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ABSTRACT 

Due to an increasing demand from decision makers for proper economic 

evaluations of health care services, cost-effectiveness analyses are becoming increasingly 

frequent. The statistic of interest in cost-effectiveness analysis is the incremental cost 

effectiveness ratio (ICER). When patient-specific data on costs and effects of alternative 

interventions is available, it can be used to quantify the uncertainty in the estimate of the 

ICER. Expressing this uncertainty by using confidence intervals has been recommended. 

However, because the statistic of interest is a ratio of two correlated random variables, its 

variance cannot be estimated exactly. Furthermore, the distribution of the ratio is 

unknown. 

Recently, several approximate methods have been proposed for calculating 

confidence intervals for the incremental cost-effectiveness ratio. These include two 

parametric methods: one which relies on a Taylor's Series approximation of the variance, 

and one based on Fieller's theorem; as well as a number of methods which rely on 

bootstrapping methodology. In this manuscript, these methods were applied to data 

obtained from a randomized clinical trial in which both health resources consumed and 

health outcomes were observed. Furthermore, several variations of the bootstrapping 

methods were proposed and applied to the same data set. Probabilities ofthe true ICER 

being in given ranges were also estimated using a bootstrapping approach. Finally, issues 

lll 



of sample size and power were briefly considered. The relative advantages and 

disadvantages of the different approaches were discussed. 

lV 



Acknowledgments 

I would like to express my sincere gratitude to my supervisor, Dr. A. R. Willan, 

for his time and inspiring guidance, throughout the course of my project. I thank him for 

sharing his expertise and knowledge with me, allowing me to make to most of this 

opportunity to explore a new area of research. 

I would also like to thank my examiners, Dr. P. Macdonald and Dr. H. Shannon, 

for their time and helpful remarks. 

I express my appreciation to the members of the Department ofMathematics and 

Statistics at McMaster University, who made my years spent at McMaster both 

educational and very enjoyable. I sincerely thank the many professors at McMaster who 

shared their advice with me and encouraged me in so many ways. 

I am grateful to my parents, my sisters, and my friends, for their encouragement 

and support throughout the course of my studies. 

Finally, I would like to especially thank Steve Carino, for his constant 

encouragement, support, and belief in my ability to achieve anything I set out to do. 

Financial support throughout the course of this project was provided by the 

Natural Sciences and Engineering Research Council of Canada. 

v 



Contents: 

Abstract ............................................................................................................................ iii 


Acknowledgments .......... ......... .......................................................................................... v 


1 Introduction ......................................................................... .......................................... 1 


2 Confidence Intervals for the ICER ........................................................................... 11 


2.1 Taylor's Series Approximation Method ................................................................. 11 


2.2 Fieller's Theorem Method ...................................................................................... 16 


2.3 Bootstrapping Approaches ...................................... ............................. ........... .... ... 22 


3 Sample Size and Power ...............................................................................................36 


4 Data and Methods .................................................. ...... ..................................... ... ....... 41 


4.1 Data .................................................................. ...................................................... 41 


4.2 Methods of Analysis ............... ................................................... ..... ........................ 43 


4.2.1 ICER Confidence Intervals ......................................................................... .43 


4.2.2 Probability of the ICER being in a "given region" .................. ...... .............. 44 


4.2.3 Sample Size Calculations ........................................ ...... ... ............ ......... .... .. .44 


5 Results ......................................... ...... .... ...... ................................................................. 45 


5.1 General Results ......................... ...... ..... .... ....... .. ....... ............................ ................... 45 


5.2 Approximate Cis for the ICER .............................................................................. .49 


VI 



5.3 Probabilities ................... ......... ......... ......... ................................... ........................... 62 


5.4 Sample Size Calculations .... .............. .......................... ........................... ... ..... ........ 63 


6 Discussion .... ........ .... ...... ............. ......... .... .................. .......... .. ............................. .... .....66 


6.1 Assumptions ................................................................... ............ ...... .... .................. 66 


6.2 Comparison oflnferential Methods .... ..................... .............. .............. ........ ........ ...68 


6.3 Further Issues ..................... ..... ........ ..... .... ........... ................................... ........ .. ......72 


References .................................................................................................... .................... 78 


Appendix A: SAS programs ..... ... .... ....... ....... ... ......... ......... ..................... ...... ....... ...... ..... 82 


Appendix B: Random number seeds ........... ......... ..... ............ ..................... ..... .... ........ .. 86 


Appendix C: Plots of bootstrap re-sample results ........................ ....... ........................ 87 

• 

vii 



List of Figures: 

Figure 1: The cost-effectiveness plane ............ ..... ...... ...... ... ............................................... 5 


Figure 2: Thresholds which divide the c/e plane into "grades of recommendation" ......... 7 


Figure 3: Box-method CI for the ICER ...... ....... ............. ............ ................ .... ... ......... ... ....9 


Figure 4: Contour view of the joint density function of difference in costs and difference 


in effectiveness ........................ ....... ................................................... ................. 9 


Figure 5: Graphical representation of results from bootstrap re-sampling .. .................... 28 


Figure 6: Division of the c/e plane proposed by Obenchain (1997) ... .................... .. .. .. .. .29 


Figure 7: Regions of the c/e plane in the hypotheses suggested by Willan and O'Brien 


(1998) ..................................................................................................... .......... 37 


Figure 8: Ellipse which separates the plane into regions with adequate and inadequate 


power ......... ...................................................................................... ............. ....40 


Figure 9: Plots of costs versus effects for the two therapy groups ......... ........................ .46 


Figure 10: Frequency distributions of costs and effects in the treatment group ...... ....... .47 


Figure 11 : Frequency distributions of costs and effects in the standard group ............... .48 


Figure 12: Histograms ofbootstrap estimates ofthe difference in effectiveness ....... .....51 


Figure 13: Normal probability plots for bootstrap estimates of the difference in 


effectiveness ....................... ......... .... ... .... ..... ..................... ............. ............. .....51 


viii 



Figure 14: Histograms ofbootstrap estimates of the difference in costs ................ ....... .. 53 


Figure 15: Normal probability plots for bootstrap estimates ofthe difference in costs ...54 


Figure 16: Histograms ofbootstrap estimates of the ICER ....... .... .... ... ...........................55 


Figure 17: Normal probability plots for bootstrap estimates of the ICER ....... ....... ......... 56 


Figure 18: Histograms ofbootstrap estimates ofiCER angles ...... .... ..... ....... .................. 57 


Figure 19: Normal probability plots for bootstrap estimates ofiCER angles ...... ... .... .... 58 


Figure 20: Ellipses of adequate power for n = 200 .... ................ ........... .. ...... .... ............. .. 64 


Figure 21: Ellipses of adequate power for n = 57 ............................... .... ..... ........... ......... 65 


IX 



List of Tables: 

Table 1: Classification of situations arising from cost-effectiveness studies .................. 30 


Table 2: Summary statistics ............ ......... ............ ...... ...................................................... 45 


Table 3: Comparisons between treatment and standard .............................................. .... .49 


Table 4: Bootstrap Cis- Slope methods ..........................................................................60 


Table 5: Bootstrap Cis- Angle methods ........ .... ........................................ ..... ......... ........ 61 


Table 6: Estimates of probabilities that the ICER is in a given region ............................62 


X 



Chapter 1: Introduction 

Randomized controlled trials, and subsequent statistical analyses, have been used 

for many years to compare the effectiveness of new therapies in the provision of 

healthcare services. Recently, economic evaluations of health care services (Laupacis et 

a/., 1992), and specifically cost-effectiveness analyses of new therapies have become 

increasingly more frequent (O'Brien eta/., 1994). Gold eta/. (1996) define cost-

effectiveness analysis (CEA) as: 

"An analytic tool in which costs and effects of a program and at least one alternative are 
calculated and presented in a ratio of incremental cost to incremental effects. Effects are 
health outcomes, such as cases of a disease prevented, years of life gained, or quality­
adjusted life years ..." 

Examining data on the costs as well as the effectiveness is important for policy 

recommendation and decision making regarding the adoption of new therapies (Adams et 

a/., 1992). Thus, there is an increasing demand from health care policy makers for 

properly analyzed data regarding the cost-effectiveness of new therapies. 

Traditionally cost effectiveness analyses made use of sampled effectiveness data 

and non-sampled cost data. Such data were analyzed using sensitivity analysis to 

determine the findings' robustness (O'Brien eta/., 1994). Sensitivity analysis involves 

varying uncertain features and assumptions of the model, one at a time, over a range of 

possible values, to see if the basic conclusions change when a particular feature or 
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assumption is varied (Sacristan et al., 1995). Although sensitivity analysis has been 

recommended for assessing problems of data uncertainty in economic appraisal of health 

care programmes, it has some major limitations (O'Brien et al., 1994). 

Recently, an increasing number of randomized controlled trials have included 

prospective collection of patient-level health care resource utilization. Whereas 

deterministic models based upon secondary analysis of retrospective data rely on 

sensitivity analysis for dealing with and presenting uncertainty, sampling error in the 

results from prospectively collected data can be handled by using conventional statistical 

methods (O'Brien et al., 1994). 

In randomized clinical trials designed for prospective cost-effectiveness 

evaluation, a bivariate random vector is observed on each patient from two therapy 

groups: one referred to as the standard arm (S) and the other as the treatment arm (1). 

These vectors contain a measure of the effectiveness as well as the total cost of treating 

the patient. The total cost is based on the sum of the total resources used times the 

"price" of each resource. Thus, for each patient an observation of the form (Eij, Cij) is 

obtained, where i=S,T,j=1, ... ,ni. n5 and nT are the numbers of patients in the standard and 

treatment arms, respectively. 

The following notation will be used throughout the manuscript: 

Population parameters: 

1-lcT - true mean cost in treatment arm; 

Jlcs - true mean cost in standard arm; 
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f.1Er- true mean effectiveness in treatment arm; 


f.1Es - true mean effectiveness in standard arm. 


CY~r , CY~s , CY~r, CY~s - true (population) between patient variances for the costs in 


treatment arm, costs in standard arm, effectiveness in treatment arm, and effectiveness in 


standard arm, respectively. 


Pr, Ps - population correlation coefficients between the costs and effects of the 


treatment and standard groups, respectively (i.e., Pi= Cor(Eij,Cij); i = T,S). 


Sample data: 


Eij- effectiveness for patient} in group i (i=S or 1), [note: E(Eij) = f.iE; ]; 


Cij- total cost for patient} in group i, [note: E(Cij) = f.lc; ]; 

- number of patients in standard arm; n5 

nr - number ofpatients in treatment arm. 

Statistics calculated from the data: 

n.\· 

LEsj 

Es = 
j=l 

- sample average effectiveness for standard arm, E(Es) = f.1Es ; 
ns 

nr 

LE7J 

Er= 
j =l 

- sample average effectiveness for treatment arm, E (Er ) = f.1Er ; 
nr 

ns 

Z:csj 

Cs = 
j = l 

- average sample cost for standard arm, E(Cs ) = f.lcs; 
ns 
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nr 

Ic1] 
Cr = J=l - average sample cost for treatment arm, E(Cr) = f.lcr. 


nr 


s~T' S~s' s;T' Sis -sample variances for the costs in the treatment arm, costs in the 

standard arm, effects in the treatment arm, and effects in the standard arm, respectively 

(unbiased estimators for the corresponding population variances). 

rn rs- sample correlation coefficients for costs and effects of the treatment and standard 

arms, respectively. 

To make inferences from prospective cost-effectiveness evaluations, several 

methods have been developed using traditional inferential statistical methods which allow 

for the calculation of point estimates of the cost-effectiveness measures, hypothesis 

testing, and calculation of confidence intervals. 

Results from a cost-effectiveness analysis can be graphically displayed on the 

cost-effectiveness plane, proposed by Black (1990). In this plane (Figure 1) the vertical 

axis is the difference in mean costs for the two groups, and the horizontal axis is the 

difference in mean effectiveness. If we let !J.C = f.lcr - f.lcs and M = f.iEr - f.iEs , and 

consider the point (M,!J.C) in the cost-effectiveness (c/e) plane, the four quadrants 

represent the following situations which may arise: 

1) Quadrant 1: !J.C>O, 11£>0, which means that although treatment is more effective, it 

leads to greater costs than standard; 

2) Quadrant 2: !J.C>O, /J.£<0, which means that treatment is less effective and more costly, 

and is said to be dominated by standard; 
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3) Quadrant 3: ~C<O, M <O, which means that treatment is less effective, but also less 

costly; 

4) Quadrant 4: ~C<O, 11£>0, which means that treatment is more effective and less costly, 

and is said to dominate standard. 

<lC 
Quadrant 2: Quadrant 1: trade-off 

Standard is dominant (<lE,<lC) 

<lE 

Quadrant 3: Quadrant4: 
trade-off Treatment is dominant 

Figure 1: The cost-effectiveness plane ( c/e plane) 

Often a treatment is more effective but also more costly and the point (M,~C) 

falls in quadrant 1. In such cases a useful measure of the cost-effectiveness of treatment 

relative to standard is the incremental cost-effectiveness ratio (ICER) proposed by 

Weinstein and Stason (1977), which is the ratio of the difference in costs to the difference 

in effectiveness: 

~C Jlcr - JlcsR - - - ___::;.:___--...::;~ 

- M - JlEr - JlEs . 

R is interpreted as the additional cost of achieving an extra unit of effectiveness from 

using treatment rather than standard. Using the collected data, this unknown population 

parameter (R) is estimated by: 
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On the c/e plane, the ICER point estimate is the slope of the line joining the point 

(Er - Es, Cr- Cs ) with the origin. The true ICER can fall in any one of the four 

quadrants, and the appropriate conclusion depends on which quadrant. Where the point 

falls within the quadrant is also important. For example, in quadrant 1, if a point, when 

joined with the origin, produces a large slope (i.e. , large ICER) it means that although 

treatment is more effective, the added costs associated with it may be too high. If the 

slope is low (small ICER) the additional costs of treatment may be acceptable, 

considering its greater effectiveness. Of course what is considered too costly is a matter 

ofjudgment, and ultimately depends on the society's willingness to pay for added health 

benefits. Laupacis eta/. (1992) suggested thresholds meant to distinguish whether a new 

therapy can be considered to be an attractive economic proposition or not, when 

effectiveness is measured in quality adjusted life years (QALYs). These thresholds are 

shown in Figure 2. Laupacis eta!. (1992) used the thresholds to divide the c/e plane into 

regions that classify therapies into five "grades of recommendation". In quadrant 1 of 

Figure 2, the region between the line with slope 20,000 and the horizontal axis represents 

a situation where treatment would be considered a good investment, because the 

additional cost per QAL Y is low. The region between the lines with slopes 20,000 and 

100,000 depicts a situation where the added cost per QAL Y is acceptable. In the region 

between the line with slope 100,000 and the vertical axis, the added cost per QAL Y 
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resulting from using treatment rather than standard is very high, and may be unacceptable 

for policy makers. 

Treatment is more 
effective and less 
costly than standard 

Figure 2: Thresholds which divide the c/e plane into "grades ofrecommendation" (Laupacis eta/. , 1992) 

• 
The point estimate alone has limited value if the level of uncertainty is not 

quantified in some way. A common way of expressing the uncertainty of an estimate is 

by attaching a confidence interval (CI) to the point estimate. The use of confidence 

intervals for presenting clinical trial results is highly recommended since they not only 

provide information on statistical significance, but also provide information about the 

values for the parameter of interest that are consistent with the data (Guyatt et al., 1995; 

O'Brien et al., 1994). If sampled data is available for both the costs and the 

effectiveness, then estimates of the mean costs and effectiveness for both groups, as well 

as the variances of these estimates and correlations of cost and effectiveness in each 

group can be calculated. However, because in the estimator of the ICER the numerator 
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and the denominator are both stochastic, the variance of this estimator cannot be 

calculated exactly (Chaudhary and Steams, 1996). Furthermore, the distribution ofthe 

ICER estimator is unknown. 

Although the ratio estimator is biased, it is consistent, and thus the bias can be 

neglected for large sample sizes (Cochran, 1977; Chaudhary and Steams, 1996). 

Chaudhary and Steams (1996) found that in most cases, the distribution of R has been 

found to be positively skewed. However, the limiting distribution of R is normal as the 

sample sizes become very large, subject to some mild restrictions. They proposed that, as 

a rule, the large sample results can be used if the sample sizes are greater than 30 and the 

coefficients ofvariation ofboth the numerator and the denominator are less than 0.1 

(Cochran, 1977). 

Early attempts at estimating Cis included a method referred to as the box method 

(O'Brien et al., 1994). According to this method, confidence intervals for the difference 

in costs, and difference in effects are calculated individually, and are used to estimate best 

and worst-case scenarios for the ICER as illustrated in Figure 3. The fundamental 

problems of this method were discussed by O'Brien et al. (1994). Particularly the 

assumption that costs and effects vary independently is an unjustified oversimplification. 

Furthermore, the bivariate probability density function of (M,!1C) is expected to have 

an elliptical shape as shown in Figure 4, rather than the box-shape depicted in Figure 3. 

The upper and lower confidence limits of the ICER are depicted in Figure 4 using rays 

from the origin that are tangent to the density function. The goal of the analysis 
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described in this manuscript is to find the slopes of these rays. Polsky eta/. (1997) 

proposed improving the box-method by using narrower independent Cis for costs and 

effects, such that they jointly yielded a 95% CI for the ratio. Laska, Meisner, and Siegel 

(1997) used a similar procedure to calculate "Bonferroni Cis". A method proposed by 

van Hout eta/. (1994) involved the calculation of a 95% probability ellipse for assessing 

the uncertainty around the cost effectiveness ratio. 

LlC 

.· 

.. . · · 
..·... · ..... ·.. ·· 

LlE 

Figure 3: Box-method CI for the ICER (slope ofUL line= upper confidence limit, 
slope of LL line = lower confidence limit) 

LlC .· 
Ul./ 

<-:: : ~ ·... ·· 
LlE 

Figure 4: Contour view of the joint density function of difference in costs and difference in effectiveness 
(slope ofLL line= lower confidence limit, slope ofUL line= upper confidence limit) 
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Recently, several approximate yet improved methods have been proposed for 

obtaining confidence intervals for cost-effectiveness ratios. These include a method 

which uses a Taylor series approximation for calculating the variance of R; a method 

based on Fieller's Theorem; and methods which use bootstrap methodology. All these 

methods are considered in this manuscript and are illustrated using data from a clinical 

trial which collected both resource use and health outcome data. Furthermore, several 

'variations' ofbootstrap intervals are proposed. 

The data used to illustrate the different approaches comes from a clinical trial 

which compared chemotherapy with mitoxantrone plus prednisone for symptomatic 

hormone resistant prostate cancer to treatment with prednisone alone {Tannock et al., 

1996). An analysis of cost-effectiveness using the Fieller's Theorem method has been 

submitted for publication (Bloomfield et al., 1998). 

Finally, the issue of power and sample size in trial-based cost-effectiveness 

analysis is considered briefly. Methods which address these issues derived by Willan and 

O'Brien (1998) are applied to the same data set. 



Chapter 2: Confidence Intervals for the ICER 

2.1 Taylor's Series Approximation Method 

O'Brien et al. (1994) proposed calculating a confidence interval for the ICER by 

using a Taylor's series approximation for estimating the variance. This method is based 

on the fact that it is possible to derive an approximation of the variance for any function 

of a random variable, or several random variables, by using Taylor's approximation. 

Casella and Berger (1990) described this method. In their derivation, they letX1, ••• ,Xk be 

random variables with means B1, •• • ,~,and define X= (X1, ••• ,XJ and B= (81, ••• ,~, and 

suppose there is a differentiable function g(X) (an estimator of some parameter) for which 

an approximate estimate of variance is required. The first-order Taylor series expansion 

ofg about eis 

k , 

g(x) =g(B) + Lg; (B)(x;- B;) +remainder. 
i=l 

k , 

Thus, g(x) ~ g(B) + Lg; (B)(x;- B;) . 
i=l 

Using the above approximation 

k , 

E 8 [g(X)] ~ g(B) + Lg; (B)E 8 (x;- B;) = g(B) 
i=l 

11 
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and thus 

Var8 g(X) ~ E 8 [(g(X)- g(B)) 2
] 

k , 

~ Eo[(Lg; (B)(X;- B; ))2] 
i=l 

i=l i<j 

For the purpose of finding an approximate variance of the ICER estimator, an 

approximation of the variance of the ratio of two random variables is required. Casella 

and Berger ( 1990) provide an example in which they suppose that X and Yare random 

variables with means J.lx and J.lr respectively and the parametric function to be estimated 

is g(J.lx ,J.lr) = J.1x I J.lr and show that 

Var( X) ~ (___!__) 
2 

Var(X) + (J.l~) 
2 

Var(Y)- 2(_!_J(J.l~)cav(X,Y)
Y J.lr J.lr J.ly J.lr 


= (J.lx) 
2

(Var~X) + Var~Y) _ 2Cov(X,Y)) 
 (2.1) 
J.lr J.1x J.lr J.1x J.lr 

Thus, to find an approximate formula for Var(R) we let X= CT- Cs, 

Y = ET- Es, and then find Var(R) = Var(X I Y) using the above formula. 


In this case, 


Var( X) =Var( CT) + Var( C s ) since the costs for the two groups are independent, 




13 

The variances of CTi and Csj ( a~T and a~s , respectively) can be approximated by their 

unbiased estimators, the sample variances S~r and S~s, gtvmg: 

Similarly, 


Var(Y) =Var(Er) + Var(Es) can be approximated by 


Also, 

Finally, 


f-ix =E[X] =E[ CT- Cs] = f-lcr - f-lcs, and 


Substituting the expressions for all the components into equation 2.1, the following 

approximation of Var(R) is obtained: 
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In order to construct a confidence interval, a distributional assumption is generally made. 

O'Brien et al. (1994) proposed the following CI: 

where z1_aJz is the 100(1-a/2)th percentile point of the standard normal distribution. 

This CI is based on the assumption that the ICER point estimator R has a normal 

distribution, and is symmetric around the point estimate ofR. 

One disadvantage of this method is that it is based on the assumption that the 

ICER point estimator is normally distributed. Although as Obenchain (1997) pointed out 

the ICER is asymptotically normally distributed since it is a "ratio estimator" in the sense 

of Cochran (1977), previous studies have shown this•to be a questionable assumption 

(Chaudhary and Steams, 1996). Criticism was also raised because the variance 

calculation is only approximate (Obenchain et al., 1997). Obenchain (1997) commented 

that confidence intervals based upon Taylor series approximations are too narrow (i.e., 

anti-conservative) relative to the corresponding intervals from Fieller's theorem. In their 

comparison of four methods for constructing confidence intervals for cost-effectiveness 

ratios, Polsky et al. (1997) found that the Taylor series method gave confidence intervals 

that asymmetrically underestimated the upper limit of the interval. O'Brien et al. (1994) 

noted that accuracy of Taylor's approximation depends on the random variables Cr- Cs 

and Er- Es having small coefficients ofvariation. 
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Although this method is not believed to give particularly accurate results, it is, 

nevertheless, a significant improvement from the 'box' method because it takes into 

account the correlations between the costs and effectiveness. Also, the relative simplicity 

ofboth the derivation, and the computations required with this method, make it quite 

appealing. 

• 
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2.2 Fieller's Theorem Method 

A specific application ofFieller's Theorem (Fieller, 1954) allows the derivation of 

an exact confidence set for a ratio of normal means. A summary of the theorem can be 

found in Casella and Berger (1990). Fieller considered a situation where a random 

sample (x;,Y1), ••• ,(Xn.Yn) from a bivariate normal distribution with parameters 

(J.Jx, f.Jr, cr~ , cr~ ,p) is available, and a confidence set for B = f.Jr I f.Jx is to be derived. If 

fori= 1, .. .,n we let 

= Y- ex, then Z0 

The variance of Z0 , V0 , can be estimated by 

where S~ and S~ are the sample variances and Syx is the sample covariance. 

~ ~ - ~ 2 
It can also be shown that E[V0 ] =V0 , is independent of Z0 , and (n -1)V0 I V0 ~ Xn-l .V0 

-2 }- ~ Zo 2 
Thus, ZIJ I .JV: ~ t n-1' and therefore, the set 

{ 
B: VIJ ~ t n-1 ,1-a /2 defines a 1-a confidence 

set for B, where t n- l,l-a /2 is the 1 00(1-a/2)th percentile point of the !-distribution with n-1 
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degrees of freedom. For large n, the standard normal distribution can be used as an 

approximation of the !-distribution, and thus, the t-value can be replaced by the z-value. 

Sacristan eta/. (1995) proposed the use ofFieller's theorem for estimating the CI 

of the ICER, without providing a detailed derivation. They stressed the form of the CI 

which does not take covariance between costs and effectiveness into account (although 

they also considered the case with co variances). Furthermore, they provided a formula 

for a 95% CI, rather than a general formula applicable to any desired confidence level. 

Sacristan eta/. (1995) pointed out that when data consists of paired samples or when the 

efficacy is expressed as a percentage, different formulas would need to be used. 

By assuming that the numerator and denominator of the ICER estimator follow a 

bivariate normal distribution, Willan and O'Brien (1996) derived a procedure for 

calculating confidence intervals for ICERs based on Fieller' s Theorem, using matrix 

algebra in the calculations. They considered sampled cost and binary effectiveness data, 

however, their derivation can be generalized to continuous effectiveness data. In their 

derivation they defined: 

x =[~r - ~s] and Sas the estimated variance-covariance matrix ofx. Letting 
Cr -Cs 

(yl) A-1 /2 A 1 [ Y1 Y2] A A A 
y= =S x, U=- , and T =US- 112 

, the 100(1-a)% confidence 
Y2 11 - Y2 Y1Y 

interval for R is given by the slopes of the vectors: 
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, 


- (zt- a /2 I IYI) ] d 
112 an 

{1- (zt-a /2 I IYI) 2 } 

where z1_a12 is the upper (1 OOa/2)% cut off point for the standard normal distribution. 

The above result was obtained by determining a CI for the slope of Tp and then 

transforming the result back to get a CI for the slope ofJl. The details of the derivation 

can be found in Willan and O'Brien (1996). Willan and O'Brien cautioned that no 

solution exists for IYI < z1_a 12 , and explained that either small sample sizes or small 

expected differences can lead to no solution. In such cases, the sample size is inadequate 

to provide even reasonably precise estimates ofR. 

A derivation presented by Chaudhary and Steams (1996) produces a "closed­

form" Cl. This derivation follows directly from a simple generalization ofFieller's 

theorem as it appears above, noting that in this case if we let 

Z = Y -RX then 

and thus, 
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In order to obtain the confidence interval for R, the above expression is equated to za.J2, the 

100(1-a'2)th percentile point of the standard normal distribution, and following some 

algebraic manipulation, a quadratic equation in R is found. Solving this quadratic 

equation for R, the two limits of the confidence interval can be approximated by: 

These confidence limits are equivalent to those previously suggested by Willan and 

O'Brien (1996). 

Laska, Meisner, and Siegel (1997) also showed a brief derivation of the Fieller's 

theorem interval, making use of the chi -square distribution with one degree of freedom 

(X<~>). However, they noted that since the variances and covariances are unknown and 

are replaced by their estimators, the F -distribution with the appropriate degrees of 

freedom should be used instead of the x<~>. They pointed out that Willan and O'Brien 

(1996) used the X<~> value (or equivalently the square of the standard normal value) and 



20 

obtained a narrower FieBer interval. However, with large sample sizes, the difference 

becomes negligible. 

The FieBer's theorem interval is preferred to the one which uses a Taylor' s series 

expansion to approximate the variance of the ICER estimate, because it takes account of 

the skewness of the distribution of R. Obenchain (1997) noted that similarly to the 

Taylor series approximation method, the FieBer's theorem approach recognizes that the 

ICER is a "ratio estimator" in the sense of Cochran (1977), and thus is asymptotically 

normally distributed. However, the FieBer's approach treats the numerator and 

denominator as a pair of correlated normal variables, and can thus be applied to small 

sample situations where the distribution of the ICER is actually highly skewed. 

Chaudhary and Steams (1996) comment that the confidence limits are 

approximate, since the two roots of the quadratic equation are imaginary in some 

samples. However, they conclude that this is rare if the coefficients of variation of the 

numerator and denominator are less than 0.3 (Cochran, 1977). Also, they feel that 

sometimes it may be hard to justify the assumption of bivariate normality, particularly 

when samples are small. Laska, Meisner, and Siegel (1997) discussed circumstances that 

may lead to solutions of the form (-oo,a) and (b,oo) (i.e., 'not [a,b]' which they call an 

exclusionary interval) or intervals that consist of the whole real line (-oo,oo). 

Chaudhary and Steams (1996) found that the FieBer's theorem intervals were 

similar to those obtained using bootstrap methods. They felt that these methods, which 

account for the skewness in the distribution of the ratio estimator, are substantially 
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preferable to methods that assume the estimator is normally distributed. Using Monte 

Carlo experiments to compare different methods of obtaining confidence intervals for 

cost-effectiveness ratios, Polsky et al. (1997) found that overall probabilities of coverage 

for the Fieller's theorem, as well as the non-parametric bootstrap method, were more 

accurate than those for the Taylor series method or the box method, and the confidence 

intervals resulting from the former two methods, were more dependably accurate. 

Obenchain (1997) commented that confidence intervals calculated using the Fieller's 

theorem method are "bow tie" shaped regions on the cost-effectiveness plane, and 

consequently, these intervals are "too-narrow" when (ET - Es, CT - Cs) is not 

significantly different from (0,0). Obenchain (1997) also raised the issue that the Fieller 

method of forming ICER confidence intervals is not "rescaling commutative", meaning 

that rescaling an ICER statistic by a multiplicative factor changes its upper and lower 

confidence limits by a different factor. This kind of scale change can occur, for example, 

in converting a numerator cost difference from one currency into another. 
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2.3 Bootstrapping Approaches: 

So far, two parametric approaches to finding a confidence interval for the ICER 

have been discussed. Both of these required what can be considered "questionable" 

assumptions. Briggs, Wonderling, and Mooney (1997) expressed concern that given the 

unknown nature of the ICER's sampling distribution, there is reason to be cautious of 

such parametric methods. An alternative to these approaches is to use non-parametric 

bootstrapping methods, developed in the late 1970's (Efron and Tibshirani, 1993). Such 

methods have been applied to cost-effectiveness analyses by many authors including 

Obenchain (1997), Chaudhary and Steams (1996), Briggs, Wonderling and Mooney 

(1997) and Polsky et al. (1997). The bootstrapping approach can be applied to the 

problem of estimating the standard error, bias, or confidence limits for the ICER (Briggs, 

Wonderling, and Mooney, 1997). 

The bootstrap method estimates the sampling distribution of a statistic through a 

large number of simulations, based on sampling with replacement from the original data 

(Briggs, Wonderling; and Mooney, 1997). The reasoning behind the method (in the case 

of a single random sample) is that the observed random sample is treated as an empirical 

estimate ofthe true probability distribution of the population by weighting each 

observation in the random sample by the probability lin, where n is the sample size. 

Successive random samples of size n are then drawn from the original random sample 

with replacement, to provide the bootstrap re-samples. Let the number of bootstrap re­
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samples taken be denoted by B. The statistic of interest is then calculated for each of 

these B re-samples, and these bootstrap replicates of the original statistic make up the 

empirical estimate of the statistic's sampling distribution, which can then be used to make 

inferences about the population parameter of interest (Briggs, Wonderling, and Mooney, 

1997). 

In the case of the ICER, because there are two variables per patient, bootstrapping 

requires sampling from a bivariate distribution. Furthermore, it will require sampling 

from two empirical distributions, corresponding to the two populations. Care must be 

taken to bootstrap each sample appropriately, since the ICER is estimated on the basis of 

four statistics from 2 samples (Briggs, Wonderling, and Mooney, 1997). Efron and 

Tibshirani (1993) advocate that there-sampling mechanism mirrors that by which the 

original data were obtained. In the case of the ICER, where data on resource utilization 

and health outcome exist for treatment and standard with sample sizes nT and n5, 

respectively, the following algorithm (Chaudhary and Steams, 1996) should be followed: 

1) randomly sample nT data pairs ( CTi,ETi) with replacement from the nT treatment 

patients, and calculate c; and £;, the bootstrap replicates of Cr and Er 

2) randomly sample n5 data pairs ( C5i,Es) with replacement from the n5 standard patients, 

and calculate c; and £;,the bootstrap estimates of Cs and Es 
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4) repeat steps 1-3 B times, obtaining B independent bootstrap estimates of it 


(R.; ,...,R.;) along with the corresponding B ( !).£*, ~::.c·) points. 


There are several ways of using the B estimates to construct confidence intervals: 


a) normal-assumption method: 


The sample variance of the B bootstrap estimates of R can be calculated as: 


A 1 ~ A. ~ 2 ~ 1 ~ A.

v(R) = --L..(Rb- R) , where R =- L..Rb 

B -1 b=l B b=I 


and this result can be used to construct a symmetric confidence interval, assuming that R 


is normally distributed: 


R± za/2/v(R) (Chaudhary and Steams, 1996) 


b) percentile method: 


The 100(a/2) and 100(1-a/2) percentiles ofthe empirical distribution of R can be used 


as the limits of the central confidence interval (Chaudhary and Steams, 1996). This is 


accomplished by ordering the R.; 'sin ascending order, and finding the appropriate 


percentiles. Mathematically, the cumulative distribution of R.; is: 


P(t) =#{R: < t} I B 


where # {R; < t} denotes the number of bootstrap estimates R.; less than a given value t. 
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The percentile bootstrap confidence interval (which will be referred to as the central 

percentile interval) is: 

{p-1 (~). j>-t (1- ~)} 

Chaudhary and Steams (1996) discussed the fact that R is a biased estimator of R, and 

will be too high if the distribution of R is positively skewed. Thus, the percentile 


method will result in incorrect Cis. Briggs, Wonderling, and Mooney (1997) explain that 


R is a biased estimator of the population ICER, R, and that this bias is magnified during 


the bootstrap process. Thus, the expectation of the bootstrap sampling distribution is 


more biased an estimator ofR than R. They describe how the bootstrap process can be 


used to estimate the magnitude of the bias in R and to adjust for it when appropriate. 


Briggs, Wonderling, and Mooney (1997) caution against some types ofbias-correction, 


and discuss circumstances when it is unnecessary. They point out that some types of bias 


correction need to be approached with caution, since using the bootstrap estimate ofbias 


to adjust the sample ICER may inflate the mean squared error ofthe estimator. 


c) bias-corrected percentile method: 


A third bootstrap method, the bias-corrected percentile method suggested by Chaudhary 


and Steams (1996), adjusts for the bias in R as an estimate of R. They point out that 


this method is therefore more appropriate when R is not distributed normally. The 


adjusted interval is given by: 
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where z0 = <D-1 {P(R)}, and <DO denotes the c.d.f. of the standard normal distribution, 

and P is defined as previously. 

d) bias-corrected and accelerated method (BCa method) 

Briggs, Wonderling, and Mooney (1997) propose using the bias-corrected and accelerated 

percentile method, first developed by Efron (1987), which they feel adjusts more 

satisfactorily for bias and skewness of the sampling distribution of R. With this method, 

the adjusted percentiles are given by: 

~ Zo + 2 (1 - a /2) )= <D z + ~ ~ .a 2 ( 1- a(z0 + z(l-a/2) ) 

The acceleration constant, a, adjusts for the skewness of the sampling distribution. 

Briggs, Wonder ling, and Mooney ( 1997) propose using the jackknife estimate of a 

suggested by Efron and Tibshirani (1993): 

nIc.R·· -.R;.• )3 

i= l 

where R;•• is the jackknife replicate of the ICER with the ith observation removed, for 

-.. ~ " •• i=1, ... ,n, R = LJR; In , and n =n5 + nr­
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e) percentile-! method 

Finally, Briggs, Wonderling, and Mooney (1997) propose using the percentile-! method, 

which like the BCa percentile method accounts for skewness in the estimated sampling 

distribution, but in a very different way. First, each bootstrap replicate of the ICER is 

transformed into a standardized variable t • : 

*b R *b - R 
t = ~·b 

(j 

where a·bis calculated for each replication using another round ofbootstrapping, greatly 

increasing the number of computations required. The 1 00( a/2) and 1 00(1-a/2) 

percentiles from the obtained distribution of t • , can then be used to calculate the interval 

as: 

where v(R) is calculated from the original bootstrap re-samples, as in the normal-

assumption method. Because of the added computational complexities, this method is 

not frequently used, and has not been used in this study. 

As Obenchain (1997) pointed out, "the bootstrap approach yields a rather 

dramatic graphical display of the variability in the cost and effectiveness differences 

when an entire study is literally redone hundreds of times", by plotting the ( /).£ *, !'1C*) 

points for the individual re-samples. (See Figure 5). This graphical display shows the 

ICER CI as a 'wedge-shaped' region on the c/e plane. Obenchain (1997) proposed 
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dividing the c/e plane into five regions as shown in Figure 6, where the different regions 

span the full range of possible outcomes of cost-effectiveness studies, in terms ofhow 

favourable treatment is relative to standard. 
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Figure 5: Graphical representation of the results ofbootstrap re-samples (i.e. plot of 

(till* , l!l.C.) pairs generated by bootstrap re-sampling) [Note that 0 represents the point 

(M,I!l.C)] 
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~E 

Highly 
Favourable 

Figure 6: Division of the c/e plane proposed by Obenchain (1997) 

Obenchain (1997) noted that we do not always find ourselves in the simple 

situation where all of the results generated in an ICER bootstrap analysis fall within 
• 

quadrants 1 and 4, since some of the simulated effectiveness differences may tum out to 

be negative. However, points within the 2"d and 41
h quadrant have negative slopes 

(negative ICERs), and points in the 3rd and 1st quadrant have positive slopes (ICERs). It 

has already been discussed (Chapter 1) that situations giving rise to points in the 2"d 

quadrant are very different from those giving rise to points in the 4th quadrant. Also, 

values in the 1st quadrant are interpreted differently from those in the 3rd quadrant, even if 

the slopes are exactly equal. This means that the ICER statistic is not, by itself, a 

sufficient statistic for making cost-effectiveness inferences. Obenchain (1997) proposed 

the use of ICER angles to deal with this problem. 
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Description ICERAngle ICER Slope c/e Quadrant 

Highly Favourable 0°~161<45° Negative IV 

Favourable 45°~161<60° Positive (extreme) I or III 

Mixed ("Gray Area") 60°~161<120° Positive (neither very 
large nor very small) 

I or III 

Unfavourable 120°~161<135° Positive (extreme) I or III 

Highly Unfavourable 135°~161<180° Negative II 

The scales used along the horizontal and vertical axes of the c/e plane need to be 

standardized in order to define meaningful cost-effectiveness angles. This 

standardization can be accomplished in the following way (Obenchain, 1997): 

The ICER angle, B, is then defined as the angle between the line segment joining the 

standardized point (x,y) with (0,0), and the minus-45-degree line. Contours of constant 

cost effectiveness can then be defined by pairs of line segments, joined at the origin, 

making equal angles+/- Bwith the minus-45-degree line. Table 1 (reproduced from 

Obenchain, 1997) describes the possible situations that can arise, in terms ofiCER 

angles, ICER slopes, and quadrants, linking these ideas together. It is important to note 

that the 60° and 120° lines were chosen arbitrarily. They are based on a similar idea that 

was used in defining the thresholds by Laupacis eta/. (1992), however, the latter are 

more precisely defined and easier to justify. 

..
Table 1: ClassificatiOn of sttuattons ansmg from cost-effectiveness studtes, reproduced from Obencham 
(1997) 
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Using ICER angles, Obenchain (1997) defined two possible confidence intervals. 

In definition one of the ICER Angle Bootstrap CI, the bootstrap 100(1-a)% confidence 

region for cost-effectiveness is the wedge-shaped region subtending the smallest total 

angle at the origin and yet containing 100(1-a)% ofthe simulated cost-effectiveness 

pairs. According to a second definition, the bootstrap "central" 100(1-a)% confidence 

region for cost-effectiveness is the wedge-shaped region formed by excluding the top 

1 00( a/2)% of simulated cost-effectiveness pairs with largest ICER angles and the bottom 

1 00( a/2)% of simulated cost-effectiveness pairs with the smallest ICER angles. 

Although Obenchain (1997) proposes reporting Cis both in terms of angles and slopes, 

results reported in terms of angles would be rather difficult to interpret. It seems that, 

particularly in quadrant 1, it would be more beneficial to transform the angles obtained 

using the methods described by Obenchain (1997), into the corresponding slopes, and 

then compare the slopes to the thresholds defined by Laupacis eta/. (1992) (or similar 

thresholds defined by policy makers), rather than comparing the angles to the arbitrarily 

chosen 60° and 120° angles suggested by Obenchain (1997). 

Although it has not yet been done in the literature, similar corrections for bias 

could be used with the "angle methods" as they were with the "slope methods". It is 

proposed here, that bias correction and accelerated bias-correction should also be applied 

to calculation ofiCER Cis, when the Cis are first found in terms ofiCER angles which 

are subsequently converted to slopes (i.e., ICERs). The point estimate Rneeds to be 

expressed as an angle, and then the distribution of the angles obtained by bootstrapping 
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can be used to correct for the bias using the same protocol as with the ICERs (slopes). 

Noting that the idea of estimating the CI in terms ofiCER slopes by the ' smallest wedge­

shaped region' is based on the concept of a 'shortest interval', a similar method is 

proposed for dealing with the ICER (slope) estimates, when only the ICER (slope) 

estimates of the bootstrap re-samples are considered. Thus, it is proposed that the 

shortest CI containing 95% of the bootstrap ICER estimates can also be used to estimate 

the 95% CI, as an alternative to the "central" percentile method. 

A commonly recognized advantage of the bootstrap methods is that possibly 

unrealistic assumptions about parametric forms for stochastic distributions need not be 

made, increasing the potential for accuracy and robustness (Obenchain, 1997). It has also 

been pointed out that with the bootstrap approach, it is of no consequence whether R has 

a "well-behaved" distribution (Willan and O'Brien, 1996). Another advantage of 

bootstrapping is that the ideas behind the method as well as the graphical display 

produced make this method easier to explain and appreciate than the previously discussed 

methods. A further advantage ofthe bootstrap approach discussed by Obenchain (1997), 

is that it allows estimation of probabilities, such as the probability that treatment is both 

more effective and less costly (i.e., probability that the true (!::.E, ~C) point lies in the 41
h 

quadrant), by finding the percentage of the bootstrap replications that produce points 

(!::.E* , ~C*) in that region. This is a particularly useful method of analysis when the point 

estimate falls in the 4th quadrant, and there is a high probability that treatment is 

dominant, as compared with standard. Stinnett and Mullahy (1997) argued that in such 
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circumstances use of the ICER is misleading, and estimating the probability of 

dominance may be an appropriate alternative method of analysis. Laska, Meisner, and 

Siegel (1997) discussed statistical procedures for testing dominance, however, they relied 

mostly on simple parametric methods. Without making restrictive assumptions, the 

bootstrap approach of estimating probabilities may be preferable. 

The historical limitation of the bootstrap, was the fact that it is computationally 

intensive. However, with the increased availability of fast computers, this is no longer an 

issue of great concern. The fact remains that a program (source code) has to be written, 

since currently there are no broadly available programs with commercial statistical 

software. Efron and Tibshirani (1993) describe some bootstrapping functions which are 

available from Splus function libraries, however, these may not be useful in the case of 

the ICER estimator. The only available program specific for the ICER is written inC and 

distributed by Eli Lilly and Company (Obenchain, 1995); however, this program is 

designed for analyzing binary effectiveness data only. Nonetheless, since the ideas and 

algorithms for bootstrapping presented in literature are uncomplicated, programming the 

method is not a difficult task. 

A remaining issue is that all the observed data pairs for all patients in the two 

therapy groups are needed to construct bootstrap Cis, whereas the other methods 

described can be used when only summary statistics, such as means, variances, and 

covariances, are available. Furthermore, confidence limit values are sensitive to 

"parameters" such as B (the number of bootstrap replicates) and the random number seed 
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used by the computer for generating random numbers during the simulations. Obenchain 

(1997) suggests that full disclosure of such details is important, to allow verification of 

the results. Also, "sensitivity analyses" should be performed to ensure that results are not 

reported with inappropriate precision. 

Briggs, Wonderling, and Mooney (1997) found that successive bootstrap 

estimates of bias and standard error suggest that these may be unstable, and thus they 

recommend a cautious interpretation of such estimates. They also found that the 

percentile and BCa methods gave fairly stable confidence limits after about 1000 

replications. They pointed out that the BCa interval does not suffer from the problem of 

instability because it is based on the median bias, not the mean bias. 

As all the other methods, the bootstrapping approach also has its limitations. 

Mainly, its validity rests on two asymptotics, discussed by Briggs, Wonderling, and 

Mooney (1997). The sample distribution tends to the population distribution as the 

original sample size approaches the population size, and given this, the bootstrap estimate 

of the sampling distribution of a statistic approaches the true sampling distribution of the 

parameter as the number of bootstrap replications, B, approaches infinity. Briggs, 

Wonderling, and Mooney (1997) also observe that bootstrap results should be interpreted 

cautiously pending further theoretical examination of the properties of the ICER statistic. 

Finally, the use ofiCER angles needs to be emphasized. In the literature, 

Obenchain (1997) and Obenchain eta/. (1997) are the only ones who have employed this 

concept. Most of the studies which made use of the bootstrapping approach, although 
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they considered alternatives such as bias-correction, apparently did not make use of 

angles. This is not a problem if all the ( I1E • , 11c· ) points fall on one side of the vertical 

axis which is often the case. However, it is important that this be verified, and if 

necessary, that the angles are considered. 



Chapter 3: Sample Size and Power 

Although other authors have raised the issue of sample size for trial-based cost­

effectiveness studies, O'Brien et al. (1994) first addressed this issue in the context of 

constructing statistical tests of economic hypotheses with predetermined level of 

significance and power. They considered testing the hypotheses: 

H0 : R=~ax VS HA: R<~ax> 

where ~ax is a predefined "upper threshold" for the ICER, i.e., a maximum additional 

cost per unit effectiveness increase that the society (or policy maker) is willing to pay for. 

They proposed using the estimated Var(R), calculated using the Taylor series 

approximation method, along with the normality assumption, to set up the test of the 

above stated hypothesis. If this test is performed, then the sample size required will 

depend not only on the magnitude of~ax and the amount of variation in R,but also on 

the acceptable risk of Type I and Type II errors, which should be chosen prior to the 

study. Thus, they considered how prior expectation of variation in costs and effects could 

be used to determine the sample size required. Willan and O'Brien (1996) noted that 

with this approach it is required that policy makers, or those designing the trial, must 

establish threshold values, such as ~ax• prior to conducting the study. 

O'Brien et al. (1994) proposed that sample size calculations for stochastic 

economic studies should focus less on the required magnitude of a cost-effectiveness 

36 
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outcome (i.e., hypothesis testing) and more on the degree to which increased sample size 

will improve the precision of the estimate by considering the width of the confidence 

interval. Sacristan et al. (1995) pointed out that Cis have an important practical 

consequence in calculating the sample size needed in cost-effectiveness studies. They 

proposed using Fieller's theorem in estimating the Cis. However, because ofthe 

complexity of the expression for the CI (as presented in Chapter 2.2) they did not 

consider sample size based on it, but rather assumed independence between costs and 

effects in their discussion of sample size. In their presentation of the use ofFieller' s 

theorem in establishing Cis for the ICER, Willan and O'Brien (1996) suggested 

determining sufficiently large sample sizes to provide Cis of a predetermined width. 

Figure 7: Regions of the c/e plane in the hypotheses suggested by Willan and O'Brien 

Willan and O'Brien (1998) derived a formula for determining the sample size 

required to ensure that the confidence interval calculated using the Fieller's theorem 

method is narrow enough to "distinguish between two regions in the cost-effectiveness 

plane: one in which the new therapy is considered cost-effective (RJI) and one in which it 
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is not (RJ)". The two regions described, based on the threshold values suggested by 

Laupacis eta/. (1992), are shown in Figure 7. 

Defining J1 =[JlEr - JlEs] , Willan and 0 'Brien considered testing H1: J1 E R 1 vs. 
Jlcr- Jlcs 

A1: J1 ~ and H2 : J1 E Ru vs. A2 : J1 ~ Ru, simultaneously, by plotting the 1 00(1-a)% CI.R1 

The authors noted that the probability of a Type I error (rejecting H1 or H2 when it is true) 

is limited by setting the level of the test (i.e., setting the confidence level for the interval), 

and also proposed setting the power by requiring that there be 1-a power of rejecting H 1 

when H2 is true and vice versa. This is achieved by ensuring that the angle spanned by 

the limits of the 100(1-a)% CI is no larger than the angle between the lines representing 

the upper and lower thresholds shown in Figure 7. Thus, the sample size desired is one 

sufficiently large to ensure that the CI is narrow enough so that it will lie either entirely 

outside RJ or entirely outside RIJ. In the derivation, they assumed that the sample sizes 

[Er- E s JlEr - llEs] [ ]are large enough so that x ~ N(p,I), where x = - - , J1 = , 
Cr - Cs Jlcr - Jlcs 

1 1I= n~ L s +n~ L r ; and, Is and L r are the variance-covariance matrices of 

The full derivation, which can be found in Willan and O'Brien (1998), leads to: 
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, 
where m 1 and m2 are the lower and upper thresholds respectively, and m; = ( 1 m;) ; Z 

is a standard normal random variable; and X 1
2 is a random variable from a central chi-

square distribution with 1 degree of freedom. To be conservative, Willan and O'Brien 

propose choosing some y>0.5 and using z1_Y for Z and x;_rfor X 1
2 

, where x;_r is the 

[100(1-y)]th percentile of X1
2 

• 

Because the sample size formula includes JL, Willan and O'Brien rearranged the 

formula to get: 

This equation defines, for a fixed value of n, a set of values JL, for which one would have 

adequate power (as described previously). These values are those that fall outside of the 

ellipse given by the equation, as shown in Figure 8. 

Chaudhary and Steams (1996) noted that sample sizes for randomized 

interventions are generally based upon a minimum detectable difference in the 

effectiveness measure, and that these samples may be considerably smaller than those 

required to obtain a precise estimate of the cost-effectiveness of the intervention. 

Furthermore, they pointed out that the modest sample sizes required to detect statistically 
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significant effects in a randomized trial may result in Cis for estimates of the ICER that 

are much wider than the boundaries obtained from deterministic sensitivity analyses. 

O'Brien eta/. (1994), Sacristan eta/. (1995), Chaudhary and Stearns (1996), and Willan 

and O'Brien (1996, 1998) mentioned the potential ethical issues arising from the fact that 

sample sizes required to answer cost-effectiveness questions will be considerably larger 

than those required for establishing effectiveness differences alone. 

LlC 

(llE,llC) 

llE 

Figure 8: Ellipse which separates the c/e plane into regions with adequate and inadequate power 



Chapter 4: Data and Methods 

4.1 Data 

The data was collected as part of a study to evaluate the benefits and the economic 

consequences of the use of chemotherapy with mitoxantrone plus prednisone in patients 

with symptomatic hormone-resistant prostate cancer (Tannock eta/., 1996; Bloomfield et 

al., 1998). In the trial, 161 patients were randomized to initial treatment with 

mitoxantrone plus prednisone (M+P) or to prednisone alone (P). Although there was no 

significant difference in survival, the patients showed better palliation with M+P, with a 

clinically and statistically significant proportion of patients having relief of pain and 

improvement in health-related quality of life. Detailed retrospective chart review of 

resources used from randomization until death was undertaken for 114 out ofthe 161 

patients. The 114 patients were enrolled at the three largest centers participating in the 

study: Calgary, Toronto, and Hamilton. 61 of these 114 patients were in the M+P 

("treatment") group, and 53 were in the P ("standard") group. The cost-effectiveness 

analysis utilized the data on these 114 patients. 

Health benefits of the two treatments were expressed in terms ofquality adjusted 

life weeks (QALWs). Gold eta/. (1996) defined quality adjusted life in the following 

way: 

41 
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"A measure of health outcome which assigns to each period oftime a weight, ranging 
from 0 to 1, corresponding to the health related quality of life during that period, where a 
weight of 1 corresponds to optimal health, and a weight of 0 corresponds to a health state 
judged equivalent to death; these are then aggregated across time periods." 

The core questionnaire of the European Organization for Research and Treatment of 

Cancer (EORTC), which included a disease specific module, was used in the trial. The 

utility was calculated from the rating scale value, which was the response to the global 

quality of life item in the questionnaire which asks patients "how would you rate your 

overall quality oflife during the past week". 

The resources collected included hospital admissions, outpatient visits, 

investigations, therapies (including all chemotherapy and radiation) and palliative care. 

Details of the computational methods used in arriving at the total costs for each patient 

can be found in Bloomfield eta/. (1998). 

The data analyzed here had been analyzed previously. These analyses included (i) 

a comparison of the effectiveness of the two treatments (Tannock eta/., 1996); (ii) an 

analysis ofthe cost-effectiveness, using the Fieller's theorem method (Bloomfield eta/. , 

1998); and (iii) an illustration of sample size calculation methods derived by Willan and 

O'Brien (1998). 
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4.2 Methods of Analysis 

4.2.1 ICER Confidence Intervals 

Summary statistics and plots of the data were obtained in Mini tab and Splus. The point 

estimate of the incremental cost-effectiveness ratio was calculated as described in Chapter 

1. Confidence intervals for the ICER were calculated using the following methods 

discussed in the earlier chapters: 

i) Taylor's Series method; 

ii) Fieller's Theorem method (both "closed form" formula and "matrix" method); 

and the following bootstrapping methods: 

iii) normal-assumption method using slopes; 

iv) central percentile method using slopes; 

v) bias-corrected percentile method using slopes; 

vi) bias-corrected and accelerated method using slopes; 

vii) narrowest CI method using slopes; 

viii) normal-assumption method using angles; 

ix) central percentile method using angles; 

x) bias-corrected percentile method using angles; 

xi) bias-corrected and accelerated percentile method using angles; and 

xii) smallest wedge-shaped region method using angles; 



44 

The Taylor's series and FieBer's theorem Cis were calculated in SAS (the SAS 

programs are included in Appendix A). All of the bootstrapping and related calculations 

were performed in Splus. Twelve bootstraps were performed: three with B=100, three 

with B=500, three with B= 1000 and three with B=10,000. In each case all of the 

bootstrap approaches listed above were used to calculate a CI. 

Validity of assumptions were evaluated by examining histograms and normal 

probability plots of the original data and some statistics (based on estimates from 

bootstrap re-samples). This part of the analysis was done using Minitab and Splus. 

4.2.2 Probability of the ICER being in a "given region" 

For each of the 12 bootstraps, the probability of the ICER being in the 4th quadrant 

or region RIJ of Figure 7, was estimated by the proportion of the simulated 

(!:ill · , t::.c•) points which fall within the given region. 

4.2.3 Sample Size Calculations 

The required calculations and the plot of the ellipse which separates the c/e plane 

into a region where all pairs ( !1E, t::.C) will have enough power (as defined in the "sample 

size" section of the introduction) and a region of "inadequate power" were performed in 

Splus. 



Chapter 5: Results 

5.1 General Results 

Table 2 provides some important summary statistics for the treatment (M+P) and 

standard (P alone) groups. Treatment is observed to have higher effectiveness, and lower 

(though not significantly) cost. In both groups there is a moderately low positive 

correlation, indicating a positive association between costs and effects (i.e., higher costs 

are associated with higher effectiveness, and lower costs with lower effectiveness). This 

weak relationship is also evident in the plots of costs versus effects seen in Figure 9. 

Summary Statistic Treatment (M+P) Standard (P) 

Number ofpatients (nJ* 61 53 

mean effectiveness (Ek) (QALWs) 39.50 27.18 

standard deviation of effectiveness (SEJ 36.13 27.33 

coefficient of variation of E k 0.12 0.14 

95% CI for mean effectivenesst (30.24,48. 75) (19.65,34.72) 

mean total cost ( Ck )(CDN. $) 27,321.78 29,038.86 

standard deviation of cost (ScJ 19,860.70 20,426.75 

coefficient of variation of ck 0.093 0.097 

95% CI for mean costs t (22234,32409) (23407 ,34670) 
sample correlation coefficient between 
costs and effects (rJ 

0.23 0.27 

covariance between costs and effects 162,791.6 149,333.6 

Table 2: Summary statistics (*k=T for the M+P group, k=S for the P group 
tcrs calculated under assumption of normality ofboth populations) 

45 
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Figure 9: Plots of costs versus effectiveness for the two therapy groups 

The histograms of costs and effects in the two groups seen in Figures 10 and 11 , 

show that both costs and effects have right-skewed distributions. The skewness of 

treatment costs is to some extent due to a few individuals with particularly high costs. 
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Table 3 summarizes some comparisons between the two groups, and provides 

estimates of the coefficients of variation for the numerator ( Cr - C5 ) and the 

denominator ( Er - E5 ) of R.The confidence intervals show that treatment appears to be 

significantly more effective than standard. The costs are not significantly different 

between the two groups. The sample coefficients of variation are high, particularly for the 
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difference in costs which is much greater than 0.5. The treatment arm has a higher 

average effectiveness and a lower average cost. Thus treatment is observed to be 

dominant and the point estimate of the ICER is negative. However, a possibility exists 

that the upper confidence limit may be positive. Since it is important to know how high 

the additional cost for a given improvement in effectiveness may be, the upper confidence 

limit is very meaningful to policy makers. There is also a potential for a positive lower 

limit, ifthere is a significant chance that treatment is less costly, but also less effective 

than standard. Although judging from the estimated CI for the difference in effects this 

may not be the case, a confidence interval of the ICER will answer questions regarding 

whether this appears to be the case or not. 

Quantity point estimate (95% CI)* sample 
coefficient of 
variation 

difference in mean effectiveness 

(ET -Es) 

12.31 (0.3, 24.4) 0.48 

difference in mean costs ( CT - Cs) -1717.08 (-9207, 5773) -2.21 

ICER (CDN $/QAL W) -139.45 

Table 3: Compansons between treatment and standard (* Cis calculated under "normahty 
assumption" and assuming equal population variances in the 2 groups) 

5.2 Approximate Cis for the ICER 

Some of the methods used for constructing confidence intervals for the ICER rely 

on certain distributional assumptions. Histograms and normal probability plots of 

bootstrap estimates of the difference in costs, difference in effectiveness, the ICER 
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(slope), and ICER angles were produced to check the validity of these assumptions. 

Frequency distributions and their normal probability plots, based on bootstrap estimates 

of difference in mean effectiveness and difference in mean costs, show that the 

assumption of normality of the numerator and denominator of the ICER seems valid (see 

Figures 12 to 15). Histograms of the ICER bootstrap estimates, seen in Figure 16, and 

the corresponding coefficients of skewness, reveal that the distribution of R appears to 

be left-skewed. Furthermore, extreme (large or small) estimates of R do occur. Normal 

probability plots of these distributions (see Fig. 17) further support the notion that the 

estimator R does not appear to be normally distributed. Very extreme values ofiCER 

angles are not possible. Frequency distributions and normal probability plots of ICER 

angles, seen in Figures 18 and 19, reveal that a normal probability model would seem 

more appropriate for the angles than it did for the slopes. However, the distribution of 

angles appears to be left skewed, and thus the assumption ofnormality may be invalid 

even for the angles. 

The 95% confidence interval calculated using the Taylor's series approximation 

method is (-787.18, 508.29) CDN $per QALW. Using the Fieller's theorem method, the 

95% CI was found to be (-6096.65, 560.66). It is evident that the Taylor's method CI is 

narrower, and this difference in widths of the Cis is due to the fact that the lower limits of 

these two intervals are very different. The Fieller's interval is not symmetric about the 

ICER point estimate, with the lower limit being substantially further from the ICER point 

estimate than is the upper limit. 
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Figure 19: Normal probability plots forB bootstrap estimates ofiCER angles. 
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Plots of the points (l1F,11C') generated by bootstrapping in the 12 examples are 

shown in Appendix C. The Bootstrap confidence intervals (and their widths) are shown 

in tables 4 and 5. Among the methods which relied on the slopes alone, results based on 

the percentile, bias-corrected, bias-corrected accelerated and the shortest confidence 

interval methods, were not drastically different from one another in most of the examples. 

The normal assumption method gave substantially different results from the remaining 

four methods, producing much wider confidence intervals. On average, the bias­

corrected method provided intervals with both bounds slightly lower than those of the 

percentile method. The bias-corrected and accelerated intervals usually had bounds 

between those of the percentile and bias-corrected methods, but they were closer to those 

of the bias-corrected method. 

Intervals based on ICER angles are quite a bit more variable, largely due to the 

fact that considering angles rather than slopes alone introduces the possibility of a 

positive lower confidence limit, if some of the bootstrap replications produce points in 

the 3rd quadrant. Again, the bias-corrected intervals were frequently lower than those 

produced by the central percentile method, and Cis produced by the bias-corrected 

accelerated method were often intermediate to those produced by the central percentile 

and bias-corrected methods. The 'smallest wedge shaped region' intervals were more 

stable than those obtained by the three methods discussed above, but there was still a 

considerable amount of variation among them. Intervals produced under the assumption 

of a normal distribution ofiCER angles were most stable and narrowest. 



Example# B Slope Methods 
Normal Assumption Percentile Method Bias-corrected Bias-corrected 

accelerated 
Shortest CI 

1 100 -4767,4499 -1563, 835 -1580, 663 -1576, 711 -1723,388 
2 100 -1334, 1066 -2170,448 -2170,448 -2100,452 -1711,467 
3 100 -2333,2064 -3130, 291 -2617, 398 -2574,406 -2766, 292 
4 500 -12010,11742 -1923,783 -3056, 563 -2819,567 -1613, 945 
5 500 -4283,4014 -1673, 1499 -1813, 988 -1684, 1061 -1684, 1027 
6 500 -4332,4064 -1724,788 -1543, 1255 -1534, 1260 -1634, 810 
7 1000 -92127,91859 -1613, 788 -2021, 566 -1957, 573 -1482, 867 
8 1000 -10929, 10660 -1903, 892 -2232, 601 -2194, 623 -1965,735 
9 1000 -2536, 2267 -1279, 791 -1534, 626 -1515,634 -1279,791 
10 10,000 -17784, 17515 -2175,763 -2390, 675 -2261, 694 -2002, 853 
11 10,000 -20785,20516 -2002, 643 -2361, 556 -2306, 569 -1581,878 
12 10,000 -10687, 10418 -1862, 757 -2374, 612 -2299,630 -1731, 857 

Table 4 a) Bootstrap Cis - Slope methods 

Example# B Slope Methods I 

Normal Assumption Percentile Method Bias-corrected Bias-corrected 
accelerated 

Shortest CI ! 

1 100 9266 2398 2243 2287 2111 
2 100 2400 2618 2618 2552 2178 
3 100 4397 3421 3015 2980 3058 
4 500 23752 2706 3619 3386 2558 
5 500 8297 3172 2801 2745 2711 
6 500 8396 2512 2798 2794 2444 
7 1000 183986 2401 2587 2530 2349 
8 1000 21589 2795 2833 2817 2700 
9 1000 4803 2070 2160 2149 2070 
10 10,000 35299 2938 3065 2955 2855 
11 10,000 41301 2645 2917 2875 2459 
12 10,000 21105 2619 2986 2929 2588 
Table 4 b) lengths of Cis - Slope methods 

0\ 
0 



Example# B Angle Methods 
Normal Assumption Central Bias-corrected 

central 
Bias-corrected 
accelerated central 

Smallest wedge-
shaped region 

1 100 -1559, 561 -1691,426 -1710,404 -1670,449 -1723, 388 
2 100 -2555, 736 1081 , 238 1082, 238 -3414, 262 -2742,286 
3 100 -2444, 721 -2758, 371 -2292, 1085 -2385, 853 -2766, 292 
4 500 -2616, 743 -74152, 526 6359,463 23223, 507 -4114, 585 
5 500 -2505, 729 -16805, 565 -52044, 554 -4474,586 -2867, 597 
6 500 -2124, 673 -3106,479 -2351,498 -1955, 531 -2167,517 
7 1000 -2380, 712 -10495, 526 5241 , 450 -61992, 510 -2842, 567 
8 1000 -2469,724 -3550, 545 -6779, 517 -3568, 543 -2272, 639 
9 1000 -1973, 647 -2804, 555 15667,470 -4778, 533 -1638, 627 
10 10,000 -2504, 729 -8017, 512 -12737, 492 -5366, 548 -6797,521 
11 10,000 -2309, 702 -3968, 507 -8246, 455 -4552,492 -3898, 508 
12 10,000 -2405, 715 -5175, 538 56685, 463 -7907,517 -4239, 550 

Table 5 a) Bootstrap Cis - Angle methods 

Example# B Angle Methods 
Normal Assumption Central Bias-corrected 

central 
Bias-corrected 
accelerated central 

Smallest wedge-
shaped region 

1 100 2120 2117 2114 2119 2111 
2 100 3291 NA NA 3676 3028 
3 100 3165 3129 3377 3238 3058 
4 500 3359 74678 NA NA 4699 
5 500 3234 17370 52598 5060 3464 
6 500 2797 3585 2849 2486 2684 
7 1000 3092 11021 NA 62502 3409 
8 1000 3193 4095 7296 4111 2911 
9 1000 2620 3359 NA 5311 2265 
10 10,000 3233 8529 13229 5914 7318 
11 10,000 3011 4475 8701 5044 4406 
12 10,000 3120 5713 NA 8424 4789 
Table 5 b) Lengths ofbootstrap Cis- angle methods 

0'1 
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5.3 Probabilities 

The probability that the point (t:.E,!lC) lies in the 41
h quadrant, which is equal to the 

probability that the treatment dominates the standard, was estimated from the empirical 

distribution of (M,!lC) by determining the percentage ofbootstrap re-samples that 

resulted in a point in the 4th quadrant (as described in Chapter 2.3). These percentages are 

given for the 12 bootstrap simulation experiments in Table 6. Based on these results the 

probability seems to be approximately 0.66. The probability that the point (t:.E,!lC) lies 

in a region where the treatment can be considered "highly favourable" or "favourable" 

(i.e., in region RIJ ofFigure 7) was approximated in a similar way. This probability is 

approximately equal to 0.95. 

Example# B % Points in region 
RuofFigure 7 

% Points in the 4th 
quadrant 

1 100 96 65 
2 100 97 75 
3 100 97 73 
4 500 93.8 64.6 
5 500 93.4 64.6 
6 500 95.4 66.4 
7 1000 94.2 64.7 
8 1000 94.1 66.0 
9 1000 94.2 66.3 
10 10,000 94.67 66.80 
11 10,000 94.79 66.23 
12 10,000 94.30 65 .68 

. . ..
Table 6: Estrmates of probability that the ICER ISm a giVen regiOn 
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5.4 Sample Size Calculations 

The ellipse defining the region for which n = ns = ny = 200 would be a sufficient sample 

size so that with a 95% confidence level, power would be adequate to draw conclusions 

about the cost-effectiveness of treatment, is shown in Figure 20a. The ellipse 

corresponding to a confidence level of .90 is shown in Figure 20b. The ellipses for 

sample sizes of ns = ny = n = 57 (which is close to the sample sizes obtained in this study) 

are shown in Figure 21. 
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b) alpha= 0.10, n = 200 
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Figure 20: Ellipses of adequate power (as defined in Chapter 3) for n = nT = ns = 200. 
The first graph shows the ellipse corresponding to a 95% confidence level, and the 
second graph shows the ellipse corresponding to a 90% confidence level. 
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a) alpha = 0.05, n = 57 
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b) alpha= 0.10, n =57 
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Figure 21: Ellipses of adequate power (as defined in Chapter 3) for n = nT = ns = 57. 
The first graph shows the ellipse corresponding to a 95% confidence level, and the 
second graph shows the ellipse corresponding to a 90% confidence level. 



Chapter 6: Discussion 

6.1 Assumptions 

In considering the apparent validity of the methods, it is essential that the 

assumptions made in using the different methods be verified. Formal tests regarding 

distributional assumptions could be carried out. At the very least, an informal check, 

such as an examination of frequency histograms and normal probability plots, should be 

done to detect drastic deviations from the assumed distributions. Histograms of costs and 

effects in both treatment arms showed deviations from normality for both costs and 

effects in the two groups. However, histograms and normal probability plots of bootstrap 

re-sample estimates of ET- Es and CT- Cs support the assumption that these two 

statistics have normal distributions. This is expected based on the Central Limit 

Theorem, and supports the findings ofWillan and O'Brien (1996). The assumption of 

Fieller's theorem is that these two statistics have a bivariate normal distribution. The fact 

that the two statistics individually have marginal normal distributions is a necessary but 

not sufficient condition for their joint distribution to be bivariate normal. Further tests, 

such as those described by Johnson and Wichern (1992), could be used to verify the 

plausibility ofbivariate normality of ET- Es and CT- Cs. 

66 
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The assumption made by the Taylor's Series approximation and the normal­

assumption bootstrap method which takes into account only the bootstrap ICER estimates 

is that R has a normal distribution. Histograms and normal probability plots of bootstrap 

estimates of R do not app1 qr to support this assumption. The tails of the distribution are 

longer than in a normal distribution, resulting from the fact that very high and very low 

estimates of the ICER are sometimes obtained. Because of this, the histograms of 

bootstrap estimates of R are not very informative. The skewness coefficients of these 

frequency distributions reveal a left-skewness, particularly strong when B is high, since 

more extreme (very low) estimates of R are then obtained for some bootstrap replicates. 

Chaudhary and Steams (1996) found that for moderate sample sizes the distribution of R 

is positively skewed in most cases. The limiting distribution of R is known to be 

normal. Chaudhary and Steams (1996) commented that large sample results can be used 

if the sample sizes are greater than 30, and the coefficients of variation for the numerator 

and denominator are less than 0.1. Although the first condition is satisfied for the data set 

used in this study, the second one is not. 

One of the methods based on using ICER angles assumes that the angles are 

normally distributed. Histograms and normal probability plots ofbootstrap re-sample 

estimates of ICER angles, suggest that this assumption is more reasonable than the 

assumption of normality of R . However, a slight left-skewness is observed in the 
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frequency distributions of the ICER angle estimates. More formal tests should be used to 

check whether this is a significant deviation from normality. 

6.2 Comparison of Inferential Methods 

Although it has already been shown that the assumption of normality of R does 

not seem justified in this case, it is interesting to compare the results ofthe two methods 

which relied on this assumption. The Taylor Series method has been criticized not only 

for its normality assumption, but also because the variance calculation is only 

approximate. Comparing the Taylor Series approximation CI to the bootstrap CI which 

relies on the assumption of normality of R, reveals that the Taylor Series interval is 

markedly more narrow, due to the fact that the Taylor Series approximation gives a lower 

estimate of variance of R, than does the bootstrapping method. This seems to indicate 

that the Taylor Series approximation may underestimate the variance. This finding 

agrees with Obenchain's (1997) comment that Taylor Series Cis are too narrow. Polsky 

et al. (1997) also found that the Taylor series method gave anti-conservative intervals, 

however, they showed that this was due to asymmetric underestimation of the upper limit. 

In this study, the problem appears to be asymmetric overestimation of the lower limit. 

Although it appears that the Taylor series estimate of variance of R is too small, 

the bootstrap estimate is also questionable. Briggs, Wonderling, and Mooney (1997) 

found that bootstrap estimates of standard error are unstable (because they are susceptible 
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to the effect of "unusual" observations). This is supported by the fact that the intervals 

which rely on this estimate are very unstable and increase in width as the number of 

bootstrap replications increases. 

In comparison to the Taylor series interval, the CI calculated using the Fieller's 

theorem approach is wider, having a considerably smaller lower confidence limit. This 

is because the Fieller's theorem method accounts for the negative skewness of the 

distribution of R. Obenchain (1997) noted that because Fieller' s Theorem intervals are 

"bow-tie shaped intervals" they also tend to be too narrow when ( E r - Es, Cr - Cs) is 

not significantly different from (0,0). In this study, the Fieller's theorem intervals do not 

appear to be too narrow as compared to bootstrap intervals which rely on estimates of the 

ICER (ratio) only. However, they are narrower than some of the angle method intervals. 

Chaudhary and Steams (1996) found Fieller's theorem intervals to be similar to 

bootstrap percentile, and bias-corrected percentile intervals based on ICER slopes only. 

In this study, although the percentile, bias-corrected percentile and bias-corrected 

accelerated percentile methods for slopes gave similar results, these intervals had a higher 

lower limit then the interval based on Fieller's theorem. However, since a considerable 

proportion of bootstrap replicates gave estimates of ( Er- Es, Cr - Cs) in the 2"d and 3rct 

quadrants, the methods which consider only ICER slopes cannot be considered reliable. 

This suggests that methods which made use ofiCER angles should be superior to those 

which only utilized the bootstrap estimates of R . 
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Plots of ( /::,E ·,11c•) points resulting from bootstrap replications reveal that 

bootstrap methods for constructing Cis which consider ICER angles need to be used in 

this study. Several methods were proposed which made use ofiCER angles. The method 

which assumed the ICER angles were normally distributed gave narrower intervals than 

the others. However, as the normality assumption seems questionable, this method 

cannot be considered very reliable. Because of the slight left skewness of the 

distribution, the "central Cis", which do not correct for the bias, may also be inaccurate. 

Furthermore, as Obenchain (1997) pointed out, calculating Cis using this method divides 

the bootstrap observations rather artificially using the 180°-line in the 2"d quadrant. The 

bias-correction and accelerated bias-correction should provide an improvement over the 

"central CI" method by accounting for the bias caused by skewness in the distribution of 

ICER angles, however the artificial division ofpoints in the 2"d quadrant still exists. 

Furthermore, it should be noted that these intervals, particularly the lower limits, are 

highly unstable. The smallest wedge-shaped region method should provide fairly reliable 

confidence limits in cases where bootstrapping results in ( /::,E ·,11c•) points in all four 

quadrants. Although this is perhaps the most reliable of all the bootstrap methods for this 

data, it also gives quite variable results, even when many replications (B = 1 0,000) are 

performed. 

Because the point estimate ( M, 11C) falls in the 4111 quadrant, it could be argued 

that it does not make sense to report results using the ICER. Several authors (including 

Siegel eta/., 1996; Stinnett and Mullahy, 1997) have pointed out that the magnitude of a 
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negative ICER conveys no useful information. This suggests that the lower limit which 

is (usually) in 4th quadrant is uninterpretable, except to show dominance. However, the 

upper limit is of great importance since it represents the highest possible cost per unit 

outcome consistent with the study's results. Thus, perhaps it would be useful to find one 

sided intervals, placing more emphasis on the upper confidence limit. Although the 

upper limit from some ofthe methods could be interpreted as a upper limit of a 100(1­

a/2)% one-sided confidence interval, not all of the methods could be used in this way. It 

was pointed out that the lower limits of some of the angle-method intervals were quite 

unstable. In light of the fact that the magnitude of the lower limit may not be considered 

interpretable, perhaps this is not of great concern. Several authors have noted that any 

method which hinges on the magnitude ofnegative ICER estimates should be interpreted 

cautiously, as it relies on "meaningless numbers" (Stinnett and Mullahy, 1997; Briggs, 

Wonderling and Mooney, 1997). This suggests that of all the angle methods, the 

"smallest wedge shaped region" (and in particular its upper limit) is the most useful of the 

confidence interval results. Based on the examples with B = 10,000, the upper limit of 

the confidence interval of the ICER can, thus, be estimated by approximately CDN 

$530/QAL W, which is an "acceptable" value according to the threshold proposed by 

Laupacis eta/. (1992). 

In a situation where the ICER point estimate is negative, and dominance appears 

to be highly likely, estimating the probabilities of dominance or "cost-effectiveness" 

(based on predefined thresholds ofwhat is cost-effective) is very useful. Alternatively, 
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one may consider a hypothesis test of dominance, such as the ones proposed by Laska, 

Meisner, and Siegel (1997). The advantage of the probability estimation approach is that 

bootstrap results can be used, whereas the hypothesis testing approaches derived by 

Laska, Meisner, and Siegel (1997) made use of parametric methods. 

6.3 Further Issues 

Since the results from cost-effectiveness analyses will likely be used increasingly 

for clinical decision-making, improvements in the design and analysis of cost­

effectiveness studies are required. New recommendations for conducting cost­

effectiveness analysis have recently been published by the U.S. Panel on Cost­

Effectiveness in Health and Medicine (Weinstein et al., 1996), yet many issues regarding 

the design and analysis of stochastic cost-effectiveness studies remain unresolved. 

It is agreed upon that studies intended to provide cost-effectiveness information 

should be designed appropriately. As Willan and O'Brien (1996) point out, collecting 

cost data adds to the cost and duration of a study. Although it is agreed upon that both 

patient specific costs and effects should be measured, it is not clear how these quantities 

should be measured. Prices for health care utilization are very difficult to measure, and 

are generally estimated. Several authors have discussed some of the difficulties involved 

in price estimation, and the bias that can result from methodological choices. Neumann 

et al. (1997) discuss that once all the component resources are identified, they must be 
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assigned a value. However, it is difficult to know the actual value of the resources 

consumed, and approximations are often used by analysts. Many researchers (Weinstein 

et al., 1996; Elliott and Harris, 1997) stress the importance of discounting of costs, which 

is a method of adjusting costs for different timing. 

There are also some difficulties in measuring effects. Cost-effectiveness of 

diverse medical interventions needs to be evaluated in similar terms, in order to allow 

decision makers to determine which of many competing interventions produces the 

greatest overall gain in health for the resources used. This means that the costs and 

effects of many alternative interventions should be measured in the same units. Since 

quality-adjusted life years (QALYs) incorporate both prolongation and quality of life, 

these are ideal units for comparing interventions that benefit patients in very different 

ways. However, there are many problems and discrepancies in measuring QAL Y s 

(Sacristan et al., 1995) and methods for determining quality weights (used in the 

calculation ofQALYs) continue to be an active area ofresearch and debate (Neumann et 

al., 1997). 

Having obtained data on costs and effects of alternative interventions, the analyst 

must decide whether to analyze the data in its original state, or whether the data needs to 

be transformed. Obenchain (1997) discussed the usefulness of log transformations to 

symmetrize highly skewed cost distributions. The impact of such transformations on the 

analysis and results needs to be examined further (though Obenchain has discussed some 

of the issues). 
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Although it is clear that point estimates are insufficient, proper statistical analysis 

of cost-effectiveness data is a complicated issue. First of all, there is still some debate 

over the type of analysis that is most useful for decision-making, and benefits of using the 

ICER are still questioned by some. In a discussion of some of the difficulties associated 

with interpreting negative ICERs, Stinnett and Mullahy (1997) stated that they prefer 

reporting economic evaluations in terms of a net benefit rather than as a C/E ratio. 

Rittenhouse (1995) feels that cost-effectiveness analyses may yield inconsistent results, 

and proposes using the "more formally developed method" of cost-benefit analysis. 

However, many researchers studying cost-effectiveness analysis agree that the 

incremental cost-effectiveness ratio is a useful method ofjudging the cost-effectiveness 

of competing therapies, and in particular, that estimation of Cis for the ICER is the 

"appropriate focus for cost-effectiveness analysis" (Briggs and Fenn, 1997). 

Presentation of results using confidence intervals has obvious appeal, however as 

the discussion of the potential methods of calculating Cis for the ICER shows, it is a very 

complicated issue. Although much has been accomplished in improving the statistical 

methodology in this area, little is still known about the relative advantages and 

disadvantages of the alternative approaches. Several authors have provided theoretical 

arguments in an attempt to compare the validity of the different methods. Briggs, 

Wonderling, and Mooney (1997) provided an extensive explanation regarding bias­

correction in bootstrap estimation methods. Chaudhary and Steams (1996) and Briggs, 
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Wonderling, and Mooney (1997) considered the number ofbootstrap replications 

required for stable confidence limit estimates from bootstrap methods. 

Which methods are the most reliable under what circumstances, and how they 

should be applied, remains debatable. The alternative methods need to be tested by 

Monte Carlo simulation methods, under various assumptions. Polsky et al. (1997) 

conducted such a study (but without varying some important assumptions, and comparing 

only a few of the available methods), and Briggs, Wonderling, and Mooney (1997) report 

that they are currently working on such a study. 

Some of the researchers studying the statistical methods of analyzing cost­

effectiveness data have pointed out that sensitivity analysis should still be incorporated, 

even when sampled costs and effects are available from the same clinical trial. Willan 

and 0 'Brien ( 1996) felt that sensitivity analysis is particularly useful for assessing 

uncertainty about the external validity and generalizability of study results to the real 

world. The potential lack of generalizability of the results of cost-effectiveness analyses 

has been questioned, especially because of the uncertainty in price estimates, which may 

vary depending on the institution participating in the trial. Sensitivity analysis can be 

used to test the robustness of results to changes in costs. 

Further issues that need to be addressed regard the reporting of results of cost­

effectiveness analyses. At this stage, since the methods are still being developed and 

debated, perhaps what is most important is that details ofboth the design and the analysis 

are reported. Neumann et al. (1997) discussed the importance ofproviding explicit 
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information about how studies were conducted, including the sources and characteristics 

of the data used, and what assumptions were made. This type of information is important 

in judging the generalizability ofresults. Obenchain (1997) stressed the importance of 

reporting "technical details" ofbootstrap analyses, such as the number of replications and 

the random number seed used. 

Beyond the statistical issues, those concerned with the applicability of CEA to 

decision making, need to consider many other questions. For instance Baltussen, Leidl, 

and Ament (1996) discussed the importance oftaking the age of potential users ofthe 

health care intervention under consideration into account during decision-making based 

on cost-effectiveness ratios. Phillips and Hotlgrave (1997) described issues of relevance 

to the cost-effectiveness ofpreventive medicine. 

Economic analyses will play an increasingly influential role in the allocation of 

limited resources. Because resources are limited, consideration of opportunity cost, is 

believed to be of great importance (Elliott and Harris, 1997; Willan and O'Brien, 1996). 

The opportunity cost takes into account the benefits forgone by committing resources to 

one program instead of others (Willan and O'Brien, 1996). This has prompted Willan 

and O'Brien (current research) to consider a model for cost-effectiveness which 

incorporates not only the incremental cost-effectiveness of a treatment relative to 

standard, but also where the additional resources would come from, and the effects of 

such a resource reallocation. This is another issue that needs to be taken into account 

during policy making based on cost-effectiveness analyses. 
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As the above discussion indicates, cost-effectiveness analysis and its use in 

decision-making are very complex. Statisticians should develop methods for the proper 

statistical analysis of cost-effectiveness data, including the presentation of results in a 

format that is useful to decision makers. Although much progress has been made, 

considerable work remains to be done in this area. 
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Appendix A: SAS Programs 

Program 1: Data input 

options ls=78 ps=60 nodate nonumber; 
libname SASF '/2/biernac'; 

data SASF.pmh icer; 
infile 1 /2 /biernac/icerf.dat'; 
input id trt costs qalw tr util tr; 
attrib id label='Patient Identifier' 

trt label='Allocation; l=M+P; 2=P' 
costs label='Cost for Individual Patient' 
qalw tr label='Qual. Adj. Weeks, Trans. Utility' 
util-tr label='Transformed Utility'; 

run; 

Proc contents data=SASF.pmh_icer; 
title 'Contents of SASF.PMH ICER'; 

run; 

Program 2: Plots and summary statistics 

proc sort; 
by TRT; 

run; 

proc plot; 
by TRT; 
plot COSTS*QALW TR; 
title 'Costs versus Quality Adjusted Life Weeks'; 

run; 

proc means; 
run; 

proc means; 
by TRT; 

run; 
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Program 3: Creation of a SAS file with covariances 

options ls=78 ps=60 nodate nonumber; 
libname SASF ' /2/biernac '; 

proc carr data=SASF.pmh_icer nocorr cov outp=SASF.COVSF; 
var costs qalw_tr; 
by trt; 

run; 

Program 4: Creation of a matrix of summary statistics (including covariances) 

options ls=78 ps= 60 nodate nonumber; 
libname SASF ' /2/biernac' ; 

proc IML; 
reset print ; 
use SASF . covsf(type=cov) ; 
list all; 
read all into x ; 
print x; 
reset storage="SASF.matrix2"; 
store; 

quit; 

Program 5: Calculation of Taylor's Series CI and Fieller's Theorem CI (closed 
form) 

options ls=78 ps=60 nodate nonumber; 
libname SASF ' /2/biernac '; 

proc I ML ; 
reset noprint; 
reset storage="SASF.matrix2"; 
l oad X; 
Ct=X [2 , 2 ); 
Mct =X [ 3 , 2) ; 
Met =X [ 3 , 3 ); 
Vct =X[l, 2 ); 
Vet =X [ 2, 3) ; 
Nt=X [5, 2 ); 
Cc=X[7 , 2) ; 
Mcc=X[8,2) ; 
Mec=X [8,3 ); 
Vcc=X[6,2 ); 
Vec=X[7,3 ); 
Nc=X [10, 2); 
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R=(Mct-Mcc)/(Met-Mec); 
Cnn={Vct/Nt+Vcc/Nc)/(Mct-Mcc)**2; 
Cdd={Vet/Nt+Vec/Nc)/(Met-Mec)**2; 
Cnd={Ct/Nt+Cc/Nc)/((Mct-Mcc)*(Met-Mec) ); 
VRl=(R**2)*(Cnn+Cdd-2*Cnd); 
z=l.96; 
lbl=R-z*sqrt(VRl); 
ubl=R+z*sqrt(VRl); 
intl=lbll I ubl; 
print "The point estimate of the incremental cost-effectiveness 
ratio is:", R; 
print "The Taylor method confidence interval is", intl; 
arg=(Cnn+Cdd-2*Cnd)-(z**2)*(Cnn*Cdd-Cnd**2); 
ub2=R*( (l-(z**2)*Cnd)-z*sqrt(arg))/(l-(z**2)*Cdd); 
lb2=R*( (l-(z**2)*Cnd)+z*sqrt(arg))/(l-(z**2)*Cdd); 
int2=lb2 I I ub2; 
print ''The Fieller's method confidence interval is", int2; 

quit; 

Program 6: Calculation of Fieller's theorem CI (matrix form) 

options ls=78 ps=60 nodate nonumber; 
libname SASF '/2/biernac'; 

proc IML; 
reset noprint; 
reset storage="SASF.matrix2"; 
load; 
Ct=X [2, 2]; 
Mct=X [3, 2]; 
Met=X[3,3]; 
Vct=X[4,2]**2; 
Vet=X[4,3]**2; 
Nt=X [5, 2]; 
Cc=X[7,2]; 
Mcc=X [ 8, 2] ; 
Mec=X [ 8, 3] ; 
Vcc=X[9,2]**2; 
Vec=X[9,3]**2; 
Nc=X[lO, 2]; 
R={Mct-Mcc)/(Met-Mec); 
xll=Vet/Nt+Vec/Nc; 
xl2=Ct/Nt+Cc/Nc; 
x22=Vct/Nt+Vcc/Nc; 
sl=xlll Ixl2; 
s2=xl2 I I x22; 
S=sl//s2; 
xbar=Met-Mec//Mct-Mcc; 
call eigen(LAMBDA,GAMMA,S); 
inv_RS=T{GAMMA)*INV(SQRT(DIAG(LAMBDA)))*GAMMA; 
y=inv RS*xbar; 
lengthy=sqrt(y[l]**2+y[2]**2); 
ul=(l/lengthy*y[l]) II (l/lengthy*y[2]); 
u2=(1/lengthy* (-y[2])) II (1/lengthy*y[l]); 
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U=u1//u2 ; 
T=U* inv RS; 
z=1.96;­
x11=1 ; 
x12=- (z/lengthy)/(1-(z/lengthy)**2)**( 1 /2) ; 
x1 =x ll / /x12; 
v1=T**( -1) *x1; 
x21=1; 
x22=(z/length y)/(1 - (z/lengthy)**2)**(1/2) ; 
x2=x21//x22; 
v2 =T **( - 1)*x2 ; 
s1=v1 [2] /v1 [1]; 
s2=v2 [2] /v2 [1]; 
int3=s111s2; 
print "The point estimate of the incremental cost - effectiveness 
ratio is:", R; 
print "The Fieller's method confidence interval is", int3; 

quit; 



Appendix B: Random number seeds 

The random number seeds from Splus used for the 12 bootstrapping examples are given 
in the following table: 

Example number Random number seed vector 

1 53 43 13 20 46 0 26 63 18 24 15 2 
2 21 6 28 13 27 1 28 48 21 61 39 2 
3 53 48 7 10 13 1 6 47 39 2 16 0 
4 2143 56028 213 4155 31513 
5 53 63 51 41 26 3 38 50 9 49 2 1 
6 21 36 34 44 32 1 17 38 61 22 14 2 
7 53 24 12 25 28 2 3 6 58 32 0 3 
8 53 49 49 20 33 2 37 32 39 28 40 0 
9 53 10 36 45 37 2 27 24 46 63 10 2 
10 53 35 35 52 10 3 8 23 35 52 27 3 
11 53 29 40 3 51 1 39 56 2 19 41 2 
12 53 23 1 43 56 0 27 55 16 53 18 2 
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Appendix C: Plots of Bootstrap Re-sample Results 
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Example 10: B 10,000 
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