the predictors (financial or macroeconomic variables)
including 1 for the intercept.

GARCH parameters: probit stick-breaking model with time-varying weights, M5.
Parameter Post. Mean 95% DI

α 0.0033 (0.00, 0.009)
δ 0.005 (0.00, 0.010)
γ 0.940 (0.835, 0.947)
η 0.518 (0.111, 0.945)

Table 5.3: This table displays posterior mean and 95% density intervals (DI) for the parameters
of probit stick-breaking model with time-varying weights, M5, for simulated data.
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Predictor (x∗t ) α δ γ η K

Stock Variance
0.000 0.026 0.801 0.127 8.859

(0.000, 0.001) (0.008, 0.057) (0.725, 0.841) (0.088, 0.176) (6.542, 10.145)

Dividend Payout Ratio
0.001 0.052 0.792 0.091 7.635

(0.000, 0.002) (0.024, 0.094) (0.718, 0.844) (0.035, 0.141) (5.895, 9.745)

Long Term Spread
0.001 0.038 0.801 0.101 8.709

(0.000, 0.002) (0.012, 0.068) (0.721, 0.865) (0.043, 0.162) (6.312, 11.012)

Default Yield Spread
0.001 0.048 0.794 0.107 5.046

(0.000, 0.002) (0.021, 0.096) (0.746, 0.856) (0.049, 0.189) (4.175, 6.953)

Dividend Price Ratio
0.01 0.054 0.799 0.089 5.849

(0.000, 0.002) (0.023, 0.092) (0.699, 0.868) (0.041, 0.138) (3.859, 7.425)

Book-to-Market Ratio
0.000 0.046 0.775 0.089 7.699

(0.000, 0.001) (0.013, 0.115) (0.699, 0.861) (0.042, 0.134) (7.425, 9.478)

Earnings Price Ratio
0.000 0.053 0.835 0.102 6.497

(0.000, 0.001) (0.012, 0.134) (0.787, 0.874) (0.037, 0.198) (4.845, 8.024)

Dividend Yield
0.001 0.057 0.807 0.083 5.861

(0.000, 0.002) (0.023, 0.123) (0.726, 0.857) (0.024, 0.146) (4.124, 7.451)

Inflation
0.000 0.035 0.768 0.077 9.38

(0.000, 0.001) (0.012, 0.133) (0.714, 0.823) (0.026, 0.155) (7.152, 11.415)

Net Equity Expansion
0.000 0.032 0.815 0.112 9.071

(0.000, 0.001) (0.011, 0.086) (0.743, 0.877) (0.051, 0.192) (7.182, 10.856)

IP
0.001 0.051 0.749 0.094 7.307

(0.000, 0.002) (0.017, 0.089) (0.689, 0.824) (0.042, 0.151) (5.124, 9.047)

Kitchen sink case
0.000 0.024 0.838 0.098 7.164

(0.000, 0.0000) (0.014, 0.040) (0.818, 0.858) (0.071, 0.126) (5.658, 9.175)

Table 5.4: This table displays posterior mean and 95% density intervals for the GARCH parameters
and the number of distinct mixture components in the probit stick-breaking model with time-
varying weights and the predictors in the conditional mean, M5, for different predictors. For
example, the first row correspond to the case where we use the stock variance (svar) as the only
predictor; xt = (1 x∗t ) = (1 svart). Data are monthly market returns and predictor values from
1927-Jan to 2015-Dec.
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt =
xt−1µt + et, et ∼ N (0, σ2

t ν
2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν

2
t ) ∼ Gt
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M0 M1 M2 M3 M4
Predictor (x∗t )

Stock Variance 1.002 1.001 1.002 1.002 1.002
Dividend Payout Ratio 1.001 1.001 1.001 1.001 0.999

Long Term Spread 1.002 1.001 1.001 1.002 1.002
Default Yield Spread 1.000 0.999 1.000 0.999 0.999
Dividend Price Ratio 0.999 1.000 1.000 0.999 0.999
Book-to-Market Ratio 1.003 1.001 1.001 1.003 1.002
Earnings Price Ratio 0.999 1.000 1.000 0.999 0.998

Dividend Yield 1.001 1.001 1.001 1.000 0.999
Inflation 0.994 1.001 1.002 0.994 0.994

Net Equity Expansion 1.003 1.000 1.001 1.002 1.001
Changes in Industrial Production 0.989 1.001 0.997 0.999 1.000

Kitchen sink case 1.002 1.004 1.004 1.002 1.001

Table 5.5: This table displays the out-of-sample root mean squared forecasting error of the infinite
mixture with time-varying weights and predictors in the conditional mean, M5, divided by that
of the candidate. Numbers less than 1 show that M5 outperforms the candidate. Forecasts are
obtained by estimating the models applying a rolling window with the most recent 30 years of
observations. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec
and the out-of-sample period covers 1970-Jan to 2015-Dec.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M3: Infinite mixture with constant weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ G

M4: Infinite mixture with time-varying weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ Gt

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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M0 M1 M2 M3 M4 M5
Predictor (x∗t )

Stock Variance −49.701 −50.175 86.419 100.038 108.308 107.311
Dividend Payout Ratio −49.701 −51.321 85.460 100.038 106.348 107.259

Long Term Spread −49.701 −50.310 83.189 100.038 102.986 101.301
Default Yield Spread −49.701 −50.403 84.681 100.038 101.053 101.619
Dividend Price Ratio −49.701 −50.588 85.286 100.038 105.409 105.863
Book-to-Market Ratio −49.701 −51.239 83.396 100.038 104.516 104.012
Earnings Price Ratio −49.701 −50.126 85.438 100.038 106.045 105.524

Dividend Yield −49.701 −50.551 85.031 100.038 104.403 104.444
Inflation −49.701 −48.961 92.665 100.038 100.084 100.184

Net Equity Expansion −49.701 −48.907 86.946 100.038 98.655 97.848
Changes in Industrial Production −49.701 −52.132 84.452 100.038 102.104 103.025

Kitchen sink case −49.701 −50.798 93.246 100.038 107.384 111.246

Table 5.6: This table displays the log predictive likelihood of the differnt models (with L=300).
Positive values show that M5 outperforms the candidate. Data are monthly market returns and
predictor values from 1927-Jan to 2015-Dec.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M3: Infinite mixture with constant weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ G

M4: Infinite mixture with time-varying weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ Gt

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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M0 M1 M2 M3 M4
Predictor (x∗t )

Stock Variance 157.012 157.486 20.892 7.273 −0.997
Dividend Payout Ratio 156.960 158.580 21.799 7.221 0.911

Long Term Spread 151.002 151.611 18.112 1.263 −1.685
Default Yield Spread 151.320 152.022 16.938 1.581 0.566
Dividend Price Ratio 155.564 156.451 20.576 5.825 0.453
Book-to-Market Ratio 153.714 155.252 20.616 3.974 −0.503
Earnings Price Ratio 155.226 155.651 20.086 5.486 −0.520

Dividend Yield 154.145 154.995 19.412 4.406 0.040
Inflation 149.886 149.146 7.519 0.146 0.101

Net Equity Expansion 147.550 146.756 10.902 −2.189 −0.806
Changes in Industrial Production 152.720 155.157 18.573 2.987 0.921

Kitchen sink case 160.947 162.044 18.000 11.208 3.862

Table 5.7: This table displays the log predictive likelihood of the infinite mixture model with
time-varying weights and predictors in the conditional mean, M5, minus log predictive likelihood
of the candidate (with L=300). Positive values show that M5 outperforms the candidate. Data
are monthly market returns and predictor values from 1927-Jan to 2015-Dec.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M3: Infinite mixture with constant weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ G

M4: Infinite mixture with time-varying weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ Gt

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt

Predictors M1 M2

Stock Variance 40.396 34.925
Dividend Payout Ratio 42.174 37.419

Long Term Spread 41.788 37.195
Default Yield Spread 41.353 37.129
Dividend Price Ratio 42.704 37.127
Book-to-Market Ratio 41.364 36.993
Earnings Price Ratio 41.286 35.950

Dividend Yield 42.404 37.129
Inflation 43.436 35.509

Net Equity Expansion 42.050 36.672
Changes in Industrial Production 40.351 35.221

Kitchen sink case 41.187 36.361

Table 5.8: This table displays the log of tail predictive likelihood of the infinite mixture model with
time-varying weights and predictors in the conditional mean, M5, minus the log of tail predictive
likelihood of the candidate, with L=100 and α = 0.05. Positive values show that M5 outperforms
the candidate. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec.
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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CRRA CARA Quadratic
Predictor τ = 2 τ = 5 τ = 10 τ = 2 τ = 5 τ = 10 τ = 2 τ = 5 τ = 10

Stock Variance −28.116 −5.752 53.915 −33.206 −5.810 64.728 −31.605 1.593 66.021
Dividend Payout Ratio −9.493 31.029 60.871 7.497 33.146 86.383 5.958 42.342 103.711

Long Term Spread −32.232 0.083 59.043 −31.992 0.484 217.134 −31.235 5.879 77.516
Default Yield Spread 0.771 26.295 78.749 0.937 26.794 93.609 1.216 29.722 90.900

Dividend Yield −8.070 12.716 69.832 0.618 38.481 253.709 6.482 61.446 128.024
Dividend Price Ratio −7.439 16.727 73.647 0.544 39.354 275.707 6.449 62.519 129.722
Earnings Price Ratio −5.218 20.945 69.279 3.334 39.985 261.037 7.905 61.405 128.564
Book-to-Market Ratio −3.838 31.847 75.432 4.146 34.310 166.117 4.756 45.885 111.569

Inflation −0.738 16.148 50.475 −0.774 16.519 50.314 −0.587 17.881 59.521
Net Equity Expansion −18.541 4.244 46.251 −18.482 4.068 57.519 −18.251 6.396 55.652

∆ in Industrial Production −25.213 0.258 61.124 −26.195 1.241 229.352 −28.723 6.123 79.257
Kitchen sink case −26.123 15.764 61.544 −19.889 19.136 393.716 −18.153 36.484 110.919

Table 5.9: This table displays the annualized basis point fee an investor would be willing to pay
to switch from the constant mean and variance model, M0, to the proposed model, M5. Positive
numbers show that M5 outperforms the constant mean model in terms of generating economic
benefits. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec and
the out-of-sample period is from Jan-1985 to Dec-2015. Forecasts are obtained by estimating the
models applying a rolling window with the most recent 30 years of observations.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt

CRRA CARA Quadratic
Predictor τ = 2 τ = 5 τ = 10 τ = 2 τ = 5 τ = 10 τ = 2 τ = 5 τ = 10

Stock Variance 1.412 28.168 105.928 −3.585 28.257 43.191 −2.042 32.660 121.657
Dividend Payout Ratio −3.325 37.264 72.407 13.685 39.344 107.882 12.088 48.478 116.322

Long Term Spread 27.321 34.132 59.083 17.599 33.774 109.121 15.435 33.741 63.416
Default Yield Spread 13.179 36.907 84.501 13.357 37.833 64.884 13.562 39.880 94.944

Dividend Yield 11.756 29.280 80.019 20.478 55.182 260.879 26.203 77.413 136.878
Dividend Price Ratio 10.988 31.966 82.881 18.998 54.313 282.878 24.777 77.211 137.747
Earnings Price Ratio 7.684 30.710 72.204 16.241 49.619 268.208 20.709 70.531 129.730
Book-to-Market Ratio −7.007 27.839 72.385 0.963 30.435 108.598 1.505 41.568 108.522

Inflation 7.639 26.051 70.488 7.618 26.492 50.314 7.804 28.038 83.151
Net Equity Expansion −7.475 6.906 37.381 −7.510 6.718 4.117 −7.377 7.928 43.645

∆ in Industrial Production −2.123 39.122 73.184 14.125 40.254 108.214 14.014 49.978 117.925
Kitchen sink case 20.775 70.412 120.943 36.950 75.679 314.556 38.184 89.889 166.288

Table 5.10: This table displays the annualized basis point fee an investor would be willing to pay to
switch from the time-varying mean and constant variance model,M1, to the proposed model,M5.
Positive numbers show that M5 outperforms M1 in terms of generating economic benefits. Data
are monthly market returns and predictor values from 1927-Jan to 2015-Dec and the out-of-sample
period is from Jan-1985 to Dec-2015. Forecasts are obtained by estimating the models applying a
rolling window with the most recent 30 years of observations.
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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CRRA CARA Quadratic
Predictor τ = 2 τ = 5 τ = 10 τ = 2 τ = 5 τ = 10 τ = 2 τ = 5 τ = 10

Stock Variance 14.573 17.798 34.199 9.511 17.374 −14.391 10.825 20.037 38.684
Dividend Payout Ratio 0.246 25.827 24.368 16.735 27.673 28.263 15.020 35.697 61.085

Long Term Spread −9.933 3.726 9.372 −9.913 3.392 51.017 −9.895 2.805 12.795
Default Yield Spread −6.983 1.421 10.174 −6.901 0.436 28.950 −6.838 0.072 15.493

Dividend Yield 10.574 11.779 26.545 17.223 37.173 181.766 24.824 58.483 77.953
Dividend Price Ratio 8.987 12.845 25.069 16.944 34.480 210.978 22.553 56.549 74.048
Earnings Price Ratio −1.281 5.657 12.148 7.218 24.532 174.654 11.563 44.148 64.435
Book-to-Market Ratio −7.711 10.757 16.465 0.221 12.750 86.956 0.663 23.093 46.395

Inflation −3.008 1.731 8.992 −3.051 2.422 −21.628 −2.959 2.577 15.203
Net Equity Expansion 0.763 7.520 15.289 0.848 7.552 21.602 0.883 8.361 19.487

∆ in Industrial Production 1.421 26.714 24.983 17.155 28.153 29.124 15.992 36.166 63.117
Kitchen sink case 14.146 45.846 73.116 20.227 48.512 213.045 21.392 62.619 108.449

Table 5.11: This table displays the annualized basis point fee an investor would be willing to
pay to switch from the time-varying mean and variance model, M2, to the proposed model, M5.
Positive numbers show that M5 outperforms M2 in terms of generating economic benefits. Data
are monthly market returns and predictor values from 1927-Jan to 2015-Dec and the out-of-sample
period is from Jan-1985 to Dec-2015. Forecasts are obtained by estimating the models applying a
rolling window with the most recent 30 years of observations.
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Model Mean St. Dev. Sharpe Ratio ∆
Without Transaction Costs

M0 0.388% 6.170% 0.062 41.640
M1 1.27% 22.342% 0.057 48.306
M2 1.09% 20.249% 0.054 33.271
M3 1.71% 21.105% 0.081 42.589
M5 5.26% 23.531% 0.223 −−

Buy-Hold 4.69% 26.592% 0.179 −−
With Transaction Costs

M0 0.385% 6.144% 0.061 41.293
M1 1.267% 22.326% 0.056 47.944
M2 1.094% 20.225% 0.054 32.987
M3 1.674% 21.076% 0.079 42.242
M5 5.182% 23.425% 0.221 −−

Buy-Hold 4.69% 26.592% 0.179 −−

Table 5.12: Performance of market timing portfolios with ptarget = 0.5 and rtarget = 0. The results
are for the kitchen sink case when we use all predictors under study. The first and second columns
reports the annualized mean and standard deviation of the portfolios. The values in the last column
are annualized basis point performance fees that an investor is willing to pay to switch from the
model in the corresponding row to M5. The risk aversion coefficient is τ = 5. Data are monthly
market returns and predictor values from 1927-Jan to 2015-Dec and the out-of-sample period is
from Jan-1960 to Dec-2015. Forecasts are obtained by estimating the models applying a rolling
window with the most recent 30 years of observations.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M3: Infinite mixture with constant weights: yt = µt + et, et ∼ N (0, σ2
t ν

2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ G

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.1: Density estimation obtained by the proposed model and the linear regression model at two
different dates when we use dividend payout ratio as the predictor. Data are monthly market returns and
predictor values from 1927-Jan to 2015-Dec.
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Figure 5.2: Simulated data. Comparison of the true weights with the estimated weights from the infinite
mixture model with time-varying weights, M5.
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Figure 5.3: Simulated data. Comparison of the true weights with the estimated weights fromthe infinite
mixture model with constant weights, M3,.
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Figure 5.4: Cumulative out-of-sample root mean squared forecasting error of infinite mixture model with
time-varying weights and predictors in mean, M5, divided by that of constant mean and variance model,
M0. Forecasts are obtained by estimating the models applying a rolling window with the most recent 30
years of observations. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec
and the out-of-sample period covers 1970-Jan to 2015-Dec.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.5: Cumulative out-of-sample root mean squared forecasting error of infinite mixture model with
time-varying weights and predictors in mean, M5, divided by that of constant mean and variance model,
M0. Forecasts are obtained by estimating the models applying a rolling window with the most recent 30
years of observations. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec
and the out-of-sample period covers 1970-Jan to 2015-Dec.
M0: Constant mean and variance: yt = µ+ et, et ∼ N (0, σ2)
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.6: Weights estimated by infinite mixture model with constant weights, M3. Data are monthly
market returns and predictor values from 1927-Jan to 2015-Dec.
M3: Infinite mixture with constant weights: yt = µt + et, et ∼ N (0, σ2

t ν
2
t ), σ2

t = α+ δε2t−1 + γσ2
t−1, (µt, ν2t ) ∼ G
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Figure 5.7: Weights estimated by infinite mixture model with time-varying weights and predictors in
the conditional mean, M5, when we have dividend payout ratio as the predictor in the weights and the
conditional mean, xt = (1 dt/et). Data are monthly market returns and predictor values from 1927-Jan to
2015-Dec.
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.8: Density estimation obtained by different models at four different dates when we use all predic-
tors (the kitchen sink case) as the predictors. The dates are 1932-09 in the great depression period, 1974-09
in the oil shock period, 2000-08 in the bubble period, and 2009-02. Data are monthly market returns and
predictor values from 1927-Jan to 2015-Dec.
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M2: Time-varying mean and variance: yt = xt−1µ+ et, et ∼ N (0, σ2

t ), σ2
t = α+ δε2t−1 + γσ2

t−1

M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2
t ν

2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.9: Comparison of the conditional mean and density of market excess returns estimated by the
time-varying mean and constant variance model, M1, and the infinite mixture model with time-varying
weights and predictor in the conditional mean, M5, when we use all predictors (the kitchen sink case) as
the predictors. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec.
M1: Time-varying mean and constant variance: yt = xt−1µ+ et, et ∼ N (0, σ2)
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt

194



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

1930 1940 1950 1960 1970 1980 1990 2000 2010

q0.05
q0.25
q0.75
q0.95

Predictive Mean

Figure 5.10: This figure displays the 5%, 25%, 75%, and 95% conditional quantiles over the full sample
period using estimates of the infinite mixture model with time-varying weights and predictor in the condi-
tional mean,M5, when we use all predictors (the kitchen sink case) as the predictors. This figure also shows
the conditional mean predicted using this model (the solid red line). Data are monthly market returns and
predictor values from 1927-Jan to 2015-Dec.
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.11: Conditional skewness estimates using the infinite mixture model with time-varying weights
and predictor in the conditional mean, M5, when we use all predictors (the kitchen sink case) as the
predictors. Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec.
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.12: Conditional kurtosis estimates using the infinite mixture model with time-varying weights and
predictor in the conditional mean, M5, when we use all predictors (the kitchen sink case) as the predictors.
Data are monthly market returns and predictor values from 1927-Jan to 2015-Dec.
M5: Infinite mixture with time-varying weights and predictors in the conditional mean: yt = xt−1µt+et, et ∼ N (0, σ2

t ν
2
t ), σ2

t =
α+ δε2t−1 + γσ2

t−1, (µt, ν2t ) ∼ Gt
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Figure 5.13: Weights when we have Stock Variance as the predictor in the weights and the predictive
mean in M5.
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Figure 5.14: Weights when we have Long Term Spread as the predictor in the weights and the predictive
mean in M5.
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Figure 5.15: Weights when we have Default Yield Spread as the predictor in the weights and the
predictive mean in M5.
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Figure 5.16: Weights when we have all predictors (kitchen sink case) as the predictors in the weights
and the predictive mean in M5.
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Figure 5.17: Weights when we have Dividend Price Ratio as the predictor in the weights and the
predictive mean in M5.
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Figure 5.18: Weights when we have Book-to-Market Ratio as the predictor in the weights and the
predictive mean in M5.
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Figure 5.19: Weights when we have Inflation as the predictor in the weights and the predictive mean in
M5.
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Figure 5.20: Weights when we have Earnings Price Ratio as the predictor in weights and mean inM5.

205



Ph.D. Dissertation - Azam Shamsi Zamenjani McMaster - Finance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1930 1940 1950 1960 1970 1980 1990 2000 2010

W
1

W
2

W
3

W
4

W
5

Figure 5.21: Weights when we have Dividend Yield as the predictor in the weights and the predictive
mean in M5.
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Figure 5.22: Weights when we have Net Equity Expansion as the predictor in the weights and the
predictive mean in M5.
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Figure 5.23: Weights when we have Industrial Production as the predictor in the weights and the
predictive mean in M5.
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Chapter 6

Conclusion

This thesis makes contributions in the financial econometrics area with a particular focus

on estimating an accurate model for financial asset returns using Bayesian nonparametric

methods. Most of the literature has concentrated on modeling the conditional (co)variance

of returns in forms of stochastic volatility and (multivariate) GARCH models with a fixed

parametric innovation density. This means that once volatility dynamics are removed, the

innovations distribution is constant over time. Empirical research that allows the innovation

distribution to be unknown and to change over time is scarce. The attempt in this thesis

is to fill this gap and advance the methodology of modeling asset returns by estimating an

unknown density for the return innovations rather than making a specific assumption. This

can significantly enhance our understanding of the tails and higher moments of the returns

density which are relatively unexplored.

The first essay derives a dynamic conditional beta representation using a Bayesian semi-

parametric multivariate GARCH model. I show how to select the number of factors and

that the predictive Bayes factors strongly support this semiparametric model over a multi-

variate GARCH with Student-t innovations. Empirically, I find the time-varying beta from

the proposed model nonlinearly depends on the contemporaneous value of the market excess
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returns. In highly volatile markets, beta is almost constant, while in stable markets, the beta

coefficient can depend asymmetrically on the contemporaneous value of the market excess

returns.

In the second essay, I propose a model that allows a shock in one market to influence

the contemporaneous and future (one-day-ahead, one-week-ahead, and one-month ahead)

conditional density of the other market. This model extends the literature on spillover

effects or contagion effects that focus on the transmission of shocks through moments to

spillover effects on the conditional density. I provide a general approach to assess different

risk scenarios, contemporaneously. With the speed of information transmission nowadays, it

is beneficial for policymakers and regulators to be able to determine the contemporaneous

shocks spillover from one market to different aspects of the conditional density of the other

market such as the conditional moments, tails, and value at risk. I apply the proposed

model to study how shocks in oil market affect the conditional density of S&P 500 returns

and S&P TSX returns. The contemporaneous spillover effect of a shock in oil market on

the TSX and S&P 500 markets derived from the benchmark is symmetric; the shifts in the

conditional density in these two cases are almost the same amount but in opposite directions.

This is not the case with the semiparametric model. Using the proposed model, I find that

a positive 10% and a negative 10% shock in the oil market spill over into the TSX and

S&P 500 asymmetrically. When the market is calm, a positive shock in oil market shifts

the contemporaneous conditional density of TSX and S&P 500 to the right, and a negative

shock in oil market shifts the contemporaneous conditional density of TSX and S&P 500

to the left. These shifts are not the same amount for positive and negative shocks, and

the resulting conditional densities are skewed and leptokurtic. When the market is volatile,

a positive shock in oil market has almost no effect on the TSX and S&P 500 conditional

density contemporaneously while a negative shock in oil market shifts the contemporaneous

conditional density of TSX and S&P 500 to the left. Both positive and negative shocks
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result in a fatter lower tail than the case with no shock to oil market. I also study the

effect of the shocks in oil market on the value-at-risk of an investment in S&P 500 and S&P

TSX. Positive and negative shocks in oil market both increase the predictive value-at-risk.

The benchmark model underestimates the predictive value-at-risk of the investment in the

market portfolio when we have a shock in oil market.

In the third essay, I propose a model to study the one-period-ahead out-of-sample pre-

dictability of the US stock return density using financial and macroeconomic variables. In

contrast to the extant literature that focuses on the point forecasts of the conditional mean,

I examine the predictability of the entire density which can be valuable for asset allocations

and risk management. I consider a Bayesian nonparametric mixture model that allows the

mixing distribution to change with time. In the proposed model, the weights of the mixture

are constructed as probit transformations of a linear combination of the predictors. I compare

statistical and economic measures of forecasting performance of the proposed model with a

set of benchmark models. Despite little or no improvement in the point forecasts, certain

variables display significant out-of-sample predictive ability with respect to the predictive

density of market returns and increase economic value for investors when employed in port-

folio decisions. A risk-averse investor is willing to pay a performance fee to switch from the

benchmark models to the infinite mixture model proposed in this chapter. I also illustrate

how these financial and macroeconomic variables are useful in predicting the conditional

density, the conditional moments and the conditional quantiles.

Overall, this research emphasizes the importance of accurate density estimation and

return predictability. Most work in the literature can explain the first and second moments,

but what matters in practice is a good estimation of the entire density so we can study

various features such as value-at-risk. This dissertation explores Bayesian nonparametric

approaches to estimating the unknown density of returns lifting the restrictive parametric

assumptions. This research should be of interest not only to the academic community but
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to the investors, practitioner, managers, and policymakers as well. In this light, potential

applications are performed in each essay that could be implemented in real time.
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