
On-chip Tracing for Bit-Flip Detection during

Post-silicon Validation

ON-CHIP TRACING FOR BIT-FLIP DETECTION DURING

POST-SILICON VALIDATION

BY

AMIN VALI, B.Sc., M.Sc.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Amin Vali, December 2017

All Rights Reserved

Master of Applied Science (2018) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: On-chip Tracing for Bit-Flip Detection during Post-

silicon Validation

AUTHOR: Amin Vali

M.Sc., (System on-chip Design)

KTH - Royal Institute of Technology, Stockholm, Sweden

SUPERVISOR: Dr. Nicola Nicolici

NUMBER OF PAGES: xix, 144

ii

To my supportive & lovely family

Abstract

Post-silicon validation is an important step during the implementation flow of digital

integrated circuits and systems. Most of the validation strategies are based on ad-hoc

solutions, such as guidelines from best practices, decided on a case-by-case basis for

a specific design and/or application domain. Developing systematic approaches for

post-silicon validation can mitigate the productivity bottlenecks that have emerged

due to both design diversification and shrinking implementation cycles.

Ever since integrating on-chip memory blocks became affordable, embedded logic

analysis has been used extensively for post-silicon validation. Deciding at design

time which signals to be traceable at the post-silicon phase, has been posed as an

algorithmic problem a decade ago. Most of the proposed solutions focus on how to

restore as much data as possible within a software simulator in order to facilitate the

analysis of functional bugs, assuming that there are no electrically-induced design

errors, e.g., bit- flips. In this thesis, first it is shown that analyzing the logic incon-

sistencies from the post-silicon traces can aid with the detection of bit-flips and their

root-cause analysis. Furthermore, when a bit-flip is detected, a list of suspect nets

can be automatically generated.

Since the rate of bit-flip detection as well the size of the list of suspects depends on

the debug data that was acquired, it is necessary to select the trace signals consciously.

iv

Subsequently, new methods are presented to improve the bit-flip detectability through

an algorithmic approach to selecting the on-chip trace signals. Hardware assertion

checkers can also be integrated on-chip in order to detect events of interest, as defined

by the user. For example, they can detect a violation of a design property that

captures a relationship between internal signals that is supposed to hold indefinitely,

so long as no bit-flips occur in the physical prototype. Consequently, information

collected from hardware assertion checkers can also provide useful debug information

during post-silicon validation. Based on this observation, the last contribution from

this thesis presents a novel method to concurrently select a set of trace signals and a

set of assertions to be integrated on-chip.

v

Acknowledgements

I use this opportunity to thank those who have affected me or my life and helped me

get where I am today. First and foremost, I thank my family who have always loved

and supported me at every stage of my carrier. My parents have worked tirelessly to

raise me and my siblings could not have been any kinder to me.

I express my gratefulness to my PhD supervisor, Dr. Nicola Nicolici, who has

always guided me throughout the years and from whom I have learned immensely

in a variety of domains such as academic, professional and above all ethical work.

His patience, tested on many occasions, and his humane attitude, which is the single

most important factor one can look for in a supervisor, are not easy to find.

I am grateful to my supervisory committee members, Dr. Aleksander Jeremic,

Dr. Shahin Sirouspour and Dr. Alexandru Patriciu, as well as my external examiner

Dr. Masahiro Fujita, for their valuable input from which my thesis benefited signif-

icantly. I also thank the administrative and technical staff of the ECE department

at McMaster, whose hard work ensures that the department runs its intended tasks

and maintains its academic objective. Many thanks to Dr. Tim Davidson, the cur-

rent chair of the ECE department who has generously spent time with me to listen,

teach and support and has maintained an open and energetic environment within the

department.

vi

My time as a graduate student in the Computer Aided Design and Test (CADT)

lab overlapped with many friends, colleagues and office-mates who have each helped

me either with their valuable feedback in the group meetings, or kept me sane with

their company through graduate school years, which many believe to be among the

toughest periods of one’s life. My sincere appreciation goes to Dr. Henry Ko, Dr.

Adam Kinsman, Dr. Zahra Lak, Dr. Jason Thong, Dr. Pouya Taatizadeh, Dr.

Xiaobing Shi, Phil Kinsman, Yasamin Fazliani, Trevor Pouge, Stefan Dumitrescu,

Alex Lao, Karim Mahmoud and Pooyan Mehrvarzy. I particularly acknowledge Pouya

not only for his companionship as a friend but also for his valuable input for parts

of my work on hardware assertion generation. Lastly, I am indebted to Hoda Rezaee

Kaviani for her continuous and loyal support, for which I am deeply grateful.

I know that I will regret it for the rest of my life if do not thank a few of my most

influential educators from my pre-grad-school years. I thank Dr. Mohammadreza

Jahangir, Dr. Zain Navabi, Dr. Shams Mohajerzadeh and Mr. Nasser Mohammad

Khanlou for their key role in my education and shaping my character.

vii

Notation and abbreviations

BIST Built-in Self-Test

CAD Computer Automated Design

CUT Circuit Under Test

DFT Desgin for Testability

DUV Design Under Verification/Validation

EDA Electronic Design Automation

FPGA Field Programmable Logic Array

HDL Hardware Description Language

IC Integrated Circuit

ILP Integer Linear Programming

IO Input/Output

LFSR Linear Feedback Shift Register

RTL Register-Transfer Level

VLSI Very Large Scale Integration

viii

Contents

Abstract iv

Acknowledgements vi

Notation and abbreviations viii

1 Introduction 1

1.1 Design Methodology . 4

1.1.1 Behavioural Design . 5

1.1.2 Datapath Desgin . 5

1.1.3 Logic Desgin . 5

1.1.4 Physical Design . 6

1.1.5 Manufacturing . 6

1.2 Test Methodology . 7

1.2.1 Pre-Silicon Verification . 7

1.2.2 Post-Silicon Validation . 10

1.2.3 Manufacturing Test . 12

1.3 Thesis Organization . 14

ix

2 Background and Related Works 17

2.1 Why Post-Silicon Validation? . 18

2.2 Major Challenges . 18

2.2.1 Controllability and Observability 18

2.2.2 Simulation and Golden Response 19

2.2.3 Reproducibility . 19

2.3 Notable Solutions . 20

2.3.1 Scan-chains . 20

2.3.2 On-Chip Stimuli Generation 21

2.3.3 Error Detection . 23

2.3.4 On-chip Trace Buffers . 25

2.3.5 On-Chip Tracing in the Presence of Electrical Bugs 28

2.3.6 The Debug Process and the Scope of This Work 30

2.4 Overview of Contributions in this Thesis 32

2.4.1 Automatic Detection of Bit-Flips 32

2.4.2 Trace Signal Selection . 34

2.4.3 Concurrent Trace and Assertion Selection 35

3 Satisfiability-Based Test Platform 37

3.1 Background . 37

3.1.1 The Scope of This Chapter . 38

3.1.2 Motivational Examples . 39

3.1.3 Assumptions and Nomenclature 41

3.1.4 SAT Formulation and Its Use for Post Silicon Debug 43

3.2 Methodology and Evaluation Platform 47

x

3.2.1 Circuit Unrolling . 48

3.2.2 Translation . 49

3.2.3 Merging and Running the SAT Solver 50

3.2.4 Backward Translation and Filtering 51

3.2.5 Evaluation Platform . 51

3.3 Experimental Results . 53

3.3.1 The Non-Uniqueness of the Core of UNSAT 57

3.4 Summary . 58

4 Trace Signal Selection 60

4.1 Background . 60

4.2 Motivational Example . 61

4.2.1 Restoration Ratio vs Bit-flip Detectability 61

4.2.2 Key Insight . 65

4.3 New Trace Signals Selection Algorithm 67

4.3.1 Definitions . 68

4.3.2 Certainty Propagation Rules 71

4.3.3 The Heuristic for Trace Signals Selection 84

4.4 Results . 86

4.4.1 Experimental Setup . 87

4.4.2 UNSAT Rate: Bit-flip detectability 88

4.4.3 Core of UNSAT: Size and Time Distribution 90

4.4.4 Comparison with Restoration-based Method for Trace Signals

Selection . 92

4.4.5 Assessing Different Algorithm Parameters 95

xi

4.5 Summary . 97

5 Joint Selection of Trace Signals and Assertion Checkers 99

5.1 Background . 99

5.2 Motivation and Definitions . 102

5.2.1 Example . 103

5.2.2 General Objective . 104

5.2.3 Key Insights . 105

5.3 Co-Selection Algorithm . 108

5.3.1 Main Algorithm and Cost Function 108

5.3.2 Bit-Flip Detection Probability 111

5.3.3 Integration of Assertion Benefits 114

5.4 Results . 116

5.4.1 Experimental Setup . 116

5.4.2 Bit-flip Detection Rate versus Hardware Cost 117

5.4.3 Different Selection Strategies 121

5.4.4 Time Distribution of the Suspects’ List 121

5.4.5 Runtime . 123

5.5 Summary . 124

6 Conclusion and Future Work 126

xii

List of Figures

1.1 Design Flow of Digital Circuits. Boxes show the steps and the bullet

points are the corresponding output of each step. Reproduced from [1]. 4

1.2 Test Flow of Digital Integrated Circuits. 7

1.3 Shmoo Graph of Intel’s ATOM processor. [*] characters represent a

pass, other characters show various types of failures [2]. 15

2.1 Illustration of the serially connected scan chain. Each Scan-Flip-Flop

consists of a regular flip-flop attached to a multiplexer that enforces

the normal operation mode or a test mode. Reproduced from [3] . . . 20

2.2 Added on-chip hardware can improve controllability and observability.

Some methods such as Scan Chains help with both, while others focus

only on a specific aspect. 22

2.3 The software on the left processed the circuit and generates a set of

cubes according to the verification requirements. The cubes contain

fixed bits (0/1) and flexible bits(x) that can be randomly filled with

either 0 or 1. The cubes are then loaded to a hardware memory. The

correction logic receives a pseudo-random sequence of bits and matches

it to the received cube, basically filling the x bits with 0/1. 24

2.4 Pre-silicon and post-silicon tasks for trace-based debugging. 31

xiii

3.1 Pre-silicon and post-silicon tasks for trace-based debugging. Last step

is to process the collected trace and find out the root cause of the bit-flip. 39

3.2 An example circuit with consistent values on the left-hand side and an

illegal combination on the right-hand side. 40

3.3 (a) Carry and Sum are both 1. (b) Unsuccessful attempt to find A and

B due to logic inconsistency. (c) Equivalent SAT problem. First line

describes the AND gate, second line the XOR and the third line is derived

from the collected trace bits. In conjunctive normal form (CNF) all

clauses must conjunctively evaluate to 1. 42

3.4 The SAT formulation consists of two sets of SAT clauses: From the

circuit structure and from the failing trace. 48

3.5 All the flip-flops are unrolled for as many times as the trace depth. . 49

3.6 Flip-flops are replaced by error-injectable flip-flops. 52

3.7 Bit-flips are injected to the circuit-under-test. 52

3.8 Ratio of UNSAT problems vs the ratio of signals being traced. 54

3.9 Distribution of the candidate group in time with respect to the bit-flip

injection at cycle 0. 55

3.10 Distribution of the number of flip-flops in the candidate group for two

trace widths (left:128 and right: 256). 56

3.11 Histogram for the runtime of the SAT solver, in seconds, for SAT and

UNSAT problems (left: SAT, right: UNSAT). 57

4.1 Pre-silicon and post-silicon tasks for trace-based debugging. Choosing

which signals to trace is covered in this chapter. 62

xiv

4.2 Example circuit with trace table. Traced signals are marked with [T].

(a) Shift register with 3 flip-flops and flip-flop A is traced. (b) Trace

bits recorded in the on-chip memory. (c) Same as (b), but after data

restoration. (d) Trace table when bit-flip occurs in flip-flop B. (e) Flops

A and C are traced. (f) Bit-flip error is detected and marked with E. . 64

4.3 (a) Circular shift register. Forward and backward propagations are

marked. (b) Error detected using multiple bits of a single trace signal. 65

4.4 (a) T1-3 partially restore circuit’s state. (b) Signals in the intersection

of T4-6 can be implied twice, hence a possibility for error detection. We

assume a second restoration originates and propagates from a second

port/path. 66

4.5 (a) Representation of Certainty (C) and Value (V) as probabilities.

(b) Examples I-III showing how Y is only partially zero-restorable. . . 70

4.6 (a) Flip-flop receives certainty from D and Q. Dashed squares indicate

storage that keeps the highest certainty received so far. (b) 2-input

logic gate receives 3 values. (c) Gate K has a fan-out of 2. Each pair

collectively restore the third member. (d) Highlighted area is certainty

region of M. (e) Branches of multi-fan-out points are numbered, where

the stem is labeled Branch 0, and the n output branches are labeled

Branch 1 to n (refer to Algorithm 4). 73

4.7 Probe Data Structure . 75

xv

4.8 Various types of propagation: “1” represents the initial request which

causes another propagation “2”. (a) Trace flip-flop initiates forward

and backward propagation. (b) Backward to Q-port is echoed back

from D. (c) Similarly, forward to D-port is echoed forward through Q.

(d,e) Similar to (b) and (c) but for a logic gate. 78

4.9 Various types of propagation in presence of branches. (a),(b) Illustra-

tion of Rule 3: A backward propagation on a branch causes forward

propagation to other branches as well as backward to the stem. (c),(d)

Examples of combination of Rule 3 with Rules 1 and 2. 82

4.10 Propagation stops when a complete loop has been traversed. (a) In the

third step the loop is detected. CV D is updated and propagation stops.

(b) Initial request causes two propagations, backward and forward, 2b

and 2f. Each circulates for one loop and stops. 84

4.11 A simplified view of a typical circuit block from s35932 90

4.12 Left: Rate of UNSAT problems vs. percentage of flip-flops to trace.

Right: Percentage of covered flip-flops after 5 injections. 91

4.13 Distribution of the size of the suspect flip-flop list in the core of UNSAT. 91

4.14 The difference in clock cycles between the injection time (t=0) and the

time-step of the suspected signals in the core of UNSAT. 92

4.15 The effect of reducing threshold for certainty comparisons for s9234

with ∆ = {0.3, 0.2, 0.1 : 10−6}. 93

xvi

4.16 Left: Rate of detected bit-flips vs. the percentage of flip-flops to trace.

Right: Percentage of covered flip-flops after 10 injections. Circuit un-

der test is s15850 with 534 flip-flops. A 10-15% improvement is con-

sistently observed for the evaluated circuits. 94

4.17 Various configurations for selecting signals (see Table 4.4). 97

5.1 Big picture: Pre-silicon and post-silicon tasks for collaborative trace-

and-assertion-based debugging. In pre-silicon the desired signals to be

traced and the assertion checkers to be synthesized must be selected.

During post-silicon validation, the collected trace is extracted as well

as the violations caught by the assertion engine to indicate any of

the assertions that fired during the debug session. All of this debug

information is then post analyzed to generate a list of suspects, useful

for root-cause analysis. 100

5.2 A half-adder cell with trace buffer and a single assertion property

checker. Assertion checkers get violated when both C and S are logic

1, which is an illegal state for this circuit. Trace buffer is recording a

history of only two nets, A and C. 102

5.3 Trace buffer (TB) and the assertion engine (AE) collect real-time data

from circuit under test (CUT), sharing wires to minimize routing costs.

TB is assumed to trace only flip-flops from CUT and wires fed to AE. 104

xvii

5.4 Left: Figurative diagram of detecting bit-flips. All the possible bit-flips

(every flip-flop, both ↓10and ↑10) might be detected by either violating

an assertion checker, or with the help of several traced signals, or both,

or in the worst case scenario stay undetected. Key insight in this work

is to reduce the overlap and spend the budget to cover more bit-flips.

Right: Same idea for circuit in Fig. 5.2 106

5.5 (A) Bit-flip coverage after 10 injections for s5378 versus estimated

hardware cost. Lower data points connected with a dashed line have

no assertion checkers to boost the detection. Each data point is a 10-

bit-flip injection experiment. (B) Average count of suspect flip-flops

for experiment in A. 118

5.6 Similar experiments as in Figure 5.5 for a different circuit: s38417.

Bit-flip coverage after 10 injections and average number of suspect

flip-flops versus the estimated hardware cost. 119

5.7 Bit-flip detection versus wire-count of the selected set of assertions,

for various selection strategies; such as selecting all assertions first

and then all the traces. Dynamic selection (co-selection algorithm)

performs better. 120

5.8 The order of decisions to select Assertions, wires from assertions, and

flip-flops for circuit s5378. Wire budget for assertions is 64 and wire

budget for trace selection is 48. 122

xviii

5.9 Time distribution of the flip-flops in the list of suspects for s38417

assuming that the injection time is at time T=0. Green bars represent

the distribution for when only trace information is used. Blue line

illustrates the same distribution for when both violated assertions and

trace signals are used for post analysis. Left: Trace width of 64 bits.

Right: Trace width of 256 bits. 123

xix

Chapter 1

Introduction

According to the Merriam-Webster’s dictionary the term “computer” was first used in

1613 for humans whose job was to perform mathematical calculations[4, 5]. However

in the past two centuries the word has changed its meaning to machines that have

revolutionized the world by their ability to run cumbersome tasks at a much faster

pace than what is imaginable for a human brain.

While it is not easy to pin-point which computer in the history is actually the

first one, we can still enumerate a few of the most remarkable attempts to build such

a machine. The first mechanical computer was proposed by Charles Babbage in 1822

and due to its complexity and overwhelming cost, was not built until 1910 by his son,

Henry Babbage. His machine would work on a decimal basis and was programmable

using punched cards [6].

The first electro-mechanical computer is believed to have been built by Konrad

Zuse in Germany by 1938 [6]. This machine, called “Z1”, is a binary programmable

computer and a first of its kind in the history of modern computers. It took a few

more years before the first pure-electrical computer came into existence. Colossus, an

1

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

electronic programmable digital computer, was used by British codebreakers in 1945.

It contained no memory and used vacuum tubes to perform operations. The Elec-

tronic Numerical Integrator and Computer (ENIAC), was a fully electronic vacuum

tube-driven programmable computer with a memory unit. Its 50 tons of components

consumed 150kW of power and was expanded over 1800 square feet [6]. It was not

however until 1960’s when transistor-based computers were built which could resolve

the major bottleneck until then: integration of components.

Following the invention of first transistor in 1949 and the first integrated circuit

(Fairchild Semiconductor, 1960), new horizons opened up for manufacturing com-

pact low power computers suitable for day-to-day personal use. In the 1960’s, digital

computers with a variety of sizes and computing powers were built using discrete com-

ponents. In early 1970’s Intel’s 4004 general purpose microprocessor was introduced.

In an attempt to build a chip that was supposed to solve a very specific problem,

engineers in Intel developed a chip that was capable of running a program stored in

an external memory, hence could be labeled as a general purpose processor [7]. With

a clock speed of less than a megahertz and employing a 10µm process, this was a

major turning point in the history of computing. The layout of the 2300 transistors

in this integrated circuit (IC) was drawn manually by cutting sheets of Rubylith into

thin strips [7].

It was around the same time when Moore’s law [8] started to gain reputation.

Gordon Moore, co-founder of Fairchild Semiconductor and Intel predicted that the

number of components integrated in a single chip will double every year. A decade

after Moore’s initial prediction, it was suggested that doubling of component count

occurs closer to every two years. Although Moore’s law is more of an observation

2

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

rather any physical law, it has been called a “law” since the observed trend has been

valid for several decades.

Intel’s 4004 microprocessor contains 2300 transistors while today’s high end pro-

cessors incorporate billions of transistors on a single die. For example GV100 Volta

GPU from Nvidia consists of 21 billion transistors [9]. A back of the envelope compar-

ison between this two processors shows a 223 fold increase of integration over a span

of 45 years. The group of Intel engineers managed to overcome the design complexity

of 2300 transistors manually. They had to design the digital circuit, draw its physical

layout, manufacture, test and debug it to validate proper functionality.

While those manual tasks were successfully accomplished in less than two years

[10], it is impossible to scale them for today’s demands without extensive use of mod-

ern automated tools. Nowadays, we rely on powerful computers and many families

of computer-automated design (CAD) tools to design the next generation of technol-

ogy. Graphical tools are used for laying out the circuit while most of the steps have

been automated to minimize human involvement. Other electronic design automation

tools (EDA), such as various types of simulators or automatic test pattern generators

(ATPG), also play an essential role in today’s Very Large Scale Integration (VLSI)

industry. Historically, as the complexity of electronic devices rises, many fields of

research have opened up to provide systematic solutions.

Below we will summarize the main steps needed to manufacture electronic inte-

grated circuits.

3

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Behavioral
Design

• Data Flow
Graph,
Algorithm

Datapath
Design

• Bus and
Register
Structure

Logic Design • Gates, Flip-
flops, Netlist

Physical Design
• Transistor

Layout,
Polygons

Manufacturing
•Fabricated

chip

Figure 1.1: Design Flow of Digital Circuits. Boxes show the steps and the bullet
points are the corresponding output of each step. Reproduced from [1].

1.1 Design Methodology

Before a digital integrated circuit is ready to be used by the end consumer, there

are several steps involved in the process, as introduced briefly here. A digital IC is

first designed and then its functionality is tested thoroughly for compliance with the

original requirements.

According to [1] the digital design procedure can be broken into several steps once

a design idea is in place and before the functional circuit is ready. Figure 1.1 shows

these steps and the expected output of each step.

4

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

1.1.1 Behavioural Design

It is assumed that a set of design requirements and specifications of the desired system

are provided to the designer. For example one might need a video decoder with certain

input and output format and performance requirements. In this step the designer

creates a high-level solution such as an algorithm, pseudocode or software model.

High-level description languages such as SystemC [11] may be used to abstract away

many of the implementation details. The correct functionality of this model should

be verified before moving to the next step.

1.1.2 Datapath Desgin

Next the datapath and control logic are developed. Without specifying the physical

implementation details, the components such as combinational logic and registers

and their connections are designed [1]. Datapath is the combinational and sequential

logic which performs the required task. Control logic on the other hand, as its name

suggests, is responsible for timely steering of the data within datapath, for example

by controlling enable signals or switching multiplexers. The output of this stage is

normally a code in a hardware description language (HDL) such as Verilog [12] or

VHDL [1] which captures the design at the Register Transfer Level (RTL).

1.1.3 Logic Desgin

At this stage the RTL code gets converted to a netlist which is a more detailed version

of the design consisting of logic gates, flip-flops and the way they are connected to-

gether. This conversion is called “logic synthesis” which translates a behavioral HDL

5

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

code to a netlist of library cells. Other operations within this step are logic optimiza-

tion, state machine synthesis, datapath optimization and power or area optimization

[3].

1.1.4 Physical Design

In the physical domain a gate or a flip-flop consists of a number of transistor with

a particular layout. Wires will also have a layout of the corresponding metal layer

within the chip. In the physical design step, these masks or layouts are generated

which are suitable for fabrication. Thanks to the progress made in the EDA industry,

for digital IC design this step has been highly automated, with little or no human

involvement necessary. Placement, floorplanning and routing are the tasks required

for physical design [3].

1.1.5 Manufacturing

Manufacturing a chip requires many steps in which the semiconductor is shaped and

built to match the desired circuit. In a semiconductor fabrication facility the physical

layouts are printed as masks and used for several required steps such as deposition,

etching, etc[13]. Eventually the silicon wafers with the designed circuitry imprinted

on them are fabricated, cut and packaged and most importantly tested to validate

the correct functionality.

6

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 1.2: Test Flow of Digital Integrated Circuits.

1.2 Test Methodology

A design needs to be tested on multiple stages during the design flow to make sure

that the desired functionality is attained. In general VLSI tests fall into 3 categories,

depending on their objective and the phase in which tests are run.

1.2.1 Pre-Silicon Verification

These tests, also known as “functionality test” or “logic verification”, are performed

before fabrication while the design is still in the first few stages to make sure that

the design performs its functionality. Industry studies show that logic verification has

become a major contributor to the total amount of product development time [14].

For example, for a 64-bit adder, one needs to apply many different numbers to the

7

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

circuit under test (CUT) and observe and verify its output. Theoretically, one might

want to perform the addition for all the possible input combinations, which is most

likely practically infeasible as will be discussed later. This can be done through a

logic simulator that is capable of running a testbench on the RTL code. Since the

number of possible input patterns (2128) is beyond any practical limitation 1, this

approach is hardly used in practice. Due to this inherent limitation of simulation,

alternative methods such as various types of coverage metrics and application of

constraint random stimuli is often used [15]. Code coverage [16], event coverage [17]

and state-machine coverage [18] are a few these metrics, which basically monitor the

extent of exploration of various parts of code or other criteria while the CUT is being

simulated [19].

We may also benefit from the performance gained by using “Emulation” platforms

with an FPGA, which can perform a thousand times faster than a what software

simulators are able to run [20]. Additional online hardware monitors or property

checkers can also be integrated in an FPGA-based test platform which may not be

practical to include in the final product[3].

Another approach in pre-silicon verification is through formal methods where a

more theoretical approach is used to prove certain properties within the design. A

formal method explores the logical equivalence of two seemingly different, supposedly

the same designs and provides mathematical proof for their equivalence (or counter

example for their difference) [21, 22].

The above mentioned comparison can be applied on two different descriptions

1Assuming 2128 input patterns are applied at a rate of 2GHz ≈ 231 samples per second, we need
297 or ∼ 1029 years to apply all the patterns.

8

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Table 1.1: Comparison between simulation-based and formal methods

Pros Cons

Simulation

• Used extensively to find
majority of functional bugs
• Existence of constrained
random stimuli
• Existence of many cover-
age metrics
• Almost full observability
and controllability over sig-
nals in the design

• No guarantee to find all
design errors
• Slow to perform system
wide
• Coverage metrics only as
effective as the extent of the
test vectors

Formal
• Provides mathematical
proof

• Lack of scalability to large
design blocks
• Tools still maturing [3]
• Undermined by incom-
plete reference model

of the design such as a behavioral RTL or a gate-level netlist, or even a set of re-

quirements explained in a high-level language. These specifications could be in a

high-level programming language, a system-level modeling language (e.g. SystemC

[11]), a hardware description language (e.g. Verilog [12], SystemVerilog [23] or VHDL

[1]), a list of input/output patterns, or even a list of requirements in plain human

language.

Both simulation based and formal methods have their advantages and drawbacks

as summarized in table 1.1. For example the quality of simulation tests using any

form of coverage metric highly depends on the test vectors that are applied to the

CUT. Similarly, while the existence of a formal proof for equivalence of a design model

and a reference model seems very useful, if there are incomplete specifications based

on which a reference model is designed, the proof of correctness is undermined.

9

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

1.2.2 Post-Silicon Validation

The second type of testsare run on the first batch of fabricated silicon prototypes.

Once the logic verification concluded that the design is bug-free the physical design is

sent for fabrication. Surveys show that the majority of the first silicon prototypes are

still carrying design errors that have escaped pre-silicon verification steps [24]. There

are many major differences between pre- and post-silicon tests as will be discussed

here.

First major difference is the speed at which tests can be run. Simulations are

inherently 5 to 7 orders of magnitude slower than actual chip [25]. When installed

on a prototype board an actual circuit can be clocked in the gigahertz range such

that a few seconds to minutes of in situ operation leads to hundreds of billions of

clock cycles. It might take several years to decades to simulate the same sequence of

events.

Another major difference, this time in favor of pre-silicon verification, which in

turn makes silicon debug a challenge, is the degree of visibility and controllability

of the design in a simulation environment. While a simulator can show the value of

any signal within the design at any given time, in the post-silicon domain there are

physical limitations as to how many signals we can probe. Main bottleneck is the

number of input/output (IO) pins that a single chip can have. Another limitation

rises from the amount of data that is generated in real time. Consider the same

simple 64-bit adder mentioned previously, assuming that it is clocked at 1GHz, which

can generate 8 gigabytes of output every second. Transferring the data out of a chip

and storing such a huge amount of information on-the-fly for such a simple circuit is

practically infeasible. Alternatively, what we can do in practice is one or more of the

10

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

following:

1. Collect only a small portion of these bits and record them onto an on-chip mem-

ory, also known as a trace buffer and download it offline, when the functional

clock is stopped. This trace buffer is usually a circular FIFO which is used to

keep a history of events. This methodology is discussed in further details in this

dissertation.

2. Use scan-chains which are built-in shift register structures embedded in a digital

design. One can observe the state of internal signals by serially scanning out

the information stored in the scan-chain. It is also possible to control the state

of these flip-flops by feeding in new values that will overwrite the internal state.

Obviously all of this can be done only when the original clock is stopped and

circuit is switched to “test mode” in which flip-flops are multiplexed to join the

chain rather than normal operation[26].

3. Generate an on-chip signature from a selection of state registers, most likely by

feeding them to a Linear Feedback Shift Register (LFSR) [27]. Eventually one

should compare this signature with a previously computed value to confirm cor-

rect operation. This method is useful for designs with built-in self-test (BIST)

[28, 29, 30].

4. Embed hardware property checkers, also known as hardware assertions, which

integrate different nets from a design and checks for specific patterns. If the

input pattern matches an illegal sequence, the assertion gets violated and an

event of interest is therefore detected [31, 32, 33, 34].

11

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

And finally, what distinguishes post-silicon validation the most is the presence of

many electrical and physical effects in the silicon prototype. These physical phenom-

ena may be very difficult to model in simulation, regardless of the available processing

power. Effects such as high or low temperature, multiple clock domain crossings or

asynchronous events are very difficult to predict, model and even reproduce.

After a bug is observed in the post-silicon validation phase, there are certain steps

needed to be taken in order to fix the problem [35].

1. First step after detection of a bug is to localize the problem to a particular

module or submodule. Reproducing the problem and how easy it is to repeat

and stimulate a particular bug can shrink the time required for this step. We

need to answer this question: Under what conditions or workload does the bug

get activated?

2. Finding the root cause is the next step in which we need to find the physical

reason behind the bug. For example, is it a particular path in the circuit that

works slower/faster than expected under certain physical conditions, such as

voltage droop or extreme temperature?

3. Last step is to fix the bug, as well as deciding how to fix it based on the cost

and depth of the bug. Generating new fabrication masks is usually the most

expensive solution for when the design or at least part of it gets updated.

1.2.3 Manufacturing Test

Once all the pre and post-silicon test have passed and a chip is fabricatedevery single

chip undergoes a final test to make sure that there is no physical defect that affects

12

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

that particular piece of silicon. This is called manufacturing test, or merely “test”

within electronic test community [36] . There are many manufacturing defects that

can potentially affect both the functionality and the lifetime of a chip. Some examples

are [3]:

� Metal to metal shorts

� Disconnected wires

� Damaged Vias

� Shorts through the thin oxide of gate to the substrate

These defects can cause nets to short to ground, power, or other nets, or potentially

lead to disconnected nets. Manufacturing test is in charge of verifying that all the

internal gates and input/output pins are functioning as expected. Exercising all

gates within a design, and generating test vectors that conduct such a test is a burden

facilitated by systematic approaches such as Automatic Test Pattern Generation tools

(ATPG).

Finding the maximum operational speed of a chip or the minimum voltage for such

a speed is another task that is carried out during the manufacturing test. Figure 1.3

shows an example of such speed test for an Intel ATOM processor [2]. As shown in

this figure the chip operates correctly at a range of frequencies between 1.25 and 2.5

GHz, with a voltage range of 0.8 to 1.2 volts. In this shmoo diagram the “*” character

represent correct behavior under test and other characters represent different types

of failure.

The major differences between manufacturing test and post-silicon validation are:

13

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

� Post-silicon validation is applied only on a limited number of silicon samples,

mainly the first batch of prototypes, to detect any design errors that have

escaped from the implementation phase to fabrication.

� Manufacturing test is applied to every fabricated integrated circuit to make sure

they are free of fabrication-induced defects.

� Validation needs to pass before committing to mass production of a chip while

manufacturing test is done in parallel with it.

� Validation of prototypes may take weeks to months while the manufacturing

test takes only seconds per chip. A failure in post-silicon validation needs to

be debugged until the root cause of the problem is detected and fixed. A failed

chip during the manufacturing test may just be discarded, unless it is suspected

that there is a systematic defect that needs to be addressed.

It is worth mentioning that certain types of fabrication defects that manifest

themselves as slow paths can be caught through delay testing, however, they are

not sufficient to capture subtle design problems that cause consistent failures on

application boards under special operating conditions [37].

1.3 Thesis Organization

Before discussing the contributions in further detail, in chapter 2 we will introduce

several other works in the field of post-silicon validation that are related to the topics

of this thesis.

The three main contributions will be covered in Chapters 3, 4 and 5:

14

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 1.3: Shmoo Graph of Intel’s ATOM processor. [*] characters represent a pass,
other characters show various types of failures [2].

� Chapter 3: Automatic Bit-flip Detection Test Platform

Details about the automatic test platform such as using Boolean satisfiability

(SAT) solvers to detect bit-flips and root cause analysis will be covered. Other

topics covered in this chapter include the simulation platform, how to inject bit-

flips, details on translating a circuit to Boolean SAT problem, and extracting the

list of suspect flip-flops from the unsatifiability core (core of UNSAT) generated

by a solver.

� Chapter 4: Trace Signal Selection for Bit-flip Detection

Details of the proposed algorithm for trace signals selection will be covered in

this chapter. “Bit Flip Detectability” metric will be introduced which is at the

core of our heuristic algorithm.

� Chapter 5: Joint Trace and Assertion Selection for Bit-flip Detection

Various strategies for joint selection of assertion checkers and trace signals will

be discussed which are an essential part of the work from a research stand point.

� Chapter 6: Conclusion and Future Work

15

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

A summary of the entire dissertation is provided as well as some ideas for future

work.

Each chapter includes results for several experiments as well as the challenges for

each contribution.

16

Chapter 2

Background and Related Works

As mentioned in the previous chapter, there are three different categories of tests,

each applied at a certain stage of design and production of digital integrated circuits:

� Pre-Silicon Verification

� Post-Silicon Validation

� Manufacturing Test

Each type was also briefly introduced in the previous chapter. Since the contribu-

tions of this dissertation fall within the realm of post-silicon validation, more details

on it will be provided. This chapter begins by emphasizing the importance of the

post-silicon validation, explaining the challenges and some solutions.

17

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

2.1 Why Post-Silicon Validation?

Integrated circuit manufacturers need to invest a considerable amount of resources

into post-silicon validation to make sure that the fabricated prototypes meet the

presumed specifications, before committing to mass production of a design. This is

because pre-silicon methods are compute-intensive, and hence insufficient to identify

all the design errors (or bugs) before tape-out. As a result, there are design bugs that

escape the pre-silicon screening and end up in the silicon prototypes. A recent study

shows that post-silicon validation is becoming increasingly time consuming and may

adversely affect the time-to-market [24]. It also shows that two out of every three

silicon prototypes were erroneous, despite the significant investment during the pre-

silicon verification. The majority of designs reported in [24] required two to four

re-spins before committing to high-volume manufacturing. According to some case

studies, the time-to-market is expanding in part due to challenges during post-silicon

validation [38].

2.2 Major Challenges

Post-silicon validation has emerged as a challenging task in the implementation cycle

due to the following major hurdles.

2.2.1 Controllability and Observability

First major challenge lies in the limited observability and controllability of the internal

signals. This is in contrast to pre-silicon verification, where any signal from the

design can be observed and/or controlled. At the post-silicon stage, observability

18

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

is ultimately constrained by the number of input/output (I/O) ports. In order to

observe or control a particular signal after fabrication, one needs to have connected

the signal to an external pin at design-time. Methods such as data compression,

multiplexing or using additional circuitry may be utilized to group several signals,

hence observing/controlling more nets, although only up to a certain extent [39].

2.2.2 Simulation and Golden Response

Another challenge stems from the lack of a golden response. During pre-silicon ver-

ification we rely on simulation-based methods to inspect the behavior of a design.

Simulation is inherently several orders of magnitude slower than the actual circuit

[25]. As a result, seconds to minutes of at-speed operation of a fabricated circuit can

easily outperform what can be achieved through simulation in days to weeks. It is

therefore practically infeasible to generate the golden response of a complex design for

non-trivial tasks (for example simulating an hour-long video game during pre-silicon

verification).

2.2.3 Reproducibility

Another major challenge while diagnosing a circuit prototype is to reproduce the

exact electrical state that leads to a failure. Design practices such as multiple clock

and voltage domains, combined with unpredictable events caused by asynchronous

inputs, voltage droops and extreme temperatures, may activate a particular design

error that is not easily repeatable.

19

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 2.1: Illustration of the serially connected scan chain. Each Scan-Flip-Flop con-
sists of a regular flip-flop attached to a multiplexer that enforces the normal operation
mode or a test mode. Reproduced from [3]

2.3 Notable Solutions

2.3.1 Scan-chains

To tackle the limited observability and controllability, scan chains can be leveraged

to overwrite and/or read out the state of a digital circuit (scan dumps). In this

technique, which is one the most popular Design for Testability (DFT) methods,

all the flip-flops which are supposed to become observable or controllable will be

replaced with reconfigurable flip-flops or scan-cells [40, 41]. Each scan-cell consists of

a multiplexer that chooses between the normal operation of the circuit or a test mode.

20

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

In the normal operation mode, each flip-flop is driven by its original source net. In the

test mode, however, each flip-flop is switched over to the output of another scan-cell

to form a chain [26]. Scan-cells operate either in the normal operational mode or test

mode. A circuit can work as usual until the test mode is asserted to the scan-cells. In

test mode, the value of all the scan-cells, which form a long shift register (or chain),

can be serially scanned out, hence their state will be observed. Simultaneously one

can serially scan in new bits to overwrite the old state of scan-cells, hence improved

controllability.

In its simplest way, in order to scan in/out bits from a scan-chain, first the oper-

ational clock source of a circuit needs to be stopped, then the scan-flops are switched

to scan mode to form the chain, and finally the scan-flops are clocked as many times

as the length of the chain and the output of the chain is sent out to an external device

and recorded as a scan dump. This technique has facilitated testing for fabrication

defects for many decades, despite the fact that the scan clock may be slower than

the operational frequency. Nonetheless, scan dumps provide no information on the

sequence of events that have preceded the failing state and one has to know exactly

when to stop the circuit execution. As will be explained later, trace buffers, which

are on-chip memory elements, remedy this limitation since they have the advantage

of recording a history of events for tens to hundreds of clock cycles.

2.3.2 On-Chip Stimuli Generation

As summarized by figure 2.2, the scan-chain method helps with both controllability

and observability, even though it has its own limitations. In contrast trace-buffers,

as will be discussed later, only improve visibility by providing a history of events for

21

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Trace Buffers
Event Detectors

Scan Chain
Stimuli
Generation

Observability Controllability

Figure 2.2: Added on-chip hardware can improve controllability and observability.
Some methods such as Scan Chains help with both, while others focus only on a
specific aspect.

a number of clock cycles. Another approach to improve controllability is to generate

real-time stimuli patterns within the chip.

During the post-silicon validation, it is practically infeasible to generate and pro-

vide a high volume of real-time test vectors from an external source (presumably at

gigahertz rate) due to limited bandwidth and software execution speed. Similar to

pre-silicon verification in which a large number of random patterns are applied to the

design, in post-silicon there have been attempts to provide such random stimuli. A

large number of random vectors increases the chance of detecting bugs [42, 43, 44]. As

a result, in order to perform post-silicon validation one can benefit from generating

and applying a set of constrained random stimuli on-chip and in real-time.

Note that the random stimuli have to be compatible with the design at hand and

must match the input requirements. For example a video decoder may accept only

very specific sets of input patterns in order to operate according to the specifications.

For microprocessors, which are only a specific yet widespread digital circuit, there

22

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

are methods to generate a sequence of machine codes to stimulate the DUV with

instruction-level templates [44, 45]. There are also other methods that focus on

generating constrained random stimuli for generic digital circuits [46, 47, 48].

Since on-chip stimuli generation is beyond the scope of this work, we only intro-

duce the idea from [46, 47, 48] in a brief and rather simplistic manner. As shown in

figure 2.3 on-chip stimuli generation relies on pseudo-random generator such as an

LFSR to generate a stream of variable bits. Then, these bits are processed together

with a mask pattern tailored specifically for the design under validation. These pat-

terns can be transferred from the software that make them to the correction logic

inside the chip. The correction logic then adjusts the pseudo-random bits to the re-

quired pattern. The output of the correction logic is expected to be of the correct

format suitable for the design under validation. The interested reader can learn more

about this aspect of post-silicon validation from [49].

2.3.3 Error Detection

The usually cumbersome process of silicon debug would have become significantly

easier if one could either quickly reproduce the erroneous behavior of a system or de-

tect the error immediately or shortly after it has occurred. Unfortunately, in practice

most debug sessions often take a long time since neither of these two conditions are

guaranteed to hold. In the former scenario (reproducibility) one could potentially

repeat many debug sessions in a relatively short time and collect some information

in every turn (such as scan dumps, trace buffers or simply by observing I/O) until

enough evidence of the root cause is found. In the latter case (quick error detection)

the erroneous behavior has less time to propagate and cause more corruption to the

23

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 2.3: The software on the left processed the circuit and generates a set of
cubes according to the verification requirements. The cubes contain fixed bits (0/1)
and flexible bits(x) that can be randomly filled with either 0 or 1. The cubes are
then loaded to a hardware memory. The correction logic receives a pseudo-random
sequence of bits and matches it to the received cube, basically filling the x bits with
0/1.

state of the system. Hence, by stopping the system under test immediately after error

detection and extracting the state (e.g., scan-dump [26]), it is possible to search for

the inconsistencies in a narrower space. For example, using JTAG 1 test access port

one can offload the state of the scan-chain [50]. Note that, since scan dumps provide

no history of relevant events, if error detection latency, which is the time between

the bug getting activated until somehow observing its effect, is not short enough,

scan-dumps may provide no useful information[51].

In order to reduce error detection latency, additional on-chip circuitry can also be

utilized to detect out-of-ordinary events. [52] has proposed an on-chip programmable

trigger unit which can detect various events such as level or edge sensitive triggers or

a sequence of events. More recently microprocessor-focused methods have also been

1Joint Test Action Group. Please refer to IEEE Standard 1149.1 for more information:
https://standards.ieee.org/findstds/standard/1149.1-2013.html

24

https://standards.ieee.org/findstds/standard/1149.1-2013.html

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

proposed that basically duplicate the original instructions and regularly compare the

outcome of the two sets of operations and expect them to be the same [53, 54].

More importantly, assertions which were traditionally only used in software devel-

opment and pre-silicon verification have found their way to post-silicon [31, 55, 56, 57].

This is owing to two main factors:

� Hardware Synthesis of Assertions: A designer can translate an assertion

into hardware by forming a finite state machine (FSM) that detects a certain

illegal pattern on a number of signals. In recent years researchers have developed

several automatic methods to map assertions to hardware automatically [58, 59,

60, 61].

� Automatic Assertion Generation: Traditionally a designer had to manu-

ally write assertions based on the requirements/specifications. More recently,

systematic methods to extract/generate assertions for a given design have been

developed [62, 63, 64].

In this work we benefit from automatically generated hardware assertions without

diving into their implementation details. As will be explained in chapter 5, a failed

assertion will provide the debug procedure with very useful information that can

narrow down the list of suspects and improve the accuracy of the root cause analysis.

2.3.4 On-chip Trace Buffers

To collect real-time information from within the circuit, it is common practice to

use on-chip memories as trace buffers that record a history of a subset of signals.

This extra information is critical during root cause analysis of the failure because the

25

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

history from the trace buffer can give unique insights into what lead to the observed

failing behavior. Nevertheless, the subset of signals that are to be recorded needs to be

known at design time. One has to decide in advance which signals will provide more

information during a debug session, for example by improving the overall visibility.

A designer may use the inner knowledge of a circuit’s structure and decide which

wires to tap for debug purposes. Since manual selection is cumbersome, especially

for circuit blocks with tens or hundreds of signals of interest, there is a need for

systematic approaches for trace signal selection. Also, there may be non-obvious

logical relations among a group of signals that are overseen by the designer, in which

case an algorithmic approach will be more effective.

Several studies have addressed the question of “which signals to trace?”. Ini-

tially the work from [65] proposed a metric to quantify the effectiveness of tracing

a set of signals called restoration ratio, which is the number of bits restored divided

by the actual number of bits collected. This work was followed by many other ap-

proaches, which are either analytical, simulation-based or hybrid, that either improve

the restoration ratio (by introducing a new selection algorithm) or decrease the run-

time of the algorithm from minutes to seconds (e.g., [66, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76]). Intuitively restoration-based methods justify their effectiveness for func-

tional bugs where the known logical values can safely propagate to other signals

(spatial propagation) and other clock cycles (temporal propagation). However, this

metric does not provide a one-fit-all solution when tracing is used for other objectives.

Several of the selection algorithms are structure-based, which means that they

make decisions based on the connections among logic gates. For example [66] defined

26

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

a probability-based method to improve gate-level visibility trace signal selection al-

gorithm which was able to restore more missing bits compared to the original work

in [65]. Similarly in [67] logic implication of every gate over other nets is used as the

basis for choosing trace signals with more influence.

The main criteria in which these selection algorithms could be compared are ei-

ther the quality of the selected signals measured mostly by restoration ratio, or the

runtime of selection procedure. The methods in the literature fall into metric-based

or simulations based methods. Metric-based methods mostly use probability (such as

[70]) or their own defined metric (such as debug-difficulty in [72]). In [77], assertion

coverage is proposed as an alternative metric for trace signal selection in post-silicon

validation. Simulation-based methods may potentially have a better selection qual-

ity, since they rely on real or synthesized input vectors to stimulate the circuit and

observe the logic behavior and choose signals accordingly. The higher quality of se-

lection quality comes at the cost of high simulation time. [74] and [76] manage to

keep the simulation time scalable for circuits of upto 50000 nets while using methods

such as machine learning or ILP (Integer Linear Programming). Other methods em-

ploy various novelties to achieve their objective: for example [71] performs a hybrid

selection based on both simulation and probability. [68] first determines critical state

elements and then performs selection to achieve a better selection quality. [69] selects

trace signals as well as scan-cells that together can potentially restore many bits. For

logic circuits that have multiple modes of operation, [75] introduces a method that

judiciously select groups of signals for each mode of operation.

The methods mentioned above have a common objective which is to improve the

restoration ratio and ultimately restore more unknown bits within a debug session,

27

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

in the absence of any bit-flips. In the presence of bit-flips, caused by electrical bugs,

a logical state might be restored to a wrong state due to the presence of a logical

inconsistency. Inefficacy of restoration based trace selection has been observed also

by others, such as [78] where it was shown that a random selection is more effective

than the above mentioned restoration-based selections, when bit-flip detection is the

objective. This will be discussed in more detail in the following section.

2.3.5 On-Chip Tracing in the Presence of Electrical Bugs

Trace buffers can be quite helpful when dealing with “functional bugs” since for

this type of bugs logical consistency is preserved. For example if a digital designer

implements a 1’s complement negation when in fact 2’s complement has been required,

all the silicon prototypes will be affected by such a mistake. Collecting a number of

bits inside a trace buffer and post processing them could potentially reveal the wrong

outcome as well as the underlying reason. In this scenario, since there is no logical

inconsistency the restored bits for unknown signals are meaningful. If, however, there

was a cross-talk between two signals within a design, where one could affect the other

such that it would flip its Boolean value, presumably at a certain voltage or frequency,

then we would be dealing with an “electrical bug”.

Electrical bugs, when activated, affect a digital circuit by undesirably flipping a

bit. A few examples of these bugs are those related to corner cases due to process

variations, temperature and voltage-sensitive signal races or asynchrony from multiple

clock domains or I/Os, all of which are not easily reproducible [79]. Due to the

sophisticated nature of electrical bugs, they can potentially affect some or all of the

prototypes. In the presence of these bugs that commonly result in bit-flips in the logic

28

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

domain, restoration-based methods are insufficient. This is because when restoration

ratio is used as a metric, the objective is to select trace signals that eventually restore

more bits in the circuit over multiple clock cycles. Such algorithm does not take

into account: (1) the occurrence of a bit-flip and how they change the behavior of

the circuit; (2) bug localization, i.e., in which flip-flop and in which clock cycle the

bit-flip occurred. As a result, in this work we address the following problem: “which

signals should we trace in order to detect and localize bit-flips?”.

An example of a systematic solution to facilitate bug localization during post-

silicon validation is Instruction Foot-print Recording and Analysis (IFRA) [80], which

was designed to be applied to microprocessors. An improvement to IFRA was intro-

duced in [81], nevertheless it is not clear how these methods can be applied to generic

digital logic blocks that are common in system-on-a-chip (SOC) devices. In chapters 3

and 4 we present an automated trace buffer-based solution for searching for bit-flips in

generic logic blocks. Our approach relies on Boolean Satisfiability (SAT) formulation.

Boolean SAT has been extensively studied in theoretical computer science and used

in electronic design automation (EDA) applications, such as pre-silicon verification

[82], manufacturing test [83] and model checking [84].

A Boolean SAT instance is either satisfiable or unsatisfiable. For an unsatisfiable

Boolean SAT instance a subset of clauses within the problem cannot be satisfied

simultaneously. As discussed later in this thesis, this particular subset, also known

as “core of UNSAT”, provides critical information that points out to the logical

inconsistency hidden in the trace buffer. By analyzing this core we can generate a

list of suspect nets where the bit-flip has likely occurred. The work presented in

[85] has considered debugging on the gate level by restricting the SAT instance to

29

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

the failure trace and the correct output values. Similar to our work the constrained

problem is passed to a SAT solver to extract the core of UNSAT. However multiple

counterexamples are assumed which is in contrast with debugging transient bit-flips.

This is because experiments are not easily reproducible. Another major difference

between error localization in our work and [85] is that in our approach the correct

output values are not assumed to be available. More recently, the approach presented

in [86] uses an iterative window-sliding procedure, which is claimed to be scalable for

large circuits by making the size of the sliding window adjustable. They identify a

small set of fault candidates, however, their assumptions are different from our work:

(1) primary input/outputs (I/Os) are assumed to be traceable from the beginning of

the debug experiment. Since subtle design errors might take days to weeks to manifest

themselves [87], the assumption from [86] cannot be applied to such problems due to

excessive storage requirements. In contrast, we make no assumption about recording

the I/Os and we rely only on the data recorded in the on-chip trace buffers. (2) The

work from [86] focuses only on trace analysis when a random subset of signals are

traced. In contrast, the main contribution of our work from chapter 4 is to define new

metrics that can guide trace signal selection algorithms that will assist with bit-flip

detection and localization. The key insight lies in the fact that trace data collected

during a debug experiment should imply opposite values in the flip-flop where the

bit-flip has occurred.

2.3.6 The Debug Process and the Scope of This Work

As depicted in figure 2.4 the debug process using trace collection consists of several

steps. These steps are divided into two major phases: pre-silicon and post-silicon.

30

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

 Pre-Silicon Physical Domain Post-Silicon

Allocate On-Chip
Memory

Choose Traced Signals

Connect C.U.T to
Memory

Test Circuit

Extract Traced Bits

Bug ? No

Yes

Send Chip to Fabrication Post-Analyze Trace

1

8

2

7

3

6

4

5

32

31

30

29

28

27

26

25

9 24

10 23

11 22

12 21

13 20

14 19

15 18

16 17System under Test

Circuit
under Test

On-chip
Memory

Trace
Trace Extracted

Figure 2.4: Pre-silicon and post-silicon tasks for trace-based debugging.

Only the highlighted item falls within the scope of this work, as explained below.

In the pre-silicon phase, we assume that a circuit is finalized and ready to be man-

ufactured. Then the trace collection circuitry is added to facilitate the post-silicon

debugging. We first allocate on-chip memory for trace collection. This can be limited

by chip area and the cost of on-chip memory. Then we need to choose the trace

signals based the memory budget from the first step. Afterwards the circuit has to

be modified to connect the traced signals to the memory. Optionally, one can in-

clude several event detectors or hardware assertion units to monitor various events or

trigger data acquisitions. Finally the chip is sent for manufacturing.

For the post-silicon phase, the manufactured circuit is exercised until an error is

observed, at which point the system is halted and the collected trace is extracted

out of the on-chip memory. This information needs to be processed so that we find

31

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

the root cause of the problem. The three major contributions of this dissertation are

listed below. We should note that other tasks during post-silicon debugging such as

event detection [52], or assertion generation [62, 63, 64] are critical steps that will

also influence the analysis of the failing traces caused by bit-flips, however they are

beyond the scope of this investigation.

2.4 Overview of Contributions in this Thesis

As mentioned before automated solutions such as CAD tools for verification/validation

are an essential part of the VLSI design and test methodology. Below we enumerate

the contributions of this thesis to facilitate post-silicon validation in different stages.

1. Automatic detection of bit-flips and root cause analysis through analysis of the

failing traces, in Chapter 3,

2. Trace signal selection to maximize bit-flip detection, in Chapter 4,

3. Concurrent selection of trace signals and assertion checkers to maximize bit-

flip-detection, in Chapter 5.

2.4.1 Automatic Detection of Bit-Flips

Chapter 3 discusses a test platform in which bit-flips, which are presumably unex-

pected and undesired change of bits as a result of an electrical bug, are detected in

an automated process.

In order to do so, several software modules were developed that would run the

following steps:

32

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

1. Receive a circuit in terms of a netlist of gates and flip-flops.

2. Modify the circuit such that a bit-flip can be injected in a simulation platform

at any given time to any given flip-flop.

3. Run simulation and inject bit-flips to all flip-flops at several distinct time-steps.

4. Record the values of all or several flip-flops before and after the injection and

store them for post-processing.

5. Convert the netlist to a Boolean representation of the circuit, while strictly

keeping the logical relations of the gates in the new representation.

6. Convert the recorded bits of a number of flip-flops, also known as the trace bits

within a trace buffer, to the same mathematical format.

7. Match the two mathematical representation and check if they are compatible

or alternatively they are inconsistent.

In summary the input and output of this contribution is:

INPUT 1. A circuit,

2. List of flip-flops assumed to be traced,

3. Which flip-flop to inject a bit-flip into,

4. What time to inject that bit-flip.

OUTPUT 1. Test outcome which is either “bit-flip detected” or “bit-flip NOT detected”,

2. If the bit-flip is not detected, there is not much information that could

be provided at this stage. If, however, the bit-flip was detected additional

information such as list of suspect flip-flops, or,

33

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

3. The range of time-stamps in which an inconsistency is detected.

The information provided as output are helpful for bug localization for post-silicon

validation as mentioned in the previous section about validation.

2.4.2 Trace Signal Selection

Chapter 4 answers the next big question: “which signals to trace to detect most ratio

of bit-flips?” In the previous contribution, we assumed that the list of traced signals

is somehow given. Such a list can come from the designer of the circuit or can be

a random subset of all the flip-flops. Alternatively, as intuition suggests, one could

develop an algorithm to systematically select a subset of flip-flops.

The objective is to precess a circuit and, given a certain budget, provide a list of

more influential flip-flops which can help uncover more bit-flips. Note that, there are

many “trace signal selection” algorithms already in the literature, however they have

their own different objective such as maximizing restoration or detecting functional

bugs, rather than bit-flips or electrical bugs.

The big picture of our proposed algorithm is as follows:

1. Receive a circuit in terms of a netlist of gates and flip-flops.

2. Model the circuit’s connection with a probabilistic model.

3. Mark various flip-flops as “traced” and observe their effect on the probability

of detecting bit-flips on other flip-flops.

4. Choose the flip-flop which causes the maximum detection probability.

5. Repeat above for as many times as the number of required traced flip-flop,

selecting one in each cycle.

34

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

6. Provide the final list of selected flip-flops.

In summary the input and output of this contribution are:

INPUT 1. A circuit,

2. Trace budget or the number of flip-flops to be selected.

OUTPUT 1. List of selected flip-flops.

Together with the first contribution, the effectiveness of various trace selections

can be quantified. Different selections may come from either a random selection or a

selection with a modified version of our proposed algorithm. This will be discussed

in detail in chapters 4 and 5.

2.4.3 Concurrent Trace and Assertion Selection

Hardware assertions can be used to detect irregular events within a digital circuit.

They can be utilized as an event detector or a means of compressing several nets into

a single digital flag. In the previous sections we selected a group of traced flip-flops

with the aim to detect as many bit-flips as possible. Next we decided to integrate a

number of hardware assertion checkers to further improve bit-flip detection.

In our proposed algorithm the following steps are achieved in addition to all the

steps in the trace-signal selection algorithm:

1. A pool of hardware assertions is received.

2. The effects of each hardware assertion is first quantified in terms of the bit-

flips it detects. Also the cost of each assertion, in terms of wire count or area

overhead is calculated.

35

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

3. Mark various flip-flops as traced and measure the effect in estimated bit-flip

detectability. Also integrate individual hardware assertion and measure the

same effect.

4. Choose the “traced flip-flops” or “assertion-checkers” which improve bit-flip

detectability.

5. Repeat the above steps according to the trace and assertion budget.

6. Provide the list of selected flip-flops and assertions.

In summary the input and output of this contribution are:

INPUT 1. A circuit,

2. Trace budget or the number of flip-flops to be selected,

3. Wire count of the assertions or the total number of assertions.

OUTPUT 1. List of selected flip-flops,

2. List of selected assertions.

In this task we assume that a pool of assertions is provided from an external

source. As discussed in [88] there are a number of ways to automatically generate

thousands of assertions for any given circuit. Assertion generation is beyond the scope

of this work. Our proposed method only selects a subset of the provided pool aimed

at detecting as many bit-flips as possible.

In this chapter, several major challenges of post-silicon validation were discussed,

as well as a few of the most common solutions. On-chip trace buffers and their

application towards silicon debug were introduced. In the next chapter an automated

bit-flip detection method is proposed.

36

Chapter 3

Satisfiability-Based Test Platform

3.1 Background

In the previous chapters we addressed the challenges of the tests required for detecting

and debugging during post-silicon validation. It was explained that there is a need

to establish a systematic and automated process to deal with the complexity of such

tests. The use of on-chip trace buffers was briefly introduced and will be elaborated

more thoroughly here. As the main topic of this chapter, we present a computational

approach to analyze the failing traces caused by electrically-induced bit-flips.

Here we assume that there is a digital circuit together with a trace buffer that

records samples of some of the internal circuitry. Due to the nature of the failing

mechanism, we do not assume that the failing trace is reproducible and therefore

we rely exclusively on embedded logic analysis for data acquisition. It is important

to note that despite significant research in the fault-tolerant community on methods

to recover from bit-flips, there are no systematic approaches to root-cause them,

which is a critical challenge during post-silicon validation. Our method relies on the

37

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Boolean satisfiability problem (SAT) that has been extensively studied in theoretical

computer science, with many practical applications ranging from artificial intelligence

to electronic design automation. For example, SAT-solvers have been used in pre-

silicon verification [82] and manufacturing test [83]. However, a specific feature of

SAT solvers, i.e., the core of UNSAT (as elaborated later in this chapter), provides

critical information that is beneficial to understanding the failing traces during post-

silicon validation. This feature has motivated our approach and our results indicate

that this is a direction worth pursuing as a generic solution to narrow down a suspect

list of flip-flops and timeslots (where and when bit-flips have occurred) within the

failing trace.

In the following an overview of the trace-based debug process is given, followed

by a few motivational examples, the assumptions and the nomenclature and the SAT

formulation for post-silicon debugging.

3.1.1 The Scope of This Chapter

Figure 2.4 showed the entire debug process using trace collection which consists of

several steps. As mentioned before these steps are divided into two major phases:

pre-silicon and post-silicon. In this chapter we focus only on the last step which is to

post-analyze the recorded trace. This step is highlighted in figure 3.1. Here we assume

that a digital circuit containing an on-chip trace memory has been fabricated and is

under post-silicon validation. The circuit is exercised until an error is observed, at

which point the system is halted and the collected trace is extracted out of the on-chip

memory. This information needs to be processed so that we find the root cause of the

problem. The ideal outcome of such post-analysis is to find out exactly at which clock

38

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

 Pre-Silicon Physical Domain Post-Silicon

Allocate On-Chip
Memory

Choose Traced Signals

Connect C.U.T to
Memory

Test Circuit

Extract Traced Bits

Bug ? No

Yes

Send Chip to Fabrication Post-Analyze Trace

1

8

2

7

3

6

4

5

32

31

30

29

28

27

26

25

9 24

10 23

11 22

12 21

13 20

14 19

15 18

16 17System under Test

Circuit
under Test

On-chip
Memory

Trace
Trace Extracted

Figure 3.1: Pre-silicon and post-silicon tasks for trace-based debugging. Last step is
to process the collected trace and find out the root cause of the bit-flip.

cycle and on which circuit’s net a bit-flip has occurred. A more realistic outcome is

that some of the bit-flips are never detected and for those that are detected, a list of

suspect nets on several clock cycles are generated (hence less than ideal accuracy).

3.1.2 Motivational Examples

Figure 3.2 shows two versions of a simple circuit. The value of Q outputs of flip-flops

are written next to each pin. The circuit on the left shows consistent values since

the logical AND of {0, 1} is 0 and the logical OR of the same inputs is 1. The right

half of this figure, however, shows that the OR of two inputs is observed as zero while

the AND is observed as one. This is a logical contradiction because for no values of

A and B, we can have such results for C and D. Table 3.1 represents the same values

39

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

CLK

A

B

C

D
CLK

CLK CLK

0 0

11

CLK

A

B

C

D
CLK

CLK CLK

 1

0

Figure 3.2: An example circuit with consistent values on the left-hand side and an
illegal combination on the right-hand side.

Table 3.1: Sample trace for the circuit from figure 3.2 and the corresponding SAT
conditions

A B C D
T 0 1

T+1 0 1

A B C D
T ? ?

T+1 1� 0

(AT) · (BT)·

(CT+1) · (DT+1) = 1 (CT+1) · (DT+1) = 1

of figure 3.2 in a tabular fashion. It consists of two rows representing the two clock

cycles that the logic values are extracted form a circuit. Some cells are left empty

only for simplicity. Clock cycles T and T + 1 are two consecutive cycles for which the

trace has been available. We will soon show how these contradictions are detected

and reported using a SAT solver, after converting the circuit and its trace to a SAT

formulation. This table also shows some SAT conditions which are discussed later.

Figure 3.3 is another example to illustrate how logic inconsistencies caused by

bit-flips can be detected automatically. We assume that the output {Carry, Sum}

(or equivalently {C, S})is observed to be {1,1}. While this inconsistency may be

obvious for the reader, we have to provide an automated way to detect non-obvious

40

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

illegal states. A step-by-step approach is depicted in figure 3.3 where we try to find

the state for the rest of the circuit that leads to the observed pattern. Arbitrarily we

start by propagating the output of the XOR gate to its inputs. The inputs have to be

either {01} or {10}. Taking any of the paths on this search tree results in Carry=0.

Alternatively we could begin by back-propagating the 1 value on the AND gate, which

forces the inputs to only {11}. This time we infer Sum=0, which is again inconsistent

with the collected trace.

The search explained above is implicit in a SAT solver. Figure 3.3(c) shows the

procedure of formulating a SAT instance by translating circuit nodes to Boolean vari-

ables and using the collected trace data as additional constraints captured through

single-literal clauses. If the SAT instance is unsatisfiable (UNSAT), the core of UN-

SAT will return only the clauses that are not simultaneously satisfiable. By post-

processing this core of UNSAT we can narrow down the suspect list of flip-flops and

the clock cycles where the bit-flip that caused the logic inconsistencies might have

occurred.

3.1.3 Assumptions and Nomenclature

We assume that we are dealing with a digital circuit that is composed of only basic

logic gates (i.e. NOT, AND, OR, XOR and their inverted) and D-type flip-flops. There

is also a limited amount of on-chip memory available for storing a history of values

from a subset of these flip-flops. This is called a “trace memory” and it works in a

first-in-first-out fashion with depth of n, a circular buffer in which only the last n

samples are recorded and the newest sample will overwrite a sample from n clock

cycles earlier. Every flop is either traced, meaning that its values is recorded onto the

41

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

(a+ c) · (b+ c) · (a+ b+ c)·
(a+ b+ s) · (a+ b+ s) · (a+ b+ s) · (a+ b+ s)·
(s) · (c) = 1

(c)

Figure 3.3: (a) Carry and Sum are both 1. (b) Unsuccessful attempt to find A and B
due to logic inconsistency. (c) Equivalent SAT problem. First line describes the AND

gate, second line the XOR and the third line is derived from the collected trace bits.
In conjunctive normal form (CNF) all clauses must conjunctively evaluate to 1.

42

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

trace memory, or untraced otherwise. Note that the value of an untraced flop may

still be inferred from other traced signals, or stay unknown. We also assume that the

circuit has been running for a long time before the traces are extracted out of the

memory. The size of the trace memory is w bits wide by n which means that it is

large enough to keep a history of w traced flip-flops for the last n cycles.

Table 3.2 illustrates such a trace memory for a hypothetical circuit with 3 traced

signals, w = 3. In this table, each row represents a traced signal (A for instance).

Using data expansion methods similar to [65], such as forward and backward propaga-

tion of the traced data, Table 3.2 can be expanded to hold all the other signals. Table

3.3 is an example of such an expanded trace. In this table the first 3 rows are the

exact copy of the traced flops (i.e., A, B, C). The additional rows (D, E, ...) belong to

the untraced signals. At every clock cycle, the value of an untraced signal can either

be logically inferred using all the traced values and all the previously inferred ones,

or it remains unknown. As a result the expanded history contains 0 and 1 for known

values and question marks for yet-not-inferred values. When building the expanded

trace history, initially all the untraced signals are marked with question marks “?”

to represent their unknown status. As the data expansion algorithm operates on the

given trace, some of the “?”s will be replaced by either “0” or “1”. In an ideal situa-

tion every question mark will be replaced, however with limited signals to trace some

might remain unknown.

3.1.4 SAT Formulation and Its Use for Post Silicon Debug

In this section we describe how a logic circuit can be translated to SAT clauses. We

also explain how the values from the failing trace can be added to the SAT formulation

43

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Table 3.2: Trace History

Signal ↓ Cycle → 1 2 3 4 5 6 ... n

A 0 1 0 0 1 0 ... 1
B 0 0 0 1 0 0 ... 0
C 1 1 0 1 0 1 ... 0

Table 3.3: Expanded History

Signal ↓ Cycle → 1 2 3 4 5 6 ... n

A 0 1 0 0 1 0 ... 1
B 0 0 0 1 0 0 ... 0
C 1 1 0 1 0 1 ... 0

D ? ? 1 0 0 ? ... ?
E ? 1 ? ? ? 1 ... 0
...

...

that contains the logic circuit.

Boolean relationships can be written in a format known as Conjunctive Normal

Form (CNF), which describes every Boolean relation as a set of logic conditions that

must hold altogether. Table 3.4 shows these conditions for basic logic gates. Here we

illustrate the relationship using a sample circuit. Figure 3.2 shows a circuit containing

4 flip-flops and 2 logic gates. If we denote FT as the value of flip-flop F at clock cycle

T (at the Q terminal), the following relationships, as defined by the AND and OR gates

from the circuit from figure 3.2,

CT+1 = AT ·BT

DT+1 = AT +BT

44

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Table 3.4: Conjunctive Form of Basic Logic Gates

Logic Definiton Conjunctive Form

AND y = a · b (a+ y)(b+ y)(a+ b+ y) = 1

OR y = a+ b (a+ y)(b+ y)(a+ b+ y) = 1
NOT y = a (a+ y)(a+ y) = 1

can be transformed to the logic conjunction (AND) of the following six clauses:

(AT + CT+1) · (3.1)

(BT + CT+1) · (3.2)

(AT +BT + CT+1) · (3.3)

(AT +DT+1) · (3.4)

(BT +DT+1) · (3.5)

(AT +BT +DT+1) = 1 (3.6)

A SAT clause is a logic disjunction (OR) of literals, where a literal is a Boolean

variable (which may or may not be complemented). The first three clauses from the

above SAT formulation formulate the AND gate from figure 3.2 and the last three

clauses represent the OR gate. In the SAT formulation, all the clauses are ANDed

together. A SAT solver will search for an assignment of the Boolean variables to

determine if all the clauses can be true at the same time.

The trace bits collected during the post-silicon debug can also be added to the SAT

formulation as a set of additional clauses. Table 3.1 shows two sets of assumptions for

values of our flip-flops. We have transformed every single assumption for the values of

45

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

a flip-flop F at any time T into a single condition of form (FT) or (FT) based on the

flop’s value. These conditions, that hold only a single variable are called unit clauses

and are easy to evaluate since they simply assign their variable to a logical 0 or 1,

without any necessary knowledge about the other variables. Within a SAT solver,

these unit clauses will cause a Boolean constraint propagation, where the set of the

remaining clauses will be reevaluated/updated, i.e., some clauses might be removed if

they are satisfied as a consequence of the evaluation of the unit clause or the number

of literals will be reduced because the Boolean variable assigned in the unit clause is

not unknown any more.

It can be verified that the values in the left half of Table 3.1, or equivalently the

conditions in the bottom left of this table, can satisfy all the of the conditions in the

SAT problem. However, the right half of table 3.1 will not: knowing that CT+1 = 1

and then satisfying conditions (3.1) and (3.2), we conclude that AT = BT = 1,

which according to either of conditions (3.4) or (3.5) leads to DT+1 = 1 which is a

contradiction with the given data in table 3.1. In others words there are no two values

of A and B that have AND(A,B)=1 and OR(A,B)=0.

In the above example the SAT problem is known as “Unsatisfiable”, or UNSAT

for short. A set of clauses leading to a contradiction are known as a Core of Un-

satisfiability (or the core of UNSAT). For the above example, the core of UNSAT

contains the two conditions in the bottom right of table 3.1 and conditions {3.1,3.4}

of the listed problem, thus a total of 4 conditions:

(AT + CT+1) · (AT +DT+1) · (CT+1) · (DT+1) 6= 1

Technically the SAT solver is free to choose the order in which it evaluates the

clauses of a Boolean SAT problem. Consequently, different solver configuration or

46

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

decision algorithms may find a different Core of UNSAT. In order to show that the

core of UNSAT is not necessarily unique, even in this small example, one can verify

that the core could include conditions 3.2 and 3.5 instead of 3.1 and 3.4:

(BT + CT+1) · (BT +DT+1) · (CT+1) · (DT+1) 6= 1

The Boolean variables in the core of UNSAT capture both the flip-flops and the

clock cycles that are contributing to the logic inconsistency in the failing trace and

can thus provide a narrowed down list of suspects (in both space and time) for the

root cause of the problem. And this can be achieved without needing a separate

debug session, which is often the case when the bit-flip has been induced by a subtle

electrical problem that is difficult (if not infeasible) to reproduce.

3.2 Methodology and Evaluation Platform

Figure 3.4 gives an overview of the steps in our methodology. As seen in the example

from the previous section, a SAT formulation comprises two categories of clauses.

First set are the clauses based on the circuit structure, that captures how the logic

gates are connected to each other. The second group of clauses are produced by the

failing trace that was collected. Once the two categories of clauses are merged and the

final SAT formulation is created, any third-party SAT solver can be used to search

for a satisfiable assignment of the Boolean variables. In the event that the problem

proves to be Unsatisfiable, the core of UNSAT is analyzed further. In the following

we will explain each of these steps in detail.

47

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

S
tr

u
ct

u
re

Tr
ac

e

Netlist Unroll Translate

SAT

Trace Translate

Merge Backward
Translate

 &
Filter

Figure 3.4: The SAT formulation consists of two sets of SAT clauses: From the circuit
structure and from the failing trace.

3.2.1 Circuit Unrolling

In a digital circuit each flip-flop holds a different value in each clock cycle. Consider

a flip-flop named “A”, as depicted in figure 3.5. During n clock cycles, we have

virtually n different flip-flops “Ai”, one for each clock cycle. At any given cycle,

the value on the Q outputs of every flip-flop feeds the combinational logic connected

to it to form the next state logic, by providing a value to the D inputs of all flops

within the same clock cycle. The D values of cycle T become the Q values of the cycle

T + 1. As a result, to formulate a complete SAT problem from a circuit, we need to

know the trace depth, n, and we must unroll the circuit to n subcircuits and connect

the combinational logic inside each subcircuit layer, while the only interconnection

between the subcircuits are through the sequential elements, i.e., flip-flops.

48

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

3.2.2 Translation

Circuit

Table 3.4 shows the CNF representation of the basic logic gates. These are known as

Tseytin transformations [89]. This table is used to translate the basic logic elements

in a circuit into Boolean SAT clauses. Table 3.5 shows the same type of translation

rule for larger logic gates and flip-flops. As it can be seen for relatively larger logic

gates, the SAT representation requires more clauses (in particular for XOR gates) and

more literals per clause. Note, we can decompose a larger logic block into smaller

ones and then write the translation for the smaller unit, which comes at the expense

of having more Boolean variables for the intermediate signals in between the smaller

units. For example, we may replace a 4-input AND with three smaller 2-input AND

gates.

Trace

For the trace subproblem we have to extract the 0/1 values for every traced flip-flop

from the trace memory and based on the value we introduce (FT) = 1 or (FT) = 1

for flip-flop F at clock cycle T . As it is the case for the circuit SAT subproblem, each

A B
A B

1 2
 3

 4
 ...

 n

1 2
 3

 4
 ...

 n

Figure 3.5: All the flip-flops are unrolled for as many times as the trace depth.

49

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Table 3.5: Conjunctive Form of Larger Logic Gates and D-type Flip-Flop

Logic Definition Conjunctive Form

D/Q FF QT+1 = DT (QT+1 +DT)(QT+1 +DT) = 1

OR3 y = a+ b+ c (y + a)(y + b)(y + c)
(y + a+ b+ c) = 1

OR4 y = a+ b+ c+ d (y + a)(y + b)(y + c)(y + d)
(y + a+ b+ c+ d) = 1

AND3 y = a · b · c (y + a)(y + b)(y + c)
(y + a+ b+ c) = 1

AND4 y = a · b · c · d (y + a)(y + b)(y + c)(y + d)
(y + a+ b+ c+ d) = 1

NOR3 y = a+ b+ c (y + a)(y + b)(y + c)
(y + a+ b+ c) = 1

NAND3 y = a · b · c (y + a)(y + b)(y + c)
(y + a+ b+ c) = 1

XOR y = a⊕ b (y + a+ b)(y + a+ b)
(y + a+ b)(y + a+ b) = 1

XOR3 y = a⊕ b⊕ c (y + a+ b+ c)(y + a+ b+ c)
(y + a+ b+ c)(y + a+ b+ c)
(y + a+ b+ c)(y + a+ b+ c)
(y + a+ b+ c)(y + a+ b+ c) = 1

flip-flop has its own Boolean variable for each clock cycle.

A major difference between the two SAT subproblems, apart from the origin of

the conditions, is the fact that the latter consists of only unit clauses whereas the

former category contains larger clauses depending on the size of logic gates.

3.2.3 Merging and Running the SAT Solver

Merging the two subproblems is trivial. There are certain rules that have to be

followed to ensure the problem is compatible with standard off-the-shelf SAT solvers.

Here we formulate the SAT problem in simplified DIMACS format [90], in which all

50

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

the variables are replaced by numbers. The specific implementation details are not

discussed here.

To solve the SAT problem we use the and open-source solvers “PicoSAT” [91] and

“miniSAT” [92]. Apart from user friendliness and good performance, the fact that

PicoSAT generates the core of UNSAT has been a major reason for us to consider

this solver.

Finally, the list of variables inside the core of UNSAT are extracted and used for

further analysis. Note that if the problem is satisfiable, this method has no means

to identifying any design bug. A satisfiable assignment means that the traced signals

and the circuit are consistent, which shows that the collected trace is not sufficient

to find the logical inconsistency.

3.2.4 Backward Translation and Filtering

The core of UNSAT, contains the list of conditions which were incompatible. The

next step for us is to backward-translate the list of variables in this list to the original

netlist domains. There is a one-to-one mapping between each Boolean variable in

SAT problem and a signal in the unrolled circuit. As a result each UNSAT variable

points to a net, either a logic gate or a flip-flop, at a specific clock cycle. This 2-

dimensional list of net and time pairs can provide a set of candidates of the root

cause of the inconsistency. We can further filter this list to hold only the flip-flops.

3.2.5 Evaluation Platform

In order to evaluate the steps discussed in this section, we needed to design a (virtual)

evaluation platform in which it is simple to inject bit-flips into any of the flip-flops

51

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Inject Error
0 1

Erroneous Q

Figure 3.6: Flip-flops are replaced by error-injectable flip-flops.

Circuit
Under
Test

Random Input

Inject Bit Flip

Output : Ignored

Traces : Recorded

Figure 3.7: Bit-flips are injected to the circuit-under-test.

in a test circuit. We parse the input netlist and replace the flip-flops with the blocks

shown in figure 3.6. In order to inject a bit-flip into a flip-flop we have to assert

the “Inject Error” bit of that particular flip-flop to a logic 1 at a specific time, for a

duration of one clock cycle.

Then we run multiple simulations of our test circuits, applying random inputs and

at the same time collecting traces. At some arbitrary point in time we inject a single

bit-flip into one of the flip-flops. We also have to choose a number of flip-flops as trace

signals, according to our predefined trace budget. In this chapter we assume that the

traced flops are selected randomly. When the simulation is over we send the collected

trace and the circuit to the translation engine to generate the SAT formulation. The

SAT solver is called to analyze the problem and, if the problem was unsatisfiable

the core of UNSAT is sent to backward translation engine and the list of candidate

flip-flops are extracted.

52

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

3.3 Experimental Results

We ran experiments on different benchmark circuits including ISCAS ’89 s9234,

s38584, s38417 [93] and ITC ’99 b21, [94]. We used commercial simulator and

computer-generated SystemVerilog hardware description language. All the developed

programs are in C/C++, with some automated scripts written in Bash under Linux.

In an experiment we inject a single bit-flip into every flip-flop in the circuit in

separate simulations. This means that in each simulation run, only one of the flip-

flops is affected by the bit-flip. As a result, for a circuit with n flip-flops an experiment

consists of n different simulations. We randomly chose t out of n flip-flops as the traced

signals. Which signals are the most suitable to be traced for bit-flip diagnosis is a

standalone problem that is discussed in detail in the next chapter. Here, we focus

on showing the feasibility of using the core of UNSAT for narrowing down where

and when the bit-flips have occurred. To keep the experiment self-consistent these

t traced signals are kept the same within a single experiment; the same applies to

the error injection time and the trace collection window. In all these experiments the

trace collection windows, also known as trace depth, is 100 cycles and the error is

injected at cycle 50.

In each simulation the trace is recorded and undergoes the steps shown in figure

3.4. Next, the n SAT problems are generated and passed to the solver. Finally the

UNSAT problems are counted and kept for further processing. Figure 3.8 summarizes

the percentage of the problems that proved to be UNSAT as a result of increasing

the trace width. The horizontal axis shows the ratio of the signals that are recorded

in each experiment. As it is expected, the number of UNSAT problems grows as the

number of traced signals increases. The reason is that the solver is provided with

53

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 3.8: Ratio of UNSAT problems vs the ratio of signals being traced.

more input data to find the inconsistency. It is shown that different circuits behave

differently in this experiment, however the monotonic increase in the UNSAT ratio is

consistently observed.

When a problem proves to be UNSAT, its core of UNSAT is then further processed.

The variable names are backward-translated to nets and times of the reported incon-

sistency. The analyzer lists the flip-flops involved in the core and their corresponding

time-tag, which is defined as the candidate group. Bug localization requires the ability

to shrink the candidate group both in time domain as well as flip-flop count. Figure

3.9 shows that the majority of these candidates are within a distance of 5 cycles from

the cycle that the error was injected. This chart is for circuit s38417 with a trace

width of 128 bits (out of 1636 flip-flops).

54

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 3.9: Distribution of the candidate group in time with respect to the bit-flip
injection at cycle 0.

Figure 3.10 shows the histogram of the number of suspect flip-flops in the candi-

date group for s38417. This figure shows that the increase in trace width, apart from

the increased chance of error detection, shrinks the size of candidate group. With

trace width of 128 and 256, respectively, the size of the candidate group is less than

30 and 20, for approximately 85% of the experiments that have produced a failing

trace where a logic inconsistency was found.

Another result worth reporting is the runtime of the SAT solver. From the prac-

tical standpoint, it is necessary to understand which kind of experiments influence

the runtime. Since the overall runtime is dominated by the SAT solver step, we will

only report the time required by PicoSat to return a satisfiable assignment (when no

logic inconsistency was found) or the core of UNSAT (when a logic inconsistency was

identified). It is interesting to observe that generally the unsatisfiable problems were

proven faster than the satisfiable ones. Figure 3.11 summarizes these measurements.

55

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 3.10: Distribution of the number of flip-flops in the candidate group for two
trace widths (left:128 and right: 256).

Although the runtime is dependent, in part, on the internals of the SAT solver, we

believe that the solver is spending more time to find a difficult solution to satisfy

assignments (for traces were a bit-flip was injected), rather than more rapidly iden-

tifying a logic contradiction, as a result of a signal inconsistency (at which point the

search engine within the SAT solver stops).

The above experiments were run remotely on a server farm with (mostly) AMD

Opteron 2.2 GHz processors. It was observed that the majority of instances used

between 600 MB and 1.2 GB of memory. When increasing the trace depth from 100

cycles to 200 and then to 1000 cycles, the memory usage increased to around 2 GB

and 8 GB respectively. The average UNSAT detection time also increased from 5

seconds to 46 and 564 seconds respectively. It is worth noting that after analyzing

the core of UNSAT we have observed that the size of the candidate group varies

insignificantly when varying the trace depth. To summarize, when increasing the

56

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 3.11: Histogram for the runtime of the SAT solver, in seconds, for SAT and
UNSAT problems (left: SAT, right: UNSAT).

trace depth, a SAT instance that is 10 times larger leads to approx 100 times more

runtime and approx 10 times more memory usage.

3.3.1 The Non-Uniqueness of the Core of UNSAT

As mentioned earlier the core of UNSAT is not necessarily unique, since the order

of processing the SAT clauses is not uniquely determined for each SAT run. We

conducted a few experiments to find and analyze different cores of UNSAT. By ma-

nipulating the order of clauses, through changing a random seed provided to PicoSAT

[91], we were able to extract different cores. First, for a smaller circuit s5378 with

179 flip-flops, we attempted to extract 100 different cores for 90 different UNSAT

instances after a single bit-flip injection (a total of 9,000 PicoSAT runs). For each

instance, all the 100 cores of UNSAT were exactly the same with an average size of 5

57

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

flip-flops in the corresponding list of suspects.

For s38417, for a number of instances where the size of original core of UNSAT

had variables derived from over 30 flip-flops, 100 cores were identical. For s35932,

however, a variation in size of the cores of UNSAT can be observed. First, for relatively

smaller cores, where the core of UNSAT maps to a suspect list of less than 30 flip-flops,

no variation in the size of the core of UNSAT was observed. However, for instances

that had a list of suspects of around 50 flip-flops, different cores were extracted with

the corresponding suspect list ranging from 43 to 189 flip-flops. We suspect that

for several of the relatively larger suspect lists for s35932, there might be a smaller

counterpart which can potentially be extracted with a different SAT solver or with

a different configuration of the same SAT solver. Note that the SAT solver used for

this experiment (picoSAT [91]) accepts a random seed parameter which affects the

order of its internal decisions, thus potentially different cores of UNSAT would be

generated.

3.4 Summary

In this chapter the following topics were discussed :

� Systematic approaches are necessary to be developed for post-silicon validation.

In this contribution we focused on automatic detection of bit-flips in a digital

circuit. We rely on an on-chip trace buffer that records several signals as the

circuit is in operation.

� After a failure, the recorded trace bits are extracted and post-analyzed to pro-

duce a list of suspect flip-flops where the bit-flip has probably occurred.

58

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

� The methodology relies on Boolean SAT solvers for detection of the bit-flip and

the Core of Unsatisfiability generated by such solver is used to produce the list

of suspects.

� A netlist first needs to be translated to a Boolean SAT problem using developed

computer programs before a solver attempts to solve it. Later, another piece of

developed software post-processes the Core of UNSAT to extract list of suspects.

� Results from the conducted experiments prove the effectiveness of this method.

Thus, in the next chapter we focus on selecting a set of trace-signals that max-

imizes bit-flip detection.

59

Chapter 4

Trace Signal Selection

4.1 Background

In chapter 2 it was explained that on-chip tracing has become a common method for

post-silicon validation of digital integrated circuits. In a nutshell, an on-chip memory

can be used to record the internal nets of a circuit and therefore keep a sequence of

events. The recorded content can be used for debug purposes when necessary and

provide insight into the problem at hand. However, due to the incurred cost only

a small fraction of all the signals within a design can be recorded. As a result, the

number of traced signals is a budget that should be spent wisely. A designer may

use his inner knowledge of the system to select key signals. Alternatively one may

use algorithms that automatically chooses signals with a certain objective, since there

may be non-obvious logical relations among a group of signals that are not easily seen

by the designer. It was also discussed that there are several other works in which

trace signals are selected, however are either tuned towards a different objective or

based on a different set of assumptions from the work proposed in this thesis.

60

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

As discussed in chapter 3, a systematic methodology has already been established

to detect bit-flips within a digital IC. It was shown through experiments that even a

random set of traced signals may detect a bit-flip and to some extent provide a list of

suspect flip-flops. This detection method provides insight during root-cause analysis

of the failing trace. As highlighted in figure 4.1, in this chapter we will explain a

systematic method for selecting traced signals. It is assumed that during the design

time the designer needs a tool that processes the netlist and automatically chooses

the “best” signal to be selected.

Our objective is to increase the likelihood of detecting more bit-flips. As a result

the main contribution of our work is to define new metrics that can guide trace signal

selection algorithms that will assist with bit-flip detection and localization. The key

insight lies in the fact that trace data collected during a debug experiment should

imply opposite values in the flip-flop where the bit-flip has occurred.

This chapter is organized as follows. First, we will provide a few examples on

bit-flip detection and localization, followed by a new trace signals selection algorithm

that prioritizes bit-flip detectability. Finally, our results show the effectiveness of our

algorithms for detecting and localizing bit-flips in a collected trace.

4.2 Motivational Example

4.2.1 Restoration Ratio vs Bit-flip Detectability

It has been shown how solving a SAT instance based on a circuit netlist and a binary

trace can help with the detection and localization of bit-flips. The effectiveness of

this approach relies on the size and quality of the collected trace. Since the number

61

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

 Pre-Silicon Physical Domain Post-Silicon

Allocate On-Chip
Memory

Choose Traced Signals

Connect C.U.T to
Memory

Test Circuit

Extract Traced Bits

Bug ? No

Yes

Send Chip to Fabrication Post-Analyze Trace

1

8

2

7

3

6

4

5

32

31

30

29

28

27

26

25

9 24

10 23

11 22

12 21

13 20

14 19

15 18

16 17System under Test

Circuit
under Test

On-chip
Memory

Trace

Trace Extracted

Figure 4.1: Pre-silicon and post-silicon tasks for trace-based debugging. Choosing
which signals to trace is covered in this chapter.

62

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

of signals that can be traced is limited, a natural question that arises is which signals

to trace. As outlined in the introductory chapter, there have been numerous studies

over the past decade on trace signals selection. In this section we illustrate why a high

restoration ratio used by the known art, i.e., the ability to restore the logic values

for many signals in the design across multiple clock cycles, is a necessary but not a

sufficient condition for bit-flip detection.

Figure 4.2(a) shows a 3-bit shift register. Let us assume that only flip-flop A is

traced, which means that its value is recorded in an on-chip memory at every clock

cycle during the acquisition window. Figure 4.2(b) shows a sample history of flip-flop

A for a window of 6 clock cycles. We can infer the values of flip-flops B and C starting

from cycles 1 and 2, respectively. In this scenario the values of B and C are partially

restored, with restoration ratio of 4+5+6
6

for this example (figure 4.2c). This is, of

course, under the assumption that no bit-flip occurred and the restored data can be

used to reason whether the observed behavior matches the intended behavior (hence,

the usage for functional bugs). If, however, flip-flop B is affected, for example, by a

bit-flip at cycle 2 (as in figure 4.2(d)), this incorrect value is passed also to flip-flop C

in the physical device, which would be inconsistent with what is restored only from

flip-flop A.

For the 3-bit shift register example from figure 4.2, we would be able to detect

any bit-flips in flip-flops B and C if, in addition to flip-flop A, we trace also flip-flop

C, as shown in figure 4.2(e). More generally, tracing the first and the last flip-flop

can identify any single bit-flip within a shift register structure (except in the first

flip-flop). As shown in figure 4.2(f) forward propagation of A at cycle 1 together with

backward propagation of C at cycle 3 provide proof that an inconsistency exists. This

63

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Example circuit with trace table. Traced signals are marked with [T]. (a)
Shift register with 3 flip-flops and flip-flop A is traced. (b) Trace bits recorded in the
on-chip memory. (c) Same as (b), but after data restoration. (d) Trace table when
bit-flip occurs in flip-flop B. (e) Flops A and C are traced. (f) Bit-flip error is detected
and marked with E.

64

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

Figure 4.3: (a) Circular shift register. Forward and backward propagations are
marked. (b) Error detected using multiple bits of a single trace signal.

proof becomes available when we take advantage of multiple sources of information

to restore B to different (opposite) logic values.

For the example from figure 4.2 we needed to trace a single flip-flop in order to

restore all the bits in the shift register, and we needed to trace two flip-flops (first

and last) in order to enable bit-flip detectability. Intuitively, one would expect more

signals to be traced in order restore the flip-flop where the bit-flip occurred to opposite

values. Nonetheless, this is not necessarily the case, as shown in figure 4.3, where we

have a circular shift register. We assume the mux is in rotate mode by applying logic

1 to the select signal. In this circuit only flip-flop C is traced for which the recorded

vector is [1, 1, 0, 0]. As we reconstruct the circuit’s state using multiple forward and

backward propagations, we end up with the inconsistent value for B at cycle 2. The

steps are shown in figure 4.3(b).

4.2.2 Key Insight

An important point articulated through the above examples is that restoration is a

necessary but not sufficient for bit-flip detection. While restoration ratio was proposed

65

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

Figure 4.4: (a) T1-3 partially restore circuit’s state. (b) Signals in the intersection
of T4-6 can be implied twice, hence a possibility for error detection. We assume a
second restoration originates and propagates from a second port/path.

initially in [65] as a quantifiable (and objective) metric to assess the suitability of a

set of trace signals for post-silicon validation, it is by no means a one-fit-all metric. A

similar point was made recently in [77], where the objective was to improve functional

coverage (rather than bit-flip detection). The key insight for bit-flip detection is that

data must be restored using two witnesses: one witness implies that a flip-flop

must hold a 0, while the other one forces the same flip-flop to 1 in the same clock

cycle. In terms of using a SAT engine for bit-flip detection, the aim is to use unit

clauses (derived from collected trace) that will increase the probability of producing

an unsatisfiable outcome, whenever a bit-flip occurs.

Figure 4.4 illustrates the restoring region of two different sets of trace signals

with similar restoration areas. Each trace signal, Ti, is assumed to restore a region

of the circuit shown by oval shapes. Traces T1-T3 have relatively smaller overlap

and together they cover an area A123 of the left rectangle. The coverage area of

each individual trace in figure 4.4(b) is intentionally set to be the same of their

counterpart in figure 4.4(a). Since traces T4-T6 have higher overlap area compared

66

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

to traces T1-T3, their overall covered region, A456, is smaller than A123. Nevertheless,

the overlapped regions are larger and represent that some flip-flops can potentially

be restored from both ends. Only the flip-flops in these overlapped regions have the

potential for bit-flip detection.

In figure 4.2(e) the D port of flip-flop B is restored through our knowledge of flip-

flop A in cycle 1, or A[1]. We call this effect D-restoration of flip-flop B. Similarly

Q port of flip-flop B is restored by flip-flop C[3]. We detected the bit-flip due to

simultaneous D and Q-restoration of B. In this example the two witnesses are

A[1] and C[3]. In a shift register structure, when one flip-flop is traced, all the

following flip-flops on its right become D-restorable. Similarly all the previous flip-

flops on the left benefit from being Q-restorable. It is also worth mentioning that,

since trace data is collected over several clock cycles, different bits of the same signal

that is traced can play the role of any of the two required witnesses (see figure 4.3).

Due to the importance of having two witnesses for each flip-flop that is susceptible

to bit-flips, our algorithm for trace signals selection will try to maximize the chance

of restoring flip-flops on both D and Q ports to opposite logic values, in order

to increase the likelihood of bit-flip detection. This goal is conceptually different from

all the known works on trace signals selection and it provides the objective of our

new algorithm described in the next section.

4.3 New Trace Signals Selection Algorithm

Before discussing the new algorithm, we introduce the definitions needed to formalize

bit-flip detectability, and we present the basic rules for processing the netlist in order

to compute the bit-flip detectability for each flip-flop.

67

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

4.3.1 Definitions

We first define the zero and one-restorability of a signal, as well as the certainty

and the average value. All these definitions are needed to define bit-flip detectability.

When dealing with signals that may or may not be restored, there are 3 possible

outcomes for each signal. A signal may be restored to 0 or 1 or may stay unknown.

The following definitions help us formulate probabilistic estimates for each of these 3

outcomes.

Zero- and One-Restorability

We define the zero-restorability (R0) of a signal as the probability of restoring the

respective signal to logic zero. Likewise, we define the one-restorability (R1) of a

signal as the probability of restoring the respective signal to logic one. Note that

both 0 ≤ R0 ≤ 1 and 0 ≤ R1 ≤ 1.

Certainty of a Signal

We define Certainty (C) of a signal as the probability of recovering a signal form

the recorded trace. The certainty C equals by definition R0 + R1. Hence, hence the

signal is recovered with probability R1+R0, and it remains unknown with probability

(1 − R0 − R1). Since 0 ≤ C ≤ 1, a certainty of zero corresponds to a signal which

is not recoverable, and a certainty of a traced signal is 1 because its logic value is

always determined.

The Certainty values of all the untraced signals are initially assumed to be zero.

Starting from the traced flip-flops, the Certainty propagates through the circuit. This

propagation procedure has some rules that will be explained in the following sections.

68

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Average Value of a Signal

For a signal that is at least partially recoverable, (C > 0), the Average Value, (V),

is defined as the expected value of that signal. When a signal is more likely to be

logic 1 than logic 0, the average gets close to one and vice versa. V is defined as

1×R1+0×R0
R0+R1

= R1
R0+R1

= R1
C

. Together with the Certainty, V also propagates through

the logic circuit. For simplicity we may use the term “propagation of Certainty”,

whenever we refer to the propagation of the (C, V) tuple. For the rest of this text

and the pseudo-codes that will follow, the notation CV is used to refer to this tuple

and CV x denotes the certainty and value of net x.

Certainty and Value are independent as illustrated in the unit square of Figure

4.5(a). The one-restorability is the intersection of probability of recovering C and the

probability of signal being 1. This is the area labeled as R1 in the figure. Likewise, the

zero-restorability is shown as R0. The area labeled with a question mark represents

the probability of a signal staying unknown. As discussed above, there is a one-

to-one mapping from any (C, V) tuple to an (R1, R0) tuple and vice versa. Since

C = R1 + R0 and V = R1
C

we have R1 = C × V and R0 = C × (1 − V). In our

algorithm we will frequently refer to all the above defined concepts and the following

example helps clarify them.

� Example I: Signal A is recoverable half the times and there is 1
4

chance that

when it is recovered it becomes 1. In Figure 4.5(b) we have:

CA = 1
2
, VA = 1

4
⇒ R1A = 1

8
, R0A = 3

8

� Example II: Signal B is non-recoverable since there is no trace in its vicinity to

restore it.

CB = 0, VA = Undefined ⇒ R1B = 0, R0B = 0

69

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

Figure 4.5: (a) Representation of Certainty (C) and Value (V) as probabilities. (b)
Examples I-III showing how Y is only partially zero-restorable.

� Example III: Signals A and B are inputs to an AND gate to form output Y. Every

time A is 0, regardless of what B is, Y is also recovered to 0. Also, since B is not

restorable to 1, Y is also not restorable to 1. Using the propagation rules that

are elaborated in the next sub-section we have:

R1Y = R1A ∩R1B = 0, R0Y = R0A ∪R0B = 3
8

⇒ VY = 0, CY = 3
8

We refer to Y as partially zero-restorable (R0Y is non-zero) and it is not one-

restorable (R1Y is zero).

A critical concept in our work is bit-flip detectability, which is defined next for

flip-flops only.

70

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Bit-Flip Detectability

A flip-flop is bit-flip detectable if it is partially restorable to 1 on one of its ports (D

or Q) and partially restorable to 0 on the other port. This is achievable only by ex-

plicitly defining the restorabilities to both ports D and Q, and computing and storing

them separately. This is a key difference between what is needed for functional

debugging (restore signal values in order to increase the overall observability of the

design) and what is needed to detect bit-flips (the ability to imply the value of a

flip-flop on both of its D and Q ports to opposite logic values). Assuming Rxy is

x-Restorability of port y, our formula for bit-flip detectability (BFD) of a flip-flop is

defined as:

BFD = R1Q ×R0D +R0Q ×R1D (4.1)

4.3.2 Certainty Propagation Rules

In this sub-section we discuss the certainty propagation rules, assuming a set of flip-

flops have been selected as trace signals. These propagation rules are important to

obtain the zero and one-restorability for all the D and Q ports for every flip-flop in

the design, which would quantify the bit-flip detectability (using the above-defined

formula). These propagation rules will be used in the inner loop of the heuristic for

trace signals selection discussed in the next sub-section.

Assigned to every logic element in a circuit is a data structure that stores the

certainty received from the adjacent elements. The dashed squares in Figures 4.6(a)-

(c) illustrate these storage units. All the combinational logic elements start with an

initial condition of C = 0, V = 0. Subsequently, certainty propagation originates

71

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

from the flip-flops that are marked as “traced”. In our current implementation, by

default and unless more information is provided, we assume that for a traced flip-flop

(i.e., C = 1) the probability of it being 0 and 1 are equal (i.e., V = 1
2
). The user of our

algorithm can provide a different initial value for V , depending on his inner knowledge

of the design (e.g, values derived from extensive simulations). After the traced flip-

flops are initialized to C = 1, V = 1
2
, each propagation request, issued by any logic

element is stored in a queue structure. These requests are then processed one-at-a-

time, until there are no more elements in the queue (note, each request may in turn

generate new requests to be added to the queue). It is also important to note that

during certainty propagation, logic elements frequently receive new certainty values

from their adjacent elements. Therefore, a new incoming certainty is processed only

if it is improving the C value that may have been previously received, otherwise

it is ignored. In order to avoid inflated certainty values in circuits with sequential

feedback loops, propagation is stopped once it traverses one full loop. Next, we

elaborate the most relevant concepts for the propagation of the certainty and value

tuple CV through the circuit (recall we refer to this process as certainty propagation).

Propagation Direction

Because we need to compute both the D and the Q restorability of every flip-flop, for

each logic element certainty propagates in both directions (from input to output and

vice versa).

Forward propagation (
−−→
fwd) stems from the output of a flip-flop and moves for-

ward to the D port of the flip-flops from its output logic cone. Some of these flip-flops

will become D-restorable (if their certainty value is non-zero). Similarly the non-zero

72

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b) (c)

(d) (e)

Figure 4.6: (a) Flip-flop receives certainty from D and Q. Dashed squares indicate
storage that keeps the highest certainty received so far. (b) 2-input logic gate receives
3 values. (c) Gate K has a fan-out of 2. Each pair collectively restore the third member.
(d) Highlighted area is certainty region of M. (e) Branches of multi-fan-out points are
numbered, where the stem is labeled Branch 0, and the n output branches are
labeled Branch 1 to n (refer to Algorithm 4).

certainty of a traced flip-flop travels backwards (
←−−−
bkwd) until it reaches the Q port

of the flip-flops from its input logic cone, thus making some of them Q-restorable.

As a result of this distinction, we cannot assign a single certainty value to a net. We

identify the incoming certainty at any input or output port. Inside the data structure

assigned to a gate, flip-flop or a multiple-fan-out point, the received certainty is saved

for later use. Outgoing certainties can be computed on-the-fly based on the stored

values that have been received. Certainty propagates only in one direction at a time,

with two exceptions that will be explained later for logic gates and multiple-fan-out

points.

73

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 1 Propagation Queue

Data: Certainty Propagation Queue: PropQ
1: function Propagate-All
2: while PropQ 6= empty do
3: Pop front item of (PropQ) to REQ
4: if receiver of REQ is a flip-flop then
5: Receive-Flip-Flop(REQ)
6: else if receiver of REQ is a gate then
7: Receive-Gate(REQ)
8: else . Or a Fan-out point
9: Receive-Multi-Fan-Out(REQ)

Propagations Parameters

During the propagation process, circuit elements (gates, flip-flops and fan-out points)

send propagation requests to the adjacent elements. Every request, regardless of its

sender or destination, contains some information that will be explained next. Note,

each request may potentially generate one or more new requests. Each request REQ

is stored in a queue data structure PropQ and is later processed in a first-in-first-out

fashion. Algorithm 1 shows how the queue of requests is processed one request at

a time until it becomes empty. Note that the elements of a circuit fall into 3 main

categories (flip-flops, logic gates and fan-out branches) and each type is processed

separately. This process has many steps and is broken into several distinct pseudo-

codes for simpler explanation.

The content of each request is illustrated in Figure 4.7(a). Figure 4.7(b) shows an

overview of the propagation process. Requests are enqueued into a queue structure

and are dispatched to one of the 3 subroutines, depending on which circuit element is

at the receiving end of a propagation (flip-flop, gate, branch). The very first request

to start the process is generated by Algorithm 7 which selects the traced flip-flops.

74

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

Figure 4.7: (a) The data structure of every propagation request. (b) An overview of
propagation and process of the requests, using a queue.

A certainty request propagates from a net to another net, in a specific direction

(either forward or backward). As shown in Figure 4.7(a), the request also carries a list

of the nets that have already been visited during the previous propagation requests

(starting from traced flip-flop). Each request inherits this list from its parent request

and adds the next one to the list. The list helps later to detect and avoid propagation

loops if the circuit has a sequential loop. If a propagation request notices that the

destination net has already been visited (because the destination net is mentioned

in the visited list), it prevents the request from generating more propagations.

This mechanism must be designed in a way that certainty propagation for circuit

loops: (1) is not prevented and (2) does not cause an infinite loop. On the contrary,

certainty propagation for loops is necessary and must be calculated for only one

complete loop. An example of such loop is pictured in Figure 4.10 and the details

for the loop-mechanism are discussed at the end of this sub-section.

75

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Rule 1 for Flip-Flops

A flip-flop stores two (C, V) tuples, one for each of its D and Q ports, as shown in

Figure 4.6(a). The incoming certainty CV in arrives at a port, which can be either

D or Q for flip-flops. The certainty that is incoming to the D port of a flip-flop will

subsequently propagate forward (
−−→
fwd) through the output logic cone of the Q port.

Likewise, the incoming certainty received at the Q port will propagate backwards

(
←−−−
bkwd) through the input logic cone of the D port. Figures 4.8(b)-(c) illustrate this

sequence of events. In this figure the green/dashed arrow labeled with 1 is the first

propagation, which subsequently causes the second propagation to occur (labeled with

2 and shown in red/solid arrow). Algorithm 2 describes this sequence in pseudo-code

format. Note, each request REQ contains more information (see Figure 4.7(a)),

however we highlight only the fields that are essential for explaining Algorithm 2 (the

same applies to Algorithms 3 and 4). If multiple propagation requests are received

by a flip-flop, only the one that has the highest certainty so far will be taken into

account. Note, the incoming D and Q values do not affect each other and are stored

separately, so that bit-flip detectability can be correctly computed, as formulated in

section 4.3.1.

A traced flip-flop, as the original source of certainty, generates two propagations

(on each port), as shown in Figure 4.8(a). The traced flip-flops are fully Q-Restorable,

since their output is connected to the trace memory. Hence, we can set their Q-

certainty to 1. This knowledge must then be propagated both forward and backward.

For example, if we trace only the flip-flop B in Figure 4.2(a), the next sink element

(flip-flop C) receives full certainty at its D port and the previous source element (flip-

flop A) receives full certainty at its Q port. Note, there is no implicitly available

76

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 2 Certainty Propagation through a Flip-Flop

Data: Certainty already stored in this flip-flop: CV D, CV Q

1: procedure Receive-Flip-Flop(port, CV in)
2: if port = D then . Incoming port is D
3: if CV in improves CV D then
4: CV D updates to new CV in

5: Ppg-Enqueue(CV D,
−−→
fwd, fanout nets of Q)

6: else . Incoming port is Q
7: if CV in improves CV Q then
8: CV Q updates to new CV in

9: Ppg-Enqueue(CV Q,
←−−−
bkwd, source net of D)

Table 4.1: Backward Propagation from Output to Inputs

Logic Gate R1A R0A

Y = A ·B R1Y R0Y ∩R1B
Y = A ·B · C R1Y R0Y ∩R1B ∩R1C
Y = A+B R1Y ∩R0B R0Y
Y = A+B + C R1Y ∩R0B ∩R0C R0Y
Y = NOT A R0Y R1Y

certainty for the D port of the traced flip-flops (these values must be computed

through certainty propagation from other traced flip-flops).

Rule 2 for Logic Gates

For logic gates, the incoming certainty on the output may only back-propagate to all

its inputs. The incoming certainty on any input will forward-propagate to the output

port and it will backward-propagate to its other side inputs. Similar to flip-flops all

propagations only occur if there is an improvement with respect to the previously

received certainty. Unlike flip-flops, logic gates do not propagate an exact copy of

the received certainty, but they modify it in accordance with their logical function,

77

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b) (c)

(d) (e)

Figure 4.8: Various types of propagation: “1” represents the initial request which
causes another propagation “2”. (a) Trace flip-flop initiates forward and backward
propagation. (b) Backward to Q-port is echoed back from D. (c) Similarly, forward
to D-port is echoed forward through Q. (d,e) Similar to (b) and (c) but for a logic
gate.

as shown in Tables 4.1 and 4.2 (using the port labels shown in Figure 4.6(b) for a

2-input AND gate). Note that since backward propagation to input A depends on

output Y and the other input B, any received certainty on B (forward from another

source) or Y (backward from another sink) triggers a backward propagation to A, as

shown in Algorithm 3 and Figure 4.8(d)-(e).

Note, Tables 4.1 and 4.2 describe the propagation rules for logic gates, using the

Table 4.2: Forward Propagation from Inputs to Output

Logic Gate R1Y R0Y

Y = A ·B R1A ∩R1B R0A ∪R0B
Y = A ·B · C R1A ∩R1B ∩R1C R0A ∪R0B ∪R0C
Y = A+B R1A ∪R1B R0A ∩R0B
Y = A+B + C R1A ∪R1B ∪R1C R0A ∩R0B ∩R0C
Y = NOT A R0A R1A

78

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

intersection “∩” and union “∪” notation. Finding the exact values must account for

the signal correlations between groups of signals, which may be compute-intensive and

hence practically infeasible. In our current implementation we assume that signals are

independent and therefore we use approximations, such as p(X ∩ Y) ≈ p(X)× p(Y).

This results in faster computation at the potential cost of a loss in accuracy.

Algorithm 3 Certainty Propagation through Logic Gates

Data: Certainties already received: CV Y , CV A, CV B,CV C , · · ·
Input: port is one of {Y,A,B,C,...}. CV in is received certainty tuple.

1: procedure Receive-Gate(port, CV in)
2: if port = Y then

. Received an update from output
. Must back-propagate to every input

3: if CV in improves CV Y then
4: Update CV Y to the new CV in

5: for all i ∈ inputs do
6: Calculate CV out of i using Table 4.1

7: Ppg-Enqueue(CV out,
←−−−
bkwd, i)

8: else
. From an input to all others

. Must do both back/fwd propagation
9: if CV in improves CV port then

10: Update CV port to the new CV in

11: Calculate CV out using Table 4.2

12: Ppg-Enqueue(CV out,
−−→
fwd, Y)

13: for all i ∈ side-inputs of port do
14: Calculate CV out of i using Table 4.1

15: Ppg-Enqueue(CV out,
←−−−
bkwd, i)

Rule 3 for Multiple Fan-Out Points

In Figure 4.6(c) K drives more than one other element, namely L and M. These

elements can be any gate or flip-flop without affecting the following explanation.

Intuitively, forward propagations from K must go to both L and M. Also since any

79

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

restoration for L has an effect on M, backward propagations from L to K will also

trigger a forward propagation towards M. Similar to the previous section, we assume

the signals of a fan-out point are not correlated.

In the example of Figure 4.6(c), the certainty of nets K and L, forward from K

and backward from L, must be combined in order to calculate the certainty of M. As

shown in Figure 4.6(d), assuming the signals are uncorrelated, one way to compute

the combined certainty is CM = CK ∪ CL ≈ CK + CL − CK · CL. Average value

V can also be estimated by the average of all the other V values weighted by their

corresponding certainty, VM = VK × CK + VL × CL.

Generally in any split point, containing one stem and n branches, as depicted in

Figure 4.6(e), any propagation received on any of the branches (including the stem)

will trigger propagation to the other members of the group. The certainty that each

individual branch receives, is calculated from all the members (except the receiving

branch itself, called Except in Algorithm 4). No self-propagation is used (i.e., the

contribution of a branch is not propagated back to itself), which explains the name

of function Combine-All-Except-One in Algorithm 4.

Note, we have observed empirically that, when the number of fan-out branches

becomes large, the above approximation loses in accuracy. In such cases an alter-

native approximation can be used, such as the maximum restorability is passed to

all the branches, e.g., R1M = Max(R1K , R1L). In Algorithm 4, the Combine-

All-Except-One function uses either the ∪ or the Max operator for combining

the restorabilities at a fan-out node (this can be either pre-configured by the user

or adaptive, i.e., depending on the number of branches). Figure 4.9(a)-(d) shows

80

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

examples of a primary certainty propagation that cause secondary and tertiary con-

sequential propagations. The order of these events are shown using the numbers 1-3.

In these examples the propagation received by any branch (or stem) generates more

propagations.

Algorithm 4 Fan-out Point Integration

Data: Number of branches n, Certainty already received by branches:
stem(CV 0), branches(CV 1..n)
Input: b is between 0 and n. CV in is received certainty.

1: procedure Receive-Multi-Fan-Out(b, CV in)
2: Update CV b to the new CV in

3: if b = 0 then . Received from the stem
4: for i = 1 : n do
5: CV out =Combine-All-Except-One(i)

6: Ppg-Enqueue(CV out,
−−→
fwd, branch i)

7: else . From a branches
8: CV out =Combine-All-Except-One(0)

9: Ppg-Enqueue(CV out,
←−−−
bkwd, stem)

10: for i = 1 : n do
11: if i 6= b then
12: CV out =Combine-All-Except-One(i)

13: Ppg-Enqueue(CV out,
−−→
fwd, branch i)

1: function Combine-All-Except-One(Except)
2: R1 = R0 = 0
3: for i ∈ branches do
4: if i 6= Except then
5: R1 = Max(R1, branch[i].R1)
6: R0 = Max(R0, branch[i].R0)

7: C = Min(1, 1−R1 −R0); . C Saturates to 1
8: V = R1 ÷ (R1 +R0)
9: CV = (C, V)

10: Return CV

81

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

(c) (d)

Figure 4.9: Various types of propagation in presence of branches. (a),(b) Illustration
of Rule 3: A backward propagation on a branch causes forward propagation to other
branches as well as backward to the stem. (c),(d) Examples of combination of Rule
3 with Rules 1 and 2.

The Stopping Criteria

Certainty propagation stops when the propagation queue (PropQ) becomes empty,

or equivalently when no new requests are generated:

� When the receiving net is a primary input or output, since it is meaningless for

the certainty to propagate any further.

� When the receiving net has already received a certainty value that is not greater

than the one received previously by former propagations. In this situation the

new certainty will not improve the restorability and is not helpful. This idea

is described in the form of an IF statement that compares the received certainty

with the one saved in a net (see line 3 of Algorithms 2 and 3)

� When a loop is detected within the circuit. Each propagation request keeps

82

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 5 Propagation Enqueue

Data: Certainty Propagation Queue: PropQ
1: procedure Ppg-Enqueue(CV in, dir, dest)
2: Build “Request” (REQ) data structure of Figure 4.7(a):
3: From = net calling this procedure
4: To = dest

5: Direction = dir

6: (Certainty,Value) = CV in

7: Vp = “Visited” list of parent request
8: Visited = Vp∪ From
9: if (dest is a primary input)

OR (dest is primary output)
OR (From ∈ Vp) then . A loop is detected

10: Discard this request REQ and return
11: else
12: Push REQ into propagation queue PropQ

track of the history of all the propagations that led to that particular propaga-

tion, using the visited list field of the data structure for any request. The

list is inherited from one request to all its subsequent ones. When a request is

sent from a net, the sender net is marked as a visited net. Later if that particu-

lar net receives a request, it is prohibited from propagating it further, using the

mechanism described in Algorithm 5. This ensures that propagation traverses

the loop for one complete turn, before preventing new requests. This idea is

shown in figure 4.10(a) in which propagation (1) starts at flip-flop A, (2) goes

through the logic gate, reaches flip-flop B and (3) propagates forward. In the

third step, the loop is detected and the request only updates the D-restorability

of flip-flop A, but cannot go any further. In Figure 4.10(b) the source of the

propagation is from the outside of the loop. The logic gate in the middle of the

flip-flops receives a request from one of its inputs and generates two propagation

83

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

(a) (b)

Figure 4.10: Propagation stops when a complete loop has been traversed. (a) In the
third step the loop is detected. CV D is updated and propagation stops. (b) Initial
request causes two propagations, backward and forward, 2b and 2f. Each circulates
for one loop and stops.

requests in both forward and backward directions (2b and 2f). Further prop-

agations (3b and 3f) circle the loop, finally 4b and 4f close the loop and stop

the propagation. Otherwise the logic gate would generate more unnecessary

requests.

4.3.3 The Heuristic for Trace Signals Selection

We will now describe the top-level heuristic for trace signals selection, which works

based on the previously introduced metrics and certainty propagation rules. In Al-

gorithm 6, T is the number of trace signals to be selected (trace budget) given by

user and n is the number of flip-flops in the circuit. As described in the algorithm,

the outer loop of the code runs T times and in each iteration it selects one new trace

signal. Within the inner loop, we need to decide which of the unselected flip-flops is

the best candidate to be added to the list of trace signals (L).

In the inner loop (lines 7:9 of Algorithm 6), we consider one flip-flop at a time

and compute its incremental impact on the bit-flip detectability (BFD), which was

defined at the end of section 4.3.1, of all the flip-flops in the design. To achieve this,

84

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 6 Trace Selection Algorithm

Data: Trace count (T), Flip-flop count (n)
Result: Set of traced flip-flops (L)

1: function Select(T , n)
2: L = ∅ . Empty set
3: for t← 1:T do
4: Define Array Scores[n] = {0,0,...,0}
5: S1 = ComputeBFD(L)
6: for i← 1 :n do
7: if Flopi /∈ L then
8: S2 = ComputeBFD(L∪ Flopi)
9: Scores[i] =

∑k=n
k=1 (S2[k]− S1[k])

10: BestFlop = Flip-flop i that maximizes Scores[i]
11: L = L∪ BestFlop

12: Return L

each flip-flop that is not selected so far is temporarily counted within the selection

set and the bit-flip detectability of all flip-flops are recomputed by Algorithm 7. This

algorithm returns a vector of n values, one BFD for each flip-flop. This function

sets the Q-certainty of all the traced flip-flops to 1 and assumes an equal chance of

observing zero and one for the traced flip-flops, V = 1
2
, unless otherwise provided by

the user 1 (e.g. prior knowledge from simulation). It then triggers the propagation

from the traced flip-flops, in both directions, in accordance to the rules described in

section 4.3.2.

Line 9 of Algorithm 6 computes the improvement in BFD of each flip-flop as the

result of including a new flip-flop within the selection of trace signals (Flopi). This

difference does not take the baseline of the improvement into account. For example

an improvement from 0.3 to 0.4 is seen exactly the same as 0 to 0.1. This lack

of distinction may result in high BFD for some flip-flops and BFD starvation for

1Experiments with V 6= 1
2 , where V would be extracted form simulation dumps, showed no

significant difference in the outcome of the selection algorithm and/or the quality of bit-flip detection.

85

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 7 Compute Global BFD of a Selection

Data: A List of Selected Signals (L), Flip-flop count (n)
Result: Bit-Flip Detectability Score S for each element of L

1: function ComputeBFD(L, n)
2: Define S as array of size n
3: S = {0, ..., 0} . Initialize Score to Zeros
4: Reset certainties of all nets to Zero
5: for i ∈ L do
6: CV Q = (C = 1, V = 1

2
)

7: Set-Certainty of Flopi.Q to CV Q

8: Ppg-Enqueue(CV Q,
−−→
fwd, fanout nets of Q)

9: Ppg-Enqueue(CV Q,
←−−−
bkwd, source net of D)

10: Propagate-All
11: for i← 1 :n do
12: Compute BitFlipDetectability S[i] for Flopi
13: S[i] = QR1×DR0 + QR0×DR1

14: Return S

others. By substituting
∑k=n

k=1 (S2[k] − S1[k]) with
∑k=n

k=1 (S2[k]−S1[k]
1+αS1[k]

), we will have a

non-linear subtraction that can reward improvements of lower BFD flip-flops. For

instance with α = 10% the improvement from 0.3 to 0.4 is scaled down to the same

as 0 to 0.077 = 0.1/(1 + 0.3). By using this parameter α we can prioritize the

improvement for the less detectable flip-flops.

4.4 Results

In this section we present results based on bit-flip injection experiments. We first dis-

cuss our experimental setup, which is followed by an evaluation of bit-flip detectability

and diagnostic resolution. Finally, we assess the impact of different parameters for

the trace signals selection algorithm.

86

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

4.4.1 Experimental Setup

In order to evaluate the effect of the selected trace signals on bit-flip detectability,

we first needed to design a (virtual) evaluation platform for injecting bit-flips into

any of the flip-flops in a test circuit. We parse the input netlist and at the output of

every flip-flop add a multiplexer that can output Q instead of the Q, thus injecting a

bit-flip at any configurable time. For a circuit with n flip-flops we ran n simulations

and each time we injected a bit-flip in a distinct flip-flop. We then repeated this

experiment with a different trace budget. For example, each data point in figure 4.12

represents one such experiment. After an initial state of all flip-flops reset to zero

followed by 10,000 warm-up cycles, traces are collected for a window of 100 cycles,

in which random stimuli are applied to the circuit, with the following exceptions.

Unlike another recent work in which the last state of circuit is also dumped (possibly

through scan chains) [78], here we only rely on the contents of the trace buffer to

detect bit-flips.

We applied deterministic patterns to the few synchronous reset and control signals

from circuits s35932 and s38584 (from the ISCAS89 benchmark set [93]), similar to

what has been done in [95]. For s35932, signals {TM1, TM0} are driven to {1,0} (a

more detailed analysis on s35932 will be provided in the following section). Bit-flips

are injected in the middle of the trace window. The collected traces together with

the circuit structure are converted to a Satisfiability instance and are passed to the

PicoSAT solver [91]. From the core of UNSAT of every unsatisfiable instance we

can extract a list of suspect flip-flops and clock cycles which play a role in the logic

inconsistency. The trace signal selection algorithm from section 4.3 is used with the

α parameter set to 10%. Also, when combining certainty at multiple-fan-out points,

87

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

we used the ∪ operator if the output fan-out branches are less than or equal to 3, and

the Max operator otherwise. A final point worth mentioning is how we have defined

the “improvement of certainty” as used in Algorithms 2, 3 and 4. Ideally certainty of

a net improves from C1 to C2, only if C2 > C1. However, in order to speedup the

computation and avoid queue explosion, this condition was relaxed to C2 > (C1 + ∆)

in which ∆ is a small positive number configurable by the user (by default ∆ = 0.001

unless otherwise stated).

4.4.2 UNSAT Rate: Bit-flip detectability

Figure 4.12 shows the percentage of the UNSAT problems when collecting a vary-

ing number of trace signals, for the three largest ISCAS89 benchmark circuits[93],

containing approximately 1,500 to 1,700 flip-flops and more than 20,000 nets. The

horizontal axis is the percentage of the flip-flops that are traced. We define a flip-flop

as “Covered” if after multiple bit-flip injections, at least one is detected. The right

part of figure 4.12 shows the number of covered flip-flops for 5 injections. We believe

this covered flip-flops metric is relevant since in post-silicon validation experiments,

which run for extensive durations (hours to days), if at least one bit-flip in the same

flip-flop is detected and analyzed it can provide meaningful feedback information to

the design/process. The results show the percentage of detected bit-flips are more

than double the percentage of the traced signals. The results for our bit-flip detec-

tion driven trace signals selection algorithm are consistently better (by approx. 15%)

than for randomly selected trace signals (as done in our exploratory work presented in

[96]) or restoration-based method explained later. We attribute this improvement pri-

marily to the introduction of the “bit-flip detectability” metric that guides the trace

88

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

signals selection algorithm. The significance of bit-flip detectability in comparison

with a restoration-based method is discussed later.

Without loss of generality, in s35932 the mode signals {TM1,TM0} are asserted

to {10}. This forces the circuit to remain in a single operation mode for the entire

experiment. The results for other modes are similar. Noticeably for s35932 the

detection and coverage rate are significantly higher, and our interpretation is that it

is due to its numerous shift register structures. Synthesizing this circuit revealed some

insight about its internal structure. Forcing the mode to any of the 4 possible values,

reduces the circuit to only XOR gates, inverters and flip-flops mostly configured as

shift registers, as summarized in Table 4.3. To explain the observed high detection

rate, we rely on a circuit that is shown in figure 4.11. This partial circuit is a

simplified version of what can be seen in s35932’s structure. As it can be seen in this

example, tracing one flip-flop from the top shift register can restore many other bits

over multiple clock cycles. For example by recording a history of flip-flops A and B we

can anticipate exactly what value to observe on C and consequently D. Furthermore,

if we trace D in addition to A and B, we can detect a bit-flip on any of the flip-flops

on the path from A to D (including D itself). However this detection suffers from

a poor diagnostic resolution, since we cannot localize the bit-flip occurrence to any

individual flip-flop or clock cycle, as detailed in the following-subsection.

Table 4.3: Different Configurations for s35932

Mode Shift registers Total bits Synthesized circuit contains

0 9x32b + 288x4b 1440 1728x FF, 297x NOT, 1179x XOR

1 9x32b + 288x5b 1728 1728x FF, 313x NOT, 443x XOR

2 9x32b + 288x4b 1440 1728x FF, 297x NOT, 1179x XOR

3 9x160b 1440 1728x FF, 329x NOT, 443x XOR

89

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 4.11: A simplified view of a typical circuit block from s35932

In summary, for a circuit like s35932 with shift registers and XORs: (1) majority

of the bit-flips are detected with relatively few trace signals, and (2) the suspect list

contains many flip-flops, since we cannot know exactly where and when the bit-flip

has occurred.

4.4.3 Core of UNSAT: Size and Time Distribution

As seen in figure 4.12, a wider trace leads to a better detection rate, which is an

intuitive result. Another benefit of a wider trace is a reduction in the list of suspect

flip-flops. Figure 4.13 shows a histogram of the length of this list for s38417 and

s35932. The bar histograms (in green) show the distribution for 256 traces and the

steps (in blue) belong to 128 traces. For reasons discussed earlier, suspect lists for

s35932 are larger than s38417 despite the size of these two circuits being comparable.

In terms of timing, figure 4.14 shows how far away are the suspect clock cycles from

the time of bit-flip injection. s38417 peaks at the vicinity of the injection time (shown

as time 0 in the chart), while s35932 has a larger share of suspects from before the

injection time. Again, this is because of the structure of this circuit and the how

90

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 4.12: Left: Rate of UNSAT problems vs. percentage of flip-flops to trace.
Right: Percentage of covered flip-flops after 5 injections.

Figure 4.13: Distribution of the size of the suspect flip-flop list in the core of UNSAT.

91

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 4.14: The difference in clock cycles between the injection time (t=0) and the
time-step of the suspected signals in the core of UNSAT.

many branches converge to form another net through XOR gates. For instance, in

order to detect a bit-flip in flip-flop C in figure 4.11 we need to restore it from two

sides, i.e. its D-port and Q-port. To restore its D-port, we need knowledge about a

number of flip-flops on its transitive input logic cone (similar to A, B and the path

from A to C). On the other hand for recovering C’s Q-port, we need D and the other

input of the XOR (path from A to D). As can be seen, the suspect list of a possible

detection on C consists of many flip-flops associated with negative time-steps relative

to the time of bit-flip in C (similar to A or B) and fewer flip-flops associated with

positive time-steps (similar to D or other nets on C’s transitive fanout).

4.4.4 Comparison with Restoration-based Method for Trace

Signals Selection

A major motivation of this work is centered around detecting bit-flips by introducing

a new metric to drive the selection of trace signals. In order to see the effectiveness

of this metric in comparison with the restoration-based methods, we decided to run

experiments and compare the two. It is worth noting that there is a fundamental

92

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 4.15: The effect of reducing threshold for certainty comparisons for s9234 with
∆ = {0.3, 0.2, 0.1 : 10−6}.

difference between the objectives of using these two methods, which was illustrated

in figure 4.4 from subsection 4.2.1. The restoration-based methods are focused on

detecting functional bugs in the absence of logic inconsistencies, and hence they aim

at restoring the values of unknown bits based on the collected trace. In the pres-

ence of electrical bugs, however, a value in a flip-flop gets inverted and therefore the

propagation of the traced values might lead to logic inconsistencies. That is why we

need to have multiple sources of information to detect these inconsistencies, which is

totally redundant when selecting the trace signals for restoration purposes only.

In order to perform a comparison, a restoration-based method was implemented in

which, similar to our BFD-based selection, certainty of signals propagates throughout

the entire circuit with the following differences. Since separate D and Q restorations

for flip-flops are removed and replaced with a single certainty value, the BFD formu-

lation (equation 4.1) no longer applies. Hence, each flip-flop is assigned only a single

certainty value which is updated when a propagation is received from either of its

two ports (D or Q). Note that for the BFD implementation, the certainty received

from the D port is stored separately from the one that is received from the Q port.

93

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 4.16: Left: Rate of detected bit-flips vs. the percentage of flip-flops to trace.
Right: Percentage of covered flip-flops after 10 injections. Circuit under test is s15850
with 534 flip-flops. A 10-15% improvement is consistently observed for the evaluated
circuits.

For selecting the signals (Algorithm 6) instead of optimizing for maximum BFD of

all flip-flops (line 13 in Algorithm 7), we aim for maximizing the certainty of all the

flip-flops, i.e., the same line simplifies to S[i] = R1 + R0.

Figure 4.16 shows the results for three different selection algorithms based on (1)

Restoration, (2) Bit-flip detectability and (3) Random selection for the benchmark

circuit s15850 [93]. As shown in the figure, even random selection of traces can most

often outperform the restoration-based selection both in detecting a single bit-flip and

in covering at least one-out-of-ten bit-flips. The underlying reason for such a short-

coming is that once a restoration-based method identifies a subset of circuit nodes

to be restorable by a group of trace signals, it tries to cover new parts of the circuit

using the remaining trace budget. Therefore a restoration-based approach ignores

restoring the value in a flip-flop on both of its ports, as needed for the identification

of bit flips and which is prioritized by our new bit-flip detectability-driven selection

of trace signals.

94

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

4.4.5 Assessing Different Algorithm Parameters

There are a number of parameters that can be adjusted for an experiment, such as

α (discussed in section 4.3.3) or ∆ (section 4.4.1), using the Maximum (Max) or ∪

for fan-out point integration or both (Algorithm 4), forcing expected value of traced

flip-flops to 50% or measuring them from simulation.

In a set of experiments on s9234 [93] the ∆ parameter has been varied from 0.3

to 10−6 while the following were measured as shown in figure 4.15: (1) UNSAT ratio

shown in percentage which is the ratio of detected bit-flips (same definition as used

in figure 4.12), (2) the “Bit-Flip Detectability” score of a selected trace at the end

of the selection process and (3) the runtime of the selection algorithm. As can be

seen, a smaller ∆ which leads to a more accurate model for distinguishing certainty

improvement in a net, eventually results in higher BFD Score. This also confirms

the correlation between BFD Score and the quality of the selected trace signals with

higher UNSAT ratio for higher BFD score (see left half of figure 4.15). It is worth

mentioning that after a certain point (∆ ≤ 0.001) the UNSAT ratio is not necessarily

improving since it saturates even with higher BFD Score. For ∆ < 10−3 the UNSAT

ratio fluctuates briefly which is most likely due the random nature of the experiments

(i.e. the random stimuli applied to the circuit under test). The right half of figure

4.15 reports the runtime of the algorithm which grows drastically for very small ∆.

This is because even a very small (and probably insignificant) improvement in the

certainty of a net creates many new propagation requests to other nets which needs

additional CPU time for processing, without bringing tangible value to the selection.

Table 4.4 shows 6 different configurations set up for the algorithm. Each con-

figuration leads to a particular UNSAT ratio as shown in the bar graph figure 4.17.

95

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Table 4.4: Different Configurations for the Trace Signals Selection Algorithm

No. Configuration
1 Random Trace (s38584:256b, s9234:64b)
2 ∪ used to merge fanouts, α = 0.1
3 Max used for n ≤ 3, otherwise ∪, α = 0.1
4 Max used for n ≤ 5, otherwise ∪, α = 0.1
5 Max used to merge fanouts, α = 0.1
6 Max used to merge fanouts, α = 0.1, V 6= 50%

These results belong to two different circuits (s9234 and s38584). As can be seen,

different circuits can be sensitive to changes in parameters differently. Note that

configuration 1 is the average of 10 random trace selections and is not related to the

algorithm. It is merely reported as a point of reference. In C2, the ∪ method is used

to merge certainty of all branches. In C3, smaller branches (up to 3) are combined

with Max method and larger branches use ∪. Analyzing the two circuits shows that

75% of branches in s9234 and 63% of them in s38584 have a fanout of 3 or less and

are combined with Max method in C3. In C4 more branches are combined with the

Max method (roughly 83% for both circuits), and finally in C5 all the branches are

combined with Max. The observed trend is that using the ∪ together with Max is, as

could be predicted intuitively, more effective. In all of the above experiments, when

tracing a flip-flop, its “Average Value” or V would be set to 50%, asserting that each

signal has an equal chance of being 0 or 1. In contrast for C6, we ran simulation for

a million clock cycles and recorded how often each flip-flop has been 0 or 1 and used

this information as the starting point for its V value. As can be seen this did not

have any visible effect on the UNSAT ratio.

The selection algorithm ran on a Quad-core Intel i7-2600TM CPU in multi-threaded

96

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 4.17: Various configurations for selecting signals (see Table 4.4).

Table 4.5: Runtime for the Trace Signals Selection Algorithm (seconds)

Circuit FF count Tr 64 Tr 128 Tr 192 Tr 256
s35932 1728 979 s 1465 s 1873 s 2640 s
s38584 1426 798 s 819 s 1181 s 1392 s
s38417 1636 689 s 1165 s 1770 s 2111 s

mode. The trace signal selection algorithm runs in multi-threaded mode (4 threads)

with runtimes as reported in Table 4.5 for the three largest ISCAS89 benchmark

circuits. While these runtimes can be in range of thousands of seconds, it is worth

noting that the trace signals selection algorithm needs to run once at design time.

4.5 Summary

In this chapter the following topics were discussed :

97

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

� Restoration-based methods for choosing a set of traced signals do not capture

the information required for finding a bit-flip. Those methods can be helpful

when dealing with functional bugs when signal consistency is preserved. Elec-

trical bugs, however, may lead to corruption of the Boolean state of signals

(bit-flips) and lead to inconsistent logic. More information is needed to detect

these inconsistencies.

� A new metric called “bit-flip detectability” (BFD) is introduced which focuses

on the probability of detecting bit-flips on flip-flops in a digital circuit.

� A BFD-based algorithm was proposed which tries to maximize the chances

of restoring flip-flops to two different values from two different paths, hence

detecting a flipped value.

� Details were provided on how such a probability metric is supposed to propagate

through the circuit. The algorithm relies on propagation of the probability

within a netlist for making its decisions.

� Experiments show that the selected set of traces produced by this algorithm

are effective. Random set of traces were used as a base line for comparison.

We concluded that Restoration-based method can be less effective than a ran-

dom decision while the proposed algorithm could consistently outperform both

random-decisions and restoration-based methods.

98

Chapter 5

Joint Selection of Trace Signals

and Assertion Checkers

5.1 Background

In the previous chapters, the use of Boolean SAT solvers to detect bit-flips was dis-

cussed as well as choosing which signals to trace for improved bit-flip detectability.

As shown in Figure 5.1 we assume that an on-chip memory stores an ongoing history

of several signals within the system while it is operating. Later the content of that

memory is offloaded to be analyzed by an automatic software to firstly detect an

issue (in terms of an inconsistent state or Boolean contradiction) and secondly find

the root cause of such inconsistency (in terms of a list of suspects that need to be

further investigated by the designer). The offload process needs to be initiated when

a failure has occurred or an event of interest has happened. As a result an important

part of the design-for-validation infrastructure that enables an effective post-silicon

validation process, is the event detection mechanism.

99

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.1: Big picture: Pre-silicon and post-silicon tasks for collaborative trace-and-
assertion-based debugging. In pre-silicon the desired signals to be traced and the
assertion checkers to be synthesized must be selected. During post-silicon validation,
the collected trace is extracted as well as the violations caught by the assertion engine
to indicate any of the assertions that fired during the debug session. All of this debug
information is then post analyzed to generate a list of suspects, useful for root-cause
analysis.

100

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Assertion-checkers, which are historically inherited from software development,

have been used extensively in pre-silicon verification for over a decade [97]. While on-

chip assertions checkers can potentially detect both electrical and functional bugs by

monitoring properties in real-time, there are a few challenges to integrate assertion

checkers in post-silicon validation. Translating assertions to hardware circuits (as-

sertion synthesis), with applications to online monitoring and in-field diagnosis, has

been investigated over the previous decade [98]. Also, time-multiplexing assertions

for silicon debugging has been researched in [99]. Nevertheless, considering the large

pool of assertions that can be generated automatically, e.g., [100], raises questions

concerning how many assertions to use for post-silicon validation and what is their

relevance for improving the detection of bit-flips. This problem has been studied

recently in [101], however there has been no consideration on how on-chip assertion

checkers can complement the validation data collected in trace buffers.

In order to benefit from both hardware assertion checkers and validation data that

can be acquired in trace buffers, one can decide at design-time:

� which signals to trace in order to aid the root-causing of bit-flips caused by

electrical bugs;

� which assertion properties should be synthesized and integrated on-chip for bit-

flip detection.

Both of the above problems have been studied independently from each other.

However, the two challenges are related in the sense that both types of methods

use hardware resources, such as on-chip area and wires, to find the root cause of

unexpected events during post-silicon validation. Since there appears to be no major

101

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.2: A half-adder cell with trace buffer and a single assertion property checker.
Assertion checkers get violated when both C and S are logic 1, which is an illegal state
for this circuit. Trace buffer is recording a history of only two nets, A and C.

studies that tackles the two types of selections at once, we decided to investigate

the two problems concurrently during design-time. As demonstrated by our results,

using such a co-selection-based approach will enable a more efficient usage of hardware

resources allocated to trace buffers and assertion checkers in order to maximize the

detection of bit-flips while saving the hardware cost.

Note that in this work we do not focus on how to generate hardware assertions.

We rely on any third party assertion generator tools to provide a set of assertions.

All the results in this chapter rely on assertions generated in [102].

5.2 Motivation and Definitions

A simple example is provided in this section to clarify the type of resource sharing

between assertion checkers and trace buffers. Definition of the technical terms used

in the example are provided at the first usage of every term.

102

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

5.2.1 Example

Figure 5.2 shows a half adder cell which consist of two logic gates and four flip-flops. A

simple assertion property checker which is AND of sum and carry is also shown which

gets violated when both signals are high at the same time. The property checked by

this assertion can be described as ‘‘if (C == 1), assert (S==0)’’

or equivalently:

assert (C == 1) => (S == 0)

A bit-flip (an undesirable change of Boolean value due to an electrical bug) on

flip-flop C from value 0 to 1 is shown as C (↑10). This assertion checker can detect two

bit-flips:

� C (↑10) when S is 1

� S (↑10) when C is 1

If nets A and C are also traced (i.e. their value is recorded inside the trace buffer),

the following two bit-flips may also be detected:

� C (↑10) when A is 0

� A (↓10) when C is 1

By tracing wires A and C as well as integrating the above assertion checker, we can

potentially cover 3 bit-flips while sharing wire C between hardware assertion

engine and trace buffer. Detection through different sources is illustrated in Fig.

5.4.

103

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.3: Trace buffer (TB) and the assertion engine (AE) collect real-time data
from circuit under test (CUT), sharing wires to minimize routing costs. TB is assumed
to trace only flip-flops from CUT and wires fed to AE.

5.2.2 General Objective

In a more generic example, as depicted in Figure 5.3, there are (1) a circuit under test

(CUT), (2) an assertion engine (AE) fed with several wires and (3) a traced buffer

(TB) engine fed with several flip-flops or wires. Wires can be shared between the two

engines to reduce routing requirements. The cost of the two engines are explained as:

� Assertion Engine: consists of the assertion logic (gates and flip-flops) synthe-

sized to area A units.

� Trace Buffer: a memory of depth d and width w to record w signals for d clock

cycles. Here we assume this will be synthesized as an on-chip SRAM module.

The assertion unit is accompanied with an Assertion Data Set as shown in Table

5.1. This table summarizes the list of all assertions and their cost and benefits, defined

as:

� Cost: An assertion uses a number of wires listed in the column 2 of Table

5.1. Area cost to implement is in column 3. This cost depends on how many

104

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Table 5.1: Assertion Data Set

A
ss

er
ti

on
N

o.

L
is

t
of

W
ir

es

A
re

a
C

os
t

Benefit 1

C
ov

er
ed

F
F

.
B

it
-F

li
p

T
y
p

e

D
et

ec
ti

on
R

at
e

Benefit 2

C
ov

er
ed

F
F

.
B

it
-F

li
p

T
y
p

e

D
et

ec
ti

on
R

at
e

...

1 {W1,W2,W3} 100 (A, ↓10, 50%) (B, ↑10, 10%)
2 {W3,W4} 200 (C, ↓10, 20%) ...
... ...

logic gates and flip-flops are required to capture the event of interest for that

particular assertion.

� Benefit: Each assertion covers one or more different bit-flips. The covered

bit-flips are listed in the rest of the columns. A “benefit” consists three pieces

of information: Covered flip-flop Fx, type of bit-flip (↓10or ↑10) and detection

rate. In order to find this rate one needs to run a series of experiments and

inject a total of n bit-flips into each of the flip-flops in a CUD. If an assertion

is violated for m times during such experiment the detection rate is calculated

as m/n.

5.2.3 Key Insights

Figure 5.4 shows a Venn diagram of all possible bit-flips within a circuit, which

includes a flip from zero to one or from one to zero for each individual flip-flop. In

this diagram a bit-flip is assumed to fall into one of the 4 possible outcomes below:

1. A bit-flip causes a violation in an assertion and is therefore detected;

105

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.4: Left: Figurative diagram of detecting bit-flips. All the possible bit-flips
(every flip-flop, both ↓10and ↑10) might be detected by either violating an assertion
checker, or with the help of several traced signals, or both, or in the worst case
scenario stay undetected. Key insight in this work is to reduce the overlap and spend
the budget to cover more bit-flips. Right: Same idea for circuit in Fig. 5.2

2. A bit-flip leaves a detectable footprint in the trace buffer and is therefore de-

tected;

3. A bit-flip causes both (1) and (2), therefore detected;

4. A bit-flip does not cause any footprint or assertion violation and stays unde-

tected.

This work has the following two targets:

� Discourage detection overlap: If a bit-flip is detected through one source

of information there is little gain in spending budget on the second source,

� Encourage shared wires: It is beneficial for assertions to share wires, to

minimize cost of routing and not to interfere with the circuit’s timing analysis.

The cost function in the following section is designed in a way that gears towards

both objectives.

106

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 8 Trace and Assertion Co-Selection Algorithm

Data: Trace count (T), Assertion wire budget (W),
Assertion Data Set (table 5.1)

Result: Set of traced flip-flops and wires (LT),
Set of selected assertions (LA)

1: function Select(T , W)
2: LT = ∅ . Empty set of traced signals
3: LA = ∅ . Empty set of selected assertions
4: rT = T . Remaining trace budget
5: rW = W . Remaining wire budget
6: while (rT > 0) OR (rW > 0) do
7: S1 = ComputeBFD(LT ,LA) . current BFD
8: CF = GetFlopCandidates(LT , rT)
9: CW = GetWireCandidates(LA,LT , rT)

10: CA = GetAssertionCandidates (LA, rW)
11: Call = CF ∪ CW ∪ CA

12: Define associative array “Scores”[∀c ∈ Call] = {0,0,...,0}
. Zero initial score of all candidates

13: for c ∈ CA do . Candidate Assertions
14: S2 = ComputeBFD(LT ,LA ∪ c)
15: CF = CostFunction(c,LA)
16: ∆BFD =

∑k=n
k=1 (S2[k]− S1[k])

17: Scores[c] =
∆BFD

CF
18: for c ∈ (CF ∪ CW) do . Candidate nets
19: S2 = ComputeBFD(LT ∪ c,LA)
20: ∆BFD =

∑k=n
k=1 (S2[k]− S1[k])

21: Scores[c] = ∆BFD

22: Best = Find candidate i whose Scores[i] is maximum
23: if Best is an Assertion then
24: rW = rW− NewWires(Best,LA)
25: LA = LA ∪Best
26: else . B is a single net
27: rT = rT − 1
28: LT = LT ∪Best

Return LA,LT

107

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

5.3 Co-Selection Algorithm

5.3.1 Main Algorithm and Cost Function

Algorithm 8 is the main search function. It relies on several other functions which

are explained through either words or pseudo-codes. It processes the netlist of the

digital circuit and selects a number of traced signals and assertion checkers. Input to

the function is the number of traced signals, T , to be chosen as well as the number

of wires, W , used for all the selected assertions. Another given information is the

data set on all assertions, similar to what is shown in table 5.1. The output of the

algorithm are two sets denoted as LA for list of assertions and LT for list of traced

signals. Both of these sets start from an empty state. The remaining budget for both

traced signals (rT) and wires for assertion checkers (rW) are checked throughout the

execution of the algorithm.

At the core of the algorithm we need to quantify the effectiveness of a certain

selection of traced signals and assertions. This is done through the ComputeBFD

function which receives the two sets LA and LT and returns a 1× n vector, where n

is the number of flip-flops. Each element of this vector is a probability of detecting

the bit-flip for the respective flip-flop. While any appropriate probabilistic method

can be plugged into this function, here we have relied on the probability methods

discussed in the previous chapter (i.e. Certainty and Bit-flip detection). Line 7 in

algorithm 8 stores the current detection probability of all the flip-flops to be used as

a baseline to measure improvements later in lines 16 and 20.

Next, various candidates are listed by three functions, before a decision can be

reached:

108

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

� GetFlopCandidates(LT , rT) provides the list of the flip-flops which are not

yet selected. Returns empty if the remaining trace count rT is depleted. As-

suming the F is the set of all flip-flops in a circuit:

GetFlopCandidates(LT , rT) =

F− LT , if rT ≥ 1

∅, if rT = 0

� GetWireCandidates(LA,LT , rT) provides the list of wires used in all the

assertions listed in LA. This should exclude all the trace signal already selected

and listed as LT . Also returns empty if rT is already depleted.

GetWireCandidates(LA,LT , rT) =

wires(LA)− LT , if rT ≥ 1

∅, if rT = 0

� GetAssertionCandidates (LA, rW) lists all the assertion that have not been

selected so far. It excludes assertions which require a number of new wires

greater than rW . Returns empty when rW reaches zero. Assuming A is the

set of all available assertions:

GetAssertionCandidates(LA, rW) =
{a ∈ (A− LA); |NewWires(a)| ≤ rW}, if rW ≥ 1

∅, if rW = 0

in which “NewWires” is a function that counts how many of the wires used in a

particular assertion, a, will be new, considering that some wires may have already

109

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

been selected or used by the previously selected assertions.

After listing the candidate signals and assertions, they are evaluated one-by-one

and their respective improvement in the bit-flip detection probability is computed in

lines 16 and 20. Then the best candidate (either an assertion or a traced signal) is

selected such that it leads to better improvement in detection probability. Finally

the respective counter (rT or rW) is updated to keep track of the remaining budget

for each resource.

Comparison Between Algorithms 6 and 8

� Both algorithms are the main search routines of their our task, either choosing

trace signals only, or co-selection of trace and assertion. Algorithm 8 is an

expansion of 6.

� Algorithm 6 iterates for a predefined number of times through a for loop, while

algorithm 8 uses a while loop since the number of iterations is not known in

advance. Each assertion may use several number of wires and consume the wire

budget at a variable rate.

� In algorithm 6 the candidates are simply all the flops, excluding those that are

already selected (Flopi /∈ L), while the candidates in algorithm 8 have to be

listed in a relatively more complex manner.

� Both algorithms rely on BFD, either from traced signals or from assertion check-

ers to choose the locally best option.

110

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Cost Function

The cost of a new trace signal is a single wire being added to the selection set. The

cost of a new assertion on the other hand depends on how many new wires it requires

(which also depends on the previously selected assertions) and the circuit area of

that assertion. These parameters are computed by CostFunction as shown in

Algorithm 9. Here, the function NewWires lists all the wires required to synthesis

all the assertions that are selected so far (Wall) and then finds that a specific assertion

(An) requires only Wnew new wires. In other words, Wnew, which is subset of the wires

for An, provides only the new wires to be added if An is eventually selected.

In the CostFunction, two different costs are evaluated and then a single nor-

malized cost is generated. In the experiments in this chapter we assume that the

function x = normalize(Cx) is a linear function such that:

normalize(min(Cx)) = 1

normalize(< Cx >) = 2

where < Cx > is the average of all costs for the entire assertion database.

5.3.2 Bit-Flip Detection Probability

In order to quantitatively measure the probability of detecting a bit-flip, we have

relied on the definitions of “certainty” and “bit-flip detectability” from the previous

chapter. The application of bit-flip detectability has been expanded to integrate the

detection information through assertion checkers into the model.

The following is a brief summary of the way in which Certainty and BFD measure

111

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 9 Cost Function

Data: The new assertion An,
list of already-selected assertions LA

1: function CostFunction(An,LA)
2: CA = look up area cost of An from data set (table 5.1)
3: CW = |NewWires(An,LA)|
4: C = normalize(CA) + normalize (CW)

Return C

1: function NewWires(An,LA)
2: Wall = set of all the wired used by all assertions in LA
3: WAn = set of all the wires used by An
4: Wnew = {c ∈ WAn|c /∈ Wall}

Return Wnew

the probability of detecting bit-flips. The interested reader may refer to the previous

chapter for more details.

� The probability of restoring any net in a digital circuit is defined as Certainty,

a number between 0 and 1.

� The probability of detecting a bit-flip on a particular flip-flop is defined as the

product of certainty the D and Q port of that flip-flop for opposite values. This

is shown in Algorithm 10 line 18.

� The certianty values defined for each net propagate throughout the circuit based

on the netlist. Traced signals are assumed to have 100% certainty (restoration

probability). All other nets start with 0%. The only way to gain non-zero

certainty is through propagation from a traced signal to other nets.

Algorithm 10 receives as input two sets of selected assertions and signals and es-

timates the probability of bit-flip detection on all the flip-flops for that particular

112

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 10 Compute Global BFD of a Selection

Data: Set of traced flip-flops or wires (LT)
Set of selected assertions (LA), number of flip-flops (n)

Result: Bit-Flip Detectability Score S for each flip-flop
1: function ComputeBFD(LT ,LA)
2: Define S as array of size n
3: S = {0, ..., 0} . Initialize Score to Zeros
4: Reset certainties of all nets to Zero

5: for A ∈ LA do . Apply knowledge from Assertion
6: for B ∈ (benefits of A) do . As in Table 5.1
7: (TargetFF, Bit-flip type, Detection rate) ← B
8: SetBFD (TargetFF, Bit-flip type, Detection%)

9: for Net n ∈ LT do . Knowledge from Trace
10: CV Q = (C = 1, V = 1

2
)

11: Set certainty of Net n to CV

12: Ppg-Enqueue(CV Q,
−−→
fwd, fanout nets of n)

13: Ppg-Enqueue(CV Q,
←−−−
bkwd, source net of n)

14: Propagate-All
15: for i = 1 : n do
16: Compute QRx and DRx for Flopi . 0 and 1-restorability of Q and D.
17: Compute BitFlipDetectability S[i] for Flopi =
18: S[i] = QR1×DR0 + QR0×DR1

19: Return S

113

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Algorithm 11 Setting BFD of a flip-flop

Data: Restoration probability of this flip-flop: CV D, CV Q

External zero and one detectability: E0D,E1D
1: procedure SetBFD(TargetFF, BitFlipType, Rate)
2: if BitFlipType is 0 then
3: E0D = E0D+ Rate
4: else . bit-flip type is 1
5: E1D = E1D+ Rate

6: Ensure ExD ≤ 1; Saturate at 1.0 if necessary
7: PotentialBFD = E0D + E1D
8: CurrentBFD = QR1×DR0 + QR0×DR1
9: if PotentialBFD ¿ CurrentBFD then

10: QR0 = DR1 =
√
E0D

11: QR1 = DR0 =
√
E1D

12: CV Q = min(1.0, QR0 +QR1)
13: CV D = min(1.0, DR0 +DR1)
14: Propagate CV forward to fanout nets of TargetFF
15: Propagate CV backward to source net of TargetFF

selection. It assigns 100% probability to traced signals and lets the restoration prob-

ability propagate through the circuit. For assertions, as discussed in the next section,

the detection rate of each assertion from assertion data set (table 5.1) is taken into

account. Eventually the certainties assigned to each flip-flop are used in line 18 of

Algorithm 10 to calculate bit-flip detectability of each flip-flop.

5.3.3 Integration of Assertion Benefits

Each assertion may detect one or more bit-flips and each flip-flop may be covered by

one or more assertions provided to the algorithm. Thus, we need to keep track of how

well each flip-flop is covered at any point during the selection procedure. Parameters

E0D and E1D are, respectively, external zero and one detection probability of each

flip-flop and are used for this objective. Initially ExD of all flip-flops are set to zero.

114

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

As more assertions are selected, their bit-flip detection capability (see benefits in Table

5.1) is integrated into the ExD parameters of the respective flip-flop. Introduction

of two different parameters has been necessary since we distinguish between the two

types of bit-flips: ↑10and ↓10.

Algorithm 11 integrates the detection rate of an assertion into the ExD parameter

of a flip-flop based on the polarity of the bit-flip. It also makes sure that none of the

probability metrics exceed 1 at any point. If the external detection probability leads

to a higher detection probability than that generated by the traced signals (through

QRx and DRx, as defined in Alg. 10), the QRx and DRx parameters are overwritten

by the higher rate from ExD. Lines 10 and 11 of Algorithm 11 use square root of

ExD parameters to stay compatible with the definition of “Bit-flip Detectability” as

in line 18 of Alg. 10. For example if a flip-flop’s restoration parameters were

QR0 = 0.2 QR1 = 0.3 DR0 = 0.4 DR1 = 0.0

the bit-flip detectability would be (0.3× 0.4) + (0.2× 0.0) = 0.12 .

If then we integrate an assertion with benefit of (F, ↓10, 50%):

E0D = 0.5;E1D = 0⇒ PotentialBFD = 0.5 > 0.12

Consequently the parameters will be updated to reflect the greater detectability:

QR0 = 0.707 QR1 = 0.0 DR0 = 0.0 DR1 = 0.707

115

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

5.4 Results

5.4.1 Experimental Setup

Multiple experiments were conducted to measure the quality of the selections com-

puted by the co-selection algorithm in detecting bit-flips. Apart from the netlist of

a digital circuit, an essential part of the experiments is the library of the assertions

which can be provided from any source such as the designer of a system, pre-silicon

assertions or generated by various automatic methods such as [100]. The library of

assertions are first evaluated using a digital simulator in which a predefined number

of bit-flips are injected to each flip-flop. Then, the number of times each assertion

has fired for any bit-flip is recorded to form the assertion data set (table 5.1). Asser-

tions that never fired can be dismissed at this stage to simplify the analysis. Then

the algorithm runs and co-selects several traced signals and assertions based on the

wire budget provided to it. Another set of simulations are then performed using only

the selected subset of wires/assertions to confirm the quality of the selection. The

recorded trace signals as well as the violated assertions are then passed to a Boolean

SAT solver [91] to detect the bit-flip based on the same concepts as in the previous

two chapters. For violated assertions another middle step is required before the SAT

solver can be used. For example if the following assertion is violated at clock cycle

100, we know that not only B has been 0 in clock cycle 100, but also A has been 1

on clock cycle 98. Therefore one can conclude that A[98] = 1;B[100] = 0

if(A = 1) assert (B = 1) after 2 clock cycles

Once the Boolean SAT solver runs, the injected bit-flip is either detected or stays

116

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

undetected:

� If not detected, it shows that the combination of trace signals and assertions

could not provide enough information to cause any inconsistency in the Boolean

representation of the circuit. SAT solver has found a satisfiable and logical

solution for that particular instance of trace and assertion set.

� If Detected, we can further analyze the collected trace and find a list of suspect

flip-flops by looking at the “Core of Unsatisfiability” generated by the solver.

This list of suspects contains the “faulty flip-flop” together with several other

nets.

5.4.2 Bit-flip Detection Rate versus Hardware Cost

In this set of experiments we used s5378 from ISCAS 89. A library of 33,000 assertions

were given (automatically generated) for this circuit by [102]. After injecting 10 bit-

flips into each of the 179 flip-flops, it was found that almost 10,000 of these assertions

never fired. Circuit s38417 with 598 assertions and 1636 flip-flops is another circuit

in this set if experiments.

Results from experiments strongly support the idea that the co-selection method

can lead to significantly better detection rate at relatively low extra cost. Figure 5.5.A

shows the bit-flip coverage versus the estimated hardware cost for s5378. A bit-flip

is considered covered if it is detected at least once after 10 injections. Hardware cost

is measured as area of the selected assertions when synthesized together with area

required for the trace buffer. For assertion synthesis, each flip-flop is assumed to

cost 20 units, each 2-input logic gate 8 units and each bit of an SRAM cell 6 units.

Trace depth is assumed to be 100 cycles. For example, the lowest data point in Fig.

117

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

A

B

Figure 5.5: (A) Bit-flip coverage after 10 injections for s5378 versus estimated hard-
ware cost. Lower data points connected with a dashed line have no assertion checkers
to boost the detection. Each data point is a 10-bit-flip injection experiment. (B)
Average count of suspect flip-flops for experiment in A.

118

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

A

B

Figure 5.6: Similar experiments as in Figure 5.5 for a different circuit: s38417.
Bit-flip coverage after 10 injections and average number of suspect flip-flops versus
the estimated hardware cost.

119

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.7: Bit-flip detection versus wire-count of the selected set of assertions, for
various selection strategies; such as selecting all assertions first and then all the traces.
Dynamic selection (co-selection algorithm) performs better.

5.5.A has a cost of 9600 units which originates from only a 16 bit trace buffer, and

no assertions (9600 = 16 × 100 × 6). The sharp increase in bit-flip coverage comes

from inclusion of the assertions engine with more wires for each higher data point.

The dashed line represents the slope of increase in detection rate, if only trace-buffers

were employed. Figure 5.5.B shows the number of suspect flip-flops for the very same

experiment. It is shown that list of suspects generally shrinks, with minor exceptions

due to the random nature of the experiments. Figure 5.6.C shows the detection rate

for a larger circuit (s38417). Experiments on other circuits such as s38584 show the

same trend.

120

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

5.4.3 Different Selection Strategies

In order to analyze the effectiveness of the proposed algorithm another experiment

was conducted in which the algorithm’s strategy was modified to forcibly select all

assertions first, and then traces; or alternatively, select all traces first and then the

assertions. Figure 5.7 shows that the dynamic selection (concurrent selection of as-

sertions and trace signals) leads to better detection rate when compared to the two

modified versions.

In another experiment, the order in which the assertions, wires and flip-flops are

selected were observed. The circuit s5378 was provided to the algorithm. Wire

budget for assertions was set to 64 while wire budget for trace selection was 48. After

the execution, a total of 32 assertions were selected. If considered individually, those

32 assertions would use a total of 84 wires, but when considering wire-sharing among

them they total to 64 wires, as enforced by the wire-budget for this particular resource.

Figure 5.8 shows the order in which the selections were decided. The horizontal axis

represents the decision sequence from left to right, and each marker represents the

type of the selected resource at each step.

5.4.4 Time Distribution of the Suspects’ List

As shown in Figure 5.9 the time distribution of the flip-flops in suspects’ list can

be within a relatively narrow window around the injection time. In this figure the

injection time is assumed to be at time T=0. The green bars represent the distribution

of the suspect flip-flops when only the information inside the trace buffer is used for

root cause analysis. The blue line, on the other hand, shows the distribution when

in addition to the trace buffer, the violation of assertion-checkers are also integrated

121

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.8: The order of decisions to select Assertions, wires from assertions, and
flip-flops for circuit s5378. Wire budget for assertions is 64 and wire budget for trace
selection is 48.

in the analysis. The added value of the assertion checkers is obvious in two respects:

(1) more bit-flips are detected, and (2) the distribution has a higher peak around the

injection time. This means that a number of smaller cores of UNSAT or equivalently

several “shorter lists of suspects” are produced due to the violation of assertions.

Another visible difference between the time distribution of trace-only versus trace-

assertion-combined experiments is the right skewness in the time distribution graphs

of the combined method, as shown by the blue lines in Figure 5.9. This is due to

the nature of the assertions and the depth of assertions in the assertion dataset. It

can be deduced that the bit-flips can corrupt the state of the circuit in such a way

that the assertions fail after one or more clock cycles. Each failed assertion, in turn

has a depth, which corresponds to the number of samples it keeps for checking its

particular property. A longer depth of an assertion, or more latency of an assertion

122

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Figure 5.9: Time distribution of the flip-flops in the list of suspects for s38417 as-
suming that the injection time is at time T=0. Green bars represent the distribution
for when only trace information is used. Blue line illustrates the same distribution
for when both violated assertions and trace signals are used for post analysis. Left:
Trace width of 64 bits. Right: Trace width of 256 bits.

to fire results in a logical inconsistency among nets with higher timestamps, hence a

longer tail in the time distribution histogram.

5.4.5 Runtime

As can be seen in algorithm 8, there are two types of loops: the outer while loop

and the two inner for loops. The outer while loop runs roughly the same number

of times as the sum of the given wire budget (W) and trace budget (T). Note that

at every round of execution either a single trace signal is selected or one or multiple

wires (for a single assertion-checker). Thus the runtime grows linearly to the sum of

budgets for both assertion-wires and traced flip-flops. The two inner loops also cause

a linear growth in runtime. The first for loops runs as many times as the number of

assertions in the assertions data set. The second for loop scans all the flip-flops and

also the wires associated with the assertions selected so far. This depends mainly on

the size of the netlist. In summary the runtime grows linearly to all of these factors:

123

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

� number of trace signals to be selected (T)

� number of wires/flip-flops to be used for assertions (W)

� number of assertion in the dataset (|CA|)

� number of flip-flops in a netlist (|CF |)

Runtime of the algorithm (developed in C++) for s5378 (64b of trace, 64 wires

out of a total of 33,000 assertions) was 6.7 seconds. Runtimes for s38417 (64b of

trace, a total of 598 assertions) when assertion wires vary from 64 to 96 and 128,

are respectively 535, 556, 571 seconds. Runtime is measured on Intel(R) core i7-2600

CPU.

5.5 Summary

In this chapter the following topics were discussed :

� Online assertion checkers were originally inherited from software design to hard-

ware verification. They have the potential to be synthesized to hardware, in-

tegrated into the silicon die and be used for post-silicon validation. They can

detect bit-flips as well as other deviations from specification.

� When dealing with electrical bugs that cause bit-flips in the logic domain, a

violation of a hardware assertion can provide information in two ways:

1. event detection (e.g. triggering another process such as data acquisition)

2. provide the logic value of circuit nets that caused the violation.

124

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

� Together with on-chip trace buffers, assertions can provide useful information

into the root-cause of a design error.

� An algorithm was proposed that integrates the knowledge from the assertions

and trace buffers and co-selects a list of assertions and useful trace signals,

concurrently. The method proposed in the previous chapter selected traced

signals without taking any knowledge on assertions into account.

� The goal of the algorithm is to take advantage of trace buffers for some bit-flips

and use assertions for others while saving cost of shared wires and hardware

area.

� Results support that the extra cost of hardware assertions boost the bit-flip

detection rate considerably.

125

Chapter 6

Conclusion and Future Work

In this thesis, it was shown that analyzing post-silicon traces can aid with the de-

tection of bit-flips and root-cause analysis. In chapter 3, we presented a method

that facilitates post-silicon validation by automatically detecting bit-flips using trace

buffers. The behaviour of a digital circuit can be translated into a set of Boolean

conditions. In this method, the Boolean representation is compared against the bits

recorded in a trace buffer. In other words, the collected bits enforce a set of constraints

for the Boolean representation of the circuit. The possible inconsistency between the

circuit and the trace may be detected by a Boolean SAT solver. A SAT solver at-

tempts to find a solution which is simultaneously compatible with both the circuit

and the recorded trace. In the event that the two sets of conditions are incompatible,

the SAT solver finds the conflicting subset of the problem. This subset will be used

as a clue for root-cause analysis. It was shown that a list of suspects can further be

provided by back-ward translation of the “Boolean problem subset” to “circuit nets”.

In chapter 4, a selection algorithm was proposed that chooses the traced signals

that lead to higher detection rate of bit-flips. Tracing a signal (flip-flop or wire within

126

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

the design) means that its Boolean state is recorded on the trace buffer at every clock

cycle or in other words its value is known for the entire window of the trace history.

Knowledge of several signals helps with reconstructing the state of others as well

detecting inconsistencies, if any. Using a probability model, the knowledge of several

signals and its effect on others non-traced signals is quantified and measured. This

model is used at the core of the proposed algorithm to make decisions on which signals

to trace.

It was shown that the set of signals selected by the algorithm can consistently lead

to 10 to 15 percent more bit-flip detections when compared to a random selection. It

was also shown that restoration-based methods that choose trace signals for higher

state restoration (commonly used for functional bugs) can perform worse than random

tracing, which already proves that they are not effective for root-causing electrical

bugs. For example, as shown in chapter 4, by tracing 5 to 12% of the signals of a

benchmark circuit, we can detect 15 to 25% of the bit-flips. During post-silicon debug

it is common to run multiple sessions before a bit-flip is detected. Assuming that a

flip-flop is considered “covered” if it is detected at least once out of 10 times, we can

calculate a coverage rate for each selected set of traced signals. It was shown that

the coverage rate of the same benchmark circuit (with 5 to 12% of all signals traced)

can lead to 20% to 40% flip-flop coverage.

And finally in chapter 5 we presented another selection algorithm that concur-

rently selects traced signals and hardware assertions, with the objective of covering

as many bit-flips as possible, while minimizing the estimated hardware cost. The

hardware cost consists of the area of the assertion circuitry and the on-chip memory

127

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

used as a trace buffer. The same probability-based metric as in chapter 4 was em-

ployed and extended to integrate the knowledge from assertion checkers. It was shown

that while spending the hardware budget (area) for a wider trace memory leads to

higher detection rate, one can spend on both assertion checkers and trace buffers to

bring in the best of both worlds. The newly added assertion checkers can lead to a

significant boost both in detection rate and shrinkage of the list of suspects.

It was shown that the “mixed co-selection” strategy outperforms other selection

strategies. More precisely, one can select all the required assertions first, and then

all the traced signals, or on another extreme select all the traces before all the as-

sertions. Our proposed algorithm, on the contrary, selects the traces and assertions

concurrently while propagating the knowledge of each intermediate step towards the

next decision-making step. As a result, in each iteration of the algorithm a traced

wire, traced flip-flop or an assertion may be selected, depending on the current state

of selections and the pool of possibilities.

In conclusion, the automatic bit-flip detection methods proposed in this disserta-

tion have the potential to provide improved debugging during post-silicon validation.

In pre-silicon, once the netlist is ready the traced signals can be selected automati-

cally by the proposed algorithm. If a pool of assertions is also available, they can be

filtered using the co-selection algorithm to cover as many bit-flips as the hardware

budget allows. In post-silicon, the content of the trace buffer needs to be extracted

and passed to the rest of proposed flow to detect the bit-flips and generate a list of

suspect nets, where the bit-flips have occurred. This methodology is generic and can

be applied to any digital block regardless of its application.

128

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

Possible Future Paths

Probably the single major point where one can improve the proposed methodology

is on the selection algorithm. The algorithms in this work are greedy heuristics

where each decision is the locally best solution. One can look for groups of signals

or clusters within a netlist and by analyzing the structure, potentially make better

decisions. Such an algorithm might select more than a signal at a time, for example

several signals within a particular cluster or interconnected region of the circuit.

It is also worth considering to implement or emulate a time multiplexed trace

buffer, at least for research purposes or as a feasibility study, in which a trace buffer

is shared between multiple blocks. This can be beneficial in many aspects. Apart

from the feasibility study, this can provide a more realistic signal probability (odds of

a signal being logic 1) in an accelerated rate, much faster than what can be simulated.

Currently almost all the experiments in this thesis are based on a (P1 = P0 = 50%)

assumption for all the traced signals. The signal probability from emulation can be

fed to the selection algorithm to further refine the selection.

The last contribution of this thesis depends on a pool of assertions. This pool

can potentially contain many assertions, including those that are of relatively high-

quality. In this context a high-quality assertion is one that gets violated often, for

one or more particular bit-flips. On the contrary a low-quality assertion is one that

fires rarely or never, when a bit-flip occurs anywhere in the circuit. High quality

assertions are favorable since they can provide useful information during a debug

session. The quality of the proposed selection algorithm ultimately depends on the

quality of the assertions provided to it. If a large number of high-quality assertions

can be generated, for example using an automatic assertion generation algorithm,

129

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

then the chances of having a set of assertions and traced signals that catch more

bit-flips gets higher.

All the suggestions for future work provided above can further aid the contribu-

tions from this thesis in improving the productivity and effectiveness of post-silicon

validation and debugging. While no single approach will suffice in solving the major

challenges faced in practice, it is anticipated that the algorithmic methods presented

in this thesis will facilitate a step forward toward systematizing post-silicon validation

and providing a stronger scientific foundation to this field.

130

Bibliography

[1] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems. McGraw-Hill,

Inc., 2nd ed., 1997.

[2] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna, F. Merchant, B. Pa-

tel, M. H. Taufique, and H. Samarchi, “A sub-2 W low power ia processor for

mobile internet devices in 45 nm high-k metal gate CMOS,” IEEE Journal of

Solid-State Circuits, vol. 44, pp. 73–82, Jan 2009.

[3] N. Weste and D. Harirs, CMOS VLSI Design: A Circuits and Systems Perspec-

tive. Pearson, 4th ed., 2010.

[4] “Dictionary by Merriam-Webster.” https://www.merriam-webster.com/

dictionary/computer, 2017.

[5] “Meanings and definitions of words at dictioinary.com.” http://www.

dictionary.com/browse/computer, 2017.

[6] C. Hope, “When was the first computer invented.” https://www.

computerhope.com/issues/ch000984.htm, 2017.

131

https://www.merriam-webster.com/dictionary/computer
https://www.merriam-webster.com/dictionary/computer
http://www.dictionary.com/browse/computer
http://www.dictionary.com/browse/computer
https://www.computerhope.com/issues/ch000984.htm
https://www.computerhope.com/issues/ch000984.htm

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[7] M. Kanellos, “Intel’s accidental revolution.” https://archive.is/

20120711020441/http://news.cnet.com/Intels-accidental-revolution/

2009-1001_3-275806.html, 2001.

[8] G. Moore, “Cramming more components onto integrated circuits,” Electronics

Magazine, vol. 38, no. 8, 1965.

[9] L. Durant, O. Giroux, M. Harris, and N. Stam, “Inside Volta: The Worlds Most

Advanced Data Center GPU.” http://archive.is/d698Y.

[10] Intel, “The Story of the Intel(R) 4004.” http://archive.is/zdHw4.

[11] H. Grtker, S. Liao, G. Martin, and S. Swan, System Design with SystemC.

Springer, 2002.

[12] Z. Navabi, Verilog Digital System Design. McGraw Hill, 2nd ed., 2005.

[13] C. Y. Chang and S. M. Sze., ULSI Technology. Mcgraw-Hill College Publica-

tions, 1996.

[14] M. Ganai and A. Gupta, SAT-Based Scalable Formal Verification Solutions.

Springer, 5 ed., 2007.

[15] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification.

Springer, 2013.

[16] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code coverage

metric for functional simulation,” in Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-aided Design, ICCAD ’96, pp. 418–425, IEEE

Computer Society, 1996.

132

https://archive.is/20120711020441/http://news.cnet.com/Intels-accidental-revolution/2009-1001_3-275806.html
https://archive.is/20120711020441/http://news.cnet.com/Intels-accidental-revolution/2009-1001_3-275806.html
https://archive.is/20120711020441/http://news.cnet.com/Intels-accidental-revolution/2009-1001_3-275806.html
http://archive.is/d698Y
http://archive.is/zdHw4

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[17] R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv, “User defined coverage - a

tool supported methodology for design verification,” in Proceedings IEEE/ACM

Design Automation Conference (DAC), pp. 158–163, ACM, 1998.

[18] D. Moundanos, J. A. Abraham, and Y. V. Heskote, “A unified framework for

design validation and manufacturing test,” in IEEE International Test Confer-

ence (ITC), pp. 875–884, Oct 1996.

[19] H. Foster, A. Krolnik, and D. Lacey., Assertion-Based Design. Springer, 2nd ed.,

2005.

[20] Q. Wang, R. Kassa, W. Shen, N. Ijih, B. Chitlur, M. Konow, D. Liu,

A. Sheiman, and P. Gupta, “An FPGA based hybrid processor emulation plat-

form,” in International Conference on Field Programmable Logic and Applica-

tions, pp. 25–30, Aug 2010.

[21] D. Anastasakis, R. Damiano, H. K. T. Ma, and T. Stanion, “A practical and ef-

ficient method for compare-point matching,” in Proceedings IEEE/ACM Design

Automation Conference (DAC), pp. 305–310, 2002.

[22] D. Perry and H. Foster, Applied Formal Verification. McGraw-Hill, 2005.

[23] S. Sutherland, P. Moorby, S. Davidmann, and P. Flake., SystemVerilog for

Design Second Edition: A Guide to Using SystemVerilog for Hardware Design

and Modeling. Springer, 2nd ed., 2006.

[24] “The 2012 Wilson Research Group Functional Verification Study.”

http://blogs.mentor.com/verificationhorizons/blog/2013/04/23/

133

http://blogs.mentor.com/verificationhorizons/blog/2013/04/23/ prologue-the-2012-wilson-research-group-functional-verification-study/
http://blogs.mentor.com/verificationhorizons/blog/2013/04/23/ prologue-the-2012-wilson-research-group-functional-verification-study/

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

prologue-the-2012-wilson-research-group-functional-verification-study/,

2012.

[25] J. Goodenough and R. Aitken, “Post-silicon is too late avoiding the 50 million

paperweight starts with validated designs,” in IEEE/ACM Design Automation

Conference (DAC), pp. 8–11, June 2010.

[26] L. Wang, C. Wu, , and X. Wen, VLSI Test Principles and Architectures: Design

for Testability. Morgan Kaufmann Publications, 1st ed., 2006.

[27] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI: Pseudo-

random Techniques. Wiley-Interscience publication. Wiley, 2nd ed., 1987.

[28] B. Koenemann and S. Pateras, “Built-in self-test (BIST) in the era of deep sub-

micron technology,” in IEEE Technical Applications Conference. Northcon/96.

Conference Record, pp. 312–315, Nov 1996.

[29] V. Gherman, H. J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, and M. Gar-

bers, “Efficient pattern mapping for deterministic logic BIST,” in International

Conferce on Test, pp. 48–56, Oct 2004.

[30] N. A. Touba and E. J. McCluskey, “Bit-fixing in pseudorandom sequences for

scan BIST,” IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 20, pp. 545–555, Apr 2001.

[31] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design. Information Tech-

nology: Transmission, Processing and Storage. Springer, 2004.

[32] P. Yeung and K. Larsen, “Practical assertion-based formal verification for soc

designs,” in International Symposium on System-on-Chip, pp. 58–61, Nov 2005.

134

http://blogs.mentor.com/verificationhorizons/blog/2013/04/23/ prologue-the-2012-wilson-research-group-functional-verification-study/
http://blogs.mentor.com/verificationhorizons/blog/2013/04/23/ prologue-the-2012-wilson-research-group-functional-verification-study/

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[33] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rulke, “Advanced verification

by automatic property generation,” IET Computers Digital Techniques, vol. 3,

pp. 338–353, July 2009.

[34] M. Boule, J. S. Chenard, and Z. Zilic, “Assertion checkers in verification, sili-

con debug and in-field diagnosis,” in 8th International Symposium on Quality

Electronic Design (ISQED), pp. 613–620, March 2007.

[35] S. Mitra, S. A. Seshia, and N. Nicolici, “Post-silicon validation opportunities,

challenges and recent advances,” in IEEE/ACM Design Automation Conference

(DAC), pp. 12–17, June 2010.

[36] “International Test Conference (ITC).” http://www.itctestweek.org/, 2017.

[37] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Mem-

ory and Mixed-Signal VLSI Circuits. Springer, 2002.

[38] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,” in

IEEE/ACM Design Automation Conference (DAC), pp. 7–12, 2006.

[39] E. Anis and N. Nicolici, “On using lossless compression of debug data in em-

bedded logic analysis,” in IEEE International Test Conference (ITC), pp. 1–10,

Oct 2007.

[40] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing

and Testable Design. IEEE Press, Piscataway, NJ, 2nd ed., 1994.

[41] E. J. McCluskey, Logic Design Principles: With Emphasis on Testable Semi-

conductor Circuits. Prentice Hall, Englewood Cliffs, NJ, 1986.

135

http://www.itctestweek.org/

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[42] A. Nahir, A. Ziv, M. Abramovici, A. Camilleri, R. Galivanche, B. Bentley,

H. Foster, A. Hu, V. Bertacco, and S. Kapoor, “Bridging pre-silicon verifica-

tion and post-silicon validation,” in IEEE/ACM Design Automation Conference

(DAC), pp. 94–95, June 2010.

[43] N. Nicolici, “On-chip stimuli generation for post-silicon validation,” in

2012 IEEE International High Level Design Validation and Test Workshop

(HLDVT), pp. 108–109, Nov 2012.

[44] S. K. Sadasivam, S. Alapati, and V. Mallikarjunan, “Test generation approach

for post-silicon validation of high end microprocessor,” in 2012 15th Euromicro

Conference on Digital System Design, pp. 830–836, Sept 2012.

[45] A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner,

and J. Schumann, “A unified methodology for pre-silicon verification and

post-silicon validation,” in IEEE/ACM Design, Automation & Test in Europe

(DATE), pp. 1–6, March 2011.

[46] X. Shi and N. Nicolici, “On-chip cube-based constrained-random stimuli genera-

tion for post-silicon validation,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 35, pp. 1012–1025, June 2016.

[47] X. Shi and N. Nicolici, “Generating cyclic-random sequences in a constrained

space for in-system validation,” IEEE Transactions on Computers, vol. 65,

pp. 3676–3686, Dec 2016.

136

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[48] A. B. Kinsman, H. F. Ko, and N. Nicolici, “In-system constrained-random

stimuli generation for post-silicon validation,” in IEEE International Test Con-

ference (ITC), pp. 1–10, Nov 2012.

[49] X. Shi, Constrained-Random Stimuli Generation for Post-Silicon Validation.

PhD dissertation, McMaster University, 2016.

[50] B. Vermeulen, T. Waayers, and S. K. Goel, “Core-based scan architecture for

silicon debug,” in IEEE International Test Conference (ITC), pp. 638–647,

2002.

[51] S. Tang and Q. Xu, “In-band cross-trigger event transmission for transaction-

based debug,” in Design, Automation and Test in Europe (DATE), pp. 414–419,

March 2008.

[52] H. F. Ko and N. Nicolici, “Resource-efficient programmable trigger units for

post-silicon validation,” in IEEE European Test Symposium (ETS), pp. 17–22,

May 2009.

[53] T. Hong, Y. Li, S. B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim, H. Naeimi,

D. S. Gardner, and S. Mitra, “Qed: Quick error detection tests for effective

post-silicon validation,” in IEEE International Test Conference (ITC), pp. 1–

10, Nov 2010.

[54] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S. Gardner,

and S. Mitra, “Effective post-silicon validation of system-on-chips using quick

error detection,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 33, pp. 1573–1590, Oct 2014.

137

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[55] H. Sohofi and Z. Navabi, “Assertion-based verification for system-level designs,”

in Fifteenth International Symposium on Quality Electronic Design, pp. 582–

588, March 2014.

[56] R. Sebastian, S. R. Mary, G. M, and A. Thomas, “Assertion based verification of

sgmii ip core incorporating axi transaction verification model,” in International

Conference on Control Communication Computing India (ICCC), pp. 585–588,

Nov 2015.

[57] I. Syafalni, N. Surantha, D. K. Lam, N. Sutisna, Y. Nagao, K. Wakasugi,

Y. Tongxin, H. Ochi, and T. Tsuchiya, “Assertion-based verification of indus-

trial wlan system,” in IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 982–985, May 2016.

[58] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal, FoCs – Auto-

matic Generation of Simulation Checkers from Formal Specifications, pp. 538–

542. Springer Berlin Heidelberg, 2000.

[59] M. Boule and Z. Zilic, Generating Hardware Assertion Checkers. Springer,

1st ed., 2008.

[60] M. Pellauer, M. Lis, D. Baltus, and R. Nikhil, “Synthesis of synchronous as-

sertions with guarded atomic actions,” in Proceedings ACM and IEEE Inter-

national Conference on Formal Methods and Models for Co-Design, pp. 15–24,

July 2005.

138

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[61] M. Boule and Z. Zilic, “Efficient automata-based assertion-checker synthesis of

psl properties,” in IEEE International High Level Design Validation and Test

Workshop, pp. 69–76, Nov 2006.

[62] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rulke, “Automatic generation

of complex properties for hardware designs,” in Design, Automation and Test

in Europe (DATE), pp. 545–548, March 2008.

[63] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertions with

guidance from static analysis,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 32, pp. 952–965, June 2013.

[64] A. Hekmatpour and A. Salehi, “Block-based schema-driven assertion generation

for functional verification,” in Asian Test Symposium (ATS), pp. 34–39, Dec

2005.

[65] H. F. Ko and N. Nicolici, “Automated trace signals identification and state

restoration for improving observability in post-silicon validation,” IEEE/ACM

Design, Automation & Test in Europe (DATE), pp. 1298–1303, Mar. 2008.

[66] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in post-

silicon validation,” IEEE/ACM Design, Automation & Test in Europe (DATE),

pp. 1338–1343, Apr. 2009.

[67] S. Prabhakar and M. Hsiao, “Using Non-trivial Logic Implications for Trace

Buffer-Based Silicon Debug,” in Asian Test Symposium (ATS), pp. 131–136,

IEEE Computer Society, Nov. 2009.

139

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[68] H. Shojaei and A. Davoodi, “Trace signal selection to enhance timing and logic

visibility in post-silicon validation,” in IEEE/ACM International Conference

on Computer-Aided Design, ICCAD, pp. 168–172, Nov. 2010.

[69] K. Basu and P. Mishra, “Efficient trace signal selection for post silicon validation

and debug,” IEEE International Conference on VLSI Design, pp. 352–357, Jan

2011.

[70] X. Liu and Q. Xu, “On signal selection for visibility enhancement in trace-

based post-silicon validation,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 31, pp. 1263–1274, aug 2012.

[71] M. Li and A. Davoodi, “A Hybrid Approach for Fast and Accurate Trace Sig-

nal Selection for Post-Silicon Debug,” Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 485–490, Jan. 2013.

[72] E. Hung and S. J. E. Wilton, “Scalable signal selection for post-silicon debug,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1103–

1115, June 2013.

[73] K. Basu and P. Mishra, “RATS: Restoration-aware trace signal selection for

post-silicon validation,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, pp. 605–613, Apr. 2013.

[74] K. Rahmani, P. Mishra, and S. Ray, “Scalable trace signal selection using ma-

chine learning,” in IEEE 31st International Conference on Computer Design

(ICCD), pp. 384–389, Oct. 2013.

140

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[75] M. Li and A. Davoodi, “Multi-mode trace signal selection for post-silicon

debug,” Asia and South Pacific Design Automation Conference (ASP-DAC),

pp. 640–645, Jan. 2014.

[76] K. Rahmani, P. Mishra, and S. Ray, “Efficient trace signal selection using aug-

mentation and ILP techniques,” in IEEE International Symposium on Quality

Electronic Design (ISQED), pp. 148–155, 2014.

[77] S. Ma, D. Pal, R. Jiang, S. Ray, and S. Vasudevan, “Can ’ t See the Forest for the

Trees : State Restoration ’ s Limitations in Post-silicon Trace Signal Selection,”

in IEEE/ACM International Conference on Computer-Aided Design, ICCAD,

pp. 1–8, IEEE Press, Nov. 2015.

[78] K. Iwata, A. M. Gharehbaghi, M. B. Tahoori, and M. Fujita, “Post silicon

debugging of electrical bugs using trace buffers,” in IEEE 26th Asian Test

Symposium (ATS), pp. 189–194, Nov 2017.

[79] P. Patra, “On the cusp of a validation wall,” IEEE Design Test of Computers,

vol. 24, pp. 193–196, March 2007.

[80] S.-B. Park and S. Mitra, “IFRA: Instruction footprint recording and analysis for

post-silicon bug localization in processors,” in IEEE/ACM Design Automation

Conference (DAC), pp. 373–378, June 2008.

[81] S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “BLoG: Post-Silicon Bug Local-

ization in Processors using Bug Localization Graphs,” in IEEE/ACM Design

Automation Conference (DAC), p. 368, 2010.

141

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[82] A. Veneris, “Fault diagnosis and logic debugging using boolean satisfiability,” in

4th International Workshop on Microprocessor Test and Verification, pp. 60–65,

May 2003.

[83] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE

Transactions on CAD, vol. 11, pp. 4–15, Jan 1992.

[84] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean Satisfiability Solvers and

Their Applications in Model Checking,” Proceedings of the IEEE, vol. 103,

pp. 2021–2035, Nov. 2015.

[85] A. Sülflow, G. Fey, R. Bloem, and R. Drechsler, “Using unsatisfiable cores to

debug multiple design errors,” in 18th ACM Great Lakes Symposium on VLSI

(GLSVLSI), pp. 77–82, 2008.

[86] C. S. Zhu, G. Weissenbacher, and S. Malik, “Silicon fault diagnosis using se-

quence interpolation with backbones,” in IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), pp. 348–355, IEEE Press, 2014.

[87] A. Nahir, M. Dusanapudi, S. Kapoor, K. Reick, W. Roesner, K. Schubert,

K. Sharp, and G. Wetli, “Post-silicon validation of the IBM POWER8 proces-

sor,” in IEEE/ACM Design Automation Conference (DAC), pp. 1–6, 2014.

[88] P. Taatizadeh and N. Nicolici, “Automated selection of assertions for bit-flip de-

tection during post-silicon validation,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 35, no. 12, pp. 2118–2130, 2016.

142

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[89] G. Tseytin, “On the complexity of derivation in propositional calculus.,” in

Studies in Constructive Mathematics and Mathematical Logic, Part II, Semi-

nars in Mathematics (A. Slisenko, ed.), pp. 234–259, 1968.

[90] “SAT competition 2009: Benchmark submission guidelines.” http://www.

satcompetition.org/2009/format-benchmarks2009.html, 2009-01-13.

[91] A. Biere, “Picosat essentials,” Journal on Satisfiability, Boolean Modeling and

Computation (JSAT), vol. 4, pp. 75–97, 2008.

[92] N. Een and N. Sorensson, “An extensible SAT-solver.” http://minisat.se/

downloads/MiniSat.pdf, 2003.

[93] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential

benchmark circuits,” in IEEE International Symposium on Circuits and Sys-

tems (ISCAS), pp. 1929–1934 vol.3, May 1989.

[94] “ITC99 benchmark circuits collection.” http://www.cad.polito.it/

downloads/tools/itc99.html, April 2002.

[95] H. Ko and N. Nicolici, “Algorithms for state restoration and trace-signal selec-

tion for data acquisition in silicon debug,” IEEE Transactions on CAD, vol. 28,

pp. 285–297, Feb 2009.

[96] A. Vali and N. Nicolici, “Satisfiability-Based Analysis of Failing Traces dur-

ing Post-silicon Debug,” IEEE 24th North Atlantic Test Workshop (NATW),

pp. 17–22, 2015.

143

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
http://minisat.se/downloads/MiniSat.pdf
http://minisat.se/downloads/MiniSat.pdf
http://www.cad.polito.it/ downloads/tools/itc99.html
http://www.cad.polito.it/ downloads/tools/itc99.html

Ph.D. Thesis - Amin Vali McMaster - Electrical and Computer Engineering

[97] C. Spear, SystemVerilog for Verification, Second Edition: A Guide to Learning

the Testbench Language Features. Springer Publishing Company, Incorporated,

2nd ed., 2008.

[98] M. Boule, J.-S. Chenard, and Z. Zilic, “Assertion checkers in verification, silicon

debug and in-field diagnosis,” in IEEE International Symposium on Quality

Electronic Design (ISQED), pp. 613–620, March 2007.

[99] M. Gao and K.-T. Cheng, “A case study of time-multiplexed assertion checking

for post-silicon debugging,” in IEEE International High Level Design Validation

and Test Workshop (HLDVT), pp. 90–96, June 2010.

[100] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertions with

guidance from static analysis,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 32, pp. 952–965, June 2013.

[101] P. Taatizadeh and N. Nicolici, “A methodology for automated design of em-

bedded bit-flips detectors in post-silicon validation,” in ACM/IEEE Design,

Automation Test in Europe Conference Exhibition (DATE), pp. 73–78, March

2015.

[102] P. Taatizadeh, On Using Hardware Assertion Checkers for Bit-flip Detection in

Post-Silicon Validation. PhD dissertation, McMaster University, 2017.

144

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	Design Methodology
	Behavioural Design
	Datapath Desgin
	Logic Desgin
	Physical Design
	Manufacturing

	Test Methodology
	Pre-Silicon Verification
	Post-Silicon Validation
	Manufacturing Test

	Thesis Organization

	Background and Related Works
	Why Post-Silicon Validation?
	Major Challenges
	Controllability and Observability
	Simulation and Golden Response
	Reproducibility

	Notable Solutions
	Scan-chains
	On-Chip Stimuli Generation
	Error Detection
	On-chip Trace Buffers
	On-Chip Tracing in the Presence of Electrical Bugs
	The Debug Process and the Scope of This Work

	Overview of Contributions in this Thesis
	Automatic Detection of Bit-Flips
	Trace Signal Selection
	Concurrent Trace and Assertion Selection

	Satisfiability-Based Test Platform
	Background
	The Scope of This Chapter
	Motivational Examples
	Assumptions and Nomenclature
	SAT Formulation and Its Use for Post Silicon Debug

	Methodology and Evaluation Platform
	Circuit Unrolling
	Translation
	Merging and Running the SAT Solver
	Backward Translation and Filtering
	Evaluation Platform

	Experimental Results
	The Non-Uniqueness of the Core of UNSAT

	Summary

	Trace Signal Selection
	Background
	Motivational Example
	Restoration Ratio vs Bit-flip Detectability
	Key Insight

	New Trace Signals Selection Algorithm
	Definitions
	Certainty Propagation Rules
	The Heuristic for Trace Signals Selection

	Results
	Experimental Setup
	UNSAT Rate: Bit-flip detectability
	Core of UNSAT: Size and Time Distribution
	Comparison with Restoration-based Method for Trace Signals Selection
	Assessing Different Algorithm Parameters

	Summary

	Joint Selection of Trace Signals and Assertion Checkers
	Background
	Motivation and Definitions
	Example
	General Objective
	Key Insights

	Co-Selection Algorithm
	Main Algorithm and Cost Function
	Bit-Flip Detection Probability
	Integration of Assertion Benefits

	 Results
	Experimental Setup
	Bit-flip Detection Rate versus Hardware Cost
	Different Selection Strategies
	Time Distribution of the Suspects' List
	Runtime

	Summary

	Conclusion and Future Work

