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Abstract 

A model of the chemostat involving two populations of microorganisms competing 

for two perfectly substitutable, growth limiting nutrients is developed. To describe 

nutrient uptake, a general class offunctions is used which allows for the effects that the 

consumption of one resource may have on the consumption ofthe other. It includes 

as aspecial case the model studied by Waltman, Hubbell and Hsu [21] in which they 

generalize Michaelis-Menten functional response for a single resource to two perfectly 

substitutable resources. It also generalizes the model studied by Leon and Tumpson 

[12] where the consumption of each resource is unaffected by the consumption of 

the other. Analytical methods are used to obtain information about the qualitative 

behaviour of the model. Interesting similarities are found between both the local 

and global behaviour in this model and in the model for perfectly complementary 

resources. 
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Chapter 1 

Introduction 

1.1 The Chemostat 

The chemostat is a laboratory apparatus used in the culturing of microorganisms. It 

was developed to provide a controlled environment in which the growth of microbial 

populations could be studied under nutrient limitati<?_~ (see Novick and Sziliard [15]). 

This culturing technique, described below, is used in industry for the simulation of 

biological waste decomposition or water purification by microorganisms (see Yang 

and Humphrey [22]) as well as the economical production of useful microorganisms 

(see Herbert, Elsworth and Telling [7]). 

The apparatus can be thought to consist of three chambers: a feed bott1~-'-~ 

culture vessel and a receptacle (see figure A.1).
1 
The culture vessel, which is continu­

-"--------~ ---- ­ -
ously stirred, contains a suspension of one or more populations of microorganisms. A 

steady stream of nutrient is pumped in from the feed bottle at a constant rate while 

medium is removed to the receptacle ~t Jhe ~~me_ rate, thus maintaining constant 
···----~ 

y<:>_ll,!me. As the contents of the culture vessel are continuously stirred, nutrients, mi­

croorganisms and byproducts are removed in proportion to their concentrations. The 

chemical composition of the nutrient in the feed bottle is controlled so that it contains 

near optimal concentrations of all required growth factors vy:ith the excep~i-~n of t_llg~~ 

':l:g_c!E::El~~~sti_g_<:~._tio!l, the concentrations of which are controlled by the experimenter. 

In contrast with the batch culture technique, in which an enriched mixture of 

1 




2 CHAPTER 1. INTRODUCTION 

nutrients is added to a small sample of environmental medium in a closed culture 

vessel, the culturing method described above provides the microorganisms with a 

continuous supply of nutrient and is thus referred to as a continuous culture. The 

environment approximated by the chemostat is that of a simple lake, where resource 

densities are generally much lower than the high nutrient levels found in batch cul­

tures. The properties which become important in mathematical modelling are that 

t_l!~fQ!!<:~.!!t_r_~tign of nutrient in the feed bottle_ and the input flow rate are corl:­

trolled_hy_the_investigator, the <:ulture vessel has constant vqJlJ..m~, its contents are 

well-stirred, and all external factors, such as temperature, are fixed. 

In this thesis we will be focussing on two-species competition in the chemostat 

for two limiting resources. The competition is assumed to be exploitative, that is, the 

species compete only by consuming the common pool of nutrients. 



3 CHAPTER 1. INTRODUCTION 

1.2 Thesis Outline 

In this thesis we examine exploitative competition for two resources under chemostat­

like conditions. With two resources available it is important to consider how these 

nutrients, once consumed, are utilized by the individual competitors for growth. As 

will be seen, this leads to the classification of resources as perfectly complementary, 

perfectly substitutable and imperfectly substitutable. Restricting ourselves to the 

two-competitor situation, we will be focussing our attention primarily on the perfectly 

substitutable case. 

Leon and Tumpson [12] appear to be the first to have modelled exploitative 

competition for perfectly substitutable resources. They assume that the consumption 

of one resource is independent of the concentration of the other resources and that 

each competitor's functional response is a strictly monotone increasing function of 

resource concentration. In the two resource, two competitor case, under the assump­

tio~ of the existence of an interior equilibrium, they derive necessary and sufficient 

conditions for its local asymptotic stability and hence conditions for the coexistence 

of the competitors. 

The content of this thesis is organized as follows. In chapter 2 we discuss the 

classical theory of ecological competition and briefly outline the more recent develop­

ments. In chapter 3 we describe a resource-based model of exploitative competition in 

the chemostat for two resources, focussing on functional responses which are strictly 

monotone functions of resource concentration. Further, we describe the classification 

of resources provided by Leon and Tumpson [12] and Rapport [16]. In chapter 4 we 

discuss the same model under the assumption that the resources are perfectly comple­

mentary. There we summarize the results of Butler and Wolkowicz [2] in the case of 

monotone kinetics. In chapter 5 we specify the model of chapter 3 in the case that the 

resources are perfectly substitutable. Under the assumptions of Leon and Tumpson 

[12], we give a complete global analysis of the three-dimensional subsystems as well 

as provide conditions which guarantee the existence of an interior equilibrium of the 

full four dimensional model and are necessary and sufficient for persistence. Also, we 

extend their model to a more general and realistic setting, incorporating the possible 
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inhibitory effects that the consumption of one resource may have on the consumption 

of the other. The model studied by Hsu, Hubbell and Waltman [21] is an example 

of this, as they specifically generalize Michaelis-Menten functional response for a sin­

gle resource to two perfectly substitutable resources. For this extended model, we 

obtain sufficient conditions for the existence of an interior equilibrium and necessary 

conditions for its local asymptotic stability as well as conditions under which the 

three dimensional subsystems of interest are persistent. In chapter 6 we compare the 

local and global results obtained here in the case of perfectly substitutable resources 

to those obtained in the case of perfectly complementary resources. All figures and 

diagrams are given in appendix A and the background theory used in the analysis of 

chapter 5 is summarized in appendix B. 
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1.3 Notation 

The following notation is used throughout this thesis. 

~denotes the real numbers 

~n ={(xi! ... , Xn) :Xi E ~' i = 1, ... , n} 

~+ = {(xl!···,xn): Xi :2:: O,i = l, ... ,n} 

C1 denotes the class of continuously differentiable functions 

0 

A denotes the interior of the set A 

ciA denotes the closure of the set A 

O(X) denotes the entire orbit through the point X 

O(X) denotes the omega limit set of the orbit through X 

M+(E) qenotes the stable manifold of the equilibrium point E 

M- (E) denotes the unstable manifold of the equilibrium point E 

All other notation is either standard or is defined independently for each chapter. 



Chapter 2 

The Classical Theory 

The classical theory of ecological competition is attributed to Lotka [13] and Volterra 

[20] and is an extension of the basic logistic model for single-species growth due to Ver­

hulst [19]. In accordance with this theory, the dynamical system for two competitors 

can be written: 

(2.1) 

Xt (0) = Xto > 0, X2(0) = X2o > 0, 

where ri, Ki, and f3i, i = 1, 2, are positive constants. Here, Xi is the size of the ith 

population, ri is the intrinsic rate of increase of population i, and Ki is the carrying 

capacity of the ith species. The constants /31 and /32 are interaction coefficients, 

measuring the per capita effects of competitor two on one, and one on two respectively, 

in terms of the realized growth rate and carrying capacity of the rival species. 

It is clear from (2.1) that extinction of both populations is impossible since in 

the absence of either species, the other species grows. Hence there are four distinct 

biological outcomes possible. Which outcome occurs depends. on the carrying capac­

ities and the interaction coefficients. Competitive instability (the initial numbers of 

6 




7 CHAPTER 2. THE CLASSICAL THEORY 

each competitor determine the sole survivor) occurs when f3t > _i and /32 > _i • H 
2 1 

exactly one of these inequalities is reversed we have competitive exclusion in which 

one or the other population survives independent of the initial numbers; if f3t > _i
and j32 ~ i- then species two is the sole survivor and if f3t ~ i and /32 > i- then 

2 

1 2 1 

species one is the sole survivor. Coexistence occurs when /31 < i- and /32 < i- • A 
2 1 

complete analysis of (2.1) can be found in Freedman [3], although it is treated in 

many textbooks on differential equations. 

The appeal of the classical theory lies in its generality and simplicity. It seeks 

to describe how the numbers of competitors change without indicating the resources 

upon which competition is based or how these resources are utilized by the consumer. 

As it is difficult to estimate the interaction coefficients independent of actually growing 

the species together in competition, these models are often more phenomenological 

than predictive. 

In response to these deficiencies, a more mechanistic, resource-based theory has 

developed over the last thirty years. The resources are incorporated into the models 

in order to capture consumer-resource interactions as well as competitive interactions. 

The resulting mathematical models may be less general and more difficult to analyze. 

However it should be noted that these models are often more predictive (for example, 

Hanson and Hubbell [6]) as the parameters can be measured on species grown alone, 

in advance of competition. The model that we will be considering is an example of 

this resource-based approach. 



Chapter 3 


Exploitative Competition in the 

Chemostat for Two Resources 

3.1 The Model 

We will be discussing exploitative competition in the chemostat for two nonreproduc­

ing resources. In the two-species case, the dynamical system may be written 

S'(t) 
2 

- (So- S(t))D- L xi(t)Usi(S(t), R(t)), 
i=l 

R'(t) - (R0 

2 

- R(t))D- L Xi(t)URi(S(t), R(t)), (3.1) 
i=l 

x~(t) - Xi(t)( -Di +Qi(S(t), R(t))), i = 1,2, 

S(O) =So 2:: 0, R(O) = Ro 2:: 0, Xi(O) = Xio > 0, i = 1, 2. 

In these equations, xi(t) is the concentration of the ith population of microor­

ganisms in the culture vessel at time t, i = 1, 2, while S(t) and R(t) represent the 

concentrations of the two nonreproducing resources in the culture vessel at time t. If 

only one feed bottle is used, so (resp. R0
) is the concentration of resource S (resp. 

8 




9 CHAPTER 3. COMPETITION FOR TWO RESOURCES 

R) in the feed bottle, while D is the input rate from the feed bottle to the culture 

vessel as well as the washout rate from the culture vessel to the receptacle. Thus 

constant volume is maintained. We assume that there is perfect mixing in the culture 

vessel so that nutrients, microorganisms and byproducts are removed in proportion to 

their concentrations. The constants Di denote the rate at which species i is removed 

from competition; that is, Di = D + ti, fi ~ 0, where fi is the intrinsic death rate of 

population i. 

The experimenter may wish to use two separate feed bottles, each containing 

only one limiting resource, and input from each feed bottle to the culture vessel at 

different rates, say Ds and DR. In this case, the constants D, S0 and ~of (3.1) are 
. t . ed b t ki D D + D so soD~ d R0 R.ODn h S-0 d R-0main aJn y a ng = s R, = Ds+DR an = Ds+DR w ere an 

represent the concentrations of S and R in each separate feed bottle. Here, D still 

represents the dilution and washout rates. 

The function Usi(S(t), R(t)) represents the rate of consumption of resource S 

per unit of population i as a function of the concentrations of S(t) and R(t) in the 

culture vessel. It is generally assumed that 

(3.2a) 

Usi is continuously differentiable. (3.3a) 

It is natural to expect that if the concentration of resource S in the culture vessel is 

zero, there will be no consumption of resourceS; that is, 

Usi(O, R) = 0 for all R ~ 0. (3.4a) 

Similarly, the function URi(S(t), R(t)) represents the rate of consumption of 

resource R per unit of population i as a function of the concentrations of S(t) and 

R(t) in the culture vessel. It is assumed that 

(3.2b) 

URi is continuously differentiable. (3.3b) 
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Again, if the concentration of resource R in the culture vessel is zero, it is natural to 

expect that there will be no consumption of resource R; that is, 

URi(S, 0) = 0 for all S ~ 0. (3.4b) 

In focussing on the consumer-resource interactions, we wish to describe each 

species' functional response; that is, how the consumption rate of each species changes 

in response to fluctuations in resource concentrations. In this thesis we will assume 

that the rate of consumption of one resource is a strictly monotone increasing func­

tion of the concentration of that same resource. In the one resource case, the three 

most common examples of monotone functional response are Lotka-Volterra kinetics, 

in which the rate of consumption increases linearly (figure A.2), Michaelis-Menten 

kinetics, where the consumption rate increases nonlinearly, decelerating smoothly to 

a maximum, resulting in a function which is concave down (figure A.3), and multiple 

saturation in which the rate of consumption increases slowly at low concentrations, 

faster at higher concentrations and decelerates smoothly to a maximum, forming an 

S-shaped curve (figure A.4). These prototypes of monotone kinetics are also referred 

to as Holling Type I, II and III respectively. 

The hypothesis that the rate of consumption of resourceS in (3.1) is a strictly 

monotone increasing function of the concentration of resource S is reflected in the 

assumption that 

0 

: 8Usi(S, R) > 0 for all (S, R) E ?Rt . (3.5a) 

Similarly, for the consumption rate of resource R, 

0 

8~URi(S,R) > 0 for all (S,R) E ?Rt. (3.5b) 

The function Qi(S(t), R(t)) represents the growth rate of the i 1h competitor 

per unit of species i as a function of the concentrations of resources S and R in the 

culture vessel. Here we assume that population growth is proportional to the amount 

of nutrient consumed. Thus, as the concentration of resource S increases, there is an 

increase in the consumption of resource S, which causes a proportional increase in 

population growth. This is reflected in the assumption that 
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0 

:sQi(S,R) > 0 for all (S,R) E ~~; (3.6a) 

that is, Qi(S, R) is an increasing function of the concentration of resource S. Similarly, 

as the concentration of resource R increases, consumption of resource R increases, 

resulting in a proportional increase in population growth so that 

0 

8~{h(S, R) > 0 for all (S, R) E ~~ . (3.6b) 

An important consideration which arises in the two resource case is how the 

resources, once consumed, are utilized by the individual competitors for growth. Rap­

port [16] and Leon and Tumpson (12] classify resources in terms of consumer needs. 

This classification yields a spectrum of resource types, and hence a continuum of 

competitive situations. On opposite extremes are the perfectly complementary and 

perfectly substitutable resources. 
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3.2 	 Perfectly Complementary and Perfectly Sub­

stitutable Resources 

Suppose an individual of a particular species x consumes 91(8) and 92(R) units of 

resources S and R respectively per unit time. IT the per capita growth rate of the 

consumer is given by ~ = ¢(91 ,92), then the curve ¢(91 ,92) = K projected onto the 

(9t, 92 ) plane is a curve along which any combination of values of 9t and 92 gives the 

same per capita rate of growth K. In accordance with Rapport, we will call these 

curves indifference curves. They will be used in the classification of resources S and 

R. 
Perfectly complementary resources are substances which fulfill different essen­

tial needs in terms of growth, and so must be taken together by the consumer. For 

example, a nitrogen source and a carbon source might be perfectly complementary 

for a bacterium. These resources must be used in fixed proportions in order to main­

tain a given per capita rate of growth. If a higher growth rate is to be attained, 

it is necessary to increase the consumption rate of both resources. Thus, perfectly 

complementary resources are characterized by indifference curves forming rectangular 

corners (see figure A.5). 

Perfectly substitutable resources are alternate sources of the same essential 

nutrient. An example for a bacterium would be two carbon sources or two nitrogen 

sources. In this case, the rates of comsumption of the different resources can be substi­

tuted in a fixed ratio in order to maintain a given per capita rate of growth. A higher 

growth rate can be attained by increasing the rate of consumption of either resource. 

Thus, perfectly substitutable resources are characterized by linear indifference curves 

in the (91 ,92 ) plane (see figure A.6). 

In the intermediate case we have imperfectly substitutable resources. The con­

sumer could survive on either one but if they are taken together the per capita growth 

rate could increase. These resources are characterized by indifference curves which 

are convex to the origin. The degree of convexity indicates the extent to which alter­

nate resources can be considered perfectly substitutable or perfectly complementary 

(see figure A. 7). 
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In the next chapter we discuss system (3.1) under the assumption that re­

sources S and R are perfectly complementary. We describe the corresponding func­

tions Usi(S, R), URi(S, R) and 9i(S, R) and summarize the known results. 



Chapter 4 

Complementary Resources 

In this chapter we assume that resources Sand R of system (3.1) are perfectly comple­

mentary for species i, i = 1, 2. Before indicating the form of the functions Usi(S, R), 

URi(S, R) and Qi(S, R) in this case, it will be necessary to describe the functional 

response of each species when only one of the resources is limiting; that is, when the 

other resource is assumed to be in ·abundant supply. 

Suppose that, for species i, resource S alone is limiting. Let Pi(S) denote 

the rate of growth of the ith competitor per unit of species i. Assuming population 

growth is proportional to the amount of nutrient consumed, let ei be the growth yield 

constant. Then PiJ~> represents the consumption rate of resource S per unit of the 

ith species. Similarly, if R is the only limiting resource, let qi(R) denote the rate of 

growth of the ith competitor per unit of species i. Then q;~~) represents the rate of 

consumption of resource R per unit of the ith competitor where 'T/i is the corresponding 

growth yield constant. Here it is assumed that 

(4.1) 

Pi, qi are continuously differentiable. (4.2) 

As in section 3.1 we assume that 

Pi(O) = 0 and qi(O) = 0, (4.3) 

14 
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p~(S) > 0 for all S > 0 and qHR) > 0 for all R > 0, ( 4.4) 

We now define the breakeven concentrations for resources S and R. To do so, 

we assume that nutrient S (respectively R) is the only limiting resource. 

Suppose species i is limited by S alone and set ;; 
I 

= -Di + Yi(S, 0) = 0. By 

(3.6a), :sYi(S, 0) > 0 for all S > 0. Thus, this equation has a unique solution, denoted 

Ai, provided we assume that Ai = oo if Yi(S, 0) < Di for all S ~ 0. Therefore Ai is the 

concentration of S at which the concentration of population i in the culture vessel 

is neither increasing nor decreasing. Similarly, if species i is limited by resource R 

alone, define J.Li to be the concentration of R at which the concentration of population 

i in the culture vessel is neither increasing nor decreasing. Therefore, 

We now return to the case of two limiting resources. Recall that since resources 

S and R are perfectly complementary, they must be used in fixed proportions by 

each competitor in order to maintain a given growth rate. For given concentrations 

of resources S and R, say (S, R), in fact only one resource is limiting, the one which 

is in relatively short supply. The other resource, in comparison, can be thought of as 

being in abundant supply. Thus, if resource S is limiting at (S, R) then the growth 

rate is given by Yi(S,R) =Pi(S). The consumption rate of the limiting resourceS is 

given by Usi(S, R) = p;J;) while the rate of consumption of the nonlimiting resource 

R is exactly that consumption rate which is proportional to a growth rate of Pi(S), 

that is, URi(S, R) = p;J;). Note that URi(S, R) = f/;Usi(S, R). Similarly, if resource R 

is limiting at (S, R) then the growth rate is given by Yi(S, R) = qi(R). The rate of 

consumption of R is now the consumption rate when resource S is in abundant supply, 

that is, URi(S,R) = q;~~>. The rate of consumption of the nonlimiting resourceS is 

exactly that consumption rate which is proportional to a growth rate of Qi(R), that is, 

Usi(S,R) = q;~~>. Note that Usi(S,R) = ?f;URi(S,R). Hence the consumption rate of 

the limiting resource is exactly the rate of consumption when the other nutrient is in 

abundant supply. The rate of consumption of the nonlimiting resource is proportional, 
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the constant of proportionality being the ratio of the growth yield constants ei and 

Thus, if the resources are perfectly complementary, the growth rate is given by 

9i(S, R) = min{pi(S), qi(R)} and the rate of consumption of S is Usi(S, R) = g;(~,R) 
while the rate of consumption of R is URi( S, R) = y;(:0,R). Hence system (3.1) becomes 

S'(t) - (So- S(t))D- t. x~:t) 9i(S(t), R(t)), 

R'(t) - (R0
- R(t))D- t Xi(t) Qi(S(t), R(t)), (4.5) 

i=l T/i 

x~(t) - Xi(t)( -Di +9i(S(t), R(t))), i = 1, 2, 

S(O) = So ;=:: 0, R(O) = Ro 2: 0, Xi(O) = Xio > 0, 

where 9i(S, R) = min{pi(S), qi(R)}. 

This is precisely Model III of Leon and Tumpson [12] adapted to the chemostat. 

If Di = D, i = 1, 2, that is, the death rate of each species is assumed to be negligible 

compared to the dilution rate, then ( 4.5) is precisely the model studied by Butler and 

Wolkowicz [2] in the noninhibitory kinetics case. If we further assume that the Pi's 

and qi's satisfy Michaelis-Menten dynamics, this is the model studied by Hsu, Cheng 

and Hubbell [9]. The results of Butler et al. [2] will be summarized here for later 

comparison. 

Recall that the uptake rate of the nonlimiting resource is proportional to and 

determined by the rate of consumption of the limiting resource, the constant of pro­

portionality being the ratio of the growth yield constants. Thus, 

ei . 1 2 Ci = -, z = ' 
T/i 

is the invariant ratio in which S and R are consumed. The ratio in which S and R 

are externally regenerated under steady-state consumption pressure from population 

i in the absence of its competitor is given by 
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As explained by Hsu et al. [9], one can· determine if population i, in the absence of 

its rival, is S-limited or R-limited by comparing Ti and Ci. H 1i > Ci then resource 

S is regenerating at a steady state rate slower than R with respect to the required 

consumption ratio of population i and so species i is S-limited. However, if Ti < Ci 

then R is regenerating at a steady state rate slower than S with respect to the required 

consumption ratio of species i so that population i is R-limited. The constants 

represent the ratio of the steady state regeneration rate of R when x2 (resp. xt) is 

alone and that of S when x1 (resp. x2) is alone. 

In this setting Butler et al. [2] show that the dynamics are always trivial in the 

sense that both species asymptotically approach some equilibrium concentration. By 

varying the parameters, each of the outcomes of the classical theory for two species 

competition described in chapter 2 is possible. Competition independent extinction, 

an .impossibility in the classical model, can also occur. The criteria that guarantee 

each outcome are summarized in table 4.1 below which is adapted from Butler et al. 

[2]. 
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Table 4.1: Complementary Resources: Monotone Kinetics 

IBIOLOGICAL OUTCOME I COMPETITION CRITERIA 

Both species become extinct. 
( (a) :::} species 1 is the 

sole survivor) 
((b) :::} species 2 is the 

sole survivor) 

(a) At > S 0 or ftt > Ro 
and 

(b) A2 > so or 1'2 > R0 

Population 1 is the 
sole survivor. 

At< S 0 and ftl < R0 

and 
At < A2 and ftt < 1'2 

or At < A2, ftt > 1'2 and T. > Ct, c2 
or At > A2, ftt < 1'2 and T* < ell c2 

or A2 >so 
or 1'2 > R0 

Population 2 is the 
sole survivor. 

A2 < S0 and ft2 < R0 

and 
At > A2 and ftt > 1'2 

or At < A2, l't > 1'2 and T. < Ct, C2 

or At > A2, ftt < J12 and T* > Ct, C 2 
or At> so 
Orftt > R0 

Table 4.1: continued ... 
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Table 4.1: Complementary Resources: Monotone Kinetics 

I BIOLOGICAL OUTCOME I COMPETITION CRITERIA 

Populations 1 and 2 Ai < S0 and /li < R0
, i = 1, 2 


coexist at a positive 
 and 

equilibrium. 
 At < A2, 111 > 112 and C1 > T* > C2 

or At > A2, /lt < 112 and C1 < T* < C2 

One population wins and A; < S0 and lli < R0
, i = 1, 2 


the other dies out. 
 and 

Initial concentrations 
 At < A2, 111 > 112 and C1 < T* < C2 
determine the outcome. or A1 > A2, 111 < 112 and- C1 > T* > C2 



Chapter 5 

Substitutable Resources 

5.1 The Model 

For the remainder of our discussion we assume that resources S and R of system 

(3.1) are perfectly substitutable for species ·i, i = 1, 2. Note again that we assume 

population growth is proportional to the amount of nutrient consumed. Thus the 

consumption rate of resource S per unit of competitor i is of the form 

where Si(S, R) is the growth rate of competitor i per unit of the ith species due to 

the consumption of resource s and ei is the corresponding growth yield constant. 

Similarly, the rate of consumption of resource R per unit of the ith species is of the 

form 
uRi(s, R) = ni(s, R) 

'f/i 

where 'Ri(S, R) is the growth rate of the ith species per unit of competitor i due to 

consumption of resource R and 'f/i is thecorresponding growth yield constant. 

We now determine the properties of the functions Si(S, R), 'Ri(S, R) and 

Qi(S, R) in the case of perfectly substitutable resources S and R. Recall that per­

fectly substitutable resources are alternate sources of the same essential nutrient. As 

such, the growth rate of species i is made up of a contribution from the consumption 

20 
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of resource S as well as a contribution from the consumption of resource R. Therefore, 

9i(S, R) = Si(S, R) + 'Ri(S, R). Note that this is consistent with Rapport's graph­

ical description of perfectly substitutable resources, as projections of the function 

;:. = 9i(S, R)- Di into the (Si, 'Ri) plane are indeed linear. 

It should be noted that with two resources available, both serving the same 

requisite need, it remains necessary to determine how changes in the concentration of 

one resource affect the consumption rate of the other. Suppose that the consumption 

of one resource does not affect the consumption of the other. In particular, suppose 

the consumption of resource S is independent of the concentration of resource R and 

depends only on the concentration of resourceS. Then Si(S, R) =Pi(S) where Pi(S) 

is the rate of growth of species i per ~nit of population i due to consumption of 

resource S in the absence of resource R. Similarly, if the consumption of resource R 

is unaffected by the concentration of resource S, 'Ri(S, R) = qi(R). This situation, 

however, is unlikely. It is more natural to assume that the consumption of one resource 

inhibits the consumption of the other resource. In Holling terminology, the handling 

time devoted to the processing of a unit of one resource is time no longer available 

for the processing of the other resource. One would expect, therefore, that as the 

concentration, and hence consumption, of resource R increases, the consumption of 

resourceS decreases. This is reflected in the assumption that 

{)~Si(S, R) :50 for all (S, R) E ~!· 

Similarly, as the concentration, and hence consumption, of resource S increases, the 

consumption of resource R decreases; that is 

{) 2 
ni(S,R) :50 for all (S,R) E ~+·

88 

We now specify system (3.1) in the case that resources S and Rare perfectly 

substitutable, summarizing the assumptions made in section 3.1 for the purposes of 

self-containment. The model that will be considered is 
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S'(t) - (So- S(t))D- t. x~:t)Si(S(t), R(t)), 

R'(t) - (R0
- R(t))D- t Xi(t) ni(S(t), R(t)), (5.1) 

i=l 'f/i 
x~(t) - Xi(t)( -Di + gi(S(t), R(t))), i = 1,2, 

S(O) =So~ 0, R(O) = Ro ~ 0, Xi(O) = Xio > 0, i = 1,2, 

where 9i(S(t), R(t)) = Si(S(t), R(t)) +~(S(t), R(t)). Here it is assumed that 

(5.2) 

si' ni are continuously differentiable, (5.3) 

Si(O,R) = 0 for all R ~ 0 

(5.4) 

Ri(S,O) = 0 for all S ~ 0 

That is, if one of the nutrients is absent, there is no consumption of that nutrient. 

Also, 

a a o 
aSSi(S,R) > 0 and aR~(S,R) > 0 for all (S,R) E ~~' (5.5) 

so that the rate of consumption of one resource is a strictly monotone increasing 

function of the concentration of that same resource. Moreover, 

a~Si(S, R) $ 0 and :sni(S, R) $ 0 for all (S, R) E ~~- (5.6) 

That is, the consumption of one resource may inhibit the consumption of the other. 

We define 

Si(S, 0) - Pi(S) for all S ~ 0, 

(5.7) 

Ri(O, R) - qi(R) for all R ~ 0. 
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That is, Pi(S) is the function describing the uptake of nutrient S in the absence of 

nutrient R. Similarly, qi(R) is the function describing the uptake of nutrient R in the 

absence of nutrient S. 

Concerning the growth rate 9i(S, R) = Si(S, R) +ni(S, R) we assume 

a a 02 
asgi(S, R) > 0 and aRgi(S, R) > 0 for all (S, R) E ?R+ . (5.8) 

Thus the growth rate of the ith competitor is a strictly monotone increasing function 

of the concentration of each resource. 

The breakeven concentrations for resources S and R are as defined in chapter 4; 

that is 

(5.9) 

By (5.8) and the Implicit Function Theorem (B1), there exists l.{)i E C1 such that 

9i(S, l.{)i(S)) = Di for all 0 < S < Ai with rp~(S) < 0 for 0 < S < Ai. Also, by (5.9) 

and continuity, we define l.{)i(O) = P,i and l.{)i(Ai) = 0. Thus, l.pi is the subsistence curve 

in the (S,R)-plane giving the concentrations of S and R at which the concentration 

of population i in the culture vessel is neither increasing nor decreasing. 

If Si(S, R) = Pi(S) for all R ~ 0 and ni(S, R) = qi(R) for all S ~ 0, so that 

the consumption of each resource is unaffected by the consumption of the other, then 

model (5.1) reduces to Model I of Leon and Tumpson [12], adapted to the chemostat. 

Under the assumption of the existence of an interior equilibrium they show, by means 

of a linear analysis, that the competitors coexist if at equilibrium each of them removes 

at a higher rate that resource which contributes more to its own rate of growth. From 

our earlier discussion it follows that model (5.1) is more realistic than that of Leon and 

Tumpson [12], as it incorporates the possible inhibitory effects that the consumption 

of one resource has on the consumption of the other. Hsu, Hubbell and Waltman 

[21] give an example of uptake functions satisfying (5.2) through (5.9). There the 

functions Si(S, R) and ni(S, R) are given by 

Si(S, R) ms;S 
= S R

ei Ks; (1 + Ks; + KR; )ei 
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and 

so that 

msiS+ mRiR 
y·(S R) = Ks; KR; • 

' ' l+..L+...lL
Ks; KR; 

Clearly this is a generalization of the familiar Michaelis-Menten prototype of func­

tional response to a single resource. 
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5.2 	 The Scaled Version: Some Preliminary Re­

sults 

Suppose that both so and Ro of (5.1) are zero. Then 

S(t) ~ S(O)e-Dt and R(t) ~ R(O)e-Dt. 

Therefore, for t sufficiently large, system (5.1) behaves like 

S'(t) - 0, 

R'(t) - 0, 

x~(t) - -Dixi(t), i = 1, 2, 

S(O) = 0, R(O) = 0, Xi(O) > 0, i = 1, 2, 

with solution 

S(t) =0, R(t) =0, xi(t) = xi(O)e-D;t, i = 1, 2. 

That is, neither species survives. 

If only one of so or R0 is zero, say so= 0 and R0 =f:. 0, then, from (5.1), 

S'(t) = 	 -S(t)D- t. x~:t)Si(S(t), R(t)) ~ -S(t)D. 

This implies 

S(t) ~ S(O)e-Dt. 

Therefore, for t sufficiently large, system (5.1) is approximated by 

S'(t) - 0, 

R'(t) (R0 
- R(t))D- t Xi(t) qi(R(t)),-

i=l TJi 
x~(t) - Xi(t)( -Di + qi(R(t))), i = 1, 2, 

S(O) = 	0, R(O) = Ro 2:: 0, Xi(O) = Xio > 0, i = 1, 2. 
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This is the model of exploitative competition in the chemostat for one limiting re­

source. If Di = D fori= 1, 2, we obtain the model studied by Butler and Wolkowicz 

[1] in the case of monotone kinetics. Under the further assumption that qi assumes the 

form of Michaelis-Menten kinetics, we obtain the model examined by Hsu, Hubbell 

and Waltman [10] while Hsu [8] extended these results to the case of distinct D/s. 

For our purposes, we assume that neither so nor Ro is zero. 

It will be more convenient to analyze the model after the following substitutions 

are performed: 

- - S - R
t=tD, S=-, R=-,So Ro 

(5.10) 

Note that by (5.10), D = 1, so = 1 and .Di = Db~; = 1 + li. Removing the bars to 

simplify notation we obtain 

S'(t) - 1- S(t)- t. x~:t) Si(S(t),R(t)), 

R'(t) - 1- R(t)- t xi(t)ni(S(t),R(t)), (5.11) 
i=l 1Ji 

- Xi(t)( -Di + Qi(S(t), R(t))), i = 1, 2, 

S(O) = So 2:: 0, R(O) = Ro 2:: 0, Xi(O) = Xio > 0, i = 1, 2. 

All of assumptions (5.2) through (5.9) hold for this version of the model so 

there will be no loss of generality if we study (5.11) instead of (5.1). All of our results 

can be reinterpreted in terms of the unsealed variables using (5.10). 

We first show that all solutions of (5.11) are positive and bounded. These are 

minimum requirements for a reasonable model of the chemostat. 
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Theorem 5.1 All solutions S(t), R(t), xi(t), i = 1, 2, of (5.11) are (a) positive and 

(b) bounded for t > 0. 

Proof of (a}: Consider first xi(t), i = 1, 2. From (5.11) 

xi((t)) = -Di +gi(S(t), R(t)) 
Xi t 

which implies 

xi(t) = Xi(O)exp{fot ( -Di +gi(S(r), R(r)))dr} > 0. 

Next consider S(t). If S(O) = 0 then S'(O) = 1 > 0. Suppose there exists a 

first T > 0 with S(T) = 0; that is, S(t) > 0 for 0 < t < T and S(T) = 0. Then 

S'(T) :50. However, by (5.11), S'(T) = 1 > 0, a contradiction. 

Proof of (b): In general, define 

Xt(t) x2(t)
z(t) = S(t) +R(t) + {e } + {e }"max t, 'f/t max 2, 'f/2 

For convenience, assume that ei ~ "li for i = 1, 2 and consider 

z(t) = S(t) +R(t) + Xt(t) + x2(t).
e1 e2 

From (5.11) we have 

2 x·(t)D· 2 	 1 1
z'(t) 	 _ 2- (s(t) +R(t))-~ , ei , +~ xi(t)ni(s(t),R(t))(ei - 'f/i) 

< 2 _ (S(t) +R(t)) _ Xt(t)Dt _ x2(t)D2
e1 e2 

since (t- ;.) :50, i = 1, 2. Also, since Di = 1 + fi, fi ~ 0, i = 1, 2, 

z'(t) :5 2 _ (S(t) +R(t)) _ Xt(t)(1 + ft) _ x2(t)(1 + f2).
e1 e2 

Thus, 

z'(t) < 2- (S(t) + R(t) + Xt(t) + x2(t))
e1 6 

- 2- z(t). 
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This is a differential inequality for z(t) with solution given by 

z(t):::; 2 + (z(O)- 2)e-t. 

Thus 

S(t) +R(t) + x1(t) + x2(t) :::; 2+ (S(O) +R(O) + x1(0) + x2(0) _ 2)e-t
& ~ & ~ 

and so 

Xt(t) x2(t) { 2 if S(O) +R(O) + xe(O) + xe(O) < 2,
S(t+) t+--+--< 1 2R( ) el ~ - S(O) +R(O) + xe~O) + xe~O) otherwise. 

Hence by (a) all solutions of (5.11) are bounded. 

Proposition 5.1 Given any h > 0, for all solutions S(t), R(t) of (5.11), S(t) < 
1 +h and R(t) < 1 + h for all sufficiently large t. 

Proof: Consider S(t). From (5.11) 

S'(t) = 1- S(t)- t. x~:t)Si(S(t), R(t)) < 1- S(t) 

which implies 

S(t) :::; 1 +(S(O)- 1)e-t. 

Proposition 5.2 If there exists a t0 2:: 0 such that S(to) < 1 then S(t) < 1 for all 

t 2:: t 0 • A similar result holds for R(t). 

Proof: Suppose there exists a first T > t0 such that S(T) = 1 and S(t) < 1 for 

to:::; t < T. Then S'(T) 2:: 0. However, by (5.11), 

S'(T) =- t. Xi~~) Si(S(T), R(T)) < 0, 

a contradiction. 

In the next result we will use the following lemma due to Miller [14]. 
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Lemma 5.1 Let w(t) E C2 (t0 , oo), w(t);::: 0 and K > 0. 

(i} If w'(t) ;::: 0, w(t) is bounded and w"(t) ~ K for all t ;::: to then w'(t) -+ 0 

as t-+ oo. 

(ii} If w'(t) ~ 0, and w"(t) ;::: -K > -oo for all t ;::: t0 then w'(t) -+ 0 as 

t-+ 00. 

Theorem 5.2 If Qi(1, 1) < Di fori = 1, 2 then Eo is globally asymptotically stable 

for (5.11). 

Proof: Suppose S(t) > 1 for all t;::: 0. Then S'(t) < 0 for all t;::: 0 which implies that 

S(t) '\. S* ;::: 1 as t-+ oo. H S* > 1 Then 

S'(t) ~ 1 - S ~ 1 - S* 

which implies 

S(t) ~ (1 - S*)t +S(O) -+ -oo as t-+ oo, 

contradicting S(t) > 1 for all t ;::: 0. Therefore S(t) '\. 1 as t -+ oo. Similarly, if 

R(t) > 1 for all t ;::: 0 then R(t) '\. 1 as t-+ oo. By Proposition 5.2, if S(t) < 1 for 

some l ;::: 0 then S (t) < 1 for all t ;::: l and similarly if R(l) < 1 for some l ;::: 0 then 

R(t) < 1 for all t;::: l. By the continuity of gi, there exists a 8 > 0 such that 

From the above there exists a T > 0 such that 

S(t) < 1 + 8 for all t;::: T, 


R(t) < 1 + 8 for all t ;::: T. 


Then x~(t) < 0 for all t ;::: T, which implies by the above lemma that xHt) -+ 0 as 

t-+ oo. However, 

lim sup Qi(S(t), R(t)) ~ Qi(1 +8,1 +8) < Di 
t-oo 

and so Xi(t) -+ 0 as t -+ oo. Let Q E {(S, R, x1 , x2) E ?R~ : x1 > 0, x2 > 0}. 

We have shown that for any P = (S..,.B.,];.1 ,];.2 ) E !1(Q), ];.1 = 0 and ];.2 = 0, where 
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!1(Q) denotes the omega limit set of the orbit through Q. On {(S, R, 0, 0) E ?Rt} the 

system reduces to 

S'(t) = 1- S 

R'(t) = 1- R 

and hence S(t) -+ 1, R(t)-+ 1 so that {Eo} E !1(Q). Since Eo is locally asymptot­

ically stable (see section 5.4), !1(Q) = {Eo}· Therefore, if 9i(1, 1) < Di fori = 1, 2 

then Eo is globally asymptotically stable for (5.11). 

In the next section we examine the three dimensional subsystems of (5.11 ). 
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5.3 The Three Dimensional Subsystems 

There are only two three dimensional subsystems of (5.11) of interest. Each involves 

one population of microorganisms consuming the two nonreproducing substitutable 

resources. Due to symmetry, both subsystems exhibit the same dynamics. To ascer­

tain these dynamics, we examine the system 

S'(t) - 1- S(t)- x~t) S(S(t), R(t)), 

R'(t) 1- R(t)- x(t)'R(S(t),R(t)), (5.12)-
TJ 

x'(t) - x(t)(-d +Q(S(t), R(t))), 

S(O) =So 2::: 0, R(O) = Ro 2::: 0, x(O) = X 0 > 0, 

where the subscripts have been removed to simplify notation. Here, d still represents 

the rate of removal of the microbial population, that is, d = 1 + t:, € 2::: 0, where € is 

the intrinsic death rate. The functions S(S(t), R(t)), 'R(S(t), R(t)) and Q(S(t), R(t)) 

are assumed to satisfy all of the assumptions (5.2) through (5.9). We first note 

Proposition 5.3 All solutions S(t), R(t), x(t) of (5.12) are {a} positive and (b) 

bounded for t > 0. 

Proof: The method of proof is similar to that of Proposition 5.1. For (b), consider 

z(t) = es(t) +TJR(t) + x(t) . 

Note that Eo = (1, 1, 0) is a critical point of (5.12). If any other critical points 

exist, they must be interior equilibria, that is, equilibria in which S,R and x are all 

positive. An interior equilibrium of (5.12) is a solution (S, R, x) of the system 

xS(S, R) - e(l- S) 

x'R(S, R) - TJ(1- R) (5.13) 

Q(S,R) - d 
0 

with (S, R, x).E ~ . By (5.9) and the positivity constraint on x, 0 < S < min{1, .\} 

and 0 < R < min{1,JL}. 
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Theorem 5.3 There exists an interior equilibium of(5.12) if and only if9(1, 1) > d 

and if one exists then it is unique. 

Proof: If there exists an interior equilibrium (S, R, x) then 9(S, R) =d. But 0 < S < 
1 and 0 < R < 1 and 9 is an increasing function of both arguments, so 9(1, 1) >d. 

To show the converse, suppose 9 (1, 1) > d. Define 

e(l- S) 77(1- cp(S)) 
xs(S) = S(S, cp(S)) and xn(S) = R(S, cp(S)) for S E (0, A). 

Note that 

.::__ (S) = _tS(S, cp(S)) +(1- S)(/sS(S, <p(S)) + ~S(S, cp(S))cp'(S)) 
0dSxs "' (S(S,<p(S)))2 < 

for S ~ 1, while 

.::__ (S) _ 'R(S, <p(S))cp'(S) + (1 - cp(S))( -h'R(S, cp(S)) +~'R(S, <p(S))cp'(S)) 
0dSXR - -7] ('R(S,cp(S)))2 < 

for. cp(S) ~ 1. Therefore xs(S) is an increasing function of S while xR(S) is a decreas­

ing function of S. It suffices to show that x s( S) and x n( S) intersect on ( 0, A). 

Case 1: A~ 1 and p. ~ 1. In this case, we necessarily have 9(1, 1) >d. Now, 

. . e(l.- s) 77(1 - f.L)
hm xs(S) = lim S( (S)) = oo and xn(O) = d ,s-o+ s-o+ s, cp 

e(l- A) . . 77(1- cp(S))
xs(A) = d and hm xR(S) = lim R(S (S)) = oo.s->.- s->.- , cp 

Therefore there exists a unique S E (0, A) such that xs(S) = XR(S) (see figure A.8) 

and hence a unique interior equilibrium. 

Case 2: A > 1 and p. > 1. Here we use the assumption that 9(1, 1) > d. Since 

9(0, 1) < d, there exists a unique S E (0, 1) such that 9(S, 0) = d (cp(S) = 1). Since 

9(1, 0) < d, there exists a unique R E (0, 1) such that 9(1, R) = d (cp(1) = R). Now, 

- e(1- s) ­
xs(S) = - > 0 and xR(S) = 0,

S(S, 1) 
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TJ(1- il)
xs(1) = 0 and XR(1) = ( - > 0.n 1,R) 

Therefore there exists a unique S E (S, 1) such that xs(S) = XR(S) (see figure A.9) 

and hence a unique interior equilibrium. 

Case 3: ,\ ~ 1 and J.L ~ 1. Again, in this case, we necessarily have 9(1, 1) >d. Since 

9(1,J.L) > d and 9(1,0) < d there exists a unique R E (O,J.L) such that 9(1,R) = d 

(cp(1) = R). Now, 

. . e(l-s) TJ(1-J.L)
hm xs(S) = lim S(S (S)) = oo and XR(O) = d ,

S-+0+ S-+O+ , cp 

TJ(1- R) .
xs(1) = 0 and xR(1) = - = oo 1f ,\ = 1.

R(1,R) 

Therefore there exists a unique S E (0, 1) such that x8 (S) = xR(S) (see figure A.10) 

and hence a unique interior equilibrium. 

Case .(.: ,\ ~ 1 and J.L ~ 1. In this case, it again follows that 9(1, 1) > d. Since 

Q(.\,1) > d and 9(0,1) < d, there exists a unique S E (0,.\) such that 9(S,1) = d 

(cp(S) = 1). Now, 

- e(l- s) ­
xs(S) = - and xR(S) = 0,

S(S, 1) 

( ') - e(l - .\) d li (S) - li TJ(1 - cp(S)) ­xs "' - an m XR - m - oo.
d s->.- s-+>.- R(S, cp(S)) 

Therefore, there exists a unique S E (S, .\)such that x8 (S) = xR(S) (see figure A.ll) 

and hence a unique interior equilibrium. 

As the above exhausts all possible cases for the relative values of,\ and J.L, we 

have the existence of an interior equilibrium for (5.12) when 9(1, 1) > d and when 

one exists it is unique. 
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Let us denote the interior equilibrium, when it exists, byE= (S,R,x). Next 

we investigate the local stability properties of the equilibria. 

The variational matrix of (5.12), denoted V3(S, R,x), is given by 

-1- itsS(S,R) -i 8~S(S,R) -zS(S,R) 

V3(S, R,x) = _:..2....R(S R) 1- :..2....R(S R) -~R(S,R)TJ8S ' TJ 8R ' 

xtiJ(S,R) x 8~9(S,R) -d+ 9(S,R) 

At E0 we have 

-1 0 -s(1, 1)/e 

V3{1, 1, 0) = 0 -1 -R(1, 1)/TJ 

0 0 -d +9(1, 1) 

with eigenvalues a 1 = a 2 = -1 and a 3= 9(1, 1)- d. Thus Eo is a locally asymptot­

ically stable critical point if no interior equilibrium exists, that is, 9(1, 1) $ d, and 

Eo is unstable if an interior equilibrium exists, that is, 9(1, 1) >d. 

Let us assume that the interior equilibrium E = (S, R, x) exists and examine 

the local stability properties of E. At Ewe have 

x 8 - ­-1- !.2....S(S R) -e8RS(S,R) -zS(S,R)eas ' 


V3(S,R,x) = 
 -~.2....R(S R) -1- ~LR(S R) -~R(S,R)TJ as ' TJ 8R ' 

-a - - - 8 - ­ 0 

with characteristic equation a 3 +Aa2 +Ba +C, where 

A= 2 +x(z tss(S, R) + ~ a'kR(S, R)) (5.14a) 

xas9(S,R) x8RQ(S,R) 
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-1a -- 1a - ­
B = 1 + x(e asS(S, R) +;, aRR(S, R)) 

+x(zS(B, R) aasg(B, R) +~R(B, R) a'kQ(B, R)) (5.14b) 

x2a --a-- a --a-­+e'f/ (a8 S(S, R) aRR(S, R)- aRS(S, R) asR(S, R)) 

C = x(zS(B, R) tsg(B, R) + ~R(B, R) a~Q(S, R)) (5.14c) 

Y? a --a-- a --a-­
+e'Tid(asS(S,R)aRR(S,R)- aRS(S,R)asR(S,R)) 

By (5.2) through (5.8) it follows that A,B and C are all positive so that, by 

the Routh-Hurwicz Criterion (B2), to determine the stability of E it remains only to 

determine the sign of AB-C where AB-C is given by 

-1a -- 1a - ­
2 + 3x(z asS(S, R) +;, aRR(S, R)) 

+x{zS(B, R) aasg(B, R) + ~R(S, R) a~Q(S, R)} 

-2 1 a - - 1 a - - 2
+x (za8 S(S,R)+;,aRR(S,R)) (5.15) 

-2 1 a - - 1 a - - 1 - - a .- - 1 - - a - ­
+x (zasS(S,R) + ;,aRR(S,R))(-eS(S,R)a8 Q(S,R) + ;,R(S,R)aRQ(S,R)) 

~1a --a --a -- a --a -­+e'f/ z asS(S, R)(a8 S(S, R) aR R(S, R)- aRS(S, R) asR(S, R)) 

~1 a - - a - - a - - a - - a - ­+e'f/ ;,mR(S, R)(a8 S(S, R) aR R(S, R)- aRS(S, R) asR(S, R)) 

x2 a --a-- a --a-­

+e'f/(2- d)(asS(S,R)aRR(S,R)- aRS(S,R)asR(S,R)) 

A superficial examination of this expression yields a range of values of the intrinsic 

death rate E for which AB-C is positive and hence E is locally asymptotically stable. 

In particular, d ~ 2 (so that E ~ 1) is a sufficient condition for the local asymptotic 

stability of E. Moreover, by Lemma 5.1, below, if E can lose its stability, it can do 

so only by means of a Hopf bifurcation. 

Lemma 5.1 Given p(a) = a3 +Aa2 +Ba+C with A,B and C positive, ifAB-C< 0 

then p has complex conjugate roots. 

Proof: Suppose p has three real roots, say 0, f3 and{· By our hypothesis 

A= -(0 + f3 +{) > 0 
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B = 0{3 + /31 +01 > 0 


c = -0/31 > 0 


Note that C > 0 implies that either all or exactly one of 0, {3 and 1 is negative. But, by 


the Routh-Hurwicz Criterion (B2), AB-C< 0 rules out 0, {3 and 1 all being negative. 


Suppose only 1 is negative. A positive implies -1 > 0+{3 so that -1(0+{3) > ( 0+{3)2. 


B positive implies 0{3 > -1(0 + {3). Hence 0{3 > -1(0 + {3) > (0 + {3) 2 which implies 


0 > 02 + 0{3 + {32 
, a contradiction. Therefore p must have complex roots. 

Since E exists only if Q(1, 1) > d, a Hop£ bifurcation and hence a change in 

stability can only occur for 2 < d < Q(1, 1). Therefore if Q(1, 1) > 2 then no change 

in stability can occur. Although we have not ruled out the possibility of a Hop£ 

bifurcation, this was not observed in any of the specific examples we studied. 

For example, if we assume that S(S,R) = p(S) for all R ~ 0 and n(S, R) = 
q(R) for all S ~ 0, as long as E exists, it is locally asymptotically stable. In this case, 

A =2 +X (p'(S) + q'(R)) 
~ TJ ' 

B = 1 +X (p'(S) + q'(R)) +X (p(S)p'(S) + q(R)q'(R)) +p'(S)q'(R)' (5.16) 
~ TJ ~ TJ ~TJ 

c =X ( p(S)r(S) + q(R)r(R)) +dx2p'(S~~(R). 

After replacing d by p(S) + q(R) and arranging AB-C in increasing powers of x, 
AB - C is given by 

2 + x{3(P'~S) + q'~ll)) + p(S){(S) + q(R)f(ll)} + x2 e;P'(S)q'(R) 

(5.17) 

Clearly, AB-C is positive and so, by the Routh-Hurwicz Criterion (B2), E is a locally 

asymptotically stable critical point, independent of the value of d. 

We now turn to an examination of the global properties of (5.12). 
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Theorem 5.4 Suppose Q(1, 1) > d. Then system (5.12) is persistent (B3) with respect 

to all solutions for which x(O) > 0. 

0 

Proof: Identify (S, R, x)-space with~ . Suppose for some solution (S(t), R(t), x(t)) 

of (5.12), x(t) = 0 for some t > 0. Then x(t) =0 since 

x(t) = x(O)exp{lat(-d + Q(S(r),R(r)))dr}. 

In this case, system (5.12) reduces to 

S'(t) - 1-S, 

R'(t) - 1-R, 

x'(t) - 0, 

S(O) > 0, R(O) ;::: 0, x(O) = 0. 

This system has solution S(t) = (S(O) -1)e-t + 1, R(t) = (R(O) -1)e-t + 1, x(t) =0. 

Thus Eo is globally attracting with respect to solutions initiating in the set :T = 

{(S,R,O) E ~}. 
0 

Choose X E ~.By Proposition 5.3, O(X) is a nonempty, compact, invariant 

set with respect to (5.12). Suppose {Eo} E O(X). Let M+(Eo) denote the stable 

manifold of E0 • Since Q(1, 1) > d, Eo is unstable and therefore dim(M+(Eo)) < 
3. Since M+(Eo) :::> :1, dim(M+(Eo)) ;::: 2. Therefore, M+(Eo) = :T, and hence 

0 

does not intersect ~t . This implies that {Eo} # O(X). Therefore, by the Butler-

McGehee Lemma (B4), there exists P E M+(Eo) such that P E O(X)\{Eo} and 

hence clO(P) c O(X) where O(P) denotes the entire orbit through P. However, 

since Eo is globally attracting, either 0(P) becomes unbounded as or one of the S or 

R components becomes negative as t -+ -oo. In either case we have a contradiction 

and therefore {Eo} ¢ O(X). 

Since x(t) is bounded by Theorem 5.1, S'(t) > 0 if S(t) is sufficiently close 

to zero and R'(t) > 0 if R(t) is sufficiently close to zero. It follows that any point 

in O(X) must satisfy E. > 0 and 11.. > 0. Suppose (5.12) is not persistent. Then 
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there exists a point P E f!(X) such that P E :T and hence clO(P) C f!(X). But 

{Eo} E clO(P) since Eo is globally attracting with respect to all solutions initiating 

in the set :J. This implies that {Eo} E f!(X), a contradiction. Therefore (5.12) is 

persistent. 

If the functions S(S, R) and 'R(S, R) are are assumed to be of the form studied 

by Leon and Tumpson [12], the above result can be significantly improved. 

Theorem 5.5 Assume S(S, R) = p(S) for all R ;::: 0 and 'R(S, R) = q(R) for all 

s;::: 0. 

{a) If 9(1, 1) :5 d then Eo is globally asymptotically stable for (5.12) with 

respect to all solutions for which S(O) ;::: 0, R(O) ;::: 0 and x(O) ;::: 0. 

{b) If 9(1, 1) > d then there exists a unique interior equilibrium E which is 

globally asymptotically stable for (5.12) with respect to all solutions for which S(O) ;::: 

0, R(O) ;::: 0 and x(O) > 0. 

0 

Proof of {a): Define L: ~--+~by 

L(S, R, x) = e 1s -p(;(:) p(r) dr +1] 1R -q(~(~ q(r) dr +X 

0 0 

Since p(S) and q(R) are continuous on ?R! we have L E G 1 (?R!). Also, Eo= 

(1, 1, 0) is the global minimum of Lon ?R! and L(1, 1, 0) = 0~ To see this, consider 

g(S) = S- 1- p(1) !1
8 rltJ:r· Then g'(S) = (p(S) - p(1))fp(S) = 0 if and only if 

S = 1 and g"(S) = p'(S)p(1)f(p(S)2 where g"(1) = p'(1)/p(1) > 0 by (5.5). The time 

derivative of L computed along solutions of (5.12) is 

- e(p(S)- p(1)). S' +TJ(q(R)- q(1)). R' +x'L(S, R,x) 
p(S) q(R) 

_ e(p(S)- p(1) )(1 _ S _ xp(S)) 
p(s) e 

+TJ(q(R)- q(1) )(1 _ R _ xq(R)) 
q(R) 1J 

+x(-d + 9(S, R)) 
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- e(p(S)- p(1))(1- S) +TJ(q(R)- q(1) )(1- R) 
p(S) q(R) 

+x(-d +9(S,R)- (p(S)- p(1))- (q(R)- q(1))) 

e(p(S)- p(1) )(1- S) + (q(R)- q(1) )(1- R) 
p(S) TJ q(R) 

+x(9(S, R)- d) 

Note that for 0 < S < 1, p(S)- p(1) < 0 and if S > 1 p(S)- p(1) > 0. Therefore, 

since 9(S,R) ~ d, L(S,R,x) ~ 0. IT 9(1,1) < d then L(S,R,x) = 0 if and only 

if S = 1, R = 1 and x = 0 and if 9(1,1) = d then L(S,R,x) = 0 if and only 

if S = 1 and R = 1. In either case, L is a Lyapunov function (B5) for (5.12) in 

~· By Proposition 5.3 and LaSalle's Extension Theorem (B6) every solution of 

(5.12) for which x(O) > 0 approaches M where M is the largest invariant subset 

of N = {(S,R,x) E ~ : L(S,R,x) = 0}. IT 9(1,1) < d then N = {Eo} and 

M. = {Eo}. IT 9(1,1) = d then N = {(S,R,x) E ~ : S = 1,R = 1,x ~ 0}. 

However, S = 1 and R = 1 imply x = 0 since, by (5.12), S' = 0 and R' = 0, and we 

again have M ={Eo}· 

Hence, if S(S,R) = p(S) for all R ~ 0, 'R(S,R) = q(R) for all S ~ 0 and 

9(1, 1) ~ d, then Eo is globally asymptotically stable for (5.12) with respect to all 

solutions for which S(O) ~ 0, R(O) ~ 0 and x(O) ~ 0. 

Proof of (b): The existence and uniqueness of the interior equilibrium E is guarenteed 
0 

by Theorem 5.3. To prove the global stability of this equilibrium, define L :~-----+ ~ 

by 

L(S, R,x) = e rs -p(S) +p(r) dr + TJ [R -q(R) +q(r) dr +X- X- XIn(~)
ls p(r) lR q(r) x 

0 0 

Since p(S) and q(R) are continuous on~ we have L E C1 (~t). Also, E = 
(S, R, x) is the global minimum of Lon ~t and L(S, R, x) = 0. To see this, consider 

g(S) = S- S- p(S) Iff P1;). Then g'(S) = (p(S) - p(S))fp(S) = 0 if and only if 

S = S and g"(S) = p'(S)p(S)j(p(S) 2 where g"(S) = p'(S)jp(S) > oby (5.5). The 

time derivative of L computed along solutions of (5.12) is 
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i(S,R,x) - e(p(S:~r(S)). S' +TJ(q(R~(~~(R)). R' +(x: x). x' 

_ e(p(S)- p(S) )(1 _ S _ xp(S)) 
p(s) · e 

+ (q(R)- q(R) )(1 _ R _ xq(R)) 
TJ q(R) TJ 

x-x
+(-)x(-d + Q(S, R))

X 

- e(p(S)- p(S) )(1- S) +TJ(q(R)- q(R) )(1- R) 
p(S) q(R) 

-x(-d + Q(S, R)) 

+x(-d +Q(S, R)- (p(S)- p(S))- (q(R)- q(R))) 

Noting that x = e~<sf> = "~1<"Rf> and d = p(S) + q(R), we have 

. _(1- s 1- s)
L(S,R,x) = e(p(S)- p(S) p(S) - p(S) 

- (1- R 1- R)
+TJ(q(R)- q(R)) q(R) - q(R) 

For 0 < S < S, p(S)- p(S) < 0 and !(s)- !(S~ > 0 while for S > S, p(S)- p(S) > 0 

and !~ - !(~ < 0. A similar result holds for R. 

Thus, L(S, R,x) :50 and L(S, R,x) = 0 if and only if S =Sand R = R so that 
0 

Lis a Lyapunov function (B5) for (5.12) in~- Hence, by Propositon 5.3 and LaSalle's 

Extension Theorem (B6) every solution of (5.12) for which x(O) > 0 approaches M 

where M is the largest invariant subset of {(S, R, x) E ~ : S = S, R = R, x > 0}. 

But then M = {E} as S = S and R = R imply that x = x since by (5.12) x' = 0 

and by Theorem 5.3 the interior equilibrium is unique. 

Hence, if S(R, S) = p(S) for all R ;::: 0, 'R(S, R) = q(R) for all S ;::: 0 and 

Q(l, 1) > d, there exists a unique interior equilibrium which is globally asymptotically 

stable for (5.12) with respect to all solutions for which S(O) ;::: 0, R(O) ;::: 0 and 

x(O) > 0. 
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In the next section we will use the information gathered here to ascertain 

existence and local stability properties of equilibria in the four dimensional system. 
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5.4 The Four Dimensional System 

We now return to a study of the four dimensional system given in section 5.2; that is 

S'(t) - 1 - S(t)-~ x~:t)Si(S(t), R(t)) 

R'(t) - 1- R(t)- t Xi(t)'Ri(S(t),R(t)) (5.18) 
i=l "'i 

x~(t) - Xi(t)( -Di + gi(S(t), R(t))), i = 1, 2 

S(O) =So 2: 0, R(O) = Ro 2: 0, Xi(O) = Xio > 0, i = 1, 2. 

Three of the critical points of (5.18) are readily determined and will be denoted 

Eo=(1,1,0,0) 

E 1 = (5\,Rt,xt,O) 

E2 = (S2, R2, o, x2) 

where by Theorem 5.3, an equilibrium of the form E1 exists and is unique if and only 

if Q1 (1, 1) > D1 and an equilibrium of the form E2 exists and is unique if and only 

if Q2(1, 1) > D 2 • If any other critical points exist they must be interior equilibria in 

which S, R, x1 and x 2 are all positive. An interior equilibrium of (5.18) is a solution 

(S*, R*, x~, x;) of the system 

Qt(S, R) = Dt 

(5.19a)
{ 

Q2(S, R) = D2 

Tt-St(S, R) + ~S2(S, R) 1-S 
(5.19b)

{ 
~'Rt(S, R) + ~'R2(S, R) = 1-R 

0 

with (S*, R*, x~, x;) E ~t where by (5.9) and the positivity constraint on x~ and x;, 

0 < S* < min{1, At, .\2 } and 0 < R* < min{1, P,t, p,2}. We first examine system 

(5.19a), noting that it is independent of the values of x1 and x 2 • 
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Theorem 5.6 Suppose there exist 81l 82 < min{1, .\ll .\2}, 81 =f. 82 , such that either 

(a) Y1(82,<p2(82)) < D1 and Y2(8ll<p1(81)) < D2 or 

(b) Q1(82,<p2(82)) > D1 and Y2(81,<p1(81)) > D2. 

Then there exists a solution (8*,R*) of(5.19a). 

Proof of (a): Recall that in section 5.1 we define <pi(8) such that Yi(8, <pi(8)) = 

Di for 0 < 8 < Ai. Under the hypotheses of the theorem, <p1(82) > <p2(82) and 

<p2(81) > <p1(81) since Yi is an increasing function of its arguments. Without loss of 

generality, assume 81 < 82 and define '1j;(8) = <p1(8)- <p2(8) on I= [8~, 82]. Then '1/J 

is continuous on I. Also, 

'lj;(81) = <p1(81)- <p2(81) < 0 

'lj;(82) = <p1(82) - <p2(82) > 0 
0 

Therefore, there exists 8* E I such that 'lj;(8*) = <p1(8*) - <p2(8*) = 0, that is, 

Y1(8*,R*) = D1 and Q2(8*,R*) = D2 where R* = <p1(8*) = <p2(8*) (see figure A.12) 

so that we have a solution to (5.19a). 

Proof of (b): Similar to part (a). 

We will now examine system (5.19b ), restricting our attention to 0 < 8 < 
min{1, .\1, .\2} and 0 < R < min{1, p,1, p,2}. Define 

~(8,R) = S1(8,R)'R2(8,R) _ S2(8,R)'R1"(8,R). ( ) 
6 T/2 6 T/1 

5
"
20 

Then, from (5.19b ), using Cramer's Rule it follows that 

-;;n2(8, R)(1- 8)- f;S2(8, R)(1- R) 
XI ­

~(8,R) 

(5.21) 
} S1(8,R)(1- R)- .l.R1(8,R)(1- 8)
" m 

~(8,R) 

As a solution with both x1 and x 2 positive is required, we will first determine when 

this is possible. Suppose the numerators of both x1 and x 2 are positive. Then 
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R2(S, R) (1 _ S) > S2(S, R) (1 _ R) and St(S, R) (1 _ R) > R1(S, R) (1 _ S). 
~2 e2 e1 ~1 

Therefore, after rearranging, 

so that 

that is, 

6(S,R) > 0. 

Therefore, if the numerators of x1 and x2 are positive, both x1 and x2 are positive. 

Sirrularly, if the numerators of x 1 and x2 are negative, then 6(S, R) < 0; that is, both 

x 1 and x2 are positive. We have therefore proved the following result. 

Theorem 5.7 Let (xi,x2) be a solution of(5.19b). Then xi> 0 and x2 > 0 if and 

only if the numerators of xi and x; as given in (5.21) are of the same sign. 

It remains to determine under what conditions this is possible, keeping in mind 

that we actually seek a solution to (5.19). Define 

N x2(S) = S1(S, 'P1(S)) (1 _ cp1(S)) _ R1(S, cp1(S)) (1 _ S) 
6 ~1 

N x;(S) is the numerator of x;(S) as given in (5.21) with R replaced by 'Pi(S) where 

i,j = 1, 2 and i # j. Recall that at E2 = (S2, R2, 0, x2), 
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Therefore 

R 2(S2,cp2(S2)) (1 - cp2(S2)) _ S2(S2,cp2(S2)) (1 - 32) = Nxi(S2) = o.
.,2 e2 

By (5.9), cp2(,\2) = 0 and cp2(0) = J.L2 so that, by (5.4) , 

D2 D2
Nxi(>..2) = -T and Nxi(O) = -. 

1:.2 'f/2 

Also, at EI = (Sb R17 X17 0), 

- 6(1- SI) 'T/I(1- 'PI(SI)) 
XI= SI(Sb 'PI(SI)) = RI(Sb 'PI(SI)) 

and so, similarly 

Moreover, 

and 

By (5.5) and (5.6) it follows that d~Nxi(S) < 0 and d~Nx2 (S) > 0 provided 0 < 


S < 1 and 0 < 'PI(S),cp2(S) < 1. See figure A.13. Note that if SI < B2 then Nxi(S) 


and N x2(S) are positive for all SI < s < s2 and if s2 < SI then N XI and N x2 are 


negative for all s2 < s < SI. 


Combining this with Theorem 5.7 we obtain the next result. 
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Theorem 5.8 Suppose there exists a solution (S*, R*) of (5.19a). Then the cor­

responding solution (xi, x;) of (5.19b) satisfies xi > 0 and x; > 0 if and only if 

min{St, S2} < S* < max{St, S2}. 

We now determine the local stability properties of the equilibria of (5.18) 

through an examination of the linearized system about each equilibrium point. The 

variational matrix, which will be denoted V4(S, R, Xt, x2), is given by 

St(S,R) _ S2(S,R)-1- L:i=t t/sSi(S, R) - L:i=t t~Si(S,R) - 6 e2 

- 'Rt(S1Rl 'R2(S1R)- L~=l ~/s'Ri(S, R) -1- E~=l ~ {)~ 'Ri(S, R) I'll '12 

Zt/s9t(S,R) Zt-A9t(S, R) -Dt +9t(S,R) 0 

z2/sQ2(S, R) z2 8~Q2(S,R) 0 -D2 + Q2(S, R) 

The variational matrix evaluated at Eo is 

-1 0 -St(1, 1)/6 -82(1, 1)/6 

0 -1 - n1 (1 , 1)I TJ1 -'R-2(1, 1)/772 

V4(Eo) = 
0 0 -Dt + ~lt(1, 1) 0 

0 0 0 -D2 +92(1, 1) 

with eigenvalues a1 = a2 = -1, a3 = 91(1, 1)-D1 and a 4 = 92(1, 1)-D2. Thus, Eo is 

a locally asymptotically stable critical point if 91(1, 1) < D 1 and 92(1, 1) < D2, that 

is, if neither E1 nor E 2 exist. The critical point Eo is unstable if either 91 (1, 1) > D1 

or 92(1, 1) > D2, that is, if either E1 or E2 exists. 

Assuming that 9t(1, 1) > D 1 so that E1 exists, we now evaluate V4(E1 ), the 

variational matrix at E1 , which is given by 
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- 8 - - - 8 - - S1{S1,R1} S2{S1,Rl}-1- ~ 88St(St, Rt) -~ aRSt(Sb Rt) ­ 6 6 

- 8 - - - 8 - - 'R1 {S1 ,R1} 'R2{S1,R1}-~-'R.t(St Rt) -1- ~-'R.t(St Rt)
'71 as ' '71 8R ' '71 '72 

- 8 - - - 8 - -Xt 88(h(St, Rt) Xt 8RQt(Sb Rt) 0 0 

0 0 0 -D2 + Q2(S11 Rt) 

That is, 

where F = [-S2(S11 R1)/e2 - 'R.2(S1, R1)/TJ2 o]T. Therefore the characteristic poly­

nomial of V4 (sll Rll X1J 0) is 

where a3 +A1a 2 +B1a+ C1 is the characteristic polynomial of V3(S1 , R1 , x1 ) given in 

(5.14) and (5.15) with S(S, R) = S1(S, R), 'R.(S, R) = 'R.1(S, R), Q(S, R) = Q1(S, R) 

and d = D 1 • Clearly, Q2(Sll Rt) < D2 is a necessary condition for the local asymptotic 

stability of E 1 • 

In the special case that St(S, R) = p1 (S) for all R;::: 0 and 'R.1 (S, R) = q1(R) 
for all S ;::: 0, then equations (5.16) and (5.17) imply that E1 is locally asymptotically 

stable if and only if Q1 (1, 1) > D1 and Q2 (S11 Rt) < D2 • 

Assuming that Q2(1, 1) > D 2 so that E2 exists, a similar analysis ofthis critical 

point yields the characteristic polynomial of V..(S2, R2 , 0, x2), 

where a3 +A2a
2 +B2a +C2 is the characteristic polynomial of V3(S2, R2, x2) given in 

(5.14) and (5.15) with S(S, R) = S2(S, R), 'R.(S, R) = 'R.2(S, R), Q(S, R) = Q2(S, R) 
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and d = D 2 • Clearly, 91(82 , R2 ) < D1 is a necessary condition for the local asymptotic 

stability of E 2 • 

Again in the special case that S2(S, R) = p2(S) for all R 2 0 and 'R2(S, R) = 
q2(R) for all S 2 0, then equations (5.16) and (5.17) imply that E 2 is locally asymp­

totically stable if and only if 92 (1, 1) > D2 and 91(82 , R2) < D1. 
0 

Now, suppose there exists a solution E. = (S*,R*,xi,x2) E ~t of (5.19). 

Evaluating V4 (S*, R*, xi, x2) we have that the corresponding characteristic polynomial 

is given by 

(5.22) 

where 

b1 -	 1 aS1 (S* R*)xi aS2(S* R*)x2 
+ as ' 6 + as ' e2 ' 

b2 	 - a S (S* R*)xi a S (S* R*)x2

aR 1 

' 6 + aR 2 
' 6 ' 


!_'R (S* R*) xi + !_ 'R (S* R*) x2
b3 - 1 	 2 as ' TJ1 as ' TJ2' 

b4 1 a ,.,., (S* R*) xi a (S* *) x2- + aR''-1 ' "11 + aRn2 ,R 'f/2' 

a1 - ~: S1(S*, R*) a~91(S*, R*) + ~:S2(S*, R*) :s92(S*, R*), 

a2 - ~:S1(S*,R*) a~91(S*,R*) + ~:S2(S*,R*) a~92(S*,R*), 
a3 - ~:n1(S*,R*) a~91(S*,R*) + ~!n2(S*,R*) :s92(S*,R*), 

a4 - ~:'R1(S*, R*) a~9I(S*, R*) + ~:'R2(S*, R*) a~g2(S*, R*). 

First note that 
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(: 9t(S*,R*) 8~g2(S*,R*)- 8~9t(S*,R*) :sg2(S*,R*)) · 
8 

(S1(S*, R*) R2(S*, R*) _ S2(S*, R*) Rt(S*, R*))
e1 .,2 e2 .,1 

- 'V(S*,R*) · 6(S*,R*) 

where 6(S, R) is as in (5.20) and 'V(S, R) is given by 

Therefore, by the Routh-Hurwicz Criterion (B2), a necessary condition for the local 

asymptotic stability of E. is that 'V(S*, R*) and 6(S*, R*) have the same sign. 

Recall that c,oHS) = !~:~~:~~ for i = 1, 2. Suppose there exists a solution 

(S*, R*) of (5.19a) under the hypotheses of T~eorem 5.6(a) with 81 < S* < 82. 

Let E* = (S*,R*,x~,x;) denote the corresponding solution to (5.19) which exists by 

Theorem 5.8. Then 

lc,o~ (S*) I~ lc,o~(S*) I, 

that is, 
fs9t(S*, R*) < fs92(S*, R*) 

8~9t(S•, R*) - 8~92(8*, R*)" 

Therefore, after rearranging, 

Since 6(S*, R*) > 0 if 81 < S* < 82, a1a4 - a2a3 ~ 0 and E* is unstable. · 

Similarly, if 82 < S* < 81 , then 

that is, 

'V(S*, R*) 2: 0 

and since 6(S*, R*) < 0, if 82 < S* < 81, E* is unstable. 



50 CHAPTER 5. SUBSTITUTABLE RESOURCES 

Now, suppose that there exists a solution (S*, R*) of (5.19a) under the hy­

potheses of Theorem 5.6(b) with sl < S* < s2. Again, let E* = (S*' R*' X~' x;) 
denote the corresponding solution to (5.19) which exists by Theorem 5.8. Then 

lcp~ (S*)I ;::: lcp~(S*)I, (5.23) 

that is, 
/sgt (S*, R*) /sg2(S*, R*) 
a~gt(S*, R*) ?: 8~g2(S*, R*)" 

Therefore, after rearranging, 

\l(S*,R*) = :sgt(S*,R*) 8~g2(S*,R*)- 8~gt(S*,R*) :sg2(S*,R*) ~ 0. 

Since D.(S*, R*) > 0 if S1 < S* < S2, a 1a 4 - a2a3 > 0 if strict inequality holds in 

(5.23). 

Similarly, if S2 < S* < S1, then 

(5.24) 

so that 


\l(S*, R*) ~ 0. 


Since D.(S*, R*) < 0 if S2 < S* < St, a 1a 4 - a 2a 3 > 0 if strict inequality holds in 

(5.24). 

If Si(S, R) = Pi(S) for all R ?: 0 and ~(S, R) = qi(R) for all S ?: 0, then 

as shown by Leon and Tumpson [12], a 1a 4 - a 2a 3 > 0 is a necessary and sufficient 

condition for the local asymptotic stability of an interior equilibrium. This follows 

from the fact that, in this case, the characteristic equation of V4(E*) satisfies all other 

. conditions of the Routh Hurwicz Criterion (B2). 

Finally we study a global property of the model. In the following result, 

identify ( S, R, Xt, x2)-space with ~t. 

Theorem 5.9 Assume gi(1, 1) > Di, i = 1, 2, g1 (S2 , R2 ) < D1 and g2 (St, R1 ) < 
D2. Assume also that E1 is globally asymptotically stable with respect to all solutions 

initiating in 
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and that E2 is globally asymptotically stable with respect to all solutions initiating in 

Then system (5.18) is persistent (B3) with respect to all solutions for which x 1(0) > 0 

and x 2(0) > 0. 

Proof: If for some solution (S(t), R(t), x1(t), x2(t)) of (5.18) 

Xi(t) = 0 for some t ~ 0 (5.25) 

then xi(t) =0 since 

Xi(t) = Xi(O)exp{fot (-Di + 9i(S( r), R( T )))dr}. 

Suppose (5.25) holds fori= 1, 2. In this case, system (5.18) reduces to 

S'(t) - 1- S(t), 

R'(t) - 1 - R(t), 

x~(t) - 0, i = 1, 2, 

S(O) ~ 0, R(O) ~ 0, Xi(O) = 0, i = 1, 2. 

This system has solution S(t) = (S(O)- l)e-t + 1, R(t) = (R(O)- l)e-t + 1, 

xi(t) =0, i = 1, 2. Thus Eo is globally attracting with respect to solutions initiating 

in the set 

:lo = {(S, R, 0, 0) E ~t}. 
0 

Choose X E ~t. By Theorem 5.1, !l(X) is a nonempty, compact, invariant set 

with respect to (5.18). Suppose {Eo} E !l(X). Let M+(Eo) denote the stable manifold 

of E0 • Since 9i(l, 1) > Di fori = 1, 2, Eo is unstable and V4(Eo) has two positive 

real eigenvalues and two negative real eigenvalues. Therefore, since M+(Eo) ,:) :lo, 
0 

M+(Eo) = Jo and hence does not intersect ~t . This implies that {Eo} =f; !l(X.). 

Therefore, by the Butler-McGehee Lemma (B4), there exists Po E M+(Eo) such 
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that P; E !1(X)\{Eo} and hence clO(Po) C !1(X) where O(Po) denotes the entire 

orbit through P0 • However, since Eo is globally attracting, either O(Po) becomes 

unbounded or one of the S orR components becomes negative as t--+ -oo. In either 

case, we have a contradiction, and therefore {Eo} fl. !1(X). 

Suppose {Et} E n(X). Since Q2 (Sll R1 ) < D2 , E1 is unstable and therefore 

dim(M+(E1 )) < 4. Since M+(E1 ) :::> Jt, dim(M+(E1)) ~ 3. Therefore, M+(Et) = Jt 
0 

and hence does not intersect ~ . This implies that {Et} =/; !1(X). Therefore, by 

the Butler-McGehee Lemma, there exists P1 E M+(Et) such that P1 E !1(X)\{Et} 

and hence cl0(P1 ) c !1(X). However, since E1 is globally attracting, either O(P1 ) 

becomes unbounded as t --+ -oo or clO(P1 ) :::> {E0 }. In either case, we have a 

contradiction and therefore, {E1 } fl. !1(X). Similarly, {E2 } fl. !1(X). 

Since, by Theorem 5.1 xi(t) is bounded for i = 1, 2, S'(t) > 0 if S(t) is 

sufficiently close to zero and R'(t) > 0 if R(t) is sufficiently close to zero. It follows 

that any point in !1(X) must satisfy S > 0 and R > 0. 

Suppose (5.18) is not persistent. Then there exists a point P E !1(X) such that 

P E :li for some i E {0, 1, 2} and so clO(F) c n(X). If P E Jo then {Eo} E clO(F) 

since Eo is globally attracting with respect to all solutions initiating in the set Jo, 

implying that {Eo} E !1(X), a contradiction. If P E Jt then {Et} E clO(P) since E1 

is globally attracting with respect to all solutions initiating in the set Jt, implying 

that {E1 } E !1(X), a contradiction. Similarly, if P E J 2 then {E2 } E clO(F) since 

E 2 is globally attracting with respect to all solutions initiating in the set J 2 , implying 

that {E2 } E !1(X), a contradiction. Therefore, (5.18) is persistent. 

Note that if Si(S, R) =Pi(S) for all R ~ 0 and Ri(S, R) = qi(R) for all S ~ 0 

fori = 1, 2 then for each i, by Theorem 5.5, Ei is globally asymptoticaly stable with 

respect to all solutions initiating in {(S, R, Xt, x2) E ~t : Xi > 0, Xj = 0} where 

i =/; j E {1, 2}. Therefore, Theorem 5.9 gives necessary and sufficient conditions for 

persistence in this case. 
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5.5 Summary of Results 

In this section we summarize the results of sections 5.2 through 5.4 in terms of the 

original unsealed model. 

We obtained our most complete results in the case that the consumption of 

one resource does not affect the consumption of the other, that is, for the model 

of Leon and Tumpson [12]. First we showed that if Qi(S0 
, R0 

) < Di for i = 1, 

2 then Eo is globally asymptotically stable, that is, both species become extinct. 

In analyzing the (S, R, Xi) subsystems of (5.1) for i E {1, 2}, we found that there 

exists a unique interior equilibrium (Si, Ri, Xi) which is globally asymptotically stable 

provided Qi(S0
, R0

) > Di. We also found that a necessary and sufficient condition for 

solutions of the full four dimensional model to persist is that Q1(B2,R2) > Dt and 

Q2 ( S1 , Rt) > D2 • In table 5.2 we summarize the criteria that ensure the existence of 

equilibria in the nonnegative cone as well as criteria that guarantee local asymptotic 

stability of these critical points. 

Next we extended this model to a more realistic setting, incorporating the 

possibility that the consumption of one resource inhibits the consumption of the 

other. Again, if (h(S0 
, R0

) < Di fori= 1, 2 then both species become extinct. Here 

we found that for each i E {1, 2}, a necessary and sufficient condition for solutions 

of the (S, R, xi) subsystem to persist is that Qi(S0
, R0

) > Di. The criteria ensuring 

the existence of equilibria in the nonnegative cone and the local asymptotic stability 

of Eo are identical to those found in table 5.2. For each i E {1, 2}, we have only 

shown the criteria for the local asymptotic stability of the Ei given in table 5.2 to 

apply under the further assumption that f:h(S0
, R0

) > 2D. Also, the condition for the 

local asymptotic stability of E. is only a necessary condition in this case, ensuring 

that the constant term in the characteristic equation of V4(E.) is positive. Under the 

above restrictions and in the case that the consumption of one resource does not affect 

the consumption of the other, the local stability results are consistent with those of 

Waltman, Hubbell and Hsu [21]. 

Assuming that, for i = 1, 2, either Si(S, R) = Pi(S) for all R 2:: 0 and 
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E

Ri(S, R) = qi(R) for all S ~ 0 or Qi(S0
, R0

) > 2D we give the following bifur­

cation analysis of our results based on the parameters D1 and D 2• If D1 and D2 

are too large for the species to subsist, that is, Qi(S0
, R 0

) < Di for i = 1, 2, 

then none of E1 , E2 or E* can exist in the non-negative cone. The critical point 

0 , corresponding to total washout, is globally asymptotically stable. If D1 is de­

creased so that Q1(S0 
, R0 

) = Dt, then critical points Eo and Et corresponding to 

the sole survival of species one, coalesce. If D1 is slightly reduced, E1 bifurcates into 

{(S,R,xt, x2) E ~ : x1 > 0, x2 = 0} and Eo loses its stability to E1 . Consider 

Q1(S2 , R2) < D1 < (Jt(S0 
, R0 

). If D2 is now decreased so that Q2(S0 
, R0

) = D2, the 

critical points Eo and E2 corresponding to the sole survival of species two, coalesce. 

As D2 is decreased slightly, E2 bifurcates into {(S, R, Xt, x2) E ~t :Xt = 0, x2 > 0} 

and Eo loses another dimension of stability to E2. For Q2(St, R1 ) < D2 < Q2(S0 
, R 0

), 

both E1 and E2 are locally asymptotically stable. If D1 is now decreased, and E2 

loses its stability for Q1 (S2 , R2 ) > D1 • As D 2 is now decreased, the critical points E1 

and E* coalesce when 92(S1 , R1) = D2 • When Q2(Sb R1 ) > Dt, E1 loses its stability 

and E* bifurcates into {(S, R, Xt, x2) E ~ : x1 > 0, x2 > 0}. In the case that the 

consumption of neither resource reduces the consumption of the other, solutions of 

the model persist, that is, neither species becomes extinct. 

We have found that by varying the parameters each of the outcomes of the 

classical theory for two species competition described in chapter 2 are possible at 

least locally. In contrast with the classical model, the interior equilibrium need not 

be unique. Coexistence in the classical model corresponds to persistence when the 

consumption of each resource is independent of the consumption of the other. Com­

petitive independent extinction, an impossibility in the classical model, can also oc­

cur. Each outcome depends on the species' abilities to subsist at the given equilibrium 

concentrations of the resources. 

It is interesting to note that regardless of the assumptions imposed on the 

uptake functions, the analysis of the two competitor, two resource model depends 

heavily on the three dimensional subsystems involving one species and the two non­

reproducing substitutable resources. In the more general model, this is apparent in 

the analysis of the local stability of equilibria. For the model of Leon and Tumpson 



55 CHAPTER 5. SUBSTITUTABLE RESOURGES 

[12] it is still more apparent. In this case, the condition guaranteeing that the model 

is persistent is minimal in the sense that it is precisely the condition that ensures 

that the critical points in the three dimensional subsystems exist and are unstable, 

repelling into the interior. 

One shortcoming of the model is that certain simplifying assumptions were 

made. For example, it is assumed that the conversion of nutrient to biomass is 

instantaneous, whereas there is experimental evidence indicating that there is a time 

delay between absorption of nutrient and production of biomass. Also, it may be the 

case that the growth rate due to the consumption of one resource is not proportional 

to the rate of consumption of that same resource. Furthermore, we have not admitted 

uptake functions which describe inhibition by the substrates at high concentrations. 

It would be interesting to consider the "Principle of Competitive Exclusion" in 

this context to determine whether or not it is possible for more than two competitors 

to survive if limited by only two resources. A more complete analysis of the model 

considered here would likely be useful. 



56 CHAPTER 5. SUBSTITUTABLE RESOURCES 

Table 5.2: Summary of Local Stability Analysis of (5.1) 

Si(S,R) = Pi(S) for all R ~ 0 
~(S, R) = qi(R) for all S ~ 0 

CRITICAL 
POINT 

EXISTENCE 
CRITERIA 

CRITERIA FOR 
ASYMPTOTIC STABILITY 

Eo always exists 
Ql(S0 ,R:') < D1 

and 
Q2(So, R:') < D2 

E1 Ql(S0 ,R0 
) > D1 Q2(S1,R1) < D2 

E2 Q2(S0 ,R0 
) > D2 Q1(S2, R2) < D1 

E. 
( not necessarily 

unique) 

(i) Q1(S2, cp2(S2)) < D1 
and Q2(Sllcpl(Sl)) < D2 

or 
(ii) Q1(S2, cp2(S2)) > D1 

and Q2(S11 cp1(S1)) > D2 

(ii) holds and either 
lcp~ (S*) I > lcp;(S*) I 

and sl < s2 
or lcp~ (S*)I < lcp;(S*) I 

and sl > s2 



Chapter 6 


Discussion 


In this section we compare the results of Butler and Wolkowicz [2] in the noninhibitory 

kinetics case to those found here. To this end, we assume that Di = D, i = 1, 2, that 

is, the death rate of each species is negligible in comparison to the dilution rate. The 

notation for the critical points of model ( 4.5) in the complementary case, adapted 

from Butler et al. [2], are given in table 6.3. In table 6.4 we compare the criterion 

for the existence of equilibria in the nonnegative cone. Note that in the substitutable 

case we have shown that in the (S, R, xi) subsystems the critical point Ei exists if 

and only if 9i(S0 
, R:>) > D and if Ei exists then it is unique. In the complementary 

case, one of two equilibria in each of the (S, R, xi) subsystems exists. The criterion 

Qi(so, R0 
) is sufficient to guarantee the existence of an equilibrium. Which one exists 

depends on whether species i is S-limited or R-limited. Thus, the criteria for the 

existence of equilibria appear to differ in each case. However, it is interesting to note 

that the criteria given by Bulter et al. [2] for the existence and local asymptotic 

stability of the equilibria in the perfectly complementary case have the same form 

as those found here in the perfectly substitutable case. In table 6.5 we compare the 

criteria for the local asymptotic stability of the equilibria when they exist. Recall 

that we have only shown the criteria for the local asymptotic stability of E. to be a 

necessary condition, ensuring that the constant term in the characteristic equation of 

V4(E.) is positive. Also, the interior equilibrium in the substitutable case need not 

be unique. In the case that the uptake functions assume the form of those studied by 

57 
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Waltman, Hubbell and Hsu [21], E., when it exists, is unique and the constant term 

in the characteristic equation of V4(E.) will be positive if and only if 9t(S2, R2) > D 

and 92(St,Rt) > D, one of the other conditions being satisfied immediately. The 

same is true in the complementary case where the form of the subsistence curves 

ensure that the interior equilibrium, when it exists, is unique. 

Consider first the critical points Et, EAt* and E*l-'t" For substitutable resources, 

the critical point Et exists if and only if 9t (S 0
, R:') > D and is locally asymptotically 

stable if and only if it exists and 92(S11 Rt) < D. In the complementary case, the 

critical point EAt* exists if and only if At < so and Tt > Ct and is locally asymp­

totically stable if and only if it exists and At < A2 or T* < Ct. Now, At < so and 

R0Tt > Ct > 0 imply J-tt < so that 9t(S0 
, R0 

) = min{pt(S0 
), qt(R0 

)} > D. The 

condition 9t(S0 
, R0 

) > D alone does not imply that EAt* exists since population one 

must further be S-limited. Also, if 92(A11 R0 
- Ct(S0 

- At)) = min{p2(At), q2(R0 
­

Ct(S0 -At))} < D then either At< A2or R0 -Ct(S0 -At) < 1-'2.1 that is, either At< A2 

or .~:=:x: < Ct. Similarly, if either At < A2 or T* < Ct then 92(At, R0 
- Ct(so- At)) = 

min{p2(At), q2(R0 
- Ct(S0 

- At))} < D. A similar argument shows that E*l-'t exists 

if and only if 9t (so, R0 
) > D and Tt < Ct and is locally asymptotically stable if and 

only if it exists and 92(S0 
- Jt (R0 

- J-tt), J-tt) = min{p2(S0 
- Jt (R0 

- J-tt)), q2(J-tt) < D 

where A2 < so if P2(S0 
- Jt (R0 

- J-tt)) :5 q2(J-tt)· 

Next consider the critical point EAtl-'2 and suppose At > A2, J-tt < 1-'2, Ct < 

T* < C2 and At < so. Now, At < so, Ct < T* and 1-'t < J-t2 imply Tt > T* > Ct so 

that EAt* exists and At < so' 0 < T* < c2 and At > A2 imply A2 < so' l-'2 < R0 and 

T2 < T* < C2so that E.~-'2 exists. Also, Ct < T* is equivalent to J-t2 < R:'-Ct(S0 -At) 

and since A2 <At, 92(At,R0 -Ct(S0 -At)) = min{p2(At),q2(R0 -Ct(S0 -At))} >D. 

Similarly, T* < c2 is equivalent to At < so - A(R0 
- l-'2) and since 1-'t < J-'2, 

9t(S0 
- J

2
(R0 

- J-t2),J-t2) = min{pt(S0 
- J

2
(R0 

- J-t2)),qt(J-t2)} > D. Conversely, 

if At < so then 9t(S0 
- J (R0 

- J-'2), J-'2) > D implies J-tt < 1-'2 and At < so ­

J (Ro- J-t 2) so that T* > C2, 
2 

and 92(At, Ro- Ct(S0 
- At)) > D implies At > A2 and 

Ro- Ct(So- At) > J-t2 so that Ct < T*. Therefore the condition At > A2, 1-'t < 1-'2, 

Ct < T* < C2 and At< so is equivalent to At< so, 9t(S0 
- J (Ro- J-t2),J-t2) > D 

2 

and 92(At, R:'- Ct(so- At)) > D. Similarly, for EA2 J.'t the condition At < A2, J-tt > J-'2, 

2 
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C1 > T. > C2 and ..\2 < so is equivalent to ..\2 < so, Q1(..\2, Ro - C2(So - ..\2)) > D 

and 92(S0 
- d 

1 
(Ro- J.td, l-'1) > D. 

By varying the parameters in the model for perfectly substitutable resources, 

each of the outcomes for perfectly complementary resources are possible at least lo­

cally. In contrast to the perfectly complementary case, the the interior equilibrium 

need not be unique. Coexistence in the perfectly complementary case corresponds 

to persistence when the consumption of each resource is independent of the con­

sumption of the other. Competition independent extinction can occur for perfectly 

substitutable and perfectly complementary resources. The similarities in the criteria 

for the existence and local asymptotic stability of equilibria would indicate that in 

both cases the outcome is determined by the species' abilities to subsist at the given 

equilibrium concentrations of the resources. This possible correlation is consistent 

with the analysis of Tilman [18]. Using graphical techniques to examine the local 

stability properties of two species competition for two resources, he conjectures that 

the type of resources for which competition occurs will not lead to major, qualita­

tive differences in the ecological patterns that can result from competition between two 

species for two resources. 
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Table 6.3: Notation for the Critical Points of Model (4.5) 

NOTATION CRITICAL POINT 
(provided it lies in ~t) 

Eo (S0 
, R0 

, 0,0) 

EAl* (>'l,Ro- C1(So- At),e1(So- A1),0) 

E*"'t (so ­ (Ro - P.1)/C1, 1-'11 "11 (Ro - !-'1), 0) 

E>.2* (A2, Ro- C2(So- A2), 0,6(R0 
- A2)) 

E*~-'2 (So ­ (R0 
- 1-'2)/ C2, 1-'2, 0, T/2 (Ro - l-'2)) 

EAl/.'2 (At, 1-'2, it, x2) 
w ere x1 - 1T/1 '7t6-6172h - - ( r{S"-,,J-..(R"-,.,)~ 

and X = eTJ '7t(RO-tt2)-6(SO->.t)2 2 2 '1te2-6112 

EA21-'1 (p,t, A2, x1, x2) 
w ere x1 = 1TJ1 '71 6 _6172 

h • ( ~e,(S"-,,)-,(R"--,) ~ 
and X = eTJ '7t(R0 -I-'I)-et(S0 -A2)2 2 2 '11e2-6772 
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Table 6.4: Criteria for Existence Of Equilibria 

Substitutable vs Complementary 


SUBSTITUTABLE RESOURCES COMPLEMENTARY RESOURCES 


CRITICAL 
POINT 

EXISTENCE 
CRITERIA 
gi =Si +'Ri 

CRITICAL 
POINT 

EXISTENCE 
CRITERIA 

gi = min{pi,qi} 

Eo always exists Eo always exists 

Et gt(S0 ,R0 
) > D 

EAl* gt(S0 ,R0 
) > D and Tt > Ct 

E*l-'1 gt(S0 ,R0 
) > D and Tt < Ct 

E2 g2(S0 
, R0 

) > D 
EA2* g2(S0 

, R0 
) > D and T2 > C2 

E*l-'2 g2(S0 
, R0 

) > D and T2 < C2 

E,. 

( not necessarily 
unique) 

(i) gt(S2, cp2(S2)) < D 
and 

g2(St, cpt(St)) < D 

or 

(ii) gt(S2,cp2(S2)) > D 
and 

g2(St. cpt(St)) > D 

EAll-'2 

(i) At > A2 and J.lt < Jl2 
and 

Ct > T* > C2 and At < so 
or 

(ii) At < so and 
gt(S0 

- i;(R0 
- J.l2),p.2)) > D 

g2(At, R0 
- Ct(S0 

- At))> D 

EA2iJ1 

(i) A1 < A2 and J.l1 > Jl2 
and 

Ct < T,. < C2 and A2 < so 
or 

(ii) A2 < so and 
gt(A2, ~- C2(So- A2)) > D 
g2(S0 

- J1 (R0 
- J.ll), J.lt) > D 
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Table 6.5: Criteria for the Local Asymptotic Stability of Equilibria 

Substitutable vs Complementary 


SUBSTITUTABLE RESOURCES COMPLEMENTARY RESOURCES 


CRITICAL CRITERIA FOR CRITICAL CRITERIA FOR 
POINT ASYMPTOTIC 

STABILITY 
gi =si +'Ri 

POINT ASYMPTOTIC 
STABILITY 

gi =min{pi, qi} 

Eo 
gt(S0 ,R0 

) > D 
and 

g2(S0 
, R0 

) > D 
Eo 

gt(S0 
, R0 

) < D 
and 

g2(S0 
, R0 

) < D 

E>.., .. 
g2(At, ~- Ct(S0 

- At))< D 
and A2 < so if 

P2(S0 
- ~(R0 - ~t)) ~ q2(pt) 

Et g2(8t,Rt) < D 
E.,p., g2(S0 

- J, (R0 
- ~1), ~t) < D 

EA2* gt(A2, R0 
- C2(S0 

- A2)) < D 

E2 gt(82,R2) < D 

E.,JJ2 
gt(S0 

- ~(R0 - ~2),~2) < D 
and At < so if 

Pt(S0 
- -6;(R0 

- ~2)) ~ qt(~2) 

E., 
( not necessarily 

unique) 

(ii) holds and either 
lcp~(S*)I > lcp~(S*)I 

and 8t < 82 
or lcpHS*)I < lcp~(S*)I 

and 8t > 82 

EAl#J2 (ii) holds 

EA2#Jl (ii) holds 
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Figure A.l: Schematic Diagram of the Chemostat 
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s 

Figure A.2: Holling Type I Functional Response: : = rS 

s 

Figure A.3: Holling Type II Functional Response: : = ::s 
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x' mS2 
Figure A.4: Holling Type III Functiona1Response: X' = s'l+KS+L 

L 
91 

Figure A.5: Indifference Curves for Perfectly Complementary Resources 
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Figure A.6: Indifference Curves for Perfectly Substitutable Resources 

Figure A. 7: Indifference Curves for Imperfectly Substitutable Resources 



67 APPENDIX A. FIGURES 

:r:s(S) 

A 1 S 

Figure A.S: Schematic Diagram Theorem 5.3 Case 1: A ~ 1 and p, ~ 1 

W-s) (S)
S(S,l) :r:s 

1 A S 

Figure A.9: Schematic Diagram Theorem 5.3 Case 2: A > 1 and p, > 1 
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xs(S) 

1 ,\ s 

Figure A.10: Schematic Diagram Theorem 5.3 Case 3: A ;::: 1 and fL ~ 1 

W-5) 
S(S,l) 

,\ 1 s 

Figure A.ll: Schematic Diagram Theorem 5.3 Case 4: A~ 1 and fL;::: 1 
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' 
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' ' ' ' 

(82, cp2(82)) 

82 s 


(82, cp2(82)) 

82 s 

Figure A.12: Schematic Diagram Theorem 5.6 (a) and (b) 
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Figure A.l3: Schematic Diagram Theorem 5.8 



Appendix B 

Background Theory 

Bl: The Implicit Function Theorem [17] 

Let F(xb ... , Xn, z) be defined on an (n + 1 )-dimensional neighborhood of 

the point (all ... ,an, c). Suppose that F has continuous partial derivatives in this 

neighborhood, and furthermore, assume that 

Under these conditions there exists a box-like region defined by certain inequalities 

lying in the above neighborhood, and such that the following assertions are true: 

Let R be then-dimensional region 

in the space of the variables xb ... , Xn· Then 

1. For any ( x17 ••• , xn) in R there is a unique z such that 

Let us express this dependence of z on (xb ... , xn) by writing 
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2. The function f is continuous in R. 

3. The function f has continuous first partials given by 

8 8:.F(xb ... ,xn,z) 
- f(xt, ... ,xn) =- 8' ( )' i = l, ... ,n,
8Xi -,-F Xt, ... ,Xn,Z

vXn+l 

where z = f(xt, ... , Xn)· 

B2: Routh-Hurwitz Criterion [5] 

Consider 

Define 

At Ao 0 
At Ao 

~3=~t =At, ~2= A3 A2 At' A3 A2 
As A4 A3 

In general, define 

At Ao 0 0 0 0 0 0 

A3 A2 At Ao 0 0 0 0 

~n= As ~ A3 A2 At Ao 0 0 

A2n-t A2n-2 A2n-3 A2n-4 A2n-S A2n-6 A2n-7 An 

where Aj = 0 for j > n. In particular, ~n =An ~n-t. 

A necessary and sufficient condition for all of the roots of p(a) to have their 

real parts negative is that all the determinants ~i, i = 1, ... , n, be positive. 

B3: Persistence [4] 

A population p(t) is said to persist if p(O) > 0 and liminft-+oo p(t) > 0. A 

system is said to be persistent if each component population persists. In the language 

of dynamical systems, a solution with initial conditions in the interior will persist if 

there are non-limit points on the boundary. 
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B4: The Butler-McGehee Lemma [4] 

Let E be an isolated equilibrium with nonzero eigenvalues in the omega limit 

set fl(X) of an orbit O(X). Then either n(X) = {E} or there exist points p+, p­

in fl(X) with p+ E M+(E) and p- E M-(E). 

B5: Lyapuvov Function [11] 

Consider the general system of differential equations 

x' = f(x) f(xo) = 0 

Here J(x) is a vector-valued function, continuous in x for x E clG where G is an open 

subset of ?Rn. The function V mapping ?Rn to ?R is said to be a Lyapunov Function 

in G for ( *) if it satisfies the following properties: 

1. V(x) is continuous together with its first partial derivatives in G. 

2. V(x):;:::: 0 with equality only when x = X 0 • 

3. V = (gradV) · f ~ 0 in G. 

B6~La Salle's Extension Theorem [11] 

Let V be a Lyapunov function in G for ( *). Then each bounded orbit ap­

proaches M where M is the largest invariant subset of {x E clG: V = 0}. 
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