
AN INTERACTIVE SYSTEM FOR TREE ALIGNMENT AND RECONSTRUCTION

AN INTERACTIVE SYSTEM FOR TREE ALIGNMENT AND RECONSTRUCTION

By

FENG LIU, B.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Feng Liu, March 1999

MASTER OF SCIENCE (1998) MCMASTER UNIVERSITY

(Computation) Hamilton, Ontario

TITLE: 	 An Interactive System for Tree Alignment and Reconstruction

AUTHOR: 	 Feng Liu

B.Eng. (EE, Huazhong University of Science and Technology, China)

SUPERVISOR: 	 Professor Tao Jiang

NUMBER OF PAGES: 116, vm

11

Abstract

This application software system of Tree Alignment and Reconstruction (TAAR)

is an X Window based interactive system developed mainly for sequence analysis. It

provides a user-friendly graphical interface and convenient operations for performing

Pairwise Alignment, 3-Star Alignment, Phylogeny Reconstruction and Generalized Tree

Alignment algorithms. The algorithms for Phylogeny Reconstruction and Generalized

Tree Alignment are designed based on heuristic stepwise addition and internal node

sequence alignment induction methods. All above algorithms are space-efficiently

implemented. For each algorithm, both fast and optimal versions are provided for user's

convenience.

TAAR can be used for DNA, RNA and PROTEIN sequences analysis. In general,

as long as the sequence characters are in the range of a-z and A-Z, and the score

matrix alphabet contains the sequence alphabet, the sequence would be accepted by this

application and all calculations could be carried out.

This software system is programmed in C, Motif and X Window Library

functions. It is intended to be running in a UNIX and X Window environment.

111

Acknowledgments

I would like to express my thanks to Professor Tao Jiang for his continually

encouragement, support and guidance to me. He is always available for help and has

contributed greatly to my interest in the research. My thanks also go to Professor William

F. Smyth and Professor Sanzheng Qiao for their constructive suggestions.

I also like to thank Mr. Xian Zhang, Mr. Bin Wu and Miss Yufang Hua very much

for their valuable suggestions on software testing and for the sharing of computer

resources.

I wish to thank the professors, staff and my fellow graduate students in the

department, who made my study at McMaster University an extremely enriching

expenence.

I would especially thank my wife, Wen Qing Xie, and my son, Daniel, for their

constant love, understanding, encouragement and patient cooperation.

IV

Table of Contents

Abstract... iii

Acknowledgements .. iv

Chapter 1 Introduction .. 1

Chapter 2 Molecular Sequence Analysis ... 5

2.1 Pairwise Alignment .. 6

2.2 Star Alignment ... 11

2.3 Tree Alignment .. 19

2.4 Tree Alignment as Multiple Sequence Alignment.. ... 24

2.5 Phylogeny Reconstruction ... 28

2.6 Generalized Tree Alignment .. 32

Chapter 3 Graphical User Interface .. 35

3.1 Interface Development ... 35

3.2 The X Window System .. 37

3.3 MotifProgramming Model .. 40

Chapter 4 Project Development ... 46

4.1 Interface Structure .. 46

4.2 Displaying Graphs ... 51

4.3 Data Structure .. 56

4.3.1 Sequence .. 56

4.3.2 Score Matrix ... 57

4.3.3 Tree .. 57

4.4 Operations .. 60

v

4.5 The Undoing Facility ... 62

Chapter 5 A Guide To Tree Alignment and Reconstruction 65

5.1 Getting Started ... 66

5.2 Screen Display and Operation ... 67

5.2.1 Main Control Panel .. 67

5.2.2 Drawing Area ... 68

5.2.3 Running Status Message .. 72

5.2.4 Sequence List ... 72

5.2.5 Score Matrix List ... 75

5.2.6 Open Gap Penalty Input ... 77

5.2.7 Operation Mode ... 78

5.3 Displaying Sequence and Alignments ... 82

5.4 File Format ... 84

Chapter 6 An Example Run ofTAAR ... 87

6.1 Start the T AAR Program ... 87

6.2 Load the Sequences .. 87

6.3 Load the Score Matrices .. 88

6.4 Calculations.. 90

6.4.1 Optimal Rooted Tree Alignment Operation Mode Test 90

6.4.2 Optimal Tree Alignment Operation Mode Test.. ... 92

6.4.3 Optimal Generalized Tree Alignment Operation Mode Test 94

6.5 Real Data Test .. 97

Chapter 7 Concluding Remarks ... 98

Appendices

A. Sample Input Sequnce File•............•................•...................... 100

B. Sample Score Matrix File•..............................•...................•...................... 102

Vl

C. Test Output of Multiple Sequence Alignment ... 104

D. Real Data Test Result ... 108

Bibliography .. 114

Table of Figures

Figure 2.1 A Star Tree ... 11

Figure 2.2 Algorithm Costonly_star_align 14

Figure 2.3 Algorithm find_center_string_star_align .. 17

Figure 2.4 Algorithm Initialization . .. 21

Figure 2.5 Algorithm Virtual Root Selection .. 22

Figure 2.6 A phylogeny with nine species, which is divided into

seven 3-components .. 23

Figure 2.7 (a) A 3-component. (b) Two overlapping 3-components 24

Figure 2.8 A part of the computed phylogenetic tree ... 25

Figure 2.9 Adjusting sequence length ... 25

Figure 2.10 Multiple Sequence Alignment Algorithm... 27

Figure 2.11 Enumeration of 3 possible unrooted trees for four taxa 30

Figure 2.12 Algorithm Phylogeny Reconstruction ... 31

Figure 2.13 Generalized Tree Alignment algorithm .. 33

Figure 3.1 Programmer's view ofthe X Window System .. 39

Figure 3.2 User-interface library model.. .. 44

Figure 4.1 Primary structure ofTAAR ... 47

Figure 4.2 Deriving the line for an edge ... 53

Figure 4.3 The neighborhood of an edge .. 55

Figure 4.4 The data structure for sequences ... 56

Figure 4.5 The data structure for score matrix .. 57

Vll

Figure 4.6 The adjacency lists structure ... 58

Figure 6.1 A screen shot after loading sequence and score matrix files

Figure 6.3 A screen shot after loading sequence and score matrix files

Figure 6.6 The screen shot of Opt-Gen-Tree-Align calculation result of

Figure 4.7 Structure ofundo_buffer.. 64

Figure 5.1 Initial screen ofTAAR .. 66

Figure 5.2 The main screen areas ofTAAR ... 67

Figure 5.3 The View & Edit dialog window ... 83

Figure 5.4 The dialog window for viewing pairwise alignment.. 84

Figure 5.5 The dialog window for viewing multiple sequence alignment 85

and drawing the rooted-tree .. 89

Figure 6.2 The screen shot ofOpt-RootedTree-Align calculation result. 91

and drawing the degree-3 tree ... 93

Figure 6.4 The screen shot of Opt-Tree-Align calculation result.. 94

Figure 6.5 The screen shot of Opt-Gen-Tree-Align calculation result. 96

Phylogeny reconstruction ... 97

Vlll

Chapter 1

Introduction

The molecular sequence (DNA, RNA and Protein) analysis plays an important role in

computational biology. It is also an important part in the study of evolution of life. The

large amount of information and computation involved in the analysis has brought many

challenging computational problems to mathematicians and computer scientists. Multiple

Sequence Alignment, including Tree Alignment, is among the most important topics in

sequence analysis. Since such problems are usually computationally hard (NP-hard in

terms of computer science), optimal solutions are not available or not practical.

Therefore heuristic and approximate methods are applied and new proposals continue to

emerge. For a new algorithm, although it is important that the algorithm is good in the

sense of complexity theory, it will be more convincing if a systematic performance

analysis is conducted on the computed results, the required time and resources. This

demand gives a reason for the design and development of this Tree Alignment and

Reconstruction (TAAR) software system.

Before T AAR was developed, another similar application called Sequence

Analysis Tool (SAT) was designed and developed by Chen [3] under the supervision of

Professor Tao Jiang in 1994. Chen's SAT system has been tested and shown to be very

unreliable (sometimes crashed the workstation that SAT works on). In addition to this, it

was also implemented on an outdated platform, Openwin, and only few operations (i.e.,

FAST & OPT Tree Alignments) were implemented in it. Since a much more reliable

1

2

system with more functions, such as Phylogeny Reconstruction and Generalized Tree

Alignment, is needed in the computational biology research project at McMaster

University, I designed this T AAR system based on some of the ideas provided in SAT.

Several new functions and improvements are added and implemented in T AAR.

T AAR is an X Window based interactive system developed mainly for providing

a platform so that the performance of molecular sequence analysis algorithms developed

at McMaster University can be conducted easily. It provides a user-friendly graphical

interface and convenient operations for performing Pairwise Alignment, Tree Alignment,

Phylogeny Reconstruction and Generalized Tree Alignment algorithms. All above

algorithms are space-efficiently implemented, and both fast and optimal versions of these

algorithms are provided for the user's convenience.

TAAR can be used for DNA, RNA and PROTEIN sequence analysis. In general,

as long as the sequence characters are in the range of a-z and A-Z, and the score

matrix alphabet contains the sequence alphabet, the sequence would be accepted by this

application and all calculations could be carried out. T AAR allows the user to load, save,

view and print out F ASTA [20] formatted sequences, custom formatted score matrices

and tree graphs. It includes text editors for editing sequence and score matrix, and a

graph editor that provides basic editing functions such as create, move, cut, root and undo

for graphs as well as label and unlabel operations for sequence assignment to tree nodes.

The user can use the above graph editing functions to draw any tree directly on the

canvas window and assign any loaded sequence onto the tree node; can edit any loaded

sequence and score matrix in the edit window; can input and select various scoring

3

systems and do any of total eight kinds of calculations for Tree Alignment, Phylogeny

Reconstruction and Generalized Tree Alignment algorithms. When a calculation is done,

the user can view, save and print out the result of multiple sequence alignment and

phylogenetic tree structure.

Among the above implemented algorithms, I designed the Phylogeny

Reconstruction and Generalized Tree Alignment algorithms for T AAR. The Phylogeny

Reconstruction algorithm applies tree alignment and some heuristic stepwise addition

methods, that work as follows: from the basic star tree, trying to add a branch on every

tr:ee edge and settle down with the most optimal tree cost, and then repeating these steps

to grow up the tree until all input sequences are considered and added to the leaf nodes.

The Generalized Tree Alignment algorithm works by inferring a phylogeny first and then

using the alignment relationship of all node sequences of the phylogenetic tree to induce

a multiple alignment of all leaf node sequences. A detailed explanation about these

algorithms will be shown in the next chapter.

TAAR is developed with C and Motif (V1.2) languages and Xlib and X Toolkit

lntrinsics (R5) functions, and tested in UNIX, X Window Manager and Motif Window

Manager operating systems on a SUN SPARCstation (Ultra-2).

This thesis contains eight chapters and four appendices. Chapter 2 gives a general

survey of sequence comparison and discusses the Tree Alignment and Phylogeny

Reconstruction problems in detail. Dynamic programming is a major approach for

solving alignment problems. Chapter 3 reviews the user interface style and some

development issues. A brief introduction to the X Window System is also included.

4

Chapter 4 discusses the development and implementation techniques used in this project.

Main data structures and functions for implementing various sequence alignment

algorithms are presented. Chapter 5 is a user's guide for the main features of TAAR.

Chapter 6 demonstrates some test results of main T AAR calculations. Chapter 7 gives

some suggestions for further improvement. Appendix A is a sample sequence file for

testing purpose. Appendix B is a sample score matrix file. Appendix C is the test result

of multiple sequence alignment of the above sample data. Appendix D is the test result

of some real molecular sequences.

Chapter 2

Molecular Sequence Analysis

One of the basic problems of biology is to understand inheritance. Modern Molecular

Biology indicates that DeoxyriboNucleic Acid (DNA) is the primary genetic material and

it contains information for inheritance. DNA is a molecule composed of four nucleotides:

Adenine (A), Cytosine (C), Guanine (G), and Thymine (T), which, conceptually, are

linked linearly to form long chains with double helical structure. These chains are called

DNA sequences. There is a large class of molecules in cells. These large molecules,

known as macromolecules, are most interesting to us. They are DNA, RNA, and

Proteins. Proteins are sequences made from 20 amino acids. The information necessary

to build a protein or RNA found in an organism is encoded in its DNA molecules. The

study of these sequences results in important insights into human biochemistry,

physiology and disease processes.

An important method for studying these biology sequences is sequence

comparison, which is necessary for the detection of common structure and function as

well as for the study of evolutionary relationship. The basic idea of most sequence

comparison algorithms is to obtain a measure of similarity (or distance) among a

collection of sequences. Alignments are usually constructed in terms of maximizing the

measure of similarity (or minimizing distance) between sequences. Since there exist

5

6

various clever alignment techniques and algorithms, comparative sequence analysis is an

active and fruitful area in the application ofcomputation to biological problems.

To obtain an optimal (or quasi-optimal) alignment, dynamic programming IS

usually applied. Dynamic programmmg algorithms are theoretically important and

beautiful. However, these methods may require exhaustive computation resources

(especially when doing dynamic computation for long sequences or the alignment of

many sequences), which may become impractical in many cases because of the limit of

computing time and memory resource. The question of how to improve various

algorithms to save computer storage resource and to increase computation speed is a very

important research topic in biocomputing.

In this Chapter, we will consider some important problems in sequence alignment,

in particular, pairwise alignment, 3-star alignment, tree alignment with a given

phylogeny, phylogeny reconstruction and generalized tree alignment, and present our

algorithmic solutions for each of the problems. These functions are what the T AAR

system is able to handle at the time being.

2.1 Pairwise Alignment

Pairwise alignment is the basis of all other sequence comparison methods. In this section,

we formally define the terminology and notations needed in alignment.

The space is denoted by the symbol"-".

An alphabet L is a finite set of symbols including the space.

7

An element is a member of the alphabet L.

A letter is an element other than the space.

A sequence (or string) is a finite string of letters.

A padded sequence (or padded string) is a finite string of elements.

Given an alphabet L , a scoring function w : L x L -7 Real can be defined to

measure distance or similarity between any two elements. In this project, we use

distance-measuring scoring functions. Therefore the following discussion is based on the

distance criteria.

So given two sequences A and B, a pairwise alignment of A and B is expressed as

A 'andB':

' , , , ,
{A= a1 a2 a3 ···am A =a1a2 a3 • • • a1

{
B =b1 b2 b3 • •• bn

.. B' - b' b' b' · · · b'- I 2 3 I

where the two rows are padded sequences obtained with the insertion of spaces into A and

B respectively, such that no column contains two spaces.

To determine the quality of an alignment, one needs some sconng and

optimization criterion defined for alignments. For the above alignment, it is natural to

consider the sum

LI

C(a;, b;)
i=l

For example, let L = {a, b, c, d} and let the pairwise scores be defined in the

following matrix:

8

s a b c d

a 1 -1 -2 0 -1

b 3 -2 -1 0

c 0 -4 -2

d 3 -1
0

Let the two sequences be A = cacdbd and B = cabbdb. Then the alignment of A

andB will be

cac-dbd

cabbdb

and it has a maximum total score sum: 0 + 1 - 2 + 0 + 3 + 3 - 1 =4.

However, to get a biologically reasonable alignment, additional costs are usually

charged for gaps, which are maximal strings of adjacent spaces in a sequence aligned

with letters in the other. Therefore we can say the cost (or score) of a pairwise alignment

is the sum of the cost of all aligned pairs of elements and the cost of all gaps.

An optimal alignment of strings A and B is one that minimizes the cost over all

possible alignments. For any two sequences, there may exist many optimal alignments.

The sequence alignment problem is to find one or more optimal alignments and the

optimal cost. The standard method uses dynamic programming on variants of the

following recurrence relations.

Let A= a 1 a2 a3 ···am and B = b1b2 • • • b n • Define a cost matrix CC such that

CC[i, j] denotes the minimum cost of aligning a1a2 ···a; and b1b2 ··· b1. When gap costs

are not charged, we have the recurrence relation:

9

CC[O, 0] =0, CC[O, j] =I
j

C(-, bk), CC[i, 0] =I
i

C(ak, -),
k=l k=l

and

CC[i- 1, j] + C(a;, -)

CC[i, j] = min CC[i- 1, j- 1] + C(ai' b)

CC[i, j- 1] + C(-, b)
1

Where 0 ~ i ~ m and 0 ~ j ~ n.

A direct implementation of this relation needs O(mn) space and time. Dynamic

programming with this kind of recurrence relations has been studied extensively in the

past. Lots of time or space saving strategies have been proposed and actually applied [5,

8, 30].

It is important to realize that an optimal alignment is optimal only for a particular

scoring system and gap costs. To make significant biological application of these

mathematical models, we have to consider how to choose the scoring function w on I,

and also the gap cost function. In practice, the primary scoring system used for DNA

sequences is the identity matrix. For protein sequences, the most common choice for

measuring similarity is the Dayhoff mutation matrices (PAM matrices) [4].

When gap penalties are considered, let gk be the gap cost for a gap of k spaces.

Then we have the recurrence relation:

CC[O, 0] =0, CC[O, j] =&, CC[i, 0] =g;,

and

10

CC[i- 1, j -1] + C(ai, b)

CC[i, j] = min min1~ k~J {CC[i, j- k] + gk }

min1~k~i {CC[i- k, j] + gk}

A direct dynamic programming implementation of the above relation requires

O(mn) space and O(mn(m+n)) time complexity. Among possible gap penalties, the

simplest and most commonly used are affine gap penalties, which charges a fixed amount

for each additional space. Because they have been taken to subsume space costs, they are

usually expressed as

gk =a+ bk

where a is called the open gap penalty and b the gap extension penalty. It is known that

pairwise alignment with affine gap penalties can be computed in O(mn) space and time

[8].

Gap penalties have a large effect on an alignment and it is wise to sample a wide

range of penalty values in order to find the most interesting optimal alignment. The

following example is taken from the book [7], which shows how gap penalties influence

sensible alignments. Two alignments of human pancreatic hormone and chicken

pancreatic hormone are shown.

An optimal alignment without gap penalties:

Human ALLLQPLLGAQGAPLEPVYPGDNATP-EQMAQ-YAAD-LRRYINMLTRPRYGKRHKEDTLAF

Chicken G----P--3-Q--P--T-YPGDDA-PVEDLIRFY--DNLQQYLNVVT------RHR-----Y

11

An optimal alignment with gap penalty of 1.0 + 0.1 x (gap length):

Human ALLLQPLLGAQGAPLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRYGKRHKEDTLAF

Chicken ------------GPSQPTYPGDDAPVEDLIRFYDNLQQYLNVVTRHRY----------

2.2 Star Alignment

A star-alignment is a special case of tree alignment in which the tree has only one

internal node. Here, we are especially interested in star-alignment of three strings, which

is a problem stated as: Given three strings A, B and C, construct a new string D and

optimally align D with each of A, B and C. The sum of costs of the three pairwise

alignments is defined as the cost ofthe star-alignment. This problem will be denoted as

star-alignment (A, B, C). An optimal star-alignment (A, B, C) is one attaining the

minimum cost among all possible star-alignment (A, B, C). The string D newly

constructed in an optimal star-alignment (A, B, C) is called an optimal center-string of (A,

B, C).

D

c

A

B

Figure 2.1: A Star Tree

In the following, we present an algorithm using the dynamic programming

method to find a center-string of (A, B, C) with given strings A= a1a2 .. . aM, B = b1b2 ..

. bN and C = CJ C2 •.. Cp.

12

Let Ai denote the i-symbol prefix a1a2 ... ai, of A, Bj thej-symbol prefix b1b2 ...

bj of B and ck the prefix CJ C2 ••• Ck of c. Define

Cost(i,j, k) =the cost of an optimal star-alignment(A;, B1, Ck).

Then we can obtain the following recurrence relation:

Cost(i,j, k) = !l!inl[Cost(i- ~.j- ~. k- ~) + 1!!,~11{ w (~a;, x) + w (~b1, x) + w (~ck, x)}]

where 81, ~' ~ E { 0, 1 }and 8= (81, ~' ~). Thus we have 1a =a and Oa = -. There are

seven different values of 8with 8 ;~:. (0) (here 8 :t:. (0) means 8 :t:. (0, 0, 0)). The element x

where the minimum is attained is the last element (maybe "-") of the constructed center-

In the implementation of this recurrence relation, we first preprocess the part

Define a relation lookup: L x L: xL: -7 L: x Real, such that, for any e1, e2, e3 E L:,

lookup(e1, e2, e3) has two fields, one is denoted as cost and represents the minimum sum,

and the other is denoted as letter and stores the letter x such that the minimum sum is

attained at x.

Once the Cost(i, }, k) matrix is computed, to obtain a center-string of (A, B, C),

one can use the straightforward backtraking technique. That is, we can set up a 3

dimensional matrix TraceMat by computing the recurrence relation of Cost(i, }, k) and

store in the (i,j, k) cell of TraceMat, the element x and a pointer pointing to (i- 81, j- ~'

k - ~) such that x and 8 = (81, ~. ~) lead to the minimum value Cost(i, j, k). With the

13

information stored in the matrix TraceMat, we can then simply start from the (M, N, P)

cell of TraceMat. By following the pointers in TraceMat, a linked list is established and

a center sequence is obtained in the reverse order. Obviously, an implementation based

on this technique needs O(MNP) space. In practice, this space requirement often limits

the method's applicability.

If we are only interested in the cost of an optimal star-alignment (A, B, C), the

space requirement can be reduced dramatically. More specifically, for each fixed 1 ~ i ~

M, we use level (i) to represent the 2-dimensional array consisting of {Cost(i, j, k) I 1 ~ j

s N, 1 ~ k s P } . The recurrence relation shows that Cost(i, j, k) depends only on seven

values in level (i - 1) and level (i). Therefore, two matrices of size N * P are adequate to

compute successive levels. In fact, with a little care, one matrix of size N * P and one

vector of size P + 1 suffice. Suppose Cost(i, j', k') needs to be computed and values

preceding it have already been obtained. Then we can define a matrix CCN*P and a vector

CB of size P + 1 represented as follows:

Cost(i, j, k) if j <j' and k < k'

CC(j, k) = {
Cost(i- 1, j, k) otherwise

Cost(i- 1, j, k- 1) if k< k'

CB(k) = {
Cost(i- 1, j- 1, k) otherwise

CB(P + 1) = Cost(i-1, j'- 1, k'- 1)

With this loop-invariant condition, we can present an algorithm as shown in Figure 2.2

for calculating the cost of an optimal star-alignment (A, B, C) using O(N*P) space.

14

Algorithm Costonly_star_align(A, B, C, CC)
Input: A, B, and C (string of size M, Nand P).

{We assume the lookup relation has been computed}
Output: CC (a matrix of size N *P) and cost where CC(j, k) represents the cost

of an optimal 3-star-align(AM, B;, C1).

var array CC[O...N][O ...P], CB[O ... (P+ 1)].
begin

CC(O, 0) = 0

for i = 0 to M do

for j = 0 to N do

for k = 0 to P do

begin

if(i -1,j -1, k-1) is valid then

value(O) = CB(P + 1) +lookup(a;, b1, ck).cost;

if (i -1,j- 1, k) is valid then

value(!)= CB(k) + lookup(a;, b1, -).cost;

if(i -l,j, k-1) is valid then

value(2) = CB(k- 1) + lookup(a;, -, ck).cost;

if (i -1 ,j, k) is valid then

value(3) = CC(j, k) + w(a;, -);

if(i,j -1, k-1) is valid then

value(4) = CC(j- 1, k- 1) +lookup(-, b1, ck).cost;

if (i,j- 1, k) is valid then

value(5) = CC(j- 1, k) + w(b1, -);

if (i,j, k -1) is valid then

value(6) = CC(j, k- 1) + w(ck, -);

{update CB and CC as follows:}

if (i > 0) and (j > 0) then

CB(P + 1) = CB(k);
if (i > 0) then

CB(k) = CC(j, k);

CC(j, k) =min of {value(i) I0 ~ i ~ 6};

end
cost = CC(N, P);
Output cost and CC;

end

Figure 2.2: Algorithm Costonly_star_align.

15

To make the algorithm shorter and easy to read, we include the testing of the

boundary situation in the main body. But in our implementation, we deal with the

boundary cases separately to eliminate the "if' instructions.

To actually produce a center-string of a star-alignment, we generalize the

recursive divide-and-conquer technique of Hirschberg [13] and Myers and Miller [18] so

that we obtain an algorithm with O(N *P + logM) space requirement. The central idea is

to find the "midpoints" of an optimal star alignment of three strings by using a "forward"

and "backward" application of the quadratic space Costonly _star_ align algorithm. Then

a center-string can be obtained by recursively determining optimal star alignments on

both sides of the midpoints.

For a sequence X, let rev(X) denote the reverse ofX and let Xir denote the suffix

Xi+lxi+2 • • ·XM ofX. Given three sequences A, Band C of sizes M, Nand P respectively,

applying the algorithm Cost only _star_ align to rev(A), rev(B) and rev(C), we obtain a

matrix RR such that the entry RR(N- j, P - k) represents the cost of an optimal star-

T Talignment (A, B
1

, Ck).

Now we are in a position to explain our algorithm of delivering a center string of

a 3-star alignment. Again, suppose three strings A, B and C are of non-zero length M, N

and P respectively. Let i* = LM/2J, then level(i*) bisects the cube associated with the

recursive Cost function (defined on Page 11). Applying the Costonly _star_ align

algorithm to the strings Ai*, B and C, we get a matrix matfsatisfying:

matj(j, k) =the cost of an optimal star-alignment(Ai* , B1, Ck).

16

Then applying the Costonly_star _align algorithm to the strings rev(A;~) , rev(B) and

rev(C), we get a matrix matb satisfying:

matb(j, k) =the cost of an optimal star-alignment (A~, BJ, CJ).

For any star-alignment (A, B, C), there existj E [0, N] and k E [0, P] such that the star

alignment is the concatenation of a star-alignment(A;• , B1, Ck) and a star-alignment

(A;~, BJ, C{). Thus the cost of an optimal star-alignment (A, B, C) is

min{maifU, k) + matb(N- j, P- k) lj E [0, N] and k E [0, P]}.

If the minimum is attained atj* and k*, then (i*, j*, k*) is an optimal midpoint for the

problem. Now the crucial point for using the divide-and-conquer method is that the

concatenation of an optimal star-alignment (A;•, B1., Ck•) and an optimal star-alignment

(A;~, BJ., cJ.) is an optimal star-alignment(A, B, C). Therefore we can employ the

midpoint (i*, j*, k*) to split the star-alignment problem into two sub problems of star

aligning shorter strings. Then sub problems can be solved by calling the above

processing recursively.

The recursion's boundary cases, i.e. when the size of one of the three strings is 1

or 0, are handled directly by using the backtracking technique since only quadratic space

is required now.

The full algorithm for finding a center-string is outlined in Figure 2.3. It uses

O(NP + logM) space: O(NP) which is the dynamical allocated space for matf and matb

or for the boundary cases, and O(logM) which is the implicit activation stack needed for

no more than LlogMJ + 1 levels of recursion. Now consider the time complexity

requirement. Obviously, the procedure Costonly_star_align for strings of sizes M, Nand

17

Algorithmjind_center_string_star _align(A, B, C)
Input: A, B and C (strings of size M, Nand P).

{We assume the lookup relation has been computed}
Output: final_seq (a center-string of star alignment) and cost (the optimal cost of

star alignment)

begin
cost = jindcenter(A, B, C)
print(jinal_seq) {a center string for the star-alignment}

end

recursive functionfindcenter(A, B, C)

var array maif[O•••N][O .•• P], matb[O •.• N][O•.•P];

{dynamically allocated in the implementation}
_begin

if (M ~ 1) or (N ~ 1) or (P ~ 1) then
{Take I1 as the minimum of {M, N, P}, 12 and /3 as others, allocate at most
two matrices of size of12 x /3 to store information for backtracking}

apply backtracking technique directly to find a partial center-string, which
will be appended to final_ seq.

else
begin

i* =LM/2J;
Allocate space for matf and math;

(a) 	 Costonly_star _align(A;•, B, C, matf);

(p) 	 Costonly _star _align (rev(A;:), rev(B), rev(C), matb);

(y) 	 Findj* and k* minimizing(maif(j, k) + matb(N- j, P- k));

Free the space of matf and math;

(8) 	 costl =findcenter(A1•, B1·, Ck•);

T T T
(E) 	 cost2 = jindcenter(A,., B

1
., Ck.);

output cost1 + cost2.
end

end

Figure 2.3: Algorithm find_center_string_star_align.

18

P takes O(MNP) time complexity; we assume it is c1MNP. Then in the algorithm

jind_center _string_star _align, boundary cases take O(M + NP) time complexity; line (a)

takes c1(M/2)NP time, line (~) also takes c1(M/2)NP and line (y) takes c2NP time. So

the main body (lines a,~ andy) of the top-level call takes c1MNP + c2NP time. The time

complexity for the main bodies of the two recursive calls at lines (3) and (s) is

CJ(M/2)[ik + (N- j)(P- k)] + C2[ik + (N- j)(P- k)],

which is no more than c1(M/2)NP + c2NP. It follows by induction that the total time

taken in the worst case, including recursive calls and boundary cases, is no more than

c1MNP(l + t +1+ · · ·) + c2 (logM)NP + O(M + NP),

which equals 2c1MNP + c2(1ogM)NP + O(M + NP). Therefore the time complexity

required for algorithmjind_center _string_star _align is approximately twice that for the

cost-only version costonly _star_ align.

In the above discussion we did not consider gap costs. When gap costs are

involved, the situation is much complicated. If the recurrence relation Cost(i,j, k) is to be

redefined to include the consideration of gap costs, we will have to not only consider the

values of Cost(i - ~. j - /h., k - £5.3), but also analyze the ending pattern of the partial

Define the history of a partial alignment to be the

amount of information necessary to determine the cost of any possible extensions. To

find an optimal alignment it is necessary in general to know, at each node, the minimum

cost of the partial alignment in each historical situation. Alstchul [1] presents a general

19

analysis of gap costs for tree and star-alignments and infers that the number of relevant

histories for star-alignment of n input strings using gap costs is

In our case n=3, so there are 44 histories to be considered for each (i,j, k). Due to time

constraint, we are not able to implement gap costs in 3-star alignment here.

2.3 Tree Alignment

A loaded tree is a tree whose nodes are associated with sequences. The cost of an edge

in the tree is defined as the edit distance (optimal alignment cost) between the two

sequences associated with the ends of the edge. The cost of a tree is the sum of the costs

of all edges. Here we are interested in the so-called tree alignment problem which is,

given a set X of sequences and a phylogeny T which is defined as a tree structure such

that each leaf is assigned a unique sequence of X, we need to construct a sequence for

each internal node such that the total cost of the tree is minimized.

The problem of tree alignment with a given phylogeny is NP-hard even if the

phylogeny is a binary tree [29]. Some heuristic algorithms also have been proposed [11,

23]. In the following, we outline an efficient approximation algorithm based on the

results of Jiang, Lawler and Wang [14].

20

First, we need some notations. For a (rooted) tree T, r(1) denotes the root ofT,

c(1) denotes the cost ofT, Leaj(1) denotes the set of the leaves ofT. For each node v of

T, Tv denotes the subtree ofT rooted at v. A leaf that is a descendant of node v is called a

descendant leajofv. When all leaves have been assigned sequences, we define S(v) to be

the set of sequences assigned to the descendant leaves of v. A loaded tree is called a

lifted tree if for every subtree Tv, there exists a path from the root r(Tv) to a leaf such that

every node on the path is associated with the same leaf sequence. Calculating this lifted

tree is an important step in solving Tree Alignment problem. We will show this

calculation later.

Let X= {sJ, ... , sk} be a set of sequences and T a non-rooted phylogeny for X

such that the degree of each internal node ofT is 3. To construct a loaded tree, we need

the following steps.

Step 1: Initialize the internal nodes.

Take an arbitrary edge uv of the tree T. Adding a new node r and replacing the edge uv

with two new edges ru and rv, we get a rooted tree T with root r.

For each v E f and each s; E S(v), let D[v, s;] denote the cost of an optimal lifted

tree for Tv with v being assigned the sequence s;. D[v, s;] can be computed as follows.

For each leafv, we define D[v, s;] = 0 if s; is assigned to v. Let v be an internal node, and

v1 and v2 its children. For each S; E S(v), s; must belong to one of S(v1) and S(v2). We

have the recurrence relation:

21

{ min!ij E srwJ {D[v~o s;] + D[vz, s1] + diSf(s,, s1))

D[v, si] =

mzns; e S(v1) {D[vJ, s1] + D[v2, si] + dzst(si, s1)}

The full algorithm is described in Figure 2.4. It outputs a lifted tree with cost at most

2c(Tmin) and requires 0(k' + IC-n2
) time in the worst case, where Tmin denotes an optimal

loaded tree and n denotes the maximum length of the given sequences.

Algorithm Initialization(X, T)

Input: X= {s1, ... , sk}(a sequence set), T (a phylogeny for X)

Output: Lifted tree T.

1. begin
2. for each pair {i, j), 1 :5 i <j :5 k, do
3. compute dist(si, s1).

4. Construct T .

5. for each level off, with the bottom level first, do
6. for each node v at the level do
7. for i = 1 to k
8. if si E S(v) then compute D[v, si].
9. Select an s E X such that D[r(T), s] is minimized.
10. Compute the lifted tree Thy backtracking.
11. end.

Figure 2.4: Algorithm Initialization.

When selecting the virtual root for a non-rooted tree, I use the Depth First Search

algorithm to locate an optimal position for this virtual root node. By this way, we can

avoid any long branch, hence, avoid unbalanced tree. The algorithm for virtual root

selection is shown in Figure 2.5.

22

Algorithm Virtual Root Selection (T)

Input: A non-rooted tree T
Output: A rooted tree T'

1. begin

2. 	 For each leaf node, do Depth First Search and memorize its longest path.

3. 	 Compare and select the longest path among those paths found in step 2.

4. 	 Select the node u that resides in the middle of the longest path selected in step 3.

5. 	 Select the edge { u, v} that is connected to the node u and is along the longest path.

6. 	 Adding a new node rand replacing the edge {u, v} with two new edges {r, u} and {r, v},

Then Tis changed to the rooted tree T' and the node r is called the virtual root of T.

7. 	 Output this rooted tree T'.

8. end.

Figure 2.5: Algorithm Virtual Root Selection.

Step2: Local Optimization.

Starting with a lifted tree, we can use an iterative improvement method to update and

improve the sequences assigned to the internal nodes to get a better approximation.

Recall that the degree of each internal node of the phylogeny under our consideration is

three. Based on each internal node, we can construct a 3-component which is a subtree

consisting of the internal node and three edges connecting to it. Then on each 3

component local optimization is performed by the star-alignment technique introduced in

previous section.

23

To illustrate these two procedures more clearly, let's consider the phylogeny in

Figure 2.6, which contains nine given species on its nine leaves. To construct an

evolutionary tree, we assign one of the nine given sequences to each internal node by

applying algorithm introduced in Stepl. Then we divide the phylogeny into seven 3

components as shown in Figure 2.6. Local optimization is done for every 3-component

as follows. For the 3-component in Figure 2.7 (a), from the labels (sequences) s 1, s2, and

s3 of the three terminals, we can compute the label c1 (sequence) of the center using

dynamic programming (introduced in next section) to minimize the cost of the

component. The revised c1 can then be used to update the center label c2 of an

overlapping 3-component (see Figure 2.7 (b)). The algorithm converges the tree cost

since each local optimization reduces the cost of the tree by at least one. Thus, if the

process is repeated long enough, every 3-component will become optimal. However, this

does not necessarily result in an optimal loaded tree. Nonetheless, by experiment, it

seems the algorithm can produce a reasonably good loaded tree after 5 iterations.

T.utilis S.carlbergensis

Chicken
B. stearothermophilus Chlorela

Figure 2.6: A phylogeny with nine species that is divided into s~ven 3-components.

24

SJ SJ s4

CJ

s3

s2
s2

Ss

(a) (b)

Figure 2.7: (a) A 3-component. (b) Two overlapping 3-components.

2.4 Tree Alignment as Multiple Sequence Alignment

Tree Alignment is essentially a multiple sequence alignment problem because of the

following connection. After we find an (approximately) optimal loaded tree, we can

make a multiple sequence alignment for all leaf sequences based on the pairwise

alignment relationship of all adjacent node sequences in the tree. Suppose that we have

computed optimal pairwise alignments for all edges, then we can compute a multiple

sequence alignment for all leaf sequences by doing sequence length adjustment among

leaf and internal node sequences as follows. For example, a part of the tree Tis shown in

Figure 2.8.

25

' ' ,,
,

'
{ A: TTCGAAT '

Q: TTCG-AT ?(_
{ Q: TT-CGAT

B: TTCCGAT A B

Figure 2.8: A part of the computed phylogenetic tree.

In this tree, the node sequences between any edge are aligned. The alignments are shown

above.

We will align A and B via the alignments of {A, Q} and {B, Q} sequence pairs.

Let's give different name Ql and Q2 to Q respectively to distinguish these two

alignments. Since Ql and A are aligned, they get the same length after padding. The

same situation happens between Q2 and B. Now we adjust the length of Ql and Q2 by

inserting space(s) in either of them accordingly to let them be exactly equal (i.e. the same

character appears at same position.). When we insert a space in Ql, we must insert a

space in A at the same position. When we insert a space in Q2, we also must insert a

space in B at the same position. By this method, we can make sure that A and Ql always

have equal sequence length, and so do Band Q2. (See Figure 2.9). Finally we get that

both A and B are aligned. This is the result that we want.

{ A: TTCGAAT TT-CGAAT
Ql: TTCG-AT Ql: TT-CG-AT TT-CGAAT_.{ A:

{ A:
.. Ql,Q2: TT-CG-AT

{ Q2: TT-CGAT { Q2: TT-CG-AT B: TTCCG-AT
B: TTCCGAT B: TTCCG-AT

Figure 2.9: Adjusting sequence length.

26

To start multiple sequence alignment for all tree leaf sequences, first we should use any

connected and aligned pair of node sequences to form a sequence set X. This sequence

set has the properties that each member sequence has the same sequence length and all

sequences in the set are aligned. Then we select any one of neighbor node sequences, say

sequence A, and adjust its length against the sequence, say B, which is aligned and

connected with A and belong to the set X. To do length adjustment, we need to add or

insert space(s) in A orB so both of their lengths may expand to fit each other. When

inserting a space into B, we have to insert a space into all other sequences of set X at the

same position in order to keep them aligned and having equal length. After the length of

sequence A is adjusted against B, A can be put into set X. Then we are going to find

another neighbor node sequence and repeat above steps. Finally, all tree node sequences

are adjusted to have the same length. By now all leaf sequences are in set X and are

multi-aligned. Then we pick those leaf sequences out and output them. That is the result

we are interested in. The multiple sequence alignment algorithm is shown in Figure 2.1 0.

Let's check the time complexity for this algorithm. Steps 1 - 6 take 0(1) time.

Step 9 takes 0(1) time. Step 10 takes O((P+ l)N) time when we consider adding the Pth

node sequence since we have to go through the whole sequence length N to make the

adjustment and insert space for every member sequence in set X. Here N is the average

length of the sequences. The number P+ 1 accounts for the total number of all existing

members of X plus two more sequences s; and a12. Step 7 has to consider all tree nodes.

Therefore steps 7 - 13 take

27

Algorithm 	Multiple Sequence Alignment (T)

Input: Phylogenetic tree Twith leaf sequences {s1 , ... , sk}and
internal node sequences{sk+1 , ... , sm}

Output: 	Multiple aligned leaf sequences {a1 , ••• , ak}

1. begin
2. if k = 	1 then output one sequence and end.
3. else if k = 2 then output two pairwise aligned sequences and end.
4. else if k > 2 then
5. begin
6. 	 Select two connected and aligned end node sequences a1 and a2 from

any one tree edge to form a sequence set X.
7. while exist a node sequence sithat is not in set X do
8. begin
9. 	 Select a non X node sequence si that has a connected neighbor node

sequence a1 in set X. (Assume a1 has two forms aJl and ap, where
a11 is aligned with other members ofX and a12 is aligned with Sj.)

10. 	 Adjust the length between a11 and a12 by means of inserting space(s)
in either sequence to make their length equal. Any space(s)
inserted in a11 will be inserted in all member sequences ofX at
same position(s). Any space(s) inserted in a12 will be inserted in
si at same position(s).

12. Let ai = si and add ai into X.
13. end
14. end
15. Output the optimal and multiple aligned leaf sequences {a1, ... , ak}.
16. end.

Figure 2.10: Multiple Sequence Alignment Algorithm

0(4N) + 0(5N) + 0(6N) + 0(7N) + + 0((m+1)N)

0((4 + 5 + 6 + 7 + + (m+ 1)) N)

~ O(~m2N)

~ 0(2 ~N) (here the tree is a similar to a complete binary tree, thus m ~ 2k)

28

time complexity in the worst case, where m is the total number of nodes, k is the total

number of input leaf sequences and N is the longest sequence length. Finally this

algorithm takes O(KN) time in the worst case.

2.5 Phylogeny Reconstruction

One of the tasks ofTAAR is to infer and construct a phylogenetic tree that best represents

the evolution relationship among the given set of sequences. Inferring a phylogeny is

really an estimation procedure. Therefore we are making a "best estimate" of an

evolutionary history based on incomplete information. In the context of molecular

systematics, we generally do not have direct information about the past --- we have

access only to contemporary species and molecules. Because we can postulate

evolutionary scenarios by which any chosen phylogeny could have produced the

observed data, we must have some basis for selecting one or more preferred trees from

among the set of possible phylogenies. Phylogenetic inference methods seek to

accomplish this goal in one of two ways: by defining a specific sequence of steps

(algorithm) for constructing the best tree, or by defining a criterion for comparing

alternative phylogenies to one another and deciding which is better (or that they are

equally good) [8].

Here we consider the second way. This method has two logical steps. The first is

to define the optimality criterion (objective function) for evaluating a given tree, i.e., the

29

value that is assigned and subsequently used for comparing one tree to another. The

second is to use specific algorithms to compute the value of the objective function and to

find the trees that have the best values according to this criterion (a maximum or

minimum value, as appropriate). The price we pay for this method is that the methods

tend to be much slower than those of the first method, a consequence of having to search

for the tree(s) with the best value.

Most of the analytical techniques result in the inference of a non-rooted tree or

non-rooted phylogeny, that is, a phylogeny in which the earliest point in time (the

location of the common ancestor) is not identified. We generally use "tree" and

"phylogeny" interchangeably. The parts of a phylogenetic tree go by a variety of names.

The contemporary taxa correspond to terminal nodes, also called leaves, or external

nodes. The branching points within a tree are called internal nodes. Nodes are called

vertices or points. The branches connecting (incident to) pairs of nodes are also called

edges. We will also use the term peripheral branches to refer to the branches that end at

a leaf and the term interior branches to refer to branches that are not incident to a leaf.

A non-rooted, strictly bifurcating tree (one in which every internal node has

degree 3) has K terminal nodes (corresponding to the taxa) and K-2 internal nodes. The

tree has 2K-3 branches, of which K-3 are interior and K are peripheral. The total number

of distinct non-rooted, strictly bifurcating trees for K taxa [28] is

K

B(K) = TI (2i -5)
1=3

30

Adding a root adds one more internal node and one more interior branch. Since

the root can be placed along any of the 2K-3 branches, the number of possible rooted

trees is increased by a factor of 2K-3. Thus the exhaustive search for optimal trees is

greatly time consuming and not practical.

Here we use heuristic stepwise addition of taxa to a growing tree to reduce

computing time. First, any three taxa are chosen for the initial star tree. Next, one of the

unplaced taxa is selected for next addition. Each of the three trees that would result from

joining the unplaced taxon to the tree along one of its (three) branches is evaluated, and

the one whose tree cost is optimal is saved for the next around (see Figure 2.11). In this

next round, yet another unplaced taxon is connected to the tree, this time to one of the

five possible branches on the tree saved from the previous round. The process terminates

B D C

~A
Figure 2.11: Enumeration of 3 possible unrooted trees for four taxa.

when all taxa have been joined to the tree. The phylogeny reconstruction algorithm is

described in Figure 2.12.

31

Algorithm Phylogeny Reconstruction (X)

Input: X= {s1 , ... , sk} (sequences set)

Output: an unrooted phylogeny T with optimal tree score

var cost
1. begin
2. if k = 1 then construct and output a one-node tree and end
3. else if k = 2 then construct and output a two-node tree and end
4. else if k = 3 then construct and output a star tree and end
5. else if k > 3 then
6. use s1, s2 and s3 to construct a star tree T.
7. for i = 4 to k do
8. begin
9. for each branch of the T do
10. begin
11. JoinS; to the branch.
12. Do tree initialization.
13. Do local optimization for the T.
14. Calculate the tree cost Tc.
15. if first time join s; to the branch then
16. cost = Tc and save tree T
17. else if cost > Tc then
18. cost= Tc and save tree T.
19. end
20. end
21. Output the optimal tree T and score cost.
22. end.

Figure 2.12: Algorithm Phylogeny Reconstruction.

In this algorithm, we just randomly choose first three taxa for the initial star tree (here we

select first three sequences) and later sequentially add the rest of the taxa in the same

order in which they are presented in the data matrix. This strategy is also used in

PHYLIP package [Joseph Felsenstein, University of Washington, Seattle, WA 98195,

U.S.A.]. We only save one optimal tree after a taxa addition. By this early cut-off way,

we can speed up computation time greatly.

32

Let's see the time complexity of this algorithm. Each of step 2 to step 4, and step

6 takes 0(1) time respectively. Step 11 takes 0(1) time. Step 12 takes O(P + ;2 N2
) time

in the worst case (see algorithm in Figure 2.4). Here N means the average sequence

length and i means total number of leaves on the current tree. The local optimization in

3step 13 takes 0((i-2) N) ~ 0(i N3
) time in the worst case. Step 14 makes the

summation of costs of all edges. So it takes 0(1) time. Step 15 to step 18 takes 0(1)

time since it only makes comparison and saves the tree with the optimal cost. Thus steps

9-18 take

time. Since the running time of this algorithm is mainly contributed by steps 7 - 20, its

time complexity is shown as follows:

0(44 + 43N2 + 42N3
) + 0(54 + 53N2 + 52N3

) + + 0(k4 + ~N2 + ~N3)

O(i +54 + + k4 + (43 +53 ++~) N2 + (i +52 ++~) N3
)

~ 0(k (k+ 1)(2k+1)(3~+3k-1)130 + (k (k+ 1) I 2)2N2 + (k (k+ 1) (2k+ 1) I 6)N3
)

This time is a little high. But it is still feasible for a few sequences.

2.6 Generalized Tree Alignment

Given sequences X, the generalized tree alignment problem is to find a set of sequences Y

and a loaded tree T (sequences from X are assigned to leaves and those from Y are

33

assigned to internal nodes of T) which minimizes the cost of T over possible sets Y and

trees T. This problem is proved to be MAX SNP-hard [29]. One of the goals of this

project is to make an approximately optimal multiple sequence alignment for a given set

of sequences via tree alignment. But for tree alignment, we must have a phylogeny.

Therefore we approach this problem by first computing an approximately optimal

phylogenetic tree with all leaf nodes being assigned with the given sequences. Then we

use the algorithm in Figure 2.10 to make a multiple alignment and output the result. The

algorithm for this purpose is called Generalized Tree Alignment. It is shown in Figure

2.13.

Algorithm Generalized Tree Alignment (X)

Input: a set X of sequences {s1 , ..• , sk}

Output: multiply aligned sequences {a1 , ... , ak}

1. begin
2. Call Phylogeny Reconstruction algorithm (see Figure 2.10).
3. Call Multiple Sequence Alignment algorithm (see Figure 2.8).
4. Output multiply aligned all member sequences of set X
5. end.

Figure 2.13: Generalized Tree Alignment algorithm

The algorithm's time complexity is calculated as follows. The Phylogeny

Reconstruction algorithm takes O(k5 + k4N2 + PN\ The Multiple Sequence Alignment

Algorithm takes 0(~N). So the total time complexity of Generalized Tree Alignment

algorithm is

34

In this project, there are two sets of operations with similar functions. One has

pretixfast. The other one has prefix optimal. The difference here is mainly in the Tree

Alignment algorithm. In the optimal version of the algorithm as given in section 2.3, we

would do local optimization for the whole tree after tree lifting. In the fast version of the

algorithm, we would not do local optimization after tree lifting. Thus the time

complexity of this algorithm is about 0(12 + k?N2
), where k is the total number of input

sequences and N is the average length of the sequences. Hence the fast versions of

Phylogeny Reconstruction and Generalized Tree Alignment have a total time complexity

O(k5+ k4N2
).

Chapter 3

Graphical User Interface

In a software system, the user interface is considered as the mechanism through which a

dialogue between the computer and the user is established. It plays a vital part in the

software system's efficiency. The specialty called Human-Computer Interaction (HCI)

has emerged as the study of people, computer technology and the ways they influence

each other. Both the developers of software systems and users accept that just being able

to do a task on a computer is not the only important factor. Interface plays a very

prominent role in a computer software system. It is in many ways the "packaging" for a

computer system. If it is easy to learn, simple to use, straightforward, and forgiving, the

user will be inclined to make good use ofwhat is inside and be highly impressed. Now a

days, the graphical user interface is also considered as contributing to communication

visually.

In this chapter, we will briefly review some interface style and development

issues in general and then review the architecture of the X Window System, MOTIF

Programming Language and their fundamentals that are related to this project.

3.1 Interface Development

The term "user interface" can be defined as the software component of an application that

translates user's actions into requests for functions, and that provides to the user feedback

about the consequences of his/her action.

35

36

A good user interface should provide an end user with a facile, natural

environment for conducting various tasks fast, efficiently, accurately, and inexpensively.

The nature of the software component of the user interface has been driven and limited

by the hardware component. As hardware has become more sophisticated, options for

interaction style have grown.

The following are some of common interface styles:

• 	 Command and query interface: Communication is purely textual and is driven

via commands and responses to system-generated queries.

• 	 Menu interface: The set of options available to the user is presented on the

screen. An option is selected by either using the mouse or typing some key. Since

the options are visible, they are less demanding on the user, relying on recognition

rather than recall.

• 	 Form-fills and spreadsheets: The user is presented with a display comprising a

grid of cells, each of which can contain a value. This type of interface is used

primarily for data entry and data analysis application.

• 	 WIMP interface: This type of user interface is characterized by windows, icons,

menus and pointing devices. It is the default interface style for the majority of

interactive systems in use today. The important features are (1) displaying

different types of information simultaneously; (2) enabling the user to switch

context without losing visual connection with other work; (3) enabling the user to

perform various tasks in a facile manner; (4) increasing the interaction efficiency.

37

Each of them is encountered across every application area. The trend is toward

multitasking, window-oriented, and point-and-click interfaces. Ideally, users can

customize the interface to suit their working style, rather than adapting their own working

style to accommodate the interface's way of doing things.

The most important and natural method for a user interface development is the

iterative development methodology, which includes building one or more prototypes to

get requirement specification and comments from clients. To make the user interface

easier to program, many different kinds of tools have been created. These include X

Window systems, toolkits, Motif programming language, and other interface builders.

The survey conducted by Myers and Rosson [17] seems very interesting. It has

shown that in today's applications, an average of 48% of the code is devoted to the user

interface portion. The average time spent on the user interface portion is 45% during the

· design phase, 50% during the implementation phase, and 37% during the maintenance

phase.

3.2 The X Window System

The X Window System, called X for short, is a network-based graphics window system

that was developed at MIT in 1984. Since then, several versions of X have been

developed. It has been adopted as an industry standard windowing system that allows

programmers to develop fundamental portable graphical user interfaces. Till now, A

consortium of industry leaders has been continually directing and developing X Window

System.

38

The X Window System's architecture is based on the client-server model. A

single process, known as the server, is responsible for all input and output devices. An

application that uses the facilities provided by the X server is known as a client. The

syntax and semantics of the conversation between servers and clients are defined by X

Protocol. Clients use the protocol to send requests to the server to create and manipulate

windows, to generate text and graphics, to receive input from the user, and to

communicate with other clients. The server uses the protocol to send information back to

the client in response to various requests and to deliver keyboard and other user input on

t9 the appropriate clients. The X Window System allows clients to be run on any

machine in a computer network, and be displayed on any other machine(s) in that

network.

The X protocol has been implemented with a library so those application

programmers do not have to think in low-level terms. This library provides a procedural

interface that conceals many of the details of the protocol. Various utility functions are

also provided that are not protocol-related but important in building applications. The

exact interface for the library may differ for each programming language. The C libraries

are the most widely used. They include a low-level procedural interface to the X protocol

called Xlib, which defines an extensive set of functions that provide complete access and

control over the display, windows, and input devices.

Although programmers can use Xlib to build applications, this relative low-level

library can be tedious and difficult to use correctly. Many programmers prefer to use the

higher-level X Toolkit to mask some of the complexity of the X protocol. A toolkit is a

39

collection of prewritten functions that implement all the features and specifications of a

particular GUI. The X Toolkit consists of two parts: a layer known as the X Toolkit

Intrinsics (Xt), and a set of user-interface objects called widgets and gadgets. The widget

and gadget set provide a convenient interface components for creating and manipulating

X Windows, colormaps, events, and other cosmetic attributes of display, while the Xt

provides a framework that allows the programmer to combine these components to

produce a complete user interface. In short, widgets can be thought of as building blocks

Application

Widget Set I
I

Xt Intrinsics

Xlib C Language Interface

Network Interface

X Server I I

Figure 3.1 Programmer's view ofthe X Window System

that the programmer uses to construct a complete application. Figure 3.1 shows the

architecture of an application based on a widget set and the Xt.

An important X concept, which needs to be introduced here, is the event. An

event is a notification, sent by the X server to a client, that some condition has changed.

The server generates events as a result of some user input, or as a side effect of a request

40

to the X server. The server sends each event to all interested clients, who determine what

kind of event has occurred by looking at the type of the event. To receive events,

applications must specifically request the X server to send the types of events in which

they are interested. Most X applications are completely event-driven and are designed to

wait until an event occurs, respond to the event, and then wait for the next event. The

event-driven approach provides a natural model for interactive applications. The user

does not need to navigate a deep menu structure and can perform any action at any time.

The user, not the application, is in control. The application simply performs some setup

and goes into a loop from which application functions may be invoked in any order as

events arrive.

3.3 Motif Programming Model

The widgets that Xt provides are generic in nature and impose no user-interface policy

whatsoever. That is the job of a user-interface toolkit such as Motif. Motif is a set of

guidelines that specifies how a user interface for graphical computers should look. The

job of Motif is solely to provide a consistent appearance and behavior for user-interface

controls. So people do not have to use the X Window System to implement a Motif-style

graphical user interface. However, to enhance portability and robustness, the Open

Software Foundation (OSF) chose to implement the Motif GUI using X as the window

system and the X Toolkit Intrinsics as the platform for the Application Programmer's

Interface (API). We already know that Xt provides an object-oriented framework for

creating reusable, configurable user-interface components called widgets. Here Motif

41

provides widgets for such common user-interface elements as labels, buttons, menus,

dialog boxes, scrollbars, and text-entry or display areas. In addition, there are widgets

called managers, whose only job is to control the layout of other widgets, so the

application doesn't have to worry about details of widget placement when the application

is moved or resized.

A widget operates independently of the application, except through prearranged

interactions. For example, a button widget knows how to draw itself, how to highlight

itself when it is clicked on with the mouse, and how to respond to that mouse click. The

general behavior of a widget is defined as part of the Motif library. Xt defines certain

base classes of widgets, whose behavior can be inherited and augmented or modified by

other widget classes (subclasses). The base widget classes provide a common foundation

for all Xt-based widget sets. A widget set, such as Motifs Xm library, defines a

complete set of widget classes, sufficient for most user-interface needs. Xt also supports

lighter-weight objects called gadgets, which for the most part look and act just like

widget, but their behavior is actually provided by the manager widget that contains them.

Most widgets and gadgets inherit characteristics from objects above them in the class

hierarchy. For example, the Motif PushButton class inherits the ability to display a label

from the Label widget class, which in tum inherits even more basic widget behavior from

its own superclasses.

The complete set of widgets that provided by Motif toolkit is designed to

implement the particular application user-interface style that is specified in two

documents: the Motif Style Guide, which defines the external look and feel of

42

applications, and the Application Environment Specification, which defines the

application programmer's interface (API). Motif toolkit may be implemented on a wide

range of computer platforms and enables programmers to produce completely Motif

compliant applications in a relatively short amount of time. The Motif interface was

intentionally modeled after IBM's Common User Access (CUA) specification, which

defines the interface for OS/2 and Microsoft Windows.

In this project, since the application we are developing is mainly used on UNIX

and X Window platforms, and Motif is mainly for X Window environment, so we chose

Motif Xm library toolkit to implement the user-interface of our application software. The

Xlib and Xt are also used as a complete system for constructing our user interfaces. Most

Motif applications are worked out same as our way.

Managing resources is an important part of programming with X. Widgets are

designed so that many of their resources can be modified by the user at run-time.

Resources are named data units that specify widget attribute values such as colors, fonts,

images, text, positions and sizes of windows, or any customizable parameter that affects

the behavior of the application. Resources can be set in four ways:

• In the application code when/after the widget is created.

• Through the resource database.

• In a command line option.

• Dynamically while the application is running.

If a resource is not set in any of these ways, Motif will set the resource to a default value.

Setting resources in application code is considered as hard coding. Users can not

43

customize hard coded resources unless the application code is modified and recompiled.

Therefore, the application programmer should only set the resource values in program for

the resources that are not allowed to be changed by a user. To make programs

customizable, a good approach is to provide an application default resource file for every

program so those users can customize an application by simply changing the appropriate

entries in the resource file. By convention, this file is stored in the directory

/usr/lib/Xll/app-defaults and it has the same name as the application with the first letter

capitalized.

When a Motif program is initialized, the connection to the X server is set and the

resource database is created and embedded with the program. The resource specifications

in the user's resource files are loaded into the resource database. There are four resource

files and they are the application defaults file whose path can be identified by the

environment variable XFILESEARCHP A TH, the per-user application defaults file

whose path is identified by the environment variable XUSERFILESEARCHP A TH, the

user's defaults which is the file .Xdefaults, and the user's per-host defaults whose path

can be identified by the environment variable XENVIRONMENT.

Most widgets are prolific in their use of resources. For each widget class, there

are many resources that neither the application nor the user should ever need to change.

Among those resources, the callback resources for a widget are a particularly important

class of resources that must be set in the application code. A widget that expects to

interact with an application provides a callback resource for each type of interaction it

supports. An application associates a function with the callback resources in which it is

44

interested; the function is invoked when the user performs certain actions in the widget.

For instance, a PushButton provides a callback for when the user activates the button.

Note, however, that not every event that occurs in a widget results in a callback to an

application function. Widget is designed to handle many events themselves, with no

interaction from the application. For example, a Text widget typically provides a

complete set of editing commands via internal widget functions called actions. Actions

are mapped to events in a translation table. This table can be augmented, selectively

overridden, or completely replaced by settings contained in the implementation of a

widget class, in application code, or in a user's resource files.

As we mentioned before, a Motif user interface is created using both the Motif

Xm library and the Intrinsics' Xt library. Xt provides functions for creating and setting

Application

User Interface

Motif (Xm) Library

Xt Intrinsics
Other
Libraries

Xlib (X Window System)

Operating System

Figure 3.2 User-interface library model

45

resources on widgets. Xm provides the widgets themselves, plus an array of utility

routines and convenience functions for creating groups of widgets that are used

collectively as single user-interface components. An application may also need to make

calls to the Xlib layer to render graphics or get events from the window system. In the

application itself, rather than in the user interface, you may also be expected to make

lower-level system calls into the operating system, file system, or hardware-specific

drivers. Thus, the whole application may have calls to various libraries within the

system. Figure 3.2 represents the model for interfacing to these libraries.

Chapter 4

Project Development

This project is called Tree Alignment and Reconstruction (TAAR). It is a software

application mainly based on Motif Intrinsics Toolkit, which follows an object-oriented

and event-driven model. In general, such an application consists of three parts:

1. 	 Creating and manipulating Motif widgets to build the desired user interfaces;

2. 	 Using C, C++, Xrn, Xt and Xlib to develop the code of application's working

flow and callback actions;

3. 	 Attaching the application code to the user interface via callback procedures

and event handlers that are executed when the user performs some action on a

widget.

4.1 Interface Structure

Let's see the widget hierarchy used in TAAR. In Figure 4.1, we divide the initial screen

ofTAAR into four main areas: Main Menu Area, Drawing Area, Message Panel, and

Operation Area. The hierarchical structure is depicted in Figure 4.1 and explained

below. Motif toolkit contains some widget class sets called Shell, Manager, Primitive

and Gadget widget class sets. The Manager widget class set mainly includes

MainWindow, Form, DrawingArea, PanedWindow, RowColumn, Frame, SelectionBox

and Scale classes. The Primitive widget class set mainly includes PushButton,

46

47

CascadeButton, ArrowButton, ToggleButton, DrawnButton, Label, List, Scrollbar, Text

and TextField classes.

In Figure 4.1, the toplevel is the application's top-level window created by the call

to initialize the toolkit. It is a Shell class widget that handles the application's interaction

with the window manager and acts as the parent of all of the other widgets in the

application. Thus a shell widget serves as a wrapper around its child widgets. The _Main

Window is a manager widget and belongs to the Main Window widget class that belongs

to Manager super widget class. It is created from and is the child of the top level widget.

Message Panel

Figure 4.1 Primary structure ofTAAR

The Main Window widget acts as the standard layout manager for the main window of an

application. It is specially tuned to pay attention to the existence of a MenuBar, a

48

command area, a message area, a work region, and ScrollBars, although all of these areas

are optional. In application T AAR, we only keep a menu bar and a work region.

The Main Window manages two children of Main Menu and Main Form area in a

row. Here the Main Form is a widget instance of another manager widget class called

Form class. The Form widget provides a great deal of control over the placement and

sizing ofthe widgets it manages. A Form can lay out its children in a grid-like manner or

it can allow its children to link themselves to one another in a chain-like fashion. Form

uses constraint resources to specify how children are resized and positioned relative to

each other and the Form as a whole. In T AAR, Main Form manages three children areas.

They are Drawing Area, Message Panel and Operation Area. The Message Panel and

Operation Area have a fixed size. The Drawing Area has a relative size. The size of the

Drawing Area can change when Main Form window size changes. This has a certain

advantage since the size of drawing canvas can be adjusted automatically when main

window size is changed.

The Main Menu contains a menu bar that is created for some application

operations such as Open a file, Exit and Help. This menu bar layout is managed by

Main Window widget. In the Motif toolkit, a MenuBar is not implemented as a separate

widget, but as a set of CascadeButtons arranged horizontally in a RowColumn widget.

Each CascadeButton is associated with a PulldownMenu that can contain PushButtons,

ToggleButtons, Labels, and Separators. The managing RowColumn widget has a

resource setting indicating that it is being used as a MenuBar. One does not need to

know any specific details about any of these widgets in order to create a functional

49

MenuBar, since Motif provides convenient routines for creating self-sufficient menu

systems.

In the Drawing Area, a set of drawing related operation push buttons and a

DrawingArea widget are contained. The DrawingArea widget, which also be called

Canvas, provides an area in which an application can display graphics. Callback routines

can be used to notify the application when expose and resize events take place and when

there is input from the keyboard or mouse. The DrawingArea can also be used to manage

the geometry layout for child widgets, but its functionality in this area is quite limited.

Here we use this drawing canvas to draw, manipulate and display any tree on it. In this

area, the events ButtonPress, ButtonMotion, ButtonRelease are all the events in which

this application is interested. Event Handlers are invoked by the Xt Intrinsics when a

specific type of event occurs. The event type and associated application function are

registered using the XtAddEventHandler function. The related drawing operation buttons

take care of tree loading, saving and drawing modes.

The Message Panel contains a Text widget to display application related

messages. So user can see current application running instructions and messages.

The Operation Area contains two main child areas. One is Data Input; another

one is Operation Mode. In Data Input area, there is a PanedWindow widget that contains

two separate List windows. One is for sequence list input; another one is for calculation

score matrix list input. These lists are scrollable. The PanedWindow widget manages its

children in a vertically tiled format. Its width always matches the widest widget in its list

of managed children; the widget forces all of its children to stretch to the same width as

50

that widget. Each pane in a PanedWindow contains a child widget; every pane has an

associated sash (or grip) that allows the user to change the height of the pane

interactively. Resizing a pane with the grip can cause the widgets in other panes to

change size. In T AAR, we use this Paned Window widget to save window area since

sequence list and score matrix list may be long and either one of these two child window

height can be adjusted to get large viewing area.

In Operation Mode main area, it contains an OptionMenu widget for selecting

operation mode, and a push button for starting calculation. An OptionMenu is similar to

a PulldownMenu in that they are both associated with CascadeButtons. However, there

are also several major differences between the two types of menus. In an OptionMenu,

the CascadeButton is not part of a MenuBar. Instead, it is created as the child of a

RowColumn widget that also contains a Label. Another difference is that the menu pops

up on top of the CascadeButton, instead of dropping down from it. The label on the

CascadeButton is one of the elements in the menu; the CascadeButton displays the

current menu selection. The Motif toolkit handles the management of the PulldownMenu

for the OptionMenu, so its handle is not available to us, nor does it need to be. Because

of the design of the OptionMenu, it cannot have cascading menu. We use this kind of

menu to save space on the main window.

Moreover, there are other interface areas brought up by popping up dialog boxes.

You can think of dialog boxes as an application's secondary windows. Since dialogs are

not meant to remain on the screen for very long, they do not need all of the decorations

that are typically provided by the window manager. However, dialogs are not completely

51

independent like menus, so they do need to be controlled by the window manager. For

example, if an application is iconified, its dialog boxes are typically iconified as well.

Dialog boxes are usually implemented in Xt using TransientShells. Motif provides two

main types of dialog boxes: message dialogs and selection dialog. Message dialogs are

designed to allow an application to communicate with the user, while selection dialogs

prompt the user to enter different types of information. It is also possible to create

custom dialogs for specialized application functionality. Dialog are not visible until a

certain user command is given, or a situation arises in which the program requires user

input. In T AAR, dialog boxes are used for a variety of purposes including (1) prompting

user for input/output file names; (2) viewing/inputting/modifying sequences and score

matrices; (3) displaying sequence alignments; (4) displaying any message; and (5) getting

confirmation from users if some concerned action is going to happen such as pressing the

Clear button.

4.2 Displaying Graphs

In T AAR, there is a graph editor. The user is able to draw, edit and display a

(undirected) graph in the drawing area in which vertices are represented by circles and

edges are represented by lines.

In X Window programming, drawing things like points and lines can be easily

done by first creating a graphics context (GC) and then calling Xlib graphics functions.

The GC is an X Window System resource which contains 23 distinct attributes to specify

52

things like color and line width. When one object could be over displayed by another, the

GC's GCFunction attribute should be considered since it specifies how each pixel of a

new image is combined with the current contents of a destination. This attribute is

commonly set as the XOR mode so that drawing an object twice would restore the screen

to· its original state. Here we use this property to erase an image object and perform

rubber-banding operation in our T AAR system.

To draw an object, the coordinates have to be specified in pixel units.

Coordinates are always relative to the upper left corner of a drawing canvas window.

The x coordinate increases toward the right and they coordinate increases downwards.

Now we are going to explain how vertices and edges are displayed in TAAR. A

vertex (also called a node) is represented on the screen as a circle with a radius of r (r = 5

pixels in T AAR). When clicking the mouse to create a vertex, the circle is displayed

such that its center is at the position ofthe hotspot of the cursor. The center's coordinates

are also called the coordinates of the vertex and stored as a part of the internal

representation of the vertex.

An edge is represented on the screen by a line connecting two nodes. Internally,

it is represented by a relation between two vertices. Please notice that we cannot simply

draw a line connecting the centers of two nodes since the overlapping parts between the

line and nodes will not be displayed properly. The natural choice is to choose a boundary

point from each node. However, to ease the calculation involved, it is much easier to

simply pick up a boundary point from the surrounding rectangle of each node. Therefore

53

we choose the two ending positions of the line as follows. Assume two vertices are of

coordinates (xi, YI) and (x2, Y2) and displayed as nodes of radius r. Define the slope as

Define O"x = 1 ifx 1 ::;; X2 and -1 otherwise, and oy = 1 ify 1 ::;; Y2 and -1 otherwise.

If -1 ::;; k ::;; 1, as shown in Figure 4 .2(a), we calculate

If k > 1 or k < -1, as shown in Figure 4.2(b), we calculate

a=x,+ayl~l b=y1 -oyr; c=x2 -ayl~l d=y2+oyr;

Then the line connecting points (a, b) and (c, d) is displayed as the edge connecting

(a, b)

(a) 	-1 :s;k:s; 1 (b) k > 1 or k < -1

Figure 4.2: Deriving the line for an edge.

54

Once nodes and lines are drawn, information about them, such as node

coordinates and connection relationship, has to be saved by the application program in

some internal data structures since the workstation has no memory of the fact that

something is drawn. The workstation has to use this information to redraw all those

drawn objects when the window needs refresh its display.

Manipulating vertices and edges is conducted by first selecting corresponding

nodes and lines. Then procedures are invoked by event handlers to perform some

actions. From the user's point of view, a selection can be done by using the mouse to

point to the node or line that is displayed on the screen and then click the mouse button.

However, from the programmer's point of view, the program has to do a lot of

background computation to compare the user selected cursor position with the

coordinates of the vertex or edge and see if the difference is small enough (as

predefined). Here the concern is whether the hotspot of the cursor is within the

neighborhood of the intently selected node or line object. As the mouse is clicked, every

object will receive event messages. Any object with cursor hotspot standing in its

neighborhood would be selected to accept some actions. How is the neighborhood

defined for a vertex and an edge? Assume a vertex has (a, b) as its coordinates, then its

neighborhood is defined as {(x, y)llx-al <rand lY-bl < r} (r = 5 pixels in TAAR). The

neighborhood of an edge will require much more computation. It is defined as a 2 *r

width band surrounding the line segment. Assume the two ends of the line are (a, b) and

(c, d) as shown in Figure 4.2, then the line's algebraic equation is

55

y-b b-d
--=-
x-a a-c

which can be rewritten as

(b- d)x +(a- c)y + cb- ad= 0.

The distance between a point (x0 , Yo) and the line is calculated by

I(b- d)x0 +(a- c)y0 + cb- ad I
dist(xo, Yo, a, b, c, d)= I

...;(b-d)2 +(a-c)2

Here we can define the neighborhood ofthe edge (see Figure 4.3) to be

{(x,y) Idist(x,y, a, b, c, d)< r, min(a, c) <x < max(a, c), min(b, d) <y < max(b, d)}.

The band of width 2 * r

Figure 4.3: The neighborhood of an edge.

In above figure, we can see that any mouse click event happens with the hotspot

of the cursor located in the band of 2*r width of a line segment will let the line segment

be selected and accept consequent actions.

56

4.3 Data Structure

The primary data structures used in T AAR will be discussed in this section. Several

global data structures are defined and implemented in T AAR for the whole application.

They are used for dynamic data storage of individual sequence and the list of all

sequences, individual score matrix arrays and the list of them, nodes, edges and tree

structures.

4.3.1 Sequence

The common set of information of sequences includes the original name, the title name

when belonging to a tree node, the sequence itself, the sequence length, the sequence

format, and the type of the sequence. The data structure for sequences is defined as type

SEQtype. It forms an array as seqList. This list array (seqList) is used to store all input

sequences. The SEQtype data structure is showed in Figure 4.4.

typedef truct {
char
char
char
int
short
boolean

}SEQtype;

name[MAXLENGTH];

title[MAXLENGTH];

*content;

length;

format;

isdna;

I* sequence name *I
I* auxiliary name *I
I* character sequence *I
I* sequence length *I
I* sequence format *I

Figure 4.4: The data structure for sequences.

57

4.3.2 Score Matrix

The information needed for storing calculation-needed score matrix is the score matrix

name, the characters considered for calculating scores, and the score values represented

in a two dimensional array. The data structure for storing this information is declared as

structure score. The arrays form an array as scoreList. This list is for storing all input

score matrices. The data structure is showed in Figure 4.5.

struct score {
char name; I* score matrix name *I
char order[MaxLetters + 1]; I* character set *I
float matrix[MaxLetters] [MaxLetters]; I* score value matrix *I

};

Figure 4.5: The data structure for score matrix.

4.3.3 Tree

The tree in T AAR is undirected and weighted. A vertex contains various information

such as node coordinates at the drawing area, the sequence associated with it, and the

edges connected to it. In the information associated with an edge, it contains the

alignment of two sequences assigned to the both ends of the edge. Here we use the

adjacency lists data structure to represent a tree. That is, each vertex is associated with a

linked list consisting of all the edges incident on this vertex, and all vertices are stored in

an array. The data types that are used to describe the adjacency lists structure is shown in

Figure 4.6.

58

typrdef struct _LIST {
int index;
float weight;
char *seql;
char *seq2;
P ARAtype *para;
struct LIST *next;

}LISTtype;

typrdef struct _NODE{
int x·-'
int _y;
SEQtype *con;
LIST type *head;

}NODEtype;

I* index of the vertex *I
I* cost of the alignment *I
I* padded sequence 1 after alignment *I
I* padded sequence 2 after alignment *I
I* parameters for doing alignment *I
I* next edge *I

I* x-coordinate *I
I* y-coordinate *I
I* sequence assigned to the vertex *I
I* edge list associated to the vertex *I

Figure 4.6: The adjacency lists structure.

The tree is represented by NODEtype nodearray[MAXNODE]. It is initialized

in the array with the size of MAXNODE and type of NODEtype. The offset of each

element in the array coincides with the vertex index label. This permits direct access to

vertex data and thus reduces the searching operations that would otherwise be used so

frequently in many functions. The global variable nodes count is used to keep the

number of vertices of the graph. Existing vertices are always kept in the first

nodes _count cells of nodearray[MAXNODE].

TAAR has some predefined global constants that need the user's attentions. They are:

• 	 MAXNODE: The total node number of all trees in the drawing area. Its value

must be greater than the actual number of the drawing nodes and be greater than

two and half times the MaxSeqNum constant.

59

• 	 MaxSeqNum: The maximum number of sequences to be input in SEQUENCE

LIST. Its value must be greater than the actual number of the input sequences.

• 	 MaxScoreNum: The maximum number of score matrices to be input in SCORE

MATRIX LIST. Its value must be greater than the actual number of input score

matrices.

• 	 MaxLetters: The maximum number of alphabet letters in any input score matrix.

Its value must be greater than the actual number of alphabet letters in any input

score matrix.

• 	 WIDTH: Drawing area width in pixel unit. Its value must not exceed the

positive value range of a machine dependent int data type.

• 	 HEIGHT: Drawing area height in pixel unit. Its value must not exceed the

positive value of a machine dependent int data type.

• 	 OPT_ TIMES: The iteration times of doing star alignment optimization for a

tree. Its value ranges from 1 to any reasonably large positive integer number.

The default values are provided for these constants. These constant values are modifiable

and may affect the operations ofTAAR program. The user may modify them according

to the user's requirement before compiling the code of TAAR. For instance,

OPT_TIMES will significantly affect the execution time of TAAR. We choose value 4

as its default value in T AAR since our testing has shown that the tree cost usually

stabilizes after four rounds of optimization across the tree.

60

4.4 Operations

Let's give a general idea about ·how TAAR's drawing operations are done. First, the

insertion, deletion, moving, label, unlabel, root operations on a tree are illustrated as

follows:

• 	 Add a vertex: Coordinates and/or a sequence of the vertex are inserted into the

nodes_counts-th cell ofnodearray[] and nodes_count is incremented by 1.

• 	 Add an edge: Assume that it connects the ith and the jth vertices. The program will

allocate memory space for one LISTtype structure, fill it with the label of the jth

vertex and other edge related information, and insert it into the beginning of the

adjacency list of the ith vertex. The process is repeated with the i andj exchanged.

• 	 Delete a vertex: All edges connecting to the vertex are deleted from the adjacency

list of the vertices connected to the deleted vertex. The information related to the

deleted vertex in nodearray[] is deleted. The last vertex in nodearray[] is moved to

the cell of the deleted vertex. The adjacency lists of the vertices adjacend to the

former last vertex are updated. nodes_ count is decremented by 1.

• 	 Delete an edge: The adjacency lists associated with each of the two ends are

searched. The involved list items, one from each list, are removed and their memory

spaces are released.

• 	 Moving a vertex: The coordinates information of this vertex will be updated in the

according cell of nodearray[].

61

• 	 Label a node: Here the labeling means assigning the sequence and its information to

a node. When doing labeling, the selected sequence and its information (i.e. name

and length etc.) would be copied into the related node data structure of nodearray[].

• 	 Unlabel a node: This means deleting the sequence and its information on a node.

When doing unlabeling, the sequence and its information that are assigned onto this

node sometime before would be deleted from the related node data structure of

node array[].

• 	 Root: This operation redraws the graph so that it looks like a rooted tree. The

algorithm for this operation is that it starts from the selected root node and

implements Depth First Search for the whole graph to get the node relationship in the

graph. Then from the selected root node position coordinates, it assigns position

coordinates to each node and increases the distance of the same level nodes while

node level increases.

All above operations can be executed after one makes the selection of the drawing mode

on the draw mode menu buttons. This mode is saved in a global variable so all functions

know what the drawing mode the user is working on. The user must make a clear

selection before doing any tree operation. A tree drawn on the screen can be stored into a

file with a certain customized format. Later this file can be retrieved back and the tree as

well as its attached sequences will be displayed again in the drawing area. This is a

convenient feature for the user to store the tree and its attached sequences.

62

Second, the input sequence list window and score matrix list window have related

stzes. Due to the limited area of user interface screen, we have implemented a Pane

window to contain these two list windows. So user can adjust their size relatively by

drag a small button of the Pane window. This way, the user can get relatively large view

size for either one of these two list windows.

In these two list windows, each of them contains an operation pull-down menu.

The user can open, save, edit and delete the input sequences and matrices in the list. The

user can also assign any one of the list sequences to a node. When assigning a sequence

to a node, the sequence in the input sequence list seqList[] is actually copied into the

SEQtype node data structure of that node index cell in nodearray[]. So later we can use

this sequence directly to calculate alignment.

Third, the operation mode or calculation mode of T AAR is specified by a

selection button. This way, it can save space, and the user can easily click the button to

make a selection. After the operation is selected, the mode is stored in a global variable

so all functions know the current operation.

4.5 The Undoing Facility

In T AAR, we provide a convenient common feature, Undo and Redo. These facilities

allow users to cancel a command, to recover from operating mistakes that may damage

and also allow users to do input testing, knowing that they can back up easily if the result

is not what they had expected.

63

To perform an Undo operation, we have to store or back up the relative data and

information for each operation done by users. This way, we can let the user recover old

data. For example, we have to save a deleted data so the user can undo a delete

operation. In TAAR, we have developed a one-level undo facility for the graph editor.

Any graph drawing related operation can be undone up to one level. Executing undo

twice successively will let system restore the state as if the undo operations were not

executed.

There are five graph drawing modes for which we are interested in providing

undo operation. They are drawing or moving a node (Node), drawing an edge (Edge),

assign a sequence to a node (Label), delete the sequence from a node (Unlabel), and

delete a node or edge (Cut). According to the actual amount of information to be saved,

we define the data type as shown in Figure 4.7. The union construct is used to allow

storage sharing and a data member called flag is used for the interpretation of the stored

information.

A memory space undo_ buffer is used to save drawing information. When a

drawing or editing operation is performed, we first check which part of the graph will be

changed and save the old data in undo _buffer, and then update the graph as the drawing

operation required. For the undo operation, the most expensive editing is the deletion of

a node, which involves deleting the node and the edges connecting to it from nodearray[],

saving sequence and other information of these deleted node and edges into undo _buffer,

and rearranging the vertex array of the graph.

64

struct undo_ struct {
UNDO TYPE

union{
struct {

int

int

} move _node;

struct {
int
SEQ TYPE

}change_ con;

struct {
int
int
float
char
PARAtype

}re_edge;

struct {
int
NODEtype

}re node;

}set;

} undo_ buffer;

flag; I* one of five drawing modes *I

I* node is moved *I
index;
X, y;

I* node's content is changed *I
index;
*content;

I* changing edge *I
index;
index2;
weigh;
*seql, *seq2;
*para;

I* changing node *I
index;
node;

Figure 4.7: Structure ofundo_buffer

Chapter 5

A Guide to Tree Alignment and Reconstruction

In this chapter, we will make a brief introduction to Tree Alignment and Reconstruction

(T AAR) application. This software system is intended to be installed on a UNIX

operating system with X Window (Xl1R5) and MOTIF 1.2 (or higher version)

supporting environment. It was tested on Sun Ultra-2 machine with SUN OS 5.5.1,

X11R5 and MOTIF 1.2 environment, and runs very well.

This application implements FAST and (approximately) OPTIMAL versions of

Tree Alignment, Generalized Parsimony Phylogeny Reconstruction and Generalized Tree

Alignment algorithms. General Affine gap penalty functions are used in all FAST

algorithms, although only gap-extension penalty is used in OPTIMAL algorithms for the

sake of speed.

The sequences can be DNA, RNA or PROTEIN or others. In general, as long as

the sequence characters are in the range of a--z and A--Z (not sensitive to character case),

and the score matrix alphabet contains the sequence alphabet, the sequences would be

accepted by this application.

Using a pointing device (usually a mouse) with pointing-and-clicking operation

style can do all operations. Some operations can also be alternatively accomplished by

using keyboard input.

65

66

5.1 Getting Started

If TAAR is not installed, you should first read the README file contained in T AAR

application package and installs it onto a UNIX system with X Window and Motif

supporting environment. Then make compilation of T AAR to get an executable file

"taar". TAAR can be downloaded through Internet and can be find in web page of

Computer and Software Department of McMaster University, Canada.

To get started, type: taar on a system prompt (or type other name that you

compiled or changed to the TAAR's executing file). Figure 5.1 shows the initial screen

of TAAR. If the screen is not displayed properly, you should check whether the

resources file is installed appropriately.

Figure 5.1: Initial screen ofTAAR

67

5.2 Screen Display and Operation

As we discussed earlier, TAAR divides the screen into six main areas as shown in Figure

5.2. Let's discuss each area one by one in following sections and see what functions they

provide respectively.

Main Control

Drawing Area

Sequence List

Score Matrix List

Running Status Message Operation Mode

Figure 5.2: The main screen areas ofTAAR

5.2.1 Main Control Panel

The Main Control Panel is a menu bar that provides general operations for whole

application. There are couples of pull down menus associated with it. For example,

some ofthese operations are exit and help. These menus can be activated by mouse click

or AL T -<Key> keyboard input. The <Key> represents the underline character of a menu

command word. User can see on line help or exit application from these menus.

68

5.2.2 Drawing Area

The Drawing Area contains a Canvas, a pull-down menu and a series drawing mode

selection buttons. The pull-down menu contains all graph-related file operation

commands. User can save the graph into a disk file and later open it and display it on the

canvas by invoking menu items here. Those menu commands are Load, Save As, Print

and Clear. Their functions are shown as following:

• 	 Load: Load tree structures and their leaf sequences from a file into the drawing

Canvas.

How to operate: Click on this menu option and a File Selection Dialog window

will be popped up, make a file name selection and click LOAD button to load the

tree structures and their leave sequences from the file. The maximum number of

tree nodes is limited by the constant MAXNODE which is defined in the file

main. h of this application.

• 	 Save: Save all tree structures and leaf sequences of the drawing Canvas into a file.

How to operate: Click on this menu option and a File Selection Dialog window

will be popped up, input a file name or make a file name selection and click SAVE

button of this dialog window to save all tree structures and their leaf sequences

into the file.

• 	 Print: Save user selected tree image or window image into the file

taar _Tree _Image_ Temp.ps with postscript format and then print it out to the

default printer of your system.

69

How to operate: When clicking this menu item, the cursor will change to a cross

shape. Then you can click on any window to dump that whole window image to

the file and print it out. You may also push down the left mouse button and move

the mouse while holding down the button to select a rectangular part image and

dump this image part to the file and print it out.

When first click or push the left mouse button, one beep sound will be

heard. When image is stored into the file, two-beep sound will be heard. User

should make sure the name taar _Tree_ Image_ Temp.ps is not used before printing.

Otherwise the content of the file with this name will be written over by the new

image file (i.e. old file will be lost!). User also should make sure the default

printer is a postscript printer. For how to set up a default printer to a specific

printer, please ask your system administrator or read UNIX system help by typing

command: man setenv. The printing command for this menu is implemented with

lpr taar _Tree _Image_ Temp.ps command in taar_main.c file. User may change it

by adding a -Pprintername option after lpr to let it send the image file to the

printername printer. Here printername is the name of the postscript printer.

• 	 Clear: Clear the Canvas area.

How to operate: Click on this button and a confirmation dialog will pop up, then

make your selection.

70

The Canvas takes up most part of this area. It is the area where graphs are composed and

manipulated and relevant data are displayed. The user only uses mouse to compose a

graph by pointing, clicking and dragging. Those drawing mode buttons provide various

graph editing related modes. They are Node, Edge, View, Label, Unlabel, Root, and Cut.

Each of them provides different functions as following:

• 	 Node mode: let the user generate a new node or drag the node to move it to

another position.

How to operate: To draw a node: point and click once at any empty Canvas area to

drop a node. The node will appear as a small empty circle. To move a node: point

at a node and press the left mouse button, then move the pointer while holding

down the button to move the node to the new position, release the button to settle

the node to this new position.

• 	 Edge mode: let the user draw an edge between two nodes.

How to operate: Point at a node and press the left mouse button, move point to

another node while holding down the button, then release button at the node to

settle the edge between these two nodes.

• 	 View & Edit mode: let the user view and edit the sequence assigned to the node or

view a pair of aligned sequences between two end nodes of an edge.

How to operate: Point and click a node once, an edit window with the node

sequence will be popped up. User can view and edit the sequence on this window.

71

When point and click an edge once, a window with a pair of aligned sequences

will be popped up.

• 	 Label mode: let the user assign a sequence from the SEQUENCE LIST to a node.

How to operate: Point and click a name once in the SEQUENCE LIST to highlight

it, then point and click a node in Canvas once to assign this named sequence to the

node. The node will appear as a solid node.

• 	 Unlabel mode: let the user delete the sequence on a node if there is a sequence

assigned to this node.

How to operate: Point and click the node with a sequence once. The node will

appear as a small empty circle.

• 	 Root mode: let current graph be redrawn as a rooted tree as the clicked node being

the root node and keeping existing graph structure.

How to operate: Point and click a node once, the original graph will be redrawn as

a rooted tree. This pointed node will be the root node of the rooted tree.

• 	 Cut mode: let the user delete a node and its connected edges or delete an edge.

How to operate: Point and click a node once to delete the node and its connected

edges. Point and click an edge once to delete the edge.

72

5.2.3 Running Status Message

The Running Status Message displays current operation related messages. It may show

some operation tips, or warning messages or error messages. The user can get some

useful information from this message board.

5.2.4 Sequence List

The Sequence List area takes care of inputting, displaying and editing all sequences for

alignment. There is another separate list window below this sequence list window. This

lower window is for score matrix input. There is a small button between these two list

window borders. The user can point at it and push it up or down to adjust the upper and

lower window size relatively while push and hold the left mouse button.

Sequence input, edit and display is operated in SEQUENCE LIST window. The

inputted sequences can only contain characters in the range of a--z, A--Z and the Space

character. There is no limit on the length of a sequence. The maximum number of input

sequences for an operation is limited by the constant MaxSeqNum which is defined in

file "main.h" of this application. Here are some sample sequences with valid formats:

aaatttc cCCGGGAccc AATTTgg

or aaatttc cccgggaccc aatttgg

or AAATTTC CCCGGGACCC AATTTGG

or AAATTTCCCCGGGACCCAATTTGG

or aaatttccccgggacccaattgg

73

Sequences are loaded into this application by first creating a sequence file with a valid

format. This is a F ASTA format [20], which is described later in this chapter, and it can

include any comments in the file. This sequence file is loaded in by using File & Edit pull

down menu in SEQUENCE LIST window. Here is a valid sample input sequence file:

#any comment goes here in one line

>name of sequence one

AAATTTCCGG CCCGGGACCC AATTTGG

#another comment here in one line

>name of another sequence

TTTAGCGGTT AAGCGGTTGC GGTCGGTATA GGCTT

>name of one more sequence

TTCGGGCCCAGGGCCAAATCGG

Please note that both comment and sequence name must be contained in one line (less

than 255 characters before hitting the 'Return' key). A comment must start with a special

character '#'. A sequence name must start with a character '>'. Each sequence name

should have a sequence followed immediately. A sequence can be continued in any

number of lines, and be of any length as long as its format is valid.

In this sequence list window, there is a pull-down menu that contains all sequence

related operation commands. They are Load, Edit & View, Cut, Save As and Clear. You

must first click on this menu button to see the following items:

• Load: Load sequences from a file into the SEQUENCE LIST window.

74

How to operate: Select 'Load' menu command and a File Selection Dialog will be

popped up; make a file name selection and click LOAD button in this dialog to

load the sequences from the file. The maximum number of sequences to be loaded

into this window is limited by the constant MaxSeqNum that is defined in file

"main.h" of this application.

• 	 Edit & View: View and Edit a sequence.

How to operate: Highlight a sequence name in the list by point and click this name;

then select 'Edit & View' menu command to pop up a window to display the

named sequence, or double click on this name to bring up a display window. This

named sequence can be viewed, edited, saved or printed out in that dialog window.

• 	 Cut: Cut a selected sequence out from T AAR.

How to operate: Highlight the sequence name, which you would like to cut, in the

list by pointing and clicking at it in the list; then select 'Cut' menu command to cut

this named sequence out from the list. When this sequence is cut out, it still exists

in the disk file but not in T AAR.

• 	 Save As: Save all sequences that are listed in the SEQUENCE LIST window to a

user selected file.

75

How to operate: Select 'Save As' menu command to pop up a File Selection

Dialog; then select a file name and click SAVE button in this dialog window to

save all sequences in the list into the file.

• 	 Clear: Cut all sequences out from T AAR in the SEQUENCE LIST window.

How to operate: Select 'Clear' menu command will pop up a confirmation dialog

window; then make your selection. Please be noted that those cut out sequences

still exist in the disk file but not in T AAR.

5.2.5 Score Matrix List

This list window takes care of inputting, editing and displaying all score matrices needed

for calculations. The inputted score matrix must contain a'-' character and some other

characters. These characters are case insensitive. The alphabet of the score matrix must

include all letters existing in the input sequences. The maximum size of the alphabet

letters of a score matrix is limited by the constant MaxLetters which is defined in the file

"main.h" of this application. The maximum number of score matrices to be loaded into

this window is limited by the constant MaxScoreNum which is also defined in file

"main.h". The scores must be non-negative real or integer values in order that the

algorithms can work. Here T AAR only takes symmetric score matrix. So A -7C score is

same as C-7 A score. The following score matrix is a sample score matrix with a valid

format:

76

A c T G
0 2.25 2.25 2.25 2.25

0 1. 75 1. 75 1
0 1 1. 75

0 1. 75
0

The representative characters for each row in this matrix have the same order as those for

score matrix column. It is shown as following:

-ACT 	G

A
c
T
G

Here '-'means gap extension penalty. In TAAR, we consider gap extension penalty for

all OPTIMAL calculations, and consider both open gap penalty and gap extension

penalty for all FAST calculations. Score matrix is loaded into this application by first

creating a score matrix disk file with a valid format (several score matrices can be stored

in one file). Then it is loaded in by using LOAD command of File & Edit menu in

SCORE MATRIX LIST window. Following is a sample input score matrices file with a

valid format:

#Any comment goes here in one line

##One score matrix name

A c T G
0 2.25 	 2.25 2.25 2.25

0 1. 75 1. 75 1
0 	 1 1.75

0 	 1.75
0

77

#Another comment here in one line

##Another score matrix name

c T G A
0 5 5 5 5

0 5 5 5
0 5 5

0 5
0

Please note that a comment or a score matrix name must be in one line (less than 255

characters before hitting the 'Return' key). A comment must start with ONE symbol '#'.

A score matrix name must start with TWO symbols '##'. Scores should fill the upper-

right half triangle, and can be continued in any number of lines.

SCORE MATRIX LIST window also contains File & Edit menu button. This

menu provides similar functions as the menu provided in SEQUENCE LIST window.

But here it is only for score matrices.

5.2.6 Open Gap Penalty Input

For all FAST alignments, when the user click the RUN button to do alignment

calculation in Operation Mode area, a dialog window for inputting OPEN GAP penalty

value will pop up. User can input an integer or decimal value for the calculation needed

open gap penalty in this dialog window. If the input value is 0, then only extension gap

penalty is considered for those FAST alignments.

78

5.2.7 Operation Mode

In this area, there are a Calculation option menu button and a RUN command button.

The option menu button is for making a selection of calculation mode and the RUN

command button is for starting the calculation of selected mode. After the user finish all

preparation work, the user must press this button to start the selected calculation and

alignment work that is done by computer. If any condition is unsatisfied for doing a

specified operation, an error message will pop up during this run time and the calculation

work will stop. Otherwise, the work result will be shown after a while.

After clicking the option menu button and making a selection, the selected

operation name will be shown on the button face so user can easily see it. T AAR

provides eight calculation modes. They are:

• Fast-RootedTree-Align: Fast Rooted Tree Alignment

Input: Drawing a rooted tree in Drawing Area and assigning all sequences to be

aligned from Sequence List window to all tree leaves respectively.

Output: A multiple alignment of all tree leaf sequences with calculation time

optimization.

• 	Fast-Tree-Align: Fast Tree Alignment

Input: Drawing a non-rooted tree in Drawing Area and assigning all sequences to

be aligned from Sequence List window to all tree leaves respectively.

Output: A multiple alignment 	of all tree leaf sequences with calculation time

optimization.

79

• 	Fast-Phylogeny-Recons: Fast Phylogeny Reconstruction

Input: In Sequence List window, only loading in those considered sequences.

Output: A Phylogeny tree with a minimum tree cost and all loading sequences

assigned to the tree leaves. Calculation time optimization is in concern.

• 	Fast-Gen-Tree-Align: Fast Generalized Tree Alignment

Input: In Sequence List window, only loading in sequences to be aligned.

Output: A multiple alignment of all loading sequences and a Phylogeny tree with a

minimum tree cost and all loading sequences assigned to all tree leaves

respectively. Calculation time optimization is in concern.

• 	Opt-RootedTree-Align: Optimal Rooted Tree Alignment

Input: Drawing a rooted tree in Drawing Area and assigning all sequences to be

aligned from Sequence List window to all tree leaves respectively.

Output: An optimal multiple alignment of all tree leaf sequences.

• 	Opt-Tree-Align: Optimal Tree Alignment

Input: Drawing a non-rooted tree in Drawing Area and assigning all sequences to

be aligned from Sequence List window to all tree leaves respectively.

Output: An optimal multiple alignment of all tree leaf sequences.

• 	Opt-Phylogeny _Recons: Optimal Phylogeny Reconstruction

80

Input: In Sequence List window, only loading in considered sequences.

Output: A Phylogeny tree with an optimal tree cost and all loading sequences

assigned to the tree leaves.

• 	Opt-Gen-Tree-Align: Optimal Generalized Tree Alignment

Input: In Sequence List window, only loading in sequences to be aligned.

Output: An optimal multiple alignment of all loading sequences and a Phylogeny

tree with an optimal tree cost and all loading sequences assigned to all tree

leaves respectively.

The above operations are formed by the combinations of some basic algorithms. These

basic algorithms are:

• 	 FAST algorithm: This algorithm is based on the tree-lifting technique for tree

alignment, and involves no iterative improvement or local cost optimization. The

algorithms should run very fast, and can give good estimates.

• 	 OPTIMAL algorithm: For each tree, it does tree-lifting and then repeats star

alignment OPT_ TIMES times on all in-nodes of the tree to progressively improve

the tree cost. (The constant OPT_TIMES is defined in file "main.h". User can

modify it.)

81

• 	 Non-rooted Tree Alignment: When given a non-rooted tree of degree 3 (i.e. each

in-node has three incident edges) and all tree leaves are labeled with sequences, it

select a virtual root at an optimal position in the tree and uses tree-lifting technique

to compute a sequence for each in-node to minimize the cost of the tree. Then it

induces a multiple alignment of the leaf sequences from the optimal pairwise

alignments implied by the tree edges. (The virtual root needed for the tree lifting

is automatically and optimally selected by this application to balance the height of

the two subtrees under the virtual root.)

• 	 Rooted Tree Alignment: When given a rooted binary tree (i.e. each in-node

except the root has three incident edges and the root has two incident edges),

whose leaves are labeled with sequences, it uses tree-lifting technique to compute a

sequence for each in-node and the root to minimize the cost of the tree. Then it

induces a multiple alignment of the leaf sequences from the optimal pairwise

alignments implied by the tree edges. (The virtual root needed for the tree lifting

is the same root node of this rooted tree. So the user can decide where to place the

virtual root.)

• 	 Phylogeny Reconstruction: The method is based on the generalized parsimony.

When given a list of sequences, if the list has at most three sequences, it constructs

a unique two or three node star tree; if the list has more than three sequences, then

it constructs a non-rooted degree-3 phylogeny tree. To construct this tree, it first

82

constructs the star tree consisting of the first three sequences of the list. Then it

adds a new leaf node labeled with the next sequence in the list to the tree by trying

inserting the leaf node at each tree edge and settling down with the one that has a

minimum tree alignment cost. Repeating this step until all the sequences in the list

are inserted into the tree.

• 	 Generalized Tree Alignment: When given a list of sequences, it does Phylogeny

Reconstruction first and then Tree Alignment on this constructed phylogenetic

tree. This will yield a multiple alignment as well as an underlying phylogenetic

tree.

When an operation needs a rooted tree, user must select a root node among all tree nodes.

Otherwise, an error message will pop up. Generally speaking, fast algorithm runs quickly

and the result is a good estimate, and the optimal algorithm can give a better result but the

time spending on calculation is a little longer. The time for optimal algorithm may be

considerably longer especially for longer sequences to be aligned.

5.3 Displaying Sequence and Alignments

In T AAR, any sequence, which is in Canvas or Sequence List, can be individually

displayed and be edited in a separate small window. Any pairwise sequence alignment

associated with tree edge can be displayed in this window. The multiple sequence

83

alignment can also be displayed in this small window. The user is only allowed to view

the alignment and are not allowed to edit the alignment. These features are provided to

users for the user' s convenience. The sequence window for displaying individual

sequence is shown as Figure 5.3.

~----------~-------• '>'~~S~e~q~u~en=c~e~E=d=it=&~V=ie~w~------~------------~J~='/= I
SEQUENCE NAME: Trema

SEQUENCE LENGTH: 486

TATGAGCAGCT CAGAAGTTGA CAAAGTITTC ACAGAAGAGC AGGAAGCTCT GGTGGTGAAA TCATGGGCTG

TAATGAAGAA GAACTCTGCT GAACTGGGTC TTAAATTCTT CCTCAAGATA TTTGAGATTG CACCGTCTGC

CAAGAACTTG TTCTCGTATTTGAAGGACTC TCCGATTCCT TTGGAGCAGA ACCCAAAGCT GAAGCCCCAT

GCTATGACTG 'TCTTCGTTAT ·· GACGTGTGAA TCTGCGGTTC AACTTCGGAA ·AGCCGGAAAA . GTAACAGTGA

GAGAATCAAA CTTGAAAAGA CTTGGGGCTA TCCACTTCAA AAATGGCGTA GTTAATGAAC ATTTTGAGAC

AAGGTTTGCA CTTTTGGAGA CCATAAAGGA AGCAGTACCA GAAATGTGGT CACCTGAGAT GAAGAACGCA

TGGGGAGAAG CTTATGATCA GTTGGTTGCT GCTATCAAGT CCGAAATGAA ACCCTCCAGT ACTTGA

Figure 5.3: The View & Edit dialog window

In this dialog window, user can edit the sequence with any character in a--z, A--Z,

symbol "-"and space. The sequence character alphabet set must be a subset of the score

matrix alphabet set (This score matrix is to be used for sequence alignment calculation).

If this condition is not satisfied, an error message will popup when the user click Save

button to save the edition. Otherwise the sequence after edition will be saved into

memory space of related data structure. This edition is not yet saved into disk file. The

user may explicitly save it into disk file by click Save menu option in related File & Edit

pull down menu after closing this editing window.

84

The window for viewing pairwise alignment is shown in Figure 5.4. In this

window, user can get all alignment-related information. It includes alignment score, total

gaps, sequence names and score matrix name.

Figure 5.4: The dialog window for viewing pairwise alignment

The window for viewing multiple sequence alignment is shown in Figure 5.5 . This

window also shows all multiple sequence alignment related information.

5.4 File Format

In T AAR, the sequence, score matrix and tree can be written into a file and be loaded into

T AAR by clicking menu commands. These features are convenient for the user to store

85

• Vl~w Multi-Aligned Sequence: ,. " · · ··

FAST;6tNEDB~~ scofi~~ATRIX: DNA0/1 matrix
OPEN GAP-PENALTY: ' 0.00 .

·. 1·:' rr~~a · .:~ >~'·
2. Mouse-a 1 phil .

.. .. 3. aidge "<.. .

:•;·'4. ·. Cow_ayo ·· /, ,..•.,.

5. , Mouse-beta <'
6. Hu.an-ayo . .,
7. Vi treosci 11 a
B. 'duck-beta •·

.. _9. oak .i'
 J
· tf.JLTI-ALieNED SEQUENCES: /

. '\0.,};• ; ' -;:;1 .·····•• •' 21 . J1 41 51
A . ' ATGAGCAGCLCACAA~"--CT TGACAAACTT TTCACAGAAG AGCACGAAGC TCTGGTGG-T

<;•2. >· ATG-C-TGC~;T-C-T-~~c- . ----TG-GGG _,---A---A-G ~AC----AA; A-AGCAACAT
. : 3 ; ,x~Tc-T,..cAC-· c.,..T----..:c- -------ATC .- - -A---A-A ,.TC,..---A--; G-CACA-GTT
"'4. 'ATG..; G-GGC- .T~CAC-~-c- -CA-CG-CGG ---A---ATG -GC----AG- T-TGGTCC-T .,
·: 5 .' :. ---,"----~:- -----G--- -'---~--G ---A------ -AG------e C-AGC-T-AT .
i'' S. :J ATG~G,-CCC-;- .T-CAG---e- -CA,-CC-GGG ·· ---A---ATG -CC----AG- T-TGGTGC-T
: .• 7 · ·' ATG-T~TAC,.. ~C-----c,.. ------,..AGC - --A---A-A -CC----AT- T-AACATCAT

8. ' ATG..;G-TGC-' A-C-TGGAC- ----AG-CCG --- A---c-e -AG----AAG C-AGC-TCAT
•:g~ ATGAGCACCT.TGGAA---G- -GA-AGAGGG TTCACCCAAG AGCAGGAAGC TCTAGTGG-T

CloseT I
_ _ _ l

Figure 5.5: The dialog window for viewing multiple sequence alignment

various sequence, score matrix and tree files and later retrieve, use and save them easily.

Thus we need to specify some file formats to help this file transferring work.

For sequence file, we adapted currently popular sequence file format called

FASTA format [20] for T AAR usage. This format specifies as following: The sequences

are delimited by an angle bracket ">" in column 1. The text immediately after the ">" is

used as the sequence name and the title. Everything on the following lines until the next

">" or the end of the file is one sequence. An example ofFAST A format single sequence

file is

86

> RABSTOUT rabbit Guinness receptor

LKMHLMGHLKMGLKMGLKGMHLMHLKHMHLMTYTYTTYRRWPLWMWLPDFGHAS

ADSCVCAHGFAVCACFAHFDVCFGAVCFHAVCFAHVCFAAAVCFAVCAC

We modified the FASTA format slightly to allow any comments appearing in one line

mode. The user may specify comment by starting with a symbol "#" and followed by

one line comment. These comments may not exist in any line between the sequence

name and the sequence itself. One of valid sample sequence file is shown and explained

in 5.2.4 Sequence List of this chapter.

The score matrix file format is similar with sequence file format. User should

specify score matrix name and score values. User can also specify any comments in the

file. One of valid sample score matrix file is shown and explained in 5.2.5 Score Matrix

List of this chapter.

The tree file format is customized for T AAR. User may compose this file

according to its format and load it into the Canvas area ofTAAR. The tree file format is

also similar with above two file formats and can specify node information in it.

Chapter 6

An Example Run of TAAR

In this chapter, we present an example execution ofTAAR. The testing data (sequences

and score matrix) are chosen from the sample data included in the T AAR package. The

input sequence file, score matrix file and output multiple sequence alignment file are

presented in Appendices A, B and C respectively. Here we only demonstrate Optimal

calculation modes. The Fast calculation modes are similar. The test procedures are

described below.

6.1 Start the T AAR Program

To start T AAR program, type taar on a system prompt. Please refer to Chapter 5.1 for

further instructions.

6.2 Load the Sequences

The required sequences for testing with the FAST A format can be found in T AAR

directory as the file: \sample-data\Globin.seq. To load the sequences, click on File &

Edit menu button in Sequence list frame window and then click on Load menu as

follows:

File & Edit ~ Load

87

88

An open file dialog window will be opened. Select the correct directory and the file in

this dialog window. Then click on Open button in this window. Now all sequences in

Globin.seq file will be loaded into the Sequence List frame window. Please refer to

Appendix A for the actual sequences.

We can view or edit individual sequence here by highlighting the sequence name

and then clicking on Edit menu as follows:

File & Edit ~ Edit

or double click on the sequence name. The View & Edit window will pop up with the

selected sequence displayed in it.

6.3 Load the Score Matrices

The required score matrix for testing is "DNA 0/1 matrix" in the file: \sample

data\SAMPLE-SCORES. To load this score matrix, we have to load this file and get all

score matrices in this file. Here we should click on File & Edit menu button in Score

Matrix list frame window and then click on Load menu as follows:

File & Edit ~ Load

An open file dialog window will be created. Select the correct directory and the file in

this dialog window. Then click on Open button in this window. Now all score matrices

in SAMPLE-SCORES file will be loaded into the Score Matrix List frame window.

Please refer to Appendix B for the actual score matrices. The screen shot after loading

the files is shown in Figure 6.1.

89

We can view or edit individual score matrix here by highlighting its name and

clicking on Edit menu as follows:

File & Edit -7 Edit

or double click on the score matrix name. The View & Edit window will pop up with the

selected score matrix shown in it.

11ouse eta

es

the operation mode to

-~ Ht.Jma,??"il'l!::lO G~~-myo

idge

.... 4

e1o • s

Human-myo
Vitreoscllla
duck-beta
oak

Figure 6.1: A screen shot after loading sequence and score matrix files and
drawing the rooted-tree.

90

6.4 Calculations

6.4.1 Optimal Rooted Tree Alignment Operation Mode Test

1. Draw a rooted tree

Please refer to Chapter 5.2.2 for the usage of drawing commands. In the drawing

Canvas, draw a rooted binary tree with total 9 leaves.

2. Assign sequences to the leaf nodes

Use Label drawing mode to assign sequences in Sequence List window to all leaf

nodes respectively. You may delete the assigned sequence from the node by using

Unlabel drawing mode. The result screen shot is shown in Figure 6.1.

3. Select a score matrix

Select the DNA 011 matrix for the calculation by click on its name in the list of Score

Matrix List window.

4. Select an operation mode

Select the Opt-RootedTree-Align operation mode by clicking on the option button in

Operation mode frame window.

5. Start calculation

91

Click Run button to start the calculation. Any operation progress message or error

will be shown on the Running Status Message text box. The multiple aligned

sequences are shown in Appendix C under Opt-RootedTree-Align section. The

screen shot of the calculation result is shown in Figure 6.2 as follows .

Figure 6.2 : The screen shot of Opt-RootedTree-Align calculation result.

92

6.4.2 Optimal Tree Alignment Operation Mode Test

1. Draw a degree-3 tree

Please refer to Chapter 5.2.2 and 5.2.7 for the usage of drawing commands and the

requirement of degree-3 tree. In drawing Canvas, draw a degree-3 tree with total 9

leaves.

2. Assign sequences to the leaf nodes

Use Label drawing mode to assign sequences in Sequence List window to all leaf

nodes respectively. You may delete the assigned sequence from the node by using

Unlabel drawing mode. The result screen shot is shown in Figure 6.3.

3. Select a score matrix

Select the DNA 0/1 matrix for the calculation by click on its name in the list of Score

Matrix List window.

4. Select an operation mode

Select the Opt-Tree-Align operation mode by clicking on the option button m

Operation mode frame window.

5. Start calculation

Click Run button to start the calculation. Any operation progress message or error

will be shown on the Running Status Message text box. The multiple aligned

93

sequences are shown in Appendix C under Opt-Tree-Align section. The screen shot

of the calculation result is shown in Figure 6.4 as follows.

oak

ow_m~o

6

Figure 6.3: A screen shot after loading sequence and score matrix files and
drawing the degree-3 tree.

94

Human-myo
Vitreoscilla
duck-beta
oak

Figure 6.4: The screen shot of Opt-Tree-Align calculation result.

6.4.3 Optimal Generalized Tree Alignment Operation Mode Test

We would not specifically demonstrate the testing of Optimal Phylogeny Reconstruction

(Opt-Phylogeny-Recons) operation mode here since it is a part of Optimal Generalized

Tree Alignment calculation which is shown in the following test. For this operation, we

do not need to draw a tree . The phylogeny tree will be calculated by T AAR.

95

1. Select a score matrix

Select the DNA 0/1 matrix for the calculation by click on its name in the list of Score

Matrix List window.

2. Select an operation mode

Select the Opt-Gen-Tree-Align operation mode by clicking on the option button in

Operation mode frame window.

3. Start calculation

Click Run button to start the calculation. Any operation progress message or error

will be shown on the Running Status Message text box. The multiple aligned

sequences are shown in Appendix C under Opt-Gen-Tree-Align section. The screen

shot of the multiple sequence alignment calculation result is shown first after the

operation is done. It is shown here in Figure 6.5 as follows. The constructed

phylogenetic tree shown in the Canvas area of T AAR is also shown here in Figure

6.6.

96

:·· view Mufti-Al igned Sequences .•

OPTIMALALIG.N.ED BY,SCORE MATRIX: DNA 0/1 matrix

I SE~E~~:~;rs':'ie t
2. Mouse-alpha
3. midge \ · ·~·
4~ Cow..:.myo
5; Mouse::'beta
6. Human:.,.myo ;,, : ··
7. Vi t reosCilla·
.a. duck-beta '
9. .oak f· , ,";<.. ·
;~ :_<:_ ·.. _.. ;· :,~·:_-(>j{:,·§<~· w{,~:>;g:j::;fr#:;.·;.~.:·'"·< < : '''< ;~

MULTI-ALIGNED SEQUENCES "'
- , . "'- :. ?;~~ ~- -- -?.<·;Yt>..'" .

1 · .·\~Li). 21 . 31 41 51
1. ATGAGCAGCFCAG .,.A...:.GTT ' GACA-"M-GT TTTCAC-"AG' A-AGAGC--A GGAAGCTC...:. -
2. ' ATC...:. G-TGCT2CT..;t+r.:: c ~..:; cG-G-AA-G- A:.,.---C-A- A.:..A-AGC--A - - A - C-A-

. 3. :-:T--G....:TC-;7.. ...N'i~-G-i-.... ~ CT-G--A-T- -----C..;___ A-A-ATCA-G --CA-C-AGT
4. ATG'-G ..: GGCF,;CAGCGACG:.,.~> GG-G-AATG G----,(-AGT T-GGTGCTGA --ATGC-C-
5. _.::..-c...:.';.;;.."".::.:;:-;.A..;.,..:,___G.;.:;i AA-G-:.,. --G- --"---C---•;.. ---- AG C--T --AT-C-A- ·

. 6 • . ATG7G..,GGCf ' CAG§GACG.:.,. .; GG-G-AATG G----C-AGT T-GGTGCTGA --ACGT-C-
7. · AT.,. .,.GTT-.::;:,i::~A-i .,.,....:: .,.c~~..• Ac ... c... 7A- G -'- ----.C-.- -:-: A-A-ACCATT --AA-C-A-T

· 8. ·.. ATG:.: G-TG..;:::.> cA~C7T-:G..:·~-> GA-C-.,.A..;G- c.:.---CGAGG AGA-AGC--A G-CT-C-A-
9 . . ATGAGCACcr ·· ..·' :.,. _ :.,.~ GA-.: AGAG .,. G- . GTTCAC-'-CG:: A-AGAGC- -A GGAAGCTC-

}<. ;~~~y:;;_y ;~ ~--··; . >·, •• ~, .) ' ' .'

.i6f ·k,,'(, 1 :·<·:f.:: ;·~ " '9t :,: 101 '' 111
1. . -·::.::fc..:'GTG . , ,. . , - , .;.('..£:~.c\.,.~ _: ;·J-:.L.-GG-GCTGTAATGAAG AA-GAACT-C

.~ 2•. .:: .:.:~TC;c'Afe.~::J'.G :7,Sc~~;;.7.,.T:~ cc·c-:.::.f~-;::;.,..:: T--.- ...:. cc.,.G-' ::G7---GAAG -A::T---r ...:.
'"·3~·· ·,-;:.:rc...:. A.,.A'Gi'/CA'l;c~:Tc"[J;,' GAC,O.,O,,O.G: 7T•T-AAGGGTG-: ...:.p,_,---TCC .-C- - ----
. 4. :. ..: ~rc:..c ::..cci:;j1G -i::-' A:::. -..;·~fp, j;.:.c7-:: -:-~..::L T~---GG-A- . ::-G-::;--GCTG .._ A-TG--T..:c

5 .. _::....:.c-A-A-::...?··G~ ...Cf!--..:·"'il}"; -:: ...c - ;_'----- T -'---GG.:.c '-A----T-A- -A-------
: 6: ... -~rG .:: c -: Gc~.~c0.~A7.~-. :-:..::A c~c.:. ~T:-..:.:: _ ·:r.::_.::,;.Gc-A- .:.c.,.---GCTG -AcA---T-c
. 7. CATCAA::p,(;.,. •K;.-CACTGTT \C-Ct-::.GTAT ·TGAA.:. GGAGC -A----TGG -C-------
8. --TC-ACCG-i! GC"':C;.;;..__ ;..T;t:.. ~c- .,.,---:..-. T-•--GG-G -c.:..---C-A.:. ·-A-------
9. - §TA.:.. GT .::.:---'--A T... c- :::.;.. p,..::_ .:. · r---..: GGAG TGCAATGAAG CC-TAA-TGC

··· 1~~\"?A·'tt","· ···. 131 :>··~~7··i r~1 ·, . ::· ··· ··• ··••······•··· ······ ···'.. ·' ··· ., ·

TGifiiUII .; LIIIIIII IT
>:.. GI J II.IJ II . I I IJ U II LT· ;
;-c III.U 11.1<• 11111111 I T .
. -G I II I I I II J I I II I I I I . T

< ;..All HI Ill <I LIIJIII I T
-C II I I I I I I I I I I I I I I I ·T
-G IIII ·IIJ 111111111 I T .
-G U IIIIIJ .< IIIU.I Ill LT .
- IJ II I II I I ·, I I I I I I I I I V T >: ._. _- .__,_,_ -": 'c< : ~

·· Save I Close!

Figure 6.5: The screen shot of Opt-Gen-Tree-Align calculation result.

http:OPTIMALALIG.N.ED

97

Figure 6.6: The screen shot of Opt-Gen-Tree-Align calculation result of
Phylogeny Reconstruction.

6.5 Real Data Test

We also did some tests with real biology molecular data. The test results of phylogenetic

tree and multiple sequence alignment are shown in Appendix D. T AAR was able to find

the correct tree for 5S Ribosomal RAN sequences [23] and produce an almost correct tree

for the GLOBIN sequences which differs from the correct one by one nearest neighbor

interchange operation. The multiple sequence alignment output by. T AAR also greatly

resembles the original multiple sequence alignment.

Chapter 7

Concluding Remarks

The design and development of Tree Alignment and Reconstruction (T AAR) application

is based on the idea of Sequence Analysis Tool (SAT) [3] and is to add more sequence

alignment algorithms and to satisfy the user's advanced requirements. T AAR provides

an interactive method for the sequence analysis performance of various alignment-related

algorithms such as pairwise and 3-star alignment, phylogeny reconstruction and

generalized tree alignment with or without a given tree structure. In fact, T AAR provides

much more reliable calculation processing, more calculation functions, less data limiting

requirements, and easier understanding and operation ofuser interface.

For instance, in SAT, the requirement of a sequence length is a predetermined

constant. Users have to decide it before compile the application program. But TAAR

does not need to predetermine the sequence length. The data structures for storing

sequence are dynamically created to accommodate any length of sequences. Here the

sequence length limit only depends on the size of the user's computer system memory

space. As another example, in SAT, the three buttons of a mouse pointer device have

different operation functions. It is difficult for user to remember those functions and

operating methods. The operation of SAT also depends on the specific pointer device

very much (i.e., we have to use a three button pointing device). Now in TAAR, the user

only needs to point and press the left most button of a pointing device to do any

operation. Thus it is easier for the user to operate since the operation is not dependent on

98

99

any specific pointing device. In some operation mode, the user may use the keyboard to

do the operation as well as a pointing device. In yet another instance, SAT does not

provide reliable multiple sequence alignment and it is easy to crash. T AAR provides

reliable multiple sequence alignment and can shows the alignment result in an easily

understandable format. The user can choose to print the result out by a printer or save it

into a file.

In future development, I would like to say that we should transport this

application to different computer platforms so more users can use it. Right now it can

only be used on UNIX and X Window System platforms. Since the Internet is becoming

more popular and JAVA is becoming more robust on various platforms, T AAR should be

transformed into JAVA and implemented on the Internet. Another direction is that

presently PC development is very fast and the CPU speed of a PC grows quickly. If the

user's demand for this sequence analysis application on Microsoft Windows platform is

high, then a quick solution is to use MS Visual C++ or Visual Basic programming

language to transform T AAR into a MS Windows platform based application. Since

most parts of T AAR programs are written in C, so this transformation should be

relatively easy.

Appendix A
Sample Input Sequence File

#The short version Globin sequences for testing purpose are shown here.

#Length: 207
>Trema

ATGAGCAGCT CAGAAGTTGA CAAAGTTTTC ACAGAAGAGC AGGAAGCTCT
GGTGGTGAAA TCATGGGCTG TAATGAAGAA GAACTCTGTT TTTTTTTTTT
TTTTTTT

#Length: 74
>Mouse-alpha

ATGGTGCTCT CTGGGGAAGA CAAAAGCAAC ATCAAGGCTG CCTGGGGGAA
GATTGTTTTT TTTTTTTTTT TTTT

#Length: 79
>midge

TGTCAGCTGA TCAAATCAGC ACAGTTCAAG CATCATTTGA CAAAGTTAAG
GGTGATCCCG TTTTTTTTTT TTTTTTTTT

#Length: 86
>Cow_myo

ATGGGGCTCA GCGACGGGGA ATGGCAGTTG GTGCTGAATG CCTGGGGGAA
GGTGGAGGCT GATGTCGTTT TTTTTTTTTT TTTTTT

#Length: 52
>Mouse-beta

GAGAAGGCAG CTATCACAAG CATCTGGGAT AAATTTTTTT TTTTTTTTTT TT

100

101

#Length: 86
>Human-myo

ATGGGGCTCA GCGACGGGGA ATGGCAGTTG GTGCTGAACG TCTGGGGGAA
GGTGGAGGCT GACATCCTTT TTTTTTTTTT TTTTTT

#Length: 83
>Vitreoscilla

ATGTTAGACC AGCAAACCAT TAACATCATC AAAGCCACTG TTCCTGTATT
GAAGGAGCAT GGCGTTTTTT TTTTTTTTTT TTT

#Length: 73
>duck-beta

ATGGTGCACT GGACAGCCGA GGAGAAGCAG CTCATCACCG GCCTCTGGGG
CAAGTTTTTT TTTTTTTTTT TTT

#Length: 103
>oak

ATGAGCACCT TGGAAGGAAG AGGGTTCACC GAAGAGCAGG AAGCTCTAGT
GGTTAAATCA TGGAGTGCAA TGAAGCCTAA TGCTTTTTTT TTTTTTTTTT TTT

Appendix B
Sample Input Score Matrix File

Here are some sample cost matrices. User can use them to do
#some testing job. Note that the open gap penalty will be input online.

##DNA 0/1 matrix

G A

0 1
0

##Sankoff-76

A

0 	 2.25
0

##DNA PAM 20

A c

0 34
0

c T

1
1
0

1
1
1
0

1
1
1
1
0

Transition/Transversion matrix

c T G

2.25 2.25 2.25
1. 75 1. 75 1

0 	 1 1. 75
0 	 1. 75

0

Transition/Transversion matrix

G T

23 34 34
34 23 34

0 34 34
0 34

0

102

103

##DNA PAM 85 Transition/Transversion matrix

A c G T

0 2 1 2 2

0 2 1 2

0 2 2

0 2

0

##Dayhoff PAM 120 matrix

A R N D c Q E G H I L K M F p s T w y v

10 16 13 13 16 14 13 12 16 14 16 15 15 17 12 12 12 20 17 13 14
7 14 16 17 12 16 17 12 15 17 11 14 17 14 14 15 12 19 16 14

9 11 18 13 12 13 11 15 17 12 16 17 15 12 13 18 15 16 14
8 20 12 10 13 13 16 18 14 17 20 15 13 14 21 18 16 14

4 20 20 18 17 16 20 20 19 19 16 14 16 21 14 15 14
7 11 16 10 16 15 13 14 19 13 15 15 19 18 16 14

8 14 14 16 17 14 17 19 14 14 15 21 17 16 14
8 17 17 18 16 17 18 15 12 14 21 19 15 14

6 17 16 15 17 15 14 15 16 18 14 16 14
7 12 15 12 13 16 15 13 20 15 10 14

8 17 10 13 16 17 16 18 16 12 14
8 13 19 15 14 14 18 19 17 14

5 14 16 15 14 20 17 12 14
5 18 16 17 14 9 16 14

7 12 14 20 19 15 14
10 11 15 16 15 14

9 19 16 13 14
1 14 21 14

5 16 14
8 14

14

Appendix C
Test Output of Multiple Sequence Alignment

1. Multiple sequence alignment output of Opt-RootedTree-Aiign operation mode

OPTIMAL ALIGNED BY SCORE MATRIX: DNA 0/1 matrix

SEQUENCE LENGTH: 146

SEQUENCE NAMES:

1. Trema
2. Mouse-alpha
3. midge
4. Cow_myo
5. Mouse-beta
6. Human-myo
7. Vitreoscilla
8. duck-beta
9. oak

MULTI-ALIGNED SEQUENCES:

1 11 21 31 41 51
1. ATGAGCAGCT CAGAAGTTG- ACAAAGTTTT CA-C-AG-A- AGAGC---AG G--AA-GC-T
2. ATG-G-TGCT CT-CTG--G- G-GAA--G-- -A-C-A--A- A-AGC---A- A--CA----T
3. -T--G-TC-- -A---G--C- T-G-A--T-- ---c----A- A-ATCA-GC- A--CAGT--T
4. ATG-G-GGCT CAG--C--G- A--CGG-G-- ------G--- A-A-----TG G--CA-G--T
5. ----G----- -A---G--A- A-G----G-- ---c------ --AGC--TA- T--CA----
6. ATG-G-GGCT CAG--C--G- A--CGG-G-- ------G--- A-A-----TG G--CA-G--T
7. AT--GTT--- -A---G--A- C-C-A--G-- ---c----A- A-ACCATTA- A--CA-TCAT
8. ATG-G-TG-- CA-CTG--G- A-C-A--G-- C--CGAGGAG A-AGC---A- GCTCA----T
9. ATGAGCACCT TGGAAG--GA A-GAGG-GTT CACC--G-A- AGAGC---AG G--AA-GC-T

61 71 81 91 101 111
1. C-T-GGTG-- G-----TGAA -ATCA----- --T----GG- GCTGTAA--T GAA-GAAGAA
2. C-A-AG-G-- C-----TG-- ---cc----- --T----GG- G--G------ GAA-G-AT-
3. C-A-AG-CAT CA-T-TTGA- ----CAAAG- -TT-AAGGGT G--A------ TCC---C--
4. --T-GGTG-- C-----TGAA TGCC------ --T----GG- G-GG-AAGGT GGAGG-CTGA
5. C-A-A--G-- CA----T--- ----c----- --T----GG- G--A------ T-A---A--
6. --T-GGTG-- C-----TGAA CGTC------ --T----GG- G-GG-AAGGT GGAGG-CTGA
7. CAA-AG-C-- CACTGTTC-- ----CT--GT ATTGAA-GGA GC-A------ TGG---C--
8. C-ACCG-GC- c-----T--- ----c----- --T----GG- G--G------ C-A---A--
9. C-T-AGTG-- G-----TTAA -ATCA----- --T----GGA G-TGCAA--T GAAGC-CTAA

104

105

121 131 141
1. CT--CTGTTT TTTTTTTTTT TTTTTT
2. -T----GTTT TTTTTTTTTT TTTTTT
3. ------GTTT TTTTTTTTTT TTTTTT
4. -TGTC-GTTT TTTTTTTTTT TTTTTT
5. ------ATTT TTTTTTTTTT TTTTTT
6. -CATC-CTTT TTTTTTTTTT TTTTTT
7. ------GTTT TTTTTTTTTT TTTTTT
8. ------GTTT TTTTTTTTTT TTTTTT
9. -TG-C-TTTT TTTTTTTTTT TTTTTT

2. Multiple sequence alignment output of Opt-Tree-Align operation mode

OPTIMAL ALIGNED BY SCORE MATRIX: DNA 0/1 matrix

SEQUENCE LENGTH: 151

SEQUENCE NAMES:

1. Trema
2. Mouse-alpha
3. midge
4. Cow_myo
5. Mouse-beta
6. Human-myo
7. Vitreoscilla
8. duck-beta
9. oak

MULTI-ALIGNED SEQUENCES:

1 11 21 31 41 51
1. AT-G-AGCAG CT-CAGAAGT TGACAAA--G TTTTCA-C-A G-A-AGAGC- --AGG--AA
2. ATGG-TGCT- CTCTGG--G- -G---AA--G -----A-C-A --A-A-AGC- --A-A--CA
3. -T-G-TC-A- ----GC-T-- -G----A--T -------c-- --A-A-ATCA -GC-A--CAG
4. AT-G--G--- ----GG--C- -TC-AGC--G -----A-C-G --G-GGA-A- --TGG--CA
5. ---G----A- ----GA-A-- -G-------G -------c-- ------AGC- -TA-T--CA
6. AT-G--G--- ----GG--C- -TC-AGC--G -----A-C-G --G-GGA-A- --TGG--CA
7. AT-GTT--A- ----GA-C-- -C----A--G -------c-- --A-A-ACCA TTA-A--CA
8. ATGG-TGCA- C--TGG-A-- -C----A--G ----C--CGA GGAGA-AGC- --A-GCTCA
9. AT-G-AGCAC CT-TGGAAG- -GA-AGAGGG --TTCACC-G --A-AGAGC- --AGG--AA

106

61 71 81 91 101 111
1. Ge-Te-T-GG TG-;-G----- TGAA-ATeA- ------T--- -GG-GeTGTA A--TGAAGAA
2. ---Te-A-AG -G--e----- TG-----ee- ------T--- -GG-G--G-- ----GAA--
3. T--Te-A-AG -eATeA-T-T TGA-----eA AAG--TT-AA GGGTG--A-- ----Tee--
4. G--T--T-GG TG--e----- TGAATGee-- ------T--- -GG-G-GG-A AGGTGGAG-
5. ----e-A-A- -G--eA---- T-------e- ------T--- -GG-G--A-- ----T-A--
6. G--T--T-GG TG--e----- TGAAeGTe-- ------T--- -GG-G-GG-A AGGTGGAG-
7. TCATCAA-AG -C--CACTGT TC------CT --GTATTGAA -GGAGe-A-- ----TGG--
8. ---TC-AeCG -Ge-e----- T-------e- ------T--- -GG-G--G-- ----e-A--
9. GC-TC-T-AG TG--G----- TTAA-ATCA- ------T--- -GGAG-TGCA A--TGAAG-

121 131 141 151
1. G--AAeT-eT -GTTTTTTTT TTTTTTTTTT T
2. G---A-T--T -GTTTTTTTT TTTTTTTTTT T
3. ----e----- -GTTTTTTTT TTTTTTTTTT T
4. GCTGA-T-GT eGTTTTTTTT TTTTTTTTTT T
5. ----A----- -ATTTTTTTT TTTTTTTTTT T
6. GeTGA-e-AT eeTTTTTTTT TTTTTTTTTT T
7. ----e----- -GTTTTTTTT TTTTTTTTTT T
8. ----A----- -GTTTTTTTT TTTTTTTTTT T
9. eCTAA-TGCT --TTTTTTTT TTTTTTTTTT T

3 . Multiple sequence alignment output of Opt-Gen-Tree-Align operation mode

OPTIMAL ALIGNED BY SCORE MATRIX: DNA 0/1 matrix

SEQUENCE LENGTH: 141

SEQUENCE NAMES:

1. Trema
2. Mouse-alpha
3. midge
4 . Cow_myo
5. Mouse-beta
6. Human-myo
7 . Vitreoscilla
8. duck-beta
9. oak

MULTI-ALIGNED SEQUENCES:

107

1 11 21 31 41 51
1. ATGAGCAGCT CAGA-A-GTT GACA-AA-GT TTTCAC-AG- A-AGAGC--A GGAAGCTC-
2. ATG-G-TGCT CT-C-T-G-- GG-G-AA-G- A----C-A-- A-A-AGC--A --A--C-A-
3. -T--G-TC-- -A-----G-- CT-G--A-T- -----c---- A-A-ATCA-G --CA-C-AGT
4. ATG-G-GGCT CAGCGACG-- GG-G-AATG- G----C-AGT T-GGTGCTGA --ATGC-C-
5. ----G----- -A-----G-- AA-G----G- -----c---- ----AGC--T --AT-C-A-
6. ATG-G-GGCT CAGCGACG-- GG-G-AATG- G----C-AGT T-GGTGCTGA --ACGT-C-
7. AT--GTT--- -A-----G-- AC-C--A-G- -----c---- A-A-ACCATT --AA-C-A-T
8. ATG-G-TG-- CA-C-T-G-- GA-C--A-G- C----CGAGG AGA-AGC--A G-CT-C-A-
9. ATGAGCACCT TGGA-A-G-- GA-AGAG-G- GTTCAC-CG- A-AGAGC--A GGAAGCTC-

61 71 81 91 101 111
1. --TG-GTGGT GA-A-----A T-C---A--- T----GG-GC TGTAATGAAG AA-GAACT-C
2. --TC-A-AG- G--C-----T GCC------- T----GG-G- -G----GAAG -A-T---T-
3. --TC-A-AG- CATCA-T-TT GACAAAG--T T-AAGGGTG- -A----TCC- -c-------
4. --TG-G-GG- G--A-----A G-G------- T----GG-A- -G----GCTG -A-TG--T-C
5. ---C-A-A-- G--CA----T --c------- T----GG-G- -A----T-A- -A-------
6. --TG-G-GG- G--A-----A G-G------- T----GG-A- -G----GCTG -ACA---T-C
7. CATCAA-AG- C--CACTGTT C-CT--GTAT TGAA-GGAGC -A----TGG- -c-------
8. --TC-ACCG- GC-C-----T --c------- T----GG-G- -G----C-A- -A-------
9. --TA-GTGGT TA-A-----A T-C---A--- T----GGAG- TGCAATGAAG CC-TAA-TGC

121 131 141
1. TGTTTTTTTT TTTTTTTTTT T
2. -GTTTTTTTT TTTTTTTTTT T
3. -GTTTTTTTT TTTTTTTTTT T
4. -GTTTTTTTT TTTTTTTTTT T
5. -ATTTTTTTT TTTTTTTTTT T
6. -CTTTTTTTT TTTTTTTTTT T
7. -GTTTTTTTT TTTTTTTTTT T
8. -GTTTTTTTT TTTTTTTTTT T
9. -TTTTTTTTT TTTTTTTTTT T

Appendix D
Real Data Test Result

1. 	 GLOBIN sequences and the reconstructed phylogeny from them by Fast
Phylogeny-Recons operation with DNA PAM 85 Transition score matrix

>Trema

ATGAGCAGCT
TCATGGGCTG
TTTGAGATTG
TTGGAGCAGA
TCTGCGGTTC
CTTGGGGCTA
CTTTTGGAGA
TGGGGAGAAG
ACTTGA

CAGAAGTTGA
TAATGAAGAA
CACCGTCTGC
ACCCAAAGCT
AACTTCGGAA
TCCACTTCAA
CCATAAAGGA
CTTATGATCA

Vi treosci lla

12

House-alpha

, . 3

CAAAGTTTTC ACAGAAGAGC
GAA_CTCTGCT GAACTGGGTC
CAAGAACTTG TTCTCGTATT
GAAGCCCCAT GCTATGACTG
AGCCGGAAAA GTAACAGTGA
AAATGGCGTA GTTAATGAAC
AGCAGTACCA GAAATGTGGT
GTTGGTTGCT GCTATCAAGT

AGGAAGCTCT GGTGGTGAAA
TTAAATTCTT CCTCAAGATA
TGAAGGACTC TCCGATTCCT
TCTTCGTTAT GACGTGTGAA
GAGAATCAAA CTTGAAAAGA
ATTTTGAGAC AAGGTTTGCA
CACCTGAGAT GAAGAACGCA
CCGAAATGAA ACCCTCCAGT

108

109

>Mouse-alpha

ATGGTGCTCT CTGGGGAAGA CAAAAGCAAC ATCAAGGCTG CCTGGGGGAA GATTGGTGGC
CATGGTGCTG AATATGGAGC TGAAGCCCTG GAAAGGATGT TTGCTAGCTT CCCCACCACC
AAGACCTACT TCCCTCACTT TGATGTAAGC CACGGCTCTG CCCAGGTCAA GGGTCACGGC
AAGAAGGTCG CCGATGCTCT GGCCAATGCT GCAGGCCACC TCGATGACCT GCCCGGTGCC
CTGTCTGCTC TGAGCGACCT GCATGCCCAC AAGCTGCGTG TGGATCCCGT CAACTTCAAG
CTCCTGAGCC ACTGCCTGCT GGTGACCTTG GCTAGCCACC ACCCTGCCGA TTTCACCCCC
GCGGTAC

>midge

TGTCAGCTGA TCAAATCAGC ACAGTTCAAG CATCATTTG.Z\ CAAAGTTAAG GGTGATCCCG
TTGGTATCCT ATATGCTGTC TTCAAGGCTG ATCCATCAAT CATGGCTAAA TTCACACAAT
TCGCTGGAAA GGACCTCGAA TCAATCAAGG GAACAGCTCC ATTTGAAACT CATGCCAATA
GAATTGTCGG ATTCTTCTCA AAGATCATTG GTGAACTTCC AAACATTGAT GGAGATGTCA
ATACATTCGT TGCCTCACAT AAGCCCCGTG GAGTTACACA TGATCAATTA AACAACTTCC
GTGCTGGATT CGTCAGCTAC ATGAAGGCTC ACACTGACTT CGCTGGAGCT GAAGCAGCCT
GGGGTGCAAC TCTTGACACT TTCTTCGGAA TGATCTTCTC AAAGATGTAA

>Cow_myoglobin

ATGGGGCTCA GCGACGGGGA ATGGCAGTTG GTGCTGAATG CCTGGGGGAA GGTGGAGGCT
GATGTCGCAG GCCATGGGCA GGAGGTCCTC ATCAGGCTCT TCACAGGTCA TCCCGAGACC
CTGGAGAAAT TTGACAAGTT CAAGCACCTG AAGACAGAGG CTGAGATGAA GGCCTCCGAG
GACCTGAAGA AGCATGGCAA CACGGTGCTC ACGGCCCTGG GGGGTATCCT GAAGAAAAAG
GGTCACCATG AGGCAGAGGT GAAGCACCTG GCCGAGTCAC ATGCCAACAA GCACAAGATC
CCTGTCAAGT ACCTGGAGTT CATCTCGGAC GCCATCATCC ATGTTCTACA TGCCAAGCAT
CCTTCAGACT TCGGTGCTGA TGCCCAGGCT GCCATGAGCA AGGCCCTGGA ACTGTTCCGG
AATGACATGG CTGCCCAGTA CAAGGTGCTG GGCTT

>Mouse-beta

GAGAAGGCAG CTATCACAAG CATCTGGGAT AAAGTGGACT TGGAAAAAGT TGGAGGAGAA
ACTCTGGGAA GGCTCCTGAT TGTTTACCCA TGGACTCAGA GATTCTTTGA CAAGTTTGGA
AACCTCTCTT CTGCCCTGGC CATCATGGGA AACCCCCGGA TTAGAGCCCA TGGCAAGAAA
GTGCTGACAT CCTTGGGCTT GGGGGTTAAG AACATGGACA ACCTCAAGGA GACCATTGCT
CATCTCAGTG AGCTGCACTG TGACAAGCTT CATGTGGATC CTGAGAACTT CAAGCTCCTG
GGCAACATGT TGGTGATTGT CCTTTCTACT CATTTTGCCA AGGAATTCAC CCCAGAGGTG
CAGGCTGCCT GGCAGAAGCT GGTGATTGGA GTGGCCAATG CTCTGTCCCA CAAGTACCAT
TAA

>Human-myo

ATGGGGCTCA GCGACGGGGA ATGGCAGTTG GTGCTGAACG TCTGGGGGAA GGTGGAGGCT
GACATCCCAG GCCATGGGCA GGAAGTCCTC ATCAGGCTCT TTAAGGGTCA CCCAGAGACT
CTGGAGAAGT TTGACAAGTT CAAGCACCTG AAGTCAGAGG ACGAGATGAA GGCATCTGAG
GACTTAAAGA AGCATGGTGC CACTGTGCTC ACCGCCCTGG GTGGCATCCT TAAGAAGAAG

110

GGGCATCATG AGGCAGAGAT TAAGCCCCTG GCACAGTCGC ATGCCACCAA GCACAAGATC
CCCGTGAAGT ACCTGGAGTT CATCTCGGAA TGCATCATCC AGGTTCTGCA GAGCAAGCAT
CCCGGGGACT TTGGTGCTGA TGCCGAGGGG GCCATGAACA AGGCCCTGGA GCTGTTCCGG
AAGGACATGG CCTCCAACTA CAAGGAGCTG GGCTTCCAGG GCTAG

>Vitreoscilla

ATGTTAGACC AGCAAACCAT TAACATCATC AAAGCCACTG TTCCTGTATT GAAGGAGCAT
GGCGTTACCA TTACCACGAC TTTTTATAAA AACTTGTTTG CCAAACACCC TGAAGTACGT
CCTTTGTTTG ATATGGGTCG CCAAGAATCT TTGGAGCAGC CTAAGGCTTT GGCGATGACG
GTATTGGCGG CAGCGCAAAA CATTGAAAAT TTGCCAGCTA TTTTGCCTGC GGTCAAAAAA
ATTGCAGTCA AACATTGTCA AGCAGGCGTG GCAGCAGCGC ATTATCCGAT TGTCGGTCAA
GAATTGTTGG GTGCGATTAA AGAAGTATTG GGCGATGCCG CAACCGATGA CATTTTGGAC
GCGTGGGGCA AGGCTTATGG CGTGATTGCA GATGTGTTTA TTCAAGTGGA AGCAGATTTG
TACGCTCAAG CGGTTGAATA A

>duck-beta

ATGGTGCACT GGACAGCCGA GGAGAAGCAG CTCATCACCG GCCTCTGGGG CAAGGTCAAT
GTGGCCGACT GTGGAGCTGA GGCCCTGGCC AGGCTGCTGA TCGTCTACCC CTGGACCCAG
AGGTTCTTCG CCTCCTTCGG GAACCTGTCC AGCCCCACTG CCATCCTTGG CAACCCCATG
GTCCGTGCCC ATGGCAAGAA AGTGCTCACC TCCTTCGGAG ATGCTGTGAA GAACCTGGAC
AACATCAAGA ACACCTTCGC CCAGCTGTCC GAGCTGCACT GCGACAAGCT GCACGTGGAC
CCTGAGAACT TCAGGACCAA GGGTGCTCAT GTTCCCACAG CTCCTGGGTG ACATCCTCAT
CATCGTCCTG GCCGCCCACT TCACCAAGGA TTTCACTCCT GACTGCCAGG CCGCCTGGCA
GAAGCTGGTC CGCGTGGTGG CCCACGCTCT GGCCCGCAAG TACCACTAA

>oak

ATGAGCACCT TGGAAGGAAG AGGGTTCACC GAAGAGCAGG AAGCTCTAGT GGTTAAATCA
TGGAGTGCAA TGAAGCCTAA TGCTGGAGAA TTGGGTCTCA AGTTCTTCTT AAAGATATTT
GAGATCGCAC CGTCAGCACA GAAGCTCTTC TCTTTCTTGA AAGACTCTAA TGTTCCCCTG
GAACGGAACC CAAAGCTCAA GTCCCATGCC ATGTCTGTCT TTCTTATGAC CTGTGAATCC
GCAGTGCAGC TCCGGAAAGC TGGCAAAGTT ACTGTGAGGG AGTCAAGTTT GAAAAAGTTG
GGTGCTTCCC ACTTTAAACA TGGAGTGGCC GATGAACACT TTGAGGTAAC AAAATTTGCG
TTGCTGGAAA CAATCAAGGA AGCAGTCCCA GAGACGTGGT CGCCGGAGAT GAAGAATGCG
TGGGGAGAAG CTTACGATAA GTTGGTTGCT GCTATCAAAT TGGAAATGAA GCCTTCGTCT
TAG

I l l

2. Reconstructed phylogeny of SS ribosomal RNA sequences by Opt-Phylogeny
Recons operation with Sankoff-76 Transition score matrix

E.Col i

3. 	 Multiple sequence alignment by Fast-Gen-Tree-Align operation with Dayhoff
PAM 250 score matrix and GAP Penalty 12

FAST ALIGNED BY SCORE MATRIX : Dayhoff PAM 250 Matrix
OPEN GAP PENALTY: 12.00

SEQUENCE LENGTH : 189

SEQUENCE NAMES:

1. 	 HAHU Hemoglobin alpha chain - Human
2 . 	 HAOR Hemoglobin alpha chain - Duckbill platypus
3 . 	 HADK Hemoglobin alpha - A chain - Duck
4. 	 HBHU Hemoglobin beta chain - Human
5. 	 HBOR Hemoglobin beta chain - Duckbill platypus

6. 	 HBDK Hemoglobin beta chain - Duck
7 . 	 MYHU Myoglobin - Human
8. 	 MYOR Myoglobin - Duckbill platypus

112

I

9 . IGLOB Haemoglobin (Ctp HbVIIB - 5)Midge (Chironomus thurnrni)
10 . GPUGNI Nonlegume hemoglobin I - Swamp oak
11 . GPYL Leghemoglobin I - Yellow lupine
12 . GGZLB Bacterial hemoglobin - Vitreoscilla sp.

MULTI - ALIGNED SEQUENCES :
motif

1 11 21 31 41 51
1 . -----V- LSP ADKTNVKAAW GKVGA----- ---HAG-- EY GAEALERMFL
2 . -----M- LTD AEKKEVTALW GKAAG----- ---HGE--EY GAEALERLFQ
3 . -----V- LSA ADKTNVKGVF SKI GG----- ---HAE--EY GAETLERMFI
4 . -----VHLTP EEKSAVTALW GKV------- ---NVD--EV GGEALGRLLV V
5. -----VHLSG GEKSAVTN LW GKV------- -- -NI N-- EL GGEALGRLLV V
6 . - - - --VHWTA EEKQLITGLW GKV------- ---NVA-- DC GAEALARLLI V
7 . -----G- LSD GEWQLVLNVW GKVEA----- - - - DIP--GH GQEVLIRLFK
8 . -----G- LSD GEWQLVLKVW GKV------- ---EGDLPGH GQEVLIRLFK
9 . MK FFAV - LAL CIVGAIASPL TADEASLVQS SWKAVS - HN EVEILAAVFA

10 . -----A- LTE KQEALLKQSW EVLKQ---- --NI P--AH SLRLFALIIE
11 . G---V- LTD VQVALVKSSF EEFNA---- --NI P-KN THRFFTLVLE
12 . -----M- LDQ QTINI I KATV PVL KE---- -- HGV -TI TTTFYKNLFA

motif II

61 7 1 81 9 1 101 111
1 . --- PHF-- --DLS-HG VADALTNAVA H-VDDMPN - - ALS -
2 . ---SHF-- -- DLS - HG VADALSTAAG H- FDDMDS - ALS -
3 . --- PHF -- --DLS --HG VAAALVEAVN H-VDDIAG - - ALS -
4 . ---ESFGDL STPDAV-MG VLGAFSDGLA H-LDNLKG - -TFA-
5 . ---EAFGDL SSAGAV-MG VLTSFGDALK N-LDDLKG - - TFA-
6 . ----ASFGNL SSPTAI - LG VLTSFGDAVK N-LDNIKN - -TFA-
7 . --- DK FKHL KSED EM- KA VLTALGGILK K-KGHHEA- - EIK-
8 . --- DKFKGL KTEDEM - KA VLTALGNILK K-KGQHEA - ELK -
9 . ---SQFAGK --DLASIKD IVSFLSEVIA L-SGNTSNA AAVN --SLV

10 . - - - SFLKDS N-EIP-EN IFKTICESAT E-LRQKGH - - AVWDNNTLK
11 . ---SFLKGS S-EVP -QN VFKLTYEAAI QLEVNGAVA- - SDA--TLK
12 . MGRQESL- - --EQP - KA NIENLPAILP A--VKK~~C---QAG

motif I II mo t if IV motif V

121 13 1 141 151 161 171
1. VDPV -NFKL - AHLPAEFTP LASVSTVLTS
2. VDPV- -NFKL - RHCPGEFTP LSKVATVLTS
3 . VDPV-NFKF - IHHPAALTP MCAVGAVLTA
4 . VDPE -NFRL - HHFGKEFTP VAGVANALAH
5 . VDPE -NFNR - RHFSKDFSP VSGVAHALGH
6 . VDPE -NFRL - AHFTKDFTP VRVVAHALAR
7 . IPVK-YLEF - SKHPGDFGA LELFRKDMAS
8 . ISIK- FLEY - SKHSADFGA LELFRNDMAA
9 . ARGV -SAAQ YLQANVS WGD LDNTFAIVVP

10 . ITDP -HFEV - EAIKENWSD Y NQLVATIKAE
11 . KGVVDAHFPV - EVVGDKWSE IA YDELAIIIKK
12 . VAAAHYP-- I VGQE --I(t!IIKEVLGDAAT - DDILIIIGK AY - GVIADVF IQVEADLYAQ

113

181
1. KYR-----
2. KYR-----
3. KYR-----
4. KYH-----
5. KYH-----
6. KYH-----
7. NYKELGFQG
8. KYKEFGFQG
9. RL------

10. MKE-----
11. EMKDAA--
12. AVE-----

Bibliography

[1] Altschul, S. Gap Costs for Multiple Sequence Alignment, J. Theor. Bioi. 138, pp.
279-309, 1989.

[2] Chan, S.C., Wong, A. K. C. and Chiu, D. K. T., A Survey of Multiple Sequence
Comparison Methods, Bulletin ofMathematical Biology 54(4), pp. 563-598, 1992.

[3] Chen, X. D, An Interactive System for Sequence Analysis, M.Sc. thesis, McMaster
University, 1994.

[4] Dayhoff, M.O., Schwartz, R. M. and Orcutt, B. C., A Model of Evolutionary

Change in Proteins, Atlas ofProtein Sequence and Structure, 5:345-352, 1978.

[5] Eppstein, D., Giancarlo, R. and Italiano, G. F., Sparse Dynamic Programming 1:

Linear Cost Functions, J. Assoc. Comp. Machinery, 39(3), pp. 519-545, 1992.

[6] Flanagan, D., X Toolkit Intrinsics Reference Manual, Vol.5, O'Reilly & Associates,
Inc., 1992.

[7] Gribskov, M. and Devereux, J., Sequence Analysis Primer, Stockton Press, 1991.

[8] Gusfield, D., Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, 1997.

[9] Gusfield, D., Efficient Methods for Multiple Sequence Alignment with Guaranteed
Error Bounds, Bulletin of Mathematical Biology 55, pp. 141-154, 1993.

[10] Hein, J. J., A New Method that Simultaneously Aligns and Reconstructs Ancestral
Sequences for Any Number of Homologous Sequences, When the Phylogeny is
Given, Mol. Bioi. Evol. 6, pp. 649-668, 1989.

[11] Hein, J. J., A Tree Reconstruction Method that is Economical in the Number of
Pairwise Comparsions Used, Mol. Biol. Evol. 6, pp. 669-684, 1989.

[12] Heller, D. and Ferguson, P.M., Motif Programming Manual for OSF/MotifRelease
.12., Vol. 6A, O'Reilly & Associates, Inc., 1994.

[13] Hirschberg, D. S., A Linear Space Algorithm for Computing Longest Common
Subsequences, Commun. Assoc. Comput. Mach., pp. 341-343, 1975.

114

115

[14] Jiang, T., Lawler, E. L. and Wang, L., Aligning Sequences Via an Evolutionary
Tree: Complexity and Approximation, In Proc. of the Twenty-Sixth Annual
Symposium on Theory of Computing, pp. 760-769, 1994.

[15] Jiang, T., Wang, L. and Lawler, E. L. Approximation Algorithms for Tree
Alignment with a Given Phylogeny, Algorithmica, I6, pp. 302-3I5, I996.

[I6] Jiang, T. and Li, M., Optimization Problems in Molecular Biology, in Advances in
Optimization and Approximation, Du, D. Z. and Sun, J. (eds.), Kluwer Academic
Publishers, MA, I994, I95-2I6.

[I7] Myers, B. A. and Rosson, M. B., Survey on User Interface Programming, CHI'92
Conference Proceedings on Human Factors in Computer Systems, pp. I95-202,
ACM Press, New York, I992.

[I8] Myers, E. W.and Miller, W., Optimal Alignments in Linear Space, CABIOS, 4(I),
pp.ll-I7, I988.

[I9] Nye, A., Xlib Reference Manual, Vol.2, O'Reilly & Associates, Inc., I992.

[20] Person, W.R. and Lipman, D.J., Improved Tools for Biological Sequence
Comparison, Proc. Natl. Academy Science, 85:2444-48, 1988.

[2I] Querie, V., and O'Reilly, T., X Window System User's Guide for XII Release 5,
Vol.3, O'Reilly & Associates, Inc., I993.

[22] Saitou, N. and Nei, M., The Neighbor-Joining Method: A New Method for
Reconstructing Phylogenetic Trees, Mol. Biol. Evol. 4-4, pp. 406-425, I987.

[23] Sankoff, D., Cedergren, R. J. and Lapalme, G., Frequency of Insertion-Deletion,
Transversion, and Transition in the Evolution of 5S Ribosomal RNA, Journal of
Molecular Evolution 7, pp. 133-149, I976.

[24] Sankoff, D. and Kruskal, J., Time Warps, String Edits, and Macromolecules: the
Theory and Pactice of Sequence Comparison, Addison Wesley, Reading Mass.,
1983.

[25] Sankoff, D., Minimal Mutation Trees of Sequences, ALAM J. APPL. Math. 28(I),
pp. 35-42, I975.

[26] Schwikowski, B. and Vingron, M., The Deferred Path Heurristic for the Generalized
Tree Alignment Problem, Journal of Computational Biology, Vol.4, Num.3, Mary
Ann Liebert, Inc., pp. 4I5-43I, I997.

116

[27] Smith, D. W., Biocomuting: Informatics and Genome Projects, Academic Press Inc.,
1994.

[28] Swofford, D. L., Olsen, G. J., Waddell, P. J. and Hillis, D. M. 	 Phylogenetic
inference. In Hillis, D. M., Moritz, C. and Mable, B. K., editors, Molecular
Systematics, 2"d Edition, Sinauer Associates, Sunderland Massachusetts, 1996.

[29] Wang, L. and Jiang, T., On the Complexity of Multiple Sequence Alignment,
Journal ofComputational Biology, 1-4,337-348, 1994.

[30] Waterman, M.S., Introduction To Computational Biology: Maps, sequences and
genomes, Chapman & Hall, London, 1995.

[31] Waterman, M. S., Mathematical Methods for DNA Sequences, CRC Press, 1989.

	book1
	book2
	book3

