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Abstract 

Meta-analysis is a set of statistical procedures used to aggregate results from 

independent studies. These techniques are widely used in clinical research to get the 

overall picture from a series of trials addressing the same question. We used Bayesian 

hierarchical models to evaluate effect of the addition of chemotherapy to radiotherapy 

treatment in patients with newly diagnosed locally advanced squamous cell or 

undifferentiated nasopharyngeal cancer. We also performed subgroup analysis to 

determine the best timing and regimen of chemotherapy. 

It is demonstrated that the Bayesian model does not only efficiently incorporate all 

sources of variability, but is also robust under different likelihood functions. 

The results based on Bayesian hierarchical models assuming a non-informative prior 

are similar to those from classical random effects models. A significant effect was 

observed in favour of patients who received radiochemotherapy versus those who 

received radiotherapy alone. The analysis revealed that neoadjuvant chemotherapy is the 

best timing for treatment. 
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Chapter 1 

Introduction 

1.1 Background 

Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with a distinctive 

geographic and ethnic distribution. It has a specific high incidence rate for Southeast Asia, 

particularly the southern provinces in China, the Mediterranean basin, North Africa, 

Greenland, and Alaska. The annual incidence varies from 10 to 65 persons per 100,000 

people in Asia to less than 1 per 100,000 people in North America (1-4). NPC occurs more 

frequently in males, with a gender ratio of male:female of 3:1. In contrast to other head 

and neck cancers, the vast majority of NPC tumors bear little or no causal association 

with heavy smoking or alcohol abuse. In addition, NPC patients are relatively younger 

and have a better performance status. The etiology of NPC is likely driven by several 

factors that include both genetic predisposition and environmental factors. Epidemical 

evidence suggests that Epstein-Barr virus (EBV) is strongly associated with this 

malignancy, particularly in endemic areas, although the exact role of EBV in NPC 



carcinogenesis remains to be unknown. The World Health Organization (WHO) has 

classified NPC into three types: Type 1, Keratinizing squamous cell carcinoma; Type 2, 

Nonkeratinizing carcinoma; Type 3, Undifferentiated carcinoma. 

In North America, NPC is quite rare with approximately 2% of all cancers occurring 

in the head and neck regions. WHO type 1 is the most common type in North America, 

while WHO type 2 and 3 are most common in Asian countries. Regardless of tumor type, 

patients with stage I or II diseases usually have a reasonable rate of 5-year survival with 

radiotherapy (approximately 70% to 90% ), although the prognosis for those with advance 

disease (stage III or IV) is generally poor (approximately 45% to 55%P·4). Unfortunately, 

the majority of patients with newly diagnosed NPC present with locally advance 

diseases<3-S). 

As a curative strategy, radiotherapy is the standard treatment for this patient 

population. However, this strategy is generally poor with inspect to overall survival rates 

and thus has led to further investigations for other alternatives. Several randomized trials 

have explored the role of chemotherapy in the neoadjuvant, adjuvant or concurrent 

settings, combined with radiotherapy versus the standard radiotherapy regimen alone. 

Since NPC tumors are known to be chemosensitive, any improvements in survival and 

local control typically come at the cost of increased toxicity. To date, optimal therapy for 

the treatment of NPC has not yet to be established. The Head and Neck Cancer Disease 

Site Group considered that a systematic review of the evidence comparing treatment 

options for patients with newly diagnosed squamous cell or undifferentiated 

nasopharyngeal cancer was warranted at this time<l). 
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1.2 Objectives 

The purpose of this study is to perform a Bayesian meta-analysis to determine the 

additional value of neoadjuvant, concurrent or adjuvant chemotherapy to radiation in the 

curative treatment of locally advanced NPC, mainly with regard to the 2-year overall 

survival and 2-year disease-free survival. In this project, the 2-year overall survival and 

2-year disease-free survival refer to the odds ratio of 2-year mortality and 2-year disease, 

respectively. If the addition of chemotherapy to radiotherapy treatment improves the 

overall survival or disease-free survival, then we need to find the best timing and regimen 

of chemotherapy. Also, a comparison between Bayesian meta-analysis and the classical 

random effects meta-analysis will be addressed. 

1.3 Scope of the Study 

In this study, we adopt the Bayesian approach to perform meta-analysis of the data. 

The thesis is arranged as follows. In Chapter 2, we construct hierarchical models based on 

non-informative priors. Then, we perform a sensitivity analysis with three different 

likelihood functions, Normal, Laplace, and Student's t with different degrees of freedom. 

We also perform a Bayesian subgroup analysis to determine the best timing and regimen 

of chemotherapy. In Chapter 3, we discuss the comparison of results of Bayesian 

meta-analysis and Bayesian subgroup analysis with those from the classical random 

effects models. Then, we discuss the robustness of the Bayesian results based on the 

sensitivity analyses. Finally, we discuss the advantages and disadvantages of Bayesian 
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meta-analysis in Chapter 4 and provide our conclusions. 

1.4 Significance of the Study 

The primary objective of this study is the development of guidelines for use of 

chemotherapy as an adjustment to radiotherapy in the treatment of patients with newly 

diagnosed locally advanced squamous cell or undifferentiated nasopharyngeal cancer. The 

goal is to provide clear summarization of the treatment effect on different settings, and 

provide knowledge base for policy makers and clinicians. By performing Bayesian 

meta-analysis, all parameter uncertainty and other pertinent information are formally 

included in the modeling of the data, thus not only does it increase the statistical power by 

combining many studies, but it also improves the precision of the treatment effect. 

Non-informative priors are adopted in Bayesian analysis and thus final inferences are 

dominated by data from the trials. 

1.5 Literature Search Strategy 

The literature was searched using MEDLINE (OVID; 1966 through October 2004), 

EMBASE (OVID; 1980 through October 2004), the Cochrane Library (OVID; Issue 3, 

2003), the Physician Data Query database, the Canadian Medical Association Infobase, 

and the National Guideline Clearinghouse, as well as abstracts published in the 

proceedings of the meetings of the American Society of Clinical Oncology (1997-2003), 

the American Society for Therapeutic Radiology and Oncology (1992-2003), the Asian 
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Clinical Oncology Society (2001), the International Congress of Radiation, Oncology 

(1997 and 2001), the European Society of Therapeutic Radiology and Oncology (1992, 

1994, 1996, 1998, 2000, 2002), and the European Society for Medical Oncology (2000, 

2002). Article bibliographies and personal files were also searched to October 2003 for 

evidence relevant to this thesis. 

1.6 Inclusion Criteria and Exclusion Criteria 

The present study is a systematic review based on published reports or published 

abstracts of randomized controlled trials. To be eligible, published studies had to deal 

with newly diagnosed patients with locally advanced squamous cell or undifferentiated 

nasopharyngeal cancer who have received any combination of chemotherapy plus 

radiation in the neoadjuvant, concurrent, or adjuvant setting (intervention) versus 

radiotherapy alone (control). Also, results for the primary outcomes of interest should be 

disease-free survival (odds ratio of disease), or overall survival (odds ratio of mortality). 

Practice guidelines, meta-analyses, or systematic reviews explicitly based on randomized 

trials related to the guideline question were also eligible for inclusion in the systematic 

review of the evidence. 

Thirty-four randomized trials with fifty-nine comparisons were eligible for inclusion 

in this systematic review of the evidence. Chemotherapy was delivered with radiotherapy 

in the neoadjuvant (13 trials), concurrent (9 trials), adjuvant settings (4 trials), or was 

delivered in the neoadjuvant plus adjuvant setting (6 trials), concurrent plus adjuvant 

therapy (2 trials), neoadjuvant and concurrent setting (3 trials), or neoadjuvant, concurrent 
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and adjuvant therapy (2 trials). 

Articles were excluded from the systematic review of the evidence if they were trials 

that did not report separate results for patients with nasopharyngeal cancer. 
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Chapter 2 

Methods 

2.1 Methods of Analysis 

The analysis adopted the Bayesian approach of meta-analysis is to pool the results 

from thirty-six studies on the effects of radiochemotherapy versus radiotherapy alone in 

treating NPC. The primary model used the Normal distribution as the likelihood function 

to estimate common treatment effect assuming non-informative priors for the model 

parameters. Secondary analysis involved sensitivity analyses using three different 

likelihood functions, that is, Normal, Student's t and Laplace distributions. Bayesian 

subgroup analysis was also done to find the best timing and regimen of chemotherapy. 

Comparisons between Bayesian hierarchical models and classical random effects model 

are made. Software WinBUGS (Windows Version of Bayesian Inference Using Gibbs 

Sampling) and Revman 4.2 (Review Manager) were used to help perform Bayesian and 

21Classical meta-analysis respectively<20
• ). 
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In the following sections, we describe the models and assumptions used in both the 

classical random-effects model (section 2.2) and Bayesian analysis (section 2.3, section 

2.4). We also discussed the sensitivity analysis (section 2.5) and Bayesian subgroup 

analysis (section 2.6). 

2.2 A Classical Random Effects Meta-Analysis Model 

In a classical random effects model it is assumed that the treatment difference 

parameters in the r studies ( 81, ... , B, ) are a sample of independent observations from 

N(B,r 2
). The general random effects model is given by 

(2.1) 

for i = 1, ... , r, where Bi is the estimate of Bi, B is the common underlying treatment 

effect, the vi are normally distributed random effects with mean 0 and variance r 2 , the 

si are error terms and are realizations of normally distributed random variables with 

expected value 0 and variance denoted by ~? . The terms vi and si are assumed to be 

independently distributed. It follows that 

(2.2) 

1 f 2 2Let w; =(wj1 +f 2
)- , where wj1 is an estimate of ~? and is an estimate of r , if 

(w;)-1 is the true variance of Oi, then the maximum likelihood estimate of B is given 

by e' where 
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(2.3) 

This is the pooled point estimate of common treatment effect and an approximate 95 

% confidence interval (CI) for 8 is given by 

1 
(2.4)e±L96Jf,

Iw; 
i=l 

For further details on classical random effects model see Whitehead A <22
). For the 

classical meta-analysis, the results are expressed as odds ratio (OR) with corresponding 

95% CI. The criterion for statistical significance is set apriori at a= 0.05. Heterogeneity 

is assessed using z 2 test with statistical significance set at a= 0.05. 

2.3 Bayesian Meta-Analysis 

In the Bayesian approach, uncertainty about all unknown parameters is expressed 

through posterior distributions. The data consist of study estimates of treatment difference, 

0;, i =1, ..., r, where 

(2.5) 

The 8; is the true treatment effect of the ith study. The unknown parameters 8; and ~l 

are given prior distributions. In this model, it is assumed that the 8; are exchangeable, 

there is no prior belief about their ordering. The vector of study estimates, 0; , is denoted 
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by y, the corresponding vector of parameters, Bi, by 1{1, the vector of the variance of 

study estimates ~?, by w. The joint density (likelihood) function for the data by f 

(yll{l ,w) , and the prior distributions for 1{1 and w by p(l{ll B,-z-2 
) and p(w). Where B is 

the common underlying treatment effect, -z- 2 is the variability between treatment effects. 

Considering B and -z- 2 as hyperparameters and giving them independent prior 

distributions, a hierarchical model can be constructed. The unknown parameters consist of 

w, 1{1, B and -z- 2 
, and their joint posterior distribution, using Bayes' theorem, is given by 

P( 1{1 ,w, B, r 2 iy) oc full{! ,w)p( 1{11 B, -z- 2 )p(w)p( B)p( -z- 2 
) (2.6) 

Where p( B) and p( -z- 2
) are the prior distributions for B and -z- 2

• 

Inference about each parameter can be obtained by integrating over the other 

parameters. Unless the prior distributions are very simple, these integrals cannot be 

calculated in closed form. Solutions to overcome this problem include the use of 

asymptotic methods to obtain analytical approximations to the posterior density, 

numerical integration and simulation. More recently much work has been carried and in 

developing simulation-based methods classified as Markov Chain Monte Carlo (MCMC) 

methods<23
). Among these methods, Gibbs sampling has been increasingly used in applied 

25Bayesian analysis within health care research settings<24
• ). The appeal of Gibbs sampling 

is that in wanting to summarize a marginal posterior density, simulating from a typically 

high dimensional joint posterior density is often difficult, but the posterior conditional 

distributions are often much easier to sample from. Gibbs sampling uses this fact, 

together with Ergodic theory, which ensures that if the marginal conditional densities are 

sampled from a sufficiently long period of time, then the realizations will approximate the 
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desired marginal posterior densities<26
). The software package WinBUGS(2

0) was used to 

help get the posterior mean or median. It should be noticed that much care has to be taken 

in establishing convergence of the Markov chain and sensitivity to specific prior 

distributions when using WinBUGS. 

2.4 Non-informative Prior Distribution 

Non-informative priors were assumed for all model parameters. Non-informative 

priors, also known as vague priors of ignorance, attempt to impact little information about 

the parameters of interest, are commonly used because they often lead to inferences 

comparable to those obtained under classical approaches. The use of non-informative 

priors is quite common in Bayesian analysis<27
•
28

). 

Since a prior normal distribution with a very large variance for () will have little 

influence on the eventual posterior, and an inverse gamma (IG) prior distribution with 

parameters close to zero for r 2 will have little effect, the non-informative prior 

distributions for the mean () as N(O, l.OE+6) and for the variance between treatment 

effect r 2 as /G(0.001, 0.001) are used. Similarly, we assumed the variability within each 

trial has an inverse gamma distribution, i.e. 

fl- /G(0.001, 0.001) (2.7) 

The inverse gamma distribution with parameters a and A, /G( a , A) has the density 

function 

p(x) =~x-a-l exp(-A) (2.8)
r(a) x 
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where 

r(a) = r= xa-l exp(-x)dx (2.9) 

for a>O. 

It should be noted that WinBUGS parameterizes the variance in terms of precision. 

Precision is defined as the reciprocal of the variance. In WinBUGS, if X is distributed as a 

Normal distribution with mean p, and precision t' 2 , then the probability density 

function (pdf) of X is 

/r t' 2
'Jl; exp(-2 (x- ,u) ); -oo < x < oo (2.10) 


If the heterogeneity parameter is assigned a non-informative inverse Gamma 

distribution, then the inverse heterogeneity parameter will be a gamma distribution. In 

WinBUGS, the pdf of a gamma distribution with shape parameter rand scale parameter 

p, is 

(2.11) 

For Bayesian analysis, the results are expressed as posterior mean with 

corresponding 95% credible interval (Crl). Posterior densities, diagnostics summaries and 

diagnostics graphics are also provided. 

2.5 Sensitivity Analysis 

In order to check whether posterior inferences are robust to misspecification of the 
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likelihood function or not, three different likelihood functions, Normal, Student's t and 

Laplace, were used. 

If X is distributed as a Student's t distribution with mean f.-1 , precision -. , and k 

degrees of freedom, then the pdf of X is 

k +1 
r(-) ff,; k+l 
_ __;;;2'----- _!.._[1+!_(x- JL)2] -2; 

-oo <X< oo; k '?:. 2 (2.12). r(!) k:r k 
2 

Four different degrees of freedom of Student's t were used in the analysis, namely, k 

=4, 8, 12 and 16. 

If X is distributed as a Laplace distribution, also called double exponential 

distribution, with mean f.-1 and precision parameter -r , then the pdf of X is 

T 
-exp(-r Ix- JLJ); -oo < x < oo (2.13)
2 

The Student's t and Laplace distributions were chosen because they fall in the same 

family of symmetric distribution with the Laplace knowing a heavy peak center and 

thinner tails (leptokurtic), while the Student's tis bell shaped like the Normal distribution 

but has thicker tails. For the Student's t distribution, the smaller the degrees of freedom, 

the thicker the tails are. 

2.6 Bayesian Subgroup Analysis 

In addition to a simple comparison of efficacy using the primary outcomes, clinical 

trial analysts often explore the possibility of different treatment effects within the study 
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population. This is referred to as subgroup analysis. The thirty-six randomized clinical 

trials were subdivided into seven subgroups on the basis of timing and regimen of 

chemotherapy. There are neoadjuvant, concurrent, adjuvant, neoadjuvant plus adjuvant, 

concurrent plus adjuvant, neoadjuvant plus concurrent, and neoadjuvant, concurrent plus 

adjuvant. 

In each subgroup, the data consist of study estimates of treatment difference, B; , i 
A

=1, ... , r, where ei - N(8i, fi
2 
) . The ei are the true treatment effect of the i

th 
study. The 

2unknown parameters oi and ;? are given prior distributions as ei - N(8, T ) and ;? ­

/G(0.001, 0.001). The non-informative prior distributions for the mean (} as N(O, 

l.OE+6) and for the variance between treatment effect -. 2 as /G(0.001, 0.001) are used. 
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Chapter 3 

Results 

3.1 Results of Classical Random Effects Model 

The two major outcomes are odds ratio of 2-year disease and odds ratio of 2-year 

mortality as 2-year disease-free survival and 2-year overall survival. Figures A.l and A.2 

display the results of these trials and the classical meta-analysis results<29
l. 

There was a significant difference in 2-year disease-free survival in favor of patients 

who received radiochemotherapy versus those who received radiotherapy alone (OR = 

z20.66; 95% CI, 0.52 to 0.82). However, significant heterogeneity was detected using 

statistics, the p-value is 0.0008. By timing of chemotherapy for 2-year disease-free 

survival, radiochemotherapy with neoadjuvant chemotherapy (OR =0.76; 95% CI, 0.59 

to 0.98), or concurrent plus adjuvant chemotherapy (OR = 0.25; 95% CI, 0.12 to 0.52) 

was significantly superior to radiotherapy alone. 

Data on 2-year overall survival included thirty-four trials with thirty-six comparisons. 

Across thirty-six comparisons, there was a significant difference in favor of patients who 
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received radiochemotherapy versus those who received radiotherapy alone (OR = 0.70; 

x 295 % CI, 0.59 to 0.84). Test for heterogeneity was not significant using statistics, and 

the p-value is 0.07. By timing of chemotherapy, radiotherapy with neoadjuvant 

chemotherapy (OR = 0.78; 95 % CI, 0.62 to 0.97), or concurrent plus adjuvant 

chemotherapy (OR = 0.32; 95 % CI, 0.17 to 0.61), or neoadjuvant, concurrent plus 

adjuvant (OR =0.44; 95 % CI, 0.21 to 0.92) was significantly superior to radiotherapy 

alone. 

3.2 Results of Bayesian Non-informative Model 

All the Bayesian results presented are based on 200,000 iterations following a 

bum-in of 1000. A logarithm transform of the odds ratios are done to make the data more 

normalized. 

Bayesian meta-analysis for non-informative prior distribution included seventeen 

trials with twenty-two comparisons for 2-year disease-free survival, and thirty-four trials 

with thirty-six comparisons for 2-year overall survival. The odds ratios and 95% credible 

intervals are presented in Table 3.1. To get an easy comparison, we presented the classical 

results in Table 3.2. 
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Bayesian 2-year disease-free 2-year overall 

non-informative survival survival 

model 

Odds Ratio 0.7151 0.7348 

Crl (95%) 0.5275 - 0.9208 0.6034- 0.8761 

Table 3.1: Pooled analysis of radiochemotherapy versus radiotherapy alone: 2-year 

disease-free survival and 2-year overall survival (Bayesian non-informative model) 

Classical Random 

effects model 

2-year disease-free survival 2-year overall survival 

Odds Ratio 0.66 0.70 

CI (95%) 0.52-0.82 0.59-0.84 

Table 3.2: Pooled analysis of radiochemotherapy versus radiotherapy alone: 2-year 

disease-free survival and 2-year overall survival (classical random effects model) 
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3.3 Results of Sensitivity Analysis 

After 200,000 iterations, the common underlying treatment effect parameter fJ 

converges for Normal, Student's t, and Laplace likelihood functions. The kernel densities 

of fJ for 2-year disease-free survival and 2-year overall survival are given in Figures A.3 

and A.4. The odds ratio and confidence interval of common treatment effect fJ for 

different likelihood functions are presented in Tables 3.3 and 3.4. From Figures A.3, A.4 

and Tables 3.3, 3.4, we concluded that posterior inferences are robust to misspecification 

of the likelihood functions. 

Likelihood Function Odds Ratio Crl (95%) 

Normal 0.7151 0.5275 - 0.9208 

Laplace 0.6874 0.5092 - 0.8941 

Student's t (k=4) 0.7183 0.5269- 0.9218 

Student's t (k=8) 0.7196 0.5271- 0.9186 

Student's t (k=l2) 0.7176 0.5281 - 0.9205 

Student's t (k=16) 0.7161 0.5258 - 0.9208 

Table 3.3: Pooled analysis of radiochemotherapy versus radiotherapy alone: 2-year 

disease-free survival (Bayesian non-informative model for different likelihood functions) 
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Likelihood Function Odds Ratio Crl (95%) 

Normal 0.7348 0.6034- 0.8761 

Laplace 0.7084 0.5824 - 0.8493 

Student's t (k=4) 0.7356 0.6054 - 0.8755 

Student's t (k=8) 0.7345 0.6034- 0.8756 

Student's t (k=12) 0.7337 0.6030- 0.8745 

Student's t (k=16) 0.7348 0.6040 - 0.8765 

Table 3.4: Pooled analysis of radiochemotherapy versus radiotherapy alone: 2-year 

overall survival (Bayesian non-informative model for different likelihood functions) 

Figures A.3, A.4, A.5 and A.6 provided the kernel density estimates of posterior 

distributions for parameter 8 and r using Normal, Laplace and Student's t 

distributions. Diagnostic graphs of time series, dynamic trace and autocorrelation are 

presented in Figures A.7, A.8, ... , A.l8. 

3.4 Results of Bayesian Subgroup Analysis 

The results of subgroup analysis using Bayesian meta-analysis method for 2-year 

disease-free survival and 2-year overall survival are presented in Table 3.5 and Table 3.6. 

Results for 2-year disease-free survival included four subgroups according to the timing 

and regimen of chemotherapy, they are neoadjuvant, concurrent, adjuvant, and concurrent 
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plus adjuvant. Neoadjuvant plus adjuvant and neoadjuvant plus concurrent are excluded 

from the subgroup analysis because they contain only one estimable odds ratio 

respectively. In order to get a clear comparison of Bayesian subgroup analysis with 

classical subgroup analysis, results form classical meta-analysis are presented as well. 

Time of Classical Method Bayesian Method 

Chemotherapy OR I CI (95%) OR I Crl (95%) 

Neoadjuvant 0.76 0.59-0.98 0.75 0.49- 1.12 

Concurrent 0.71 0.46- 1.08 0.62 0.30- 1.49 

Adjuvant 0.82 0.56-1.19 0.80 0.48- 1.35 

Concurrent 

plus adjuvant 

0.25 0.12-0.52 Not 

convergent 

Not 

convergent 

Table 3.5: Comparison of Bayesian subgroup analysis with classical subgroup analysis for 

2-year disease-free survival 

Table 3.5 suggested that by timing of chemotherapy, radiotherapy with concurrent 

chemotherapy and adjuvant chemotherapy were not significantly superior to radiotherapy 

alone from both Bayesian method and classical method. For neoadjuvant chemotherapy, 

the Bayesian model suggested no significant difference between radiochemotherapy and 

radiotherapy alone, while the classical model suggested that radiotherapy with 

neoadjuvant chemotherapy was significant superior to radiotherapy alone. Since there are 

only two trials in concurrent plus adjuvant subgroup, Bayesian method did not reach 
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convergence, but classical method suggested that it was significantly superior to 

radiotherapy alone. 

Time of Classical Method Bayesian Method 

Chemotherapy OR CI (95%) OR Cr1(95%) 

Neoadjuvant 0.78 0.62-0.97 0.81 0.69-0.92 

Concurrent 0.72 0.46- 1.12 0.72 0.39- 1.38 

Adjuvant 1.14 0.65- 1.98 1.03 0.42-2.67 

Neoadjuvant 

plus adjuvant 

0.73 0.47- 1.13 0.67 0.39- 1.13 

Concurrent plus 

adjuvant 

0.32 0.17-0.61 Not 

convergent 

Not 

convergent 

Neoadjuvant 

plus concurrent 

0.47 0.19- 1.18 0.42 0.05-4.55 

Neoadjuvant, 

concurrent plus 

adjuvant 

0.44 0.21- 0.92 Not 

convergent 

Not 

convergent 

Table 3.6: Comparison of Bayesian subgroup analysis with classical subgroup analysis for 

2-year overall survival 
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Table 3.6 suggested that by timing of chemotherapy, radiotherapy with neoadjuvant 

chemotherapy was significantly superior to radiotherapy alone, while concurrent 

chemotherapy, adjuvant chemotherapy, neoadjuvant plus adjuvant chemotherapy, and 

neoadjuvant plus concurrent chemotherapy were not significantly superior to radiotherapy 

alone from both Bayesian method and classical method. Since there are only two trials in 

concurrent plus adjuvant subgroup and neoadjuvant, concurrent plus adjuvant subgroup, 

the Bayesian method did not reach convergence, but the classical method suggested that 

both of them were significantly superior to radiotherapy alone. 

Kernel density estimates, time series and dynamic trace for parameters 8 and -. in 

neoadjuvant subgroup, concurrent subgroup, adjuvant subgroup, neoadjuvant plus 

adjuvant subgroup and neoadjuvant plus concurrent subgroup are presented in Figures 

A.19, A.20, ... , A.26. 
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Chapter4 

Discussion and Conclusion 

4.1 Similarities and Differences Between Classical and 

Bayesian Meta-Analysis 

Meta-analysis is a collection of statistical techniques for combining studies. It makes 

research findings more accessible to the general public, and provides a knowledge base 

for policy makers and practitioners. Both classical and Bayesian meta-analysis have the 

aforementioned goals and use the concept of probability as a measure of uncertainty. Both 

of them use sampling distributions to collect data and use likelihood functions to 

construct analysis models. 

Classical meta-analysis is derived from a frequentist approach, which is concerned 

with an imagined infinite number of repetitions of the same inferential problem for fixed 

values of the unknown parameters. The Bayesian philosophy is fundamentally different 

from the frequentist. In the Bayesian approach, all unknown parameters are treated as 

random variables, such as the true treatment effect of the ith study 8; , the common 
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underlying treatment effect B and the variability between treatment effects -r 2 
, and they 

have a joint probability distribution specified prior to observation of data. In general, 

these prior distributions are reflections of subjective opinion. Since we know little about 

the model parameters, we adopted non-informative priors. The updating of the prior 

distribution in light of the data, governed by Bayes' theorem, leads to the posterior 

distribution. Bayesian inference is based on this posterior distribution. The analogue of a 

frequentist confidence interval is the credibility interval. The 95% credibility interval has 

the property that the Bayesian is 95% certain that the parameter lies within it; while a 

95% confidence interval has the property that in 95% of repetitions it will include the true 

value of the parameter. 

4.2 Advantages of Bayesian Meta-Analysis 

An important advantage of the Bayesian approach is the ability to account for 

uncertainty of all relevant sources of variability in the model. In the Bayesian analysis, 

the posterior density is fully evaluated and exact posterior standard deviations and 

credibility intervals are obtained from the posterior distributions for each model 

parameter. By contrast, in the frequentist approach, the standard errors and Cis are 

computed using formulae which assume that the variance components are known. From 

Table 3.1 and Table 3.2, we can see that the odds ratio of common treatment effect B in 

the Bayesian model is slightly bigger than that in the classical model, and the 95% 

credible interval derived from the posterior distribution is larger than confidence interval 

for 2-year disease-free survival and 2-year overall survival. That is because all unknown 
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parameters are included in the Bayesian model. 

Furthermore, interpretation of Bayesian results is more intuitive than the classical 

results. Without the abstract p-values and the use of arbitrary choices of levels of 

significance, the Bayesian approach gives the probability of clinical benefit and the exact 

credible interval. For example, we calculated the probability of the odds ratio of common 

effect parameter B smaller than 1, and we got P(OR < 1)=1 for 2-year disease-free 

survival. That means that the probability of radiochemotherapy being more effective than 

radiotherapy is 1. In terms of 2-year disease-free survival, the probability that 

radiochemotherapy is more effective than radiotherapy is also 1. We cannot calculate 

these probabilities using the classical model. 

4.3 Discussion of Subgroup Analysis 

The purpose of doing subgroup analysis is the existence of variation in response of 

different timing and regimen of chemotherapy. It is helpful for clinical decision making. 

A clinician cannot recommend a treatment to a patient based on the average response. 

One must provide clinicians with enough information to assess the likely response of 

individual patients, against which they can weigh the risk and possibly cost. 

From the subgroup analysis result, we can see that there is wide variation in the size 

of the effect. The treatment has a strong positive effect in two subgroups and no effect in 

the complementary subgroups for 2-year disease-free survival using classical method. For 

Bayesian method, all subgroups show no effect for 2-year disease-free survival. For 
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2-year overall survival, three subgroups show positive effect for classical method, one 

subgroup shows positive effect for Bayesian method, others either show no effect in 

classical model or do not converge in Bayesian model. This situation is often referred to 

as a qualitative subgroup effect as opposed to quantitative effects in which all subgroups 

show benefits of treatment. 

One possible explanation of these qualitative subgroup effects is that the number of 

trials in most subgroups, which showed negative effect, is too small (less than five). 

Trials are always underpowered to detect true subgroup effects unless a priori and an 

appropriate sample size accommodations are incorporated; that is why we adopted 

Bayesian meta-analysis to explore subgroup effects. 

Interpreting the findings requires caution. Until proven otherwise, one should 

assume that if a treatment shows benefit overall in a study, then the average treatment 

effect will apply to each recognizable subgroup. 

4.4 Challenges of Bayesian Meta-Analysis 

Like classical meta-analysis, Bayesian meta-analysis has some limitations. The first 

consideration is the Simpson's Paradox, whereby a reversal in the direction of the 

relationship may occur when different data from different sources is combined. The 

second limitation is the quality of the studies included in the meta-analysis. If the studies 

included in the meta-analysis are flawed or biased, so is the meta-analysis. The third 

limitation is publication bias. There is always a high likelihood for studies that did not 

achieve statistical significance not to be published. Therefore statistically significant 
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studies are more likely to be included in the meta-analysis, which will result in an 

overestimate of the treatment effect. In this Bayesian meta-analysis, efforts were put forth 

to obtain more information, such as contacting the authors of the abstract in an attempt to 

get unpublished papers. 

4.5 Conclusion 

In general, the Bayesian models agreed with the classical random effects model that 

for patients with newly diagnosed locally advanced squamous cell or undifferentiated 

nasopharyngeal cancer, chemotherapy added to radiotherapy significantly improves the 

survival rate as compared with radiotherapy alone. A large survival benefit was detected 

for neoadjuvant chemotherapy therapy. 

Bayesian non-informative model and classical random effects model gave the same 

conclusion for 2-year disease-free survival and 2-year overall survival. Odds ratios for the 

common treatment effect are all smaller than 1, and those credibility intervals and 

confidence intervals do not contain 1. That means a significant effect in favour of patients 

who received radiochemotherapy versus those who received radiotherapy alone has been 

achieved. The best timing for chemotherapy is neoadjuvant, or concurrent plus adjuvant 

therapy using classical random effects model for 2-year disease-free survival. For 2-year 

overall survival, the best timing for chemotherapy is neoadjuvant, concurrent plus 

adjuvant therapy, and neoadjuvant, concurrent plus adjuvant therapy using classical 

random effects model, while the Bayesian method concluded that only neoadjuvant 

therapy is the effective timing. 
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Appendix A 
Figures of Pooled Analysis of Classical 
Model and Kernel density, Dynamict race, 
time Series and Autocorrelation of 
Bayesian Model 
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Figure A.l Pooled analysis of radiochemotherapy versus radiotherapy alone: 2-year 
disease-free survival (classical random effects model) 
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Figure A.2 Pooled analysis of radiochemotherapy versus radiotherapy alone: 2-year 
overall survival (classical random effects model) 
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FigureA.12: Dynamic trace of parameter B of Normal, Laplace and Student's t 

distributions with non-informative priors for 2-year overall survival 
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FigureA.13: Dynamic trace of parameter -. of Normal, Laplace and Student's t 

distributions with non-informative priors for 2-year disease-free survival 
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FigureA.14: Dynamic trace of parameter -. of Normal, Laplace and Student's t 

distributions with non-informative priors for 2-year overall survival 
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FigureA.15: Plots of the autocorrelation function of parameter B for Normal, Laplace 
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FigureA.16: Plots of the autocorrelation function of parameter r for Normal, Laplace 
and student's t distributions with non-informative priors for 2-year disease-free survival 
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FigureA.18: Plots of the autocorrelation function of parameter r for Normal, Laplace 
and student's t distributions with non-informative priors for 2-year overall survival 
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Appendix B 
Related WinBUGS Code 
model 

{ # 2-year disease-free survival analysis 

# d <­ 4 # degrees of freedom for k = 4, 8, 12, 16 

for ( i in 1 : N) { 

Y[i] - dnorm(mu[i], w[i]) 

# Y[i] - ddexp(mu[i], w[i]) 

# Y[i] - dt(mu[i], w[i], k) 

mu[i] - dnorm (theta, t ) 

w[i] - dgamma(0.001, 0.001) 

} 

#prior 


theta - dnorm(O, 1.0E-6) 


t - dgamma(0.001, 0.001) 


# standard deviation of error distribution 

tau <- sqrt(1 I t # normal errors 

# tau <- sqrt(2) I t # double exponential errors 

# tau<- sqrt(d I (t * (k- 2))) #terrors on k degrees of freedom 

prob<-step(1-theta) # probability of theta less than one 

} 

Data list( N =20, 


Y=c(0.24686, -0.05129, -0.63488, -0.21072, 0.17395, -1.46968, -0.26136, 


-0.71335, -0.46204, 0.21511, -0.79851, -0.35667, -0.65393, -0.18633, 


-0.22314, -0.21072, 0.23902, -1.66073, -0.91629, -1.30933)) 


Inits 


list(theta = 0, t = 1, mu = c(O, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 

01 01 01 01 01 01 0) 1 w=c ( 11 1 f 1 f 1 f 1 f 1 f 1 f 1 f 1 f 11 1 f 1, 11 11 11 

1, 1, 1, 1, 1)) 
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model 

# 2-year overall survival analysis 

d <- 4 # degrees of freedom for k 4, 8, 12, 16 

for (i in 1 : N) { 

Y[i] - dnorm(mu[i], w[i]) 


# Y[i] - ddexp(mu[i], w[i]) 


# Y[i] - dt(mu[i], w[i], k) 


mu[i] - dnorm (theta, t ) 


w[i] - dgamma(0.001, 0.001) 


} 


#prior 


theta - dnorm(O, 1.0E-6) 


t - dgamma(0.001, 0.001) 


# standard deviation of error distribution 

tau <- sqrt(1 I t ) # normal errors 

# tau <- sqrt (2) I t # double exponential errors 

# tau<- sqrt (d I (t * (k- 2))) # t errors on k degrees of freedom 

prob<-step(1-theta) # probability of theta less than one 

} 

Data list (N =3 6, 


Y=c(-0.16252, -1.60944, -0.04082, -0.21072, -0.11653, -0.34249, 


-0.3285, -0.21072, -0.16252, -0.46204, 0, -0.44629, -0.79851, 


0.40547, -0.84397, 0.27003, -1.17118, -0.43078 0.17395, -0.26136,
1 

-0.56212, -0.07257, 0.12222, 0.6831, -0.07257, -0.54473, -0.05129, 

-0.8675, -0.51083, -1.30933, -0.4943, -0.99425, -1.34707, 0.22314, 

-0.52763, -1.04982 )) 

Inits 

list(theta = 0, t = 1, mu = c(O, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 

0 I 0 I 0 I 0 I 0 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 I 0 1 0 1 0 ) I w=c ( 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 1,1,1 )) 
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model 

{ 

# subgroup analysis for 2-year disease-free survival 

for ( i in 1 : N) { 


Y[i] - dnorm(mu[i], w[i]) 


mu[i] - dnorm (theta, t ) 


w[i] - dgamma(0.001, 0.001) 


} 

#prior 


theta- dnorm(O, 1.0E-6) 


t - dgamma(0.001, 0.001) 


# standard deviation of error distribution 

tau<- sqrt(1 I t ) # normal errors 

} 

Data list ( N =9, 


Y=c(-1.46968, -0.05129,-0.21072,-0.26136,0.17395, -0.63488,-0.71335, 


-0.46204, 0.24686)) # neoadjuvant subgroup 


Inits list(theta 0, t = 1, mu = c(O, 0, 0, 0, 0, 0, 0, 0, 0), w=c(1, 

1, 1, 1, 1, 1, 1, 1, 1)) 

#list (N=4, Y=c(-0.35667, -0.79851, -0.65393, 0.21511)) for concurrent 

subgroup 

# list ( N =3, Y=c ( -0.22314, -0.21072, -0 .18633)) for adjuvant subgroup 

#list (N=2, Y=c ( -1.66073, -0.91629)) for concurrent and adjuvant subgroup 
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model 

{ # subgroup analysis for 2-year overall survival 

for (i in 1 : N) { 

Y[i] - dnorm(mu[i], w[i]) 

mu[i] - dnorm (theta, t ) 

w[i] - dgamma(0.001, 0.001) 

#prior 


theta - dnorm(O, 1.0E-6) 


t - dgamma(0.001, 0.001) 


# standard deviation of error distribution 

tau <- sqrt(1 I t ) # normal errors 

} 

Data list(N =12, Y=c( -0.16252, -1.60944, -0.04082, -0.21072, 

-0.11653, -0.34249, -0.3285, -0.21072, -0.16252, -0.46204, 0, 

-0.44629)) 

# neoadjuvant subgroup 

Inits list(theta = 0, t 1, mu = c(O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0 ) , w=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )) 

#list( N =8, Y=c(-0.79851, 0.40547, -0.84397, 0.27003, -1.17118, 

-0.43078 , 0.17395, -0.26136)) for concurrent subgroup 

#list (N=4, Y=c(-0.56212, -0.07257, 0.12222, 0.6831)) for adjuvant 

subgroup 

#list (N=5, Y=c(-0.07257, -0.54473, -0.05129, -0.8675, -0.51083)) for 

neoadjuvant and adjuvant subgroup 

# list(N=2, Y=c(1.30933, -0.4943)) for concurrent and adjuvant subgroup 

#list (N=3, Y=c(-0.99425, -1.34707, 0.22314)) for neoadjuvant and 

concurrent subgroup 

#list (N=2, Y=c( -0.52763, -1.04982)) for neoadjuvant, concurrent and 

adjuvant subgroup 
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