## STERNOCLEIDCMASTOID FUNCTION

## By

## D. RENALD LEMIEUX, B.Sc.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Engineering McMaster University
April 1984


## ACKNOMLEDGEMENTS

I would like to gratefully acknowledge the generous support of my advisor, Dr. L.D. Pengelly of the Department of Engineering playsics and medicine who provided me witn guidance and and expertise in the undertaking of this research project. wy thanks are also directed to Dr. H. de Bruin who provided interesting discussions about EMG modelling and instrumentation. Furthermore, I would like to thank Dr. L.D. Pengelly for his useful advice and for the provision of facilities necessary to this study.

I wish to especially thank the following persons who submitted themselves to being subjects for this study:

Lawrence rorsher

Paul J. Moroz

Atheling Seunarine Colin Wu

Special thanks are extended to Donald B. MacHattie for his assistance in preparing and testing the instrumentation used during this study.

## AESTRACT

Forces associated with head lifting eftorts as well as mouth pressure were measured on four supine normal men, at five different lung volumes from $E R C$ to TLC, and with the head positioned at two different heights above the bed. positioning the head at one of the two heights ( 3 cm and 10 cm ) provided for a change in length of the sternocleidomastoid (SCM) muscle.

Graded efforts of head lift, and graded inspiratory pressure manoeuvres were executed and corresponding electromyograms of the SCM were measured.

The mass lifted during efforts of head lift under static conditions (HSL) was measured with a self-contained transaucer system located under the head of the subject. The muscle pressures at different lung volumes were obtained from pressure transducer records by adding the pressure-volume relaxation curve to the inspiratory mouth pressure-volume curve. The electromyogram of the SCM was obtained from surface electrodes, amplified and processed with a smoothing integrator to obtain the mean rectified electromyogram (MRE).

For every subject, the relationships between MRE and MASS LIFTED, and between MRE and MUSCLE PRESSURE were linear for every lung volume at every head height above the bed ( $r^{2}>$
0.95 ). Data from all subjects were put together to form a single linear relationshif ( MRE vs MASS LIFTED ana MFE vs MUSCLE PFESSURE, for every head height above the beci. The variability was greater at 3 cm than at 10 cm of head height. For both the head lift manoeuvre and the respiratcry manoeuvre, there was a greater variability due tc lung vclume, on the slope and intercept of the curves at 3 cm , than at 1 com of head height. Furthermore, more ENG was generated at lo cm than at 3 cm for a constant mechanical output, i.e., heac lift or muscle pressure.

Statistical tests were ferformed on the curves. Slcpe anc intercept of the curves at cifferent lung vclumes, for a specific manoeuvre and head height above the bed were not significantly different ( $p<0.05$ ). The curves at different lung volumes were then put together to form a single linear relationship for both manoeuvres at both heights. Slope and intercept of the "poclec" curves, at both 3 cm and at 10 cm , were tested for both head lift and respiratory manoeuvres. It was found that the slopes were significantly different ( $\mathrm{p}<0.05$ ) while the intercepts were nct. Using the input variable, MRE, as the common factor, a linear relationship between the twc output variables, MASS LIFIED anc MUSCLE PRESSURE, was cietermined at each head height. Interpretaticn of the resulting relationships shows that:
(a) Abcut $50 \%$ of the maximum inspiratory muscle pressure can be generated without using the SCM muscle.
(b) For the head located at 3 cm above the bed, the production of muscle pressure from $50 \%$ to $100 \%$ Pmusc (
max) corresponos to lifting, with the head, a mass equivavalent to 4.5 times the head mass, while at 10 cm abcve the bed, the same respiratory manoeuvre corresponcs to lifting a mass equal to 1.3 times the head mass.
(c) Changes in lung volume do not bring about as great changes in length of the SCM muscle as do changes in head height.

## TABLE OF CONTENTS

Eage
CHAPIER I - INTRODUCTION ..... 1
CHAPTEK II - RESPIRATORY FUNCTION ASSESSMENT STUDY AND ITS IMPCRTANCE ..... 4
2.1 Respiratory function assessment ..... 4
2.2 Importance of the proposed study ..... 5
CHAPTER III - THE STERNOCLEIDOMASTOID MUSCLE ..... 8
3.1 Anatomy ..... 8
3.2 Fhysiology ..... 9
3.2.1 Functions of the SCM muscle ..... 9
3.2.2 Impcrtance of the other muscle involved ..... 10
CHAPTEK IV - THE EMC SIGNAL ..... 15
4.1 Introduction ..... 15
4.2 Physiolcgy of the nerve and the muscle ..... 16
4.2.1 The nerve cell and its action potential ..... 16
4.2.2 The motor unit ..... 19
4.2.3 The neuromuscular junction ..... 19
4.2.4 The muscle fibre ..... 21
4.3 Mociel for the myoelectric signal ..... 22
4.3.1 Introduction ..... 22
4.3.2 The MUAP ..... 23
4.3.3.The MUAPT ..... 24
4.3.4 The ME signal ..... 29
4.4 The Force-EMC relationship ..... 34
ChAPTER V - MATERIAL AND PFOTOCOL ..... 39
5.1 Introduction ..... 39
5.2 Subjects ..... 39
5.3 Instrumentation ..... 39
5.4 Protocol ..... 53
5.5 Data manipulation ..... 56
5.5.1 Mean values ..... 56
5.5.2 Normalization ..... 56
5.5.3 Mcálling ..... 58
Chafter vi - results ..... 61
6.1 Fcrce levels ..... 61
6.2 Force-EMG relationship ..... 64
6.3 Reorganization of the data ..... 71
CHAPTER VII - DISCUSSION ..... 83
7.1 Introduction ..... 83
7.2 Summary of the results ..... 83
7.3 Sources of variability ..... 85
7.4 Discussion of the results ..... 90
7.4.1 The Sternocleisomastoid dual function ..... 90
7.4.2 Force-EMG relationship ..... 91
7.4.3 Importance of the Force-Length curve ..... 97
7.5 The SCM muscle function ..... 103
7.6 Future steps of this study ..... 105
CHAPTER VIII - CCNCLUSIONS ..... 107
APPENDIX A - THE MYOELECTRIC SIGNAL ..... 110
APPENDIX E - EASIC LISTINGS ..... 118
B-1 Frinciple of Least Squares ..... 119
B-2 Statistical analysis ..... 125
AFPENDIX C - TABULATED DATA ..... 132
$C-1$ Raw data ..... 134
C-2 Normalized data ..... 147
C-3 Regression lines from normalized data ..... 160
C-4 Pcoled data ..... 165
C-5 Final relationships ..... 168
C-6 Relaxation manoeuvre ..... 170
C-7 Reprociuction ..... 173
AFPENDIX D - A MODEL CF THE NECK ..... 183
REFERENCES ..... 186

## LISI GF ILLUSTRATIONS

Figure page
3.1 Musculature of the neck ..... 12
4.1 Scheme of a motor unit ..... 20
4.1 Schematic representation of the gereration of the motor unit action potential ..... 25
4.3 Schematic model for MUAPT ..... 30
4.4 Explanation of scme of the terms of the myoelectric signal ..... 30
4.5 Schematic representation of the model for the generation of the $M E$ signal ..... 31
4.6 Theoretical expressions for parameters of the $M E$ signal and their relation to physio- logical correlates of a contracting muscle ..... 33
5.1 Instrumentation used to record EMG ..... 42
5.2 Instrumentation used to record respiratory function ..... 46
5.3 Instrumentation used to recorc head lift ..... 48
5.4 Instrument's general requirements ..... 48
5.5 Construction of mechanical system of prototype ..... 50
5.6 The mechanical system ..... 50
5.7 Block diagram of the electrical system ..... 51
5.8 Circuit design ..... 52
5.9 Output of the chart recoraer ..... 57
6.1 Reprcouction of the data for the Head Lift manoeuvre ..... 63
6.2 Data for subject PM, and for HL manoeuvre ..... 68
6.3 Data for pooled subjects ..... 77
6.4 Data for pooled subjects and lung volumes ..... 78
6.5 Relationship between the two mechanical outputs ..... 82
7.1 Respiratory Nanceuvre ..... 95
3.1 Main muscles involved in forward bending of the neck and in forced inspiration ..... 13
5.1 Subject description ..... 40
5.2 Instruments description ..... 47
5.3 Values used to normalize the subject's data ..... 59
6.1 F-Values due to lung volume (FRC+2L) affecting the reproducibility of the linear force-mRC relationship of a manoeuvre ..... 62
6.2 HL(max) and Pmusc(max) for the maximum voluntary contractions ..... 65
6.3 MRE generated by a maximum voluntary contraction ..... 66
6.4 Linear force-ARE relationship: HL manoeuvre ..... 69
6.5 Linear force-MRE relationsnip: Respiratory function manoeuvre ..... 70
$6.6 t$-Values due to variation in lung volume from FRC to FRC+0.5L ..... 72
6.7 F-Values due to lung volumes affecting the linear Force-MRE relationship ..... 72
6.8 F-Values due to the subject's variation affecting the linear Force-MRE relationship ..... 74
6.9 Linear Force-MRE relationship: pooled subjects ..... 76
6.10 Linear Force-MRE relationship: pooled subjects and lung volumes ..... 76
6.11 F-Values due to lung volumes affecting the linear Force- 1 RE relationship: pooled subjects ..... 30
6.12 MRE ratios between 10 cm and 3 cm of llead ileight ..... 30
6.13 Linear Force-Force relationship ..... 80
7.1 Slope ratio for a change in lung volume from FRC to FRC+0.5L ..... 99

## CHAPTLR I

## INTECDUCTICN

It has been known for many years that the contraction of a muscle is accompanied by a substantial electrical activity. This electrical activity can be considered as an information source of the muscle activity. By the use cf suitable electrodes and amplification, the electrical activity of muscles can be measured. This measured activity is called an electromyographic (EMC) signal.

It has also been known for many years that the EMC signal changes with the length of the studied muscle for a constant level of contraction, and with the contraction level for a constant muscle length.

The work presented in this thesis was initiated in an effort to determine an easy method of measuring the respiratory status of weak patients in an ICU unit by studying the neck muscle called " Sternocleidomastoid ".

To clearly understand the importance of this study, the main reascns why this study will help ICU patients and physicians
are discused in Chapter II. This chapter mentions the actual methcd used by physicians to determine the respiratory status cf their ICU fatierts. It concluces with a ciscussicn of the benefits a simple method of determining the respiratory status of ICU patients can provide to them.

The muscle studied was the sternccleicmastoid ( $\mathrm{SCM}_{\mathrm{i}}$ ) muscle. For this reason, Chapter III details the anatomy and physiclogy of this muscle. It also explains its dual functicn ard its relation to the other neck and respiratory muscles.

The most important instrument cf wark used in this study is the ENG scurce signal. The physiclcgy and physical parameters which are the basis of recorded ENG signals are investigated. These parameters belong to the most recent existing model developed by Carlc de Luca. This model is preserted in Chapter IV. It helps to understand how the recorced EMC is related to the muscle physiolcgy.

Chapter $V$ cetails the material used during the experiment. This aspect is important because it has been reported in the literature that different recoraing devices have different cutput signals for the same input signal because their electrical properties are aifferent. The chcice of recording electrodes, their characteristics and their geometrical arrangement relative to the muscle fibres are very important features and are discussed in this chapter. Finally, the chapter outlines the protocol used during the experiment and details the methoas used to analyze the results.

The results are presented in Chapter VI. In Chapter VII, an interesting discussion of the results is presented. It
cutlines the meaningful results, it discusses the weaknesses of the experiment; it argues the results presented in chapter VI, it explains the $S C M$ dual function from the obtained results, and it describes the future steps one should fcllow to continue the study of the $S \dot{C} M$ muscle.

The thesis ends with a concluding chapter, Chapter VIII, outlining the meaningful conclusions that help to understand the SCM dual function. It also explains from the final results, how the method used to do the experiment can become a simple method to determine the main respiratory function parameter of weak subjects, i.e., muscle pressure.

## CHAPTER II

## FESPIRATORY FUNCIION ASSESSMENT

STUCY AND ITS IMFOETANCE

### 2.1 Respiratory functicn assessment.

It has been noted by the clinicians of the Intensive Care Unit of the Hamilton General Hospital that a simple method of assessing respiratcry function of critically ill patients aces not exist. There are twi reasons for this:

1) these patients require a mechanical ventilatory support system, and respiratcry function assessment is aifficult because the respirator must be removed from the patient, which in certain cases may jeoparaise the patient's life.
2) These critically ill patients may be fatigued or sleep deprived, and are not equipped to cooperate in respiratory function assessment.

One way tc assess respiratory function is to ask the patient to deliver a vital capacity (VC) manceuvre, i.e., the patient is asked to exhale as much as possible after making a maximum inhalation, or to aeliver a maximun inspi-
ratory pressure manoeuvre under static conditions (MIPS), i.e., the patient is asked to inspire as nard as he/she can while the airways are blocked. These two manoeuvres activate the SCM muscles which are also used for performing forward flexion of the neck. For an ICU patient, forward bending of the neck is equivalent to lifting the head off the pillow. This requires less coordination and cerebral involvment than doing a VC or a MIPS manoeuvre.

The proposed study consists of assessing the SCM muscle which acts like a skeletal muscle for performing forward flexion of the neck, and as a respiratory muscle for performing forced inspirations. The ultimate objective of this study is to define a correlation between head lift and respiratory function. From this correlation, an easy method or deterinining the respiratory status of these patients can be defined.
2.2 Importance of the proposed study.

The respiratory assessment done by the clinicians on ICU patients is of primary importance in weaning the patients from mechanical respiratory support. A review of nine month's caseload through the 15 -bed ICU of the Hamilton General Hospital, done by J.R. Hewson,MD, revealed tnat 599 patients had required mechanical respiratory support during their stay in the ICU. Of this total, 361 patients had respiratory support for less than 24 hours, 137 pa-
tients for a duration of 1 to 3 days, 52 for 4 to 7 days, 21 for 8 to 14 days, and 19 for greater than 14 days duration.

An extrapolation revealed that a total of 800 patients would require ventilatory support in the course of a year in this ICU. The nine month sample of patients, projected to twelve months, indicates that in the ICU almost 1000 ventilatory days of mechanical ventilatory support are given to the small group of patients who nave not been weaned from mechanical respiratory support by day 14 of their respiratory support regimen.

In this same review of cases, it appeared that the average occupancy rate of the ICU is greater than $95 \%$, which is well above the national standards advised by the Ministry of Health and welfare in Ottawa. This clearly incicates an overutilization of the ICU resources. Besides, $17.5 \%$ of the total available ICU resources have to be utilized for the mechanical respiratory support of patients at ter they have already received 14 days of mechanical ventilatory support. It is clear then that prolonged ventilatory support is a major problem from a resource utilization point of view.

Prolonged mecnanical ventilatory support also creates ventilatory dependence. That is, the patient loses his ability to breathe because of a lack of utilization. The respirator pushes the air inside the lungs and the patient makes no effort. The result of this is tnat the weaning becomes much more difficult to perform and demands much
more energy from both patient ana clinician.
The weaning consists of reeducating these ventilatory deperdent patients how to breathe because the breathing mechanism is lcst. The respiratory muscles have become atrcphic and have lost their cocrcination.

By defining a simple way of assessing respiratory status cf critically ill patients, weaning can be performed socner. This will reduce mechanical ventilatory cefendence of the patients, and will improve rescurce utilization of the ICU.

## CHAPTER III

## THE STEFNCCLEICCNIASTCIE MUSCLE

3.1 Anatomy

The sternocleidomastoid (SCIA) muscle is located very superficially in the neck. It can be seen and palpated easily. The muscle passes oblicquely down across the side of the neck and forms a prominent lancmark, especially when contracted.

The $\operatorname{SCM}$ muscle has the shape of the eleventh letter of the Greek alphabet, lambda. It has three attachment points. Its lower attachment points are the upper part of the anterior surface of the manubrium sterni and the upper surface of the medial third of the clavicle. These two heads are separated at their attachments by a triangular interval; but as they ascend, the clavicular head passes behind the sternal head and tlends with its deep surface below the midale of the neck forming a thick, rcunded belly. Above, the muscle is inserted by a strong tendon into the lateral surface of the mastoid process of the skull, from its apex to its supericr borcier, and by a thin aponeurosis into the latteral half of the superior nuchal line, i.e., a slight
curved ridge, which runs laterally from the external cocipital protuberance to the mastcid process of the temporal bone.

The SCM muscle is innervated ty twc sets of motor nerves: the eleventh cranial nerve called " The Accessory Nerve ", and the cervical spinal nerves $C 2$ and $C 3$. The Accesscry Nerve has two portions: a cranial portion and a spinal portion. The cranial fortion derives fram four to five rootlets at the side of the medulla, runs laterally below the vagus nerve (or cranial nerve $X$ ) at the jugular foramen where it is joined by the spinal portion which arises from the motor cells in the anterior gray column as low as the fifth cervical segment. In order tc join the cranial portion inside the skull, the spinal portion enters the skull through the foramen magnum. Both porticns leave the skull through the jugular foramen. The cranial portion innervates the pharynx, the upper larynx, the uvula, and the palate. The spinal portion innervates the sternocleidcmastoid and the trapezius muscles.

### 3.2 Physiclcgy.

### 3.2.1 Functions of the $S C M$ muscle

One acticn of the SCM muscle is to tilt the head towards the shoulaer of the same side; it also rotates the head so as to carry the face towards the oppcsite side. when both SCM muscles act, the rotation of the heac is prevented by the cancellation of the lateral forces, and the final ac-
tion is the forward bending of the neck such that the chin touches the upper sternum.

The cther action of this muscle is tc help to perform ar inspiration. The SCM muscle is considered to be an accessory inspiratcry muscle. This function does not occur in normal breathing ( Mountcastle 1980 ), but it becomes of major importance during forced inspiration and curing exercise where hyperventilation occurs. In a normal situation both functions are present, but one can voluntarily stabilize the head to perform a forced inspiration as well as one can voluntarily stabilize the chest to perform a forward flexion of the neck.

### 3.2.2 Impcrtance of the other muscles involved.

As menticned in the previous section, the $S C M$ muscle has a dual tunction; it benas the neck forward, and it is used as an accessory inspiratcry muscle. Other muscles are also involved in these functions.

In forward bending of the neck, three other muscles in addition to the $S C M$ muscle are involved: the Longus Colli (Sup. Oblique, vertical) muscles, the Longus Capitis muscle, and the Scalenes (Anterior, Middle, Posterior) muscles. The SCM muscle is the prime muscle of the acticn (Warwick 1973). These muscles, except for the antericr and middle scalene muscles, do not touch the SCM muscle. They are located deeper in the neck (Fig. 3.1).

The same phenomenon occurs during hyperventilation. The SCM muscle as well as the scalene muscle are acces-
sory inspiratory muscles while the diaphragm muscle and the external intercostal muscles are the main inspiratory muscles (Tokizane 1952). During normal breathing the $S C M$ muscle is not activated while the three others are (Raper 1966); the scalene is less activated than the external intercostal muscles which are less activated than the diaphragm muscle (Camptell l955a, Murphy 1958). The order of activation of the intercostal muscles is from the first to the eleventh intercostal muscle (Murphy 1958). The SCM muscle is activated during hyperventilation to help the other inspiratory muscles to perform an adequate inspiration tc obtain an appropriate gas exchange in the lungs (Campbell 1955b). Iable 3.1 lists the main muscles involved in both manceuvres, i. e., inspiration and forward bending of the neck.
M. digastricus (Venter dim.)

## M. geniahyordeus



Proc Iransv allan


Lig. interchavicw., M. sternothyreondeus
(Pernkopf 1963)

FIGURE 3.1: Musculature of the neck
(The underlined muscles are the ones used in both manoeuvres, Head Lift and Respiratory Manoeuvre.)

| Name | Origin | Insertion | Action | Nerve |
| :---: | :---: | :---: | :---: | :---: |
| Longus Capitis | Ant. tubercle, Trans. process vertebrae C3-6 | Basilar part of occipital bone | Plexes head | C1,2,3 |
| Longus Colli Sup. Oblique | Ant. tubercle, Trans. process vertebrae C3-5 | Tubercle on ant. arch of Atlas | $\begin{aligned} & \text { Flexes neck, } \\ & \text { slicht rota- } \\ & \text { tion of cer- } \\ & \text { vical part. } \end{aligned}$ | C2-7 |
| Vertical | Bodies of vertebrae C5-7, T1-3 | Bodies of C2-4 | Flexes neck | C2-? |
| Ant. Scalene | Ant. tubercle, Trans. process vertebrae C3-6 | ```Scalene tu- bercle, rid- ge on upper first rib``` | Berds neck, Raises 1 st rib | C5-8 |
| Mid. Scalene | Post. tubercle Trans. process vertebrae C2-7 | Upper ${ }_{1}$ st rib, behint subclav. groove | Bends neck Raise first rib | c5-8 |
| Post. Scalene | Post. tubercle, Trans. process vertebrae C5-7 | $\underset{\text { rib }}{\text { Outer }} 2^{\text {nd }}$ | Bends neck, Raises $2^{\text {nd }}$ rib | c6-8 |
| Sternocleidomastoid | Sternum, Clavicle | Mastoid process of the skull | Bends head to same side Rotates head Raises chin to opposite side, torether bend head forward + elevate chin. When head stablli ze, it eleva tes sternum + clavicle. | Accessory (XI) spinal part,1.e C2-4, C2 and C3 |

TABLE 3.1: Main muscles involved in forward bending of the neck and in forced
inspiration

TABLE 3.1: (continuing)

| Name | Origin | Insertion | Action | Nerve |
| :---: | :--- | :--- | :--- | :--- |
| External <br> intercostal <br> (11 pairs) | Lower bor- <br> der of rib | In upper <br> border of <br> rib below | Elevates rib <br> below | Intercostal <br> nerves T1- <br> T12 |
| Diaphragm | Xiphoid pro- <br> cess of the <br> sternum, Ribs <br> $7-12, ~ L u m b o-$ <br> costal arches <br> and crura | Central <br> tendon | Descent of <br> the central <br> tendon | C4, (also and C5) <br> C3 and |

## CHAPTER IV

THE EMG SIGNAL

### 4.1 Introduction

The electromyographic signal obtained from an active muscle is essentially the summation of the activities of a large number of physiological units. To effectively use this signal as an information source, a kncwledge of the basic structural and functional units in striated muscle is required.

This chapter briefly reviews the characteristics of each physiological unit. In addition to giving a brief description of the electrical events, a model of the myoelectric signal will be presented in order to define the mathematical expressions of the most used parameters of the myoelectric signal, i.e.: (a) the mean rectified value, (b) the mean integrated rectified value, and (c) the root-mean-squared value. finally, a brief discussion of the models of the force-EMG relationship will be given.
4.2.1 The nerve cell and its action potential.

The nervous system is composed of two different parts: (a) the central nervous system which controls the voluntary actions, and (b) the peripheral nervous system which controls the reflex actions and controls certain functions (Somatic and Autonomic nervous system). The nerve cell is the basic element of any nervous system. It is composed of three parts: (a) the dendrites, (b) the body, and c) the axon. The dendrites are small, less than loum diameter, and numerous. They transmit the information they receive to the cell body which is the living part of the nerve cell. It contains the nucleus and when it dies, the whole cell dies with it. The axon is unique in the nerve cell. It transmits the information it receives from the cell body to the dentrites of the following nerve cell, or to the muscle fibres of a muscle. Since our main interest is in the EMG signal, total attention will be directed to the nerve-muscle transmission of the action potential (AP). At its end point, the axon is divided into 3 to 150 terminal branches. The diameter of the axon varies between 1 and 20 m , and its length can reach one meter. The nerve fibres whose axonal diameters are more than 2 um are called myelinated fibers because their axon is covered with myelin. This myelin is positioned at interval of 1 to 2 mm along the length of the axon. The uncovered parts are called nodes, and the covered parts are called internodes. fhe other nerve fibers (less than 2 um diameter) are called non-myelinated fibers. The action of the myelin will be discussed later.

The information transmitted through a nerve cell is simply a depolarization process which is transmitted alcng the nerve cell. This aepolarization process allcws the fropagaticn of a current along the cell. The skin of the rerve cell is a bilipid layer membrane. This membrane offers a very high resistance to the passage of electrical current, and has a biclogical capacitance of abcut $l u F / \mathrm{cm}^{2}$. At rest, the nerve cell is in a state of active equilibrium. With the help cf a sodium (Na ${ }^{+}$)potassium $\left(K^{+}\right)$active fump which keeps the $K^{+}$ions inside the cell and the $\mathrm{Na}^{+}$outsione the cell, the nerve cell sustains a resting membrane potential (Vm) of about -90 mV (inside relative to outside). The transmembrane potential (Vm) can be expressed as:

$$
\begin{equation*}
V m=-\frac{R T}{F} \ln \left[\frac{P_{N_{a}}\left[\mathrm{Na}^{+}\right] i+P_{k}\left[K^{+}\right] i+P_{c l}\left[C l^{-}\right] 0}{P_{N_{a}}\left[\mathrm{Na}^{+}\right] C+P_{k}\left[K^{+}\right] c+P_{C l}\left[C l^{-}\right] i}\right] \tag{4.1}
\end{equation*}
$$

where $\mathrm{P}=$ permeability of the ion, $\mathrm{F}=$ Faraday's constant, $I=$ absolute temperature, and $R=g a s$ constant. The expression "RT/F ln" can be replaced by " $60 \log$ ". The above equation is called the "Gcldman-Hodgkin-Katz " equation or the "GHK" equation.

When the nerve cell is excited, bicchemical phenomena, still unknown, increase the membrane permeability to these ions by opening different channels and by letting the ions flow through them. Investigators believe that there are specific channels for specific icns (Selkurt 1976). The driving force existing, when the nerve cell is at rest, attracts the $\mathrm{Na}^{+}$inside the cell and pushes the $\mathrm{K}^{+}$outside the cell. This phencmenon first induces an increase of the sodium conductance ( $G_{\mathrm{Na}}$ )
which depclarizes the nerve membrane towards zero millivalt tc reach an overshoot of +30 mV . During that time, a slcw ircrease in the potassium conductarce ( $G_{K}$ ) starts to repolarize the cell. The feak of $C_{K}$ is reachec after the $C_{N a}$ peak so that an cuershoot of +30 mV could be reached. After a few milliseconus, the $\mathrm{Na}^{+}-\mathrm{k}^{+}$pump is activatea to continue the repolarization of the nerve membrane to its resting value of -90 mV after a fericd of hyperpolarization due to the potassiun flow. The phenomencn just ciescribed is called an Acticn po-. tential (AP). This AP is generated at every axon-dendirite synapse anc propagates along the nerve cell. The propagation alcng the axon can be continuous or saltatcry. The continucus concuction is a slow concuction ( $1-5 \mathrm{~m} / \mathrm{s}$ ) founc in the nonmyelinated fibres. The saltatory concuction ( $50 \mathrm{~m} / \mathrm{s}$ ) is a characteristic of the myelinated fibres.

The acticn potential (AP) is an all or none phencmericr. When the depolarization of the nerve membrane reaches a threshold potential, the depolarization is autcratic and instantaneous. This characteristic is useful for the propagation of the AP. Each point of the nerve membrane which is in contact with the extracellular redium becomes depolarized if the threshold is overcome. Eecause of this, the local depolarization, with local currents, is propagated along the non-myelinated fibres while it is from node to node in the myelinated fibres. The myelin provides a very good electrical insulation. Depolarization cannot occur in the interncde space. when an AP train reaches a muscle, it depolarizes many muscle fibres synchronously. These muscle fibres belcng to a motor unit.

### 4.2.2 The motor unit.

The motcr unit (Fig. 4.1) is the functional unit of the motor system. It is compcsed of one metoneurcn and many fiuscle fibres (3-150). The number of muscle fibres in one motor unit is determined by the function of the whole muscle. Huscles controling fine movements and adjustments have the smallest number of muscle fibres fer motor unit (eg. eye ball muscles), while larger muscles producing gress movements have a larger number of muscle fibres per motor unit (eg. limb muscles).

The same muscle contains motor units cf differerit size. Larger motor urits may consist of a larger number of muscle fibres, $c r$ the muscle fibres themselves may be larger (de Eruir 1976). When a muscle contracts, it cices so smocthly. The muscle fitres cf the same motor unit contract synchronously while the muscle fibres cf different notor units contract asynchronously.

### 4.2.3 Ihe neuromuscular iuncticn.

The muscle fibre contraction is the mechanical result of the muscle fibre membrane depolarizatior. In orcer to reach the muscle fibre and cause a muscle fibre acticn potential, the nerve action potential (AP) has to pass through the neuromuscular junction (NMJ) cr End Plate. The NMJ is the interface between the motcr nerve encing and the muscle fibre. It serves as an impedance matching device to provide sufficient current to drive the muscle fibre membrane beyono threshold.


Figure 4.1 Scheme of a motor unit.

The transmission cf the nerve AF from the presynaptic membrane to the postsynaptic membrane is essentially chemical. 'ihe nerve AP makes the presynaptic vesicles, with the help of the calcium icn, liberate acetylchcline ( $A C h$ ) which makes the transition across the synapse gap, sefarating the nerve and the muscle fibre membranes. After ACh binds to the postsynaptic receptors, located on the muscle fitre membrane, the permeability sucidenly increases to $\mathrm{Na}^{+}$and $\mathrm{K}^{+}$. These caticns move according to their concentration and electrical gradient causing a defolarization of the membrane beyond threshold, which induces a self-propagating impulse called the Enc plate Fotential (EPF). The cielay for producing a EPP is arcund 1. 2 msec . cf which u .7 msec . is required for the synaptic transmissicn.

### 4.2.4 The musclefibre.

The muscle fibre is the basic component of a motcr urit, and is also the basic structural unit of contraction. Uncer a microscope, the muscle fibre is a fine threaci with a ciameter varying from 10 to looum, and a length that can reach 3 ccm .

Once the EFP is generated, the depolarization propagates in both directicns from the end plate, located in the miciale of the muscle fibre, at a speed of $5 \mathrm{~m} / \mathrm{s}$. The delay from the NMJ to both ends is around 5 msec.

The defclarization of the muscle fibre membrane by the conducted impulse is followed by a brief phasic contraction of the muscle fibre, a twitch, follcwed by a rapia ana complete refaxation. The duration of the twitch and cf the relaxaticn,
from a few msec. to $0.2 \mathrm{sec} ., \mathrm{dep} \in \mathrm{nc}$ s on the type cf fibres involved. There are two types of muscle fibres: (a) the fast twitch fibres, and (b) the slcw twitch fibres. A muscle ccrtains both types of fibre, while a motcr unit contains only one type of muscle fibre. Consequently, there exists: (a) fast twitch motor units, and (b) slow twitch metor units (Basmajian 1974).
4.3 Mcael for the myoelectric signal

### 4.3.1 Introcucticn

A muscle can contract in three different ways. It can ferform: (a) an isonetric contraction, i.e., the muscle generates a tension while its length is fixed, (b) a concentric contraction, i.e., the muscle generates a tension while its length is shortening, and (c) a eccentric contraction, i.e., it generates a tensicn while its length is lengthening (Knuttgen 1982). Many investigators have studied muscle function using a technique called "Electromyography" which records, with the use of various type of electrodes, the electrical event which induces a known mechanical event, i.e., a contraction.

The model presented in this section summarizes the work done by Carlo de Luca whose contributions (1968-1979) were very important in modelling the myoelectric (MD) signal. The derived expressions are only applicable to the ME signal as it exists on the surface of the active musclefibres. The concuctive medium between the motor unit fibres and the recording site
is condidered to be purely resistive. The expressions do not take into account the filtering effect or the $A E$ signal caused by the muscle tissue, fascia, fat, skin, and recording electrodes. This allows simple addition of the motor unit potentials. The model presented in this section will also give mathematical expressions for three out of four parameters used by investigators to describe the ME signal during a constant force isometric contraction: (a) the mean rectified value, (b) the mean integrated rectified value, and (c) the root-mean-squared value. The fourth parameter, the power density spectrum, describes an entirely new metnod of analysing the ME signal. This method has not been used to study the SCM muscle and will not be described.

The description of the model will be divided into tnree parts. The first part will describe the formation of the motor unit action potential (MUAP). The second part will discuss the motor unit action potential train (MUAPT) and its main parameters. The third part will explain how the MUAPr's are added together to form the ME signal.

### 4.3.2 The MUAP

The depolarization of the muscle fibre membrane, from its resting potential of about -85 mV , results in a brief monophasic wave of 2 to 4 msec . duration. The propagation of the muscle fibre action potential, at a speed of about $5 \mathrm{~m} / \mathrm{s}$, is seen by bipolar recording electrodes, located in the vicinity of the muscle fibre and arranged in a parallel alignment relative to the fibre, as a biphasic action potential. The
time duraticn of this acticn potential cepends on the distance between the twe electrcaes. Its amplituce diepencis on the radius [a] of the muscle fibre, $\left[V=k a^{1.7}\right.$ where $k$ is a constant (de Luca 1979)], the distance [D] between the muscle fibre and the recording site, $l V=k / D$ where $k$ is a constant (de Luca 1979)], and the filtering properties of the electrodes.

Since the nerve acticn potential depolarizes quasi-synchronously all the muscle fibres of a motor unit, the resultant signal seen at the recording site, the MUAP symbolized by $h(t)$ (Fig. 4.2), will constitute a spatial-temporal superposition of the contributions of the individual muscle fibre action potentials.

The shape of the MUAP will generally vary due to the unique geometric arrangement of the motcr unit fitres with respect to the recording site. The amplituce varies from a few uV to 10 mV peak to peak with a typical value of 300 uV . The number of phases may vary from one to four: $3 \%$ monophasic, $49 \%$ biphasic, $37 \%$ triphasic, and $11 \%$ quadriphasic (reported by de Luca 1979).

### 4.3.3 The MUAET

The MUAFT represents a sequence of MUAP's produced by the same motor unit during a sustained muscle contraction. It can be described by its inter-pulse intervais (IFI's) and the shape of the MUAP.

The assumptions made to create the MUAFT model are: 1) the IPI between every MUAP of one MUAPT remains cons-

MOTOH UNIT ACTION POTENIIAL


FIGURE 4.2: $\frac{\text { Schematic representation of the }}{\text { aeneration of the motor unit ac }}$ tion potential
tant
2) the shape of the MUAP's remains constant

Manns et al (1977) reported a change in the firing frecuency (the reciprocal of IFI) toward low frequencies, as a function of the contracting time, ciuring a constant-force iscmetric contracticn. Many cther investigatcrs reported a charge in firing rate during an isometric contraction. This goes against the first assumption. However, it is very difficult tc record only one MUAPT such that it is aistinguishatle. The myoelectric signal recorded using electrcaes is mostly compcsed ci several MUAPT's. Ccrsequently, the inciviaual firing rates $\lambda_{i}(t)$ cannot be measured. Tc cvercome this barrier, de Luca (1968) (reported by de Luca 1975) intrcciuced the concept of the generalizea firing rate $\lambda(t)$. It is defined as the mean value of the firing rates of the MUAPT's detected during a contraction. This value represents the constant firing rate of cne MUAPT. The IPI's between two adjacent MUAF's in the same MUAPT have a tendency to be statistically independent (de Luca 1975), but this independence of adjacent pulses is not as strong as that between every other pulse in the same train.

$$
\begin{equation*}
\lambda(t)=\left[\int_{-\infty}^{\infty} p_{x}(x, t) d x\right]^{-1} \tag{4.2}
\end{equation*}
$$

where $x$ represents the inter-pulse interval, and $p_{x}(x, t)$, the probatility distribution function fitted from a IPI histogram (de Luca 1979).

The second assumption can be fulfilled if the following
conditions are respected:

1) the yeometric relationship between tne electrodes and the active muscle fibres remains constant
2) the properties of the recording electrocies do not change
3) there are no signiticant biochemical changes in the muscle tissue because that could affect the muscle fibre conduction velocity and the muscle tissue filtering properties.

The first two conditions can be verified for short recording time. The third condition cannot be verified but one can suppose that such biocnemical changes occur in muscle and neuromuscular junction diseases.

It would be extremely difficult to give a unique matnematical description of the MUAP because there are many possible shapes. Thus, to uniform the shape, it is convenient, from a mathematical point of view, to decompose the MuAPI into a sequence of Dirac delta impulses $\delta\left(t-t_{i k}\right)(E i g .4 .3)$ which pass through a linear system whose imoulse response is $h_{1}(t)$. The expression $t_{1 k}$ represents the time location of the impulse and the subscript $i$ represents the $i$ th MUAPP. The resultant $A U A P$ can be expressed as:

$$
\begin{equation*}
h_{1}\left(t-t_{k}\right)=\int_{0}^{\infty} h_{1}(t-u) \delta\left(u-t_{i k}\right) d u \tag{4.3}
\end{equation*}
$$

The motor unit is a physical system $h(t-u)=0, t<u$ (i.e. it does not respond before an input pulse is applied at the NMJ). The variable $t_{k}$ can be expressed as: $t_{k}=\sum_{1=1}^{k} x_{1}$ for $k, 1=1$,

2,....n where $x$ expresses the IFI. Einally the MUAPT, represented by the sumation of the MUAF's, can be expressed as:

$$
\begin{equation*}
u_{i}(t)=\sum_{k=1}^{n} n_{i}\left(t-t_{k}\right) \tag{4.4}
\end{equation*}
$$

where $n$ represents the total amount of IPI's in the NUAFT. The descrifticn of the distribution of $x$ is $f a r$ beycnd the purpose of this chapter. A more complete treatnent is given by cie Luca (1975).

Now that the twe time defencent elements characterizing the MUAPT are known: (a) $\lambda(t)$ and (b) $h(t)$, the expressions for the two most commonly used parameters of the NE signal (at the MUAFT level), i.e., the mean rectified value anc the root-mean-squared value can be given.

Mean rectified value:

$$
\begin{equation*}
E\left[\left|u_{i}(t)\right|\right]=\int_{0}^{\infty} \lambda_{i}(\hat{t})\left|h_{i}(t-\hat{t})\right| d \hat{t} \tag{4.5}
\end{equation*}
$$

Fcot-mean-squared value:

$$
\begin{equation*}
\left(M S\left[u_{i}(t)\right]\right)^{\frac{1}{2}}=\left(\int_{0}^{\infty} \lambda_{i}(\dot{t}) n_{i}^{2}(t-\hat{t}) d \hat{t}\right)^{\frac{1}{2}} \tag{4.6}
\end{equation*}
$$

For the convolution expressions such as those in the akove equations, the MCAP, $r_{i}(t)$, can be conveniently represented by a Dirac delta impulse, $\delta i(t)$, multiplieo by a constant that is equal to the area of the MUAP. From this approximation, the above expressions are greatly simplified to:
$E\left[\left|u_{i}(t)\right|\right] \cong \lambda_{i}(t)\left|h_{i}(t)\right|$
$\operatorname{MS}\left[u_{i}(t)\right] \cong \lambda_{i}(t) \underline{h_{i}^{2}(t)}$
where $\underline{\left|h_{i}(t)\right|}=\int_{0}^{\infty}\left|h_{i}(t)\right|$ ct and $\underline{h_{i}^{2}(t)}=\int_{0}^{h_{i}^{2}}(t) d t$. This apprcximation introduces an errcr less than $0.001 \%$ (de Luca 1975) (Fig. 4.4).

### 4.3.4 The ME signal

The ME signal m(t,F) (Fig. 4.5), for a constant force isometric contraction $F$, is mocielled as a linear, sfatial and temporal summation of all the MCAPT's cetectec by the electrcce. The signal $m_{p}(t, F)$ is not observable. when the signal is cietected, an electrical ncise $n(t)$ is introduced, and the filtering properties of the reccriing electrode $r(t)$ and fossibly other instrumentation affecting $m_{p}(t, F)$ are alsc intrcauced. The resulting signal, $m(t, F)$, is the observable ME signal. The derivaticn of the follcwing expressicns assumes that: (a) the noise, $n(t)$, is negligible, and (b) the $\in \pm-$ fect of the recoring electrodes and instrumentation rerain constant with time $\left(m(t, F)=m_{p}(t, F)\right)$ (Stulen 1978). These consideraticns can be realized with proper experinental rrocedures.

The ME signal can be expressed as:

$$
\begin{equation*}
m(t)=\sum_{i=1}^{s} u_{i}(t) \tag{4.9}
\end{equation*}
$$

The subscript F was rencvea because it only indicates the for-


FIGURE 4.3: Schematic model for the MUAPT
(He Luca 1979)


FIGURE 4.4: Explanation of some of the terms in the
(He Luca 1979)


FIGURE 4.5: Schematic representation of the model for the generation of the ME signal.
ce at which the isometric contraction was performed and therefore, adds notning to the analysis.

As demonstrated in Appendix $A$, the correlation function is used to defined the main parameters of the ME signal
( Fig. 4.6).
Mean rectified value:
$E[|m(t)|]=\lambda(t) \sum_{i=1}^{s} \underline{\left|h_{i}(t)\right|}+J(t)$
where $\left|\underline{\left|h_{i}(t)\right|}=\int_{0}^{\infty}\right| h_{i}(t) \mid d t$, and where $J(t)$ is a non positive term which represents the cancellation of MUAP's superimposed with a $180^{\circ}$ phase shift.

Mean integrated rectified value:
$E\left[\int_{0}^{T}|m(t)| d t\right]=\int_{0}^{t} E[|m(t)|] d t$
Root-mean-squared value:

$$
\begin{equation*}
\left.\operatorname{rms}[m(t)]=\lambda(t)^{\frac{1}{2}} \sum_{i=1}^{s} n_{i}^{2}(t)+\sum_{i=1}^{v} \sum_{j=1}^{v} c_{i j}^{2}(t)\right)^{\frac{1}{2}} \tag{4.12}
\end{equation*}
$$

where $\frac{h_{1}^{2}(t)}{}=\int_{0}^{\infty} h_{1}^{2}(t) d t$, and where the second term within the parenthesis represents the synchronization of the MUAPr's, $v<s$. Furthermore, $c_{i j}^{2}(t)=\int_{0}^{\infty} h_{i}\left(t+T_{i j}\right) h_{j}(t) d t$. The details of these expressions are presented in Appendix $A$.

This general model, including the mathematical expressions of its main parameters, defines the ME signal during a constantforce isometric contraction. The basic function is the autocorrelation function of the ME signal (Appendix A). Many as-

MEAN RECTIFIED AND fiMS VALUES


VARIANCE OF THE RECTIFIED SIGNAL

FIGURE 4.6: Theoretical expressions for parameters of the ine sienal and their relation to physiological correlates of a contractina muscle.
sumptions have been usec tc define this model. Meanwhile, the parameters, fresented in this mociel, are deperdent on: (a) the firing rate, $\lambda(t)$, of the moter units, (b) the nunker of motcr urit action potential trains (MUAPT's) comprising the ME signal, (c) the shafe of the MUAP, anci (d) the nuriber of synchronized RUAPI's.

The approach used thus far has been airected at relating the measuratle parameters of the ME signal to the tehavior of the indiviaual MCAFT's. However, when the recording electrodes detect a large number of MUAPT's (greater than 15 (cie Luca 1979)), such as would typically be the case for surface electrodes, the law of large numbers can be involved to consider a simpler, more limitea apprcach. In such cases, the $M E$ signal can be effectively represented as a signal with a Gaussian distributea amplituce. By using this apprcach, it has been deminstrated that the mean rectified value of the ME signal can be expressed as:

$$
E[\mid m(t) \|=\sqrt{2 / \pi} \sigma(t) \quad \text { (de Luca 1979) }
$$

where $\sigma(t)$ is the standard deviation of the amplitude distribution.

### 4.4 The Force-EMG relationship

Considerable confusion seems to exist regarcing the mathematical relationship between the IEMC and the force produced
in human muscle contraction. Thecretical corsicieraticris suggest that the EMC recoraings from surface electrodes represert a very complex summation of varying numbers of motcr unit acticn fetentials which vary teth in size and ir wave forri. Using certain sinflifying assumptions such as: (a) the acicption of an arbitrary biphasic, symmetrical impulse to represent the muscle fibre action potential, (b) nc cancellaticn, and (c) no syrchronizaticn, it has been suggestea that the most likely relationship would be one in which the IENG (either rms or average values) would vary as the square root of the force (Moore 1967). Actual cbservations of the relationshifs have most cften led to report a linear relationship (Hucigins 1979, Hof 1977) but scme investigators have refcrted curvilinear relationships with IEMC varying in positively acceleratec fashion as force cf contracticn increases (Komi 1975, zuniga 1969). Furthermore, among the curvilinear relationships, a few have been decomposed into two parts: (a) a linear relationship in the submaximal force range, and (b) a non-linear relationship in the force range closer to the maximal voluntary contraction (Kuroda 1970, Zuniga 1969).

The Force-EMG relationship is nct unique and varies from muscle to muscle. workers who studied the Force-EMG relationship in situations in which only one muscle could be involved, as Lawrence (1983), founa a linear relationship. When, on the other hand, the muscle under stucy is one of a group of synergists, often a considerable controversy about this linearity exists in literature (Kuciora 1970, Koni 1976, Lawrence 1983). Even the biceps trachii, a muscle that is very often useci in
this kind of study and for which rather different force-EMG relationships are reported, clearly falls in this category as it is a synergist of the brachialis and the brachioradialis muscles fcr elbcw flexion (Zuniga 1969).

All this controversy leads cne to believe that the forceELG relationship is determined by the muscle under investigation. A variety of phenomena that may contribute to the mus-cle-dependent difference in the force-LMC relationstif can $t c$ identified. Some of them are:

1) motor unit recruitment and firing rate properties
2) relative amounts and lccaticr of slow-twitch anc fast-twitch muscle fibres within the muscle
3) crose talk frcm. ME signals cf acijacent muscles
4) agonist-antagonist muscle interaction
5) viscoelastic properties of the muscles.

The viscoclastic properties of the muscles, although they may Ee an influential factor, remain difficult to verify. The agcnist-antagonist muscle interaction is important during iscmetric contractions where the jcints have to be stabilizea. The net force produced is usually assumed to te linear with respect to the agonist muscle cf interest. However, this relationship may be modified by numerous factors such as joint angle, limb position, and pain sensation. The electrical cross talk frcm adjacent muscles is unquestionably a possible factor and cannot be eliminated. This factor is of prime importance when one uses bipolar surface electrccies because they detect MUAPT fields from a large volume.

The relative amcunts and locaticn of slow-twitch and fast-
twitch muscle fibres within a muscle is very important. The fast-twitch fibres have a larger diameter than the slow-twitch fibres (Lawrence 1983). Since the amplitude of the me signal is depenaent on the dianeter of the muscle fibre (de Luca 1979), a different ML signal amplitude will te reccrded whether slowtwitch or fast-twitch fibres are used curing the contractions. The larger motor urits (containing the larger diameter fasttwitch fitres) are preferentially recruited at high force levels accoraing to the "size principle" (Milner-Ercwn 1973b). Therefore, the relative location of the fast-twitch fibres within the muscle and with respect tc the recording electrocies determines how the electrical signal from these mctor units affects the surface HE signal.

The motor unit recruitment and firing rate properties nust not be neglected. Larger muscle fibres have higher threshclds of excitation (Milner-Brown 19735). They are recruited at higher force levels. Moreover, recruitment has much less effect at high force levels than the firing rate (Kurccia le70). It has been suggested that the recruitment of more notor units shoulc cause a linear increase of force, since the number of the activated fibers is directly related tc the force (Moore 1967). Ihis sug gests that each muscle fibre in a muscle exerts nearly the same amount of force at any given frequency of stimulation. Consequently this suggests that the non-linearity in the force-EMG reltionship is due to the firing frequency alone since it gives a saturaticn of the output force with increasing frequency. The controversy in the literature shows clearly that each study is unique and cannot be reproduced. The electrode arrange-
ment is a crucial factor which affects the force-EMC relationship tremendcusly. Once the electrodes are rencved, it is quasiimpossible to put them back exactly the way they were. The Ecr-ce-EMG relationshif can vary from linear tc highly non-linear with different slopes, and no evidence has been presentec that any one relationship is most correct.

## CHAPTEF V

## MATERIAL AND PROTOCOL

### 5.1 Introduction

Surface electromyographic (EMC) signals, mass lifted with the head, and total inspiratcry pressure generated by the SCM muscle were recorded at varicus levels of voluntary iscmetric contraction and at different lung vclumes.

This chapter serves as a description of the experimental frocedure including the experimental instrumentatior, protocol, data collection and data management.
5.2 Sukjects

Four racmal male volunteers (ages 24 to 25 years) were studied. See Table 5.1 for a full descriftion of the subjects. All volunteers were aware that the experimental procequre was nct invasive, and only surface electrodes were to be in contact with the skin.
5.3 Instrunentaticn

| SUBJECT | SEX | AGE | $\begin{gathered} \text { HEIGHT } \\ \mathrm{cm} \\ \hline \end{gathered}$ | $\begin{gathered} \text { BODY MASS } \\ \mathrm{Kg} \end{gathered}$ | $\begin{aligned} & \text { HEAD MASS } \\ & \mathrm{Kg} \\ & \hline \end{aligned}$ | MAX. MASS $\operatorname{LIFETD}(\mathrm{Kg})$ |  | VC Liters |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LT | M | 24 | 185.0 | 74.8 | 4.6 | 12.6 | 4.13 | 5.28 |
| PM | M | 24 | 174.0 | 77.0 | 5.3 | 17.1 | 3.53 | 4.03 |
| AS | M | 24 | 170.0 | 73.0 | 4.06 | 23.6 | 3.25 | 3.75 |
| CW | M | 25 | 166.5 | 54.2 | 4.6 | 9.6 | 2.55 | 3.25 |

The instrumentation used during the experiment can be divided into three main sections: (a) the instrumentation used to record the EMG signals, (b) the instrumentation used to record head lift, and (c) the instrumentation used to record mouth pressure and lung volume.

The block diagram of figure 5.1 shows the total instrumentation used to record EMG. The input transducer was two Beckman Ag-AgCl bipolar surface electrodes. They were located on the belly of the $S C M$ muscle right in tne middle of the neck. They were arranged in a parallel alignment with respect to the fibres. The diameter of the electrodes was 4 mm , and the distance from center to center was 14 mm . The skin was rubbed with alcohol and a chloride paste was used in order to reduce the total electrode impedance. The wires of the pair of electrodes were twisted with each other to reduce the $60 H z$ magnetic coupling.

Ag-AgCl electrodes have interesting characteristics: (a) low impedance, (b) low noise, and (c) non-polarizable, i.e., reversible. However, they have two main drawbacks: (a) they are current limited ( lnA ), and (b) they produce a steady potential resulting in a dc offset that must be removed during calibration, or through $A C$ coupling.

The choice of an electrode is very important. There are five main types of electrodes used by investigators:

1) Monopolar needle
2) Coaxial needle
3) Bipolar needle
4) Bipolar fine wire


FIGURE 5.1 : INSTRUMENTATION USED TO RECORD EMG

## 5) Eipclar surface

A detailea discussion of these elfctroces is beyonc the cbjectives of this chapter. Since $k i p c l a r ~ e l e c t r c i e s ~ w e r e ~ u s e d ~ c i u-~$ ring the present experiment, it is necessary to mention a few characteristics ciefining their behavior.

There are many factors affecting the characteristics
cf the recordeci signals. Some of them are:
a) the distance from the muscle fibres to the reccriing site
b) the size of the electrocies usea
c) the spacing between the electrodes
d) the geometrical arrangement of the muscle fibres with respect to the recording orientation.
e) the electrcde-external meaium interface transfer function or filtering effects.

When the distance between the muscle fibres and the recording site increases, the amplitude of the recorded signals decreases. This phenomenon is due to the reduction of the electrical field strengths at the recording site. A second effect of the distance between fibres anc electrodes is that of low pass filtering. The impedance of the external medium is such that high frequency signals are more severely attenuated than low frequency signals. As the distance increases, the bandwidth of the low pass filter decreases.

The size of the electrcdes will determine the electrcce impedance and its effective field pick up area. Larger electrodes have smaller impedance. The net field the electrocie detects is then the spatial integration of the fields adjacent to it, over its whole area. Furthermore, spatial inte-
gration reduces the high frequency components of travelling field waves.

The effect of the spacing between the electrccies is that of differentiating. As the spacing decreases, the reccrded signal becomes closer ana closer tc being the cierivative of the travelling wave. Keaucing spacing increases reccricci signal banciwidth. Generally, reduced sfacing causes recucec signal amplituce. This effect is cue to the potential cifference between the electrcies. It is that pctential cifference that is amplified, and as the electrcaes are nicvec clcser together, the potential difference between electrodes generally cecreases.

The gecmetrical arrangenent of the muscle fibres with respect to the recorioing site cetermines, partially, the shape of the reccraed signals. As soon as any change occurs, the recorded signals lock totally different: (a) the spatial integration is differert, (b) the cistance between the fibres and the recording site is changed, a different bandwidth and a different sigral amplitude are incuced, (c) the direction of the field relative to the electrode crientation, etc.

The electrode-external interface is very important in determining the electrodes impecance per unit area and subsequently its filtering effects on the recorded signal. The type of materials used for the electrode and the electrolyte interfacing the tissue with the electrode determines the impedance per unit area of the electrode-external medium interface. In order to summarize, the size of the surface electrodes determines the amount of spatial averaging done and thus
affects the bandwidth of the recorded signals. Spacing of the electrcdes deternines the amcunt of differentiating of the detected fields, the volune of muscle mass recorded from, and the bandwidth of the recorded signal. Since distances betwecr the surface electrcdes and the muscle generator are relatively large, tissue filtering effects are significart ard aftect the bandwidth of the signals recorded.

The cther instruments alsc have their cwn characteristics. It woula be superflucus to descrite them in detail but it is essertial to mention them. Tatle 5.2 sumnarizes some cf their impcrtant chacacteristics.

The instrumentation used to record respiratory functicr, i.e., mouth fressure and lung volume is summarizec in figure 5.2. The pneumctach is connectec to the flow transcucer. Their main characteristics are sumarized in Tatle 5.2.

Figure 5.3 shows the block diagram of the instrumentation used to study the head lifting manceuvre. The most inr portant device, the head lift meter, has not been presented yet. The purpose of the head lift meter was to provicie a convenient method of measuring the SCM function through the amount of head lift in subjects in the supine position. As indicated in the block diagram of Figure 5.4, the input to such an instrument was the mass liftea by the head and the output was a reading on the calibrated scale of a simple meter. To be useful, the instrument had to be simple, easy to use, and hac to require a minimum of patient movement. For ease of transportation anc use, the instrument had to be hand held and battery powered.


FIGURE 5.2 : INSTRUMENTATION USED TO RECORD RESPIRATORY FUNCIION

## TABLE 5.2

|  | 8-Channel chart recorder | Low gain amplifier | Carrier amplifier | Pressure transducer | Flow transducer |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model | HP 7758 A | $\begin{aligned} & \text { SANBORN } \\ & 8081 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \text { SANBORN } \\ & 8085 \mathrm{~A} \end{aligned}$ | HP 267 B | HP 47304 A |
| $R_{\text {input }}$ | 50 K ohms | 500 K ohms | 10 K ohms |  |  |
| $R_{\text {output }}$ |  | 50 ohms | 10 ohms |  | . |
| CMRR |  | $>48 \mathrm{~dB}$ |  |  |  |
| Linearity range |  |  |  | -100 mmHg to <br> $+400 \mathrm{mmHg}$ | $\pm 2.25 \%$ of reading |
| Hysteresis |  |  |  | $\begin{aligned} & \text { <1.5\% Full } \\ & \text { Scale } \end{aligned}$ |  |
| Output voltage |  |  |  | $40 \mathrm{uV} / \mathrm{Volt}$ excitation/m |  |
| Excitation freq. range |  |  | 440 Hz to 4800 Hz (s dard value 2400 Hz ) |  |  |
| Excitation voltage |  |  | 4.5 V to 5 when driv with $10 V$ | r.m.s. m.s. |  |
| 3dB point |  |  | 200 Hz |  |  |
| gain stability |  |  |  |  | $\pm 0.05 \%$ of reading per ${ }^{\circ} \mathrm{C}$ |
| Output noise |  |  | - |  | 5mV r.m.s. Max. at $\pm 4.0 \mathrm{~V}$ outpu level |



FIGURE 5.3 : INSTRUMENTATION USED TO RECORD HEAD LIFT


FICURE 5.4: INSTRUMENT'S GENERAL REQUIREMENTS

The functicr of the mechanical system was to couple the sukject's reac nass to a force transulucer. Tc minimize cisturbance cf the subject, a cesign consisting of a fluici-filled bag and a pressure transaucer was cieveloped (Figure 5.5). As shown in Figure 5.6 , the fluid-filled bag can be slipped urder the head with minimal effort requirea fron the sutject and from the investigator. The weight of the read and adidicnal loac causes an increase in fluic pressure which changes the state of the pressure transducer. The resulting electrical signal was used as the input fcr the electrcnic circuitry.

A Eell and licwell resistive bridge pressure transducer (type 4-327-0109, No. 3263) was used in the constructicn of the protctype. Fron tests dcre or the pressure transducer, it was found that with 6 volts dc excitaticn of the bridge, the output voltage (mV) was linear with respect to the transducer pressure in the expectea range of cperaticn; $Y(m V)=1.200+0.038 \mathrm{~F}$ (min Hg). The circuit developed for processing the transducer bridge voltage is very sinfle. The essential components of the circuit are shown in the blcck ciagram of Figure 5.7. The "full scale" cutput voltage was chosen to be 5 volts. This consequently required a tctal amplificaticn of abcut 60 dB . The design of the circuit is shown in Figure 5.8.

The heac lift meter was found tc perform well. Gcce results were obtained when it was tested. The meter was consecuertly usea on a regulár basis, during the whole experiment.


FIGURE 5.5: CONSTRUCTION OF MECHANICAL SYSTEM OF PROTOTYPE


FIGURE 5.6: THE MECHANICAL SYSTEM


FIGURE 5.7: BLOCK DIAGRAM OF THE ELECTRICAL SYSTEM


FIGURE 5.8: CIRCUIT DESIGN
A) PREPARATION

1) Arrival of the subject
2) Signing of the consent form
3) Personal data ( age, sex, height, weight, etc. )
4) Measurement of the head weight
5) Measurement of the maximum weight lifted by the neck muscles
6) Five minutes rest
7) Placement of the electrodes
B) VC (x2) (VC = Vital Capacity)

IC (x2) (IC = Inspiratory Capacity)
C) LIFTING OF THE HEAD

Every manoeuvre will be maintained 5 seconds.

1) $W \max (x 2)$
2) $85 \%$ Wmax (x2) 3 cm of head height
3) $75 \% W \max (x 2) \quad X$
4) $65 \% W \max (x 2)$
5) $50 \% \mathrm{Wmax}(x 2)$

FRC
$\mathrm{FRC}+0.5 \mathrm{~L}$
$\lambda \quad \mathrm{FRC}+1 \quad \mathrm{~L}$
FRC +2 L
TLC
D) RESPIRATORY FUNCTION

I Relaxation manoeuvre (x2)
II Every manoeuvre will be maintained 5 seconds

1) MIPS ( $x 2$ )
2) $85 \%$ MIPS $(x 2) 3 \mathrm{~cm}$ of head height
3) $75 \%$ MIPS $(x 2) \quad X$

10 cm of head height
4) $65 \%$ MIPS ( $x 2$ )
5) $50 \%$ MIPS ( $x 2$ )

FRC
$\mathrm{FRC}+0.5 \mathrm{~L}$
$X \quad \mathrm{FRC}+1 \mathrm{~L}$
FRC +2 L
TLC

The expression FliC stands for Functional kesiaual Capacity anc is cefined as the volume of air remaining in the lungs after a passive expiration. when the subject performs a maximun: inspiration, i.e., until nc more air is able to enter in the lungs, then the volune of air in the lungs is callea Tctal Lung Capacity or TLC. when the subject pertorms a forced, active expiration until he is not able to push any more air out cf the lungs, the remaining lung volume is callea the Residual Volume or FV . The difference between TLC and FHC, i.e., TLC-FKC, is called Inspiratory Capacity or IC. The cifference between TLC and $R V$ is called Vital Capacity or $V C, T L C-P V=V C$. The expressicn wmax indicates the maximum weight lifted, and the expression MIPS indicates maximum Inspiratory fressure performed uncer static concitions, i.e., with blocked airways.

The protccol was ficllowed exactly as listed. The positichs of the head were 3 cm and 10 cm above the bed. The 3 cm is the thickness of the fluid-fillea bag on which the subject's head was resting during the experiment. The 10 cm was arbitrarily chosen to reauce the length of the SCM muscle. Ihis fosition was obtained by adiing many bcaros under the bag. Luring the experiment, the subject was lying down on a hard surface in order to proviae stability of the body, especially during the head lift manoeuvre.

In order tc avoid muscle fatigue, a resting period of twenty minutes was given to the subject between the 3 cm and the 10 cm manceuvres, for both head lift manceuvres, section $C$, and respiratory manoeuvres (RM), section D. During that period of time, the subjects were allowed either to sit or get up and walk.

Furthermore, a resting ferica, varying between 1.5 and 2 minutes was given tetween each ana every manceuvre.

Every manceuvre was performed twice and was performed the follcwing way. The subjects tock two or three big breaths, went to $F R C$ during 1 sec., tock a slcw insfiration up to the desired lung volume, and then ferfcrmed the ul manoeuvre with their glcttis closed, or the RM manoeuvre with the glottis open. After the manoeuvre was performed, a resting period of 1.5 to 2 min . was allowed and the subjects were breathing freely. After the rest, the same manoeuvre was performed a seccnd time, using the same method. Between each set of HL manoeuvre (eg. Wmax ( x 2 ) at $3 \mathrm{c}^{\circ} \mathrm{m}$ above the bed and at FEC, for heac lift (fart C.l in the protocol)), all subjects askea, and were allowed to move their head and rub their neck to remove the pain and the discomfort caused by the manoeuvre. Between each set of FH manoeuvres (eg. part D.l in the procol), the subjects were allowed to remove the mouth piece from their mouth and move their head. Luring those short resting periods, the subjects were nct allcwed to sit or get up. Eecause the experiment was long and demanding for the subjects, it had to be done in two sessions. Ire first session contained parts $A, B$, and $C$, while the second session containea the remaining. The whole experiment lasteo six hours; the first sessicn lasted four hours and the second, two hours. Luring the experiment, there was no visual teectack to the subject because of the type of experiment. Meanwhile, the investigator took a careful and particular attention in guiding the subjects for pertorming the subnaximal manoeuvres. Ihis
way, variability was reduced to the least that could possibly be obtained. One example of the output obtained on the chart recorder, for both $H L$ and $R M$ manoeuvres, at $E R$, is snown in Figure 5.9.
5.5 Data manipulation
5.5.1 Mean values

As mentioned before, every manoeuvre was performed twice. The mean and the standard deviation of the mean were found from the two recorded values for the same manoeuvre. The mean and the standard deviation of the mean of each manoeuvre are listed in Appendix $C$ as VALUE and $S D$. These tabulated values represent the mean values of Head Lift, Head Lift ENG, Pmusc, and Pmusc EMG.

The normalized values , listed in Appendix $C$, were calculated from these mean values. Furthermore, the modelling, using the Least Squares method, was done on the normalized mean values.

### 5.5.2 Normalization

The analysis of the results of this experiment required modelling and simplifying such that simple relationships could be found to be representative of the four normal subjects studied. Since the purpose of the study was to find a relationship between head lift and respiratory function, the SCir E.fis was used as the common factor in the analysis. The first step was to normalize the data. Table 5.3 summarizes the normalization process. Mass lifted was normalized with the head mass value of every subject. The corresponding Eic

## MOUTH PRESSURE VS STERNOCLEIDOMASTOID EMG

EMG Pmouth


WEIGHT LIFTED VS STERNOCLEIDOMASTOID EMG

of the mass lifted was normalized with the corresponding EAG of the head mass. Consequently, the scaling of the $y$ axis was in multiples of the head mass and the scaling of tne $x$ axis was in multiples of the head mass EilG.
for respiratory manoeuvres, muscle pressure had to be found. It is defined as:

$$
\text { Pmusc }=P \text { mouth }+P(\text { at a specific lung volume) (5.1) }
$$

The second term, $P$, was found by asking to the subject to execute a relaxation manoeuvre. The subject took a big inspiration up to TLC and when the airways were blocked, tne subject relaxed completely. A positive pressure was noted in the airways. Step by step, the investigator unblocked the airways and positive pressure at different lung volumes were recorded. From these values, the pressure-volume curve was drawn. The normalization of pmusc was done by using the maximum value pmusc(max) and the head mass $E M C$ was again used to normalized the Pmusc EMG values.

The above normalization process was pertormed separately at both head heights, 3 cm and $\operatorname{lUcm}$. As shown in $T$ able 5.3 , the data at a head neight of $30 m$ were normalized with the values of Head Mass, Head Mass EMG, and Pmusc(max) at 3 cm , and the data at 10 cm were normalized with the values of Head Mass, Head Mass EMG, and Pmusc(max) at 10 cm . The values in Table 5.3 represent the mean values calculated from the two values recorded for each of these manoeuvres.

### 5.5.3 Modelling

The second step of the analysis was to model the nor-

|  | 3 cm above the bed for head heloht |  |  |  | 10 cm above the bed for head helght |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IT | PM | AS | CN | LT | PM | AS | CW |
| Head Nass ( Kg ) | 4.6 | 5.3 | 4.6 | 4.6 | 4.6 | 5.3 | 4.6 | 4.6 |
| Hear Niass ENG (uV) | $\begin{array}{r} 600.0 \\ (1 \mathrm{~L}) \end{array}$ | $\begin{aligned} & 140.0 \\ & (\mathrm{FRC}) \end{aligned}$ | $\begin{gathered} 512.0 \\ (F R C) \end{gathered}$ | $\begin{gathered} 355.6 \\ (\mathrm{FRC}) \end{gathered}$ | $\begin{gathered} 640.0 \\ (\mathrm{BRC}) \end{gathered}$ | $271 \cdot{ }_{(: R C)}^{7}$ | $520.7$ | $+25 \cdot 2$ |
| Max. Fmusc. (cm H2C) | $\begin{array}{r} 88.025 \\ (1 \mathrm{~L}) \end{array}$ | $\begin{gathered} 125.6 \\ (1 \mathrm{~L}) \end{gathered}$ | $\begin{array}{r} 108.2 \\ (11) \end{array}$ | $\begin{array}{r} 89.1 \\ (1 \mathrm{~L}) \end{array}$ | $\begin{array}{r} 79 \cdot 7 \\ (2 \mathrm{~L}) \end{array}$ | $\begin{array}{r} 132.5 \\ (\mathrm{ERC}) \end{array}$ | $\begin{array}{r} 140.5 \\ (2 \mathrm{~L}) \end{array}$ | $\begin{aligned} & 90.8 \\ & (0.5 \mathrm{~L}) \end{aligned}$ |

TABLE 5.3: VALUES USED TO NORMALIZE THE SUBJECT'S DATA

The subscripts indicate the lune volume where the value has been taken
malized relationships. After stuaying the curves, it was found that the linear relationshif represented an appropriate approximaticn. Other relationships were tried: second orcier and third crder curvilinear, and exfonential relationships. The use of a more complex madel did not result in a substantial increase in the coefficient of determination, and thus to simplify the interpretation, we stayed with the linear model. The modelling process was performed by using the " Least Squares Frinciple ". Apperaix E-l cietails the method, and a listing of the program is provided.

Cnce the regressicn line equations were found, a statistical test was done on the slope and intercept of many lines tc see whether they were really coincident or parallel or had a common intercept. The technique used is an ANOVA technigue, and it has nothing to do with the one-way or two-way ANOVA techniques one already knows. It is a specific technique used only for straight line testing. It uses a F-test. The technique employs tests based on variance ratios to determine whether or not significant differences exist among the means of several groups of cbservations, where each group follows a normal distribution. This analysis of variance technique determines the effect of one independent variable (lung volume) on two dependent variables (slofe and intercept). Appendix $E-2$ details the method used to allow the pooling of the data, and also a listing of the program is provided.

CHAPTEF VI

## RESULTS

### 6.1 Fcrce levels

The subjects performed two different types of manoeuvre: head lift manceuvre (HL), and respiratcry manceuvre (INi) which consisted of dcing inspiratory pressures. These manceuvres were performed at different lung volumes and at two specific head positions. MRE, mass lifted with the head (HL), and muscle pressure (Pmusc) were tabulated. Pmusc was defined as being the transthoracic pressure difference when the subject performed a static inspiratory pressure manceuvre at a given lung volume abcve FRC.

The first step of the analysis was to see whether the manoeuvres were reproducible. Table 6.1 reveals that the second measurement (EMG-WT or EMG-Pmusc) is not significantly different than the first one, for the same manoeuvre. One may say that the measurements are reproducible. It also reveals, because of the low $F-v a l u e s$, that the mean of the two measurements can be taken to represent the manoeuvre. Figure 6.1. shows an example of the closeness of the curves for the

| SUBJECT | LUNG VOLUME | HL MANOEUVRE <br> SLOPE INTERCEPT |  | RN MANOEUVRE <br> SLOPE <br> INTERCEPT |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LT | $\begin{gathered} \mathrm{FRC} \\ \mathrm{PRC}+2 \mathrm{~L} \end{gathered}$ | $\begin{aligned} & .757 \\ & .213 \end{aligned}$ | $.507$ <br> .101 | .321 <br> .326 | $\begin{aligned} & .700 \\ & .017 \end{aligned}$ |
| PM | $\begin{gathered} \mathrm{FRC} \\ \mathrm{FRC}+2 \mathrm{~L} \end{gathered}$ |  | .012 <br> . 557 | $\begin{gathered} 1.284 \\ 19.455 * \end{gathered}$ | $\begin{gathered} 1.833 \\ 11.919 * \end{gathered}$ |
| AS | $\begin{gathered} \text { FRC } \\ F R C+2 L \end{gathered}$ | $\begin{aligned} & .269 \\ & .002 \end{aligned}$ | $.274$ <br> .016 | .424 .089 | $\begin{aligned} & .699 \\ & .177 \end{aligned}$ |
| CW | $\begin{gathered} \mathrm{FRC} \\ \mathrm{FRC}+2 L \end{gathered}$ | .155 <br> 5.648 | .046 <br> 4.118 |  | $\begin{aligned} & .095 \\ & .148 \end{aligned}$ |

* significant for $p<0.05$

TABLE 6.1: ${ }^{\text {r-Values Due to Lung Volume (FRC+2L) }}$
Affecting the Reproducibility of the
Linear Force-MRE Relationship of a

## Manoeuvre



[^0]Head Lift manoeuvre. The data are presented in Appendix $C$ (REPRODUCIBILITY). In addition, Table 6.1 reveals that breathing to a specific lung volume does not introduce more variability than the performance of the manoeuvre. The F-values are not significantly lower when the manoeuvres are performed at a lung volume of $F R C+2 L$ than at $F R C$.

A careful examination of Tables 6.2 and 6.3 reveals:

1) no specific pattern in the variation of HL(max), Pmusc (max), and MRE(max) with increasing lung volume, from FRC to TLC, for every subject and head height
2) a decrease in HL(max), and an increase in Pmusc(max) with increasing lung volume over the range of tidal lung volume (Vt) for both head heights. (Vt is defined as the amount of air inspired during normal breathịng, at rest.)
3) no specific pattern in the variation of $\mathcal{H L}(m a x)$, Pmusc (max), and MRE(Pmusc(max)), but an increase in MRE(HL (max)) occurs with increasing head height for every subject and lung volume
4) for every subject, head height, and lung volume, MRE( HL(max)) is greater than MRE(Pmusc(max)).

### 6.2 Force-LMC relationship

After keeping the data that were believed to represent the action of only the $S$ ternomastoid muscle, a linear relationship seems to exist between force (HL or Pmusc) and mean-rectificd-

| Subject | Lung Volume | 3 cm above the bed <br>  |  | 10 cm above the bed <br> ${ }_{\text {HL }}^{(\mathrm{Kg})}$ Man. Resp. Cman . |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LT | FRC | 15.600 | 60.000 | 7.400 | 65.000 |
|  | FRC+0.5L | 10.700 | 74.870 | 5.400 | 79.500 |
|  | FRC+1L | 8.800 | 88.025 | 5.650 | 71.275 |
|  | FRC+2L | 10.800 | 72.238 | 8.850 | 79.738 |
|  | TLC | 10.700 | 31.750 | 10.900 | 31.750 |
| PM | FRC | 13.900 | 71.750 | 12.900 | 132.500 |
|  | FRC+0.5L | 12.900 | 123.082 | 12.967 | 119.332 |
|  | FRC+1L | 14.200 | 125.564 | 12.600 | 120.064 |
|  | FRC+2L | 14.272 | 101.408 | 14.031 | 90.158 |
|  | TLC | 13.287 | 33.500 | 13.968 | 33.500 |
| AS | FRC | 21.400 | 86.250 | 23.600 | 123.750 |
|  | FRC+0.5L | 16.200 | 83.005 | 22.500 | 103.005 |
|  | FRC+1L | 15.100 | 108.213 | 20.040 | 123.213 |
|  | FRC+2L | 14.031 | 89.209 | 19.744 | 140.459 |
|  | TLC | 13.500 | 32.000 | 17.238 | 32.000 |
| CW | FRC | 9.600 | 65.625 | 9.000 | 86.250 |
|  | FRC+0.5L | 7.281 | 65.796 | 7.719 | 90.796 |
|  | FRC+1L | 7.400 | 89.091 | 7.900 | 81.591 |
|  | FRC+2L | 6.982 | 68.977 | 7.900 | 81.477 |
|  | TLC | 7.100 | 31.500 | 7.600 | 31.500 |

TABLE 6.2: $\mathrm{HL}(\max )$ and Pmusc(max) for the maximum voluntary contractions

| Subject | Lung Volume | $\begin{gathered} 3 \mathrm{~cm} \text { abo } \\ \text { HL Man. } \end{gathered}$ | the bed Resp. Man. | 10 cm a <br> HL Man. | the bed <br> Resp. Man. (uV) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LT | FRC | 865.454 | 462.220 | 782.220 | 586.670 |
|  | FRC+. 5 L | 676.368 | 448.000 | 800.000 | 584.000 |
|  | FRC+1L | 720.000 | 435.560 | 728.890 | 266.670 |
|  | FRC+2L | 702.220 | 382.230 | 844.450 | 524.000 |
|  | TLC | 728.890 | 148.890 | 862.220 | 144.450 |
| PM | FRC | 398.400 | 418.750 | 660.000 | 370.000 |
|  | FRC+. 5 L | 400.000 | 660.000 | 694.000 | 375.000 |
|  | FRC+1L | 440.000 | 510.000 | 675.000 | 240.000 |
|  | FRC+2L | 390.000 | 250.000 | 595.000 | 235.000 |
|  | TLC | 365.000 | 200.000 | 560.000 | 300.000 |
| AS | FRC | 880.000 | 592.000 | 1504.000 | 436.000 |
|  | FRC+. 5 L | 992.000 | 296.000 | 1440.000 | 308.000 |
|  | FRC+1L | 1344.000 | 428.000 | 1544.000 | 492.000 |
|  | FRC+2L | 1184.000 | 528.000 | 1496.000 | 496.000 |
|  | TLC | 1104.000 | 640.000 | 1616.000 | 440.000 |
| CW | FRC | 711.110 | 193.900 | 786.670 | 146.670 |
|  | FRC+. 5 L | 680.000 | 200.000 | 791.110 | 137.780 |
|  | FRC+1L | 751.110 | 244.440 | 960.000 | 150.330 |
|  | FRC+2L | 773.330 | 137.780 | 1066.700 | 111.110 |
|  | TLC | 791.110 | 37.778 | 1031.110 | 120.000 |

TABLE 6.3: MRE generated by a maximum

ENG (MRE) for a single subject, lung volume, anci heac tieight (Fig. 6.2c). Linearity cffered a satisfying mociel with a mean coefficient of determination $r^{2}>0.95$ for both manceuvres and bcth head heights. As menticned previcusly, the Least scuares method was used to finc the regressicr lines. As there was no strong fhysiclcgical tasis for assuming ctherwise, the regression was not designed tc force the fitted line through zerc. This implies that it is possitle to get a mecharical cutput (HL cr Pmusc) withcut any electrical input (MRE). This is true only if it is assumed that the cutput is due to the synergist muscles whose electrical input could not be recorded because they were too far away from the recorcing site. Secondly, this also implies that it is possible to record the electrical input signal without getting any mechanical cutput, assuming that the recorded signal comes from the muscles located in the vicinity of the reccrding site fut whose action is secondary to the manoeuvre performed. More details will be given in the next chapter.

Tatles 6.4 and 6.5 list the values of the regression line's coefficients $A$ and $E$. The equaticn adcpted was:

$$
\begin{equation*}
F=A+B \times M R E \tag{6.1}
\end{equation*}
$$

where $F$ is the mechanical cutput, Force, i.e., HL or Pmusc. The equation is applicable to a single subject, head height, and lung volume. As well, coefficients of determination which describe the gocdness of the fit of the relation to the data are listed.

Lxamiration of these tables reveals:

1) negative intercepts exist only for the head lift ma-


Figure 6.2: (a) raw data; (b) normalized data; (c) regression line; for subject PM, HL Manoeuvre.

| Subject | $\begin{array}{\|l} \text { Lung } \\ \text { Volume } \end{array}$ | 3 cm above the bed |  |  | 10 cm above the bed$A \quad B \quad r^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LT | FRC | . 691 | 1.421 | . 927 | . 562 | . 503 | . 925 |
|  | FRC+. 5 L | 1.144 | 1.051 | . 998 | . 092 | . 922 | . 973 |
|  | FRC+1L | -. 091 | 1.453 | . 959 | . 097 | 1.107 | . 955 |
|  | FRC+2L | -. 088 | 1.640 | . 986 | . 115 | 1.433 | . 983 |
|  | TLC | -. 412 | 2.345 | . 949 | -. 034 | 1.584 | . 822 |
| PM | FRC | . 054 | . 899 | . 998 | . 020 | . 985 | . 981 |
|  | FRC+. 5 L | . 006 | . 624 | . 988 | -. 032 | . 947 | . 996 |
|  | FRC+1L | -. 210 | . 857 | . 907 | -. 009 | . 940 | . 948 |
|  | $\mathrm{FRC}+2 \mathrm{~L}$ | -. 007 | . 803 | . 984. | . 131 | 1.006 | . 947 |
|  | TLC | -1.765 | 1.654 | . 882 | -. 905 | 1.833 | . 954 |
| AS | FRC | -. 011 | 1.671 | . 990 | -. 038 | 1.139 | . 973 |
|  | FRC+. 5 L | . 006 | 1.369 | . 999 | . 904 | . 901 | . 860 |
|  | PRC+1L | -. 080 | 1.250 | . 993 | . 108 | 1.135 | . 972 |
|  | FRC+2L | -. 048 | 1.078 | . 990 | -. 111 | 1.210 | . 927 |
|  | TLC | -. 202 | 1.224 | . 972 | -. 259 | 1.191 | . 971 |
| CW | FRC | . 025 | 1.008 | . 993 | . 018 | 1.126 | . 977 |
|  | PRC+. 5 L | . 326 | . 425 | . 990 | . 029 | 1.079 | . 985 |
|  | FRC+1L | . 321 | . 410 | . 990 | . 096 | 1.041 | . 972 |
|  | FRC+2L | -. 032 | . 708 | . 978 | . 039 | . 990 | . 994 |
|  | TLC | -. 094 | . 703 | . 927 | -. 050 | 1.055 | . 900 |

Force $=A+B \times$ MRE

$$
r^{2}=\text { coefficient of determination }
$$

TABLE 6.4: Linear Force-MRE Relationship: HL Manoeuvre

| Subject | $\begin{gathered} \text { Lung } \\ \text { Volume } \end{gathered}$ | 3 cm above the bed A B $r^{2}$ |  |  | 10 cm above the bed <br> A <br> B $\quad r^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LT | FRC FRC+. 5 L $F R C+1 L$ $\mathrm{FRC}+2 \mathrm{~L}$ TLC | .293 <br> .444 <br> .415 <br> .448 | .528 <br> .549 <br> .783 <br> . 588 | $.985$ <br> .948 <br> . 995 <br> .974 | $\begin{aligned} & .491 \\ & .576 \\ & .511 \\ & .502 \end{aligned}$ | $\begin{aligned} & .360 \\ & .472 \\ & .923 \\ & .618 \end{aligned}$ | $\begin{array}{r} .993 \\ .952 \\ 1.000 \\ .927 \end{array}$ |
| PM | $\begin{gathered} \text { FRC } \\ \text { FRC+. } 5 \mathrm{~L} \\ \text { FRC+1L } \\ \text { FRC+2L } \\ \text { TLC } \end{gathered}$ | .403 <br> .427 <br> .473 <br> .416 | $\begin{aligned} & .065 \\ & .119 \\ & .136 \\ & .150 \end{aligned}$ | $\begin{aligned} & .782 \\ & .977 \\ & .957 \\ & .973 \end{aligned}$ | .324 <br> .367 <br> .343 <br> .381 | .499 <br> .402 <br> .467 <br> .366 | . 982 <br> .967 <br> .862 <br> .945 |
| AS | $\begin{gathered} \mathrm{FRC} \\ \mathrm{FRC}+.5 \mathrm{~L} \\ \mathrm{FRC}+1 \mathrm{~L} \\ \mathrm{FRC}+2 \mathrm{~L} \\ \mathrm{TLC} \end{gathered}$ | .426 <br> .474 <br> . 511 <br> . 595 | $\begin{aligned} & .326 \\ & .514 \\ & .581 \\ & .232 \end{aligned}$ | $\begin{aligned} & .980 \\ & .978 \\ & .999 \\ & .952 \end{aligned}$ | . 507 <br> .351 <br> .450 <br> .446 | .453 <br> .663 <br> .458 <br> .583 | .949 <br> . 980 <br> .986 <br> .997 |
| CW | $\begin{gathered} \text { FRC } \\ \text { FRC }+.5 L \\ \mathrm{FRC}+1 \mathrm{~L} \\ \mathrm{FRC}+2 \mathrm{~L} \\ \mathrm{TLC} \\ \hline \end{gathered}$ | .442 <br> .452 <br> .480 <br> .435 | $\begin{aligned} & .557 \\ & .588 \\ & .764 \\ & .928 \end{aligned}$ | $\begin{aligned} & .926 \\ & .654 \\ & .952 \\ & .927 \end{aligned}$ | .367 <br> . 379 <br> . 379 <br> .456 | $\begin{aligned} & 1.902 \\ & 2.177 \\ & 1.623 \\ & 1.684 \end{aligned}$ | . 957 <br> . 994 <br> . 997 <br> . 844 |

$$
\begin{aligned}
\text { Force } & =A+B \times M R E \\
r^{2} & =\text { coefficient of determination }
\end{aligned}
$$

TABLE 6. 5: Linear Force-MRE Relationship: Resp. Funct. Manoeuvre
nceuvre
2) no specific fattern in the variaticn of slopes with increasing lung vclume fror. frc to filC, for every subject, head height, and type of manceuvre
3) a decrease in slope with increasing lung vclume in the range of tical volume, for the rl manceuvre, for every subject, and for every head height (except for subject LT at a head height of 10 cm )
4) an increase in slope with increasing lung volume in the range of tidal volume, for the respiratory manoeuvre, for every subject, and for every heá height (except for subject PM at the head height of lucm).

A onetail paired t-test was performed to see whether the change in slcpe with increasing lung volume over Vt, i.e., from $\operatorname{FRC}$ tc $\mathrm{FKC}+0.5 \mathrm{~L}$, for a specific marceuvre (HL Cr RM) anc a specific head height was significant (Table 6.6). Thc change in slope was not significant at a head height of locm for every subject while it was for a few subjects at a heac height cf 3 cm . Furthermore, the change in slope was observed in head lift manoeuvre ( HL ) at a head height cf 3 cri .

### 6.3 Reorganizaticn of the data

Pooling the data helps te define a more general fcrce-mRE relaticnshif. Table 6.7 shows the results of the F-test performed on slope and intercept of the regressicn line at ditferent lung vclunes. The results showed that the slofe and

| Manoeuvre | Head He1ght <br> $(\mathrm{cm})$ | Subject |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LT | FM | AS | CW |  |
| HL | 3 | 1.311 | $5.044 *$ | 2.444 | $9.601^{*}$ |
|  | 10 | 2.581 | .511 | .749 | .343 |
|  | 3 | .154 | 2.070 | $3.110 *$ | .091 |
|  | 10 | 1.381 | 1.667 | 2.109 | .890 |

* significant for $p<0.05$

TABLE 6.6: $t$-Values Due to Variation in Lung
Volume from FRC to FRC +0.5 L

| Manoeuvre | Head Helght |  | Subject |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LT | PM | AS | CW |
| HL | 3 cm | Slope | . 822 | . 810 | 1.253 | 1.274 |
|  |  | Interc. | 2.433 | . 761 | . 121 | . 396 |
|  | 10 cm | Slope | . 604 | 1.309 | . 062 | . 070 |
|  |  | Interc. | . 292 | . 754 | . 285 | . 091 |
| RM | 3 cm | slope | . 578 | . 657 | 5.602* | . 114 |
|  |  | Interc. | . 858 | . 230 | 5.979* | . 019 |
|  | 10 cm | Slope | . 633 | . 311 | . 675 | . 187 |
|  |  | Interc. | . 202 | . 126 | 1.790 | . 099 |

* significant for $p<0.05$

TABLE 6.7: $\frac{\text { F-Values Due to Lung Volumes Affecting }}{\text { the Linear force-MRE Relationship }}$
and intercept of these lines were nct significantly difierent thar the slope and the intercept of the regressicr lire calculated from the poclec data. bearwhile, the subject $A S$ showec significant variations of toth slofe andi intercept at 3cn of head height for the respiratory manceuvre. A more intensive study showed that the significance was due to the regressicr line at a lung vclume of FRC +2L. Thus, the first source of variation that could affect the Force-MRE relationship, the change in lung volume, did not affect much the force-mRE relationship. The data from the different lung volumes cculd be pcoled and could be represented by a single force-HFE relationship. This relationship was applicable to a single sutject, head height, and type of manceuvre (HL or $R H_{\text {. }}$ ).

The second source of variation that could affect the forceMRE relationship, the variation between subjects, was tested. Table 6.8 summarizes the results of the $F$-test performed on slope and intercept of the regression line cf each subject compared to the one from the pooled subjects, for each lung volune. Ey examining the Table, one notices in the respiratory manoeuvre more variation between subjects than in the head lift manoeuvre. Furthermore, the slopes showed a significant difference between them while intercepts did nct (except for HL at 3 cm and at a lung vol. cf $\mathrm{FKC}+0.5 \mathrm{~L}$ ). Finally, the variation between subjects had a greater effect or the Force-MRE relationstip than the variation between lung vclures. TO get a more gereral force-NRE relaticnshif for normals, the data from all the subjects were pocled. A new fcrce-i:ry relaticrship was defined for a sfecific lung vclune, heaü

| Manoeuvre | Head |  |  |  | ang Vol |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FRC | FRC+ 515 | PRC+1L | FRC+2L | TLC |
| HL | 3 cm | slope | 3.515 | 22.195* | 1.619 | 3.757* | 1.844 |
|  |  | Interc. | 2.021 | 21.698* | . 169 | .023 | . 775 |
|  | 10 cm | Slope | . 497 | . 033 | . 201 | . 243 | . 586 |
|  |  | Interc. | . 741 | 1.078 | . 029 | . 058 | . 371 |
| RM | 3 cm | Slope | 5.766* | 1.626 | 9.499* | 4. 583 * | - |
|  |  | Interc. | . 918 | . 021 | . 262 | 2.526 | - |
|  | 10 cm | Slope | 4.509* | 7.218* | 7.492* | . 598 | - |
|  |  | Interc. | 1.601 | 3.854 | 1.347 | . 155 | - |

* significant for $p<0.05$

TABLE 6.8: F-Values Due to the Subject's Variation
Affecting the Inear Force-MRE Relationship
height, anc type of manceuvre (9able 6.9). Ey pocling the subjects, more variability was introcucea in the data; the values of the coffficient of determinaticn were smaller than the cres listec in Tables 6.4 anc 6.5. Furthermore, the regression line fittec better the ciata at a head height of 10 cm than at 3 cm. In acdition, the slofe showed a constant increase with increasing lung volume for $E M$, while nc specific fattern occurred for HL.

The underlined values in table 6.9 indicate the varriability between the subjects for the IC manceuvre. These values indicate the amcunt of MRE taker tc perform a maximum inspiration. The mechanical cutput of this manceuvre was the transthcracic fressure generated by the inspiraticn. The variability increases with increasing head height. Figure 6.3a and $b$ show the variability of the data with respect to the regressicn line at every lung volune.

An even more generalized Force-wne relationship can be found by pccling the lung volumes in order to get a unique relationship for a single head height anc type of manceuvre. Figure $6.4 a$ and $b$ show the resultant lines. As seen in $F i-$ gure 6.4, the scattering between the data points is now very large. It is larger for the respiratory functior manoeuvre than for the head lift manceuvre, and it is larger at a head height of 3 cm than at 10 cm . This scattering is also seen ir Table 6.10 by paying attention to the low values of the coefficient of determination.

The additional variability introcuced by the resultant line from the pocled subjects' data recuced the effect due to

| Manoeuvre | $\begin{aligned} & \text { Lung } \\ & \text { Volume } \end{aligned}$ | 3 cm above the bed A B $\quad r^{2}$ |  |  | 10 cm above the bed$A \quad B \quad r^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HL | FRC | . 420 | . 920 | . 704 | . 142 | . 967 | . 944 |
|  | FRC+. 5L | . 853 | . 490 | . 276 | . 082 | 1.066 | . 861 |
|  | FRC+1L | . 101 | . 868 | . 761 | . 110 | 1.003 | . 229 |
|  | FRC+2L | . 137 | . 813 | . 814 | . 115 | 1.084 | - 910 |
|  | TLC | . 178 | . 792 | . 471 | -. 017 | 1.173 | . 872 |
| RM | FRC | . 511 | . 047 | . 099 | . 500 | . 362 | . 600 |
|  | FRC+. 5 L | . 553 | . 091 | . 459 | . 494 | . 394 | . 466 |
|  | FRC+1L | . 631 | . 108 | . 291 | . 482 | . 513 | . 455 |
|  | FRC+2L | . 568 | . 110 | . 137 | . 495 | . 453 | . 542 |
|  | TLC | . 369 | $\underline{-.066}$ | . 954 | . 407 | $\underline{-.165}$ | . 817 |

$$
\begin{aligned}
\text { Force } & =A+B \times M R E \\
r^{2} & =\text { coefficient of determination }
\end{aligned}
$$

TABLE 6.9: Linear Force-MRE Relationship: Pooled Subjects

| Manoeuvre | 3 cm above the bed |  |  | 10 cm above the bed |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | $\mathrm{r}^{2}$ | A | B | $\mathrm{r}^{2}$ |
| HL | .352 | .789 | .503 | .089 | 1.058 | .818 |
| RM | .567 | .088 | .230 | .493 | .408 | .504 |

Force $=A+B \times M R E$

$$
r^{2}=\text { coefficient of determination }
$$

TABLE 6.10: Linear Force-MRE Relationship:

## Pooled Subjects \& Pooled Lung



(b)

Figure 6.3: (a) HL Manoeuvre; (b) Resp. Manoeuvre; for all the Subjects pooled together at different Lung Volume.

(a)

(b)

Figure 6.4: (a) HL Manoeuvre; (b) Resp. Manoeuvre; for the Pooled Subjects and the Pooled Lung Volumes.
the change in lung vclune. As seen in Table 6.11, this change is not statistically significant any more. This inflifs that the lung volume lines can be refreserted by a resultant Iine whose coefficients are calculated trom the pooled sutjects' ard pooled lung volumes' data (Figure 6.4).

Eecause of the normalization, the lines at 3 cm carnct be compared to the lines at 10 cm of head height. Mearwhile, from the raw data, the amount of Mre taken to lift ore head rass at a head height of 3 cm can be compared to the amount of $\operatorname{ARE}$ taken tc lift the same mass at a head height of 10 cm . similarly, the amcunt of MEE taken to perform an inspiratcry capacity (IC) at 3 cm can be compared to the arount of MRE taker to perform an IC at 10 cm . Table 6.12 shows the ratic of MRE at $10 c m$ over the MRE at $3 c m$. For the HL manceuvre the ratic is greater than one for every subject, while tor the fr manoeuvre, cnly one subject (AS) has a ratic much lower than one. Since the subjects were Fcoled, the mean ratio was found to be higher than one for both manceuvres (arcund 1.5). Cre concludes that more electrical infut is needed to drive the $\operatorname{CCM}$ muscle tc perform a specific mechanical task at a heac height of 10 cm than at 3 cm .

Using the electrical infut (MRE) as the commen factor, a linear relationship can be defined between the two mectanical outputs, head mass lifted (HL) and muscle pressure (Fnusc), for every head height. The results are shown in figure $6.5 a$ and the equations are presented in Table 6.13. Since the intercepts are close to each other, the mean value is usea as the final interceft (Figure 6.5b). The final equaticns are:

| Manoeuvre |  | Head Height above <br> the bed cm$)$ |  |
| :---: | :--- | :---: | :---: |
| HL | Slope | .222 | .177 |
|  | Interc. | .375 | .053 |
|  | Slope | .113 | .065 |
|  | Interc. | .313 | .004 |

TABLE 6.11: F-Values Due to Lung Volumes Affecting the Linear Force-MRE Relationship: Pooled Subjects

| Manoeuvre | Subject |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | :--- |
|  | LT | FM | AS | CW | Value |
| HL | 1.067 | 1.941 | 1.016 | 1.758 | 1.446 |
| RM | .970 | 1.500 | .689 | 3.166 | 1.584 |

TABLE 6.12: MRE Ratios Between 10 cm and 3 cm Head Height

| Head <br> Helght | $A$ | $B$ |
| :---: | :---: | :---: |
| 3 cm | .528 | .112 |
| 10 cm | .459 | .386 |

$$
\text { Pmusc. }=A+B \times H L
$$

TABLE 6.13: Linear Force-Force Relationsh1p

Fcr 3 cm Prusc $=0.494+C .112 \times \mathrm{HL}$
Fcr locm Emusc $=0.494+C .386 \times \mathrm{HL}$
From the final graph (Fig. 6.5t), cne can conclude that:

1) atcut $50 \%$ of the maximum inspiratcry muscle pressure, performed under static conditions, (MIMPS), can be generated by a normal sutject without using the SCM muscle
2) at a head height of 3 cm abcve the bed, the amcunt of recruitment of the SCM muscle used tc perform a MIMPS manocuvre is the same as the amount used tc lift a mass of $4.5 \times$ Head Mass, while at 10 cm , the SCM recruitment to do a MIMPS manceuvre is the same as lifting a mass of $1.3 \times$ Heac Mass.


Figure 6.5: Relationship between the two mechanical output,i.e., Pmusc and Mass Lifted. (a) resultant lines; (b) resultant lines with a common intercept

# CHAPTER VII 

## DISCUSSION

### 7.1 Introduction

The preceding chapter showed how the analysis was done to identify the main results. These results express the dual function of the SCM muscle. Finally, a relationship between tne two mechanical outputs was determined for every head height.

In this chapter one will briefly sumarize the meaningful results obtained from the experiment, one will comment on the experiment itself in order to know its weaknesses, one will discuss and argue the results, summarize the dual function of the SCM muscle from the discusssion, and finally, one will introduce the future actions to take to continue the study of the SCM muscle.
7.2 Summary of the results

The purpose of this section is to make sure that the results described in Chapter VI are clear to the reader. For
this reasor, a point form summary will be used.
The meaningful results cerived frcn: the experinert are:

1) The MRE recorded from a maximum $E L$ manceuvre is greater than the NRE recorded from a maximun Pmusc mariceuvre for every subject, every lung volume, and every head height above the bed (except for subject FM at 3 cni and lung vol. FRC, FRC+0.5L, and FRC+1L).
2) The linear force-MFE relaticnstip refresents a satisfactory model for a single subject, heac height, lung volume, and type of manceuvre. The averaged ccefficient of cetermination is 0.956 for $H L$, and 0.963 for FM .

3a) The slofe cf every regression line is fositive
b) For the HL manceuvre, $50 \%$ of the intercepts are negative, while for the KM manoeuvre, all the intercepts are positive.
4) For the $H L$ manoeuvre, a decrease in slope with increasing lung volume over the range of tidal volume was noticed, while the reverse occurred for the RM manceuvre.

5a) Once the subjects are fcoled, the variation in lung volume has no significant effect on the Force-mRE relationship, while the head position seems to have a larger one although it could not be formally tested because of the ncrmalizaticn process used.
b) For the RM manoeuvre, the slope increases with increasing lung volume, while for the $H L$ manoeuvre, no specific pattern occurs.
6a) $50 \%$ of the maximum inspiratory muscle fressure (MIMPS) can be generated without usirg the SCM muscle.
b) At a nead heignt of 3 cm above the bed, the amount $\mathrm{f} E$ LuG recorded when a MIAPS manoeuvre is performed is the same as the amount of EAG recorded when a mass of $4.5 \times$ Head Mass is lifted with the head, wnile at lucn, the amount of EAG recorded when a MIMPG manoeuvre 15 performed is the same as the amount of ell recorded when a mass of $1.3 x$ Head Mass is litted witn the head.

### 7.3 Sources of variability

rne striking point about the results of the prececing cnapter is the great variability in the data. fhis variability is seen by the very low f-values in every test performed and also by the large standard deviation of EilG recorded. Ine causes of this variability can be divided into two sections: (ia) duriny the manoeuvres, and (b) between the manoeuvres. During the isometric manoeuvres, a possible cause of variability is tne change of the contraction velocity of the internal structures of the muscle. Especially during strong contractions, the stretcning of the series elastic components (itendons and their retinacula) allows substantial internal shortening of the contractile elements (Bigland 1954). This phenomenon may apply for both manoeuvres.' In the present experinent, the contraction period was 5 sec.. It is believed that the stretoning of these elements occurs at the very beginning of the contraction such that no more stretching occurs during that contra=tion. Furthernore, since fatigue was thought to be avoided,
it is possible tnat the muscle might not work mucn narder at the end of the contraction than at the beginning such that no significant stretcning occurs. The contraction velocity, as a possible source ro variability, may not be very important during a short isometric contraction, but deserves to be mention. In addition to this phenomenon, the inspiratory pressures performed under static conditions may not be isometric manoeuvres. The respiratory muscles changed the ir length because of the deformation of the chest wall during these breathing efforts (Agostoni 1966). This implies that tne change in the contraction velocity, may, be a much more important $=$ ause of variability during the respiratory manoeuvres (RM) than during the head lift manoeuvres (iL). In the following section one will see winy the respiratory manoeuvres may give rise to eccentric contractions of the SCM muscles.

A second important cause of variability is the use of tne abdominal muscles during at manoeuvres. The Sat Eils proiuction changes with the degree of utilization of the abdominal auscles. The use of the abdominal muscles, asnecially, tha rectus abdominis muscles, changes the Sこ1 muscle length. During the head lift manoeuvre, the contraction of the 3 IM muscle has the tendency to deform the chest wall by moving the sternum toward the chin altough the lung volume is maintained constant during the manoeuvre. rhis results in a shortening of the muscle. By contracting the rectus abdominis muscles, an opposite force is created on the sternum. This new force has the tendency to move the sternum toward tne umbilicus causing a lengthening of the sci muscle. The resultant force
applied on the sternum, during the hl manceuvre, is the sum of the two abcve cpposite forces. This resultant force aeterriines the sternum position and consequertly, trie leng th of the SCM muscle. The ciegree of utilization of the abocrinal muscles, especially the rectus abdominis, changes the position of the SCli muscle on its force-length curve and consequently, changes the EMC proauction. Although careful attention was taken tc avcid the use of these extra muscles, the natural terdency of the subject was to use ther, especially for manceuvres close to maximum. Although the effect of the atcioninal muscles on HL manoeuvre was not systematically measured ir this pilot study, it cannot be neglected. Cne way cf stuayirg the contritution of the abcicminal muscles during the hl manoeuvre would be to record their EMG froduction and relate it to the mass lifted with the head to see whether the change in EMG is proporticnal to the change in mass lifted with the head. Another cause of variatility is the way poeple breatre, i.e., the use of their rib cage vs the use cf their abcionicn. Every subject had his cwn way cf breathing. A few used rore their rit cage, and the cthers used more their abcomer. Chost breathers use more their SCM muscles than abacmen-diaphragr breathers (Eanon 1971). This asfect was important to consider during the respiratory manceuvres performed during the experiment. This phenomenon increases the variability between the subjects. furthermere, it is likely that this scurce of variability (use of rib cage and/or abdomen) was greater in a given subject during subnaximal manceuvres than curing maximal manceuvre. We mace no effort tc remcve this variatle. The
subjects were not asked to treathe with any specific pattern. Cne apprcach tc this problem might have been tc define a specific chest breathing pattern and to teach it tc every cne ct our subjects. In addition, a specific way of approaching thc defined lung volumes might have been taught to the subjects. Cne of the objectives of this experiment was to compare normals with weak ICU patients, and for that reascn subjects were allowed tc breathe•with their normal pattern. It is clear that it is very difficult for a weak ICU patient tc perform respiratory manoeuvres using an imposed pattern. Figure 6.3 shows clearly that the scattering of the points is larger for the respiratory manoeuvre than for the head lift manoeuvre. It seems that the way of breathing was a more impcrtant variable for RM than the use of the abdcminal muscles for hL, for both head heights.

Table 6.1 showed that breathing up to a specitic lung volume, during a manoeuvre, dces not introciuce more variability than doing the manoeuvre. Because the F-values are very small at FiC (Table 6.1), the anount cf variability introduced by the way the manoeuvre is performed, is probably large. The comparable F-values at FRC +2 L (Iatle 6.l) incicate that the variability introduced by breathing to a specific lung volume, before performing a manoeuvre, is not larger than the one introduced by the manoeuvre itself, but may still te large. Consequently, tatle 6.3 reveals that the increase in scattering of the points for the RM manoeuvres might probably be que tc the way the subjects were performing the inspiratory pressures. Since the inspiratory pressures were done by breathing with
closec airways, the teaching of a breathing pattern is valid to approach a detined lung volume, and tc perform an inspiratory pressure during FM manoeuvres.

Eetween the manoeuvres the main cause of variability was the change in the geometry of the muscle fibres relative to the recording site due to the movenents of the subject's head. As described in Chapter $V$, the subjects expressed the stong wish to nove their head between the nanceuvres for both $R M$ and HL manoeuvres. This change of read position changed the orientation of the muscle fibres relative to the reccraing electrodes. As explained in Chapter $V$, the recorded EMG changes with the gecmetrical arrangement of the muscle fibres relative to the recording electrodes. Although care was taken to put the subject's head back in the same position, after the resting periods, it was impossible to get back the same elec-trode-muscle fibres orientation. Furthermore, because the experiment was lengthy, it had to be done in two sessions. The electrodes were not at the same place on the neck auring the second session relative to the first session. Cnce the electrodes were removed, it was very difficult to put them back where they were before even it tremendous care was taken.

Another important source of variability is the acticn ci the agcnist and the antagonist muscles during the nianceuvre. The variability intrcduced by their action, introduced a variability in the action of the SCM muscle. The contrituticn of these muscles during the manceuvres was nct studied. It is difficult tc determine their effects on the SCM muscle func-
ticn. One way to apprcach this problem is to record the EMG of the main agonist and antagenist muscles activated during a specific manceuvre. Statistical analyses might tell us whether their acticn is significant. For the moment, cne krows that these muscles play an important role in the performarce of a manceuvre and that the variability they introcuce might possibly $k \in$ important.

Finally, the last but much less impcrtant variable to consider was "Fatigue". It was reportea in the literature that to avoid fatigue, the contraction pericd should be less thar ten seconds and the rest period between every contracticn, at least two minutes (Cncckaert 1975, Kcmi 1976). The contraction pericd and the rest pericd used in the experiment were 5 sec . anc 1.5 to 2 min.. It was thought that fatigue was avcided, but still it remains a possible variable. The effect of fatigue on EMG is to increase the EMG production for a constant force, mainly cue to an increase in synchronization (Missiurc 1962, Biglanci-Ritchie 1979, Ralston 1961).

### 7.4 Discussicn of the results

### 7.4.1 The sternccleidomastcid dual function

As explained in Chapter III, the SCM muscle has a dual functicn. It is used as a skeletal muscle to lift the head in subjects in the supine position, and it is used as an accessory respiratory muscle. The first finding of the experiment was that the EMG recorded during the maximum $H L$ manceu-
vre was greater than the EMG reccrded during the maxinum FN marcelvre. It indicates that during the maximum $H$ menoeuvre, the SCM is used tc a greater extert than during the maxinum RM nancelure. Ihis interpretation supports the hypothesis that the SCM is the primary muscle used during $H L$, and the cther neck muscles are minor muscles which cnly help the SCM to perform the movement. As a respiratory muscle, the SCM is a minor muscle. Mcst of the lád is taken by the cther respiratory muscles: Diaphragni, external interccetal nuscles, and scalene muscles. Ercm Tatle 6.3, the mean ratic EMG(HL(max)) over EMG(Pmusc(max)) was calculated for every head height: (a) fcr 3 cm , the EMG ratic was 3.31 , and ( E ) fer 10 cm , the EMG ratic was 3.88. These resulte shcw that for koth head heights the SCM is at least 3 times less used tc ferform a maximun inspiratcry pressure than to perform maximum head lift. This confirms that the $S C M$ muscle is not used to its full capacity to perfcrm an inspiratcry fressure manceuvre. In patients with a high cervical lesicn, the $S C M$ muscle beccmes the main inspiratory muscle. An increase in EMG at a constant inspiratory pressure was noted when conpared to normal sutjects, and a typertroFhy of the muscle was noted (Eanon 1979). It sefms that in these fatients the SCM muscle is used tc its full capacity, or close to it.

### 7.4.2 ECrce-EMG relaticnship

Consicerirg all the highly complex physiological events that Occur within the muscle structure during a contracticn, and considering the visccelastic froperties of the muscle tissue,
a furely linear force-EMG relaticnshif is unlikely coer the entire force range. However, for fractical furfcees, a linear n:cdel provides a satisfactcry fit to the data ckserved durirg isonetric cortracticns, frovicing that the head positicr and the electrcde flacement remain constarit.

Theoretical studies (Mccre 19€7) have suggested that the EMG anflitude should increase as the sclare roct of the number of active motcr units and hence the tension, since the number of activated fibres is directly related to the force (Moore 1967). HCwever, the thecretical model seems tc be dependent on the assumption of asynchronous activity of motcr units. Zuniga (1969) showed that when synchronizaticn occurs during an isometric contracticn, linearity may $k \in$ reached. Hoore (1967) showed that synchronization increases the rms value of the ENG. Such a shift would make the muscle's rms value rise more nearly linearly with force, when ctherwise it would rise less fast.

The Force-EMG relaticnship is primarily determined by the muscle under investigation. Each muscle has uniçue physiological properties and anatcmical structure such as the relative amount of red ard white fitres in the muscle (woods 1978). Woods, working on the kiceps, triceps, and adductor fcllicis muscles, repcrted that the linearity in the red muscle forceEMG relaticnshifs may reflect the relative uriformity cf the fitre compcsition ( $808-50 \%$ red fitres in the muscle) cr, alternatively, a uniform distribution. Meanwhile, the ncri-linear relaticnshifs, ctserved in the two brachial muscles of rọughly equal fitre representaticns, may reflect more a dif-
fererticl distributicr of the two fitre types. Specificilly, if the higher-threshold pale fitres are ncre superficially located, then they wculd contritute rore tc the surface EMG as exerted face increases.

The fcrce-EMG relaticnship depends also or the experimental conditicns; and in particular whether the ruscle is fatigued. Fatigue can give rise to ary type cf relaticnstip frem linear tc highly nen-linear (kuroda 1970). Furthermore, fatigue is likely to exert an increasing effect as it Eeccrics more severe.

Adaciticnal variakles that micy te impcrtart ir the shafe cf the Fcrce- EMG relaticnshif incluce:

1) electrode arrargemerit (farāllel cr ferfencicular tc the nuscle fitres)
2) the type of mevenent executed during the experimer.t (continucus vs interrupted serial movements)
3) the physical conditioning level of the subject. These variables can produce any type cf change to the stafe cf the Force-EMG relaticnship.

In addition, the degree of contrikution of other muscle groups and the varying amounts of cocontraction ancrig aritagonist muscle groups may alter the fcree contributicn of the muscle under investigation tc the measured net force (Lawrence 1983). The negative intercepts found in the head lift manoeuvre may be due tc the activation cf the platisma duscle whose action would be tc stabilize the infericr jaw just before and during the head lift manceuvre. It alsc can be due to the activation of the sternohycid muscle whose action would be to
statilize the hyoid tcne just befere arc durirg tle keacl iift manceuvre. These two muscles are very close to the sCm muscle and to the recorcing site. There is a strcrg probability that their EMG signals were captured ky the reccríing electrcics. The acticn cf these muscles, however, does not secm to ke very impcrtant $\mathrm{t} \in \mathrm{Ca} u \boldsymbol{u} \in$, according to Iatle 6.4, the negative intercepts are chose tc zerc. The fcsitive intercefts are due tc synergist muscles whese EMG signals cculd nct te recorded because the muscles were too far away from the reccraing site. For the head lift manceuvre, the synergist muscles are: the medial and posterior scalenes, the longus colli, anc the lergus capitis. These muscles are located very deeply in the neck and no EtiG could te recorded from the reccraing site. Fcr the respiratory manceuvre, the synergist muscles are: the diaphragm, the external intercostal muscles, anci the scalere muscles. The first two sets of muscles are not located in the reck ard they are the most importart muscles of the manceuvre. They are respcnsible for the first fart of the curve where there is a large increase of Pmusc with a very small increase ir MRE (Figure 7.1). Acccraing tc Lynn (1978), who worked cut a mathematical model showing the effect of the muscle-electrodes gecnetry (bipolar surface elcctrodes) using the dipole theory, wher a muscle lies close tc the skin surface, most of the erergy in the surface EMG is derived from fitres lying within cne lergth unit of the electrodes, i.e., the distance beween the two recording electrodes. The decrease in signal energy with fitre distance is so rapid that any active fitres within abcut 0.4 length unit of the electrodes will tend tc do-

3 cm


10 cm


Figure 7.1: Respiratory Nanoeuvre

| Lung Volume | Symbol |
| :---: | :---: |
| $r^{\prime} \mathrm{RC}$ |  |
| FRC+. 5L | ...... |
| $\mathrm{r}^{\mathrm{R}} \mathrm{RC}+1 \mathrm{~L}$ | - - - |
| $r^{\prime} \mathrm{RC}+2 \mathrm{~L}$ | - - - |
| TLC |  |

minate the record, and any attempt to record from fibres more than about 1.5 length units below the skin surface will probably be foiled by an inadequate signal/noise ratio. It also seems that recording from a muscie lying below another one which is even slightly active will present great difficulties. According to this theory, the greatest effect would be due to the platisma muscle because it is located between the electrodes and the SCM muscle. The sternohyoid muscle, being further away, would have much less effect on the recorded E.AG.

The other component of the Force-Eng relationship, the slope, was found to be positive in every subject, lung volume, head height above the bed, and type of manoeuvre. For an increase of force, a proportional increase in EMG was recorded. Many investigators tried to explain this phenomenon. MilnerBrown (1973), working on the first dorsal interosseous muscle, reported that among the two ways of increasing the force level of contraction, the recruitment of more muscle fibres and the increase in firing frequency, recruitment was the major mecnanism at low levels of force (Milner-Brown 1973a), while the firing rate was the major mechanism at intermediate and hign levels of force (Milner-Brown 1973b). Meanwhile, over the whole physiological force range, the firing rate is the major mechanism of increasing force output for more than two third of the force range. As explained in Chapter IV, the size principle is very important in recruiting more muscle fibres. Hore recent studies (Lawrence 1983) showed that large motoneurons increase their firing rate more rapidly with increasing stimulation and attain higher firing rate. At high force levels,
in absence of recruitment, the growth of the motor unit firing frequency and consequently the IENG might increase more rapidly than would be expected, thus providiny a strong possibility of straightening out of the quadratic relationship suggested on theoretical bases for the asyncnronous model. Moreover, as mentioned before, synchronization contribute to linearity in the relationship (Moore 1967). The degree or recruitment and discharge frequency used by a muscle during an isometric contraction is highly dependent on the muscle uncier investigation. A review of the literature leads us to assume that the Force-EMG relationsnip may be linear even at high force levels.

### 7.4.3 Importance of the Force-Length curve

The change in length of a muscle modifies its geometry relative to the recording site, and consequently, changes the EMG recorded (Chapter $V$ ). when a muscle shortens, more EMG is recorded for the same generated force (Manns 1977, Bigland 1954, Close 1960, Druz 1979); the muscle fibres shor ten and an apparent increase in the conduction velocity is noted by the electrodes. This phenomenon increases the amplitude of mean-rectified-EMG (MRE). The MRE ratios given in 'able 6.12 agree with the literature. The change in head height from 3 cm to 10 cm decreases the SCu muscle length. More EitG was recorded at 10 cm than at 3 cm for the same mechanical output force, for both types of manoeuvre, $H L$ or RM. Therefore, tae muscle lenyth when the head height is 3cin seems to be closer to the optimal length because the neuromuscular efficiency ratio (Force/EMG) is larger than it is at 10 cm .

Ey modelling tre reck system and by looking at the dictributicr of the forces involved during a manceuvre, onc fourd that the values ir Table 6.12 might represent an underestimaticn of the reality. Ey assuming that the neck tehaves like a hinge with the axis of rotation located in the middle of the neck (Appendix D), the force generated ky the SCM muscle decreases as the head height increases, for the same mass lifted or the same Pmusc generated. This model supports the hypcthesis saying that the muscle shortens as the head height increases.

The change in lurg volume, from FRC to tLC, may nct affect much the farce generated by the miscle since the cephalad displacement of the sternum nay te very small, which gives rise to a very small ircrease of the angle $\alpha$ (Figure l, Appendix D).

It has been meriticned befcre that the change in lung volume cuer the range of inspiratory capacity (IC) does not give rise to ary particular pattern of change in the slope of the regression lines. The reasons for this are probably the ron specific way the subjects were treathing to the sfecified lung volunes the use of the abdorinal muscles during fil, and the non sfecific way to ferfcrm inspiratcry pressures. At the same time, we ncticed that for the HL manceuves, the slcpe of the regression lines was decreasing with increasing lung volume over the rarge of tidal vclume (Vt). This indicates that fcr a constant nase litted, more EIMG was recorded at a lurg vclume cf fRC+0.5L then at FRC. The reascn is that the SCM muscle shor tens when the lung vclume increases by 0.5L. Table 7.1 shcws the slcpe ratic (FRC/FPC+C.5L) for both types cf manocuvre. The slope


| Subject | 3 cm above the bed <br> HL Man. Res. Man | 10 cm above the bed <br> HL Nan. | Res. Nan |
| :---: | :---: | :---: | :---: | :---: |$|$| LT | 1.352 | 0.962 | 0.546 |
| :---: | :---: | :---: | :---: |

TABLE 7.1: Slope ratio for a change in lung volume from FRC to FRC +0.5 L .
for the $H L$ manoeuvre. In general, the values are below 1.5 (except for $\operatorname{Civ}$ at 3 cm ). This indicates that tne change in muscle length is not-considerable. However, the slope ratios at 3 cm are larger than at 10 cm . This means that at 10 cm , the subject's rib cage kept a more uniform configuration during the breatning of the $0.5 L$; the change in muscle length is much less because the ratios are closer to one (except for subject LT). At 3 cm , the subjects used more their rib cage to breathe the $0.5 L$ than at 10 cm . One can conclude that rib cage breathing changes the SCin length. One would predict that using a fixed chest breathing pattern, the effect of a cnange in SCM length could be more clearly demonstrated.

In contrast to the $H L$ manoeuvre, the RM manoeuvre shows an increase in slope with increasing lung volume over the range of $V t$. This is represented by a slope ratio less than 1 (Table 7.1), and could be explained by a lengthening of the SCM muscle due to a paradoxical movement of the rib cage during breathing or/and during the inspiratory pressure manoeuvre. Agostoni (1966) reported that during inspiratory efforts, with closed airways, the horizontal section of the rib cage (upright posture) becomes more elliptical, whereas during expiratory efforts, it becomes more circular. During these respiratory activities, the main change occurs on the lateral diameter over the expiratory reserve volume (ERV) and on the dorsoventral diameter over the inspiratory capacity (IC). The above deformations imply that some muscles lengthen instead of shortening. During the inspiratory efforts, Agostoni lost the Eiv of the parasternal external intercostal muscles at the second
intervertebral space. Hie concluded that the intercostal (IC) muscles were lengthening during the manceuvre. Fror ti.is finaing, one can extrapolate the lengthening of all the upfer rib cage muscles including the SCM and scalere muscles because cf their attachrent points. Furthermore, during tidal breathing, the rib cage expands more than the abdcrien in the upright pcsture, while the reverse occurs in the recumbent position (Lruz 1981). Most normal subjects are abdominal breathers when surine and rit cage treathers when sitting or standing (Lruz l981). The inspiratory action of the diaphragm is to cause an expansion of the rib cage by pulling cephalad at its inserticnc on the lower ribs and to raise the intra-abcicminal pressure which pushes outward on the diaphragm's zone of apposition to thc rib cage (Loring 1982). Mcrecver, the inspiratcry action cf the diaphragm on the rib cage is greatest at low lung volumes. In a stucy perfcrmed by Koepke (1958), on subjects in the supine position, the pattern of recruitment during inspiration began with the diaphragm. The intercostal muscles (IC) were then recruited in a pattern from the first to the eleventh IC muscle downward. During quiet breathing, the diaphragm was always active, the first IC muscle was usually active, the second IC muscle was occasionaly active, and the remaining IC, never active. One can conclude that the rib cage inspiratcry muscles lengthen mainly during the inspiratcry pressure manceuvres at lcw lung vclumes and not during ciuiet treathing. For twc subjects out of four (Table 7.1), the lengthening of the SCM muscle was greater at 10 cm than at 3 cm . It indicates that these sukjects performed the manceuvres using more their dia-
phragm than their rib cage, which induces a greater paracioxical movement of the rib cage, than the two cther subjects. Iy ir:posing a specific rib cage breathing Eattern on the sukjects, this phencmenor could decrease a lct ard could pessitly cisaftear.

The change in lung volune did not affect significartly tré Force-EMG relationship for every subject (except for AS) as shown in $T$ atle 6.7. It seems that the variability within the sutjects themselves was fairly great, but this might be reduced by faying attention to some of the variables presented in section 7.2. The consequence of this would be to increase the $F-v=-$ lues but it does not mean that lung volume would become a significant factcr affecting the Force-EMG relationship. Sharf (1974) showed that the changes in muscle function were closely relatec to the increase in lung vclunie. He found that the decrease in length of the $S C M$ muscle was $15 \%$ when lung volume increased from FRC tc TLC. The measurements were made at only two lung volumes, FRC and TLC. Furthermore, he reported, on a study cone on 6 normal males, that to generate a given pressure, much nore EMG was required at large than at small lurg volumes, supporting the conclusion that the inspiratcry muscles (Diafhragm, IC, SCM, and Scalene) decrease their length. As shown in Tatle 6.9, for the pooled subjects, a net increase in slope occured with increasing lung vclume, supporting the conclusion that the $S C M$ muscle increases its length due to the paradoxical movement of the rib cage during the inspiratory pressure manceuvres. These results are in contrast to Sharp's results. However, sharp did not mention how his subjects were breathing and what was their body position, supine or upright. It appears that sharf's
subjects treathed more with their $r i b$ cage and more uniformly during the experinent. In addition, Sharp did nct say wretrer the change in slope (for the pocled subjects) was significant. For this thesis experiment, fable 6.9 shows that the greatest change in slcfe, for the RM manoeuvre, occurs at low lung volumes, i.e., belcw FRC $+1 L$, for koth head heights. This sufferts the hypothesis that the inspiratcry action of the ciapkragr: on the rit cage is greatest at low lung vciumes.
7.5 The SCM muscle tunction

The experiment described was efrformed primarily to understand the function of the sternccleidonastoio (ECM) muscle under specific conditions.

The experincnt contrasted two functions of the SCM muscle: forwarc flexicn of the neck, and inspiratcry motion ct the chest wall. It appears that, in ncrmal sutjects, the Sternocleicomastoid muscle has a more important role in forward flexicn of the neck (or head lift in sukjects in the supine positicn), than it has in kreathing. It seens that the important runction of the $S C M$, as a respiratcry muscle, is, like all the rib cage muscles, to position the rit cage tc allow optimal length-tension conditions to prevail tor the function of the diaphragn, which is viewed as the prime inspiratcry muscle.

The change in lung volume affecte much less the SCM muscle physiology than the head gosition, which appears to be a very
importart factor. The effect of lung volure decreases with increasing forward bencing of the neck (head positicn) as shown in Table 6.11. It might indicate, that as the neck bends, the SCM muscle may change its ecsition on its lengthtension curve toward a flatter region, or alternatively, that the changes in length produced by the changes in lung volume are much smaller than the charges in length produced by the alteration in head positicn.

Head lift is closely related to the $\operatorname{ster}$ ncmastoid activation (Fig. 6.4a), and even more at lCom than at 3cm. Sirce the intercept is positive and close to zero, for both heac heights, there is no doubt that at zero heaci lift, there is no activation of the SCM muscle. Ps a skeletal muscle, the SCM activaticn is linearly related tc the mass liftec with the head. The slope is close to 1 and the intercept is close to 0,0 , especially at a head height of 10 cm .

As an accesscry inspiratory muscle, the $S C N$ muscle starts to be activated only after 508 of the maximum muscle pressure has already been generated (Fig. 6.4b). ihat first $50 \%$ of the pressure was performed by the prime inspiratory muscles, i.e., Diaphragm ard IC muscles. Here agair, the activation of the SCM is linearly related to the force (musclc pressure (Pmusc)) generated.

Ey relating the two mechanical outputs at a sfecific EMG value, cne defines a new method of testing the sCM muscle while it behaves as an inspiratory muscle (Fig. 6.5). Ey crily using the head lift meter, one can approximately know the maximum Pmusc. that the subject is able to generate by knowing the
maximum mass he/sne is able to lift with his/her head. This method does not involve any sophisticated device, but only tae small hand held head lift meter.

The HL-EMG relationship at 10 cm of nead height has mucn more impact than the one at 3 cm because the slope of the ulEMG relationship is very close to 1 (1.058) and the intercept is very close to $0,0(0,0.089)$. This indicates that the mass lifted is a close correlate of the 3 ternomastoid muscle activation (EAG), and that the regression line equation of the $H L-$ Pmusc relationship at $10 \mathrm{~cm}(F i g 6.5)$ is approximately the same as the regression line equation of the EMG-Pmusc relationship (Fig. 6.4b).

### 7.6 Future steps of this study

The study of the SCM muscle is far from being finished. Two different kinds of projects can be done to continue the study. The first project would be to perform the same experiment using weak subjects. Firstly, one could study weak ICU patients. These patients must have no history of any disease affecting the SCM physiology and anatomical structure. In other words, their SCA must be intact. Secondly, one could study normal subjects weakened with curare. The purpose or these two studies would be to see the shift in slope and intercept of the HL-Pmusc relationship and its significance relative to the relationship obtained from normal subjects. The second project would be to determine the length-
tension relationship of the SCM in ncrmal subjects in the supine fositicn while the change in head position changes the length of the muscle. Sharp (1974) described the lengti-tersicn relationshif of the $\subset C M$ wher the change in lung volure was changing the length of the muscle. It was not sfecifieci, but everything leads to the conclusion that his subjects were in the supine positicn. A formal stucy shculd be carried cut, whose furpose would be to define the shape of the curve. This woula be necessary to confirm the hypothesis that, as the neck bends, the SCM muscle charges its position on its length-tension curve toward a flatter region, thus decreasing the effect of the change in lung volume.

## CHAPTCE VIII

## CCNCLUSICNS

The SCN muscle is used primarily to change the position of the head while it is much less involvea as an inspiratory muscle. Ey conparing the EMG generated for a maximum manceuvre, for a single subject, heaci height, lung volume, and type of manoeuvre, it has been found that the EMG produced during maximuni lifting is much higher than the ENG produced during maximum inspiratory pressure.

The linear relationship between Force (mass lifted cr muscle pressure) and EMG was founc tc be a very adecuate approximaticn ( $r^{2}>0.95$ ).

Fcr the head lift manoeuvre, the decrease in slope with increasing lung volume over the range of tidal volume indicates a decrease in the SCM nuscle length, while for the respiratcry manocuvre, the increase in slope with increasing lung volume cver the same range indicates a lengthening of the $S C M$ muscle probatly due to a paradoxical movement of the $r i b$ cage curing the inspiratcry pressure manceuvre. Furthermore, it was found that for
the procuction of the same mechanical cutput, for both HL and FM manceuvres, more EMG was cbscrvec at 10 cm than at 3 cm cf head height. These phencmena can be attributed to the fcrce-length characteristics of the muscle, to the motor-unit recruitment, and to the muscle gecmetry relative to the electrocies.

On the pocled sukjects' data, the change in lung volune does nct affect significantly the force-EMG relationship. This may be attributed tc the fcllcwing :

1) the great variability in the ciata hide any real significant effect due to lung vclume,
2) the position of the SCM muscle on the forcelength curve does nct change sufficiantly,
3) the change in lung vclume does nct change sufficiently the position of the SCM muscle relative to the electrodes tc notice any effect on the recorded EMG.

By relating the two mechanical cutput forces, one can determine a new method of defining the function of the SCM muscle when it is used as an inspiratcry muscle. The results show that for a head height of 3 cm above the bed, the same SCM EMG activation is necessary when a r.aximum inspiratory muscle pressure (MIMPS) is performed as when a mass of 4.5 times head mass is lifted with the head, while at a head height of 10 cmi , the same MIMPS requires as much SCM EMG as a head lift of 1.3 times head mass. Furthermcre, $50 \%$ of the MIMPS can be ocne withcut using the SCM muscle in ncrmal subjects.

The $H$ L-Fmusc relationshif at locm of heac height is the most imecrtant curve of this experiment because the crly instrument the investigatcr neecis, tc dc the measurement, is the small hand-neld head lift meter. There is nc need to load the foretead with weights since the rarge of mass is mainly between zero and the mass of the subject's head. This beccr:es crucial in testing the sCM muscle of ICU fatients: No camage to the verterral column is likely to be sustained by voluntary lifting of the weight of the head alorie. It was argued that the pattern of treathing may have ar important effect on the variatility. Since it is too cienanaing to ask a weak ICU fatient tc freathe using a specific pattern, we let the ncrmal subjects breathe their cwn way. Free breathing consistercy will therefore be kept between the normal subjects" and the weak ICU patients" experiments.

APPENDIX A

## AFFERDIX A

The main statistical parameters cf the $M E$ signal are very important in the formulation of the ncciel tecause investigators use them in their research. The gereral model prescritec allows cross-correlation of the RUAPT's detected at the recording site. The frocess àds a new term which takes intc acccunt the cependerce between MUAPT's.

Consider two NUAFT's $u_{j}(t)$ anc $u_{j}(t)$ whose MUAF's fire at $t_{a}$, for $u_{j}(t)$, and at $t_{b}$, for $u_{j}(t)$ (Fig. A-l). The time ceperdent correlation of the MUAPT's may be expressec as:

$$
\begin{equation*}
E u_{i} u_{j}\left(t_{a}, t_{b}\right)=u_{i}\left(t_{a}\right) * u_{j}\left(t_{b}\right) \tag{A.1}
\end{equation*}
$$

For twc statistically indepercient MUAFT's in the same ccritraction, the correlation is expressed as:

$$
R u_{i} u_{j}\left(t_{a}, t_{b}\right)=\int_{0}^{\infty} \lambda i(\hat{t}) h_{j}\left(t_{a}-\hat{t}\right) d \hat{t} \int_{0}^{\infty} \lambda j(\hat{t}) h_{j}\left(t_{b}-\hat{t}\right) \hat{a} \hat{t} \quad \text { (A.2) }
$$

The lower linit is zero because the MUAPT is only present for positive time.

Let's consicier two cases:

1) Two metcr units ( $M^{\prime}$ 's) fire in uniscn with iafntical firing rate, $\lambda i(t)=\lambda j(t)$. If the MUAFT's have a relative displacement (Tij) greater than or equal to the time duration of $h_{i}(t)$ or $h_{j}(t)$, then the cross-ccrrelation can be expres-


FIGURE A-1: Dirac Delta function impulse train graphically arranceत to iemonstrate autocorrelation and cross-correlation.
( de Luca 1975)
sed as:

$$
R u_{i} u_{j}\left(t_{a}, t_{b}\right)=\int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t}\right) c \hat{t} \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{j}\left(t_{b}-\hat{t}\right) \hat{d} \hat{t} \quad(A .3)
$$

When Tij is less than the time duration of $h_{i}(t)$ or $h_{j}(t)$, then the cross-correlation is expressea as:

$$
\begin{align*}
R u_{i} u_{i}\left(t_{a}, t_{b}\right)= & \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t}\right) \dot{c} \hat{t} \iint_{0}^{\infty} \lambda_{i}(t) h_{j}\left(t_{b}-\hat{t}\right) \dot{d} \dot{t} \\
& +\int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t} \pm T i j\right) h_{j}\left(t_{b}-\hat{t}\right) \dot{d} \dot{t} \tag{A.4}
\end{align*}
$$

In such a case, the $\mathrm{MUAPI}^{\prime}$ s will be considered to be synchronized.
2) Two MU's fire in unison with icientical firing rate, $\lambda_{i}(t)=\lambda j(t)$, and both contain MUAP's with the same shape, $h_{i}(t)=h_{j}(t)$. In such a circumstance, the cross-correlaticr function will te identical to the auto correlaticn function and can be expressed as:

$$
\begin{align*}
R u_{i} u_{i}\left(t_{a}, t_{b}\right)= & \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t}\right) d \hat{t} \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{b}-\hat{t}\right) d \hat{t} \\
& +\int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t}\right) h_{i}\left(t_{b}-\hat{t}\right) d \hat{t}
\end{align*}
$$

Let's gc further in the analysis by giving more statistical deperdence between the two MUAPT's, i.e., by putting $t_{a}=t_{b}=t$. Doth mathematical expressions refresent the sume MUAFT. The cross-correlation functicn, being identical tc the auto-correlation function, is now simplified as:

$$
\ldots \quad\left[u_{i} u_{i}(t)=\left[\int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}(t-\hat{t}) \dot{i} \hat{t}\right]^{2}+\int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}^{2}(t-\hat{t}) d \hat{t}\right.
$$

$$
\begin{aligned}
& =\left[E\left(u_{i}(t)\right)\right]^{2}+\sigma_{u_{i}}^{2}(t) \\
& =[m \in a n]^{2}+\text { Variance } \\
& =(r m s)^{2}
\end{aligned}
$$

Disregarcing the folarizaticn of some recording electrocies, the $M E$ signal has a mean value of zerc. Therefore, the (rms) ${ }^{2}$ value is equal to the variance $\sigma_{u_{i}}^{2}(t)$. One ends up with the main parameters of the MUAPT model presented in Chapter IV, section 4.3.

The ME model compcsed of two kUAFT's can be exterded to many more, acting in the same contraction. The ME signal is represented as the spatial-temporal superposition of the incividual MUAFT's that are active in the vicinity of the electrodes.

$$
\begin{equation*}
m(t)=\sum_{i=1}^{s} u_{i}(t) \quad(\text { de Luca \& Vandik 1975) } \tag{A.7}
\end{equation*}
$$

The above equation assumes that the number of active MUAPT's remain constant throughout the constant contracticr. The auto-correlation of the $M E$ signal allcws us to finc the expressions for the mean, the variance, and the rms value.

$$
\begin{equation*}
\operatorname{Rmm}\left(t_{a}, t_{b}\right)=\sum_{i=1}^{s} \sum_{j=1}^{s} R u_{i} u_{j}\left(t_{a}, t_{b}\right) \tag{A.8}
\end{equation*}
$$

Eefore summing the correlation functions, it is necessary to consider that scme of the MUAPT's (vss) may be synchronizec at some time throughout the contraction. Then, the autc-ccrrelation function of the $M E$ signal may be expressed as:

$$
\begin{aligned}
& \operatorname{Rmm}\left(t_{a}, t_{b}\right)=\sum_{i=1}^{s} \sum_{j=1}^{s} \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t}\right) d \hat{t} \int_{0}^{\infty} \lambda_{j}(\hat{t}) h_{j}\left(t_{b}-\hat{t}\right) d \hat{t} \\
& +\sum_{i=1}^{1} \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{j}\left(t_{a}-\hat{t}\right) h_{j}\left(t_{b}-\hat{t}\right) d \hat{t} \\
& +\sum_{i=1}^{i j 1} \sum_{j=1}^{\infty} \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}\left(t_{a}-\hat{t} \pm T i j\right) h_{j}\left(t_{b}-\hat{t}\right) \hat{c} \hat{t} \\
& \text { (cic Luca \& Vandik 1975) }
\end{aligned}
$$

Festricting the analysis to the case where $t_{a}=t_{b}=t$, i.e., considering the auto-correlation of the ML sigral wher there is no relative shift, the above equation becomes:

$$
\begin{aligned}
\operatorname{Rmr}(t) & =\left[\sum_{i=1}^{s} \iint_{i}^{\infty}(\hat{t}) h_{i}(t-\hat{t}) d \hat{t}\right]^{2}+\sum_{i=1}^{s} \int_{0}^{\infty} \lambda_{i}(\hat{t}) h_{i}^{2}(t-\hat{t}) d \hat{t} \\
& +\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \int_{0}^{\infty}(\hat{t}) h_{i}(t-\hat{t} \pm T i j) h_{j}(t-\hat{t}) d \hat{t} \\
& =[E(m(t))]^{2}+\sigma_{m}^{2}(t) \\
& =(m e a n)^{2}+\text { variance } \\
& =(r m s)^{2}
\end{aligned}
$$

Ey approximating $h_{i}(t)$ by $K_{i}(t)$, the above equation $c a n$ be simplified as:

$$
\begin{align*}
\operatorname{Rmm}(t)= & {\left[\sum_{\left.\sum_{j=1}^{s} \lambda_{i}(t) \underline{h_{j}(t)}\right]+\sum_{i=1}^{s} \lambda_{i}(t) \underline{h_{j}^{2}(t)}}+\sum_{i=1}^{\sum \sum \sum_{j=1}^{L} \lambda_{i}(t) c_{j j}^{2}(t)}\right.} \tag{A.11}
\end{align*}
$$

This equaticn dces nct demonstrate the effect of the cancellation that results when positive and negative phases of different MUAF's superimpcse. The cancellation will not affect the variance term, because of the $h_{i}^{2}(t)$ term, but will affect only the mean term by reducing it. Consecuertly, a non positive function, $J(t) \leq 0$, must be adciec tc the mean term to
give:

$$
\begin{equation*}
E[|\pi(t)|]=E\left[\sum_{i=1}^{\xi}\left|u_{i}(t)\right|\right]+J(t) \tag{A.12}
\end{equation*}
$$

Furthermore, the synchronization term, $D(t)$, recuces

$$
\begin{equation*}
D(t)=\sum_{i=1}^{v} \sum_{j=1}^{v} \int_{0}^{\infty} \lambda_{i}(\dot{t}) h_{i}(t-\hat{t} \pm T i j) h_{j}(t-\hat{t}) \dot{c} \hat{t} \tag{A.13}
\end{equation*}
$$

the mean-squared term because these MUAFT's dc nct ccrrelate with each cther. Thus, an extra term is acied to the expression of the mean-squared value of the liE signal tc give:

$$
\begin{equation*}
M S[m(t)]=\sum_{i=1}^{S} N S\left[u_{i}(t)\right]+E(t) \tag{A.14}
\end{equation*}
$$

$$
\text { where } L(t)<0 \text { cr } 0<E(t)
$$

Finally, the three main parameters of the ME signal can expressed as:

1) Mean rectified value

$$
\begin{equation*}
E[|m(t)|]=\lambda(t) \sum_{i=1}^{s}\left|\ln _{j}(t)\right|+J(t) \tag{A.15}
\end{equation*}
$$

Full-wave rectification may be realized by taking the absclute value of $h_{i}(t)$ and $m(t)$.
2) Mean integrated rectified value

$$
\begin{aligned}
E\left[\int_{0}^{\tau}|m(t)| d t\right] & =\int_{0}^{\tau}[[|m(t)|] d t \\
& =\int_{0}^{\infty} \lambda(t) \sum_{i=1}^{s} \underline{\left|h_{i}(t)\right| d t+\int_{0}^{\tau} J(t) d t} \quad(A \cdot 10)
\end{aligned}
$$

anc if the value cf $h_{j}(t)$ remains constart curing the contracticn,

$$
\begin{equation*}
E\left[\int_{0}^{\tau}\left|m_{i}(t)\right|\right]=\sum_{i=1}^{s}\left|h_{i}(t)\right| \int_{0}^{\tau} \lambda(t) d t+\int_{0}^{\tau} J(t) d t \tag{A.17}
\end{equation*}
$$

3) Foct-mear-squared value

$$
\begin{equation*}
\operatorname{rms}(m(t))=\lambda(t)^{\frac{1}{2}}\left[\sum_{i=1}^{s} h_{j}^{2}(t)+\sum_{i=1}^{v} \sum_{j=1}^{v} c_{i j}^{2}(t)\right]^{\frac{1}{2}} \tag{A.18}
\end{equation*}
$$

since the $M E$ signal has zero mean.

## AFEEI:LIX $\mathrm{B}-1$

Principle of Least Scuares.

A simple illustration cf the frinciple is as follcw. Sufpose Xi is the measurement of a quantity whose true value is f. Then $\mathcal{E}_{i}=X i-T$ is the error in the measurencrit. If tre measurement is repeated, one can end up with several crrcrs. Let us call the sum of their square as:

$$
\begin{equation*}
E=\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum\{x i-T\}^{2} \tag{L.1}
\end{equation*}
$$

where $\sum_{i=1}^{n}$ is replaceci by $\sum_{\text {. }}$.
Acccriing to the prirciple of least squares, the best choice for $I$ is the cne that makes $E$ minimum. At its rinimur value,

$$
\begin{equation*}
\frac{\partial L}{\partial x}=2 \sum|x i-T|=2 \sum x i-2 n T=0 \tag{E,Z}
\end{equation*}
$$

cr $T=\underline{\sum X i}$ which is nothing tut the mean cf measurenents. r.

Now suppese that cne has two eets of data $X$ and $y$ connected by a linear relaticnshir $y=\alpha+\beta x$, where $\alpha$ ard $\beta$ are constants. The problem cf cictermining the best line is ncthing but evaluating and using the principle of least scuares.

Fcr example let us assume that $x$-values are fairly accurately known anc error is associated with Y-values orily. Suppose a anc $t$ are the least squares choices for $\alpha$ and $\beta$ respectively. Then $a+b x i$ is the calculated or the estimated $Y$ whose actual value is Yi . Therefcre,

$$
\begin{equation*}
[Y i-(a+b X i)]=\varepsilon_{i} \text { is its errcr. } \tag{E.3}
\end{equation*}
$$

To satisfy the principle of least squares,

$$
\begin{equation*}
\sum[Y i-(a+b X i)]^{2}=E \tag{E.4}
\end{equation*}
$$

must be minimun which means $\partial E / \partial a=0$ anci $\partial E / \partial b=0$. Sclving these ecuations, we get:

$$
\bar{a}=\frac{\sum_{Y i} \sum_{X i}{ }^{2}-\sum X i \sum \sum i Y i}{n \sum X i^{2}-\left(\sum X i\right)^{2}} \text { and } t=\frac{n_{i} \sum X i Y i-\sum X i \sum Y i}{n \sum X i^{2}-\left(\sum X i\right)^{2}}(2 . E)
$$

 They determine the sc-called rechession lime : yc = a + bi .

The errors in $a, b$, ard yc can be estimatec. The rçrcesicr line represents an average estimating line because it dcce rot Fass thrcugt: all experimental pcirts. Its cverall reliatility
 which is a ricasurc of the scatter aficry yi's arcunc the avorage

$$
\begin{equation*}
\Sigma_{Y \cdot x}=\left[\frac{\Sigma(Y i-Y C)^{2}}{(n-2)}\right]^{\frac{1}{2}} \tag{E.K}
\end{equation*}
$$

line. Ey cevelcping the equaticr L. 6 anc ky replacirg foky its expressicn, a + kïi, sy.x can take the tcllowing form:

$$
\begin{equation*}
s_{Y \cdot X}=\left[\frac{\Sigma_{Y i}^{2}-(a \Sigma Y i+t \Sigma X i Y i)}{(r-2)}\right]^{\frac{1}{2}} \tag{B.7}
\end{equation*}
$$

The errcrs in the cofficients a anc $t$ arise because of the errors ir $Y$ 's. $X$ 's are assunca tc be fairly accurately kncwr. Ccirg thrcugh a series cf matheriatical equaticrs, the stanciarc cieviation of the coefficients car te expressec as:

(1.6)
aric

$$
\begin{equation*}
S(b)=\left[\frac{n}{\left(n \Sigma X i^{2}-(\Sigma X i)^{2}\right)}\right]^{\frac{1}{2}} S y \cdot x \tag{L.G}
\end{equation*}
$$

The nethoci just ciescribed has been writter under the form of à computer program. The computer language uscais inclic acafted for the HF 87 microcomputer.

Cnce the reyression line wes fcurci, the gociness of the fit hac to be testec $E y$ calculating the ccefficient of cictermira$\operatorname{ticn}\left(r^{2}\right)$. Its value is tetween zero arci cre. A. $r^{2}=1$ irciicates that all the experimertal foints fill on the regreseicr. line (ferfect fit). This ccefficient is expressec as:

$$
\begin{equation*}
r^{2}=\frac{\Sigma(Y C i-\bar{Y})^{2}}{\Sigma(Y i-\bar{Y})^{2}}=\frac{\Sigma(X i-\bar{X})(Y i-\bar{Y})}{\left[\Sigma(X i-\bar{X})^{2}(Y i-\bar{Y})^{2}\right]} \tag{C.16}
\end{equation*}
$$

where $\bar{Y}$ is the mean value of $Y^{\prime} s$.
Cnce the aferceriate substitutions are macie, the $r^{2}$ value can be represented in a more useful expression:

$$
\begin{equation*}
r^{2}=\left[\frac{\Sigma_{X i Y i}-(\Sigma X i \Sigma Y i) / n}{\Sigma X i^{2}-(\Sigma X i)^{2} / n}\right]\left[\frac{\Sigma X i Y i-\Sigma X i \Sigma Y i / n}{\Sigma Y i^{2}-(\Sigma Y i)^{2} / n}\right] \tag{L.11}
\end{equation*}
$$

The square root of $r^{2}$, $r$, is called the cofficicnt of correlaticn. The value of $r$ cetermines how closely the variatles Yi anc yci are asscciated. The value of $r$ varies from -1 to +1 . The sign of $r$, indicated by the sign of $\quad \Sigma(X i-\bar{X})(Y i-\bar{Y})$, inplies the sign of the slope of the regressicn line. Ncst investigators use the coefficiert cf ceternination, $\mathbf{r}^{2}$, recause it inaicates that the regression equation accounts for ( $\left.r^{2} \times 100\right)$ e of the variatility of the ciata about $\bar{X}$.

## BEST FITTED STRAIGHT LINE

10 OPTION BASE 1
15 PRINTER IS 701
20 MASS STOKAGE IS ":D701"
30 DISP "CURVE E $\not \subset U A T I O N$ PROGRA:I NO. 1 ४ $31031 . "$
40 DISP "IT EINDS 'HE EUJATION $Y=A+3 x$ "
50 WAIT 2000
60 DIM X $(50,2), Y(50,2), \ddot{2}(50,2)$
$70 X X=0$ @ $Y Y=0$ @ $X Y=0$
勺0 $X X S=0$ \& $Y Y S=0$ \& $X Y 3 S=0$
$90 \quad X(1=0$ @ $Y M=0$ \& $X S Y=0$ \& $Y Z V=0$
$100 \mathrm{D}=0$ @ $\mathrm{A}=0$ @ $\mathrm{B}=0$
$110 \mathrm{I}=1$ @ $A=1$
120 DISP "FILENA•IE"; ANPUT r's
130 JN ERROR GO'HO 120
140 ASSIGN\# 1 'IO F\$
150 READ\# 1 ; N
160 FOR $\mathrm{I}=1$ ro :
170 READ\# 1 ; $X(I, 1), 6(1,2)$
180 DISP
190 NEXT I
200 UFF ERROR
210 ASSIGN\# 1 TU *

230 I=1
240 KOR I=1 TO N
$250 \mathrm{XX}=\mathrm{xX}+\mathrm{X}(1,1)$
$260 Y Y=Y Y+X(I, 2)$
270 XXS $=X X S+X(I, 1)^{\wedge} 2$
280 YYS =YY'S+X(I, 2)^2
$290 X Y=X Y+X(I, 1) * X(1,2)$
300 NEXT I
$310 \mathrm{XM}=\mathrm{XX} / \mathrm{N}$
320 Y: $1=Y Y / N$
330 XSQ=XXS-XM*XX
340 YSU=YYS-YM*YY
350 XYSS=XY-XN* YY
$360 B=X Y S S / X S Q$
370 A=YM-B*XY
380 D=XYJS^2/(XSQ*YSQ)
390 SYX=SUR ((YYS-(A*YY+B*XY))/(N-2))
400 SB=SUR (N/(N*XXS-XXN 2 )) *SYx
410 SA=SUR (XXS/(11*xXS-xx^2))*Syx
420 DİP "ESTHMATINL LXUATION YC=A+UX AND ITS STANDARD EKROR SYx ARL"
430 DISP USINC 440 ; A,SA, B, St
$44 U$ IMAGE "YC = ", 3D.3D, 2X,3D.3D," + ",3D.3D,2K,3D.3D,"X",5X,"3Yx="3D.3
450 DISP USING 4טU ; D

```
400 LHAGE "THE COEFFILIENT OF DETERHINA\GammaIJN ( KN2 ) IS :", Lル.J.J
465 PRINT " rOOR IHE INPUC FILLNAME ";r's
470 PRINT "ESTIM4LING EQUUTION YC=A+3X AND ITS STANDARD LRLUKK SYX AR
480 PRINT USING 440 ; A,SA,B,SB,Syx
490 PKINT USING 4GU ; D
SUO FOR I=1 TO is
510 Y(I,I)=X(I, 1)
515 Y(I,2) =A+B*X(I,1)
520 NEXT I
522Y(N+1,1)=(-A)/B
523Y(N+1,2)=0
525 M=N+1
5 2 6 ~ F O R ~ I = 1 ~ T O ~ A , ~ A
527 2(I, L)=Y(I,1) e &(I, 2) =Y(I, 2)
528 DISP USINC 530; 2(I,1),2(I,2)
5 2 9 ~ N E X ' I ~ I ~
530 IHACEE "X=",6D.3D,3K, "Y=",60.30
540 DISP "OU'L'PU'P TO F'ILE, Y/N";
550 INPUT KS
560 1F゙ UPCS (RS|l,1|)="Y" PHEN SO'I'C 5y0
570 IE UPES (R$ (1,1])*"N" THEN BEEP & GOTU 54U
58U GOIO 830
5YO DISP "UUTPU' FILEXNANL";e INPUT FOS
60U ON ERROK GOTO Ó20
6LU GOIO 63U
6 2 U ~ O F F F ~ E ' R R U R ~ 』 ~ 1 F ' ~ E R R R N ~ = 6 3 ~ ' F H E ゙ \ ~ S O T O ~ 6 3 U ~ E L S E ~ O ́ 7 O ~
630 DISP "FILE ALREADY EXISTS. STORE OVER IT";@ INPUT RS
640 IF UPC$ (RS (1,1)) ="Y" THENN COTRO \OO
650 IF JPC$ (R$(1,1))*N" 'HEEN BEEP @ GOTO O
6 6 0 ~ G O I O ~ 8 3 0 ~
6 7 0 \text { DISP "ERROR NO." ERRRN \& PAUSE}
6४0 DISF "CREA'E F'ILEE, Y/N";
690 INPUT R$
700 IF UPCS (RS(1,1))="Y" THEN GO'IO 730
71U IF UPC$ (RS (1,1))""N" THEN BEEP & GOXO 680
7 2 0 \text { GOTO 830}
7 3 0 \text { CREATE FO\$, 3}
740 ASSIGN# 1 TO FOS
7 5 0 ~ P R I N T \# ~ 1 ~ ; ~ M ~
760 FOR I=1 TO M
770 PRINT# 1 ; 2(I,1),2(I, 2)
7 8 0 ~ N E X T ~ I ~ I
790 GOTO 810
800 PURGE F$ & GO'TO 680
810 OFP ERROR
820 ASSIGN* 1 TO *
830 DISP "DONE!"
840 L'ND
```


## AEPENEIX E-2

E-2-1 Statistical aralysis

The techrigue usec will te entirely cescrited for slcfes. For the case ct intercepts, only the final equaticns will te given because the techrique is similar.

Suppese a series of $n$ observations of fairs ( $X, Y$ ) can be partitionea into $r$ groups with $n$ pairs in the $i^{\text {th }}$ grcup such that $n_{1}+n_{2}+\ldots+n_{r}=n$. Assume a simple linear regressicurcdel for each group of cbservations with a common error variarace $S^{2} f\left(\begin{array}{rl} \\ \text { all groups (tested using the Dartlett's test). The ry- }\end{array}\right.$ pcthesic to test is: $H C=\beta_{1}=\beta_{2}=\ldots=\beta_{r}$, the ecuality of the $r$ slopes cf regression lines. As definec tefcre, b is the least squares best choice for $\beta$.

Consicicring the case $r=2$, the variance of $b_{1}-t_{2}$ is $s_{b_{1}}^{2}+c_{b_{2}}^{2}$ Since $\left[\left(k_{1}-k_{2}\right)=\beta_{1}-\beta_{2}=0\right.$ under Ho: $\beta_{1}=\beta_{2}$ ance since $k_{1}-L_{2}$ has a normal distribution with mean $\beta_{1}-\beta_{2}$ and variance $\varepsilon_{b_{1}}^{2}+\varepsilon_{b_{2}}^{2}$, then the statistic

has a t-distribution with $n_{1}+n_{2}-4$ cegrees of freecior. Ic test the hyfcthesis no, the procedure is to use the statistic 1 witl.
 Ir the case $r$ is greater than two, the general slofe obtained by treating all the individual grcups as one large group is $E_{p}$ where

$$
\begin{equation*}
b_{p}=\sum_{i=1}^{r} \sum_{j=1}^{M_{i}}\left(X_{i j}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) / \sum_{j=1}^{r} \sum_{j=1}^{m_{n}}\left(X_{i j}-\bar{X}\right)^{2} \tag{E-2}
\end{equation*}
$$

where $\bar{X}$ anc $\bar{Y}$ denote the overall means using all $n=\sum_{i=1}^{r} r_{i}$ values. The error sum of squares of the $i^{\text {th }}$ group is sy. ${ }^{2}{ }_{i}$, anci the poclederror sum. cf squares is $S_{1}=\sum_{i=1}^{r} S y \cdot X_{i}^{2}$. The tctal surl cf squares tased on all r ciata sets collectively, can be partitioneci as:

$$
\begin{align*}
\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}\right)^{2}= & \sum_{i=1}^{r} s y \cdot x_{i}^{2}+\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(t_{i}-b_{p}\right)^{2}\left(x_{i j}-\bar{X}_{i}\right)^{2} \\
& +b_{p}^{2} \sum_{i=1}^{r} \sum_{s=1}^{n_{i}}\left(x_{i j}-\bar{X}_{j}\right)^{2}  \tag{L-3}\\
= & S 1+s 2+s 3 .
\end{align*}
$$

The term $5 l$ is the pooled error sum of squares of each regression curve, 52 is the sum of squares ciue to differences between group slopes, and 53 is the sum of squares cue to the gereral slofe t .

The statistic used is:

$$
\begin{equation*}
F=[S 2 /(x-1)] /[S 1 /(r-2 r)] \tag{E-i}
\end{equation*}
$$

has a $F$-cistribution with $(r-1)$ anc ( $r-2 r)$ cogrecs cf frecuor:
if $\beta_{1}=\beta_{2}=\ldots=\beta_{r}=\beta$. Thus the critical regicn fcr mo: $\beta_{1}=\beta_{2}$ $=\ldots=\beta_{r}$ is $F>F_{v_{1}} v_{2}, l-a$ where $v_{1}=r-1, v_{2}=n-2 r$, anca $a$ is the significant level.

If 110 is accepted, then the slope of the pocled regression line is $b_{p}$ and its variance, $s_{b_{p}}^{2}$, can be expressed as:

$$
s_{b p}^{2}=\left[\sum_{i=1}^{r} s y \cdot x_{i}^{2} /(n-2 r)\right] /\left(\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}\right]
$$

For the case of the intercepts, the same technique was used. For testing the homegeneity ketween the intercepts of $r$ regression lines, the general intercept obtained by treating all the individual groups as one large group is $a_{p}$, where

$$
\begin{equation*}
a_{p}=\sum_{i=1}^{r} \sum_{j=1}^{n_{j}} X_{i j}\left(\bar{Y} X_{i j}-\bar{X} Y_{1 j}\right) / \sum_{i=1}^{r} \sum_{j=1}^{n_{1}}\left(X_{i j}-\bar{X}\right)^{2} \tag{E-6}
\end{equation*}
$$

where $\bar{X}$ and $\bar{Y}$ denote the overall means using all $n$ values.
As before, the total sum of squares tased on $r$ data sets collectively can be expressed as:

$$
\begin{align*}
\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}\right)^{2}= & \sum_{i=1}^{r} S y \cdot x_{i}^{2}+\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(a_{i}-a_{p}\right)^{2}\left(x_{i j}-\bar{X}_{i}\right)^{2} \sum_{i=1}^{r}\left(\sum_{j=1}^{n_{i}} x_{i j}^{2} / n_{i}\right) \\
& +a_{p}^{2} \sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{X}_{i}\right)^{2} / \sum_{i=1}^{r}\left(\sum_{j=1}^{n} x_{i j}^{2} / n_{i}\right)  \tag{B-7}\\
= & S 1+A 2+A 3
\end{align*}
$$

similarly, the statistic is:

$$
F=[A 2 /(r-1)] /[S 1 /(n-2 r)]
$$

If the hypothesis $H C: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{r}=\alpha$ is accepted, then the intercept of the cochlea regression line is ap arc its variance $\mathrm{s}_{\mathrm{ap}}^{2}$ can te expressed as:

$$
\begin{equation*}
S_{a p}^{2}=\left[\sum_{i=1}^{r} S_{y} \cdot x_{i}^{2} /(n-2 r)\right] /\left[\sum_{i=1}^{r} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2} / \sum_{i=1}^{r}\left(\sum_{j=1}^{n_{i}} x_{i j}^{2} / n_{i}\right)\right] \tag{E-G}
\end{equation*}
$$

This technique turned out to te very useful for sirflifying data manipulations. This analysis was performed by the Hp 87 microcomputer.

The whole technique can te used to test two or more regression lines. The t-test does not reed to be used.

## [-2-2 The Bartlett's test

The Bartlett's $x^{2}$-test was used to test the homogeneity of the variances.

Let $s_{1}^{2}, s_{2}^{2}, \ldots, s_{k}^{2}$ be $k$ independent sample variances with degree of freedom $\nu_{1}, \nu_{2}, \ldots, \nu_{k} \nu_{i}(i=1,2, \ldots, k)$ where $\nu_{i}=n_{i}-1$. Here it is considered that a sample is represented by a set cf data, and then $s^{2}=s y . x^{2}$. Let's put $V=\sum_{i=1}^{r} V_{i}, s=\sum_{i=1}^{r} V_{i} s_{i} / \nu$, and $C=1+\left[\left(\left(\sum_{i=1}^{r} 1 / v_{i}\right)-1 / \nu\right) /(3(k-1))\right]$. As the test criterion, one uses the quantity

$$
\begin{equation*}
x=\left(V \ln S^{2}-\sum_{i=1}^{r} V_{i} \ln s_{i}^{2}\right) / C \tag{E-10}
\end{equation*}
$$

The rejection region for testing Ho: $s_{1}^{2}=s_{2}^{2}=\ldots=s_{k}^{2}$ is $\chi^{2}>\chi_{k-1}^{2}(1-a)$ where a represents the level of significance.

## APPENDIX B－2

STATISTICS ON THE STRAIGHT LINES

IJ OPTION BASE 1
2 J MASS STORANビ IS＂：D7U1＂
DISP "STA'G PROGRA. 1 उ31126"
FOR $I=1$ TO NA
INHUT U(1, 1), U(I, 2), U(1, 3), U(1, 4)
NEXT I
POR I=1 TO NA
$U(1,1)=U(1,1)^{\wedge} 2$ @ U(I, 2) $=U(1,2)-1$
$M U=M U+U(1,2)$
VAR=VAR+U(I, 1)*U(I, 2)
$I N V=I N V+1 / U(I, 2)$
LOGV=LOGV+LOG(U(I, 1))*U(I ,2)
NEXT I
$C=1+(I N V-1 / M U) /\left(3^{n}(N A-1)\right)$
VAR=VAR/MU
$T \equiv$ (IIU*LOG (VAR)-LOL゙V)/C
DISP "LINES - 1)."
PRINTER IS 701
UISP USINC $4 U 0$; r,VAK
IMAGE "t $={ }^{n \prime}, 4 D .3 D, 6 x,{ }^{n} S^{n} 2={ }^{n}, 4 D .3 D$
PRIN'S USING 400 ; $1 \cdot V A R$
IF UPCS (RS (1,1))="Y" THEN GOTO 465
DISP "THIS PROGKA. 1 CUHPAREJ SEVERAL SETS OF DAI'A."
DISP "IT TESTS IHE HUNOGEAEITY UF IHL IUTERCERTS AND SLOHES JU"

DISP A F TEST. PHE OUTPUR WILL TELL WHETHER THE CURVES AME UJIJBG:IEJ!S
DISP "THE INPUY FILES NJUST BE THE ONES USED TO SET THE CURV :S EUJAII JH.
DI:1 X $(100,50), Y(100,2), U(25,4), 4(25), N B U(25), X \operatorname{HEAN}(25), X X(25), W 3 O S I U(25$
UISP "THE FIRST OBJECTIVE IS TU SEE WHETHER ILE SURVEJ VA!IANIG (VY. $X$ )"
DISP "AKE HOMOEENEOUS, AJD WHETHER THEY CAN JE RERIACED :I USLY J:UE"
DISP "VALUE (V). "IHELEFORE, A BARTLETY'S TES'T IS PERFORMED."
DISP " TIIE OPEKATOR MUST MAKE TIE ENTRY USING THE KEYENARD."
DISP "TIE A VALUE IS I'HE SY.X OF EACH LINE, WHILE PHE D VALUE CJ VIAI.NS"
DISP "THE NUIUFR OF POINTS PEK LINE; THE C VALUE IS THE SLOPE OF LACII"
DISP "LINE, AND THE D VALUE IS THE INTERCEPT OF EACH LIJE."
DISP " HOW HANY LINES DU YOU HAVE TO TEST";C INPUT NA



DISP "THE OUPPUT (F) IS DISTRIBUTED AS CHI-SQUARE OF (NO. UF LI,JE.J-I)"
DISP "WE REJECT HOMOUENEI'Y AT I'HE SICNIFICANCE LEVEL ( alpna) IF ride"
DISP "REALIRATION OF (T), (t), IS SUCH THAT $t$ >OK = TO CHI-SUUARE (1-alpna
DISP "THE (l-aIpha) YUANTILE OF THE DIS'RRIBUTION OF CHI-SUUNRE (NO. OF"
PRINT "IIOMOCENEITY OF I'IE CURVE VARIANCES HAS BELEN TESTLCD"
DISP "HAS HONOLENEITY BEEEI PROVEN, Y/N"; I INPUT RS
$i 50$
460770 BOBO=BOBO+ (U (I
d 10
015 MB=NA-1
820 SBU=SQR (VYX/Wও)
330 SBL=SUR (VYX/WBA)33 DINT USINC $35^{\circ}$ MB,N
J35 IMAGE "T IS DISITKIBUIED
440צSO IMAGE "FOR INILEREEPY'Ta
HGU HRINT USING 850 : TU.Tl

- 80 IF UPCS (RS[l,l])="Y" THEN GOTO 905
dyo IP UPC $\$(R \$[1,1)$ )"iN" THEN BEEP \& GOTO 87U
900 GOTO ll80
yo5 VARR=SUR (VAR)
ylu DISP USING 930 ; XINI,S $\mathrm{SO}, \mathrm{XSLO}, S B 1, V A R R$
920 PRINT USING 930 ; XINT,SBU,XSLO,SBI,VARR
930 IMAGE "Y=", 4D.3D,2X,4D.3D, $3 X, "+", 3 X, 4 D .3 D, 2 X, 4 D, 3 D, X, " X ", 3 X, " S Y, X=", 1 D$
940 DISP "MINIMUM VALUE OF $x$ " @ INPUT C
950 DISP "MAXIMCM VALUE OF X" @ INPUT D
960 DISP "STEP VALUE" \& INPUT E
$970 \mathrm{~J}=0$
980 POR I=D TO C STEP -E
990 IF I<C THEN GOTO 1040
$1000 \mathrm{~J}=\mathrm{J}+1$
$1010 Y(J, 1)=1$
$1 \cup 20$ Y(J, 2) $=X I N T+X S$ LO* 1
1030 NEXT I
1U4U DISP "CREATE FILE" a INPUT RS
lU50 IF UPC $\$(R \$[1,1])=$ "Y" THEN GOTO 1080

1070 GOTO 1180
$10 \pm 0$ DISP "OUTPUT' FILENAME" \& INPUT FOS
1090 ON ERROR GOTO 1080
LUY5 GOTO 1100
11U0 CREATE POS. 3
1110 ASSIGiN: 1 TO FOS
1120 PRINTः 1 : J
1130 POR I=1 TO J
1140 PRINT: 1 ; $Y(1,1), Y(1,2)$
11.0 DISP USING 580; I,Y(I, 1),Y(I,2)

1155 NEXP I
1160 OPF ERROR
1170 ASSIGN\# 1 TO
1180 DISP "DONEI" END

## APPENDIX C

Note:

In the araphs, every lung volume line has its own symbol. The following table gives the correspondence between the symbols and the lung volumes.

| Lung Volume | Symbol |
| :---: | :---: |
| $r^{\prime} \mathrm{RC}$ |  |
| $\mathrm{rr}^{\text {RC+ }}$. 51 | -•• |
| r $\mathrm{HC+1L}$ | - - - - |
| PRC+2L | - - - |
| TLC | -..-..-.- |

3 ct

|  |  | Eas | LPT | \% |  | PS=I | ATCBY | I. MalO |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUЗJきCT | iuig voiune | $\frac{1}{V A L C E}$ | $\begin{aligned} & \text { GUV) } \\ & \pm S . E \end{aligned}$ | $V_{A I} E$ | Kg) S.0 | VaLU | $\begin{aligned} & \text { FG (uV) } \\ & \pm \text { s.0 } \end{aligned}$ | $\begin{aligned} & \text { Pmusc } \\ & \text { VALUE } \end{aligned}$ | $\begin{aligned} & \text { H2O) } \\ & \text { S.D } \end{aligned}$ |
| LT | FRC | 865.454 | 51.426 | 15.600 | 1.900 | 462.220 | 0.000 | 60.000 | . 100 |
|  |  | 682.910 | 91.538 | 10.188 | . 156 | 342.230 | 4.450 | 53.750 | 1.250 |
|  |  | 333.331 | 8.568 | 7.659 | . 294 | 195.560 | 35.560 | 42.500 | 2.500 |
|  |  | 129.455 | 18.513 | 5.133 | . 296 | 40.000 | 4.440 | 27.500 0.000 | 2.500 |
|  |  | 66.364 0.000 | 9.000 0.000 | 2.928 0.000 | .036 0.000 | 0.000 | 0.000 |  |  |
|  | FRC +0.5 L | 676.364 | 10.285 | 10.700 | . 955 | 448.000 | 16.000 | 24.870 | 1.392 |
|  |  | 465.455 | 29.091 | 8.947 | 1.058 | 44.000 | 12.000 | 47.370 | 4.928 |
|  |  | 331.818 | 24.438 | 8.050 | . 177 | 16.000 | 0.000 | 35.995 | 3.160 |
|  |  | 252.727 | 12.856 | 7.330 | . 674 | 0.000 | 0.000 | 9.870 | 1.392 |
|  |  | 127.273 0.000 | 12.422 0.000 | 6.217 0.000 | .141 0.000 |  |  |  |  |
|  | FRC + 1 L | 720.000 | 8.890 | 8.800 | 0.000 | 435.560 | 0.000 | 88.025 | 5.000 |
|  |  | 648.890 | 8.890 | 7.600 | . 100 | 346.670 | 44.450 | 24.275 | 1.250 |
|  |  |  | 62.220 |  | . 200 | 102.200 | 4.530 | 49.275 | 3.750 |
|  |  | 444.450 | 88.890 | 4.000 | . 600 | 26.670 | 8.890 | 39.275 | 1.250 |
|  |  | 15.802 | 19.555 | 0.000 | 0.000 | 0.000 | 0.000 | 13.025 | 0. 500 |
|  | FRC + 2 L | 702.220 | 8.890 | 10.800 | . 100 | 382.230 | 26.670 | 72.238 | 5.000 |
|  |  | 693.330 | 0.000 | 8.850 | . 050 | 177.780 | 35.560 | 57.238 | . 100 |
|  |  | 613.340 | 26.670 | 6.850 | . 500 | 157.780 | 2.220 | 50.488 | 1.250 |
|  |  | 346.670 | 8.890 | 3.650 | . 150 | 31.120 | 4.450 | 42.238 | . 100 |
|  |  | 15.556 | 17.480 | 0.000 | 0.000 | 0.000 | 0.000 | 17.238 | 0.100 |
|  | TLC | 728.890 | 17.780 | 10.700 | . 800 | $148.890 \quad 2.220$ |  | 31.750 | . 500 |
|  |  | 640.000 | 0.000 | 7.500 | . 500 |  |  |  |  |
|  |  | 617.370 | 8.890 | 5.450 4.830 | - 150 |  |  |  |  |
|  |  | 471.110 106.667 | $\begin{array}{r} 8.890 \\ 17.778 \end{array}$ | 4.830 0.000 | 0.000 |  |  |  |  |


| SUBJECT | LUNG VOLUME | HEAD LIFT MANOEUVRE |  |  |  | RESPIRATORY FUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { ENG (uV) } \\ \text { VALUE } \pm \text { S.D } \end{gathered}$ |  | $\begin{gathered} \mathrm{HI} \\ \text { VALUE } \end{gathered}$ | $\begin{aligned} & \mathrm{Kg}) \\ & \text { S.D } \end{aligned}$ | valu | $\begin{gathered} \text { EMG (uV) } \\ \pm \text { S.D } \end{gathered}$ | Pmusc (c VaLUE | $\begin{aligned} & \hline \text { H2O) } \\ & \text { S.D } \end{aligned}$ |
| LT | FRC | 782.220 | . 100 | 7.400 | . 200 | 586.670 | . 100 | 65.000 | 5.000 |
|  |  | 711.110 | 71.110 | 5.150 | . 050 | 271.110 | 40.000 | 52.500 | 2.500 |
|  |  | 142.220 | 0.500 | 3.450 | . 150 | 62.220 | 8.890 | 41.250 | 1.250 |
|  |  | 124.450 | 17.780 | 2.700 | 0.000 | 24.450 | 2.230 | 32.500 0.000 | 2.500 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | FRC +0.5 L | 800.000 | 52.460 | 5.400 | . 064 | 584.000 | 56.569 | 79.120 | 6.695 |
|  |  | 505.491 | 4.415 | 4.001 | . 108 | 155.000 | 29.698 | 59.495 | 2.002 |
|  |  | 314.023 | 34.981 | 2.768 | . 086 | 40.336 | 10.839 | 48.995 | 1.922 |
|  |  | 228.871 | 6.929 | 2.236 | . 108 | 7.000 | 1.414 | 42.370 9.870 | 4.928 |
|  |  | 162.145 0.000 | 6.598 0.000 | 1.453 0.000 | .053 0.000 | 0.000 | 0.000 | 9.870 | 1.392 |
|  | FRC + 1 L | 728.890 | 17.780 | 5.650 | 2.150 | 266.670 | . 100 | 71.275 | 1.250 |
|  |  | 648.890 | 8.890 | 5.700 | . 300 | 191.110 | 22.220 | 63.025 | 2.500 |
|  |  | 471.110 | 8.890 |  | . 150 | 31.120 |  |  | 3.750 |
|  |  | 284.450 | 7.780 | 3.100 | . 300 | 4.000 | . 440 | 33.025 | 2.500 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 13.025 | 0.500 |
|  | FRC + 2 L | 844.450 | 44.450 | 8.850 | . 750 | 524.000 | . 100 | 79.738 | 5.000 |
|  |  | 586.670 | 35.560 | 6.650 | . 550 |  | 13.330 | 65.488 | 1.250 |
|  |  | 391.110 | 53.330 | 4.950 | . 050 | 115.530 | 26.700 | 54.738 | 2.500 |
|  |  | 266.670 | 17.780 | 3.700 | . 500 | 62.220 | 8.890 | 39.738 | -100 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 17.238 | 100 |
|  | TLC | 862.220 675.560 | 8.890 35.560 | 10.900 7.500 | .500 .200 | $144.450 \quad 15.560$ |  | $31.750 \quad 0.500$ |  |
|  |  | 675.560 666.670 | 44.450 | 5. 5.450 | - 150 |  |  |  |  |
|  |  | 213.340 | 17.780 | 4.350 | . 150 |  |  |  |  |
|  |  | 128.000 | 17.778 | 0.000 | 0.000 |  |  |  |  |



Head Lift Manoeuvre


|  |  | IEA $A^{\text {r }}$ | LIFT | EUVRE |  | KESFIR | TORY PU | ON MANOEU |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | IUNG VGLUME | Value | $\begin{array}{r} (u V) \\ \pm S . D \end{array}$ | VALUE | $\begin{aligned} & (K . g) \\ & \mathrm{S.D} \end{aligned}$ | VALUS | $\begin{aligned} & \text { (uv) } \\ & \pm \text { s.n } \end{aligned}$ | $\begin{gathered} \text { Pmusc (c } \\ \text { VALUE } \end{gathered}$ | $\begin{aligned} & \mathrm{H2O} \\ & \text { S.D } \end{aligned}$ |
| FM | FRC | 398.400 | 31.200 | 13.900 | . 787 | 418.750 | 97.227 | 71.750 | 3.536 |
|  |  | 345.000 | 41.480 | 11.900 | $1.198^{\circ}$ | 305.830 | 83.674 | 73.714 | 3.233 |
|  |  | 179.090 | 33.644 | 6.760 | . 943 | 183.630 | 59.928 | 61.458 | 9.133 |
|  |  | 98.182 | 25.713 | 3.818 | 1.616 | 142.290 | 55.095 | 56.500 | 4.243 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | $F R C+0.5 L$ | 400.000 | . 100 | 12.900 | 1.032 | 660.000 | 20.000 | 123.082 | 1.250 |
|  |  | 368.400 | 22.286 | 9.122 | 2.013 | 302.500 | 24.749 | 88.046 | 3.232 |
|  |  | 342.500 | 28.723 | 7.543 | . 784 | 222.500 | 77.075 | 82.040 | 7.365 |
|  |  | 280.000 | 30.000 | 7.000 | . 119 | 145.800 | 66.544 | 63.589 | 6. 708 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 48.750 | 22.127 | 59.228 | 4.567 |
|  |  |  |  |  |  | 0.000 | 0.000 | 4.332 | . 100 |
|  | FRC + 1L | 440.000 | 20.000 | 14.200 | . 789 | 510.000 | 56.569 | 125.564 | 3.536 |
|  |  | 360.000 | 37.500 | 11.700 | . 509 | 310.000 | 70.711 | 95.189 | 8.309 |
|  |  | 325.000 | 22.360 | 10.065 | . 875 | 265.000 | 2.357 | 85.356 | . 884 |
|  |  | 288.330 | 36.938 | 7.300 | . 570 | 70.000 | 20.000 | 74.314 | 2.500 |
|  |  | 260.000 | 52.786 | 4.600 | . 460 | 24.000 | 15.572 | 60.564 | 5.000 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 8.064 | . 100 |
|  | FRC + 2 L | 390.000 | 25.820 | 14.272 | . 522 | 250.000 | 10.000 | 101.408 | 2.500 |
|  |  | 362.000 | 10.860 | 11.085 | 1.130 | 190.000 | 70.000 | 77.658 | 3.536 |
|  |  | 336.670 | 20.540 | 11.000 | . 500 | 150.000 | 50.000 | 72.15 ? | 2.475 |
|  |  | 324.000 | 20.736 | 9.000 | . 243 | 80.000 | 10.000 | 64.846 | 3.977 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | 56.657 0.000 | 13.611 0.000 | 58.387 16.408 | 5.156 .100 |
|  | TLC | 365.000 | 15.000 | 13.287 | . 129 | 200.00010 .000 |  | 33.500 | . 500 |
|  |  | 344.000 | 32.863 | 11.400 | . 253 |  |  |  |  |
|  |  | 288.000 | 22.804 | 10.000 | . 100 |  |  |  |  |
|  |  | 263333 | 5.777 | 6.217 | . 704 |  |  |  |  |
|  |  | 215.000 | 25.981 | 6.100 | . 765 |  |  |  |  |
|  |  | 172.500 | 4.045 | 0.000 | 0.000 |  |  |  |  |

10 cm



Head Lift Nanoeuvre



| SUBJECT | LUNG VOLUME | HEAD LIFT MANOEUVRE |  |  | RESPIRATORY PUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { EMG (uV) } \\ \text { VALUE } \pm \text { S.D } \end{gathered}$ | $\begin{array}{r} \text { HL }(\mathrm{Kg}) \\ \text { VALUE } \pm \text { S.D } \end{array}$ |  | $\begin{array}{r} \text { EMG (uV) } \\ \text { VALUE } \pm \text { S.D } \end{array}$ |  | Pmusc (cm H2O) <br> VALUE $\pm$ S.D |  |
| AS | FRC | $880.000 \quad 80.000$ | 21.400 | . 594 | 592.000 | 67.882 | 86.250 | 3.536 |
|  |  | $820.000 \quad 32.800$ | 13.410 | 1.009 | 236.000 | 39.598 | 63.750 | 1.768 |
|  |  | $800.000 \quad 32.000$ | 12.400 | . 542 | 188.000 | 39.598 | 58.750 | 1.768 |
|  |  | 720.200101 .320 | 12.204 | . 497 | 52.000 | 16.971 | 52.500 | 3.536 |
|  |  | $748.000 \quad 67.880$ | 10.317 | . 683 | 12.000 | 5.657 | 43.750 | 1.748 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | FRC+0.5L | $992.000 \quad 32.000$ | 16.200 | . 824 | 296.000 | 16.000 | 83.005 | 3.536 |
|  |  | $906.400 \quad 93.900$ | 12.300 | . 314 | 136.000 | 56.569 | 68.005 | 3.535 |
|  |  | $900.000 \quad 84.850$ | 10.938 | . 795 | 120.000 | 8.000 | 64.670 | 5.000 |
|  |  | $880.000 \quad 99.600$ | 10.834 | . 772 | 88.600 | 3.677 | 59.255 | 3.536 |
|  |  | $778.670 \quad 75.420$ | 9.813 | . 383 | 68.500 | 16.263 | 51.505 | 5.657 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 5.505 | . 100 |
|  | FRC+1L | 1344.000226 .270 | 15.100 | 1.701 | 428.000 | 50.912 | 108.213 | 31.820 |
|  |  | $981.330 \quad 18.850$ | 10.465 | . 942 | 186.000 | 31.113 | 76.963 | 5.303 |
|  |  | $910.400 \quad 246.640$ | 10.120 | 1.442. | 98.676 | 37.726 | 67.963 | - 707 |
|  |  | $706.130 \quad 57.320$ | 6.824 | . 721 | 42.000 | . 125 | 60.713 | 7.071 |
|  |  | 559.250104 .520 | 5.819 | . 519 | 39.000 | . 633 | 41.463 | 11.667 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 10.713 | .100 |
|  | FRC+ 2 L | $1184.000 \quad 32.000$ | 14.031 | . 556 | 528.000 | 22.627 | 89.209 | 1.768 |
|  |  | $906.430 \quad 72.950$ | 8.929 | .101 | 204.000 | 28.284 | 76.709 | 3.536 |
|  |  | 807.870166 .667 | 7.648 | . 739 | 65.200 | 7.354 | 69.209 | 3.536 |
|  |  | 707.700153 .870 | 6.543 | . 348 | 26.000 | 5.657 | 62.542 | 5.890 |
|  |  | $564.340 \quad 70.800$ | 4.705 | 1.158 | 6.000 | 1.500 | 52.959 | 7.071 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 20.459 | . 100 |
|  | TLC | 1104.00067 .880 | 13.500 | . 519 | 640.000 | . 100 | 32.000 | . 500 |
|  |  | $970.670 \quad 75.420$ | 10.658 | . 763 |  |  |  |  |
|  |  | $857.600 \quad 9.050$ | 8.133 | .645 |  |  |  |  |
|  |  | 809.810158 .690 | 7.120 | . 697 |  |  |  |  |
|  |  | $705.330 \quad 54.690$ | 6.982 | . 502 |  |  |  |  |
|  |  | $70.730 \quad 13.570$ | 0.000 | 0.000 |  |  |  |  |


|  |  | HEAD LIFT MA | OEUVRE |  | RESPIRA | TORY FUN | MANOEUV |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | LUNG VOLUME | $\begin{gathered} \text { EMG (uV) } \\ \text { VALUE } \pm \text { S.D } \end{gathered}$ | $\begin{array}{r} \text { HL }(\mathrm{Kg} \\ \text { VALUE } \pm \mathbf{S} \end{array}$ |  | EMG <br> VALUE | $\begin{array}{r} \text { (uV) } \\ \pm \text { S.D } \end{array}$ | Pmusc (cm VALUE $\pm$ | $\begin{aligned} & \mathrm{H} 2 \mathrm{O}) \\ & \text { S.D } \end{aligned}$ |
| AS | FRC | 1504.00032 .000 | 23.600 | . 621 | 436.000 | 130.108 | 123.750 | 15.910 |
|  |  | $1200.400 \quad 23.560$ | 16.345 | . 692 | 103.500 | 21.920 | 91.250 | 3.536 |
|  |  | 1129.300133 .890 | 15.461 | . 607 | 82.000 | 8.485 | 77.500 | 3.536 |
|  |  | $1133.100 \quad 75.150$ | 12.128 | . 421 | 51.332 | . 020 | 74.500 | . 707 |
|  |  | $948.800 \quad 33.940$ | 8.279 | 1.866 | 32.0101 | 1.3 .34 | 38.750 | 1.768 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | FRC+0.5L | 1440.00028 .890 | 22.500 | . 910 | 308.000 | 5.657 | 103.005 | 3.536 |
|  |  | $1189.200 \quad 5.200$ | 15.045 | . 487 | 102.000 | 42.426 | 71.755 | 9.546 |
|  |  | 1035.000125 .000 | 11.473 | . 252 | 36.000 | 5.657 | 56.755 | 5.303 |
|  |  | 770.000183 .360 | 9.069 | . 513 | 12.000 | 5.657 | 47.505 | 1.414 |
|  |  | $282.800 \quad 1.200$ | 7.131 | . 111 | 8.000 | 8.000 | 33.005 | 10.507 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 5.505 | .100 |
|  | FRC+1L | $1544.000 \quad 33.940$ | 20.040 | . 987 | 492.000 | 16.971 | 127.213 | 24.749 |
|  |  | $1270.000 \quad 77.320$ | 13.421 | . 531 | 131.000 | 32.527 | 83.213 | 17.678 |
|  |  | $1164.600 \quad 50.100$ | 12.375 | . 015 | 42.688 | 18.854 | 65.401 | 3.094 |
|  |  | $861.330 \quad 64.100$ | 7.981 | . 842 | 34.000 | 5.657 | 58.838 | 15.026 |
|  |  | 416.000 .100 | 5.935 | . 131 | 22.000 | 8.485 | 35.713 | 7.071 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 10.713 | . 100 |
|  | FRC+2L | $1496.000 \quad 33.940$ | 19.744 | 1.834 | 496.000 | 16.000 | 140.459 | 5.000 |
|  |  | $1172.800 \quad 65.620$ | 13.993 | . 917 | 67.532 | . 662 | 74.834 | . 884 |
|  |  | 1067.900125 .420 | 10.150 | . 071 | 31.500 | 16.263 | 65.459 | 7.071 |
|  |  | $872.960 \quad 39.060$ | 7.094 | . 075 | 24.000 | 11.314 | 55.459 | 8.839 |
|  |  | $233.600 \quad 4.530$ | 5.983 | . 829 | 10.000 | 10.000 | 42.459 | 4.243 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 20.459 | . 100 |
|  | TLC | 1616.000 158.390 | 17.238 | 3.315 | 440.000 | . 100 | 32.000 | . 500 |
|  |  | $1249.420 \quad 7.670$ | 11.506 | . 508 |  |  |  |  |
|  |  | $1073.150 \quad 50.100$ | 9.073 | . 477 |  |  |  |  |
|  |  | 823.780115 .080 | 6.688 | . 375 |  |  |  |  |
|  |  | $292.000 \quad 28.280$ | 4.945 | . 163 |  |  |  |  |
|  |  | 32.0005 .820 | 0.000 | 0.000 |  |  |  |  |




Head Lift Kanoeuvre



3 cm


|  |  | HEAD LIFT M | OEUVRE |  | RESPIRAT | RY FUNC | MANOEUV |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | LUNG VOLUME | $\begin{gathered} \text { EMG (uV) } \\ \text { VALUE } \pm S . D \end{gathered}$ | $\begin{array}{r} \text { HL } \\ \text { VALUE } \pm \end{array}$ |  | $\begin{gathered} \text { EMG } \\ \text { VALUE } \end{gathered}$ | $\begin{aligned} & \text { uV) } \\ & \text { S.D } \end{aligned}$ | Pmusc ( VALUE | $\begin{aligned} & \text { H20) } \\ & \text { i.D } \end{aligned}$ |
| CW | FRC |  | 9.000 | 1.032 | 146.667 | 6.285 | 86.250 | 5.303 |
|  |  | 786.670 697.780 81.710 | 6.100 | 1.332 | 47.964 | 3.143 | 57.500 | 1.768 |
|  |  | 629.930119 .840 | 4.773 | . 081 | 45.036 | 3.143 | 46.250 | 1.768 |
|  |  | $406.670 \quad 47.140$ | 3.912 | .158 | 11.853 | 1.571 | 35.625 | . 884 |
|  |  | $192.890 \quad 33.940$ | 1.607 | . 152 | 0.000 | 3.143 | 18.750 | 1.768 |
|  |  | 19.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | FRC+0.5L | $791.110 \quad 37.710$ | 7.719 | . 504 | 137.780 | 18.856 | 90.796 | 3.536 |
|  |  | $589.310 \quad 77.070$ | 4.830 | . 325 | 77.778 | 6.285 | 69.129 | 2.358 |
|  |  | $453.330 \quad 6.290$ | 3.513 | . 481 | 39.409 | 3.350 | 52.046 | 1.768 |
|  |  | $268.890 \quad 15.710$ | 2.614 | . 161 | 4.444 | 4.444 | 34.546 8.296 | 1.768 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 8.296 | -100 |
|  | FRC+1L | $960.000 \quad 35.560$ | 7.900 | . 460 | 153.330 | 9.428 | 81.591 | 3.536 |
|  |  | $734.810 \quad 46.090$ | 5.658 | . 082 | 82.418 | 8.448 | 61.384 | . 293 |
|  |  | $511.110 \quad 94.280$ | 4.357 | . 240 | 33.333 | 3.143 | 45.341 | 1.768 |
|  |  | 275.56017 .780 | 3.314 | . 162 | 2.222 | 2.222 | 34.091 | 5.303 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 | 0.000 | 0.000 | 14.091 | . 100 |
|  | FRC+2L | $1066.700 \quad 35.560$ | 7.900 | . 479 | 111.110 | 18.856 | 81.477 | 8.839 |
|  |  | $648.370 \quad 142.580$ | 4.773 | . 081 | 67.778 | 7.857 | 55.852 | . 884 |
|  |  | $366.670 \quad 59.710$ | 4.221 | . 171 | 17.778 | 8.889 | 50.645 | 2.945 |
|  |  | $391.110 \quad 17.780$ | 3.400 | . 321 | 0.000 | 0.000 | 25.227 | . 100 |
|  |  | $0.000 \quad 0.000$ | 0.000 | 0.000 |  |  |  |  |
|  | TLC | $1031.110 \quad 35.560$ | 7.600 | . 460 | 120.000 | 43.998 | 31.500 | . 100 |
|  |  | 637.880111 .960 | 4.715 | . 759 |  |  |  |  |
|  |  | $\begin{array}{rrr}449.630 & 49.240 \\ 214.820 & 2.100\end{array}$ | 3.713 | . 159 |  |  |  |  |
|  |  | $\begin{array}{r}214.000 \\ \hline 40.150\end{array}$ | 0.000 | 0.000 |  |  |  |  |




Head Lift Nanoeuvre


| SUBJECT | LUNG VOLUME | HEAD LIFT MANOEUVRE |  |  |  | RESPIRATORY FUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm 9 . D \end{aligned}$ |  | HL (xHead Mass) <br> VALUE $\pm$ S.D |  | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm \mathbf{S . D} \\ & \hline \end{aligned}$ |  | Pmusc (xPmusc max) VALUE $\pm$ S.D |  |
| LT | PRCFRC+ +5 L | 1.137 .555 .216 .111 | $\begin{aligned} & .247 \\ & .061 \\ & .049 \\ & .024 \end{aligned}$ | $\begin{array}{r} 2.215 \\ 1.665 \\ 1.116 \\ .637 \end{array}$ | $\begin{aligned} & .094 \\ & .109 \\ & .095 \\ & .025 \end{aligned}$ | $\begin{aligned} & .770 \\ & .570 \\ & .326 \\ & .067 \end{aligned}$ | $\begin{aligned} & .009 \\ & .014 \\ & .063 \\ & .008 \end{aligned}$ | .682 .611 .483 .312 | $\begin{aligned} & .039 \\ & .049 \\ & .056 \\ & .046 \end{aligned}$ |
|  |  | 1.126 .775 .553 .421 .212 | .111 .113 .087 .056 .038 | $\begin{aligned} & 2.326 \\ & 1.945 \\ & 1.750 \\ & 1.593 \\ & 1.352 \end{aligned}$ | $\begin{aligned} & .271 \\ & .283 \\ & .086 \\ & .190 \\ & .067 \end{aligned}$ | .746 .073 .027 | .036 .021 .000 | .851 .538 .409 | $\begin{aligned} & .064 \\ & .087 \\ & .059 \end{aligned}$ |
|  | $\mathrm{F}^{\text {R }} \mathrm{C}+1 \mathrm{~L}$ | 1.081 .933 .740 .026 | .105 .181 .210 .035 | 1.652 1.152 .870 0.000 | .067 .075 .154 0.000 | .726 .578 .170 .044 | .009 .081 .010 .015 | 1.000 .844 .560 .446 | .114 .062 .074 .040 |
|  | FRC+2L | 1.155 1.021 .577 .026 | .096 .130 .063 .031 | $\begin{aligned} & 1.924 \\ & 1.489 \\ & .793 \\ & 0.000 \end{aligned}$ | .063 .149 .054 0.000 | .637 .296 .263 .052 | .052 .063 .007 .008 | .821 .650 .574 .480 | .103 .037 .047 .027 |
|  | TLC | $\begin{array}{r} 1.070 \\ 1.025 \\ .787 \\ .178 \end{array}$ | $\begin{aligned} & .089 \\ & .100 \\ & .080 \\ & .044 \end{aligned}$ | $\begin{aligned} & 1.337 \\ & 1.696 \\ & 1.503 \\ & 0.000 \end{aligned}$ | $\begin{array}{r} .153 \\ .065 \\ .044 \\ 0.000 \end{array}$ | . 248 | . 007 | . 361 | . 020 |
|  |  |  |  |  |  |  |  |  |  |


| SUBJECT | LUNG VOLUME | HEAD LIFT MANOEUVRE |  |  |  | RESPIRATORY PUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm \text { S.D } \\ & \hline \end{aligned}$ |  | HL (xHead Mass) VALUE $\pm$ S.D |  | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm \text { S.D } \end{aligned}$ |  | Pmusc (xPmusc max) VALUE $\pm$ S.D |  |
| LT | FRC | $\begin{array}{ll}.222 & .003 \\ .194 & .030\end{array}$ |  | $\begin{array}{rr} 1.120 & .315 \\ .750 & .236 \\ .587 & .159 \end{array}$ |  | $\begin{array}{rl} .917 \\ .424 \\ .097 & .013 \\ .068 \\ \hline 015 \end{array}$ |  | $\begin{aligned} & .815 \\ & .658 \\ & .517 \end{aligned}$ | $\begin{aligned} & .114 \\ & .073 \\ & .048 \end{aligned}$ |
|  |  | 1.250 | . 099 | 1.174 | . 046 | . 912 | . 101 | . 992 | . 146 |
|  |  | 1.2590 | . 018 | . 870 | . 047 | . 242 | . 050 | . 746 | . 072 |
|  | FRC+ +5 L | . 491 | . 061 | . 602 | .035 .037 | . 0611 | .018 .002 | .614 .531 | . 0663 |
|  |  | . 253 | . 014 | . 316 | . 020 |  |  |  |  |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |
|  |  | 1.139 | . 044 | 1.228 | . 501 | . 417 | . 006 | . 894 | . 072 |
|  |  | 1.014 | . 028 | 1.239 | . 099 | . 299 | . 039 | . 790 | . 081 |
|  | FRC+1L | . 736 | . 024 | 1.033 | . 061 | . 049 | . 008 | - 555 | . 082 |
|  |  | .444 0.000 | .018 0.000 | .674 0.000 | .084 0.000 |  |  |  |  |
|  |  |  |  |  |  | . 819 |  | 1.000 | .125 |
|  |  | 1.319 | . 068 | 1.446 | . 2159 | . 181 | . 044 | . 685 | . 074 |
|  | $\because \mathrm{BC}+2 \mathrm{~L}$ | . 611 | . 092 | 1.076 | . 040 | . 097 | . 015 | . 498 | . 031 |
|  |  | .417 0.000 | .034 0.000 | .804 0.000 | .131 0.000 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  | 1.347 | . 033 | 2.370 | -173 | . 226 | . 027 | . 398 | . 025 |
|  | TLC | 1.056 1.042 | . 070 | 1.630 1.185 | . 088 |  |  |  |  |
|  |  | . 333 | . 032 | . 946 | . 058 |  |  |  |  |
|  |  | - 200 | . 031 | 0.000 | 0.000 |  |  |  |  |



Head Lift
Manoeuvre


3 cm

|  |  |  | LIFT M | EUVRE |  | RESPIR | RY PUNC | Manoe |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUBJECT | LUNG VOLUME | $\begin{gathered} \text { EMG (xEMC } \\ \text { VALLUE } \end{gathered}$ | head mass) S.D | $\begin{aligned} & \text { HL (xHe } \\ & \text { VALUE } \end{aligned}$ | $\begin{aligned} & \text { Mass) } \\ & \text { S.D } \end{aligned}$ | $\begin{aligned} & \text { EMG (xAMC } \\ & \text { VALUE } \end{aligned}$ | $\begin{aligned} & \text { ad mass) } \\ & \text { S.D } \end{aligned}$ | Pmusc VALUE | $\begin{aligned} & \text { musc max) } \\ & \text { S.D } \\ & \hline \end{aligned}$ |
| FM | FRC | 2.846 |  |  |  | 2.991 | . 908 | . 571 | . 044 |
|  |  | 2.464 | . 472 | 2.233 | . 248 | 2.185 | . 754 | . 587 | . 042 |
|  |  | 1.279 | . 332 | 1.269 | . 190 | 1.312 | . 522 | . 489 | . 087 |
|  |  | 1.701 0.000 | .0324 0.000 | .717 0.000 | .311 0.000 | 1.016 | . 466 | . 450 | . 046 |
|  | FRC+. 5 L |  |  |  |  |  |  |  |  |
|  |  | 2.631 | . 347 | 1.712 1.416 | .395 .162 | 4.714 2.161 | .480 .331 | .980 .701 | . 038 |
|  |  | 2.446 2.000 | .380 .357 | 1.416 1.314 | .162 .036 | 2.161 1.589 | . 664 | -6.53 | . 077 |
|  |  | $\stackrel{1}{2.000}$ | 0.000 | 0.000 | 0.000 | 1.041 .348 | .550 .183 | . 506 | .068 .050 |
|  | FRC +1 L |  |  |  |  | 3.043 | . 654 | 1.000 | . 056 |
|  |  | 3.143 2.571 | . 452 | 2.196 | . 118 | 2.214 | . 663 | . 758 | . 088 |
|  |  | 2.321 | . 326 | 1.889 | . 184 | 1.893 | - 152 | . 680 | . 026 |
|  |  | 1.060 | . 411 |  |  | - 500 | -179 | . 482 | . 037 |
|  |  | 1.885 1.857 0.000 | a .510 0.000 | .8863 0.000 | .1295 0.000 | . 171 |  | . 482 | . 053 |
|  | FRC+2L |  |  |  |  | 1.357 | . 597 | . 618 | . 046 |
|  |  | 2.405 | . 318 | 1.065 | . 115 | 1.071 | . 434 | . 575 | . 036 |
|  |  | 2.314 | . 313 | 1.689 | . 063 | - 571 | . 112 | . 516 | . 046 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | . 405 | . 126 | . 465 | . 054 |
|  | TLC |  |  | 2.140 | . 070 | 1.429 | . 173 | . 267 | . 011 |
|  |  | 2.057 | .310 | 1.877 | . 019 |  |  |  |  |
|  |  | 1.881 | - 176 | 1.167 | . 144 |  |  |  |  |
|  |  | 1.836 1.232 |  | 1.167 0.000 | .155 0.000 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |


| SUBJECT | LUNG VOLUME | HEAD LIFT MANOEUVRE |  |  |  | RESPIRATORY FUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm \text { S.D } \end{aligned}$ |  | HL (xHead Mass) <br> VALUE $\pm$ S.D |  | $\begin{gathered} \text { EMG }(x \mathrm{xR} \\ \text { VALU } \end{gathered}$ | $\begin{aligned} & \text { head mass) } \\ & \pm \mathbf{S . 0} \\ & \hline \end{aligned}$ | Pmusc (x Value | $\begin{aligned} & \text { sc max) } \\ & 3 . D \end{aligned}$ |
| PM | FRC | 2.429 | . 969 |  |  | 1.362 | . 534 | 1.000 | . 075 |
|  |  | 1.868 | . 723 | 1.998 | . 114 | . 920 | . 676 | . 774 | . 056 |
|  |  | 1.896 | . 643 | 1.683 | . 188 | . 589 | . 236 | . 634 | . 034 |
|  |  | 1.358 | . 704 | 1.436 | . 076 | . 354 | - 208 | . 538 | . 047 |
|  |  | 1.000 0.000 | .677 0.000 | 1.000 0.000 | .021 0.000 | . 271 | . 125 | . 415 | . 033 |
|  |  | 2.555 | 1.221 | 2.434 | . 195 | 1.380 | . 597 | . 901 | . 034 |
|  |  | 2.110 | . 793 | 1.917 | . 043 | . 594 | . 246 | . 660 | . 045 |
|  | PRC+. 5 L | 1.650 | 1.053 | 1.563 | . 078 | . 224 | - 176 | . 483 | . 022 |
|  |  | . 994 | . 880 | . 938 | . 092 | -199 | -107 | . 427 | . 016 |
|  |  | 1.037 0.000 | .498 0.000 | .863 0.000 | .027 0.000 | . 129 | . 122 | . 382 | . 054 |
|  |  | 2.485 |  |  | . 073 | . 482 | . 289 | . 561 | . 048 |
|  |  | 2.039 | . 729 | 2.008 | . 074 | . 221 | . 093 | . 481 | . 078 |
|  | FRC+1L | 1.553 | . 619 | 1.721 | . 047 | . 159 | . 148 | . 389 | . 080 |
|  |  | 1.846 | . 781 | 1.481 | . 097 |  |  |  |  |
|  |  | $1.54 ?$ 0.000 | .0584 0.000 | 1.273 0.000 | $\begin{array}{r} .114 \\ 0.000 \end{array}$ |  |  |  |  |
|  |  | 1.862 |  |  |  | . 865 | . 319 | . 680 |  |
|  |  | 1.857 | . 750 | 1.829 | . 471 | . 406 | . 156 | . 565 | . 025 |
|  | $\mathrm{FRC}+2 \mathrm{~L}$ | 1.487 | . 534 | 1.506 | . 219 | . 248 | . 108 | . 485 | . 042 |
|  |  | . 847 | . 462 | 1.229 | . 132 | . 083 | . 050 | . 381 | . 031 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |
|  |  | 2.061 | 1.010 | 2.622 | . 045 | 1.104 | . 410 | . 253 | . 013 |
|  |  | 1.542 | . 766 | 2.116 | . 065 |  |  |  |  |
|  | TLC | 1.396 | . 535 | 1.876 | . 107 |  |  |  |  |
|  |  | 1.267 | . 459 | 1.472 | . 022 |  |  |  |  |
|  |  | 1.258 . |  | 1.358 0.000 | $\begin{array}{r} .072 \\ 0.000 \end{array}$ |  |  |  |  |



S: PM


Head Lift Nanoeuvre


| SUBJECT | LUNG VOLUME | HEAD LIFT MANOEUVRE |  |  |  | RESPIRATORY FUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | EMG (xEMG head mass) VaLUE $\pm$ S.D |  | HL (xHead Mass) <br> VALUE $\pm$ S.D |  | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm \mathbf{S . D} \end{aligned}$ |  | Prmusc (xPmusc max) <br> VALUE $\pm$ S.D |  |
| AS | FRC | 1.563 | . 111 | 2.696 | . 253 | 1.156 | . 169 | . 797 | . 267 |
|  |  | 1.547 | . 246 | 2.657 | . 241. | . 461. | . 092 | . 589 | . 190 |
|  |  | 1.461 | . 178 | 2.243 | . 261 | $.367{ }^{\circ}$ | . 089 | - 542 | . 176 |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 | .102 .023 | . 036 | . 485 | .175 .135 |
|  | FRC+ ${ }^{\text {. } 5 \mathrm{~L}}$ |  |  |  |  |  |  |  |  |
|  |  | 1.758 | . 221 | 2.378 | . 292 | . 578 | . 049 | - 767 | - 258 |
|  |  | 1.719 | . 248 | 2.355 | . 286 | . 266 | . 119 |  | . 217 |
|  |  | 1.512 1.520 | .195 0.000 | 2.133 0.000 | .190 0.000 | .234 .173 | . 023 | .598 .548 | .222 .194 |
|  |  |  |  |  |  |  |  |  |  |
|  | $\cdots \mathrm{PC}+1 \mathrm{~L}$ | 2.625 | . 524 | 3.283 | . 534 | . 836 | - 126 | 1.000 |  |
|  |  | 2.625 1.917 | . 097 | 2.275 | . 319 | . 363 | . 072 | . 711 | . 258 |
|  |  | 1.778 | . 537 | 2.200 | . 423 | -193 | . 080 | - 628 | -191 |
|  |  | 1.379 | . 155 | 1.483 | . 231 | . 082 | . 003 | - $5 \times 1$ | . 230 |
|  |  | 1.092 0.000 | .238 0.000 | 1.265 0.000 | .176 0.000 |  |  |  |  |
|  | FRC+2L | 1.770 | . 198 | 1.941 | . 119 | 1.031 | . 076 | . 824 | . 259 |
|  |  | 1.578 | . 375 | 1.663 | . 244 | . 398 | . 068 | . 709 | . 241 |
|  |  | 1.381 | . 344 | 1.422 | . 147 | . 127 | . 018 | . 640 | . 221 |
|  |  | 1.102 0.000 | .173 0.000 | 1.023 0.000 | .303 0.000 | . 051 | . 013 | - 578 | . 224 |
|  |  |  |  |  |  |  |  |  |  |
|  | TLC | 1.896 | . 207 | 2.317 | . 282 | 1.250 | . 039 | . 296 | . 092 |
|  |  | 1.675 | . 070 | 1.768 | - 2229 |  |  |  |  |
|  |  | 1.582 1.378 | . 359 | 1.548 1.518 | .2185 |  |  |  |  |
|  |  | 1.988 | . 031 | 0.000 | 0.000 |  |  |  |  |


$S: \quad A S$

$S: A S$


Head Lift Nianoeuvre


| SUBJECT |  | HEAD LIFT MANOEUVRE |  |  |  | RESPIRATORY FUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LUNG VOLUNE | $\begin{aligned} & \text { EMG (xEMG head mass) } \\ & \text { VALUE } \pm \text { S.D } \end{aligned}$ |  | HL (xHead VALUE $\pm$ | . D ( | $\begin{gathered} \text { EMG (XFPG } \\ \text { VALUE } \end{gathered}$ | $\begin{aligned} & \text { ad mass) } \\ & \text { S.D } \end{aligned}$ | Primusc (x VALUE | $\begin{aligned} & s c \max ) \\ & \text { 3.D } \end{aligned}$ |
| CW | FRC | 2.000 | . 318 | 2.087 | . 331 | . 545 | . 120 | . 737 | . 051 |
|  |  | 1.459 | . 145 | 1.500 | . 148 | . 157 | . 033 | . 575 | .052 |
|  |  | 1.362 | . 121 | 1.289 | . 086 | . 050 | . 020 | .435 | . 044 |
|  |  | . 829 | . 071 | . 881 | . 088 |  |  |  |  |
|  |  | . 510 | . 082 | . 600 | . 030 |  |  |  |  |
|  |  | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |
|  | ${ }^{2} \mathrm{RC}+.5 \mathrm{~L}$ | 1.385 | . 110 | . 900 | . 145 | . 562 | .152 | . 739 | .081 |
|  |  | 1.985 | . 066 | .765 | . 088 | . 249 | . 046 | . 696 | . 079 |
|  |  | . 375 | . 054 | . 475 | . 059 | .104 .049 | .064 .013 | .577 .365 | . 082 |
|  | FRC+1L | 1.905 | . 145 | $\begin{array}{r} 1.113 \\ .783 \\ .655 \end{array}$ | $\begin{aligned} & .073 \\ & .139 \\ & .136 \end{aligned}$ | .687 | . 300 | 1.000 | . 112 |
|  |  | 1.190 | . 110 |  |  | .159 | . 081 | . 659 | . 050 |
|  |  | . 772.220 |  |  |  | .106 | . 053 | . 509 | . 048 |
|  | $F R C+2 L$ | 2.175 |  | 1.518 | . 330 | . 388 | .143 | . 774 | . 063 |
|  |  | 1.044 | . 096 | 1. 807 | . 075 | . 170 | .030 | . 650 | . 063 |
|  |  | . 892 | . 055 | - 587 | . 098 | . 129 | . 110 | . 552 | . 094 |
|  |  | .883 0.000 | .233 0.000 | .466 0.000 | .040 0.000 | . 031 | . 010 | . 433 | . 051 |
|  | TLC | 2.225 | . 217 | 1.543 .180 <br> .975 .084 <br> .683 .087 <br> 0.000 0.000 |  | . 106 | . 067 | .354 | . 020 |
|  |  | 1.763 .808 | . 380 |  |  |  |  |  |  |  |
|  |  | . 294 | . 121 |  |  |  |  |  |  |  |


| SUBJECT | LUNG VOLUME | HEAD LIPT MANOEUVRE |  |  |  | RESPIRATORY PUNCTION MANOEUVRE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | EMG (xEMG head mass) <br> VALUE $\pm$ S.D |  | HL (xHead Mass) <br> VALUE $\pm$ S.D |  | EMG (xEMG head mass) VALUE $\pm$ S.D |  | Pmusc (xPmusc max) <br> VALUE $\pm$ S.D |  |
|  | FRC | 1.116 1.008 .650 .309 0.000 | .201 .280 .116 .080 0.000 | $\begin{array}{r} 1.326 \\ 1.038 \\ .850 \\ .349 \\ 0.000 \end{array}$ | $\begin{array}{r} .138 \\ .069 \\ .077 \\ .051 \\ 0.000 \end{array}$ | .311 .102 .096 .025 | .019 <br> .009 <br> .008 <br> .004 | $\begin{array}{r} .950 \\ .633 \\ .509 \\ .392 \end{array}$ | .095 <br> .044 <br> .039 <br> .025 |
|  | FRC+. 5 L | .943 .725 .430 0.000 | .187 .032 .044 0.000 | 1.050 .764 .568 0.000 | $\begin{array}{r} .123 \\ .143 \\ .063 \\ 0.000 \end{array}$ | .292 .165 .084 .009 | .046 .016 .009 .010 | $\begin{array}{r} 1.000 \\ .761 \\ .573 \\ .380 \end{array}$ | .078 <br> .056 <br> .042 <br> .034 |
| CW | PRC+1L | 1.535 1.175 .817 .441 0.000 | .114 .127 .221 .049 0.000 | $\begin{array}{r} 1.717 \\ 1.230 \\ .947 \\ .720 \\ 0.000 \end{array}$ | $\begin{array}{r} .186 \\ .079 \\ .100 \\ .071 \\ 0.000 \end{array}$ | .325 .175 .071 .005 | .026 .021 .008 .005 | .899 .676 .499 .375 | $\begin{array}{r} .074 \\ .030 \\ .039 \\ .073 \end{array}$ |
|  | F'RC+2L | 1.706 1.037 .626 0.000 | $\begin{array}{r} .118 \\ .329 \\ .053 \\ 0.000 \end{array}$ | $\begin{array}{r} 1.717 \\ 1.038 \\ .739 \\ 0.000 \end{array}$ | $\begin{array}{r} .190 \\ .069 \\ .107 \\ 0.000 \end{array}$ | .236 .144 .038 | .044 .019 .020 | $\begin{array}{r} .897 \\ .615 \\ .558 \end{array}$ | $\begin{aligned} & .132 \\ & .034 \\ & .054 \end{aligned}$ |
|  | TLC | $\begin{array}{r} 1.649 \\ 1.020 \\ .719 \\ .102 \end{array}$ | $\begin{array}{r} .117 \\ .263 \\ .123 \\ .067 \end{array}$ | $\begin{aligned} & 1.652 \\ & 1.025 \\ & .807 \\ & 0.000 \end{aligned}$ | $\begin{array}{r} .183 \\ .216 \\ .075 \\ 0.000 \end{array}$ | . 255 | . 098 | . 347 | . 014 |

S: CW


S: CW


Head Lift Manoeuvre


REGRESSION LINES
NORMALIZED DATA



Head Lift Manoeuvre


S: PM

$S: P M$


Head Lift Nanoeuvre

S: PM


S: PM




Head Lift Manoeuvre


S: CW


S: CW


Head Lift Manoeuvre

[RES'ER TO
CHAPTER VI]



Head Lift
Mianoeuvre.

ALL S. TOC.



Head Lift Manoeuvre

|  |  |
| :---: | :---: |



Sor $3 \mathrm{~cm}: \mathrm{Ymusc}=.528+.112 \times \mathrm{HL}$ Por $3 \mathrm{~cm}:$ Pmusc $=.494+.112 \times \mathrm{HL}$ ror $10 \mathrm{~cm}:$ Pmusc $=.459+.386 \times \mathrm{HL} \quad$ For $10 \mathrm{~cm}: \mathrm{Pmusc}=.494+.386 \times \mathrm{HL}$

| LT |  |  |  | PM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Mouth Pressure } \\ \text { (cm H2O ) } \\ \text { Value } \pm \text { S.D. } \end{gathered}$ |  | $\begin{aligned} & \text { Lung Volume } \\ & \text { (IIters ) } \\ & \text { Value } \pm \text { S.D. } \end{aligned}$ |  | ```Mouth Pressure ( cm H2O) Value 士 S.D.``` |  | Lung Volume ( Liters ) <br> Value $\pm$ S.D. |  |
| 31.750 | 2.250 | 4.125 | 0.125 | 33.500 | 0.500 | 3.525 | 0.075 |
| 24.500 | 0.500 | 3.395 | 0.150 | 28.000 | 0.000 | 3.350 | 0.000 |
| 22.000 | 0.000 | 2.995 | 0.000 | 23.750 | 0.250 | 2.800 | 0.100 |
| 19.500 | 0.500 | 2.475 | 0.070 | 20.000 | 0.000 | 2.550 | 0.000 |
| 16.500 | 0.000 | 1.845 | 0.000 | 17.750 | 0.750 | 2.125 | 0.025 |
| 14.250 | 1.250 | 1.245 | 0.000 | 14.000 | 0.000 | 1.800 | 0.000 |
| 12.000 | 0.500 | 0.795 | 0.000 | 12.500 | 1.500 | 1.475 | 0.075 |
| 8.500 | 0.500 | 0.365 | 0.030 | 11.000 | 0.000 | 1.100 | 0.000 |
| 0.000 | 0.000 | 0.000 | 0.000 | 7.000 | 0.000 | 1.000 | 0.000 |
|  |  |  |  | 6.500 | 0.000 | 0.700 | 0.000 |
|  |  |  |  | 0.000 | 0.000 | 0.000 | 0.000 |
| AS |  |  |  | CW |  |  |  |
| $\begin{gathered} \text { Mouth Pressure } \\ \text { ( cm H2O) } \\ \text { Value } \pm \text { S.D. } \end{gathered}$ |  | $\begin{gathered} \text { Lung Volume } \\ \text { (Liters }) \\ \text { Value } \pm \text { S.D. } \end{gathered}$ |  | Mouth Pressure ( cm H2O ) Value $\pm$ S.D. |  | $\begin{gathered} \text { Lung Volume } \\ \text { (Liters }) \\ \text { Value } \pm \text { S.D. } \end{gathered}$ |  |
| 32.000 | 0.500 | 3.325 | 0.050 | 31.500 | 0.000 | 2.550 | 0.025 |
| 30.000 | 0.000 | 3.100 | 0.000 | 29.250 | 1.250 | 2.375 | 0.025 |
| 29.000 | 0.000 | 2.950 | 0.000 | 26.500 | 0.000 | 2.100 | 0.000 |
| 27.000 | 0.000 | 2.750 | 0.000 | 21.000 | 0.000 | 1.725 | 0.125 |
| 25.000 | 0.000 | 2.500 | 0.000 | 15.500 | 0.000 | 1.125 | 0.125 |
| 21.000 | 0.000 | 2.150 | 0.100 | 9.500 | 0.000 | 0.600 | 0.000 |
| 18.000 | 0.000 | 1.650 | 0.000 | 8.000 | 1.000 | 0.225 | 0.025 |
| 15.000 | 0.000 | 1.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12.000 | 0.000 | 1.150 | 0.000 |  |  |  |  |
| 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |  |

subnct: L.\%.
RELAXATION MAN.

subuecti 4.s.
RELAXATION MAN.


SHBEETI P.K.

## Suenct: c.w.

RELAXATION MAN.


## Note:

The following manoeuvres were performed at a head height of 3 cm above the bed.

| Manoeuvre | Symbol |
| :---: | :---: |
| Recording No. 1 |  |
| Recording No. 2 | $\ldots \ldots-\ldots$ |


| SUBJECT | $\begin{aligned} & \text { LUNG } \\ & \text { VOLUME } \end{aligned}$ | MEASUREMENT NO. 1 <br> EMG  <br> UV MASS Kg | MEASUREMENT NO. 2 <br> EKG MASS <br> MV Kg |
| :---: | :---: | :---: | :---: |
| LT | FRC | 774.448 10.344 <br> 341.899 7.953 <br> 110.942 5.429 <br> 57.364 2.964 | 591.372 10.032 <br> 324.763 7.365 <br> 147.968 4.837 <br> 75.364 2.892 |
|  | FRC+2L | 693.330 8.900 <br> 640.000 7.350 <br> 355.560 3.800 <br> 33.036 0.000 | 693.330 8.800 <br> 586.670 6.350 <br> 337.780 3.500 <br> 1.924 0.000 |
| PM | FRC | 429.600 32.687 <br> 303.520 10.702 <br> 145.446 5.817 <br> 72.469 2.202 | 367.200 31.113 <br> 386.480 13.098 <br> 212.734 7.703 <br> 123.895 5.434 |
|  | FRC+2L | 372.860 12.215 <br> 316.130 6.000 <br> 303.264 8.757 | 351.140 9.955 <br> 357.210 16.000 <br> 344.736 9.243 |


| SUBJECT | $\begin{aligned} & \text { LUNG } \\ & \text { VOLUME } \end{aligned}$ | MEASUREMENT NO. 1 <br> EMG MASS <br> $u V$ Kg | MEASUREMENT NO. 2 <br> EMG MASS <br> uV Kg |
| :---: | :---: | :---: | :---: |
| AS | FRC | 832.000 11.858 <br> 618.680 12.701 <br> 680.120 9.634 | 768.000 12.942 <br> 821.520 11.707 <br> 815.880 11.000 |
|  | $\mathrm{F}^{\text {R }} \mathrm{C}+2 \mathrm{~L}$ | 958.016 8.828 <br> 925.728 8.387 <br> 598.400 6.196 <br> 514.272 3.547 | 854.848 9.030 <br> 690.016 6.909 <br> 816.000 6.891 <br> 614.000 5.863 |
| CW | FRC | 788.470 10.644 <br> 544.490 6.564 <br> 503.300 6.029 <br> 305.290 4.257 <br> 161.220 2.660 | 633.750 8.556 <br> 493.370 7.236 <br> 465.580 5.833 <br> 284.350 3.851 <br> 201.440 2.860 |
|  | FRC+ 2 L | 755.550 8.153 <br> 386.820 3.554 <br> 321.100 2.382 <br> 384.110 2.223 | 791.110 5.811 <br> 355.400 3.872 <br> 313.560 3.018 <br> 250.130 2.067 |




Head Lift Manoeuvre



Head Lift Manoeuvre


| SUBJECT | $\begin{gathered} \text { LUNG } \\ \text { VOLUME } \end{gathered}$ | MEASUREMENT NO. 1 | MEASUREMENT No. 2 <br> EilG Pmusc <br> uV cm H2C |
| :---: | :---: | :---: | :---: |
| AS | FRC | 659.882 89.786 <br> 227.598 56.982 <br> 227.598 56.982 <br> 35.029 56.036 <br> 6.343 45.518 | 524.118 82.714 <br> 275.598 61.982 <br> 148.402 60.518 <br> 68.971 48.964 <br> 17.657 41.982 |
|  | FRC+2L | 505.373 87.441 <br> 232.284 80.245 <br> 72.558 65.673 <br> 20.343 68.432 | 550.627 90.977 <br> 175.716 73.173 <br> 57.842 72.745 <br> 31.657 56.652 |
| CW | FRC | 161.040 64.821 <br> 47.200 53.018 <br> 24.063 40.518 | 226.760 66.509 <br> 64.800 49.482 <br> 11.493 36.982 |
|  | FRC+2L | 181.778 67.209 <br> 52.871 60.193 <br> 82.770 54.782 <br> 7.968 36.202 | 93.782 70.745 <br> 68.169 55.547 <br> 9.230 43.588 <br> 14.254 40.918 |


$E R C+2 L$

s: PM



$F R C+2 L$
$S: A S$


## APPENDIX D

## A MODEL OF THE NECK

Assume that the neck behaves like a hinge. The axis of rotation is located in the middle of the neck, as shown in figure 1.


## FIGURE 1

The mathematical analysis consists of finding the force $F_{1}$ that is generated to support the weiaht mg. The method that is used here is the calculation of the total moment at the axis of rotation. From the geometry of the system, the force $F$, generated by the muscle, is found.

At equilibrium, the total moment around point $A$ is:

$$
F_{1} \times L \sin \beta-\left(m g+F_{2}\right) \times L \cos \beta=0 \quad D .1
$$

where $F_{1}=F \cos \alpha$ and $F_{2}=F^{\prime} \sin \alpha$.

By solving equation D.1, one gets an expression for the force F generated by the SCM muscle. This force is:

$$
F=m g /\left(\frac{a}{c} \cos \alpha-\sin \alpha\right) \quad \text { D. } 2
$$

where mg is the total weight lifted during a specific manoeuvre.
The complexity of the neck system does not allow $\alpha$ to be greater than 45 degrees, 1.e., $0^{\circ}<\alpha<45$. This implies that $\cos \alpha$ varies between 1 and 0.707 , and $\sin \alpha$, between 0 and 0.707 . These variations are small compared to the variation of the ratio $a / c$. As $\alpha$ increases, the ratio $a / c$ increases a lot because a increases and c decreases. Therefore, since mg is constant during a specific manoeuvre, the increase in head neight gives rise to a decrease in the force $\vec{F}$ generated by the muscle to perform the same head iff. This decrease is inversely proportional to the ratio a/c.

The model applies also to RM manoeuvres. The weight ma has to be replaced by a system which has the same effect on the muscle. This system consists of representing the respiratory system by a piston in which a negative pressure exists. This pressure represents the inspiratory pressure performed during the manoeuvre.

REFERENCES

## EEEEFENCES

1. Agostoni, E. and P. Mognori. Deformation of the chest wall curing treathing efforts. J. Appl. Physicl. 21 (6): 1827-1832, 1966.
2. Basmajian, J.V. Muscle alive, their functions related by ENG. The Williams \& Wilkins compagny, 525p., 1974.
3. Eethea, R.M., B.S. Euran, and T.L. Eoullicn. statistical methods for engineers and scientiste. Dekker inc. 583p., 1975.
4. Eigland, E. and O.C. Lippold. Felaticn betweer force, velccity, and integrated electrical activity in human muscles. J. Ehysiol. 123: 214-224, 1954.
5. Eigland-Fitchie, B. ELC reccrdings and kow they are affected Ly fatigue. Am. Rev. Respir. Dis., 119: S597. 1979.
6. Camprell, E.J.N.. An electrmyographic examinaticn of the role cf the intercostal muscles in breathing in man. J. Physicl. 129: 12-26, 1955a.
7. Campbell, E.J.M.. The role of the scalene anc sterrocleiaomastoid muscles in breathing in normal subjects. An electrocyographic study. J. Anat. 89: 378-386, 1955b.
8. Clcse, J.R., E. L. Nickle, and E.N. Tcićc. Motcr-unit acticn-potential counts: their significance in isometric and isotonic contractions. J. Bone \& Joint Surg. 42-A: 1207-1222, 1960.
9. Cnockaert, J.C., C. Lensel, and E. Pertuzon. Relative contribution of individual muscles to the isometric contraction of a muscular group. J. Bicmechanics 8: 191-197, 1975.
10. Danon, J., et al. Relationship cf inspiratory muscle electromyograms to pressure and lung volume during static inspiratory effort. Physiologist 14:128, 1971.
11. Danon, J., W.S. Druz, N.E. Goldberg, and J.T. Sharp. Function of the isolated paced diaphragm and the cervical accessory muscles in Cl quadriplegics. Am. Rev. Respir. Dis. 119: 909-919. 1979.
12. De Bruin, H. Aspects of aralysis and processing cf electromycgraphic signals. Ph.D. Thesis Hamilton, Ont., Can.: NicMaster University, 1976.
13. De Lucâ, C.J.. A model for a motor unit train recordéa curing constant force isometric contractions. Eicl.

Cyternetics 19: 159-167, 1975.
14. De Luca, C.J., and E.J. Vancyk. Derivation cf scric Farameters cf mycelectric signals reccrdec durirg sustain $\in \dot{C}$ constant force iscmetric contractions. Licrly J. 15: 1167-1180. 1575.
15. De Luca, C.J.. Ftysiolcgy ard mathematics of mycelectric signals. IEEE Trars. on Bicmed Erg BME-26(6): 313-325, 1979.
16. Druz, w. $c .$, et al. Apprcaches to assessing respiratcry muscle function in respiratcry ciisease. Am. Rev. respir. Eis. l19(2): 145-149, 1979.
17. Druz,. $\operatorname{sis.}$ ana J.T. Sharc. Artivity cf respiratcry muscles in upright and recunbent humans. J. Appl. Physicl.: resfir. Envircn. Exercise Physiol. 51(6): 1552-1561, 1981.
18. Figini, M. M. and B. Mambritc. Mathematical analysis of compcund EkC signals. Abstract from the fourth corigress Of I.S.E.K., 1979.
19. Creen, J.F. and D. Margeriscr. Statistical treatment of experimertal data., Elsevier, 382p., 1979.
20. Hef, A.L. and J.W. Van Len Perg. Linearity between the weighted sum of the ENGS cf the human Tricefs surae and the tctal tcrque. J. Biomechanics 19: 529-539, 1977.
21. Huagins, E.S., F.A. Parker, and R.N. Scott. EMC versus iscmetric force anc muscle length. Abstract from the fourth congress of I.S.E.K., 1979.
22. Knuttgen, Fi.C., J.F. Pattcn, and J.A. Vogel. An ergcmeter for concentric and eccentric muscular exercise. J. Appl. Physicl.: Respirat, Environ. Exercise Physicl. 53(3)" 784-788, 1982.
23. Koepke, C.H., A.J. Nurphy, E.M. Smith, and D.G. Lickinscn. Sequence of action of the diaphragmi and I.C. muscles during resciration. l- Inspiration. Arch. Fhys. Med. 39: 426-430, 1958.
24. Komi, P.V. and J.H.T. Viitasalo. Signal characteristics of EMC at different levels of muscle tension. Acta. Physicl. Scand. 96: 267-276, 1976.
25. Kurcaa, E., V. Klissouras, and J.H. Milsum. Electrical and metabclim activities and fatigue in human iscmetric contraction. J. Appl. Physicl. $29(3): 358-367,1970$.
26. Lynn, P.A., N.D. Eettles, A.D. Hughes, and S.W. Johnson. Influences cf electrode geonetry on bipclar recordings of the surface electrocyogram. Nied. \& Eiol. Eng. \& Conput. 16: 651-660, 1978.
27. Lering, H.S. and J.Nead. Action of the diaphragm on the rib cage inferred from a fcrcebalance analysis. J. Appl. Physicl.: Fesf. Envircn. Exercise Physicl. 53(3): 756-760, 1982.
28. Manns, A. and $K$. Spreng. EMC amplitude and frequency at different muscular elongations under constant masticatory force or EMG activity. Acta Physicl. Latinc Ani. 27: 259-271, 1977.
29. Milner-Brcwri, H.S., F.B. Stein, and F. Yemm. The crierly recruitmert of human motor units during vcluntary isonctric contractions. J. Physicl. 230: 359-370, 1973t.
30. Milner-Ercwn, H.S. and F.E. Stein. The relaticr tetween the surface electromyogram and muscular fcrce. J. physicl. 246: 549-569, 1975.
31. Uissilurc, W., H. Kirschner, and S. Kczolcwski. Electromyographic manifestation of fatigue curing work of different intensity. Acta Physicl. Polcr. 13: 11-23, 1962
32. Mcore, A.D.. Synthesized EMC waves and their applicaticns. Amer. J. Phys. Med. 46: 1302-1316, 1967.
33. Nurphy, A.J. et al. SGquence cf action of the ciaphragn and I.C. muscles curing respiraticn. 1- Inspiration. Arch. Phys. Med. 40: 337-342, 1958.
34. Mcuntcastle, V.E.. Medical Physiclcgy., Ncsty, vcl.2, 1999F.. 1980.
35. Netter, F.H. Nervous System., Ciba vol. 1, 168p., 1977.
36. Pansky, E. and E.L. House. Review of Cross Anatomy., Macmillan, 508p., 1975.
37. Pernkopf, E.. Atlas of Topographical and Applied Human Anatomy. vol. $1,1963$.
38. Ralston, fi.J.. Uses and limitations of electromycgraphy in the quantative study of skeletal muscle function. An. J. Orthociontics, 521-530, 1961.
39. Raper, A.J. et al. Scalene and Sternomastoid muscle function. J. Appl. Physiol. 21: 497-502, 1966.
40. Selkurt, E.E. Physiology., Little Brown Compagny, 879p., 1976.
41. Sharp, J.T. et al. Kespiratcry muscle function in patients with chronic obstructive pulmonary disease: Its relaticnship to disability and to respiratory therapy. Am. Rev. Respir. Dis. 110 (Supplement No.6. part 2): 154-167, 1974.
42. Stuler, F.B. aná C.J. de Luca. The relation tetween the myoelectric signal anc physiclogical prcperties of constantforce iscnietric contractions. Encephal end Clin. Heurol. 45: 681-698, 1978.
43. Tckizane, I. et al. Electromyographic studies on the human respiratcry muscles. Jap. J. Ehysicl. 2: 232-247, 1952.
44. Varwick, F., L. Willizms, and P. Longman. Gray's Anatony., 562p., 1973.
45. Woocis, J.J. and B. Erigland-Eichie. Integrated surface EMC vs force relationstif and muscle fibre type composition and distribution. Fed. Prcc. 37: 786, 1978.
46. Zuniga, E.N. and D.C.Simons. Non-linear relationship between averaged electromyogram potential and muscle tension in normal subjects. Arch. Phys. Meć. and Rehab., 613-620, 1969.


[^0]:    FIGURE 6.1 : Reproduction of the data for the Head Lift Manoeuvre

