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Abstract

The accurate and reliable estimation of the State-of-Charge (SOC) and State-of-

Health (SOH) of Li-ion batteries is paramount to the safe and reliable operation of

any electrified vehicle. Not only is accuracy and reliability necessary, but these esti-

mation techniques must also be practical and intelligent since their use in real world

applications can include noisy input signals, varying ambient conditions and incom-

plete or partial sequences of measured battery data. To that end, a novel framework,

utilizing deep learning techniques, is considered whereby battery modelling and state

estimation are performed in a single unified step.

For SOC estimation, two different deep learning techniques are used with ex-

perimental data. These include a Recurrent Neural Network with Long Short-Term

Memory (LSTM-RNN) and a Deep Feedforward Neural Network (DNN); each one

possessing its own set of advantages. The LSTM-RNN achieves a Mean Absolute

Error (MAE) of 0.57% over a fixed ambient temperature and a MAE of 1.61% over

a dataset with ambient temperatures increasing from 10◦C to 25◦C. The DNN algo-

rithm, on the other hand, achieves a MAE of 1.10% over a 25◦C dataset while, at

-20◦C, a MAE of 2.17% is obtained.

A Convolutional Neural Network (CNN), which has the advantage of shared

iv



weights, is used with randomized battery usage data to map raw battery measure-

ments directly to an estimated SOH value. Using this strategy, average errors of

below 1% are obtained when using fixed reference charge profiles. To further increase

the practicality of this algorithm, the CNN is trained and validated over partial ref-

erence charge curves. SOH is estimated with a partial reference profile with the SOC

ranging from 60% to 95% and achieves a MAE of 0.81%. A smaller SOC range is

then used where the partial charge profile spans a SOC of 85% to 95% and a MAE

of 1.60% is obtained.

Finally, a fused convolutional recurrent neural network (CNN-RNN) is used to

perform combined SOC and SOH estimation over constant charge profiles. This is

performed by feeding the estimated SOH from the CNN into a LSTM-RNN, which,

in turn, estimates SOC with a MAE of less than 0.5% over the lifetime of the battery.
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Nomenclature

η Non-linearity or activation function used at output of network layer to produce

activations

λ Averaging parameter used to compose inputs for DNN when performing SOC

estimation

Ψ Array of inputs pertaining to the reference charge profile

L Loss function or loss energy of network

Ψ Vector of inputs given to a LST-RNN at predefined sampling frequency

ψ Vector of inputs given to a DNN at predefined sampling frequency

Ñ Batch length used for LSTM-RNN training, also called depth in time of the

network

Ξ Set of reference charge profiles spanning lifetime of battery cell in one ageing

study

ξ Reference charge profile used for SOH estimation

b Network layer bias
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h Hidden layer in network

SOC∗ Observable State-of-Charge computed through Coulomb counting, also re-

ferred to as ground-truth values of SOC

SOH∗ Observable State-of-Health computed through Coulomb counting, also re-

ferred to as ground-truth values of SOH

W Array of network weights

w Individual network weight

AI Artificial Intelligence

AUKF Adaptive Unscented Kalman Filter

CC Constant Current

CNN Convolutional Neural Network

CNN-RNN Fusion of Convolutional Neural Network and Recurrent Neural Network

with LSTM cell

CV Constant Voltage

DL Deep Learning

DNN Deep Feedforward Neural Network

DOD Depth of Discharge

EKF Extended Kalman Filter

EOL End of Life
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ESR Equivalent Series Resistance

ESS Energy Storage System, also referred to as Rechargeable Energy Storage Sys-

tem

EV Electric Vehicle

GA Genetic Algorithm

GPU Graphical Processing Units

HEV Hybrid Electric Vehicle

HWFET Highway Fuel Economy Cycle

ICA Incremental Capacity Analysis

ICE Internal Combustion Engine

LA92 Unified Cycle Driving Schedule

LFP Li-ion battery with LiFePO chemistry

Li-Air Lithium Air battery

Li-S Lithium Sulfur battery

LSSVM Least Square Support Vector Machine

LSTM Long Short-Term Memory cell

LSTM-RNN Recurrent Neural Network with Long Short-Term Memory

MAE Mean Absolute Error
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MAX Maximum Absolute Error

ML Machine Learning

NCA Li-ion battery with LiNiCoAlO2 chemistry

NiMH Nickel metal hydride batteries

NMC Li-ion battery with LiNiMnCo chemistry

NN Neural Network

OCV Open Circuit Voltage

OEM Original Equipment Manufacturers

PDF Probability Density Function

PHEV Plug-In Hybrid Electric Vehicle

R-RC Equivalent circuit model with internal resistance element and one RC pair

R-RC-RC Equivalent circuit model with internal resistance element and two RC pairs

RBF NN Radial Basis Function Neural Network

RMS Root Mean Squared Error

RUL Remaining Useful Life

SOC State-of-Charge, also used to denote the estimated SOC obtained by a network

SOH State-of-Health, also used to denote the estimated SOH obtained by a network

STDDEV Standard Deviation of the Error
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UAV Unmanned Aerial Vehicles

UDDS Urban Dynamometer Driving Schedule

US06 US06 Supplemental Federal Test Procedure

USABC US Advanced Battery Consortium LLC

XEV General term which includes Hybrid Electric Vehicles (HEV), Plug-in Hybrid

Electric Vehicles (PHEV) and Electric Vehicles (EV)

ZEBRA A type of Sodium Nickel battery, also referred to as molten salt battery
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1.1 Major Themes

Recently, Li-ion batteries have found themselves at the intersection of many paradigm

shifts and societal movements. These include climate change, stricter emissions regu-

lations, energy security, a growing population, most of which is concentrated in major

metropolitan areas, and an increasingly energy conscious market. These factors have

enticed a growth in the market share of electrified vehicles and have encouraged

newer technologies using Li-ion batteries, like manned and unmanned aerial vehicles,

to emerge.

1.1.1 Climate Change and Hazardous Emissions

According to the World Health Organization (WHO), air pollution is responsible for

7 million premature deaths per year worldwide. This represents one eighth of the

total mortality rate globally and is estimated to have an annual economic cost of

US$1.4 trillion in the European region alone as of 2015. Emissions from the road

transport, the residential energy and the power generation sectors are responsible for

about half of the annual premature deaths due to air pollution [1]. As a result, some

governments are taking action and proposing new regulations which would render

new petrol and gas powered vehicles illegal by 2030 or, as early as 2025 for Norway.

One notable method to mitigate these chronic issues calls for the mass adoption of not

only electrified vehicles but, also, grid storage for load-leveling. This argument is fur-

ther strengthened when considering the much higher efficiencies offered by electrified

vehicles [2; 3] and the massive cost savings offered by peak shaving through energy

storage systems [4; 5]. Automotive Original Equipment Manufacturers (OEM) are

responding to the tighter regulations and to a growing energy conscious generation
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with greener propulsion systems. Nowadays, Li-ion batteries have a growing domi-

nance in the electrochemical energy storage market as a result of their high specific

energy, good cycle life and low self-discharge rates [3]. Li-ion batteries are not only

used in electrified vehicles and grid-storage but also most portable electronic devices,

and in newer technologies like Unmanned Aerial Vehicles (UAV) and passenger drones

aimed for medium to short range distances otherwise referred to as air taxis.

1.1.2 Energy Security

In recent decades, there has been a rising concern over the security of energy supply

or more popularly referred to as energy security. The topic of energy security became

important during World War II, when the survival of a nation within the war hinged

on the supply of fuels and petroleum to their armies. Eventually, with the wide-

spread use of petroleum products, not only were military organizations dependent on

oil but whole nations became dependent on oil for transportation as motor vehicles

became ubiquitous, for power generation, heating, manufacturing, food products,

etc. Thus, nowadays, there are several connotations to energy security albeit, here,

the protection of the economy from energy shortages is discussed. These shortages

can also be the catalyst for surging energy prices due to energy scarcity which can

negatively affect a nation’s economy [6; 7]. Early on, most developed nations did not

produce sufficient oil nationally to appease the growing societal dependence on it.

The economy of those countries rich in fossil fuels became polarized towards revenues

from oil exports. This polarization, as would be seen on countless occasions, did not

promote political stability and economic growth. To mitigate these issues, it becomes

important to have a significant energy mix which includes more electrified vehicles
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and renewable energy sources integrated into the grid. Countless nations have and are

still implementing incentivized programs to encourage usage of renewable energies,

electric vehicles and biofuels [8; 9].

1.1.3 Electrified Vehicles and their Declining Cost

Electrified vehicles which include Hybrid Electric Vehicles (HEV), Plug-in Hybrid

Electric Vehicles (PHEV) and Electric Vehicles (EV) which, in general, are referred

to as XEV, have the added benefit of an electrified powertrain, offering much greater

efficiencies than its counterpart; the Internal Combustion Engine (ICE). In addition

to being more efficient, electrified powertrains are able to recapture breaking energy

that is otherwise wasted through mechanical breaks. The primary components in

an electric propulsion system are the motor/generator, the battery pack or Energy

Storage System (ESS), and the power electronics drive system. The latter ensures

the energy conversion and transfer between the electric machine and the ESS [2; 10].

Battery technology is one of the major barriers to the mass market adoption of XEV.

As such, battery technologies are being extensively researched nowadays and the

industry’s landscape is rapidly changing.

The higher cost of oil in recent history has prompted many consumers to reconsider

their opinions on XEVs since electricity is cheaper. As mentioned previously, an

electrified vehicle’s battery can be one of the costliest components in the vehicle.

Until recently, this has not allowed manufacturers to price EVs in the realm of what

is considered affordable by the mass market, while retaining a similar driving range

as conventional vehicles. Nevertheless, recently, with the rapidly declining cost of

batteries amongst other factors, major OEMs as well as new entrants like Tesla Inc.
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have been racing towards an affordable offering having sufficient range and mass-

market appeal.

1.1.4 Barriers and A Changing Market Perspective

Although XEVs offer significant benefits over their ICE counterparts, some barriers

to mass market penetration still exist. These include battery cost, range anxiety,

reliability and safety. Battery costs is one of the main reasons why the cost of EVs

has been prohibitive to mass-market penetration. However, as stated before, this

is currently changing and more affordable EV offerings are beginning to enter the

market. This inflection point can be partly attributed to the reduction in battery

costs which is falling faster than some expected. In 2015, one study [11] showed that

contrary to some estimates of the cost of batteries (about $500-$1000/kWh), the cost

for the industry as a whole and for EV manufacturers is $410/kWh and $300/kWh,

respectively. The study further states that with continued investment in large-scale

battery production facilities and in government-run incentives programs, the cost of

$200/kWh at a volume of 100,000 battery packs annually, can be achieved in the

short-term. This increasingly reduces the gap between the actual cost for batteries

and the $100/kWh cost which the US Advanced Battery Consortium (USABC) would

like to see by the year 2020 [12].

Although some early adopters of EVs might have been influenced by their envi-

ronmental impacts or the lack thereof, currently consumers are much more concerned

about the reliability and performance, e.g. driving range and cost savings [13]. One

study [14] shows that consumers were willing to pay $35 to $75, for every additional

mile of range and a premium of $6000 - $16000 over conventional petrol-powered
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vehicles, for an EV. The rapidly falling cost of batteries and increased offerings of

affordable EVs are also big factors in the changing perspectives of the public vis-a-vis

EVs.

1.2 State-of-Charge and State-of-Health

Given the amount of energy they can hold, safe and reliable operation of Li-ion bat-

teries needs to be paramount. To this end, an Energy Management System (EMS) is

used to maintain the safe and reliable operation of the battery. This includes balanc-

ing of the cells, protection to ensure operation within safe limits of the battery, and

estimation of the State-of-Charge (SOC) and State-of-Health (SOH) of the battery.

A reliable state-of-charge estimation is required to ensure an accurate gauge of

a vehicle’s remaining driving range as well as proper balancing of the battery pack

[3; 15; 16]. The SOC is analogous to the fuel gauge of petrol-powered vehicles. SOC

is defined as the remaining charge within the battery and is defined as the ratio of

the residual capacity of the battery to its nominal capacity [3]. Figure 1.1 shows a

diagram of the state-of-charge of a battery cell as it is discharged as well as a typical

plot of the cell voltage as a function of SOC. Due to unpredictable driving habits and

the repeated acceleration and deceleration of a vehicle, the battery can be exposed

to highly dynamic load demands. As a result of these dynamic load demands, SOC

estimation is a tedious task. SOC is not an observable quantity, therefore its accurate

estimation becomes essential for reliable and safe operation of the vehicle[17; 15].

The relationship between the battery’s observable signals to the estimated SOC

is a highly non-linear one, varying with temperature and discharge/charge currents

6



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

0100 50

SOC (%)

3.2

3.4

3.6

3.8

4.0

V
ol
ta
ge
(V
)

Discharging

Figure 1.1: Diagram describing the State-of-Charge (SOC), starting from a fully
charged cell where SOC=100% to an empty cell where SOC=0%.
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[18; 19]. Traditionally, the two main estimation methods have used open circuit volt-

age based techniques and coulomb counting [17; 20]. These methods are known to

have their limitations and have been generally displaced by more sophisticated meth-

ods. Typically, these use an (adaptive) cell model as well as voltage, and current mea-

surements to issue an estimate. They include Luenberger observer [17; 21], adaptive

observer [17; 22], sliding mode observer [17; 23; 24], and Kalman filters [25; 26; 27].

These techniques often require tedious model identification to adequately represent

the non-linear behavior of a battery and they tend to contain many partial differ-

ential equations, which can be computationally expensive. In addition, they often

require large numbers of parameters to perform SOC estimation at varying ambient

conditions.

Like most things, Li-ion batteries age with time; a process underpinned by degra-

dation of electrode materials, loss of lithium in active carbon, lithium metal plating

and chemical decomposition, to name of a few. If aging is not correctly and accu-

rately monitored, premature failure can occur which, typically for Li-ion batteries, are

catastrophic in nature. Some recent reported incidents with Li-ion battery powered

devices are examples of such premature failures. Therefore, accurate aging estimation

methodologies are dire to the reliable and safe operation of these batteries.

Battery aging is typically determined through a State of Health (SOH) estimation

which has a value ranging between 0 and 100%. It is a figure of merit that does not

correspond to a physical entity and is given in per unit. A SOH of 100% represents

the battery health at the start of a battery’s lifetime where capacity is at it’s highest

and 0% would define the SOH observed at the end of the battery’s lifetime, as shown

in Figure 1.2. In some industries like the automotive industry, the standard for end of
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Figure 1.2: Diagram showing battery aging and how this is defined by the State-of-
Health (SOH). (Top) Plots of battery cell voltage as a function of available capacity
in Ah. (Bottom) When the battery ages and SOH declines, the usable capacity in a
battery cell also diminishes.
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life of a Li-ion battery is when an SOH of 80% is reached. SOH is not an observable

quantity and is a highly non-linear entity, dependent, in large part, on the volatility of

loading profiles, ambient temperature, Depth of Discharge (DOD) and self-discharge,

to name a few [28]. Therefore, an accurate estimate of SOH is as tedious to estimate

as it is critical to the safe operation of the battery. If a pack reaches the lowest

SOH, which can be zero or 80% in the case of the automotive industry, the pack

needs to be replaced to ensure a minimum capability, e.g. the range of an EV, and

safety. However, a pack with the same characteristics can be perfectly suitable for a

less demanding application, e.g. as an energy storage element in a smart home, and

batteries can be reused in what is known as second-life operation [29].

SOH can be determined with respect to capacity or internal resistance. Both

versions of the value are calculated while taking one or more battery parameters

into account [30; 17; 31; 32]. Most methods estimating capacity-based SOH will

utilize capacity as the main parameter, however some will also consider voltage, self-

discharge and/or temperature to more accurately capture the energy capability.

1.3 Deep Learning Models in the Context of SOC

and SOH

Since, the SOC and SOH of the battery are not directly observable quantities, meth-

ods are consistently created to achieve further accuracy and dependability of the

estimation technique. Not only is accuracy and reliability necessary, but these es-

timation techniques should also be practical and intelligent since their use in real

world applications can include noisy input signals, varying ambient conditions and
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incomplete or partial sequences of measured battery data which, typically are not

encountered in laboratory settings. Reliable and accurate SOC and SOH estimation

hinges on reliable and high fidelity battery models as well as estimation strategies

with good performance. In this research work, a novel framework, utilizing deep

learning techniques, is considered whereby battery modeling and estimation are per-

formed in a single unified step. Furthermore, it is shown that the parametrization

process becomes automated with the use of these learning algorithms removing the

need to manually handcraft and parametrize battery models.

Using data-driven and neural computation-based techniques offers a few advan-

tages over more traditional approaches. They have flexible expressibility due to their

non-parametric nature; where the amount of network weights and layers can be nat-

urally adjusted to meet the complexity of the modelled system. Deeper networks are

also shown to be more efficient; being able to retain the same expressibility as the

shallower networks but with a smaller network size or, in other words, with fewer

weights. Since, most works which look at SOC and SOH estimation, typically rely

on measurements obtained in isolated and controlled environments, this work puts

these deep learning estimation techniques through a complete arsenal of validation

test cases, most of which are aimed to mimic real world scenarios. These include

additional noise, offsets and gains to battery measurements which, interestingly, not

only robustifies the algorithms but also improves their accuracy through a process

called jittering. Universality is further increased by training and testing the algo-

rithms through various ambient temperatures and, in the case of SOH estimation,

different ranges of reference profiles.
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Furthermore, looking ahead to the future, using data-driven and neural computation-

based algorithms for SOC and SOH estimation as well as other battery state estima-

tion can be very beneficial for increasingly autonomous vehicles. In a world where

vehicles are increasingly automated, and streams of data are being collected on ev-

ery subsystem of the vehicle including the battery, data-driven approaches, like deep

learning, used to perform SOC and SOH estimation become very important when

optimizing routes based on the vehicle’s energy consumption in various terrains and

ambient conditions.

1.4 Thesis Structure

Implementing deep learning techniques for SOC and SOH estimation on Li-ion bat-

teries is attempted for what is seemingly the first time in this research work. Some

attempts have been made in the past using traditional machine learning models but

have had little success. Where the networks failed to deliver sufficient accuracy, filters

and inference systems were used to compensate and achieve better results. Therefore,

given its unlikeness in the field, many topics discussed are rooted in machine learning

and can be unfamiliar to those involved with battery research. As a result, this thesis

is compiled with the intention of also acting as a road-map for first-time users of

the deep learning methods applied for SOC and SOH estimation. It is important to

note that there are no claims made in this thesis on the creation of the deep learning

techniques used in this research work, however, their application on State-of-Charge

and State-of-Health estimation for batteries is novel and useful for anyone involved

in battery research.

In Chapter 2, a short introduction is given for rechargeable batteries and a review
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is conducted on modern battery cell technologies as well as their applications. Further

details are provided on the progress of advanced lithium-based battery chemistries.

A rigorous derivation of the theory behind all the techniques utilized in this research

work is given in Chapter 3 and a detailed account of how this theory is particularly

beneficial to SOC and SOH estimation is conducted in Chapter 4. For SOC estima-

tion, this thesis, proposes two different deep learning algorithms; a Recurrent Neu-

ral Network with Long Short-Term Memory (LSTM-RNN) and a Deep Feedforward

Neural Network (DNN). The latter both have good estimation accuracy nevertheless,

there are trade-offs between both approaches in terms of requirements of input data

and ease of implementation. The results from both of these techniques are presented

in Chapter 5 and Chapter 6, respectively. The results from the Convolutional Neu-

ral Network (CNN) used to perform SOH estimation are presented and discussed in

Chapter 7. Two sets of results are presented; one for fixed reference charge profiles

and the other for partial reference curves. To extend this latter study further, Chap-

ter 7 includes combined SOH and SOC estimation results using a dual CNN and

LSTM-RNN fusion network. Finally, a concluding statement is given in Chapter 8

and a brief discussion is provided on the future works which can be performed in this

relatively new research area.
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2.1 A Brief History of the Battery

The term battery was first coined by Benjamin Franklin in 1760, when he created an

array of glass jars which can store electrical charge. The term battery was inspired

by a military term which describes multiple weapons operating together. It wasn’t

until later, in 1799, that Allesandro Volta was able to store charge in what is called

the Volta pile which used two dissimilar metals separated by a brine-soaked cloth.

Although the Volta pile was a major discovery which interested even the likes of

Napoleon Bonapart, it was not rechargeable. In 1859, a French physicist by the name

of Gaston Planté, invented the lead-acid battery which was the first rechargeable

electric battery. Although electric cars were created earlier using non-rechargeable

batteries, it wasn’t till Planté’s invention and Faure’s improvements to the invention

that companies started building electric cars at greater numbers in the mid to late

1800’.

2.2 Modern Cell Technologies and their Applica-

tions

Nowadays, most research efforts in battery technology is geared towards increasing

specific energy and reducing cost while maintaining a high cycle life. The U.S. Ad-

vanced Battery Consortium (USABC) has set specific goals to be reached by 2020 for

pure EV battery packs. These include a specific energy, at cell level, of 350 Wh/kg,

a cost of $100/kWh at production volumes of 100,000 cells and a cycle life of 1000

cycles.
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Figure 2.1: Spider plots of prevalent battery technologies

16



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

T
ab

le
2.

1:
E

x
is

ti
n
g

b
at

te
ry

an
d

u
lt

ra
ca

p
ac

it
or

sp
ec

ifi
ca

ti
on

s

S
p

ec
ifi

ca
ti

on
s

A
u
gm

en
te

d
U

S
A

B
C

L
ea

d
A

ci
d

N
ic

ke
l

M
et

al
H

y
d
ri

d
e

Z
E

B
R

A
U

lt
ra

ca
p
ac

it
or

S
p

ec
ifi

c
P

ow
er

(W
/K

g)
70

0
75

-
15

0
[3

3]
80

-
40

0
[3

3]
15

0
-

20
0

[3
4;

35
]

50
0

-
10

0,
00

0
[3

6;
37

]

E
n
er

gy
D

en
si

ty
(W

h
/L

)
75

0
50

-
80

[3
6]

60
-

15
0

[3
6]

13
5

-
18

0
[3

4;
36

]
10

-
30

[3
6]

S
p

ec
ifi

c
E

n
er

gy
(W

h
/K

g)
35

0
30

-
50

[3
6;

37
]

45
-

80
[3

8]
10

0
-

12
0

[3
4;

36
]

2.
5

-
15

[3
6]

S
el

f-
D

is
ch

ar
ge

(%
/d

ay
)

0.
03

0.
29

-
0.

57
[3

3]
1

-
1.

43
[3

9;
33

]
15

[3
6]

20
-

40
[3

6]

C
os

t
($

/k
W

h
)

10
0

10
0-

15
0

[4
0]

15
0

-
25

0
[2

;
38

]
10

0
-

20
0

[3
6]

30
0

-
20

00
[3

6]
C

y
cl

e
L

if
e

(c
y
cl

es
)

10
00

50
0

-
10

00
[3

6]
12

00
-

20
00

[4
1]

>
25

00
[3

6;
37

]
>

10
0,

00
0

[3
6;

37
]

T
h
er

m
al

R
u
n
aw

ay
(o

C
)

22
0

a
60

-
10

0
[4

2;
43

]
11

0
-

17
5

[3
7]

-
b

-
c

[4
4]

a
A
d
d
ed

to
U
S
A
B
C

go
al
s

b
Z
E
B
R
A

b
at
te
ri
es

op
er
at
e
at

te
m
p
er
at
u
re
s
la
rg
er

th
a
n
2
7
0

◦ C
c
C
el
l
v
en
te
d
b
ef
or
e
th
er
m
al

ru
n
aw

ay
on

se
t
te
m
p
er
a
tu
re

w
a
s
re
a
ch
ed

17



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

T
ab

le
2.

2:
L

i-
io

n
b
at

te
ry

sp
ec

ifi
ca

ti
on

s

S
p

ec
ifi

ca
ti

on
s

A
u
gm

en
te

d
U

S
A

B
C

L
iF

eP
O

4
L

iN
iM

n
C

o
L

iN
iC

oA
lO

2
L

i-
S

S
p

ec
ifi

c
P

ow
er

(W
/K

g)
70

0
25

0
-

16
00

[3
3]

50
0

-
24

00
[3

3]
70

0
-

80
0

[3
3;

45
]

15
00

-
30

00
[4

6]

E
n
er

gy
D

en
si

ty
(W

h
/L

)
75

0
25

0
-

50
0

[3
6;

47
]

23
0

-
55

0
[3

6;
47

]
50

0
-

67
0

[3
6;

48
]

15
00

-
26

00
[3

6;
48

]

S
p

ec
ifi

c
E

n
er

gy
(W

h
/K

g)
35

0
80

-
14

0
[4

5;
33

]
12

6
-

21
0

[4
5;

47
]

14
5

-
24

0
[4

9;
48

]
35

0
-

60
0

[4
6;

47
]

S
el

f-
D

is
ch

ar
ge

(%
/d

ay
)

0.
03

0.
1

-
1.

29
[3

6;
33

]
0.

1
-

0.
71

[3
6;

33
]

0.
1

-
0.

57
[3

6;
33

]
0.

02
5

-
32

[5
0]

C
os

t
($

/k
W

h
)

10
0

30
0

-
60

0
[1

1]
30

0
-

60
0

[1
1]

30
0

-
60

0
[1

1]
>

13
0

a
[4

8]
C

y
cl

e
L

if
e

(c
y
cl

es
)

10
00

10
00

-
20

00
[4

5]
12

00
-

19
50

[4
5;

51
]

10
00

-
12

80
[4

5;
49

]
80

-
11

0
[4

5;
51

]

T
h
er

m
al

R
u
n
aw

ay
(o

C
)

22
0

b
19

5
[5

2]
16

8
[5

2]
13

6
-

16
0

[5
3]

12
5

-
20

0
[5

4]

a
E
st
im

at
io
n
b
as
ed

on
ci
te
d
w
or
k

b
A
d
d
ed

to
U
S
A
B
C

go
al
s

18



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

In this section, modern cell technologies are considered and compared. Each cell

chemistry is evaluated on 7 different metrics and compared to the USABC 2020 goals,

shown in Figure 2.1. Safety as a performance metric is not particularly outlined in the

USABC goals however this is a critical metric in light of the recent incidents associated

with batteries. Therefore, the USABC goals have been augmented to include the

onset temperature of thermal runaway for each cell technology as an indicator of

safety [55; 53; 52; 42; 56; 57; 58; 59]. A score of 0% to 100% for each metric is given

to the cell technology depending on how well it meets the augmented USABC goals.

The metrics used are energy density (Wh/L), specific energy (Wh/Kg), specific power

(W/Kg), self-discharge (% of initial cell capacity per day), cost ($/kWh), cycle life

(cycles) and safety. A summary of each cell chemistry’s performance and specifications

is given in Table 2.1 and in Table 2.2. The data outlined in these two tables which are

also illustrated in Figure 2.1, were obtained after an extensive investigation of existing

battery/UC technology literature. Particular attention was mostly paid to literature

which obtained experimental results for each one of the seven metrics considered in

this section. For each metric of each battery/UC technology, there typically exists

more than one experimental value reported in literature. The maximum and minimum

values for each one of these metrics for each cell technology are outlined in Table 2.1

and in Table 2.2. These minimum and maximum values are used to generate the

green and red plots, shown in Figure 2.1, to portray a technology’s best and worst

performance, respectively.
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2.2.1 Nickel Metal Hydride Batteries

Nickel metal hydride (NiMH) batteries, whose performance data is shown in Fig-

ure 2.1b) and in Table 2.1, have been used in HEVs for 14 years. Prominent cell

manufacturers of NiMH include PEVE and Sanyo Electric (Panasonic). The tech-

nology has been well developed and has shown durability in vehicles such as the

NiMH RAV4 EV which has been in operation for over 10 years [60]. Electrochemi-

cally, the negative electrode is hydrogen that is absorbed/released in an intermetallic

compound. The positive electrode is composed of nickel metal and the electrolyte

is typically an aqueous solution containing potassium hydroxide [61]. Commercially

available cells are manufactured in both cylindrical and prismatic hard case variants

and span a voltage of 1.2-1.35 V [61]. Coulombic efficiency is about 10% less then that

of lead-acid batteries [61], however NiMH power/energy capabilities are far greater;

typically factors of two to three times the power/energy density of lead-acid. NiMH

technology’s shortcomings lie in their significantly higher self-discharge rate [61] which

does not allow them to be ideal candidates for energy-oriented applications such as

PHEVs and EVs. Recent advances in NiMH include the usage of bi-polar cell designs

to achieve higher power capabilities [62].

2.2.2 ZEBRA Batteries

The origins of the Sodium Nickel battery, also called the ZEBRA battery, are traced

back to South Africa, where the first patent was awarded for this technology in 1978

[63]. In 1984, the first electric vehicle to be powered by a ZEBRA battery was

driven in Derby, UK. The technology has been in development since then and has

matured. Commercially available ZEBRA batteries, whose performance data is shown
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in Figure 2.1c), are based on sodium nickel chloride (Na-Ni-Cl) electrochemistry where

sodium is the negative electrode and nickel chloride is the positive electrode. ZEBRA

batteries operate at a temperature of 270◦C to 350◦C [64] since sodium is found in its

molten state at these temperatures. As a result these batteries are more commonly

referred to as ”molten salt” batteries. The cells are manufactured in an upright

rectangular box format. Special pack design and thermal considerations are needed to

maintain the high operating temperature. As a result the energy required to maintain

operating temperatures result in a self-discharge. Some advantages of this technology

include a relatively high specific energy of 90-120 Wh/kg [34; 36] shown in Table 2.1,

their insensitivity to ambient temperature and fault tolerance. The latter is due to

the cells having a low resistance short-circuit state when cell damage occurs, allowing

continuous operation during cell failures [34; 63]. This makes them operationally

safe and good candidates in harsher climates. In addition, they have a near 100%

Coulombic efficiency [65; 63] and a cycle life measured to be over 2500 cycles [63; 37].

These batteries have better energy density and specific energy than NiMH and their

power capabilities and pack cost are less. However, ZEBRA batteries loose charge to

maintain the elevated internal temperature of the battery, which maintains the molten

state of the salt. This effect can account for a loss of about 15% [36] of its capacity

per day. Applications which have employed ZEBRA batteries include European EVs

such as Think EV, Iveco Electric Daily and Modec EV vans.

2.2.3 Li-ion Batteries

Battery technology has come a long way in the last few decades. Li-ion battery tech-

nology powers most mobile applications; from smartphones and laptops to, nowadays,
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energy storage systems for electric drive vehicles and smart-grid applications. In the

case of XEVs, Li-ion batteries are energy dense and therefore allow the vehicle to have

a longer electric-only driving range however they typically do not have the specific

power to provide or accept large power spikes resulting from the dynamic power pro-

file of a vehicle. During a regenerative braking scenario, Li-ion batteries are limited

in terms of the power levels which they can handle therefore a portion of the regener-

ated energy can be dissipated through the mechanical brakes. Under highly dynamic

power profiles, the battery of a XEV can be greatly overstressed which negatively

affects the longevity of its lifespan. Highly dynamic load profiles imposed on the

battery pack induces degradation at the cell level which leads to increased internal

resistance. Capacity fade is also a consequence of this phenomenon which most often

results in premature cell End of Life (EOL) or even premature failure [66].

There are various materials used in the construction of Li-ion cell electrodes. The

cathode materials are usually oxide variants of lithium metal amalgams which usually

contain either manganese (LMO), cobalt (LCO), nickel (LNO), iron-phosphate (LFP),

or mixtures thereof such as LiNiMnCo (NMC) and LiNiCoAlO2 (NCA); containing an

aluminum blend [67]. Anode materials are typically graphite, although hard carbon,

silicon-carbon compounds, lithium titanate (LTO), tin or cobalt alloys and silicon-

carbon blends have also been used in consumer electronics. In all varieties, lithium

ions transport back and forth between the electrodes and transfer electrons in an

intercalation based reaction instead of a traditional molecule-to-molecule chemical

reaction. The benefits of Li-ion technology is higher cycle life [45; 49], high Coulombic

efficiency (up to 98%) [67], and low self-discharge [33; 36]. A wide variety of electrolyte

materials are also possible from solid-based to liquid-based, usually of the organic
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non-aqueous form. The usage of lightweight materials and high voltage potential of

lithium-ion electron transfer give rise to high power/energy densities and some of the

highest electrochemical cell nominal voltages, e.g. 3.2-3.8V [62; 68]. The LiFePO

(LFP) variant, whose spider plot is shown in Figure 2.1d), is considered to be among

the safest Li-ion cell chemistries due to it’s higher thermal runaway temperature [67].

Meanwhile, NMC and NCA cells are dominating the EV market nowadays given their

stronger power/energy performance when compared to other technologies, as can be

observed in Figure 2.1e)f) and Table 2.2. As a result, companies such as Panasonic,

Tesla, LG Chem and Samsung SDI are heavily investing in these two cell chemistries.

Nowadays, Li-ion chemistries are being extensively researched and developed to

significantly increase energy and power capabilities as well as operating voltage. For

example, improvements in NMC cathodes have shown an increase in operating volt-

age from 4.13 V to 4.3 V [69]. In addition, operating voltages of up to 4.7-4.8 V

have been observed in lithium vanadium phosphate (LVP) cathodes which have been

integrated into the Subaru 64e prototype [70]. Although, some members of the re-

search community are focusing on incremental improvements in conventional Li-ion

chemistries, many others are betting on a leap in technology embodied by the next

generation Li-based battery cells that have the capability to significantly outperform

conventional Li-ion cells.

2.2.4 Advances in Li-based Battery Technologies

Conventional Li-ion battery technology has a theoretical specific energy of 387 Wh/kg

[71; 72]. Commercial cells manufactured nowadays are approaching a specific energy

of 240 Wh/kg, [68] thus current Li-ion battery technology can be reaching its limits.
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If mass marketed EVs are to ever reach a driving range of over 500 km per charge,

the dawn of a new age in commercial battery technology must come about.

Li-Air (Li2O2) and Li-S chemistries have been gaining a great deal of interest

from the research community primarily due to their very high theoretical specific

energy of 3582 Wh/kg and 2567 Wh/kg, respectively [72; 73]. In addition, Li-Air

and Li-S cathodes are composed from abundantly available materials such as O2 and

elemental sulfur, respectively, which would render these cells cheaper to manufacturer.

Both of these battery technologies possess the same metallic Lithium anode where

Li is oxidized when a load is observed in the external circuit. Lithium ions then

travel across the electrolyte to reduce oxygen or elemental sulfur in the cathode of

Li-Air and Li-S cells, respectively. Much of the increased theoretical energy density

of these batteries is a consequence of its pure metallic Lithium anode which can hold

more charge than lithiated graphite anodes per unit mass found in traditional Li-ion

batteries [72; 74]. Furthermore, the cathode in readily available Li-ion batteries such

as the cathode in the LiCoO2 cells store less lithium than Li2O2 or Li2S cathodes

[72; 74].

In Li-Air cells, Li ions react with O−2
2 which is reduced from O2 in surrounding

air. Initially, unwanted discharge products form due to Li ions reacting with other

molecules within air such as CO2. As a result, Li-Air cells are wrapped with various

types of membranes to increase their permeability to O2. A key and important factor

inhibiting commercialization of these cells is electrolyte degradation giving rise to poor

lithium cycling efficiencies and capacity fading [75; 76; 72; 74]. Currently, research on

Li-Air cells shows as much as 50% capacity fade after only 20 discharge cycles [72].

Similarly, Li-S cells suffer from poor sulfur cycling efficiencies which lead to fast
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capacity fading [46; 72]. In addition, sulfur is a good insulator thus leading to poor

electrode kinetics and limited discharge rates [72; 74; 77]. Currently, Li-S prototype

cells experience as much as 50% capacity fade after 50 discharge cycles [72]. This and

other performance specifications of Li-S are shown in Figure 2.1g) and in Table 2.2.

Sion Power is one of a few privately held companies which is developing this technol-

ogy. They currently claim having developed Li-S cells with a specific energy of 350

Wh/kg and predict that this value will increase to 600 Wh/kg in the future [78].

Some advances have been made recently to accelerate the advent of Li-Air and

Li-S batteries. Lately, these studies have focused primarily on replacing traditional

Carbon-S cathodes with Graphene-S cathodes. Graphene has a high electrical con-

ductivity and has a large surface area which can lead to improved cycle life [79; 71;

80; 81; 82; 83]. Using Graphene, a capacity fade of under 30% after 100 cycles is

being reported by some studies [71]. Recently, silicon is also being considered as an

alternative to graphite-based anode materials to address the issue of capacity fading

in Li-based battery technology [84; 85; 86; 87]. One study reported a capacity fade

of only 3% after 1000 cycles by constructing the electrode from pomegranate-shaped

silicon-carbon structures [87].

2.3 Energy Management Systems for Electrified

Vehicles

An energy management system (EMS) is a system for protection, estimation, and

control of a battery, ultracapacitor, or hybrid ESS to ensure safe high-performance

operation and a long lifetime [88; 89]. ESS consist of multiple cells that are connected
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in series and/or in parallel. Cells are connected in series to obtain a rated voltage

of the pack. Parallel connections increase the rated capacity of a pack such that

the required amount of charge, i.e. energy can be stored. Also, adding parallel cells

increases the rated current, i.e. power, of a pack.

Large packs for XEV consist of hundreds or thousands of cells. To simplify the

arrangement, packs are divided into modules [90]. Modules deal with the EMS func-

tionality on a cell level and provide abstraction for a supervisory control. Communi-

cations are typically implemented using a fieldbus system, e.g. CAN for automotive.

2.3.1 Li-ion Battery Protection

ESS store significant amounts of energy and require passive and active safety pre-

cautions to prevent an uncontrolled release. Although electromagnetically driven

contactors are used as a form of last line of protection at the pack level, passive

and active safety mechanisms within the pack are used to ensure the continued safe

operation of the battery. Passive safety mechanisms are used to prevent worst case

scenarios in case of electrical faults, high temperature, or high internal pressure [91].

Each cell is typically protected against overcurrents using positive temperature coef-

ficient resettable fuses and short-circuits using bi-metallic circuit breakers [90]. Most

battery cells also feature overpressure release valves. Modules are designed consid-

ering the expected physical abuse (vibration, impact, etc.), and thermal isolation of

the cells e.g. to prevent the progression of a thermal runaway [91].

Energy management systems are used to actively protect ESS. Battery and ul-

tracapacitor cells are designed to operate in a specified voltage and current range.

Energy storage cells operate typically in the range vmin = 2.5V to vmax = 4.3V for
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Li-Ion batteries [68]; up to vmax = 2.7V for electrostatic double-layer capacitors [92];

and vmin = 2.2V to vmax = 4V for hybrid ultracapacitors [93]. Cells are designed to

handle a rated current but the minimum and maximum current depends on tempera-

ture. Electrostatic cells need to be derated when they find themselves above a certain

temperature. The temperature dependence of electrochemical cells is nonlinear e.g.

Li-Ion cells cannot be charged below a certain temperature.

Safe operation challenges arise when connecting cells in series (and parallel) to

form a pack. Cells do not charge and discharge equally due to variations in intrinsic

cell specifications like internal impedance and self-discharge rate. These variations

are caused by manufacturing tolerances, cell degradation and temperature variations

across a pack [94]. The EMS has to monitor each cell individually. State-of-charge

and state-of-health estimation is also necessary to monitor the amount of charge in

the battery and its degradation accurately. Each cell has to be operated strictly

within its operation limits to avoid gradually damaging some of the cells. Operation

of a battery pack without protecting each cell corresponds to a nearly exponential

reduction of the battery life as the string length increases [95; 96]. In contrast to

passive protections, fine-grained safety mechanisms can be implemented in the EMS,

e.g. taking temperature-dependent current limits into account or communicate with

chargers and loads to adjust the operation.

2.3.2 Battery Modeling

The work in this thesis targets a new way to perform battery modeling and state

estimation in a single unified step. Therefore, it becomes important to understand

what underlying non-linear systems the deep learning algorithms are trying to model
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Figure 2.2: Overview of Li-ion battery cell operation. Porous separator divides the
positive electrode from the negative one and is permeable to Li-ions but impermeable
to electrons.

or express in order to achieve SOC and SOH estimation.

A battery cell, shown in Figure 2.2, is composed of an anode and a cathode

immersed in an electrolyte and separated by a porous membrane called a separator.

An oxidation reaction of the following type occurs at the anode

Ax+ − ne→A(x+n)+ (2.1)

Each oxidation reaction occurring between the electrolyte and the anode transfers ne

electrons from the electrolyte phase to the anode phase giving the anode its negative

charge. In order to have charge flowing in the external circuit, connecting the anode

to the cathode, electro-neutrality must be established. Electro-neutrality requires a

second reducing reaction to occur at the cathode, where electrons are transferred in

the opposite direction; from the cathode phase to the electrolyte phase. The reducing

reaction has the following form
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C(x+m)+ +me→Cx+ (2.2)

When the external circuit switch is closed, negative charge accumulates on the anode

while positive charge is collected on the cathode. If a standard voltmeter with infinite

resistance is used to measure the voltage across the two electrodes, the Open Circuit

Voltage (OCV) would be measured. The OCV is a measure of the energy available to

drive charge in the external circuit [97]. In the electrolyte phase, charge is transported

form one electrode to another since the ions can freely move within it.

Accurate SOC estimation requires cell models, e.g. lumped parameter models and

electrochemical models [98; 99]. Each model relies on experimental data to render

accurate representations [2; 100; 101; 102].

Lumped Parameter Models

A simple type of model which has low computation overhead is the lumped parameter

model [103; 30]. Linear and nonlinear parameters can be added to these models

for higher accuracy or to model specific behavior [104; 105]. These typically do

not contain parameters which are representative of any physical phenomena but can

nevertheless compute the battery terminal voltage for certain charge/discharge rates.

This type of model can be a combination of other simpler models like the Shepherd

model, Unnewehr model and the Nerst model, which is given by

yk = K0 −Rik −
K1

zk
−K2zk +K3ln(zk) +K4ln(1− zk)

zk+1 = zk −
(
ηiδt

C

)
ik

(2.3)
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Figure 2.3: (a) Equivalent circuit battery model, where R0 is the Equivalent Series
Resistance (ESR) and the capacitor resistor pair C1 and R1 expresses some of the
transient response. (b) Electro-chemical intercalation model of a Li-ion battery cell.
These are often referred to as full order or reduced order particle models.
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where yk is the battery terminal voltage, Ri is the internal resistance, K1 through

K4 are parameters used to fit the model, zk is the SOC, η is the coulombic efficiency

and C is the capacity of the cell [106]. Lumped parameter models have ease of

implementation however they can fall short of sufficient representational accuracy

when faced with variable ambient conditions and noisy real world measurements.

Equivalent Circuit Models

Equivalent circuit models or Thevenin models are loosely based on the underlying

electrochemical process of batteries. Figure 2.3(a) shows an example of an equivalent

circuit model. These typically are composed of a voltage source representing OCV

which is connected to a series resistor and one or many RC pairs. The resistance repre-

sents the equivalent series resistance and the RC pairs express the various predominant

time-constant inherent in the underlying diffusive processes. Although, some argue

that these diffusive phenomena have a continuous spectrum of time-constants ranging

from seconds to hours [107; 108] and that one or a few RC pairs are insufficient when

trying to capture the full spectrum. Although, this might be only necessary for appli-

cations requiring high fidelity models. Solving the circuit equations of Figure 2.3(a),

the terminal voltage of the battery cell is represented as follows;

VT (t)− VOC(t) = IT (t)
[
Ro +R1

(
1− e−t/τ

)]
(2.4)

and, similarly a second order equivalent circuit battery model is given by;

VT (t)− VOC(t) = IT (t)
[
Ro +R1

(
1− e−t/τ

)
+R2

(
1− e−t/τ2

)]
(2.5)

These models are widely used for battery modeling as a result of their simplicity,
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Figure 2.4: OCV as a function of SOC for LG Chem cell
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ease of implementation and model transparency. To parameterize these circuit mod-

els, pulse tests, like the ones shown in Figure 2.4, are typically performed at every

5-10% SOC. A relaxation time of a few hours is needed between tests in order to al-

low the battery to reach equilibrium. Therefore, when performed for various ambient

temperatures, this test can consume many hours or days. In addition, to allow the

model to map the OCV to the state-of-charge, an OCV-SOC relationship, like the

one shown in Figure 2.5, needs to be determined. To ensure that the relationship

is properly determined, this latter test is required to the be performed at C-rates of

C/20 or below. This requires an additional 20-50 hours depending on how low of a

C-rate is used.

For tasks such as SOC and SOH estimation in varying ambient conditions, these

models will require numerous look-up tables in order to continuously update their

parameters. However, as mentioned above, for applications requiring further repre-

sentational power, there are better options like the electrochemical models, discussed

in the next section.

Electrochemical Models

Electrochemical models, which try to express the diffusive processes in batteries, offer

higher fidelity than lumped parameter or equivalent circuit based models however they

tend to be much more computationally expensive. The latter ensues as a result of the

extensive amount of parameter fitting involved in electrochemical models as opposed

to lumped parameter and equivalent circuit models.

Diffusion describes the movement of chemical species as a result of concentration

differences. This usually continues to occur until the concentration gradient goes to
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zero. On an atomic level, diffusion defines the random walks and collisions undergone

by ions with a kinetic energy kBT , where kB is Boltzmann’s constant (1.3806 × 10−23

J K−1). As a result, regions of high concentrations will intermingle with regions

of lower concentrations and after enough time has elapsed a uniform distribution

of concentration can be measured within the electrolyte. A current resulting from

diffusion in the electrolyte is created by a concentration gradient. Fick’s Law tells

us that the constant of proportionality between the current and the concentration

gradient is the diffusivity coefficient in the electrolyte, De [109; 110]. In a Li-ion cell,

this is given by;

∂ce(x, t)

∂t
=

∂

∂x

(
De

∂ce(x, t)

∂x

)
+

1

Fεe

∂t0ie(x, t)

∂x
(2.6)

where εe is the volume of the electrolyte and t0 is the transference constant. In the

solid phase, diffusion is the predominant phenomenon, thus, Li-ion mass transfer is

described by the following function written in spherical coordinates;

∂cs(x, r, t)

∂t
=

1

r2
∂

∂r

(
Dsr

2∂cs(x, r, t)

∂r

)
(2.7)

Although diffusivity is a dominant phenomenon in a Li-ion battery, there are other

phenomenons which are often ignored in electrochemical battery modeling. These

can include migration which occurs as a result of a potential gradient and convection

which is a consequence of the general bulk electrolyte flow. In addition, as mentioned

previously, electrochemical models require a slew of parameters and, often, many of

these parameters like the diffusion coefficient are proprietary in nature which can be

a major hindrance to anyone who does not have access to proprietary information.
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2.3.3 State-of-Charge Estimation

Accurate and reliable battery models are essential for SOC and SOH estimation. A

modern EMS estimates the SOC of each cell or each module of cells in the pack [17;

15]. The SOC is mapped onto the open circuit voltage (OCV) [111] and, in general, is

a nonlinear function, varying with age and temperature [30; 18; 98]. OCV based SOC

estimation measures the terminal voltage after a cell has rested for minutes or hours

(dependent on chemistry) to attain electrochemical equilibrium and reconstructs SOC

with lookup tables. An example of OCV-SOC profiles taken from data found in the

NASA prognostics repository [112], is shown in Figure 2.5 for an LG Chem cell

discharged at C/50. The main limitations of this approach are that it cannot be used

during operation; the OCV-SOC characteristic is subject to changes when a cell ages;

and some battery chemistries (e.g. Li-ion) have flat voltage profiles for intermediate

charge levels that yields large uncertainties in SOC estimation. The conceptually

opposing approach is coulomb counting [30; 17; 113; 114; 115; 20; 116]. This method

integrates the current flowing into or out of each battery cell. For chemistries with

low self-discharge rates such as Li-ion, this method can accurately determine small

changes in the stored amount of charge. The main limitation of this approach is that

the capacity and charge, i.e. discharge efficiency needs to be known with sufficient

precision. In addition, the method is susceptible to drifts of the estimates over time

due to small measurement or coefficient offsets. Hence the SOC needs to be corrected

which is typically done through the OCV information [30; 17; 115; 20; 117; 118; 119].

More sophisticated methods have been developed to overcome the shortcomings of the

above mentioned techniques. These methods are based on (adaptive) cell models and

use voltage and current measurements to correct the estimate. They can be classified
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Figure 2.5: OCV as a function of SOC for LG Chem cell

with respect to their estimation principle: Luenberger observer [17; 21; 85; 120; 121],

adaptive observer [17; 22; 122], sliding mode observer [17; 23; 123; 124; 125; 119;

126; 24], and Kalman Filters [2; 101; 102; 127]. Typically, in observer methods, the

parameters of an equivalent circuit model like resistances and open circuit voltage are

fit to observed battery current and voltage data. An estimate is issued by mapping

these parameters to SOC. In Kalman filter-based algorithms, it is typically required

to linearize around an operating point which can significantly increase computational

load. The measured current, voltage and the previously estimated SOC are provided

to the algorithm and the filter issues an estimate of SOC at the next time step. These

techniques are often tied to some battery model, like a lumped parameter model or

an equivalent circuit model which require arduous model identification to adequately

represent the non-linear behavior of a battery. In addition, they often require large

numbers of parameters or different versions of the model to perform SOC estimation

at varying ambient conditions.

Strategies involving classic machine learning algorithms have also been used in
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the past. The benefit of these types of techniques is that they can be trained with

real world data and self-learn SOC estimation without the need for hand-engineered

models. However, where neural networks have been solely used, the results are typi-

cally not accurate enough, and therefore require the additional use of Kalman filters

or other inference mechanisms to achieve sufficient estimation accuracy. Although

some works have used Kalman filters in conjunction with combined battery models

or equivalent circuit battery models [128], many other works have also used them in

conjunction with NN battery models.

The work performed in [129] uses a Radial Basis Function Neural Network (RBF

NN), having as inputs the battery terminal voltage at the previous time step, current

and SOC at the current time step. The trained 2-layer RBF NN having 30 neurons

in the hidden layer outputs the terminal voltage. The activation function used in this

NN are Green functions given by;

φi(rk) = exp

(
−‖rk − ti‖2

σ2
i

)
(2.8)

where rk = [V (k − 1), SOC(k), i(k)]T is the vector of inputs, k is the time step, ti

and σi are the center and standard deviation of the Gaussian function. The output

from the network is a regressive function of the following form;

F (rk) =
M∑
i=1

wiφi(rk) + b0 (2.9)

where i = 1, ...,M , M is the number of neurons in the hidden layer, wi are the weights

connected the hidden layer activations to the output layer, and w0 are the biases. All

inputs and outputs from the RBF NN are normalized. The output of the RBF NN is
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used as a state variable at the next time step of the state-space model. An Extended

Kalman Filter (EKF) approximates the non-linear model and estimates its states.

Appropriate covariance matrices for the measurement noise and the process noise are

selected from the battery data. After training, the RBF NN infers the outputted

terminal voltage within a 4% RMS error. Using the RBF NN in combination with

the EKF, the RMS error is further reduced down to 2%.

In [130], an Extreme Learning Machine is used at a constant ambient temperature

of 25◦C. An SOC estimation error of under 1.5% is claimed however this is only

achieved in conjunction with a Kalman filter. Furthermore, the extreme learning

machine is trained on constant discharge pulses hence their performance in transient

load demand, experienced in real world scenarios, is unknown.

In [131], a Least Square Support Vector Machine (LSSVM) uses RBF kernels

to estimate battery voltage. The network structure is very similar to the network

structure discussed in [129], where the same RBF kernel and output function described

in Equation (2.8) and Equation (2.9), are used, respectively. The input to the network

is battery current. A moving window method is used such that only the measurement

data found within the window is fed into the LSSVM during training. This limits

the training dataset to a manageable size. The output of the LSSVM is used in the

state-space model constructed for an Adaptive Unscented Kalman Filter (AUKF).

AUKF is used since this is not dependent on the Jacobian matrix and can adaptively

adjust the covariance matrices. The method is first tested on a Li-ion battery model

constructed in Simulink and achieves an error of less than 0.5%. The method is then

applied over recorded experimental battery data. The experimental validation data

included both charging and dynamic profiles to test the method on slow and fast
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dynamics. The LSSVM with AUKF achieves a mean absolute error of below 2%.

In [132], a 2 layer feedforward neural network is used as a battery model. A

variant of gradient descent called the Levenberg-Marquardt method is used to train

the algorithm. The input data is divided into charging, idling and discharging seg-

ments. When the battery data is classified as being in one of these three categories,

it is passed to a set of neurons that are different than the neurons used for the other

categories of input data. The output layer aggregates the activations from all three

sets of neurons in the hidden layer and passes a single output value. The output

still contained some noise so the authors use a filter composed of a moving average

calculation followed by a saturation function. The reference SOC used to generate

the estimation error was computed using current integration. Various inputs were

used in this approach; these included voltage, current, first and second derivatives

of the voltage and the current. The load classifying neural network is trained on 12

US06 drive cycles and achieves an average estimation error of 3.8%, or 2.6%, when

additional filtering is performed.

The work performed in [133] uses a dual neural network fusion model. The first

of these neural networks is a linear one which takes the voltage and current at the

previous time step and current at the present time step and infers the voltage at the

current time step. This NN is a structured one where the network weights correspond

to the parameters of an equivalent circuit model. These network weights are then used

to compute the OCV. The OCV is then fed into a second neural network containing

one hidden layer and outputs the estimated SOC. Using the parameters of a first

order equivalent circuit model (R-RC) the fusion neural network model achieves a

mean absolute error and a maximum error of 1.03% and 4.82%, respectively. When
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a second order equivalent circuit model (R-RC-RC) is used, the mean absolute error

and the maximum error become 0.75% and 3.4%, respectively. Although estimation

accuracy is good, the method is untested at ambient temperatures other than room

temperature, therefore the expressibility of the method in varying ambient conditions

is unknown.

2.3.4 State-of-Health Estimation

SOH estimation can be done through parameter identification of equivalent circuit

models as is performed in internal resistance measurement methods [134; 135]. In

[134], a specific identification signal which occurs regularly is used to parameterize an

R-RC-RC equivalent circuit model. Parameter identification is performed with the

linear least-squares method. The identification signal is obtained when the ICE is

turned on where current and voltage are recorded. This signal occurs regularly and

has a predefined time-span which does not change over time. In addition, the work

performs this resistance-based SOH estimation for numerous ambient temperatures

ranging between -20◦C to 50◦C. A degradation index is obtained from the internal

resistance value however this aging index was put through a low-pass filter to reduce

noise. Although this method strategically uses a regularly occurring reference signal

to obtain a smooth degradation index, these signals can only be obtained from hybrid

electric vehicles and are nonexistent in the case of electric vehicles.

Recently, there are increasingly more methods utilizing probabilistic approaches

and incremental capacity analysis over reference charge or discharge profiles to per-

form SOH estimation. These approaches are appealing given that they do not use
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Figure 2.6: (a) Terminal voltage as function of time of LG Chem cell discharging at
1C. (b) Probability Density Function (PDF) as a function of the terminal voltage
used for SOH estimation.

battery models and they do not rely on historic degradation data or ambient con-

ditions. Since the voltage curves, taken at constant C-rates, of most Li-ion battery

chemistries contain a plateau region, these approaches will typically transform the

voltage data into another representation which is more sensitive to these plateaus.

In [136], the Probability Density Function (PDF) of the terminal voltage of a

constant current discharge profile is used to estimate the battery SOH. An example

of a PDF curve is shown in Figure 2.6 which is plotted using data from an LG Chem

cell [112]. This is performed by categorizing the voltage data into bins which span

specific voltage increments and normalizing this discrete dataset to get the PDF. In

the study, the PDF is then smoothed so that its peak is well represented. The strategy

relies on the peak values of the PDF profile to map the PDF to an estimated SOH

value. Therefore, one drawback of this strategy is that a specific range of voltage
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Figure 2.7: (a) Terminal voltage as function of time of LG Chem cell discharging at
1C. (b) Incremental Capacity (IC) as a function of the terminal voltage.

values is required in order to have a well defined PDF peak. The study achieves

an error of below 1.6% on the reference charge curves however its performance over

partial reference profiles, often encountered in real world scenarios, is unknown.

Since discharge profiles observed between charging events occur in an uncontrolled

fashion, some works have relied on charge profiles to estimate SOH. In [137], Incre-

mental Capacity Analysis (ICA) profiles are identified from 0.5 C charge curves. ICA

curves, which describe the derivate of the capacity with respect to the voltage, dQ/dV ,

are better at detecting small incremental changes in the charge curves. For example

Figure 2.7, is an incremental capacity curve for an LG Chem cell at the beginning of

its life. To identify this ICA profile from noisy measurements and from partial refer-

ence profiles, a support vector machine showed best results. This method achieves a
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1% Mean Absolute Error (MAE) however, battery packs in electrified vehicles for ex-

ample, can be charged at higher charging rates than 0.5 C; sometimes reaching more

than 1 C rates. Therefore, its performance at these higher charge rates is unknown.

Because of noisy measurements and partial charge curves encountered in real world

environments, this method required the use of a support vector machine in order

to maintain consistent and reliable identification of ICA profiles throughout the bat-

tery’s lifetime. In [138], the constant current component of the charging voltage curve

is used with an equivalent circuit model to extract the aging parameters. Parameter

identification is achieved using a nonlinear lest squares technique. This SOH estima-

tion method does not require the calculation of OCV and SOC which removes some

computational burden. This work achieves 2-3% errors although its performance on

partial charge curves and on charge rates higher than 0.5 C is unknown.

Works using observers [139] and Kalman filters [140] have also showed great

promise. However, although the latter methods show good estimation performance,

they often have a drawback which hinders their practical application; these can in-

clude the use of distinct loading profiles at regular intervals or characteristic loading

profiles performed at low C-rates to identify signatures associated with SOH. Re-

cently, the use of machine learning models and other data-driven approaches have

shown good performance while attempting to solve some of these drawbacks. As a

result, these types of algorithms have been garnering greater interest [141; 142; 143].

In [144], the authors capitalize on the correlation between the diffusion capacitance

of a second order equivalent circuit model and state-of-health. A Genetic Algorithm

(GA) is used to estimate the voltage drop across this diffusion capacitance as well as

to estimate the open circuit voltage. The latter are then used to parameterize the
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battery model. The maximum error observed while using this estimation strategy is

4.35% however, the parameter identification is performed online with the GA which

can be computationally intensive.

In [145], a structured neural network is compared to an extended Kalman filter

to perform parameter estimation. The architecture of the structured neural network

tries to mimic the acausal structure of an equivalent circuit model while a feedforward

neural network has inputs fully-connected to all the weights in the first hidden layer.

Therefore, after training, the weights in the structured neural network will correspond

to parameters of the an equivalent circuit model. Training uses gradient descent to

converge to a solution. The inputs used are measured battery current, temperature

as well as SOC and the output from the network is the battery voltage. The network

parameters can be combined to form the internal resistance of the battery cell which

can be used to estimate SOH during the batteries lifetime. The neural network is

composed of few network weights given its structured architecture and therefore can

have low computation time. The second more popular approach used in this study is

the Extended Kalman Filter. This method uses the voltages across the RC pairs in an

equivalent circuit model as well as the internal resistance as the state variables. The

system is linearized using the Jocobian Matrix and a covariance matrix is identified.

The two approaches are compared over drive cycle data taken from hybrid electric

vehicle. The authors state a mean error between measured and estimated voltage

of less than 12mV for the structured neural network although no error metrics are

offered for the internal resistance estimation. They also claim that the performance

between the structured neural network and the EKF method is almost identical.
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3.1 Learning Algorithms

Since ancient times mankind has been enamored with endowing inanimate objects

with intelligence. The earliest signs of automatons were sacred statues in ancient

Egypt and Greece where it was believed that the craftsmen of those statues en-

dowed them with real minds. The birth of Artificial Intelligence (AI) can be traced

back to the 1950s, when multiple promising theories and works intersected. Norbert

Wiener defined cybernetics in 1948, which considered the scientific study of control

and communication of any system using some form of technology. Information theory

was proposed by Claude Shanon in his famous work titled ”A Mathematical Theory

of Communication”. In addition, Alan Turing’s popular theory of computation de-

scribed that any form of computation can be represented digitally. In 1956, the

Dartmouth Conference, organized by Marvin Minsky, John McCarthy and others, is

by most accounts, where the birth of AI took place. Many attendees of this con-

ference would later work on some of the foundational aspects of AI. Inspired by the

human brain, Frank Rosenblatt conceived the perceptron which was akin to a neural

network. Great optimism ensued this period and with it came increased amounts of

funding from organizations like DARPA. However, scientists soon realized that hard-

ware limitations would not allow them to reach some of the milestones which they

had set for their research projects and, as a result, AI funding dried out. This would

later be known as the ’AI winter’. Unfortunately, this was one of many ’AI winters’

as, over the years, interest in the field waxed and wanned.

In the 1990s and early 2000s, some of the oldest goals set for AI at its infancy had

started to be achieved. In 1997, Deep Blue became the first computer to beat the

world chess champion, Gary Kasparov. With the advent of big data and continuously
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advancing hardware technology, great strides have been made in the field of AI and

interest in this field is rising once again. Machine Learning (ML) is the field of

study which considers machines learning from data. Popular algorithms like logistic

regression and genetic algorithms are included in the field of ML. Deep learning is

one approach to AI and a sub-field of ML, which describes the process of allowing

machines to learn from experience and perceiving the real world in a hierarchal way.

Figure 3.1 is a Venn diagram showing the organizational structure of deep learning and

machine learning within the field of artificial intelligence. Deep learning algorithms

learn simpler subsystems and build on this knowledge to learn and express more

complex systems. Therefore, this compositional structure of learning features from

other features resulting in a hierarchy of learned layers is the reason why the field is

entitled ’deep learning’.

Many classical methods of AI also learned from feature sets. However, tradition-

ally, many of these techniques rely on hand-crafted features to facilitate learning. For

many tasks, especially more complex learning tasks, it is tedious to hand-engineer all

possible features so that the computer can have a good generalized representation of

the system. Therefore, representation learning allows the computer to learn its own

representation, removing model rigidity imposed by human intervention. This feature

of machine learning and deep learning not only allows the computer to have a general-

ized representation of the system but also allows it to adapt to varying changes in its

environment, which would otherwise be very difficult to accomplish with hand-crafted

representations [146].

For a particular task, the data or set of examples from which a computer learns,

is as important as the learning algorithms themselves. Sufficient data will allow
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Figure 3.1: Venn diagram of the field of AI, machine learning as a subfield of AI
and subsequently, deep learning being a subfield of ML. Deep learning and some
techniques in ML benefit from representation learning which allows the computer to
learn from experience in contrast to some classical forms of machine learning like
logistic regression which rely on hand-crafted features.
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the learning algorithm to ensure a general representation although this is difficult

to assess aside from looking at its performance over validation data. Recently, an

abundance of readily available real world data has allowed for better training and

better performance from these algorithms. In addition, semiconductors and infor-

mation technology have been increasing in performance at a pace which some would

even argue is moving faster than Moore’s Law. Therefore, recently, training learning

algorithms can be accomplished at a faster pace. In addition, Graphical Processing

Units (GPU), which operate at lower clock speeds than CPUs but have many thou-

sands of processing cores, have allowed for faster training times when parallelizing

the learning system’s operations.

Learning algorithms can perform many different types of tasks. Two of the more

popular tasks are classification and regression. Classification is a task which requires

the computer to classify an input feature vector, x, to a class y, where y is an integer.

Regression is a task whereby the computer is asked to predict or to infer some numer-

ical value from some input; this is given by y = f(x) where f : Rn → R. The deep

learning algorithms which are used in this research work, perform regression rather

than classification. Also, hyperparameters typically represent aspects of the network

which are not directly trainable and which determine the structure of the network.

These include the learning rate of the models, the number of layers and the number

of neurons in each layer [146].

3.2 Modern Deep Learning Networks

There are many examples where deep learning architectures have made significant

improvements over conventional algorithms. In 2012, AlexNet, a deep convolutional
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neural network won the ImageNet competition where teams are tasked with classifying

over 1 million high resolution images in 1000 different categories. AlexNet achieved

a top-5 error rate of 15.3% compared to a more traditional model taking second

place with a top-5 error of 26.2% [147]. Recently, Microsoft Research’s deep learning

algorithm, called a deep residual network, won the 2015 ImageNet challenge with an

error rate of 3.57% which even surpasses human level accuracy valued at 5.1% [148].

3.2.1 Deep Neural Networks for SOC Estimation

Traditional machine learning techniques contain no more than one or two layers of

non-linear and linear transformations [149]. With the advent of faster computational

power and an abundance of available real world data, deeper architectures were in-

vestigated which, in many cases, allowed researchers to make striking improvements

in many applications [147; 150; 151; 152; 153].

Feedforward neural networks, whose 2-layer and multi-layer DNN architectures

are shown in Figure 3.2, can, in principle, model any non-linear system by mapping

the observables to a desired output. Once trained offline, FNN and DNN offer fast

computational speeds online since they are composed of a series of matrix multipli-

cations, as opposed to other strategies which can contain computationally intensive

calculations like partial differentials equations. When FNN and DNN are applied for

SOC estimation, a typical dataset that is used to train the networks is defined by

D = {(ψ(1), SOC(1)∗), (ψ(2), SOC(2)∗), ..., (ψ(τ), SOC(τ)∗)}, where SOC(t)∗ and

ψ(t) are the ground-truth state-of-charge value and the vector of inputs at time step

t, respectively. The current measurement used to determine the ideal or ground-truth

SOC(t)∗ is described in more detail in Chapter 6. The vector of inputs is defined as
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Figure 3.2: Architecture of 2-layer neural network (top) and architecture of
Deep Neural Network (DNN) (bottom). The input data is given by ψ(t) =
[V (t), T (t), Iavg(t), Vavg(t)] where V (t), T (t), Iavg(t) and Vavg(t) represent the volt-
age, temperature, average current and average voltage of the battery at time step t.
The output of the DNN is the estimated SOC at every time step.
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ψ(t) = [V (t), T (t), Iavg(t), Vavg(t)] where V (t), T (t), Iavg(t) and Vavg(t) represent the

voltage, temperature, average current and average voltage of the battery at time step

t. The average current and voltage are both calculated over λ precedent time steps,

which ranged from 50 to 400 time steps. This is not to be confused with the total

dataset time span defined by τ , where λ < τ . Many different types of inputs were

examined and it was found that Iavg, Vavg are better values to feed into the network

rather than feeding many antecedent values of current and voltage. The number of

weights in the network increases proportionally to the number of additional inputs

times the number of neurons in the first hidden layer. For example, in a network which

has 10 neurons in the first hidden layer, each additional input will require 10 addi-

tional weights for a fully-connected layer. Therefore, better computational efficiency

and lower memory requirements are achieved by capturing the system dynamics in

time through an averaging of current and voltage.

To construct these networks, TensorFlow [154], a machine learning framework, is

used in conjunction with two NVIDIA Graphical Processing Units (GPU); a TITAN

X and a GeFORCE GTX 1080 TI GPU. The TensorFlow framework provides the

ability to quickly prototype and test different network architectures as a result of its

ability to automatically compute backpropagation. The latter describes the process

by which the network weights can be updated at the end of every training epoch

and will be further discussed below. Although training is performed on a GPU to

take advantage of parallel computing and to accelerate the training process, when

performing real time estimation after training is complete, the algorithms discussed

in this section can be flashed on a standard microprocessor.

Feedforward neural networks are matrix-based and can be represented by the
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below composite function. A few important variables are first defined. Let wlj,k

denote the weight connection between neuron j in layer l − 1 and neuron k in layer

l. Let blk and hlk be the bias and the activation function, respectively, of neuron k in

layer l . The activation function is computed as follows;

hlk(t) = η

(∑
k

(wlj,kh
l−1
k (t) + blk)

)
(3.1)

where,

hlk(t) = SOC(t) for l = L (3.2)

and where ψ(t) is provided to the network at the input layer or when l = 0.

ψi(t) is an element of the vector of inputs at every time step t and is given by

ψ(t) = [V (k), T (t), Iavg(t), Vavg(t)]. As mentioned above, V (t), T (t), Iavg(t) and

Vavg(t) are the voltage, temperature, average current and average voltage of the bat-

tery at time step t. SOC(t) is the estimated state-of-charge at time step t calculated

by the network. Due to its simplicity during training as well as during validation,

the nonlinearity used in these networks is called Rectified Linear Units (ReLU) and

is given by;

η = max(0, h) (3.3)

To understand how accurate the SOC estimate is compared to the ground-truth value,

an error signal is generated at the output of the network for each time step and is

given by

e(t) = SOC(t)− SOC∗(t) (3.4)
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To gain a good understanding of the overall error energy of the entire network com-

puted at the end of a forward pass, the following loss function is used;

L = [max(e)]2 +
1

τ

τ∑
t=0

(
e(t)2

)
(3.5)

where τ is the length of the sequence, as mentioned above. Both the average error

and the maximum error are included in the overall error function so that the network

expends its energy on minimizing both the average error as well as the maximum

error value and does not prioritize the minimization of one value over another.

3.2.2 Recurrent Neural Networks

Since 2012, great advancements have been achieved in the field of speech recognition

[151; 155; 156]. More recently, a team at Baidu Research has developed a deep

learning speech recognition system called Deep Speech 2 which exceeds human-level

accuracy [157]. The latter deep neural network was composed of many layers which

included layers of RNNs. Recurrent neural networks, shown in Figure 3.3, are a class

of ANN geared towards pattern recognition in sequential datasets. Some popular

examples of this are speech recognition, natural language understanding and machine

translation where characters or words are fed into the network sequentially. Aside

from the latter applications, RNNs can be useful for just about any type of time

series data [158]. However, classical RNNs are known to have issues with long-range

dependencies where the gradient either explodes or vanishes during back-propagation

[159; 160]. RNNs with Long Short-Term Memory (LSTM) cells [161] have had better

success at capturing long-term dependencies within a sequence and are thus much

more widely used for these types of applications.
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Figure 3.3: Architecture of Recurrent Neural Network (left) and architecture of RNN
unfolded in time (right). The input data is given by Ψk = [V (k), I(k), T (k)] where
V (k), I(k) and T (k) represent the voltage, current and temperature of the battery at
time step k. hk−1 denotes the hidden layer of the LSTM-RNN at time step k − 1.
The output of the LSTM-RNN is the estimated SOC at every time step.

3.2.3 Recurrent Neural Networks with Long Short-Term

Memory Cells

A LSTM-RNN, whose architecture is also shown in Figure 3.3, can represent non-

linear dynamic systems by mapping input sequences to output sequences. When we

applied LSTM-RNNs towards SOC estimation, a typical dataset used to train the

networks is given by D = {(Ψ1, SOC
∗
1), (Ψ2, SOC

∗
2), ..., (ΨN , SOC

∗
N)}, where SOC∗

k

is the ground-truth value or the observable state-of-charge value at time step k and

Ψk is the vector of inputs also at time step k. The vector of inputs is defined as

Ψk = [V (k), I(k), T (k)], where V (k), I(k), T (k) are the voltage, current and temper-

ature of the battery measured at time step k, respectively. The Long Short-Term

Memory cell whose schematic representation is shown in Figure 3.4, is equipped with
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Figure 3.4: Long Short-Term Memory cell. Ψk and hk−1 are the input data layer
at current time step, k, and hidden layer at previous time step, k − 1, respectively.
ik, ok, fk and ck are the input, output and forget gates as well as the memory cell,
respectively. Squiggly lines represent nonlinearities outlined in equation 3.6.

a memory cell, ck, which stores the long-term dependencies. During training, the

input, output and forget gates allow the LSTM to forget or write new information

to the memory cell. To construct the LSTM-RNNs, TensorFlow [154], is also used

in conjunction with two Graphical Processing Units (GPU); the NVIDIA Titan X

Pascal and a GeFORCE GTX 1080 TI. The constructed networks incorporated Ten-

sorFlow’s basic LSTM cell which is based on the LSTM unit discussed in [162] and

can be represented by the following composite function,
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ik = η(WΨiΨk +Whihk−1 + bi)

fk = η(WΨfΨk +Whfhk−1 + bf )

ck = fkck−1 + iktanh(WΨcΨk +Whchk−1 + bc)

ok = η(WΨoΨk +Whohk−1 + bo)

hk = oktanh(ck),

(3.6)

where the initial hidden state, h0, is set to a zero matrix, η is the sigmoid function

and i, f , o and c are the input, forget, output gates and memory cell, respectively.

They are called gates since they are a sigmoid function which can be zero valued thus

possessing the ability to inhibit the flow of information to the next computational

node. Each gate possesses its set of network weights which are denoted by W . The

subscripts of W describe the transformation occurring between the two respective

components, e.g. the input-output gate matrix is denoted by WΨo, the hidden-input

gate matrix is denoted by Whi, etc. A bias, b, is added to the matrix multiplication at

each gate to increase the networks flexibility to fit the data. A final fully-connected

layer performs a linear transformation on the hidden state tensor hk to obtain a single

estimated SOC value at time step k. This is done as follows:

SOCk = Vouthk + by, (3.7)

where Vout and by are the fully-connected layer’s weight matrix and biases, respec-

tively. The disparity between the LSTM-RNN’s estimated SOC and the measured

one is best represented by the following loss function computed at the end of each
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forward pass;

L =
N∑
k=0

1

2
(SOCk − SOC∗

k)2, (3.8)

where N is the length of the sequence and SOCk as well as SOC∗
k are the estimated

and ground truth values of SOC at time step k, respectively.

Many unique drive cycles are concatenated to form the training dataset and when

compiled, this typically has a length of over 100,000 time steps. It is not possible to

enter a sequence as long as this into our GPU memory during training. Therefore, the

LSTM-RNN models are trained by feeding one batch of the sequence at a time which

is commonly performed while training LSTM-RNNs. This is referred to as unrolling

the LSTM cell in time for Ñ steps where Ñ is the batch length holding a smaller

value than the total training sequence length, N , such that Ñ < N . Usually, if the

time constant of the inherent dynamics within the sequence is shorter than Ñ , then

the LSTM-RNN can still capture the time dependencies.

3.2.4 Convolutional Neural Networks for SOH Estimation

Lately, the surge of renewed interest in Artificial Intelligence (AI) has been primarily

underpinned by the numerous advancements achieved with deep learning algorithms

[147; 150; 151; 163; 152; 153]. One prominent example of these algorithms is the

Convolutional Neural Network. This technique showed its prominence in 2012, with

AlexNet, a deep learning algorithm composed of many layers of convolutional neural

networks. It was able to surpass the accuracy of competing classical pattern recog-

nition algorithms when tasked with classifying 1 million images over 1000 different

categories in the ImageNet competition.

Deep learning techniques are disrupting many other fields. In the field of chemical
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information and modeling, deep learning methods are used as predictive models for

prioritizing experiments during the drug discovery process [152]. In bioinformatics

and genomics, deep learning has been used to accurately predict alternative splicing

patterns in tissue samples as well as in identifying new genetic mutations linked to

certain diseases [164; 165]. A more recent pathological study uses CNNs to identify

and locate metastatic breast cancer [153]. These reduced a human pathologist’s

error rate by 85%. In particle physics, deep learning techniques have recently been

implemented in a 2014 study for the classification of particles and for the discovery of

exotic particles like the Higgs boson using noisy but rich data sets from high-energy

particle colliders. An 8% improvement was recorded over incumbent state of the art

machine learning techniques [166].

Feedforward neural networks can in principle model any non-linear system by

mapping a set of measured quantities to a desired output. Convolutional neural

networks, shown in Figure 3.5, are particularly good at performing this mapping

function when considering higher dimension datasets having inherent dependencies

between adjacent dimensions. The CNNs used in this work, convolve kernels over a

two dimensional dataset at each layer instead of fully interconnecting adjacent lay-

ers as is typically done in fully connected neural networks. Convolving kernels over

the two dimensional dataset, allows these networks to benefit from shared weights

and an invariance to local distortions. Thus, nowadays, they are the preeminent al-

gorithm used in image recognition. However, they can be very effective for many

other two dimensional datasets which have correlations along one or both dimen-

sions. Once CNNs are trained offline, they can offer fast computational speeds on-

board a mobile device or vehicle, since they are formulated by a series of convolution

59



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

and matrix multiplication operations which are great candidates for parallel comput-

ing. The typical dataset used for training and validation in this work is given by

D = {(Ψ(1), SOH∗(1)), (Ψ(2), SOH∗(2)), ..., (Ψ(Ξ), SOH∗(Ξ))}, where Ψ(ξ) and

SOH∗(ξ) are the the array of input data and the ground-truth state-of-health value,

respectively, for each charge profile, ξ. The input charge profiles, Ψ(ξ) ∈ RN×M ,

which will be discussed further in the next section, can be composed of battery mea-

surements like current, voltage and temperature or, in the case of partial charge

profiles, they could also include the SOC values.

The kernels, wlkm ∈ RCl×Rl , used in each layer of the CNN having height C and

width R, are convolved over the input array of height N and width M . The output of

this convolution operation is a feature map of size N−C+1×M−R+1. Depending

on the number of kernels per convolution layer, there can be numerous feature maps

per layer. For a more formal description, consider the element xlkij (ξ) at location (i, j)

in the kth feature map of layer l for charge profile ξ, given as follows;

xlkij (ξ) = η

(∑
m

Cl∑
c=0

Rl∑
r=0

(wlkmrc hl−1,m
i+c,j+r (ξ) + blk)

)

hlk (ξ) = S
(
xlk (ξ)

) (3.9)

where,

hlk (ξ) = Ψ (ξ) , for l = 1

η = max(0, y)

(3.10)

In the above composite function, m is the feature map in layer l − 1, blk is the bias

for feature map k in layer l and wlkmrc is the value of the kernel at the (c, r) location

connected to feature map k. S(·) is a sub-sampling function, called max-pooling,

which gives the maximum value of a perceived subset s of a feature map, where
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Convolution + ReLU Pooling Convolution + ReLU Pooling

SOH(ξ)

Flatten FullyConnected

Ii,j Vi,j Ti,j

Layer, l = 1,k Feature Maps: x1k
Layer, l = 1,k Feature Maps: h1k

N

M

c

r gL-1β

V, I and T of Input Charge Profile FullyConnected
Figure 3.5: Architecture of a convolutional neural network (CNN) where each layer
is composed of a convolution and pooling component and with the last two layers
being fully connected. The input data is given by Ψ(ξ) ∈ RN×M where N=256 and
M=3 since Ψ(ξ) = [I(ξ),V(ξ),T(ξ)] where I,V,T represent the current, voltage and
temperature of the ξ charge curve. The output of the CNN is the estimated SOH.
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s ⊆ hlk. The non-linearity used in this work, η, which is called the Rectified Linear

Unit (ReLU), is used in this work due to its simplicity and ease of implementation in

real time. The last few layers of a CNN, as observed in Figure 3.5, are fully-connected

layers, formally described as follows;

glβ (ξ) = η

(∑
β

(wlαβh
l−1
β (ξ) + blβ)

)
(3.11)

where,

glβ (ξ) = SOH (ξ) , for l = L (3.12)

and where wlαβ denotes the weight connection between neuron α in the (l−1)th layer

and neuron β in the lth layer, blβ and hlβ are the bias and activation function at layer

l, respectively. The total number of layers in the CNN is given by L. To determine

the SOH estimation performance of the CNN for a particular charge curve ξ, the

estimated state of health, SOH (ξ), is compared to the state of health ground-truth

value, SOH∗ (ξ), resulting in an error value. The loss function is simply the mean

squared error computed from all the individual errors, as follows;

L =
1

Ξ

Ξ∑
ξ=0

(
(SOH(ξ)− SOH∗(ξ))2

)
(3.13)

where Ξ is the total number of charge curves in the training dataset.

The advantages of convolutional neural networks over other estimation strategies

is their ability to detect subtle variations and dependencies in the training data as in

the case of the plateau region in the voltage-capacity curve of most Li-ion batteries.

As such many strategies, some of which are mentioned in Section 2.3.4, require the

use probability density functions and incremental capacity analysis to extract aging
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signatures. In addition, obtaining the incremental capacity curve directly from noisy

battery signals is very difficult and is not a reliable method for on-board application.

Therefore, most methods using ICA require further curve fitting or in some cases the

use of support vector machines to identify the incremental capacity curves. SOH esti-

mation is then performed by using lookup tables. CNNs can ingest raw battery data

and output a single estimated SOH value, removing the need for data preprocessing,

battery models, or intermediate calculations like ICA and probability density func-

tions. In addition, the inference accuracy of CNNs is typically increased by adding

statistical variances to the measured training data. When used for SOH estimation,

this method not only increases inference accuracy but also minimizes the CNNs sensi-

tivity to measurement noise, offsets and gains resulting in a robust algorithm capable

of reliable on-board operation.

State of health estimation performance is evaluated with different metrics. These

include Mean Absolute Error (MAE), Root Mean Squared Error (RMS), Standard

Deviation of the errors (STDDEV) and the Maximum Error (MAX).

The CNN models discussed in this section utilize TensorFlow. To expedite the

training process two NVIDIA Graphical Processing Units (GPU) are used to capitalize

on the ability to perform parallel computing on CNNs. The GPUs used are the

NVIDIA TITAN X and the GeFORCE GTX 1080TI. Although GPUs are used in the

training process, this is only to accelerate this process. When performing inference

in real time, these CNNs are suitable for traditional embedded devices.
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3.2.5 Convolutional and LSTM Recurrent Neural Network

Fusion for SOH and SOC Estimation

As an extension to the work performed on SOH estimation using the CNN algorithm, a

fused recurrent convolutional neural network (CNN-RNN) is used for the first time to

perform combined state-of-health and state-of-charge estimation on controlled charge

profiles. Performance and results are shown in Chapter 7. This is conducted by

feeding the SOH estimated by the CNN into the LSTM-RNN which, in turn, estimates

SOC, as shown in Figure 3.3. For a more in depth look at the theory behind CNNs

and LSTM-RNNs, please refer to Section 3.2.4 and Section 3.2.2. Each network

is trained separately and applied in unison during testing. It is important to note

that the networks operate on separate time-frames. The CNN uses reference charge

profiles, ξ, to estimate SOH, hence it awaits a charge event to occur in order to

execute an SOH estimation. These charge events can take place once a day or even

once every few days. However, in the case of SOC, the LSTM-RNN is required

to perform an SOC estimation at 0.1-1Hz depending on the energy management

system’s sampling frequency. Therefore, between charge events, a fixed SOH value

is provided as an input to the LSTM-RNN. The inputs to the LSTM-RNN then

becomes Ψk = [V (k), I(k), T (k), SOH(ξ)] where V (k), I(k) and T (k) represent the

voltage, current and temperature of the battery at time step k and SOH(ξ) is the

SOH estimated during the last charge event. Choosing the LSTM-RNN instead of

the DNN technique, described in Section 3.2.1, capitalizes on the efficient learning

capabilities of the memory cell. In other words, fewer inputs are required from the

battery at every time step, k, to perform SOC estimation when utilizing the LSTM-

RNN.
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Figure 3.6: Schematic showing fusion of convolutional neural network and LSTM-
RNN to perform combined SOH and SOC estimation. Charge event, ξ, data is
saved and given to the CNN as inputs, as discussed in Section 3.2.4. The CNN
estimates SOH and passes it to the LSTM-RNN which, in turn, estimates SOC at
every time instant k, as described in Section 3.2.2. Input vector is given by Ψk =
[V (k), I(k), T (k), SOH(ξ)] where V (k), I(k) and T (k) represent the voltage, current
and temperature of the battery at time step k and SOH(ξ) is the SOH estimated
during the last charge event.
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3.3 Back-propagation and Optimization

Inference is performed with a single forward pass when data is fed into the network

and the estimated SOH or SOC is obtained as the network output. Training is

performed when a backward pass is performed following a forward pass where the

network weights are updated by minimizing the loss function. One full training epoch,

ε, describes a single cycle of one forward pass and one backward pass. A forward pass

starts when the training data is fed into the network and is complete when the state is

estimated at the output and when the overall loss function is determined. A backward

pass describes the process whereby the loss signal is sent back through the network

and the gradient of the loss with respect to the network weights is computed in order

to update the weights. In this work, training does not cease till a specified threshold

criteria of loss is attained. In addition, during the backward pass, the gradient of the

loss function with respect to the weights is used to update the network weights in

an optimization method called Adam [167], which is also performed with the biases.

This is given in the following composite function;

uε = γ1uε−1∇L(wε−1)

vε = γ2vε−1∇L(wε−1)
2

ũε = uε/(1− γ1ε)

ṽε = vε/(1− γ2ε)

wε = wε−1 − ρ
ũε

ṽε − κ
,

(3.14)

where γ1 and γ2 are decay rates set to 0.9 and 0.999, respectively, ρ = 10−5 is the

learning rate and κ is a constant term set to 10−8. The network weights at the present
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training epoch are given by wε. A normally distributed random number generator

is used to initialize the network weights. During the backward pass, the network

self-learns its network weights and biases, a process referred to as backpropagation,

which is a remarkable difference to other methods that demand time-consuming hand-

engineered battery models and parameter identification.

Once the threshold criteria is met where the loss energy of the network is mini-

mized, training is ceased and the network can be applied in real time. Inference is

performed when the network is applied to the validation dataset, which was never

seen during training.

3.4 Data Fuels Learning

It’s no surprise that with deep learning algorithms like all other learning algorithms,

data is as critical as the algorithms themselves. If the data used for learning is not

representative of the underlying system, then the model will not output the desired

response. Often, this is a result of a misinterpretation or a misunderstanding of the

data or features within the dataset rather than the data itself. A lack of knowledge

of the data can make it difficult to choose the appropriate algorithm for the task at

hand or cause unnecessary preprocessing. Excessive preprocessing or over-processing

the data can result in the data loosing its meaning. Also choosing the inputs which

most correlate with the desired output is key when choosing features to feed into the

network.
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3.4.1 Data Preprocessing in the Context of SOC and SOH

Estimation

For SOC and SOH estimation, the data was only preprocessed when necessary. In

other words, since these algorithms are aimed for on-board application, reducing the

number of operations performed to achieve the desired output becomes an important

consideration. And this number of operations clearly also includes data preprocessing.

Given that these techniques are used with battery data which includes voltage, current

and temperature, it was sometimes necessary to scale this data. This is a consequence

of these inputs having different scales, e.g. voltage can span 2.5 V to 4.2 V while

temperature can span -20 to 25◦C. In the following chapters, full disclosure will be

given wherever scaling is performed. Scaling, here, is defined by;

xscaled =
xraw − xmin
xmax − xmin

(3.15)

where xraw, xmin and xmax, represent the raw input value, the minimum input value

and the maximum input value, respectively. In the chapters discussing SOC and

SOH estimation, the actual value which is used to asses the estimation error is often

referred to as a ground-truth value or the labeled dataset. The ideal or ground-

truth values are written with a star notation, e.g. SOC∗ or SOH∗ in Equation (3.5),

Equation (3.8) and Equation (3.13). The sampling frequency of the raw data is also an

important consideration. Although the raw data is sampled at a particular frequency

in lab settings, due attention is paid to ensuring that this sampling rate is accurate.

Therefore, for most datasets used int his work, a liner interpolation of the data is

typically performed so that the networks experience the inputs at a fixed rate.
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3.5 Network Construction and Hyperparameter

Tuning

3.5.1 Choosing Network Types

An appropriate choice of networks will always depend on the nature of the data as

well as the computational and memory constraints. The data used for Li-ion battery

SOC estimation is a time series and, therefore, recurrent neural networks are most

suitable for this type of application due to their ability to encode dependencies in

time. However, as will be shown in Chapter 6, DNNs can achieve similar performance.

However, this is only possible if antecedent values are provided to the network as an

input. In addition, data augmentation described also in Chapter 6, is also required

for DNNs in order to achieve further estimation accuracy and operation at various

ambient temperatures.

When considering SOH applications, the strategy defined in Chapter 7, uses ref-

erence profiles which reoccur at regular intervals of the battery’s lifetime. The objec-

tive of the algorithm becomes to issue a desired estimate of SOH when given the full

reference profile. This is starkly dissimilar to the objective of the SOC estimation

algorithm which issues an estimated SOC when given a discrete value of the battery

signals. Therefore, the SOH algorithm must ingest a much larger corpus of data, i.e.

the reference profile, before it issues one SOH estimate. This algorithm must be able

to detect correlations between features in one or both axis of this two dimensional

dataset. These are traits of a convolutional neural network and thus why this algo-

rithm is used in Chapter 7. An LSTM-RNN could equally be used since it could also

ingest a complete reference profile before issuing an estimate.
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3.5.2 Hyperparameter Tuning

Training deep learning models is an iterative process. Various components are im-

portant to consider for different network types. For the DNN, LSTM-RNN and the

CNN algorithms utilized in this work, different aspects are considered. We call these

aspects hyperparameters. They are entities which are typically not learned during the

training process but need to be predefined. They are usually determined by setting

various different values, training different models and choosing the values which show

best performance on training and test datasets.

Choosing the number of neurons and number of layers of a deep learning model

is an iterative process. Starting with a small number of layers and neurons, one can

check if the loss over the validation dataset is being minimized and that the network

is properly fitting the data. Typically, the learning rate is a value ranging from 1e−2

to 1e − 6. When testing various network architectures, an appropriate learning rate

can be found by iterating its value by 1e1 in consecutive trials. On average, the loss

of the network should always be decreasing from one training epoch to the next. If

the loss of the network is not observed to be decreasing, then a smaller learning rate

might be necessary.

In the case of DNNs used for SOC estimation, much of the performance gains can

be achieved during the data processing phase, where the data is not only cleaned but

also scaled and augmented.

The depth in time of an LSTM-RNN is an important hyperparameter to tune

since it not only allows the network to converge to a good solution but it also provides

an indication of the dynamics in time which dictate the behavior of the underlying

system. In the case of this work, this system is a battery and we’ve seen in Chapter 5
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that good performance is typically achieved when the network has a depth in time of

100 to 1000 time steps.

In the case of CNNs used for SOH estimation, there are additional hyperparame-

ters which need to be considered. Firstly, mini-batches are used because of memory

constraints on the GPUs. In addition, using mini-batches allows for more frequent

updates to the network weights [168]. With standard gradient descent, updates are

performed to the network weights after the entire training dataset is processed. With

mini-batch gradient descent, smaller batches of the training dataset are selected and

processed to issue an update to the network weights. Therefore, the weights can be

updated more frequently. Although, for smaller training datasets, below approxi-

mately 2000 data points, mini-batches might not offer the same advantage as it can

for much larger datasets. In the case of the CNN approach for SOH estimation, in

many cases, the training datasets were composed of hundreds of thousands of data

points. Hence using mini-batches offered faster training. Mini-batches of size 64 to

1024 is typical when training deep learning algorithms. Setting a mini-batch size

value as a power of two can help decrease training time. This can be attributed to

the way computer memory is laid out and accessed. The mini-batch size is considered

to be another hyperparameter which needs to be varied through different iterations

of the network training in order to achieve the size which makes the gradient descent

optimization algorithm as efficient as possible.

3.5.3 Maximizing Performance from Deep Networks

Generally, after performing the above steps, if the deep learning model is still not

converging to a proper solution, there are additional techniques which can be utilized
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to generalize the model and allow it to fit the data. One obvious method is to use

more data but it is generally not an easy task to obtain additional data. The following

techniques can help generalize models and overcome cases of over-fitting.

Batch Normalization

For the DNN algorithm, scaling the inputs to lie between 0-1, helped to quicken the

learning process. Similarly, setting the activation values at the output of a hidden

layer, to lie in a similar range of values, can also reduce training time. Batch normal-

ization is such a process where the activation values are normalized at the output of

each hidden layer to have a certain mean and variance [169]. This process is found to

help with the computational time of DNNs. This can be attributed to the fact that

the network does not have to learn to represent large covariant shifts in the activation

values from one hidden layer to the next which can help accelerate training.

Dropout

Another strategy used to achieve further performance from the CNN used in SOH

estimation is dropout [170]. This strategy randomly hides certain nodes of the network

during the training process since various nodes connected to these features might

be hidden at any given training epoch. Therefore, the training data are exposed

to different combinations of hidden nodes within the network throughout training.

This regularization technique does not allow the network to settle around one local

minimum of the solution space, and requires the network to look for neighboring local

minima having lower loss. Dropout also does not allow the network to heavily rely on

one feature or one type of input during the training process. Therefore, when various
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different nodes and features are blocked during training, the network is obligated to

spread it’s reliance over all or most of the feature space.

Early Stopping

Early stopping is also a method which is used on any deep learning algorithm and was

commonly used in this work. This describes the process of monitoring the training

loss and the validation loss as a function of the training epochs. Overfitting can

be observed, in most cases, when the training loss continues to decrease while the

validation loss stars to increase. In early stopping, the training is stopped as soon as

the validation loss starts to increase.

Skip Connections

In 2015 winners of the detection task in the ImageNet competition, used a deep

residual network [148]. This popularized the idea of residual layers which use skip

connections. In this work, in certain cases, skip connections were used with the

DNN models to improve representational power. Although they have been useful for

CNN models, they can be used for any feedforward-type of network including DNNs.

Typically in most feedforward-type models, the activations of the previous hidden

layer, l− 1, is always fed to the next hidden layer. In some cases, using features from

other previous hidden layers, say l − 2, l − 3, ..., can be meaningful to the network

and help in achieving better representational power and generalization.

73



Chapter 4

Towards Data-driven and Neural

Computation-based State

Estimation Framework

74



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

4.1 Expressibility of Machine Learning Algo-

rithms

Data-driven methods for battery state estimation are becoming more wide-spread.

This is likely due to the increasing number of readily available battery datasets.

With a rising influx of open-source battery data, non-parametric models which are

not limited to a specific number of parameters, do not have a natural bound on

their expressibility. In other words, non-parametric approaches like artificial neural

networks allow model expressibility that can be naturally adjusted to the underlying

phenomenon. Of course, this is possible when sufficient data is sampled from this

underlying process. Thus, problems of variable complexity become addressable by

non-parametric methods, given sufficient data is available.

Neural computation-based approaches in machine learning and deep learning are

examples of such non-parametric methods. They are able to express complex non-

linear systems, provided sufficient data is available. In addition, the number of pa-

rameters or network weights expressing the underlying modeled phenomenon is not

fixed and can be increased or changed depending on the complexity of the system.

In a recent study, it was found that neural networks with finite numbers of network

weights can express any multivariate polynomial effectively [171]. Expressibility is an

important quality of any battery model or state estimator. As discussed previously,

batteries are highly non-linear systems of variable complexity, exhibiting, at one in-

stant, charge/discharge profiles of lower dynamics and constant ambient temperature

and, at another instant, highly dynamic drive cycles with fluctuating ambient tem-

peratures. The advantages of non-parametric models like neural networks, outlined
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above, are a good match for the range of behaviors a battery model or state esti-

mator is required to express at any given moment as well as throughout its lifetime.

In the next few chapters, deep learning algorithms are shown to have good express-

ibility when performing state-of-charge and state-of-health estimation over a range

of variable dynamics, ambient conditions and, in certain cases, over partial datasets.

This affords a certain practicality to using machine learning models since modeling

battery behavior of variable complexity can be expressed with networks of variable

size, provided sufficient data is available.

4.2 Efficiency of Deep Learning Models

Like expressibility, efficiency is also critical to the representation of complex battery

behaviors. Efficiency in the context of deep learning describes the amount of resources

required to express a non-linear system. These resources can include the number of

neurons, the number of layers or the number of network weights. Although there

is currently no evidence that deeper networks acquire any additional expressibility,

there are a few studies which investigate the increase in efficiency accrued with deeper

networks [171; 172; 173; 174]. Specifically, these studies show that polynomial or

exponential improvements in efficiency are obtained with deeper networks [171; 175].

Efficiency becomes particularly important in the context of SOC and SOH esti-

mation since processing power in mobile applications like electrified vehicles tends

to be limited. To understand this further, state-of-charge estimation using feedfor-

ward neural networks is used as an example and an analytical representation of the

computational efficiency is given. Since most of the computational cost is due to

floating-point operations, then it follows that the computational time of a forward
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Figure 4.1: Experimentally verified relationships of computational time vs. number
of neurons as well as vs. number of layers. (right) Semi-log plot of computational
time vs. the number of neurons. The number of layers in the DNN is fixed to 4
layers. (left) Computational time as a function of the number of layers. The number
of neurons in each layer of the DNN is fixed to 50 neurons.

pass is proportional to the number of multiplication and addition operations. Refer-

ring to Figure 3.2, for each neuron of the DNN, there exists d multiplications and

d − 1 additions resulting, ideally, in 2d − 1 operations per neuron. Let N be the

number of neurons in each layer, τ be the total number of time steps in the sequential

dataset and L be the number of layers in the DNN, then the number of floating-point

operations is given by;

F (τ, L,N) = τ
[
N2(2L− 4) +N(2d− L+ 3)− 1

]
(4.1)

Therefore, when letting τ and L remain constant, it is immediately clear that the
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number of floating-point operations grows as the square of the number of neurons or

in Big-O notation as O(N2). On the other hand, if τ and N remain constant, and the

number of layers is allowed to vary, then it follows that the number of floating-point

operations grows linearly with the number of layers, L, or in Big-O notation as O(L).

Hence, it is typically preferred that networks grow in depth rather than in width to

reduce computational time. This relationship is tested by timing the forward pass for

varying numbers of neurons as well as for varying numbers of layers and are shown

in Figure 4.1.

4.3 Automating the Battery Modeling Process

Traditional framework performing SOC and SOH estimation include numerous steps.

Generally these steps can be summarized into three main categories; the battery test

data generation step is required to perform parameter identification in the battery

modeling step which, in turn, is required to conduct battery state-of-charge and state-

of-health estimation amongst other tasks in mobile applications. The battery data

generation is an important step where a slew of charge and discharge pulsed as well

as dynamic profiles are used to characterize the battery. These were shown as the

pulse discharge/charge tests in Figure 2.4 where a few hours of relaxation is required

for the battery to reach equilibrium. The tests are typically specific in nature so that

certain electro-chemical coefficients can be extracted from the data. Furthermore,

to estimate the SOC of a battery, the OCV-SOC relationship, shown in Figure 2.5,

is often required and is usually obtained at a C-rate of C/10 or C/20 which can be

a time-consuming process [176]. The combined time required to perform the pulse

tests and the OCV-SOC relationship is on the order of days. In the case of neural
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computation-based battery models described in Chapter 3, no specific battery tests

are required. Any data which spans the lower dynamics as well as the higher ones

can be used to train a neural network. This can be drive cycle data, generated in the

lab or in real time, as well as pulsed charge/discharge data. There are no constraints

on the type of data which can be used to train a neural-based battery model.

On the battery modeling front, most commonly used models are parametric such

that the number of model parameters required to express battery behavior is typically

fixed. For some of these approaches, adding parameters for better model expressibil-

ity requires a better understanding of the underlying electro-physical processes. To

improve model expressibility in these types of models, it is often required to further

incorporate into the model the representational power of additional electro-physical

processes.

In the case of equivalent circuit models, additional resistor-capacitor branches

(RC) represent the dynamic potential differences across electrode and electrolyte of

the battery. However, internal mass transport through diffusion causes the battery

cell to react at a spectrum of time constants ranging from seconds to hours [107; 177].

Therefore, it becomes difficult to capture these wide-ranging time-constants with

one or a handful of RC branches. Furthermore, modeling other processes like self-

discharge, for example, will also require additional resistance elements, typically, po-

sitioned in parallel to the output voltage. Electro-chemical models are considered to

have a higher affinity to the underlying electro-physical processes and, hence, can have

better representational power with respect to Li-ion batteries, although some propo-

nents of equivalent circuit models might argue against this. Nevertheless, research

around the topic of electro-chemical li-ion battery models and their applicability in
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electrified vehicles is very popular nowadays. Electro-chemical models contain numer-

ous partial differential equations, representing diffusive mass transport, Fick’s Law

and charge conservation, to name a few. These can be challenging to implement

on an embedded device when considering the limited processing power available in

energy management systems of electrified vehicles. In addition, a plethora of parame-

ters, like the solid lithium concentration are required to accurately model the battery

[108; 18; 98]. Many of these parameters are not only battery chemistry specific but can

also be specific to the battery make and model. Further adding to these drawbacks

are particular coefficients like the diffusion coefficient and maximum solid lithium

concentration which can be proprietary in nature and thus are not typically provided

to the public. This can be a large obstacle when formulating these electro-chemical

models.

For the machine learning-based models discussed in Chapter 3, additional model

parameters or network weights can be used to increase model expressibility. However,

in this case, it is not a requirement for these additional parameters to represent any

underlying electro-physical process. Therefore, the time consumed by ensuring that

the model parameters have some affinity to the underlying electro-physical processes is

avoided. In other words, the time-consuming process of hand-crafting battery models

can be avoided. Furthermore, neural computation-based models are not dependent on

electro-physical coefficients and stoichiometric parameters, as in the case of electro-

chemical models, which allows most anyone to achieve a high fidelity model without

the need for hard-to-obtain proprietary information.
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4.4 One Network to Rule Them All: Unifying Bat-

tery Modeling and State Estimation

As mentioned in the previous subsection, traditional SOC and SOH estimation frame-

work are composed of three fundamental steps; the battery test data generation step

is required to perform parameterization during the battery modeling step which, in

turn, is necessary to conduct SOC and SOH estimation. The third step, where state

estimation is performed, usually contains some form of inference or filter algorithm

since SOC and SOH are not directly observable quantities. These can include adap-

tive observers, sliding mode observers and Kalman Filters, which have been discussed

in greater detail in Chapter 2. Kalman filters are typically more popular with respect

to SOC estimation. In SOH estimation, as discussed also in Chapter 2, many strate-

gies include the use of historical degradation data or probability density distributions

and incremental capacity analysis of characteristic battery profiles. These estimation

strategies are usually critical in obtaining accurate and reliable SOC and SOH values.

Here, it is proposed that the battery modeling step and the state estimation step

can be unified and expressed by a deep learning model. In other words, with machine

learning and deep learning algorithms, it becomes possible to map raw battery signals

directly to SOC and SOH values. This removes the need to not only hand-engineer a

battery model but also the need to hand-craft commonly used estimation methods.

For example, the time-consuming co-variance matrix of the Kalman filter is not nec-

essary when using deep learning strategies. Also, as will be discussed further in the

next few chapters, very little if any preprocessing of the data is necessary in order

to obtain a reliable estimate. From the previous few subsections, it becomes clearer
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that the representational power of deep learning techniques can allow them to express

both the battery model and the inference system necessary to estimate SOC and SOH

directly from the raw battery signals. This can be a powerful utility of deep learning

algorithms which can not only further automate the steps involved in the estimation

process but also reduce the workload necessary to perform all the steps in traditional

SOC and SOH estimation frameworks.

4.5 Distilling Information from Irrelevant Noise

and Reducing Model Rigidity

Traditional machine learning techniques contain no more than one or two layers of

non-linear and linear transformations [149]. Support vector machines (SVMs) are an

example of these types of architectures. They are suitable for solving simpler, well-

defined problems however they could suffer from a lack of expressibility when applied

to dynamic and noisy real world applications [178; 149].

Deeper architectures are capable of taking raw input data and send it through

a series of non-linear and linear transformations such that at each transformational

layer a larger amount of abstractions are extracted from the input data. These ab-

stractions are generally referred to as features and at each consecutive layer, features

of previous features are extracted. Thus, a deep architecture is able to learn a hier-

archy of features that represent complex and highly non-linear functions [179; 180].

Deep learning algorithms are particularly adept at representing input data in this

hierarchical structure and distilling the important information from irrelevant and

noisy data. This becomes particularly important for SOC and SOH estimation in
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electrified vehicles where most battery signals contain not only measurement noise

but also measurement offsets and gains. This feature of deep learning is tested in this

thesis by injecting noise, offsets and gains into the measured battery signals and will

be discussed further in the next few chapters. Interestingly, two important benefits

have surfaced from this feature. As mentioned, the training data was augmented

by injecting white Gaussian noise, offsets and gains into the measurement signals to

first robustify the deep learning algorithms. As will be shown in the next chapters,

augmenting the training data can not only robustify the deep learning algorithms,

but can also increase their estimation accuracy. As it turns out, adding statistical

variances to the training dataset in order to break the symmetries within the network

and reduce model rigidity is a popular practice in the machine learning community

and can further reduce the loss of the network [181; 182; 183; 170]. Allowing the

facile implementation of robustness while simultaneously increasing estimation accu-

racy provides yet another powerful utility of deep learning algorithms which can be

greatly beneficial in real world and noisy environments.

4.6 Increasing Model Universality through Data

One can capitalize on the expressibility and efficiency of deep learning algorithms

to expose a network to all possible scenarios in its perceived environment. In other

words, the universality of a deep learning model can be increased by exposing it to any

information spanning the environment of the modeled system. In the case, of SOC

estimation for Li-ion batteries, this is very beneficial since one deep learning model can

be supplied a plethora of training data spanning numerous ambient temperatures and

a variety of slow and fast dynamics, as will be shown in the next chapters. In the case
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of SOH estimation, different ambient temperatures can be used but, more importantly,

different ranges of the reference profiles can be used as well. This increases the

practicality of the algorithm since it is not required to supply the algorithm with a

fixed range of data in order to estimate the SOH. Since the reference profiles used in

this work are charge curves, this means that the deep learning model can estimate

SOH for most partial charge curves.
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Accurate State-of-Charge

Estimation Using Long Short-Term

Memory Networks
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5.1 Efficacy of Recurrent Neural Networks on Bat-

tery Data

As discussed in Chapter 3, Recurrent Neural Networks with Long Short-Term Memory

(LSTM-RNN), are effective learning algorithms when considering time series data.

Since battery data is very much time-dependent, it is natural to consider LSTM-

RNNs when conducting state estimation. This is attempted here for state-of-charge

estimation. To be able to estimate the SOC of a battery, it is important to know

antecedent information. In most works which use neural network-based techniques for

SOC estimation, some form of antecedent information is used to ensure an accurate

estimation [133; 131; 184]. However, in the case of the LSTM-RNN, the memory cell

stores the characteristic behavior of the battery which it learns from the training data,

hence there is no need to use any antecedent data to make an accurate estimation. As

will be seen, voltage, current and temperature at the present time step is solely needed.

This allows LSTM-RNNs to be more efficient in the type of data they require to learn

expressibility. Furthermore, the recurrent structure of the network and the ability to

store intrinsic behavior of the battery in its memory cell, can allow representational

learning on sparse datasets, as will be shown below. However, because of it’s recurrent

structure, LSTM-RNNs can take longer to train.

It is important to mention that, there is no preprocessing performed on the data

used to train and validated the LSTM-RNN. The raw data is fed through the network

to obtain an estimated SOC. This is another benefit of using an LSTM-RNN since

this removes some of the necessary computation if this algorithm is implemented in

an on-board application. In addition, the LSTM-RNN, as will be shown in the next
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sections of this chapter, has the ability to encode the characteristic behavior of a

battery at numerous ambient temperatures thus reducing the memory required to

store different parameters for different ambient temperatures as is typically done for

traditional battery models. Therefore, these latter advantages make LSTM-RNN a

great candidate to perform estimation on many cells in a battery pack.

To evaluate the performance of the LSTM-RNN at SOC estimation a few different

metrics are used. These include the Mean Absolute Error (MAE), the Root Mean

Square Error (RMS), the Standard Deviation (STDDEV) and the Maximum Absolute

Error (MAX).

5.2 Experimental Data

5.2.1 Drive Cycle Data for Training and Validation

A Panasonic 18650 battery cell with a lithium nickel cobalt aluminum oxide

(LiNiCoAlO2 or NCA) chemistry, similar to the cell used in some Tesla vehicles,

was tested [185]. The battery, which is rated to have 43 mΩ dc resistance is de-

scribed in Table 5.1 [185; 186]. All the testing was performed in a thermal chamber

with cell testing equipment manufactured by Digatron Firing Circuits, as described

in Table 5.2 and shown in Figure 5.1a).

To generate training and validation data for the LSTM-RNN, the battery was

exposed to a selection of drive cycles at ambient temperatures ranging from 0 to 25◦C.

A set experimental procedure was used, as is described in Figure 5.1b). A schematic

of the experimental apparatus is shown in Figure 5.1c). The thermal chamber was

first set to 25◦C followed by a 3 hour pause to allow the battery’s internal temperature
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Figure 5.1: a) Equipment used for battery testing, b) battery test procedure and c)
schematic of the test bench and data logging system.
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Table 5.1: Panasonic 18650PF Cell Parameters

Nominal Open Circuit Voltage 3.6V
Capacity Min. 2.75 Ah / Typ. 2.9 Ah
Min / Max Voltage 2.5V / 4.2V
Mass / Energy Storage 48g / 9.9Wh
Minimum Charging Temperature 10 ◦C
Cycles to 80% Capacity 500 (100% DOD, 25 ◦C)

Table 5.2: Test Equipment Specifications

Cycler Manufacturer Digatron Firing Circuits
Test Channel Used 25A, 0-18V channel
Voltage / Current Accuracy +/- 0.1% Full Scale
Data Acquisition Rate Used 10Hz
Thermal Chamber Cincinatti Sub Zero ZP-8
Size 8 cu. Ft.
Accuracy +/-0.5 ◦C
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Figure 5.2: Drive cycle power profiles, scaled for a single cell of 35kWh pack for a
Ford F150 electric truck. a) HWFET, b) UDDS, c) LA92, d) US06.
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to reach 25◦C. The battery was then fully charged with a constant current charge rate

of 2.9 A (1C) followed by a constant voltage charge at 4.2 V which was terminated

when current fell below 50 mA. The thermal chamber temperature was then set to the

desired ambient temperature to record the subsequent drive cycle, and, in turn, this

was paused for three hours to allow the battery’s internal temperature to reach steady

state. The battery is then discharged using a drive cycle power profile which includes

regenerative braking (i.e. charging) power if the ambient temperature is greater than

or equal to 10◦C, the minimum temperature for which the battery is rated to charge.

The current sensor that is used to measure current and to calculate capacity has an

error of less than 25mA. For the typical dataset, this sums to a cumulative error of

under 40mAh which is small compared to the 2900mAh of battery capacity.

During experimentation, the battery was exposed to 10 drive cycles. Each dataset

consisted of a random combination of different drive cycles which included HWFET,

UDDS, LA92 and US06. Constructing these unique datasets which were composed

of various drive cycles, having a spectrum of different dynamics, provided the LSTM-

RNN with a broad range of realistic driving conditions. These 10 cycles were applied

on the battery at three different ambient temperatures (0, 10, or 25 ◦C). Training of

the LSTM-RNN is performed on a subset of these 10 cycles (typically 8 to 9 cycles)

and will henceforth be referred to as the training data while validation is performed on

a completely different subset of cycles (usually 1 or 2) which are henceforth referred

to as test cases. An additional test case, called the Charging Test Case, is recorded

at 25 ◦C to examine the network’s performance over a charging profile. Furthermore,

a second additional test case is recorded during experimentation which exposes the

battery cell to an ambient temperature increasing from 10 to 25 ◦C and is used
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Figure 5.3: US06 drive cycle recorded at an ambient temperature of 25◦C and 0◦C.
The following measured quantities are shown, Voltage (top left), Current (top right),
Amp-hours (bottom left) and battery surface temperature (bottom right). Charging
is not recommended by manufacturer below an ambient temperature of 10◦C thus no
regenerative braking is performed at or below this temperature.
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to validate the LSTM-RNN’s ability to adapt to a varying ambient temperature.

The drive cycle power profiles used are for an electric Ford F150 truck [187; 188],

with the power profile scaled for a single cell of a 35 kWh pack consisting of 3,680

of the Panasonic NCR18650PF cells. The power profile for the drive cycles has

discharge power (negative power) as great as 40 W per cell and charge power (positive

power) as great as 35 W per cell, as is shown in Figure 5.2. This translates to peak

current of around 18 A, or 6C, which is a fairly typical peak C-rate for an electric

vehicle application. The power profile is repeated until the battery’s usable capacity

is depleted. This is defined as 2.61 Ah when discharged at an ambient temperature

of 25 ◦C, 2.5 Ah at 10 ◦C and 2.32 Ah at 0 ◦C.

The measured voltage, current, amp-hours, and battery surface temperature are

shown in Figure 5.3 for the US06 drive cycle at an ambient temperature of 25 ◦C and

0 ◦C. At 25 ◦C the current is relatively low, ≤3C, and the battery voltage drop is

not too significant. The temperature, measured at the surface of the cylindrical cell

with a thermocouple, increases by a few degrees over the first 70 minutes of the drive,

and then spikes to 34 ◦C as the terminal voltage falls, resistance increases, and the

loss therefore increases. At 0 ◦C, the battery resistance is much higher, resulting in

significant voltage drop as is shown in Figure 5.3. The higher resistance coupled with

no regenerative braking energy due to the low temperature state, results in the drive

cycle being repeated for 50 minutes at 0 ◦C, while this was repeated for 85 minutes

at 25 ◦C. The battery also heats significantly, up to 13 ◦C, due to the higher loss at

low temperature.

Although the LSTM-RNN showcased in this section is trained on data obtained

from a Panasonic 18650PF cell, the same LSTM-RNN can be trained on any other
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type of battery cell. The network architecture will not change from one battery cell to

another. The network might need to be retrained for a completely different battery,

but it’s architecture and the values of the network hyperparameters, like the learning

rate, will not change. This is not any different than traditional estimation techniques

which must re-parameterize the battery models for different types of batteries.

The following two subsections investigate the LSTM-RNN’s SOC estimation ac-

curacy when trained on a dataset recorded at a constant ambient temperature and

at variable ambient temperatures, respectively.

5.3 State-of-Charge Estimation at Fixed Ambient

Temperature

As mentioned above, the vector of inputs fed into the LSTM-RNN is defined as Ψk =

[V (k), I(k), T (k)], where V (k), I(k), T (k) are the voltage, current and temperature

measurements of the battery at time step k, respectively. The mixed drive cycles

were logged at a sampling frequency of 1 Hz and they ranged roughly between 4000

and 10000 seconds long.

In this section, the network is trained on up to 8 mixed drive cycles while vali-

dation is performed on 2 discharge test cases. In addition, a third test case, called

the Charging Test Case, which includes a charging profile is used to validate the

networks performance during charging scenarios. The regenerative braking which

results in charging currents of over 8 A, as can be seen from Figure 5.3, allows us

to test the network’s performance at higher momentary charge rates. Regenerative

braking charging current is not included for validation test cases recorded at the
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Table 5.3: SOC estimation accuracy of LSTM-RNN trained on fixed ambient tem-
perature data

Test Case MAE(%) RMS(%) STDDEV(%) MAX(%)
Test Case 1
at 10◦C * 0.807 1.075 0.710 2.819

Test Case 2
at 10◦C * 1.252 1.541 0.898 4.312

Charging Test
Case at 25◦C ** 0.688 0.856 0.510 4.000

*Results obtained with network having a depth in time of Ñ=500

**Results obtained with network having a depth in time of Ñ=1000

lower temperatures since the battery is not rated to charge at temperatures below

10◦C. In the Charging Test Case, charging is performed at 1C (2.9A). There was

interest in examining an even faster charge rate, but the 1C rate is already twice

the datasheet’s recommended charge rate so rates that are any higher than this are

considered excessive and potentially dangerous. The LSTM-RNN’s hidden layer has

500 computational nodes. A smaller number of computational nodes are possible,

however the network can converge to a solution much quicker with a larger number

of nodes while using a GPU. The computational time needed to train this network is

about 5 hours.

The MAE achieved on each of the first two test cases is 0.807% and 1.252%, re-

spectively. The MAE, RMS, STDDEV and MAX performance metrics for these three

test cases are outlined in Table 5.3. The LSTM-RNN also showed good performance

when tested on the Charging Test Case where the MAE and MAX achieved is 0.688%

and 4.000%, respectively. The estimation performance on the Charging Test Case is

shown in Figure 5.4. At the final training epoch, the error at every time step of the

test case is shown in subplot 2. Also, at every training epoch, these errors over time
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Figure 5.4: LSTM-RNN tested on the Charging Test Case which includes dis-
charge/charge profiles, recorded at ambient temperature of 25◦C. LSTM-RNN ar-

chitecture: network depth in time is Ñ = 1000 and LSTM contains 500 nodes. MAE
vs. the training epochs is also shown.

are used to calculate the MAE. Therefore, a plot of MAE as a function of training

epoch is shown in subplot 3.

We conduct various tests to understand the factors which influence the LSTM-

RNN’s estimation performance and to further validate this estimation strategy. In the

first test, we trained three LSTM-RNNs having different depths in time, i.e. where

Ñ = 250, 500 and 1000 at an ambient temperature of 10◦C. The estimated SOC and

the error over time of these different LSTM-RNNs are shown in Figure 5.5 and their

performance metrics are outlined in Table 5.4. To maintain an unbiased comparison
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Table 5.4: SOC estimation accuracy of LSTM-RNN with various network depths in
time

Network Depth

in Time (Ñ) MAE(%) RMS(%) STDDEV(%) MAX(%)
250 1.303 1.670 1.043 5.380
500 0.672 0.863 0.293 3.015
1000 0.573 0.690 0.148 2.569

Networks trained on data recorded at ambient temperature of 10◦C

between the network architectures tested in Table 5.4 training is stopped at 15000

epochs in each case. It is observed that the networks having larger depths in time

which are exposed to more historical data perform better than those exposed to a

smaller amount of historical data. However, the increase in estimation accuracy is

not linearly proportional to depth in time since going from Ñ = 250 to Ñ = 500

reduces the MAE by about a half however, going from Ñ = 500 to Ñ = 1000 offers

only a 15% reduction in MAE.

Another test is performed to measure the amount of training data needed to

achieve good estimation accuracy. Therefore, instead of training the LSTM-RNN on

a training dataset composed of 8 concatenated mixed drive cycles, as done to achieve

the results in Table 5.3, Figure 5.4, Figure 5.5 and Table 5.4, we record the estimation

accuracy of LSTM-RNNs trained on different numbers of mixed drive cycles. This is

shown in Figure 5.6, where LSTM-RNNs are trained on one to nine mixed drive cycles

and the MAE and max error measured over Test Case 1 are plotted in a bar graph.

It is clear that the more training data the network is exposed to, the more accuracy

is achieved, however after a certain amount of training data (6-8 drive cycles), we

obtain diminishing returns. Interestingly, the LSTM-RNN is able to achieve a MAE

of below 1% when training is conducted on 3 or more drive cycles. This can be very
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Figure 5.5: Performance of 3 different LSTM-RNNs having depth in time of Ñ =
250, 500, 1000, tested on Test Case 1 recorded at an ambient temperature of 10◦C.
Each of the three networks’ LSTM cell contains 500 computational nodes. Table 5.4
contains performance metric values.
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Figure 5.6: LSTM-RNN trained on different amounts of training data at an ambient
temperature of 10◦C and tested on Test case 1. Training is stopped at 15000 epochs.
LSTM-RNN architecture: network depth in time is Ñ = 500 and LSTM contains 500
nodes.

advantageous since the LSTM-RNN can learn it’s network parameters and achieve

accurate SOC estimates after being exposed to relatively small amounts of training

data.

Two additional tests are conducted to examine the LSTM-RNN’s performance

when either an incorrect initialization is given to the network or when the test drive

cycle begins at different SOC levels. Giving an LSTM-RNN an incorrect initialization

requires setting the hidden layer state at time step k = 0 to zero. This is the only

way to test for the case of incorrect initialization since the input vector given to the

LSTM-RNN at every time step includes V (k), I(k) as well as T (k). SOC at time step

k − 1 or older are not used as feedback to the network. When correctly initialized,

where h0 = h∗, an LSTM-RNN achieves good performance with MAE = 0.776%
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Figure 5.7: Performance of LSTM-RNN with initial state of charge of 70%. Two
different cases are tested; one with correct initialization of the hidden layer (h0 = h∗)
and the other with an incorrect initialization of the hidden layer (h0 = 0). Please
refer to text for further discussion.
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Figure 5.8: Performance of LSTM-RNN given an incorrect initialization and starting
at SOC of 100%. Two networks are tested; one having depth in time of Ñ = 500
and the other having depth in time of Ñ = 1000. LSTM contains 500 nodes in both
networks.

on Test Case 1 which begins at SOC = 70%, shown in Figure 5.7. When given an

incorrect initialization, where h0 = 0, the LSTM-RNN struggles to estimate SOC at

the start of the drive cycle (SOC = 70%), where the error is about 27%, but quickly

converges to a good state-of-charge estimate within the first 70 seconds of the drive

cycle. Further validation is performed on this front by examining whether an LSTM-

RNN that is deeper in time can converge quicker if given an incorrect initialization.

This is shown in Figure 5.8 where two LSTM-RNNs, one having depth in time of

Ñ = 500 and the other having Ñ = 1000, are tested with incorrect initialization on

Test Case 1 beginning at a SOC of 100%. It’s clear that the LSTM-RNN which has

a depth in time of Ñ = 1000 seconds converges in less than 50 seconds which turns
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Table 5.5: SOC estimation accuracy of LSTM-RNN trained on multiple ambient
temperature data

Ambient
Temperature MAE(%) RMS(%) STDDEV(%) MAX(%)

25◦C 0.774 1.110 0.796 3.692
10◦C 0.782 0.995 0.616 4.047
0◦C 2.088 2.444 1.270 6.687

Varying
Temperature 1.606 2.038 1.256 5.815

out to be faster than the LSTM-RNN having Ñ = 500.

5.4 State-of-Charge Estimation at Variable Ambi-

ent Temperature

A LSTM-RNN is constructed to handle a larger training dataset which is composed

of 27 drive cycles. These 27 drive cycles include three sets of 9 drive cycles; each

set is recorded at 0◦C, 10◦C and 25◦C. Another different mixed drive cycle, which

is not a part of the training data, is used as a test case to validate the network’s

performance at each temperature. In particular, there are two goals that we desired

to achieve within this second study. The first is to train the LSTM-RNN on datasets

recorded at more than one ambient temperature such that one single LSTM-RNN

can estimate SOC at different ambient temperature conditions. The second goal is

to examine the LSTM-RNN’s capability to interpolate its ability to estimate SOC at

ambient temperatures different than the ones on which it was trained. The LSTM

cell used in this study is unrolled for Ñ = 1000 time steps and the time required to

train this network is about 12 hours.
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Figure 5.9: Performance of a single LSTM-RNN on Test Case 1 performed at ambient
temperatures of a) 25◦C, b) 10◦C and c) 0◦C. LSTM-RNN architecture: network

depth in time is Ñ = 1000 and LSTM contains 500 nodes.
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Figure 5.10: LSTM-RNN validated over UDDS test case with rising ambient temper-
ature. From the top; measured SOC compared to estimated SOC, the error and the
ambient temperature vs. time. LSTM-RNN architecture: depth in time is Ñ = 1000
and LSTM contains 500 nodes.
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The estimation performance of this single LSTM-RNN is shown in Figure 5.9

where estimation performed at 25◦C, 10◦C and 0◦C are plotted in a), b) and c), re-

spectively. The MAE achieved at these three ambient temperatures is 0.774, 0.782

and 2.088. The MAE, RMS, STDDEV and MAX metrics achieved over all three am-

bient temperatures are outlined in Table 5.5. The performance is good and validates

the LSTM-RNN’s ability to encode the dynamics experienced by a Li-ion battery at

various ambient temperatures into the parameters of a single network.

The single LSTM-RNN performed well for estimation on the validation test cases

recorded at three different constant ambient temperatures however, battery-powered

vehicles can undergo a change in ambient temperature of more than 10◦C over the

course of one day depending on the climate or the geographical location within which

they operate. Hence, an interesting test is to examine its performance on a test

case, not included in the training data, which is recorded at a changing ambient

temperature. Therefore, the LSTM-RNN’s performance over a test case where the

ambient temperature in the thermal chamber is increased from 10◦C to about 25◦C

is shown in Table 5.5 and in Figure 5.10. The MAE achieved on this test case is

1.606% and showcases the LSTM-RNN’s ability to perform estimation at ambient

temperatures between 10◦C and 25◦C to which it is not exposed during the training

process. This can be a great advantage if training data is scarce.

In summary, this chapter highlights the elegance of the LSTM-RNN model for

SOC estimation. The contribution on the battery modeling front is how the LSTM-

RNN maps battery measurements like voltage, current and temperature directly to

SOC. The LSTM-RNN offers competitive estimation performance when compared to

other algorithms mentioned in literature which are shown in Table Table 5.6. The
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contribution on the parameterization front is how the training algorithm self-learns

all the network parameters; freeing researchers from hand-engineering and parame-

terizing the models themselves. In traditional methods, only after the parameters

are fitted to a battery model, and after the time-consuming covariance matrix in a

Kalman filter is determined, for example, can the algorithm operate in the field. In

the third contribution, the elegance of this machine learning technique is that it al-

lows us to encode the characteristic behavior at different ambient temperatures within

the network while maintaining good estimation accuracy at these different ambient

temperatures.
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Chapter 6

Feedforward and Deep Neural

Networks for State-of-Charge

Estimation
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6.1 Trade-offs Between DNN and LSTM-RNN for

SOC Estimation

This chapter explores the use of Feedforward Neural Networks and Deep Feedforward

Neural Networks (DNN) for state-of-charge estimation of Li-ion batteries. Many

works have previously attempted to perform SOC estimation while using a neural

network, as discussed in Chapter 3, however most have required the use of a filter

in order to achieve estimation errors below 2-3% [133; 131; 184]. In Chapter 5, it

was demonstrated that SOC estimation can be performed without the need of any

additional filters with an LSTM-RNN. In this chapter, the use of DNNs performing

SOC estimation is examined. These can also be used with the need for filters and

have their own advantages when used for SOC estimation.

In the previous chapter, Chapter 5, an LSTM-RNN is used to estimate SOC.

The results showed competitive performance and the only inputs required by the

LSTM-RNN are the voltage, the current and the temperature at the present time

step. There is no requirement to feed antecedent values of any of these battery

measurements. Therefore, for on-board applications, this means that there is no need

to save antecedent values in order to perform an estimation calculation. However,

as mentioned previously in Chapter 5, the training process of the LSTM-RNN is

slower than the training process of a DNN. This results from the recurrent structure

of the LSTM-RNN, illustrated in Figure 3.3, which needs to have the previous hidden

states, hk−1, computed in order to compute the next hidden state, hk. Therefore,

operations for this type of network cannot be parallelized as much as can be for other

types of neural networks like DNNs. The latter networks are not time dependent,
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therefore the entire set of computations between the input layer and the output layer

can be parallelized. Therefore, the training process for DNNs can be much faster as

a result of its non-recurrent structure. However, the latter feature, while being an

advantage during training, can be a drawback with respect to efficiency. As will be

seen in this chapter, when considering the number of inputs required to achieve the

same accuracy, the DNN will always require more than the LSTM-RNN. This is of

course due to its lack of recurrent structure; since the DNN is not time dependent, it

cannot hold the characteristic behavior of the battery in its memory, hence, that time

dependent characteristic behavior must be supplied to the DNN through its inputs.

Therefore, when using DNNs, antecedent values must be stored and saved during

on-board operation in order to perform the calculation in the forward pass.

In the case of the LSTM-RNN, preprocessing is not used. This can be a result of

how effective LSTM-RNNs are at representational learning. In the case of DNNs, it

is observed that scaling is required. Therefore, this meant that the LSTM-RNN will

not need to perform additional operations related to preprocessing of the raw data.

Although some preprocessing is required and additional antecedent information is

required for DNNs, they can offer ease of implementation for on-board applications.

This of course results from the simplicity of a DNN layer versus the compositional

intricacy of the LSTM-RNN layer.

To evaluate the SOC estimation performance of the DNN, a few different metrics

are used, as was used in Chapter 5. These include the Mean Absolute Error (MAE),

the Standard Deviation (STDDEV) and the Maximum Absolute Error (MAX).
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6.2 Experimental Data

6.2.1 Drive Cycle Data for Training and Validation

A series of vehicle drive cycle and charging profiles were performed on a battery cell,

and the resulting measured data is used to train and validate the DNNs. The nine

different drive cycles used are given in Table 6.1. The cycles were chosen to cover a

range of mean, RMS, and peak power values for the battery, as would be experienced

in a vehicle application, and to provide enough data to train the neural network.

The tests were also performed at a range of temperatures, down to -20◦C where

nonlinear resistance, battery self-heating, and diffusion effects make SOC estimation

more tedious.

Four of the cycles, which are the US06, HWFET, UDDS, and LA92, are standard

drive cycles, and one drive cycle, called the NN, was designed for this work and has

additional dynamics useful for training the DNNs. The other four cycles, cycles 1

through 4, are composed of a mixture of the four standard drive cycles performed in

a random, repeating order. The battery power command for the tests was calculated

for a large light duty passenger vehicle with a 35kWh battery pack, and scaled for a

single battery cell.

The DNNs are validated using the US06 cycle, an aggressive and highly dynamic

profile, and the HWFET cycle, a profile with moderate dynamics. The data for the

remaining seven tests are used to train the neural network, as is indicated in Table 6.1.

The test procedure used is as follows: (1) set the thermal chamber temperature to

25◦C, (2) wait ten minutes or until the measured battery temperature is greater than

10◦C, (3) perform a full charge, (4) set the chamber to the current test temperature,
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Table 6.1: Tested Drive Cycles and Corresponding Battery Cell Power Characteristics

Mean RMS Peak
Test Use Power(W) Power(W) Power(W)

Cycle 1 Training 3 7 35
Cycle 2 Training 3 7 35
Cycle 3 Training 3 7 35
Cycle 4 Training 3 7 35
US06 Validation 6 13 34

HWFET Validation 5 6 19
UDDS Training 2 4 19
LA92 Training 2 7 35
NN Training 3 10 39

(5) wait for the battery temperature to stabilize, and (6) perform the drive cycle. The

drive cycle is repeated until the battery voltage reaches 2.5V for the 25 and 10◦C tests.

For the lower temperature tests, the battery resistance is much higher, causing the

terminal voltage to hit 2.5V periodically throughout the test. To accommodate the

higher resistance, an amp-hour cut off 2.32Ah at 0◦C, 2.03Ah at -10◦C, and 1.74Ah

at -20◦C is used instead. The battery tester still has a lower voltage limit of 2.5V,

but the test is not terminated when this voltage is hit. The tester reduces current to

prevent voltage from falling below the limit. The battery may hit the lower voltage

limit several times when at higher currents and low SOC. The nine drive cycle tests

were performed in the order given in Table 6.1, first at 25◦C, and then at 10, 0,

-10, and -20◦C. Following those tests, the nine drive cycles were also performed at

a variable ambient temperature where the temperature was increased from 10◦C to

about 25◦C. These varied tests are used to evaluate the SOC estimation algorithm

for cases when the battery is warming up throughout the drive.

The tested battery cell is a Panasonic NCR18650PF, nickel cobalt aluminum
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Table 6.2: Panasonic 18650PF Cell Parameters

Nominal Open Circuit Voltage 3.6V
Capacity Min. 2.75 Ah / Typ. 2.9 Ah
Min / Max Voltage 2.5V / 4.2V
Mass / Energy Storage 48g / 9.9Wh
Minimum Charging Temperature 10◦C
Cycles to 80% Capacity 500 (100% DOD, 25◦C)

Table 6.3: Test Equipment Specifications

Cycler Manufacturer Digatron Firing Circuits
Test Channel Used 25A, 0-18V channel
Voltage / Current Accuracy +/- 0.1% Full Scale
Data Acquisition Rate Used 10Hz
Thermal Chamber Cincinatti Sub Zero ZP-8
Size 8 cu. Ft.
Accuracy +/-0.5◦C

(NCA) chemistry Li-ion battery, with a nominal capacity of 2.9Ah and other spec-

ifications as described in Table 6.2 [185; 186]. The battery cell is tested with a 25

amp, 0 to 18V rated channel of a Digatron Firing Circuits Universal Battery Tester,

and placed in a Cincinnati Sub Zero thermal chamber, as is described in Table 6.3.

The battery tester is very accurate; rated for less than 0.1% error, which is impor-

tant because the measured battery amp-hours is used to calculate the reference or

ground truth SOC value. The maximum error of 0.1% translates to a 25mA current

error, which would result in a maximum of 25mAh of error for a one hour drive cycle

test; which can be considered to have a negligeable effect on the results. The battery

system and instrumentation is illustrated in Figure 6.1, which shows that the voltage

sensing leads are connected directly to the battery terminals and that a thermocouple

is connected to the center of the case.
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K-TypeThermo-couple

NCR18650PFBattery Cell

+Power

-Power
-Sense wire

+Sense wireTemperatureSense

Chambercontrol wire
Digatron Battery Testing Equipment

Control computer
Ethernet 0-18V/25ATest andSensingChannel

Figure 6.1: Schematic of the battery test bench and data logging system.

6.2.2 Data Augmentation for Robust Deep Neural Networks

To robustify the deep neural network, the training data is augmented by injecting

white Gaussian noise into the battery measurement signals. In particular, Gaussian

noise with 0 mean and a standard deviation of 2-4% is injected into the voltage,

current and temperature measurements. In addition, to robustify against offsets and

gains inherent in battery measurement devices, an offset is applied to all measurement

signals and a gain is applied to the current measurement. Specifically, an offset of

up to ±150mA and a gain of up to ±3% is applied to the current measurements, an

offset of up to ±5mV is applied to the voltage measurement and an offset of up to

±5◦C is applied to the temperature measurement. New versions of the initial recorded

training data is created with different noise, offset and gain levels. We create up to

20 new versions of the training data.

All the results showcased in this work are based on DNNs trained on data ob-

tained from Panasonic 18650PF cells. Nevertheless, the DNNs discussed in this work
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can be trained on any other type of battery cell. The network architectures will re-

main unchanged if used to perform SOC estimation on another battery however, the

network might need to be retrained or better yet transfer learning can be used to

simply retrain the last one or last few layers of the network. This would be less time-

consuming than re-parameterizing a model for an alternative battery cell as would be

typically performed for traditional models.

The following two subsections examine the SOC estimation accuracy of the DNN

at fixed ambient temperature and, thereafter, at variable ambient temperatures.

6.3 State-of-charge Estimation Results

As mentioned earlier, the vector of inputs fed into the DNNs is given by ψ(t) =

[V (t), T (t), Iavg(t), Vavg(t)] where V (t), T (t), Iavg(t) and Vavg(t) represent the voltage,

temperature, average current and average voltage of the battery at time step t. The

output of the DNN is the estimated SOC at t. The drive cycles used for training and

validation are recorded at a sampling frequency of 1Hz and are between 4000 and

13000 seconds long.

6.3.1 SOC Estimation at Constant Ambient Temperature

In this section, the DNN is trained on up to seven complete discharge datasets which

are augmented as described in subsection 3.3. To verify the DNN’s performance

in both fast and slow dynamics, validation is conducted on the US06 and HWFET

datasets, respectively. These latter datasets as well as all other datasets used to

obtain performance results are only used during validation and never during training.
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Regenerative breaking is also allowed for the discharge datasets recorded at the higher

temperatures however not at lower ambient temperatures since the battery is not rated

for charging at temperatures lower than 10◦C. When regenerative braking occurs at

the higher temperatures, the charging current is seen to spike up to 8 A. This is

useful in order to ascertain the DNN’s performance at higher charging currents even

if momentary in nature. These higher charging spikes cannot be maintained for longer

than a few seconds since this would also exceed the peak charge current rating of the

battery. To evaluate the DNN’s performance in charging scenarios for longer periods

of time, the DNN is applied on a charging validation dataset. The charge rate used

in this dataset is 1C. There is interest in using a charge rate that is higher than

this however 1C is already twice the recommended charge rate and selecting an even

higher rate is excessive and potentially dangerous.

Good performance is observed both in slow and fast dynamics as well as in the

charging validation dataset, as can be seen in Figure 6.2 and in Table 6.4, where an

MAE of 1.35%, 1.85% and 0.39% is achieved over the HWFET, US06 and charging

datasets, respectively. The DNN used to obtain these results is composed of 3 layers

where the first two layers each contains 4 neurons and the last layer contains 1 neuron.

The network is trained for up to 85000 epochs which culminates to 5 hours of training

time on the GPU. The MAE calculated over the HWFET validation dataset is plotted

as a function of the training epochs and is also shown in Figure 6.2(a).

Different tests are performed to examine effects of various structural aspects of

the DNN on SOC estimation accuracy. The first of such tests evaluates the influence

of the λ parameter on estimation accuracy. The λ parameter, used when computing

the compositional inputs which are the average voltage and current is explained in
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Figure 6.2: (a) From top to bottom; DNN estimation accuracy, estimation error over
the HWFET discharge validation dataset recorded at 25◦C and the mean absolute
error as a function of training epochs. (b) Estimation accuracy and estimation error
over validation charging profile also recorded at 25◦C. DNN is composed of 3 layers
and 4 neurons in each layer.
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Table 6.4: SOC estimation accuracy of deep neural network trained on fixed ambient
temperature data of 25◦C during validation

Validation Dataset MAE(%) STDDEV(%) MAX(%)
HWFET Dataset 1.35 0.94 3.80

US06 Dataset 1.85 1.20 5.14
Charging Dataset 0.39 0.26 1.21

DNN architecture: 3L and 4N/layer

Table 6.5: SOC estimation accuracy using different averaging parameter λ in training
data

Validation Dataset MAE(%) STDDEV(%) MAX(%)
HWFET with λ = 100 0.96 0.76 3.91
HWFET with λ = 400 0.61 0.49 2.38

US06 with λ = 100 1.16 0.86 4.54
US06 with λ = 400 0.84 0.61 3.14

All validation results are obtained on 25◦C datasets
DNN architecture: 3L and 4N/layer

more detail in Section 3.2.1. In effect, this would examine how exposure to increased

amounts of historical data could increase estimation accuracy of the DNN. A DNN

is trained on input data with λ = 100 and another is trained on input data with λ =

400. The results from these two networks are shown in Figure 6.3a) and summarized

in Table 6.5. Exposing the DNN to 400 historical data points as opposed to 100 offers

good performance gains with a reduction in the MAE and MAX of approximately

30% and 30-40%, respectively. To ensure an unbiased comparison, training is stopped

at 160,000 epochs.

The battery measurements performed in the lab are obtained in isolated and

controlled environments to ensure good quality data. However, in the real world,

battery measurements, like voltage, current and temperature measurements, can be of

variable quality. A DNN can be taught to handle such noisy environments at training
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Table 6.6: SOC estimation accuracy of DNN trained over augmented and unaug-
mented data

Training Data
Augmentation Validation Dataset MAE(%) STDDEV(%) MAX(%)

No HWFET 1.35 0.94 5.04
Yes HWFET 1.06 0.49 3.41
No US06 2.67 2.08 15.14
Yes US06 1.59 1.23 7.14

All validation results are obtained on 25◦C datasets
DNN architecture: 3L and 4N/layer

time. As a result, a comparison showing the estimation performance achieved on

the augmented training dataset versus the unaugmented training dataset is shown in

Table 6.6 and in Figure 6.3b). From the latter table and figure, it becomes evident

that using the augmented dataset for training achieves a significant reduction in MAE

and MAX of 21-41% and 32-43%, respectively. By injecting Gaussian noise, offsets

and gains on the measurement devices, not only is the accuracy of the DNN improved

but the network is robustified for real world application.

Another important test is to verify the DNN’s performance when it is initialized

incorrectly. To that end, instead of providing the correct measured initial battery

voltage of 4.2 V to the network, an incorrect initial value of 3.6 V is given. This is

shown in Figure 6.3c), where the DNN struggles to output a good estimate of SOC

at the beginning of the dataset, where the error is over 50%, but quickly converges

to good SOC estimation within the first 10 seconds of the dataset.

A large fraction of the performance results discussed above are obtained on DNNs

with 3 layers; where the first two layers contain 4 neurons and the last fully-connected

layer contains 1 neuron. Interestingly, this corresponds to 36 network weights which is

relatively small in size and can be flashed on any embedded processor when operating
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Figure 6.3: (a) Performance of DNN with λ=100 and with λ=400. (b) Performance
of DNN trained over augmented training data and over unaugmented training data.
(c) Performance over incorrectly initialized network. DNNs have 3 - 8 layers and 4 -
8 neurons per layer. Validation is performed over 25◦C HWFET dataset.
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Figure 6.4: (a) Estimation accuracy measured during validation versus number of
layers in DNN. The number of neurons per layer is fixed to 4 neurons. (b) Estimation
accuracy measured during validation versus number of neurons. The number of layers
in the DNN is fixed to 6 layers. All tests are performed over validation datasets
recorded at 25◦C and λ = 400.
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in real time. To determine an optimal network architecture, the estimation accuracy is

evaluated on networks with different numbers of layers and neurons. This is shown in

Figure 6.4a) and in Figure 6.4b), respectively. For each test case shown in Figure 6.4,

λ = 400 and training is stopped at 100,000 epochs to ensure an unbiased comparison.

It is clear that a deeper network can achieve better estimation accuracy as going from

2 layers to 4 offers a 10% and a 24% reduction in MAE and MAX error, respectively.

In the same vein, going from 4 to 6 layers reduces the MAE and MAX error by

9% and 15%, respectively, however, increasing the depth up to 8 layers achieves no

reduction in MAE or MAX. This could very well be a result of the gradients, defined

in Equation (3.14), becoming much smaller as more layers are added to the network

which leads to vanishing gradients and the inability to update the network weights

during training. With respect to the number of neurons in the network, Figure 6.4b)

indicates that going from 1 neuron to 4 per layer offers a reduction in MAE and MAX

of 32-35% and 16-45%, respectively. However, 8 or more neurons offer no additional

reduction in MAE or MAX error. This could very well be as a result of the having a

fixed number of neurons in each layer as opposed to an increased number of neurons

which allows the network to learn more features at each layer.

6.3.2 Computational Efficiency and Real Time Operation

The computational complexity of the DNN as a function of neurons and layers was

presented in Section 4.2. Nevertheless, it is also essential to compare the computa-

tional efficiency of the DNN with respect to other competing algorithms. To this end,

the computational time of the DNN is compared to that of an EKF approach used

in [128].
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Table 6.7: Computational time of a DNN and of an extended Kalman filter

SOC Estimation Technique Computational Speed (seconds)
DNN (2 layers, 256 neurons) 0.07

Combined Model + EKF 0.66

The goal of this test was to measure the time required by these two techniques

in order to compute through 13000 data points. This is performed in MATLAB

on a machine with an Intel Xeon E5630 processor having 4 cores with a base clock

frequency of 2.53 GHz and with 32 Gb of RAM. The results are shown in Table 6.7

and are based on an average of 20 separate executions of the two algorithms over

the same dataset. Therefore on average, the DNN is almost an order of magnitude

faster than the EKF. This can be attributed to the fact that the EKF is required

to linearize around each operating point while the DNN mainly performs a series

of matrix multiplications to achieve the desired output which is an inherently much

simpler series of operations.

Moreover, the operation of the DNN is validated in real time. This allows us

to validate it’s operation in real world noisy environments with noisy measurement

devices and allows us to validate it’s robustness against such noisy signals. To that

end two different current measurement devices are used to measure the current from

the battery cell. A highly accurate measurement device with less than 25mA per

hour of error is used to perform Coulomb counting which provides the ideal SOC

value. The second current measurement device is the LEM DHAB sensor, which a

standard automotive grade off-the-shelf current measurement device which an offset

error of 150 mA - 350 mA depending on the ambient temperature and a sensitivity

error which can span 0.5% - 1.5%.

In Figure 6.5, it is shown that an off-the-shelf standard current sensor performing
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Figure 6.5: Actual or ideal SOC computed using Coulomb counting from high accu-
racy current sensor and SOC computed using automotive grade LEM DHAB current
sensor. Errors from DHAB sensor aggregate over time such that SOC estimate di-
verges away from the ideal or actual SOC.

simple Coulomb counting does not possess the accuracy to issue a good estimate of

SOC. This reinforces the need for SOC estimation strategies with good representa-

tional power.

After being trained, the DNN algorithms are exported for use in real time in a

hardware-in-the-loop setup. This consisted of the same experimental setup as shown

in Figure 6.1, although the LEM DHAB current sensor is now also connected to the

battery cell. Therefore, the accurate sensor as well as the LEM DHAB sensor are both

connected to the battery. The current measurement from the LEM DHAB sensor is

provided as an input to the DNN algorithm. The DNN issues an estimate of SOC in

real time and this is then compared to the ideal or actual SOC estimate provided by

the accurate current sensor.

The DNN used is a simple 2 layer neural network with 256 neurons in the hidden

layer. The performance in real time of this algorithm is shown in Figure 6.6 where
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Figure 6.6: Actual or ideal SOC computed using Coulomb counting from high accu-
racy current sensor and SOC computed using automotive grade LEM DHAB current
sensor for HWFET drive cycle. Low performance due to the DNN being trained over
data from a battery that had seen significant aging in comparison to the battery used
in this real time test.

the MAE = 7.55%. This algorithm is not very accurate in real time. The low

performance can be attributed to the fact that the data used during training is that

of an aged battery while the battery cell used during the real time testing was that

of a new battery. Therefore, after training the DNN on data from a new battery, the

performance of the DNN, observed in Figure 6.7 is much better and is very similar to

the results achieved above in the fixed ambient temperature results of Section 6.3.1.

Using the MATLAB FLOPs counter, the DNN algorithm which includes the data

processing phase, shows a FLOPs count of under 3000. This is well below most

automotive grade embedded processors which can handle a computing speed ranging

from megaflops to gigaflops.
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(a) MAE = 1.01% over HWFET drive cycle

(b) MAE = 1.23% over LA92 drive cycle

Figure 6.7: SOC computed using automotive grade LEM DHAB current sensor over
(a) HWFET drive cycle and (b) LA92 drive cycle compared to actual or ideal SOC
computed using Coulomb counting from high accuracy current sensor. Real time
testing performed at ambient temperature of 25◦C.
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6.3.3 SOC Estimation at Variable Ambient Temperature

In this section, two objectives are pursued. The first is to train the DNN on data

taken at various ambient temperatures such that a single DNN can estimate SOC

at different ambient temperatures. The seven training datasets recorded at the 5

different ambient temperatures (25◦C, 10◦C, 0◦C, -10◦C and -20◦C), mentioned in

Table 6.1, are used for training. These datasets are augmented, as described in

section III, to increase the robustness of the DNN which raises the training dataset

size to 20 times the initial size. Two validation datasets from each of the 5 ambient

temperatures are then used to evaluate the DNN’s performance. The second objective

is to investigate the DNN’s capability to interpolate it’s ability to estimate SOC at

ambient temperatures other than the ones one which it is trained, which is also

performed with the LSTM-RNN in Chapter 5. The DNN used in this section is 4

layers deep and has 8, 16, 32 and 1 neurons in the respective layers. The training

data is composed of the battery voltage, temperature, average voltage and average

current, as is used in the previous section, and the averaging parameter, λ is set to

400. The time required to train this DNN is about 40 hours.

Figure 6.8 showcases the DNN’s estimation performance over one validation

dataset from 3 different ambient temperatures; 25◦C, 0◦C and -20◦C. In addition,

Figure 6.9 shows a bar graph outlining the DNN’s performance over the two vali-

dation datasets for every one of the five ambient temperatures. Typically, higher

estimation error is expected for the lower ambient temperatures since the disparity

between the measured surface temperature of the battery and its internal temper-

ature increases for lower ambient temperatures. Though, interestingly, the lowest

MAE is achieved over a 0◦C dataset at 0.91%. This can be attributed to the added
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Figure 6.8: (a) Estimation performance of one DNN at 3 different ambient temper-
atures. DNN is composed of 4 layer, where 8, 16, 32 and 1 neurons are used in the
respective layers.
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Figure 6.10: Estimation performance of DNN on validation set recorded at an in-
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step and the ambient temperature. The validation dataset is composed of a mixture
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regenerative braking at the higher ambient temperatures which can add uncertainty.

However, the MAE achieved at 25◦C is still quite low at 1.44%.

In most cases, the MAE over the HWFET datasets which are less dynamic in

nature are lower than those obtained over the US06 datasets which are much more

dynamic in nature. However, this phenomenon is not exhibited for the case of −20◦C.

For the −20◦C ambient temperature, the MAE over the HWFET dataset is higher.

This is likely because the average battery temperature for the HWFET test is −14◦C,

which is much lower than the average temperature of −6.7◦C for the US06 test. While

the US06 temperature is greater for all of the test cases, the temperature difference

has more significance at these lower temperatures where battery resistance increases

dramatically. The maximum error is not entirely representative of the performance

of the DNN since a few outliers over thousands of estimated values do not represent

the overall performance of the network, however MAX is provided in the results for

completeness.

The DNN had good estimation performance when validated over constant ambi-

ent temperatures. However, depending on the geographical location within which a

battery-powered vehicle may operate, a variation of 5 to 10◦C in ambient tempera-

ture is possible over the course of one day. Hence, a worthwhile exercise would be to

validate the DNN over a dataset which has an ambient temperature that changes over

time. Therefore, the DNN’s estimation performance is tested over a validation cycle

which increases from 10◦C to 25◦C over the course of the dataset, which is shown

in Figure 6.10. As can be seen, the DNN performs well over this validation dataset,

maintaining good estimation accuracy even at ambient temperatures lying between

10◦C and 25◦C, on which the network is not trained. This interpolating ability can
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be a great advantage when training data is scarce.
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In summary, the DNN algorithms have also proven to perform well with respect

to SOC estimation. Firstly, on the modeling and estimation front, the DNNs used

in this chapter map the measured battery signals like voltage, current and temper-

ature directly to SOC and achieves competitive estimation performance with MAEs

below 1%. The DNN’s SOC results performance are compared to other techniques

discussed in different studies as well as to the those from the LSTM-RNN in Chap-

ter 5 in Table 6.8. Secondly, on the parametrization front, the DNN self-learns all its

weights, eliminating the need to hand-engineer and parametrize traditional models,

which is a very time-consuming and costly process. Thirdly, on the inference front,

once trained, a DNN can operate online with relatively low computational time. As

seen above, they can offer competitive SOC estimation results with as few as 36 net-

work weights. In addition, the DNNs presented in this chapter are robustified against

measurement offsets, gains and noise such that they can retain great estimation per-

formance regardless of the imperfections found in a vehicle’s measurement devices.

Whether LSTM-RNNs or DNNs are used for SOC estimation, they both offer differ-

ent advantages. One is more efficient during the learning process and allows the raw

measurements to be used with no preprocessing and the other offers simplicity and

smaller network sizes.
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Chapter 7

State-of-Health Estimation for

Li-ion Batteries Using Deep

Convolutional Neural Networks
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7.1 Pragmatism of Convolutional Neural Net-

works for SOH Estimation

This chapter looks at using a popular deep learning algorithm, the Convolutional

Neural Network (CNN), for state-of-health estimation of Li-ion batteries. The CNN,

which is described in more detail in Section 3.2.4, convolves kernels or filters over a two

dimensional dataset. Model expressibility is learned through backpropagation which

is also discussed in more detail in Section 3.3. Since the technique convolves kernels

over two dimensional datasets, CNNs benefit from shared weights which reduces the

amount of weights necessary to estimate SOC. Because of this, convolutional neural

networks scale well in depth or when adding additional layers.

The experimental data used for SOC estimation in Chapter 5 and Chapter 6

is structured in a way where battery signals recorded for a certain discrete time

step, usually at a sampling frequency of 0.1-1Hz, are fed into the networks and an

estimated SOC is computed for that same time step. In contrast, the randomized

battery usage dataset used in this chapter, obtained from the NASA Prognostics

Center of Excellence [112], is structured in a way where the two dimensional dataset

of the reference charge profile is provided to the network and an estimated SOH is

computed for that particular reference dataset. Hence data on an complete or partial

charge curve is fed into the network to estimate SOH instead of a discrete instance

of battery measurements. In addition, since the reference charge profile is a time

series, it is important to use an algorithm which is sensitive to correlations along one

or both axis of the dataset. For these reasons, and for its shared weights, the CNN

technique is chosen to be used for SOH estimation. The LSTM-RNN can also be
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used to analyze larger two dimensional input arrays to perform SOH estimation and

has good performance over time series datasets, however LSTM-RNNs do not benefit

from the efficiency of shared weights.

This chapter is completed with a final study which examines the importance of

SOH estimation for SOC estimation. As such, this study will perform combined SOC

and SOH estimation while using a fusion of the CNN SOH estimator and the LSTM-

RNN SOC estimator. The CNN algorithm is used to estimate SOH which is used as

an input to the LSTM-RNN which, in turn, estimates SOC.

7.2 Randomized Battery Usage Dataset

The dataset used in this work is the Randomized battery Usage Dataset obtained

form the NASA Prognostics Center of Excellence [112]. This large repository of data

contained seven files which each included aging data on 4 different Li-ion battery

cells. The parameters of most of these datasets are shown in Table 7.1. Various

LG Chem 18650 Li-ion cells are aged by undergoing a randomized load; ranging

between 0.5 A and 5 A for some datasets and -4.5 A to 4.5 A for others, often at

two different ambient temperatures; 25◦C and 40◦C. The random walk steps last for

about 5 minutes. This dataset is unique since randomized usage serves as a better

representation of real world loading profiles which makes for better training data.

Reference charge and discharge profiles were conducted every 50 random cycles or

every 5 days to characterize the cell’s aging. These were sampled at 0.1 Hz and,

as is typically performed, the charge curves in these characterization steps included

constant current (CC) and constant voltage (CV). The CC segment of the charge

profile typically consisted of the first 60% to 70% of the state-of-charge. This work
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Table 7.1: Randomized Battery Usage Dastset Parameters

Capacity @ SOH=100% Min. 2.08 Ah / Typ. 2.15 Ah
Min / Max Voltage 3.2V / 4.2V
Min / Max Temperature 15◦C / 43◦C
Charge Current (CC) 2.0 A
Random Walk Current Min. -4.5 A / Max. 5.0 A

considers the fixed and partial SOC ranges where both the CC and the CV segments

of the charge curves are utilized. Therefore, the CNN algorithm will not need to see

full charge data in order to estimate SOH and can do so with both complete and

partial charge profiles. For most of the 28 aging datasets in this repository, the cells

are aged to at least SOH = 80% and in some cases are aged to less than SOH = 40%.

An example of one aging dataset is shown in Figure 7.1.

7.2.1 Data Parsing and CNN Model Development

Data processing is a very critical step which is performed before constructing any deep

learning algorithm. If not given its due process and due time, an undesired result

is almost a certainty. However, the data processing performed in this work is unlike

the processing performed in other works, where data-preprocessing includes scaling,

normalizing, dimensionality reduction, etc., which can all increase the computational

load on an algorithm aimed for on-board operation. Data preprocessing like scaling

and normalization for deep learning algorithms is less of a requirement since these

networks can adjust their weights to match most inputs. Raw data inputs can be used

instead, reducing the computational load for on-board applications. In traditional

machine learning techniques where non-linearities used were the hyperbolic tangent

function or the sigmoid function, the activation functions would saturate at a value of
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Figure 7.1: (a) CC segment of charge profile of a Li-ion cell throughout randomized
usage aging process; color spectrum of profiles indicate SOH. (b) Recorded capacity-
based SOH for each of the charge profiles in (a).
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1. However, the ReLU non-linearity does not saturate for positive input values, which

is partly the reason for the rise in its popularity observed in deep learning algorithms.

This is not to say that this type of data preprocessing, e.g. scaling and normalizing,

is not needed for deep learning methods, since in many cases some data processing

can help a network achieve the desired response with less workload.

What is more demanding is data parsing and data purity, where much of the

data-processing time was spent. This describes the process of parsing the data into

its constituent loading cycles which include reference charge and discharge data as as

well as the random walk data. To render the algorithm insensitive to historical load-

ing conditions, like ambient temperature, cycling history and historical degradation

data, the reference charge profiles are used to find a characteristic aging signature.

The entire process from data parsing to the training an validation of the CNN are

represented in a flowchart shown in Figure 7.2. Furthermore, outliers and incorrectly

recorded data points are removed during this step. In addition, the stream of recorded

data can sometimes be interrupted causing some datatsets to be disjointed. Therefore

manual stitching of the data is often required in order to ensure proper continuity of

the time dynamics inherent in the data. After parsing of the datasets is complete,

the data is segmented into training and testing data files to ensure that a different

dataset is used during training than is used during testing.

7.2.2 Data Augmentation

Adding statistical variances to the input data can increase the inference accuracy of

the CNN. Interestingly, for SOH estimation application, data augmentation not only
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Parse data into random walk, charge, discharge
Segment data into seperate train and test files

Augment train data; addnoise, offsets and gains
Choose hyperparametersfor CNN
Construct train and testmodels

Evaluate model using testdata
Deploy model

End

Is network loss energy minimized?

Start
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Figure 7.2: Flowchart of the data parsing, training and validation of the convolutional
neural network SOH estimation algorithm.

140



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

increases the estimation accuracy but also renders the CNN insensitive to measure-

ment noise, gains and offsets. In effect, augmenting the training data can robustify

the CNN, as discussed in Section 4.5.

Training data augmentation is performed by injecting white Gaussian noise into

the measured battery signals. Specifically, Gaussian noise with 0 mean and a standard

deviation of 1-4% is injected into the voltage, current and temperature measurements.

Moreover, to robustify against offsets and gains inherent in battery measurement

devices, an offset is applied to all measurement signals and a gain is applied only to

the current measurement since current measurements are more susceptible to gains.

An offset of up to ±150mA and a gain of up to ±3% is applied to the current

measurements, an offset of up to ±5mV is applied to the voltage measurement and

an offset of up to ±5◦C is applied to the temperature measurement. Alternate copies

of the training data are created with varying levels of noise, offsets and gains within

the limits described above. Up to 80 augmented copies of the training data are created

for training.

Although the CNNs in this work are trained with LG Chem cell aging data, other

aging datasets from cells with different makes and models can be used for training.

The CNN architectures will be unchanged if used to estimate SOH for a different

battery however it might require to be retrained with data from that specific cell.

Nevertheless, transfer learning, a useful property of deep learning algorithms, can be

used to instead simply re-train the last one or few layers of the CNN to achieve similar

estimation performance with a new battery. This would consume much less time than

would otherwise be necessary to re-parameterize a battery model in traditional SOH

estimation strategies.
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7.3 State-of-Health Estimation Results

The state-of-health estimation performance of the deep convolutional networks are

outlined in this section. As previously mentioned, this work uses charge profiles which

include both fixed and variable SOC ranges. There are trade-offs which need to be

made in either case and these will be discussed in the following two sections. The

networks discussed in this section use a learning rate of 1×10−5.

7.3.1 State-of-Health Estimation using Fixed Charge Profiles

In a mobile device or in an electric vehicle, periodic test cycles can be performed on a

Li-ion battery. These can consist of fixed charge cycles like the ones used to obtain the

results in this subsection. These fixed charge curves consist of a two dimensional array

of inputs given by Ψ(ξ) ∈ RN×M whereN=256 andM=3, which include the measured

battery current, voltage and temperature or more formally; Ψ(ξ) = [I(ξ),V(ξ),T(ξ)].

For a more formal description of the CNN and it’s associated figure, please refer

to Section 3.2.4 and Figure 3.5. Training is conducted on up to 26 of the aging

datasets and validation is performed on 1 or 2 datasets, depending on the tests being

performed. The validation datasets are never seen by the CNN during the training

process. The output of the CNN is the estimated SOH for a particular charge profile.

The time required to train the CNNs used to obtain the results in this subsection is

4 - 9 hours, depending on its size and depth.

The CNN is first validated on two aging datasets, referred to as dataset RW4 and

RW23 in the NASA repository; there are recorded at 25◦C and at 40◦C, respectively.

This CNN is composed of 6 convolution layers and 2 fully-connected layers (FC).

The results, shown in Figure 7.3, Figure 7.4 and in Table 7.2, point to an MAE of
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Table 7.2: SOH estimation accuracy of CNN validated on 25◦C and 40◦C RW aging
datasets

Validation Dataset MAE(%) STDDEV(%) MAX(%)
Validation RW dataset (25◦C) 1.51 0.97 3.27
Validation RW dataset (40◦C) 1.21 0.70 2.44

L1&L2: 32@(32,1), L3 - L6: 64@(32,1), FC1: 256 neurons

Table 7.3: Results showing inference for different case studies

Case Study MAE(%) STDDEV(%) MAX(%)

Input: Voltage* 1.49 1.13 3.90
Input: Voltage, Current,

Temperature* 1.03 0.62 2.24
No Pooling* 1.30 0.79 3.44

Pooling* 1.03 0.62 2.24
Unaugmented Train

Data** 2.41 1.14 4.19
Augmented Train

Data** 1.23 1.07 3.60
Smallest CNN*** 1.85 1.62 6.06

*L1 - L6: 64@(32,1), FC1: 256 neurons
**L1&L2: 32@(32,1), L3 - L6: 64@(32,1), FC1: 256 neurons
***L1&L2: 4@(4,1), FC1: 32 neurons

1.51% and 1.21% for the 25◦C and 40◦C, respectively. The network is trained for up

to 175,000 epochs although the largest decrease in error is observed within this first

100,000 training epochs. From Figure 7.4, it is clear that the 40◦C aging dataset has

fewer data points than the 25◦C dataset but this is to be expected since the battery

tends to age much quicker at higher ambient temperatures.

The CNN algorithm is put through further testing to investigate its performance.

Its performance over these test cases are shown in Table 7.3. For most of these tests,

training is stopped at 100,000 epochs to maintain testing objectivity. The first of
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Figure 7.3: CNN estimation accuracy, estimation error over the 25◦C validation
dataset and the mean absolute error as a function of training epochs. MAE, MAX
and network architecture are described in Table 7.2.
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Figure 7.4: Estimation accuracy and estimation error over 40◦C validation dataset.
MAE, MAX and network architecture are described in Table 7.2.

such tests examines the accuracy of the CNN for inputs which include solely volt-

age as compared to inputs which include battery current, voltage and temperature.

Reducing the dimensionality of the input data, reduces the number of computations

which the CNN is required to perform during operation. The results show that the

error when using only voltage as an input is satisfactory with an MAE and MAX of

1.49% and 3.90% respectively. However, the MAE and the MAX are reduced by 31%

and 43%, respectively, when using all three input signals.

As described in Equation (3.9) of Section 3.2.4, pooling, S(.), is performed after a

convolutional layer to subsample the layer activations. Although this is a layer that

is often used for other applications, its efficacy in reducing the SOH estimation error

was unknown. Therefore, to examine this for SOH estimation, two CNNs, where one

has pooling layers and where the other has no pooling layers are used. The results
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of this case study are also shown in Table 7.3. It is found that a CNN with no

pooling offers an MAE of 1.30% however a CNN with pooling has an MAE of 1.03%.

Therefore, pooling improves the accuracy of the CNN for SOH estimation by about

21% however when considering the application of this algorithm in on-board systems

the accuracy of the CNN with no pooling might be sufficient.

In the third test, we investigate if augmented training data, described in Sec-

tion 7.2.2, affects the estimation accuracy of the CNN. This is performed by training

two identical CNNs with identical architectures over augmented and unaugmented

datasets. Augmentation describes the injection of Gaussian random noise as well as

offsets and gains into the training data, as described in section III. Augmentation can

offer the statistical variance for the input dataset to span more of the dynamics ex-

hibited by the battery. An MAE and MAX of 2.41% and 4.19% is obtained with the

unaugmented training dataset as opposed to the MAE and MAX of 1.23% and 3.60%

obtained with the augmented dataset. Therefore, exposing the CNN to augmented

training datasets offers good performance gains with a reduction in MAE and MAX

of 49% and 15%, respectively.

In the final test case, the estimation performance is examined for a much smaller

network since on-board applications often cannot allocate a large amount of compu-

tation to the SOH algorithm. Therefore, a network with 2 convolutional layers where

each one is composed of 4 filters each having dimensions 4×1 and two fully-connected

layers having 32 and 1 neurons, respectively, is used to estimate SOH. When trained

with augmented training data, the MAE and MAX achieved by this small CNN over

a validation dataset is 1.85% and 6.06%, respectively. Although, this network has

adequate performance, further tests are conducted to asses the impact of network

146



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

1 2 4 6
Number of Layers

0

1

2

3

4

SO
H

 E
rr

or
 (%

)

MAE
MAX

(a)

2 7 13 21 26
Number of Ageing Datasets

in Training Data

0

2

4

6

SO
H

 E
rr

or
 (%

)

MAE
MAX

(b)

Figure 7.5: (a) Estimation accuracy measured during validation versus number of
layers in CNN. The number of neurons per layer is fixed to 4 neurons. (b) Estimation
accuracy measured during validation versus number of training datasets. All tests
are performed over validation datasets recorded at 25◦C.

depth on the CNN. In Figure 7.5, the accuracy of convolutional neural networks at

estimating SOH is recorded, first, as a function of network depth (number of layers)

and, second, as a function of the amount of training data used during the training

process. For each of these two test cases, the training data is augmented and training

is stopped at 100,000 epochs. Clearly, deeper networks achieve increased estimation

accuracy since going from 1 convolutional layer to 6 reduces the MAE by more than

60%. However, if an SOH estimation error of less than 0.8% is unnecessary and an

error of less than 2% is sufficient for a particular application, than the computational

burden can be lessened by opting for a 1 or 2 layer CNN.

In Figure 7.5(b), the estimation accuracy over a validation dataset is examined
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Table 7.4: Results showing inference on corrupted validation dataset versus uncor-
rupted validation dataset

Validation Data
Corruption MAE(%) STDDEV(%) MAX(%)

No 1.40 0.94 3.17
Yes* 1.66 1.28 3.99

Architecture; L1 - L4:32@(31,1), FC1: 64 neurons
*Corrupted by injection of noise, gains and offsets.

as a function of the amount of training data required to achieve good estimation

performance. Therefore, instead of training the CNN over 20 or more dataset as is

performed in the previous results, different numbers of aging datasets are included

during the training process and the CNN is evaluated over a validation dataset. In

general, the more training data used to train the network, the lower of an MAE is

achieved by the CNN. However, the argument to use more data than 13 to 21 datasets

during training becomes hard to substantiate given the diminishing returns achieved

when more than 21 datasets are used.

The battery measurements used for aging studies are typically obtained in con-

trolled environments with high accuracy measurement devices. Therefore signal pu-

rity is ensured and noise is minimized. Although, this is necessary when measuring

signals like the battery current, to ensure an accurate capacity measurement, it might

reduce from the robustness of these algorithms, making them highly sensitive to mea-

surement noise, offsets and gains. The latter become a concern when considering

operation of the battery in real world applications where signal purity is of varying

quality. The elegance of machine learning algorithms, like the CNN, is that they can

learn to handle such measurement noise. Therefore, as performed in previous results,

the CNN is trained on augmented training data where Gaussian noise, offsets and
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Figure 7.6: Corrupted and uncorrupted voltage, current and temperature battery
signals of a reference charge profiles.
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Figure 7.7: Estimation accuracy and estimation error over augmented and unaug-
mented battery validation data. Please see Table 7.4 for detailed results.

gains are injected into the data. However, the CNN is now tested over validation

data which is also corrupted with injected noise, offsets and gains to mimic real world

scenarios. This corrupt validation data is shown in Figure 7.6. In Figure 7.7 and

in Table 7.4, the results for SOH estimation over corrupt validation data are shown.

Specifically, normally distributed random noise with mean 0 and standard deviation

of 1%, 1.5% and 5% is added to the voltage, current and temperature measurements,

respectively. An offset of 5mV, 50mA and 2◦C is added to the voltage, current and

temperature measurements, respectively. A gain of 2% is only applied to the cur-

rent measurements. Results with the corrupt validation data show good performance

with an MAE of 1.66% which is only a 15% increase in error from the uncorrupted

validation dataset.
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7.3.2 State-of-Health Estimation using Partial Charge Pro-

files

Although the CNN achieves great performance in the previous subsection, the charge

profiles used are fixed, such that the SOC ranges between 0% and about 60%. Al-

though periodic reference profiles can be performed during normal operation to sup-

ply the SOH estimation algorithm with the required fixed charge profile, this can be

avoided if the CNN is able to estimate SOH from partial charge curves. This facili-

tates the estimation of SOH for charge curves having varying SOC ranges. Therefore

in this subsection, partial charge curves are used as inputs to the CNN during training

as well as during validation. However, differences between charge curves having dif-

ferent SOC ranges around the same SOH value can be subtle. Therefore, it becomes

necessary to include something other than voltage, current and temperature as an

input so that these subtle differences can be recognized by the CNN. Hence, SOC,

which is assumed to be continuously monitored by an electric vehicle, for example, is

included as an input to the CNN.

In Figure 7.8 and in Figure 7.9, SOH is estimated by the CNN using partial charge

curves. The SOC range of the partial reference charge curves is shown in these figures

as well. In Fig. 7.8, the SOC range of 30% to about 80% is used while in Figure 7.9

an SOC range of 60% to about 90% is utilized. Table 7.5 shows further results from

other partial charge profiles having different SOC ranges. The SOC in these validation

datasets is assumed to have an error of under 4% to simulate a real world scenario.

Although not overwhelmingly obvious, the results show that the larger SOC ranges

generally render better SOH estimation results. This is most likely attributed to the

longer ranges of data which reveal more of the battery’s aging signature. However,
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Figure 7.8: (a) Plot showing SOH estimation results from CNN when given a partial
charge profile as well as the corresponding error curve. (b) Partial charge profile
beginning at SOC=30% and ending at about SOC=80% recorded at different states-
of-health.
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Figure 7.9: (a) Plot showing SOH estimation results from CNN when given a partial
charge profile as well as the corresponding error curve. (b) Partial charge profile
beginning at SOC=60% and ending at about SOC=95% recorded at different states-
of-health.
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Table 7.5: Results showing inference performed at different SOC ranges

SOC range MAE(%) STDDEV(%) MAX(%)

25% - 80% 1.58 1.11 3.55
40% - 80% 1.56 1.02 3.46
60% - 95% 0.81 0.68 2.72
85% - 95% 1.60 0.88 3.53

Architecture; L1&L2: 64@(31,1), L3&L4: 64@(16,1)

the smaller SOC range of 85% to 95% achieves an MAE and a MAX of 1.60% and

3.53% which is nevertheless still competitive performance.

Figure 7.10 gives even greater resolution to the MAE and MAX values of SOH es-

timation performed over charge profiles beginning at various SOC values. The charge

profiles used begin at different SOC values however they all have the same length of

time. This time span measures 42.7 minutes. Interestingly, charge profiles beginning

at either SOC=10% or around SOC=50-60% have the lowest MAE and MAX values.

Since the time span of each partial charge profile is fixed, the partial charge curves be-

ginning at those SOC values can be exposing less of the voltage plateau region where

the aging signature is harder to discern. In addition, it’s also clear that with higher

SOC starting points, especially for those higher than SOC=80%, SOH estimation has

a higher error. This can be due to less data being available to estimate SOH.
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Figure 7.10: MAE and MAX values of SOH estimation performed over charge profiles
beginning at various SOC values. The charge profiles are obtained from the NASA
prognostics repository and are 42.7 minutes long.
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7.4 A Fused Convolutional LSTM Recurrent Neu-

ral Network for Combined State-of-Health and

State-of-Charge Estimation

This section furthers some of the previous works on SOH as well as SOC estimation

by performing a combined SOH and SOC estimation strategy using a fusion of a

Convolutional Neural Network and a Long Short-Term Memory Recurrent Neural

Network (CNN-RNN). This strategy, explained in more detail in Section 3.2.5, utilizes

the same CNN used in Section 7.3.1 to perform SOH estimation on fixed reference.

The estimated SOH is then used as an input to a LSTM-RNN, similar to those used

in Chapter 5, along with battery voltage, current and temperature to estimate SOC.

The two networks are trained separately and are tested in unison. The CNN

model is developed in the same way as described in section Section 7.3.1, where fixed

charge reference profiles are used. Training data is also augmented as done with

CNNs previously. The LSTM-RNN is chosen for SOC estimation rather than the

DNN, utilized in Chapter 6, because of its efficient representational power, specifically

on time series data. In addition, the LSTM-RNN requires no preprocessing of the

training and testing data. There are, of course, drawbacks to the use of LSTM-RNNs

in comparison to DNNs and a discussion on this comparison is given previously in

Section 6.1. Essentially, when using an LSTM-RNN for SOC estimation, there is no

need to toil with the inputs in order to create secondary compositional inputs, like

voltage and current averages for example.

The data used in this section is the same as that used in Section 7.3.1, where

SOH estimation is performed over reference charge profiles from datasets found in
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Figure 7.11: Examples of SOC estimation using the CNN-RNN. SOC is estimated
over constant charge profiles when the battery is at different SOH levels. The data is
recorded at 25◦C.
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the NASA prognostics repository. The reference charge profile’s voltage, current and

temperature are augmented as is previously performed. To perform SOH and SOC

estimation in unison, it becomes necessary to use data from the same repository,

hence removing the possibility of using the SOC drive cycle data used in Chapter 5

and Chapter 6, which do not contain aging information. Also, to ensure that the

SOC estimation performance is correctly evaluated over the course of the battery’s

lifetime, controlled constant charge profiles are used. As mentioned previously in

Section 3.2.5, the input vector which is given to the LSTM-RNN at every time instant

is given by Ψk = [V (k), I(k), T (k), SOH(ξ)] where V (k), I(k) and T (k) represent the

voltage, current and temperature of the battery at time step k and SOH(ξ) is the

SOH estimated during the last charge event. The estimated SOH(ξ) remains the

same between charge events which can be a length of time of a few hours to a few

days. Meanwhile, SOC estimation occurs at a rate of 0.1Hz which is the sampling

rate of the charge curves used for SOC estimation. For this section, a 25◦C and a

40◦C dataset are used for testing of the fused CNN-RNN model which are referred

to as datasets RW4 and RW23 in the NASA prognostics repository. About 14 - 20

other datasets from this repository are used for training.

The CNN used in this study has the same architecture as the CNN used to obtain

the results shown in Figure 7.3, Figure 7.4 and outlined in Table 7.2, which has 6

layers of convolution (kernel size of 32×1) and 2 fully connected layers with the first

of these FC layers containing 256 neurons. On the other hand, the LSTM-RNN is

composed a single LSMT layer having 500 nodes and a depth in time of Ñ = 500.

In Figure 7.11, SOC estimation is performed over charge profiles recorded at var-

ious instants of the battery’s lifetime. A few examples are shown from dataset RW4
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Figure 7.12: Histogram of the SOH estimation error for a charge profile and the Mean
Absolute Error (MAE) of the SOC estimation for different values of SOH. SOH and
SOC estimation performance is evaluated over the RW4 dataset recorded at 25◦C.
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recorded at 25◦C. SOC estimation performance is very competitive for these charge

curves but that’s not a surprise given the great performance observed in Figure 5.4

of Section 5.3 where the LSTM-RNN is tested in a charging scenario. It’s clear, how-

ever, that the SOC estimation performance is generally better earlier in the battery’s

lifetime than latter as SOC MAE is higher for smaller SOH values. This can be due

to the fact that not all datasets include aging of the battery below SOH=80%, there-

fore there is less training data available at these lower SOH levels which is reflected

in the error values observed below SOH=80%. However, the SOH estimation error

is still quite competitive, especially above SOH=80% which is where most vehicle

manufacturers like to declare the battery’s End of Life (EOL).

For a more in depth look at the SOH and SOC estimation performance, Figure 7.12

and Figure 7.13, show a histogram of the SOH estimation error for an instance in the

battery’s lifetime and subsequently, the SOC MAE calculated over a complete charge

curve. It’s important to note that one value is an average value (SOC MAE) while

the other (SOH error) is not. Generally, as expected, a lower SOC MAE is achieved

for lower SOH errors and this same relative behavior is observed in both Figure 7.12

and Figure 7.13, recorded at 25◦C and 40◦C, respectively.

To validate the notion that state-of-health is an important value for SOC estima-

tion, a final test is performed. This test evaluates the SOC estimation performance of

the LSTM-RNN using only voltage, current and temperature as inputs, same as done

in Chapter 5 instead of using the estimated SOH as an additional input. In other

words, SOH estimation from the CNN is bypassed and instead the battery measure-

ments are fed directly into the LSTM-RNN to perform SOC estimation. Thereafter,

the SOC MAE is calculated for charge cycles taken at the various SOH points. The
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Figure 7.13: Histogram of the SOH estimation error for a charge profile and the Mean
Absolute Error (MAE) of the SOC estimation for different values of SOH. SOH and
SOC estimation performance is evaluated over the RW23 dataset recorded at 40◦C
from the NASA repository.
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Figure 7.14: SOC estimation results from fused CNN-RNN with and without esti-
mated SOH values supplied to the LSTM-RNN at 25◦C.

results for the 25◦C and the 40◦C datasets are shown in Figure 7.14 and in Figure 7.15,

respectively. Training of the CNN with and without estimated SOH as an input is

stopped at 20000 epochs in both cases.

The results are undeniably in favor of using state-of-health for SOC estimation.

These results are further evidence of the importance of SOH estimation to Li-ion

batteries and energy management systems. Aside from the fact that SOH is very

important to ensure safe operation of the battery and the vehicle, SOH is also key

to the accurate estimation of SOC. For almost all of the battery’s lifetimes, the SOC

MAE is almost always lower when the estimated SOH is used as an input to the

LSTM-RNN.
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Figure 7.15: SOC estimation results from fused CNN-RNN with and without esti-
mated SOH values supplied to the LSTM-RNN at 40◦C.
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Conclusions, Future Research and

Publications
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8.1 Conclusions

In the final analysis, a new framework for SOC and SOH estimation is proposed in

this research work using deep learning techniques. Li-ion batteries are increasingly be-

coming an important asset to humanity’s overgrowing and dire need for clean energy.

There are critical issues surrounding climate change and its catastrophic effects on

our collective well-being, especially in major metropolitan areas which are experienc-

ing the highest population growth rates. Li-ion batteries used in electrified vehicles

offer much more efficiency than their petrol-powered counterparts. In addition, the

steadily decreasing cost of Li-ion batteries is enticing a slow but steady adoption of

electrified vehicles, whether land-, air- or sea-faring.

Accurate SOC estimation is critical to gauge a good measure of a vehicle’s re-

maining driving range and is critical for battery balancing and for battery safeguards.

State-of-Health estimation, on the other hand, is critical to the safe and reliable oper-

ation of any battery. Understanding the amount of degradation that the battery has

experienced, is key in ensuring safe and reliable operation as well as customer satis-

faction. In many earlier XEVs like the first generation Chevrolet Volt, the battery

is significantly oversized given the electric driving range that it is claimed to have.

Although this can be one way to account for a less effective SOH estimation strategy,

it can definitely be an expensive one. The reliability and chemistries of modern Li-ion

batteries is steadily improving. A review of most popular Li-ion battery chemistries

and a thorough comparison over numerous USABC metrics and others is given in this

work.

Energy management systems of electrified vehicles are also reviewed where pro-

tection of Li-ion batteries as well as various notable battery modeling techniques are
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discussed. Battery modeling techniques are crucial to the accurate determination of

SOC and SOH in traditional approaches. They are similarly important to the ap-

proach proposed herein using deep learning techniques. However, the substantial rep-

resentational power and expressibility of deep learning techniques allow these battery

models to be learned through experience along with the SOC and SOH estimation

routines. This not only removes the need to invest time and energy into parame-

ter identification and hand-crafted battery models but allows the battery modeling

and state estimation to be performed in one single step. This is also done without

compromising on estimation accuracy. Deep learning methods not only allow for com-

petitive estimation performance but also allow important information to be distilled

from noisy environments. As shown in numerous examples and interesting outcome

of using deep learning methods is that they can both easily be robustified against

measurement noise, offsets and gains, and through this process, they can achieve bet-

ter estimation accuracy. Corrupting the input data allows for statistical variances

and for symmetries learned through training to be broken. This, in effect, requires

the neurons in the networks to find new computational pathways which can lead to

lower local minima of the loss function. Results from this phenomena can be seen in

Figure 6.3, Figure 6.7 and Figure 7.7.

The efficiency of deep learning techniques is also a notable feature allowing same

expressibility, if not better, with deeper layers. This is shown in Figure 6.4 although

is more clear in Figure 7.5. Thus, this allows for higher fidelity models to be achieved

by sensibly adding layers and adjusting network architectures instead of manually

crafting the models to achieve better performance, as is done in more traditional

methods. Additionally, universality of deep learning techniques can be increased by

166



Ph.D. Thesis - Ephrem Chemali McMaster - Electrical Engineering

exposing the networks to data which increasingly spans the full gamut of possible

environmental conditions. This is exemplified through the DNN and the LSTM-

RNN models accruing the ability to estimate SOC at numerous ambient temperatures

effectively, as seen in Figure 5.9 and in Figure 6.9. To further this point, the CNN

performing SOH estimation is also generalized by learning to estimate SOH given

partial charge profiles, shown in Figure 7.8, Figure 7.9 and in Figure 7.10.

This research work is completed with a fused convolutional recurrent neural net-

work which performed combined SOC and SOH estimation. This strategy capitalizes

on the expressibility of LSTM-RNNs over time series data when estimating SOC and

the efficiency as well as the representational power of the CNN when estimating SOH.

State-of-health is estimated with a CNN which, in turn, is fed into the LSTM-RNN to

perform SOC estimation. This is performed over controlled constant charge profiles to

asses SOC over the lifetime of the battery. The results from this fused CNN-RNN are

strikingly impressive. SOH and SOC estimation performance is competitive. How-

ever, the most engaging result from this study is the direct evidence that knowledge

of SOH, allows for sustained accurate SOC estimation throughout the lifetime of the

battery. This is shown in Figure 7.14 and Figure 7.15.

8.2 Future Research

This area of battery research performing battery modeling and battery state estima-

tion involving deep learning techniques is still quite new and as such numerous future

projects can be discussed. For this discussion, the author believes that there are three

important areas of future work which can be conducted based on the research out-

lined in this thesis. These include sensor modeling, prolonged on-board testing and
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integration into autonomous car routines as well as achieving increased universality

through cloud-based deep learning models.

Although deep learning algorithms are used in this thesis, these algorithms can,

generally, be regarded as supervised learning algorithms. These are based on teacher-

learner strategies which require labeled or measured observable data to learn a repre-

sentation of the underlying system. As such, since these observables are not available

in a mobile application like electrified vehicles, it is not possible to perform the learn-

ing process in the vehicle. Thus why learning is conducted offline and when loss

energy is minimized, and the network is able to express the underlying system with

sufficient accuracy, can the model be applied online. Allowing these algorithms to

learn online requires accurate measurements of battery observables. This is gener-

ally not possible since the measurement devices used are not of the high accuracy

sensors used in the laboratory. For example, Coulomb counting from an off-the-shelf

automotive grade current sensory, as shown in Figure 6.5, does not provide a good

estimate of SOC. Therefore, using a deep learning technique to model the behavior of

the current sensor and correct for its inaccuracies can enable the use of an error-prone

sensor in order to perform Coulomb counting in an online fashion.

Although experimental data is gathered, and processed for this research work,

more rigorous testing performed on-board a vehicle is important to the development

of these algorithms for operation in various terrains, environmental stresses and for

prolonged periods of time. Developing an extended testing profile on-board a vehicle

will allow for even further real world testing. Vehicles are becoming increasingly au-

tonomous with IHS Markit stating that level 4 autonomous vehicles can be deployed
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as early as 2021 and level 5 as early as 2025 although they claim that market pene-

tration of these two levels of autonomous vehicles will not be witnessed till the 2030s.

Since the Li-ion battery is responsible for the driving range available in a vehicle, SOC

and SOH estimation can very well be included in route optimization algorithms for

autonomous vehicles. Hence, streams of data from prolonged testing can be collected

and fully utilized with data-driven approaches like deep learning algorithms.

An obvious direction to further this research but one whose advantages are not ini-

tially entirely clear is the application of these deep learning SOC and SOH estimation

techniques in the cloud. Li-ion batteries are becoming ubiquitous given the increased

popularity of mobile devices, electric vehicles and renewable energies, in general. As

such a pragmatic SOC and SOH estimation framework is necessary to ensure their

safe and reliable operation. Furthermore, with the large amounts of data which can

be generated by batteries, it becomes important to consider data-driven approaches

like deep learning techniques to accurately and reliably estimate SOC/SOH and en-

sure the safe operation of these devices. Therefore, streaming the battery data to a

cloud computer which updates the model weights based on the new information can

be a milestone in the continued real time improvement of estimation accuracy. The

algorithms do not have to be stored in the cloud, however learning can be performed

in the cloud and the model weights stored in the vehicle can be updated in real time.

Therefore, this ensures model execution to be unaffected by intermittent interruptions

to the communications system between the vehicle and the cloud computer.

The performance of these deep learning models can be generalized and universality

can be achieved with the collection of large corpora of data. Nowadays, vehicle

manufacturers can collect vehicle and battery data from most if not all the vehicles
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driven by their customers. Continuous streams of real world data can be added to

the training routine of these deep learning models. In other words, a feedback loop

can be created whereby data from the batteries is collected and added to the training

and validation datasets used to train the deep learning models. In addition, data

from different battery cells can be also used in order to generalize the model to two

or more battery types.

Finally, a clear extension of this work can be to use these deep learning algorithms

for energy and power management over the grid. The market share of electrified

vehicles is increasing. In addition, we are currently witnessing an insurgence of solar

as well as battery-powered systems for consumers. Therefore, many new sources and

sinks of power are being added progressively to the grid. Managing load and power

demand in light of this can be a high dimensional problem that is very suitable for

data driven approaches like deep learning. Deep learning algorithms can learn from

utilities data and become autonomous systems able to perform energy management

and operational planning for the grid.
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